
(شماره)

طبق برنامه سال|ول

دا نشكده علم و صنعت ايران

19

 ازمعادلات ، ry.

4

9r

فصل جهارم

فهرست

M

$9 r$
فصال شثشم

 QV I I I

179

$$
\begin{aligned}
& \text { الكترونى • إو } \\
& \text { S }
\end{aligned}
$$

بيو ند هاى شيميأثى، IYY

 .IVA

IVS

 IVA بیا . اثر فشار در قابليت انحلال ، هی ا . اثر درجـه حرارت در تـابليت

جامدات درمايعات ، 19ه. عوامل مؤثر درانحلال جامدات درمابعات،ه9 19.

فهرست

F••

فصل تهم

وانت هوف ، ه• .

$p+q$

FTO

فصليازدهم

pry

 ودهند كان :يرو تون ، . .

pgf

ryr

H

 Y Y Y

Prq

فصل شانزدهم

Pol

ras
فصل هجدهم

『A.

فصل اول

 F

 ساختمان شيميائى مو جودا ت ز ز ندد بحث مى كني

 . يكديك نمى باشند
جر ميك شئى عبارت است اذمقدارماده هو جود در آن. درهر ثيثئى مقدارجر مهميشـ

وزذعبادتاست از نيروى جاذ بهثقلى مو جود بين دوجسم آزاد وبطوردمستقيم متناسب
 ميباند

نيروئى است كه بين آن وزمين ٌِجود دارد .

 وأحد سنجش جرم ترم است و وزن دا بر حسب دين اندازه مى كير ند . وزن يك كـرم

 با•هو دين است، تعريف يك كرم وزن است .

وقتى كه دريك ترازوى تجزيهاى جسىى را وزن مسى كنيب درحقيقت جـر م م آن را

 ويا سهنردمأىاستفاده نمود

كا
حf

دوتا ازاين خواصيتها سنتيىى و سنتگينى أسبيى ناميده ميشو ند .

 برابـ بر

$$
\begin{aligned}
& f-\frac{m}{v} \\
& \text { frem }_{c r^{3}}^{g r} \\
& \text { giter }
\end{aligned}
$$

 جهاردرجه است (شكل ץ) . درشكل ب مقايسه وزن بك حجم معين جيوه با وزن همان حجم.

 اينطو دنيست (جدول شهاءه ا)
جدول ثهاده

سنعينى وسنعينى نسبى بعضى از اجسام ،عمولى

هـ انواع ماده : درتثريتح ماده اهصطلاحات زير اصولى بنظر غىدسند : حسم -

الصطلاح جسم درقـهـت قبل ثر ح داده شده است :

به بعد عناسر

 اكسيزن از دسته غير فلزات هستند ．جدول شهاره ץ اسامى دوازده عنصرى كه فراوانْتراز
 －نشان مىدهد
جدول شهاهـ r

فر اوانى عناصر

درصد	r／4	\％	ases	FQ／r	－ 1
\＄	1／9	ه	＂	$r \Delta / Y$	－
》	．／9	－j）	》	Y／F	
》	．$/ 9$	－	》	F／Y	－${ }^{T}$
》	．$/$ r	，	》	$r / 4$	c．uls
\＃	－ハ	，ias	》	r／4	－

تر كيبات اجسامیهستند كه از دو ِـاحند عنصر كه بطر يقه شيميائى باهم تر كيبشلهاند
 عناصر كل，وسديم وتر كيبآمو نياك ازعناهر ازت وئيدرثن تشكيل شدهاند ． ازا اين بحث چِنين نتيجه كرفته ميشود كه عناسر اجسامىسادهتر از تر كيبات هستند ．

 خواص هخلوطها هتغير است ．آهن وكو كرد كه ازعناصر هستند هى توا نتد با شكريانمك كه تر كبب هستند هخلوط كرد ند ．مخخلو طكردن T آنها باهم هيحكو نه تغييرى در آنهانهى دهد． حتى اكر آ نهـا را بصورت كـرد بسيار نرمى در آوريم زيرميكروسكوب مىتو ان ذرات سباه آهن－ذرات زرد كو كرد وذرات سفيدنمك وشكى دا ازهم تشخيص داد ．

 تبخير كيم شكر درظرف باقى میمان ند .
צـ تغيير ات ماده : تغييرات فيز يكى باءث تنيير ى در ساختهان شيميائى اجسام

 و منيز يو متشكمل شده است توليد مى كند .
منيزيوم + اكسبزن (انهو ا) س اكسيد مير يوم
ت́s

 ميكر دد :

آمو نياكى كه درواكنش بالالماخته شده است حاوى دوعنصر ازت وئيدرڤن إست. از دوعنص يك تر كيبجديد توليد شده است

$$
\begin{aligned}
& \text { ترك كیب }
\end{aligned}
$$

 بر ای زشان دادن اين أع كافى است كه يك سكه هسى, درا درون هجلمول نيتر ات نقره بيانداز ند.

 Uns

وقتى هـ

قو ا بيناساسى مى تو انبّى بر د.

 قالزن

 تر كيب ميـكردد .

يكديع, تر كيب مبع, دند . شود فقط Ka/ باقى مىهاند . مثلا :

درد هر بك اذفقل و ا نفـالات فوت اين دو اسل ديده مبشود:

 تركيت ميكردد .

ميشود) ازآن مبتوان بهو ازمهاداله زيراستفاده ميشود .

 r Y / VV

هِون اين او;ان منيز يو م وكار همان مقاديرى هستندكه باهشت كرم اكسيثن تر كيب
ميع, دند وهمارز دِكديكا ند .

هیهو لا تعدأد والانس كرمهارا ازرا بطهها؛ى زيرتعين ميكنند
 $\mathrm{C}_{\mathrm{s}} \mathrm{H}_{5}$

$$
\begin{aligned}
& C_{2} \mathrm{M}_{2}=\text { وزن }
\end{aligned}
$$

居

$$
\begin{aligned}
& \text { با با برابن ب. }
\end{aligned}
$$

,
 (يك والانس كرم داشته باشند . درفصلهأى بعل علت آن شرح داده خو اهد شد .
Aـ انرزى ماده وانرثى هنان نسبت نزديكى با هم دارندكه مطالعه در بــاره يكى
 بعضى از انوع انرثى باشر ح زير ند :

 قادراست كار انجام دهد .

 كه دراين تنير ات همر اله هستند .

 است حرارت زانم دادد

 ميكيدد كالرى نام دادد . يُكالرى مقدار حر ادتى استكه میىتواند درجه حرارت يك كرم

دروا كنث تـ كيبىز ير : "

$$
\mathrm{A}+\mathrm{B} \longrightarrow \mathrm{Al3}
$$

 .

$$
\begin{aligned}
& \text { كر بن + } \\
& \text { اين واكخ . . . }
\end{aligned}
$$

 ماده و انرثى آ نقدر بهم نزديك هستندكه تقسبم تحقيقات در باده آ آنها به دورشنه مصنوعى بنظرمعسدر و

ازمحبط جذب ميگردد .

درفعل وا تفعالات معهولى شبميائى مادهنه اذبينمى بودد ونه بو جود مى آيد (قانونبقاء

ماده، ونسبتى كه هوإد بايكديِكر تر كبب مى كرد ندهمیشيه ثابت است (قا نون نسبتهأى تر كيبى ثابت) براى تو جيه بيشتّ اين واكثشها مواد را بهاجسام خالص وهخلوط تقسيمكردهاند. دودسته جسم خالص وجّود دار ند: عil

 آورند وزن يكى به وزن ديكرى نسبت ثابتى درهوقع تر كيب دارد . اين خقيقت استفاده

به اين سو الها ناستخ دهيد

هـ اصطلاحات زيرد| تعر يف كنيد : عنصر - تر كيب - مخلوط ـ متحلول

(

苋

كَ سی"復

气

 تشكبل ثدهاند ．
 مه．
S

仿位

¢هـ وزن m_{2} P心共 نسبى آن
（ $1 /$ 人
اك，
 والانس كر م روى چچقدناست ؟
 تشكيلشده است ．والانس كـ م ازت دراين تر كيب جقدرداسـ ؟

مى

اكسيثن تر كيب ميشود

اكسيثزن و نقره را دراين تر كيب حسابكنيد ．

چندكرم ازاين فلزلازم است ؟

تر كيب چجدراست 9
 كرمكرم در!ين تر كيب چحّدراست ؟
.

فصل دوم

ְ

 ا- تعر.يف:ماكول هایى يك جـم واحدتشعيلدهوندهآن جسم درحاهالت تازى است.

 ملكو لهاى يك جسم كو جكترين ذرات آن جار جسم هستند .

ملكول كفته ميثود .

 آمو نياك فرت دارند .

$$
\begin{aligned}
& \text { 准 }
\end{aligned}
$$

 مالكول هاى ملكُولى باشد . مثـر

$$
\begin{aligned}
& \text { ئيدرثن + كلى ـ ك كلمورئيدرثن }
\end{aligned}
$$

$$
\begin{aligned}
& \text { يُيدرثن + ازت }
\end{aligned}
$$

آور كادر و منذكرشدكه علت اينكه يك حجم ئيدرثن دقيقاً بإيك حجم كلر تر كيب
 ملكول ئيدرزنب. ياسالكول كلر تر كيبميكر دد . درمثال دوم دوملـكولئيدرثن با يكملكول اكسيزن و درمثال سوم سهملكول ئيـدرثن بادكاك . ـلكول ازت تر كيب هيشود . (در اينجا

 ملكول اجسام را تعيين نهود .

 فر ضبها آو كادرو روشى بر ایى محاسبه اين اوزان ملكولى نسبى بيثنههاد هى كرد .

ثعل ه وزن نـــي كازها

أكروزن دو كازراكه در دومحفظه باحجممساوى كه يكىداراى كازكر بنيك وديك, داراى ئيدرثن (درهمان درجه حر ارت وونار) است مقايسه شود مشاهده ميشود كهوزن كاز كر بنيك ץץ مرتبه ازوزن ئبدرثن بيشتر است. چون طبق فرضيه آو كادرو، هردو ججم داراى

 اكسيثن است :

$$
r r X_{r \mu}^{r r}=\mu \psi
$$

وزن ملكو لى كاز كرينيك ب است.
 واحد وزن مى باثند .

 راحتتراست • جدول ذـارْ

 ليتر فضارا ، حجم مالكو لى ، اشغال ميكند ．

جدول شهاره r

ملكول Fزرمهاى بعضىازاجــام

ملكول ترم	وزن هلكولى	\cdots
－－－	－－－	－－
1，${ }^{\text {r }}$	r	－
\＄${ }^{\prime}$	＇V	
》 1.	＇s	\square
－	－	
$\geqslant r$	H	ن－
》 FF	44	
\％YF	v个	1
＞Her	ryt	，

 سنغيني كازها دا هيتوان تبين كرد
 : -

-

 ليتراست . اك, درجه حر ارت آب جوشان 1

حجم كاذ درش, أئط متعاروى هيشود
 © آيد .

 آب ـ كاز كـ بنيكر| بتر تيب نشان مبدهند:

تجقيق كرد . ازچندتر كيب ازت واكسيزن هينو ان بعنوان مذال بر ای آشنائى بـا آ نجه كه
 ميشو ند نشان هيدهد . جهارده كرم ازت هيتو ازن با لا تـ كيب شده ورينج اكسيد هختلف ازت تو ليد كند .

تر كيبات ازت واسكيزرن

- \times (${ }^{\prime}$	91	- +1	
- $+x \times 1$	-¢!	$14!1$	い,
r (rxi)	*	*	,
+ $(t+2)$	${ }^{r}!$	- +1	
$\therefore(2 x)$	+!	$1{ }^{1}$	

 زير بيان كرد :
 بـ اتمهاى هو عنصر داراى جر م وخو اص عشا بها هستند .

 . اكراتم بعضى ازعناصر دا بصورت زير نشان دهـن

"ى آورند ممكن است بشـ. ح زير باشد :

 تر كيب شده است در بعاكسيم ازت دو بر ابرا كسيد نيتر يكاست . طبت فرضيهدالتو نبا نوشتن

درهعادله دوم بجاك يك ملكول دوملـكول اكسيرن بايك اتم ازت تر كيب ميك, دد .

 درتر كيب ئهدرثن با اكسيزن وازت بطور يـكه دألتون در با'لا نشان داده است وفتط يكاتماز

$$
\begin{aligned}
& \text { ئيدرثن + ازت }
\end{aligned}
$$

 همان تعداد ملكول است . بنابر !ين داديم :

 شده است . بنابراين هرهانكول ازت بايستى ازدواتم ازت تشكيل شده بانثد . در نتيجهمعادله له را بصورت شكل • ا نثان داد .

 ? اثه تع يف كر د

 بابFr

اتم وملكول

جدول شماره Q

تعداد اتمهاى هو جوددر ملكو لهاى عناصر معمولى

 تر كيبات ازت را زشان هيدعد .

$$
\begin{aligned}
& \text { جدول شماره } 9 \\
& \text { آعيين وزن اتمى ازت }
\end{aligned}
$$

تخئى ازمأكولمتر مجـمه مر بوط به ازت	حرصد ازت \rightarrow	。 （575／i）	م－
rı／$/ \mathrm{g}$	－．．／．	Y $1 / \cdot 9$	از
YN／＜	yr／v．	＋4／1＜	｜
iF／＊	fyive	$r \cdot / \cdot<$	
rı／$\cdot<$	Dr／44	$\Delta r / r$＜	いう．．
$1+1 .<$	ar／ra	｜v／．《	آ．．

خطا درتعيّن وزن هلكولى چند درصد است بنابر اين اتم كـرم هأى بدست آهده نين تقريبى ．هستند

كر مهائى برا بر جا
 وقتى درصد ازت دريك اكسيد ازت هملوم شود با دردست داشتن والانس كرم اكسيثن
 چون اتم كر مازتتقر يباًدر حدود
 －نِّ هست

تييين شده است ．سهو الانس كر مكر بن كه از روى تر كيباتآن تعيين شدهاند عبارتنه از ：

$$
\begin{aligned}
& \text { r/..tyXr--Ir/.Ir }
\end{aligned}
$$

 شر ح داده شده است .
5.
-
 سـال بيش جاي شدماند علائم زير بِإفت ميشو ند
Z

برزيليو (1

علائم اختصارى وظر فيت بعضى ازعناصر معمو لى

ا 11 ارزش زيادى دارد حون هر علامت اين معانى را ميرسانـ :

الف . يك روث كو تاه براى نوشتن نام عنصر
ب ـ ــ اك اتم ازعنصر

$$
\int_{j-\infty}{ }_{3}
$$

 اكسيزن وازت را بافرمولهاى زيرميتو ان مشتخص كرد

دوفرمول آب هردو يك جيز ى رانشان مىدهند : يك هكول آب ازدواتم ئيدرثن و
 سه اتم ئيدرثن ويك اتم ازت تشكيل شدهاست .

ب ب ي

CIII	11 Cl
CI.Ca	$\mathrm{H}_{r} \mathrm{O}$
C.ITH	$\mathrm{HI}_{r} \mathrm{~N}$
C. $\mathrm{I}_{4} \mathrm{C}$	$\mathrm{H}_{4} \mathrm{C}$

 CIII

 آشنا مىشويم .
جدول شهارن

بعضى ازعناصر باظر فيتهاى متغير

ظرفيت	نركيب	ظرفت	تركبب
('i')	$\mathrm{ClCu}^{\text {a }}$	($\mathrm{r}^{\text {r }}$	(ro
Ciir	$\mathrm{CH}_{4} \mathrm{Cu}$	$\mathrm{C}^{\text {r }}$	Cryor
191	Clyllar	Cl^{4}	CrO_{r}
$\mathrm{H}_{9}{ }^{r}$	CMr He_{4}	Fer	HiO
		Fer	Feror

$$
V \wedge \times \frac{V / V}{V}=4 / \cdot \psi \quad(9,4)
$$

سِ كر بن وئيردثن در بنزن بهن نسبت •/
 آن انجّأم داد .
إتم

فرهول ملكولى بنز كر بن و وات اتم ئبدرثن ．

 نسبت وذ نى عناهر مو جود درتر كيب د＇

 $14 / 4 Y=1$ بر
$1 \% / \ldots$ 24／4v 14／．．r／ary

براى اكسينـن
 آنها ．حاهل ميكرد

$$
\begin{aligned}
& \begin{array}{l}
\text { MYY } \\
\text { MYa } \\
\text { MY }
\end{array} \\
& \begin{array}{l}
\text { MYロ } \\
\text { MVO } \\
\text { Y/イYV }
\end{array} \\
& \text { r/ary }
\end{aligned}
$$

بدست مى آيد درحاليكه سادهترين فرمول آن CII است . مثال ديكر اتان است كه فرمول ملكو لى آن CHY
ب ـ ازروى ظرفيت :ناصر و بنيانها : فرمول تعداد زيادى ازت تر كيبات ساده

 دومثال قابل ذكر هستند .

اتم اكسبرذ Na, O

 شيمىدان میتوا

$$
\begin{aligned}
& \text { ץ اتم ئيدرثن } \\
& r \times 1 / \cdots \wedge=r / \cdot 19 \\
& |\quad| \times r r / .44=r r / .94 \\
& \text { ب اتماكسبثن } \\
& 4 \times 14, \cdots=4 ヶ, \cdots \\
& \text { an/DAT Ea? } \\
& \text { باكمى محاسبه ساده نيز مى تو اند درصد تر كيبى وزنى حـم دا هـحاسبه كند . }
\end{aligned}
$$

$$
\begin{aligned}
& \text {, درصد كو كر }=\frac{r r / \cdot \gamma}{q \wedge / \cdot \lambda r} \times 1 \cdot==\% \mu r / \gamma \\
& \text { ن }
\end{aligned}
$$

$\mathrm{VaII}+\mathrm{II}_{\mathbf{r}} \mathrm{O} \rightarrow \mathrm{H}_{\mathrm{r}}+\mathrm{NaOH}$

.

 وا

 هوزون ك, در تـلـ, عِ,

 عنا

 دز دو طرف معادله برابر كرددد انجام

 oleله بالآآن را هوزون عى كند

 فرْولر(

تر كيه شو ند و بعد در آب حل شو ند و دخلوونا كـردند

 بنيان I I | است . فرد . برا بر با يك اس اس NI بر ای موزونكردن معادله فوق فرمول
 حالا 4 ب

;'

	-	$\left.(\mathrm{SO})_{r}\right)^{\text {r }}$	\% mal
$\left(10_{r}\right)^{\prime}$	نبترات	$\left(\mathrm{CO} \mathrm{O}_{\mathrm{r}}\right)^{+}$	ك,
$(\mathrm{PO})_{r}{ }^{+}$	96.	$\left(0,0 O_{r} 11\right)^{\prime}$	
($\mathrm{C} / \mathrm{O}_{\mathrm{r}}{ }^{\text {1 }}$	ك15	$\left(\mathrm{CrO}_{5}\right)^{+}$	كر.1.
$\left.(1) O_{4}\right)^{\prime}$	بح ك1.	$\left.(\mathrm{MnO})_{+}\right)^{\prime}$	H6

اعداد :"路

路

الS

$$
\mathrm{H}_{+}+\mathrm{O}_{2}-\mathrm{H}_{4} \mathrm{O}
$$

$$
\mathrm{rH}_{r}+\mathrm{O}_{r} \longrightarrow \mathrm{rII}_{r} \mathrm{O}
$$

$$
\begin{aligned}
& \text { ئ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { : } \\
& \text { ご, いい; ご.....! }
\end{aligned}
$$

$$
\begin{aligned}
& \text { r・ハツ \} } \\
{\text {, } \begin{array}{c}
r r \times r \cdot / 9 \\
r+r, 19
\end{array}=19 \cdot 11}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ~- - - }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{H}_{+}+\mathrm{CO} \longrightarrow \mathrm{ClH}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - حو } \\
& \text { : 足 (} \\
& \mathrm{II}+\mathrm{Ci} \mathrm{H}_{r} \longrightarrow \mathrm{YCII}
\end{aligned}
$$

 ون
 ．
 YXI•＝Y• ليتر CIII

$$
\begin{aligned}
& \mathrm{H}_{r}+\mathrm{Fe}_{\curlyvee} \mathrm{O}_{+} \longrightarrow \mathrm{Fe}+\mathrm{H}_{r} \mathrm{O}
\end{aligned}
$$

جواب :

$\mathrm{rH}_{r}+\mathrm{Fe}_{r} \mathrm{O}_{r} \longrightarrow \mathrm{YHe}+\mathrm{H} \mathrm{H}_{r} \mathrm{O}$

左
$\mathrm{Fer}_{r}=\frac{10 / 0}{10 q / V}=\cdot 1 \cdot 9 \varepsilon$ eselo
اك

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{y}}=r \times \cdot / \cdot 9 \leq=\cdot / \text { rar rólgodo } \\
& \text { بی }
\end{aligned}
$$

。

٪

orn

$$
\begin{aligned}
& \text {...... }
\end{aligned}
$$

$$
\begin{aligned}
& \text { rr ror }
\end{aligned}
$$

.
.
.

 ux cinal,

تزكيب

: B B B

تركيب C :

تركيب (: :
(V/
 -
$\mathrm{Na}_{r} \mathrm{O}_{\mathrm{r}}+\mathrm{H}_{\boldsymbol{r}} \mathrm{O} \rightarrow \mathrm{NaOH}+\mathrm{O}_{r}$
$\mathrm{CS}_{r}+\mathrm{Cl}_{r} \rightarrow \mathrm{CCl}_{\varphi}+\mathrm{S}_{\boldsymbol{r}} \mathrm{Cl}_{\boldsymbol{r}}$

$\mathrm{S}_{\curlyvee} \mathrm{O}_{r} \mathrm{Na}_{r}+\mathrm{ClH} \rightarrow \mathrm{ClNa}+\mathrm{S}+\mathrm{SO}_{r}+\mathrm{H}_{r} \mathrm{O}$
$\left(\mathrm{PO}_{\varphi}\right)_{r} \mathrm{Ca}_{\varphi}+\mathrm{SO}_{\varphi} \mathrm{H}_{\varphi} \rightarrow\left(\mathrm{PO}_{\varphi} \mathrm{H}_{\varphi}\right)_{r} \mathrm{Ca}-\mathrm{SO}_{\mu} \mathrm{Ca}$
$\mathrm{Cr}_{\boldsymbol{r}} \mathrm{O}_{\mathbf{r}} \mathrm{K}_{\Gamma}+\mathrm{KOH} \rightarrow \mathrm{CrO}_{\Psi} \mathrm{K}_{\Gamma}+\mathrm{H}_{r} \mathrm{O}$
$\mathrm{ClO}_{\varphi} \mathrm{H}+\mathrm{P}_{r} \mathrm{O}_{s} \rightarrow \mathrm{PO}_{\varphi} \mathrm{H}_{r}+\mathrm{Cl}_{r} \mathrm{O}_{r}$
$\mathrm{CaCN}_{r}+\mathrm{H}_{r} \mathrm{O} \rightarrow \mathrm{CO}_{r} \mathrm{Ca}+\mathrm{NII}_{r}$
 بدست مى آيد :
$\mathrm{ClO}_{r} \mathrm{~K} \rightarrow \mathrm{ClK}+\mathrm{O}_{\mathrm{r}}$
$\mathrm{PO}_{\mathrm{H}} \mathrm{H}_{\mathrm{r}}{ }^{\text {r }}$ بست می آيد

$$
\mathrm{SO}_{r} \mathrm{H}_{r}+\mathrm{PO}_{r} \mathrm{Na}_{r} \rightarrow \mathrm{PO}_{r} \mathrm{I}_{r}+\mathrm{SO}_{r} \mathrm{Sa}_{r}
$$

 .
$\mathrm{SH}_{\mathrm{r}} \mathrm{HNaOH} \rightarrow \mathrm{SNa}_{\mathrm{r}}+\mathrm{H}_{\mathrm{r}} \mathrm{O}$
: $\mathrm{Mg}+\mathrm{O}_{\mathrm{r}} \rightarrow \mathrm{MgO}$

 $\mathrm{N}_{r}+\mathrm{H}_{\mathrm{r}} \rightarrow \mathrm{NH}_{r}$

 $\mathrm{ClO}_{\mathrm{r}} \mathrm{K} \longrightarrow \mathrm{CIK}+\mathrm{O}_{\mathrm{r}}$

فصمل سوم
orlo eillo de

از تظلر تئوى وبر حسـ درجهحرارت ونشار تهام اجسام مينوا نتد درهرسه حالت كاز مايع وجاهد يافت شو ند . وابطه بين بخار ـ آب ويخ ، معهولىترين مثالدرداين بارهاست.

 شدهاست .

مايع است وياآهن يك جامداست اشتباه است مكى آ نكه درجه حر ارت ونشار نيزدر تعريف
 مينو ا تنديافت شو ند واين بستكى به درجه حر ارت وفشارى دارد كه جسم تحت آن قراددارد.

fr

 سه حالت ماده تبديل كنند . اصولا وقتيكلمهتاز بكا برده ميشود هقصود جسمي است كه در شر ائط معينى در حالت كازى قراردادد . درشر ائط ديعرى ازفشار ويا درجه حرارت اين جسم مهكن است درحالت مايع ويا جامد باشد .
يكى اذخواص مهم ومسلم كازها فشار استك (تقر يباً) بطود مساوى به تمام جوانب بدنه ظرفى كه كاز درآن فَـرار دارد وادد مبشود (دليل اينكه از كلمه تقريباً استفـاده

 است كه هحسوس نيست .) فגاز عبارت است اذنيروى وارده بهواحي سطع جسم •

$$
\mathbf{P}=\frac{\mathbf{f}}{\boldsymbol{I}}
$$

واحدآن دردسi_

(شكلثماره د .

Gauge
'g/Cmrر)
lb/in Y 1 ,

(تفاوت دو شطع جيوه نشان میدهu Sه نناردر .
 (

$$
\begin{aligned}
& \text { (فنشارجو ك (} \\
& \text { لونه كو تا. وارد هيثود برا بر بر } \\
& \text { فشازستون جيوه در لو له بلمند }
\end{aligned}
$$

二;

U هـ هـ

 است .

队" $\mathbf{K}_{\text {T }}$
(l (T)
كه درT T ن

و P ن PV = K K $=1$ K

 اززهانون بو يل دراين درس احنياجى به تعيـن اين ثابت نيست . أكر حجم يك كاز در فشـار

ديك, دیودد احتياج باشد مىتوان آن دا بصورت زيـ محاسبه نمود . مثال : حجم . . | ا
جواب : ط.

 هجمr كو جك زياد كردد .

 ثـكال 10

$4 Y$ سهحالت ماده

 تغير|ات درجه حرارت بصون

$$
\mathbf{V}=\mathbf{K}_{\mathrm{p}} \mathbf{T} \quad(\mathrm{r} \mathbf{\mathrm { r }} \mathrm{P})
$$

بطور يكه درشكل Y Y نشان داده شده اسست ، طبَقَ قّنون جارْلز وقتى در جه حرارت

مطالق يك كاز به صفر هیدسد حجم كاز نيز بهصفر هیرسد ．ولى قبلاز رسيدن به اين درهـ
 مستقبماً باددجه حرارت تغنير مى،كند ．

$$
\mathbf{P}=\mathbf{K}_{v} \mathbf{T} \quad(\text { ثابت است V })
$$

در حجم ثابت ، فشار وارده بوسيله وزن معينى ازيكتاز بادرجه حرارت مطلم
 از هو ا اين نشانه اين أمت كه فشار درون قوطى زيِّد شده است ．اكرددحه حرارت باندازه كافى بالابرده شود قو طىى مى تر كد ．

واو نهايت دا باحرف F نشان مىدهند．جدول آ آخر كتابب رابطه اينهأرا باهم نشان مبدهد．

$$
\begin{aligned}
& -I V Y^{0}+Y Y^{2}=1 \cdot V_{1}^{0} \\
& Y Y^{0}+Y Y Y^{0}=Y \cdots 0 I
\end{aligned}
$$

$$
r x_{1 .}^{+\cdot \cdot}=\lambda,=\lambda
$$

险

 ｜اتهـفر，，

$$
\begin{aligned}
& 1 r y^{\circ}+r y r^{\circ}=f \cdots 01
\end{aligned}
$$

號

$$
4 \times \frac{1}{r}=r \quad\left(T=r \cdots^{\circ} A\right)
$$

8 人 ，そと…

$$
x=4 i
$$

 Aيُّوك بـى
irafatigntibook.ir/edu

$$
\gamma \propto \sim, T, \frac{1}{p}
$$

osto

$$
9 x_{r}^{\prime}-x{\underset{r}{r}}_{r \cdot}^{r \cdot}=\psi,
$$

$$
x \frac{6}{5} \cdots y_{i}
$$

4iJ |

$$
V_{r}=V_{1} \times{ }_{P_{r}}^{P_{r}} \times \frac{T_{r}}{T_{r}^{i}}
$$

\cdots usparilue:
-求

مخلوط بر ابر است. هما نطوركهدرشکلی\ \نشان داده شده است كه درمخالوط اكسيزن وازت

$$
\begin{gathered}
P=\underset{0:-1}{P}+P \\
V G \cdot=\mid \Delta r+4 \cdot \wedge
\end{gathered}
$$

 وارد مى آورد . فش'ارى كه هريك از كازها وارد مى آورد اكر بتنهائى درهماندر جه حرارت ودرهمان ظرف وجود داشت بنام فيار نسبى خواند، ميشود . جملهأى كه دا بطه بين كازه -

 حجم اكسيزن و بخار آب كه با آن مخلوط شده است جمعاُ . . ا ميلىليتر ا نداذه كرفته شدء است. اكر سطعآب درون وخروج ليوان برابر باشد فشار درون ليوان بر ابر بافشار جو است.طبق قانوندالتون:

وشار بخار آب درC Y Y بر ابر با V/
با .

$$
v_{4}=1 \wedge+P
$$

$$
1
$$

ميلىمتر جيو• فشارنس
' '

 حيوه اضافهكنيم وبخارا بیى وحود نداشتهباشد طبق قانون بو يل حجم :ايستى كمشود .

 خثك جـدر ا-دت

 به
$r A^{\circ}+r r r^{\prime}=r a \lambda^{\circ} 1,+r v r^{\circ}=r r^{\circ} \lambda$
品

وـ وانوز

است نشان داد . اومستق.

-3

$$
\begin{aligned}
& r_{1} \\
& r_{r}
\end{aligned}=\sqrt{1 / 1+49}=r / 9.99
$$

نشان مىدهدكه سرعت انتشار ئيدرثن تقريباً جِهار برابر سرعتا نتشاراكسيزناست. جون

$$
\begin{aligned}
& \text { ملكول كرم از كاذها درشر ائط مساوى بر ابر است } \\
& r_{1}=\sqrt{\frac{m_{r}^{-}}{m_{r}}} \\
& \mathbf{r}_{r}
\end{aligned}
$$

$$
\begin{aligned}
& r_{1}=V_{r} r_{1} \cdot \\
& r_{r}=r, 19
\end{aligned}
$$

نسبت معكوس درارد . دزجه -

 IVYA نشان داده شده .
بس از اينكه اين دا نثهمندان دققأ در باره خواس متراكم شدن و انتشأر كازها وهم.

 شهاءه م نثان داده شهه إند .

 بصوزت عبارت زير نوشت

$$
\begin{aligned}
& \text { \# \#' }{ }^{\prime} \\
& \text { ثابِتسادل =' }
\end{aligned}
$$

iranchembook.ir/edu

$$
=\overline{P V=\frac{n}{r} m k^{r}}=2
$$

كه درآن K فابت تعادل است .

$$
\begin{array}{ll}
11 r^{r} & 111 \\
11 r^{r} \\
111
\end{array}
$$

$$
\begin{aligned}
& n_{r} \\
& n_{r} \\
& m_{r}
\end{aligned}
$$

 حر ارت مطلف مبيأشند .

$$
\mathbf{K} \times{ }^{\prime} \mathbf{T}=-\frac{1}{r} \mathbf{m u}^{r}=\text { متوسط انرثى جنبشى }^{\text {ج }}
$$

حر ارتى ِِك كازعبارت است ازتمام انرثى حنبشى آن .

$$
\begin{aligned}
& \text { ط. }
\end{aligned}
$$

$$
\begin{aligned}
& \text {, t, } \\
& \text {, 质 } \\
& \begin{array}{l}
\mathrm{r} \stackrel{i}{=} \\
\mathrm{rr}
\end{array} \mathrm{dr}_{\mathrm{r}} \\
& \text { ? }
\end{aligned}
$$

بيان نهو د

$W_{\mathrm{A}}=10 \mathrm{~g}$
$\mathrm{T}_{\mathrm{A}}=310^{\circ} \mathrm{A}$

(r•ش • ()

$$
\begin{aligned}
\mathrm{w}_{\mathrm{B}} & =100 \mathrm{~g} \\
\mathrm{~T}_{\mathrm{B}} & =300^{\circ} \mathrm{A}
\end{aligned}
$$

 در>ال انتقال را حر ارت هىزامنس .

 باهم برابرميُ, دد

 تعجب نکنيد بــايستى كفت كـه درهيج يك ازدو نمو نَتماز فوق حر ارت و جود نشارد ، در

د

علت ایِن انحر اف از كازهاى

 صحیع نيست . تون نين ملكو لها نير وى حاذ

 كازهاىى

 اين تحول مlلكو لهاى كاز، كه بطور متوسط اذهم دورهستند ، سر عتشان كم شده وبهم نزدرِك

 دارا باشد .

 كازها سريعتد مىتوان اند ازمحلى بـمهحلل ديكر برود .

 كه ازطرف ملكولهاى اطر اف آ نها به آ آها وارد ميكا

 نام دارد .

 -
باتمام تفاوتهائىى كا بين مايعات و كازها وجود دادد دريك خاميت وجه مشترك

 .

 بيشتر اذ صبح يك يوزنسرد زمستان روان است

درمیا يند. اكر بهءهل سردكردن ادامه داده شود مايعنجمد شده وبحالت جامد درميا يد. خو ام جامدات كدامند ؟ .

 ازاين نظط بين جامدات ازيك طرف ومايعات و كازمها از طرف ديكر تفاوتىو ج-ود دارد.

 تخير متحل بذهند .

 سطوح حاهل جسازخردشدن وز|وا:هدين آنهآس ازشكسته شدن نيز بهمان حالت اصلىإست.

 متبلور گردد . مشار اكر كللووسليم هميشه بصورت مكعب متبلور مى كردد ولى مى توانآن
 بلىمرفى (Polymorphism) كفته ميثود و اين كو نه اجسام $ا$ (اليلىمرف يا جنل شكل
 درموقع انجماد بحالت منظمى در جاى بخصوصى قرار ميكِي ند . بر خلاف مايعات كه درطرز

\because

 باين پر سششها پِاسخ دهيل
 أr苗
舟 بالارفتّن درجه حىارت !وزوده ميشود .

حجم يهد|مى آنشد .

$$
\begin{aligned}
& \text {, دا دشزائط هتعارقى تميين كنيـ . }
\end{aligned}
$$

广 \quad •C C 3

$$
:-1
$$

ى

居

.

 كادام شيشه بيشترا است

 ميليليترد . هتمازفى

俍

فناء，نوائى محنظه را هساز فعل وانفعال تعيين كنيد اگر درجه حرارت بهمان اندازه نـههداثته شود ．

 ميشود كه بخارمايع يك كاز كا كـل است

65 Ar／M9r
－ $1 r / a 1 r$

－
2
 هخلوط T Tنها تعيـين كنيد

وزن حباب تنها
وزن حباب + وزن مايع
درجه حرارت تبخغير
حجم حباب
فشار
وزن هخخلوط

حجم ئيدرزن آزادشده
درجه حرارت ئيدرزن

$$
\begin{aligned}
& \mathrm{Sc}+r \mathrm{II}^{+} \rightarrow \stackrel{+r}{\mathrm{Sc}+r / r \mathrm{H}_{r}(j / 5)} \\
& \text { (asla) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (جامد) } \\
& \text { I Y } \\
& N_{Y}=v \varepsilon / V \quad \mathbf{C O}=\cdot / 1 \quad A=1 / r \\
& 0_{Y}=Y Y / 9 \quad \quad \text { T } \quad \text { 泣 }=1 / \cdot \\
& \text { سنغينى آن , }
\end{aligned}
$$

$$
\begin{aligned}
& \text { p } \\
& \text { (2) }
\end{aligned}
$$

 .

- Ho mis redk

نزديك هستند تشكيل شده است . درجه حرارت مايع اندازه متوسط سرعت مت مالكولمهاى آن
 حر كت ميكنند

 است :

rr

 اين دو باهم بر! برميعيردند وس

$$
\mathbf{R}_{\mathrm{E}}=\mathbf{R}_{\mathrm{C}}
$$

 انجأم ميثذيرد .

$$
\text { r } F
$$

$$
\Delta \mathrm{H}+\quad \text { مايع }
$$

UH+

$$
\Delta \mathbf{H}=+\Delta r a c a l / g \quad \text { آب (مايc) } / \mathbf{~}
$$

- H

 : لا كرابن + اكسيزن
 $\Delta H=-a f \cdot f \cdot \mathrm{cal} / \mathrm{mol} \quad$ كرين +

$$
\text { كrرد } \Delta H=- \text { orq }
$$

 هى توان بر احتى آنرأ كشر يحكرد .

 برابر با بر R R R R

 حــرأرت داده شود ($\mathbf{R}_{E}^{\prime \prime}=\mathbf{R}_{C}^{\prime \prime}$)

 تبخير ميكر دند

! ين إست كه فشار درون Tآنها بر ابر بافشار وإده بر آنها است . اين فشارها حیى هستند ؟

 است . نتشه جوشش يك مايع عبارت ازددجه حر ادتى است كه فشار بخالر مايع برابر با فشار

 بايك آذهايش ساده تغيير ات نمَطه جو ثشر، ر! با فشاُ ديتوان نشان داد . درون يــك
 . . . ${ }^{\circ}$ º C مشاهده خو اهيدي كر دكه آب از جوشيدن مىافتد . علت آن ,!الارفتن فنـار بر.سطح آب درداخل

 وعمل تبخير بدون تجزيه شدن مايِ انجام ميكير د .

 جوشش آن بالأمىرد . با بالارفتن درجه حر ادت سرعت پختن مواد غنا نى بيشترميكمدد .

 تَـــاز هستند

 مايع درآيد

كار دستاهها :،، تبر يد تو ضيح بيشترى داده ثو نود .

اذدرجهه >ر ارت معمو لى كميشتود .

مبرد (يخحجالل) ازجهارقسمتت تشكيل شدهاست :
(1) - يـككهيرسور كه باعث ميشود فشار ماده مبرد بالادود . با بالا رفتن فشار
($)$ (愔)
نتجهـ از متحيط حرارت جذب ميكند .
 دسنگاه مبرد به هعَدار هوزد لزو . بخارج هنتمَل مبكند

نام دنغتى دى كلل ودى فلورومنان است .
ه - تصعيل : شكى نيست كه همه مأبوى نفتالثين داحسكردهايم. اين نشان ميدهد كه جامدات نيز تبخخر ميكردند .

 جامد دردرون يك ظرف سر بسنه قرار داده شود مثل مايمات داراى زشاد بخارميكردد ـ اين
 اين بعضى ذرات آن اذسطحآن خادج كشته وتوليد وياربخار ميكنند . هثل مايمات تعادلى

 درجه حر ارت عادى دارای فشار بخار زيادى هستند . كازكر بنبك جـامد (يخ خشك) در

 نيست . وقتى درجه حرارت ايناجسام به نقطهذو بشان رمانده ثود فشار بخارآ نها مشهو دتر الـو ميكردد . تغيير حالت از جامل به بخار را آصعيل (sublimation) مى كويند . مانند مايعات ، جامدات نبزوقتىدد درجه حرارت ثابت تنيبر حالت ميدهند وبحالت كازى در مبآ يند حرارت جذب ميكنند . حرارت تصعيل يك جاهل مقدارحر ارتى امت كه جذب ميكردد تايك كرم آن در درجه حرارت ثابت تبخبر كردد .

$$
\Delta \mathrm{H}+\quad \mathrm{j} \underset{\mathrm{~L}}{ } \rightleftarrows
$$

حرارت تصعيد زياد مودد استغاده قرارنمى كيرد . مقدار آنها را مىتـوران از اضافه كردن حردات تبخير بهحر ادت ذوب بدست آورد .
Fـ انهماد وذوب : بالابرن درجه حرارتيك جاهد باعث مبشودكه ذرات بلود
 ازجامدات اين باعث ميشودكه سرعت تصعيد زيادتر كردد ولى در بيشتر جامدات ســاختمان بلودين درهم مىشكند وهـايهى بلست ميا يد. جسم جــامد ذوب ميشود جونونازديـاد سرعت حركت ذرات بيشنرازنيروهاك جاذب در بلود ميكردد

 خود تّر اردارد حرأرت دادن دانطلع كنيم سيستم به يك حالت تعــادل هيدسد . يعنى اينكه
 يك جامد ويا نقطه انجماد بك مايع در جه حر ارتى است كه جامد ومايع آن درحال تعادل بـاشند

$$
\begin{aligned}
& \mathrm{AlH}+\quad \text { جامد } \\
& \mathrm{HrO}(\mathrm{~s}) \rightleftarrows \mathrm{HrO}(\mathrm{l}) \quad \mathrm{AH}=+\mathrm{r} \cdot / \mathrm{V} \mathrm{cal} / \mathrm{g}
\end{aligned}
$$

Yـ نمودارحر ادت دادن : تغيرات درجه حر ارت كه هدراه باتغنيبر حالات اجسام
است درشكل بץ نشان داده شدهاست. نهودار نشان داده شده يـك نهودارحر ارتى استك نشانه يك نو|خت حرارت دادن به جسمى است كه دراصل بحالت جاهد است . جَونحرارت بطوريك نواخت به جسم داده ميثود ذاملههاى محو دزمان نيز نمودار معَدار حرارت اضــافه شدهاست
درزمان to درجه حرارت هفرمطلق است . وتتي حرارت به جسم داده ميشود هر-
 نوسانات بيشترميكردد . كرجپه هبع تغيبرظـاهرى ددر جسم ديده نهبشود ولـى نظم داخلى بلودها بهم خوردهاست . حرارت اضافه شده باعث هيكرددكه حر كت حنبشى ذرات بيشثر

درجه حرارت بالامد،رود

شكل

درقسهت
 جوشش حرارت داده شثه باءث درهم شكستن نيروهاى جاذیى بين ذرات مجاورميعُددد ـ در
 شود زِيادترميُّردد . اززمان

$$
\text { كه درقسمت } \Delta \text { شكل نشان داده شده است ميكر دد . }
$$

Aـ نمودار سر دكر دن : نمودار برودتىوتتى كه بطور بك نو اخت از جسمى حرارت كر نته هيشود بدست هى آيد • ٪, ای يك جسم خالص كه دراصل بدالت كاز است . تغيبر ات

ددجه حر ارت بر حسب زمان درشكـل YV نشان داده شدعابست . وقتى >سـر ارت از كاز

iv in
ion
درذمان

 بید|مى كند

 t t^{*}

9ـ دياتر ام فازها :

 باقىميماند. هـُلا درفثاد .

 سهالت نهو نه را در نظرميكِير يم :

 حرابت داده شده باعث ميشود كه يخ ذوب كردد . تعادل بين جامد و مايع در نتطه

 (
 يِسْون ز范 .

鲑O

آب درفشار معهو لى كهنر است • بالاتر اذ وجود دارد . (اين متدارثابت نكوهاثهثه شود

 فثار درحدود
ل大
 .

 زيادى بين دياكرام

 اين درجه حرارت تامو قعيكه تمام CO حامد بهالت كاز درآيند ثابت میماند .

ra ل.

-بها'ين سواللما يالسخ دهيد

居
 . r-

يكك كاز بهمايع وجامد بوسيله كَفتى حرارت بطوريك نواخت از آن .
 يك خط نقطه جين نشان دهيد وقتى كه از

 ه- دريك ظرف كاهل

 ينخ جهتنيسرى رع هیدهد :

 آب جقدز خو اهدشد ؟
 درجهحرارت هخلوط داده زمىشود . جیا ؛

از
r |

فصل پنجم

Sto sum
جدول تناوب عناهرِ| بهترين نمو نه طبقه بندى درتمام وشتهمأى علو د دانستها نــه . هدف قراردادن جدول تناوب دراين قسهت كتاب اين استكه ازآن درفصول بدى استه .إده كرده و درراه شناختّن اتم بها كهك كند .
|- Dobereiner"s Triad) :
در سال هr

 در جدول شهاره • ا با مثالى اذي لك تر كيب آنهاكى ظرفيت آنها دا مشخص مبكند نشـان دادهشدهl

جدول شهاره 1
تروهههاى سهتائى

 (ئيدرثن را بحساب نياودد) هنو جه شدكه خو إص آنها ، بخهو ص ظر فيت آ آنها ، بعد ازيك

 (IIe/Ne/Ar/Xe/Rn)

 فعال است

جدول شداره 11
قانون استاو نيو لوند

,	5	r	ε	r	r	1
1 i	Be	B	c	N	0	F
9.94.	a, ir	1. \cdot Ar	(r).l\|	i4,..A	19,...	$19 . \ldots$
Na	Vg	Al	Si	1	s	Cl
resal	reiry	14,9,	r A , $\cdot 9$	r.eays	rrj.94	rosersr
k	Co					
ra, ..	4.jA					

الطلاع نبوده امت .

 دوره بعدى شامل Y Y عنصراست . قرادرادن اين عناصر در دورهمالى هشت ستو نى خبلى مشـركل است .

اولين كوشش مندليف بر ای حل اين مشكل درجدول شماره با ن نشان داده شده است.
اكراين جدول بطرف راست جح خانده شود قسمت بالاى آن شبيه جدول شماره
 دورههاى هشت تائى قراردهد . ولى دوسال بعد اونيز تنير عقيده داد وجدورل هفتستون ني
 استفاده شدهاست وجدول .بصوت جدول هشتستو نى درآمد .)

جدول شهاره rir
جدول تناوب اصلم مندليف

 كه بادوا نتهاى دوره كوتاه سوم دريكسنون قر اركير ند .

جدول شماره

	1	5	F	\{	P	r	1		
1	II							ILe	
r	Li	Be	B	C	\cdots	0	F	Ne	
r	Va_{1}	U_{1}	11	Si	p	s	Cl	Ar	
ε	K	Ca	[]	\times	\times	\times	\times		$\times \times \times$
	\times	\times	$\square]$	\square	As	Se	Br	Kr	

دراين جدول ضرب درها بجایعناص, ىیبكاررفته| :نكه دروسط دوره طو يل قراركرفته ولى خو اس آنها باخو اص عناصر بالاتر درستو نشان شبيه نيست . ضرب در د ذير كل, بجاى
 فلز است . ولى Mn ازجهتى شباهتى :اكلردارد وآن اين است كه هردو دارای يكظرفيت V هستَند كه درفصلهاى بعد در بارهآن بحث خو اعدشد. باقر اردادن سهعنصر خارج ازستون
 ظرفيت آنها باظطفيت ستون آنها يكى آى است . يك كوشش ديكر براى حلَ كر دن مشكلل دورههایطو يل درجدول شماره 1 \ نشانداده شده است . اينطرز تخظيم جدول جصورت 1 ا ستو نى نيز بوسيله مندليف بيشنهاد شد . ولى

 جدول تناوب عناصر بـا نام مندليف بجاي نام مير همر اه است بر ای اينكه مندليف

 خواص آنهارا نبزمشخص كند. وقتى اينسهعنصر كشف كرديد خو اص آنها ثببه خو اصىبود

 كرد چون درجدول زير سيليسيم قرارميكيرد . درجدول شهاره با. سهعلامت بصورت هر بع قرار داده شده است. إين سهعنصرى است
 درهدان ستون قراركر فتها ند پیش يینى كر ده بوده است چون عنامريك ستون دارایى خو اص مشابه و بخصوص داراى ظر فيت يِكسانهستند.

جدول شهاره

خواص ذر , انيوم كثف ندهبوسيله وينكار (1AN)	خواص ريشُيينى ثهه (IAVM) بو (NG) Eka - Sileon	
Ge Yy/y	HS Yr	وزن انهى
(ie $a / 4 y$	FS Δ / Δ	س
Ginor r/r-t	Esor f / V	
Gie	Es 5	رنّ
G. Cilf ss.		نتطه جوشئ
GeClf 1 /asy	EsCly $1 / \mathrm{a}$.
		.

$$
\text { 象 } y^{2}
$$

ديده نییشود . محل سه نورج عنص : آركون وتاسيم ، يدوتلور يووم ، كو بالت ونيكل عون
 باقى بهاند .
بدون أين استثناها ، شمادمهاى دادهشده بههر عنصر در جدول نشان مىدههدكه بهمان

 داده ميشود . جدول و و تناوب خواه معايسه ظرفيت آ نها نبز داده شده است .
iranchembook.ir/edu

 وبا آب بشدت تر كيب ميكردد :

$$
\text { (:سريع) } \quad \mathrm{Na}+r \mathrm{H}_{r} \mathrm{O} \longrightarrow \mathrm{r}^{2} \mathrm{NaOH}+\mathrm{H}_{r} \uparrow
$$

Mg درجه حرارت عادى خيلى آهسته انجام مى كيرد .

Al
 $\mathrm{Cl}_{\curlyvee}+\mathrm{Ca} \rightarrow \mathrm{Cl}_{\varphi} \mathrm{Ca}$

$$
\text { جدول شهاره } 14
$$

تناو ب در دوره •ـوم

\%	λ	U!	A1	S		P	S	Cl	Ar
ظرفيت	1	r	r	4	φ	r	r	1	
	-/9\%	1/YF	r/		\%/4	r/r	r/P	1/a	
	入1.	\cdots	1		14.	>1.	HfO	-ry	-1^9

بيش مى آيد .

فلزات قليائى Fr وCs ، Rb ، K ، Na ، Li خانو اده ويا تروه مينامند.

 RaوBa ، Sr ، Ca،Mg، است. ساير خانوادهمار! بوسيلد شهاره آن كروههامشخص مى كنند واسم بخصوصى ندار ند .

 نوشت بصودت زيراست :

$$
\mathrm{YNa}+\mathrm{Br}_{r} \longrightarrow \mathrm{YNaBr}
$$

 وسنكينى خانو اده فلزات قليائى درجدول شهاره Y Y نشان ان دان داده شده است . IV جدول شمار IV
تغيير اث در خو اص اعضاء يك خانو اءه

- / Δr	149	ليّوم
-/9r	9Y/0	سديم
//89	9r/r	بتا
l/or	r1/0	, وويليوم
$1 / 9$.	ra/s	سزيوم

وـ اشكالات تنظيه جدول هشت ستو نى : اثكالاتى كـه دريك جـدول هشت
ستو نى وجود دارد بقرارز ير ند :

بـ وجود كروههاى فرعى تولييا آشفتكى مى كند .

 مثشو ند وجود ندارد .

ع- جدول جاكى مشخصى برأى ئيدرثن ندارد .

R

مزيتهاى جدول ههجله ستونى : جدول تناوب بسط داده شدهكه در جدول
 تنظيم شده است .

بـ كروههاى فرعى ديكرايجاد آشفتكى نمى كنند .
 جدول جoc

 جدول ودر بالاقرار ك, كتهاست. دروسط عناصرمعمولا زياد فعال نيستند . بعضى اذآنها كامى

بهورت فلزو كامى ديك.بصودت غيرفلز علممى كنند . بـ اينها اغلب متالو ئيد (شبهلز) كنته ميشود .
بعلت جداشدن فلزات ازغيرفللات اين جدول براى بخاطر آوردن بصضى از خواس

$\mathrm{K}_{r} \mathrm{O}+\mathrm{H}_{\curlyvee} \mathrm{O} \longrightarrow \uparrow \mathrm{KOH}$
(محكلول قللئى)
$\mathrm{P}_{r} \mathrm{O}_{\Delta}+r \mathrm{H}_{r} \mathrm{O} \longrightarrow \mathrm{PO}_{r} \mathrm{H}_{r}$
(محسلول اسبديى)

17

iranchembook．ir／edu

－هرى لاكتا نوبا	$\begin{gathered} \mathrm{Ce} \\ \Delta \mathrm{~A} \end{gathered}$	$\begin{aligned} & \mathrm{Pr} \\ & \Delta q \end{aligned}$	$\begin{gathered} \mathrm{Nd} \\ 4 . \end{gathered}$	$\begin{gathered} \text { Pm } \\ 4 \end{gathered}$	$\underset{4 r}{S m}$	$\begin{gathered} \text { Eu } \\ \text { qu } \end{gathered}$	$\begin{gathered} \text { Gd } \\ 94 \end{gathered}$	$\begin{gathered} \mathrm{Tb} \\ 90 \end{gathered}$	$\begin{gathered} \text { Dy } \\ 94 \end{gathered}$	$\begin{aligned} & \text { Ho } \\ & \text { gy } \end{aligned}$	$\begin{aligned} & \text { Er } \\ & 4 \wedge \end{aligned}$	$\begin{gathered} \text { Tin } \\ \text { ya } \end{gathered}$	$\begin{gathered} \text { Yb } \\ \mathrm{r} . \end{gathered}$	$\begin{gathered} \mathbf{L u} \\ Y_{1} \end{gathered}$
－رى اكتبنيوr	Th	Pa	L	NP	Pa	Ant	Cm	Bk	Cf	Es	Fm	Md	No	
	9.	91	9 r	ar	94	90	95	9	$9 \times$	99	1.	\cdots	I．r	

					i	＋								$\left\|\begin{array}{c}\lambda \cdot 1-\cdot b \\ 6 \\ b v \\ 3 V\end{array}\right\|$	ry	Ar Jid	\wedge
$\begin{aligned} & S_{V} \\ & u_{2} \end{aligned}$	Or IV	ar Od	dY ¢	d 4 4.1	$\begin{array}{ll}\text { W } & \cdot v \\ \text { IL } & { }^{\text {f }} \text { II }\end{array}$	b ny	va d d	14 11	sa -0	6.1 18	14 .11	od_{d}	in il	$\left\|\begin{array}{c}10-10 \\ 6 \\ s 0 \\ 01\end{array}\right\|$	So	80 s，	aser gur 6
78 a	18 1	10 8	18 9S	.8 18	$\begin{array}{lll}\text { bd } & \text { VA } \\ \text { II } & \text { PJ }\end{array}$	At θ_{V}	St ${ }^{\text {Pd }}$ d	－ 81	Ha 18	+1 a， d	it Ol	a 98	－ 7	bd 1	8λ IS	ct 98	－
bs	81 د4	A as	$1 /$ s 8	$\begin{gathered} \lambda 1 \\ \text { at } \end{gathered}$	11 11 0！） ＂\％	b	V／ IN	at	3t	琼	11 1.	$+\lambda$ 1	＋1．	｜ldas as	－${ }^{\text {D }}$ ，	い 4	－
$\begin{aligned} & \text { V } \\ & \text { dV } \end{aligned}$	11	$\begin{aligned} & \text { s } \\ & \mathrm{S} \end{aligned}$	$\begin{aligned} & 0 \\ & d \end{aligned}$	$\begin{aligned} & \text { A1 } \\ & \text { IS } \end{aligned}$		\square		－	30	1 198\％				－		11 0	0 \perp
$\begin{aligned} & \cdot 1 \\ & 2 \mathbf{N} \end{aligned}$	${ }^{\text {b }}$	$\stackrel{V}{0}$	$\stackrel{N}{\mathrm{~N}}$	3	\％										$\begin{aligned} & A \\ & \partial y \end{aligned}$	1 $!$ 1	\rightarrow ァ～ λ
$\partial \mathbf{H}$																	
	D．	DS	08		D λ q ${ }^{\text {d }}$	q．				q＾	q／	98	q．	q \downarrow	${ }^{1} \lambda$	D \backslash	＜coo
$\text { Yoro } 560$																	

[^0]

نايان بود اذبين برده است است
ترتيب جدول طبتد بندى عناصر هميثه بوسيله شبيمدا نها بكى از مهترين خصوصبات آن بشهارمیرنت .
عنامر انتقالى (Transitional) تهاماً فلزهستندكه ظرفيت اصلى Tنهايك، دوويا

 بين میابرد

 می كردد
اشكلات مو جود دد جدول تهيه شده ازروى وزن اتمى درجدولى كه اذروى ساختمان

بر ای تنظيم يك فرضيه كاملدر باده ساختمان اتمشيمىدا نها همكارى نزديكى بافيزيكـ

 است داده خواهدثد . بعد فرضيه حديد دربأره طـز قرار كرفتن اللكترونها دراتم تشريح ميكر دد .

1- الكترون :

الفـ اشعه كاندى : در فشارهاى عادى كازها هادى خو بى بر ای هدايتالكتريسيته نيستند . ولى وقتى اختال(ف سطح بيندوقطعهسيم كه درون كازى قر ارداده شدهاند بهقدار كافى زيادكردد ، يك نوع درهم شكستگى در كاز رخ داده ودرفاعله بين دوقطعهسيم جرقهاییده ميشود . تنين حرقههائى ولى بزر كنردريك هو ای طو فانى همراه با رعــد وبـرق مشاهده . 3,50

 : بور تفلو رسانس بادر خثند كى النهاى لوله مقابل كاتد(قطبمننى) (Cathode Rays)

مشاهده ميشود .

 با بادمنفىتشكيل شدهاند . مثالٍ دريك ميدان الكتريكى اينذرات بطرف تطب مثبتمندرف مى

 خارقالطادهاى كه درشكل ا درتلويزيون ورادار مودد استفاده قرادمبكير ند .

 آوردكه با استفاده ازنتايج آزمايش خود نسبت بار به جبم برأى الكترون را بهقدارذير ازروى آن محاسببه كرده إست.

 تنيير ولتاء روى صفحات كندانسود اوتوانست قطره را بين مفحات معلق نكهداثته ومانعاز

 اين برابر با باريك الكنترون است .
كولومب

جديزل شهاره 19
نتايج تصهحيح شلده آزما يش بشقوط تطر ه روغرن
(اشتباهات آزمايش دراين اعداد تَنجانيلده نشده است)

> اين جرم بسبار كوجكى است . آنقدر كو چك كه دروزن ملكول كه منشاٍٍ آن است نيز بحساب نیى آيد.

ت ـ منشاء الككترون : در ايـن بحث درباره الكترون تابحال فقط ازدو طر يقه مشاهده آن نام برده شده است . اولين طر يقه استفاده ازلامب اشعهكاتدى است .

 مبناى ساختـان حشم الكتريكى (PhotoelectriCell) است .

 الك درراديو وسايروسائل الكترو نیى بكادمىووند مهكن ميسازد.

 كردكه دراتم اين الكترون درخارجى ترين قست قرار كرونت باشند .
(Proton) $\quad \dot{988}=T$

الفـ اشعرمثبت: (Positive Rays):درسال (E. Goldstein)

 لامب باشل حاصل ميشو ند . تو جيه اين امر بدينسان استكه مونى
 بايو نهاكي مئبت ميكردند .

 درصد دا مىتوان بوسبله اين دستكاه تعيين كرد .

rr

 زر. را مشخص عى كند .

ب - باروجر م بروتون: وقتى داخل لامي اثشه مثبت كاز ئيدرثن قَ اددادهشود. نسبت

$$
\sum^{-} \frac{\mathrm{e}}{\mathrm{~m}^{\prime}}=9, \Delta \wedge \times 1 \cdot \frac{+\frac{1}{4},}{p}
$$

كه درآن e باد و m' جرم يون است ـ اكیفرمن شودكه هريك ازاين يون هــاى

مثبت يك اتم ئيدرزن هستندكه يك الككترون از دست دادها ند، خنين نتيجه كرفته ميشودك
 نسبت بارالكترون به جرم آن را به نسبت بار يون ئيدرثن به جرم آن تتسيمكيم چحنين

$$
\begin{gather*}
\frac{\frac{e}{\mathbf{m}}}{\frac{\mathbf{e}}{\mathbf{m}^{\prime}}}=\frac{1 / v \Delta Q \times 1 \cdot \wedge}{q / \Delta \wedge \times 1 \cdot{ }^{\bullet}} \\
\frac{\mathbf{m}^{\prime}}{\mathbf{m}^{\circ}}=1 \Delta r q
\end{gather*}
$$

 است . اين ذده را لرو تون ناميدهاند

پ - ايزوتَوت : مطالعه ذرات مثبت بوسيله|سيكترومترجرمى نشان داده اسـ كه تمام اتمهای يك عنصر دارای جرم ثابتى نيستند . مثال وفتى كه نسبت كه ازيك نهو نه كاز نئون بدست مىآ يد أندازه كيرى شود مشاهده ميشود كه مقادير مختلفى بدست مىآيد . بیضى ازاين مقدارها عبار تنداز :

$$
+r / r r \times 1 \cdot r,+q / q r \times 1 \cdot{ }^{r},+4 / s \times 1 \cdot{ }^{r}
$$

كولومب بر كرم. دومين مقداردرستدو برا براولى است. ظاهرأ چچنين بنظرمى آ يدك

 با ها•• ا

 براى هرعنصر دويا بيشتر ايزوتو ب شناخته شده أست .

 بوسبله تطرات آبى كه روى يونهاى حاصل ازبر خورد ذرات سريعالسير بأهلكولْها تقطير ميكر دند ايجـاد ميشو ند .

وقتى اين محفظه درتحت اثر يك ميدان مغناطيسى قر ار كيرد ، هسبر الكتر ونها كـ

ولى كاهى سايرددباهائى يافت ميكردندكى داراى همان ا نحناء هستندمنتهى در جهت

يوزيترون + الكتـون ـــ تشمشعات الكترو مغناطبسى
 ولى جرم اين ذرات طبق مسادل ابنشتا بن بصودت انرزى تشششیى درمى آيد . طبق معادله اينشتاين :

$$
E=m C^{\dagger}
$$

 نود، برابر با •

¢ـ نوترون Neutron : باجِود تفاوت زباد درجر

 انجام كرفت . بعلت نداشنن باد الكتريكى تحقبقات روى نوترون (J. Chadwick)
 برابر جرم الكترون است

 آن ترادداده شده است .
Y. جدول شمار.

ذرات سازنده اتم

وزن (0-iT)	عدد	4,	ع6لامتالمتصرى	-נ
$\cdots \cdots$,	-1	$-i^{e}$	الكترون
Y/.ry	1	+1	$\frac{1}{i}$	هروكرن
y/.ar	1	.	'n	لولرون
$\cdots / \cdots 0$	-	$+1$	$+i^{e}$	بوزينرن

وـ اتم هستهاى : اين سو ال را مينوان حالا مط رحكرد كه جزئيات ساختهانى

شكل هץ جزئيات آزمايش داترنودردرا نشانمىدد مد. ذرات آلفا ازعنصردراديوا آتيو

rs Jた

ش
نغوذ ذرات

بعلت وجود קروتونها درT ن است . علغوه بر برو تون درهسته نز ترون هم وجود دارد .

Ty ir
مـل راترنودد براى تُوجبه انتحر ان ذرات T Tلفا درمسير حود .

بروتونهاى مئبت باشد تا اتم خنتي كِدد .

مجهوع تعداد بَروتونها وتعداد نوترونها را عدد جرم A مى نامند . برایمشخص

كردن يك هسته راحتتراست اكر ازيكعلامت مثل 11 Nar مكمكنم تساد نو ترونها بدست مىآيد . در مثال بالا تعداد نوترونها برابير با با

 فتط داراى دوايزوتوب طبيعى

 هاى آن عناصر هستند. مثلا كلراز (Y (T\&/9 اتمى آن بصودت زير هحاسبه ميشود .

$$
\frac{(Y 0,4 \times r \varphi, q Y)+(Y 4,9 \times r \varphi, q, Y)}{1 .}=r 0,4 \varphi
$$

سطوع انـر زیى الكترونى : اينكه تصورشود اتم از يك هسته مثبت كي بوسيلد

 در نتيجه الكتروْن كمكم به هستهنزديك شده وجذا ونب آن ميكر دد وساختهانانم درهمميشكند.

چون ماختدان اتم ها درهم ندـىشكند يس در طرز استدلال بالا بايستى اشتباعاتى وجـو د داشته باشد
كليد حل اين معها ازمطالعه روى نور? آتابيده شده|زاجسامى كه حرارت دادمهيشو ند بدست هى آيد . اين يك حقيقتى است كه نوزسفيد ازرنكهاكهخنلف تشـكيل شده ووتتى از
 سفيدى كه ازيك جسم جأمد ملتهب خار ج ميكيدد ، فيلا من يك لامب برق ، ازمنشورىیعبور

:
 مر بو ط به نورهائى باالنر

 قابل تبخير اضافـه شده اسست استفاده شود ، طيفى كه بدست نـي آ يد ديكر ريوسنه نيست . هــا نطوركـه درشكل هو نشان داده شده اسـت طبف ازخطوط هجــزا تشكيل شده است ، مخطط . جون هر كدام ازخطوط معرف يك نورْ باانرزیى مشخص است، وجود طيف مخطط

ساختمان اتمى

 دارد ورابطهاى بين طيف يك عنصر وسايرعنامر ديده ميشود . نيل بوهر (Niels Bohr) دانثهند دانمار كی"درسال r

 ازآنها میتا بد .

 را شهاره كذارى كردهاند وبه بائينتر ين آن شماره

 تساد الكترونها دحدوذّ بـ 「

$$
n=\operatorname{sel}^{\prime \prime}
$$

 - يشتر ازفاصله بينسطوح بالاتراست

 هـرأرهـوز اــ تفاده ميشود

هستند . بدالكترونهاى سطح دوم (n=Y) الكترونهاى جام L با ار بيتال L كمنتميشود
 بترتيب مشخص مى كنند .

 شود وارد يايينتر ين سطح مهكن ميكردد

 اللَترون است نه ه الكترون وبنابراين • ا الكتنرون ديكى بايستى وارد اين جاي جام كردند تا آنى اليركنند . ولى خوا

اينكه خوام اتدها بستكى به تعداد الكترونها در خادجىترين جام آنها دادد با

Wدول شماره
ساختمان الكترو نى

 جام خود داراى يك تعداد الكنرون هستند دريك كرو

 عناصر اين دوره مشاهده ميشود .

 هاى خارجىترين جام آنها يكسان است بهمين دبلِ خوراس ذور هـر هاى عناصر فوق شبيدم

مى

 خواص مشابه هستند ولى ايندو بعلت تفاوت در تعداد الكترون درجام از از آخر نِز انثرات نسبتاً زيادى روى خوام شيميائى عنإمر כارد.

جدول شهـإره بr

CugK Kاختمان الكتتو ونى

 كه براى سطو ح انرثى قبلا دسم شده بدون تصحيح قابلقوبول نيست .

 ($n=Y$ از فرعى تشكيل شدهاست. درجام

 فرعى باكمترين مقدار انرثى حرف s دا انتخابكــر دهاند . س سطوح ديكـر را بترتبببا

הكل

 سطوْ

حرون si s

بابينتراز rd قراد كرفته المت ودرحقيتت اين دوسطع برهم منطبق كرديدماند . اين نوع

 الكترون دريك جأم اصلى نشانه ثبات است .

.

 اين امرمىتوان يافت. درعنامربينو
 الكترونى درداخلاتم تنيبر ات محسوسى درخواس آنها نمىدهد واين عنأصر هـكى دارادي
يك نوح خواس مستند .
 ساختهان مربوط به اتم دربائبنترين سطط انرثى است . توزيع الكترون درجامها الما ازروى

هيث بينىهائى كه ازروى اين ساختـان الكترو نى شدهاند هديشه صحيح نبودهاند .

> جدول شمار. ץr

ساختمان الكترونى بعضى ازعناصر

Qـ توز.يع الكترون درسطوح انرزیى : جدول تناوبى دا مــيتوان با وجود

 صحبت كرد . محأسبه احتمال يافتن يك الكترون در نقاط مختلف اتم كار بسياد مشكل و بيجيدهاى است.اينمحاسبات را مى توان بااستفادهازاصول مكانيك موجى (WaveMechanics)

 ذرْكوجكى مثل الكنرون بكارميبرد .

保

诠
 أهت • .

Pr US:
等. .

Fr Jot
f

المكترون Is
.

 1＞ا⿰亻⿱丶⿻工二又

 －الكُنِون

F\％Jك1

 الكترون TBT

شا -

جامهاى فرعى d از ه اربيثال وجامهاى فرعى
[فنائى كه اشهال مى كنتد خيلى بيجيد. ومبهم است .]

 آهندبا مى كردنه . بـ ايـن اجـسام فرومغناطيس (ferromagnetic) كنته ميشود .

 خواس حالت جامد است . هرسه اين خوام مغناطيسىاجسام را را مر بوط به الكتروندراتم مىداند

 آهندبا به دونيم تقسبم ميكردد بطوريكه نيمى اذآن دريك جهت ونيمديكر درجهت يخالن شكسنه ميكردد .

 براى كردث الكترون بدور محورش مهكن است يكى درجهـ؛ عتر بههاى ماءت و ديكىى

ify ir
آزمايشـ اشترن -كرلاخكه تتسيم يك ؛.تو ازانتها'ى نتر. را بـان مىدهد .

در جهت عكس آن . بس ميدان منناطيسى يك الكترون مخالف ميدان مناطبسيى الكترون

 تشكيل ذوج بدهند . اين ذوج الكترو نى داراى خينى خوام آهندبائى نيستجون هر كدام اثي ميدان ديكرى را خنثّى مى كند .
 درجامهاى فرعى بصودت ذوج وجود داردند مكرالكترون
 بعورتفرد است (Z=YY) • بهمين دليل اين الكترون خوام
 است كه درT نها جهت اسبين الكترون فرد

 باشند بشزط آنكه داراى يك جام فرعى ناتص برنشده باشند . ولى وتى تهام الكترونهانى

خالمبت دياعنالطي

倝属居
 شا屈
 －كأهـ
药
－ 2 2

 Thirl

ولى
 （

 ．號

范 كو با
备

层
 ت 5

號

 . . -

TA ojlâ Jgnt

iranchembook．ir／edu

 － بئانس

 S国 دوan

居
－（
حم ： ل

 كو UT 0

$x^{3}\left(x^{\prime}\right)+1$
جاو1

－Octet ．O

二小

（i）

新地保

路
（n） ك د

ت

جا جلول شماره

با

V II

$F\langle\angle\rangle B r<I$

$$
\begin{aligned}
& \mathrm{X}+\mathrm{e}^{-} \longrightarrow \mathrm{X}^{-} \\
& \text {L }
\end{aligned}
$$

rr

ساختهان اتمى
جاذبه الكترو نى درعناصر كروه هفتبايستى زياد باشد حون اضافشدن يك الكنرون

 كه اضاقه مى كر دد وارد جام ینجم غیشود . الكترون اضافه شده پون از هسته خيلى دور است پيو ند محكمى بآن، مثل سايرعناصر اين خانواده، ندارد . جاذبه الكنرو نی كم فلور راكه غير معول است نميتوان بوسيله فرضيههاى ساده تو جيه كرد . .

 r r r偖

 وجود داشتهباشل ؟

 رد
 تو جيهك,
(اينكَه هردو در آخرين جام خود دوالـكَترن دارن ؛
iranchembgok,ir/edu O_{A}^{16}

الكترون درجام M اـت . تا آن جاكه هدكن است تميپن كنيد :

$$
\text { القـ جرم انمى آن , } 1 \text {. }
$$

بـ عدد اتمى آن را .

ثـ نعداد الكترونهاى نوع
 حساب كنيه .
 .
ع تهيين ז'

 9-

اتم هنيذ يوب راتيِين كنيـ .

وجود دارد ؛

بـ وزن يك اتم جيوه , اهسابكنيد . الم
بـ اكیجرميك الـكترون

ثـ حجمى , اكه يك اتم جيوه اشغالل مى كندنعيين كنيد.
er سنكينى ناحيه' هسته اتم جيوهجقدراست ؟ (هسته , فرض كنين)
㹉
ع- وزن هحتوى لـو ان جيوه , ا|
حسابكنيد .
ז- وزن محتوى ليوان جيوه , الگرفقفط ازهسته جيوه يرشده بود حساب كنيل .

فصل هفتّهم

درؤصل ششم اصول ساختهان اتمى مورد بحث قراركرفت. حالا بهترمى توان بارا بطه ساختهان اتمى باخواص شيمبائى وظرفيت آشناشد . سه نوع عيو ند وجود دارد. دراين فصل
 اللكترون براى یر كردن مکنهایى مو جود دراتم است تاجائيكه هرمكان دارایى دوالكترون

1ـ مبلى ظر فـيت : درفصل دوم ظرفيت بدينكو نه تعريف شد : ظرفيت هـ عنصر

 مريوط معسازد . تا این اواخراين نيرو ناشناخته بود . كرجهه به اصول آن بى برده شده است ولى هنوزمطالب زيادى بايستى دربار ه آن آمو خت .
 الكَترونى اتم مهكن الست حدىزده شود كهاين يك نيروى اللكنريكىاست. امكان دارد كد الكترون كه خارجىترين قسمت اتم را تشكيل مىدهد در اين نيروها دخالت داشته باشد .

Iry

بيو ندهاى ثبميائى
 فعل و انعال شديدى خأمل ميكردد كی نتيجه آن تشكيل

 يكديكرمنصل مى ساذد هیبرد .

 (سطوع انرڭى) راكه اربيتال نام دارند اشفالزكنند. ז- يك اربيتال ناقص استمعر آنكه دارای دو الكترون باشد .

 الكترونى كازهاى غير فعال را نشان مىدهد .

جدول شمار. rr

${ }_{\mathrm{r}} \mathrm{He}$	r					
, Ne	r	\wedge				
${ }_{11} \mathrm{Ar}$	r	\wedge	\wedge			
${ }_{r 9} \mathrm{Kr}$	Y	\wedge	18	\wedge		
${ }_{\Delta F} \mathbf{X e}$	Y	\wedge	18	11	\wedge	
${ }_{\text {A }} \mathrm{Km}$	r	\wedge	11	rY	1^	\wedge

نكامى به جهارعدد اولى كی در جبول برای Rn ذكر شده نثان میدهد كه تفاورت

 دوم با 1 الكترون ازدوجام فرعى با ب وو الككرون بدترتيب تشكيل شده است .

 دقت كنبد تهام أين اعداد مضر بـى ازب هس هستند .

 هى تو ان بافضاهاى اشغال شده بوسيله الكترونها بصورت زير نشان دان داد :

- +r	$:+r$: +	: +9.
${ }_{r} \mathrm{Li}$	${ }_{4} \mathrm{Be}$	${ }_{\Delta} B$	${ }_{9} \mathrm{C}$
-	-•	\cdots	-
$:+r$.	$:+18$: +a:	: +1.
-	-		-•
${ }_{Y} \mathrm{~N}$	${ }_{4} \mathrm{O}$	${ }_{9} \mathrm{~F}$	1.Ne

هريك ازاين ادربياله ها را باهمان حروفى كه برای نمان دان دادن جاهمهاى فرعى بكار

م O O F L Ne

 استنا ذوجاتست. مثلا مجهوع الكنرون ملكول NH

 همان الكترونهاى آخر ينجام هـتيندي

 بعيرد ـ مـئ :
: \dot{B}
يكالتكترون درار بيتال Yp دارد
$: \dot{C}$.
دوالكـرون تـها دراربيتالهایى Yp دارد

خرَفِّت بونى

$$
F>d>0
$$

r-

 ميتو ان بوورت زير ونشت :

$$
\mathrm{rNa}+\mathrm{Cl}_{\mathrm{r}} \rightarrow \mathrm{rClNa}
$$

شوامد زيادى در دست استكا نثان مىدهندكه محصول ، ClNa ،

 يونها هـتند نه اتمها وملكولها ـ ا ازطرن ديكز كلو كزمئل يشثترتركيبات اذملكول هاى

IPI يبو ندهاى ثببيائى

خنثى تشكيل شده استكد وتتىذوبكردد يا درآب حل كردد الكتريسيتهرا هدايتنميكند.

 شكرل 4 ث نشان داده شده است .

ثكل Aث لاتبـ بلود كلموردهديم

هر يون سديم بوسبله شش يون كلر و هريون كلر بوسبله شش يون سديم احاطه شده است . يك يون سديم هر كزتنها بايك يون كلم مر بوط نيست . بلكه هريون برن بوسبله ثشيون

 استناده شده است تا نشان دإده شودك يون يونها واحدهانى مستقلى هستند .

 نشان داده شودكه نـك داراى ساختمان يو نى است فرمول آن را ميتوان بصمدت زير نوش

$$
\mathrm{CI}^{-1}, \mathrm{Na}+1
$$

,

 بشرح زير :

تنها الـكنرون ظرفنتى (الكترون خارجى ترين جام) كه بوسبله × نشان داده شده
 ازدست دادنيك الكترون يصورتبك بون با بإرمبّت درآمده آست ؛ واتم كلر (كه قبلاخنتّى بود) با بدست آوردن يك الكترون تبديل بهيك يون با بارمنغى كرديده است . اين يونها

 دادن الكترون بدغيرفلزات ازخود نشان مىدهند .
تشكيل ClıMg از كلاروهنيز يوم دا میتوان بصورت زير نوشت :

$$
\mathrm{Cl}_{r}+\mathbf{M g} \longrightarrow \mathrm{CI}_{r} \mathbf{M g}
$$

كى بااستفاده اذعلائم إلكترو نى بصودت زيردرمىآيد :

ظرفيت منيزيو Y Y است چون هراتم آن دوالكتنرون ازدست مىدهد وبهيونى با بار مثبت

$$
\mathrm{S}+\mathrm{YNa} \longrightarrow \mathrm{SNa}_{\mathrm{r}}
$$

ك بصورت زيرمىتوان Tن را نوشت :

ظرفيت كو كرد Y است جون هراتم Tن دوالـكترون بدست هى Tورد و به يونى با باد

ipr بيو ندهاى شيميائى

Y- تبديل مى كردد . دراين دومئال و مثال قبلى سديم و كلرداراى ظرمفيت يك هستندجون

 ا+1

 (

 Pـ الكترونهای ظرفيتى:

 الكترون براى هراتم الكترون دريافت كنند.

 باشد ، اين نهكها داراى تنها يونهاى يك اتمى باسهبارمنفى هستنه .

متعلت بهخادجىترين جام الكترو نى اتم است . به ندرت تشـكيل یيو ند يو نى بوسيله عناصر * نماينده نتيجه ازدست" دادن ويا دريافت يـشاز دوياسه الكترون درهراتم امت بـ فلز ات انتقاز (Transition) : دربيشتراين فلزات ظلفيت مـام ماقبل Tآر كمل نيست . اتم اين عناصرداراى يك يادوالكتر ون درجام آخر.هسنند.اينهالكترون

های ظلرفيتى هستند و بسهو لت هنكام تشكيل هيو ند يو نى بهغيرنلز ات داده ميشو ند .
 تشـكيل يون ازدست داده ميشو ند بيشترازاين الكتر ونهاى Tاخرين جام هستند.اتم واناديوم
 ClCr نيزوجود دارد . اتمكرم داداى يـك الككترون در آخرين جام است ولى تشكيل نییدمد ولى CIr Cr و Clr Cr
 هاى ظر نمتى شمرده شو ند

 كاز غيرفعال) بصودت زير است :

 بآر كون مقايسه بشود :

${ }_{i r} \mathbf{C r}$	r	A	$1 r$	1
${ }_{1 A} \mathbf{A r}$	r	\wedge	\wedge	

(a)
(1) تفاوت
 فرضشود كه هو شش الكترون اضافى از نوع الكترونهاى ظلفيتى باشتد . علاهت اللكترو نى كرمبصورت زيردرمىT

ه زمائى تسورميشن ك يون مائى مثل
 .

 هسنند. مثلاتر كبباتى اذ هس - نتره وطلا مىتوان تهيهكرد كه هرسه ظرفيت درآ نها نشان داده ثود .

5
هـ ييو ند اشتر اسى

 بتوان فرمول اين تر كيبات وخواص آ آنها را بيش بينى كرد .

 غيريو نى اغلـب جهاريابيشتر است : مثلا در

 الكترونها دراين جانينِ صادق استي الكترؤ
مثترك شو ند يك ييوند انتخراكى يوجود مىى آيِ .

> يك ار بيتال نيهابر است :

. CI :

با يك اتم يُدرگنكه آن نيز داراى يك اد بينال نيمهيراست :
Hx
دا نست. برایاينكه الككترونهاىظرفينى هر يك ازاتمها مشخص كرد دندبانتطهوضر بدر
مشخصشدهاند. فرمولالكترونى ClH ميشود :

$: \mathrm{Cl} \dot{\mathrm{x}} \mathrm{H}$

هراتم بك الكترون ازذوج الكترونى مشترك بك بينخودشان را تأمين مى كند . ذور

اين حساب ، ظرفيت يُيدرثن وكلر دراين تركيب برابر بايك ايك است .

 اللكنرواستاتيك به يكديكى متصل نيستند يون ذرائى

 شروعكدد ، فرمول الكترونى آن

$$
\begin{gathered}
\ddot{\mathrm{F}}: \\
+ \\
\times \\
\times \\
\times \\
\times \\
\times \\
\times \\
\times
\end{gathered}
$$

: F :

تبديل PFF $_{\text {ت }}^{\text {PF }}$ PF

اين نبروى جاذبه بين اتم فلور والكترون اذتمام اتهــاى ديكــر بيشتراست ـ ـ دوالكترون نوع g درملكول

مثلث بين ذوج الكترونى تنها (ذوج الكترو نى مشترك نش نشله بااتمهاى ديعر) نشان

مثلا ، كر جه فرمول الـكترو نى اكسبدكر بن از

$$
\begin{aligned}
& \underset{\times}{\times} \underset{\times}{\mathrm{C}} \times \quad, \quad \dot{\mathrm{O}}: \\
& { }_{x}^{\times} \mathrm{C} \underset{\times}{\times}: \ddot{\mathrm{O}}: \quad \text { محتملا بصودت }
\end{aligned}
$$

استكه درآن هردواتم دوالكترون تنهایخودردا بـكمك اللكترونهأى فرد اتم ديكر بصورت ذوج در آوردها ند ، فرمول كازكر بنيك بايسنى بصودت :

$$
: \ddot{\mathrm{O}}:{ }_{\times}^{\times} \cdot \mathrm{C} \underset{\times}{\times}: \ddot{\mathrm{O}}:
$$

باشد . بنابراين ذوج الكترو نى تنهاى اتم COد CO بايستى بوسبلهدوميناتم اكسيثن درتشكيل CO بِ ازهم جداشده باشد .

149

بيو ندهاى شيهمائى

بر ای مثال ديكر اميد سولفو ديك
 مو جود دراسيدبصورت زيرهستند:

$$
\text { H. , } \quad \underset{\times \times \times}{\mathrm{S} \times}, \quad, \quad \text {.. }
$$

باذوج كردن تعداد اللكترونها ببا ندازه مهكن فرمول خبالى زير بدست مى آيس (كه البتهفرمول اسيد نيست) .

حالا اكردواتم اكسيثنديكر كههريك داراى دواللكنرون مفردهستند دوذوجا للكترون مشنرك :شده كو كرد دا ازهم جهاكرده و باآن تشكيل يبو ند بدهند ، فرمولالكترو نىاسيد سو لفود يك ميشود :

$$
\begin{aligned}
& \text { : } 0
\end{aligned}
$$

$$
\begin{aligned}
& \text { : } 0
\end{aligned}
$$

دراين فرّمول اتمركور كرد داداى دوازهده الكترون ييو ندذا الست، درست مثل كو كرد ددتر كيب مكزافلفورور كو كرد :

زمانى فرمول اسيدسو لفوريك را طودى مى نوشتندك فقط هشت الكترون بيو ندذا را

 هاى ديكر مورد قبول واقت شده است .

 طبق اين روثى فرمول الكترو نى اسيدسو لفوريك بصورت زيرددمى آيد :

$$
\mathrm{H} \underset{\mathrm{x}}{\mathrm{x}} \stackrel{\stackrel{\mathrm{H}}{\mathrm{x}} \mathrm{C}}{\mathrm{C}} \times \mathrm{x} \times \mathrm{H}
$$

جدول
تعداد الكترونهاى بيو نذزا دراتم مركزى

فرهول الكترونى
$: \ddot{\mathrm{F}}: \quad: \ddot{\mathrm{F}}:$
$\stackrel{\times}{\mathrm{B}} \dot{\times} \stackrel{.}{\mathrm{F}}: \quad, \quad \ddot{\mathrm{F}} \stackrel{+}{\mathrm{C}} \times \stackrel{.}{\times}$:

براى حلو كيرى ازاشتباهات ناشى از استفاده از تعداد زيادى نتطه و ضر بدر از خط اتصال در نوشتن فرمولمایى

مطالمه روى اين فرمولما وساير فرمولما نشان ميدهدكَ ذوج شدن الكترون و نه

9ـ شكل ملكوله

 پيجيدهاى هستند ولى دراينجا مىتوان باجند مثال ساده آشناشه .
 كه سهاتم يا بيشتردارند ماختمان هيحيدهترى دادند. مثلا ، چحرا ملكول آب خطى نيست ؟ جر ای جواب دادن بهاين سئو ال بايسنىطبيعت ار بيتالهائى كه درييو ند بينيُيدرثن وا كسيرُن
 منظير كردد . تصو كنيدكه ملكولآب ازروىهمسواركردن دواتم يُمدرثن ويك اتماكسيرن

 هشاهده ميشود كه ازاين جهاراللكترون Yp دوتادريك الر بيتال ودوتای ديك, هر كدام دريك اد بيتال بهتنهأُى قراردارند . درتشكيل پيو ند شيميائى بيناكسيرّن وئيدرثن اللكترونمفرد
 اشتر اك باعث ميشود كه اتمسفر بارالكتر ونى در جهت ار بيتال الكترون pp متر اكمتر كرد دد.

 كرفته است هيدهد . دراين شكل ئيدرثنها درحهار رأى جهاروجهى تراد دارند . زاويه بين بيو ندهاى 1 • 9° است .

 حقيقت تشكيل ملكول

 ائبدرثن شـكل متان دا بو جود مى آورد .

lar

يبو ندهاى شيميائى

(fa FQ : :)
CHY

 بين بيو ندهاى N-H يك چهاروجهى 'ا انتظارمى رود وجود داشتدباثن .

$$
\begin{aligned}
& \text { (} 1 \text {. } \cdot \text {. } \\
& \text { ملكرل آمو نباك }
\end{aligned}
$$

 استفاده نوود . طبن همان روثك
 وجهى تر ار كرثهاند نهان دهد .

(0)

ملكول آب

 هعادله اين فعل وانفعال را مى توان بصورت زير نوشت :

جسم بدستT امده يك تركيبِ اضافى استتِ كرجه بيو ندييناذت و بريك بيو نداشتراكى

 الكنرون اتمهاى ديكرتكمبل مى كردد .
 بر ای تشكيل بيو ند اشتراكى همان الكترونها

 ستون
 درجدول يشتجلد آخر كتاب) . يك مثال اذنلزات انتقالى ، Os ، قبلا داده شده است . ازفرمـول OsF

بيو ندهاى شيمبائى

برمى آيدكه اسهيو م هشت الكنرون ظرفبتى دارد . ــاختدان الـكترون Os بشرح زيراهت:

$$
{ }_{r y} \mathrm{Os} \quad r \quad \wedge \quad \text { i人 } \quad \text { rr if } \quad \text { r }
$$

 يك مئال ديكراميدكرميك است . ماختمان اللكترونىكرم از جدول بF بصورت زير است

$$
{ }_{r r} \mathrm{Cr} \quad \gamma \quad \wedge \quad i r \quad 1
$$

 ((|امبدكرميك شببد اسيد سولنوريك است :

$$
\mathrm{CrO}_{r} \mathrm{H}_{r}, \mathrm{SO}_{r} \mathrm{H}_{r}
$$

 دارای شش الكنرون ظرفيتىاست ـ ا اكر يك الكترونجا
 اين اسيدها بشرح زيراست .

$$
{ }_{\text {ro }} \mathbf{M n} \quad r \quad \wedge \quad i r \quad r
$$

جون

 (طبق تاعده) .
قطبى بودن بيو ندها : درتشكيل كلرورئيدرثن (ClH) ازكلى وئيدرثن كنتششد

 درحقيقت اين ذوجا الكترو نى بيشتر تحتأتأثير اتمكلراست تا اتم اتُبدرثن .

 يك بيو ند غير قطبى اــت جون ذوج الكترو نى بطلور مـاوى بين دواتمبه اشتوراك كذارده شده است
در CIII ، هيو ند قطبى است چوون مركز بار مثُبت درست منطبق بر مر كز بارمنفى

 اشنر اكى بين

irancbemeporvir/edu $F>d>B r>I$
lov
بيو ندهاى شيهبائى

 مر كز بارمثبت منطبق بامر كز بارمنفى نباشد ملاكول .

(ar (ir)
ما

 انداذمیى كير ند. كشتاوريكدكيل برا بر با حاصلضرب بارها درفاصله بين آنها است .اين

 تطب منقى وطرف منفى آن جذب قطب مثبت ميدان مى كردد . جو
 تطبها مهاجرت نمايد .

(or ir)
دىيلها دزميدان الكتر يكى

ازرنذاز دكيلها دريك ميدان الكتريكى يك روشَ تجريى براى تشخيص ملكولهماى

 خلاء باشها .
مanولا ، ثابت دىالكتريك جسميكه ازملكولهاى قطبى تشكيل شده باثد بالا است

 مما:طز, كه در شكل

 بطودموقت توزيع بارالكنريكى ملكولـهارا دك كـر كون كند

 است . هرجه تناوت بيناتمها اذنظرجذب اللكترون دريك ملكول دواتمى بيشنر باشدملكول

 جون ملكول دريك. خط قراركرفته است (بينبيو ندها زاويهاى وجود ندارد) هردكيل اثر

ديكرىراخنثى می كند. ددنتيجه وتتى ملمولهایى CO دريك ميدان الكتر يكى قر ار داده

 كر بنبك كماست .

(or (AS)
ملكولهما غيرقطـى دار.اى بـويوندهاى قطبى
آب يك ملكول سهاتمى استكه در آن دواتم ئيدرثن به يك اتم اكسبيزن بيويد داده

 "
 رامت باعث ميشودكه ملكول بتو اند دريك هبدان الكتريكى بحر خد ودوسر منفى رادرجهت صنحه بابارمثبت تراردهد .

(نكمل (00)
HYO

 جذب الكترون يكسان باشد بيو ند غير قطيى است . اكر تابليت جذب الكترون B ذ

 - اـ الكترو نعاتيو يته (Electronegativity) : درتسمتهاى قبل درباده

 كهچِرا بايستى هردواين خاصيتهادرد نظر كرفته شود . بيو ند ملكولClBr

 استفادهكرد .

 ويد Y/ه • برخلاف جاذبه الكترونى، كمش مقدارالكترو نكاتيوينه اذبالا بهيائين درجدول
بيو ندهای شيمبائى
 جدولنشوإره هr

الكتر و نعاتيو يته عناصر

 اشتراكى بدهند ، مثل بيو ندبين كلر (

 بيو ند میدهده .

 مساوى مشنر كـ شود مى مباثد .

 كيلو كلرى وسهم اتم ئدرثن
 كيلوك كالرى براي هرملكو

$$
\begin{aligned}
& 194 \\
& \text { بِيو ندهاى شيمبائى }
\end{aligned}
$$

اللكترونكاتيوينه عنامر را تعيين كرد .

$$
\begin{aligned}
& \text { جدول ثمانه } 4 \text { r } \\
& \text { انزرُى پِيو ندها }
\end{aligned}
$$

هـانطور بكه براى اسيبسو لفوريك انجام كرفت نو شتتشود، فرمول زير بدست مى آيد :

$$
\begin{aligned}
& \text { H: } \ddot{\mathrm{O}} \times \mathrm{N} \times \underset{\times}{\times} \underset{\mathrm{O}}{ } \text { : } \\
& \text { : } 0
\end{aligned}
$$

 بين ايندواست

$$
\begin{array}{cc}
\mathrm{H}-\mathrm{O}-\mathrm{N}-\mathrm{O} & , \mathrm{H}-\mathrm{O}-\mathrm{N}=\mathrm{O} \\
\| & 1 \\
\mathrm{O} & \mathrm{O}
\end{array}
$$

مئال دوم براى رزو نانس وجوديون نيترات است . اوتي كرفته شود (اللكترون خودراكه بوسبله دايرهكوجك در در فرمول برو بالا مشخص شده است باقي بكذادد) فرمول يون نبترات حامل را مىتوان بوسيله فرمول زير نشان دار د

 زيراست :

 رزونانس دوفرمول زير مىدانند :

 كه فرمول صحیییى بـا

 بدست مى آيد .

197 بیو ندهاى ثيميائى

وقتى بادقت بهبلو كلزورسديم ، سادهترين لاتيس بلو دها ، نكاهشُود مشاهدهخواهـ

 مهكنه دراطر اف همقرار كير ند درشكل شهار هو نشان دادهشدها ند .

. با با بر 5,

وقتى فاصله بين واحدهاى بلور در كلر ورسديم اiند'زه كريفته شود و باوْاصله مو جود

 كه يكواحد رادر لاتيسيك بلوناحاطه كر دهاند بنام عدد كواورديناسيونآن بلود خواننهه - مثشود

شش سيستم بلودين إلى وجود دار ندكه درشکل بلو دهاى حقيقى ساختهانهاى بلوردين كه عشتقاتى ازا ين سيستمها هستند و جو دداد ند .

(or iنكل)
-يسنههاى بلودين

זا- عدد آو Fادرو : براى مدت مديدى عدد آو كادرو باوو دتيقو. دردستنبود.

 كر جه و واحدهاى كلرورسديمبونونهای

$$
\mathbf{N}=\mathrm{V}_{\mathrm{M}}, \mathrm{~V}_{\mathrm{n}}
$$

VM

 تثكيل شهمباثهد .
 , $\mathrm{ClNH}_{\digamma}, \mathrm{CO}_{\mathrm{r}} \mathrm{Ca}, \mathrm{NO}_{\mathrm{r}} \mathrm{K}, \mathrm{NaOH}, \mathrm{SO}_{\boldsymbol{\digamma}} \mathrm{Na}_{\mathrm{r}}, \mathrm{ClNa}$ كلور اكراذدر بعد قتط استفاه ثود يك برش ازبلور كلدورسديم بوورتشكليهه درمى آيد .

$$
\begin{aligned}
& V_{m}=r / 4 z \cdot x 1 \cdot-r \mathrm{CCC}
\end{aligned}
$$

$$
\begin{aligned}
& \cdots
\end{aligned}
$$

(09 ل
(9.

 درشكل او 4 نشان داده شده است

كرد .)

 همه بـيكسو حر كت مى كنند (بطرف سرمثبت ودرجهت عكى سرمنفى) • بهمين دلبلفلز ات

هادى خو بى برای جريان الكتريسيته هستند .

 جنبشى واحدها س, يع تريهى كردد .

(9) نكا)

آب , كاز كـ بنيك
: 10

الفـ بلوردهاى يو نىى: نيروهاى الكترواسناتيك كه يونهارا در بلو رها بهم متصل

病
 بذ كى بإبارالكنريكى كم هستند دردرجه حرارت بائينترى ذوب مییشو ند . مثلا نتطه ذوب
 $\mathrm{Cl}_{\mathrm{r}} \mathrm{Sr}$ يون

ivi

 ييو ندهاى ثيميائى

 برخلان

 مهكن است دراين اجسام وجود داشتهباشد :

 بالاترمىدود . مثال اين نوعبلورها

دادهشدها ند بدست مى آ يد .

ملكول كازكر بنيك ترينهاست و نتطه ذوب بلو رخيلى پائين است. ملكول آب ازنظر الكتريكى قر ينه نبست ونقطهدوب آن خيلى بالاتراز COY است ـ كرحه بارالكتر يكىتمام

ملكول صنراست ولى يدوتونها باعث ميشو ندكه بارالكتريكى مبّت يكطرف ملكول زياد شده وبارالكتريكى مننى طر ف ديكرذيادتى كردد . جاذبه الكتريكى يبيز طرفههاكمختلغ ملكول بابأرمخالف باعث ميشودك نتطهذوب آب بالارود . به أين ملكولها معمولا ملكول هاى تطبى كمنه شود .
تــ بلو2هاى فلز ى : طبيعت نيروهأى بلودهاى فلزى هنوز كالو شناخته نشد.

 رفته|ند بطودساده تو جيه نشده است .
 ;كرشده نشان داده شده است .

(: تكل (:
نوع بلورما وحدود نتطهذوب T آها

IYY

يبو ندهاى شيمياُّى

اين نوع ددهبندى كردنبلودها، ساختدان تمام بلودهارا معين نعى كند . خيلى بلورها هستندكه ساختمأنشان را بسادكى نمىتوان تو جيهكرد مثل بلورهاى لايهاى

> جدول شهاوه انو اع بلور ها

1- جحا ظرفيت كامل بك اربيتال r الـكترون است ؛

الـكترون است ؟

 I

r اـ منظور از ثابت دىالكتريك جيست ؛ جطور ازروى ثابت دىالـكتريك مى،توان بـه قطبى بودن يك ملكورل بیبرد .

لالكترو :كاتيويته وجود دارد ؟

و كدام كيك نده الكترون است .

ا 7 اـ اتمهای

 با

آن را بنويسيد

 $\mathrm{N}_{\mathrm{r}}, \mathrm{CNH}, \mathrm{C}_{\mathrm{r}} \mathrm{H}_{\varphi}, \mathrm{CO}_{\mathrm{r}}, \mathrm{CO}$

 سادهترين تر كيب آ:نهارابابئيدرزن بنويسيد.
: $\ddot{\mathrm{x}}$.
. \dot{Y}.
: $\ddot{\mathrm{Z}}$.

 كازغيرفطال است .
 FX F

n

$$
\begin{aligned}
& \text { هـفصل هشتم }
\end{aligned}
$$

Ladshor

 تفاوت قائل شد .
يك محلول يك مخلوط ظاهرا همعَن استه خواص و تسركيب آن دائهـا فابـل

 حقيقى اين خامبت دا ندارد . مخلوط نشاسته در آب همكن نيست و در نتيجه يك محلول هم نيست . بااين نوع هخلوطها درفصل مر بوط بـه كو لو بُيدها آشنا ميشويم F- مو اد متشكله يك محلول : مواد متشكلل يكمحلول اجساممختلفى هستندكه
iranchembook．ir／edu
范
IVY

隹 إست－س آب

 ．مخلولا وجود
 ركا
 Jlo。
 ．درجه حر ارت باشد

－

مدكن است بتوان محلول هاى فوقاشباع تهبهكرد. ولى وقتى يك بلود اذ جسم حل

 . الز

جدول
قابليت انیالال برحسبترم درصدترم آب • P درج؛

 درمخلوط ودرجسم خالص تقريباً يكسان است . ازطرن دبكى وقتى شباهنى وجود نداشته

x

بهحل شدن دريـكديـكر نشان نیىدهند .
مثلا وتّى الكلا|تيليك وTاب ، كه از تظر شيميائى شبيههم هستند ، باهم مخلوط شو ند هودو درهم درتمام مقّدارها حل مى كرد ند • برایايندو، حالت الشباع وجودندارد . ايــنـ نو ع اجسام ر| كامالا مهزوع مینامند . درمعابل آب وجيوه ، كه از نظر ش:هيائى باهم خيلى فرت دار ند ، دريك ديك, اصلا حل نمىشو ند و به آ نها كاكلا غير مهزوع كفته ميشود . بين
 آبواتراكسيد . آب مفدارمعينى اتردا در خود حلمى كند تا بححالت سبر شدودر آيد . اتر

 محتلول آب دزاترو ديكوى لايه محلول اتت در TT . به اين نوع مايعها نسبتا ممزوج

كتته مxشو د .

 ,انهارا مىتوان دردوروش خلاصهكر د: يكى تعيين وزنجسم حلشده دروزن معينى ازحالال

 أف = روش وزن - وزن : سه روش براى نشان دادن وزن جسم حلشهه بهوزن

(1) (Mole fraction)(

 ملـكو لـى

$$
\begin{aligned}
& \mathbf{n}_{1}=\frac{\mathbf{W}_{1}}{\mathbf{M}_{1}}=\frac{4 \lambda \psi}{r \psi Y}=r \quad \text { مول } \\
& \mathbf{n}_{r}=\frac{\mathbf{W}_{r}}{\mathbf{M}_{r}}=\frac{q \cdot \cdots}{1 \lambda}=0 \cdot \quad
\end{aligned}
$$

عيادنسبى ملكولى هزيك بقرإِزيراست :

: iranchembook.ir/edu

$$
\begin{aligned}
& \mathbf{N}_{1}=\frac{\mathbf{n}_{1}}{\mathbf{n}_{1}+\mathbf{n}_{r}}=\frac{r}{\Delta \cdot+r}=\cdot / \cdot r \lambda \quad \\
& \mathbf{N}_{r}=\frac{\mathbf{n}_{r}}{\mathbf{n}_{1}+\mathbf{n}_{r}}=\frac{\Delta \cdot}{\Delta \cdot+r}=\cdot / 99 r \quad \text { براین Tا Tا }
\end{aligned}
$$

بطور كلى جنين مىتوان نو شتکه :

$$
\mathbf{N}_{A}=\frac{n_{A}}{n_{A}+n_{B}+n_{C}+\cdots}
$$

$$
N_{B}=\frac{n_{B}}{n_{A}+n_{B}+n_{c}+\cdots}
$$

$$
\mathbf{N}_{\mathrm{A}}+\mathbf{N}_{\mathrm{B}}+\cdots=\mathbf{N}_{\mathrm{P}}=1 \quad \text { وبالاخره }
$$

(
 هحلمول نيمهولال را تعين كرد :

پـ روش وزن ــ حجمى : دوطريقه اصلى نشان دادن غلظت دراين روث مولاريته و نر0اليته هستند . برخلاف روش وزنـوزن دراين دوث باتنيير ات درجه حرارتمولاريته
 به حجم محلول كمى انافهمى كردد .

 وزن شود ودريك بالن • Y ميلى لينرى ريخته شود وبهآن آ نعدر آب اضافششود تا بهعلامت برمد . مولاريته اين محلول بطلريقذير محاسبه ميشود . تعداد مولهاى اسيداستيك باتقسيمكردن وزن اسيد به وزن يك مول بدستمى آيد :

$$
\frac{r \cdot g}{4 \cdot}=\cdot / 0 \cdot 0
$$

محلولها
مولاريته ازتقسمبردن اين تعداد مول به حجم محلول بهليتر بدست مىآيد

والانسترميك جسم مقدارىازوزن آن جسم بهكرم استكه با يك واحد ظر فيت مطا بقتكند
تعر يف نرمالينه را مىتو الن بصو رت معادله زير نشان داد :

 است ، يس نرمالينه آن ميشود .

$$
\begin{aligned}
& \text {. }=\mathbf{N}=\frac{\frac{\mathbf{m}}{\mathbf{E}}}{\mathbf{V}}=\frac{\mathbf{m}}{\mathbf{E} \cdot \mathbf{V}}=\frac{\cdot / \Delta \cdot}{r}=\cdot / r \omega \\
& \text { محلول } \\
& \text { باتوجه به محاسبات بالا میتوان چنين نوشت : } \\
& \mathbf{m}=\mathbf{N} . E . \mathbf{V}
\end{aligned}
$$

	شبهى عهومى	int
m= ونن جسم		
E= الانس كرمج ج-م حلشد.		
$\mathrm{N}=$		
$\mathrm{V}=$		
تعداد والانس ترم هایى	ترم هإى يك إك فارف معادله	

 .

$$
\mathrm{N}=-\frac{\mathrm{m}}{\mathrm{E} \cdot \mathrm{~V}}
$$

حلـ دار بم :

$$
\mathbf{N}_{4}=\frac{\cdot / \cdot v \Delta}{\cdot / \cdot r \Delta}=r
$$

 :

$$
\begin{aligned}
& \text { الز طر د ديكر تساداد وألانس كر مهاي كر بنات ميهود . } \\
& \underset{\mathrm{El}, \mathrm{y}, \mathrm{~m}}{\mathrm{E}}=\frac{r / 91}{1 \cdot 9}=1 \cdot 90
\end{aligned}
$$

وجون :
تمـباد, والانس كـربم

$$
\begin{aligned}
& r \Delta \times \mathbf{N}=r v_{j} \Delta \times r \\
& \mathbf{N}_{\Delta_{0-1}}=\frac{r v_{/} \Delta \times r / e}{r \Delta / \rho}=r
\end{aligned}
$$

$$
\begin{aligned}
& r \Delta \times r=V_{\text {U }} \times 1 \\
& \mathbf{V}=\frac{r \Delta \times r}{1}=v \Delta
\end{aligned}
$$

 مبلى لـتر

هـ انوأع محلولها : اذنظرتئورى محلولهارا به دودسنه عهده تقسيم هى كنند :

 ودر نتيجه تِنداد ذرات مو جود درمححلول دا زيادتر هى كند . خواس اينكو نه محلول هــا بـا با رمحلولهاى غير الJكتروليت فرق مى وند وند وند جون حهال وحلشو نده مىتوانتد دريكى ازساحالات فيز يـكىيافت شوـند ، .نابر ابن Q قسم محلول مىتو إن داشت بشرحزير :

$$
\begin{align*}
& \text { شيمى عهو مى } \\
& \text { محلول كاز دد كاز } \tag{1}
\end{align*}
$$

$$
\begin{align*}
& \text { محتلول ك'ز در مايع } \\
& \text { هحلول مايع در مايم } \\
& \text { هحخلول جامد در در مابي } \tag{y}\\
& \text { هحلورل كاز در جامد } \tag{V}\\
& \text { هححلولمايع در جامد } \\
& \text { هحلمول جامد درجامد. }
\end{align*}
$$

 داراى اههيت بخصوصى هـتند
وـ معحلو ل

 كه لازم است تا نشار بشار آنها بحال ال تمادل در آيد .

 ثالاد يو
 جامدهستند درشيمى ومتالورذى ذياد يافت ميشو ند.وتى دوجامد درامد درهم حل ميشو ند امحلول

 بتاسيم ، سولفات هس وسو لفات فرو وزاج آهو نيوم وبناسيم • تعهاد زيادى ازفلز ات نيز با
iranchennsoopeicedu
 وغير ه . برای تشكيل اين محلولهاى جامد بايستى آنهارا از محلولشان و يا از مذابـان

 . خو دجلب كنند

ن" "
 ابن قانون هانزى است وبىتوان آن را با بودرت زير نثان داد :

$$
3 \sim 1+\ldots+\ldots
$$

$$
C=k P \quad \cup, \infty
$$

كه درآن C غلطت كازدرمايع ، P فشار كازروى مايع در حالت تعادل و k

بايستى بوسبل آزماشش تعيين كرد .

در محاول حجند كاز دريك حد
هادق است كه P نشار نسبى هـ كاز درسطح مايعو C غانظت آن كازدرمايع باثند. قانبيت انحلال يكتاز در مخلوطى از
 ارزث قانون هانرى وا مىتوان اذ نتايج بدست آمهه ازقابليت انحلال اكسيرن در
 اين نتايج درجدول
ra جa ra

$\begin{gathered} \mathrm{P} \\ (\mathrm{Cm} \\| \mathrm{l}, \end{gathered}$	$\stackrel{C}{\left(y / h t \cdot H_{Y} O\right.}$	$\frac{\mathrm{C}}{\mathrm{P}}=\mathrm{kor}_{\mathrm{r}}$
12/0		$\% \cdots$ drr
$r \cdot \%$	\%/19.	-/...srr
FW / F	\% $/$ rr	-/ - $\Delta r=$
91/.	-/.ris	\%...srr
ve/.	$\cdot / \cdot 4 \cdot 1$	-/..orry

قانون هانرى مئل قانون كازهاى كامل فتط در فثارهاى كم قابـل استغاده است.
 بالاتر باثد وغثاركمتر باثد قانون مادن ويا درآن يو نيزه شود قانون قابل استغاده نيست .

IAY

 محلولهبـ اثر درجه حر ارْت درقابليت انححلال

كز حل شده
in

$$
2+D
$$

t =
(94)
تفيبرات قا بليت أهجلالكاز درما يعدر| اثردرجهحرارت

وقتى به محلول حرارت دادهثود تعادل بالا بطرف جب متمايل می كردد و كاز از

$$
=\operatorname{col} \log \ln ^{\alpha}
$$

 (دردرجه حرارت بالاتراز نتطه ذوب فنل -

 بائين آوردندرجه حرادت اين نتيجه را باعث فیشود (ثكلهاهى 90 وه 9) .

1A9 م
به نتطه x درمنحنى برسد. (خط نظطه جين ددثكل وه) . ازاين بابيد دولايه آب وننل
 ددهم كا

.相隹

 , .

$$
\therefore A, B \quad \text { ماككو لى آن در محلول متناسب است • ببادت ديكى : }
$$

عيار نسبى ملكولى جس $\mathbf{N}_{\mathrm{A}}=\frac{\mathbf{n}_{\mathrm{A}}}{\mathbf{n}_{\mathrm{A}}+\mathbf{n}_{\mathrm{b}}}$ و $\mathbf{~ د ر م ح ل و ل ~ ا س ت . ~ ه م ي ن ط و ر ~}$ دريك محلول كامل كه ازانحالالدومايع بدست آمدهباشُد ، فشار بخار نسبى جسم دو זبصورت

$$
\begin{gathered}
\mathbf{P}_{\mathrm{B}}=\frac{\mathbf{n}_{\mathrm{B}}}{n_{\mathrm{A}}+n_{\mathrm{B}}} \times \mathrm{P}_{\mathbf{B}}^{\dot{i}} \\
P_{\mathrm{B}}=N_{\mathrm{B}} P_{\mathrm{B}^{0}}
\end{gathered}
$$

(χ^{\prime}

دريكّهحلول

 محلول كامل مىدهد وخوام ملكولـهاى آن هرمحلول درست مثل خوام ملكول هاى آن دزمتانل خالص است .
تشاد هلكول لهائى كه ميتوا اند بسططحمحلول آمده ووارد حالت بخار كرد ند برابر
 حاصل ميشو ند كه اجسام مُتشكله T آنها از نظر شيمـيائى كاملا مشابه باشند .
 A نسعیج جاذبه A-A كبرديده ودر تتيجه فشار بخاد نسبى جسم A الزوده كردد . يا وجود ملكول

های A B-B B B
 تنش سطحى ويا سايرخواص محلول كردد . ولىتنيبردرفشاربخار اذ نظر انــدازه كريى از سايرخواه فبز يكى مهمتراست .
جدول شماره.

F• ${ }^{\circ} \mathrm{C}$ فشار بخار نسبى هحلول بنز

جاذبهماى A-B و B-B ، A-A هنو زبطود دتيق همين نكرديداند ون ولى اصول

Fl جدول شماره
ro/ro C فشار بخار نسبى محلول استن وكلروفرم در

194

,يو ند باعث مبكرددكه جاذبه A-B الجاذِ بههاك A-A و B-B بيشتر كردد . مشلّبيوند

 هاى اين دومايع كاملا شبيه يكديكر ند ونشار بخادنسبى مشاهده شده دراين محلول با با فشار

 احاطهشده باشند
سا- تقطير جزء به جزء : جهاكيردن دويا ياحند مايع كاملا ممزوج وقتى بامم

 داग

شيهى عمو می

9Y:

910.

$99.95=$

ديكر ا نجام كرفته وهرجپه مقدارصفحات بيشتر باشد عهل جداكردن بهتر ا نجهامهيكير د. همحلو لمائى حـاكي

 ?اقّىمانده مهكن است Aويا B خالص باشد. محلول اتانل وآب داراى نتطهجوششش هداتل
 شیه است .

190 محلولها

اكرتعداد مايمات درمحلول بشازدووباشد بازمىتوان ازسنون تقطبر جزه بـه جزه

 مى كردد . مقطرهائى با نتطه جوششه هاى مختلف از ارتفاع هـاى مختلف از ستون خـارج مى كردند .

- Lologar

(iv). : : $:$)
;ابليت انحلالالملاعددTب
 دأردكارمشكلى است ، ولى درك اينكه جكو نه قابليت انحلال يك جسم جامل دريك مايع با

 شده است صادق است (شكلهو YY) . اين تعادل را بصورت زيرميتوان نشان داد : $+\Delta H$ جامد \rightleftarrows مايع

كه درآن

 قابلمتا المان竍 |

$$
\mathrm{Cl}_{r} \mathrm{Mg}+9 \mathrm{H}_{r} \mathrm{O}, \stackrel{\hookrightarrow}{\longleftrightarrow} \mathrm{Cl}_{\curlyvee} \mathrm{Mg} \cdot \varphi \mathrm{H}_{r} \mathrm{O} \quad=\Delta \mathrm{II}
$$

$$
=
$$

164
$\frac{3}{3}$

> درجي خرادت
> (in (in)

اذنوق اثباع در فصلهاى قبل صحبت شد . بك محلول .فوقاشباع را جنبن مىت-وان

مهلولها
تهبه ردد : اول يك محلول اشباع دردرجه حر أرت زياد تهبه مى كنند وبد اينمحلول سبر
 متحلول برای مدت زيادى بدون تنير باقى مىماند .

 r- ج- اi T號 مسسائلز.ير را حل سنيد

 .
 نرماليته محلول اسيد را تعيين كيميد .

६ז ६/• نرمال سود لازم است ؛

الفـ برای. تهيه Y Y

$$
\begin{aligned}
& \text { ب- محلول } 0 \text { ب/ • مولارقند }
\end{aligned}
$$

俍
آب خالص دا حساب كنـيـ
:
الفـ در •
لِبـ در • م ميلى ليترمحلول • • ז/ • • هولار آن وجود دارد ؛

الفـ • •
ب- ب
ب- ب V

 .

 هجمو ع حجمها ر

 نرماللاسيدسو لفوريك لائز
仅
iranchembook.ir/edu

199
محلولهـا

$$
\begin{aligned}
& \mathrm{Cr}_{r} \mathrm{O}_{r}^{-}+\mathrm{Fe}^{++} \mathrm{Cr}^{++}+\mathrm{Fe}^{+r} \\
& \text { (درهحيط السيدى) }
\end{aligned}
$$

$$
\begin{aligned}
& \sim \text { (} \quad \text { ? } \\
& n=\frac{0 \text { ing }}{\partial n, 0}=\ldots \\
& x=1 \text { Jeready } \\
& \text { mol } \\
& x=1 \quad 1 \ldots m p \\
& \text { a } \\
& N=\frac{1}{1} \quad y_{1} \\
& N=\frac{\partial \mu, 0}{1}=\frac{\partial \mu, 0}{\partial \Lambda, 0}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial, M \gamma}{\partial \mu, \gamma} \\
& \lambda=1 \quad 1 \ldots \\
& 2=1
\end{aligned}
$$

فصلنهـم

 ونشار اسمز ى نيز بستكى به فشار بخاد
 وسإير خواس حل ثو ندههــا استفاده ميشود .

 دراينگ Kمش مو ثراست نه نوع ملكولول .
 دائول بدست می آيد . درحقيقت برای اولين مر تبه رائول بودكه ازاين قانون برا براى تميين

$\mathbf{P}=\mathbf{N} \times \mathrm{P}^{\circ}$
$J x=-\frac{10 x}{x} \quad J x$

 شو نده درآن تنيير مى كند .
 2ا بسهولت میتوان اندازه كروفت .
 م $\mathbf{N}_{1}=1-\mathbf{N}_{\Upsilon}$ (
$\mathbf{P}=\mathbf{N}, \mathbf{P}^{\circ}$

$$
\Delta \mathrm{P}=\mathrm{P}^{\circ}-\mathbf{P}
$$

و اكر بجاى P متداد آن قرادداده شود :

$$
\begin{align*}
& \Delta \mathrm{P}=\mathrm{P}^{\circ}-\mathrm{P}^{\circ} \mathbf{N}_{1} \tag{f}\\
& \Delta \mathrm{P}=\mathrm{P}^{\circ}\left(1-\mathbf{N}_{\checkmark}\right) \\
& \Delta \mathrm{P}=\mathrm{P}^{\circ} \mathbf{N}_{\mathrm{r}} \tag{9}
\end{align*}
$$

$$
\begin{equation*}
\frac{\Delta \mathbf{P}}{\mathbf{P}^{\mathrm{o}}}=\mathbf{N}_{\boldsymbol{r}} \tag{V}
\end{equation*}
$$

-س

$$
\begin{aligned}
& M_{2}=\text { ? } \\
& M_{1} \\
& \frac{V \Delta I / q-V \not \subset Y / G}{V \Delta I / 9}=\frac{Y / P V \times V A / I}{1 \cdot \times \mathbf{M}_{Y}} \\
& \mathbf{M}_{Y}=1 \Delta \psi
\end{aligned}
$$

 شو نده بسنک
 هما نطور كه درشكل شهاره VY نشان داده شده است ، ذشاد بخار درمحلول يك مو لال

r.r محلولهاى غير الكتروليت

طبق قانون رائول،درمحلولهماكدقيق بالارفتن نتطه جوشش مستقيماأ بامولالتثمحلول

بستكى دارديا
 استكه مر بوط. به -كلال است .

vir جاى شیل

درمى آيه .

$$
\begin{equation*}
\Delta t_{b}=B \times \frac{\mathbf{m}_{r}}{\frac{\mathbf{M}_{r}}{m_{r}}}=B \times \frac{\cdots m_{r}}{\mathbf{M}_{r} m_{r}} \tag{IT}
\end{equation*}
$$

 . وزن >/ m ال است

$$
\Delta \mathbf{t}_{\mathrm{B}}=\frac{\mathbf{K}_{\mathrm{b}}}{\mathbf{M}_{\mathrm{r}}} \times \frac{\mathbf{m}_{\mathrm{r}}}{\mathbf{m}_{\underline{1}}}
$$

隹 تعادل باثد

 ا-ات . درثكل

شكل) "

مئل بالاردتن نتطه جوثش ، درمحلولولماى دقق بائين آمدن نططه انجهاد بامولاليته
, (f)

.
R

$$
\Delta t_{t}=\frac{K_{f}}{M_{r}} \cdot \frac{m_{r}}{m_{T}}
$$

 با آب محتوى آن مخلوط ميكر دد .
 (

محلولهاى غير الكتروليت
به اين بديده اسمز كفته ميشود .

 وقيقِ وْارد مححلو

$$
\text { (} \mathrm{V}
$$

 : بـت

برای اندازه كيرى فشاراسمزع محاول را ازحلال خالص بوسبله يك جدار نيهه قابل
 تعادل است .

ه معادثه وانت هوف بر اى فشاراسمزى :(وانت هوف اولين كسى بود كه بـي

$$
\mathbf{C}=\frac{\mathbf{N}}{\mathbf{V}} \quad: \text { pols }{ }^{\text {dg }}
$$

$$
\begin{aligned}
\pi & =\frac{\mathbf{N} \mathbf{k}^{\prime} \mathbf{T}}{\mathbf{V}} \\
\pi \mathbf{V} & =\mathbf{N} \mathbf{k} \mathbf{T}
\end{aligned}
$$

شباهت بین بهاين معادله ومعادل كازهای كامل ، PV
 . S R
 حر ارت

$$
\mathbf{k}=\frac{\pi \mathbf{V}}{\mathbf{N T}}=\frac{r / a \vee \times 1}{\frac{r \Delta /}{r r r / r} \times r \vee r / r}=\cdot / \cdot \wedge r \vee \operatorname{lit}-\text { atm /mole }
$$

$$
\frac{\mathrm{rs}}{\substack{\text { ror } \\ 18}}
$$

$$
Y \cdot Y
$$

محلولهاى غير الكتروليت

 فشار كاز بكاردنته است .
 شكردر • . ا
${ }_{80} 3=N$ N N نـكىرا درمحلول حساب تينيد .

$J_{1,5}=M$ ميلىمتر كرديد . وزن ملكون

隹地 $\cdot / \varepsilon \cdot T^{\circ} \mathrm{C}$

 Y

ب. \%

$$
\text { (} K_{f}=r: \text {. . }, \text { l }
$$

尼
.
 شو نهo

 1 ,
 .

 نقطه جوثشث حالالى B الـى اين .
 (Cyllo وبـ

 از

$$
i=\frac{M}{y} \quad \left\lvert\,+\frac{M}{c_{1}} \quad \operatorname{shz}\right.
$$

جفصل دغم

ازدوى فرضيه جنبشى ملكولى كازها زياد مشكل نبست كه بتو انتسور كرد كه يـك
 ازت است :

$$
\mathbf{N}_{r} \mathrm{O}_{\uparrow} \rightarrow r \mathrm{NO}_{r}
$$

俍
 طورى بإيكديك, بر خورد .

$$
\left(\begin{array}{ccc}
\mathrm{O}=\mathbf{N}-\mathrm{O} & \mathbf{O}=\mathbf{N}-\mathrm{O} \\
1 & \rightarrow & \dot{+} \\
\mathrm{O}-\mathbf{N}=\mathbf{O} & \mathbf{O}-\mathbf{N}=\mathbf{O}
\end{array}\right.
$$

نعلوا نفعالى , اكهدرآندوملكول هنحتلف باهم تر كيب هيشو ند ، هشل

$$
\mathrm{H}_{r}+\mathrm{I}_{r} \rightarrow Y \mathrm{IH}
$$

 .

 bus 盾
iranchembook.ired $A+B \Rightarrow A \cdots B C D$
ril
سبنتك شبمبائى

 شده است .
r

$$
r \mathrm{~N}_{r} \mathrm{O}_{\Delta} \longrightarrow r \mathrm{~N}_{r} \mathrm{O}_{\mu}+\mathrm{O}_{r}
$$

متدار انينديد اذتبك را دريك ذاهله ذمانى ميتوان تيين كرد . سرعت فعل وا نفعالمبشود.

$$
A=E_{2} E_{1}=
$$

$$
\mathbf{A}=\mathbf{E}_{Y}-\mathbf{E}_{\zeta}
$$

 مى كتد كه بوسيله

(ivy نكل)
,
باشهu كا باهم تركمب ثد. واجسام حامل (G , H) راتوليد كنين بر ابراست با :

$$
A=E_{Y}-F_{1}
$$

 كلرورسديم اضافه شود ، رسوب سفيدكلرور نقر• بالافاصله تشكبل مى

$$
\mathrm{NO}_{\mathrm{r}} \mathrm{Ag}+\mathrm{ClNa} \longrightarrow \mathrm{NO}_{\mathrm{r}} \mathrm{Na}+\mathrm{Cl}_{\underline{\mathrm{Ag}}}
$$

اكرمعادله بالاطورى نوشتهثودك يونهاى مختلف را دد محلول نشان دهد \{تهام

$$
\mathrm{NO}_{r}{ }^{-1}+\mathrm{Ag}^{+1}+\mathrm{Cl}^{-1}+\mathrm{Na}^{+\prime} \rightarrow \mathrm{NO}_{r^{-}}+\mathrm{Na}^{+}+\mathrm{ClAg}^{-1}
$$

حنين بنظرمى آيدكه حون يونهاى محلول هستند ، يس معادله|صلى را بايستى بصورت زير نوشت .
-Tranchemboophitedu

TIY
سينتبك شيميائى

$$
\mathrm{Ag}^{+}+\mathrm{Cl}^{-1} \longrightarrow \mathrm{ClAg}^{-1}
$$

$\mathrm{H}_{\mathrm{r}}+\mathrm{I}_{\mathrm{r}} \longrightarrow \mathrm{rIH}$
كه حتى در YYO

(ij)

 حاداي انيزى فیالبت مختلف هستند
Uij

 انرثى جنبشى مستقيماً متناسب بادرجه حر ارت مطلق امت :

$$
U_{r} \quad \begin{gathered}
\frac{1}{r} m u^{r}+\mathrm{T} \\
\frac{t_{c}-\tau_{1}}{1-}
\end{gathered}
$$

شيهي عهومى

```
* جr *
```


يس اضافه میشود :

$$
\frac{1 \cdot}{r y r+r \cdot} \times 1 \cdots=i r, r
$$

اين بالارفتن متوِط انْ
است(

 كي ملكى لهاى فعال قَسمت خيلى جز

> MID سينتبك ثبمبائى

(va
 فا ليت زياد
(va ثـ)

 باعثكم شدن سرعت فعل وانفعالات ميشو ند معين عملماى منفى كفته مىشود . دو دو نوع

 فعاليت فعلوان نفعال كم میشود

 فلز اتى مثل| اكسيدهاى فريكووا ناديوم هستنل . معينعمل واكنش

$\mathrm{rSO}_{r}+\mathrm{O}_{\mathrm{r}} \rightarrow \mathrm{rSO}_{\mathrm{r}}$

-ثود (شكل va va) .

ولى درحضور NO واكنش سريع تدا نجام می كيرد .
$\mathrm{O}_{r}+\mathrm{YNO} \longrightarrow \mathrm{NNO}_{r} \quad\left(\mathrm{~N}^{2}, \mu\right)$
$\mathrm{rNO}_{r}+\mathrm{YSO}_{r} \longrightarrow \mathrm{YNO}+\mathrm{YSO}_{r} \quad(2,-1)$
دردوفعلوا نفعال سـيع باك

($\mathrm{A} \cdot \mathrm{C}$)
(A) ثـكل)

بهون معبن عمل ؛ انرزى فعاليت زباداست .

YIV سينتيك شيميانى

تـ غلظت : تجر به نشان داده است كه سرعت فلل وا نفعالات شبيبائي هومـوثن

 انجام مى كيرد

 مىشود . اثر كمىغلظت روى سرعت فعلوان نفال فقط بوسيله آزمايش تعيين مى كردد .

 تنير است .
واكنش بين ئيدررن واكسيد ازت

كاز باهم تر كبب شده وسه مول كاز توليد مى كنند . انداذههاي بدست آمده در

			:0ماره T- إمٌ
	${ }^{\text {H }}$	No	
$r \cdot$	V.•	9/••	1
*.	r/.	$9 / . \cdot$	r
9.	r/.	9/..	r
r	$9 / \cdot$	1/.	r
ir	91.	¢/.•	$\stackrel{\circ}{\circ}$
rr	91.	r/. \cdot	4

جون مواد تر كيب شونده دامهاً درطول واكنش بصرن می كردند ، غلظت و سرعت

 اوليه نشان مىدهندكه سه بر إبر كردن فلا

 در تتيجه سرعت واكنش بانو ان دو دوم غانظت NO متناسب است .
بطور كلى میتوان كفت كه سرعت واكنث با (غلطت ئيدززن)
هتناسب است . اين را مى توان بصورت زير نوشت :

iranchembook.infedu-
=k[$\left.\mathrm{H}_{\mathrm{Y}}\right][\mathrm{NO}]^{\top}$

 ضرائبدرمهادله شيميائى بوب هستند.

 معادله هوزون اينمرحله بصورت زيرددمى آيد :

$$
A+B \rightarrow A B
$$

 A
 $=\mathrm{k}[\mathrm{B}][\mathrm{A}]$
 ضرائب B , درمعادله موزن شده يك است .

اكردرهمادله شيمبائى موزون شده ضرائب اجسام بيشاذيك باشد جه اتفاق مىانتد؟
واكثشذير دا در نظر بكيريم.

$$
r \mathbf{A} \longrightarrow \mathbf{A}_{r}
$$

 بو جود مى آورند . سرعت تشكبل

$$
\begin{aligned}
& \boldsymbol{r} \boldsymbol{A} \longrightarrow \mathbf{A}_{\boldsymbol{r}} \\
& \text { معادله سرعت را مىتوان حنين نوشت . }
\end{aligned}
$$

$$
\text { k }=\mathbf{k}[\mathbf{A}]^{\mathrm{n}}[\mathrm{~B}]^{\mathrm{m}}
$$

 نثان مىدهبكي :
k[H_{\curlyvee}] [NO$]^{\top}$
حال T Tنكه معادله شيميائى موزون شده بصورت زيراست :

ris

سبنتبك شيبيائى

$$
\mathrm{rH}_{r_{(j \mid 5)}}+\mathrm{YNO} \underset{(j \mid 5)}{ } \rightarrow \mathrm{N}_{(j, 5)}+r \mathrm{H}_{r} \mathrm{O}_{(j 5)}
$$

 است بامولاريت H بنوان دراثر دوبرابرشدن غلظت

$$
\mathrm{A}_{(j \mid 5)}+\underset{(j \mid 5)}{\mathrm{B}_{(j)}} \mathrm{C}_{(j \mid 5)}
$$

 C

 سرعت بصودت زيرددمى آيد .
k[A][B]

 بر ای واكشش مثالززده شده در بالايعنى :
معادله سر عت از نتايج آزمايشعاهى بصورت زيو حساب شده المت :

$$
\text { k[1I }=\text { = }=\text { سرعت انجام واكنش }
$$

$$
\mathrm{H}_{(j \mid 5)}+\underset{(j 5)}{\mathrm{NO}}+\underset{\left.(j)^{\prime}\right)}{ } \mathrm{N}_{\Gamma} \mathrm{O}_{(j 5)}+\mathrm{H}_{\Gamma} \mathrm{O}_{(j,)}
$$

(4)

 بشر ح ذير بر ای واكنش بالا بيشنهـد شده است:

$$
\underset{\mathrm{NO}}{(i s)} \rightarrow \mathrm{N}_{\mathrm{r}} \mathrm{O}_{\mathrm{T}(\mathrm{j})}
$$

$$
\begin{align*}
& \mathrm{N}_{\mathrm{r}} \mathrm{O}_{(, 5)}+\mathrm{H}_{\mathrm{r}_{(j, 5)}} \rightarrow \mathrm{N}_{\mathrm{r}} \mathrm{O}_{(j, 5)}+\mathrm{H}_{\mathrm{r}} \mathrm{O}_{(, j 5)} \tag{4}
\end{align*}
$$

YYK
سبنتيك شيميائى
a

$$
V=k[A][B] \quad A+B \rightarrow r C
$$

 خواهد شد ؛

ب

B , A A

$$
\mathrm{g}_{(\mathrm{g})}+\underset{(\mathrm{g})}{\mathrm{A}} \longrightarrow \text { ونش }
$$

الفــــ هعادله سرعت واكا

n

-
 اوليه تشكيل C عبارت خوا اهد بود از

 ميشود M
iranchembook.ir/edu

شبهى عهومى

-يشود M M

ح,ارتبدن|نجامهيعيردجرا؛
r
k[A] [B]
با نوشتن معادله شيميائى درجنه مرحله معاد له سرعت را توجيه كنيد .

$$
\begin{aligned}
& V_{r}=V_{i}=\frac{t_{r-t}}{1_{1}} \\
& v_{s}=v_{x} \times r^{\frac{r_{1}-x_{1}^{\prime}}{K}}
\end{aligned}
$$

فصل يازدهم

تجر به نشان دادهاستكه وقتى اجسام تر كيب شو نده برایانجأم فعلوانفعال شيهيائى
 حتى اكرفل وانفعال تا مـدت زيادى اداهـ~ هِداكنل . در شروع واكنثي غلظت اجسام

 دراين حالت غلظت ديكى تنيير نیىكند . بهاين حالت تعادل شيميا ئى كفته ميشود . 1- حالت تعادل : بعنوان مثال براى برترإشدن تعادل بهواكثي زير تو جه شود

$$
\underset{(\mathrm{g})}{\mathrm{A}_{(\mathrm{g})}}+\underset{(\mathrm{g})}{\mathrm{B}} \rightarrow \underset{(\mathrm{~g})}{\mathrm{C}}
$$

 تو ليقمىكند. از نظرسهولت فره ميشودك هر حهارجسمكاز هستند . درشروع آزمايش
 كرفته ميشو ند . نتيجه ابن اندازه كِيى بصودت نمودارهائى وسم ميشود . نمودار حالصل بصورت شكل
 حجم جعبهدارد . دراثُ كذشت زمان،غلطت A A اول سر يـع و بعد باسرعت كمتر ىكامش ميا ب.

شُيـى عهومى
داشت ، اكرجه غلظت اولي آن برابر باغلظت اولي A نباشد . غلظت هاى اوليه C D

 آلط te

(AT (ir)
دسيثن به>الت نعادل
.

 لِّس ازذمان te سرعت انجام واكنش بين است . اين تعادل بين دوواكنش مخالف را مىتو ان بصودت ذير نوشت :

(g)
${ }^{(g)} V_{p}^{\prime}$
(g)
$\mathrm{A}+\mathrm{B}=\mathrm{C}+\mathrm{D}$
(g)
(g)
(g)

$$
v_{1}=v_{r} \quad d_{-\infty}
$$

با
iranchembook.ir/edu

$$
V_{1}=k_{1}[A][B]
$$

$$
V_{c}=k_{c} \cdot[C][D]
$$

$$
v_{1}=v_{r}
$$

Fo جدول شماره

تعادل ثبيبائى

غلظتهاى تعادل بو حسب مول در ليتر

 دارد كددر تهام آزمايشها يكساناست.ا .

 بايستى طورى باشدك دابطه زيربين آنها برترار كرد درد :

$$
\frac{[\mathrm{C}][\mathrm{D}]}{[\mathrm{A}][\mathrm{C}]}=\cdot / \sqrt{ }
$$

معادله كلى مواذنه شده براى اين واكنش

$$
\underset{(\mathrm{g})}{\mathrm{nA}}+\mathrm{mB} \underset{(\mathrm{~g})}{\leftrightarrows} \mathrm{pC}_{(\mathrm{g})}+\mathrm{q}_{(\mathrm{g})}^{\mathrm{D}}
$$

وحامل را نشان میدهند . رابطه اين اجسام درحال تعادل در اين معادله كه مقدار ثابنى است بصورتزيراست :

كه دريك سيستم درحال تعادل ، غلظت مواد موجود درواكنثش بايستى با جمله انرجرم كـ
 . وجود ندارد
قانون تعادلشيمبائى يكو انقينى است كه ازذراه تجر بد بدست آمده است. ولى الى اساستناده

 مثلا واكنش

$$
\underset{(\mathrm{g})}{\mathrm{A}}+\underset{(\mathrm{g})}{\mathrm{B}} \leftrightarrows \mathrm{D}_{(\mathrm{g})}+\mathrm{D}_{(\mathrm{g})}
$$

 است وبدون مطلع بودن اذسينتبك واكنتمىتوتوان آن را نوشت . إينكه جمهله اثرجر ممستقل
 1- فرنشودك واكنث دريك مرحله انجامكردد .

$$
\begin{equation*}
\underset{(\mathrm{g})}{\mathrm{A}}+\underset{(\mathrm{g})}{\mathrm{B}} \leftrightarrows \mathrm{C}_{(\mathrm{g})}+\mathrm{D}_{(\mathrm{g})} \tag{1}
\end{equation*}
$$

تسادل شيهبيائى

كه در آن k' ثابت سرعت واكتش بطرف جی است . درحالت تعادل اين دو سرعت انجام واكنشها برا بر ند و

$$
\begin{gathered}
\mathbf{k}[\mathrm{A}][\mathrm{B}]=\mathbf{k}^{\prime}[\mathrm{C}][\mathrm{D}] \\
{[\mathrm{C}][\mathrm{D}]} \\
{[\mathbf{A}][\mathrm{R}]}
\end{gathered}=\frac{\mathbf{k}}{\mathbf{k}^{\prime}}
$$

$$
\begin{equation*}
\underset{(\mathrm{g})}{\mathrm{A}}+\underset{(\mathrm{g})}{\boldsymbol{N}_{(\mathrm{g})}^{\leftrightarrows}} \underset{(\mathrm{g})}{\mathrm{C}}+\not \boldsymbol{Q}_{(} \tag{Y}
\end{equation*}
$$

(r)

وتى باهم جمع شو ند معادلـ زير بدست مى آيد .
$\mathrm{A}+\mathrm{B} \leftrightarrows \mathrm{C}+\mathrm{D}$

 $k_{1}[A][A]=k_{1}{ }^{\prime}[C][Q]$

$$
k_{r}[Q][B]=k_{r}^{\prime}[A][D] \quad \text { برای مرحله دوم , }
$$

اكى [Q] درهردوحذف شود خواهمب داشت :

$$
\frac{k_{1}[A][A]}{k_{1}^{\prime}[C]} \frac{k_{r}^{\prime}[A][D]}{k_{r}[B]}
$$

$$
\begin{aligned}
& \text { برای واكثش بطرف راست داريم • } \\
& \text { k[A][B] } \\
& \text { كه درآن K ثابت سرعت واكنش بطرف راست الست. برايى واكنش بطرف جیداديم } \\
& \text { k' [C] [D] }
\end{aligned}
$$

${ }_{[\mathrm{C}}^{\mathrm{C}][\mathrm{D}][\mathbf{B}]}=\frac{\mathbf{k}_{1} \mathbf{k}_{\mathbf{r}}}{\mathbf{k}^{\prime}: \mathbf{k}_{r}^{\prime}}$
مهجدداً همادل اثرجرم برابر باعدد ثابنى است .

 ،

$$
\underset{(\mathrm{g})}{\mathrm{A}}+\underset{(\mathrm{g})}{\mathrm{B}} \leftrightarrows \mathrm{C}_{(\mathrm{g})}+\mathrm{D}_{(\mathrm{g})} \quad \mathrm{k}=1 / \times \times 1 \cdot-\mathrm{o}
$$

.

$$
\underset{(\mathrm{g})}{\mathrm{E}}+\underset{(\mathrm{g})}{\leftrightarrows} \underset{(\mathrm{g})}{\mathrm{G}}+\underset{(\mathrm{g})}{\mathrm{H}} \quad \mathrm{k}=1 / \cdot \times 1.0
$$

.

 يدو يدورئيدرذن آذمايشهائى ا انجامكدفته است • درحال تادل داريم

$$
\underset{(\mathrm{g})}{\mathrm{H}_{\mathrm{r}^{\prime}}}+\mathrm{I}_{\mathrm{r}(\mathrm{~g})}^{\leftrightarrows} \underset{(\mathrm{g})}{\leftrightarrows}
$$

در حال تادل هرس اين اجسام وجود دارند . مبادل تادل بهردت زير است

$$
\frac{\left[\mathrm{HI}^{\gamma}\right]^{\gamma}}{\left[\mathrm{H}_{r}\right]\left[\mathrm{I}_{\mathrm{r}}\right]}=\mathrm{k}
$$

غلظت
غلظت
غلظت =HI =

YM تعادل شيمبائىى

$$
\begin{aligned}
& \text { چون اينغلظتها همان غلظت هاى تعادل هستند يس }
\end{aligned}
$$

درهرسيستم هتشكل اذ از

مثال ا : يك مول

 از ازاكنش زيربوجود میمآيد :

$$
\underset{(\mathrm{g})}{\mathrm{H}_{r^{\prime}}}+\underset{(\mathrm{g})}{\mathrm{I}_{\mathrm{r}^{\prime}}^{\leftrightarrows}} \mathrm{r} \underset{(\mathrm{~g})}{ }
$$

 بوجودTيد .

درحالت تعادل

دراب̣تدا

$$
\begin{aligned}
& \text { مولدردلبنر(} \\
& \text { مول درلبتر (} \left.\mathbf{I}_{\mathbf{r}}\right]=(1 / \cdots-\mathbf{n} \\
& {[H I]=\quad \text { مولمردرلينر }} \\
& {[\mathrm{HI}]=\quad \text { صف }}
\end{aligned}
$$

 غلظتهاى تادل بايستى نرط زيررا برقرار كنند

$$
\frac{[\mathrm{HI}]^{r}}{\left[\mathrm{H}_{r}\right]\left[\mathrm{I}_{r}\right]}=\psi \Delta, q
$$

$$
\begin{aligned}
& \text { اكَربجاى آنها مقدارشان را فَاردهيم داريم } \\
& \frac{(r \mathbf{n})^{r}}{(1 / \cdots-\mathbf{n})(1 / \cdots-\mathbf{n})}=\psi \Delta / a \\
& \mathrm{n}=\cdot \mathrm{MYY} \\
& \text { ن } \\
& \text { إست . بنا براين در حالت تادنداريم }
\end{aligned}
$$

$$
\begin{aligned}
& \text { مول درلبتر }
\end{aligned}
$$

$$
\begin{aligned}
& \text { [HI] = Yn= 1/DFFF مول درليتر }
\end{aligned}
$$

براى آ نكه نشان داده شودكه تناو تى نی كندكه بحالت تسادل اذ كدام طرف معادله
 وجودندارد ، HI بايستى تجزيهكردد تا تطادل برقراركردد . مثال
حل : ; ادل بصورت

$$
\mathrm{H}_{Y_{(\mathrm{g})}}+\mathrm{I}_{Y_{(\mathrm{g})}}^{\leftrightarrows} \underset{(\mathrm{g})}{\leftrightarrows}
$$

درحالت تعادل

$$
\begin{aligned}
& \text { [HI] }=(\mathrm{r} / \cdots-\mathrm{x}) \text { مول درليتر } \\
& \text { [HI]=r/.. } \\
& {\left[\mathbf{I}_{\mathbf{r}}\right]=\frac{\mathbf{x}}{r} \quad \text { مول درلينر }} \\
& {\left[I_{r}\right]=\text { صe }} \\
& {\left[H_{r}\right]=\frac{x}{r}} \\
& \text { مول درلبنر } \\
& {\left[H_{r}\right]=\text { صفر }} \\
& \text { بس ازبرقرادى نعادل د! بيم }
\end{aligned}
$$

rur \qquad تعادل شيمباتُى

$$
\frac{[\mathrm{HI}]^{r}}{\left[I_{r}\right]\left[\mathrm{H}_{r}\right]}=r \Delta / q=\frac{(r / \cdots-x)^{r}}{\left(\frac{\mathbf{x}}{r}\right)\left(\frac{\mathbf{x}}{r}\right)}
$$

$$
x=\cdot \mu \forall \Delta y
$$

كه در T
است . بنا براين درحالت تعادل داريم •

اين دو مثال نشان ميلهندكه فرتى نهى كند از كدام طرف معادله به حالت تعادل
 معادله. درهر حال موقعى تغييرى حاصل ميكردد تا جسهى كه غلظت آن بر ای برقر ادى تعادل كافى نيست توليد كر دد. كاهى درسيستم نامنعادل تمام اجسام دوطرف معادله وحود داد ند،

 مشال
 حل : تشادل جصودت
$\mathrm{H}_{\curlyvee}+\mathrm{I}_{\mathrm{r}} \rightleftarrows \mathrm{YHI}$
(g) (g)
(g)

$$
\begin{aligned}
& \text { درحالـت تعادل } \\
& \text { [HI] } \\
& \text { [} \left.I_{r}\right]=(r / \cdots-X) \text { مول درليتد } \\
& \text { [HI] }==(r, \cdots+Y X) \text { مول درلئت } \\
& \text { درإتقا } \\
& \text { مول }
\end{aligned}
$$

$$
\begin{aligned}
& \text { [HI] } \\
& \text { ددحالت تعادل } \\
& \frac{\left[\mathrm{H}_{[}\right]^{r}}{\left[\mathrm{H}_{r}\right]\left[\mathrm{I}_{r}\right]}=r \Delta / q=\frac{(r / \cdots+r x)^{r}}{(1 / \cdots-x)(r / \cdots-x)}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[I_{r}\right]=\frac{X}{Y}=\cdot / \text { YイA }} \\
& \text { [III] }
\end{aligned}
$$

$$
x=\cdot, y \wedge \psi
$$

كه درآن
است . بنابر اين درحالت تعادل داريم

- X حالت فيز يـكى بـافت شو ند . مثر تعادل

$$
\underset{(د+\mid x)}{\mathrm{C}_{\left(j l^{\prime}\right)}}+\mathrm{O}_{r^{2}} \longleftrightarrow Y \mathrm{CO}
$$

شامل احسـام دددو حالت جامد, كاز لمستد • حالت جامد شامل كى بن خالص است و حالت كاز شامل مخلموطى ازاكسيثِن واكسيدكر بن است . درجمله اثر جرم ، غلظت اجسام

كه

شر ايط تعادل را درتعادلهای هتروزن •یتوان سادهتر نهود . چچون كر جه غلظت كا; هاى

 زْ اضانه شده است ، ححم آن نيز زيادتر كرديده است .|هر تقدرهم كیكر بن اضافه كنيم باز . .

 جديدى بدست آورد . دراين حالت تعادل جمله اثر جـم غلظت جسم جامد ومايع دانشان

نیددهد . مثّلا براى تسادل .

$$
\mathrm{rC}_{(\mathrm{s})}+\mathrm{O}_{(\mathrm{g})} \leftrightarrows \underset{(\mathrm{g})}{\leftrightarrows}
$$

راريم :
$\mathrm{K}^{\prime}\left[\mathrm{C}_{(\mathrm{s})}\right]^{r}=\frac{\left[\mathrm{CO}^{r}\right.}{\left[\mathrm{O}_{\mathrm{r}}\right]}$
ك
$\mathrm{K}^{\prime}\left[\mathrm{C}_{(\mathrm{s})}\right]^{\mathrm{r}}=\mathrm{K}$

$$
\mathrm{K}=\frac{[\mathrm{CO}]^{r}}{\left[\mathrm{O}_{\gamma}\right]}
$$

بطور كلى درتعادل هتروزن اذقر اددادن غلظت جامدات وهامايعات خالصدر در جمله اثر

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{r}}=\frac{\left[\mathrm{SH}_{\mathrm{r}}\right]}{\left[\mathrm{H}_{\mathrm{r}}\right]}
\end{aligned}
$$

$-1 .{ }^{\circ} \mathrm{C} \mu$

$$
\mathrm{K}_{\mathrm{r}}=\frac{1}{\left[\mathrm{H}_{\mathrm{r}}\right]}
$$

 كرفته ميشود .
ثبيى عبومى
$\mathrm{H}_{\mathrm{Y}(\mathrm{g})}+\mathrm{I}_{(\mathrm{g})} \leftrightarrows \mathrm{IHII}_{(\mathrm{g})}$

$$
K=\frac{\left[\mathrm{HI}^{\top}\right]^{\top}}{\left[\mathrm{II}_{\checkmark}\right]\left[\mathrm{I}_{\checkmark}\right]}
$$

 مدَار بيشتوى

$$
K=\frac{[H I]^{\top}}{\left[H_{\mathrm{r}}\right]\left[I_{\mathrm{r}}\right]}=\psi 0,9
$$

 , HI دا دنتيجهكاهش
 يك اج

به جبه اضافذكردد ، سبستم درحال تادل

$$
\mathrm{H}_{(j, 5)}+\mathrm{I}_{(i, j)} \leftrightarrows+\mathrm{HI}_{(, v)}
$$

(

 زيادِترشده وسرعت تجزيه HI برا بِ جاسرعت تشكيل آن مى كردد. ترهادل مجدداً برقر ار می ك,

> خارج میىشود .
(1) ازثا بت تعادل_تشادل شيميائى نشأن مىدعدكي هر كهش درغلطات ئيدرثن بايستى

 (r) ازا (r)
 جبر ان كند . در نتيجه ازغْلظت HI . HK .
 ملكولهای
 يد |فزوده ميشود .

در تيجه تعيبرات درغلطت وتغيبر ات درتعداد مولها دريك جهت بود . وقتى حجم جعبه
 بايستى بيشї, توضيح داده شو د .
(1) ازثابت تعادل : تعادل شيميائى

شيمى عهومى

$$
\frac{\left[\mathrm{HI}^{r}\right.}{\left[\mathrm{H}_{r}\right]\left[\mathrm{I}_{r}\right]}=\psi \Delta / a
$$

!بر حسب غلظت اجسام تنظيم شده است.براى هر جسم غلظت برابراست بانسبت تعداد
مولماى آن بهحجم جعبه يا

$$
\frac{[H I]^{r}}{\left[H_{r}\right]\left[I_{r}\right]}=\frac{\left(\frac{n_{H I}}{V}\right)^{r}}{\left(\frac{n_{H_{r}}}{V_{r}}\right)\binom{n_{I_{r}}}{V}}=\frac{\left(n_{H_{1}}\right)^{r}}{\left(n_{H_{r}}\right)\left(n_{I_{r}}\right)}=r \Delta / q
$$

 جعبه باءث تغييردر تسداد مولها نهى كردد . براى تعادل بخصو

$$
\underset{(j \mid 5)}{\mathrm{H}_{\zeta}}+\underset{(j \mid 5)}{ } \leftrightarrows \text { rin }
$$

 ازت و آمو نبالك

اتهادل بصورت زير الست

$$
\mathbf{K}=\frac{\left[\mathbf{N H}_{r}\right]^{r}}{\left[\mathbf{N}_{r}\right]\left[\mathbf{H}_{r}\right]^{r}}
$$

اكر بجاى غلظت

$$
\mathbf{K}=\frac{\left(\frac{\left(\mathbf{n}_{\mathrm{NH}_{r}}\right)}{\mathbf{V}}\right)^{r}}{\left(\frac{\mathbf{n}_{\mathrm{N}_{r}}}{\mathbf{V}}\right)\left(\frac{\mathbf{n}_{\mathrm{H}_{r}}}{\mathbf{V}}\right)^{r}}=\frac{\left(\mathbf{n}_{\mathrm{NH}_{r}}\right)^{r}}{\left(\mathbf{n}_{\mathrm{N}_{r}}\right)\left(\mathbf{n}_{\mathrm{H}_{r}}\right)^{r}} V^{r}
$$

دراين تعادل حجم حذفنهى كردد وهر تنيبرى درحجحم باتنييردر تعداد مولها همرا.

است . مثلا اكــرحهحمكـم شود نسبت
بها ند. در تتيحِ تعداد مولهاى آمونِباك بايستى زيادتر كردد و تعداد مولهاى ازت وئيدرثن كمتر كردد . بهر جهت : غلظت

 اين اثرهوقعى خنتى هى كرددكه ازتعداد ملكو لها كاسته شود.درحالت تر كيب يدبائيدرثن

 واكنش بهيك طرف ويا طرف دينكر باعث مصرف شدن اجبار نهـى كردد . البتهجـون درن حهم

 می كند انجام كيرد
كا (r) (r (r)
 هلكولهایی سرعت انجام واكش

 بطرفى كه تعداد ملكولها كهتر است بيشترمى كردد تِون بعلت بيشتر بودن تساد ملاكو لها

$$
\begin{aligned}
& \text { تعداد تصطادمهاهم بيشتر است . } \\
& \text { ت- }
\end{aligned}
$$

(\انثابتتعادل_ثابت تعادلدرهردرجههحر ارتمقد|رمعينى است.وقتى درجهحى ارت

مىشود. . واكنش

$$
\underset{(j 15)}{\mathrm{H}_{r^{\prime}}}+\underset{(\sqrt{5})}{\leftrightarrows} \underset{(j 5)}{ } \leftrightarrows \mathrm{rCal}
$$

 زيادكردد واكنش بطرف هت سريعتر انجام مى كيرد تا اثر آن را را خنتى كند . اين باء باء

YYI

تادل شيهبائى

$$
\underset{(j \mid s)}{\mathrm{H}_{r^{\prime}}}+\underset{(j(j)}{\mathrm{I}_{r}} \underset{(j)^{\prime}}{\leftrightarrows}
$$

ar

$$
\begin{equation*}
\mathrm{COCl}_{r_{(\mathrm{g})}}^{\leftrightarrows} \underset{(\mathrm{g})}{\leftrightarrows}+\underset{(\mathrm{g})}{\mathrm{Cl}_{r^{\prime}}} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\underset{(\mathrm{g})}{\mathrm{P}_{\mathrm{H}^{\prime}}}+9 \mathrm{H}_{(\mathrm{g})} \leftrightarrows \underset{(\mathrm{g})}{\leftrightarrows} \tag{r}
\end{equation*}
$$

$$
\begin{aligned}
& \text { الفـ جمهله انمجرم } \\
& \text { : ب- ابت تعادر } \\
& \text { r- حالت تعادل را برای هريك ازفقل وا وا }
\end{aligned}
$$

(φ) $\quad \varphi \mathrm{NH}_{(\mathrm{g})}+\Delta \mathrm{O}_{(\mathrm{g})} \leftrightarrows \stackrel{\mathrm{NO}}{(\mathrm{g})} \mathrm{H}+\varphi \mathrm{H}_{(\mathrm{g})}$
()

$$
\mathrm{ZnO}_{(\mathrm{s})}+\mathrm{CO} \underset{(\mathrm{~g})}{\leftrightarrows} \leftrightarrows \mathrm{Zn}_{(\mathrm{g})}+\mathrm{CO}_{(\mathrm{g})}
$$

$$
\underset{(\mathrm{s})}{\mathrm{FeO}}+\underset{(\mathrm{g})}{\leftrightarrows} \underset{(\mathrm{s})}{\leftrightarrows}+\mathrm{CO}_{\mathrm{r}_{(\mathrm{g})}}
$$

$$
\begin{equation*}
\underset{(\mathrm{s})}{\mathrm{P}_{\mathrm{r}^{\prime}}}+\Delta \mathrm{O}_{(\mathrm{r})} \leftrightarrows \mathrm{P}_{\mathrm{p}} \mathrm{O}_{\cdot(\mathrm{s})} \tag{v}
\end{equation*}
$$

($\mathrm{\wedge}) \quad \mathrm{rCO}_{\mathrm{r}} \mathrm{HNa} \underset{(\mathrm{s})}{\leftrightarrows} \mathrm{CO}_{\mathrm{r}} \mathrm{Na}_{r_{(\mathrm{s})}}+\mathrm{H}_{r} \mathrm{O}_{(\mathrm{g})}+\mathrm{CO}(\mathrm{g})$

$$
\underset{(\mathrm{g})}{\mathrm{CO}_{r^{\prime}}}+\underset{(\mathrm{g})}{\mathrm{H}_{Y}} \leftrightarrows \underset{(\mathrm{~g})}{\mathrm{CO}}+\underset{(\mathrm{g})}{\mathrm{H}_{r} \mathrm{O}} \Delta \mathrm{H}=+\mathrm{l} \cdot \mathrm{kcal}
$$

بالا رفتن درجه حرارت جه تأ:يرى درغلظتهماىتمادل دارد.برحـب k k اهل لوناتوليه

$$
r \mathrm{O}_{\mathrm{r}} \leftrightarrows r \mathrm{O}_{\mathrm{r}} \quad \Delta \mathrm{H}=-4 \wedge \mathrm{kcal}
$$

$$
\backslash \underset{(g)}{A^{\prime}}+\backslash \underset{(g)}{\leftrightarrows} \backslash \underset{(g)}{C}
$$

زير بحالت تادل نزديك ميشود غلظتهاى C C , B , A جكونه تنيـيرمى كنتد .
 بـ يك مول C وارد بك ج جمبه خاليكّردد .
بـ يك مول A ودو مول B باهم وارد يك ج جمبه خالى المكردند . 4 a
$\mathrm{A} \underset{(\mathrm{g})}{ }+\underset{(\mathrm{g})}{\mathrm{B}}+\underset{(\mathrm{g})}{\mathrm{C}} \leftrightarrows \underset{(\mathrm{g})}{\leftrightarrows} \quad \Delta \mathrm{H}=-\Delta \mathrm{kcal}$

, •/ז مول D درجال تعادل است

$$
\begin{aligned}
& \text { وسيتتيك را دراين تشايل شرع دميه . } \\
& \text { ع- درتادل بين ازن ، }
\end{aligned}
$$

^- درتعادِل .

$$
\mathbf{Y}_{(\mathrm{g})}+r \mathrm{~W}_{(\mathrm{g})}^{\leftrightarrows} \underset{(\mathrm{g})}{\leftrightarrows}
$$

$$
\underset{(\mathrm{g})}{\mathrm{N}_{r^{\prime}}}+\underset{(\mathrm{g})}{\leftrightarrows} \mathrm{H}_{r_{(g)}}^{\leftrightarrows} \quad \Delta \mathrm{NH}=-r r \mathrm{kcal}
$$

الفـ موقتى كه حجم كـسته هودو .

بـ مقدارى گاز He اضافه شود .

حــابكنيدو نشان دهيدكه براي مسادنه . $=\mathrm{IA}+\mathrm{B} \leftrightarrows \mathrm{C}+\mathrm{D}$ d k r| بآ برای سيستم

$r \mathrm{HI} \leftrightarrows \mathrm{H}_{r} \quad \nrightarrow \mathrm{I}_{r}$
 (g)
 (g) (g)

 واكنش مكس حسابكنيد انـي
「 درجببهای وجود دارد

درهريك ازحالات زير نشان دهيد جه تفييرى درغلظت NOr دإده ميشود
الفــ بـالابردن ددجه حرارت .

بـ خارج كردن مفدارى NO ازداخل جمبه

 ثـ حجم جمبه راكوجكتر كردن المرن - 1\&

$$
\mathrm{N}_{(\mathrm{g})}+\mathrm{O}_{r_{(g)}}^{\leftrightarrows} \mathrm{rNO}_{(\mathrm{g})} \quad \Delta \mathrm{H}=+\mu r / r k c a l
$$

جهتى انجام مى 5يرد .

$$
\text { re. . º } \mathrm{C} \text { NO درل مول }
$$

 در كدام يك ازنعادلهاكزير جواب صحيع مـكن استبدت آيد
$\underset{(\mathrm{g})}{\mathrm{H}_{\mathbf{r}^{\prime}}}+\mathrm{Cl}_{\mathbf{r}_{(\mathrm{g})}}^{\leftrightarrows} \underset{(\mathrm{g})}{\mathrm{rClH}}$

$$
\begin{equation*}
\mathrm{YCO}_{(\mathrm{g})}+\underset{(\mathrm{g})}{\leftrightarrows} \mathrm{OCO}_{(\mathrm{g})} \tag{Y}
\end{equation*}
$$

(r)
 ר ר- در

$$
\underset{(\mathrm{g})}{\mathrm{H}_{r^{\prime}}}+\mathrm{CO}_{(\mathrm{g})} \leftrightarrows \mathrm{H}_{r} \mathrm{O}_{(\mathrm{g})}+\underset{(\mathrm{g})}{\mathrm{CO}}
$$

برابر • 1/ است • درجند آزمايش كازها با غلظت هاى اوليه برحسـب هول درليتر

$$
\begin{aligned}
& \text { مخلوط شهداند . غلظت تمادل هريك را حسابكنيد }
\end{aligned}
$$

$$
\begin{aligned}
& \text { بـ • ب/ • مول ازهر كهام . }
\end{aligned}
$$

 و نشان دهيدكه غلظت اوليه HI تأثيرى دراين نسبت ندارد . 19- براى فعل واننغال .

$$
\underset{(\mathrm{g})}{\mathbf{A}}+\underset{(\mathrm{g})}{\mathrm{B}} \leftrightarrows \underset{(\mathrm{~g})}{\leftrightarrows}
$$

 است غلظت AB را حسابكنيد

 مول درليترحـابكنيد .

si
 d فصلدوازدههـ

> | اهعهدا وبازها

 جكَونه مىتوان يك فرضيه محدود اوليه دا جنان بسط داد تا شامل تهام اجسام با خواس مشنرك بشود .
فزضبه آب

ا- اولي فرضيه : درقرن هفدهم رابرت بويل خوام اميدها دا درمحلولشاندر
آب جنين يانكرد :

نداشثه وتنيير دنكهاى ديكرى بجز آبى وقرمز نيز نشان مىدهند . وقتىاسيدها ر خواس خود

 وتتى در باره اسيدها و وازها بحث مانی

 مر بوط مى كردد .

 باجند حال
 اين فرضه

 اسيدى دار ند
 ساخته شده است و در آن اككيزن وجـود (اكسبدها مثل
 (Neutralization) : در آخر قرن نوزدهم اميد ها وبازها
 'را جنينتعريف مىكردند :
اسيد جسمى استك درآب يو نيزهشده ويون يُبدرزن آزاد مىساذد . شثل

$$
\mathrm{ClH} \longrightarrow \mathrm{H}^{+1}+\mathrm{Cl}^{-1}
$$

باذ جسهى استكه درTب يو نيزه شده ويون يُيدراكسبل آذاد ميسازد، مئل
$\mathrm{NaOH} \longrightarrow \mathrm{Na}^{+}+(\mathrm{OH})^{-1}$
با

اكراين دومحلول باهم تر كبب شوند ، معادلل آندا مىتوان بـه صودتهاى زيــ :

$$
\mathrm{ClH}+\mathrm{NaOH} \longrightarrow \mathrm{ClNa}+\mathrm{H}_{\curlyvee} \mathrm{O}
$$

$$
\mathrm{H}^{+1}+\mathrm{Cl}^{-1}+\mathrm{Na}^{+1}+(\mathrm{OH})^{-1} \longrightarrow \mathrm{Na}^{+1}+\mathrm{Cl}^{-1}+\mathrm{H}_{r} \mathrm{O}
$$

 $\mathrm{II}^{+1}+(\mathrm{OH})^{-1} \longrightarrow \mathrm{IIOH}$

ظاهرأ دديونهاى كلوسديمتنيبرى داده نیىثود ، فقط بونهاكىئيدرثن وئيدر اكسيل
درملكول آب بهمنيكر مىيبو ندند .

 آب در آ نها دخالت دارد صادق هستند .
r- خاصيت To

$r \mathrm{ClH}+\mathrm{Al}(\mathrm{OH})_{r} \longrightarrow \mathrm{Cl}_{r} \mathrm{Al}+\mathrm{rHOH}$

ئيدرات آلومينيو در آب نامحلول است . وتىىبا آب مخلوط شود يك مخلوطشيبى

 يك باز عملمى كند .

 بصودت AlO ${ }^{\text {ب }}$ نوشته شود اسيدى بودن آن بهنرمشخص می كردد

$$
\mathrm{AlO}_{r} \mathrm{H}_{r} \longrightarrow \cdot\left(\mathrm{AlO}_{r}\right)^{-r}+r \mathrm{H}^{+1}
$$

يك روث نوشتن معادلهاى براى تر كيب Al(OH) باسود بشرح زير است :

دراين معادله مثل معادل تر كبب بااسيدكلريدريكيونئيدرزن(ازئيدرات آلومينيو م)

Ypa

با يون ئيدراكسيل (ازئيدرات سديم) تر كيب شده وTا تش تشكيل دادهاند ،
 يك اسيدوهم مثل يكُ باز عمل كنند آمفوتر كفتـمى مشود (آمغوتر كلهـه يو نانى است بمعنى

甲ــ سـايرو اكِنشُ هاى اسيدها و باز ها در آب :

$$
\mathrm{r} \mathrm{ClH}+\mathrm{Zn} \longrightarrow \mathrm{Cl}_{r} \mathrm{Zn}+\mathrm{H}_{r}
$$

محلول تساد زيادى ازاسيدهاى يُيدرزندار درآب بافلزات فعال بدين دوثتر. كبب
مى كردند .

بِضى فلزات نعال نيز بابازهائى حجون سود وبناس تر كبب شده يُبدرثن آزاد مى كنند ،

 جند مثال بشرح زيراست :

$$
\begin{aligned}
& \mathrm{SO}_{\substack{ \\
\mathrm{S}_{2}-1}} \mathrm{H}_{4}+\mathrm{BaO} \longrightarrow \mathrm{SO}_{4} \mathrm{Ba}+\mathrm{HOH} \\
& \mathrm{SO}_{r}+\mathrm{Ba}(\underset{j}{\mathrm{OH}})_{r} \longrightarrow \mathrm{SO}_{r} \mathrm{Ba}+\mathrm{HOH} \\
& \mathrm{SO}_{r}+\mathrm{BaO} \longrightarrow \mathrm{SO}_{4} \mathrm{Ba}
\end{aligned}
$$

هيجكام ازواكنش هاى فوق درآب شروعنشده است ومحصول هرسه يكى بودهاست.
علامات سوال زيرنرمول اجسام درممادلات نوق براى اين استكا اين سوال مطرع كردرد
 . بـ تر كيب باكر بناتها وبي.كر بناتها : يكى, اذخوام محلول اسيدهاىنبدردن داردرTب تركبب آنها با بوكربنات ها است ، مثّلا :

$\mathrm{ClH}+\mathrm{CO}_{r} \mathrm{HNa} \longrightarrow \mathrm{CINa}+\mathrm{CO}_{r} \uparrow+\mathrm{HOH}$
 .

تراردادن علاهت سوال براي مطرح كردن اين سوال است : آيا ميتوان كفت كه بى كـر بنات سديم يك بازأست ؟
 است ومثل ئيدر|تسديم اسيد هارا خنتّى مى كند .

$$
\underset{u=-1}{\mathrm{ClH}}+\mathrm{CO}_{r} \mathrm{Na}_{r} \longrightarrow \mathrm{YClNa}+\mathrm{CO}_{r} \uparrow+\mathrm{HOZ}_{2}
$$

آيا معتوان كفت كه كربنات سديم بك بازاست ء فرضيه آب فقط اجسامى را بـاز

 , و(Y) فرضه الككترونى اسيدها وبازما هستند .

 (CD H H_{Δ})

Yol

 اسيدها وبازهااين حقايق درسال بra اa باعث شدند كه لويُيز (Lewis) ، لوئرى (Lowry)

در فرضيه بروتو نى اسيدها وبازها

 اين تعريغها را میىتوان بانو شتن معادله واكنش بين كلوردئيدرزن و يِيرينين در بنزن توجيهكرد :

هروتون از ClH به
 بيو ند اشثتراكى كُواوردينانس بين دواتم تشكيل مىدهد

 را مىتوان بسودت زير نشان داد :

 مائى كه در نصل قبل مطالهس شد . اكربا يونهاى طرف داست معادله شروع شود ، سيانور

ئيدرثن وآب بدست هى آيد :

مس طبق اين فرضيه يون ئيدرو نيو ميك اسيد ويونْ سيانور يكباز است . چحـون يك هو وتون اذيون ئيدرو نيو م بهيون سيا نور منتقل شده است .

$\mathrm{HA} \leftrightarrows \mathrm{H}^{+}+\mathrm{A}^{-1}$

$\mathrm{H}+\mathrm{+}+\mathrm{H}_{r} \mathrm{O} \leftrightarrows\left(\mathrm{H}_{r} \mathrm{O}\right)^{+}$

 يك اسيل ازروى شدت تركيب آن بايك جسم استاندارد انبازهتيرى ميشود . ايــن جس

 نيدرو ليوم و كلر ورمىدمه :

$$
\begin{aligned}
& \text { درمين ذوج هثتق ند. ءبارت است از : }
\end{aligned}
$$

 كم با Tب تر كيب ميشود) :

 بازنوىترى ا-ـت كايون يكلرور

 $\mathrm{H}_{\uparrow} \mathrm{O}^{+}+\mathrm{CN}^{-1}+\mathrm{NH}_{\psi}^{+1}+\mathrm{OH}^{-1} \longrightarrow \mathrm{NH}_{\psi}+1+\mathrm{CN}^{-1}+\mathrm{rHOH}^{-1}$ اكرأيسن معادله بطودزشرده نـوشته شود بصورت معادلـه خنثى كـردن طبق فـرضبه آب . درمى Tي

$$
\mathrm{H}_{\mathrm{r}} \mathrm{O}^{+}+\mathrm{OH}^{-1} \longrightarrow \mathrm{r} \mathrm{HOH}
$$

 يك مثال ديكرخنتى شدن، واكنث بين:بر يدين وكلرورئيدرثن است . ابن واكنش
\qquad

> جدول شهاد. 44

	السيد	باز مشتق	
933333333343	$\because \cdot$	$\cos 2 \cdot-$	
	$\mathrm{SO}_{4} \mathrm{H}_{\mathrm{r}}$	$\leftrightarrows \mathrm{SO}_{4} \mathrm{H}^{-1}+\mathrm{H}^{+1}$	
	ClH	Cl^{-1}	
	$\mathrm{NO}_{\mathrm{r}} \mathrm{H}$	$\mathrm{NO}_{r}{ }^{-1}$	
	$\mathrm{H}_{\mathrm{r}} \mathrm{O}^{+1}$	$\mathrm{H}_{\boldsymbol{r}} \mathrm{O}$	
	$\mathrm{SO}_{4} \mathrm{H}^{-1}$	SO_{4}^{-r}	
	$\mathrm{PO}_{\boldsymbol{f}} \mathrm{H}_{r}$	$\mathrm{PO}_{p} \mathrm{H}_{4}{ }^{-1}$	'93
	$\mathrm{Cr}_{r} \mathrm{H}_{\mathrm{r}} \mathrm{O}_{\mathrm{r}} \mathrm{H}$	$\mathrm{C}_{\mathrm{r}} \mathrm{H}_{\mathrm{r}} \mathrm{O}^{-1}$	3
	$\mathrm{PO}_{\boldsymbol{p}} \mathrm{H}{ }^{-1}$	$\mathrm{PO}_{\curlyvee} \mathrm{H}^{-r}$	-
	SH_{\curlyvee}	SH^{-1}	\$
	CNH	CN^{-1}	
	NH_{ψ}^{+1} $\mathrm{CO}_{r} \mathrm{H}^{-1}$.	$\mathrm{NH}_{r}{ }^{-r}$ $\mathrm{CO}_{r}{ }^{-r}$	
	$\mathrm{H}_{1} \mathrm{O}$	OH^{-1}	
		$\rightleftarrows u_{T}^{-} \underset{\sim}{\infty}, \mathrm{NH}_{r}^{-1}+\mathrm{H}^{+1}$	

 بس هيج نوع حلالى براى خنثى شلى لان

 ئيدرثن بإيريدين نشان داد .

$$
\underset{\substack{-1}}{\mathrm{HOH}}+\underset{j-1}{\mathrm{CN}^{-1}} \longrightarrow \mathrm{OH}^{-1}+\mathrm{CNH}
$$

يون سبا نور يونئبدراكـيل را در تر كيبش با بِوتوناستخلالفكرده است .

 نيز تمام اسيدهارا منظور بدارد د
بازمائى جون يبريدين واستن

$$
\begin{aligned}
& \mathrm{C}_{\Delta} \mathrm{H}_{\substack{0}} \mathrm{~N}:+\underset{\rightarrow+1}{\mathrm{ClH}} \longrightarrow \mathrm{C}_{0} \mathrm{II}_{\Delta} \mathrm{N}: \mathrm{II}^{+1}+\mathrm{Cl}^{-1}
\end{aligned}
$$

مثالل ديكرواكنش بين يون سبانود (ازسيانورسديم) با آب انـ :
 درحـاللماهى ديكرى مئل بنزن رنك

> جدول شماره FY

ر نكث ميرفـكر يستال و يور 	$d x$		
	بنزن	Tب	
زנد	$\begin{aligned} & \mathrm{Br}_{\mathrm{r}} \mathrm{AI} \\ & \mathrm{Cl}_{4} \mathrm{Sn} \end{aligned}$	$\begin{array}{r} \mathrm{NO}_{r} \mathrm{H} \\ \mathrm{ClH}(\mathrm{~g}) \end{array}$	100.01
${ }^{\top}$	$\begin{gathered} \mathrm{C}_{\Delta} \mathrm{II}_{\Delta} N \\ \left(\mathrm{ClI}_{\varphi}\right)_{\gamma} \mathrm{CO} \end{gathered}$	$\begin{gathered} \mathrm{C}_{\Delta} \mathrm{H}_{\Delta} \mathrm{N} \\ \left(\mathrm{CII}_{Y}\right)_{Y} \mathrm{CO} \end{gathered}$	بإ0

Tزهمايشهاى هشابه نشان دادماندكه صدها تر كيب ديكر كهزاقد ئيدرذن هستندهمان اثرى را روىمعرفها وبازهادارندك اسبدهاى يُيدرثن دار دارند . در جدول شماره تسادى اذاين اسيده'ى بدون أبدررن نشان داده شدها ند.اين حعايق تريف تجربى جديدى را برای اسيدها و بازها لازم مىثهارد .

(1) اسبد جسمى است كه بازهائى مثل سود را خنتى مى كند .

اسيدها وبازما براساس همان فرضيه نورد . تعريفهایى جديد لوئبز عبارتنداز:

. باز او ليه جسمى استك (Y) (r) (r) خنثى شدن عبارت ازتشكبل يكّبيو ند اشتراكى كواوردبنانت بين يك اسيداوليه

جر جدول نماره
جند السيدىكه ئيدرزن ندارند

SO_{r}	$\mathrm{Cly}_{\text {r }} / \mathrm{n}$
BFr	$\mathrm{SOH}_{4} \mathrm{Cu}$
$\mathrm{Br}_{\mathrm{r}} \mathrm{Al}$	$\mathrm{Cl}_{\text {r Mg }}$
$\mathrm{Cl}_{\mathrm{r}} \mathrm{Fe}$	CO_{T}
$\mathrm{Cl}_{4} \mathrm{Sn}$	$\mathrm{Cly}_{\mathrm{Y}} \mathrm{Co}$
SOY	$\mathrm{NO}_{\mathrm{r}} \mathrm{Ag}$

ويك باذ اوليه است. مثالى براى اين تعريف بصودت زيِاست :

 اشثراك بكذارد .
ابن تعريفهابا ارزن هستند جون اسيدها وبازها رابر حسب ساختهان ألكنترو نى آ نها

فرضيه الكترو نى اسيدها وبازهاسم شاملفرض
 يون يُددرثن ملكول آب متمل بهآن نوشته نشود) ، تشكيل بيوند اشترأكى كو أوردينانت بين السيد اوليه وبأز اوليه بمورتز بي نشان داده مىشود :

 .

$$
: 0: \quad: 0:
$$

$$
\mathrm{Ba}^{+r},: \ddot{O}:{ }^{-r}+S: \ddot{O}: \rightarrow \mathrm{Ba}^{+r}, \quad \ddot{0}: \underset{.}{ }: \ddot{O}:-r
$$

$$
: 0:
$$

$$
: 0:
$$

 بس جكو نه مثل اسيدها عملمى كنند 9

$$
\begin{aligned}
& \text { شتيمى عمووهـ } \\
& \mathrm{H}^{+1}+: \ddot{\mathrm{O}}: \mathrm{H}^{-1} \rightarrow \mathrm{H}: ~ \mathrm{O}: \mathrm{II} \\
& \text { باز }
\end{aligned}
$$

 يبو ند مى توا ند كسسته شده وبروتون بهيك بالذ ديكرمنتقل كردد . مثلا :

 ديكرى منتقل كردد .
دومثال ديكى خنتى شدن بين اسيدها وبازماى|وليه بشر حزيراست.

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{II}_{r} \\
\mathbf{N}^{+r}
\end{array}+r
\end{aligned}
$$

$$
\begin{aligned}
& \text { N } \\
& \mathbf{H}_{4} \\
& \text { تشكيل يبون كواورديانـانـ }
\end{aligned}
$$

درهر يك ازمثاللهاى بالامحلول حاوكيلكـ باذويك اسيدكهبومبلهيك يوي ندكو اوردينانس
 يك اسيد ثانوى وارد فعلوانفعال شود . وتتى يتٌ اسيد ويا يك باز به آن اضافـ شود ،نعلوـ

 درواكنش بينسيانور ئيدرثن وآب ، طبق فرضيه هروتو نى داريم

دراين واكنش يكباز، آب ، بازديكىى را ، يون سبانود ، ازتر كيش با رِوتون|سنخلاف
 . مىدهيد

 تر كبب شده استن را از تر كيب آن با كلروربر استخلاف مى كند .

Cl
Cl

$$
\begin{equation*}
: \mathrm{O}:: \mathrm{C}\left(\mathrm{CH}_{\mathrm{r}}\right)_{\mathrm{r}} \tag{0}
\end{equation*}
$$

يك وبو ندكو اوردينانس جديد بين رير يدين وكلفوربر بو جود مى آيد . واكنش (צ) يك نوع فعل وانفعال اسنخالافى است كه باهحصول فعل وا نفعال شماره(ب)

Ygl

اسبدها و بازها

> می توا ند انجام كير د. اكر به محلول يون كمبلكس سود اضافه شود ، ئيدرالت مس, داسب مى كــد دد.

$$
\begin{aligned}
& \mathrm{Cu}\left(: \mathrm{NH}_{r}\right)_{\varphi}+r+r: \ddot{\mathrm{O}}: \mathrm{H}^{-1} \longrightarrow \mathrm{Cu}(\mathrm{OH})_{r}+\varphi: \mathrm{NH}_{r} \\
& \text { باز }
\end{aligned}
$$

يون ئيدراكسبل آمو نياك را ازتر كيب آن بايون مس امسيدى استخلاف مى كند.
 ديكر دا تشر يح مى كند . علاوه براين فقط يكى اذدو نوع نعلوا نفعالات جا بجائى، دا نشان

يك اسبد اوليه ، يروتون ، يك اسيد اوليه ديكر را جابجا كرده است . اسيبد جابجا

 اذتر كبش بايون ئيدرا كسبل جابجا مى كند .
 يك مثالا واكنش شماد. (4) است كه در آن يون مس يون ئبدرزن را جا بِجا عى كند .

$$
\begin{equation*}
\mathrm{H}: \underset{\ddot{\mathrm{O}}: \underset{\mu}{\ddot{\circ}}: \underset{\mathrm{H}+\mathrm{Cu}}{ }{ }^{+\mathrm{r}} \rightarrow(\mathrm{Cu}: \ddot{\mathrm{O}}: \mathrm{H})^{+1}+\mathrm{H}^{+1}}{. .} \tag{१}
\end{equation*}
$$

وقتى كاز كربنيك در آب حل مىشود ، بروتون آب را جا بجاهـى كنل و محلول

$$
\underset{\substack{\text { git } \\ \mathrm{CO}_{r}+1}}{\mathrm{HOH}} \underset{j l}{ } \rightarrow \mathrm{II}^{+1}+\left(\mathrm{CO}_{r} \mathrm{I}\right)^{-1}
$$

 هلكولههای COY
 معادله بين آن وملكو ل آب بصو رت زيردرمى آيـ .

بسيارساده ازمعينعهل اسيدى دراينجا موردهطالفه قرازدمى كيرد .

بالارود كاز ئيدرزن متصاعد مى كردد.فعل وانفهال يو نى آن را بصودت زيرمىتوان انوشت:

$$
\mathbf{M g}+\left\ulcorner\mathrm{H}^{+1} \longrightarrow \mathrm{Mg}^{+r}+\mathrm{H}_{r}\right.
$$

يكى ازدلائلى كا واكنش ددددجه حر ادت عادى كند أست صائِن بـودن غلظت يـون
ئيدر今ن در آب خالب امت .

1.

$$
\begin{aligned}
& \text { A } \\
& \text { 1- } 1 \\
& \text { • الـ بوسيله معادله با الستفاده ازفزضيه لوئيز شرح دهيه : } \\
& \text { الفـــ ختّثيندن . }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ب- خواص آهفوترى } \\
& \text { تـ تشكيل يون كمبلكس }
\end{aligned}
$$

> فصل سيز دهم
| ا

بطوريكه درفصل كذشته شرح داده شد ، عـده زيـاد

با باد.يوم :

$$
\mathrm{rBa}+\mathrm{O}_{\mathrm{r}} \longrightarrow \mathrm{rBaO}
$$

راننزمىتوان اكسيد|سيون ناميد.
درواكنش سوم ، اتمهاى باريو م واكسبثن بصو دت عناسر آزاد هـتنن ، باعنصر ديكىى

$$
\begin{aligned}
& \text { كا } \\
& \mathrm{YH}_{\mathrm{r}}+\mathrm{O}_{\mathrm{r}} \rightarrow \mathrm{YH}_{\mathrm{r}} \mathrm{O} \\
& \text { همبنطو رواكثش بين اكسيثن و فلزاتى منل آهن } \\
& \varphi \mathrm{Fe}+\mathrm{rO}_{r} \rightarrow\left\langle\mathrm{Fe}_{\boldsymbol{r}} \mathrm{O}_{r}\right.
\end{aligned}
$$

تر كيب نشاهاند ، وفاقد بارالكتريكى هستند. ولى دراكسيدباديوم يون باريو م ازاتمباديوم

$$
\stackrel{r \mathrm{e}}{\mathrm{lBa}^{\circ}+{\stackrel{\downarrow}{\mathrm{O}_{r}}}^{\circ} \rightarrow \mathrm{rBa}^{+},} \mathrm{O}^{-r}
$$

فلش انتقال دوالكنرون ازيك اتم باريو م را بديك اتم اكسيرُن نشان مىدهد . جون ازهر عنصردواتمو جوددارد يس جهعأ چجاداللكترون منتقل مى كردد. اتم اكسيرن إزاتم بأريوم الكنر ون دريافت ميدارد
وتتى درباره اينكو نه فعلوا نفعالات تحقين مىشد ، اكسيرّن وتر كيبات اكسيرندار

 Ye

 كنتده است چون مثّل اكسبزن ازأتم باد!وم اللكترون دريافتداشته است . يلك اكسيدكننده

فعل وان نعال بين مس ونيثرات نتّه درآب نيزشامل ا نتقال الـكترون است :

$$
\mathrm{Cu}+\mathrm{rAgNO}_{r} \rightarrow\left(\mathrm{NO}_{r}\right)_{r} \mathrm{Cu}+r \mathbf{A g}
$$

نقرهداسب شده ومحلول T Tبى نكك مى كزدد واين نشان مىدهدكهيون مس درآن وجود
دارد . چچون بنبان نبتر ات درهردوطرف بدون تغيير باقىماند ، معادله را بصورت يـوتى بشرح ذيرمىتوان نوشت :

يون نقره الكترون دريافت مى كند ؛ بنابراين يون نترهاكسيدكننده است . اتم هاى
 ميدهند . در نتيجه مس احيا كننده است . سايراتمها يايونهائى كه الـكتر ون ازدستمىيدهند

549 اكسيدانسيون واحيا

وباءث بائين آمدن ظرفيت ساير اتمها مى كردند نيز احياكننده هستند . يلك احياكننده در .

 اكسيداسيونــ احينا مى نامند . الـا

 برمو دئيدرثن واسيد سولفوريك تشخبص تنييرظر فيت آسان نبست .

$$
\mathrm{SO}_{r} \mathrm{H}_{r}+r \mathrm{BrOI} \longrightarrow \mathrm{Br}_{r}+\mathrm{SO}_{r}+r \mathrm{H}_{r} \mathrm{O}
$$

 دريون سو لفات اشتراكى است . الكترونها دراين بيو ندها به اشترالك كذارده شدها ند و از

 هستند ، محاسبه اين اعداد آسان آران است .
دومثال ازمعادلات بالا را میتوان بران بران محاسبه شـهاره اكسيداسبون بكار برد.ملـكول
 .يس شهاره اكسبداسيون ئيدرثن درملكول آب. بايسنى ا+ باشد ، بشرح زير :

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{r}}^{(+1)} \stackrel{(-r)}{(-r)}_{(+1) r-r=\cdot}
\end{aligned}
$$

 * . اين نشان مىدهدكه شماده اكسبداسيون همان الكترووالانس نيست
 شهاره اكسيداسيون HI O O بهترتبب

$$
S^{(x)} O_{r}^{(-r)} H_{r}^{(+1)}
$$

$$
x+(-r) \varphi+(+1) r=.
$$

$$
x-\wedge+r=.
$$

$$
x=+4
$$

وقتى سايرشماره اكسيداسيبونها محاسبه شو ند ، معادله بالابصودت زيرددمى آيد

$$
\begin{array}{r}
\stackrel{1}{(+\gamma)} \mathrm{O}_{\varphi}^{(-r)} \mathrm{H}_{r}^{(+1)}+r \mathrm{Br}{ }^{(-1)} \mathrm{HI}^{(+1)} \longrightarrow \mathrm{Br}_{r}^{(}{ }^{(\cdot)}+\mathrm{S}^{(+\gamma)} \mathrm{O}_{r}^{(-r)}+ \\
r \mathrm{H}_{r}^{(+1)} \mathrm{O}^{(-r)}
\end{array}
$$

اين نشان عىدهدكهاسيدسولفوريك براى تبديل شدنبه انيدريد سولنورو دوالكترون

 الكترو والانس نيست .
 محاسبه شود درهمه آنها برابربا 1+

ه درثيين ثمار. اكـيبالمبون يك عنسردريك يون ، حاسل جمع جبرى ثماردماى اكـيداميون عناسر بايـتى برابربا باديونكردد • مثلا :

$$
\left.\begin{array}{r}
(+\varphi) \\
+\varphi+(-r)_{\mu}^{(-r)}=-r
\end{array}\right)^{-r}
$$

Y4人 اكسيداسيون واحبا

اكسيدامبونهاى عناصرديـكر بدست مى آيد .

$$
\left(\begin{array}{c}
\ddot{0}: \ddot{O}: \\
\cdot . \\
. .
\end{array}\right)^{-r}
$$

رابطه بين فعل وا نفعالات اكسيدا سيون و احيا واسيدو وباز

 احباكننده مستبتها دريافت كند :

ويا آنكه بادريافت يك ذوجالكترون تشكيل ,يو ند كوأورديذانس بدهد :

$$
\underset{(1)^{+1}}{+:} \underset{. .}{\ddot{\mathrm{O}}: \mathrm{H}^{-1}} \longrightarrow \mathrm{H}: \underset{. .}{\ddot{\mathrm{O}}: \mathrm{H}}
$$

در هردو واكتشههاى نوق يرونونالـكتر ونجنبمى كند.بـاين خاصيت الكترو فيلى، جذبالكترون ، مياكو يند .
 ئبدراكسيدها مىتواند مانتد احباكنندهها مستقيماً الكترون اذدست بده، :

$$
\underset{\substack{\mathrm{OOH}-1}}{\stackrel{\mathrm{re}}{\mathrm{~F}_{r}} \rightarrow r \mathrm{~F}-1+1 / r \mathrm{O}_{r}+\mathrm{H}_{r} \mathrm{O}}
$$

يا آ آكه يك ذوج الكترون به اشتُ, اك بكنارد :

$$
\underset{(\ddot{(j)}}{\ddot{\mathrm{O}}: \mathrm{H}^{-1}+\mathrm{II}^{+1} \longrightarrow \mathrm{H}: \ddot{\mathrm{O}}: \mathrm{H}}
$$

الكترودو تى ، دفعالكتن,ون ، مى كويند .

 . يك احباكننده عملمى كند

آب نهتنها درفعل وا نغعالات السيد_باز آمفو ترامت بلكه در واكنثشهای اكيا اكسبداسيون
 از اجسام را نیىتوان اسيد يا باز و اكسيد كننده يا احيا كننده دانست : خوام آ آنها بستكى به محبط, داردكه در آن قراددار ند.بنابراين امطلاحاتالكتروفيلو الكترو دوت

 برخى ديكروا الكثترودوت ناميد .

جدول شهاده 49

اجسام الكتروفيل والكترودوت

اسبددفنارميكند ولي درمقابليك احياكننده توى مئليك|كسيدكننده رفنارمى كندنديك|سيد.

يون نقره بامشتركشدن يلكذوج الاكنرون يون ئيدراكسبد خ_اصيت اسيدى خـود دا نشان
.
(كه بعداً به اكسبد نقَه "تجز يه مى كردد) . و درمعأبل آمو نياكـ و يو ن سيانور نيز يك اسيد
است ويون كهبِلَكس تو ليدعى كنن .

$$
\begin{aligned}
& \mathrm{Ag}^{+}+\mathrm{YNH}_{r} \rightarrow \mathbf{I g}\left(\mathrm{NH}_{r}\right)_{r}+1 \\
& \underset{(\pm-1)}{\operatorname{Ag}^{+1}}+\underset{(j ب)}{-\mathrm{CN}-1} \longrightarrow \mathbf{A g}(\mathbf{C N})_{)^{-1}}
\end{aligned}
$$

درمقابل احيا كننهمها يون نقره يك اسيدنبوده بلاكه اكسيد كنشه است :

$$
\begin{aligned}
& r \mathbf{A g}^{+1}+\mathrm{Cu}^{\circ} \rightarrow \mathrm{rA} \mathrm{~g}^{\circ}+\mathrm{Cu}^{+r} \\
& \text { (.0.as }
\end{aligned}
$$

يون ئيدراكسيد با بهاشتر اك كناردن يك ذوج اللكترون با بر تون وتو ليد آب مثل

$$
\underset{(j)}{\mathbf{N H}_{r}-1}+\underset{(u+-1)}{\mathrm{NH}_{r}+1} \rightarrow r \mathrm{NH}_{r}
$$

ولى درهةابل يد يك احبا كننده اهت :

$$
\begin{aligned}
& 4 \mathrm{NI}_{r}^{-1}+r \mathrm{I}_{r} \rightarrow \varphi \mathrm{I}^{-1}+\uparrow \mathrm{NH}_{r}+\mathbf{N}_{r} \\
& \text { (onas } 1=>1 \text {) }
\end{aligned}
$$

يون سو لفوردرهعابل آب يك بانزاست :

ولى درمقابل اكسيد كنندهها يك احياكننده أست. مثلايون سولفود بسرعت بوسيله يونفريك اكسيده هیشود. .

$$
\begin{aligned}
& \mathrm{S}^{-r+r \mathrm{Fe}^{+r} \longrightarrow \mathrm{~S}^{\circ}+r \mathrm{Fe}^{+r} \mathrm{r}} \\
& \text { (osix }
\end{aligned}
$$

كرجه يونيديك باز بسيار ضعيف است ولى با بعضى اسيدها تر كيب شده يونهانى كم:لكس
iranchembook.ir/edu

$$
\underset{(j)}{\mu \mathrm{I}^{-1}}+\mathrm{Hg}^{+r} \rightarrow \mathrm{HgI}_{r}-r
$$

ازطرف ديكى حون بسهولت ببيد آزاد اكسيده مىشود احياكننده خوبى است :

فصل تهاردهم

> 11

 ناميده مى شنو. ند

 Clll بايستى با آب تر كيب شده وتشكيل بون داده باششند .

$$
\mathrm{ClH}+\mathrm{IH}_{r} \mathrm{O} \longrightarrow \mathrm{H}_{r} \mathrm{O}^{+}+\mathrm{Cl}^{-1}
$$

$$
\mathrm{ClH} \longrightarrow \mathrm{Cl}^{-1}+\mathrm{H}^{+1}
$$

 ذرات ناقل ميكر دد ازيك باطرى يـامنبع مشابهى بدست مى آيد . هرمنطته از فضاكه در آن

نيروىالكتريسبته وجودداشته باشد ميدان الكتريِكى ناميده ميشود . هما نطو ركه قبلا كفته شد ، فلز ات جامل از يون هاى مثبت كه بطود منظلمىدردريائى

 وازجاى خود حر كت نمى كنند مکى آنكه نيروى زيادى بر آنها وارد شود . الذكتر و نهاى

 جنبثى زيادى هستنه . اكى برای اثر مقاومت نبود ، قابليت هدايت الككتر يسيته فلز ات
 درلاتيس داراى حر كت ار تعاشى هستند واين حر كت ارتعانىدرسرعتمهاجرت الكترونها اثر كرده وقابليت هدايت فلز ات را ائين مى آورد. در درجه حرارت هانى زياد، ادتعاث يون ها در لاتيس زياد تر شده , و در نتبجه با بالا رونن درجه حر ارت اذ قابليت هدايت الكتريكى فلزات كاسته مى كردد.

(사 (아)
|نر نيروى الهتر يس:ته بر يون درمهلول

درمحجلو لما ، هKنيزم هدايت الكتر يسيته بعلت اينكه ذرات مثبت نينز آزادى حر كـت

 ها بو وْوع باهِيو ندد.

$$
\mathrm{Cu}+r+r e \longrightarrow \mathrm{Cu}^{\circ}
$$

(كاتد دراين جا بعنوان يك جسم احیبا كننده عمل مى كند.)
 وآن را بصورت كلر آزاد درمى آورد

$$
\mathrm{rCl}^{-1} \longrightarrow \mathrm{Cl}_{r}{ }^{\circ}+\mathrm{re}
$$

(آند دراين جا بعنوان يك جسم اكسيدكننده عمل مى كند.) بدينصودت حر كت الكنرونها درسيم دداثر تجزيه شدن كلرودمس بهكلر و مس أمكان بذير مى كردد .

 خنتى نكهداشتْ سحلول ClNa درد آب را نشان مىدهد . درقسمت (a) ، يك يور يون سديم

(.1. ${ }^{\text {(}}$)

ailss

- 10

$$
\begin{aligned}
& \mathrm{Cl}_{\boldsymbol{Y}} \mathrm{Cun}_{\rightarrow} \mathrm{Cu}+\mathrm{Cl}_{Y} \\
& \text { CrOfCu }
\end{aligned}
$$

 تغيبرى درمقدار بار مثبت و منفى داده نمىشود . هر دو اين اثرات باهم انجام ميعكبرد و

(is (is)
دو رامى كه يونهاى مهاجرمى ;واند هملولى را خشتى نكهدارند

($A V$ V
i
ال2

 هدايت ال!كنب يسينه مى كر دد

 مدار كامل شامل يك هادى الـكترولبتى باشد ، نعل و انفعال شبمبائى در الـكترودها بايسنى

است. بهاين تحول الكتر و ليز كفته ميشود.

يك مدار الـكترولبز درشكل AV نشان داده شدهاست. وقتيكه اين دستكاه كارهيكند، مولدا نرثى الكتر يكى ، باطرى ، يك ميداناللكتر يكى بو جو دمى آورد كها لكترون رادر جهت

 . الكتـودي كه نز

نالمجبلدند
 Cl-1
 يون Na+1 دا

$$
\mathrm{Na}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Na}
$$

$$
\mathrm{rCl}^{-1} \rightarrow \mathrm{Cl}_{\mathrm{r}(\mathrm{~g})}+\mathrm{re}^{-}
$$

دركاتد براء تبديل '
 كاعل الكتروليزدا نوشت. براى جلو كيرى ازجهعشدن الـكترونها ، همان تعداد الكثنرونى

كهدر كاتد مصرف هعشود در آ آه بايستى توليد كر دد . بر إى هسـاوى كردن نعداد الكترون ها
 ازهم هذف شو ند . بر اى الكتروليز كلرورسديم مذاب :

 فوال درهر دوالكنترود دانست .

$$
\begin{equation*}
\mathrm{Na}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{Na}^{(s)} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
r \mathrm{H}_{r} \mathrm{O}+\mathrm{re}^{-} \longrightarrow \mathrm{ll}_{r(\mathrm{~g})}+\mathrm{rOHI}^{-r} \tag{r}
\end{equation*}
$$

$$
\mathrm{rHI}+\mathrm{re} \mathrm{e}^{-} \longrightarrow \mathrm{H}_{\mathrm{r}(\mathrm{~g})}
$$

 .

$$
\begin{aligned}
& \mathrm{rNa}^{+}+{ }^{+} \mathrm{re}^{-} \longrightarrow \mathrm{rNa} \text { دi't }
\end{aligned}
$$

$$
\begin{aligned}
& r \mathrm{Na}^{+}+\mathrm{rCl}^{-1} \longrightarrow \mathrm{rNa}+\mathrm{Cl}_{\mathrm{r}(\mathrm{~g})} \quad \text { le } \mathrm{K}_{\mathrm{a}} \text {) sher }
\end{aligned}
$$

 آ آند مئدوند .
در آند اكسيداسيون بايستى انجام كير د ـ دوفل وانفعال امKنابذير است .

$$
\begin{align*}
& \mathrm{rCl}-\mathrm{Cl} \mathrm{Cl}_{\mathrm{r}(\mathrm{~g})}+\mathrm{re}^{--} \\
& \mathrm{rH}_{\mathrm{r}} \mathrm{O} \longrightarrow \mathrm{O}_{\mathrm{r}(\mathrm{~g})}+r \mathrm{H}^{+1}+\mathrm{re}^{-} \tag{0}
\end{align*}
$$

 يون Na+ ان اطراف الف آن دورمىكرددر .

درآ

$$
\mathrm{r}\left(\mathrm{II}^{--} \rightarrow \mathrm{Cl}_{\mathrm{r}(\mathrm{~g})}+\mathrm{re}^{--}\right.
$$

 ازمحخلول

 هاى الكتوودها را بصورتز بر مىتوانوان نوشت :

$$
\begin{aligned}
& \quad \mathrm{re}^{-}+\mathrm{rH}_{\mathrm{r}} \mathrm{O} \longrightarrow \mathrm{H}_{\mathrm{r}(\mathrm{~g})}+\mathrm{rOH}^{-1}
\end{aligned}
$$

براى آنكه تعداد هیثود و نتيجه كلى بمورت زي

يونهاى ${ }^{\text {H+1 }}$ بسازتشكبل باهم تر كبب شده خنتى ميكردند .

$$
\begin{aligned}
& 4 \mathrm{H}^{+}+4 \mathrm{OH}^{-1} \longrightarrow \psi \mathrm{H}_{4} \mathrm{O} \\
& \text {, باحذف كردن مهَّار آب ازدوطرف معادله كلى نتيجه زير بدست مى آيد . }
\end{aligned}
$$

 كاتد مس آزادهى كردد .

$$
\begin{aligned}
& \text { ندر }
\end{aligned}
$$

برای آ
شده است

rır

 الـكتروشبمى

ثـكل
مهلول ClyAl. , اكشنـدر كاتد
A Al ${ }^{+r}+r e \leftarrow A l^{\circ}$
اتوكرم Al

-

$$
\cdot / \cdots 1 \cdot=\frac{\cdot 1 \cdot 99 \Delta \times 1 \cdots}{990 \cdots}=\text { s, }
$$

$$
\mathrm{re}^{-}+\mathrm{rH}_{Y} \mathrm{O} \rightarrow \mathrm{H}_{r(\mathrm{~g})}+\mathrm{rOH}-1 \quad \text { در كاتد داديم }
$$

يس دو فارادى الكتريسيته دو مول OH- آزاد ميسازد
مول فارادى

$\cdot 1 \cdot 1 \quad x$

$$
\mathbf{x}=\frac{r \times \cdot / \cdots 1}{r}=\cdot / \cdots 1 \quad \mathrm{OH}^{-1} .
$$

.ورلار اـت .
(
الف ــ درجه .!و نيز"اسيوون (تفكيلك) : اولين كسيكـه دد باده يو نيـزاسيون هحلول های الكتروليت فرضيهاى يبشنهاد نوود كه مورد ڤبول قراد كرفت آدنيوس سوئدى

$$
\begin{aligned}
& r \cdot \cdots-8 \cdot \times \Delta / \cdot \times 1 / \cdot=4 \text {. } \\
& \text { •رأراد } \\
& \mathrm{Cll}^{-1} \rightarrow \mathrm{Cl}_{\text {r(g) }}+\mathrm{He}^{-} \\
& \text {: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { •品 } \\
& \text {. } \\
& x=\frac{r \times Y!X \cdot / \cdot r!1}{r}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{ClVa} \leftrightarrows \mathrm{Na}^{+}+\mathrm{Cl}^{-1} \\
& \mathrm{CIHI} \leftrightarrows \mathrm{H}+{ }^{+}+\mathrm{Cl}^{-1} \\
& \mathrm{C}_{r} \mathrm{H}_{r} \mathrm{O}_{\mathrm{r}} \mathrm{H} \leftrightarrows \mathrm{H}+++\mathrm{C}_{r} \mathrm{H}_{r} \mathrm{O}_{r^{-1}}^{\leftrightarrows} \\
& \mathrm{NH}_{r} \mathrm{OHI} \leftrightarrows \mathrm{NH}_{\varphi}^{+1}+\mathrm{OH}^{-1}
\end{aligned}
$$

او جزئى از ملكول هائى اكا كه به يون ها تفكيك شده بود دند درجه يو نينز أسيون ، α ، ناميد. $\alpha=$ =جز

 درجه يو نيز إسبون بيثتر مى كردد.

$$
\mathrm{Cl}^{-1}, \mathrm{Na}^{+1} \longrightarrow \mathrm{Cl}^{-1}+\mathrm{Na}^{+1}
$$

همجنين امروزه يونيزه شدن بيشتر اسبد ها وبازهارا بعلت تر كيب آنها باآب مىداتند .

$$
\begin{aligned}
& \mathrm{C}_{\curlyvee} \mathrm{H}_{r} \mathrm{O}_{\curlyvee} \mathrm{H}+\mathrm{H}_{r} \mathrm{O} \rightleftarrows \mathrm{H}_{r} \mathrm{O}^{+\prime}+\mathrm{C}_{r_{r}} \mathrm{H}_{r} \mathrm{O}_{r^{--}} \\
& \mathrm{NH}_{r}+\mathrm{H}_{r} \mathrm{O} \rightleftarrows \mathrm{NH}_{+}+{ }^{+}+\mathrm{OH}^{-1} \\
& \text { ولى هيحكدام اينها تأثيرى دراصول فرضيه آرنيو نى ندارد . }
\end{aligned}
$$

 محلول غبر الكترولبت باهممان غلظت وجود دارد . دريو نيز اسيون اسيد اسمتيك داريم

$$
\mathrm{C}_{r} \mathrm{H}_{r} \mathrm{O}_{r} \mathrm{H}--\mathrm{H}_{r} \mathrm{O} \leftrightarrows \mathrm{H}_{r} \mathrm{O}^{+}+\mathrm{C}_{r} \mathrm{H}_{r} \mathrm{O}_{r}{ }^{-1}
$$

 $\mathrm{H}_{r} \mathrm{O}+1 \quad \mathrm{~m} \alpha$
$\mathrm{C}_{\mathrm{r}} \mathrm{H}_{\mathrm{r}} \mathrm{O}_{\mathrm{r}}=1 \quad \mathrm{~m} \alpha$
s
مجهوع غلظت تمام ذرات درمحلول حاصل جهع غلظت سه ذذه فوق امـت دِا

$$
\mathrm{m} \alpha+\mathrm{m} \alpha+\mathrm{m}(1-\alpha)=\mathrm{m}(1+\alpha)
$$

اكر جسم يو نيز نشده باشد ، غاظت ذرات برابربا m هيشو د و نزول نمَطه انجماد ازرابِله زير خـساب میشود .

$$
\Delta_{0} T=1 / 4 \wedge \times m
$$

 زنول زفطه انجماد مشناسب باغلظتذرات در هجلول است ، براى محلول الـكتروليت ميشود

$$
\Delta \mathrm{T}=1 / \wedge 4 \times \mathrm{m}(1+\alpha)
$$

كه در آن UT نز ول ;مطه انجماد اندازْ كرفته شده هحلولاست. بطور كلى براى هر محلول معادله بالارا بصورت زير ميتوان نوشت :

$$
\Delta \mathrm{T}=\mathrm{F} \times \mathrm{m}(1+\alpha)
$$

كه در آن F ثابت نزول زقطه انجهاد براى هر حالال است .

اعداد درمعادله بالا داريم

$$
\begin{aligned}
& \cdot / \cdot 194= 1 / \wedge 9 \times \cdot / \cdot 1(1+\alpha) \\
& \frac{\cdot 1 \cdot 10.4}{\cdot 1 \cdot 1 \wedge 9}=1+\alpha \\
& \alpha=\cdot, \cdot 4 r
\end{aligned}
$$

ميشود. درغلظت هاى ديكر در صد يو نيزاسيون اسيد فرق ميكند . جدول شماره . ه در صد يو نِزاسيون اسيد استيك را درغلظلتهاى مختلف نشان ميدهد.
rav

جدول شه.	
m	$a \times 1 \cdots$
\cdot ハ	1/r
. 1.1	$4 / r$
$\cdot / \cdot \cdot 1$	ir/s

 ازهمجد| شدر| اند

 انجهاد مهحلول مو ثر نيــت .

 الست (جدول شـاره 101 0)

جدول شـدـاره 01
 اتُرغلظت محلول در نزول نقطه انجماد

" .

 انحام كار استفاده ميشود.
 حاصل از نعل وا نععال بين كر بن واكسيثن صرف توليد بخار ميى كر دد.

$$
\mathrm{C}+\mathrm{O}_{T} \longrightarrow \mathrm{CO}_{r} \quad \Delta \mathrm{H}=-9 \varphi \cdot \psi \cdot \mathrm{Cal}
$$

 بصورت بو نى نوشته شود انتقال الكتر ون واضحتى بنظل مى آيد.

اكى انتقال اين الكترون عام مستقيماً بين يون هس ، در هتلول سولفات هس ، و فلز دوى

 Y $0^{\circ} \mathrm{C}$

 آذاد شده را مى توان بان باكراتبديل كـرد.

$$
\mathbf{W}=\mathbf{n F E}
$$

كه درآن n تعداد والانس كرم های اجسام تر كيب شو نده است F F ثابت فارادیاست و
 الكنرونهایى منتقلنده كد درمطادله موزون شـهـ نشان داد. ند. است ميباند .

A:
انتقال الكترون بد>ن غير هجتقيم

19 .
| 1 ;تقال الهترون برون هستغيم

 براى يك واكنش اكسيداسيون ـ احِبا باغلظت يونها فرق مى كند. دا بطه بين غلظت يونها ,

$$
\mathrm{E}=\mathrm{E}^{\circ}-\frac{\cdot / \cdot \Delta \mathrm{Q}}{\mathrm{n}} \log \mathrm{Q}
$$

 (n همان تعداد والانس كرم مها است. Q نيزما نند k ثابت تعادل است.

 برا بر بايت ا- اهت

$$
\mathrm{Zn}+\mathrm{Cu}_{(\cdot / \cdot \mathrm{a})}^{+r} \longrightarrow \mathrm{Zn}_{(\cdot / r \mathbf{a})}^{+r}+\mathrm{Cu}
$$

بمده , ا با ياستى حـاب ك,

$$
\mathbf{Q}=\frac{\mathbf{a} \mathbf{Z} \mathbf{n}^{+r}}{\mathbf{a} \mathbf{C u}+r}=-\frac{\cdot \mu}{\cdot / \cdot r}=1
$$

$$
\begin{aligned}
& E=E^{\circ}-\frac{\cdot 1 \cdot \Delta q}{n} \log Q
\end{aligned}
$$

$$
\begin{aligned}
& E=1 / 1 \cdots-\frac{1 \cdot \Delta 9}{Y} \log 1 .
\end{aligned}
$$

$$
\begin{aligned}
& =1 / \cdot \gamma \cdot ت \text {, } \\
& W=n \mathrm{FE} \quad \text { reliz, } \\
& =Y X Y Y \cdot Y \cdot X I / \cdot Y \cdot ى \\
& =\text { farv. }
\end{aligned}
$$

 ولى عهلا مهكن نيست بتو ان ازهر فعل و|نفعالى استفاده نمود . علت آن بيداككردن الككترود

يك فل وان نعال آنى اكـيديداسيون واحيا است . ولى نه اذكارو و نهازئيدرزن ميتوان بعنوان

بايستى مر بوط به تفاوت غلظت يون نقره در دو محلول مختلق دوظرف باشد. (اكرهردو داراى غلظت برابر بودند ا-ختا(ف سطح صفر مىشد.) بنابر اين درمعادله :

$$
E=E^{\circ}-\frac{\cdot / \cdot \Delta q}{n} \log Q
$$

(E_{4}° بايك باشد . معدار Q Qا ازمعادلה فعل واننفعال اكسيداميون واحبا كه باعث بو جود آمدن اختلاف سطحیيل مى كرددتعيينمىشود . وقتى دومحلول با هم .صصورت مناسبى در تماس باشنل ، محلول غليظ رقيق ترمىFحـردد. رقيق شدن نيتراتنقرهدربيل شكل بصودت زيرنوشت :

$$
\mathrm{NO}_{\mathrm{r}} \mathrm{Ag}(\backslash \mathrm{a}) \longrightarrow \mathrm{NO}_{\mathrm{r}} \mathrm{Ag}(\cdot / \cdot \backslash \mathbf{a})
$$

نيتر ات نقر ه غليظ بد نِتر اتنقره دقبق تبديل كشته است: محلول غغلظ تررتيق شده و
 كردد. فعل وانفعال دوالكنترود بصورت زير انجام ميكير ند :

$$
\mathbf{A g}^{+1}(1 \mathbf{a})+1 \mathbf{e} \longrightarrow \mathbf{A g}
$$

$$
\mathrm{Ag} \longrightarrow \mathrm{Ag}^{+1}(\cdot, \cdots 1 \mathbf{a})+1 \mathrm{re}
$$

$$
\mathbf{A g}{ }^{+1}(1 \mathbf{a}) \longrightarrow \mathbf{A g}{ }^{+1}(\cdot / \cdots \backslash \mathbf{a})
$$

اختلان سطع يِل برابر|ست با :

> 4: 4 :
> يبل با الـكترودهاى 2lاتينى

$$
\begin{aligned}
\mathrm{E} & =\cdot-1 \cdot \Delta 9 \log \cdot 1 \\
& =-\cdot 1 \cdot \Delta 9(-4) \\
& =\cdot / \text { VVY } \quad \mathrm{J},
\end{aligned}
$$

اين نتايج حساب شده بإقداراندازه كر. نتشُده و نشان داده درشعل مطا بقتمى كند •

ar
بيل غلظت الهترود

نك
بيل غلظت هحلول

اين كو نه هِلها راكه دربال شرح آن داده شد هِل غلظت محلول مى نامند، پحوت
 كفتهمیشود ؛ چحون تفاوتغلظل دردو الكترود است.
درشكل به الكترودها محلول كادمبوم دوجيو ه است با دو غلظت مختلف . واكنش آنى بصورت زيراست :

$$
\operatorname{Cd}(\backslash \mathbf{a}) \rightarrow \mathrm{Cd}(\cdot, \backslash \mathbf{a})
$$

E برای ایین نوع هيلها صفر است ، اختلان سطحى است كه وتتى غلظت كادميوم
درهردوالكکرود برا بر باشد . اخختلاف سطع ثيل بشرح ذير محاسبه مى شود .

$$
E=\cdot-\frac{\cdot / \cdot \Delta q}{r} \log \frac{\cdot / \cdot 1}{1}
$$

$$
\begin{aligned}
& =-\frac{1 \cdot \Delta q}{r}(-r) \\
& -\% \cdot \Delta q \quad-1
\end{aligned}
$$

Ye
بهصورت دو نيم معاددله كددردوالكَتر ود انجام ميكيرد نوشت
(1)

$$
\mathrm{Zn} \rightarrow \mathrm{Zn}^{+}+(\backslash \mathbf{a})+r e \quad ؟==
$$

af if

Үas

 فعل و انفعال در دو الكترودحاصل شدهالست. چچون اختلاذ سطحنيم معادل الكترودئيدرثن صفراست بس اختلاف سطح نيم معادل آند ياالكندود روى كه نتبه فلل وا نفعال

$$
\begin{aligned}
& \mathbf{Z n} \rightarrow \mathbf{Z} \mathbf{n}^{+r}+r \mathbf{e}
\end{aligned}
$$

اكر در يبلى معادل الكنرود عكس معادله بالا باشد ، ينى اينكه بهورت زير باشد

$$
\begin{aligned}
& \mathrm{Zn}^{+r}+\mathrm{re} \longrightarrow \mathrm{Zn}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Zn}^{+r}+\mathrm{re} \longrightarrow \mathrm{Zn} \quad \mathrm{E}^{\circ}=-\cdot \text {, VY }
\end{aligned}
$$

كفته مبشود .

 كه نشان ميدهدك توايل ئيدرثن به از دست دادن الكترون بيشنر اذ مس است ـ در تتجهي بتانسيل الكترود مس نسبت بائيدر رُنكه ازدوى نيمعادله الكترود زيرمحاسبه مبشود منفى
مى كردد .

$$
\mathrm{Cu} \rightarrow \mathrm{Cu}^{+r}+\mathrm{re} \quad \mathrm{E}^{\circ}=-\cdot, \mu \mu \quad \text { ول }
$$

اكر بهیين طريق عـل شود وبتا نسبل الكنتودد ساير الكترودها تميين كردد، بتا نسيل
الكترودها بصورت جدول شماره

9s نكا

 جدول قرار کرفته است ازهمه بيشتـاست.
درجدول بندى كردن الكتر ودها از دوسيستم هختلف استفاده ميشود . بیضى اذشيمى

 ازجدول
 روى وهس تشكمل شُده است بصورت زيرمحاسبه كرد. معادله

$$
\mathrm{Zn}_{n}+\mathrm{Cu}^{\downarrow+r} \quad \rightarrow \mathrm{Zn}^{+r}+\mathrm{Cu}
$$

دا ميتوان به دو نيم معادله تقسيمكرد. هر كدام داراى بتانسيل الكَترود است كه در جدول نوشته شده است .

جدولشماره

$2 \mathrm{H}_{2}\left(\right.$ () $=\mathrm{H}_{\mathrm{g}}++{ }^{+}+\mathrm{H}^{2} \quad \mathrm{~m}$

(1)

$$
\begin{align*}
\mathrm{Zn} & \longrightarrow \mathrm{Zn}^{+r}+r \mathrm{c} & +\cdot / r \varphi \\
r \mathrm{c}+\mathrm{Cu}^{+r} & \longrightarrow \mathrm{Cu} & +\cdot r r q \tag{Y}
\end{align*}
$$

از جم

 ياخير . فقط واكششهای آنى أنز

 مثلا ب : با

$$
\begin{array}{cc}
\mathrm{Cu}^{+r}+r \mathrm{e} \longrightarrow \mathrm{Cu} & +\cdot, r r q \\
r \mathbf{A g} \longrightarrow r \mathrm{Ag}^{+}+r e-1, r 9 q \\
\mathrm{Cu}+r+r \mathbf{A g} \longrightarrow \mathrm{Cu}+r \mathrm{Ag}^{+1}-\cdot / 44 .
\end{array}
$$

$$
\mathrm{Q}=\frac{\left(\mathbf{a A g}{ }^{+}\right)^{r}}{\mathrm{aCu}{ }^{r}}=\frac{(\cdot / \cdot r)^{r}}{\cdot / \cdot)^{r}}
$$

$$
\mathrm{E}=\mathrm{E}^{\circ}-!\cdot \Delta \mathrm{Q} \operatorname{rag}^{(\cdot / \cdot r)^{r}} \frac{(/ \cdot r}{r}
$$

$$
=-\cdot / 4 \cdot-\frac{\cdot / \cdot \Delta q}{r} \log \frac{(\cdot 1 \cdot r)^{r}}{\cdot / \cdot r}
$$

$$
\text { ولت }=-\cdot / \kappa \cdot 1
$$

هثال

$$
\mathrm{rI}^{-1}+\mathrm{Br}_{r} \rightarrow \mathrm{I}_{r}+r \mathrm{Br}^{-1}
$$

$$
r \mathrm{I}^{-1} \longrightarrow \mathrm{I}_{r}+r e \quad-\cdot / \Delta \psi
$$

$$
\xrightarrow[Y \mathrm{I}^{-1}+\mathrm{Br}_{r} \rightarrow \mathrm{Br}_{r} \rightarrow \mathrm{BBr}^{-1}+\mathrm{YBr}^{-1}]{\stackrel{1}{2}}+\frac{+1,9}{+. / \Delta \Delta}
$$

$$
\begin{array}{cc}
\mathrm{rBr}^{-1} \longrightarrow \mathrm{Br}_{r}+\mathrm{Ye} & -1 / .9 \\
\mathrm{re}^{-}+\mathrm{I}_{r} \longrightarrow \mathrm{II}^{-1} & +. / \Delta \varphi \\
\hline \mathrm{I}_{r}+\mathrm{YBr}^{-1} \longrightarrow Y \mathrm{Br}+\mathrm{YI}^{-1} & -. / \Delta 0
\end{array}
$$

 يبل دانبل يا يبل كالوا انيك ناعيّه ميثود .

 اورليه رإ نشان ميدهد) .

ازدروى معادله زير مشاهده ميشود كه مداكثي اخختلافسطح بيل دد موقى بسستميايد

$$
\begin{aligned}
& \mathrm{II}^{-1} \rightarrow \mathrm{I}_{\mathrm{r}}+\mathrm{re}^{-} \\
& \text {-./Dr } \\
& r \mathrm{Br}^{-1} \longrightarrow \mathrm{Br}+\mathrm{re}^{-} \\
& -1 / .9
\end{aligned}
$$

$$
\begin{aligned}
& \text { : }
\end{aligned}
$$

كه غلفت سو لفات مس حداكثروغلظت سو لفات ووى حداقل باشد. مثالا اكرنعاليت

$$
\begin{aligned}
& \mathrm{E}=1 / 1 \cdots-\mathrm{r}^{\mathrm{raq}} \frac{\log \cdot \frac{1}{1}}{} \\
& =\cdot N \cdot-r^{\circ q}(-r) \\
& =1 / 1 \cdots+\cdots \cdot 09=1 / 109=3,
\end{aligned}
$$

الكتروشيمى
re

$$
\mathrm{Zn}+r \mathrm{NH}_{r}^{+1} \rightarrow \mathrm{Zn}^{+r}+r \mathrm{NHI}_{r}+\mathrm{H}_{r}
$$

 وئيدرثن با بى اكسيدهنُنز تر كيب شده آب تو ليد مى كند .

$$
\mathrm{Zn}^{+r}+\psi \mathrm{NH}_{r} \longrightarrow \mathrm{Zn}\left(\mathrm{NH}_{r}\right)_{r}^{+r}
$$

$$
+\mathrm{MnO}_{r}+\mathrm{II}_{r} \longrightarrow \mathrm{Mn}_{r} \mathrm{O}_{r}+\mathrm{HI}_{r} \mathrm{O}
$$

$$
\text { اختالف سطح يك باطرى خشاك نو درحدود } 1 \text { / } 1 \text { ولت است. }
$$

an .
بياندانيل

*
!
دد باطرى سربى اين فعل وا نفعال ا نجام ميكِرد :
re
$\mathrm{Pb}+\mathrm{PbO}_{r}+r \mathrm{SO}_{\varphi} \mathrm{H}_{r} \rightarrow \mathrm{SO}_{\varphi} \mathrm{Pb}+\uparrow \mathrm{H}_{r} \mathrm{O}$

 در باطرى معكوس كردد، معادله بصورت عكس انجام ميكيرد.

هنكام شارزكيدن باطرى ، نبم مسادله الكترود منفى بصودت زير است . $\mathrm{SO}_{\mu} \mathrm{Pb}+\mathrm{re} \rightarrow \mathrm{SO}_{\mu}^{-r}+\mathrm{Pb}$

و نيم معادله |llكترود مثبت بصورت زير است.

$$
\mathrm{SO}_{4} \mathrm{~Pb}+-\mathrm{rI}_{r} \mathrm{O} \rightarrow \mathrm{Ph}_{r}+\mathrm{SO}_{\psi}^{-r}+r \mathrm{H}^{+1}+\mathrm{re}
$$

 + +

 بتانسيل الكترودها اختالاف سطح باطرى را مسن مى كند

$$
\begin{aligned}
& \mathrm{Pb}+\mathrm{SO}_{4}^{-r} \longrightarrow \mathrm{SO}_{+} \mathrm{Pl}+\mathrm{re}+\cdot / \mathrm{r} \Delta \text {. } \\
& \mathrm{P}_{5} \mathrm{O}_{r}+\mathrm{SO}_{4}^{-r}+4 \mathrm{~S}^{+1}+\mathrm{re} \longrightarrow \mathrm{SO}_{4} \mathrm{~Pb}+\mathrm{H}_{4} \mathrm{O}+1,910
\end{aligned}
$$

 اطلاع حاصل كرد .
دونوع باطرى ديك, باطرى اديسون : كه درآنمهادله زير انجام ميكير د، وباطرى

$$
\mathrm{Fe}+\mathrm{NiO}_{r}+r \mathrm{H}_{r} \mathrm{O} \rightarrow \mathrm{Fe}(\mathrm{OH})_{r}+\mathrm{Ni}(\mathrm{OH})_{r}
$$

 الصولا ازسيليسم وبريا بري

 اكسيثن وئيدرثن إس از نشت كردن از الكثنر ود ها بوسيله الكنـو وليت با همرتر كبب ثده آب تولِيد مى كنند .

در: ثانيه دارد. جضود يك لايه ئيدرثن روى اللكترود كر بن مانع از آزاد شدن يونهاى

 آ

 مؤِ نُ است

 هس إسl و جود زهاشت يدغنى

$$
\mathrm{Zn}+r \mathrm{H}^{+1} \longrightarrow \mathrm{Zn}^{+r}+\mathrm{H}_{r}
$$

 آزإد شدن يون هاى يُيدرثن درسطح روى كم كردد . ولى وقتى در روى نا نا دس وجود داشته باشه ئيدرثن درسطع هس كه يون مثبتى از آن وادد محلول نمى كرد
 باهمبن نوع استدلال مى توان به تفاوت حلبى (ورتدآهن تلع اندود) وآهن سفيد يا كالوانيزه (ورقهآهن دوى اندود) يكىبرد. اكرورقه حلبى خر اث بردادد (شكله • ا ب) آهن بس, بعت زنك میزند جون آهن زودتو از قلع اكسيده ميكودد . معادله اين فعل و انفعال بصودت زير إــت .

$$
\mathrm{Fe}+\mathrm{rH}^{+1} \rightarrow \mathrm{Fe}^{+r}+\mathrm{H}_{r}
$$

ولى وقتى ورقه آهن سفيد خراثى بردارد (شكل • • اث) روى زودتر از آهن الكثرون از دست مىدهد وهعادلى آن بیصورت زبر است.

$$
\mathrm{Zn}+\mathrm{rH} \mathrm{H}^{+1} \longrightarrow \mathrm{Zn}^{+r}+\mathrm{H}_{r}
$$

-

ش
-

شك

اين باعث مبشود تاوتّي روى وجود داشته باشد آهن ز;گك ز; ند.

 كنها ميشود.

 آزاد مى كردد. درمحلمول سولفات سديم هيجكدام از يون هایى نهك آزاد نهى كـر دند ودر
 با استهاده ازجدول
 تمايل به ازدست دادن الـكنرون تنظيم شده|>د .

 كرد كه هميشه يُيدرثن قبل از يون هاى بالاى آن در جدول آزاد هی كردد . اين جــدورل

برحسب فعاليت a برای تهام يون ها تنظيم شهه است . در محلول نهك هالى فوق فـاليت
 هاى فلزات فعال مثل سديم ، يتاسبم وكلسبم آزاد مى كردد.

شـكل ...
SO $)_{4} \mathrm{Cu}$.

*)

 در آب غلطت يون يُيدراكسيد خيلى كم است يون كلر آذاد مى كردد . ازطرف ديكى آزاد
 به الكتر ون خيلى ببشі, از يون ئيدر اكسبي است. درآب ترتيب آزاد شدن يونها بصورت زير است .

YY آـ آب فلز كارى . درتصفيد الكترولبتى مس ، عسى راكـه بإيستى خالص كردد
 آن دواللكترود ، يكى مس ناخالص، ويكى مس خالص ، قراد داده شده باشد (شكلى • (1) جر يانالْكتريسيته ازيك موله عيود داده شود،مس ناخالصازالكنرود مئبتحل شدء ودرتطب منیى بصودت مس خالص داسب مى كردد .
ازججدول Y هس خالص تهيهكرد. اختالف سطح مولد را روى هrر • تنظيم هى كنند . این مقدار كمى بيشتر از هaدارى است كه مس وا از قطب مثبت وارد هحلول ميكند و در قطب منفى داسب

 نمى كردد. يون هاى روى دزهحاول باقى مىماند . ازطرف ديك, تمايل نقره به الكترون بيشتر ازمساست. در نتيجه نَره وارد هسلول نشده ووقنى مس هاى اطـى اف آن در محاول

 ;ا اكرمäدارى زقر• وارد مسلول شود بصو دتكلرود نقره راسب شود.

 يك را بادرجه حر انت شر ح دهيد . ז- يك جر يان الكترولِّزرادسمكرد. ومسيرحر كت ذرات بارداررا درTن نشاندهيد . جرا درالككترودها

r

 4

$$
\mathrm{Zn} \mathrm{~m}_{(\mathrm{s})}+\mathrm{Cl}_{\mathrm{r}}^{(\mathrm{s})}, ~ \rightarrow \mathrm{Zu}^{+\mathrm{r}}+\mathrm{rCl}^{--}
$$

 .
:Y
1 1
a
ال- $\mathrm{Br}_{r} \mathrm{Cu}$
CINa ب-
$\left(\mathrm{NO}_{\mathrm{r}}\right)_{\mathrm{r}} \mathrm{Cu}-$
$\mathrm{NO}_{\mathrm{r}} \mathrm{K}$-ت
和
مسا ئلز ير را حـر كنيه

الفـ • •
بـ

Tآزاد


```
r.q
الک<نروشيى
```


(1)

$$
\mathbf{M} \mathbf{g}_{(s)}+\mathrm{Cl}_{r(\mathrm{~g})} \rightarrow \mathbf{M} \mathbf{g}^{+r}+\mathrm{rCl}^{-1}
$$

(Y)

$$
\mathrm{Hg}^{+r}+\mathrm{Fe}_{(\mathrm{s})} \rightarrow \mathrm{Fc}^{+r}+\mathrm{Hg}_{(\mathrm{I})}
$$

(r)

$$
\begin{aligned}
& r \mathrm{MnO}_{\psi}{ }^{-}+\Delta \mathrm{Cu}_{(\mathrm{s})}+1 \varphi \mathrm{H}^{+1} \longrightarrow \\
& \Delta \mathrm{Cu}^{+r}+\mathrm{r}_{\mathrm{Mn}^{+}}{ }^{+}+\lambda \mathrm{H}_{\mathbf{r}} \mathbf{O}
\end{aligned}
$$

(1) $\mathrm{SH}_{(!\mathrm{g})}+\mathrm{Fe}^{+r} \longrightarrow \mathrm{Fe}^{+r}+\mathrm{S}_{(\mathrm{s})}$ (اسيدى)
(r) $\mathrm{Cu}^{+1} \longrightarrow \mathrm{Cu}^{+r}+\mathrm{Cu}_{(\checkmark)}$ (اسيدى)
(r) $\quad \mathrm{Al}_{(s)}+\mathrm{Cu}^{+r} \longrightarrow \mathrm{Al}^{+r}+\mathrm{Cu}_{(s)}$ (اسـدىى)
(${ }^{(r)} \mathrm{Cr}_{r} \mathrm{O}_{r}{ }^{-r}+\mathrm{NO}_{r} \mathrm{II} \longrightarrow \mathrm{Cr}^{+r}+\mathrm{NO}_{r}{ }^{-1}$ (اسیدی)
(a) $\quad \mathrm{N}_{\mathrm{r}} \mathrm{O}_{\mathrm{H}(\mathrm{g})}+\mathrm{Br}^{-1} \longrightarrow \mathrm{NO}_{r^{-1}}+\mathrm{BrO}_{\mathrm{r}^{-1}} \quad$ (باز)
 Q

(1) $\mathrm{Zn}+\mathrm{Cid}^{+r} \longrightarrow \mathrm{Zn}^{+r}+\mathrm{Cd}$
$(r) \mathrm{Cd}+\mathrm{rl} \mathrm{II}^{+} \longrightarrow\left(\mathrm{Cl}^{+r}+\mathrm{H}\right.$.
$(r) \mathrm{MnO}_{r}^{-1}+\nu \mathrm{Fe}^{+r}+\Delta \mathrm{H}^{+1} \longrightarrow \mathrm{Mn}^{+r}+\Delta \mathrm{Fe}^{+r}+\varphi \mathrm{H}_{\varphi} \mathrm{O}$
.
病 .
㢈

(1) $\quad \mathrm{Cr}^{+r}+\mathrm{Cl}_{r} \longrightarrow \mathrm{Crr}^{+r}+\mathrm{rCl}-1$
$(r) \quad \mathrm{Cr}^{+r}+1 / \mathrm{rCl}_{r} \longrightarrow \mathrm{Cr}^{+r}+\mathrm{Cl}^{-1}$

（1）$\quad \mathrm{Cd}+\mathrm{Zn}^{+r}(1 \mathbf{a}) \longrightarrow \mathrm{Cd}^{+r}(1 \mathbf{a})+\mathbf{Z n}$

－میثود

درآند $\quad ヶ \mathrm{H}_{4} \mathrm{O} \longrightarrow \mathrm{O}_{\mathrm{r}(\mathrm{g})+ヶ \mathrm{H}}+\cdots+ヶ \mathrm{e}^{-}$

فصل چانز دهم

تادلد بو نیى

 - \sin

$$
\mathrm{C}_{\mathrm{r}} \mathrm{H}_{\mathrm{r}} \mathrm{O}_{\mathrm{r}} \mathrm{H}+\mathrm{H}_{\mathrm{r}} \mathrm{O} \leftrightharpoons \mathrm{H}_{\mathrm{r}} \mathrm{O}^{+1}+\mathrm{C}_{\mathrm{r}} \mathrm{H}_{\mathrm{r}} \mathrm{O}_{\mathrm{r}}^{-1}
$$

 $K^{\prime}=\frac{\left[H_{r} \mathrm{O}^{+}\right]}{\left[\mathrm{H}_{\mathrm{r}} \mathrm{O}\right]\left[\mathrm{C}_{\mathrm{r}} \mathrm{H}_{\mathrm{r}} \mathrm{O}_{\mathrm{r}} \mathrm{O}_{\mathrm{r}} \mathrm{H}\right]}$
درمحلول هاى خيلى دقيق ، ملاريتهآب ، درحدود

 مى توان حنين فرنكرددك در تادل بالا ، غالنطت آب ثابت میماند .
اسيدولستيك شرانه rر آب

$$
\begin{aligned}
& \text { غلظت اسيد وزن }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{K}^{\prime}\left\{\mathrm{H}_{4} \mathrm{O}\right\}=\left[\mathrm{H}_{\mathrm{r}} \mathrm{O}^{+-} \mid\left[\mathrm{C}_{\mathrm{r}} \mathrm{H}_{\mathrm{r}} \mathrm{O}_{-}^{--}\right]\right. \text {: } \\
& {\left[\mathrm{C}_{r} \mathrm{H}!_{r}\left(\mathrm{O}_{\mathrm{r}} \mathrm{HI}\right]\right.} \\
& \text { K- }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{II}}=\frac{\left|\mathrm{HI}_{r} \mathrm{O}^{+1}\right|\left[\mathrm{C}_{r} \mathrm{Hr}_{r} \mathrm{O}_{-}^{-!}\right]}{[\mathrm{C}, \mathrm{H}, \mathrm{O}, \mathrm{H}]} \\
& \text { (} 1 \text { (} 1 \text { (}
\end{aligned}
$$

 بحث قرار نحو اهد كرفت .

$$
\begin{aligned}
& K_{a}=1 / v_{9} \times 1 .^{-0} \quad r 0^{\circ} \mathrm{C} \mu
\end{aligned}
$$

rir تعادل يو نى
(درجه جر ارت هميشه

$$
\mathrm{PO}_{+} \mathrm{H}_{r}+\mathrm{H}_{r} \mathrm{O} \leftrightharpoons \mathrm{HI}_{r} \mathrm{O}^{+}+\mathrm{PO}_{+} \mathrm{HI}_{r}^{-1}
$$

ثابت يو نيز السبون هـإدله بالا میثود

دو دوين or

$$
\mathrm{PO}_{+} \mathrm{HI}_{+}^{--}+\mathrm{H}^{-} \mathrm{O} \leftrightharpoons \mathrm{H}_{+} \mathrm{O}^{+}+\mathrm{PO}_{+} \mathrm{HI}^{-+}
$$

$$
\mathrm{PO}_{+} \mathrm{II}^{-r}+\mathrm{HI}_{\mathrm{r}} \mathrm{O} \leftrightharpoons \mathrm{Hr}_{\mathrm{r}} \mathrm{O}^{++}+\mathrm{PO}^{-r}
$$

بطور يكه آ

$$
K=\frac{\left[\mathrm{Ig}^{+\prime}\right]\left[\mathrm{CiO}_{\psi}^{-1}\right]}{\left[\mathrm{ClO} \mathrm{O}_{\psi} \mathrm{Ag}\right]}
$$

 اين ثابت هارامى توان ماننذ ثابت يو نين اسيون اسيدامشيلك نوشت ومهحاسبه نمود. مثلا همادله

يو نير الـيون آ آو نِباك بصورت زير است

$$
K_{b}=\frac{\left[\mathbf{N H}_{4}+1\right]\left[\mathrm{OH}^{-1}\right]}{\left[\mathrm{NH}_{r}\right]}=1 / \wedge \times 1 \cdot-0
$$

جدول شـإه

جلو ل ثابت يو نيز اسيون السيدها و باز هاى ضهيف

نام تز	معادله	ras
اسبداستيك	$\mathrm{C}_{r} \mathrm{H}_{r} \mathrm{O}_{r} \mathrm{H}+\mathrm{H}_{r} \mathrm{O} \rightarrow \mathrm{H}_{r} \mathrm{O}^{+}+\mathrm{C}_{r} \mathrm{H}_{r} \mathrm{O}^{-1}$	$1 / \wedge \times 1 \cdot-i$
اسيد نينر	$\mathrm{NO}_{r} \mathrm{H}+\mathrm{I}_{r} \mathrm{O} \leftrightarrows \mathrm{I}_{r} \mathrm{O}^{+1}+\mathrm{NO}_{r}^{-1}$	$4 / \Delta \times 1 .{ }^{-4}$
اسبد فلو	$\mathrm{FII}+\mathrm{H}_{r} \mathrm{O} \underset{\rightarrow}{-} \mathrm{H}_{r} \mathrm{O}+1+\mathrm{F}-$	$9 / 8 \times 1 .-4$
السبدسيا نيدريك	$\mathrm{CNH}+\mathrm{HrO}_{+} \longrightarrow \mathrm{Hr}_{r} \mathrm{O}^{+-}+\mathrm{CN}^{-1}$	V/r
اسبد سولفودو	$\mathrm{SO}_{r} \mathrm{HI}_{r}+\mathrm{H}_{r} \mathrm{O} \leftrightarrows \mathrm{H}_{r} \mathrm{O}^{+}{ }^{+}+\mathrm{SO}_{r} \mathrm{II}^{-1}$	1/r× ${ }^{\text {r }}$
\|امـيد كر بنيك	$\mathrm{CO}_{r} \mathrm{H}_{r}+\mathrm{H}_{r} \mathrm{O} \leftrightarrows \mathrm{H}_{r} \mathrm{O}+1+\mathrm{CO}_{r} \mathrm{H}^{-1}$	$r / 0 \times 1 .-r$
آهو نياك	$\mathrm{NH}_{r}+\mathrm{H}_{r} \mathrm{O} \leftrightarrows \mathrm{NH}_{\varphi}^{+}+\mathrm{OlI}$	1/1人×1.-i
آنيلين	$\mathrm{C}_{\varphi} \mathrm{H}_{\Delta} \mathrm{NH}_{r}+\mathrm{H}_{r} \mathrm{O} \xrightarrow{+} \mathrm{C}_{q} \mathrm{H}_{\Delta} \mathrm{NH}_{r}^{+}+\mathrm{OH}^{-1}$	$4,4 \times 1 .-\cdots$
	$\mathrm{C}_{\varphi} \mathrm{H}_{\Delta} \mathrm{NHI}_{r}+\mathrm{H}_{Y} \mathrm{O}_{\rightarrow}^{\leftrightarrows} \mathrm{C}_{Y} \mathrm{HI}_{\Delta} \mathrm{NH}_{r}^{+\prime}+\mathrm{OH}^{-1}$	$0,9 \times 1{ }^{-4}$

$$
\begin{aligned}
& \text { هالِ 1 : } \\
& \mathrm{C}_{\mathrm{r}} \mathrm{H}_{\mathrm{r}} \mathrm{O}_{\mathrm{r}}+\mathrm{H}_{\mathrm{r}} \mathrm{O} \rightleftarrows \mathrm{H}_{\mathrm{r}} \mathrm{O}^{+}+\mathrm{C}_{\mathrm{r}} \mathrm{H}_{\mathrm{r}} \mathrm{O}_{\mathrm{r}^{--}} \\
& \mathbf{K}=1 / \wedge \times 1 .-0
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{NH}_{\varphi}+\mathrm{H}_{\Gamma} \mathrm{O} \rightleftarrows \mathrm{NH}_{\varphi}+{ }^{+}+\mathrm{OH}^{--}
\end{aligned}
$$

غلظت اوليه ذرات

غلظت تعادل

$$
\begin{aligned}
& {\left[\mathrm{H}_{\mathrm{r}} \mathrm{O}^{+}\right]=\cdot / \cdot \quad \text { مولد }} \\
& {\left[\mathrm{C}_{\curlyvee} \mathrm{H}_{r} \mathrm{O}_{\Upsilon} \mathrm{H}\right]=1 / \cdots \text { مول درلبَر }}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\left[\mathrm{H}_{r} \mathrm{O}^{+}\right]\left[\mathrm{C}_{r} \mathrm{H}_{r} \mathrm{O}_{r}^{-1}\right]}{\left[\mathrm{C}_{r} \mathrm{II}_{r} \mathrm{O}_{r} \mathrm{IH}\right]}=1 / \wedge+1 .-\Delta=\begin{array}{l}
\text { (} \mathrm{X})(\mathbf{X}) \\
1-\mathrm{X}
\end{array} \\
& \text { " } \\
& \text { (} \\
& {\left[\mathrm{C}_{\mathrm{r}} \mathrm{II}_{\mathrm{r}} \mathrm{O}_{\mathrm{r}} \mathrm{H}\right]=1 / \cdots-\mathrm{X}=1 / \cdot \mathrm{M}}
\end{aligned}
$$

$$
\begin{aligned}
& {\left[\mathrm{C}_{\mathrm{r}} \mathrm{II}_{\mathrm{r}} \mathrm{O}_{\mathrm{r}}{ }^{-1}\right]=\mathbf{\lambda}==\cdot, \cdots \nmid \mathrm{H} . \mathrm{I}}
\end{aligned}
$$

$$
\alpha=\begin{array}{cc}
\cdot / \cdots \not r X i \cdots \\
1 / . .
\end{array}
$$

 $1 / \wedge \times 1^{-0}=\frac{(X)(X)}{1 / \cdots-X}$

$$
\begin{gathered}
\mathbf{X}^{\top}+(1 / \wedge \times 1 \cdot-0) \mathbf{X}-1 / \cdots(1 / \wedge \times 1 \cdot-\infty)=\cdot \\
1 / \wedge \times 1 \cdot-\infty=\frac{(\mathbf{X})(\mathbf{X})}{1 / \cdots}
\end{gathered}
$$

$$
\begin{aligned}
& \mathbf{X}^{r}=1 / \wedge \times 1 \cdot-\Delta
\end{aligned}
$$

 $1 / \cdots-X-1 / \cdots-(\psi, r \times 1 \cdot-r)-1 / \cdots$

! CrllrOr${ }^{-1}, 1^{+1}$ (.

$$
\mathrm{C}_{r} \mathrm{IH}_{r} \mathrm{O}_{r} \mathrm{II}=11^{+1}+\mathrm{C}_{r} \mathrm{IH}_{r} \mathrm{O}_{r}^{-1}
$$

$$
K \text { K }
$$

 هم

غلظت او ليه

غظت تایل

$$
\begin{aligned}
& {[1 I+1]-1 / \cdots M \quad[11+1]=(1, \cdots-9) M} \\
& {\left[\mathrm{C}_{\mathrm{r}} \mathrm{H}_{\mathrm{r}} \mathrm{O}_{\mathrm{r}}{ }^{-1}\right]-1 / \cdots \mathrm{M}} \\
& {\left[\mathrm{C}_{\mathrm{r}} \mathrm{II}_{\mathrm{r}} \mathrm{O}, \mathrm{H}\right]=\cdot / \cdot \mathrm{M}} \\
& {\left[C_{r} 1_{r} O_{r}^{-1}\right]=(1, \cdot-y) \mathrm{M}} \\
& {\left[\mathrm{C}_{\mathrm{r}} \mathrm{H}_{\mathrm{r}} \mathrm{O}_{\mathrm{r}} \mathrm{II}\right]=\mathrm{y} \boldsymbol{\mathrm { M }}}
\end{aligned}
$$

$$
\begin{equation*}
\frac{\left[\mathrm{H}+y^{\prime}\right]\left[\mathrm{C}_{r} \mathrm{H}_{r} \mathrm{O}_{r}^{--}\right]}{\left[\mathrm{C}_{r} \mathrm{H}_{r} \mathrm{O}_{\mathrm{r}} \mathrm{H}\right]}=1, \wedge \times 1 \cdot-\Delta(1 / \cdots-y)(1, \cdots-y) \tag{y}
\end{equation*}
$$

 آن برا بـ هیشود :ا

$$
\begin{aligned}
& y=\cdot 1999 \\
& \text { مثال } \\
& \text { اكر X بول اسين تفكبي كردد ، داريم } \\
& \text { غ }
\end{aligned}
$$

$$
\begin{aligned}
& \text { • 八 }
\end{aligned}
$$

 تادل ثیثود

$$
\begin{aligned}
& {\left[\mathbf{H}^{+1}\right] \quad \mathbf{V}=1 / r \times 1^{-r} \mathbf{M}} \\
& {\left[\mathrm{C}_{r} \mathrm{H}_{r} \mathrm{O}_{r}-\cdot\right]-\mathrm{V}==1 / r \times 1 \cdot{ }^{-r} \mathrm{M}} \\
& {\left[\left(C_{r} \|_{r} O_{r} H\right]=\cdot M \cdot-\mathbf{N}=\cdot / \cdot M\right.}
\end{aligned}
$$

 شده وبر غلظت يون ئيدرثن مىافز ايد.
 $\mathrm{HOH}+\mathrm{HOH} \rightleftarrows \mathrm{Hr}_{\mathrm{r}} \mathrm{O}^{+}+\mathrm{OHI}^{-1}$

آ نو

$$
\mathrm{K}_{w}=\mathrm{K}^{\prime}\left[\mathrm{I}_{,} \mathrm{O}\right]^{r}=\left[\mathrm{I}_{r} \mathrm{O}+\cdot \cdot\right]\left[\mathrm{OlI}^{-1}\right]
$$

اندازه كيرى قإلِيت هدایِت ألكتر يسيته آب خالص در

$$
\left.\left[\mathrm{H}_{r} \mathrm{O}+1\right] \cdot\left[\mathrm{OH} I^{--}\right]=1 \times\right)^{-r} \mathrm{M}
$$

بنا براين.مقدار ثابت يو نيز اليـون آب ميشود

$$
\mathbf{K}_{w}=(1 \times 1 \cdot-r)(1 \times 1 \cdot-r)=1 \times 1 \cdot-14
$$

 هقدار K

$$
\begin{aligned}
& {\left[\mathrm{H}_{\mathrm{r}} \mathrm{O}^{+1}\right] \times \cdot / \cdot 1=1 \times 1 \cdot-14} \\
& {\left[\mathrm{II}_{\mathrm{r}} \mathrm{O}^{+}\right]=1 \times 1 .-1 \times \mathrm{M}}
\end{aligned}
$$

. هر هrخلول كـه در آنغلظا يـو

$$
\mathrm{p} I I=-\log [U+]
$$

pl|

 يون ئيدرو نيو آن رامىسنجند. دراين دستكاه اختلاف سطح باتنيبر ات pll فر ق مى كند. مثال \& .

$$
\begin{aligned}
& {\left[\mathrm{IF}_{\mathrm{r}} \mathrm{O}^{+}\right]=\cdot / \cdot \mathrm{M}=1 / \cdot \times 1 \cdot{ }^{-1} \mathrm{M}} \\
& p H=-\log \left(1 / \cdot \times 1 \cdot{ }^{-1}\right)=1
\end{aligned}
$$

 آن حاسل مبش:د. .

$$
\begin{aligned}
{\left[\mathrm{OH}^{-1}\right] } & =\cdot / \cdot \mathbf{M} \\
{\left[\mathrm{H}_{r} \mathrm{O}^{+}\right] } & =\frac{\mathrm{K}_{\mathbf{w}}}{\left[\mathrm{OH}^{-1}\right]}=\frac{1 / \times 1 \cdot-1 \%}{\cdot / 1}=1 / \times 1 \cdot-{ }^{-1 r} \mathbf{M} \\
\mathbf{p H} & =-\log (1 / \times 1 \cdot--1 r)=1 r
\end{aligned}
$$

براى تعيين pH محلول ها بطود تقر يب ازمعرفهاى شيميائى مىتوان استفاده نهود.

 خاصيت شيميائى آذن مى كردد نشان داده شدها ند.

$$
\text { جدول ثهاره } \Delta 0
$$

 در حقيقت در يكثشخصتغيبرات p| |

اصلى دناين مجلولو ر| مىتوان بهورت زير نيشت.

$$
\mathrm{C}_{r} \mathrm{H}_{r} \mathrm{O}_{r} \mathrm{H}+\mathrm{H}_{r} \mathrm{O} \rightleftarrows \mathrm{H}_{r} \mathrm{O}^{+1}+\mathrm{C}_{r} \mathrm{H}_{r} \mathrm{O}_{r}{ }^{-1}
$$

$$
\begin{aligned}
& K_{\mathbf{a}}=\frac{\left[\mathrm{H}_{r} \mathrm{O}^{+\top}\right]\left[\mathrm{C}_{\mathrm{r}} \mathrm{H}_{\mathrm{r}} \mathrm{O}_{r}^{-1}\right]}{\left[\mathrm{C}_{\mathrm{r}} \mathrm{H}_{\mathrm{r}} \mathrm{O}_{\mathrm{r}} \mathrm{H}\right]} \\
& \text { اكى معادله بالارا برای [1 }
\end{aligned}
$$

كه نشان هیدهدكه غلظت يون ئيدرو نيو ((ئيدرزن) بستكى بهمقدار K K و نسبت غلظت
 ضربكنيم داريم

$$
p^{\prime} I I=\log K_{a}-\log \left[\begin{array}{l}
{\left[\mathrm{C}_{Y} \mathrm{H}_{r} \mathrm{O}_{r} \mathrm{H}\right]} \\
{\left[\mathrm{C}_{Y} \mathrm{H}_{r} \mathrm{O}_{r}-1\right]}
\end{array}\right.
$$

$$
\mathrm{pll}^{2}=\mathrm{pK}_{a}-\log \begin{aligned}
& {\left[\mathrm{C}_{Y} \mathrm{H}_{r} \mathrm{O}_{r} \mathrm{H}\right]} \\
& {\left[\mathrm{C}_{r} \mathrm{H}_{r} \mathrm{O}_{r}-1\right]}
\end{aligned}
$$

 مهحالولى نزديك به يك باشد ، pII

$$
p l l=p K_{a}=-\log (1 / \wedge \times 1 \cdot-\infty)=-\psi / \vee f
$$

 مثال l

 تحجهج داريم
غلظت يون استات

$$
\mathrm{pII}=-\log (1 / \wedge \times 1 \cdot-\infty)-\log (\cdot /+9)
$$

$$
p \| l+\psi+v \psi+\cdot / \cdot v=+\psi / \gamma \varphi
$$

$$
\left[\mathrm{OH}^{-1}\right]=\underset{[\mathrm{Mi}+]}{(\mathrm{MOH}]} \mathrm{K}_{1}
$$

$$
\left[\mathrm{H}^{+}\right]=\begin{aligned}
& {[\mathrm{Kw}} \\
& {\left[\mathrm{OH}^{-}\right]^{-}==}
\end{aligned}=\begin{gathered}
\mathrm{Kw} \\
\mathrm{~K}_{\mathrm{b}}
\end{gathered} . \quad \frac{\left[\mathrm{M}^{+}\right]}{[\mathrm{MOH}]}
$$

$$
\mathbf{p H}=-\log \underset{\mathrm{K}_{\mathrm{b}}}{\mathrm{Kw}}-\log \left[\begin{array}{c}
{\left[\mathrm{M}^{+}\right]} \\
{[\mathrm{MOH}]}
\end{array}\right.
$$

ff
 تشكبل مبشود .

$$
\mathrm{Cu}^{+r}+\mathrm{rOH}^{-1} \rightleftarrows \mathrm{Cu}(\mathrm{OH})_{r}
$$

 شده است مىنويسند وثابتى كد دراينصودت بدست ثابت عدم بإيارى ناميده ميثودوموندارآن

$$
\begin{aligned}
& \mathrm{Cu}+\mathrm{r}+{ }^{+} \mathrm{NH}_{\mathrm{r}} \leftrightarrows \mathrm{Cu}\left(\mathrm{NH}_{\mathrm{r}}\right)_{+}{ }^{+r}
\end{aligned}
$$

$$
\begin{aligned}
& K_{\text {slab. }}=\frac{\left[\mathrm{Cu}\left(\mathrm{NH}_{\mathrm{r}}\right)_{r}+\mathrm{r}\right]}{\left[\mathrm{Cu}^{+r}\right]\left[\mathrm{NH}_{\mathrm{r}}\right]^{4}}=r / r \times 1.1 \mathrm{r}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Cu}(\mathrm{OH})_{\mathrm{r}}+{ }_{\mathrm{r}} \mathrm{NH}_{\mathrm{r}} \rightleftarrows \mathrm{Cu}\left(\mathrm{NH}_{\mathrm{r}}\right)_{\mathrm{r}}{ }^{+\mathrm{r}}+\mathrm{rOH}{ }^{-1} \\
& \text { ازجمعكردن دومسادل بالا مسادل زير بدست میآيد. }
\end{aligned}
$$

ryr
تعادل يو نى
عكس هaّدار ثابت بإيدارى أست. ينى

$$
\mathbf{K}_{\text {instab }}=\frac{\left(\mathrm{Cu}^{+r}\right]\left[\mathbf{N H}_{r}\right]^{\varphi}}{\left[\mathrm{Cu}\left(\mathbf{N H}_{r}\right)_{r}+r\right]}=\frac{1}{\mathbf{K}_{\text {stat }}}=\frac{1}{r / r \times 1 \cdot 1 r}
$$

فلزات روى ، نقره وكو بالت بصودت زير تشكيل يون كمحلِكس مىدهد.

$$
\begin{aligned}
& \mathbf{A g}^{+1}+\mathrm{YNH}_{r} \longleftrightarrow \boldsymbol{\Lambda g}\left(\mathbf{N H}_{r}\right)_{r}{ }^{+1} \\
& \mathrm{Zn}+r+r \mathrm{NH}_{r} \leftrightarrows \mathrm{Zn}\left(\mathrm{NH}_{r}\right)_{r}+r \\
& \underset{r-1}{\mathrm{Co}^{+r}}+9 \mathrm{NH}_{r} \leftrightarrows \mathrm{Co}\left(\mathrm{NH}_{r}\right)_{\varphi}+r
\end{aligned}
$$

 كهبلكس بدهند. جندمثال بصور ات زير است :

$$
\begin{aligned}
& \mathrm{Ag}^{+}+\mathrm{YCN}^{-1} \leftrightarrows \mathbf{A g}(\mathbf{C N})_{r}{ }^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& 7 n+r+r \mathrm{C}_{r} \mathrm{O}_{\mu}{ }^{-r} \leftrightarrows 7 \mathrm{n}\left(\mathrm{C}_{r} \mathrm{O}_{\varphi}\right)_{r}-r \\
& \mathrm{Al}^{+r}+4 \mathrm{OHI} \rightleftarrows \mathrm{Al}(\mathrm{OHI})_{\psi}^{-1}
\end{aligned}
$$

$$
\begin{aligned}
& \text { بعضى ازسو لفو دهاهم يون كمیلكس تشكيل مىدهند } \\
& S_{0} \mathbf{A s}_{r}+r S^{-r} \rightleftarrows r \mathrm{As}_{r}{ }^{-r}
\end{aligned}
$$

جدول شاره هـ حاصلضر ب انحلالى • وقتى يك جسم -جامد يو نى در آب جل كر دد، يكتعادل
 جاهد درمحلول سير شدهآن بايونهانى كلرود ونتر ه بصورت زيراست:

ClyIIg CdIr

 هر بوط :ه تيككل جنين يون هاي كمبلكسى باشد

جدول شهاره $0 y$
ثابت هاى يا يدارى

معاد
ثابت

$$
\mathrm{CIAg}_{(s)} \rightleftarrows \mathrm{Cl}^{-1}+\mathbf{A g}^{+1}
$$

كه در آن

$$
\frac{\left[\mathrm{Ag}^{+}\right]\left[\mathrm{Cl}^{-1}\right]}{\left[\mathrm{Cl} \mathbf{A g} g_{(s)}\right]}=\mathbf{K}
$$

 س: .

$$
\left[\mathbf{A g}^{+1}\right]\left[\mathrm{Cl}^{-1}\right]=\mathbf{K}\left[\mathrm{AgCl}_{(s)}\right]=\mathbf{K}_{\mathbf{s \cdot p}}
$$

 يو نى . معادله بالا نشان میدهدكه وقتى هححلول سیر شدهاى !اهازاد جامد در حالت تعــادل

 بر
 ك. دد. وقتى يك دفعه تعين كرديد ازآن بياى سايو محاسبات مىتوان استفاده كرد. (در

 بر اببره- •

 سبرشده غالطت است. بنابراين براى تعادل داريم
$\mathrm{K}_{\text {s.p. }}=\left[\mathrm{Ba}{ }^{+}\right]\left[\mathrm{SO}_{r}^{-r}\right]=\left(r / \beta \times 1 \cdot{ }^{-2}\right)\left(r / 9 \times 1 \cdot{ }^{-\Delta}\right)=1 / \Delta \times 1 \cdot-9$

 خارج مى كردند.

 بر ابر با ازغلظت يون

$$
\begin{aligned}
& \text { [} \mathrm{Ra}^{+\Gamma]=\mathrm{X}} \\
& \text { [SO } \\
& \mathrm{SO}_{\varphi} \mathrm{Ha} \rightleftarrows \mathrm{Ra}^{+r}+\mathrm{SO}_{4}{ }^{-r}
\end{aligned}
$$

$$
\left[\mathrm{Ra}^{+}\right]\left[\mathrm{SO}_{\psi}^{-r}\right]=\mathrm{K}_{\mathrm{s} \cdot \mathrm{p}}=\psi \times 1 \cdot-\|
$$

$(\mathbf{X})(\mathbf{X})=4 \times 1 \cdot-11$
مول =رلينر

$$
[\text { Ra+r }]=y \quad \text { oو درليتر }
$$

هول درليتر

$$
\left[\mathbf{R a}^{+r}\right]\left[\mathrm{SO}_{\psi}-r\right]=y(y+\cdot \mu)=\psi \times \cdot-11,
$$

 ~. .

$$
\begin{gathered}
y(y+\cdots \mu) \not \approx y(\cdot /)=4 \times 1 \cdot-11 \\
y-+\times 1 \cdot-1 \cdot
\end{gathered}
$$

هوال درلينر است ومحلولو لى توليد مى كندكه در آن

$$
\left[\mathrm{SO}_{\psi}{ }^{-r}\right]=\cdot / \mathrm{M},\left[\mathrm{Ra}^{+r}\right]-\psi \times 1 \cdot-1
$$

$$
\mathrm{Mg}(\mathrm{OH})_{\mathrm{r}(\mathrm{~s})} \leftrightarrows \mathrm{Mg}^{+r}+\mathrm{rOH}^{-1}
$$

rYV تعادل يو نى

$$
\begin{aligned}
& \text { هيشود . بنا بـا اين درحالت تعادل داريم } \\
& {\left[\mathbf{M g}{ }^{+r}\right]=\mathbf{X}} \\
& {\left[\mathrm{OH}^{-1}\right]=\mathrm{rX}} \\
& \text { هول درليَتر } \\
& \text { مول درليتر } \\
& \mathbf{M g}(\mathbf{O H})_{r(s)} \rightleftarrows \mathbf{M g}^{+r}+\mathrm{rOH}^{-1} \\
& \mathbf{K}_{s \cdot p}=\wedge / \psi \times 1 \cdot-i r=\left[\mathbf{M g}^{+r}\right]\left[\mathrm{OH}^{-1}\right]^{r} \\
& \text { (N) (} \left.\mathbf{X}^{r}\right)=\lambda ; 9 \times 1 \cdot-i r \\
& \psi \mathbf{J}^{r}=\wedge / a \times 1 \cdot-\cdots \\
& \text { مول }
\end{aligned}
$$

همانطور كه قبال مطالعنشد ، درجهله اثرم جر م براى هر فعل و انفعال ،غلظت اجسام
 اثرم جرم است ، غلظتيونهادر آن نيز بإيستى بهتو انضضريبآنها آنا درمعادله برسى وعهم نيست

$$
\begin{aligned}
& {\left[\mathbf{M g}^{+r}\right] \ldots \mathbf{~}} \\
& {[\mathrm{OH}-\cdot]=\mathrm{YN}+\cdot / \cdot 0 \text {. }} \\
& \text { مول درليتر } \\
& \text { مول درليتت }
\end{aligned}
$$

$$
\begin{aligned}
& (x)(\cdot / \cdot \Delta \cdot)=\wedge / q \times 1 \cdot{ }^{-1} \\
& x=r / 4 \times 1 .-9 \quad 0
\end{aligned}
$$

 مختلف باهم مخلوطمىشو ند در يیش بينى تشكيل دسوب است . دزمححلول سيرشده يِك ندكا

 يشترشود ، دسوب تشكبل مى كردد .

$1 / 4 \times 1 V^{-1}{ }^{1}$

扄
于i
 （ix

$$
\left[\mathrm{Ca}^{+r}\right]-r, 2 \times 1 .-r \|,[\mathrm{I}-1]=1 / \cdot \times 1 \cdot-4 \mathrm{M}
$$

$\left[\left(a^{+r}\right]\left[\mathrm{l}^{-r} \mathrm{~J}^{r}-\left(r / \omega \times \mathrm{I}^{-r}\right)(1 / \cdot \times)^{-r}\right)^{r}-r / \omega \times\right)^{-{ }^{-r} r}$

$$
\begin{aligned}
& \text { - } 1 \text {. }
\end{aligned}
$$

جر ای آi

 خارجكر ．

 در مححلولى كه حاوى أسيداستيك ضعيف است ،دوتعادل يو نى و جود دارد ：

$$
\begin{aligned}
& \mathrm{H}_{r} \mathrm{O}+\mathrm{IH}_{r} \mathrm{O} \rightarrow \mathrm{H}_{r} \mathrm{O}^{+}+\mathrm{OH}^{--} \\
& \text {كه :ه تـ تيب برایى آنها داريم }
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{k}_{\mathrm{w}}=\left[\mathrm{H}_{r} \mathrm{O}^{+-}\right]\left[\mathrm{OH}^{-〕}\right]
\end{aligned}
$$


```
rYa

 در آب چون يون OH


\[
\begin{aligned}
& \text { Uッ- }
\end{aligned}
\]

\[
\begin{equation*}
\mathrm{CNH}+\mathrm{H}_{4} \mathrm{O}_{-} \mathrm{H}_{r} \mathrm{O}^{+}+\mathrm{CN}^{-1} \mathrm{~K}\left(\mathrm{OH}+\times \mathrm{H}^{-\cdots}\right. \tag{Y}
\end{equation*}
\]
\[
\begin{equation*}
\mathrm{H}_{\mathrm{r}} \mathrm{O}+\mathrm{H}_{,} \mathrm{O}^{\circ} \because \mathrm{H}_{r} \mathrm{O}^{+1}+\mathrm{OH}^{-1} \mathrm{~K}_{\mathrm{w}}=1 / \cdot \times \mathrm{I}^{--\uparrow} \tag{r}
\end{equation*}
\]
 أ-a
 \(\left[\mathrm{ll}_{\mathrm{r}}\left(\mathrm{O}^{+}\right]\right.\)>
 \(\left[\| I_{r}()^{+}\right]\left[\left(C_{r} \|!_{r}\left(0_{r}^{-1}\right] \quad(x) \quad(x)\right.\right.\)

 *هار. .
\[
\begin{aligned}
& K_{w}=\left[11_{r} 0+1\right][011-1] \quad 1 / \cdot \times 1 \cdot 1^{-1}+ \\
& \left.\left(r / \cdot \times \cdot{ }^{-r}\right)[0 \|]^{-1}\right]-1 / \cdot \times 1 \cdot-4 \\
& \text { [0]1-'] r.r×1.-"M }
\end{aligned}
\]

 حاصل|زدوهر حله يو نيز اسيون SII
\[
\begin{aligned}
& \mathrm{SH}_{\mathrm{r}}+\mathrm{Hr}_{\mathrm{r}} \mathrm{O}=\mathrm{Hr}_{\mathrm{r}} \mathrm{O}^{+}+\mathrm{SH}^{-1} \quad \mathrm{~K}_{\mathbf{a}^{\prime}}=1 / 1 \times \mathbf{1}^{-r} \\
& \mathrm{SH}^{-1}+\mathrm{H}_{+} \mathrm{O} \rightarrow \mathrm{H}_{r} \mathrm{O}^{+}+\mathrm{S}^{-r} \quad \mathrm{~K}_{\mathrm{ar}}=1 / \cdot \times \mathrm{I}^{--1 \%}
\end{aligned}
\]



 | X ا .


\[
K_{a r}=\frac{\left[I_{r} O^{+1}\right]\left[S^{-r}\right]}{\left[S \| I^{-1}\right]}==1 / \times 1 \cdot-1+\|
\]


\[
\mathbf{K}_{r a}=\left[S^{-r}\right] \quad 1 / \cdot \times 1 \cdot-14
\]


\[
[\mathrm{SH}-1]=\frac{\left[\mathrm{H}_{r} \mathrm{O}+1\right][\mathrm{S}-r]}{\mid \times 1 .-14}
\]
\[
\cdots \times\left.\right|^{--r} \cdot \frac{\left[\mathrm{SH}_{r}\right]}{\left[H \mathrm{O}_{r}+\cdots\right]}=\frac{\left[\mathrm{H}_{r} \mathrm{O}+1\right]\left[\mathrm{S}^{-r}\right]}{\mid \times 1 \cdot-1 r}
\]
,
\(\left(1 ハ \times 1 \cdot{ }^{-v}\right)(1 \times 1 \cdot-14)=\frac{\left[H_{r} \mathrm{O}+\right]^{\top}\left[S^{-r}\right]}{\left[S H_{r}\right]}\)
در ياك محلمول سير شده اذ
ثابت وبرابر با M • • • است
\[
\left[\mathrm{H}_{r} \mathrm{O}+1\right]^{r}\left[\mathrm{~S}^{-r}\right]=(1 / 1 \times 1 \cdot-v)(1 \times 1 \cdot-1 \psi)(\cdot / \cdot)
\]
\[
\left[\mathrm{H}_{4} \mathrm{O}^{+} \cdot\right]^{r}\left[\mathrm{~S}^{-r}\right]=: \times:-r
\]
rul
"معادله اخير بسيار مهم است حِون نشان مىدهد كه غلظت يون
 |
 سو لفور آن ها استفاده ميشود.

SZn مثال
 ill كردانيّ. ودر آن كاز

\(\left[\mathrm{H}_{r} \mathrm{O}^{+}\right]^{-}\left[\mathrm{S}^{-r}\right]=\mid \times 1 \cdot-r r\)
وقتى [ براى SZn داريم
\(\left[Z_{n} \mathbf{n}^{r}\right]\left[S^{-r}\right]=(\cdot, \cdot r)\left(1 \times 1^{-r r}\right)=Y \times 1^{-r Y}\)
براكيك SCu
\(\left[C_{\mathbf{l}}{ }^{+r}\right]\left[S^{-r}\right]=(\cdot, \cdot Y)(1 \times 1, \cdot-r Y)=Y \times 1 \cdot-r \sharp\)
:

ازاهل تعادل های هم زمان مىتوان برانى حل كردن دسوب ها استفاده نمود . عثلر
 مى توان مقدار بيشترى ازآن را در آب حل ندود . اكر مولفور دوى به آب خالص اذأفه شود داديم
\[
\begin{aligned}
& \mathrm{SZn}_{(\mathrm{s})}=\mathrm{Zn}^{+\boldsymbol{+}}+\mathrm{S}^{-r} \\
& \text { وقتى اسيد اضانه ميشود ، تعادل هاى زير نيز ايجاد مى كردد } \\
& \mathrm{H}^{+}+\mathrm{S}^{-r} \rightleftarrows \mathrm{SH}^{-1} \\
& \mathrm{H}^{+}+\mathrm{SH}^{-1} \rightleftarrows \mathrm{SH}_{\varphi}
\end{aligned}
\]

و در تتيجه بابالارثتن غلظت يون ئيدرثن ،قدارى ازيون سولنود بصورت SH SH هـحلول خارج كشته ودر نتيجه مقدار بيشتنى سوولفور حل ميكردد تاتعادل برقرار شود. همينطود ClAgدر آب نامحلول|ست. آنرا مبنو ان بااضافهكردن تيو سو لفات سديم بهآب محلول نهود. تعادل كلرور نقره درآب بصورت زير است :
\[
C \lg _{(v)} \ldots\left(I^{-1}+\lg ^{+1}\right.
\]

\[
\mathrm{A}_{r}++r \mathrm{~S}_{\mathrm{r}} \mathrm{O}_{r}^{-r}=\lg \left(\mathrm{S}_{\mathrm{r}} \mathrm{O}_{\mathrm{r}}\right)_{r^{-r}}
\]

和

\[
\mathrm{Cl} \lg _{(N)}+S_{r} \mathrm{O}_{r}{ }^{r} \rightleftarrows \lg \left(\mathrm{~S}_{r} \mathrm{O}_{r}\right)_{r^{r}}+\mathrm{Cl} \mathrm{l}^{-1}
\]
 (1)






 خالص ، تعادل لهـ, اضاوه ك,
 (1) Na+1


 ئيدرلين نهيشودولى دراين حالت دوتشادلْدرمحلول وحوددارد .
\[
\begin{equation*}
\mathrm{H}_{r} \mathrm{O}+\mathrm{H}_{r} \mathrm{O} \rightleftarrows \mathrm{H}_{r} \mathrm{O}^{+}+\mathrm{OH}^{-1} \tag{1}
\end{equation*}
\]
\[
\text { (r) } \mathrm{C}_{Y} \mathrm{H}_{r} \mathrm{O}_{r}^{-1}+\mathrm{H}_{r} \mathrm{O}+1 \rightleftarrows \mathrm{C}_{r} \mathrm{H}_{r} \mathrm{O}_{r} \mathrm{H}+\mathrm{H}_{r} \mathrm{O}
\]


rrer
 نوشت :
\[
\left.\mathrm{C}_{r} \mathrm{Hr}_{r} \mathrm{O}_{r}^{-1}+\mathrm{H}_{r} \mathrm{O}\right) \longrightarrow \mathrm{C}_{r} \mathrm{H}_{r} \mathrm{O}_{r} \mathrm{H}+\mathrm{OH} \mathrm{H}^{-1}
\]




 'ئيدروليز زهیشود ولى كر دن دومعاد له زيـ



\[
\mathrm{II}^{+}+r \mathrm{It}_{+} \mathrm{O}=\mathrm{MOH}+\mathrm{II}_{r}(0+1
\]

وددئيدروليز آنيو نى ، معادله كي هیثود
\[
\-1+I_{5} 0=\ I I+O \|-1
\]

\[
\mathrm{H}_{+} \mathrm{O}+\mathrm{H}_{+} \mathrm{O} \rightleftarrows \mathrm{H}_{r} \mathrm{O}^{+}+\mathrm{OHI}^{-} \quad\left[\mathrm{H}_{r} \mathrm{O}^{+}\right]\left[\mathrm{OH} \mathrm{H}^{-}\right]=\mathrm{K}_{n}
\]
\[
\mathrm{V}^{--}+\mathrm{II}_{r} \mathrm{O}+\mathrm{N} \longrightarrow \mathrm{NH}+\mathrm{II}_{r} \mathrm{O}
\]
\[
\frac{[\mathbf{N I}]}{[\mathrm{H}+1][\mathrm{X}-1]}=\frac{1}{\mathbf{K}_{\mathbf{a}}}
\]
بابدست آوردن [H+1H] دريكى وقر اددادن ددديـكر ى داديم
\[
\left[\mathbf{H}^{+1}\right]=\frac{\mathbf{K}_{\mathbf{N}}}{[0 \bar{\Pi}--]}=\frac{[\mathbf{N H}]}{[\mathrm{S}-1]} \cdot \mathbf{K}_{\mathbf{0}}
\]
\[
\begin{aligned}
& \mathrm{Al}+\mathrm{r}+0 \mathrm{II}^{-}=\mathrm{AlOH}=\mathrm{r} \\
& \mathrm{H}, \mathrm{O}+\mathrm{H}_{+} \mathrm{O} \underset{\sim}{=} \mathrm{H}_{r} \mathrm{O}{ }^{+}+\mathrm{OH} \mathrm{H}^{-1} \\
& \text { بإِكديع, }
\end{aligned}
\]
\[
\begin{aligned}
& \text { 共 }
\end{aligned}
\]
\[
\frac{[\mathrm{XH}]\left[\mathrm{OH}^{-}\right]}{\left[X^{-1}\right]}=\frac{\mathbf{K}_{\mathbf{w}}}{\mathbf{K}_{\mathbf{a}}}=\mathbf{K}_{\mathbf{h}}
\]

انابت يُيدروليز مى نامند واز آن مىتوان برای انجاممحاسباتمثل ساير ثابتها
استفاده نود .


\[
\mathrm{C}_{r} \mathrm{H}_{r} \mathrm{O}_{r}^{--}+\mathrm{H}_{r} \mathrm{O} \rightleftarrows \mathrm{C}_{r} \mathrm{H}_{r} \mathrm{O}_{r} \mathrm{H}+-\mathrm{OH}-^{-}
\]

كه درآن
\[
\therefore \quad \frac{\left[\mathrm{C}_{r} \mathrm{H}_{r} \mathrm{O}_{r} \mathrm{II}\right][\mathrm{OH}-1]}{\left[\mathrm{C}_{r} \mathrm{H}_{r} \mathrm{O}_{r}^{-1}\right]}=\frac{\mathrm{K}_{\mathbf{u}}}{\mathbf{K}_{a}}=\frac{1 / \cdot \times 1 \cdot-14}{1 / \wedge \times 1 \cdot-\Delta}=0,4 \times 1 \cdot-1
\]


\[
\begin{aligned}
& \text { [Cr} \left.\mathrm{C}_{r} \mathrm{H}_{r} \mathrm{H}\right]=\mathrm{X} \text { مول درلبتر } \\
& \text { [ } \left.\mathrm{OH}^{-1}\right]=\mathrm{X} \text { مول درلينر } \\
& {\left[\mathrm{C}_{Y} \mathrm{H}_{X} \mathrm{O}_{Y}^{-1}\right]=[\cdot \mathrm{M} \cdot-\mathrm{X}(\mathrm{C} \text { ( }}
\end{aligned}
\]

بابرار دادن اين مهادي دنجهله انرجرمدار يم
\[
\begin{aligned}
& \frac{(X)(X)}{\mu \cdot-X}=0,4 \times 1 \cdot-1 \\
& \frac{X^{r}}{\cdot / \cdot}=0,4 \times 1 \cdot-1 \\
& X=8, \Delta \times 1 \cdot-4 \mathbf{M}
\end{aligned}
\]

\[
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=\frac{\mathbf{K}_{\mathbf{w}}}{\left[\mathrm{OH}^{-1}\right]}=\frac{1 / \cdot \times 1 \cdot-14}{\gamma / \Delta \times 1 \cdot-9}=1 / r \times 1 \cdot-9 \mathbf{M}} \\
& \mathbf{p H}=-\log \left[\mathrm{H}^{+1}\right]=-\log 1 / r \times 1 \cdot-9=\wedge / \wedge 9
\end{aligned}
\]
, ورهد اُبدرورليز مبثود :


برابر ••-
rro
تعادل يو نى
\[
\mathrm{Al}^{+r}+\mathrm{rH}, \mathrm{O} \leftrightharpoons \mathrm{AlOH}^{+r}+\mathrm{H}^{r} \mathrm{O}^{+}!
\]
\[
\frac{[\mathrm{AlOH}+r]\left[\mathrm{H}_{r} \mathrm{O}^{+1}\right]}{\left[\mathrm{Al}{ }^{+r}\right]}=\begin{aligned}
& \mathrm{K}_{\mathrm{w}} \\
& \mathrm{~K}_{1}
\end{aligned}=\frac{1 / \cdot \times 1 \cdot-1 \varphi}{\gamma_{/} / \times 1 \cdot-1 \cdot-=1 / \psi \times 1 .-\Delta}
\]
\[
\left[\mathrm{Al}^{-r}\right]=(\cdot \mathrm{A} \cdot-\mathrm{X}) \quad \text { مول درلبتر }
\]
\[
\left[\mathrm{AlOII}^{+r}\right]=\mathbf{~}
\]
\[
\left[11_{\mathrm{r}} \mathrm{O}+1\right]=\mathbf{~ م و ل ~ د ر ا ي ت ر ~}
\]
(X) (X)
\(\cdot ハ \cdot-1=1 / 4 \times 1 \cdot-3\)

غ غ
ـ ذا

居 روى غلظت يون ئيدنزن در آن دا
\& محلول كل,

XHLI \(X\)
 جامد انا فه شود XNa
 دو برابرغلظت يون
А- بِلت ئيدرو ليز يك مجلول

－

\section*{مسائل زي！，را حل كنيد}


؛


 ب， \(\because \quad\) ， a－，

 ，


 ubl a
\[
\begin{aligned}
& \text { 秋 }
\end{aligned}
\]
\[
\begin{aligned}
& \text { ؟ }
\end{aligned}
\]


 هي آيد
: \(\mathrm{ClOH}-19\)
\(\mathrm{ClOHI} \leftrightarrows \mathrm{H}+1+\mathrm{ClO}^{-1} \quad \mathrm{~K}_{\mathrm{a}}=r / r \times 1^{-1}\)
.


هى SN دن .
\[
\begin{array}{ll}
\mathrm{C}_{r} \mathrm{H}_{r} \mathrm{O}_{r} \mathrm{H} \leftrightarrows I I+1+\mathrm{C}_{r} \mathrm{I}_{r} \mathrm{O}_{r}-1 & \mathrm{~K}_{\mathrm{a}}=1 / \Delta .4 \times 1 .-\Delta \\
\mathrm{C}_{r} \mathrm{H}_{r} \mathrm{O}_{r} \mathrm{D} \leftrightarrows & \mathrm{I}^{+1}+\mathrm{C}_{r} \mathrm{H}_{r} \mathrm{O}_{r}-1 \\
\mathrm{~K}_{\mathrm{a}}=\cdot / \Delta 9 \times 1 .-\Delta
\end{array}
\]

غلظتهای ،

 را حسابك Q/v. 19 (OHI-1
 حساب كنيد .

 - ع ع ا/ و • •





iranchembook.ir/edu

\section*{شيمى عهومى}
(1/ \(\times 11^{-r}{ }^{-r}\) m ا (1/•×1• 1

 بالدووم حلشود حساب لفيد .





 . .

\section*{فصل شانز دهم}

\section*{3}

درمبحث ترمونيمى تنيبر ات >ر ارت كه هـ. اه باتنيبر ات شبميأئى است عوددمطالبه


يك كالـ


\[
\mathrm{C}+\mathrm{O}_{\mathrm{r}}=\mathrm{CO} \quad \Delta \mathrm{II}=-\mathrm{ar} \cdot \mathrm{r} \cdot \mathrm{CaI}
\]








 كردنمقدار بيشترى آب تأنيرى دردرجهاحر ارت نداشنه باشثد أزعلامت (aq) استا استفادهميشود.








 بسوزا نِيم تآآب توليد شود. . .

 مثلا سو ختن يُيدرثن بسورت زير نشان داده ميشود.
\[
\mathrm{H}_{r}+: \mathrm{O}_{r}=\mathrm{H}_{r} \mathrm{O} \quad \Delta \mathrm{H}=-4 \lambda \varphi \cdots \mathrm{Cal}
\]




\[
r \mathrm{H}_{r}+\mathrm{O}_{r} \rightarrow r \mathrm{H}_{r} \mathrm{O} \quad \Delta \mathrm{H}=-1 r 4 \lambda \cdot \mathrm{CaI}
\]


 بالا باتو جه بينظات فوق بصورت زير بائسَى نوشته شود .
\[
\begin{aligned}
& \text { بطور كلى براى هرواكنش مى توان نوشت } \\
& \Delta \mathrm{H}=\mathrm{H}-\mathrm{H}
\end{aligned}
\]


r4l
\[
\Delta H=H_{H_{Y} O(\mathrm{l})}-\left(\mathrm{H}_{\mathrm{IIr}(\mathrm{~g})}+\frac{1}{\mathrm{r}} \mathrm{H}_{\mathrm{O}_{\mathrm{Y}(\mathrm{~g})}}\right)
\]

پپ





\[
\begin{aligned}
& \Delta \mathrm{H}=-\Delta \mathrm{H} \\
& \text { بطرف را- } \quad \text { بطرف }
\end{aligned}
\]

قانون هـر: طبقَ قانون هس حر ارت آزاه شده و ياجذب شلهدريك فعل وانفعال



 بر إبر است ج! انجام ميحـفت .
 كرد هـحاسبه نهود. دراين نوع هحاسبات معادلات ترموشيهى جمع، تفر يق ، ضرب ياتقسيم


\[
\underset{(\mathrm{s})}{\mathrm{C}}+\mathrm{YII}_{r_{(\mathrm{g})}}+\mathrm{O}_{r_{(\mathrm{g})}}=\mathrm{CII}_{r} \mathrm{COOHI} \quad \underset{(\mathrm{I})}{ } \underset{\left(\mathrm{I}^{\circ}\right.}{ }=?
\]


 \(\Delta \|_{Y \Delta^{\circ}}=-Y \cdot ソ q \cdot C . C a l\)
(r)
\[
\mathrm{C}_{(\mathrm{s})}+\mathrm{O}_{r_{(0)}}=\mathrm{CO}_{(\mathrm{g})} \quad \Delta \mathrm{H} \underset{0^{\circ}}{ }=-9 \psi \psi \wedge \cdot \mathrm{Cal}
\]
\[
\begin{aligned}
& \text { ثيمى عمومى }
\end{aligned}
\]
\[
\begin{align*}
& \text { حالا اكر معادلات (r) و) } \\
& r \mathrm{C}_{(\mathrm{s})}+r \mathrm{O}_{\mathrm{r}_{(\mathrm{g})}}=r \mathrm{CO}_{(\mathrm{g})} \quad \Delta \mathrm{H}_{\text {rso }}=-1 \wedge \wedge 99 \cdot \mathrm{CaI}
\end{align*}
\]
\[
\begin{aligned}
& \text {, }
\end{aligned}
\]
\[
\begin{aligned}
& \text { حرارت تشكيل تر كيبات . يك مسادله ترموشيهى اذنو ع } \\
& \mathrm{Ag}{ }_{(s)}+\frac{1}{r} \mathrm{Cl}_{(\mathrm{y})}=\mathrm{AgCl}_{(\mathrm{s})} \quad \Delta \mathrm{II}_{r 0^{\circ}}=-r \cdot r \cdot \mathrm{Cal}
\end{aligned}
\]




 بدينصورت حرارت متخوى
\[
\begin{aligned}
& =\mathrm{H}_{\mathrm{ClAg}}- \\
& =\mathrm{H} \\
& \mathrm{ClAg}
\end{aligned}
\]

تغيير ات حاهل ازتشكيل يك تر كيب از عناصرمتدكله آنرا مى توان حر ارتمحتوى تر كيب دانست. بهايّبّ نوع تنيير ات حر ارت درتشكليل تر كيبات حرارت تشكيل تركيبات كفته ميشود .
حرارت تشكيل تو كيباترا مى نو ان از راه تجر بهآزمايشלاهى هنگام تشكيل تر كيب

 |نفعا'لات زيوهو حودند :

\[
\mathrm{C}_{(\mathrm{s})}^{\mathrm{C}}+\underset{(\mathrm{O})}{\mathrm{O}_{r}} \underset{(\mathrm{~g})}{\mathrm{CO}_{r}} \quad \Delta \mathrm{H}_{\mathrm{H}^{\circ}}=-9 \psi 0 \cdots \mathrm{Cal}
\]

\[
\begin{aligned}
& r(-940 \cdots)-1144 \cdots
\end{aligned}
\]

 هثX بر اي وا كنش
 هقَدار
 كه اكر بجاى T آنها مقدارهايشان را ازَجدول قر اردهيم

\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & （1） \(\mathrm{HO}^{7} \mathrm{H}^{\dagger} \mathrm{J}\) & －・ベ－ \\
\hline & & & & （1） \(\mathrm{HO}^{+} \mathrm{HO}\) & ． 01010 \\
\hline （ \({ }^{(1)}{ }^{1} \mathrm{O} \mathrm{O}\) & －vatab－ & （s） \(6 \mathrm{~V}^{2} 0 \mathrm{C}\) & ． 9161 － & （8） \(\mathrm{II}^{\text {d }}\) ） & \(\cdots 6.0+\) \\
\hline \({ }^{(8)} 00\) & ．．3sh－ & \({ }^{(1)} \mathrm{HO}^{+} \mathrm{N}\) & －••dか－ & （1）\({ }^{1} \mathrm{H}^{6}\) ？ & ．．311＋ \\
\hline \(\left.{ }^{(8)}\right)^{1} \mathrm{H}\) & －V10－ & \({ }^{(s)} \mathrm{H}^{+} \mathrm{ON}\) & ．．1rıl－ & \((\mathrm{s}) \mathrm{H}_{\mathrm{H}}\) ） & ．．1v1－ \\
\hline （i）\()^{2} \mathrm{H}\) & －・かV号 & （s） \(\mathrm{O}^{+} \mathrm{ON}\) & ．\(\times 111\)－ & \((\mathrm{s})+\mathrm{HN}\) & －0．11－ \\
\hline \({ }^{(s)} \mathbf{O N}\) & －．abs－ & \({ }^{(5)} \mathrm{IIOM}\) & ．．．入．1－ & \({ }^{(5)}{ }^{2} \mathbf{D}^{(1)} \mathbf{O}\) & －．111－ \\
\hline \({ }^{(s)} \mathrm{MI}\) &  & \({ }^{(5)} \mathrm{HO}^{\mathrm{D}} \mathrm{N}\) & ．．．d．1－ & （s） \(\mathrm{O}^{+} \mathrm{O} \mathrm{O}\) & ． 0 － drad－\(^{\text {－}}\) \\
\hline \({ }^{(s) \cdot 16} \mathrm{H}^{1} \mathrm{~J} \mathrm{~g}\) & －•・か－ & \(\left.{ }^{(5)}\right)^{\text {d }}\)（ & ．．13d1－ & （s） \(\mathrm{N}^{+} \mathrm{O}\) &  \\
\hline （s）Disg & －－人ş－ & （5） \(0^{2}\) ad & ． 0 －0ヶb1－ & \({ }^{(s) 6} \mathrm{~N}^{+} \mathrm{OS}\) & ．．．ald－ \\
\hline （s） \(\mathbf{U Z}^{1}\) I 19 & ． 0 0bb & （5） \(0^{(0)} \cdot \mathrm{d}\) &  & （s）n）\({ }^{\text {a }}\) S & ．\(\cdot\) adri－ \\
\hline \({ }^{(\mathrm{s})} \mathbf{6} \mathrm{W}^{2} \mathrm{I}\) D & ．． 1201 － & \(\left.{ }^{(510)}\right)^{\text {dim }}\) & \(\cdots \mathrm{rar}\)－ &  & －．\({ }^{\text {dada }}\) \\
\hline \({ }^{(s)} \mathrm{n}^{\text {d }}{ }^{\text {d }} \mathrm{I} 9\) & －dato－ & \({ }^{(5)} \mathrm{O}^{(5)}\) & －．ord－ & \({ }^{(s)}{ }^{\lambda} \mathrm{M}^{\wedge} \mathrm{OS}\) & －rvad－ \\
\hline \({ }^{(s) 6} \mathrm{H}^{+} \mathrm{IO}\) & 140－ & \(\left.{ }^{(5)}\right)^{4 / 4}{ }^{\text {d }}\) & \(\cdots{ }^{\text {．．}}\)－ & \(\mathrm{H}^{1 / 2} \mathrm{H}^{\dagger} \mathrm{OS}\) & ． r －rvi－ \\
\hline \({ }^{(s) 6} \mathbf{6}\) ¢ 19 & 」•」－ &  & \(\cdots \cdot \cdot 1\)－ & （s）u7S & －．01d－ \\
\hline （s）\({ }^{\text {（siol }}\) & － \(\mathrm{rrb}_{\text {－}}\) & \(\left.{ }^{(2)}\right)^{+} \mathrm{N}\) & \(\cdots \times 61+\) & （s）ngs & －吅－ \\
\hline \({ }^{(s)}\) YII & \(\cdots d d \cdot 1\)－ & （9）\({ }^{(1) N}\) & \(\cdots{ }^{\text {．．bat }}\) & （b）\({ }^{\text {（ IIS }}\) & \(\cdots{ }^{\text {• }}\)－ \\
\hline \({ }^{(8)} \mathrm{HIO}\) & － & \({ }^{(9)} \mathrm{ON}\) & ． \(0121+\) & （s）n）\({ }^{+} \mathrm{ON}\) & \(\cdots 1+1\) \\
\hline － & H \(\bar{\nabla}\) & ＜－4 & HV & － & HV \\
\hline
\end{tabular}
\[
+r(-r r \cdot \cdots)=-\psi \psi \Delta \cdot \cdot C a l
\]



 ازحر ارت احتر اقى مى توان مستقبهاً حر ارت تشـكيل ت، كيباتآلى را محاسبه نهود. اكر جسم آلى فقط ازاكسيثن كر بن وئيدرُنتشكيل شده باشد: آنجه كهبر الى هحاسبه حرارت


تشكيل Tن استفاده ميشود .
\(\mathrm{C}_{\mathrm{r}} \mathrm{H}_{(\mathrm{g})}+\Delta \mathrm{O}_{(\mathrm{g})}=r \mathrm{CO}_{(\mathrm{g})}+4 \mathrm{H}_{r} \mathrm{O}_{(1)} \Delta \mathrm{H} \underset{r \Delta 0}{ }=-\Delta r \cdot q \cdot \mathrm{Cal}\)

 :

\[
r C_{(s)}+r\left[I_{r(g)}=C_{r} H_{\Lambda(!)} \quad \Delta f r 0^{\circ}=-r \varphi \Delta \cdot C a l\right.
\]

 حر ارت حاصل عبارت است از :

\[
\mathrm{C}_{\substack{ \\0,51,5^{\circ}}} \quad \Delta \mathrm{H}_{r 0^{\circ}}=\psi 0 \cdot \mathrm{Cal}
\]

يعنى بر اكتبديل كرافبت به الماس •

 نبايستى تغييرى در حرارت مختلوط داده شود .
 سديـم مخلوط كنيم تغيبرى در حرارت محتوى ىاده نهىشود (در جه حر ارت تغنيبر نیى كند) .
\(\mathrm{NO}_{\mathrm{r}} \mathrm{K}_{(\mathrm{aq})}+\underset{\text { (aq) }}{\mathrm{BrNa}}=\mathrm{BrK} \underset{(\text { (aq) })}{ }+\mathrm{NO}_{\mathrm{r}}^{\mathrm{Na}} \underset{\text { (1q) }}{ } \quad \mathrm{Jl} \mathrm{I}=\).


\(\mathrm{NO}_{\mathrm{r}}{ }^{-1}+\mathrm{K}^{+}+\mathrm{Br}^{-1}+\mathrm{Na}^{+1}=\mathrm{Br}^{-1}+\mathrm{K}+1+\mathrm{NO}^{-1}+\mathrm{Na}^{+1}\)






\(\mathrm{SO}+\mathrm{Ba}+i \mathrm{CINa}\)
(s) (aq)
\[
\Delta I_{r \Delta^{\circ}} \therefore-\Delta \Lambda \cdots C a l
\]
وــا بـصو دت يو نى
\(\mathrm{Ba}^{+r}+\mathrm{SO}_{\varphi}^{-r}=\mathrm{SO}_{4} \mathrm{Ba}\)
\(\Delta \|_{r 0^{\circ}}=-\Delta \Lambda \cdots \mathrm{CaI}\)

 بوبده وبستكى بهنوع السيد وياباز بدارد.
\(\mathrm{ClH}+\mathrm{NaOH}=\mathrm{ClNa}+\mathrm{H}_{\mathrm{r}} \mathrm{C} \quad \Delta \mathrm{H}=-1\) rys \(\cdot \mathrm{Cel}\) (aq) (aq) (aq) (1)
\(\mathrm{ClH}_{(\mathrm{aq})}+\mathrm{L} \underset{(\mathrm{aq})}{\mathrm{iOH}}=\underset{(\mathrm{aq})}{\mathrm{CILi}}+\underset{\mathrm{r}_{(1)}}{\mathrm{O}} \quad \Delta \mathrm{H}=-\backslash r \vee \cdot \mathrm{CaI}\)

البته دليل اين ثابت بودن حرإرت سعلوم است جون إن اسيد هإي قوى ، بازهاى قوى


 هر مول آب بايستى ثابت باثد . مقــدار قبول شده بر ایى اين واكنش در . . . .
\(\mathrm{HI}_{\mathrm{r}} \mathrm{O}_{(\mathrm{aq})}^{+}+\underset{(\mathrm{Oq})}{-}=\underset{\text { (II) }}{\mathrm{OH}}\)
\(\Delta \mathrm{H}=-1 r 9 . . \mathrm{Cal}\) \(40_{0}^{\circ}\)
 ;ثان میدهد .






 كهت انحد










نوثت هبشو د :

حرارت ئيدراته شدن: . أزحر ارتا نححلالى مىتو توان حرارت ئيدراته شدن اجسام

\[
\mathrm{Cl}_{r} \mathrm{Ca}_{(\mathrm{s})}+r \mathrm{H}_{r} \mathrm{O}_{(\mathrm{l})}=\mathrm{Cl}_{r} \mathrm{Ca} \cdot r \mathrm{H}_{r} \mathrm{O}_{(\mathrm{s})}
\]
\[
\begin{equation*}
\mathrm{Cl}_{\curlyvee} \mathrm{Ca} \cdot\left\ulcorner\mathrm{H}_{\curlyvee} \mathrm{O}+\left\ulcorner\mathrm{H}_{\curlyvee} \mathrm{O}=\mathrm{Cl}_{r} \mathrm{Ca} \cdot ヶ \mathrm{H}_{r} \mathrm{O}\right.\right. \tag{s}
\end{equation*}
\]
(s)
(1)

حرارت انحلالى براى تر كيبات جامد مختلف كلرور كالسيم باآب بصورت زير ند:

\title{
\(1 \wedge^{\circ} \mathrm{C} \mathrm{C}\) جر ارت انحالالى .يك مول اسيد سو لغو ر.يك در آب ده
}
\begin{tabular}{|c|c|}
\hline \(\Delta \mathrm{H}\) & هول آب \\
\hline － & －／． \\
\hline －9Y． & －ハ1 \\
\hline －19\％． & －／ro \\
\hline －rr．． & －prr \\
\hline －4入Q． & \(\cdot 14 y\) \\
\hline －gyp． & \(1 / \cdots\) \\
\hline －Agr． & \(1 / 0\). \\
\hline －1．9人． & r，rr \\
\hline －｜r．1． & ＋／．． \\
\hline －Y．Y．• & \(\infty\) \\
\hline
\end{tabular}


\[
\Delta \mathrm{II}=--\mathrm{I} \cdot \mathrm{r} \cdot \mathrm{CaI}
\]
（r） \(\mathrm{Cl}_{r} \mathrm{Ca} \cdot \mu \mathrm{H}_{r} \mathrm{O}_{(s)}+\underset{\mathrm{s})}{ } \mathrm{H}_{r} \mathrm{O}_{(1)}=\mathrm{Cl}_{r} \mathrm{Ca}(\mu \cdot \mathrm{H}, \mathrm{O})\)
\(\Delta I I=-\backslash \wedge \mu \cdot \mathrm{Cal}\)

\[
\Delta I I=+ヶ \Delta q \cdot \mathrm{CaI}
\]

هما تطو ر كه مشاهده مثثو


\[
\mathrm{Cl}_{r} \mathrm{Ca}_{(s)}+r \mathrm{H}_{r} \mathrm{O}=\mathrm{Cl}_{r} \mathrm{Ca}_{(1)} \cdot \mathrm{HH}_{r} \mathrm{O} \underset{(s)}{ } \Delta \mathrm{H}=- \text { үqя. Cal }
\]



\(r P_{(\mathrm{s})}+r \mathrm{Cl}_{\mathrm{r}(\mathrm{g})}=\mathrm{PCl}_{\mathrm{r}(\mathrm{l})} \quad \Delta \mathrm{II}=-1 \Delta 1 \lambda \cdot \mathrm{Cal}\)
\(P \mathrm{Cl}_{r(1)} \cdots \mathrm{Cl}_{r(\mathrm{~g})}=\mathrm{PCl}_{\Delta(s)} \quad \quad \Delta I I=-r r \lambda I \cdot \mathrm{Cal}\)
r•••
\(\mathrm{Na}_{(s)}+\frac{1}{\gamma} \mathrm{Cl}_{\gamma(\mathrm{g})}=\mathrm{ClNa} \mathrm{a}_{(\mathrm{s})} \quad \Delta \mathrm{H}=-9 \wedge r q \cdot \mathrm{Cal}\)


\({ }_{Y} \mathrm{H}_{\mathrm{r}(\mathrm{g})}+{ }_{Y}{ }_{Y} \mathrm{Cl}_{r(\mathrm{~g})}=\mathrm{ClH}_{(\mathrm{g})} \quad \Delta \mathrm{H}=-Y Y \cdots \mathrm{Cal}\)

\(\mathrm{YClNa}(s)+\mathrm{SO}_{\psi} \mathrm{H}_{\gamma(1)}=\mathrm{SO}_{\psi} \mathrm{Na}_{\mathbf{Y}_{(s)}}+\mathrm{ClH}_{(\mathrm{g})}\)

\(\mathrm{Fe}_{\mathrm{r}} \mathrm{O}_{\mathrm{r}(\mathrm{s})}+\mathrm{CO}_{(\mathrm{g})}=\mathrm{CO}_{\mathrm{r}(\mathrm{g})}+\mathrm{rFeO}_{(\mathrm{s})}\)
\(r \mathrm{NO}_{\mathrm{r}(\mathrm{g})}=r \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{\mathrm{r}(\mathrm{g})}\)
\({ }^{\mu} \mathrm{C}_{\mathrm{r}} \mathrm{H}_{\mathrm{r}(\mathrm{g})}=\mathrm{C}_{\varphi} \mathrm{I}_{\boldsymbol{Y}(\mathrm{l})}\)
\(\mathrm{Ig} \mathrm{O}_{(\mathrm{s})}+\mathrm{rClII}_{(\mathrm{g})}=\mathrm{H}_{\mathrm{r}} \mathrm{O}_{(\mathrm{l})}+\mathrm{Cl}_{\mathrm{r}} \mathrm{Hg}_{(\mathrm{s})}\)
. ع- بر ای واكنش



 آن را درمهلول بسياردقيق حـابـينيـ
\[
\left.\mathrm{Ag}_{\mathrm{r}} \mathrm{O}_{(\mathrm{s})}+\mathrm{CClIH}_{(\mathrm{g})}=\mathrm{rClAg}(\mathrm{~s})+\mathrm{H}_{\mathrm{r}} \mathrm{O}_{(\mathrm{l})} \quad \Delta \mathrm{H}=-r \lambda\right) \cdot \mathrm{Cal}
\]
\[
r \lg (s)+{ }_{r} O_{r(g)}=\operatorname{Ag}_{r} O_{(s)} \quad \Delta H=-49 \cdots(\mathrm{Cal}
\]
\[
\frac{\imath}{r} \mathrm{H}_{r(\mathrm{~g})}+{ }_{r}{ }_{r} \mathrm{Cl}_{r(\mathrm{~g})}=\mathrm{ClH}_{(\mathrm{g})} \Delta \mathrm{H}=-r r \cdots \mathrm{Cal}
\]
\[
\mathrm{H}_{\mathrm{r}(\mathrm{~g})}+_{r}^{\prime} \mathrm{O}_{\mathrm{r}(\mathrm{~g})}=\mathrm{H}_{\mathrm{r}} \mathrm{O}_{(\mathrm{I})} \quad \Delta \mathrm{Lf}=-4 \lambda \mu \cdot \mathrm{Cal}
\]
\[
\begin{aligned}
& r \mathrm{Fr}(\mathrm{~s})+{ }_{r}^{r} \mathrm{O}_{r(\mathrm{~g})}=\mathrm{Fr}_{r} \mathrm{O}_{r(\mathrm{~s})} \quad \Delta \mathrm{II}=-1 q \wedge \Delta \cdot \mathrm{Cal} \\
& r \mathrm{FrO}(\mathrm{~s})+\frac{1}{r} \mathrm{O}_{r(\mathrm{~g})} \cdots \mathrm{Fer}_{r} \mathrm{O}_{\mathrm{r}(\mathrm{~s})} \quad \Delta \mathrm{H}=-499 \cdots \mathrm{Cal} \\
& \mathrm{Fe}+\mathrm{rlI}+=\mathrm{Fe}^{+}++\mathrm{II}_{\mathrm{r}(\mathrm{a})} \quad \Delta \mathrm{H}=-\mathrm{r} \cdot \boldsymbol{\mathrm { H }} \cdot \mathrm{Clal} \\
& { }_{Y}^{1} \mathrm{H}_{\mathrm{r}(\mathrm{~g})}=\mathrm{II}+\quad \Delta \mathrm{II}=\cdot \mathrm{CaI} \\
& I I_{r(g)}+Y_{r}^{\prime} O_{r(g)}==I I_{r} O_{(i)} \quad \Delta I I=-4 \lambda \mu \cdots C . a l \\
& \text { حر حر } \\
& \mathrm{FeO}_{(\mathrm{s})}+\mathrm{rII}+=\mathrm{H}_{\mathrm{r}} \mathrm{O}_{(\mathrm{s})}+\mathrm{Fe}^{+}+\mathrm{r} \\
& \text { 人 }
\end{aligned}
\]
\[
\begin{aligned}
& \text { Qـ الز, }
\end{aligned}
\]
\[
\begin{aligned}
& \mathrm{SO}_{4} \mathrm{Cu}_{-1}+\Delta \mathrm{H}_{\mathrm{r}} \mathrm{O}_{-}: \mathrm{SO}_{4} \mathrm{Cu} \cdot \Delta \mathrm{H}_{\mathrm{r}} \mathrm{O}_{(\mathrm{s})}
\end{aligned}
\]









 بنابراين ذرات نثاسنهو وكلرو نقده بايستى خيلى ريز باثند .






 مايع وفرذرات بين • ا تا . . . ا انكستروم است .
جدول شهاده هد



 كاز درجامد .

وليوفيل (جاذب مايع) تقـيم مى كنند .


 آب را فیتوان زان مبرد .


 اين نوع أست . سأِيرسل فاى ليو فيل درآب عبار تندازسر يشم، زلآتين، صابون، موادبروتئين
وسفيده تخم مرغ .



rar
كولو ئيدها
آيند • بیضى از اجسام داراى حنين ملكول هاى بزرك هستشد مثل ;ناسته و هروتئين ها .
 شرايط عهل دادد .
\[
\text { جدول شداره • } 4
\]

"






بيشترذرات كرد وغبارمعلقدردهوا درروشنائى معدولىقا بلاتشخيص نيستند ؛ ولى وقتى اتاق را تاريك كرده ويكيرتو نوردر آننابانيده وددجهتى عمود باهمسير نور بهآن نكاه شود ، ذرات

 . است




 زمينه سياه قإبل تشخيس مى بإثند.

 براو نى ناميدند

\section*{بو فو}






 خامبت الكتروفور رز (electrophoresis) (شكل ب • 1 ا) ناميده ميشود .



 بطرفكاتد میرود و بارمئبت بيد|امى كند


\(r \Delta \Delta\)
كولو ئبدها
ثكل نمار. 1.1

j,99,


\[
\begin{aligned}
& \text { جدول شهاده } 4 \\
& \text { راسب شلن سلهاى ليو فوب !وسيله الكترو وليتها }
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|r|}{سل سو لفو آرسنيك (-)} & \multicolumn{3}{|c|}{سل اكسيدفريك (+)} \\
\hline حدأقل لازم M & ظ. & الككت, & \[
\begin{gathered}
\text { هداقل لازم } \\
\text { M }
\end{gathered}
\] & ظرفيت آنيون & الكهر ليت \\
\hline \(\cdots \cdot 1\) & 1 & CINa & - ハ・r & 1 & CIK \\
\hline \% \(/\) +1 & 1 & CIH & -/ג & 1 & BrK \\
\hline \(\cdots \cdots\) & r & SOpMg & ./...rys & r & \(\mathrm{CrOrO}_{\mathrm{Y}}\) \\
\hline -/..csa & \(r\) & \(\mathrm{Cl}_{\mathrm{Y}} \mathrm{Ba}\) & -/..rra & \(r\) & \(\mathrm{SO}_{\boldsymbol{Y}} \mathrm{K}_{\mathrm{Y}}\) \\
\hline -/....ar & \(r\) & \(\mathrm{ClH}_{4} \mathrm{Al}\) & -/....a9 & \(r\) & \(\mathrm{Fe}(\mathrm{CN})_{\boldsymbol{y}} \mathrm{K}_{r}\) \\
\hline
\end{tabular}

هـ طرز تهيه سـلهاى ليو فوب : بطود كلى سلهاى ليوفوب دا بايستى طودى




 بيشتراين مواد دارإى يونهاى مشترك هستند . مثلا بعضى ازسوانغورنلزات را با دميدن كاز . در SHY
 برا برا ندازه ذرات كو لو ئبى است.عده زياى ازنعل وا ننمالات مختلف رسوب توليدمى كنند.


 .

 .يك سل كو كرد ددآب بدست مى آيد.
روث سوم از نوع ددهم كردن اسنفـاده از كمان برديتك ( شکكـل ه ه ا ا ) انست . دوس G.Bredig



سديم ثابت مى كر دند .

 نجاجبند تابزرتك شلده وته نشين شو ند ؟


 به اين نوع جذب شدن يون هاى بابار مشأ به بدياك ذره كو لوئيدى جذب سهطحى انتخايى



كهـ بان برد
 ذرات به وزن آنها بيدشتر مى كردد دوذره شکل 4 ل


 حر كت مى كنند. اكَ اينذرات باردار ازحل شدن يك نمكدرمايع حاصلشده باشنه، يون هالى مخالف آن ها درمحلول

 اكر يو نى وجود نداشته بإثد ، روى ذرات لايه هجافظا الى ازيون هاكى باردار بو جود نيامده و در نتيجه سل بو جود نهى آ يد . ولى اكر مقدار آنها به اندازه ای باشندكه تمام يون هانى بابار مشا به بوسيله ذرات جنب كردند ، شر ايط بباى تشكيل سل كاملا مناسب مى كردد .
 كنند، اثر نيروى دافهه بين ذرات بوسيله تعداد زـوادى يونهاى با بارمخخالف خنیىشده ذرات ؛هيكدبكر نزديك شده ومى چیسبند وته نشين مى كردند.
iranchembook.ir/edu
: 1.9 :


س







 دارای بِار مبُبت كردند. \(\therefore . x^{2}\)






 - \(\sin ^{\circ}\)


 يعنى آب آبت

。

بيشتر است.
جلجول شمار


Aـ فرضيه سل هاى ليو فيل • براى آ نكه تو جيه شودكه هرا ذرات ا ين ملـها






 نشان دادثشدهاسـت اطراف ذره تشكبل كردد. - \(\cdot 1 \times\) :




Ei.















كولو ئبدها
زل ها همان زله يا لـزذانك است انكه بعنوان غذا هورد استفاده قرادمى كيرد. سلههاى ليوفيل
 با اضافه كردن مقدارى الكتروليت بهذل تبديل نهو د ـ مثال اين نو ع سلمها|اسيد سبايسبك وئيدرات آهن است.





زل
-1- كولوئيل هـاى الكترو ليت . مخخلو ط صا هِن در آب قا بــليت هدايت
 آنها شبيه غير الككتروليتهها|ست، بخو بى بيشنر نمكها|الَّتر يسبته داهدايت مى كنند.
 تعداد كر بن هاى آن تاه|تا مهـكن است برسد، مثل :


زنجيره هأى طويلى مثل ملكول بالا درحدود اندازه ذرات كولوئيدى هستند. صابونهامامل كولوئيدها رونتار كرده وظاهر اً در آن واحد هم خاصيت الـكتروليتها را دا دارند وهمخاصيت






 ذزه سل و. Y يون سدیم•
\[
\cdots \cdot \mid x=
\]







selo


\section*{rqr}




 نیى كردند .





 اذنزديك شدن اين تطرات بـ يكديكى نين مى كردد.

111


امبلـيون روغن درآب

\section*{olo}

 عالاوه براينكه ذرات دوده خود توليد ناراحتى مى كنتد ، باءثمبثو ند كه بخادآب درسطح






 ir JK=

,



 آور نـد.

جوب دراثر خرارت خارج شده وازخود ج-م جامهد هتخلخلى, باقى مى كذار زد كـهـ بيشنر
rys
كو (و ئيدها


 درانُر كو جك شدن آ آنها.



جدول شه'دء YY

\section*{جنبFاز بو - يله يكت}
\begin{tabular}{|c|c|c|c|}
\hline 19/rCC & هتان & \(r \wedge \cdot C \mathrm{C}\) & | انيدريد سو إورو \\
\hline Q /rCC & اكسيد & \^1CC & آهو نباك \\
\hline r,vCC & ئيدرٌن & vrCC & ئيدرثن كاره \\
\hline
\end{tabular}

 ميشو ند ا; هولا


 درجسم !!قى ميكذارد.

\section*{فصل هجالهمم}

\section*{组}




















\[
\begin{aligned}
& \text { چجا } \\
& \text { ir }
\end{aligned}
\]





4 34

？
M綪索


Yaw tat












 هـتند مثل
\[
{ }_{\wedge r} \mathrm{~Pb}^{r \wedge},{ }_{,} \mathrm{Ca}^{4},{ }_{\wedge} \mathrm{O}^{19},{ }_{\curlyvee} \mathrm{He}^{4}
\]

F



 اورانيو مكه دراختياد او بودند وحتى خود




 ديكى بنام هاى راديوم ويو لو نيو كشفـ كند.


 - 90 •

موه



كورى ، دختر مرّ ومادامكورى ، وشوهرث فردريك ثرليو انججا'م كرفت.



\[
\text { Flle } \quad, \quad-i r
\]
 بنا بِ اين داراى دو بار هنبت أست .
 ذره آلكا باءث ميشو
 סینويسن .

\[
{ }_{a}^{r+r_{0}} \mathrm{Th} \longrightarrow{ }_{a 1}^{r+4} \mathrm{~Pa}+\underset{-1}{\circ} e
\]
 و'ى تنييرى درجرم دأده نشود .

\[
\stackrel{r r f}{\text { ripa }} \rightarrow \underset{a r}{r r} \mathrm{U}+{ }^{\circ} \mathrm{e}
\]
\[
-1
\]





سرى عناسر داديو اكتيوطبـیى


إيزوتوب يكديكى ند ايزِوتوبها خيلى زباد هستند كريه تعداد اتمها زياد نيستجدول

علاوه بر ذرات آلفا وبنا ، راديو اكتيو يته اغلب همر اه با اشهه كاما است. اشعه كمساما


 كاما ده هز ار مرتبه بيشت، است.



 تنبر Th-Y

\({ }_{9}^{\pi r} \mathrm{TH}_{1}\)
\[
{ }_{-1}^{0} \mathbf{c}
\]
\[
\underset{Q 1}{\text { rre }} \mathrm{Pa}
\]
 تبديل به يك هروتون وياك الكترون شده إيستكه الـكترون آن ازهسته خالر ج كيته است. اين تنيردا مىتو ان بو سيله هعادهل زير نشان داد :
\[
\left(\begin{array}{l}
1 \\
0
\end{array} \mathbf{1} \rightarrow \underset{-1}{0}\right)
\]
 خوأنده ميشود. مدت نيمه عمر عبارت است از زما نيكه للزماست تانصف ازيك جسم تجز يه


ميليارد سال تغيبر مى كند .
 عمر سنكهائى راكه درآن ها يكى ازمهواد راديوا كتيو وجود دارد تعيين كنيم. هith از روى

 شمر تهام دنيا است كه إذ دوى سرعت دور شدن كهكثان هاى ديـكر ازكهكششان خودهـان تَّهـین زده شده است.
"
 سال 1919 انجام كرفت 19 او اتم های ازت را بوسيله ذرات آلفا بهباران كرد و مشاهده
 نو ترون ها با يستى از هسته اتم ازت خارج شده باثشند و ففل و انفعال زير بايستى انجـام كرونه باشد.
\[
{ }_{\gamma}^{1+} \mathrm{N}+{ }_{r}^{\psi} \mathrm{He} \rightarrow i_{1}^{1}+{ }_{\lambda}^{1 \gamma} \mathrm{O}
\]


 هورت برابر ميكردد .
سـاير عناصر سبك نيز بوسيله ذره آلفـا بهـاران شدهانه و به عناصر ديعرى تبديل شدهاند. يكى ازآنها بهباران بر ليوبم است :
\({ }_{r}^{9} \mathrm{Be}+{ }_{\gamma}^{\dagger} \mathrm{He} \rightarrow{ }_{4}^{1 r} \mathrm{C}+{ }_{\mathrm{O}} \mathrm{n}\)
امروزه بجاى ذره آلفا از نوترون بر ای بهبارانكردن هسنه عناصر استفاده ميشود ،
 اين فلل وانفعالات بصورت زير است :
\[
\begin{aligned}
& { }_{\lambda}^{r} \mathrm{O}+{ }_{0}^{1} \mathrm{n} \longrightarrow{ }_{r}^{r} \mathrm{C}+{ }_{r}^{r} \mathrm{He} \\
& { }_{19}^{r a} \mathrm{~K}+{ }^{1} \mathrm{n} \longrightarrow{ }_{1}^{r} \mathrm{~K}+{ }_{r}^{1} \mathrm{n} \\
& { }_{\Delta}^{r} \mathrm{~B}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{1}^{r} \mathrm{H}+{ }_{r}^{r} \mathrm{He}
\end{aligned}
\]
rVY
ساختهان هسته و راديو أكتبو يته
\[
{ }_{9 r}^{r \lambda} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{9 r}^{r q} \mathrm{U}
\]





 ( استحاله هصنوعى )
\[
{ }_{r}^{Y} \mathrm{Mg}+{ }_{r}^{\psi} \mathrm{He} \rightarrow{ }_{{ }_{\psi}}^{Y Y} \mathrm{Si}^{*}+{ }_{\mathrm{i}} \mathrm{I}
\]
\[
{ }_{1 \psi}^{r Y} \mathrm{Si}^{*} \longrightarrow{ }_{1 r}^{r Y} \mathrm{Al}+{ }_{+1}^{\circ} \mathrm{e}
\]
( دراديو اكتبو يتهمهنونى عى )





 از خود دفن مى كنند. مثال هاى زير بهباران كـد دن عناصر ا بوسباه ذرات فوت نثان میدهند : (1) ذزه آلفا
(Y) ذذه بروتون
\[
\hat{r_{\mu}} \mathrm{Se}+{ }_{1}^{1} \mathrm{II} \rightarrow \hat{r}_{\Delta}^{\hat{0}} \mathrm{Br}^{*}+{ }_{0}^{1} \mathrm{n}
\]
\[
\hat{r}_{\Delta}^{\hat{1}} \mathrm{Br}^{*} \longrightarrow \hat{r}_{\varphi}^{\hat{*}} \mathrm{Kr}+-\mathrm{ic}
\]
(T) ذره دوترون .
\[
{ }_{\|}^{r r} \mathrm{Na}+{ }_{1}^{r} \mathrm{H} \rightarrow{ }_{\|}^{r \varphi} \mathrm{Na}{ }^{*}+{ }_{1}^{\dagger} \mathrm{H}
\]
\[
\begin{aligned}
& { }_{i r}^{r \Delta} \mathrm{Mg}+{ }_{r}^{\varphi} \mathrm{He} \rightarrow{ }_{i r}^{r} \mathrm{Al}{ }^{*}+{ }_{i}^{i} \mathrm{H} \\
& { }_{\mid r}^{r \wedge} \mathrm{Al}{ }^{*} \rightarrow{ }_{i r}^{r \wedge} \mathrm{Si}+\underset{-1}{\circ} \mathrm{e}
\end{aligned}
\]
\[
\begin{aligned}
& \text { شيمى عهومى }
\end{aligned}
\]
\[
\begin{aligned}
& \text { ( }
\end{aligned}
\]
\[
\begin{aligned}
& { }_{r \gamma}^{\lambda \psi} \mathrm{Rb}^{*} \longrightarrow{ }_{r \lambda^{*}}^{\hat{\mu}} \mathrm{Sr}+\underset{-i e}{ } \\
& { }_{10}^{1 /} \mathbf{P}+\gamma \rightarrow{ }_{10}^{r} \mathbf{P}^{*}+{ }_{0}^{1}{ }_{11} \\
& { }_{10}^{r} \mathrm{P}{ }^{*} \longrightarrow{ }_{1 \%}^{r \cdot} \mathrm{Si}++{ }_{i}^{\circ} \mathrm{e}
\end{aligned}
\]
ryp
 دادن بوزينر ون عنأصردا بوسيله معادله زير ميتوان نشانداده.
\[
\left({ }_{1} I I \longrightarrow,{ }^{n}+{ }^{\circ} \stackrel{\circ}{\circ}\right)
\]






النرذى هستهأى : دراول اين فهل ثبات هسته ازنظر راديو اكتيو يته مودد بحت

 هليوم دريافت . يك هسته هليوم ازدو نو ترون ودوبروتون تشكيل شده است . تحونجرميك


است ، النتطار ميرود كه جـرم هسته هليو م بر ابر ب!

كردد . ولى جرم هسته هليو ب ب . . /



\[
\mathrm{E}==\mathrm{m} \mathrm{C}^{r}
\]

كه درآن


 -يو ندهالى هسته را نشانییدهد




いث




 ان,
 عساوىاست .

 خارح مى كنْ





110
ى














 كِلو


ニilla liybe







\[
\begin{aligned}
& r_{1}^{\prime} \mathrm{H}+r_{1}^{\prime} \mathrm{H} \rightarrow r_{1}^{r} \mathrm{H}+r_{+i} \mathrm{e} \\
& r_{r}^{r} \mathrm{H}+r_{1} \mathrm{H} \rightarrow r_{r}^{r} \mathrm{He}
\end{aligned}
\]
\(\frac{{ }_{r}^{r} \mathrm{He}+{ }_{r}^{r} \mathrm{He} \rightarrow{ }_{r}^{r} \mathrm{He}+r^{\prime} \mathrm{II}}{{ }_{r}^{\prime} \mathrm{H} \rightarrow{ }_{r}^{r} \mathrm{He}+{ }_{r}+{ }_{+} \mathrm{e}}\)







\section*{منابع مورد إستفاذهدر تأليغ إين كتاب}


 نيويوردي - آمريK McGraw - Hill
 انتشارات Macmillan نيو يو رك - آمريك

John - Wiley
هـ شيمى معدنى_ تأليف : T. Moeller اذ انتشارات
نيو يورك - آهر
4- تعادل يونى ــ تأليف : E. J. Margolis از انتشارات نيو ويور - Macmillan

دانشكده صنتی( بلى تكنيك) تهر ان ـ ايران

「人．

\section*{ضهميهـ}

فشاربخار آب
\begin{tabular}{|c|c|c|c|}
\hline فشار بنار－ميليمتر جيوه & دوجه حر الـ & فشار بنخار＿ميليمتر جيوه & در \({ }^{\circ} \mathrm{C}-\mathrm{C}\) \\
\hline YO／r & res & 4,4 & － \\
\hline r9， P & ry & 910 & 0 \\
\hline ra／r & 「＾ & a／r & 1. \\
\hline r．j• & rq & \(9 / 1\) & 11 \\
\hline rys & \(r\) 。 & \(1 \cdot 10\) & IT \\
\hline fry & ros & 11／r & Ir \\
\hline \(\Delta \Delta / r\) & \(\psi\) ． & ｜r｜． & if \\
\hline v1／a & 40 & Ir／s & 10 \\
\hline 9r／0 & \(\Delta\) ． & ir，9 & 19 \\
\hline 14a／4 & 9. & 14／0 & 1 V \\
\hline rren & \(\gamma\) ． & 10／0 & 11 \\
\hline r Sos & \(\wedge\)－ & \(19 / 0\) & 19 \\
\hline arals & 9. & ｜V／a & r． \\
\hline grrea & 90 & \(10 / 9\) & YI \\
\hline VG．1． & \(1 \cdots\) & 19.10 & rr \\
\hline \(9.9 / 1\) & \(1 \cdot 0\) & Y1／ & Tr \\
\hline \(1 \cdot p 4 / 4\) & 11. & rr／f & rf \\
\hline \(1+1\) a／l & M． & rr／A & YO \\
\hline
\end{tabular}

ثابت يوو نيز اسيون（ اولين يو نيز اسيون فقط ）
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{K}_{1}\) & جسم & K， & جسم \\
\hline \(0,9 \times 1 .-1\) & \(\mathrm{AsO}_{4} \mathrm{H}_{r}{ }^{-1}\) & \(\Delta \times 1 . \cdots\) & CrOlitr \\
\hline \(r \times 1 \cdot-r\) & \(\mathrm{AsO}_{4} \mathrm{II}^{-r}\) & \(1 \times 1.1\) & \(\mathrm{CuOH}+1\) \\
\hline 1／•×1．－14 & \(\mathrm{H}_{5} \mathrm{O}\) & F \(\times 1 .-1\) & \(\mathrm{ZnOH}+\) \\
\hline リハメリート & Slir & 4／．\(\times 1 \cdot-1\). & \(\mathrm{BO}_{r} \mathrm{H}_{r}\) \\
\hline \(1 \times 1 .-14\) & SII－： & r／relerer & \(\mathrm{CO}_{r}-1-\mathrm{Hr}_{r} \mathrm{O}\) \\
\hline 1／r× \(\mathbf{H}^{\text {rer }}\) & \(\mathrm{SO}_{r} \mathrm{II}_{\text {r }}\) & ¢／＾× \(\times 1 .-\cdots\) & \(\mathrm{CO}_{r} \mathrm{H}{ }^{-1}\) \\
\hline 0，r× \(\mathbf{r a r}^{-1}\) & \(\mathrm{SO}_{r} \mathrm{II}^{-1}\) & \(1 / \wedge \times 1 .-\)－ & \(\mathrm{Cipr}_{\mathbf{r}} \mathrm{IH}_{r} \mathrm{O}_{r} \mathrm{H}\) \\
\hline 1／r× \({ }^{1 /-r}\) & \(\mathrm{SO}_{4} \mathrm{HI}-1\) & ¢／\(\times\)（ \(\cdot-1 \cdot\) & CNII \\
\hline \(1 / 9 \times 1 .-4\) & \(\mathrm{SelH}_{r}\) & 1／＾×1．－s & \(\mathrm{NH}_{4} \mathrm{OH}\) \\
\hline r／vele－r & \(\mathrm{SeO}_{r} \mathrm{H}_{Y}\) & F／ \(0 \times 1 .-4\) & \(\mathrm{NO}_{\mathrm{r}} \mathrm{II}\) \\
\hline  & \(\mathrm{SeO}_{r} \mathrm{HI}^{-1}\) & \(1 / 9 \times 1 \cdot{ }^{-r}\) & \(\mathrm{PO}_{r} \mathrm{H}_{r}\) \\
\hline r／relor & Telly & \(r \times 1 \cdot-v\) & \(\mathrm{PO}_{r} \mathrm{H}_{Y}{ }^{-1}\) \\
\hline \％人 \(\times 1 .-\)－ & FH & \(y / \Delta \times 1 \cdot-r\) & \(\mathrm{PO}_{4} \mathrm{HI}_{r}\) \\
\hline \(r\) rel．－s & ClOH & 9／r×1．－1 & \(\mathrm{PO}_{4} \mathrm{H}_{r}{ }^{-1}\) \\
\hline リ／1×1．－r & \(\mathrm{ClO}_{\mathbf{r}} \mathrm{H}\) & 1．－rr & \(\mathrm{PO}_{4} \mathrm{H}^{-r}\) \\
\hline & & \(r / 0 \times 1 .-r\) & \(\mathrm{AsO}_{4} \mathrm{H}_{r}\) \\
\hline
\end{tabular}

\section*{حاصلضرب انحلالى}
\begin{tabular}{|c|c|c|c|}
\hline \({ }^{\circ} \mathrm{C} \leadsto 3 \mathrm{~K}\) & جسم & \({ }^{\circ} \mathrm{C}\) C S & جسم \\
\hline r／9×1．－\({ }^{\circ}\left(1 r^{0}\right)\) & كر بنات منيز يوم & \(r / Y \times 10^{-10}\left(Y 0^{\circ}\right)\) & يُيدرات آلوهينيوم \\
\hline リハ×1．－\({ }^{(110}\) ） & ئيدرات منيز يوم & 人／XXV．－9（Y0 \({ }^{\circ}\) & كر بتات بإيو \\
\hline \(1 / 4 \times 1 .{ }^{-10}\left(1 s^{0}\right)\) & سو لفو دمنغانو &  & ｜كسالات باريو \\
\hline \(4 \times 1 .-\Delta r\left(1 \wedge^{\circ}\right)\) & سو لفورمر كوردك & \(1 / \cdot \lambda \times 1 \cdot-1^{\prime}\left(Y 0^{\circ}\right)\) & سو لفات باريوم \\
\hline Y \(\times 1 .-1 s_{-14}^{\left(r 0^{\circ}\right.}\) ） & كلر ودهر كو．． & \(r / 4 \times 1 .-r^{9}\left(1 \Lambda^{0}\right)\) & سو لفور كادهيوم \\
\hline \(1 / 4 \times 1 .-r 4\left(1 s^{\circ}\right)\) & س．لفو نيكل & －／\(\Lambda \vee \times 1 \cdot{ }^{-\lambda}\left(Y \Delta^{\circ}\right)\) & كر بنات كا \\
\hline  & برهود نهر0 & \(r / \Delta V \times 1 \cdots^{-9}\left(r \Delta^{\circ}\right)\) & اكسالات كإيم \\
\hline  & كر بنات نقره & \(4 八 \times 1 \cdot-^{\circ}\left(1 \cdot{ }^{\circ}\right)\) & سو لفات كالـيم \\
\hline  & كلرور نقر & \(r \times 1 \cdot{ }^{r 9}\left(1 \wedge^{\circ}\right)\) & سولفو دكو بالت \\
\hline a \(\times 1 .-14\left(Y 0^{\circ}\right.\) ） & كرمات نقر & \(\Lambda / \Delta \times 1 \cdot{ }^{\mu}{ }^{\mu}\left(1 \Lambda^{\circ}\right)\) & سو لفو رمس（Y） \\
\hline  & سيا نور نقره & \(r \times 1 \cdot-r r\left(1 N^{\circ}\right)\) & سولفود مس（1） \\
\hline \(1 / \Delta \times 1 .-19^{19}\left(Y 0^{\circ}\right)\) & يدرو نقر & リハ×1．\(-^{r q}\left(1 \wedge^{\circ}\right)\) & ُيددات فريك \\
\hline 1／4×1．－49 \(\left(1 \wedge^{\circ}\right)\) & سو لفور نهر & \(1 / 4+\times 1 \cdot-14\left(10^{\circ}\right)\) & ＇يدرات فرو \\
\hline \(1 / 9 \times 1 .-9^{9}\left(70^{\circ}\right)\) & كر بنات استر نسيو & r／y× \({ }^{-19}\left(1 \wedge^{\circ}\right)\) & سولفور فرو \\
\hline \(0,91 \times 1 .{ }^{-1}\left(11^{\circ}\right)\) & اكــالات｜سنر نسيوم & \(r\) rel \({ }^{-1 r}\left(1 \wedge^{\circ}\right)\) & كر بنات سرب \\
\hline \(r / \Lambda \backslash \times 1 \cdot{ }^{-r}\left(1 \wedge^{\circ}\right)\) & سو لفات استر نسيوم & 1／vv× \(\mathrm{l}^{-14}\left(1 \wedge^{\circ}\right)\) & كرمات سرب \\
\hline \(1 / \wedge \times 1 .-14\left(19^{\circ}\right)\) & ئيدرات روى & \(1 / .9 \times 1 .{ }^{-1}\left(1 \wedge^{\circ}\right)\) & سولفات سرب \\
\hline MrX1．－rr（100） & سولفور & \(r / 4 \times 1 \cdot{ }^{-r}\left(1 \wedge^{\circ}\right)\) & سو لفود سرب \\
\hline
\end{tabular}

فعابيتشيميا ئى فلز اتري مصرف


INTERNATIONAL ATOPIC WEIGHTS
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & Atomic & Atomic & & & Atomic & Atomic \\
\hline & Symbol & Numbei & Weight & & Symbol & Number & Weighe \\
\hline Actinium & Ac & - 89 & ... & Mercuiy & Hg & 80 & 20061 \\
\hline Aluminum & Al & 13 & 2698 & Molybdenum & Mo & 12 & 9695 \\
\hline Americium & Am & 95 & & Neodymium & ivd & 60 & 144.7 \\
\hline Antimony & Sb & 51 & 121.76 & Neon & Ne & 10 & 20183 \\
\hline Argon & Ar & 18 & 39.944 & Neptunium & \(N \mathrm{p}\) & 93 & \\
\hline Arsenic & As & 33 & 74.91 & Nickel & N & 28 & 5871 \\
\hline Astatine & At & 85 & \(\ldots\) & Niobium & No & 41 & 2291 \\
\hline Barium. & Ba & 56 & 137.36 & Nitrogen & N & 7 & 14008 \\
\hline Berkelium & Bk & 97 & \(\ldots\) & Nobelum & No & 102 & \\
\hline Beryllium & Be & 4 & 9.013 & Osinium & Os & 76 & 1902 \\
\hline Bismuth & B1 & 83 & 20900 & Orizen & 0 & 8 & 16 \\
\hline Boron & B & 5 & 1082 & Palladum & 1.1 & 45 & 1061 \\
\hline Bromine & Br & 35 & 79916 & Phosphori ; & F & 19 & 309 \\
\hline Cadmium & Cd & 48 & [1241 & Platinumi & \(p_{\text {i }}\) & is & 10509 \\
\hline Calcium & Ca & 20 & 4005 & Plutomian & Pu & 91 & \\
\hline Californium & Cf & 98 & & Polonum & Po & 8.4 & \\
\hline Carbon & C & 6 & 12011 & Potassum & K & 19 & 39.100 \\
\hline Cerium & Cc & 58 & \(1 \div 313\) & Prascodymam & Pr & 59 & 14092 \\
\hline Cesium & Cs & 55 & 1284 & Fromethemen & F. & 61 & ... \\
\hline Chiorine & Cl & 17 & 3545 & Protactianim & P. & 91 & \\
\hline Chromum & Cr & \(2 ;\) & 5791 & Radum & R, & 83 & \\
\hline Cotalt & Co & 27 & 5894 & Radon & 「い & 86 & . \\
\hline Copper & Cu & 29 & 63.54 & Phenturn & Re & 75 & \(18 \cdot 22\) \\
\hline Curium & Cm & - & & Rhodium & W & 45 & 10291 \\
\hline Dysprosium & Dy & 66 & 102.51 & Rubidium & Fib & 37 & 85.48 \\
\hline Einsteinium & Es & 99 & ... & Ruthenium & Fid & 4.4 & 10.1 \\
\hline Erbium & Lr & 68 & 16727 & Samaric.ll & Son & 62 & 150.35 \\
\hline Europ;um & Eu & 63 & 152.0 & Senndium & Sc & 21 & 44.96 \\
\hline Fermium & Fm & 100 & .. & Selenium & Se & 34 & 7896 \\
\hline Fluorine & F & 9 & 19.00 & Silicon & 5 & 14 & 2809 \\
\hline Francium & Fr & 87 & \(\ldots\) & Silver & Ag & 47 & 107.880 \\
\hline Gaciolinium & Gd & 64 & 157.26 & Sodum & iva & 11 & 22.991 \\
\hline Gallium & Ga & 31 & 69.72 & Strontium & Sr & 38 & 87.63 \\
\hline Germanium & Ge & 32 & 72.60 & Sulfur & S & 16 & 32.065 \\
\hline Gold & Aus & 79 & 197.0 & Tantalum & Ta & 73 & 180.95 \\
\hline Hafnium & Hf & 72 & 17850 & Technetium & Tc & 43 & 127.1 \\
\hline Helium & He & 2 & 4.003 & Tellurium & Te & 52 & 127.61 \\
\hline Holmium & \(\mathrm{Ho}^{2}\) & 67 & 154.94 & Terbium & Tb & 65 & 158.93 \\
\hline Hydrogen & H & 1 & 1.0080 & Thallium & TI & 81 & 204.39 \\
\hline Indium & In & 49 & 114.82 & Thorium & Th & 90 & 232.05 \\
\hline lodine & 1 & 53 & 126.91 & Thulium & 7 m & 69 & 168.94 \\
\hline Iridium & ir & 77 & 192.2 & Tin & Sn & 50 & 118.70 \\
\hline Iron & Fe & 26 & 55.85 & Titanium & \(\top_{1}\) & 22 & 47.90 \\
\hline Krypton & Kr & 36 & 83.80 & Tungsten & W & 74 & 183.86 \\
\hline Lanthanum & La & 57 & 138.92 & Uranium & U & 92 & 238.07 \\
\hline Lead & Pb & 82 & 207.21 & Vanadium & \(\checkmark\) & 23 & 50.95 \\
\hline Lithium & Li & 3 & 6.940 & Xenon & Xe & 54 & 131.30 \\
\hline Lutetium & Lu & 71 & 174.99 & Ytterbium & Yb & 70 & 173.04 \\
\hline Magnesium & Mg & 12 & 24.32 & Yttrium & Y & 39 & 88.92 \\
\hline Manganese & Mn & 25 & 54.94 & Zinc & Zn & 30 & 65.38 \\
\hline Mendelevium & Md & 101 & ... & Zirconium & Zr & 40 & 91.22 \\
\hline
\end{tabular}
iranchembpok. ir/ed \(\mu\).
```


[^0]:

