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FUNDAMENTAL CONSTANTS

Constant Symbol Value

Power of 10 Units

Speed of light c 2.997 924 58* 108 m s−1

Elementary charge e 1.602 176 565 10−19 C

Planck’s constant h 6.626 069 57 10−34 J s

ħ = h/2π 1.054 571 726 10−34 J s

Boltzmann’s constant k 1.380 6488 10−23 J K−1

Avogadro’s constant NA 6.022 141 29 1023 mol−1

Gas constant R = NAk 8.314 4621 J K−1 mol−1

Faraday’s constant F = NAe 9.648 533 65 104 C mol−1

Mass

 Electron me 9.109 382 91 10−31 kg

 Proton mp 1.672 621 777 10−27 kg

 Neutron mn 1.674 927 351 10−27 kg

 Atomic mass constant mu 1.660 538 921 10−27 kg

Vacuum permeability μ0 4π* 10−7 J s2 C−2 m−1

Vacuum permittivity ε0 = 1/μ0c2 8.854 187 817 10−12 J−1 C2 m−1

4πε0 1.112 650 056 10−10 J−1 C2 m−1

Bohr magneton μB = eħ/2me 9.274 009 68 10−24 J T−1

Nuclear magneton μN = eħ/2mp 5.050 783 53 10−27 J T−1

Proton magnetic moment μp 1.410 606 743 10−26 J T−1

g-Value of electron ge 2.002 319 304

Magnetogyric ratio

 Electron γe = –gee/2me –1.001 159 652 1010 C kg−1

 Proton γp = 2μp/ħ 2.675 222 004 108 C kg−1

Bohr radius a0 = 4πε0ħ2/e2me 5.291 772 109 10−11 m

Rydberg constant �R m e h c∞ = e
4 3

0
28/ ε 1.097 373 157 105 cm−1

hcR e�
∞ / 13.605 692 53 eV

Fine-structure constant α = μ0e2c/2h 7.297 352 5698 10−3

α−1 1.370 359 990 74 102

Second radiation constant c2 = hc/k 1.438 777 0 10−2 m K

Stefan–Boltzmann constant σ = 2π5k4/15h3c2 5.670 373 10−8 W m−2 K−4

Standard acceleration of free fall g 9.806 65* m s−2

Gravitational constant G 6.673 84 10−11 N m2 kg−2

* Exact value. For current values of the constants, see the National Institute of Standards and Technology (NIST) website.
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PREFACE

This new edition is the product of a thorough revision of 
content and its presentation. Our goal is to make the book 
even more accessible to students and useful to instructors by 
enhancing its flexibility. We hope that both categories of user 
will perceive and enjoy the renewed vitality of the text and the 
presentation of this demanding but engaging subject.

The text is still divided into three parts, but each chapter is 
now presented as a series of short and more readily mastered 
Topics. This new structure allows the instructor to tailor the text 
within the time constraints of the course as omissions will be 
easier to make, emphases satisfied more readily, and the trajec-
tory through the subject modified more easily. For instance, 
it is now easier to approach the material either from a ‘quan-
tum first’ or a ‘thermodynamics first’ perspective because it 
is no longer necessary to take a linear path through chapters. 
Instead, students and instructors can match the choice of 
Topics to their learning objectives. We have been very care-
ful not to presuppose or impose a particular sequence, except 
where it is demanded by common sense.

We open with a Foundations chapter, which reviews basic 
concepts of chemistry and physics used through the text. Part 
1 now carries the title Thermodynamics. New to this edition is 
coverage of ternary phase diagrams, which are important in 
applications of physical chemistry to engineering and mater-
ials science. Part 2 (Structure) continues to cover quantum the-
ory, atomic and molecular structure, spectroscopy, molecular 
assemblies, and statistical thermodynamics. Part 3 (Change) 
has lost a chapter dedicated to catalysis, but not the material. 
Enzyme-catalysed reactions are now in Chapter 20, and hetero-
geneous catalysis is now part of a new Chapter 22 focused on 
surface structure and processes.

As always, we have paid special attention to helping students 
navigate and master this material. Each chapter opens with a 
brief summary of its Topics. Then each Topic begins with three 
questions: ‘Why do you need to know this material?’, ‘What is 
the key idea?’, and ‘What do you need to know already?’. The 
answers to the third question point to other Topics that we con-
sider appropriate to have studied or at least to refer to as back-
ground to the current Topic. The Checklists at the end of each 

Topic are useful distillations of the most important concepts 
and equations that appear in the exposition.

We continue to develop strategies to make mathematics, 
which is so central to the development of physical chemistry, 
accessible to students. In addition to associating Mathematical 
background sections with appropriate chapters, we give more 
help with the development of equations: we motivate them, 
justify them, and comment on the steps taken to derive them. 
We also added a new feature: The chemist’s toolkit, which offers 
quick and immediate help on a concept from mathematics or 
physics.

This edition has more worked Examples, which require 
students to organize their thoughts about how to proceed 
with complex calculations, and more Brief illustrations, 
which show how to use an equation or deploy a concept in 
a straightforward way. Both have Self-tests to enable students 
to assess their grasp of the material. We have structured the 
end-of-chapter Discussion questions, Exercises, and Problems 
to match the grouping of the Topics, but have added Topic- 
and Chapter-crossing Integrated activities to show that sev-
eral Topics are often necessary to solve a single problem. The 
Resource section has been restructured and augmented by the 
addition of a list of integrals that are used (and referred to) 
throughout the text.

We are, of course, alert to the development of electronic 
resources and have made a special effort in this edition to 
encourage the use of web-based tools, which are identified in 
the Using the book section that follows this preface. Important 
among these tools are Impact sections, which provide examples 
of how the material in the chapters is applied in such diverse 
areas as biochemistry, medicine, environmental science, and 
materials science.

Overall, we have taken this opportunity to refresh the text 
thoroughly, making it even more flexible, helpful, and up to 
date. As ever, we hope that you will contact us with your sug-
gestions for its continued improvement.

PWA, Oxford
JdeP, Portland
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USING THE BOOK

Organizing the information

➤  Innovative new structure
Each chapter has been reorganized into short topics, 
making the text more readable for students and more 
flexible for instructors. Each topic opens with a comment 
on why it is important, a statement of the key idea, and a 
brief summary of the background needed to understand 
the topic.

➤  Notes on good practice
Our Notes on good practice will help you avoid making 
common mistakes. They encourage conformity to the 
international language of science by setting out the 
conventions and procedures adopted by the International 
Union of Pure and Applied Chemistry (IUPAC).

➤  Resource section
The comprehensive Resource section at the end of the book 
contains a table of integrals, data tables, a summary of con-
ventions about units, and character tables. Short extracts 
of these tables often appear in the topics themselves, prin-
cipally to give an idea of the typical values of the physical 
quantities we are introducing. 

For the tenth edition of Physical Chemistry: Thermodynamics, 
Structure, and Change we have tailored the text even more 
closely to the needs of students. First, the material within each 
chapter has been reorganized into discrete topics to improve 
accessibility, clarity, and flexibility. Second, in addition to 

the variety of learning features already present, we have sig-
nificantly enhanced the mathematics support by adding new 
Chemist’s toolkit boxes, and checklists of key concepts at the 
end of each topic.

The presentation of physical chemistry in this text is based on 
the experimentally verified fact that matter consists of atoms. 

A.1 Atoms

Z

nucleon number
number), A

ber are the isotopes

(a) 

According to the 

each of charge –e (

are arranged in 
acterized by the 
consists of n2

into n subshells

(b) 

table are called 

Contents

A.1 Atoms 2
(a) The nuclear model 2
(b) The periodic table 2
(c) Ions 3

A.2 Molecules 3
(a) Lewis structures 3

Brief illustration A.1: Octet expansion 4
(b) VSEPR theory 4

Brief illustration A.2: Molecular shapes 4
(c) Polar bonds 4

Brief illustration A.3: Nonpolar molecules with  
polar bonds 4

A.3 Bulk matter 5
(a) Properties of bulk matter 5

Brief illustration A.4: Volume units 5
(b) The perfect gas equation 6

Example A.1: Using the perfect gas equation 7
Checklist of concepts 7
Checklist of equations 8

➤➤ Why do you need to know this material?
Because chemistry is about matter and the changes 
that it can undergo, both physically and chemically, the 
properties of matter underlie the entire discussion in this 
book.

➤➤ What is the key idea?
The bulk properties of matter are related to the identities 
and arrangements of atoms and molecules in a sample.

➤➤ What do you need to know already?
This Topic reviews material commonly covered in 
introductory chemistry.
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To specify the state of a sample fully it is also necessary to 
give its temperature, T. The temperature is formally a prop-
erty that determines in which direction energy will flow as 
heat when two samples are placed in contact through ther-
mally conducting walls: energy flows from the sample with the 
higher temperature to the sample with the lower temperature. 
The symbol T is used to denote the thermodynamic tempera-
ture which is an absolute scale with T = 0 as the lowest point. 
Temperatures above T = 0 are then most commonly expressed 
by using the Kelvin scale, in which the gradations of tempera-
ture are expressed as multiples of the unit 1 kelvin (1 K). The 
Kelvin scale is currently defined by setting the triple point of 

 
certain other units, a decision has been taken to revise this 
definition, but it has not yet, in 2014, been implemented). The 
freezing point of water (the melting point of ice) at 1 atm is 
then found experimentally to lie 0.01 K below the triple point, 
so the freezing point of water is 273.15 K. The Kelvin scale is 
unsuitable for everyday measurements of temperature, and it is 
common to use the Celsius scale, which is defined in terms of 
the Kelvin scale as

θ / / .° = −C K 273 15T  Definition  Celsius scale  (A.4)

Thus, the freezing point of water is 0 °C and its boiling point (at 
1 atm) is found to be 100 °C (more precisely 99.974 °C). Note 
that in this text T invariably denotes the thermodynamic (abso-
lute) temperature and that temperatures on the Celsius scale 
are denoted θ (theta).

A note on good practice Note that we write T = 0, not T = 0 K. 
General statements in science should be expressed without 
reference to a specific set of units. Moreover, because T (unlike 
θ) is absolute, the lowest point is 0 regardless of the scale used 
to express higher temperatures (such as the Kelvin scale). 
Similarly, we write m = 0, not m = 0 kg and l = 0, not l = 0 m.

(b) The perfect gas equation
The properties that define the state of a system are not in gen-
eral independent of one another. The most important example 
of a relation between them is provided by the idealized fluid 
known as a perfect gas (also, commonly, an ‘ideal gas’):

pV nRT=   Perfect gas equation  (A.5)

Here R is the gas constant, a universal constant (in the sense 
of being independent of the chemical identity of the gas) with 
the value 8.3145 J K−1 mol−1. Throughout this text, equations 
applicable only to perfect gases (and other idealized systems) 
are labelled, as here, with a number in blue.

A note on good practice Although the term ‘ideal gas’ is 
almost universally used in place of ‘perfect gas’, there are 
reasons for preferring the latter term. In an ideal system 
the interactions between molecules in a mixture are all the 
same. In a perfect gas not only are the interactions all the 
same but they are in fact zero. Few, though, make this useful 
distinction.

Equation A.5, the perfect gas equation, is a summary of 
three empirical conclusions, namely Boyle’s law (p ∝ 1/V at 
constant temperature and amount), Charles’s law (p ∝ T at con-
stant volume and amount), and Avogadro’s principle (V ∝ n at 
constant temperature and pressure).

The result of a measurement is a physical quantity that is 
reported as a numerical multiple of a unit:

physicalquantity numerical value unit= ×

It follows that units may be treated like algebraic quanti-
ties and may be multiplied, divided, and cancelled. Thus, the 
expression (physical quantity)/unit is the numerical value (a 
dimensionless quantity) of the measurement in the specified 
units. For instance, the mass m of an object could be reported 
as m = 2.5 kg or m/kg = 2.5. See Table A.1 in the Resource sec-
tion for a list of units. Although it is good practice to use only 
SI units, there will be occasions where accepted practice is 
so deeply rooted that physical quantities are expressed using 
other, non-SI units. By international convention, all physical 
quantities are represented by oblique (sloping) symbols; all 
units are roman (upright).

Units may be modified by a prefix that denotes a factor of a 
power of 10. Among the most common SI prefixes are those 
listed in Table A.2 in the Resource section. Examples of the use 
of these prefixes are:

Powers of units apply to the prefix as well as the unit they mod-
ify. For example, 1 cm3 = 1 (cm)3, and (10−2 m)3 = 10−6 m3. Note 
that 1 cm3 does not mean 1 c(m3) . When carrying out numeri-
cal calculations, it is usually safest to write out the numerical 
value of an observable in scientific notation (as n.nnn × 10n).

There are seven SI base units, which are listed in Table A.3 
in the Resource section. All other physical quantities may be 
expressed as combinations of these base units (see Table A.4 
in the Resource section). Molar concentration (more formally, 
but very rarely, amount of substance concentration) for exam-
ple, which is an amount of substance divided by the volume it 
occupies, can be expressed using the derived units of mol dm−3 
as a combination of the base units for amount of substance 
and length. A number of these derived combinations of units 
have special names and symbols and we highlight them as 
they arise.

1 nm = 10−9 m 1 ps = 10−12 s 1 µmol = 10−6 mol

01_Atkins_Ch00A.indd   6 8/22/2013   12:57:41 PM

RESOURCE SEC TION

Contents

1 Common integrals 964

2 Units 965

3 Data 966

4 Character tables 996
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Using the book  vii

➤  Checklist of concepts

A Checklist of key concepts is provided at the end of each 
topic so that you can tick off those concepts which you feel 
you have mastered.

Presenting the mathematics

➤  Justifications
Mathematical development is an intrinsic part of physical 
chemistry, and to achieve full understanding you need 
to see how a particular expression is obtained and if any 
assumptions have been made. The Justifications are set off 
from the text to let you adjust the level of detail to meet 
your current needs and make it easier to review material.

➤  Chemist’s toolkits
New to the tenth edition, the Chemist’s toolkits are succinct 
reminders of the mathematical concepts and techniques 
that you will need in order to understand a particular 
derivation being described in the main text.

➤  Mathematical backgrounds
There are six Mathematical background sections dispersed 
throughout the text. They cover in detail the main 
mathematical concepts that you need to understand in 
order to be able to master physical chemistry. Each one is 
located at the end of the chapter to which it is most relevant. 

stant volume by using the relation Cp,m − CV,m = R.)

Answer From eqn 3A.16 the entropy change in the isothermal 
expansion from Vi to Vf is

Self-test 3A.11 

Checklist of concepts

☐ 1. The entropy acts as a signpost of spontaneous change.
☐ 2. Entropy change is defined in terms of heat transactions 

(the Clausius definition).
☐ 3. The Boltzmann formula defines absolute entro-

pies in terms of the number of ways of achieving a 
configuration.

☐ 4. The Carnot cycle is used to prove that entropy is a state 
function.

☐ 5. The efficiency of a heat engine is the basis of the defini-
tion of the thermodynamic temperature scale and one 
realization, the Kelvin scale.

☐ 6. The 

☐ 7. 

☐ 8. 

☐ 9. 
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118 3 The Second and Third Laws

2. Then to show that the result is true whatever the working 
substance.

3. Finally, to show that the result is true for any cycle.

(a) The Carnot cycle
A Carnot cycle, which is named after the French engineer Sadi 
Carnot, consists of four reversible stages (Fig. 3A.7):

1. Reversible isothermal expansion from A to B at Th; the 
entropy change is qh/Th, where qh is the energy supplied 
to the system as heat from the hot source.

2. Reversible adiabatic expansion from B to C. No energy 
leaves the system as heat, so the change in entropy is 
zero. In the course of this expansion, the temperature 
falls from Th to Tc, the temperature of the cold sink.

3. Reversible isothermal compression from C to D at Tc. 
Energy is released as heat to the cold sink; the change in 
entropy of the system is qc/Tc; in this expression qc is 
negative.

4. Reversible adiabatic compression from D to A. No energy 
enters the system as heat, so the change in entropy is 
zero. The temperature rises from Tc to Th.

The total change in entropy around the cycle is the sum of the 
changes in each of these four steps:

d h

h

c

c
S q

T
q
T= +∫�

However, we show in the following Justification that for a 
 perfect gas

q
q

T
T

h

c

h

c
= −

 
(3A.7)

Substitution of this relation into the preceding equation gives 
zero on the right, which is what we wanted to prove.

Justification 3A.1 Heating accompanying reversible 
adiabatic expansion

This Justification is based on two features of the cycle. One fea-
ture is that the two temperatures Th and Tc in eqn 3A.7 lie on 
the same adiabat in Fig. 3A.7. The second feature is that the 
energy transferred as heat during the two isothermal stages 
are

q nRT V
V q nRT V

Vh h
B

A
c c

D

C
= =ln ln

 

We now show that the two volume ratios are related in a very 
simple way. From the relation between temperature and volume 
for reversible adiabatic processes (VTc = constant, Topic 2D):

V T V T V T V Tc c c
A h D c C c B h

c= =  
Multiplication of the first of these expressions by the second 
gives

V V T T V V T Tc c c c
A C h c D B h c=  

which, on cancellation of the temperatures, simplifies to

V
V

V
V

D

C

A

B
=

 

With this relation established, we can write

q nRT V
V nRT V

V nRT V
Vc c

D

C
c

A

B
c

B

A
= = = −ln ln ln

 

and therefore

q
q

nRT V V
nRT V V

T
Tc

h

c

h B A

B A

h

c
= − = −ln( / )

ln( / )  

as in eqn 3A.7. For clarification, note that qh is negative (heat 
is withdrawn from the hot source) and qc is positive (heat is 
deposited in the cold sink), so their ratio is negative.

Brief illustration 3A.3 The Carnot cycle

The Carnot cycle can be regarded as a representation of the 
changes taking place in an actual idealized engine, where 
heat is converted into work. (However, other cycles are closer 
approximations to real engines.) In an engine running in 
accord with the Carnot cycle, 100 J of energy is withdrawn 

Pr
es

su
re

, p

Volume, V

Adiabat

AdiabatIsotherm

Isotherm

1

2
3

4

A

B

C

D

Figure 3A.7 The basic structure of a Carnot cycle. In Step 1, 
there is isothermal reversible expansion at the temperature 
Th. Step 2 is a reversible adiabatic expansion in which the 
temperature falls from Th to Tc. In Step 3 there is an isothermal 
reversible compression at Tc, and that isothermal step is 
followed by an adiabatic reversible compression, which 
restores the system to its initial state.

6 Foundations

θ / /° =C T

that in this text 

are denoted θ

θ

(b) 

known as a 

pV nRT=  

Here R is the 

The chemist’s toolkit A.1  Quantities and units

The result of a measurement is a physical quantity that is 
reported as a numerical multiple of a unit:

physicalquantity numerical value unit= ×

It follows that units may be treated like algebraic quanti-
ties and may be multiplied, divided, and cancelled. Thus, the 
expression (physical quantity)/unit is the numerical value (a 
dimensionless quantity) of the measurement in the specified 
units. For instance, the mass m of an object could be reported 
as m = 2.5 kg or m/kg = 2.5. See Table A.1 in the Resource sec-
tion for a list of units. Although it is good practice to use only 
SI units, there will be occasions where accepted practice is 
so deeply rooted that physical quantities are expressed using 
other, non-SI units. By international convention, all physical 
quantities are represented by oblique (sloping) symbols; all 
units are roman (upright).

Units may be modified by a prefix that denotes a factor of a 
power of 10. Among the most common SI prefixes are those 
listed in Table A.2 in the Resource section. Examples of the use 
of these prefixes are:

Powers of units apply to the prefix as well as the unit they mod-
ify. For example, 1 cm3 = 1 (cm)3, and (10−2 m)3 = 10−6 m3. Note 
that 1 cm3 does not mean 1 c(m3) . When carrying out numeri-
cal calculations, it is usually safest to write out the numerical 
value of an observable in scientific notation (as n.nnn × 10n).

There are seven SI base units, which are listed in Table A.3 
in the Resource section. All other physical quantities may be 
expressed as combinations of these base units (see Table A.4 
in the Resource section). Molar concentration (more formally, 
but very rarely, amount of substance concentration) for exam-
ple, which is an amount of substance divided by the volume it 
occupies, can be expressed using the derived units of mol dm−3 
as a combination of the base units for amount of substance 

1 nm = 10−9 m 1 ps = 10−12 s 1 µmol = 10−6 mol

Mathematical background 1 Differentiation and integration

Two of the most important mathematical techniques in the 
physical sciences are differentiation and integration. They 
occur throughout the subject, and it is essential to be aware of 
the procedures involved.

MB1.1 Differentiation: definitions
Differentiation is concerned with the slopes of functions, such 
as the rate of change of a variable with time. The formal defini-
tion of the derivative, df/dx, of a function f(x) is

d
d

f
x

f x x f x
xx

= + −
→

lim
( ) ( )

δ

δ
δ0  

Definition  First derivative  (MB1.1)

As shown in Fig. MB1.1, the derivative can be interpreted as the 
slope of the tangent to the graph of f(x). A positive first deriva-
tive indicates that the function slopes upwards (as x increases), 
and a negative first derivative indicates the opposite. It is some-
times convenient to denote the first derivative as f ′(x). The sec-
ond derivative, d2f/dx2, of a function is the derivative of the 

d
dx

x nxn n= −1

 

d
d

e e
x

aax ax=
 

d
dx

axsin c

d
x

ax
xd

ln = 1

 

from d to ∂
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viii Using the book

➤  Annotated equations and  
 equation labels 

We have annotated many equations to help you follow how 
they are developed. An annotation can take you across the 
equals sign: it is a reminder of the substitution used, an 
approximation made, the terms that have been assumed 
constant, the integral used, and so on. An annotation can 
also be a reminder of the significance of an individual 
term in an expression. We sometimes color a collection of 
numbers or symbols to show how they carry from one line 
to the next. Many of the equations are labelled to highlight 
their significance. 

➤  Checklists of equations 
You don’t have to memorize every equation in the text. 
A checklist at the end of each topic summarizes the most 
important equations and the conditions under which  
they apply.

Setting up and solving problems

➤  Brief illustrations
A Brief illustration shows you how to use equations or 
concepts that have just been introduced in the text. They 
help you to learn how to use data, manipulate units 
correctly, and become familiar with the magnitudes of 
properties. They are all accompanied by a Self-test question 
which you can use to monitor your progress. 

This equation has the same form as the original, but the coeffi-
cients a and b, which differ from gas to gas, have disappeared. It 
follows that if the isotherms are plotted in terms of the reduced 
variables (as we did in fact in Fig. 1C.8 without drawing atten-
tion to the fact), then the same curves are obtained whatever 
the gas. This is precisely the content of the principle of corre-
sponding states, so the van der Waals equation is compatible 
with it.

Looking for too much significance in this apparent triumph 
is mistaken, because other equations of state also accommodate 

Checklist of concepts

☐ 1. The extent of deviations from perfect behaviour is sum-
marized by introducing the compression factor.

☐ 2. The virial equation is an empirical extension of the per-
fect gas equation that summarizes the behaviour of real 
gases over a range of conditions.

☐ 3. The isotherms of a real gas introduce the concept of 
vapour pressure and critical behaviour.

☐ 4. A gas can be liquefied by pressure alone only if its tem-
perature is at or below its critical temperature.

☐ 5. The 

one (a
other (b

☐ 6. 

☐ 7. 

Checklist of equations

Property Equation Comment

Compression factor Z V V= m m/ � Definition

Virial equation of state pV RT B V C Vm m= + + +( / / )1 3
m � B, C

van der Waals equation of state p = nRT/(V – nb) – a(n/V)2 a
b

Reduced variables Xr = Xm/Xc X = p, V, or 

07_Atkins_Ch01C.indd   53

52 1 The properties of gases

for all gases that are described by the van der Waals equation 
near the critical point. We see from Table 1C.2 that although 
Zc < =3

8 0 375. ,  it is approximately constant (at 0.3) and the dis-
crepancy is reasonably small.

(c) The principle of corresponding states

An important general technique in science for comparing the 
properties of objects is to choose a related fundamental prop-
erty of the same kind and to set up a relative scale on that basis. 
We have seen that the critical constants are characteristic prop-
erties of gases, so it may be that a scale can be set up by using 
them as yardsticks. We therefore introduce the dimensionless 
reduced variables of a gas by dividing the actual variable by the 
corresponding critical constant:

V V
V p p

p T T
Tr

m

c
r

c
r

c
= = =

 
Definition  Reduced variables  (1C.8)

If the reduced pressure of a gas is given, we can easily calcu-
late its actual pressure by using p = prpc, and likewise for the 
volume and temperature. van der Waals, who first tried this 
procedure, hoped that gases confined to the same reduced vol-
ume, Vr, at the same reduced temperature, Tr, would exert the 
same reduced pressure, pr. The hope was largely fulfilled (Fig. 
1C.9). The illustration shows the dependence of the compres-
sion factor on the reduced pressure for a variety of gases at 
various reduced temperatures. The success of the procedure 
is strikingly clear: compare this graph with Fig. 1C.3, where 

The van der Waals equation sheds some light on the princi-
ple. First, we express eqn 1C.5b in terms of the reduced vari-
ables, which gives

p p RTT
VV b

a
V Vr c

r c

r c
= − −

r c
2 2

 

Then we express the critical constants in terms of a and b by 
using eqn 1C.8:

Brief illustration 1C.4 Criteria for perfect gas behaviour

For benzene a = 18.57 atm dm6 mol−2 (1.882 Pa m6 mol−2) and 
b = 0.1193 dm3 mol−1 (1.193 × 10−4 m3 mol−1); its normal boil-
ing point is 353 K. Treated as a perfect gas at T = 400 K and 
p = 1.0 atm, benzene vapour has a molar volume of Vm = RT/p =  
33 dm mol−1, so the criterion Vm ≫ b for perfect gas behaviour 
is satisfied. It follows that a /Vm

2 0 017≈ . atm , which is 1.7 per 
cent of 1.0 atm. Therefore, we can expect benzene vapour to 
deviate only slightly from perfect gas behaviour at this tem-
perature and pressure.

Self-test 1C.5 Can argon gas be treated as a perfect gas at 400 K 
and 3.0 atm?

Answer: Yes
Brief illustration 1C.5 Corresponding states

The critical constants of argon and carbon dioxide are given in 
Table 1C.2. Suppose argon is at 23 atm and 200 K, its reduced 
pressure and temperature are then

p Tr r
atm
atm

K
K= = = =

23
48 0 0 48

200
150 7 1 33. . . .

For carbon dioxide to be in a corresponding state, its pressure 
and temperature would need to be

p T= × = = × =0 48 72 9 35 1 33 304 2 405. ( . ) . .atm atm K K

Self-test 1C.6 What would be the corresponding state of 
ammonia?

Answer: 53 atm, 539 K
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Figure 1C.9 The compression factors of four of the gases 
shown in Fig. 1C.3 plotted using reduced variables. The curves 
are labelled with the reduced temperature Tr = T/Tc. The use of 
reduced variables organizes the data on to single curves.
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Using the book  ix

➤  Worked examples

Worked Examples are more detailed illustrations of the 
application of the material, which require you to assemble 
and develop concepts and equations. We provide a sug-
gested method for solving the problem and then implement 
it to reach the answer. Worked examples are also accompa-
nied by Self-test questions.

➤  Discussion questions
Discussion questions appear at the end of every chapter, 
where they are organized by topic. These questions are 
designed to encourage you to reflect on the material you 
have just read, and to view it conceptually.

➤  Exercises and Problems
Exercises and Problems are also provided at the end of every 
chapter, and organized by topic. They prompt you to test 
your understanding of the topics in that chapter. Exercises 
are designed as relatively straightforward numerical tests 
whereas the problems are more challenging. The Exercises 
come in related pairs, with final numerical answers avail-
able on the Book Companion Site for the ‘a’ questions. 
Final numerical answers to the odd-numbered problems 
are also available on the Book Companion Site. 

➤  Integrated activities
At the end of most chapters, you will find questions that 
cross several topics and chapters, and are designed to help 
you use your knowledge creatively in a variety of ways. 
Some of the questions refer to the Living Graphs on the 
Book Companion Site, which you will find helpful for 
answering them.

➤  Solutions manuals
Two solutions manuals have been written by Charles 
Trapp, Marshall Cady, and Carmen Giunta to accompany 
this book.

The Student Solutions Manual (ISBN 1-4641-2449-3) 
provides full solutions to the ‘a’ exercises and to the odd-
numbered problems.

CHAPTER 3  
Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated.

TOPIC 3A Entropy

Discussion questions
3A.1 The evolution of life requires the organization of a very large number 
of molecules into biological cells. Does the formation of living organisms 
violate the Second Law of thermodynamics? State your conclusion clearly 
and present detailed arguments to support it.

3A.2 Discuss the significance of the terms ‘dispersal’ and ‘disorder’ in the 
context of the Second Law.

3A.3 

3A.4 

Why?

Exercises
3A.1(a) During a hypothetical process, the entropy of a system increases by 
125 J K−1 while the entropy of the surroundings decreases by 125 J K−1. Is the 
process spontaneous?
3A.1(b) During a hypothetical process, the entropy of a system increases by 
105 J K−1 while the entropy of the surroundings decreases by 95 J K−1. Is the 
process spontaneous?

3A.2(a) A certain ideal heat engine uses water at the triple point as the hot 
source and an organic liquid as the cold sink. It withdraws 10.00 kJ of heat 
from the hot source and generates 3.00 kJ of work. What is the temperature of 
the organic liquid?
3A.2(b) A certain ideal heat engine uses water at the triple point as the hot 
source and an organic liquid as the cold sink. It withdraws 2.71 kJ of heat from 
the hot source and generates 0.71 kJ of work. What is the temperature of the 
organic liquid?

3A.3(a) Calculate the change in entropy when 100 kJ of energy is transferred 
reversibly and isothermally as heat to a large block of copper at (a) 0 °C,  
(b) 50 °C.
3A.3(b) Calculate the change in entropy when 250 kJ of energy is transferred 
reversibly and isothermally as heat to a large block of lead at (a) 20 °C, (b) 100 °C.

3A.4(a) Which of F2(g) and I2(g) is likely to have the higher standard molar 
entropy at 298 K?
3A.4(b) Which of H2O(g) and CO2(g) is likely to have the higher standard 
molar entropy at 298 K?

3A.5(a) Calculate the change in entropy when 15 g of carbon dioxide gas is 
allowed to expand from 1.0 dm3 to 3.0 dm3 at 300 K.
3A.5(b) Calculate the change in entropy when 4.00 g of nitrogen is allowed to 
expand from 500 cm3 to 750 cm3 at 300 K.

3A.6(a) Predict the enthalpy of vaporization of benzene from its normal 
boiling point, 80.1 °C.
3A.6(b) Predict the enthalpy of vaporization of cyclohexane from its normal 
boiling point, 80.7 °C.

3A.7(a) Calculate the molar entropy of a constant-volume sample of neon at 
500 K given that it is 146.22 J K−1 mol−1 at 298 K.
3A.7(b) Calculate the molar entropy of a constant-volume sample of argon at 
250 K given that it is 154.84 J K−1 mol−1 at 298 K.

3A.8(a) Calculate ΔS (for the system) when the state of 3.00 mol of perfect gas 
atoms, for which Cp,m =  5

2 R, is changed from 25 °C and 1.00 atm to 125 °C and 
5.00 atm. How do you rationalize the sign of ΔS?

3A.8(b) Calculate Δ

25 °C and 1.50 
of ΔS?

3A.9(a) Calculate Δ
50 

3A.9(b) Calculate Δ
100 

3A.10(a) 

gas of mass 14 

3A.10(b) 

to 4.60 dm3

expansion.

3A.11(a) 

surroundings.
3A.11(b) 

surroundings.

3A.12(a) 
−10.0 
of 1 
75.291 J K−1 mol−1

3A.12(b) 
−12.0 
1 

The Instructor’s Solutions Manual provides full solutions 
to the ‘b’ exercises and to the even-numbered problems 
(available to download from the Book Companion Site for 
registered adopters of the book only).

of a gas are different in the initial and final states. Because S is a 
state function, we are free to choose the most convenient path 
from the initial state to the final state, such as reversible isother-
mal expansion to the final volume, followed by reversible heat-
ing at constant volume to the final temperature. Then the total 
entropy change is the sum of the two contributions.

Example 3A.2 Calculating the entropy change for a 
composite process

Calculate the entropy change when argon at 25 °C and 1.00 
bar in a container of volume 0.500 dm3 is allowed to expand to 
1.000 dm3 and is simultaneously heated to 100 °C.

Method As remarked in the text, use reversible isothermal 
expansion to the final volume, followed by reversible heat-
ing at constant volume to the final temperature. The entropy 
change in the first step is given by eqn 3A.16 and that of the 
second step, provided CV is independent of temperature, by 
eqn 3A.20 (with CV in place of Cp). In each case we need to 
know n, the amount of gas molecules, and can calculate it 
from the perfect gas equation and the data for the initial state 
from n = piVi/RTi. The molar heat capacity at constant volume 
is given by the equipartition theorem as 3

2R . (The equiparti-
tion theorem is reliable for monatomic gases: for others and 
in general use experimental data like that in Tables 2C.1 and 
2C.2 of the Resource section, converting to the value at con-
stant volume by using the relation Cp,m − CV,m = R.)

Answer From eqn 3A.16 the entropy change in the isothermal 
expansion from Vi to Vf is

Ti to Tf

∆ ( )Step 2

changes, is

∆S nR ln

and obtain

∆S pV
T
i i

i
= ln

∆S =
( .1 0

= +0 173.

errors.

Self-test 3A.11 

Checklist of concepts

☐ 1. The entropy acts as a signpost of spontaneous change.
☐ 2. Entropy change is defined in terms of heat transactions 

(the Clausius definition).
☐ 3. The Boltzmann formula defines absolute entro-

pies in terms of the number of ways of achieving a 
configuration.

☐ 4. The Carnot cycle is used to prove that entropy is a state 
function.

☐ 5. The efficiency of a heat engine is the basis of the defini-
tion of the thermodynamic temperature scale and one 
realization, the Kelvin scale.

☐ 6. The 

☐ 7. 

☐ 8. 

☐ 9. 
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BOOK COMPANION SITE

The Book Companion Site to accompany Physical Chemistry: 
Thermodynamics, Structure, and Change, tenth edition pro-
vides a number of useful teaching and learning resources for 
students and instructors. 

The site can be accessed at:
 http://www.whfreeman.com/pchem10e/

Instructor resources are available only to registered  
adopters of the textbook. To register, simply visit http://www. 
whfreeman.com/pchem10e/ and follow the appropriate 
links. 

Student resources are openly available to all, without 
registration. 

‘Impact’ sections

‘Impact’ sections show how physical chemistry is applied in a 
variety of modern contexts. New for this edition, the Impacts 
are linked from the text by QR code images. Alternatively, 
visit the URL displayed next to the QR code image.

Group theory tables
Comprehensive group theory tables are available to download.

Figures and tables from the book

Instructors can find the artwork and tables from the book in 
ready-to-download format. These may be used for lectures 
without charge (but not for commercial purposes without 
specific permission).

Molecular modeling problems

PDFs containing molecular modeling problems can be down-
loaded, designed for use with the Spartan Student™ software. 
However they can also be completed using any modeling 
software that allows Hartree-Fock, density functional, and 
MP2 calculations.

Living graphs
These interactive graphs can be used to explore how a proper-
ty changes as various parameters are changed. Living graphs 
are sometimes referred to in the Integrated activities at the 
end of a chapter.

       Materials on the Book Companion Site include:
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Foundations

Chemistry is the science of matter and the changes it can 
undergo. Physical chemistry is the branch of chemistry that 
establishes and develops the principles of the subject in terms 
of the underlying concepts of physics and the language of 
mathematics. It provides the basis for developing new spec-
troscopic techniques and their interpretation, for understand-
ing the structures of molecules and the details of their electron 
distributions, and for relating the bulk properties of matter 
to their constituent atoms. Physical chemistry also provides a 
window on to the world of chemical reactions, and allows us to 
understand in detail how they take place.

A matter

Throughout the text we draw on a number of concepts that 
should already be familiar from introductory chemistry, such 
as the ‘nuclear model’ of the atom, ‘Lewis structures’ of mol-
ecules, and the ‘perfect gas equation’. This Topic reviews these 
and other concepts of chemistry that appear at many stages of 
the presentation.

B energy

Because physical chemistry lies at the interface between 
physics and chemistry, we also need to review some of the 

concepts from elementary physics that we need to draw on in 
the text. This Topic begins with a brief summary of ‘classical 
mechanics’, our starting point for discussion of the motion 
and energy of particles. Then it reviews concepts of ‘ther-
modynamics’ that should already be part of your chemical 
vocabulary. Finally, we introduce the ‘Boltzmann distribu-
tion’ and the ‘equipartition theorem’, which help to establish 
connections between the bulk and molecular properties of 
matter.

C waves

This Topic describes waves, with a focus on ‘harmonic waves’, 
which form the basis for the classical description of electro-
magnetic radiation. The classical ideas of motion, energy, and 
waves in this Topic and Topic B are expanded with the princi-
ples of quantum mechanics (Chapter 7), setting the stage for 
the treatment of electrons, atoms, and molecules. Quantum 
mechanics underlies the discussion of chemical structure 
and chemical change, and is the basis of many techniques of 
investigation.
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A matter

The presentation of physical chemistry in this text is based on 
the experimentally verified fact that matter consists of atoms. 

In this Topic, which is a review of elementary concepts and lan-
guage widely used in chemistry, we begin to make connections 
between atomic, molecular, and bulk properties. Most of the 
material is developed in greater detail later in the text.

A.1 Atoms

The atom of an element is characterized by its atomic number, 
Z, which is the number of protons in its nucleus. The number 
of neutrons in a nucleus is variable to a small extent, and the 
nucleon number (which is also commonly called the mass 
number), A, is the total number of protons and neutrons in the 
nucleus. Protons and neutrons are collectively called nucleons. 
Atoms of the same atomic number but different nucleon num-
ber are the isotopes of the element.

(a) The nuclear model
According to the nuclear model, an atom of atomic number Z 
consists of a nucleus of charge +Ze surrounded by Z electrons 
each of charge –e (e is the fundamental charge: see inside the 
front cover for its value and the values of the other fundamental 
constants). These electrons occupy atomic orbitals, which are 
regions of space where they are most likely to be found, with no 
more than two electrons in any one orbital. The atomic orbitals 
are arranged in shells around the nucleus, each shell being char-
acterized by the principal quantum number, n = 1, 2, …. A shell 
consists of n2 individual orbitals, which are grouped together 
into n subshells; these subshells, and the orbitals they contain, 
are denoted s, p, d, and f. For all neutral atoms other than hydro-
gen, the subshells of a given shell have slightly different energies.

(b) The periodic table
The sequential occupation of the orbitals in successive shells 
results in periodic similarities in the electronic configurations, 
the specification of the occupied orbitals, of atoms when they 
are arranged in order of their atomic number. This periodicity 
of structure accounts for the formulation of the periodic table 
(see the inside the back cover). The vertical columns of the 
periodic table are called groups and (in the modern conven-
tion) numbered from 1 to 18. Successive rows of the periodic 
table are called periods, the number of the period being equal 

Contents

a.1 Atoms 2
(a) The nuclear model 2
(b) The periodic table 2
(c) Ions 3

a.2 Molecules 3
(a) Lewis structures 3

brief illustration a.1: octet expansion 4
(b) VSEPR theory 4

brief illustration a.2: molecular shapes 4
(c) Polar bonds 4

brief illustration a.3: nonpolar molecules with  
polar bonds 4

a.3 Bulk matter 5
(a) Properties of bulk matter 5

brief illustration a.4: Volume units 5
(b) The perfect gas equation 6

example a.1: using the perfect gas equation 7
Checklist of concepts 7
Checklist of equations 8

➤➤ Why do you need to know this material?
Because chemistry is about matter and the changes 
that it can undergo, both physically and chemically, the 
properties of matter underlie the entire discussion in this 
book.

➤➤ What is the key idea?
The bulk properties of matter are related to the identities 
and arrangements of atoms and molecules in a sample.

➤➤ What do you need to know already?
This Topic reviews material commonly covered in 
introductory chemistry.
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A Matter  3

to the principal quantum number of the valence shell, the out-
ermost shell of the atom.

Some of the groups also have familiar names: Group 1 con-
sists of the alkali metals, Group 2 (more specifically, calcium, 
strontium, and barium) of the alkaline earth metals, Group 
17 of the halogens, and Group 18 of the noble gases. Broadly 
speaking, the elements towards the left of the periodic table 
are metals and those towards the right are non-metals; the 
two classes of substance meet at a diagonal line running 
from boron to polonium, which constitute the metalloids, 
with properties intermediate between those of metals and 
non-metals.

The periodic table is divided into s, p, d, and f blocks, accord-
ing to the subshell that is last to be occupied in the formula-
tion of the electronic configuration of the atom. The members 
of the d block (specifically the members of Groups 3–11 in the 
d block) are also known as the transition metals; those of the 
f block (which is not divided into numbered groups) are some-
times called the inner transition metals. The upper row of the 
f block (Period 6) consists of the lanthanoids (still commonly 
the ‘lanthanides’) and the lower row (Period 7) consists of the 
actinoids (still commonly the ‘actinides’).

(c) Ions
A monatomic ion is an electrically charged atom. When an 
atom gains one or more electrons it becomes a negatively 
charged anion; when it loses one or more electrons it becomes 
a positively charged cation. The charge number of an ion is 
called the oxidation number of the element in that state (thus, 
the oxidation number of magnesium in Mg2+ is +2 and that of 
oxygen in O2– is –2). It is appropriate, but not always done, to 
distinguish between the oxidation number and the oxidation 
state, the latter being the physical state of the atom with a speci-
fied oxidation number. Thus, the oxidation number of magne-
sium is +2 when it is present as Mg2+, and it is present in the 
oxidation state Mg2+.

The elements form ions that are characteristic of their loca-
tion in the periodic table: metallic elements typically form 
cations by losing the electrons of their outermost shell and 
acquiring the electronic configuration of the preceding noble 
gas atom. Nonmetals typically form anions by gaining electrons 
and attaining the electronic configuration of the following 
noble gas atom.

A.2 Molecules

A chemical bond is the link between atoms. Compounds that 
contain a metallic element typically, but far from universally, 
form ionic compounds that consist of cations and anions in a 
crystalline array. The ‘chemical bonds’ in an ionic compound 

are due to the Coulombic interactions between all the ions in 
the crystal and it is inappropriate to refer to a bond between 
a specific pair of neighbouring ions. The smallest unit of an 
ionic compound is called a formula unit. Thus NaNO3, con-
sisting of a Na+ cation and a NO3

− anion, is the formula unit 
of sodium nitrate. Compounds that do not contain a metallic 
element typically form covalent compounds consisting of dis-
crete molecules. In this case, the bonds between the atoms of 
a molecule are covalent, meaning that they consist of shared 
pairs of electrons.

A note on good practice Some chemists use the term ‘mol-
ecule’ to denote the smallest unit of a compound with the 
composition of the bulk material regardless of whether it is an 
ionic or covalent compound and thus speak of ‘a molecule of 
NaCl’. We use the term ‘molecule’ to denote a discrete cova-
lently bonded entity (as in H2O); for an ionic compound we 
use ‘formula unit’.

(a) Lewis structures
The pattern of bonds between neighbouring atoms is dis-
played by drawing a Lewis structure, in which bonds are 
shown as lines and lone pairs of electrons, pairs of valence 
electrons that are not used in bonding, are shown as dots. 
Lewis structures are constructed by allowing each atom to 
share electrons until it has acquired an octet of eight elec-
trons (for hydrogen, a duplet of two electrons). A shared pair 
of electrons is a single bond, two shared pairs constitute a 
double bond, and three shared pairs constitute a triple bond. 
Atoms of elements of Period 3 and later can accommodate 
more than eight electrons in their valence shell and ‘expand 
their octet’ to become hypervalent, that is, form more bonds 
than the octet rule would allow (for example, SF6), or form 
more bonds to a small number of atoms (see Brief illustration 
A.1). When more than one Lewis structure can be written for 
a given arrangement of atoms, it is supposed that resonance, 
a blending of the structures, may occur and distribute multi-
ple-bond character over the molecule (for example, the two 
Kekulé structures of benzene). Examples of these aspects of 
Lewis structures are shown in Fig. A.1.
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Figure A.1 Examples of Lewis structures.
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4 Foundations

(b) VSEPR theory
Except in the simplest cases, a Lewis structure does not express 
the three-dimensional structure of a molecule. The simplest 
approach to the prediction of molecular shape is valence-
shell electron pair repulsion theory (VSEPR theory). In this 
approach, the regions of high electron density, as represented 
by bonds—whether single or multiple—and lone pairs, take 
up orientations around the central atom that maximize their 
separations. Then the position of the attached atoms (not the 
lone pairs) is noted and used to classify the shape of the mol-
ecule. Thus, four regions of electron density adopt a tetrahe-
dral arrangement; if an atom is at each of these locations (as 
in CH4), then the molecule is tetrahedral; if there is an atom at 
only three of these locations (as in NH3), then the molecule is 

trigonal pyramidal, and so on. The names of the various shapes 
that are commonly found are shown in Fig. A.2. In a refinement 
of the theory, lone pairs are assumed to repel bonding pairs 
more strongly than bonding pairs repel each other. The shape a 
molecule then adopts, if it is not determined fully by symmetry, 
is such as to minimize repulsions from lone pairs.

(c) Polar bonds

Covalent bonds may be polar, or correspond to an unequal 
sharing of the electron pair, with the result that one atom has 
a partial positive charge (denoted δ+) and the other a partial 
negative charge (δ–). The ability of an atom to attract electrons 
to itself when part of a molecule is measured by the electro-
negativity, χ (chi), of the element. The juxtaposition of equal 
and opposite partial charges constitutes an electric dipole. If 
those charges are +Q and –Q and they are separated by a dis-
tance d, the magnitude of the electric dipole moment, μ, is

μ =Qd  Definition  magnitude of the electric dipole moment  (A.1)

Brief illustration A.3  Nonpolar molecules with  
polar bonds

Whether or not a molecule as a whole is polar depends on the 
arrangement of its bonds, for in highly symmetrical molecules 
there may be no net dipole. Thus, although the linear CO2 
molecule (which is structurally OCO) has polar CO bonds, 
their effects cancel and the molecule as a whole is nonpolar.

Self-test A.3 Is NH3 polar?
Answer: Yes

Brief illustration A.1  Octet expansion

Octet expansion is also encountered in species that do not 
ne cessarily require it, but which, if it is permitted, may acquire 
a lower energy. Thus, of the structures (1a) and (1b) of the SO4

2− 
ion, the second has a lower energy than the first. The actual 
structure of the ion is a resonance hybrid of both structures 
(together with analogous structures with double bonds in dif-
ferent locations), but the latter structure makes the dominant 
contribution.
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Self-test A.1 Draw the Lewis structure for XeO4.
Answer: See 2 

Linear Angular (bent)

Square planar Trigonal planar

Tetrahedral Trigonal bipyramidal Octahedral

Figure A.2 The shapes of molecules that result from 
application of VSEPR theory.

Brief illustration A.2  Molecular shapes

In SF4 the lone pair adopts an equatorial position and the two 
axial S–F bonds bend away from it slightly, to give a bent see-
saw shaped molecule (Fig. A.3).

Self-test A.2 Predict the shape of the SO3
2– ion.

Answer: Trigonal pyramid

(a) (b)

Figure A.3 (a) In SF4 the lone pair adopts an equatorial 
position. (b) The two axial S–F bonds bend away from it 
slightly, to give a bent see-saw shaped molecule.
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A Matter  5

A.3 Bulk matter

Bulk matter consists of large numbers of atoms, molecules, or 
ions. Its physical state may be solid, liquid, or gas:

 A solid is a form of matter that adopts and maintains a 
shape that is independent of the container it occupies.

 A liquid is a form of matter that adopts the shape of the 
part of the container it occupies (in a gravitational field, 
the lower part) and is separated from the unoccupied 
part of the container by a definite surface.

 A gas is a form of matter that immediately fills any 
container it occupies.

A liquid and a solid are examples of a condensed state of mat-
ter. A liquid and a gas are examples of a fluid form of matter: 
they flow in response to forces (such as gravity) that are applied.

(a) Properties of bulk matter
The state of a bulk sample of matter is defined by specifying the 
values of various properties. Among them are:

 The mass, m, a measure of the quantity of matter present 
(unit: 1 kilogram, 1 kg).

 The volume, V, a measure of the quantity of space the 
sample occupies (unit: 1 cubic metre, 1 m3).

 The amount of substance, n, a measure of the number of 
specified entities (atoms, molecules, or formula units) 
present (unit: 1 mole, 1 mol).

An extensive property of bulk matter is a property that depends 
on the amount of substance present in the sample; an intensive 
property is a property that is independent of the amount of sub-
stance. The volume is extensive; the mass density, ρ (rho), with

ρ = m
V  

 mass density  (A.2)

is intensive.
The amount of substance, n (colloquially, ‘the number of 

moles’), is a measure of the number of specified entities pre-
sent in the sample. ‘Amount of substance’ is the official name 
of the quantity; it is commonly simplified to ‘chemical amount’ 
or simply ‘amount’. The unit 1 mol is currently defined as the 
number of carbon atoms in exactly 12 g of carbon-12. (In 2011 
the decision was taken to replace this definition, but the change 
has not yet, in 2014, been implemented.) The number of enti-
ties per mole is called Avogadro’s constant, NA; the currently 
accepted value is 6.022 × 1023 mol−1 (note that NA is a constant 
with units, not a pure number).

The molar mass of a substance, M (units: formally kilo-
grams per mole but commonly grams per mole, g mol−1) is the 
mass per mole of its atoms, its molecules, or its formula units. 
The amount of substance of specified entities in a sample can 
readily be calculated from its mass, by noting that

n
m
M

=
 

 amount of substance  (A.3)

A note on good practice Be careful to distinguish atomic 
or molecular mass (the mass of a single atom or molecule; 
units kg) from molar mass (the mass per mole of atoms 
or molecules; units kg mol−1). Relative molecular masses of 
atoms and molecules, Mr = m/mu, where m is the mass of the 
atom or molecule and mu is the atomic mass constant (see 
inside front cover), are still widely called ‘atomic weights’ 
and ‘molecular weights’ even though they are dimensionless 
quantities and not weights (the gravitational force exerted 
on an object).

A sample of matter may be subjected to a pressure, p (unit:  
1 pascal, Pa; 1 Pa = 1 kg m−1 s−2), which is defined as the 
force, F, it is subjected to divided by the area, A, to which 
that force is applied. A sample of gas exerts a pressure on 
the walls of its container because the molecules of gas are 
in ceaseless, random motion, and exert a force when they 
strike the walls. The frequency of the collisions is normally 
so great that the force, and therefore the pressure, is per-
ceived as being steady.

Although 1 pascal is the SI unit of pressure (The chem-
ist’s toolkit A.1), it is also common to express pressure in bar  
(1 bar = 105 Pa) or atmospheres (1 atm = 101 325 Pa exactly), 
both of which correspond to typical atmospheric pressure. 
Because many physical properties depend on the pressure 
acting on a sample, it is appropriate to select a certain value 
of the pressure to report their values. The standard pressure 
for reporting physical quantities is currently defined as p< = 1 
bar exactly.

Brief illustration A.4  Volume units

Volume is also expressed as submultiples of 1 m3, such as 
cubic decimetres (1 dm3 = 10−3 m3) and cubic centimetres 
(1 cm3 = 10−6 m3). It is also common to encounter the non-
SI unit litre (1 L = 1 dm3) and its submultiple the millilitre 
(1 mL = 1 cm3). To carry out simple unit conversions, simply 
replace the fraction of the unit (such as 1 cm) by its definition 
(in this case, 10−2 m). Thus, to convert 100 cm3 to cubic deci-
metres (litres), use 1 cm = 10−1 dm, in which case 100 cm3 = 100 
(10−1 dm)3, which is the same as 0.100 dm3.

Self-test A.4 Express a volume of 100 mm3 in units of cm3.
Answer: 0.100 cm3
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6 Foundations

To specify the state of a sample fully it is also necessary to 
give its temperature, T. The temperature is formally a prop-
erty that determines in which direction energy will flow as 
heat when two samples are placed in contact through ther-
mally conducting walls: energy flows from the sample with the 
higher temperature to the sample with the lower temperature. 
The symbol T is used to denote the thermodynamic tempera-
ture which is an absolute scale with T = 0 as the lowest point. 
Temperatures above T = 0 are then most commonly expressed 
by using the Kelvin scale, in which the gradations of tempera-
ture are expressed as multiples of the unit 1 kelvin (1 K). The 
Kelvin scale is currently defined by setting the triple point of 

water (the temperature at which ice, liquid water, and water 
vapour are in mutual equilibrium) at exactly 273.16 K (as for 
certain other units, a decision has been taken to revise this 
definition, but it has not yet, in 2014, been implemented). The 
freezing point of water (the melting point of ice) at 1 atm is 
then found experimentally to lie 0.01 K below the triple point, 
so the freezing point of water is 273.15 K. The Kelvin scale is 
unsuitable for everyday measurements of temperature, and it is 
common to use the Celsius scale, which is defined in terms of 
the Kelvin scale as

θ / / .° = −C K 273 15T  Definition  celsius scale  (A.4)

Thus, the freezing point of water is 0 °C and its boiling point (at 
1 atm) is found to be 100 °C (more precisely 99.974 °C). Note 
that in this text T invariably denotes the thermodynamic (abso-
lute) temperature and that temperatures on the Celsius scale 
are denoted θ (theta).

A note on good practice Note that we write T = 0, not T = 0 K. 
General statements in science should be expressed without 
reference to a specific set of units. Moreover, because T (unlike 
θ) is absolute, the lowest point is 0 regardless of the scale used 
to express higher temperatures (such as the Kelvin scale). 
Similarly, we write m = 0, not m = 0 kg and l = 0, not l = 0 m.

(b) The perfect gas equation
The properties that define the state of a system are not in gen-
eral independent of one another. The most important example 
of a relation between them is provided by the idealized fluid 
known as a perfect gas (also, commonly, an ‘ideal gas’):

pV nRT=   Perfect gas equation  (A.5)

Here R is the gas constant, a universal constant (in the sense 
of being independent of the chemical identity of the gas) with 
the value 8.3145 J K−1 mol−1. Throughout this text, equations 
applicable only to perfect gases (and other idealized systems) 
are labelled, as here, with a number in blue.

A note on good practice Although the term ‘ideal gas’ is 
almost universally used in place of ‘perfect gas’, there are 
reasons for preferring the latter term. In an ideal system 
the interactions between molecules in a mixture are all the 
same. In a perfect gas not only are the interactions all the 
same but they are in fact zero. Few, though, make this useful 
distinction.

Equation A.5, the perfect gas equation, is a summary of 
three empirical conclusions, namely Boyle’s law (p ∝ 1/V at 
constant temperature and amount), Charles’s law (p ∝ T at con-
stant volume and amount), and Avogadro’s principle (V ∝ n at 
constant temperature and pressure).

The chemist’s toolkit A.1  Quantities and units

The result of a measurement is a physical quantity that is 
reported as a numerical multiple of a unit:

physicalquantity numerical value unit= ×

It follows that units may be treated like algebraic quanti-
ties and may be multiplied, divided, and cancelled. Thus, the 
expression (physical quantity)/unit is the numerical value (a 
dimensionless quantity) of the measurement in the specified 
units. For instance, the mass m of an object could be reported 
as m = 2.5 kg or m/kg = 2.5. See Table A.1 in the Resource sec-
tion for a list of units. Although it is good practice to use only 
SI units, there will be occasions where accepted practice is 
so deeply rooted that physical quantities are expressed using 
other, non-SI units. By international convention, all physical 
quantities are represented by oblique (sloping) symbols; all 
units are roman (upright).

Units may be modified by a prefix that denotes a factor of a 
power of 10. Among the most common SI prefixes are those 
listed in Table A.2 in the Resource section. Examples of the use 
of these prefixes are:

Powers of units apply to the prefix as well as the unit they mod-
ify. For example, 1 cm3 = 1 (cm)3, and (10−2 m)3 = 10−6 m3. Note 
that 1 cm3 does not mean 1 c(m3) . When carrying out numer-
ical calculations, it is usually safest to write out the numerical 
value of an observable in scientific notation (as n.nnn × 10n).

There are seven SI base units, which are listed in Table A.3 
in the Resource section. All other physical quantities may be 
expressed as combinations of these base units (see Table A.4 
in the Resource section). Molar concentration (more formally, 
but very rarely, amount of substance concentration) for exam-
ple, which is an amount of substance divided by the volume it 
occupies, can be expressed using the derived units of mol dm−3 
as a combination of the base units for amount of substance 
and length. A number of these derived combinations of units 
have special names and symbols and we highlight them as 
they arise.

1 nm = 10−9 m 1 ps = 10−12 s 1 µmol = 10−6 mol
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All gases obey the perfect gas equation ever more closely 
as the pressure is reduced towards zero. That is, eqn A.5 is an 
example of a limiting law, a law that becomes increasingly 
valid in a particular limit, in this case as the pressure is reduced 
to zero. In practice, normal atmospheric pressure at sea level 
(about 1 atm) is already low enough for most gases to behave 
almost perfectly, and unless stated otherwise, we assume in 
this text that the gases we encounter behave perfectly and obey 
eqn A.5.

A mixture of perfect gases behaves like a single perfect gas. 
According to Dalton’s law, the total pressure of such a mixture 
is the sum of the pressures to which each gas would give rise if it 
occupied the container alone:

p p p= + +A B    dalton’s law  (A.6)

Each pressure, pJ, can be calculated from the perfect gas equa-
tion in the form pJ = nJRT/V.

Example A.1  Using the perfect gas equation

Calculate the pressure in kilopascals exerted by 1.25 g of nitro-
gen gas in a flask of volume 250 cm3 at 20 °C.

Method To use eqn A.5, we need to know the amount of mol-
ecules (in moles) in the sample, which we can obtain from the 
mass and the molar mass (by using eqn A.3) and to convert the 
temperature to the Kelvin scale (by using eqn A.4).

Answer The amount of N2 molecules (of molar mass 28.02  
g mol−1) present is

n
m

M
( )

( )
.

.
.
.

N
N

g
g mol

mol2
2

1

1 25
28 02

1 25
28 02

= = =−

The temperature of the sample is

T T/K 2 273 15 so 2 273 15 K= + = +0 0. , ( . )

Therefore, after rewriting eqn A.5 as p = nRT/V,

p = × × +− −( . / . ) ( . ) (1 25 28 02 8 3145 201 1mol JK mol

n R� ��� ��� � ���� ����
2273 15

2 50 10

1 25 28 02 8 3

4 3

. )
( . )

( . / . ) ( .

K
m

T

V

� ��� ���

� ��� ���×

= ×

−

1145 20 273 15
2 50 10

4 35 10 435

4 3

5

3

) ( . )
.

.

× +
×

= × =

−

− =

J
m

Pa

1J m 1Pa�
kkPa

A note on good practice It is best to postpone a numerical 
calculation to the last possible stage, and carry it out in a 
single step. This procedure avoids rounding errors. When 

we judge it appropriate to show an intermediate result 
without committing ourselves to a number of significant 
figures, we write it as n.nnn….

Self-test A.5 Calculate the pressure exerted by 1.22 g of carbon 
dioxide confined in a flask of volume 500 dm3 (5.00 × 102 dm3) 
at 37 °C.

Answer: 143 Pa

Checklist of concepts

☐ 1. In the nuclear model of an atom negatively charged 
electrons occupy atomic orbitals which are arranged in 
shells around a positively charged nucleus.

☐ 2. The periodic table highlights similarities in electronic 
configurations of atoms, which in turn lead to similari-
ties in their physical and chemical properties.

☐ 3. Covalent compounds consist of discrete molecules in 
which atoms are linked by covalent bonds.

☐ 4. Ionic compounds consist of cations and anions in a 
crystalline array.

☐ 5. Lewis structures are useful models of the pattern of 
bonding in molecules.

☐ 6. The valence-shell electron pair repulsion the-
ory (VSEPR theory) is used to predict the three- 

dimensional shapes of molecules from their Lewis 
structures.

☐ 7. The electrons in polar covalent bonds are shared une-
qually between the bonded nuclei.

☐ 8. The physical states of bulk matter are solid, liquid, or 
gas.

☐ 9. The state of a sample of bulk matter is defined by speci-
fying its properties, such as mass, volume, amount, 
pressure, and temperature.

☐ 10. The perfect gas equation is a relation between the pres-
sure, volume, amount, and temperature of an idealized 
gas.

☐ 11. A limiting law is a law that becomes increasingly valid 
in a particular limit.
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8 Foundations

Checklist of equations

Property Equation Comment Equation number

Electric dipole moment μ = Qd μ is the magnitude of the moment A.1

Mass density ρ = m/V Intensive property A.2

Amount of substance n = m/M Extensive property A.3

Celsius scale θ/°C = T/K – 273.15 Temperature is an intensive property; 273.15 is exact. A.4

Perfect gas equation pV = nRT A.5

Dalton’s law p = pA + pB + … A.6
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B energy

Much of chemistry is concerned with transfers and transforma-
tions of energy, and from the outset it is appropriate to define 
this familiar quantity precisely. We begin here by reviewing 
classical mechanics, which was formulated by Isaac Newton 
in the seventeenth century, and establishes the vocabulary used 
to describe the motion and energy of particles. These classical 
ideas prepare us for quantum mechanics, the more fundamen-
tal theory formulated in the twentieth century for the study of 
small particles, such as electrons, atoms, and molecules. We 
develop the concepts of quantum mechanics throughout the 
text. Here we begin to see why it is needed as a foundation for 
understanding atomic and molecular structure.

B.1 Force

Molecules are built from atoms and atoms are built from sub-
atomic particles. To understand their structures we need to 
know how these bodies move under the influence of the forces 
they experience.

(a) Momentum
‘Translation’ is the motion of a particle through space. The 
velocity, v, of a particle is the rate of change of its position r :

v= d
d

r
t  

Definition  Velocity  (B.1)

For motion confined to a single dimension, we would write 
vx = dx/dt. The velocity and position are vectors, with both 
direction and magnitude (vectors and their manipulation are 
treated in detail in Mathematical background 5). The magni-
tude of the velocity is the speed, v. The linear momentum, p, of 
a particle of mass m is related to its velocity, v, by

p=mv  Definition  linear momentum  (B.2)

Like the velocity vector, the linear momentum vector points in 
the direction of travel of the particle (Fig. B.1); its magnitude is 
denoted p.

The description of rotation is very similar to that of trans-
lation. The rotational motion of a particle about a central 
point is described by its angular momentum, J. The angular 

Contents

b.1 Force 9
(a) Momentum 9

brief illustration b.1: the moment of inertia 10
(b) Newton’s second law of motion 10

brief illustration b.2: newton’s second law of motion 10

b.2 Energy: a first look 11
(a) Work 11

brief illustration b.3: the work of stretching a bond 11
(b) The definition of energy 11

brief illustration b.4: the trajectory of a particle 12
(c) The Coulomb potential energy 12

brief illustration b.5: the coulomb potential energy 13
(d) Thermodynamics 14

brief illustration b.6: the relation between U and H 14

b.3 The relation between molecular and bulk 
properties 15
(a) The Boltzmann distribution 15

brief illustration b.7: relative populations 16
(b) Equipartition 17

brief illustration b.8: average molecular energies 17
Checklist of concepts 17
Checklist of equations 18

➤➤ Why do you need to know this material?
Energy is the central unifying concept of physical chemistry, 
and you need to gain insight into how electrons, atoms, 
and molecules gain, store, and lose energy.

➤➤ What is the key idea?
Energy, the capacity to do work, is restricted to discrete 
values in electrons, atoms, and molecules.

➤➤ What do you need to know already?
You need to review the laws of motion and principles of 
electrostatics normally covered in introductory physics 
and concepts of thermodynamics normally covered in 
introductory chemistry.
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10 Foundations

momentum is a vector: its magnitude gives the rate at which a 
particle circulates and its direction indicates the axis of rotation 
(Fig. B.2). The magnitude of the angular momentum, J, is

J I= ω   angular momentum  (B.3)

where ω is the angular velocity of the body, its rate of change of 
angular position (in radians per second), and I is the moment 
of inertia, a measure of its resistance to rotational acceleration. 
For a point particle of mass m moving in a circle of radius r, the 
moment of inertia about the axis of rotation is

I mr= 2  Point particle  moment of inertia  (B.4)

(b) Newton’s second law of motion
According to Newton’s second law of motion, the rate of change 
of momentum is equal to the force acting on the particle:

d
d

p
F

t
=

 
 newton’s second law of motion  (B.5a)

For motion confined to one dimension, we would write  
dpx/dt = Fx. Equation B.5a may be taken as the definition of 
force. The SI units of force are newtons (N), with

1N 1kg ms 2= −
 

Because p = m(dr/dt), it is sometimes more convenient to write 
eqn B.5a as

a F a
r

m
t

= = d
d

2

2  

where a is the acceleration of the particle, its rate of change of 
velocity. It follows that if we know the force acting everywhere 
and at all times, then solving eqn B.5 will give the trajectory, 
the position and momentum of the particle at each instant.

Brief illustration B.1  The moment of inertia

There are two possible axes of rotation in a C16O2 molecule, 
each passing through the C atom and perpendicular to the 
axis of the molecule and to each other. Each O atom is at a dis-
tance R from the axis of rotation, where R is the length of a CO 

bond, 116 pm. The mass of each 16O atom is 16.00mu, where 
mu = 1.660 54 × 10−27 is the atomic mass constant. The C atom is 
stationary (it lies on the axis of rotation) and does not contrib-
ute to the moment of inertia. Therefore, the moment of inertia 
of the molecule around the rotation axis is

I m R

m

= = × × × −2 2 16 00 1 66054 1016 2 27( ) . .O kg

u� ��� ���
� �����m( O)16

������
� ��� ���





















× ×












= ×

−

−

1 16 10

7 15 10

10

2

.

.

m

R

446 2kg m

Note that the units of moments of inertia are kilograms-metre 
squared (kg m2).

Self-test B.1 The moment of inertia for rotation of a hydro-
gen molecule, 1H2, about an axis perpendicular to its bond is 
4.61 × 10−48 kg m2. What is the bond length of H2?

Answer: 74.14 pm

Alternative 
form

newton’s second 
law of motion  (B.5b)

Brief illustration B.2  Newton’s second law of motion

A harmonic oscillator consists of a particle that experiences 
a ‘Hooke’s law’ restoring force, one that is proportional to its 
displacement from equilibrium. An example is a particle of 

x

y

z

Jx
Jy

Jz

J

Figure B.2 The angular momentum J of a particle is 
represented by a vector along the axis of rotation and 
perpendicular to the plane of rotation. The length of the vector 
denotes the magnitude J of the angular momentum. The 
direction of motion is clockwise to an observer looking in the 
direction of the vector.

x

y

z

px
py

pz

p

Figure B.1 The linear momentum p is denoted by a vector 
of magnitude p and an orientation that corresponds to the 
direction of motion.
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B Energy  11

To accelerate a rotation it is necessary to apply a torque, T, a 
twisting force. Newton’s equation is then

d
d

I
T

t
=

 
Definition  torque  (B.6)

The analogous roles of m and I, of v and ω, and of p and J in 
the translational and rotational cases respectively should be 
remembered because they provide a ready way of construct-
ing and recalling equations. These analogies are summarized in 
Table B.1.

B.2 Energy: a first look

Before defining the term ‘energy’, we need to develop another 
familiar concept, that of ‘work’, more formally. Then we preview 
the uses of these concepts in chemistry.

(a) Work
Work, w, is done in order to achieve motion against an oppos-
ing force. For an infinitesimal displacement through ds (a vec-
tor), the work done is

d dw = − ⋅F s  Definition  work  (B.7a)

where F⋅ds is the ‘scalar product’ of the vectors F and ds:

F s⋅ = + +d d d dF x F y F zx y z  Definition  scalar product  (B.7b)

For motion in one dimension, we write dw = –Fxdx. The total 
work done along a path is the integral of this expression, allow-
ing for the possibility that F changes in direction and mag-
nitude at each point of the path. With force in newtons and 
distance in metres, the units of work are joules (J), with

1J 1Nm 1kg m s2 2= = −
 

(b) The definition of energy
Energy is the capacity to do work. The SI unit of energy 
is the same as that of work, namely the joule. The rate of 

mass m attached to a spring or an atom attached to another 
by a chemical bond. For a one-dimensional system, Fx = –kfx, 
where the constant of proportionality kf is called the force con-
stant. Equation B.5b becomes

m
x

t
k x

d
d f

2

2 = −
 

(Techniques of differentiation are reviewed in Mathematical 
background 1 following Chapter 1.) If x = 0 at t = 0, a solution 
(as may be verified by substitution) is

x t A t
k
m

( ) ( )
/

= = 





sin f2
1

2

1 2

π π 

 
This solution shows that the position of the particle varies har-
monically (that is, as a sine function) with a frequency ν, and 
that the frequency is high for light particles (m small) attached 
to stiff springs (kf large).

Self-test B.2 How does the momentum of the oscillator vary 
with time?

Answer: p = 2πνAm cos(2πνt)

Brief illustration B.3  The work of stretching a bond

The work needed to stretch a chemical bond that behaves like a 
spring through an infinitesimal distance dx is

d d d df fw F x k x x k x xx= − = − − =( )

The total work needed to stretch the bond from zero displace-
ment (x = 0) at its equilibrium length Re to a length R, corres-
ponding to a displacement x = R – Re, is

w k x x k x x k R R
R R R R

= = = −
− −

∫ ∫f f f ed d
e e

0

1
2

2

0
( )

We see that the work required increases as the square of the 
displacement: it takes four times as much work to stretch 
a bond through 20 pm as it does to stretch the same bond 
through 10 pm.

Self-test B.3 The force constant of the H–H bond is about 
575 N m−1. How much work is needed to stretch this bond by 
10 pm?

Answer: 28.8 zJ

Table B.1 Analogies between translation and rotation

Translation Rotation

Property Significance Property Significance

Mass, m Resistance to 
the effect of a 
force

Moment of 
inertia, I

Resistance to 
the effect of a 
torque

Speed, v Rate of change 
of position

Angular velocity, 
ω

Rate of change 
of angle

Magnitude 
of linear 
momentum, p

p = mv Magnitude 
of angular 
momentum, J

J = Iω

Translational 
kinetic energy, 
Ek

E m

p m

k

/2

=

=

1
2

2

2

v Rotational 
kinetic 
energy, Ek

E I

J I

k

/2

=

=

1
2

2

2

ω

Equation of 
motion

dp/dt = F Equation of 
motion

dJ/dt = T
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12 Foundations

supply of energy is called the power (P), and is expressed in 
watts (W):

1W 1 J s 1= –

 

Calories (cal) and kilocalories (kcal) are still encountered 
in the chemical literature. The calorie is now defined in terms 
of the joule, with 1 cal = 4.184 J (exactly). Caution needs to be 
exercised as there are several different kinds of calorie. The 
‘thermochemical calorie’, cal15, is the energy required to raise 
the temperature of 1 g of water at 15 °C by 1 °C and the ‘dietary 
Calorie’ is 1 kcal.

A particle may possess two kinds of energy, kinetic energy 
and potential energy. The kinetic energy, Ek, of a body is the 
energy the body possesses as a result of its motion. For a body 
of mass m travelling at a speed v,

E mk
2= 1

2 v  Definition  kinetic energy  (B.8)

It follows from Newton’s second law that if a particle of mass m 
is initially stationary and is subjected to a constant force F for a 
time τ, then its speed increases from zero to Fτ/m and therefore 
its kinetic energy increases from zero to

E
F

mk =
2 2

2
τ

 
(B.9)

The energy of the particle remains at this value after the force 
ceases to act. Because the magnitude of the applied force, F, and 
the time, τ, for which it acts may be varied at will, eqn B.9 implies 
that the energy of the particle may be increased to any value.

The potential energy, Ep or V, of a body is the energy it pos-
sesses as a result of its position. Because (in the absence of 
losses) the work that a particle can do when it is stationary in a 
given location is equal to the work that had to be done to bring 
it there, we can use the one-dimensional version of eqn B.7 to 
write dV = –Fxdx, and therefore

F
V
xx = − d

d  
Definition  Potential energy  (B.10)

No universal expression for the potential energy can be given 
because it depends on the type of force the body experiences. 
For a particle of mass m at an altitude h close to the surface of 
the Earth, the gravitational potential energy is

V h V mgh( ) ( )= +0   gravitational potential energy  (B.11)

where g is the acceleration of free fall (g depends on location, 
but its ‘standard value’ is close to 9.81 m s−2). The zero of poten-
tial energy is arbitrary. For a particle close to the surface of the 
Earth, it is common to set V(0) = 0.

The total energy of a particle is the sum of its kinetic and 
potential energies:

E E E E E V= + = +k p kor,  Definition  total energy  (B.12)

We make use of the apparently universal law of nature that 
energy is conserved; that is, energy can neither be created nor 
destroyed. Although energy can be transferred from one loca-
tion to another and transformed from one form to another, the 
total energy is constant. In terms of the linear momentum, the 
total energy of a particle is

E
p
m

V= +
2

2  
(B.13)

This expression may be used in place of Newton’s second law to 
calculate the trajectory of a particle.

(c) The Coulomb potential energy

One of the most important kinds of potential energy in chem-
istry is the Coulomb potential energy between two electric 
charges. The Coulomb potential energy is equal to the work 
that must be done to bring up a charge from infinity to a 
distance r from a second charge. For a point charge Q1 at a 

Brief illustration B.4  The trajectory of a particle

Consider an argon atom free to move in one direction (along 
the x-axis) in a region where V = 0 (so the energy is independ-
ent of position). Because v = dx/dt, it follows from eqns B.1 and 
B.8 that dx/dt = (2Ek/m)1/2. As may be verified by substitution, 
a solution of this differential equation is

x t x
E
m

t( ) ( )
/

= +





0
2

1 2
k

The linear momentum is

p t m t m
x
t

mE( ) ( ) ( ) /= = =v
d
d k2 1 2

 
and is a constant. Hence, if we know the initial position and 
momentum, we can predict all later positions and momenta 
exactly.

Self-test B.4 Consider an atom of mass m moving along the x 
direction with an initial position x1 and initial speed v1. If the 
atom moves for a time interval Δt in a region where the poten-
tial energy varies as V(x), what is its speed v2 at position x2?

Answer: v v2 1
1

( )/= d d /V x x t m
x

∆
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distance r in a vacuum from another point charge Q2, their 
potential energy is

V r
Q Q

r
( )= 1 2

04πε  
Definition  coulomb potential energy  (B.14)

Charge is expressed in coulombs (C), often as a multiple of the 
fundamental charge, e. Thus, the charge of an electron is –e 
and that of a proton is +e; the charge of an ion is ze, with z the 
charge number (positive for cations, negative for anions). The 
constant ε0 (epsilon zero) is the vacuum permittivity, a fun-
damental constant with the value 8.854 × 10−12 C2 J−1 m−1. It is 
conventional (as in eqn B.14) to set the potential energy equal 
to zero at infinite separation of charges. Then two opposite 
charges have a negative potential energy at finite separations 
whereas two like charges have a positive potential energy.

In a medium other than a vacuum, the potential energy of 
interaction between two charges is reduced, and the vacuum 
permittivity is replaced by the permittivity, ε, of the medium. 
The permittivity is commonly expressed as a multiple of the 
vacuum permittivity:

ε ε ε= r 0  Definition  Permittivity  (B.15)

with εr the dimensionless relative permittivity (formerly, the 
dielectric constant). This reduction in potential energy can be 
substantial: the relative permittivity of water at 25 °C is 80, so 
the reduction in potential energy for a given pair of charges at 
a fixed difference (with sufficient space between them for the 
water molecules to behave as a fluid) is by nearly two orders of 
magnitude.

Care should be taken to distinguish potential energy from 
potential. The potential energy of a charge Q1 in the presence 
of another charge Q2 can be expressed in terms of the Coulomb 
potential, ϕ (phi):

V r Q r r
Q

r
( ) ( ) ( )= =1

2

04
φ φ επ  

The units of potential are joules per coulomb, J C−1, so when ϕ is 
multiplied by a charge in coulombs, the result is in joules. The 
combination joules per coulomb occurs widely and is called a 
volt (V):

1 V 1 J C 1= −
 

If there are several charges Q2, Q3, … present in the system, the 
total potential experienced by the charge Q1 is the sum of the 
potential generated by each charge:

φ φ φ= + +2 3
…

 (B.17)

Just as the potential energy of a charge Q1 can be written 
V = Q1ϕ, so the magnitude of the force on Q1 can be written 
F = Q1E, where E is the magnitude of the electric field strength 
(units: volts per metre, V m−1) arising from Q2 or from some 
more general charge distribution. The electric field strength 
(which, like the force, is actually a vector quantity) is the nega-
tive gradient of the electric potential. In one dimension, we 
write the magnitude of the electric field strength as

E = − d
d
φ
x  

 electric field strength  (B.18)

The language we have just developed inspires an important 
alternative energy unit, the electronvolt (eV): 1 eV is defined 
as the kinetic energy acquired when an electron is accelerated 
from rest through a potential difference of 1 V. The relation 
between electronvolts and joules is

1eV 1 6 2 1 J19= × −. 0 0  

Many processes in chemistry involve energies of a few electron-
volts. For example, to remove an electron from a sodium atom 
requires about 5 eV.

A particularly important way of supplying energy in chemis-
try (as in the everyday world) is by passing an electric current 

Brief illustration B.5  The Coulomb potential energy

The Coulomb potential energy resulting from the electrostatic 
interaction between a positively charged sodium cation, Na+, 
and a negatively charged chloride anion, Cl−, at a distance of 
0.280 nm, which is the separation between ions in the lattice of 
a sodium chloride crystal, is

V = − × × ×− −

− +

( . ) ( .1 602 10 1 602 1019 19C C)

Q Q(Cl ) (Na )� ��� ��� � ��� ���

44 8 854 10 0 280 1012 2 1 1 9

0

π × × × ×− − − −( ). ( . )C J m m
ε

� ����� ����� � ��� �
r
���

= − × −8 24 10 19. J

This value is equivalent to a molar energy of

V N× = − × × × = −− − −
A J mol kJmol( . ) ( . )8 24 10 6 022 10 49619 23 1 1

A note on good practice: Write units at every stage of a cal-
culation and do not simply attach them to a final numeri-
cal value. Also, it is often sensible to express all numerical 
quantities in scientific notation using exponential format 
rather than SI prefixes to denote powers of ten.

Self-test B.5: The centres of neighbouring cations and an ions 
in magnesium oxide crystals are separated by 0.21 nm. 
Determine the molar Coulomb potential energy resulting 
from the electrostatic interaction between a Mg2+ and an O2– 
ion in such a crystal.

Answer: 2600 kJ mol−1

Definition coulomb 
potential  (B.16)
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through a resistance. An electric current (I) is defined as the rate 
of supply of charge, I = dQ/dt, and is measured in amperes (A):

1 A 1C s 1= −
 

If a charge Q is transferred from a region of potential ϕi, where 
its potential energy is Qϕi, to where the potential is ϕf and its 
potential energy is Qϕf, and therefore through a potential dif-
ference Δϕ = ϕf − ϕi, the change in potential energy is QΔϕ. The 
rate at which the energy changes is (dQ/dt)Δϕ, or IΔϕ. The 
power is therefore

P I= ∆φ   electrical power  (B.19)

With current in amperes and the potential difference in volts, 
the power is in watts. The total energy, E, supplied in an interval 
Δt is the power (the rate of energy supply) multiplied by the 
duration of the interval:

E P t I t= =∆ ∆ ∆φ  (B.20)

The energy is obtained in joules with the current in amperes, 
the potential difference in volts, and the time in seconds.

(d) Thermodynamics
The systematic discussion of the transfer and transformation 
of energy in bulk matter is called thermodynamics. This subtle 
subject is treated in detail in the text, but it will be familiar from 
introductory chemistry that there are two central concepts, the 
internal energy, U (units: joules, J), and the entropy, S (units: 
joules per kelvin, J K−1).

The internal energy is the total energy of a system. The First 
Law of thermodynamics states that the internal energy is con-
stant in a system isolated from external influences. The inter-
nal energy of a sample of matter increases as its temperature is 
raised, and we write

∆ ∆U C T=   change in internal energy  (B.21)

where ΔU is the change in internal energy when the tempera-
ture of the sample is raised by ΔT. The constant C is called the 
heat capacity, C (units: joules per kelvin, J K−1), of the sample. 
If the heat capacity is large, a small increase in temperature 
results in a large increase in internal energy. This remark can 
be expressed in a physically more significant way by invert-
ing it: if the heat capacity is large, then even a large transfer of 
energy into the system leads to only a small rise in tempera-
ture. The heat capacity is an extensive property, and values for a 
substance are commonly reported as the molar heat cap acity, 
Cm = C/n (units: joules per kelvin per mole, J K−1 mol−1) or the 
specific heat capacity, Cs = C/m (units: joules per kelvin per 
gram, J K−1 g−1), both of which are intensive properties.

Thermodynamic properties are often best discussed in terms 
of infinitesimal changes, in which case we would write eqn B.21 
as dU = CdT. When this expression is written in the form

C
U
T

= d
d  

Definition  heat capacity  (B.22)

we see that the heat capacity can be interpreted as the slope 
of the plot of the internal energy of a sample against the 
temperature.

As will also be familiar from introductory chemistry and will 
be explained in detail later, for systems maintained at constant 
pressure it is usually more convenient to modify the internal 
energy by adding to it the quantity pV, and introducing the 
enthalpy, H (units: joules, J):

H U pV= +  Definition  enthalpy  (B.23)

The enthalpy, an extensive property, greatly simplifies the 
discussion of chemical reactions, in part because changes in 
enthalpy can be identified with the energy transferred as heat 
from a system maintained at constant pressure (as in common 
laboratory experiments).

The entropy, S, is a measure of the quality of the energy 
of a system. If the energy is distributed over many modes of 
motion (for example, the rotational, vibrational, and trans-
lational motions for the particles that comprise the system), 
then the entropy is high. If the energy is distributed over only 
a small number of modes of motion, then the entropy is low. 
The Second Law of thermodynamics states that any spontan-
eous (that is, natural) change in an isolated system is accompa-
nied by an increase in the entropy of the system. This tendency 
is commonly expressed by saying that the natural direction of 
change is accompanied by dispersal of energy from a localized 
region or its conversion to a less organized form.

Brief illustration B.6  The relation between U and H

The internal energy and enthalpy of a perfect gas, for which 
pV = nRT, are related by

H U nRT= +

Division by n and rearrangement gives

H U RTm m− =

where Hm and Um are the molar enthalpy and the molar inter-
nal energy, respectively. We see that the difference between Hm 
and Um increases with temperature.

Self-test B.6 By how much does the molar enthalpy of oxygen 
gas differ from its molar internal energy at 298 K?

Answer: 2.48 kJ mol−1
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The entropy of a system and its surroundings is of the great-
est importance in chemistry because it enables us to identify 
the spontaneous direction of a chemical reaction and to iden-
tify the composition at which the reaction is at equilibrium. 
In a state of dynamic equilibrium, which is the character of 
all chemical equilibria, the forward and reverse reactions are 
occurring at the same rate and there is no net tendency to 
change in either direction. However, to use the entropy to iden-
tify this state we need to consider both the system and its sur-
roundings. This task can be simplified if the reaction is taking 
place at constant temperature and pressure, for then it is pos-
sible to identify the state of equilibrium as the state at which the 
Gibbs energy, G (units: joules, J), of the system has reached a 
minimum. The Gibbs energy is defined as

G H TS= −  Definition  gibbs energy  (B.24)

and is of the greatest importance in chemical thermodynamics. 
The Gibbs energy, which informally is called the ‘free energy’, 
is a measure of the energy stored in a system that is free to do 
useful work, such as driving electrons through a circuit or caus-
ing a reaction to be driven in its nonspontaneous (unnatural) 
direction.

B.3 The relation between molecular 
and bulk properties

The energy of a molecule, atom, or subatomic particle that is 
confined to a region of space is quantized, or restricted to cer-
tain discrete values. These permitted energies are called energy 
levels. The values of the permitted energies depend on the char-
acteristics of the particle (for instance, its mass) and the extent 
of the region to which it is confined. The quantization of energy 
is most important—in the sense that the allowed energies are 
widest apart—for particles of small mass confined to small 
regions of space. Consequently, quantization is very important 
for electrons in atoms and molecules, but usually unimportant 
for macroscopic bodies, for which the separation of transla-
tional energy levels of particles in containers of macro scopic 
dimensions is so small that for all practical purposes their 
translational motion is unquantized and can be varied virtually 
continuously.

The energy of a molecule other than its unquantized trans-
lational motion arises mostly from three modes of motion: 
rotation of the molecule as a whole, distortion of the molecule 
through vibration of its atoms, and the motion of electrons 
around nuclei. Quantization becomes increasingly important 
as we change focus from rotational to vibrational and then to 
electronic motion. The separation of rotational energy levels (in 
small molecules, about 10−21 J or 1 zJ, corresponding to about 
0.6 kJ mol−1) is smaller than that of vibrational energy levels 

(about 10 − 100 zJ, or 6 − 60 kJ mol−1), which itself is smaller 
than that of electronic energy levels (about 10−18 J or 1 aJ, where 
a is another uncommon but useful SI prefix, standing for atto, 
10−18, corresponding to about 600 kJ mol−1). Figure B.3 depicts 
these typical energy level separations.

(a) The Boltzmann distribution
The continuous thermal agitation that the molecules experi-
ence in a sample at T > 0 ensures that they are distributed over 
the available energy levels. One particular molecule may be 
in a state corresponding to a low energy level at one instant, 
and then be excited into a high energy state a moment later. 
Although we cannot keep track of the state of a single molecule, 
we can speak of the average numbers of molecules in each state; 
even though individual molecules may be changing their states 
as a result of collisions, the average number in each state is con-
stant (provided the temperature remains the same).

The average number of molecules in a state is called the pop-
ulation of the state. Only the lowest energy state is occupied 
at T = 0. Raising the temperature excites some molecules into 
higher energy states, and more and more states become acces-
sible as the temperature is raised further (Fig. B.4). The formula 
for calculating the relative populations of states of various ener-
gies is called the Boltzmann distribution and was derived by 
the Austrian scientist Ludwig Boltzmann towards the end of 
the nineteenth century. This formula gives the ratio of the num-
bers of particles in states with energies εi and εj as

N
N

i

j

kTi j= − −e ( )/ε ε

 
 boltzmann distribution  (B.25a)

where k is Boltzmann’s constant, a fundamental constant with 
the value k = 1.381 × 10−23 J K−1. In chemical applications it is 
common to use not the individual energies but energies per 
mole of molecules, Ei, with Ei = NAεi, where NA is Avogadro’s 
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Figure B.3 The energy level separations typical of four types of 
system. (1 zJ = 10−21 J; in molar terms, 1 zJ is equivalent to about 
0.6 kJ mol−1.)
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constant. When both the numerator and denominator in the 
exponential are multiplied by NA, eqn B.25a becomes

N
N

i

j

E E RTi j= − −e ( )/

 
Alternative form  boltzmann distribution  (B.25b)

where R = NAk. We see that k is often disguised in ‘molar’ form 
as the gas constant. The Boltzmann distribution provides the 
crucial link for expressing the macroscopic properties of matter 
in terms of microscopic behaviour.

The important features of the Boltzmann distribution to bear 
in mind are:

•	 The distribution of populations is an exponential 
function of energy and temperature.

•	 At a high temperature more energy levels are 
occupied than at a low temperature.

•	 More levels are significantly populated if they are 
close together in comparison with kT (like 
rotational and translational states), than if they are 
far apart (like vibrational and electronic states).

Figure B.5 summarizes the form of the Boltzmann distribu-
tion for some typical sets of energy levels. The peculiar shape 
of the population of rotational levels stems from the fact that 
eqn B.25 applies to individual states, and for molecular rota-
tion quantum theory shows that the number of rotational states 
corresponding to a given energy level—broadly speaking, the 
number of planes of rotation—increases with energy; therefore, 
although the population of each state decreases with energy, the 
population of the levels goes through a maximum.

One of the simplest examples of the relation between micro-
scopic and bulk properties is provided by kinetic molecular 
theory, a model of a perfect gas. In this model, it is assumed 
that the molecules, imagined as particles of negligible size, are 
in ceaseless, random motion and do not interact except during 
their brief collisions. Different speeds correspond to different 
energies, so the Boltzmann formula can be used to predict the 
proportions of molecules having a specific speed at a particular 
temperature. The expression giving the fraction of molecules 
that have a particular speed is called the Maxwell–Boltzmann 
distribution and has the features summarized in Fig. B.6. The 
Maxwell–Boltzmann distribution can be used to show that the 
average speed, vmean, of the molecules depends on the tempera-
ture and their molar mass as

vmean =





8
1 2

RT
Mπ

/

 
Perfect gas  average speed of molecules  (B.26)

Thus, the average speed is high for light molecules at high tem-
peratures. The distribution itself gives more information. For 
instance, the tail towards high speeds is longer at high tempera-
tures than at low, which indicates that at high temperatures more 
molecules in a sample have speeds much higher than average.

Brief illustration B.7  Relative populations

Methyl cyclohexane molecules may exist in one of two confor-
mations, with the methyl group in either an equatorial or axial 
position. The equatorial form is lower in energy with the axial 
form being 6.0 kJ mol−1 higher in energy. At a temperature of 
300 K, this difference in energy implies that the relative popu-
lations of molecules in the axial and equatorial states is

N
N

E E RTa

e

Jmol JK mol K)e ea e= =− − − × ×− − −( )/ ( . )/( .6 0 10 8 3145 3003 1 1 1 ==0 090.

where Ea and Ee are molar energies. The number of molecules 
in an axial conformation is therefore just 9 per cent of those in 
the equatorial conformation.

Self-test B.7 Determine the temperature at which the relative 
proportion of molecules in axial and equatorial conforma-
tions in a sample of methyl cyclohexane is 0.30 or 30 per cent.

Answer: 600 K
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Figure B.4 The Boltzmann distribution of populations for a 
system of five energy levels as the temperature is raised from 
zero to infinity.
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Figure B.5 The Boltzmann distribution of populations for 
rotational, vibrational, and electronic energy levels at room 
temperature.
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(b) Equipartition

Although the Boltzmann distribution can be used to calculate 
the average energy associated with each mode of motion of an 
atom or molecule in a sample at a given temperature, there is a 
much simpler shortcut. When the temperature is so high that 
many energy levels are occupied, we can use the equipartition 
theorem:

For a sample at thermal equilibrium the average value of 
each quadratic contribution to the energy is 1

2 kT .

By a ‘quadratic contribution’ we mean a term that is propor-
tional to the square of the momentum (as in the expression for 
the kinetic energy, Ek = p2/2m) or the displacement from an 

equilibrium position (as for the potential energy of a harmonic 
oscillator, E k xp = 1

2
2

f ). The theorem is strictly valid only at high 
temperatures or if the separation between energy levels is small 
because under these conditions many states are populated. The 
equipartition theorem is most reliable for translational and 
rotational modes of motion. The separation between vibra-
tional and electronic states is typically greater than for rotation 
or translation, and so the equipartition theorem is unreliable 
for these types of motion.

Checklist of concepts

☐ 1. Newton’s second law of motion states that the rate of 
change of momentum is equal to the force acting on the 
particle.

☐ 2. Work is done in order to achieve motion against an 
opposing force.

☐ 3. Energy is the capacity to do work.
☐ 4. The kinetic energy of a particle is the energy it pos-

sesses as a result of its motion.
☐ 5. The potential energy of a particle is the energy it pos-

sesses as a result of its position.
☐ 6. The total energy of a particle is the sum of its kinetic 

and potential energies.
☐ 7. The Coulomb potential energy between two charges 

separated by a distance r varies as 1/r.

☐ 8. The First Law of thermodynamics states that the inter-
nal energy is constant in a system isolated from exter-
nal influences.

☐ 9. The Second Law of thermodynamics states that any 
spontaneous change in an isolated system is accompa-
nied by an increase in the entropy of the system.

☐ 10.  Equilibrium is the state at which the Gibbs energy of 
the system has reached a minimum.

☐ 11. The energy levels of confined particles are quantized.
☐ 12. The Boltzmann distribution is a formula for calculat-

ing the relative populations of states of various energies.
☐ 13. The equipartition theorem states that for a sample at 

thermal equilibrium the average value of each quad-
ratic contribution to the energy is 1

2 kT .

Brief illustration B.8  Average molecular energies

An atom or molecule may move in three dimensions and 
its translational kinetic energy is therefore the sum of three 
quadratic contributions

E m m mx y ztrans = + +1
2

2 1
2

2 1
2

2v v v

The equipartition theorem predicts that the average energy for 
each of these quadratic contributions is 1

2
kT . Thus, the average 

kinetic energy is E kT kTtrans 3= × =1
2

3
2

. The molar translational 
energy is thus E kT N RTtrans m A, = × =3

2
3
2

. At 300 K

Etrans m
1 1 18 3145JK mol 3 K 37 Jmol

3 7kJ

, ( . ) ( )

.

= × × =

=

3
2 00 00− − −

mmol 1−

Self-test B.8 A linear molecule may rotate about two axes 
in space, each of which counts as a quadratic contribution. 
Calculate the rotational contribution to the molar energy of a 
collection of linear molecules at 500 K.

Answer: 4.2 kJ mol−1
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Figure B.6 The (Maxwell–Boltzmann) distribution of molecular 
speeds with temperature and molar mass. Note that the most 
probable speed (corresponding to the peak of the distribution) 
increases with temperature and with decreasing molar mass, 
and simultaneously the distribution becomes broader.
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Checklist of equations

Property Equation Comment Equation number

Velocity v = dr/dt Definition B.1

Linear momentum p = mv Definition B.2

Angular momentum J = Iω, I = mr2 Point particle B.3–B.4

Force F = ma = dp/dt Definition B.5

Torque T = dJ/dt Definition B.6

Work dw = –F⋅ds Definition B.7

Kinetic energy Ek = ½mv2 Definition B.8

Potential energy and force Fx = −dV/dx One dimension B.10

Coulomb potential energy V r Q Q r( )= 1 2 04/ πε Vacuum B.14

Coulomb potential φ ε=Q r2 04/ π Vacuum B.16

Electric field strength E = −d /dφ x One dimension B.18

Electrical power P = IΔϕ I is the current B.19

Heat capacity C = dU/dT U is the internal energy B.22

Enthalpy H = U + pV Definition B.23

Gibbs energy G = H − TS Definition B.24

Boltzmann distribution N Ni j
kTi j/ e= − −( )/ε ε B.25a

Average speed of molecules vmean /=( )8
1 2

RT Mπ / Perfect gas B.26
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C waves

A wave is an oscillatory disturbance that travels through space. 
Examples of such disturbances include the collective motion of 
water molecules in ocean waves and of gas particles in sound 
waves. A harmonic wave is a wave with a displacement that can 
be expressed as a sine or cosine function.

C.1 Harmonic waves

A harmonic wave is characterized by a wavelength, λ (lambda), 
the distance between the neighbouring peaks of the wave, 
and its frequency, ν (nu), the number of times per second at 

which its displacement at a fixed point returns to its original 
value (Fig. C.1). The frequency is measured in hertz, where 
1 Hz = 1 s−1. The wavelength and frequency are related by

λ=v   relation between frequency and wavelength  (C.1)

where v is the speed of propagation of the wave.
First, consider the snapshot of a harmonic wave at t = 0. The 

displacement ψ(x,t) varies with position x as

ψ λ φ( ) cos{(2 ) }x A x, /0 = +π   harmonic wave at t = 0  (C.2a)

where A is the amplitude of the wave, the maximum height of 
the wave, and ϕ is the phase of the wave, the shift in the location 
of the peak from x = 0 and which may lie between –π and π (Fig. 
C.2). As time advances, the peaks migrate along the x-axis (the 
direction of propagation), and at any later instant the displace-
ment is

ψ λ φ( ) cos{(2 ) 2 }x t A x t, /= − +π π   harmonic wave at t > 0   (C.2b)

A given wave can also be expressed as a sine function with the 
same argument but with ϕ replaced by φ + 1

2 π.
If two waves, in the same region of space, with the same 

wavelength, have different phases then the resultant wave, the 
sum of the two, will have either enhanced or diminished ampli-
tude. If the phases differ by ±π (so the peaks of one wave coin-
cide with the troughs of the other), then the resultant wave, the 
sum of the two, will have a diminished amplitude. This effect is 
called destructive interference. If the phases of the two waves 

(a) (b)

Wavelength, λ Propagation

Figure C.1 (a) The wavelength, λ , of a wave is the peak-to-
peak distance. (b) The wave is shown travelling to the right at 
a speed v. At a given location, the instantaneous amplitude 
of the wave changes through a complete cycle (the six dots 
show half a cycle) as it passes a given point. The frequency, ν, 
is the number of cycles per second that occur at a given point. 
Wavelength and frequency are related by λν = v.

Contents
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brief illustration c.1: resultant waves 20

c.2 The electromagnetic field 20
brief illustration c.2: wavenumbers 20

Checklist of concepts 21
Checklist of equations 22

➤➤ Why do you need to know this material?
Several important investigative techniques in physical 
chemistry, such as spectroscopy and X-ray diffraction, involve 
electromagnetic radiation, a wavelike electromagnetic 
disturbance. We shall also see that the properties of waves 
are central to the quantum mechanical description of 
electrons in atoms and molecules. To prepare for those 
discussions, we need to understand the mathematical 
description of waves.

➤➤ What is the key idea?
A wave is a disturbance that propagates through space 
with a displacement that can be expressed as a harmonic 
function.

➤➤ What do you need to know already?
You need to be familiar with the properties of harmonic 
(sine and cosine) functions.
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are the same (coincident peaks), the resultant has an enhanced 
amplitude. This effect is called constructive interference.

C.2 The electromagnetic field

Light is a form of electromagnetic radiation. In classical phys-
ics, electromagnetic radiation is understood in terms of the 
electromagnetic field, an oscillating electric and magnetic dis-
turbance that spreads as a harmonic wave through space. An 
electric field acts on charged particles (whether stationary or 

moving) and a magnetic field acts only on moving charged 
particles.

The wavelength and frequency of an electromagnetic wave in 
a vacuum are related by

λ = c  

where c = 2.997 924 58 × 108 m s−1 (which we shall normally 
quote as 2.998 × 108 m s−1) is the speed of light in a vacuum. 
When the wave is passing through a medium (even air), its 
speed is reduced to c′ and, although the frequency remains 
unchanged, its wavelength is reduced accordingly. The reduced 
speed of light in a medium is normally expressed in terms of 
the refractive index, nr, of the medium, where

n
c
cr = ′  

 refractive index  (C.4)

The refractive index depends on the frequency of the light, and 
for visible light typically increases with frequency. It also depends 
on the physical state of the medium. For yellow light in water at 
25 °C, nr = 1.3, so the wavelength is reduced by 30 per cent.

The classification of the electromagnetic field according to its 
frequency and wavelength is summarized in Fig. C.4. It is often 
desirable to express the characteristics of an electromagnetic 
wave by giving its wavenumber,   (nu tilde), where


= =
c

1
λ  

Electromagnetic radiation  wavenumber  (C.5)

A wavenumber can be interpreted as the number of complete 
wavelengths in a given length (of vacuum). Wavenumbers are 
normally reported in reciprocal centimetres (cm−1), so a wave-
number of 5 cm−1 indicates that there are 5 complete wave-
lengths in 1 cm.

Brief illustration C.2  Wavenumbers

The wavenumber of electromagnetic radiation of wavelength 
660 nm is

 = =
×

= × =−
− −1 1

660 10
1 5 10 15 0009

6 1 1

λ m
m cm.

You can avoid errors in converting between units of m−1 and 
cm−1 by remembering that wavenumber represents the num-
ber of wavelengths in a given distance. Thus, a wavenumber 
expressed as the number of waves per centimetre and hence in 
units of cm−1 must be 100 times less than the equivalent quan-
tity expressed per metre in units of m−1.

Self-test C.2 Calculate the wavenumber and frequency of red 
light, of wavelength 710 nm.

Answer:  = × = ×− −1 41 1 m 1 41 1 cm6 1 4 1. .0 0 ,  
ν = 422 THz (1 THz = 1012 s−1)

 (C.3)Electromagnetic 
wave in a vacuum

relation between 
frequency and wavelength

φ = 0 φ = π/2 φ = π

Figure C.2 The phase ϕ of a wave specifies the relative location 
of its peaks.

Brief illustration C.1  Resultant waves

To gain insight into cases in which the phase difference 
is a value other than ±π, consider the addition of the waves 
f(x) = cos(2πx/λ) and g(x) = cos{(2πx/λ) + ϕ}. Figure C.3 shows 
plots of f(x), g(x), and f(x) + g(x) against x/λ for ϕ = π/3. The 
resultant wave has a greater amplitude than either f(x) or g(x), 
and has peaks between the peaks of f(x) and g(x).

Self-test C.1 Consider the same waves, but with ϕ = 3π/4. Does 
the resultant wave have diminished or enhanced amplitude?

Answer: Diminished amplitude

0

1

2

–1

–2 0 2 3 4
x/λ

f(x)

f(x) + g(x) 

g(x)

1 5 6

Figure C.3 Interference between the waves discussed in 
Brief illustration C.1.
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The functions that describe the oscillating electric field, 
E(x,t), and magnetic field, B(x,t), travelling along the x-direc-
tion with wavelength λ and frequency ν are

E(x,t) = E0 cos{(2π/λ)x – 2πνt + φ}
 

B(x,t) = B0 cos{(2π/λ)x – 2πνt + φ}
 

where E0 and B0 are the amplitudes of the electric and magnetic 
fields, respectively, and ϕ is the phase of the wave. In this case the 
amplitude is a vector quantity, because the electric and magnetic 
fields have direction as well as amplitude. The magnetic field is 

perpendicular to the electric field and both are perpendicular to 
the propagation direction (Fig. C.5). According to classical elec-
tromagnetic theory, the intensity of electromagnetic radiation, a 
measure of the energy associated with the wave, is proportional 
to the square of the amplitude of the wave.

Equation C.6 describes electromagnetic radiation that is plane 
polarized; it is so called because the electric and magnetic fields 
each oscillate in a single plane. The plane of polarization may be 
orientated in any direction around the direction of propagation. 
An alternative mode of polarization is circular polarization, in 
which the electric and magnetic fields rotate around the direc-
tion of propagation in either a clockwise or an anticlockwise 
sense but remain perpendicular to it and to each other (Fig. C.6).

 (C.6b)
Electro
magnetic 
radiation

magnetic 
field

 (C.6a)
Electro
magnetic 
radiation

electric 
field

Checklist of concepts

☐ 1. A wave is an oscillatory disturbance that travels 
through space.

☐ 2. A harmonic wave is a wave with a displacement that 
can be expressed as a sine or cosine function.
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Figure C.4 The electromagnetic spectrum and its classification into regions (the boundaries are not precise).

E B

Figure C.5 In a plane polarized wave, the electric and 
magnetic fields oscillate in orthogonal planes and are 
perpendicular to the direction of propagation.

E
B

L

Figure C.6 In a circularly polarized wave, the electric and 
magnetic fields rotate around the direction of propagation 
but remain perpendicular to one another. The illustration also 
defines ‘right’ and ‘left-handed’ polarizations (‘left-handed’ 
polarization is shown as L).
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☐ 3. A harmonic wave is characterized by a wavelength, fre-
quency, phase, and amplitude.

☐ 4. Destructive interference between two waves of the 
same wavelength but different phases leads to a result-
ant wave with diminished amplitude.

☐ 5. Constructive interference between two waves of the 
same wavelength and phase leads to a resultant wave 
with enhanced amplitude.

☐ 6. The electromagnetic field is an oscillating electric and 
magnetic disturbance that spreads as a harmonic wave 
through space.

☐ 7. An electric field acts on charged particles (whether sta-
tionary or moving).

☐ 8. A magnetic field acts only on moving charged particles.
☐ 9. In plane polarized electromagnetic radiation, the elec-

tric and magnetic fields each oscillate in a single plane 
and are mutually perpendicular.

☐ 10. In circular polarization, the electric and magnetic 
fields rotate around the direction of propagation in 
either a clockwise or an anticlockwise sense but remain 
perpendicular to it and each other.

Checklist of equations

Property Equation Comment Equation number

Relation between the frequency and wavelength λν = v For electromagnetic radiation in a vacuum, v = c C.1

Refractive index nr = c/c ′ Definition; nr ≥ 1 C.4

Wavenumber  = =/ /c 1 λ Electromagnetic radiation C.5
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FoundatIons

TOPIC A matter

Discussion questions
A.1 Summarize the features of the nuclear model of the atom. Define the terms 
atomic number, nucleon number, and mass number.

A.2 Where in the periodic table are metals, non-metals, transition metals, 
lanthanoids, and actinoids found?

A.3 Summarize what is meant by a single bond and a multiple bond.

A.4 Summarize the principal concepts of the VSEPR theory of molecular 
shape.

A.5 Compare and contrast the properties of the solid, liquid, and gas states of 
matter.

Exercises
A.1(a) Express the typical ground-state electron configuration of an atom of an 
element in (i) Group 2, (ii) Group 7, (iii) Group 15 of the periodic table.
A.1(b) Express the typical ground-state electron configuration of an atom of an 
element in (i) Group 3, (ii) Group 5, (iii) Group 13 of the periodic table.

A.2(a) Identify the oxidation numbers of the elements in (i) MgCl2, (ii) FeO, 
(iii) Hg2Cl2.
A.2(b) Identify the oxidation numbers of the elements in (i) CaH2, (ii) CaC2, 
(iii) LiN3.

A.3(a) Identify a molecule with a (i) single, (ii) double, (iii) triple bond 
between a carbon and a nitrogen atom.
A.3(b) Identify a molecule with (i) one, (i) two, (iii) three lone pairs on the 
central atom.

A.4(a) Draw the Lewis (electron dot) structures of (i) SO3
2− , (ii) XeF4, (iii) P4.

A.4(b) Draw the Lewis (electron dot) structures of (i) O3, (ii) ClF3
+, (iii) N3

− .

A.5(a) Identify three compounds with an incomplete octet.
A.5(b) Identify four hypervalent compounds.

A.6(a) Use VSEPR theory to predict the structures of (i) PCl3, (ii) PCl5, 
(iii) XeF2, (iv) XeF4.
A.6(b) Use VSEPR theory to predict the structures of (i) H2O2, (ii) FSO3

− ,  
(iii) KrF2, (iv) PCl4

+ .

A.7(a) Identify the polarities (by attaching partial charges δ+ and δ−) of the 
bonds (i) C–Cl, (ii) P–H, (iii) N–O.
A.7(b) Identify the polarities (by attaching partial charges δ+ and δ−) of the 
bonds (i) C–H, (ii) P–S, (iii) N–Cl.

A.8(a) State whether you expect the following molecules to be polar or 
nonpolar: (i) CO2, (ii) SO2, (iii) N2O, (iv) SF4.
A.8(b) State whether you expect the following molecules to be polar or 
nonpolar: (i) O3, (ii) XeF2, (iii) NO2, (iv) C6H14.

A.9(a) Arrange the molecules in Exercise A.8(a) by increasing dipole moment.
A.9(b) Arrange the molecules in Exercise A.8(b) by increasing dipole moment.

A.10(a) Classify the following properties as extensive or intensive: (i) mass,  
(ii) mass density, (iii) temperature, (iv) number density.
A.10(b) Classify the following properties as extensive or intensive: (i) pressure, 
(ii) specific heat capacity, (iii) weight, (iv) molality.

A.11(a) Calculate (i) the amount of C2H5OH (in moles) and (ii) the number of 
molecules present in 25.0 g of ethanol.
A.11(b) Calculate (i) the amount of C6H12O6 (in moles) and (ii) the number of 
molecules present in 5.0 g of glucose.

A.12(a) Calculate (i) the mass, (ii) the weight on the surface of the Earth 
(where g = 9.81 m s−2) of 10.0 mol H2O(l).

A.12(b) Calculate (i) the mass, (ii) the weight on the surface of Mars (where 
g = 3.72 m s−2) of 10.0 mol C6H6(l).

A.13(a) Calculate the pressure exerted by a person of mass 65 kg standing (on 
the surface of the Earth) on shoes with soles of area 150 cm2.
A.13(b) Calculate the pressure exerted by a person of mass 60 kg standing (on 
the surface of the Earth) on shoes with stiletto heels of area 2 cm2 (assume that 
the weight is entirely on the heels).

A.14(a) Express the pressure calculated in Exercise A.13(a) in atmospheres.
A.14(b) Express the pressure calculated in Exercise A.13(b) in atmospheres.

A.15(a) Express a pressure of 1.45 atm in (i) pascal, (ii) bar.
A.15(b) Express a pressure of 222 atm in (i) pascal, (ii) bar.

A.16(a) Convert blood temperature, 37.0 °C, to the Kelvin scale.
A.16(b) Convert the boiling point of oxygen, 90.18 K, to the Celsius scale.

A.17(a) Equation A.4 is a relation between the Kelvin and Celsius scales. 
Devise the corresponding equation relating the Fahrenheit and Celsius 
scales and use it to express the boiling point of ethanol (78.5 °C) in degrees 
Fahrenheit.
A.17(b) The Rankine scale is a version of the thermodynamic temperature 
scale in which the degrees (°R) are the same size as degrees Fahrenheit. Derive 
an expression relating the Rankine and Kelvin scales and express the freezing 
point of water in degrees Rankine.

A.18(a) A sample of hydrogen gas was found to have a pressure of 110 kPa 
when the temperature was 20.0 °C. What can its pressure be expected to be 
when the temperature is 7.0 °C?
A.18(b) A sample of 325 mg of neon occupies 2.00 dm3 at 20.0 °C. Use the 
perfect gas law to calculate the pressure of the gas.

A.19(a) At 500 °C and 93.2 kPa, the mass density of sulfur vapour is 3.710 kg 
m−3. What is the molecular formula of sulfur under these conditions?
A.19(b) At 100 °C and 16.0 kPa, the mass density of phosphorus vapour is 
0.6388 kg m−3. What is the molecular formula of phosphorus under these 
conditions?

A.20(a) Calculate the pressure exerted by 22 g of ethane behaving as a perfect 
gas when confined to 1000 cm3 at 25.0 °C.
A.20(b) Calculate the pressure exerted by 7.05 g of oxygen behaving as a 
perfect gas when confined to 100 cm3 at 100.0 °C.

A.21(a) A vessel of volume 10.0 dm3 contains 2.0 mol H2 and 1.0 mol N2 at 
5.0 °C. Calculate the partial pressure of each component and their total 
pressure.
A.21(b) A vessel of volume 100 cm3 contains 0.25 mol O2 and 0.034 mol CO2 
at 10.0 °C. Calculate the partial pressure of each component and their total 
pressure.
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24 Foundations

TOPIC B energy

Discussion questions
B.1 What is energy?

B.2 Distinguish between kinetic and potential energy.

B.3 State the Second Law of thermodynamics. Can the entropy of the system 
that is not isolated from its surroundings decrease during a spontaneous 
process?

B.4 What is meant by quantization of energy? In what circumstances are the 
effects of quantization most important for microscopic systems?

B.5 What are the assumptions of the kinetic molecular theory?

B.6 What are the main features of the Maxwell–Boltzmann distribution of speeds?

Exercises
B.1(a) A particle of mass 1.0 g is released near the surface of the Earth, where 
the acceleration of free fall is g = 9.81 m s−2. What will be its speed and kinetic 
energy after (i) 1.0 s, (ii) 3.0 s. Ignore air resistance.
B.1(b) The same particle in Exercise B.1(a) is released near the surface of Mars, 
where the acceleration of free fall is g = 3.72 m s−2. What will be its speed and 
kinetic energy after (i) 1.0 s, (ii) 3.0 s. Ignore air resistance.

B.2(a) An ion of charge ze moving through water is subject to an electric field 
of strength E which exerts a force zeE, but it also experiences a frictional drag 
proportional to its speed s and equal to 6πηRs, where R is its radius and η 
(eta) is the viscosity of the medium. What will be its terminal velocity?
B.2(b) A particle descending through a viscous medium experiences a 
frictional drag proportional to its speed s and equal to 6πηRs, where R is its 
radius and η (eta) is the viscosity of the medium. If the acceleration of free 
fall is denoted g, what will be the terminal velocity of a sphere of radius R and 
mass density ρ?

B.3(a) Confirm that the general solution of the harmonic oscillator equation of 
motion (md2x/dt2 = –kfx) is x(t) = A sin ωt + B cos ωt with ω = (kf/m)1/2.
B.3(b) Consider a harmonic oscillator with B = 0 (in the notation of Exercise 
B.3(a)); relate the total energy at any instant to its maximum displacement 
amplitude.

B.4(a) The force constant of a C–H bond is about 450 N m−1. How much work 
is needed to stretch the bond by (i) 10 pm, (ii) 20 pm?
B.4(b) The force constant of the H–H bond is about 510 N m−1. How much 
work is needed to stretch the bond by 20 pm?

B.5(a) An electron is accelerated in an electron microscope from rest through 
a potential difference Δϕ = 100 kV and acquires an energy of eΔϕ. What is its 
final speed? What is its energy in electronvolts (eV)?
B.5(b) A C H6 4

2+  ion is accelerated in a mass spectrometer from rest through 
a potential difference Δϕ = 20 kV and acquires an energy of eΔϕ. What is its 
final speed? What is its energy in electronvolts (eV)?

B.6(a) Calculate the work that must be done in order to remove a Na+ ion from 
200 pm away from a Cl− ion to infinity (in a vacuum). What work would be 
needed if the separation took place in water?
B.6(b) Calculate the work that must be done in order to remove an Mg2+ ion 
from 250 pm away from an O2– ion to infinity (in a vacuum). What work 
would be needed if the separation took place in water?

B.7(a) Calculate the electric potential due to the nuclei at a point in a LiH 
molecule located at 200 pm from the Li nucleus and 150 pm from the H nucleus.
B.7(b) Plot the electric potential due to the nuclei at a point in a Na+Cl− ion 
pair located on a line half way between the nuclei (the internuclear separation 
is 283 pm) as the point approaches from infinity and ends at the mid-point 
between the nuclei.

B.8(a) An electric heater is immersed in a flask containing 200 g of water, and a 
current of 2.23 A from a 15.0 V supply is passed for 12.0 minutes. How much 
energy is supplied to the water? Estimate the rise in temperature (for water, 
C = 75.3 J K−1 mol−1).

B.8(b) An electric heater is immersed in a flask containing 150 g of ethanol, 
and a current of 1.12 A from a 12.5 V supply is passed for 172 s. How much 
energy is supplied to the ethanol? Estimate the rise in temperature (for 
ethanol, C = 111.5 J K−1 mol−1).

B.9(a) The heat capacity of a sample of iron was 3.67 J K−1. By how much would 
its temperature rise if 100 J of energy were transferred to it as heat?
B.9(b) The heat capacity of a sample of water was 5.77 J K−1. By how  
much would its temperature rise if 50.0 kJ of energy were transferred to  
it as heat?

B.10(a) The molar heat capacity of lead is 26.44 J K−1 mol−1. How much energy 
must be supplied (by heating) to 100 g of lead to increase its temperature by 
10.0 °C?
B.10(b) The molar heat capacity of water is 75.2 J K−1 mol−1. How much energy 
must be supplied by heating to 10.0 g of water to increase its temperature by 
10.0 °C?

B.11(a) The molar heat capacity of ethanol is 111.46 J K−1 mol−1. What is its 
specific heat capacity?
B.11(b) The molar heat capacity of sodium is 28.24 J K−1 mol−1. What is its 
specific heat capacity?

B.12(a) The specific heat capacity of water is 4.18 J K−1 g−1. What is its molar 
heat capacity?
B.12(b) The specific heat capacity of copper is 0.384 J K−1 g−1. What is its molar 
heat capacity?

B.13(a) By how much does the molar enthalpy of hydrogen gas differ from its 
molar internal energy at 1000 °C? Assume perfect gas behaviour.
B.13(b) The mass density of water is 0.997 g cm−3. By how much does the molar 
enthalpy of water differ from its molar internal energy at 298 K?

B.14(a) Which do you expect to have the greater entropy at 298 K and 1 bar, 
liquid water or water vapour?
B.14(b) Which do you expect to have the greater entropy at 0 °C and 1 atm, 
liquid water or ice?

B.15(a) Which do you expect to have the greater entropy, 100 g of iron at 300 K 
or 3000 K?
B.15(b) Which do you expect to have the greater entropy, 100 g of water at 0 °C 
or 100 °C?

B.16(a) Give three examples of a system that is in dynamic equilibrium.
B.16(b) Give three examples of a system that is in static equilibrium.

B.17(a) Suppose two states differ in energy by 1.0 eV (electronvolts, see inside 
the front cover); what is the ratio of their populations at (a) 300 K, (b) 3000 K?
B.17(b) Suppose two states differ in energy by 2.0 eV (electronvolts, see inside 
the front cover); what is the ratio of their populations at (a) 200 K, (b) 2000 K?

B.18(a) Suppose two states differ in energy by 1.0 eV, what can be said about 
their populations when T = 0?
B.18(b) Suppose two states differ in energy by 1.0 eV, what can be said about 
their populations when the temperature is infinite?
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B.19(a) A typical vibrational excitation energy of a molecule corresponds to 
a wavenumber of 2500 cm−1 (convert to an energy separation by multiplying 
by hc; see Foundations C). Would you expect to find molecules in excited 
vibrational states at room temperature (20 °C)?
B.19(b) A typical rotational excitation energy of a molecule corresponds to a 
frequency of about 10 GHz (convert to an energy separation by multiplying 
by h; see Foundations C). Would you expect to find gas-phase molecules in 
excited rotational states at room temperature (20 °C)?

B.20(a) Suggest a reason why most molecules survive for long periods at room 
temperature.
B.20(b) Suggest a reason why the rates of chemical reactions typically increase 
with increasing temperature.

B.21(a) Calculate the relative mean speeds of N2 molecules in air at 0 °C and 40 °C.
B.21(b) Calculate the relative mean speeds of CO2 molecules in air at 20 °C and 
30 °C.

B.22(a) Calculate the relative mean speeds of N2 and CO2 molecules in air.
B.22(b) Calculate the relative mean speeds of Hg2 and H2 molecules in a 
gaseous mixture.

B.23(a) Use the equipartition theorem to calculate the contribution of 
translational motion to the internal energy of 5.0 g of argon at 25 °C.
B.23(b) Use the equipartition theorem to calculate the contribution of 
translational motion to the internal energy of 10.0 g of helium at 30 °C.

B.24(a) Use the equipartition theorem to calculate the contribution to the total 
internal energy of a sample of 10.0 g of (i) carbon dioxide, (ii) methane at 
20 °C; take into account translation and rotation but not vibration.
B.24(b) Use the equipartition theorem to calculate the contribution to the total 
internal energy of a sample of 10.0 g of lead at 20 °C, taking into account the 
vibrations of the atoms.

B.25(a) Use the equipartition theorem to compute the molar heat capacity of 
argon.
B.25(b) Use the equipartition theorem to compute the molar heat capacity of 
helium.

B.26(a) Use the equipartition theorem to estimate the heat capacity of  
(i) carbon dioxide, (ii) methane.
B.26(b) Use the equipartition theorem to estimate the heat capacity of (i) water 
vapour, (ii) lead.

TOPIC C waves

Discussion questions
C.1 How many types of wave motion can you identify? C.2 What is the wave nature of the sound of a sudden ‘bang’?

Exercises
C.1(a) What is the speed of light in water if the refractive index of the latter is 
1.33?
C.1(b) What is the speed of light in benzene if the refractive index of the latter 
is 1.52?

C.2(a) The wavenumber of a typical vibrational transition of a hydrocarbon is 
2500 cm−1. Calculate the corresponding wavelength and frequency.
C.2(b) The wavenumber of a typical vibrational transition of an O–H bond is 
3600 cm−1. Calculate the corresponding wavelength and frequency.

Integrated activities
F.1 In Topic 1B we show that for a perfect gas the fraction of molecules that 
have a speed in the range v to v + dv is f(v)dv, where

f
M
RT

M RT( )
/

/v v v= 





−4
2

3 2
2 22π π e

is the Maxwell–Boltzmann distribution (eqn 1B.4). Use this expression and 
mathematical software, a spreadsheet, or the Living graphs on the web site of 
this book for the following exercises:

(a) Refer to the graph in Fig. B.6. Plot different distributions by keeping the 
molar mass constant at 100 g mol−1 and varying the temperature of the sample 
between 200 K and 2000 K.
(b) Evaluate numerically the fraction of molecules with speeds in the range 
100 m s−1 to 200 m s−1 at 300 K and 1000 K.

F.2 Based on your observations from Problem F.1, provide a molecular 
interpretation of temperature.
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Thermodynamics
Part one

Part 1 of the text develops the concepts of thermodynamics, the science of the transformations of 
energy. Thermodynamics provides a powerful way to discuss equilibria and the direction of natu-
ral change in chemistry. Its concepts apply to both physical change, such as fusion and vaporiza-
tion, and chemical change, including electrochemistry. We see that through the concepts of energy, 
enthalpy, entropy, Gibbs energy, and the chemical potential it is possible to obtain a unified view of 
these core features of chemistry and to treat equilibria quantitatively.

The chapters in Part 1 deal with the bulk properties of matter; those of Part 2 show how these 
properties stem from the behaviour of individual atoms.

 1 The properties of gases

  Mathematical background 1: Differentiation and integration

 2 The First Law

  Mathematical background 2: Multivariate calculus

 3 The Second and Third Laws

 4 Physical transformations of pure substances

 5 Simple mixtures

 6 Chemical equilibrium
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chaPter 1

the properties of gases

A gas is a form of matter that fills whatever container it occu-
pies. This chapter establishes the properties of gases that will be 
used throughout the text.

1A the perfect gas

The chapter begins with an account of an idealized version of a 
gas, a ‘perfect gas’, and shows how its equation of state may be 
assembled from the experimental observations summarized by 
Boyle’s law, Charles’s law, and Avogadro’s principle.

1B the kinetic model

One central feature of physical chemistry is its role in building 
models of molecular behaviour that seek to explain observed 
phenomena. A prime example of this procedure is the devel-
opment of a molecular model of a perfect gas in terms of a 
collection of molecules (or atoms) in ceaseless, essentially 
random motion. This model is the basis of ‘kinetic molecular 
theory’. As well as accounting for the gas laws, this theory can 
be used to predict the average speed at which molecules move 
in a gas, and that speed’s dependence on temperature. In com-
bination with the Boltzmann distribution (Foundations B), 
the kinetic theory can also be used to predict the spread of 
molecular speeds and its dependence on molecular mass and 
temperature.

1C real gases

The perfect gas is an excellent starting point for the discussion 
of properties of all gases, and its properties are invoked through-
out the chapters on thermodynamics that follow this chapter. 
However, actual gases, ‘real gases’, have properties that differ from 
those of perfect gases, and we need to be able to interpret these 
deviations and build the effects of molecular attractions and 
repulsions into our model. The discussion of real gases is another 
example of how initially primitive models in physical chemistry 
are elaborated to take into account more detailed observations.

What is the impact of this material?

The perfect gas law and the kinetic theory can be applied to the 
study of phenomena confined to a reaction vessel or encom-
passing an entire planet or star. We have identified two appli-
cations. In Impact I1.1 we see how the gas laws are used in the 
discussion of meteorological phenomena—the weather. In 
Impact I1.2 we examine how the kinetic model of gases has a 
surprising application: to the discussion of dense stellar media, 
such as the interior of the Sun.

To read more about the impact of this 
material, scan the QR code, or go to  
bcs.whfreeman.com/webpub/chemistry/
pchem10e/impact/pchem-1-1.html
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1A the perfect gas

In molecular terms, a gas consists of a collection of molecules 
that are in ceaseless motion and which interact significantly 
with one another only when they collide. The properties of 
gases were among the first to be established quantitatively 
(largely during the seventeenth and eighteenth centuries) when 
the technological requirements of travel in balloons stimulated 
their investigation.

1A.1 Variables of state

The physical state of a sample of a substance, its physical condi-
tion, is defined by its physical properties. Two samples of the 
same substance that have the same physical properties are in 
the same state. The variables needed to specify the state of a sys-
tem are the amount of substance it contains, n, the volume it 
occupies, V, the pressure, p, and the temperature, T.

(a) Pressure
The origin of the force exerted by a gas is the incessant battering 
of the molecules on the walls of its container. The collisions are 
so numerous that they exert an effectively steady force, which 
is experienced as a steady pressure. The SI unit of pressure, the 
pascal (Pa, 1 Pa = 1 N m−2) is introduced in Foundations A. As 
discussed there, several other units are still widely used (Table 
1A.1). A pressure of 1 bar is the standard pressure for report-
ing data; we denote it p<.

If two gases are in separate containers that share a common 
movable wall (a ‘piston’, Fig. 1A.1), the gas that has the higher 
pressure will tend to compress (reduce the volume of) the gas 
that has lower pressure. The pressure of the high-pressure gas 
will fall as it expands and that of the low-pressure gas will 
rise as it is compressed. There will come a stage when the two 
pressures are equal and the wall has no further tendency to 
move. This condition of equality of pressure on either side of 
a movable wall is a state of mechanical equilibrium between 
the two gases. The pressure of a gas is therefore an indica-
tion of whether a container that contains the gas will be in 
mechanical equilibrium with another gas with which it shares 
a movable wall.

Contents

1a.1 Variables of state 30
(a) Pressure 30

example 1a.1: calculating the pressure  
exerted by a column of liquid 31

(b) Temperature 31
brief illustration 1a.1:  temperature conversion 32

1a.2 Equations of state 32
(a) The empirical basis 32

example 1a.2: using the perfect gas law 34
(b) Mixtures of gases 35

example 1a.3: calculating partial pressures 35
Checklist of concepts 36
Checklist of equations 36

➤➤ Why do you need to know this material?
Equations related to perfect gases provide the basis for 
the development of many equations in thermodynamics. 
The perfect gas law is also a good first approximation for 
accounting for the properties of real gases.

➤➤ What is the key idea?
The perfect gas law, which is based on a series of empirical 
observations, is a limiting law that is obeyed increasingly 
well as the pressure of a gas tends to zero.

➤➤ What do you need to know already?
You need to be aware of the concepts of pressure and 
temperature introduced in Foundations A.

Table 1A.1 Pressure units*

Name Symbol Value

pascal 1 Pa 1 N m−2, 1 kg m−1 s−2

bar 1 bar 105 Pa

atmosphere 1 atm 101.325 kPa

torr 1 Torr (101 325/760) Pa = 133.32… Pa

millimetres of mercury 1 mmHg 133.322… Pa

pounds per square inch 1 psi 6.894 757… kPa

* Values in bold are exact.
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1A The perfect gas  31

The pressure exerted by the atmosphere is measured with 
a barometer. The original version of a barometer (which was 
invented by Torricelli, a student of Galileo) was an inverted 
tube of mercury sealed at the upper end. When the column of 
mercury is in mechanical equilibrium with the atmosphere, the 
pressure at its base is equal to that exerted by the atmosphere. It 
follows that the height of the mercury column is proportional 
to the external pressure.

The pressure of a sample of gas inside a container is 
measured by using a pressure gauge, which is a device with 
properties that respond to the pressure. For instance, a 
Bayard–Alpert pressure gauge is based on the ionization of 
the molecules present in the gas and the resulting current of 
ions is interpreted in terms of the pressure. In a capacitance 
manometer, the deflection of a diaphragm relative to a fixed 
electrode is monitored through its effect on the capacitance 
of the arrangement. Certain semiconductors also respond to 
pressure and are used as transducers in solid-state pressure 
gauges.

(b) Temperature
The concept of temperature is introduced in Foundations A. In 
the early days of thermometry (and still in laboratory practice 
today), temperatures were related to the length of a column of 
liquid, and the difference in lengths shown when the thermo-
meter was first in contact with melting ice and then with boil-
ing water was divided into 100 steps called ‘degrees’, the lower 
point being labelled 0. This procedure led to the Celsius scale 
of temperature. In this text, temperatures on the Celsius scale 
are denoted θ (theta) and expressed in degrees Celsius (°C). 
However, because different liquids expand to different extents, 
and do not always expand uniformly over a given range, ther-
mometers constructed from different materials showed differ-
ent numerical values of the temperature between their fixed 
points. The pressure of a gas, however, can be used to construct 
a perfect-gas temperature scale that is independent of the 
identity of the gas. The perfect-gas scale turns out to be iden-
tical to the thermodynamic temperature scale introduced in 
Topic 3A, so we shall use the latter term from now on to avoid a 
proliferation of names.

On the thermodynamic temperature scale, temperatures are 
denoted T and are normally reported in kelvins (K; not °K). 
Thermodynamic and Celsius temperatures are related by the 
exact expression

Example 1A.1 Calculating the pressure exerted by a 
column of liquid

Derive an equation for the pressure at the base of a column 
of liquid of mass density ρ (rho) and height h at the surface of 
the Earth. The pressure exerted by a column of liquid is com-
monly called the ‘hydrostatic pressure’.

Method According to Foundations A, the pressure is the 
force, F, divided by the area, A, to which the force is applied: 
p = F/A. For a mass m subject to a gravitational field at the sur-
face of the earth, F = mg, where g is the acceleration of free fall. 
To calculate F we need to know the mass m of the column of 
liquid, which is its mass density, ρ, multiplied by its volume, 
V: m = ρV. The first step, therefore, is to calculate the volume of 
a cylindrical column of liquid.

Answer Let the column have cross-sectional area A, then its 
volume is Ah and its mass is m = ρAh. The force the column of 
this mass exerts at its base is

F mg Ahg= = ρ

The pressure at the base of the column is therefore

p F
A

Agh
A gh= = =ρ ρ   hydrostatic pressure  (1A.1)

Note that the hydrostatic pressure is independent of the shape 
and cross-sectional area of the column. The mass of the col-
umn of a given height increases as the area, but so does the 
area on which the force acts, so the two cancel.

S e l f - te s t  1 A . 1  D e r ive  an 
expression for the pressure at 
the base of a column of liquid 
of length l held at an angle θ 
(theta) to the vertical (1).

Answer: p = ρgl cos θ

l

θ

1

Movable
wallHigh

pressure

High
pressure

Low
pressure

Low
pressure

Equal
pressures

Equal
pressures

(a)

(b)

(c)

Figure 1A.1 When a region of high pressure is separated from 
a region of low pressure by a movable wall, the wall will be 
pushed into one region or the other, as in (a) and (c). However, 
if the two pressures are identical, the wall will not move (b). 
The latter condition is one of mechanical equilibrium between 
the two regions.
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32 1 The properties of gases

T/K C= ° +θ / .273 15   definition of celsius scale  (1A.2)

This relation is the current definition of the Celsius scale in 
terms of the more fundamental Kelvin scale. It implies that a 
difference in temperature of 1 °C is equivalent to a difference 
of 1 K.

A note on good practice We write T = 0, not T = 0 K for the 
zero temperature on the thermodynamic temperature scale. 
This scale is absolute, and the lowest temperature is 0 regard-
less of the size of the divisions on the scale (just as we write 
p = 0 for zero pressure, regardless of the size of the units we 
adopt, such as bar or pascal). However, we write 0 °C because 
the Celsius scale is not absolute.

1A.2 Equations of state

Although in principle the state of a pure substance is speci-
fied by giving the values of n, V, p, and T, it has been estab-
lished experimentally that it is sufficient to specify only three 
of these variables, for then the fourth variable is fixed. That is, 
it is an experimental fact that each substance is described by 
an equation of state, an equation that interrelates these four 
variables.

The general form of an equation of state is

p f T V n= ( , , )   general form of an equation of state  (1A.3)

This equation tells us that if we know the values of n, T, and V 
for a particular substance, then the pressure has a fixed value. 
Each substance is described by its own equation of state, but 

we know the explicit form of the equation in only a few special 
cases. One very important example is the equation of state of a 
‘perfect gas’, which has the form p = nRT/V, where R is a con-
stant independent of the identity of the gas.

The equation of state of a perfect gas was established by com-
bining a series of empirical laws.

(a) The empirical basis
We assume that the following individual gas laws are familiar:

Boyle’s law: pV n T=constant, at constant ,   (1A.4a)

Charles’s law: , ,V T n p= ×constant at constant   (1A.4b)

       p T n V= ×constant at constant, ,   (1A.4c)

Avogadro’s principle:
,V p T= ×constant at constant n  (1A.4d)

Boyle’s and Charles’s laws are examples of a limiting law, a law 
that is strictly true only in a certain limit, in this case p → 0. 
For example, if it is found empirically that the volume of a 
substance fits an expression V = aT + bp + cp2, then in the limit 
of p → 0, V = aT. Throughout this text, equations valid in this 
limit ing sense are labelled with a blue equation number, as in 
these expressions. Although these relations are strictly true 
only at p = 0, they are reasonably reliable at normal pressures 
(p ≈ 1 bar) and are used widely throughout chemistry.

Avogadro’s principle is commonly expressed in the form 
‘equal volumes of gases at the same temperature and pressure 
contain the same numbers of molecules’. It is a principle rather 
than a law (a summary of experience) because it depends on 
the validity of a model, in this case the existence of molecules. 
Despite there now being no doubt about the existence of mol-
ecules, it is still a model-based principle rather than a law.

Figure 1A.2 depicts the variation of the pressure of a sam-
ple of gas as the volume is changed. Each of the curves in the 

Brief illustration 1A.1 Temperature conversion

To express 25.00 °C as a temperature in kelvins, we use eqn 
1A.4 to write

T/  K C C= ° ° + = + =( . )/ . . . .25 00 273 15 25 00 273 15 298 15

Note how the units (in this case, °C) are cancelled like num-
bers. This is the procedure called ‘quantity calculus’ in which 
a physical quantity (such as the temperature) is the product of 
a numerical value (25.00) and a unit (1 °C); see The chemist’s 
toolkit A.1 of Foundations. Multiplication of both sides by the 
unit K then gives T = 298.15 K.

A note on good practice When the units need to be speci-
fied in an equation, the approved procedure, which avoids 
any ambiguity, is to write (physical quantity)/units, which 
is a dimensionless number, just as (25.00 °C)/°C = 25.00 in 
this illustration. Units may be multiplied and cancelled 
just like numbers.
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Figure 1A.2 The pressure–volume dependence of a fixed 
amount of perfect gas at different temperatures. Each curve  
is a hyperbola (pV = constant) and is called an isotherm.
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1A The perfect gas  33

graph corresponds to a single temperature and hence is called 
an isotherm. According to Boyle’s law, the isotherms of gases 
are hyperbolas (a curve obtained by plotting y against x with 
xy = constant, or y = constant/x). An alternative depiction, a 
plot of pressure against 1/volume, is shown in Fig. 1A.3. The 
linear variation of volume with temperature summarized by 
Charles’s law is illustrated in Fig. 1A.4. The lines in this illustra-
tion are examples of isobars, or lines showing the variation of 
properties at constant pressure. Figure 1A.5 illustrates the lin-
ear variation of pressure with temperature. The lines in this dia-
gram are isochores, or lines showing the variation of properties 
at constant volume.

A note on good practice To test the validity of a relation 
between two quantities, it is best to plot them in such a way 
that they should give a straight line, for deviations from a 
straight line are much easier to detect than deviations from 
a curve. The development of expressions that, when plotted, 
give a straight line is a very important and common proce-
dure in physical chemistry.

The empirical observations summarized by eqn 1A.5 can be 
combined into a single expression:

pV nT= × constant

This expression is consistent with Boyle’s law (pV = constant) 
when n and T are constant, with both forms of Charles’s law 
(p ∝ T, V ∝ T) when n and either V or p are held constant, and 
with Avogadro’s principle (V ∝ n) when p and T are constant. 
The constant of proportionality, which is found experimentally 
to be the same for all gases, is denoted R and called the (molar) 
gas constant. The resulting expression

pV nRT=   Perfect gas law  (1A.5)

is the perfect gas law (or perfect gas equation of state). It is the 
approximate equation of state of any gas, and becomes increas-
ingly exact as the pressure of the gas approaches zero. A gas that 
obeys eqn 1A.5 exactly under all conditions is called a perfect 
gas (or ideal gas). A real gas, an actual gas, behaves more like a 
perfect gas the lower the pressure, and is described exactly by eqn 
1A.5 in the limit of p → 0. The gas constant R can be determined 
by evaluating R = pV/nT for a gas in the limit of zero pressure (to 
guarantee that it is behaving perfectly). However, a more accurate 
value can be obtained by measuring the speed of sound in a low-
pressure gas (argon is used in practice), for the speed of sound 
depends on the value of R and extrapolating its value to zero 
pressure. Another route to its value is to recognize (as explained 
in Foundations B) that it is related to Boltzmann’s constant, k, by

R N k= A   the (molar) gas constant  (1A.6)

where NA is Avogadro’s constant. There are currently (in 2014) 
plans to use this relation as the sole route to R, with defined 
values of NA and k. Table 1A.2 lists the values of R in a variety 
of units.

A note on good practice Despite ‘ideal gas’ being the more 
common term, we prefer ‘perfect gas’. As explained in Topic 
5A, in an ‘ideal mixture’ of A and B, the AA, BB, and AB 
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Figure 1A.5 The pressure also varies linearly with the 
temperature at constant volume, and extrapolates to zero at 
T = 0 (–273 °C).

Pr
es

su
re

, p

1/Volume, 1/V

0
0

Increasing
temperature, T

E
xt

ra
p

o
la

ti
o

n

Figure 1A.3  Straight lines are obtained when the pressure is 
plotted against 1/V at constant temperature.
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Figure 1A.4 The variation of the volume of a fixed amount of 
gas with the temperature at constant pressure. Note that in 
each case the isobars extrapolate to zero volume at T = 0, or 
θ = –273 °C.
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interactions are all the same but not necessarily zero. In a 
perfect gas, not only are the interactions all the same, they are  
also zero.

The surface in Fig. 1A.6 is a plot of the pressure of a fixed 
amount of perfect gas against its volume and thermodynamic 
temperature as given by eqn 1A.5. The surface depicts the only 
possible states of a perfect gas: the gas cannot exist in states that 
do not correspond to points on the surface. The graphs in Figs. 
1A.2 and 1A.4 correspond to the sections through the surface 
(Fig. 1A.7).

The perfect gas law is of the greatest importance in physical 
chemistry because it is used to derive a wide range of relations 
that are used throughout thermodynamics. However, it is also 
of considerable practical utility for calculating the properties of 
a gas under a variety of conditions. For instance, the molar vol-
ume, Vm = V/n, of a perfect gas under the conditions called stand-
ard ambient temperature and pressure (SATP), which means 

Volume, V

Temperature, T
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Volume, V

Vmee,, VVVo
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Isobar

Isochore
pV = constant

V ∝ T

p ∝ T

Figure 1A.7 Sections through the surface shown in Fig. 1A.6 at 
constant temperature give the isotherms shown in Fig. 1A.2, the 
isobars shown in Fig. 1A.4, and the isochores shown in Fig. 1A.5.
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Figure 1A.6 A region of the p,V,T surface of a fixed amount of 
perfect gas. The points forming the surface represent the only 
states of the gas that can exist.

Example 1A.2 Using the perfect gas law

In an industrial process, nitrogen is heated to 500 K in a vessel 
of constant volume. If it enters the vessel at 100 atm and 300 K, 
what pressure would it exert at the working temperature if it 
behaved as a perfect gas?

Method We expect the pressure to be greater on account of 
the increase in temperature. The perfect gas law in the form 
pV/nT = R implies that if the conditions are changed from one 
set of values to another, then because pV/nT is equal to a con-
stant, the two sets of values are related by the ‘combined gas law’

p V
n T

p V
n T

1 1

1 1

2 2

2 2
=   combined gas law  (1A.7)

This expression is easily rearranged to give the unknown 
quantity (in this case p2) in terms of the known. The known 
and unknown data are summarized as follows:

Answer Cancellation of the volumes (because V1 = V2) and 
amounts (because n1 = n2) on each side of the combined gas 
law results in

p
T

p
T

1

1

2

2
=

which can be rearranged into

p T
T p2

2

1
1= ×

Substitution of the data then gives

p2
500
300 100 167= × =

K
K atm atm( )

Experiment shows that the pressure is actually 183 atm under 
these conditions, so the assumption that the gas is perfect 
leads to a 10 per cent error.

Self-test 1A.2 What temperature would result in the same 
sample exerting a pressure of 300 atm?

Answer: 900 K

n p V T

Initial Same 100 Same 300

Final Same ? Same 500

Table 1A.2 The gas constant (R = NAk)

R

8.314 47 J K−1 mol−1

8.205 74 × 10−2 dm3 atm K−1 mol−1

8.314 47 × 10−2 dm3 bar K−1 mol−1

8.314 47 Pa m3 K−1 mol−1

62.364 dm3 Torr K−1 mol−1

1.987 21 cal K−1 mol−1
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1A The perfect gas  35

298.15 K and 1 bar (that is, exactly 105 Pa), is easily calculated 
from Vm = RT/p to be 24.789 dm3 mol−1. An earlier definition, 
standard temperature and pressure (STP), was 0 °C and 1 atm; 
at STP, the molar volume of a perfect gas is 22.414 dm3 mol−1.

The molecular explanation of Boyle’s law is that if a sample of 
gas is compressed to half its volume, then twice as many mole-
cules strike the walls in a given period of time than before it was 
compressed. As a result, the average force exerted on the walls 
is doubled. Hence, when the volume is halved the pressure of 
the gas is doubled, and pV is a constant. Boyle’s law applies to all 
gases regardless of their chemical identity (provided the pres-
sure is low) because at low pressures the average separation of 
molecules is so great that they exert no influence on one another 
and hence travel independently. The molecular explanation of 
Charles’s law lies in the fact that raising the temperature of a 
gas increases the average speed of its molecules. The molecules 
collide with the walls more frequently and with greater impact. 
Therefore they exert a greater pressure on the walls of the con-
tainer. For a quantitative account of these relations, see Topic 1B.

(b) Mixtures of gases
When dealing with gaseous mixtures, we often need to know 
the contribution that each component makes to the total pres-
sure of the sample. The partial pressure, pJ, of a gas J in a mix-
ture (any gas, not just a perfect gas), is defined as

p x pJ J=  Definition  Partial pressure  (1A.8)

where xJ is the mole fraction of the component J, the amount of 
J expressed as a fraction of the total amount of molecules, n, in 
the sample:

x
n
n n n nJ

J
A B= = + +  Definition  mole fraction  (1A.9)

When no J molecules are present, xJ = 0; when only J molecules 
are present, xJ = 1. It follows from the definition of xJ that, what-
ever the composition of the mixture, xA + xB + … = 1 and therefore 
that the sum of the partial pressures is equal to the total pressure:

p p x x p pA B A B+ +… = + +… =( )  (1A.10)

This relation is true for both real and perfect gases.
When all the gases are perfect, the partial pressure as defined 

in eqn 1A.9 is also the pressure that each gas would exert if it 
occupied the same container alone at the same temperature. The 
latter is the original meaning of ‘partial pressure’. That identifica-
tion was the basis of the original formulation of Dalton’s law:

The pressure exerted by a mixture of gases is the  
sum of the pressures that each one would exert  
if it occupied the container alone.

Now, however, the relation between partial pressure (as defined 
in eqn 1A.8) and total pressure (as given by eqn 1A.10) is true 
for all gases and the identification of partial pressure with the 
pressure that the gas would exert on its own is valid only for a 
perfect gas.

Example 1A.3 Calculating partial pressures

The mass percentage composition of dry air at sea level 
is approximately N2: 75.5; O2: 23.2; Ar: 1.3. What is the par-
tial pressure of each component when the total pressure is 
1.20 atm?

Method We expect species with a high mole fraction to 
have a proportionally high partial pressure. Partial pres-
sures are defined by eqn 1A.8. To use the equation, we need 
the mole fractions of the components. To calculate mole frac-
tions, which are defined by eqn 1A.9, we use the fact that the 
amount of molecules J of molar mass MJ in a sample of mass 
mJ is nJ = mJ/MJ. The mole fractions are independent of the total 
mass of the sample, so we can choose the latter to be exactly 
100 g (which makes the conversion from mass percentages 
very easy). Thus, the mass of N2 present is 75.5 per cent of 
100 g, which is 75.5 g.

Answer The amounts of each type of molecule present in 100 g 
of air, in which the masses of N2, O2, and Ar are 75.5 g, 23.2 g, 
and 1.3 g, respectively, are

n

n

( )
.

.
.

. .

( )
.

.

N
g

g mol
mol

O
g

2 1

2

75 5
28 02

75 5
28 02 2 69

23 2
32 0

= = =

=

− mol

00
23 2

32 00 0 725

1 3
39 95

1 3
39

1

1

g mol
mol mol

g
g mol

−

−

= =

= =

.
. .

(Ar)
.

.
.
.n 995 0 033mol = . mol

The total is 3.45 mol. The mole fractions are obtained by divid-
ing each of the above amounts by 3.45 mol and the partial 
pressures are then obtained by multiplying the mole fraction 
by the total pressure (1.20 atm):

We have not had to assume that the gases are perfect: partial 
pressures are defined as pJ = xJp for any kind of gas.

Self-test 1A.3 When carbon dioxide is taken into account, 
the mass percentages are 75.52 (N2), 23.15 (O2), 1.28 (Ar), and 
0.046 (CO2). What are the partial pressures when the total 
pressure is 0.900 atm?

Answer: 0.703, 0.189, 0.0084, 0.00027 atm

N2 O2 Ar

Mole fraction: 0.780 0.210 0.0096
Partial pressure/atm: 0.936 0.252 0.012

 dalton’s law 
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36 1 The properties of gases

Checklist of concepts

☐ 1. The physical state of a sample of a substance, its physi-
cal condition, is defined by its physical properties.

☐ 2. Mechanical equilibrium is the condition of equality of 
pressure on either side of a shared movable wall.

☐ 3. An equation of state is an equation that interrelates the 
variables that define the state of a substance.

☐ 4. Boyle’s and Charles’s laws are examples of a limiting 
law, a law that is strictly true only in a certain limit, in 
this case p → 0.

☐ 5. An isotherm is a line in a graph that corresponds to a 
single temperature.

☐ 6. An isobar is a line in a graph that corresponds to a sin-
gle pressure.

☐ 7. An isochore is a line in a graph that corresponds to a 
single volume.

☐ 8. A perfect gas is a gas that obeys the perfect gas law 
under all conditions.

☐ 9. Dalton’s law states that the pressure exerted by a mix-
ture of (perfect) gases is the sum of the pressures that 
each one would exert if it occupied the container 
alone.

Checklist of equations

Property Equation Comment Equation number

Relation between temperature scales T/K = θ/°C  +  273.15 273.15 is exact 1A.2

Equation of state p = f(n,V,T) 1A.3

Perfect gas law pV = nRT Valid for real gases in the limit p → 0 1A.5

Partial pressure  pJ = xJp Valid for all gases 1A.8
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1B the kinetic model

In the kinetic theory of gases (which is sometimes called the 
kinetic-molecular theory, KMT) it is assumed that the only 
contribution to the energy of the gas is from the kinetic ener-
gies of the molecules. The kinetic model is one of the most 
remarkable—and arguably most beautiful—models in physical 

chemistry, for from a set of very slender assumptions, powerful 
quantitative conclusions can be reached.

1B.1 The model

The kinetic model is based on three assumptions:

1. The gas consists of molecules of mass m in ceaseless 
random motion obeying the laws of classical mechanics.

2. The size of the molecules is negligible, in the sense that 
their diameters are much smaller than the average 
distance travelled between collisions.

3. The molecules interact only through brief elastic 
collisions.

An elastic collision is a collision in which the total translational 
kinetic energy of the molecules is conserved.

(a) Pressure and molecular speeds
From the very economical assumptions of the kinetic model, 
we show in the following Justification that the pressure and vol-
ume of the gas are related by

pV nM= 1
3 vrms

2
 Perfect gas  Pressure  (1B.1)

where M = mNA, the molar mass of the molecules of mass m, 
and vrms is the square root of the mean of the squares of the 
speeds, v, of the molecules:

v vrms
2 1 2= 〈 〉 /

 Definition  root-mean-square speed  (1B.2)

Contents

1b.1 The model 37
(a) Pressure and molecular speeds 37

brief illustration 1b.1: molecular speeds 38
(b) The Maxwell–Boltzmann distribution of speeds 39
(c) Mean values 40

example 1b.1: calculating the mean speed of  
molecules in a gas 41
brief illustration 1b.2: relative molecular speeds 42

1b.2 Collisions 42
(a) The collision frequency 42

brief illustration 1b.3: molecular collisions 43
(b) The mean free path 43

brief illustration 1b.4: the mean free path 43
Checklist of concepts 44
Checklist of equations 44

➤➤ Why do you need to know this material?
This material illustrates an important skill in science: 
the ability to extract quantitative information from a 
qualitative model. Moreover, the model is used in the 
discussion of the transport properties of gases (Topic 
19A), reaction rates in gases (Topic 20F), and catalysis 
(Topic  22C).

➤➤ What is the key idea?
A gas consists of molecules of negligible size in ceaseless 
random motion and obeying the laws of classical 
mechanics in their collisions.

➤➤ What do you need to know already?
You need to be aware of Newton’s second law of motion, 
that the acceleration of a body is proportional to the force 
acting on it, and the conservation of linear momentum.

Justification 1.1B The pressure of a gas according to the 
kinetic model

Consider the arrangement in Fig. 1B.1. When a particle of 
mass m that is travelling with a component of velocity vx par-
allel to the x-axis collides with the wall on the right and is 
reflected, its linear momentum changes from mvx before the 
collision to –mvx after the collision (when it is travelling in the 
opposite direction). The x-component of momentum therefore 
changes by 2mvx on each collision (the y- and z-components 
are unchanged). Many molecules collide with the wall in an 
interval Δt, and the total change of momentum is the prod-
uct of the change in momentum of each molecule multiplied 
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38 1 The properties of gases

Equation 1B.1 is one of the key results of the kinetic model. 
We see that, if the root-mean-square speed of the molecules 
depends only on the temperature, then at constant temperature

pV = constant  

which is the content of Boyle’s law. Moreover, for eqn 1B.1 to be 
the equation of state of a perfect gas, its right-hand side must be 
equal to nRT. It follows that the root-mean-square speed of the 
molecules in a gas at a temperature T must be

vrms =





3 1 2RT
M

/

 
Perfect gas  rms speed  (1B.3)

Brief illustration 1B.1 Molecular speeds

For N2 molecules at 25 °C, we use M = 28.02 g mol−1, then

vrms
JK mol K

kg mol
=

× ×











− −

−

3 8 3145 298
0 02802

1 1

1

1 2
( . ) ( )

.

/

== −515 1ms
 

by the number of molecules that reach the wall during the 
interval.

Because a molecule with velocity component vx can travel 
a distance vxΔt along the x-axis in an interval Δt, all the mol-
ecules within a distance vxΔt of the wall will strike it if they 
are travelling towards it (Fig. 1B.2). It follows that if the wall 
has area A, then all the particles in a volume A× vxΔt will 
reach the wall (if they are travelling towards it). The number 
density of particles is nNA/V, where n is the total amount of 
molecules in the container of volume V and NA is Avogadro’s 
constant, so the number of molecules in the volume AvxΔt is 
(nNA/V) × AvxΔt.

At any instant, half the particles are moving to the right 
and half are moving to the left. Therefore, the average num-
ber of collisions with the wall during the interval Δt is 
1
2 nN A t VxA v ∆ / . The total momentum change in that interval 
is the product of this number and the change 2mvx:

Momentum change A

A

= ×

= =

nN A t
V m

nmN A t
V

nMA t
V

x
x

x x

v
v

v v

∆

∆ ∆

2 2

2 2
M

 

Next, to find the force, we calculate the rate of change of 
momentum, which is this change of momentum divided by 
the interval Δt during which it occurs:

Rate of change of momentum = nMA
V

xv2

 
This rate of change of momentum is equal to the force (by 
Newton’s second law of motion). It follows that the pressure, 
the force divided by the area, is

Pressure = nM
V

xv2

 
Not all the molecules travel with the same velocity, so the 
detected pressure, p, is the average (denoted 〈…〉) of the quan-
tity just calculated:

p nM
V

x= 〈 〉v2

 
This expression already resembles the perfect gas equation of 
state.

To write an expression for the pressure in terms of the root-
mean-square speed, vrms, we begin by writing the speed of a 
single molecule, v, as v v v v2 2 2 2= + +x y z . Because the root-mean-
square speed is defined as vrms = 〈v2〉1/2, it follows that

v v v v vrms
2 2 2 2 2= = + +〈 〉 〈 〉 〈 〉 〈 〉x y z  

However, because the molecules are moving randomly, all three 
averages are the same. It follows that v vrms

2 23=〈 〉x . Equation 
1B.1 follows immediately by substituting 〈 〉 〈 〉v vx

2 1
3

2= rms  into 
p nM Vx= 〈 〉v2 / .

mvx

–mvx

x

Before
collision

After
collision

Figure 1B.1 The pressure of a gas arises from the impact 
of its molecules on the walls. In an elastic collision of a 
molecule with a wall perpendicular to the x-axis, the 
x-component of velocity is reversed but the y- and 
z-components are unchanged.

WillWon’t

|vxΔt|

Volume = |vxΔt|A

Area, A

x

Figure 1B.2 A molecule will reach the wall on the right 
within an interval Δt if it is within a distance vxΔt of the wall 
and travelling to the right.
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1B The kinetic model  39

(b) The Maxwell–Boltzmann distribution of 
speeds
Equation 1B.2 is an expression for the mean square speed of 
molecules. However, in an actual gas the speeds of individual 
molecules span a wide range, and the collisions in the gas con-
tinually redistribute the speeds among the molecules. Before a 
collision, a molecule may be travelling rapidly, but after a col-
lision it may be accelerated to a very high speed, only to be 
slowed again by the next collision. The fraction of molecules 
that have speeds in the range v to v + dv is proportional to the 
width of the range, and is written f(v)dv, where f(v) is called 
the distribution of speeds. Note that, in common with other 
distribution functions, f(v) acquires physical significance only 
after it is multiplied by the range of speeds of interest. In the fol-
lowing Justification we show that the fraction of molecules that 
have a speed in the range v to v + dv is f(v)dv, where

f M
RT

M RT( )
/

v v v= 





−4 2

3 2
2 22π π e /  

The function f(v) is called the Maxwell–Boltzmann distribu-
tion of speeds.

Perfect 
gas 

maxwell–
boltzmann 
distribution

 (1B.4)

The distribution factorizes into three terms, and we can 
write f(v) = f(vx) f(vy) f(vz) and K = KxKyKz, with

f Kx x
m kTx( ) /v v= −e 2 2

and likewise for the other two axes.
To determine the constant Kx, we note that a molecule 

must have a velocity component somewhere in the range 
–∞ < vx < ∞, so

f x x( )v vd =
−∞

∞

∫ 1
 

Substitution of the expression for f(vx) then gives

1 22 2
1 2

= 





=−

−∞

∞

∫K K kT
mx

m kT
x x

xe d
 

v v/
/Integral G.1 π

 

Therefore, Kx = (m/2πkT)1/2 and at this stage we can write

f m
kTx

m kTx( )
/

/v v=





−

2

1 2
22

π
e

 
(1B.5)

The probability that a molecule has a velocity in the range vx to 
vx + dvx, vy to vy + dvy, vz to vz + dvz, is therefore

f f f m
kTx y z

m kT m kT mx y z( ) ( ) ( )
/

/ / /v v v v v v= 





− − −
2

3 2
2 2 22 2 2

π e e e kkT

x y z

x y z
m kTm

kT

×
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−

d d d

d d de

v v v

v v vv

2

3 2
22

π

/
/

where v v v v2 2 2 2= + +x y z .
To evaluate the probability that the molecules have a speed 

in the range v to v + dv regardless of direction we think of the 
three velocity components as defining three coordinates in 
‘velocity space’, with the same properties as ordinary space 
except that the coordinates are labelled (vx,vy,vz) instead 
of (x,y,z). Just as the volume element in ordinary space is 
dxdydz, so the volume element in velocity space is dvxdvydvz. 
The sum of all the volume elements in ordinary space that lie 
at a distance r from the centre is the volume of a spherical 
shell of radius r and thickness dr. That volume is the product 
of its surface area, 4πr2, and its thickness dr, and is therefore 
4πr2dr. Similarly, the analogous volume in velocity space is 
the volume of a shell of radius v and thickness dv, namely 
4πv2dv (Fig. 1B.3). Now, because f(vx)f(vy)f(vz), the term in 
blue in the last equation, depends only on v2, and has the 
same value everywhere in a shell of radius v, the total prob-
ability of the molecules possessing a speed in the range v to 
v + dv is the product of the term in blue and the volume of the 

Shortly we shall encounter the mean speed, vmean, and the 
most probable speed vmp; they are, respectively,

v v

v

mean rms

mp

ms ms=





= …× =

= 





− −8
3 0 921 515 475

2
3

1 2
1 1

π

/

. ( )

 = …× =− −
1 2

1 10 816 515 420
/

. ( )vrms ms ms
 

Self-test 1B.1 Evaluate the root-mean-square speed of H2 mol-
ecules at 25 °C.

Answer: 1.92 km s−1

Justification 1B.2 The Maxwell–Boltzmann distribution 
of speeds

The Boltzmann distribution (Foundations B) implies that the 
fraction of molecules with velocity components vx, vy, and 
vz is proportional to an exponential function of their kinetic 
energy: f(v) = Ke−ε/kT, where K is a constant of proportionality. 
The kinetic energy is

ε = + +1
2

2 1
2

2 1
2

2m m mx y zv v v  

Therefore, we can use the relation ax+y+z = axayaz to write

f K Km m m kT m kT m kT mx y z x y z( ) ( )/ / / /v v v v v v v= =− + + − − −e e e e2 2 2 2 2 22 2 2 2kkT
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40 1 The properties of gases

The important features of the Maxwell–Boltzmann distribu-
tion are as follows (and are shown pictorially in Fig. 1B.4):

•	 Equation 1B.4 includes a decaying exponential 
function (more specifically, a Gaussian function). 
Its presence implies that the fraction of molecules 
with very high speeds will be very small because 
e−x2  becomes very small when x is large.

•	 The factor M/2RT multiplying v2 in the exponent is 
large when the molar mass, M, is large, so the 
exponential factor goes most rapidly towards zero 
when M is large. That is, heavy molecules are 
unlikely to be found with very high speeds.

•	 The opposite is true when the temperature, T, is 
high: then the factor M/2RT in the exponent is 
small, so the exponential factor falls towards zero 
relatively slowly as v increases. In other words, a 
greater fraction of the molecules can be expected to 
have high speeds at high temperatures than at low 
temperatures.

•	 A factor v2 (the term before the e) multiplies the 
exponential. This factor goes to zero as v goes to 
zero, so the fraction of molecules with very low 
speeds will also be very small whatever their mass.

•	 The remaining factors (the term in parentheses in 
eqn 1B.4 and the 4π) simply ensure that, when we 
sum the fractions over the entire range of speeds 
from zero to infinity, then we get 1.

The Maxwell distribution has been verified experimentally. 
For example, molecular speeds can be measured directly with 
a velocity selector (Fig. 1B.5). The spinning discs have slits that 
permit the passage of only those molecules moving through 
them at the appropriate speed, and the number of molecules 
can be determined by collecting them at a detector.

(c) Mean values
Once we have the Maxwell–Boltzmann distribution, we can 
calculate the mean value of any power of the speed by evalu-
ating the appropriate integral. For instance, to evaluate the 

shell of radius v and thickness dv. If this probability is written 
f(v)dv, it follows that

f m
kT

m kT( )
/

/v v v v vd d e= 





−4 2
2

3 2
22π π

and f(v) itself, after minor rearrangement, is

f m
kT

m kT( )
/

/v v v= 





−4 2

3 2
2 22π π e

Because m/k = M/R, this expression is eqn 1B.4.
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Figure 1B.5 A velocity selector. Only molecules travelling at 
speeds within a narrow range pass through the succession of 
slits as they rotate into position.

vz

vy
vx

v

Thickness, dvSurface area, 4πv2

Figure 1B.3 To evaluate the probability that a molecule 
has a speed in the range v to v + dv, we evaluate the 
total probability that the molecule will have a speed 
that is anywhere on the surface of a sphere of radius 
v v v v= + +( ) /

x y z
2 2 2 1 2  by summing the probabilities that it  

is in a volume element dvxdvydvz at a distance v from the 
origin.

Intermediate temperature or
molecular mass

High temperature or
low molecular mass

Low temperature
or high molecular mass
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Speed, v

Figure 1B.4 The distribution of molecular speeds with 
temperature and molar mass. Note that the most probable 
speed (corresponding to the peak of the distribution) increases 
with temperature and with decreasing molar mass, and 
simultaneously the distribution becomes broader.
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fraction of molecules in the range v1 to v2 we evaluate the 
integral:

F f( , ) ( )v v v v
v

v

1 2
1

2

=∫ d
 

(1B.6)

This integral is the area under the graph of f as a function of v 
and, except in special cases, has to be evaluated numerically by 
using mathematical software (Fig. 1B.6). To evaluate the aver-
age value of vn we calculate

〈 〉v v v vn n f=
∞

∫ ( )d
0  

(1B.7)

In particular, integration with n = 2 results in eqn 1B.3 for the 
mean square speed (v2) of the molecules at a temperature T. 
We can conclude that the root-mean-square speed of the mol-
ecules of a gas is proportional to the square root of the tempera-
ture and inversely proportional to the square root of the molar 
mass. That is, the higher the temperature, the higher the root-
mean-square speed of the molecules, and, at a given tempera-
ture, heavy molecules travel more slowly than light molecules. 
Sound waves are pressure waves, and for them to propagate the 
molecules of the gas must move to form regions of high and low 
pressure. Therefore, we should expect the root-mean-square 
speeds of molecules to be comparable to the speed of sound in 
air (340 m s−1). As we have seen, the root-mean-square speed of 
N2 molecules, for instance, is 515 m s−1 at 298 K.

As shown in Example 1B.1, we can use the Maxwell–
Boltzmann distribution to evaluate the mean speed, vmean, of 
the molecules in a gas:

v vmean rms=





=





8 8
3

1 2 1 2RT
Mπ

/ /

π  

We can identify the most probable speed, vmp, from the loca-
tion of the peak of the distribution:

v vmp rms=





=





2 2
3

1 2 1 2RT
M

/ /

 

The location of the peak of the distribution is found by differ-
entiating f(v) with respect to v and looking for the value of v at 
which the derivative is zero (other than at v = 0 and v = ∞); see 
Problem 1B.3. Figure 1B.7 summarizes these results and some 
numerical values were calculated in Brief illustration 1B.1.

The mean relative speed, vrel, the mean speed with which 
one molecule approaches another of the same kind, can also be 
calculated from the distribution:

v vrel mean= 21 2/
 

Example 1B.1 Calculating the mean speed of molecules 
in a gas

Calculate the mean speed, vmean, of N2 molecules in air at 25 °C.

Method The mean speed is obtained by evaluating the integral

v v v vmean d=
∞

∫ f ( )
0

with f(v) given in eqn 1B.4. Either use mathematical software 
or use the standard integrals in the Resource section.

Answer The integral required is

v v vv
mean e d

 

= 





=

−
∞

∫4 2

4 2

3 2
3 2

0

2π π

π π

M
RT

M
R

m kT
/

/

Integral G.4
TT

RT
M

RT
M







× 





= 





3 2
1
2

1 2 1 22 8/ / /

π

Substitution of the data then gives

vmean
JK mol K

kg mol
=

× ×
× ×







− −

− −

8 8 3145 298
28 02 10

1 1

3 1
( . ) ( )

( . )π  = −

1 2
1475

/

ms

We have used 1 J = 1 kg m2 s−2 (the difference from the earlier 
value of 474 is due to rounding effects in that calculation; this 
value is more accurate).

Self-test 1B.2 Evaluate the root-mean-square speed of the 
molecules by integration. Use mathematical software or use 
a standard integral in the Resource section.

Answer: vrms = (3RT/M)1/2 = 515 m s−1 

Perfect 
gas

mean 
speed  (1B.8)

Perfect 
gas

most 
probable 
speed

 (1B.9)

Perfect gas, 
identical 
molecules 

mean 
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speed

 (1B.10a)
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Figure 1B.6 To calculate the probability that a molecule will 
have a speed in the range v1 to v2, we integrate the distribution 
between those two limits; the integral is equal to the area of 
the curve between the limits, as shown shaded here.
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42 1 The properties of gases

This result is much harder to derive, but the diagram in Fig. 
1B.8 should help to show that it is plausible. For the relative 
mean speed of two dissimilar molecules of masses mA and mB:

vrel
A B

A B
=





=
+

8 1 2kT m m
m mπμ

μ
/

 

1B.2 Collisions

The kinetic model enables us to make the qualitative picture of 
a gas as a collection of ceaselessly moving, colliding molecules 
more quantitative. In particular, it enables us to calculate the 
frequency with which molecular collisions occur and the dis-
tance a molecule travels on average between collisions.

(a) The collision frequency
Although the kinetic-molecular theory assumes that the mol-
ecules are point-like, we can count a ‘hit’ whenever the centres 
of two molecules come within a distance d of each other, where 
d, the collision diameter, is of the order of the actual diameters 
of the molecules (for impenetrable hard spheres d is the diam-
eter). As we show in the following Justification, we can use the 
kinetic model to deduce that the collision frequency, z, the 
number of collisions made by one molecule divided by the time 
interval during which the collisions are counted, when there 
are N molecules in a volume V is

z =σ vrelN  Perfect gas  collision frequency  (1B.11a)

with N = N/V, the number density, and vrel given by eqn 1B.10.
The area σ = πd2 is called the collision cross-section of the mol-
ecules. Some typical collision cross-sections are given in Table 
1B.1. In terms of the pressure (as is also shown in the following 
Justification),

z
p

kT=
σ vrel

 
Perfect gas  collision frequency  (1B.11b)

Perfect 
gas 

mean 
relative 
speed

 (1B.10b)

Brief illustration 1B.2 Relative molecular speeds

We have already seen (in Brief illustration 1B.1) that the rms 
speed of N2 molecules at 25 °C is 515 m s−1. It follows from eqn 
1B.10a that their relative mean speed is

vrel ms ms= × =− −2 515 7281 2 1 1/ ( )

Self-test 1B.3 What is the relative mean speed of N2 and H2 
molecules in a gas at 25 °C?

Answer: 1.83 km s−1

Justification 1B.3 The collision frequency according to 
the kinetic model

Consider the positions of all the molecules except one to 
be frozen. Then note what happens as one mobile molecule 
travels through the gas with a mean relative speed vrel for a 

v

v

vv

v
v

v

v

0

21/2v

21/2v 2v

Figure 1B.8 A simplified version of the argument to show 
that the mean relative speed of molecules in a gas is related 
to the mean speed. When the molecules are moving in the 
same direction, the mean relative speed is zero; it is 2v when 
the molecules are approaching each other. A typical mean 
direction of approach is from the side, and the mean speed 
of approach is then 21/2v. The last direction of approach is the 
most characteristic, so the mean speed of approach can be 
expected to be about 21/2v. This value is confirmed by more 
detailed calculation.

Table 1B.1* Collision cross-sections, σ/nm2

σ/nm2

C6H6 0.88

CO2 0.52

He 0.21

N2 0.43

* More values are given in the Resource section.

vmp = (2RT/M)1/2

vmean= (8RT/πM)1/2

vrms = (3RT/M)1/2

1

(4/π)1/2

(3/2)1/2

v/(2RT/M)1/2

f(
v)

/4
π(

M
/2

πR
T

)1/
2

Figure 1B.7 A summary of the conclusions that can be deduced 
form the Maxwell distribution for molecules of molar mass M 
at a temperature T: vmp is the most probable speed, vmean is the 
mean speed, and vrms is the root-mean-square speed.
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1B The kinetic model  43

Equation 1B.11a shows that, at constant volume, the collision 
frequency increases with increasing temperature. Equation 
1B.11b shows that, at constant temperature, the collision fre-
quency is proportional to the pressure. Such a proportion-
ality is plausible because the greater the pressure, the greater 
the number density of molecules in the sample, and the rate at 
which they encounter one another is greater even though their 
average speed remains the same.

(b) The mean free path
Once we have the collision frequency, we can calculate the 
mean free path, λ (lambda), the average distance a molecule 
travels between collisions. If a molecule collides with a fre-
quency z, it spends a time 1/z in free flight between collisions, 
and therefore travels a distance (1/z)vrel. It follows that the 
mean free path is

λ = vrel

z  
Perfect gas  mean free path  (1B.12)

Substitution of the expression for z in eqn 1B.11b gives

λ = kT
pσ  

Perfect gas  mean free path  (1B.13)

Doubling the pressure reduces the mean free path by half.

Although the temperature appears in eqn 1B.13, in a sam-
ple of constant volume, the pressure is proportional to T, so 
T/p remains constant when the temperature is increased. 
Therefore, the mean free path is independent of the temper-
ature in a sample of gas in a container of fixed volume: the 
distance between collisions is determined by the number of 
molecules present in the given volume, not by the speed at 
which they travel.

In summary, a typical gas (N2 or O2) at 1 atm and 25 °C can 
be thought of as a collection of molecules travelling with a 
mean speed of about 500 m s−1. Each molecule makes a colli-
sion within about 1 ns, and between collisions it travels about 
103 molecular diameters. The kinetic model of gases is valid 
and the gas behaves nearly perfectly if the diameter of the 
molecules is much smaller than the mean free path (d ≪ λ), 
for then the molecules spend most of their time far from one 
another.

time Δt. In doing so it sweeps out a ‘collision tube’ of cross-
sectional area σ = πd2 and length vrelΔt and therefore of vol-
ume σ vrelΔt (Fig. 1B.9). The number of stationary molecules 
with centres inside the collision tube is given by the volume 
of the tube multiplied by the number density N = N/V, and is 
Nσ vrelΔt. The number of hits scored in the interval Δt is equal 
to this number, so the number of collisions divided by the 
time interval is Nσ vrel, which is eqn 1B.11a. The expression 
in terms of the pressure of the gas is obtained by using the 
perfect gas equation to write

N = = = = 
N
V

nN
V

nN
nRT p

p
kT

A A
/

Brief illustration 1B.4 The mean free path

In Brief illustration 1B.2 we noted that vrel = 728 m s−1 for 
N2 molecules at 25 °C, and in Brief illustration 1B.3 that 
z = 7.7 × 109 s−1 when the pressure is 1.00 atm. Under these cir-
cumstances, the mean free path of N2 molecules is

λ =
×

= ×
−

−
−728

7 7 10
9 5 10

1

9 1
8ms

s
m

.
.

or 95 nm, about103 molecular diameters.

Self-test 1B.5 Evaluate the mean free path of benzene 
 molecules at 25 °C in a sample where the pressure is 0.10 atm.

Answer: 460 nm

Brief illustration 1B.3 Molecular collisions

For an N2 molecule in a sample at 1.00 atm (101 kPa) and 
25 °C, from Brief illustration 1B.2 we know that vrel = 728 m s−1. 
Therefore, from eqn 1B.11b, and taking σ = 0.45 nm2 (corres-
ponding to 0.45 × 10−18 m2) from Table 1B.1,

z =
× × × ×

× ×

− −

− −

( . ) ( ) ( . )
( . ) (

0 43 10 728 1 01 10
1 381 10

18 2 1 5

23 1
m ms Pa

JK 2298
7 7 109 1

K
s

)
.= × −

 
so a given molecule collides about 8 × 109 times each second. 
We are beginning to appreciate the timescale of events in 
gases.

Self-test 1B.4 Evaluate the collision frequency between H2 
molecules in a gas under the same conditions.

Answer: 4.1 × 109 s−1

Miss

Hit

vrelΔt

d

Area, σ

d

Figure 1B.9 The calculation of the collision frequency and 
the mean free path in the kinetic theory of gases.
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Checklist of concepts

☐ 1. The kinetic model of a gas considers only the contri-
bution to the energy from the kinetic energies of the 
molecules.

☐ 2. Important results from the model include expressions 
for the pressure and the root-mean-square speed.

☐ 3. The Maxwell–Boltzmann distribution of speeds gives 
the fraction of molecules that have speeds in a specified 
range.

☐ 4. The collision frequency is the number of collisions 
made by a molecule in an interval divided by the length 
of the interval.

☐ 5. The mean free path is the average distance a molecule 
travels between collisions.

Checklist of equations

Property Equation Comment Equation number

Pressure of a perfect gas from the kinetic model pV nM= 1
3

2vrms Kinetic model 1B.1

Maxwell–Boltzmann distribution of speeds f M M RT( ) ( / ) /v v v= −4 2 3 2 2 22π πRT / e 1B.4

Root-mean-square speed in a perfect gas vrms = (3RT/M)1/2 1B.3

Mean speed in a perfect gas vmean = (8RT/πM)1/2 1B.8

Most probable speed in a perfect gas vmp = (2RT/M)1/2 1B.9

Mean relative speed in a perfect gas vrel = (8kT/πμ)1/2 
μ = mAmB/(mA + mB)

1B.10

The collision frequency in a perfect gas z = σ vrelp/kT, σ = πd2 1B.11

Mean free path in a perfect gas λ = vrel/z 1B.12
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1C real gases

Real gases do not obey the perfect gas law exactly except in the 
limit of p → 0. Deviations from the law are particularly impor-
tant at high pressures and low temperatures, especially when a 
gas is on the point of condensing to liquid.

1C.1 Deviations from perfect 
behaviour

Real gases show deviations from the perfect gas law because 
molecules interact with one another. A point to keep in mind 
is that repulsive forces between molecules assist expansion and 
attractive forces assist compression.

Repulsive forces are significant only when molecules are 
almost in contact: they are short-range interactions, even on 
a scale measured in molecular diameters (Fig. 1C.1). Because 
they are short-range interactions, repulsions can be expected 
to be important only when the average separation of the mol-
ecules is small. This is the case at high pressure, when many 
molecules occupy a small volume. On the other hand, attrac-
tive intermolecular forces have a relatively long range and are 
effective over several molecular diameters. They are important 
when the molecules are fairly close together but not neces-
sarily touching (at the intermediate separations in Fig. 1C.1). 
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brief illustration 1c.3: the critical temperature 48
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example 1c.1: using the van der waals equation to 
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➤➤ Why do you need to know this material?

Actual gases, so-called ‘real gases’, differ from perfect 
gases and it is important to be able to discuss their 
properties. Moreover, the deviations from perfect 
behaviour give insight into the nature of the interactions 
between molecules. Accounting for these interactions is 
also an introduction to the technique of model building 
in physical chemistry.

➤➤ What is the key idea?
Attractions and repulsions between gas molecules account 
for modifications to the isotherms of a gas and account for 
critical behaviour.

➤➤ What do you need to know already?
This Topic builds on and extends the discussion of perfect 
gases in Topic 1A. The principal mathematical technique 
employed is differentiation to identify a point of inflexion 
of a curve.
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Figure 1C.1 The variation of the potential energy of two 
molecules on their separation. High positive potential energy 
(at very small separations) indicates that the interactions 
between them are strongly repulsive at these distances. 
At intermediate separations, where the potential energy 
is negative, the attractive interactions dominate. At large 
separations (on the right) the potential energy is zero and there 
is no interaction between the molecules.
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46 1 The properties of gases

Attractive forces are ineffective when the molecules are far 
apart (well to the right in Fig. 1C.1). Intermolecular forces are 
also important when the temperature is so low that the mol-
ecules travel with such low mean speeds that they can be cap-
tured by one another.

The consequences of these interactions are shown by shapes 
of experimental isotherms (Fig. 1C.2). At low pressures, when 
the sample occupies a large volume, the molecules are so far 
apart for most of the time that the intermolecular forces play 
no significant role, and the gas behaves virtually perfectly. At 
moderate pressures, when the average separation of the mol-
ecules is only a few molecular diameters, the attractive forces 
dominate the repulsive forces. In this case, the gas can be 
expected to be more compressible than a perfect gas because 
the forces help to draw the molecules together. At high pres-
sures, when the average separation of the molecules is small, 
the repulsive forces dominate and the gas can be expected to 
be less compressible because now the forces help to drive the 
molecules apart.

Consider what happens when we compress (reduce the vol-
ume of) a sample of gas initially in the state marked A in Fig. 
1C.2 at constant temperature by pushing in a piston. Near A, 
the pressure of the gas rises in approximate agreement with 
Boyle’s law. Serious deviations from that law begin to appear 
when the volume has been reduced to B.

At C (which corresponds to about 60 atm for carbon 
di oxide), all similarity to perfect behaviour is lost, for sud-
denly the piston slides in without any further rise in pres-
sure: this stage is represented by the horizontal line CDE. 
Examination of the contents of the vessel shows that just to the 
left of C a liquid appears, and there are two phases separated 
by a sharply defined surface. As the volume is decreased from 
C through D to E, the amount of liquid increases. There is no 
additional resistance to the piston because the gas can respond 

by condensing. The pressure corresponding to the line CDE, 
when both liquid and vapour are present in equilibrium, is 
called the vapour pressure of the liquid at the temperature of 
the experiment.

At E, the sample is entirely liquid and the piston rests on its 
surface. Any further reduction of volume requires the exertion 
of considerable pressure, as is indicated by the sharply rising 
line to the left of E. Even a small reduction of volume from E to 
F requires a great increase in pressure.

(a) The compression factor
As a first step in making these observations quantitative we 
introduce the compression factor, Z, the ratio of the measured 
molar volume of a gas, Vm = V/n, to the molar volume of a per-
fect gas, Vm°

°
, at the same pressure and temperature:

Z V
V

= m

m°  
Definition  compression factor  (1C.1)

Because the molar volume of a perfect gas is equal to RT/p, an 
equivalent expression is Z RT pV= / m° , which we can write as

pV RTZm =  (1C.2)

Because for a perfect gas Z = 1 under all conditions, deviation 
of Z from 1 is a measure of departure from perfect behaviour.

Some experimental values of Z are plotted in Fig. 1C.3. At 
very low pressures, all the gases shown have Z ≈ 1 and behave 
nearly perfectly. At high pressures, all the gases have Z > 1, sig-
nifying that they have a larger molar volume than a perfect gas. 
Repulsive forces are now dominant. At intermediate pressures, 
most gases have Z < 1, indicating that the attractive forces are 
reducing the molar volume relative to that of a perfect gas.
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Figure 1C.2 Experimental isotherms of carbon dioxide at 
several temperatures. The ‘critical isotherm’, the isotherm at the 
critical temperature, is at 31.1 °C.
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Figure 1C.3 The variation of the compression factor, Z, with 
pressure for several gases at 0 °C. A perfect gas has Z = 1 at all 
pressures. Notice that, although the curves approach 1 as p → 0,  
they do so with different slopes.
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(b) Virial coefficients
Now we relate Z to the experimental isotherms in Fig. 1C.2. At 
large molar volumes and high temperatures the real-gas iso-
therms do not differ greatly from perfect-gas isotherms. The 
small differences suggest that the perfect gas law pVm = RT is in 
fact the first term in an expression of the form

pV RT B p C pm = + + +( )1 2′ ′   (1C.3a)

This expression is an example of a common procedure in physi-
cal chemistry, in which a simple law that is known to be a good 
first approximation (in this case pVm = RT) is treated as the first 
term in a series in powers of a variable (in this case p). A more 
convenient expansion for many applications is

pV RT B
V

C
Vm

m m
= + + +





1 2 
 

 Virial equation of state  (1C.3b)

These two expressions are two versions of the virial equation of 
state.1 By comparing the expression with eqn 1C.2 we see that 
the term in parentheses in eqn 1C.3b is just the compression 
factor, Z.

The coefficients B, C, …, which depend on the temperature, 
are the second, third, ... virial coefficients (Table 1C.1); the 
first virial coefficient is 1. The third virial coefficient, C, is usu-
ally less important than the second coefficient, B, in the sense 
that at typical molar volumes C B/ / mV Vm

2/ . The values of the 
virial coefficients of a gas are determined from measurements 
of its compression factor.

An important point is that although the equation of state of 
a real gas may coincide with the perfect gas law as p → 0, not all 
its properties necessarily coincide with those of a perfect gas in 
that limit. Consider, for example, the value of dZ/dp, the slope 
of the graph of compression factor against pressure. For a per-
fect gas dZ/dp = 0 (because Z = 1 at all pressures), but for a real 
gas from eqn 1C.3a we obtain

d
d asZ
p B pC B p= + + → →′ ′ ′2 0

 
(1C.4a)

However, B′ is not necessarily zero, so the slope of Z with 
respect to p does not necessarily approach 0 (the perfect gas 

Brief illustration 1C.1 The compression factor

The molar volume of a perfect gas at 500 K and 100 bar is 
Vm

 = 0 416. dm mol3 1− . The molar volume of carbon dioxide 
under the same conditions is Vm = 0.366 dm3 mol−1. It follows 
that at 500 K

Z = =
−

−

0 366
0 416

0 880
3 1

3 1
.
.

.
dm mol
dm mol

The fact that Z < 1 indicates that attractive forces dominate 
repulsive forces under these conditions.

Self-test 1C.1 The mean molar volume of air at 60 bar and 
400 K is 0.9474 dm3 mol−1. Are attractions or repulsions 
dominant?

Answer: Repulsions

Brief illustration 1C.2 The virial equation of state

To use eqn 1C.3b (up to the B term), to calculate the pressure 
exerted at 100 K by 0.104 mol O2(g) in a vessel of volume 0.225 
dm3, we begin by calculating the molar volume:

V V
nm

O

dm
mol dm mol m mol= = = = ×− − −

2

0 225
0 104 2 16 2 16 10

3
3 1 3 3 1.

. . .

Then, by using the value of B found in Table 1C.1 of the 
Resource section,

p
RT
V

B
V

= +





= ×
×

− −

− −

m m

Jmol K K
m mol

1

8 3145 100
2 16 10

1 1

3 3 1

( . ) ( )
.

  
m mol
m mol

 

1
1 975 10
2 16 10

3 50 10

4 3 1

3 3 1

5

− ×
×







= ×

− −

− −
.
.

. Pa, or  350kPa

where we have used 1 Pa = 1 J m−3. The perfect gas equation of 
state would give the calculated pressure as 385 kPa, or 10 per 
cent higher than the value calculated by using the virial equa-
tion of state. The deviation is significant because under these 
conditions B/Vm ≈ 0.1 which is not negligible relative to 1.

Self-test 1C.2 What pressure would 4.56 g of nitrogen gas in a 
vessel of volume 2.25 dm3 exert at 273 K if it obeyed the virial 
equation of state?

Answer: 104 kPa

1 The name comes from the Latin word for force. The coefficients are 
sometimes denoted B2, B3, ….

Table 1C.1* Second virial coefficients, B/(cm3 mol−1)

Temperature

273 K 600 K

Ar –21.7 11.9

CO2  –149.7 –12.4

N2 –10.5 21.7

Xe –153.7 –19.6

* More values are given in the Resource section.
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48 1 The properties of gases

value), as we can see in Fig. 1C.4. Because several physical 
properties of gases depend on derivatives, the properties of real 
gases do not always coincide with the perfect gas values at low 
pressures. By a similar argument,

d
d( ) as

m
m

Z
V B V1/ → →∞

 
(1C.4b)

Because the virial coefficients depend on the temperature, 
there may be a temperature at which Z → 1 with zero slope at 
low pressure or high molar volume (as in Fig. 1C.4). At this 
tempera ture, which is called the Boyle temperature, TB, the 
properties of the real gas do coincide with those of a perfect gas 
as p → 0. According to eqn 1C.4b, Z has zero slope as p → 0 if 
B = 0, so we can conclude that B = 0 at the Boyle temperature. It 
then follows from eqn 1C.3 that pVm ≈ RTB over a more extended 
range of pressures than at other temperatures because the first 
term after 1 (that is, B/Vm) in the virial equation is zero and C/Vm

2 
and higher terms are negligibly small. For helium TB = 22.64 K; 
for air TB = 346.8 K; more values are given in Table 1C.2.

(c) Critical constants
The isotherm at the temperature Tc (304.19 K, or 31.04 °C for 
CO2) plays a special role in the theory of the states of matter. 

An isotherm slightly below Tc behaves as we have already 
described: at a certain pressure, a liquid condenses from the 
gas and is distinguishable from it by the presence of a visible 
surface. If, however, the compression takes place at Tc itself, 
then a surface separating two phases does not appear and the 
volumes at each end of the horizontal part of the isotherm 
have merged to a single point, the critical point of the gas. 
The temperature, pressure, and molar volume at the critical 
point are called the critical temperature, Tc, critical pres-
sure, pc, and critical molar volume, Vc, of the substance. 
Collectively, pc, Vc, and Tc are the critical constants of a sub-
stance (Table 1C.2).

At and above Tc, the sample has a single phase which occu-
pies the entire volume of the container. Such a phase is, by 
definition, a gas. Hence, the liquid phase of a substance does 
not form above the critical temperature. The single phase that 
fills the entire volume when T > Tc may be much denser that we 
normally consider typical of gases, and the name supercritical 
fluid is preferred.

1C.2 The van der Waals equation

We can draw conclusions from the virial equations of state 
only by inserting specific values of the coefficients. It is often 
useful to have a broader, if less precise, view of all gases. 
Therefore, we introduce the approximate equation of state 
suggested by J.D. van der Waals in 1873. This equation is an 
excellent example of an expression that can be obtained by 
thinking scientifically about a mathematically complicated 
but physically simple problem; that is, it is a good example of 
‘model building’.

(a) Formulation of the equation
The van der Waals equation is

p nRT
V nb a n

V= − −
2

2  
 Van der Waals equation of state  (1C.5a)

Brief illustration 1C.3 The critical temperature

The critical temperature of oxygen signifies that it is impos-
sible to produce liquid oxygen by compression alone if its tem-
perature is greater than 155 K. To liquefy oxygen—to obtain a 
fluid phase that does not occupy the entire volume—the tem-
perature must first be lowered to below 155 K, and then the gas 
compressed isothermally.

Self-test 1C.3 Under which conditions can liquid nitrogen be 
formed by the application of pressure?

Answer: At T < 126 K
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Figure 1C.4 The compression factor, Z, approaches 1 at low 
pressures, but does so with different slopes. For a perfect gas, 
the slope is zero, but real gases may have either positive or 
negative slopes, and the slope may vary with temperature. At 
the Boyle temperature, the slope is zero and the gas behaves 
perfectly over a wider range of conditions than at other 
temperatures.

Table 1C.2* Critical constants of gases

pc/atm Vc/(cm3 mol−1) Tc/K Zc TB/K

Ar 48.0 75.3 150.7 0.292 411.5

CO2 72.9 94.0 304.2 0.274 714.8

He 2.26 57.8 5.2 0.305 22.64

O2 50.14 78.0 154.8 0.308 405.9

* More values are given in the Resource section.
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and a derivation is given in the following Justification. The 
equation is often written in terms of the molar volume 
Vm = V/n as

p RT
V b

a
V= − −

m m
2

 
(1C.5b)

The constants a and b are called the van der Waals coeffi-
cients. As can be understood from the following Justification, 
a represents the strength of attractive interactions and b that 
of the repulsive interactions between the molecules. They 
are characteristic of each gas but independent of the tem-
perature (Table 1C.3). Although a and b are not precisely 
defined molecular properties, they correlate with physical 
properties such as critical temperature, vapour pressure, and 
enthalpy of vaporization that reflect the strength of inter-
molecular interactions. Correlations have also been sought 
where intermolecular forces might play a role. For example, 
the potency of certain general anaesthetics shows a correla-
tion in the sense that a higher activity is observed with lower 
values of a (Fig. 1C.5).

Justification 1C.1 The van der Waals equation of state

The repulsive interactions between molecules are taken into 
account by supposing that they cause the molecules to behave 
as small but impenetrable spheres. The non-zero volume of the 
molecules implies that instead of moving in a volume V they 
are restricted to a smaller volume V − nb, where nb is approxi-
mately the total volume taken up by the molecules themselves. 
This argument suggests that the perfect gas law p = nRT/V 
should be replaced by

p nRT
V nb= −

when repulsions are significant. To calculate the excluded 
volume we note that the closest distance of two hard-sphere 
molecules of radius r, and volume V rmolecule = 4

3
3π ,  is 2r, so 

the volume excluded is 4
3

32π( ) ,r  or 8Vmolecule. The volume 
excluded per molecule is one-half this volume, or 4Vmolecule, so 
b ≈ 4VmoleculeNA.

The pressure depends on both the frequency of colli-
sions with the walls and the force of each collision. Both 
the frequency of the collisions and their force are reduced 
by the attractive interaction, which act with a strength pro-
portional to the molar concentration, n/V, of molecules in 
the sample. Therefore, because both the frequency and the 
force of the collisions are reduced by the attractive interac-
tions, the pressure is reduced in proportion to the square of 
this concentration. If the reduction of pressure is written 
as a(n/V)2, where a is a positive constant characteristic of 
each gas, the combined effect of the repulsive and attractive 
forces is the van der Waals equation of state as expressed in 
eqn 1C.5.

In this Justification we have built the van der Waals equa-
tion using vague arguments about the volumes of molecules 
and the effects of forces. The equation can be derived in other 
ways, but the present method has the advantage that it shows 
how to derive the form of an equation out of general ideas. The 
derivation also has the advantage of keeping imprecise the 
significance of the coefficients a and b: they are much better 
regarded as empirical parameters that represent attractions 
and repulsions, respectively, rather than as precisely defined 
molecular properties.

Example 1C.1 Using the van der Waals equation to 
estimate a molar volume

Estimate the molar volume of CO2 at 500 K and 100 atm by 
treating it as a van der Waals gas.

Method We need to find an expression for the molar vol-
ume by solving the van der Waals equation, eqn 1C.5b. To do 

Table 1C.3* van der Waals coefficients

a/(atm dm6 mol−2) b/(10−2 dm3 mol−1)

Ar 1.337 3.20

CO2 3.610 4.29

He 0.0341 2.38

Xe 4.137 5.16

* More values are given in the Resource section.
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Figure 1C.5 The correlation of the effectiveness of a gas as an 
anaesthetic and the van der Waals parameter a. (Based on R.J. 
Wulf and R.M. Featherstone, Anesthesiology 18, 97 (1957).) The 
isonarcotic pressure is the pressure required to bring about the 
same degree of anaesthesia.
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50 1 The properties of gases

(b) The features of the equation

We now examine to what extent the van der Waals equation 
predicts the behaviour of real gases. It is too optimistic to 
expect a single, simple expression to be the true equation of 
state of all substances, and accurate work on gases must resort 
to the virial equation, use tabulated values of the coefficients 
at various temperatures, and analyse the systems numerically. 
The advantage of the van der Waals equation, however, is that 
it is analytical (that is, expressed symbolically) and allows us 
to draw some general conclusions about real gases. When the 
equation fails we must use one of the other equations of state 
that have been proposed (some are listed in Table 1C.4), invent 
a new one, or go back to the virial equation.

Table 1C.4 Selected equations of state

Equation Reduced form*

Critical constants

pc Vc Tc

Perfect gas p nRT
V=

van der Waals p nRT
V nb

n a
V

= − −
2

2
p T

V Vr
r

r
= − −8

3 1
3

2
r

a
b27 2

3b 8
27
a
bR

Berthelot p nRT
V nb

n a
TV

= − −
2

2
p T

V T Vr
r

r r r
= − −8

3 1
3

2
1

12
2
3 3

1 2aR
b







/
3b 2

3
2

3

1 2a
bR







/

Dieterici p nRT
V nb

aRTV n
= −

−e /
p T

V
TV

r
r

r

e r r
= −

−2 1 1

2 1
( / ) a

b4 2 2e
2b a

bR4

Virial p
nRT

V
nB

V
n C T

V
= + + +












1

2

2

( ) ( )T


* Reduced variables are defined in Section 1C.2(c). Equations of state are sometimes expressed in terms of the molar volume, Vm = V/n.

so, we multiply both sides of the equation by ( )V b Vm m− 2 , to 
obtain

( ) ( )V b V p RTV V b am m m m− − −2 2 =

Then, after division by p, collect powers of Vm to obtain

V b
RT
p

V
a
p

Vm m
3 2 0− +





+





=m

Although closed expressions for the roots of a cubic equa-
tion can be given, they are very complicated. Unless ana-
lytical solutions are essential, it is usually more expedient 
to solve such equations with commercial software; graphing 
calculators can also be used to help identify the acceptable 
root.

Answer According to Table 1C.3, a = 3.592 dm6 atm mol−2 
and b = 4.267 × 10−2 dm3 mol−1. Under the stated conditions, 
RT/p = 0.410 dm3 mol−1. The coefficients in the equation for Vm 
are therefore

b RT p
a p
ab p

+ =
= ×
= ×

/
/

/  

0 453
3 61 10
1 55 10

3 1

2 3 1 2

.
.
.

( )
dm mol
dm mol

−

− −

−33 3 1 3( )dm mol−

Therefore, on writing x = Vm/(dm3 mol−1), the equation to 
solve is

x x x3 2 2 30 453 3 61 10 1 55 10 0− −− −. ( . ) ( . )+ × × =

The acceptable root is x = 0.366 (Fig. 1C.6), which implies that 
Vm = 0.366 dm3 mol−1. For a perfect gas under these conditions, 
the molar volume is 0.410 dm3 mol−1.

Self-test 1C.4 Calculate the molar volume of argon at 100 °C 
and 100 atm on the assumption that it is a van der Waals gas.

Answer: 0.298 dm3 mol−1
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Figure 1C.6 The graphical solution of the cubic equation 
for V in Example 1C.1.
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That having been said, we can begin to judge the reliability 
of the equation by comparing the isotherms it predicts with 
the experimental isotherms in Fig. 1C.2. Some calculated iso-
therms are shown in Fig. 1C.7 and Fig. 1C.8. Apart from the 
oscillations below the critical temperature, they do resemble 
experimental isotherms quite well. The oscillations, the van der 
Waals’ loops, are unrealistic because they suggest that under 
some conditions an increase of pressure results in an increase of 
volume. Therefore they are replaced by horizontal lines drawn 
so the loops define equal areas above and below the lines: this 
procedure is called the Maxwell construction (1). The van der 
Waals coefficients, such as those in Table 1C.3, are found by fit-
ting the calculated curves to the experimental curves.

1

Equal
areas

The principal features of the van der Waals equation can be 
summarized as follows.

1. Perfect gas isotherms are obtained at high temperatures 
and large molar volumes.

When the temperature is high, RT may be so large that the first 
term in eqn 1C.5b greatly exceeds the second. Furthermore, 
if the molar volume is large in the sense Vm ≫ b, then the 
denominator Vm − b ≈ Vm. Under these conditions, the equation 
reduces to p = RT/Vm, the perfect gas equation.

2. Liquids and gases coexist when the attractive and 
repulsive effects are in balance.

The van der Waals loops occur when both terms in eqn 1C.5b 
have similar magnitudes. The first term arises from the kinetic 
energy of the molecules and their repulsive interactions; the 
second represents the effect of the attractive interactions.

3. The critical constants are related to the van der Waals 
coefficients.

For T < Tc, the calculated isotherms oscillate, and each one 
passes through a minimum followed by a maximum. These 
extrema converge as T→ Tc and coincide at T = Tc; at the criti-
cal point the curve has a flat inflexion (2). From the properties 
of curves, we know that an inflexion of this type occurs when 
both the first and second derivatives are zero. Hence, we can 
find the critical constants by calculating these derivatives and 
setting them equal to zero at the critical point:

2

d
d

d
d m m m

p
V

RT
V b

a
V

p
V

RT
V b

a
V

m m m

= − − + =

= − − =

( )

( )

2 3

2

2 3 4

2
0

2 6
0

 

The solutions of these two equations (and using eqn 1C.5b to 
calculate pc from Vc and Tc) are

V b p a
b

T a
Rbc c c= = =3

27
8

272
 

(1C.6)

These relations provide an alternative route to the determina-
tion of a and b from the values of the critical constants. They 
can be tested by noting that the critical compression factor, Zc, 
is predicted to be equal to

Z p V
RTc

c c

c
= = 3

8  
(1C.7)
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Figure 1C.7 The surface of possible states allowed by the van 
der Waals equation. Compare this surface with that shown in 
Fig. 1C.8.
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Figure 1C.8 van der Waals isotherms at several values of T/Tc. 
Compare these curves with those in Fig. 1C.2. The van der 
Waals loops are normally replaced by horizontal straight lines. 
The critical isotherm is the isotherm for T/Tc = 1.
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52 1 The properties of gases

for all gases that are described by the van der Waals equation 
near the critical point. We see from Table 1C.2 that although 
Zc < =3

8 0 375. ,  it is approximately constant (at 0.3) and the dis-
crepancy is reasonably small.

(c) The principle of corresponding states

An important general technique in science for comparing the 
properties of objects is to choose a related fundamental prop-
erty of the same kind and to set up a relative scale on that basis. 
We have seen that the critical constants are characteristic prop-
erties of gases, so it may be that a scale can be set up by using 
them as yardsticks. We therefore introduce the dimensionless 
reduced variables of a gas by dividing the actual variable by the 
corresponding critical constant:

V V
V p p

p T T
Tr

m

c
r

c
r

c
= = =

 
Definition  reduced variables  (1C.8)

If the reduced pressure of a gas is given, we can easily calcu-
late its actual pressure by using p = prpc, and likewise for the 
volume and temperature. van der Waals, who first tried this 
procedure, hoped that gases confined to the same reduced vol-
ume, Vr, at the same reduced temperature, Tr, would exert the 
same reduced pressure, pr. The hope was largely fulfilled (Fig. 
1C.9). The illustration shows the dependence of the compres-
sion factor on the reduced pressure for a variety of gases at 
various reduced temperatures. The success of the procedure 
is strikingly clear: compare this graph with Fig. 1C.3, where 
similar data are plotted without using reduced variables. The 
observation that real gases at the same reduced volume and 
reduced temperature exert the same reduced pressure is called 
the principle of corresponding states. The principle is only an 
approximation. It works best for gases composed of spherical 
molecules; it fails, sometimes badly, when the molecules are 
non-spherical or polar.

The van der Waals equation sheds some light on the princi-
ple. First, we express eqn 1C.5b in terms of the reduced vari-
ables, which gives

p p RTT
VV b

a
V Vr c

r c

r c
= − −

r c
2 2

 

Then we express the critical constants in terms of a and b by 
using eqn 1C.8:

ap
b

aT b
bpV b

a
b V

r r

r27
8 27
3 92 2 2= − −/

r  

which can be reorganized into

p T
V Vr

r

r r
= − −8

3 1
3

2
 

(1C.9)

Brief illustration 1C.4 Criteria for perfect gas behaviour

For benzene a = 18.57 atm dm6 mol−2 (1.882 Pa m6 mol−2) and 
b = 0.1193 dm3 mol−1 (1.193 × 10−4 m3 mol−1); its normal boil-
ing point is 353 K. Treated as a perfect gas at T = 400 K and 
p = 1.0 atm, benzene vapour has a molar volume of Vm = RT/p =  
33 dm mol−1, so the criterion Vm ≫ b for perfect gas behaviour 
is satisfied. It follows that a /Vm

2 0 017≈ . atm , which is 1.7 per 
cent of 1.0 atm. Therefore, we can expect benzene vapour to 
deviate only slightly from perfect gas behaviour at this tem-
perature and pressure.

Self-test 1C.5 Can argon gas be treated as a perfect gas at 400 K 
and 3.0 atm?

Answer: Yes
Brief illustration 1C.5 Corresponding states

The critical constants of argon and carbon dioxide are given in 
Table 1C.2. Suppose argon is at 23 atm and 200 K, its reduced 
pressure and temperature are then

p Tr r
atm
atm

K
K= = = =

23
48 0 0 48

200
150 7 1 33. . . .

For carbon dioxide to be in a corresponding state, its pressure 
and temperature would need to be

p T= × = = × =0 48 72 9 35 1 33 304 2 405. ( . ) . .atm atm K K

Self-test 1C.6 What would be the corresponding state of 
ammonia?

Answer: 53 atm, 539 K
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Figure 1C.9 The compression factors of four of the gases 
shown in Fig. 1C.3 plotted using reduced variables. The curves 
are labelled with the reduced temperature Tr = T/Tc. The use of 
reduced variables organizes the data on to single curves.
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This equation has the same form as the original, but the coeffi-
cients a and b, which differ from gas to gas, have disappeared. It 
follows that if the isotherms are plotted in terms of the reduced 
variables (as we did in fact in Fig. 1C.8 without drawing atten-
tion to the fact), then the same curves are obtained whatever 
the gas. This is precisely the content of the principle of corre-
sponding states, so the van der Waals equation is compatible 
with it.

Looking for too much significance in this apparent triumph 
is mistaken, because other equations of state also accommodate 

the principle (like those in Table 1C.4). In fact, all we need are 
two parameters playing the roles of a and b, for then the equa-
tion can always be manipulated into reduced form. The obser-
vation that real gases obey the principle approximately amounts 
to saying that the effects of the attractive and repulsive interac-
tions can each be approximated in terms of a single parameter. 
The importance of the principle is then not so much its theo-
retical interpretation but the way that it enables the properties 
of a range of gases to be coordinated on to a single diagram (for 
example, Fig. 1C.9 instead of Fig. 1C.3).

Checklist of concepts

☐ 1. The extent of deviations from perfect behaviour is sum-
marized by introducing the compression factor.

☐ 2. The virial equation is an empirical extension of the per-
fect gas equation that summarizes the behaviour of real 
gases over a range of conditions.

☐ 3. The isotherms of a real gas introduce the concepts of 
vapour pressure and critical behaviour.

☐ 4. A gas can be liquefied by pressure alone only if its tem-
perature is at or below its critical temperature.

☐ 5. The van der Waals equation is a model equation of state 
for a real gas expressed in terms of two parameters, 
one (a) corresponding to molecular attractions and the 
other (b) to molecular repulsions.

☐ 6. The van der Waals equation captures the general fea-
tures of the behaviour of real gases, including their crit-
ical behaviour.

☐ 7. The properties of real gases are coordinated by express-
ing their equations of state in terms of reduced variables.

Checklist of equations

Property Equation Comment Equation number

Compression factor Z V V= m m/  Definition 1C.1

Virial equation of state pV RT B V C Vm m m= + + +( / / )1 2  B, C depend on temperature 1C.3

van der Waals equation of state p = nRT/(V – nb) – a(n/V)2 a parameterizes attractions,  
b parameterizes repulsions

1C.5

Reduced variables Xr = X/Xc X = p, Vm, or T 1C.8
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chaPter 1  The properties of gases

TOPIC 1A the perfect gas

Discussion questions
1A.1 Explain how the perfect gas equation of state arises by combination of 
Boyle’s law, Charles’s law, and Avogadro’s principle.

1A.2 Explain the term ‘partial pressure’ and explain why Dalton’s law is a 
limiting law.

Exercises
1A.1(a) Could 131 g of xenon gas in a vessel of volume 1.0 dm3 exert a 
pressure of 20 atm at 25 °C if it behaved as a perfect gas? If not, what 
pressure would it exert?
1A.1(b) Could 25 g of argon gas in a vessel of volume 1.5 dm3 exert a pressure 
of 2.0 bar at 30 °C if it behaved as a perfect gas? If not, what pressure would it 
exert?

1A.2(a) A perfect gas undergoes isothermal compression, which reduces its 
volume by 2.20 dm3. The final pressure and volume of the gas are 5.04 bar 
and 4.65 dm3, respectively. Calculate the original pressure of the gas in (i) bar, 
(ii) atm.
1A.2(b) A perfect gas undergoes isothermal compression, which reduces its 
volume by 1.80 dm3. The final pressure and volume of the gas are 1.97 bar and 
2.14 dm3, respectively. Calculate the original pressure of the gas in (i) bar,  
(ii) torr.

1A.3(a) A car tyre (i.e. an automobile tire) was inflated to a pressure of 
24 lb in−2 (1.00 atm = 14.7 lb in−2) on a winter’s day when the temperature 
was  − 5 °C. What pressure will be found, assuming no leaks have occurred 
and that the volume is constant, on a subsequent summer’s day when the 
temperature is 35 °C? What complications should be taken into account in 
practice?
1A.3(b) A sample of hydrogen gas was found to have a pressure of 125 kPa 
when the temperature was 23 °C. What can its pressure be expected to be 
when the temperature is 11 °C?

1A.4(a) A sample of 255 mg of neon occupies 3.00 dm3 at 122 K. Use the perfect 
gas law to calculate the pressure of the gas.
1A.4(b) A homeowner uses 4.00 × 103 m3 of natural gas in a year to heat a 
home. Assume that natural gas is all methane, CH4, and that methane is a 
perfect gas for the conditions of this problem, which are 1.00 atm and 20 °C. 
What is the mass of gas used?

1A.5(a) A diving bell has an air space of 3.0 m3 when on the deck of a boat. 
What is the volume of the air space when the bell has been lowered to a depth 
of 50 m? Take the mean density of sea water to be 1.025 g cm−3 and assume 
that the temperature is the same as on the surface.
1A.5(b) What pressure difference must be generated across the length of a 15 cm 
vertical drinking straw in order to drink a water-like liquid of density 1.0 g cm−3?

1A.6(a) A manometer consists of a U-shaped tube containing a liquid. One 
side is connected to the apparatus and the other is open to the atmosphere. 
The pressure inside the apparatus is then determined from the difference 
in heights of the liquid. Suppose the liquid is water, the external pressure is 
770 Torr, and the open side is 10.0 cm lower than the side connected to the 
apparatus. What is the pressure in the apparatus? (The density of water at 
25 °C is 0.997 07 g cm−3.)  
1.A6(b) A manometer like that described in Exercise 1.6(a) contained mercury 
in place of water. Suppose the external pressure is 760 Torr, and the open 
side is 10.0 cm higher than the side connected to the apparatus. What is the 
pressure in the apparatus? (The density of mercury at 25 °C is 13.55 g cm−3.)

1A.7(a) In an attempt to determine an accurate value of the gas constant, R, 
a student heated a container of volume 20.000 dm3 filled with 0.251 32 g of 
helium gas to 500 °C and measured the pressure as 206.402 cm of water in a 
manometer at 25 °C. Calculate the value of R from these data. (The density of 
water at 25 °C is 0.997 07 g cm−3; the construction of a manometer is described 
in Exercise 1.6(a).)
1A.7(b) The following data have been obtained for oxygen gas at 273.15 K. 
Calculate the best value of the gas constant R from them and the best value of 
the molar mass of O2.

1A.8(a) At 500 °C and 93.2 kPa, the mass density of sulfur vapour is 
3.710 kg m−3. What is the molecular formula of sulfur under these conditions?
1A.8(b) At 100 °C and 16.0 kPa, the mass density of phosphorus vapour is 
0.6388 kg m−3. What is the molecular formula of phosphorus under these 
conditions?

1A.9(a) Calculate the mass of water vapour present in a room of volume 
400 m3 that contains air at 27 °C on a day when the relative humidity is  
60 per cent.
1A.9(b) Calculate the mass of water vapour present in a room of volume 
250 m3 that contains air at 23 °C on a day when the relative humidity is  
53 per cent.

1A.10(a) Given that the density of air at 0.987 bar and 27 °C is 1.146 kg m−3, 
calculate the mole fraction and partial pressure of nitrogen and oxygen 
assuming that (i) air consists only of these two gases, (ii) air also contains 
1.0 mole per cent Ar.
1A.10(b) A gas mixture consists of 320 mg of methane, 175 mg of argon, and 
225 mg of neon. The partial pressure of neon at 300 K is 8.87 kPa. Calculate 
(i) the volume and (ii) the total pressure of the mixture.

1A.11(a) The density of a gaseous compound was found to be 1.23 kg m−3 at 
330 K and 20 kPa. What is the molar mass of the compound?
1A.11(b) In an experiment to measure the molar mass of a gas, 250 cm3 of the 
gas was confined in a glass vessel. The pressure was 152 Torr at 298 K, and 
after correcting for buoyancy effects, the mass of the gas was 33.5 mg. What is 
the molar mass of the gas?

1A.12(a) The densities of air at  − 85 °C, 0 °C, and 100 °C are 1.877 g dm−3, 
1.294 g dm−3, and 0.946 g dm−3, respectively. From these data, and assuming 
that air obeys Charles’s law, determine a value for the absolute zero of 
temperature in degrees Celsius.
1A.12(b) A certain sample of a gas has a volume of 20.00 dm3 at 0 °C and 
1.000 atm. A plot of the experimental data of its volume against the Celsius 
temperature, θ, at constant p, gives a straight line of slope 0.0741 dm3 °C−1. 
From these data determine the absolute zero of temperature in degrees 
Celsius.

p/atm 0.750 000 0.500 000 0.250 000

Vm/(dm3 mol−1) 29.9649 44.8090 89.6384
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1A.13(a) A vessel of volume 22.4 dm3 contains 2.0 mol H2 and 1.0 mol N2 at 
273.15 K. Calculate (i) the mole fractions of each component, (ii) their partial 
pressures, and (iii) their total pressure.

1A.13(b) A vessel of volume 22.4 dm3 contains 1.5 mol H2 and 2.5 mol N2 at 
273.15 K. Calculate (i) the mole fractions of each component, (ii) their partial 
pressures, and (iii) their total pressure.

Problems
1A.1 Recent communication with the inhabitants of Neptune have 
revealed that they have a Celsius-type temperature scale, but based on the 
melting point (0 °N) and boiling point (100 °N) of their most common 
substance, hydrogen. Further communications have revealed that the 
Neptunians know about perfect gas behaviour and they find that in the 
limit of zero pressure, the value of pV is 28 dm3 atm at 0 °N and 40 dm3 atm 
at 100 °N. What is the value of the absolute zero of temperature on their 
temperature scale?

1A.2 Deduce the relation between the pressure and mass density, ρ, of a 
perfect gas of molar mass M. Confirm graphically, using the following data on 
dimethyl ether at 25 °C, that perfect behaviour is reached at low pressures and 
find the molar mass of the gas.

1A.3 Charles’s law is sometimes expressed in the form V = V0(1 + αθ), where 
θ is the Celsius temperature, is a constant, and V0 is the volume of the 
sample at 0 °C. The following values for have been reported for nitrogen  
at 0 °C:

For these data calculate the best value for the absolute zero of temperature on 
the Celsius scale.

1A.4 The molar mass of a newly synthesized fluorocarbon was measured 
in a gas microbalance. This device consists of a glass bulb forming one 
end of a beam, the whole surrounded by a closed container. The beam is 
pivoted, and the balance point is attained by raising the pressure of gas 
in the container, so increasing the buoyancy of the enclosed bulb. In one 
experiment, the balance point was reached when the fluorocarbon pressure 
was 327.10 Torr; for the same setting of the pivot, a balance was reached when 
CHF3 (M = 70.014 g mol−1) was introduced at 423.22 Torr. A repeat of the 
experiment with a different setting of the pivot required a pressure of 293.22 
Torr of the fluorocarbon and 427.22 Torr of the CHF3. What is the molar mass 
of the fluorocarbon? Suggest a molecular formula.

1A.5 A constant-volume perfect gas thermometer indicates a pressure of 
6.69 kPa at the triple point temperature of water (273.16 K). (a) What change 
of pressure indicates a change of 1.00 K at this temperature? (b) What pressure 
indicates a temperature of 100.00 °C? (c) What change of pressure indicates a 
change of 1.00 K at the latter temperature?

1A.6 A vessel of volume 22.4 dm3 contains 2.0 mol H2 and 1.0 mol N2 at 
273.15 K initially. All the H2 reacted with sufficient N2 to form NH3. Calculate 
the partial pressures and the total pressure of the final mixture.

1A.7 Atmospheric pollution is a problem that has received much attention. 
Not all pollution, however, is from industrial sources. Volcanic eruptions can 
be a significant source of air pollution. The Kilauea volcano in Hawaii emits 
200−300 t of SO2 per day. If this gas is emitted at 800 °C and 1.0 atm, what 
volume of gas is emitted?

1A.8 Ozone is a trace atmospheric gas which plays an important role in 
screening the Earth from harmful ultraviolet radiation, and the abundance 
of ozone is commonly reported in Dobson units. One Dobson unit is the 
thickness, in thousandths of a centimetre, of a column of gas if it were 
collected as a pure gas at 1.00 atm and 0 °C. What amount of O3 (in moles) is 
found in a column of atmosphere with a cross-sectional area of 1.00 dm2 if the 
abundance is 250 Dobson units (a typical mid-latitude value)? In the seasonal 
Antarctic ozone hole, the column abundance drops below 100 Dobson units; 
how many moles of O3 are found in such a column of air above a 1.00 dm2 
area? Most atmospheric ozone is found between 10 and 50 km above the 
surface of the earth. If that ozone is spread uniformly through this portion 
of the atmosphere, what is the average molar concentration corresponding 
to (a) 250 Dobson units, (b) 100 Dobson units?

1A.9 The barometric formula (see Impact 1.1) relates the pressure of a gas 
of molar mass M at an altitude h to its pressure p0 at sea level. Derive this 
relation by showing that the change in pressure dp for an infinitesimal 
change in altitude dh where the density is ρ is dp =  − ρgdh. Remember that 
ρ depends on the pressure. Evaluate (a) the pressure difference between 
the top and bottom of a laboratory vessel of height 15 cm, and (b) the 
external atmospheric pressure at a typical cruising altitude of an aircraft 
(11 km) when the pressure at ground level is 1.0 atm.

1A.10 Balloons are still used to deploy sensors that monitor meteorological 
phenomena and the chemistry of the atmosphere. It is possible to investigate 
some of the technicalities of ballooning by using the perfect gas law. Suppose 
your balloon has a radius of 3.0 m and that it is spherical. (a) What amount 
of H2 (in moles) is needed to inflate it to 1.0 atm in an ambient temperature 
of 25 °C at sea level? (b) What mass can the balloon lift at sea level, where the 
density of air is 1.22 kg m−3? (c) What would be the payload if He were used 
instead of H2?

1A.11‡ The preceding problem is most readily solved with the use of 
Archimedes principle, which states that the lifting force is equal to the 
difference between the weight of the displaced air and the weight of the 
balloon. Prove Archimedes principle for the atmosphere from the barometric 
formula. Hint: Assume a simple shape for the balloon, perhaps a right circular 
cylinder of cross-sectional area A and height h.

1A.12‡ Chlorofluorocarbons such as CCl3F and CCl2F2 have been linked 
to ozone depletion in Antarctica. As of 1994, these gases were found 
in quantities of 261 and 509 parts per trillion (1012) by volume (World 
Resources Institute, World resources 1996 − 97). Compute the molar 
concentration of these gases under conditions typical of (a) the mid-latitude 
troposphere (10 °C and 1.0 atm) and (b) the Antarctic stratosphere (200 K 
and 0.050 atm).

1A.13‡ The composition of the atmosphere is approximately 80 per cent 
nitrogen and 20 per cent oxygen by mass. At what height above the surface of 
the Earth would the atmosphere become 90 per cent nitrogen and 10 per cent 
oxygen by mass? Assume that the temperature of the atmosphere is constant 
at 25 °C. What is the pressure of the atmosphere at that height?

p/kPa 12.223 25.20 36.97 60.37 85.23 101.3

ρ/(kg m−3) 0.225 0.456 0.664 1.062 1.468 1.734

p/Torr 749.7 599.6 333.1 98.6

103α/°C−1 3.6717 3.6697 3.6665 3.6643

‡ These problems were supplied by Charles Trapp and Carmen Giunta.
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TOPIC 1B the kinetic model

Discussion questions
1B.1 Specify and analyse critically the assumptions that underlie the kinetic 
model of gases.

1B.2 Provide molecular interpretations for the dependencies of the mean free 
path on the temperature, pressure, and size of gas molecules.

Exercises
1B.1(a) Determine the ratios of (i) the mean speeds, (ii) the mean 
translational kinetic energies of H2 molecules and Hg atoms at 20 °C.
1B.1(b) Determine the ratios of (i) the mean speeds, (ii) the mean kinetic 
energies of He atoms and Hg atoms at 25 °C.

1B.2(a) Calculate the root mean square speeds of H2 and O2 molecules at 20 °C.
1B.2(b) Calculate the root mean square speeds of CO2 molecules and He atoms 
at 20 °C.

1B.3(a) Use the Maxwell–Boltzmann distribution of speeds to estimate 
the fraction of N2 molecules at 400 K that have speeds in the range 200 to 
210 m s−1.
1B.3(b) Use the Maxwell–Boltzmann distribution of speeds to estimate the 
fraction of CO2 molecules at 400 K that have speeds in the range 400 to 
405 m s−1.

1B.4(a) Calculate the most probable speed, the mean speed, and the mean 
relative speed of CO2 molecules in air at 20 °C.
1B.4(b) Calculate the most probable speed, the mean speed, and the mean 
relative speed of H2 molecules in air at 20 °C.

1B.5(a) Assume that air consists of N2 molecules with a collision diameter 
of 395 pm. Calculate (i) the mean speed of the molecules, (ii) the mean free 
path, (iii) the collision frequency in air at 1.0 atm and 25 °C.
1B.5(b) The best laboratory vacuum pump can generate a vacuum of about 
1 nTorr. At 25 °C and assuming that air consists of N2 molecules with a 
collision diameter of 395 pm, calculate (i) the mean speed of the molecules, 
(ii) the mean free path, (iii) the collision frequency in the gas.

1B.6(a) At what pressure does the mean free path of argon at 20 °C become 
comparable to the diameter of a 100 cm3 vessel that contains it? Take 
σ  = 0.36 nm2.
1B.6(b) At what pressure does the mean free path of argon at 20 °C become 
comparable to 10 times the diameters of the atoms themselves?

1B.7(a) At an altitude of 20 km the temperature is 217 K and the pressure 
0.050 atm. What is the mean free path of N2 molecules? (σ  = 0.43 nm2).
1B.7(b) At an altitude of 15 km the temperature is 217 K and the pressure 
12.1 kPa. What is the mean free path of N2 molecules? (σ  = 0.43 nm2).

Problems
1B.1 A rotating slotted-disc apparatus like that in Fig. 1B.5 consists of five 
coaxial 5.0 cm diameter disks separated by 1.0 cm, the slots in their rims 
being displaced by 2.0° between neighbours. The relative intensities, I, of the 
detected beam of Kr atoms for two different temperatures and at a series of 
rotation rates were as follows:

Find the distributions of molecular velocities, f(vx), at these temperatures, and 
check that they conform to the theoretical prediction for a one-dimensional 
system.

1B.2 A Knudsen cell was used to determine the vapour pressure of germanium 
at 1000 °C. During an interval of 7200 s the mass loss through a hole of radius 
0.50 mm amounted to 43 µg. What is the vapour pressure of germanium at 
1000 °C? Assume the gas to be monatomic.

1B.3 Start from the Maxwell–Boltzmann distribution and derive an expression 
for the most probable speed of a gas of molecules at a temperature T. Go on to  
demonstrate the validity of the equipartition conclusion that the average transla-
tional kinetic energy of molecules free to move in three dimensions is 3

2 kT .

1B.4 Consider molecules that are confined to move in a plane (a two-
dimensional gas). Calculate the distribution of speeds and determine the 
mean speed of the molecules at a temperature T.

1B.5 A specially constructed velocity-selector accepts a beam of molecules 
from an oven at a temperature T but blocks the passage of molecules with a 
speed greater than the mean. What is the mean speed of the emerging beam, 
relative to the initial value, treated as a one-dimensional problem?

1B.6 What, according to the Maxwell–Boltzmann distribution, is the 
proportion of gas molecules having (a) more than, (b) less than the root mean 
square speed? (c) What are the proportions having speeds greater and smaller 
than the mean speed?

1B.7 Calculate the fractions of molecules in a gas that have a speed in a range 
Δv at the speed nvmp relative to those in the same range at vm itself? This 
calculation can be used to estimate the fraction of very energetic molecules 
(which is important for reactions). Evaluate the ratio for n = 3 and n = 4.

1B.8 Derive an expression for 〈vn〉1/n from the Maxwell–Boltzmann distribution 
of speeds. You will need standard integrals given in the Resource section.

1B.9 Calculate the escape velocity (the minimum initial velocity that will take 
an object to infinity) from the surface of a planet of radius R. What is the value 
for (a) the Earth, R = 6.37 × 106 m, g = 9.81 m s−2, (b) Mars, R = 3.38 × 106 m, 
mMars/mEarth = 0.108. At what temperatures do H2, He, and O2 molecules have 
mean speeds equal to their escape speeds? What proportion of the molecules 
have enough speed to escape when the temperature is (a) 240 K, (b) 1500 K? 
Calculations of this kind are very important in considering the composition of 
planetary atmospheres.

1B.10 The principal components of the atmosphere of the Earth are diatomic 
molecules, which can rotate as well as translate. Given that the translational 
kinetic energy density of the atmosphere is 0.15 J cm−3, what is the total kinetic 
energy density, including rotation? The average rotational energy of a linear 
molecule is kT.

1B.11 Plot different Maxwell–Boltzmann speed distributions by keeping the 
molar mass constant at 100 g mol−1 and varying the temperature of the sample 
between 200 K and 2000 K.

1B.12 Evaluate numerically the fraction of molecules with speeds in the range 
100 m   s−1 to 200 m s−1 at 300 K and 1000 K. 

ν/Hz 20 40 80 100 120

I (40 K) 0.846 0.513 0.069 0.015 0.002

I (100 K) 0.592 0.485 0.217 0.119 0.057
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TOPIC 1C real gases

Discussion questions
1C.1 Explain how the compression factor varies with pressure and 
temperature and describe how it reveals information about intermolecular 
interactions in real gases.

1C.2 What is the significance of the critical constants?

1C.3 Describe the formulation of the van der Waals equation and suggest a 
rationale for one other equation of state in Table 1C.6.

1C.4 Explain how the van der Waals equation accounts for critical behaviour.

Exercises
1C.1(a) Calculate the pressure exerted by 1.0 mol C2H6 behaving as a van der 
Waals gas when it is confined under the following conditions: (i) at 273.15 K 
in 22.414 dm3, (ii) at 1000 K in 100 cm3. Use the data in Table 1C.3.
1C.1(b) Calculate the pressure exerted by 1.0 mol H2S behaving as a van der 
Waals gas when it is confined under the following conditions: (i) at 273.15 K 
in 22.414 dm3, (ii) at 500 K in 150 cm3. Use the data in Table 1C.3.

1C.2(a) Express the van der Waals parameters a = 0.751 atm dm6 mol−2 and 
b = 0.0226 dm3 mol−1 in SI base units.
1C.2(b) Express the van der Waals parameters a = 1.32 atm dm6 mol−2 and 
b = 0.0436 dm3 mol−1 in SI base units.

1C.3(a) A gas at 250 K and 15 atm has a molar volume 12 per cent smaller 
than that calculated from the perfect gas law. Calculate (i) the compression 
factor under these conditions and (ii) the molar volume of the gas. Which are 
dominating in the sample, the attractive or the repulsive forces?
1C.3(b) A gas at 350 K and 12 atm has a molar volume 12 per cent larger than 
that calculated from the perfect gas law. Calculate (i) the compression factor 
under these conditions and (ii) the molar volume of the gas. Which are 
dominating in the sample, the attractive or the repulsive forces?

1C.4(a) In an industrial process, nitrogen is heated to 500 K at a constant 
volume of 1.000 m3. The gas enters the container at 300 K and 100 atm. The 
mass of the gas is 92.4 kg. Use the van der Waals equation to determine the 
approximate pressure of the gas at its working temperature of 500 K. For 
nitrogen, a = 1.352 dm6 atm mol−2, b = 0.0387 dm3 mol−1.
1C.4(b) Cylinders of compressed gas are typically filled to a pressure of 200 bar. 
For oxygen, what would be the molar volume at this pressure and 25 °C based 
on (i) the perfect gas equation, (ii) the van der Waals equation? For oxygen, 
a = 1.364 dm6 atm mol−2, b = 3.19 × 10−2 dm3 mol−1.

1C.5(a) Suppose that 10.0 mol C2H6(g) is confined to 4.860 dm3 at 27 °C. 
Predict the pressure exerted by the ethane from (i) the perfect gas and (ii) the 
van der Waals equations of state. Calculate the compression factor based on 
these calculations. For ethane, a = 5.507 dm6 atm mol−2, b = 0.0651 dm3 mol−1.

1C.5(b) At 300 K and 20 atm, the compression factor of a gas is 0.86. Calculate 
(i) the volume occupied by 8.2 mmol of the gas under these conditions and  
(ii) an approximate value of the second virial coefficient B at 300 K.

1C.6(a) The critical constants of methane are pc = 45.6 atm, Vc = 98.7 cm3 mol−1, 
and Tc = 190.6 K. Calculate the van der Waals parameters of the gas and 
estimate the radius of the molecules.
1C.6(b) The critical constants of ethane are pc = 48.20 atm, Vc = 148 cm3 mol−1, 
and Tc = 305.4 K. Calculate the van der Waals parameters of the gas and 
estimate the radius of the molecules.

1C.7(a) Use the van der Waals parameters for chlorine in Table 1C.3 of the 
Resource section to calculate approximate values of (i) the Boyle temperature 
of chlorine and (ii) the radius of a Cl2 molecule regarded as a sphere.
1C.7(b) Use the van der Waals parameters for hydrogen sulfide in Table 
1C.3 of the Resource section to calculate approximate values of (i) the Boyle 
temperature of the gas and (ii) the radius of a H2S molecule regarded as a 
sphere.

1C.8(a) Suggest the pressure and temperature at which 1.0 mol of (i) NH3, (ii) 
Xe, (iii) He will be in states that correspond to 1.0 mol H2 at 1.0 atm and 25 °C.
1C.8(b) Suggest the pressure and temperature at which 1.0 mol of (i) H2S, 
(ii) CO2, (iii) Ar will be in states that correspond to 1.0 mol N2 at 1.0 atm and 
25 °C.

1C.9(a) A certain gas obeys the van der Waals equation with a = 0.50 m6 Pa 
mol−2. Its volume is found to be 5.00 × 10−4 m3 mol−1 at 273 K and 3.0 MPa. 
From this information calculate the van der Waals constant b. What is the 
compression factor for this gas at the prevailing temperature and pressure?
1C.9(b) A certain gas obeys the van der Waals equation with a = 0.76 m6 Pa 
mol−2. Its volume is found to be 4.00 × 10−4 m3 mol−1 at 288 K and 4.0 MPa. 
From this information calculate the van der Waals constant b. What is the 
compression factor for this gas at the prevailing temperature and pressure?

Problems
1C.1 Calculate the molar volume of chlorine gas at 350 K and 2.30 atm using 
(a) the perfect gas law and (b) the van der Waals equation. Use the answer to 
(a) to calculate a first approximation to the correction term for attraction and 
then use successive approximations to obtain a numerical answer for part (b).

1C.2 At 273 K measurements on argon gave B =  − 21.7 cm3 mol−1 and 
C = 1200 cm6 mol−2, where B and C are the second and third virial coefficients 
in the expansion of Z in powers of 1/Vm. Assuming that the perfect gas law 
holds sufficiently well for the estimation of the second and third terms of the 
expansion, calculate the compression factor of argon at 100 atm and 273 K. 
From your result, estimate the molar volume of argon under these conditions.

1C.3 Calculate the volume occupied by 1.00 mol N2 using the van der Waals 
equation in the form of a virial expansion at (a) its critical temperature, (b) its 
Boyle temperature, and (c) its inversion temperature. Assume that the pressure 

is 10 atm throughout. At what temperature is the gas most perfect? Use the 
following data: Tc = 126.3 K, a = 1.352 dm6 atm mol−2, b = 0.0387 dm3 mol−1.

1C.4‡ The second virial coefficient of methane can be approximated by the 
empirical equation B T a b( )= + e / 2−c T , where a =  − 0.1993 bar−1, b = 0.2002 bar−1, 
and c = 1131 K2 with 300 K < T < 600 K. What is the Boyle temperature of methane?

1C.5 The mass density of water vapour at 327.6 atm and 776.4 K is 133.2 kg 
m−3. Given that for water Tc = 647.4 K, pc = 21.3 atm, a = 5.464 dm6 atm mol−2, 
b = 0.03049 dm3 mol−1, and M = 18.02 g mol−1, calculate (a) the molar volume. 
Then calculate the compression factor (b) from the data, (c) from the virial 
expansion of the van der Waals equation.

1C.6 The critical volume and critical pressure of a certain gas are 160 cm3 
mol−1 and 40 atm, respectively. Estimate the critical temperature by assuming 
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that the gas obeys the Berthelot equation of state. Estimate the radii of the gas 
molecules on the assumption that they are spheres.

1C.7 Estimate the coefficients a and b in the Dieterici equation of state from 
the critical constants of xenon. Calculate the pressure exerted by 1.0 mol Xe 
when it is confined to 1.0 dm3 at 25 °C.

1C.8 Show that the van der Waals equation leads to values of Z < 1 and Z > 1, 
and identify the conditions for which these values are obtained.

1C.9 Express the van der Waals equation of state as a virial expansion in 
powers of 1/Vm and obtain expressions for B and C in terms of the parameters 
a and b. The expansion you will need is (1 − x)−1 = 1 + x + x2 + .... Measurements 
on argon gave B =  − 21.7 cm3 mol−1 and C = 1200 cm6 mol−2 for the virial 
coefficients at 273 K. What are the values of a and b in the corresponding van 
der Waals equation of state?

1C.10‡ Derive the relation between the critical constants and the Dieterici 
equation parameters. Show that Zc = 2e−2 and derive the reduced form of the 
Dieterici equation of state. Compare the van der Waals and Dieterici predictions 
of the critical compression factor. Which is closer to typical experimental values?

1C.11 A scientist proposed the following equation of state:

p RT
V

B
V

C
V

= − +
m m m

2 3

Show that the equation leads to critical behaviour. Find the critical constants 
of the gas in terms of B and C and an expression for the critical compression 
factor.

1C.12 Equations 1C.3a and 1C.3b are expansions in p and 1/Vm, respectively. 
Find the relation between B, C and B′, C′.

1C.13 The second virial coefficient B′ can be obtained from measurements 
of the density ρ of a gas at a series of pressures. Show that the graph of p/ρ 
against p should be a straight line with slope proportional to B′. Use the data 
on dimethyl ether in Problem 1A.2 to find the values of B′ and B at 25 °C.

1C.14 The equation of state of a certain gas is given by p = RT/Vm +  
(a + bT)/Vm

2, where a and b are constants. Find (∂V/∂T)p.

1C.15 The following equations of state are occasionally used for approximate 
calculations on gases: (gas A) pVm = RT(1 + b/Vm), (gas B) p(Vm− b) = RT. 
Assuming that there were gases that actually obeyed these equations of state, 
would it be possible to liquefy either gas A or B? Would they have a critical 
temperature? Explain your answer.

1C.16 Derive an expression for the compression factor of a gas that obeys the 
equation of state p(V − nb) = nRT, where b and R are constants. If the pressure 

and temperature are such that Vm = 10b, what is the numerical value of the 
compression factor?

1C.17‡ The discovery of the element argon by Lord Rayleigh and Sir 
William Ramsay had its origins in Rayleigh’s measurements of the density 
of nitrogen with an eye toward accurate determination of its molar mass. 
Rayleigh prepared some samples of nitrogen by chemical reaction of 
nitrogen-containing compounds; under his standard conditions, a glass 
globe filled with this ‘chemical nitrogen’ had a mass of 2.2990 g. He prepared 
other samples by removing oxygen, carbon dioxide, and water vapor 
from atmospheric air; under the same conditions, this ‘atmospheric nitrogen’ 
had a mass of 2.3102 g (Lord Rayleigh, Royal Institution Proceedings 14, 524 
(1895)). With the hindsight of knowing accurate values for the molar masses 
of nitrogen and argon, compute the mole fraction of argon in the latter sample 
on the assumption that the former was pure nitrogen and the latter a mixture 
of nitrogen and argon.

1C.18‡ A substance as elementary and well known as argon still receives 
research attention. Stewart and Jacobsen have published a review of 
thermodynamic properties of argon (R.B. Stewart and R.T. Jacobsen, J. Phys. 
Chem. Ref. Data 18, 639 (1989)) which included the following 300 K isotherm.

(a) Compute the second virial coefficient, B, at this temperature. (b) Use non-
linear curve-fitting software to compute the third virial coefficient, C, at this 
temperature.

1C.19 Use mathematical software, a spreadsheet, or the Living graphs on the 
web site for this book to: (a) Explore how the pressure of 1.5 mol CO2(g) 
varies with volume as it is compressed at (a) 273 K, (b) 373 K from 30 dm3 to 
15 dm3. (c) Plot the data as p against 1/V.

1C.20 Calculate the molar volume of chlorine gas on the basis of the van der 
Waals equation of state at 250 K and 150 kPa and calculate the percentage 
difference from the value predicted by the perfect gas equation.

1C.21 Is there a set of conditions at which the compression factor of a van der 
Waals gas passes through a minimum? If so, how does the location and value 
of the minimum value of Z depend on the coefficients a and b?

p/MPa 0.4000 0.5000 0.6000 0.8000 1.000

Vm/(dm3 mol−1) 6.2208 4.9736 4.1423 3.1031 2.4795

p/MPa 1.500 2.000 2.500 3.000 4.000

Vm/(dm3 mol−1) 1.6483 1.2328 0.98357 0.81746 0.60998
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Mathematical background 1 Differentiation and integration

Two of the most important mathematical techniques in the 
physical sciences are differentiation and integration. They 
occur throughout the subject, and it is essential to be aware of 
the procedures involved.

MB1.1 Differentiation: definitions
Differentiation is concerned with the slopes of functions, such 
as the rate of change of a variable with time. The formal defini-
tion of the derivative, df/dx, of a function f(x) is

d
d

f
x

f x x f x
xx

= + −
→

lim
( ) ( )

δ

δ
δ0  

Definition  First derivative  (MB1.1)

As shown in Fig. MB1.1, the derivative can be interpreted as the 
slope of the tangent to the graph of f(x). A positive first deriva-
tive indicates that the function slopes upwards (as x increases), 
and a negative first derivative indicates the opposite. It is some-
times convenient to denote the first derivative as f ′(x). The sec-
ond derivative, d2f/dx2, of a function is the derivative of the 
first derivative (here denoted f ′):

d
d
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Definition  second derivative  (MB1.2)

It is sometimes convenient to denote the second derivative f ″. 
As shown in Fig. MB1.1, the second derivative of a function can 
be interpreted as an indication of the sharpness of the curva-
ture of the function. A positive second derivative indicates that 
the function is ∪ shaped, and a negative second derivative indi-
cates that it is ∩ shaped.

The derivatives of some common functions are as follows:
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(MB1.3a)
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(MB1.3d)

When a function depends on more than one variable, we 
need the concept of a partial derivative, ∂f/∂x. Note the change 
from d to ∂: partial derivatives are dealt with at length in 
Mathematical background 2; all we need know at this stage is 
that they signify that all variables other than the stated variable 
are regarded as constant when evaluating the derivative.

MB1.2 Differentiation: manipulations

It follows from the definition of the derivative that a variety of 
combinations of functions can be differentiated by using the 
following rules:
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(MB1.4c)

Brief illustration MB1.1 Partial derivatives

Suppose we are told that f is a function of two variables, and 
specifically f = 4x2y3. Then, to evaluate the partial derivative of 
f with respect to x, we regard y as a constant (just like the 4), 
and obtain

∂
∂ = ∂

∂ = ∂
∂ =f

x x
x y y

x
x xy( )4 4 82 3 3 2 3

 

Similarly, to evaluate the partial derivative of f with respect to 
y, we regard x as a constant (again, like the 4), and obtain

∂
∂ = ∂

∂ = ∂
∂ =f

y y
x y x

y
y x y( )4 4 122 3 2 3 2 2

 

x x

f

df/dx

df/dx

d2f/dx2

0

(a) (b)

Figure MB1.1 (a) The first derivative of a function is equal to the 
slope of the tangent to the graph of the function at that point. 
The small circle indicates the extremum (in this case, maximum) 
of the function, where the slope is zero. (b) The second 
derivative of the same function is the slope of the tangent to a 
graph of the first derivative of the function. It can be interpreted 
as an indication of the curvature of the function at that point.
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MB1.3 Series expansions
One application of differentiation is to the development of 
power series for functions. The Taylor series for a function f(x) 
in the vicinity of x = a is
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 taylor series  (MB1.5)

where the notation (…)a means that the derivative is evaluated 
at x = a and n! denotes a factorial given by

n n n n! ( )( ) , != =- -1 2 1 1… 0   Factorial  (MB1.6)

The Maclaurin series for a function is a special case of the 
Taylor series in which a = 0.

The following Taylor series (specifically, Maclaurin series) 
are used at various stages in the text:
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(MB1.7c)

Taylor series are used to simplify calculations, for when 
x ≪ 1 it is possible, to a good approximation, to terminate the 
series after one or two terms. Thus, provided x ≪ 1 we can write

( )1 11+ ≈x x− −  (MB1.8a)

e 1x x≈ +  (MB1.8b)

ln(1 )+ ≈x x  (MB1.8c)

A series is said to converge if the sum approaches a finite, 
definite value as n approaches infinity. If the sum does not 
approach a finite, definite value, then the series is said to 
diverge. Thus, the series in eqn MB1.7a converges for x < 1 and 
diverges for x ≥ 1.There are a variety of tests for convergence, 
which are explained in mathematics texts.

MB1.4 Integration: definitions
Integration (which formally is the inverse of differentiation) 
is concerned with the areas under curves. The integral of a 

Brief illustration MB1.3 Series expansion

To evaluate the expansion of cos x around x = 0 we note that
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Brief illustration MB1.2 Derivatives

To differentiate the function f = sin2 ax/x2 use eqn MB1.4 to 
write
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The function and this first derivative are plotted in Fig. MB1.2.

0

0.5

1
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f(x)

df(x)/dx

x

Figure MB1.2 The function considered in Brief illustration 
MB1.2 and its first derivative.
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function f(x), which is denoted ∫f dx (the symbol ∫ is an elon-
gated S denoting a sum), between the two values x = a and x = b 
is defined by imagining the x axis as divided into strips of width 
δx and evaluating the following sum:

f x x f x x
a

b

i
x

i

( ) ( )lim∫ ∑=
→

d
δ

δ
0

 
Definition  Integration  (MB1.9)

As can be appreciated from Fig. MB1.3, the integral is the area 
under the curve between the limits a and b. The function to 
be integrated is called the integrand. It is an astonishing math-
ematical fact that the integral of a function is the inverse of the 
differential of that function in the sense that if we differentiate 
f and then integrate the resulting function, then we obtain the 
original function f (to within a constant). The function in eqn 
MB1.9 with the limits specified is called a definite integral. If it 
is written without the limits specified, then we have an indefi-
nite integral. If the result of carrying out an indefinite integra-
tion is g(x) + C, where C is a constant, the following notation is 
used to evaluate the corresponding definite integral:
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g b g a
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b
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 definite integral  (MB1.10)

Note that the constant of integration disappears. The definite 
and indefinite integrals encountered in this text are listed in the 
Resource section.

MB1.5 Integration: manipulations
When an indefinite integral is not in the form of one of those 
listed in the Resource section it is sometimes possible to 

transform it into one of the forms by using integration tech-
niques such as:

Substitution. Introduce a variable u related to the 
independent variable x (for example, an algebraic relation 
such as u = x2 − 1 or a trigonometric relation such as u = sin x ). 
Express the differential dx in terms of du (for these 
substitutions, du = 2x dx and du = cos x dx, respectively). 
Then transform the original integral written in terms of x 
into an integral in terms of u upon which, in some cases, a 
standard form such as one of those listed in the Resource 
section can be used.

Integration by parts. For two functions f(x) and g(x):

f
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x fg g
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x
d
d

d
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d

d= −∫∫  
 Integration by parts  (MB1.11a)

which may be abbreviated as:

f g fg g fd d∫ ∫= −
 

(MB1.11b)

Brief illustration MB1.4 Integration by substitution

To evaluate the indefinite integral ∫cos2 x sin x dx we make the 
substitution u = cos x. It follows that du/dx = –sin x, and there-
fore that sin x dx = –du. The integral is therefore

cos sin cos2 2 1
3

3 1
3

3∫ ∫= − = − + = − +x x x u u u C x Cd d
 

To evaluate the corresponding definite integral, we have to 
convert the limits on x into limits on u. Thus, if the limits are 
x = 0 and x = π, the limits become u = cos 0 = 1 and u = cos π = –1:
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Brief illustration MB1.5 Integration by parts

Integrals over xe−ax and their analogues occur commonly in 
the discussion of atomic structure and spectra. They may be 
integrated by parts, as in the following:
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Figure MB1.3 A definite integral is evaluated by forming the 
product of the value of the function at each point and the 
increment δx, with δx → 0, and then summing the products  
f(x)δx for all values of x between the limits a and b. It follows 
that the value of the integral is the area under the curve 
between the two limits.
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MB1.6 Multiple integrals

A function may depend on more than one variable, in which 
case we may need to integrate over both the variables:

I f x xy y
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d
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= ∫∫ ( , )d d
 

(MB1.12)

We (but not everyone) adopt the convention that a and b are 
the limits of the variable x and c and d are the limits for y (as 
depicted by the colours in this instance). This procedure is sim-
ple if the function is a product of functions of each variable and 
of the form f(x,y) = X(x)Y(y). In this case, the double integral is 
just a product of each integral:
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Brief illustration MB1.6 A double integral

Double integrals of the form
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occur in the discussion of the translational motion of a par-
ticle in two dimensions, where L1 and L2 are the maximum 
extents of travel along the x- and y-axes, respectively. To eval-
uate I we use eqn MB1.13 and an integral listed in the Resource 
section to write
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chaPter 2

the First law

The release of energy can be used to provide heat when a fuel 
burns in a furnace, to produce mechanical work when a fuel 
burns in an engine, and to generate electrical work when a 
chemical reaction pumps electrons through a circuit. In chem-
istry, we encounter reactions that can be harnessed to provide 
heat and work, reactions that liberate energy that is unused but 
which give products we require, and reactions that constitute 
the processes of life. Thermodynamics, the study of the trans-
formations of energy, enables us to discuss all these matters 
quantitatively and to make useful predictions.

2A Internal energy

First, we examine the ways in which a system can exchange 
energy with its surroundings in terms of the work it may do or 
have done on it or the heat that it may produce or absorb. These 
considerations lead to the definition of the ‘internal energy’, the 
total energy of a system, and the formulation of the ‘First Law’ 
of thermodynamics, which states that the internal energy of an 
isolated system is constant.

2B enthalpy

The second major concept of the chapter is ‘enthalpy’, which is a 
very useful book-keeping property for keeping track of the heat 
output (or requirements) of physical processes and chemical 
reactions that take place at constant pressure. Experimentally, 
changes in internal energy or enthalpy may be measured by 
techniques known collectively as ‘calorimetry’.

2C thermochemistry

‘Thermochemistry’ is the study of heat transactions dur-
ing chemical reactions. We describe both computational and 

experimental methods for the determination of enthalpy 
changes associated with both physical and chemical changes.

2D state functions and exact differentials

We also begin to unfold some of the power of thermodynamics 
by showing how to establish relations between different prop-
erties of a system. We see that one very useful aspect of ther-
modynamics is that a property can be measured indirectly by 
measuring others and then combining their values. The rela-
tions we derive also enable us to discuss the liquefaction of 
gases and to establish the relation between the heat capacities of 
a substance under different conditions.

2E adiabatic changes

‘Adiabatic’ processes occur without transfer of energy as heat. 
We focus on adiabatic changes involving perfect gases because 
they figure prominently in our presentation of thermodynamics.

What is the impact of this material?

Concepts of thermochemistry apply to the chemical reactions 
associated with the conversion of food into energy in organisms, 
and so form a basis for the discussion of bioenergetics. In Impact 
I2.1, we explore some of the thermochemical calculations 
related to the metabolism of fats, carbohydrates, and proteins.

To read more about the impact of this 
material, scan the QR code, or go to  
bcs.whfreeman.com/webpub/chemistry/
pchem10e/impact/pchem-2-1.html
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2A Internal energy

For the purposes of thermodynamics, the universe is divided 
into two parts, the system and its surroundings. The system 
is the part of the world in which we have a special interest. It 
may be a reaction vessel, an engine, an electrochemical cell, 
a biological cell, and so on. The surroundings comprise the 
region outside the system and are where we make our measure-
ments. The type of system depends on the characteristics of the 
boundary that divides it from the surroundings (Fig. 2A.1). If 
matter can be transferred through the boundary between the 
system and its surroundings the system is classified as open. If 
matter cannot pass through the boundary the system is clas-
sified as closed. Both open and closed systems can exchange 
energy with their surroundings. For example, a closed system 
can expand and thereby raise a weight in the surroundings; a 
closed system may also transfer energy to the surroundings if 
they are at a lower temperature. An isolated system is a closed 
system that has neither mechanical nor thermal contact with its 
surroundings.

Contents

2a.1 Work, heat, and energy 65
(a) Operational definitions 65

brief illustration 2a.1: combustions in adiabatic  
and diathermic containers 65

(b) The molecular interpretation of heat and work 66

2a.2 The definition of internal energy 66
(a) Molecular interpretation of internal energy 67

brief illustration 2a.2: the internal energy of a  
perfect gas 67

(b) The formulation of the First Law 67
brief illustration 2a.3: changes in internal energy 68

2a.3 Expansion work 68
(a) The general expression for work 68

brief illustration 2a.4: the work of extension 69
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example 2a.1: calculating the work of gas  
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(c) Reversible expansion 70
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brief illustration 2a.5: the work of isothermal  
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brief illustration 2a.8: the determination of a heat  
capacity 73

Checklist of concepts 74
Checklist of equations 74

➤➤ Why do you need to know this material?
The First Law of thermodynamics is the foundation of the 
discussion of the role of energy in chemistry. Wherever 
we are interested in the generation or use of energy in 
physical transformations or chemical reactions, lying 
in the background are the concepts introduced by the 
First Law.

➤➤ What is the key idea?
The total energy of an isolated system is constant.

➤➤ What do you need to know already?
This Topic makes use of the discussion of the properties of 
gases (Topic 1A), particularly the perfect gas law. It builds 
on the definition of work given in Foundations B.
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Open Closed Isolated

(a) (b) (c)

Figure 2A.1 (a) An open system can exchange matter and 
energy with its surroundings. (b) A closed system can exchange 
energy with its surroundings, but it cannot exchange matter. 
(c) An isolated system can exchange neither energy nor matter 
with its surroundings.
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2A Internal energy  65

2A.1 Work, heat, and energy

Although thermodynamics deals with observations on bulk 
systems, it is immeasurably enriched by understanding the 
molecular origins of these observations. In each case we shall 
set out the bulk observations on which thermodynamics is 
based and then describe their molecular interpretations.

(a) Operational definitions
The fundamental physical property in thermodynamics is 
work: work is done to achieve motion against an oppos-
ing force. A simple example is the process of raising a weight 
against the pull of gravity. A process does work if in principle it 
can be harnessed to raise a weight somewhere in the surround-
ings. An example of doing work is the expansion of a gas that 
pushes out a piston: the motion of the piston can in principle 
be used to raise a weight. A chemical reaction that drives an 
electric current through a resistance also does work, because 
the same current could be passed through a motor and used to 
raise a weight.

The energy of a system is its capacity to do work. When work 
is done on an otherwise isolated system (for instance, by com-
pressing a gas or winding a spring), the capacity of the system to 
do work is increased; in other words, the energy of the system 
is increased. When the system does work (i.e. when the piston 
moves out or the spring unwinds), the energy of the system is 
reduced and it can do less work than before.

Experiments have shown that the energy of a system may be 
changed by means other than work itself. When the energy of a 
system changes as a result of a temperature difference between 
the system and its surroundings we say that energy has been 
transferred as heat. When a heater is immersed in a beaker 
of water (the system), the capacity of the system to do work 
increases because hot water can be used to do more work than 
the same amount of cold water. Not all boundaries permit the 
transfer of energy even though there is a temperature differ-
ence between the system and its surroundings. Boundaries that 
do permit the transfer of energy as heat are called diathermic; 
those that do not are called adiabatic.

An exothermic process is a process that releases energy 
as heat into its surroundings. All combustion reactions are 
exothermic. An endothermic process is a process in which 
energy is acquired from its surroundings as heat. An example 
of an endothermic process is the vaporization of water. To 
avoid a lot of awkward language, we say that in an exother-
mic process energy is transferred ‘as heat’ to the surround-
ings and in an endothermic process energy is transferred 
‘as heat’ from the surroundings into the system. However, it 
must never be forgotten that heat is a process (the transfer of 
energy as a result of a temperature difference), not an entity. 
An endothermic process in a diathermic container results in 

energy flowing into the system as heat to restore the tempera-
ture to that of the surroundings. An exothermic process in a 
similar diathermic container results in a release of energy as 
heat into the surroundings. When an endothermic process 
takes place in an adiabatic container, it results in a lowering 
of temperature of the system; an exothermic process results 
in a rise of temperature. These features are summarized in 
Fig. 2A.2.

Brief illustration 2A.1 Combustions in adiabatic and 
diathermic containers

Combustions are chemical reactions in which substances 
react with oxygen, normally with a flame. An example is the 
combustion of methane gas, CH4(g):

CH g CO g O(l)4 2 2 22 2(g) ( ) ( )+ +→O H

All combustions are exothermic. Although the temperature 
typically rises in the course of the combustion, if we wait long 
enough, the system returns to the temperature of its surround-
ings so we can speak of a combustion ‘at 25 °C’, for instance. 
If the combustion takes place in an adiabatic container, the 
energy released as heat remains inside the container and 
results in a permanent rise in temperature.

Self-test 2A.1 How may the isothermal expansion of a gas be 
achieved?

Answer: Immerse the system in a water bath

Endothermic
process

Exothermic
process

Endothermic
process

Exothermic
process

H
ea

t

H
ea

t

(a) (b) (c) (d)

Figure 2A.2 (a) When an endothermic process occurs in 
an adiabatic system, the temperature falls; (b) if the process 
is exothermic, then the temperature rises. (c) When an 
endothermic process occurs in a diathermic container, energy 
enters as heat from the surroundings, and the system remains 
at the same temperature. (d) If the process is exothermic, then 
energy leaves as heat, and the process is isothermal.
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66 2 The First Law

(b) The molecular interpretation of heat  
and work

In molecular terms, heating is the transfer of energy that makes 
use of disorderly, apparently random, molecular motion in the 
surroundings. The disorderly motion of molecules is called 
thermal motion. The thermal motion of the molecules in the 
hot surroundings stimulates the molecules in the cooler sys-
tem to move more vigorously and, as a result, the energy of 
the system is increased. When a system heats its surroundings, 
molecules of the system stimulate the thermal motion of the 
molecules in the surroundings (Fig. 2A.3).

In contrast, work is the transfer of energy that makes use 
of organized motion in the surroundings (Fig. 2A.4). When a 
weight is raised or lowered, its atoms move in an organized way 
(up or down). The atoms in a spring move in an orderly way 

when it is wound; the electrons in an electric current move in 
the same direction. When a system does work it causes atoms 
or electrons in its surroundings to move in an organized way. 
Likewise, when work is done on a system, molecules in the sur-
roundings are used to transfer energy to it in an organized way, 
as the atoms in a weight are lowered or a current of electrons is 
passed.

The distinction between work and heat is made in the sur-
roundings. The fact that a falling weight may stimulate thermal 
motion in the system is irrelevant to the distinction between 
heat and work: work is identified as energy transfer making use 
of the organized motion of atoms in the surroundings, and heat 
is identified as energy transfer making use of thermal motion 
in the surroundings. In the adiabatic compression of a gas, for 
instance, work is done on the system as the atoms of the com-
pressing weight descend in an orderly way, but the effect of the 
incoming piston is to accelerate the gas molecules to higher 
average speeds. Because collisions between molecules quickly 
randomize their directions, the orderly motion of the atoms of 
the weight is in effect stimulating thermal motion in the gas. 
We observe the falling weight, the orderly descent of its atoms, 
and report that work is being done even though it is stimulating 
thermal motion.

2A.2 The definition of internal energy

In thermodynamics, the total energy of a system is called its 
internal energy, U. The internal energy is the total kinetic and 
potential energy of the constituents (the atoms, ions, or mole-
cules) of the system. It does not include the kinetic energy aris-
ing from the motion of the system as a whole, such as its kinetic 
energy as it accompanies the Earth on its orbit round the Sun. 
That is, the internal energy is the energy ‘internal’ to the sys-
tem. We denote by ΔU the change in internal energy when a 
system changes from an initial state i with internal energy Ui to 
a final state f of internal energy Uf :

∆U U U= f i−  (2A.1)

Throughout thermodynamics, we use the convention that 
ΔX = Xf – Xi, where X is a property (a ‘state function’) of the 
system.

The internal energy is a state function in the sense that its 
value depends only on the current state of the system and is 
independent of how that state has been prepared. In other 
words, internal energy is a function of the properties that deter-
mine the current state of the system. Changing any one of the 
state variables, such as the pressure, results in a change in inter-
nal energy. That the internal energy is a state function has con-
sequences of the greatest importance, as we shall start to unfold 
in Topic 2D.
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Figure 2A.3 When energy is transferred to the surroundings 
as heat, the transfer stimulates random motion of the atoms 
in the surroundings. Transfer of energy from the surroundings 
to the system makes use of random motion (thermal motion) 
in the surroundings.
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Figure 2A.4 When a system does work, it stimulates orderly 
motion in the surroundings. For instance, the atoms shown 
here may be part of a weight that is being raised. The ordered 
motion of the atoms in a falling weight does work on the 
system.
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2A Internal energy  67

The internal energy is an extensive property of a system (a 
property that depends on the amount of substance present, 
Foundations A) and is measures in joules (1 J = 1 kg m2 s−2). 
The molar internal energy, Um, is the internal energy divided 
by the amount of substance in a system, Um = U/n; it is an 
intensive property (a property independent of the amount 
of substance) and commonly reported in kilojoules per mole 
(kJ mol−1).

(a) Molecular interpretation of internal 
energy
A molecule has a certain number of motional degrees of free-
dom, such as the ability to translate (the motion of its centre 
of mass through space), rotate around its centre of mass, or 
vibrate (as its bond lengths and angles change, leaving its cen-
tre of mass unmoved). Many physical and chemical properties 
depend on the energy associated with each of these modes of 
motion. For example, a chemical bond might break if a lot of 
energy becomes concentrated in it, for instance as vigorous 
vibration.

The ‘equipartition theorem’ of classical mechanics intro-
duced in Foundations B can be used to predict the contribu-
tions of each mode of motion of a molecule to the total energy 
of a collection of non-interacting molecules (that is, of a perfect 
gas, and providing quantum effects can be ignored). For trans-
lation and rotational modes the contribution of a mode is pro-
portional to the temperature, so the internal energy of a sample 
increases as the temperature is raised.

The contribution to the internal energy of a collection of 
perfect gas molecules is independent of the volume occupied 
by the molecules: there are no intermolecular interactions in a 

perfect gas, so the distance between the molecules has no effect 
on the energy. That is, the internal energy of a perfect gas is inde-
pendent of the volume it occupies.

The internal energy of interacting molecules in condensed 
phases also has a contribution from the potential energy of their 
interaction, but no simple expressions can be written down in 
general. Nevertheless, it remains true that as the temperature of 
a system is raised, the internal energy increases as the various 
modes of motion become more highly excited.

(b) The formulation of the First Law
It has been found experimentally that the internal energy of a 
system may be changed either by doing work on the system or 
by heating it. Whereas we may know how the energy transfer 
has occurred (because we can see if a weight has been raised or 
lowered in the surroundings, indicating transfer of energy by 
doing work, or if ice has melted in the surroundings, indicat-
ing transfer of energy as heat), the system is blind to the mode 
employed. Heat and work are equivalent ways of changing a sys-
tem’s internal energy. A system is like a bank: it accepts deposits 
in either currency, but stores its reserves as internal energy. It 
is also found experimentally that if a system is isolated from its 
surroundings, then no change in internal energy takes place. 
This summary of observations is now known as the First Law 
of thermodynamics and is expressed as follows:

The internal energy of an isolated system is constant.

We cannot use a system to do work, leave it isolated, and then 
come back expecting to find it restored to its original state with 
the same capacity for doing work. The experimental evidence 
for this observation is that no ‘perpetual motion machine’, a 
machine that does work without consuming fuel or using some 
other source of energy, has ever been built.

These remarks may be summarized as follows. If we write w 
for the work done on a system, q for the energy transferred as 
heat to a system, and ΔU for the resulting change in internal 
energy, then it follows that

∆ = +U q w   mathematical statement of the First law  (2A.2)

Equation 2A.2 summarizes the equivalence of heat and work 
and the fact that the internal energy is constant in an isolated 
system (for which q = 0 and w = 0). The equation states that 
the change in internal energy of a closed system is equal to the 
energy that passes through its boundary as heat or work. It 
employs the ‘acquisitive convention’, in which w and q are posi-
tive if energy is transferred to the system as work or heat and 
are negative if energy is lost from the system. In other words, 
we view the flow of energy as work or heat from the system’s 
perspective.

Brief illustration 2A.2 The internal energy of a perfect gas

In Foundations B it is shown that the mean energy of a mol-
ecule due to its translational motion is 3

2 kT  and therefore 
to the molar energy of a collection the contribution is 3

2 RT . 
Therefore, considering only the translational contribution to 
internal energy,

Um m A m( ) ( ) ( )T U N kT U RT= + = +0 03
2

3
2

where Um(0), the internal energy at T = 0, can be greater than 
zero (see, for example, Chapter 8). At 25 °C, RT = 2.48 kJ mol−1, 
so the translational motion contributes 3.72 kJ mol−1 to the 
molar internal energy of gases.

Self-test 2A.2 Calculate the molar internal energy of carbon 
dioxide at 25 °C, taking into account its translational and rota-
tional degrees of freedom.

Answer: Um(T) = Um(0) + 52 RT

First law of thermodynamics

iranchembook.ir/edu



68 2 The First Law

2A.3 Expansion work

The way is opened to powerful methods of calculation by 
switching attention to infinitesimal changes of state (such as 
infinitesimal change in temperature) and infinitesimal changes 
in the internal energy dU. Then, if the work done on a system 
is dw and the energy supplied to it as heat is dq, in place of eqn 
2A.2 we have

d d dU q w= +  (2A.3)

To use this expression we must be able to relate dq and dw to 
events taking place in the surroundings.

We begin by discussing expansion work, the work arising 
from a change in volume. This type of work includes the work 
done by a gas as it expands and drives back the atmosphere. 
Many chemical reactions result in the generation of gases (for 
instance, the thermal decomposition of calcium carbonate or 
the combustion of octane), and the thermodynamic character-
istics of the reaction depend on the work that must be done to 
make room for the gas it has produced. The term ‘expansion 
work’ also includes work associated with negative changes of 
volume, that is, compression.

(a) The general expression for work
The calculation of expansion work starts from the definition 
used in physics, which states that the work required to move 
an object a distance dz against an opposing force of magnitude 
|F| is

d dw F= − z  Definition  work done  (2A.4)

The negative sign tells us that, when the system moves an object 
against an opposing force of magnitude |F|, and there are no 

other changes, then the internal energy of the system doing the 
work will decrease. That is, if dz is positive (motion to positive 
z), dw is negative, and the internal energy decreases (dU in eqn 
2A.3 is negative provided that dq = 0).

Now consider the arrangement shown in Fig. 2A.5, in which 
one wall of a system is a massless, frictionless, rigid, perfectly 
fitting piston of area A. If the external pressure is pex, the 
magnitude of the force acting on the outer face of the piston 
is |F| = pexA. When the system expands through a distance dz 
against an external pressure pex, it follows that the work done is 
dw = –pexAdz. The quantity Adz is the change in volume, dV, in 
the course of the expansion. Therefore, the work done when the 
system expands by dV against a pressure pex is

d dexw p V= −   expansion work  (2A.5a)

To obtain the total work done when the volume changes from 
an initial value Vi to a final value Vf we integrate this expression 
between the initial and final volumes:

w p V
V

V
= −∫ exd

i

f

 
(2A.5b)

The force acting on the piston, pexA, is equivalent to the force 
arising from a weight that is raised as the system expands. If the 
system is compressed instead, then the same weight is lowered 
in the surroundings and eqn 2A.5b can still be used, but now 
Vf  < Vi. It is important to note that it is still the external pressure 
that determines the magnitude of the work. This somewhat 
perplexing conclusion seems to be inconsistent with the fact 
that the gas inside the container is opposing the compression. 
However, when a gas is compressed, the ability of the surround-
ings to do work is diminished by an amount determined by the 
weight that is lowered, and it is this energy that is transferred 
into the system.

Other types of work (for example, electrical work), which we 
shall call either non-expansion work or additional work, have 

Brief illustration 2A.3 Changes in internal energy

If an electric motor produced 15 kJ of energy each second as 
mechanical work and lost 2 kJ as heat to the surroundings, 
then the change in the internal energy of the motor each sec-
ond is ΔU = –2 kJ – 15 kJ = –17 kJ. Suppose that, when a spring 
was wound, 100 J of work was done on it but 15 J escaped to 
the surroundings as heat. The change in internal energy of the 
spring is ΔU = 100 J – 15 J = +85 J.

A note on good practice Always include the sign of ΔU 
(and of ΔX in general), even if it is positive.

Self-test 2A.3 A generator does work on an electric heater by 
forcing an electric current through it. Suppose 1 kJ of work is 
done on the heater and it heats its surroundings by 1 kJ. What 
is the change in internal energy of the heater?

Answer: 0

dz

External
pressure, pex

Pressure, p

Area, A dV = Adz

Figure 2A.5 When a piston of area A moves out through a 
distance dz, it sweeps out a volume dV = Adz. The external 
pressure pex is equivalent to a weight pressing on the piston, 
and the magnitude of the force opposing expansion is |F| = pexA.
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2A Internal energy  69

analogous expressions, with each one the product of an inten-
sive factor (the pressure, for instance) and an extensive factor 
(the change in volume). Some are collected in Table 2A.1. For 
the present we continue with the work associated with chang-
ing the volume, the expansion work, and see what we can 
extract from eqn 2A.5b.

(b) Expansion against constant pressure

Suppose that the external pressure is constant throughout the 
expansion. For example, the piston may be pressed on by the 
atmosphere, which exerts the same pressure throughout the 
expansion. A chemical example of this condition is the expan-
sion of a gas formed in a chemical reaction in a container that 
can expand. We can evaluate eqn 2A.5b by taking the constant 
pex outside the integral:

w p V p V V
V

V
= − = − −∫ex ex f id

i

f

( )
 

Therefore, if we write the change in volume as ΔV = Vf − Vi,

w p V= ∆− ex  Constant external pressure  expansion work  (2A.6)

This result is illustrated graphically in Fig. 2A.6, which makes 
use of the fact that an integral can be interpreted as an area. The 
magnitude of w, denoted |w|, is equal to the area beneath the 
horizontal line at p = pex lying between the initial and final vol-
umes. A pV-graph used to illustrate expansion work is called 
an indicator diagram; James Watt first used one to indicate 
aspects of the operation of his steam engine.

Free expansion is expansion against zero opposing force. It 
occurs when pex = 0. According to eqn 2A.6,

w = 0   work of free expansion  (2A.7)

That is, no work is done when a system expands freely. Expansion 
of this kind occurs when a gas expands into a vacuum.

Example 2A.1 Calculating the work of gas production

Calculate the work done when 50 g of iron reacts with hydro-
chloric acid to produce FeCl2(aq) and hydrogen in (a) a closed 
vessel of fixed volume, (b) an open beaker at 25 °C.

Method We need to judge the magnitude of the volume 
change and then to decide how the process occurs. If there is 
no change in volume, there is no expansion work however the 
process takes place. If the system expands against a constant 
external pressure, the work can be calculated from eqn 2A.6. 
A general feature of processes in which a condensed phase 
changes into a gas is that the volume of the former may usually 
be neglected relative to that of the gas it forms.

Answer In (a) the volume cannot change, so no expansion 
work is done and w = 0. In (b) the gas drives back the atmos-
phere and therefore w = −pexΔV. We can neglect the initial 

Brief illustration 2A.4 The work of extension

To establish an expression for the work of stretching an elasto-
mer, a polymer that can stretch and contract, to an extension l 
given that the force opposing extension is proportional to the 
displacement from the resting state of the elastomer we write 
|F| = kfx, where kf is a constant and x is the displacement. It 
then follows from eqn 2A.4 that for an infinitesimal displace-
ment from x to x + dx, dw = −kfxdx. For the overall work of dis-
placement from x = 0 to the final extension l,

w k x x k l
l

= − = −∫ f fd 1
2

2

0

Self-test 2A.4 Suppose the restoring force weakens as the elas-
tomer is stretched, and kf(x) = a – bx1/2. Evaluate the work of 
extension to l.

Answer: w = − 1
2 al2 + 25 bl5/2

Table 2A.1 Varieties of work*

Type of work dw Comments Units†

Expansion –pexdV pex is the external pressure
dV is the change in volume

Pa m3

Surface expansion γ dσ γ is the surface tension
dσ is the change in area

N m−1 m2

Extension fdl f is the tension
dl is the change in length

N m

Electrical ϕdQ ϕ is the electric potential
dQ is the change in charge

V C

Qdϕ dϕ is the potential difference
Q is the charge transferred

V C

* In general, the work done on a system can be expressed in the form dw = –|F|dz, 
where |F| is the magnitude of a ‘generalized force’ and dz is a ‘generalized 
displacement’.
† For work in joules (J). Note that 1 N m = 1 J and 1 V C = 1 J.
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pex

Area = pexΔV

Volume, VVi Vf

pex pex

Figure 2A.6 The work done by a gas when it expands against 
a constant external pressure, pex, is equal to the shaded area in 
this example of an indicator diagram.
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70 2 The First Law

(c) Reversible expansion
A reversible change in thermodynamics is a change that can 
be reversed by an infinitesimal modification of a variable. The 
key word ‘infinitesimal’ sharpens the everyday meaning of the 
word ‘reversible’ as something that can change direction. One 
example of reversibility that we have encountered already is the 
thermal equilibrium of two systems with the same temperature. 
The transfer of energy as heat between the two is reversible 
because, if the temperature of either system is lowered infini-
tesimally, then energy flows into the system with the lower 
temperature. If the temperature of either system at thermal 
equilibrium is raised infinitesimally, then energy flows out of 
the hotter system. There is obviously a very close relationship 
between reversibility and equilibrium: systems at equilibrium 
are poised to undergo reversible change.

Suppose a gas is confined by a piston and that the external 
pressure, pex, is set equal to the pressure, p, of the confined gas. 
Such a system is in mechanical equilibrium with its surround-
ings because an infinitesimal change in the external pressure 
in either direction causes changes in volume in opposite direc-
tions. If the external pressure is reduced infinitesimally, the gas 
expands slightly. If the external pressure is increased infini-
tesimally, the gas contracts slightly. In either case the change is 
reversible in the thermodynamic sense. If, on the other hand, 
the external pressure differs measurably from the internal 
pressure, then changing pex infinitesimally will not decrease it 
below the pressure of the gas, so will not change the direction 
of the process. Such a system is not in mechanical equilibrium 

with its surroundings and the expansion is thermodynamically 
irreversible.

To achieve reversible expansion we set pex equal to p at each 
stage of the expansion. In practice, this equalization could be 
achieved by gradually removing weights from the piston so 
that the downward force due to the weights always matches the 
changing upward force due to the pressure of the gas. When we 
set pex = p, eqn 2A.5a becomes

d d dexw p V p V= =− −   reversible expansion work  (2A.8a)

Although the pressure inside the system appears in this expres-
sion for the work, it does so only because pex has been set equal 
to p to ensure reversibility. The total work of reversible expan-
sion from an initial volume Vi to a final volume Vf is therefore

w p V
V

V
= −∫ d

i

f

 
(2A.8b)

The integral can be evaluated once we know how the pressure of 
the confined gas depends on its volume. Equation 2A.8b is the 
link with the material covered in the Topics of Chapter 1 for, if 
we know the equation of state of the gas, then we can express p 
in terms of V and evaluate the integral.

(d) Isothermal reversible expansion
Consider the isothermal, reversible expansion of a perfect gas. 
The expansion is made isothermal by keeping the system in ther-
mal contact with its surroundings (which may be a constant-
temperature bath). Because the equation of state is pV = nRT, 
we know that at each stage p = nRT/V, with V the volume at that 
stage of the expansion. The temperature T is constant in an iso-
thermal expansion, so (together with n and R) it may be taken 
outside the integral. It follows that the work of reversible isother-
mal expansion of a perfect gas from Vi to Vf at a temperature T is

w nRT V
V nRT V

VV

V
= − = −∫ d

i

f f

i

Integral A.2
ln

 

volume because the final volume (after the production of gas) 
is so much larger and ΔV = Vf − Vi ≈ Vf = nRT/pex, where n is the 
amount of H2 produced. Therefore,

w p V p nRT
p nRT= − ≈ − × = −ex ex

ex
∆

Because the reaction is Fe(s) + 2 HCl(aq) → FeCl2(aq) + H2(g), 
we know that 1 mol H2 is generated when 1 mol Fe is consumed, 
and n can be taken as the amount of Fe atoms that react. 
Because the molar mass of Fe is 55.85 g mol−1, it follows that

w = − × ×

≈ −

−
− −50

55 85
8 3145 298

2 2

1
1 1g

g mol
JK mol K

 kJ
.

( . ) ( )

.

The system (the reaction mixture) does 2.2 kJ of work driving 
back the atmosphere. Note that (for this perfect gas system) 
the magnitude of the external pressure does not affect the final 
result: the lower the pressure, the larger the volume occupied 
by the gas, so the effects cancel.

Self-test 2A.5 Calculate the expansion work done when 50 g of 
water is electrolysed under constant pressure at 25 °C.

Answer: −10 kJ

Perfect gas, 
reversible, 
isothermal

work of 
expansion (2A.9)

Brief illustration 2A.5 The work of isothermal reversible 
expansion

When a sample of 1.00 mol Ar, regarded here as a perfect gas, 
undergoes an isothermal reversible expansion at 20.0 °C from 
10.0 dm3 to 30.0 dm3 the work done is

w = − × ×

= −

− −( . ) ( . ) ( . ) ln
.
.

1 00 8 3145 293 2
30 0
10 0

2

1 1
3mol JK mol K

dm
dm

3

..68 kJ
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When the final volume is greater than the initial volume, 
as in an expansion, the logarithm in eqn 2A.9 is positive and 
hence w < 0. In this case, the system has done work on the sur-
roundings and there is a corresponding negative contribution 
to its internal energy. (Note the cautious language: we shall see 
later that there is a compensating influx of energy as heat, so 
overall the internal energy is constant for the isothermal expan-
sion of a perfect gas.) The equations also show that more work 
is done for a given change of volume when the temperature is 
increased: at a higher temperature the greater pressure of the 
confined gas needs a higher opposing pressure to ensure revers-
ibility and the work done is correspondingly greater.

We can express the result of the calculation as an indicator 
diagram, for the magnitude of the work done is equal to the 
area under the isotherm p = nRT/V (Fig. 2A.7). Superimposed 
on the diagram is the rectangular area obtained for irreversible 
expansion against constant external pressure fixed at the same 
final value as that reached in the reversible expansion. More 
work is obtained when the expansion is reversible (the area is 
greater) because matching the external pressure to the internal 
pressure at each stage of the process ensures that none of the 
system’s pushing power is wasted. We cannot obtain more work 
than for the reversible process because increasing the external 
pressure even infinitesimally at any stage results in compres-
sion. We may infer from this discussion that, because some 
pushing power is wasted when p > pex, the maximum work 

available from a system operating between specified initial and 
final states and passing along a specified path is obtained when 
the change takes place reversibly.

We have introduced the connection between reversibility 
and maximum work for the special case of a perfect gas under-
going expansion. In Topic 3A we see that it applies to all sub-
stances and to all kinds of work.

2A.4 Heat transactions

In general, the change in internal energy of a system is

d d d dexp eU q w w= + +  (2A.10)

where dwe is work in addition (e for ‘extra’) to the expansion 
work, dwexp. For instance, dwe might be the electrical work of 
driving a current through a circuit. A system kept at constant 
volume can do no expansion work, so dwexp = 0. If the system 
is also incapable of doing any other kind of work (if it is not, 
for instance, an electrochemical cell connected to an electric 
motor), then dwe = 0 too. Under these circumstances:

d dU q=   heat transferred at constant volume  (2A.11a)

We express this relation by writing dU = dqV , where the sub-
script implies a change at constant volume. For a measurable 
change between states i and f along a path at constant volume,

d dU q
i

f

i

f

∫ ∫
−

=

U U qVf i 

 

which we summarize as

∆ =U qV  (2A.11b)

Note that we do not write the integral over dq as Δq because 
q, unlike U, is not a state function. It follows that, by measur-
ing the energy supplied to a constant-volume system as heat 
(qV > 0) or released from it as heat (qV < 0) when it undergoes a 
change of state, we are in fact measuring the change in its inter-
nal energy.

(a) Calorimetry
Calorimetry is the study of the transfer of energy as heat dur-
ing physical and chemical processes. A calorimeter is a device 
for measuring energy transferred as heat. The most common 
device for measuring qV (and therefore ΔU) is an adiabatic 
bomb calorimeter (Fig. 2A.8). The process we wish to study—
which may be a chemical reaction—is initiated inside a con-
stant-volume container, the ‘bomb’. The bomb is immersed in 

Self-test 2A.6 Suppose that attractions are important between 
gas molecules, and the equation of state is p = nRT/V – n2a/V2. 
Derive an expression for the reversible, isothermal expansion 
of this gas. Is more or less work done on the surroundings when 
it expands (compared with a perfect gas)?

Answer: w = −nRT ln(Vf/Vi) − n2a(1/Vf − 1/Vi); less

Pr
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, p pf

pi

Volume, VVi Vf

pi pf

p = nRT/V

Figure 2A.7 The work done by a perfect gas when it expands 
reversibly and isothermally is equal to the area under the 
isotherm p = nRT/V. The work done during the irreversible 
expansion against the same final pressure is equal to the 
rectangular area shown slightly darker. Note that the reversible 
work is greater than the irreversible work.
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a stirred water bath, and the whole device is the calorimeter. 
The calorimeter is also immersed in an outer water bath. The 
water in the calorimeter and of the outer bath are both moni-
tored and adjusted to the same temperature. This arrangement 
ensures that there is no net loss of heat from the calorimeter to 
the surroundings (the bath) and hence that the calorimeter is 
adiabatic.

The change in temperature, ΔT, of the calorimeter is propor-
tional to the energy that the reaction releases or absorbs as heat. 
Therefore, by measuring ΔT we can determine qV and hence 
find ΔU. The conversion of ΔT to qV is best achieved by cali-
brating the calorimeter using a process of known energy output 
and determining the calorimeter constant, the constant C in 
the relation

q C T= ∆  (2A.12)

The calorimeter constant may be measured electrically by pass-
ing a constant current, I, from a source of known potential dif-
ference, Δϕ, through a heater for a known period of time, t, for 
then

q It= ∆φ  (2A.13)

Electrical charge is measured in coulombs, C. The motion of 
charge gives rise to an electric current, I, measured in cou-
lombs per second, or amperes, A, where 1 A = 1 C s−1. If a 
constant current I flows through a potential difference Δϕ 
(measured in volts, V), the total energy supplied in an interval 
t is ItΔϕ. Because 1 A V s = 1 (C s−1) V s = 1 C V = 1 J, the energy 
is obtained in joules with the current in amperes, the potential 
difference in volts, and the time in seconds.

Alternatively, C may be determined by burning a known 
mass of substance (benzoic acid is often used) that has a known 
heat output. With C known, it is simple to interpret an observed 
temperature rise as a release of heat.

(b) Heat capacity
The internal energy of a system increases when its temperature 
is raised. The increase depends on the conditions under which 
the heating takes place and for the present we suppose that the 
system has a constant volume. For example, it may be a gas in 
a container of fixed volume. If the internal energy is plotted 
against temperature, then a curve like that in Fig. 2A.9 may be 
obtained. The slope of the tangent to the curve at any tempera-
ture is called the heat capacity of the system at that tempera-
ture. The heat capacity at constant volume is denoted CV and is 
defined formally as

Brief illustration 2A.6 Electrical heating

If a current of 10.0 A from a 12 V supply is passed for 300 s, 
then from eqn 2A.13 the energy supplied as heat is

q = × × = × =( . ) ( ) ( ) .10 0 12 300 3 6 10 364A V s AVs kJ

because 1 A V s = 1 J. If the observed rise in temperature is 
5.5 K, then the calorimeter constant is C = (36 kJ)/(5.5 K) =  
6.5 kJ K−1.

Self-test 2A.7 What is the value of the calorimeter constant if 
the temperature rises by 4.8 °C when a current of 8.6 A from 
an 11 V supply is passed for 280 s?

Answer: 5.5 kJ K−1

Thermometer
Oxygen input

Firing
leads

Sample

Oxygen
under pressure

Water

Bomb

Figure 2A.8 A constant-volume bomb calorimeter. The ‘bomb’ 
is the central vessel, which is strong enough to withstand 
high pressures. The calorimeter (for which the heat capacity 
must be known) is the entire assembly shown here. To ensure 
adiabaticity, the calorimeter is immersed in a water bath with a 
temperature continuously readjusted to that of the calorimeter 
at each stage of the combustion.
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Figure 2A.9 The internal energy of a system increases as 
the temperature is raised; this graph shows its variation as 
the system is heated at constant volume. The slope of the 
tangent to the curve at any temperature is the heat capacity at 
constant volume at that temperature. Note that, for the system 
illustrated, the heat capacity is greater at B than at A.
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C U
TV

V
= ∂

∂




  

Definition  heat capacity at constant volume  (2A.14)

Partial derivatives are reviewed in Mathematical background 2 
following this chapter. The internal energy varies with the tem-
perature and the volume of the sample, but here we are inter-
ested only in its variation with the temperature, the volume 
being held constant (Fig. 2A.10).

Heat capacities are extensive properties: 100 g of water, for 
instance, has 100 times the heat capacity of 1 g of water (and 
therefore requires 100 times the energy as heat to bring about 
the same rise in temperature). The molar heat capacity at con-
stant volume, CV,m = CV/n, is the heat capacity per mole of sub-
stance, and is an intensive property (all molar quantities are 
intensive). Typical values of CV,m for polyatomic gases are close 
to 25 J K−1 mol−1. For certain applications it is useful to know the 
specific heat capacity (more informally, the ‘specific heat’) of a 

substance, which is the heat capacity of the sample divided by 
the mass, usually in grams: CV,s = CV/m. The specific heat capacity 
of water at room temperature is close to 4.2 J K−1 g−1. In general, 
heat capacities depend on the temperature and decrease at low 
temperatures. However, over small ranges of temperature at 
and above room temperature, the variation is quite small and 
for approximate calculations heat capacities can be treated as 
almost independent of temperature.

The heat capacity is used to relate a change in internal energy 
to a change in temperature of a constant-volume system. It fol-
lows from eqn 2A.14 that

d dU C TV=  Constant volume (2A.15a)

That is, at constant volume, an infinitesimal change in tempera-
ture brings about an infinitesimal change in internal energy, 
and the constant of proportionality is CV . If the heat capacity 
is independent of temperature over the range of temperatures 
of interest, then

∆U C T C T C T TV V
T

T

V
T

T
= = = −∫ ∫

∆

d d
1

2

1

2

2 1( )
T��� ��

 

and a measurable change of temperature, ΔT, brings about a 
measurable change in internal energy, ΔU, where

∆ = ∆U C TV  Constant volume (2A.15b)

Because a change in internal energy can be identified with the 
heat supplied at constant volume (eqn 2A.11b), the last equa-
tion can also be written

q C TV V= ∆  (2A.16)

This relation provides a simple way of measuring the heat 
capacity of a sample: a measured quantity of energy is trans-
ferred as heat to the sample (electrically, for example), and the 
resulting increase in temperature is monitored. The ratio of 
the energy transferred as heat to the temperature rise it causes  
(qV/ΔT) is the constant-volume heat capacity of the sample.

Brief illustration 2A.7 Heat capacity

The heat capacity of a monatomic perfect gas can be calculated 
by inserting the expression for the internal energy derived in 
Brief illustration 2A.2 where we saw that U U RTTm m( ) ( ) ,= +0 3

2  
so from eqn 2A.14

C T U RT RV , ( )m m= ∂
∂ +{ }=0 3

2
3
2

The numerical value is 12.47 J K−1 mol−1.

Self-test 2A.8 Estimate the molar constant-volume heat cap-
acity of carbon dioxide.

Answer: 5
2

1 121R = − −J K mol Brief illustration 2A.8 The determination of a heat 
capacity

Suppose a 55 W electric heater immersed in a gas in a con-
stant-volume adiabatic container was on for 120 s and it 
was found that the temperature of the gas rose by 5.0 °C 
(an increase equivalent to 5.0 K). The heat supplied is 
(55 W) × (120 s) = 6.6 kJ (we have used 1 J = 1 W s), so the heat 
capacity of the sample is

CV = = −6 6
5 0 1 3 1.

. . kJ
 K  kJ K
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Temperature variation
of U Slope of U against T

at constant V

Figure 2A.10 The internal energy of a system varies with 
volume and temperature, perhaps as shown here by the 
surface. The variation of the internal energy with temperature 
at one particular constant volume is illustrated by the curve 
drawn parallel to T. The slope of this curve at any point is the 
partial derivative (∂U/∂T)V.
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74 2 The First Law

A large heat capacity implies that, for a given quantity of 
energy transferred as heat, there will be only a small increase 
in temperature (the sample has a large capacity for heat). An 

infinite heat capacity implies that there will be no increase in 
temperature however much energy is supplied as heat. At a 
phase transition, such as at the boiling point of water, the tem-
perature of a substance does not rise as energy is supplied as 
heat: the energy is used to drive the endothermic transition, in 
this case to vaporize the water, rather than to increase its tem-
perature. Therefore, at the temperature of a phase transition, 
the heat capacity of a sample is infinite. The properties of heat 
capacities close to phase transitions are treated more fully in 
Topic 4B.

Checklist of concepts

☐ 1. Work is done to achieve motion against an opposing 
force

☐ 2. Energy is the capacity to do work.
☐ 3. Heating is the transfer of energy that makes use of dis-

orderly molecular motion.
☐ 4. Work is the transfer of energy that makes use of organ-

ized motion.
☐ 5. Internal energy, the total energy of a system, is a state 

function.
☐ 6. The equipartition theorem can be used to estimate the 

contribution to the internal energy of classical modes of 
motion.

☐ 7. The First Law states that the internal energy of an iso-
lated system is constant.

☐ 8. Free expansion (expansion against zero pressure) does 
no work.

☐ 9. To achieve reversible expansion, the external pressure is 
matched at every stage to the pressure of the system.

☐ 10. The energy transferred as heat at constant volume is 
equal to the change in internal energy of the system.

☐ 11. Calorimetry is the measurement of heat transactions.

Checklist of equations

Self-test 2A.9 When 229 J of energy is supplied as heat to 
3.0 mol of a gas at constant volume, the temperature of the gas 
increases by 2.55 °C. Calculate CV and the molar heat capacity 
at constant volume.

Answer: 89.8 J K−1, 29.9 J K−1 mol−1

Property Equation Comment Equation number

First Law of thermodynamics ΔU = q + w Acquisitive convention 2A.2

Work of expansion dw = −pexdV 2A.5a

Work of expansion against a constant external pressure w = −pexΔV pex = 0 corresponds to free expansion 2A.6

Reversible work of expansion of a gas w = −nRT ln(Vf/Vi) Isothermal, perfect gas 2A.9

Internal energy change ΔU = qV Constant volume, no other forms of work 2A.11b

Electrical heating q = ItΔϕ 2A.13

Heat capacity at constant volume CV = (∂U/∂T)V Definition 2A.14
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2B enthalpy

The change in internal energy is not equal to the energy trans-
ferred as heat when the system is free to change its volume, 
such as when it is able to expand or contract under conditions 
of constant pressure. Under these circumstances some of the 
energy supplied as heat to the system is returned to the sur-
roundings as expansion work (Fig. 2B.1), so dU is less than dq. 
In this case the energy supplied as heat at constant pressure is 
equal to the change in another thermodynamic property of the 
system, the enthalpy.

2B.1 The definition of enthalpy

The enthalpy, H, is defined as

H U pV= +  Definition  enthalpy  (2B.1)

where p is the pressure of the system and V is its volume. 
Because U, p, and V are all state functions, the enthalpy is a 
state function too. As is true of any state function, the change 
in enthalpy, ΔH, between any pair of initial and final states is 
independent of the path between them.

(a) Enthalpy change and heat transfer
Although the definition of enthalpy may appear arbitrary, it has 
important implications for thermochemistry. For instance, we 
show in the following Justification that eqn 2B.1 implies that the 
change in enthalpy is equal to the energy supplied as heat at con-
stant pressure (provided the system does no additional work):

d dH qp=   heat transferred at constant pressure  (2B.2a)

For a measurable change between states i and f along a path at 
constant pressure, we write

d d
i

f

i

f
H p∫ ∫

−

=

H H qpf i� ���

q
 

➤➤ Why do you need to know this material?
The concept of enthalpy is central to many thermodynamic 
discussions about processes taking place under conditions 
of constant pressure, such as the discussion of the heat 
requirements or output of physical transformations and 
chemical reactions.

➤➤ What is the key idea?
A change in enthalpy is equal to the energy transferred as 
heat at constant pressure.

➤➤ What do you need to know already?
This Topic makes use of the discussion of internal energy 
(Topic 2A) and draws on some aspects of perfect gases 
(Topic 1A).

Contents

2b.1 The definition of enthalpy 75
(a) Enthalpy change and heat transfer 75

brief illustration 2b.1: a change in enthalpy 76
(b) Calorimetry 76

example 2b.1: relating ΔH and ΔU 77
brief illustration 2b.2: Processes involving gases 77

2b.2 The variation of enthalpy with temperature 77
(a) Heat capacity at constant pressure 77

example 2b.2: evaluating an increase in enthalpy 
with temperature 78

(b) The relation between heat capacities 79
Checklist of concepts 79
Checklist of equations 79

Energy
as heat

Energy as work

ΔU < q

Figure 2B.1 When a system is subjected to constant pressure 
and is free to change its volume, some of the energy supplied 
as heat may escape back into the surroundings as work. In such 
a case, the change in internal energy is smaller than the energy 
supplied as heat.
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76 2 The First Law

and summarize the result as

∆ =H qp  (2B.2b)

Note that we do not write the integral over dq as Δq because q, 
unlike H, is not a state function.

(b) Calorimetry
The process of measuring heat transactions between a system 
and its surroundings is called calorimetry. An enthalpy change 
can be measured calorimetrically by monitoring the tempera-
ture change that accompanies a physical or chemical change 
occurring at constant pressure. A calorimeter for studying pro-
cesses at constant pressure is called an isobaric calori meter. 
A simple example is a thermally insulated vessel open to the 
atmosphere: the heat released in the reaction is monitored by 
measuring the change in temperature of the contents. For a 
combustion reaction an adiabatic flame calorimeter may be 
used to measure ΔT when a given amount of substance burns 
in a supply of oxygen (Fig. 2B.2).

Another route to ΔH is to measure the internal energy 
change by using a bomb calorimeter, and then to convert ΔU 
to ΔH. Because solids and liquids have small molar volumes, 
for them pVm is so small that the molar enthalpy and molar 
internal energy are almost identical (Hm = Um + pVm ≈ Um). 
Consequently, if a process involves only solids or liquids, the 
values of ΔH and ΔU are almost identical. Physically, such pro-
cesses are accompanied by a very small change in volume; the 
system does negligible work on the surroundings when the 
process occurs, so the energy supplied as heat stays entirely 

Brief illustration 2B.1 A change in enthalpy

Water is heated to boiling under a pressure of 1.0 atm. When an 
electric current of 0.50 A from a 12 V supply is passed for 300 s 
through a resistance in thermal contact with it, it is found that 
0.798 g of water is vaporized. The enthalpy change is

∆ = = ∆ = × × = × ×H q Itp φ ( . ) ( . )0 50 12 300 0 50 12 300A s J( V) ( )  
Here we have used 1 A V s = 1 J. Because 0.798 g of water is 
(0.798 g)/(18.02 g mol−1) = (0.798/18.02) mol H2O, the enthalpy 
of vaporization per mole of H2O is

∆ =
× ×

= +Hm
( . )

( . / . )
0 50 12 300

0 798 18 02 41
J

mol kJmol 1−

 

Self-test 2B.1 The molar enthalpy of vaporization of benzene 
at its boiling point (353.25 K) is 30.8 kJ mol−1. For how long 
would the same 12 V source need to supply a 0.50 A current in 
order to vaporize a 10 g sample?

Answer: 6.6 × 102 s

Justification 2B.1 The relation ΔH = qp

For a general infinitesimal change in the state of the system, 
U changes to U + dU, p changes to p + dp, and V changes to 
V + dV, so from the definition in eqn 2B.1, H changes from 
U + pV to

H H U U p p V V
U p V V p p VU pV

+ = + + + +
= + + + + +

d d d d
d d d d d

( ) ( )( )

 

The last term is the product of two infinitesimally small quanti-
ties and can therefore be neglected. As a result, after recogniz-
ing U + pV = H on the right (in blue), we find that H changes to

H H U p V V pH+ = + + +d d d d  
and hence that

d d d dH U p V V p= + +  
If we now substitute dU = dq + dw into this expression, we get

d d d d dH q w p V V p= + + +  

If the system is in mechanical equilibrium with its surround-
ings at a pressure p and does only expansion work, we can 
write dw = −pdV and obtain

d d dH q V p= +  

Now we impose the condition that the heating occurs at con-
stant pressure by writing dp = 0. Then

d d at constant pressure, no additional workH q= ( )  

as in eqn 2B.2a. Equation 2B.2b then follows, as explained in 
the text.

Gas, vapour

Oxygen

Products

Figure 2B.2 A constant-pressure flame calorimeter consists of 
this component immersed in a stirred water bath. Combustion 
occurs as a known amount of reactant is passed through to fuel 
the flame, and the rise of temperature is monitored.
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2B Enthalpy  77

within the system. The most sophisticated way to measure 
enthalpy changes, however, is to use a differential scanning calo-
rimeter (DSC), as explained in Topic 2C. Changes in enthalpy 
and internal energy may also be measured by non-calorimetric 
methods (see Topic 6C).

In contrast to processes involving condensed phases, the val-
ues of the changes in internal energy and enthalpy may differ 
significantly for processes involving gases. Thus, the enthalpy of 
a perfect gas is related to its internal energy by using pV = nRT 
in the definition of H:

H U pV U nRT= + = +  (2B.3)

This relation implies that the change of enthalpy in a reaction 
that produces or consumes gas under isothermal conditions is

∆ = ∆ +∆H U n RTg  

where Δng is the change in the amount of gas molecules in the 
reaction.

2B.2 The variation of enthalpy with 
temperature

The enthalpy of a substance increases as its temperature is 
raised. The relation between the increase in enthalpy and the 
increase in temperature depends on the conditions (for exam-
ple, constant pressure or constant volume).

(a) Heat capacity at constant pressure
The most important condition is constant pressure, and the 
slope of the tangent to a plot of enthalpy against temperature 
at constant pressure is called the heat capacity at constant 

Brief illustration 2B.2 Processes involving gases

In the reaction 2 H2(g) + O2(g) → 2 H2O(l), 3 mol of gas-phase 
molecules are replaced by 2 mol of liquid-phase molecules, so 
Δng = −3 mol. Therefore, at 298 K, when RT = 2.5 kJ mol−1, the 
enthalpy and internal energy changes taking place in the sys-
tem are related by

∆ ∆ = − × ≈ −− −H U RTm m kJmol( ) .3 7 4 1mol  

Note that the difference is expressed in kilojoules, not joules 
as in Example 2B.2. The enthalpy change is smaller (in this 
case, less negative) than the change in internal energy because, 
although heat escapes from the system when the reaction 
occurs, the system contracts when the liquid is formed, so 
energy is restored to it from the surroundings.

Self-test 2B.3 Calculate the value of ΔHm − ΔUm for the reac-
tion N2(g) + 3 H2(g) → 2 NH3(g).

Answer: –5.0 kJ mol−1

Example 2B.1 Relating ΔH and ΔU

The change in molar internal energy when CaCO3(s) as cal-
cite converts to another form, aragonite, is +0.21 kJ mol−1. 
Calculate the difference between the molar enthalpy and 
internal energy changes when the pressure is 1.0 bar given that 
the densities of the polymorphs are 2.71 g cm−3 (calcite) and 
2.93 g cm−3 (aragonite).

Method The starting point for the calculation is the rela-
tion between the enthalpy of a substance and its internal 
energy (eqn 2B.1). The difference between the two quantities 
can be expressed in terms of the pressure and the difference 
of their molar volumes, and the latter can be calculated from 
their molar masses, M, and their mass densities, ρ, by using 
ρ = M/Vm.

Answer The change in enthalpy when the transition occurs is

∆ =
= + +

H H H
U pV U pV

m m m

m m m m

aragonite calcite
a c c

( ) ( )
( ) (a)} ( ) ({

−
− { ))

( ) ( )
}

{ }= ∆ +U p V Vm m ma c−

where a denotes aragonite and c calcite. It follows by substitut-
ing Vm = M/ρ that

∆ − ∆ = −





H U pMm m a c
1 1

ρ ρ( ) ( )

Substitution of the data, using M = 100.09 g mol−1, gives

∆ −∆ = × ×

× −



−

− −

H Um m

3 3gcm gcm

( . ) ( . g mol )

. .

1 0 10 100 09

1
2 93

1
2 71

5 1Pa





= − × = −2 8 10 0 285. .Pacm mol Pam3 1 3− −mol 1

Hence (because 1 Pa m3 = 1 J), ΔHm − ΔUm = –0.28 J mol−1, which 
is only 0.1 per cent of the value of ΔUm. We see that it is usually 
justifiable to ignore the difference between the molar enthalpy 
and internal energy of condensed phases, except at very high 
pressures, when pΔVm is no longer negligible.

Self-test 2B.2 Calculate the difference between ΔH and ΔU 
when 1.0 mol Sn(s, grey) of density 5.75 g cm−3 changes to Sn(s, 
white) of density 7.31 g cm−3 at 10.0 bar. At 298 K, ΔH = +2.1 kJ.

Answer: ΔH − ΔU = −4.4 J

Perfect gas, 
isothermal

relation 
between ΔH 
and ΔU

 (2B.4)
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78 2 The First Law

pressure (or isobaric heat capacity), Cp, at a given temperature 
(Fig. 2B.3). More formally:

C H
Tp

p
= ∂

∂






 
Definition  heat capacity at constant pressure  (2B.5)

The heat capacity at constant pressure is the analogue of the 
heat capacity at constant volume (Topic 1A) and is an exten-
sive property. The molar heat capacity at constant pressure, 
Cp,m, is the heat capacity per mole of substance; it is an intensive 
property.

The heat capacity at constant pressure is used to relate the 
change in enthalpy to a change in temperature. For infinitesi-
mal changes of temperature,

d d at constant pressureH C Tp= ( )  (2B.6a)

If the heat capacity is constant over the range of temperatures of 
interest, then for a measurable increase in temperature

∆ = = = −∫ ∫
∆

H C T C T Cp
T

T

p p
T

T
d d

1

2

1

2

2 1( )T T
T��� ��

 

which we can summarize as

∆ = ∆H C Tp ( )at constant pressure  (2B.6b)

Because a change in enthalpy can be equated with the energy 
supplied as heat at constant pressure, the practical form of the 
latter equation is

q C Tp p= ∆  (2B.7)

This expression shows us how to measure the heat capacity of a 
sample: a measured quantity of energy is supplied as heat under 
conditions of constant pressure (as in a sample exposed to the 
atmosphere and free to expand), and the temperature rise is 
monitored.

The variation of heat capacity with temperature can some-
times be ignored if the temperature range is small; this approxi-
mation is highly accurate for a monatomic perfect gas (for 
instance, one of the noble gases at low pressure). However, 
when it is necessary to take the variation into account, a con-
venient approximate empirical expression is

C a bT c
Tp,m = + + 2  

(2B.8)

The empirical parameters a, b, and c are independent of tem-
perature (Table 2B.1) and are found by fitting this expression to 
experimental data.

Example 2B.2 Evaluating an increase in enthalpy 
with temperature

What is the change in molar enthalpy of N2 when it is heated 
from 25 °C to 100 °C? Use the heat capacity information in 
Table 2B.1.

Method The heat capacity of N2 changes with temperature, so 
we cannot use eqn 2B.6b (which assumes that the heat capac-
ity of the substance is constant). Therefore, we must use eqn 
2B.6a, substitute eqn 2B.8 for the temperature dependence of 
the heat capacity, and integrate the resulting expression from 
25 °C (298 K) to 100 °C (373 K).

Answer For convenience, we denote the two temperatures T1 
(298 K) and T2 (373 K). The relation we require is

d m
m

m

H a bT c
TH T

H T

T

T

( )

( )

1

2

1

2

2∫ ∫= + +





 dT
 

After using Integral A.1 in the Resource section, it follows that

H T H T a T T b T Tm m( ) ( ) ( ) ( )2 1 2 1
1
2 2

2
1
2

2 1

1 1− = − + − − −





T T c
 

Table 2B.1* Temperature variation of molar heat capacities, 
Cp,m/(J K−1 mol−1) = a + bT + c/T 2

a b/(10−3 K−1) c/(105 K2)

C(s, graphite) 16.86 4.77 −8.54

CO2(g) 44.22 8.79 −8.62

H2O(l) 75.29 0 0

N2(g) 28.58 3.77 −0.50

* More values are given in the Resource section.

Temperature, T

E
n

th
al

p
y,

 H

A

B

Internal
energy, U

Figure 2B.3 The constant-pressure heat capacity at a 
particular temperature is the slope of the tangent to a curve 
of the enthalpy of a system plotted against temperature (at 
constant pressure). For gases, at a given temperature the slope 
of enthalpy versus temperature is steeper than that of internal 
energy versus temperature, and Cp,m is larger than CV,m.
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2B Enthalpy  79

(b) The relation between heat capacities
Most systems expand when heated at constant pressure. Such 
systems do work on the surroundings and therefore some of the 

energy supplied to them as heat escapes back to the surround-
ings. As a result, the temperature of the system rises less than 
when the heating occurs at constant volume. A smaller increase 
in temperature implies a larger heat capacity, so we conclude 
that in most cases the heat capacity at constant pressure of a 
system is larger than its heat capacity at constant volume. We 
show in Topic 2D that there is a simple relation between the 
two heat capacities of a perfect gas:

C C nRp V− =  

It follows that the molar heat capacity of a perfect gas is about 
8 J K−1 mol−1 larger at constant pressure than at constant vol-
ume. Because the molar constant-volume heat capacity of a 
monatomic gas is about 3

2 12R = JK 1 1− −mol , the difference is 
highly significant and must be taken into account.

Checklist of concepts

☐ 1. Energy transferred as heat at constant pressure is equal 
to the change in enthalpy of a system.

☐ 2. Enthalpy changes are measured in a constant-pressure 
calorimeter.

☐ 3. The heat capacity at constant pressure is equal to the 
slope of enthalpy with temperature.

Checklist of equations

Substitution of the numerical data results in

H Hm mK K kJmol( ) ( ) .373 298 2 20 1= + −
 

If we had assumed a constant heat capacity of 29.14 J K−1 mol−1 
(the value given by eqn 2B.8 for T = 298 K), we would have 
found that the two enthalpies differed by 2.19 kJ mol−1.

Self-test 2B.4 At very low temperatures the heat capacity of a 
solid is proportional to T3, and we can write Cp,m = aT3. What 
is the change in enthalpy of such a substance when it is heated 
from 0 to a temperature T (with T close to 0)?

Answer: ∆H aTm = 1
4

4

Perfect 
gas 

relation between 
heat capacities  (2B.9)

Property Equation Comment Equation number

Enthalpy H = U + pV Definition 2B.1

Heat transfer at constant pressure dH = dqp,
ΔH = qp

No additional work 2B.2

Relation between ΔH and ΔU ΔH = ΔU + ΔngRT Molar volumes of the participating condensed  
phases are negligible; isothermal process

2B.4

Heat capacity at constant pressure Cp = (∂H/∂T)p Definition 2B.5

Relation between heat capacities Cp – CV = nR Perfect gas 2B.9
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2C thermochemistry

The study of the energy transferred as heat during the 
course of chemical reactions is called thermochemistry. 
Thermochemistry is a branch of thermodynamics because a 
reaction vessel and its contents form a system, and chemical 
reactions result in the exchange of energy between the system 
and the surroundings. Thus we can use calorimetry to meas-
ure the energy supplied or discarded as heat by a reaction, and 
can identify q with a change in internal energy if the reaction 
occurs at constant volume or with a change in enthalpy if the 
reaction occurs at constant pressure. Conversely, if we know 
ΔU or ΔH for a reaction, we can predict the heat the reaction 
can produce.

As pointed out in Topic 2A, a process that releases energy as 
heat into the surroundings is classified as exothermic and one 
that absorbs energy as heat from the surroundings is classified 
as endothermic. Because the release of heat at constant pres-
sure signifies a decrease in the enthalpy of a system, it follows 
that an exothermic process is one for which ΔH < 0. Conversely, 
because the absorption of heat results in an increase in enthalpy, 
an endothermic process has ΔH > 0:

exothermic process endothermic process: :∆ ∆H H< >0 0  

2C.1 Standard enthalpy changes

Changes in enthalpy are normally reported for processes taking 
place under a set of standard conditions. In most of our discus-
sions we shall consider the standard enthalpy change, ΔH<, 
the change in enthalpy for a process in which the initial and 
final substances are in their standard states:

The standard state of a substance at a specified 
temperature is its pure form at 1 bar.

Contents

2c.1 Standard enthalpy changes 80
(a) Enthalpies of physical change 81

brief illustration 2c.1: a born–haber cycle 82
(b) Enthalpies of chemical change 82
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(c) Hess’s law 83
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2c.2 Standard enthalpies of formation 84
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of formation 85
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(b) Enthalpies of formation and molecular  
modelling 85
brief illustration 2c.5: molecular modelling 86

2c.3 The temperature dependence of reaction  
enthalpies 86

example 2c.2: using kirchhoff’s law 87

2c.4 Experimental techniques 87
(a) Differential scanning calorimetry 87
(b) Isothermal titration calorimetry 88

Checklist of concepts 88
Checklist of equations  89

➤➤ Why do you need to know this material?
Thermochemistry is one of the principal applications of 
thermodynamics in chemistry, for thermochemical data 
provide a way of assessing the heat output of chemical 
reactions, including those involved in the consumption 
of fuels and foods. The data are also used widely in other 
chemical applications of thermodynamics.

➤➤ What is the key idea?
Reaction enthalpies can be combined to provide data on 
other reactions of interest.

➤➤ What do you need to know already?
You need to be aware of the definition of enthalpy and 
its status as a state function (Topic 2B). The material on 
temperature dependence of reaction enthalpies makes 
use of information on heat capacity (Topic 2B).
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2C Thermochemistry  81

For example, the standard state of liquid ethanol at 298 K is 
pure liquid ethanol at 298 K and 1 bar; the standard state of 
solid iron at 500 K is pure iron at 500 K and 1 bar. The defini-
tion of standard state is more sophisticated for solutions (Topic 
5E). The standard enthalpy change for a reaction or a physical 
process is the difference between the products in their standard 
states and the reactants in their standard states, all at the same 
specified temperature.

As an example of a standard enthalpy change, the standard 
enthalpy of vaporization, ΔvapH<, is the enthalpy change per 
mole of molecules when a pure liquid at 1 bar vaporizes to a gas 
at 1 bar, as in

H O(l) H O(g) kJmolvap2 2
1373 40 66→ ∆ =+H <( ) .K −

 

As implied by the examples, standard enthalpies may be 
reported for any temperature. However, the conventional tem-
perature for reporting thermodynamic data is 298.15 K. Unless 
otherwise mentioned or indicated by attaching the temperature 
to ΔH<, all thermodynamic data in this text are for this con-
ventional temperature.

A note on good practice The attachment of the name of the 
transition to the symbol Δ, as in ΔvapH, is the current con-
vention. However, the older convention, ΔHvap, is still widely 
used. The current convention is more logical because the sub-
script identifies the type of change, not the physical observ-
able related to the change.

(a) Enthalpies of physical change
The standard enthalpy change that accompanies a change 
of  physical state is called the standard enthalpy of transi-
tion and is denoted ΔtrsH< (Table 2C.1). The standard 
enthalpy of vaporization, ΔvapH<, is one example. Another 
is the standard enthalpy of fusion, ΔfusH<, the standard 
enthalpy change accompanying the conversion of a solid to 
a liquid, as in

H O(s) H O(l) kJmolfus2 2
1273 6 01→ =+∆ −H <( ) .K  

As in this case, it is sometimes convenient to know the stand-
ard enthalpy change at the transition temperature as well as at 
the conventional temperature of 298 K. The different types of 
enthalpies encountered in thermochemistry are summarized in 
Table 2C.2. We meet them again in various locations through-
out the text.

Because enthalpy is a state function, a change in enthalpy is 
independent of the path between the two states. This feature 
is of great importance in thermochemistry, for it implies that 
the same value of ΔH< will be obtained however the change 
is brought about between the same initial and final states. For 
example, we can picture the conversion of a solid to a vapour 
either as occurring by sublimation (the direct conversion from 
solid to vapour),

H O(s) H O(g) sub2 2→ ∆ H <

 

or as occurring in two steps, first fusion (melting) and then 
vaporization of the resulting liquid:

H O(s) H O(l)
H O(l) H O(g)

Overall H O(s) H O(g

fus

vap

2 2

2 2

2 2

→ ∆
→ ∆
→

H
H

<

<

: )) fus vap∆ + ∆H H< <

 
Because the overall result of the indirect path is the same as that 
of the direct path, the overall enthalpy change is the same in 
each case (1), and we can conclude that (for processes occur-
ring at the same temperature)

∆ ∆ ∆= +sub fus vapH H H< < <

 (2C.1)

Table 2C.1* Standard enthalpies of fusion and vaporization at 
the transition temperature, ΔtrsH</(kJ mol−1)

Tf/K Fusion Tb/K Vaporization

Ar 83.81 1.188 87.29 6.506

C6H6 278.61 10.59 353.2 30.8

H2O 273.15 6.008 373.15 40.656 (44.016 
at 298 K)

He 3.5 0.021 4.22 0.084

* More values are given in the Resource section.

Table 2C.2 Enthalpies of transition

Transition Process Symbol*

Transition Phase α → phase β ΔtrsH

Fusion s → l ΔfusH

Vaporization l → g ΔvapH

Sublimation s → g ΔsubH

Mixing Pure → mixture ΔmixH

Solution Solute → solution ΔsolH

Hydration X±(g) → X±(aq) ΔhydH

Atomization Species(s, l, g) → atoms(g) ΔatH

Ionization X(g) → X+(g) + e−(g) ΔionH

Electron gain X(g) + e−(g) → X−(g) ΔegH

Reaction Reactants → products ΔrH

Combustion Compound(s, l, g) + O2(g) → CO2(g),  
H2O(l, g)

ΔcH

Formation Elements → compound ΔfH

Activation Reactants → activated complex Δ‡H

* IUPAC recommendations. In common usage, the transition subscript is often 
attached to ΔH, as in ΔHtrs.
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82 2 The First Law

An immediate conclusion is that, because all enthalpies of 
fusion are positive, the enthalpy of sublimation of a sub-
stance is greater than its enthalpy of vaporization (at a given 
temperature).

E
n

th
al

p
y,

 H

s

l

g

ΔvapH
<

ΔsubH
<

ΔfusH
<

1

Another consequence of H being a state function is that the 
standard enthalpy changes of a forward process and its reverse 
differ in sign (2):

∆ → = ∆ →H H< <( ) ( )A B B A−  (2C.2)

For instance, because the enthalpy of vaporization of water is 
+44 kJ mol−1 at 298 K, its enthalpy of condensation at that tem-
perature is −44 kJ mol−1.

E
n

th
al

p
y,

 H

ΔH
<

(A
→

B
)

ΔH
<

(B
→

A
)

2

A

B

The vaporization of a solid often involves a large increase 
in energy, especially when the solid is ionic and the strong 
Coulombic interaction of the ions must be overcome in a pro-
cess such as

MX(s) M Xg g→ ++ ( ) ( )−
 

The lattice enthalpy, ΔHL, is the change in standard molar 
enthalpy for this process. The lattice enthalpy is equal to the 
lattice internal energy at T = 0; at normal temperatures they 
differ by only a few kilojoules per mole, and the difference is 
normally neglected.

Experimental values of the lattice enthalpy are obtained by 
using a Born–Haber cycle, a closed path of transformations 
starting and ending at the same point, one step of which is the 
formation of the solid compound from a gas of widely sepa-
rated ions.

Lattice enthalpies obtained in the same way as in Brief illustra-
tion 2C.1 are listed in Table 2C.3. They are large when the ions 
are highly charged and small, for then they are close together 
and attract each other strongly. We examine the quantitative 
relation between lattice enthalpy and structure in Topic 18B.

(b) Enthalpies of chemical change
Now we consider enthalpy changes that accompany chemi-
cal reactions. There are two ways of reporting the change in 
enthalpy that accompanies a chemical reaction. One is to write 

Brief illustration 2C.1 A Born–Haber cycle

A typical Born–Haber cycle, for potassium chloride, is shown 
in Fig. 2C.1.

It consists of the following steps (for convenience, starting at 
the elements):

Because the sum of these enthalpy changes is equal to zero, we 
can infer from

89 122 418 349 437 01+ + − + =−− ∆HL kJmol/( )

that ΔHL = +717 kJ mol−1.

Self-test 2C.1 Assemble a similar cycle for the lattice enthalpy 
of magnesium chloride.

Answer: 2523 kJ mol−1

KCl(s)

K(s) + ½ Cl2(g)

K(g) + ½ Cl2(g)

K(g) + Cl(g)

K+(g) + e–(g) + Cl(g)

K+(g) + Cl–(g)

+437

+418 –349

–ΔHL

+89

+122

E
n

th
al

p
y

Figure 2C.1 The Born–Haber cycle for KCl at 298 K. Enthalpy 
changes are in kilojoules per mole.

ΔH</(kJ mol−1)

1. Sublimation of K(s) +89 [dissociation enthalpy 
of K(s)]

2. Dissociation of 
1
2 Cl g2( )

+122 [ 1
2  × dissociation 

enthalpy of Cl2(g)]

3. Ionization of K(g) +418 [ionization enthalpy 
of K(g)]

4. Electron attachment 
to Cl(g)

–349 [electron gain 
enthalpy of Cl(g)]

5. Formation of solid 
from gas

–ΔHL/(kJ mol−1)

6. Decomposition of 
compound

+437 [negative of enthalpy 
of formation of 
KCl(s)]
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2C Thermochemistry  83

the thermochemical equation, a combination of a chemical 
equation and the corresponding change in standard enthalpy:

CH O CO H O(g) kJg g g4 2 2 22 2 890( ) ( ) ( )+ + ∆ =→ H < −  

ΔH< is the change in enthalpy when reactants in their standard 
states change to products in their standard states:

Pure, separate reactants in their standard states
pure, se→ pparate products in their standard states  

Except in the case of ionic reactions in solution, the enthalpy 
changes accompanying mixing and separation are insignifi-
cant in comparison with the contribution from the reaction 
itself. For the combustion of methane, the standard value 
refers to the reaction in which 1 mol CH4 in the form of pure 
methane gas at 1 bar reacts completely with 2 mol O2 in the 
form of pure oxygen gas to produce 1 mol CO2 as pure carbon 
dioxide at 1 bar and 2 mol H2O as pure liquid water at 1 bar; 
the numerical value is for the reaction at 298.15 K.

Alternatively, we write the chemical equation and then report 
the standard reaction enthalpy, ΔrH< (or ‘standard enthalpy of 
reaction’). Thus, for the combustion of methane, we write

CH O CO H O(g)
kJmol

g g g

r
1

4 2 2 22 2
890

( ) ( ) ( )+ +
∆ =

→
H < − −

 

For a reaction of the form 2 A + B → 3 C + D the standard reac-
tion enthalpy would be

∆ = + +r m m m mC D A BH H H H H< < < < <{ } { }( ) ( ) ( ) ( )3 2−  

where Hm J<( )  is the standard molar enthalpy of species J at the 
temperature of interest. Note how the ‘per mole’ of ΔrH< comes 
directly from the fact that molar enthalpies appear in this 
expression. We interpret the ‘per mole’ by noting the stoichio-
metric coefficients in the chemical equation. In this case, ‘per 
mole’ in ΔrH< means ‘per 2 mol A’, ‘per mole B’, ‘per 3 mol C’, or 
‘per mol D’. In general,

∆ = −∑ ∑r m
Products

m
Reactants

H H H< < < 

 
where in each case the molar enthalpies of the species are mul-
tiplied by their (dimensionless and positive) stoichiometric 
coefficients, ν. This formal definition is of little practical value 

because the absolute values of the standard molar enthalpies are 
unknown: we see in Section 2C.2a how that problem is overcome.

Some standard reaction enthalpies have special names and 
a particular significance. For instance, the standard enthalpy 
of combustion, ΔcH<, is the standard reaction enthalpy for the 
complete oxidation of an organic compound to CO2 gas and 
liquid H2O if the compound contains C, H, and O, and to N2 
gas if N is also present.

(c) Hess’s law
Standard enthalpies of individual reactions can be combined to 
obtain the enthalpy of another reaction. This application of the 
First Law is called Hess’s law:

The standard enthalpy of an overall reaction is the 
sum of the standard enthalpies of the individual 
reactions into which a reaction may be divided.

The individual steps need not be realizable in practice: they 
may be hypothetical reactions, the only requirement being 
that their chemical equations should balance. The thermody-
namic basis of the law is the path-independence of the value 
of ΔrH< and the implication that we may take the specified 
reactants, pass through any (possibly hypothetical) set of 
reactions to the specified products, and overall obtain the 
same change of enthalpy. The importance of Hess’s law is that 

standard 
reaction 
enthalpy 

Definition  (2C.3)

h
es

s’s
 la

w

Table 2C.3* Lattice enthalpies at 298 K, ΔHL/(kJ mol−1)

NaF 787

NaBr 751

MgO 3850

MgS 3406

* More values are given in the Resource section.

Brief illustration 2C.2 Enthalpy of combustion

The combustion of glucose is

C H O O CO H O(l)
kJmol

s g g

c

6 12 6 2 2 2
1

6 6 6
2808

( ) ( ) ( )+ +
∆ =

→   
H < − −

 

The value quoted shows that 2808 kJ of heat is released when 
1 mol C6H12O6 burns under standard conditions (at 298 K). 
More values are given in Table 2C.4.

Self-test 2C.2 Predict the heat output of the combustion of 
1.0 dm3 of octane at 298 K. Its mass density is 0.703 g cm−3.

Answer: 34 MJ

Table 2C.4* Standard enthalpies of formation (ΔfH<) and 
combustion (ΔcH<) of organic compounds at 298 K

ΔfH</(kJ mol−1) ΔcH</(kJ mol−1)

Benzene, C6H6(l) +49.0 −3268

Ethane, C2H6(g) −84.7 −1560

Glucose, C6H12O6(s) −1274 −2808

Methane, CH4(g) −74.8 −890

Methanol, CH3OH(l) −238.7 −721

* More values are given in the Resource section.
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84 2 The First Law

information about a reaction of interest, which may be dif-
ficult to determine directly, can be assembled from informa-
tion on other reactions.

2C.2 Standard enthalpies of 
formation

The standard enthalpy of formation, ΔfH<, of a substance is 
the standard reaction enthalpy for the formation of the com-
pound from its elements in their reference states:

The reference state of an element is its most 
stable state at the specified temperature and  
1 bar.

For example, at 298 K the reference state of nitrogen is a gas of 
N2 molecules, that of mercury is liquid mercury, that of carbon 
is graphite, and that of tin is the white (metallic) form. There is 
one exception to this general prescription of reference states: 
the reference state of phosphorus is taken to be white phospho-
rus despite this allotrope not being the most stable form but 
simply the more reproducible form of the element. Standard 
enthalpies of formation are expressed as enthalpies per mole of 
molecules or (for ionic substances) formula units of the com-
pound. The standard enthalpy of formation of liquid benzene at 
298 K, for example, refers to the reaction

6 3 2 6 6  C s graphite H C Hg l( , ) ( ) ( )+ →  

and is +49.0 kJ mol−1. The standard enthalpies of formation 
of elements in their reference states are zero at all tempera-
tures because they are the enthalpies of such ‘null’ reactions 
as N2(g) → N2(g). Some enthalpies of formation are listed in 
Tables 2C.5 and 2C.6.

The standard enthalpy of formation of ions in solution poses 
a special problem because it is impossible to prepare a solution 
of cations alone or of anions alone. This problem is solved by 
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Example 2C.1 Using Hess’s law

The standard reaction enthalpy for the hydrogenation of 
propene,

CH CHCH H CH CH CHg g g2 3 2 3 2 3a ( ) ( ) ( )+ →

is −124 kJ mol−1. The standard reaction enthalpy for the com-
bustion of propane,

CH CH CH O CO H O(l)g3 2 3 2 2 25 3 4( ) (g) (g)+ +→   

is −2220 kJ mol−1. The standard reaction enthalpy for the for-
mation of water,

H O H O(l)g g2
1
2 2 2( ) ( )+ →

is –286 kJ mol−1. Calculate the standard enthalpy of combus-
tion of propene.

Method The skill to develop is the ability to assemble a given 
thermochemical equation from others. Add or subtract the 
reactions given, together with any others needed, so as to 
reproduce the reaction required. Then add or subtract the 
reaction enthalpies in the same way.

Answer The combustion reaction we require is

C H  O CO H O(l)g g g3 6
9
2 2 2 23 3( ) ( ) ( )+ +→   

This reaction can be recreated from the following sum:

Self-test 2C.3 Calculate the enthalpy of hydrogenation of 
benzene from its enthalpy of combustion and the enthalpy of 
combustion of cyclohexane.

Answer: −206 kJ mol−1

ΔrH</(kJ mol−1)

C3H6(g) + H2(g) → C3H8(g) −124

C3H8(g) + 5 O2(g) → 3 CO2(g) + 4 H2O(l) −2220

H O(l) H Og g2 2
1
2 2→ +( ) ( ) +286

C H O CO H O(l)g g g3 6
9
2 2 2 23 3( ) ( ) ( )+ → +   −2058

Table 2C.5* Standard enthalpies of formation of inorganic 
compounds at 298 K, ΔfH</(kJ mol−1)

ΔfH</(kJ mol−1)

H2O(l) −285.83

H2O(g) −241.82

NH3(g) −46.11

N2H4(l) +50.63

NO2(g) +33.18

N2O4(g) +9.16

NaCl(s) −411.15

KCl(s) −436.75

* More values are given in the Resource section.

Table 2C.6* Standard enthalpies of formation of organic 
compounds at 298 K, ΔfH</(kJ mol−1)

ΔfH</(kJ mol−1)

CH4(g) –74.81

C6H6(l) +49.0

C6H12(l) –156

CH3OH(l) –238.66

CH3CH2OH(l) –277.69

* More values are given in the Resource section.
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2C Thermochemistry  85

defining one ion, conventionally the hydrogen ion, to have zero 
standard enthalpy of formation at all temperatures:

∆ =+
f H aqH < ( , ) 0  

(a) The reaction enthalpy in terms of 
enthalpies of formation

Conceptually, we can regard a reaction as proceeding by decom-
posing the reactants into their elements and then forming those 
elements into the products. The value of ΔrH< for the overall 
reaction is the sum of these ‘unforming’ and forming enthalpies. 
Because ‘unforming’ is the reverse of forming, the enthalpy of an 
unforming step is the negative of the enthalpy of formation (3).

E
n

th
al

p
y,

 H

ΔrH
<

3 Reactants

Elements

Products

Hence, in the enthalpies of formation of substances, we have 
enough information to calculate the enthalpy of any reaction 
by using

∆ = ∆

− ∆

∑
∑

r
Products

f

Reactants
f

H < <

<





H

H
 

where in each case the enthalpies of formation of the species 
that occur are multiplied by their stoichiometric coefficients. 
This procedure is the practical implementation of the formal 
definition in eqn 2C.3. A more sophisticated way of expressing 

the same result is to introduce the stoichiometric numbers νJ 
(as distinct from the stoichiometric coefficients), which are 
positive for products and negative for reactants. Then we can 
write

∆ = ∆∑r J
J

f JH < < H ( )
 

(2C.5b)

Stoichiometric numbers, which have a sign, are denoted νJ or 
ν(J). Stoichiometric coefficients, which are all positive, are 
denoted simply ν (with no subscript).

(b) Enthalpies of formation and molecular 
modelling
We have seen how to construct standard reaction enthalpies by 
combining standard enthalpies of formation. The question that 
now arises is whether we can construct standard enthalpies of 
formation from a knowledge of the chemical constitution of the 
species. The short answer is that there is no thermodynamically 
exact way of expressing enthalpies of formation in terms of con-
tributions from individual atoms and bonds. In the past, approx-
imate procedures based on mean bond enthalpies, ΔH(AeB), 
the average enthalpy change associated with the breaking of a 
specific AeB bond,

A B g A(g) B(g) (A B)e e( )→ + ∆H  

have been used. However, this procedure is notoriously unre-
liable, in part because the ΔH(AeB) are average values for a 

Ions in 
solution Convention  (2C.4)

 (2C.5a)Practical 
implementation

standard 
reaction 
enthalpy 

Brief illustration 2C.3 Enthalpies of formation of ions 
in solution

If the enthalpy of formation of HBr(aq) is found to be −122 kJ 
mol−1, then the whole of that value is ascribed to the forma-
tion of Br−(aq), and we write ΔfH< (Br−,aq) = −122 kJ mol−1. 
That value may then be combined with, for instance, the 
enthalpy of formation of AgBr(aq) to determine the value of 
ΔfH< (Ag+,aq), and so on. In essence, this definition adjusts 
the actual values of the enthalpies of formation of ions by a 
fixed amount, which is chosen so that the standard value for 
one of them, H+(aq), has the value zero.

Self-test 2C.4 Determine the value of ΔfH< (Ag+,aq); the 
standard enthalpy of formation of AgBr(aq) is –17 kJ mol−1.

Answer: +105 kJ mol−1

Brief illustration 2C.4 Enthalpies of formation

According to eqn 2C.5a, the standard enthalpy of the reaction 
2 HN3(l) + 2 NO(g) → H2O2(l) + 4 N2(g) is calculated as follows:

∆ ∆ ∆
∆ ∆

= +
+

r f f

f f

H O l N g
HN l NO g

H H H
H H

< < <

< <

{ ( ) ( )}
{ ( ) ( )}

, ,
, ,

2 2 2

3

4
2 2−

== +
+

=

{ . ( )} { ( . )
( . )}

.

− −

−

−

−

187 78 4 0 2 264 0
2 90 25
896 3

1

1

kJmol
kJmol

kJJmol−1
 

To use eqn 2C.5b, we identify ν(HN3) = –2, ν(NO) = –2, 
ν(H2O2) = +1, and ν(N2) = +4, and then write

∆ ∆ ∆ ∆
∆

= +r f f f

f

H O l N g HN l
NO g

H H< < < <

<

( , ) ( , ) ( , )
( , )}
2 2 2 34 2

2
H H

H
−

−  
which gives the same result.

Self-test 2C.5 Evaluate the standard enthalpy of the reaction 
C(graphite) + H2O(g) → CO(g) + H2(g).

Answer: +131.29 kJ mol−1

iranchembook.ir/edu



86 2 The First Law

series of related compounds. Nor does the approach distinguish 
between geometrical isomers, where the same atoms and bonds 
may be present but experimentally the enthalpies of formation 
might be significantly different.

Computer-aided molecular modelling has largely displaced 
this more primitive approach. Commercial software pack-
ages use the principles developed in Topic 10E to calculate the 
standard enthalpy of formation of a molecule drawn on the 
computer screen. These techniques can be applied to different 
conformations of the same molecule. In the case of methylcy-
clohexane, for instance, the calculated conformational energy 
difference ranges from 5.9 to 7.9 kJ mol−1, with the equatorial 
conformer having the lower standard enthalpy of formation. 
These estimates compare favourably with the experimental 
value of 7.5 kJ mol−1. However, good agreement between calcu-
lated and experimental values is relatively rare. Computational 
methods almost always predict correctly which conformer is 
more stable but do not always predict the correct magnitude of 
the conformational energy difference. The most reliable tech-
nique for the determination of enthalpies of formation remains 
calorimetry, typically by using enthalpies of combustion.

2C.3 The temperature dependence of 
reaction enthalpies

The standard enthalpies of many important reactions have 
been measured at different temperatures. However, in the 
absence of this information, standard reaction enthalpies at 
different temperatures may be calculated from heat capaci-
ties and the reaction enthalpy at some other temperature (Fig. 
2C.2). In many cases heat capacity data are more accurate than 
reaction enthalpies. Therefore, providing the information is 
available, the procedure we are about to describe is more accu-
rate than the direct measurement of a reaction enthalpy at an 
elevated temperature.

It follows from eqn 2B.6a (dH = CpdT) that, when a substance 
is heated from T1 to T2, its enthalpy changes from H(T1) to

H C Tp
T

T
( ) ( )T H T2 2

1

2

= +∫ d
 

(2C.6)

(We have assumed that no phase transition takes place in the 
temperature range of interest.) Because this equation applies to 
each substance in the reaction, the standard reaction enthalpy 
changes from ΔrH<(T1) to

∆ = ∆ + ∆∫r r r dH T H T C Tp
T

T
< < <( ) ( )2 2

1

2

 

where ∆rCp
< is the difference of the molar heat capacities of 

products and reactants under standard conditions weighted 
by the stoichiometric coefficients that appear in the chemical 
equation:

∆ = −∑ ∑r m m
Products

m
Reactants

C C Cp p p, , ,
< < < 

 
(2C.7b)

or, in the notation of eqn 2C.5b,

∆ =∑r m m
J

JC Cp p, , ( )< <J

 
(2C.7c)

Equation 2C.7a is known as Kirchhoff ’s law. It is normally 
a good approximation to assume that ∆rCp

<  is independent 
of the temperature, at least over reasonably limited ranges. 
Although the individual heat capacities may vary, their dif-
ference varies less significantly. In some cases the temperature 
dependence of heat capacities is taken into account by using 
eqn 2B.8.

Brief illustration 2C.5 Molecular modelling

Each software package has its own procedures; the general 
approach, though, is the same in most cases: the structure 
of the molecule is specified and the nature of the calcula-
tion selected. When the procedure is applied to the axial and 
equatorial isomers of methylcyclohexane, a typical value for 
the standard enthalpy of formation of equatorial isomer in 
the gas phase is –183 kJ mol−1 (using the AM1 semi-empirical 
procedure) whereas that for the axial isomer is –177 kJ mol−1, 
a difference of 6 kJ mol−1. The experimental difference is 7.5 kJ 
mol−1.

Self-test 2C.6 If you have access to modelling software, repeat 
this calculation for the two isomers of cyclohexanol.

Answer: Using AM1: eq: –345 kJ mol−1; ax: –349 kJ mol−1

Reactants

Products

ΔrH
<(T1)

ΔrH
<(T2)

Temperature, T

E
n

th
al

p
y,

 H

T1 T2

Figure 2C.2 When the temperature is increased, the enthalpy 
of the products and the reactants both increase, but may do 
so to different extents. In each case, the change in enthalpy 
depends on the heat capacities of the substances. The change 
in reaction enthalpy reflects the difference in the changes of 
the enthalpies.

kirchhoff’s law (2C.7a)
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2C.4 Experimental techniques

The classic tool of thermochemistry is the calorimeter, as sum-
marized in Topic 2B. However, technological advances have 
been made that allow measurements to be made on samples 
with mass as little as a few milligrams. We describe two of them 
here.

(a) Differential scanning calorimetry
A differential scanning calorimeter (DSC) measures the 
energy transferred as heat to or from a sample at constant 
pressure during a physical or chemical change. The term ‘dif-
ferential’ refers to the fact that the behaviour of the sample is 
compared to that of a reference material that does not undergo 
a physical or chemical change during the analysis. The term 
‘scanning’ refers to the fact that the temperatures of the sam-
ple and reference material are increased, or scanned, during the 
analysis.

A DSC consists of two small compartments that are heated 
electrically at a constant rate. The temperature, T, at time t dur-
ing a linear scan is T = T0 + αt, where T0 is the initial temperature 

and α is the scan rate. A computer controls the electrical power 
supply that maintains the same temperature in the sample and 
reference compartments throughout the analysis (Fig. 2C.3).

If no physical or chemical change occurs in the sample at 
temperature T, we write the heat transferred to the sample as 
qp = CpΔT, where ΔT = T − T0 and we have assumed that Cp is 
independent of temperature. Because T = T0 + αt, ΔT = αt. The 
chemical or physical process requires the transfer of qp   + qp,ex, 
where qp,ex is the excess energy transferred as heat needed to 
attain the same change in temperature of the sample as the con-
trol. The quantity qp,ex is interpreted in terms of an apparent 
change in the heat capacity at constant pressure of the sample, 
Cp, during the temperature scan:

C
q
T

q
t

P
p

p p
,

, ,
ex

ex ex ex= ∆ = =α α  
(2C.8)

where Pex = qp,ex/t is the excess electrical power necessary to 
equalize the temperature of the sample and reference compart-
ments. A DSC trace, also called a thermogram, consists of a 
plot of Cp,ex against T (Fig. 2C.4). The enthalpy change associ-
ated with the process is

∆ =∫H C Tp
T

T

,exd
1

2

 
(2C.9)

where T1 and T2 are, respectively, the temperatures at which the 
process begins and ends. This relation shows that the enthalpy 
change is equal to the area under the plot of Cp,ex against T.

The technique is used, for instance, to assess the stability 
of proteins, nucleic acids, and membranes. The thermogram 
shown in Fig. 2C.4 indicates that the protein ubiquitin under-
goes an endothermic conformational change in which a large 
number of non-covalent interactions (such as hydrogen bonds) 
are broken simultaneously and result in denaturation, the loss 
of the protein’s three-dimensional structure. The area under 
the curve represents the heat absorbed in this process and 

Example 2C.2 Using Kirchhoff’s law

The standard enthalpy of formation of H2O(g) at 298 K is 
−241.82 kJ mol−1. Estimate its value at 100 °C given the fol-
lowing values of the molar heat capacities at constant pres-
sure: H2O(g): 33.58 J K−1 mol−1; H2(g): 28.84 J K−1 mol−1; O2(g): 
29.37 J −1 mol−1. Assume that the heat capacities are independ-
ent of temperature.

Method When ∆rCp
< is independent of temperature in 

the range T1 to T2, the integral in eqn 2C.7a evaluates to 
( )T T C2 1− ∆r p

<. Therefore,

∆ ∆ ∆= + −r r rH H T T< < <( ) ( ) ( )T T Cp2 1 2 1

To proceed, write the chemical equation, identify the stoichio-
metric coefficients, and calculate ∆rCp

< from the data.

Answer The reaction is H g O g H O g2
1
2 2 2( ) ( ) ( )+ → , so

∆ = − +{ }
= −

r m m mH O g H g O g
JK mo

C C C Cp p p p
< < < <

, , ,( , ) ( , ) ( , )
.

2 2
1
2 2

19 94 − ll−1

It then follows that

∆ = +
× =

r K kJmol K
JK mol kJm

H <( ) . ( )
( . ) .

373 241 82 75
9 94 242 6

1

1 1

−
− −

−

− − ool−1

Self-test 2C.7 Estimate the standard enthalpy of formation of 
cyclohexane, C6H12(l), at 400 K from the data in Table 2C.6.

Answer: −163 kJ mol−1

Sample Reference

Heaters

Thermocouples

Figure 2C.3 A differential scanning calorimeter. The sample 
and a reference material are heated in separate but identical 
metal heat sinks. The output is the difference in power needed 
to maintain the heat sinks at equal temperatures as the 
temperature rises.
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88 2 The First Law

can be identified with the enthalpy change. The thermogram 
also reveals the formation of new intermolecular interactions 
in the denatured form. The increase in heat capacity accom-
panying the native → denatured transition reflects the change 
from a more compact native conformation to one in which the 
more exposed amino acid side chains in the denatured form 
have more extensive interactions with the surrounding water 
molecules.

(b) Isothermal titration calorimetry
Isothermal titration calorimetry (ITC) is also a ‘differential’ 
technique in which the thermal behaviour of a sample is com-
pared with that of a reference. The apparatus is shown in Fig. 
2C.5. One of the thermally conducting vessels, which have 
a volume of a few millilitres (10−6 m3), contains the reference 
(water for instance) and a heater rated at a few milliwatts. The 
second vessel contains one of the reagents, such as a solution of 
a macromolecule with binding sites; it also contains a heater. At 
the start of the experiment, both heaters are activated, and then 
precisely determined amounts (of volume of about a microlitre, 
10−9 m3) of the second reagent are added to the reaction cell. 
The power required to maintain the same temperature differen-
tial with the reference cell is monitored. If the reaction is exo-
thermic, less power is needed; if it is endothermic, then more 
power must be supplied.

A typical result is shown in Fig. 2C.6, which shows the 
power needed to maintain the temperature differential: from 
the power and the length of time, δt, for which it is supplied, 
the heat supplied, δqi, for the injection i can be calculated 
from δqi = Piδt. If the volume of solution is V and the molar 
concentration of unreacted reagent A is ci at the time of the 
ith injection, then the change in its concentration at that 
injection is δci and the heat generated (or absorbed) by the 
reaction is VΔrHδci = δqi. The sum of all such quantities, given 
that the sum of δci is the known initial concentration of the 
reactant, can then be interpreted as the value of ΔrH for the 
reaction.

Checklist of concepts

☐ 1. The standard enthalpy of transition is equal to the energy 
transferred as heat at constant pressure in the transition.

☐ 2. A thermochemical equation is a chemical equation 
and its associated change in enthalpy.

☐ 3. Hess’s law states that the standard enthalpy of an over-
all reaction is the sum of the standard enthalpies of 
the individual reactions into which a reaction may be 
divided.
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Figure 2C.4 A thermogram for the protein ubiquitin at 
pH = 2.45. The protein retains its native structure up to about 
45 °C and then undergoes an endothermic conformational 
change. (Adapted from B. Chowdhry and S. LeHarne, J. Chem. 
Educ. 74, 236 (1997).)

Reference
cell

Sample
cell

Temperature comparison

Heater Heater

Injector

Figure 2C.5 A schematic diagram of the apparatus used for 
isothermal titration calorimetry.
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Figure 2C.6 (a) The record of the power applied as each 
injection is made, and (b) the sum of successive enthalpy 
changes in the course of the titration.
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☐ 4. Standard enthalpies of formation are defined in terms 
of the reference states of elements.

☐ 5. The standard reaction enthalpy is expressed as the dif-
ference of the standard enthalpies of formation of prod-
ucts and reactants.

☐ 6. Computer modelling is used to estimate standard 
enthalpies of formation.

☐ 7. The temperature dependence of a reaction enthalpy is 
expressed by Kirchhoff’s law.

Checklist of equations 

Property Equation Comment Equation number

The standard reaction enthalpy
∆ = ∆ − ∆

∆ = ∆

∑ ∑
∑

r f
Products

f
Reactants

r J f
J

J

H H H

H H

< < <

< <

 

 ( )

ν: stoichiometric coefficients;
νJ: (signed) stoichiometric numbers

2C.5

Kirchhoff’s law ∆ = ∆ + ∆∫r r r dH T H T C Tp
T

T
< < <( ) ( )2 2

1

2

2C.7a

∆ =∑r m J m
J

JC Cp p,
< < , ( ) 2C.7c

∆ = ∆ + − ∆r r rH T H T p
< < <( ) ( ) ( )2 1 2 1T T C If ∆rCp

< independent of temperature
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2D state functions and exact differentials

A state function is a property that depends only on the current 
state of a system and is independent of its history. The inter-
nal energy and enthalpy are two examples of state functions. 
Physical quantities that do depend on the path between two 
states are called path functions. Examples of path functions are 
the work and the heating that are done when preparing a state. 
We do not speak of a system in a particular state as possessing 
work or heat. In each case, the energy transferred as work or 
heat relates to the path being taken between states, not the cur-
rent state itself.

A part of the richness of thermodynamics is that it uses the 
mathematical properties of state functions to draw far-reach-
ing conclusions about the relations between physical proper-
ties and thereby establish connections that may be completely 
unexpected. The practical importance of this ability is that we 
can combine measurements of different properties to obtain 
the value of a property we require.

2D.1 Exact and inexact differentials

Consider a system undergoing the changes depicted in Fig. 2D.1. 
The initial state of the system is i and in this state the internal 
energy is Ui. Work is done by the system as it expands adiabati-
cally to a state f. In this state the system has an internal energy 
Uf and the work done on the system as it changes along Path 1 
from i to f is w. Notice our use of language: U is a property of 
the state; w is a property of the path. Now consider another pro-
cess, Path 2, in which the initial and final states are the same as 
those in Path 1 but in which the expansion is not adiabatic. The 
internal energy of both the initial and the final states are the same 
as before (because U is a state function). However, in the second 
path an energy q′ enters the system as heat and the work w′ is not 
the same as w. The work and the heat are path functions.

If a system is taken along a path (for example, by heating 
it), U changes from Ui to Uf, and the overall change is the sum 
(integral) of all the infinitesimal changes along the path:

∆U U=∫ d
i

f

 
(2D.1)

The value of ΔU depends on the initial and final states of the 
system but is independent of the path between them. This path-
independence of the integral is expressed by saying that dU 
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➤➤ Why do you need to know this material?
Thermodynamics gives us the power to derive relations 
between a variety of properties: this Topic is a first 
introduction to the manipulation of equations involving 
state functions. In the process, we obtain such important 
relations as that between heat capacities. An important 
technological consequence is the Joule–Thomson effect 
for cooling gases, which is derived here.

➤➤ What is the key idea?
The fact that internal energy and enthalpy are state 
functions leads to relations between thermodynamic 
properties.

➤➤ What do you need to know already?
You need to be aware that internal energy and enthalpy 
are state functions (Topics 2B and 2C) and be familiar with 
heat capacity. You need to be able to make use of several 
simple relations involving partial derivatives (Mathematical 
background 2).
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is an ‘exact differential’. In general, an exact differential is an 
infinitesimal quantity that, when integrated, gives a result that 
is independent of the path between the initial and final states.

When a system is heated, the total energy transferred as heat is 
the sum of all individual contributions at each point of the path:

q q=∫ d
i path,

f

 
(2D.2)

Notice the differences between this equation and eqn 2D.1. 
First, we do not write Δq, because q is not a state function 
and the energy supplied as heat cannot be expressed as qf − qi. 
Secondly, we must specify the path of integration because q 
depends on the path selected (for example, an adiabatic path 
has q = 0, whereas a non-adiabatic path between the same two 
states would have q ≠ 0). This path-dependence is expressed by 
saying that dq is an ‘inexact differential’. In general, an inexact 
differential is an infinitesimal quantity that, when integrated, 
gives a result that depends on the path between the initial and 
final states. Often dq is written đq to emphasize that it is inexact 
and requires the specification of a path.

The work done on a system to change it from one state to 
another depends on the path taken between the two specified 
states; for example, in general the work is different if the change 
takes place adiabatically and non-adiabatically. It follows that 
dw is an inexact differential. It is often written đw.

2D.2 Changes in internal energy

We begin to unfold the consequences of dU being an exact dif-
ferential by exploring a closed system of constant composition 
(the only type of system considered in the rest of this Topic). 
The internal energy U can be regarded as a function of V, T, 
and p, but, because there is an equation of state (Topic 1A), stat-
ing the values of two of the variables fixes the value of the third. 
Therefore, it is possible to write U in terms of just two inde-
pendent variables: V and T, p and T, or p and V. Expressing U 
as a function of volume and temperature fits the purpose of our 
discussion.

(a) General considerations
Because the internal energy is a function of the volume and the 
temperature, when these two quantities change, the internal 
energy changes by

d d dU U
V V U

T T
T V

= ∂
∂







+ ∂
∂





  

The interpretation of this equation is that, in a closed system of 
constant composition, any infinitesimal change in the internal 

Example 2D.1 Calculating work, heat, and change in 
internal energy

Consider a perfect gas inside a cylinder fitted with a piston. Let 
the initial state be T,Vi and the final state be T,Vf. The change 
of state can be brought about in many ways, of which the two 

simplest are the following: Path 1, in which there is free expan-
sion against zero external pressure; Path 2, in which there is 
reversible, isothermal expansion. Calculate w, q, and ΔU for 
each process.

Method To find a starting point for a calculation in thermo-
dynamics, it is often a good idea to go back to first principles 
and to look for a way of expressing the quantity we are asked to 
calculate in terms of other quantities that are easier to calcu-
late. It is argued in Topic 2B that the internal energy of a per-
fect gas depends only on the temperature and is independent 
of the volume those molecules occupy, so for any isothermal 
change, ΔU = 0. We also know that in general ΔU = q + w. The 
question depends on being able to combine the two expres-
sions. Topic 2A presents a number of expressions for the work 
done in a variety of processes, and here we need to select the 
appropriate ones.

Answer Because ΔU = 0 for both paths and ΔU = q + w, in each 
case q = −w. The work of free expansion is zero (eqn 2A.7 of 
Topic 2A, w = 0); so in Path 1, w = 0 and therefore q = 0 too. For 
Path 2, the work is given by eqn 2A.9 of Topic 2A (w = −nRT 
ln(Vf/Vi)) and consequently q = nRT ln(Vf/Vi).

Self-test 2D.1 Calculate the values of q, w, and ΔU for an irre-
versible isothermal expansion of a perfect gas against a con-
stant nonzero external pressure.

Answer: q = pexΔV, w = −pex ΔV, ΔU = 0

general expression 
for a change in U 
with T and V

 (2D.3)

Temperature, T

Volume, V

Path 1
(w ≠ 0, q = 0)

Path 2
(w ≠ 0, q ≠ 0)
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Figure 2D.1 As the volume and temperature of a system are 
changed, the internal energy changes. An adiabatic and a non-
adiabatic path are shown as Path 1 and Path 2, respectively: 
they correspond to different values of q and w but to the same 
value of ΔU.
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92 2 The First Law

energy is proportional to the infinitesimal changes of volume 
and temperature, the coefficients of proportionality being the 
two partial derivatives (Fig. 2D.2).

In many cases partial derivatives have a straightforward 
physical interpretation, and thermodynamics gets shapeless 
and difficult only when that interpretation is not kept in sight. 
In the present case, we have already met (∂U/∂T)V in Topic 2A, 
where we saw that it is the constant-volume heat capacity, CV. 
The other coefficient, (∂U/∂V)T , plays a major role in thermo-
dynamics because it is a measure of the variation of the internal 
energy of a substance as its volume is changed at constant tem-
perature (Fig. 2D.3). We shall denote it πT and, because it has 
the same dimensions as pressure but arises from the interac-
tions between the molecules within the sample, call it the inter-
nal pressure:

πT
T

U
V= ∂

∂




  

Definition  Internal pressure  (2D.4)

In terms of the notation CV and πT , eqn 2D.3 can now be written

d d dU V C TT V= +π  (2D.5)

When there are no interactions between the molecules, the 
internal energy is independent of their separation and hence 
independent of the volume of the sample. Therefore, for a per-
fect gas we can write πT = 0. If the gas is described by the van der 
Waals equation with a, the parameter corresponding to attrac-
tive interactions, dominant, then an increase in volume increases 
the average separation of the molecules and therefore raises the 
internal energy. In this case, we expect πT > 0 (Fig. 2D.4).

The statement πT = 0 (that is, the internal energy is independ-
ent of the volume occupied by the sample) can be taken to be 
the definition of a perfect gas, for in Topic 3D we see that it 
implies the equation of state pV ∝ T.

James Joule thought that he could measure πT by observing 
the change in temperature of a gas when it is allowed to expand 
into a vacuum. He used two metal vessels immersed in a water 
bath (Fig. 2D.5). One was filled with air at about 22 atm and 
the other was evacuated. He then tried to measure the change 
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Figure 2D.2  An overall change in U, which is denoted dU, 
arises when both V and T are allowed to change. If second-
order infinitesimals are ignored, the overall change is the sum 
of changes for each variable separately.
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Figure 2D.3  The internal pressure, πT, is the slope of U with 
respect to V with the temperature T held constant.
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Repulsions
dominant, πT < 0

Attractions
dominant, πT > 0

Perfect gas

Figure 2D.4 For a perfect gas, the internal energy is 
independent of the volume (at constant temperature). If 
attractions are dominant in a real gas, the internal energy 
increases with volume because the molecules become farther 
apart on average. If repulsions are dominant, the internal 
energy decreases as the gas expands.

High pressure
gas

Vacuum

Figure 2D.5  A schematic diagram of the apparatus used by 
Joule in an attempt to measure the change in internal energy 
when a gas expands isothermally. The heat absorbed by the 
gas is proportional to the change in temperature of the bath.
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in temperature of the water of the bath when a stopcock was 
opened and the air expanded into a vacuum. He observed no 
change in temperature.

The thermodynamic implications of the experiment are as 
follows. No work was done in the expansion into a vacuum, 
so w = 0. No energy entered or left the system (the gas) as heat 
because the temperature of the bath did not change, so q = 0. 
Consequently, within the accuracy of the experiment, ΔU = 0. 
Joule concluded that U does not change when a gas expands 
isothermally and therefore that πT = 0. His experiment, how-
ever, was crude. In particular, the heat capacity of the apparatus 
was so large that the temperature change that gases do in fact 
cause was too small to measure. Nevertheless, from his experi-
ment Joule had extracted an essential limiting property of a gas, 
a property of a perfect gas, without detecting the small devia-
tions characteristic of real gases.

(b) Changes in internal energy at 
constant pressure
Partial derivatives have many useful properties and some that 
we shall draw on frequently are reviewed in Mathematical back-
ground 2. Skilful use of them can often turn some unfamiliar 
quantity into a quantity that can be recognized, interpreted, or 
measured.

As an example, suppose we want to find out how the internal 
energy varies with temperature when the pressure rather than 
the volume of the system is kept constant. If we divide both 
sides of eqn 2D.5 by dT and impose the condition of constant 
pressure on the resulting differentials, so that dU/dT on the left 
becomes (∂U/∂T)p, we obtain

∂
∂







= ∂
∂







+U
T

V
T C

p
T

p
Vπ

 

It is usually sensible in thermodynamics to inspect the output 
of a manipulation like this to see if it contains any recogniz-
able physical quantity. The partial derivative on the right in 
this expression is the slope of the plot of volume against tem-
perature (at constant pressure). This property is normally tabu-
lated as the expansion coefficient, α, of a substance, which is 
defined as

α = ∂
∂







1
V

V
T p  

Definition  expansion coefficient  (2D.6)

and physically is the fractional change in volume that accom-
panies a rise in temperature. A large value of α means that the 
volume of the sample responds strongly to changes in tem-
perature. Table 2D.1 lists some experimental values of α. For 
future reference, it also lists the isothermal compressibility, κT 
(kappa), which is defined as

κT
T

V
V
p= − ∂

∂






1

 
Definition  Isothermal compressibility  (2D.7)

The isothermal compressibility is a measure of the fractional 
change in volume when the pressure is increased by a small 
amount; the negative sign in the definition ensures that the 
compressibility is a positive quantity, because an increase of 
pressure, implying a positive dp, brings about a reduction of 
volume, a negative dV.

When we introduce the definition of α into the equation for 
(∂U/∂T)p, we obtain

∂
∂







= +U
T V C

p
T Vαπ

 
(2D.8)

This equation is entirely general (provided the system is closed 
and its composition is constant). It expresses the dependence 
of the internal energy on the temperature at constant pressure 

Example 2D.2 Calculating the expansion coefficient of 
a gas

Derive an expression for the expansion coefficient of a perfect 
gas.

Method The expansion coefficient is defined in eqn 2D.6. To 
use this expression, substitute the expression for V in terms of 
T obtained from the equation of state for the gas. As implied 
by the subscript in eqn 2D.6, the pressure, p, is treated as a 
constant.

Answer Because pV = nRT, we can write

α = ∂
∂







= × = =1 1 1
V

nRT p
T V

nR
p

T
T

nR
pV T

p

( / ) d
d

The higher the temperature, the less responsive is the volume 
of a perfect gas to a change in temperature.

Self-test 2D.2 Derive an expression for the isothermal com-
pressibility of a perfect gas.

Answer: κT =1/p

Table 2D.1* Expansion coefficients (α) and 
isothermal compressibilities (κT) at 298 K

α/(10−4 K−1) κT/(10−6 bar−1)

Benzene 12.4 90.9

Diamond 0.030 0.185

Lead 0.861 2.18

Water 2.1 49.0

* More values are given in the Resource section.
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94 2 The First Law

in terms of CV, which can be measured in one experiment, in 
terms of α, which can be measured in another, and in terms of 
the quantity πT. For a perfect gas, πT = 0, so then

∂
∂







=U
T C

p
V

 
(2D.9)

That is, although the constant-volume heat capacity of a perfect 
gas is defined as the slope of a plot of internal energy against 
temperature at constant volume, for a perfect gas CV is also the 
slope at constant pressure.

Equation 2D.9 provides an easy way to derive the relation 
between Cp and CV for a perfect gas. Thus, we can use it to 
express both heat capacities in terms of derivatives at constant 
pressure:

C C H
T

U
Tp V

p p

− = ∂
∂







− ∂
∂







Definition
of C eqn 2D.9p��� �� ���� ��

 

Then we introduce H =U + pV = U + nRT into the first term, 
which results in

C C U nRT
T

U
T nRp V

p p
− = ∂ +

∂






− ∂
∂







=( )

 
(2D.10)

We show in the following Justification that in general

C C TV
p V

T
− = α

κ

2

 
(2D.11)

Equation 2D.11 applies to any substance (that is, it is ‘univer-
sally true’). It reduces to eqn 2D.10 for a perfect gas when we 
set α  = 1/T and κT = 1/p. Because expansion coefficients α of 
liquids and solids are small, it is tempting to deduce from eqn 
2D.11 that for them Cp ≈ CV. But this is not always so, because 
the compressibility κT might also be small, so α2/κT might be 
large. That is, although only a little work need be done to push 
back the atmosphere, a great deal of work may have to be done 
to pull atoms apart from one another as the solid expands.

Brief illustration 2D.1 The relation between heat 
capacities

The expansion coefficient and isothermal compressibility 
of water at 25 °C are given in Table 2D.1 as 2.1 × 10−4 K−1 and 
4.96 × 10−5 atm−1 (4.90 × 10−10 Pa−1), respectively. The molar vol-
ume of water at that temperature, Vm = M/ρ (where ρ is the 
mass density) is 18.1 cm3 mol−1 (1.81 × 10−5 m3 mol−1). Therefore, 
from eqn 2D.11, the difference in molar heat capacities (which 
is given by Vm in place of V) is

C Cp V, ,
( . ) ( ) ( . )

.m m
K K m mol

− =
× × × ×

×

− −

−

2 1 10 298 1 81 10
4 90 10

4 1 2 5 3 1− −

110 1

3 1 10 485 0 485
Pa

Pa m mol Jmol

−

−= =−. .  

For water, Cp,m = 75.3 J K−1 mol−1, so CV,m = 74.8 J K−1 mol−1. In 
some cases, the two heat capacities differ by as much as 30 per 
cent.

Self-test 2D.3 Evaluate the difference in molar heat capacities 
for benzene; use data from the Resource section.

Answer: 45 J K−1 mol−1

Justification 2D.1 The relation between heat capacities

A useful rule when doing a problem in thermodynamics is to 
go back to first principles. In the present problem we do this 
twice, first by expressing Cp and CV in terms of their defini-
tions and then by inserting the definition H = U + pV:

C C H
T C

U
T

pV
T C

p V
p

V

p p
V

− = ∂
∂







−

= ∂
∂







+ ∂
∂







−( )

 

Equation 2D.8, (∂U/∂T)p = απTV + CV, lets us write the differ-
ence of the first and third terms as απTV. We can simplify the 
remaining term by noting that, because p is constant,

∂
∂







= ∂
∂







=( )pV
T p V

T pV
p p

α
 

Collecting the two contributions gives

C C p Vp V T− = +α π( )  

The first term on the right, αpV, is a measure of the work 
needed to push back the atmosphere; the second term on the 
right, απTV, is the work required to separate the molecules 
composing the system.

At this point we can go further by using the (Second Law) 
result proved in Topic 3D that

πT
V

T p
T p= ∂

∂






−
 

When this expression is inserted in the last equation we obtain

C C TV p
Tp V

V
− = ∂

∂






α
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2D.3 The Joule–Thomson effect

We can carry out a similar set of operations on the enthalpy, 
H = U + pV. The quantities U, p, and V are all state functions; 
therefore H is also a state function and dH is an exact differ-
ential. It turns out that H is a useful thermodynamic function 
when the pressure is under our control: we saw a sign of that 
in the relation ΔH = qp (this is eqn 2B.2b of Topic 2B). We shall 
therefore regard H as a function of p and T, and adapt the argu-
ment in Section 2D.2 for the variation of U to find an expression 
for the variation of H with temperature at constant volume. As 
explained in the following Justification, we find that for a closed 
system of constant composition,

d d dH C p C Tp p= − +μ  (2D.12)

where the Joule–Thomson coefficient, μ (mu), is defined as

μ = ∂
∂







T
p H  

Definition  Joule–thomson coefficient  (2D.13)

This relation will prove useful for relating the heat capacities at 
constant pressure and volume and for a discussion of the lique-
faction of gases.

(a) Observation of the Joule–Thomson effect

The analysis of the Joule–Thomson coefficient is central to 
the technological problems associated with the liquefaction 
of gases. We need to be able to interpret it physically and to 
measure it. As shown in the following Justification, the cunning 
required to impose the constraint of constant enthalpy, so that 
the process is isenthalpic, was supplied by Joule and William 
Thomson (later Lord Kelvin). They let a gas expand through 
a porous barrier from one constant pressure to another and 
monitored the difference of temperature that arose from the 
expansion (Fig. 2D.6). The whole apparatus was insulated so 
that the process was adiabatic. They observed a lower tempera-
ture on the low pressure side, the difference in temperature 
being proportional to the pressure difference they maintained. 

We now transform the remaining partial derivative. With V 
regarded as a function of p and T, when these two quantities 
change the resulting change in V is

d d dV V
T T V

p p
p T

= ∂
∂







+ ∂
∂







 
For the volume to be constant, dV = 0 implies that
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∂
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On division by dT, this relation becomes
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∂
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κ  

Insertion of this relation into the expression above for Cp − CV 
produces eqn 2D.11.

Justification 2D.2 The variation of enthalpy with 
pressure and temperature

Because H is a function of p and T we can write, when these 
two quantities change by an infinitesimal amount, the 
enthalpy changes by

d d dH H
p p H

T T
T p

= ∂
∂







+ ∂
∂







 

The second partial derivative is Cp; our task here is to express 
(∂H/∂p)T in terms of recognizable quantities. If the enthalpy is 
constant, dH = 0 and this expression then requires that

∂
∂







= −H
p p C T H

T
pd d at constant

 
Division of both sides by dp then gives

∂
∂







= − ∂
∂







= −H
p C T

p C
T

p
H

pμ
 

Equation 2D.13 now follows directly.

Porous
barrier

Gas at
low
pressure

Thermocouples

Gas at
high pressure

Figure 2D.6  The apparatus used for measuring the Joule–
Thomson effect. The gas expands through the porous 
barrier, which acts as a throttle, and the whole apparatus is 
thermally insulated. As explained in the text, this arrangement 
corresponds to an isenthalpic expansion (expansion at 
constant enthalpy). Whether the expansion results in a heating 
or a cooling of the gas depends on the conditions.
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96 2 The First Law

This cooling by isenthalpic expansion is now called the Joule–
Thomson effect.

The property measured in the experiment is the ratio of the 
temperature change to the change of pressure, ΔT/Δp. Adding the 
constraint of constant enthalpy and taking the limit of small Δp 
implies that the thermodynamic quantity measured is (∂T/∂p)H, 
which is the Joule–Thomson coefficient, μ. In other words, the 
physical interpretation of μ is that it is the ratio of the change in 
temperature to the change in pressure when a gas expands under 
conditions that ensure there is no change in enthalpy.

The modern method of measuring μ is indirect, and involves 
measuring the isothermal Joule–Thomson coefficient, the 
quantity

μT
T

H
p= ∂

∂




  

which is the slope of a plot of enthalpy against pressure at con-
stant temperature (Fig. 2D.8). Comparing eqns 2D.13 and 
2D.14, we see (from the last line of Justification 2D.2) that the 
two coefficients are related by:

μ μT pC= −  (2D.15)

To measure μT, the gas is pumped continuously at a steady pres-
sure through a heat exchanger, which brings it to the required 
temperature, and then through a porous plug inside a thermally 
insulated container. The steep pressure drop is measured and 
the cooling effect is exactly offset by an electric heater placed 
immediately after the plug (Fig. 2D.9). The energy provided 

It follows that the change of internal energy of the gas as it 
moves adiabatically from one side of the barrier to the other is

U U w pV p Vf i i− −= = i f f  

Reorganization of this expression gives

U p V U V H Hpf f i i for+ = =+f ii  

Therefore, the expansion occurs without change of enthalpy.

Temperature, T
Pressure, p

∂H
∂p( )

T
µT

=

E
n

th
al

p
y,

 H

Figure 2D.8  The isothermal Joule–Thomson coefficient is the 
slope of the enthalpy with respect to changing pressure, the 
temperature being held constant.

Justification 2D.3 The Joule–Thomson effect

Here we show that the experimental arrangement results in 
expansion at constant enthalpy. Because all changes to the gas 
occur adiabatically, q = 0 implies that ΔU = w. Next, consider 
the work done as the gas passes through the barrier. We focus 
on the passage of a fixed amount of gas from the high pressure 
side, where the pressure is pi, the temperature Ti, and the gas 
occupies a volume Vi (Fig. 2D.7).

The gas emerges on the low pressure side, where the same 
amount of gas has a pressure pf, a temperature Tf, and occupies 
a volume Vf. The gas on the left is compressed isothermally by 
the upstream gas acting as a piston. The relevant pressure is pi 
and the volume changes from Vi to 0; therefore, the work done 
on the gas is

w p V pV1 0= − =−i i( ) i i  
The gas expands isothermally on the right of the barrier (but 
possibly at a different constant temperature) against the pres-
sure pf provided by the downstream gas acting as a piston to be 
driven out. The volume changes from 0 to Vf, so the work done 
on the gas in this stage is

w p V p V2 0= − = −−f f( ) f f  
The total work done on the gas is the sum of these two quanti-
ties, or

w w p VV p1 2+ = −i i f f  

Downstream
pressure

Upstream
pressure

Throttle

pi, Vi, Ti

pf, Vf, Tf

pi

pi

pf

pf

pfpi

Figure 2D.7  The thermodynamic basis of Joule–Thomson 
expansion. The pistons represent the upstream and 
downstream gases, which maintain constant pressures 
either side of the throttle. The transition from the top 
diagram to the bottom diagram, which represents the 
passage of a given amount of gas through the throttle, 
occurs without change of enthalpy.

Definition 
Isothermal 
Joule–thomson 
coefficient

 (2D.14)
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2D State functions and exact differentials  97

by the heater is monitored. Because ΔH = qp, the energy trans-
ferred as heat can be identified with the value of ΔH. The pres-
sure change Δp is known, so we can find μT from the limiting 
value of ΔH/Δp as Δp → 0 and then convert it to μ. Table 2D.2 
lists some values obtained in this way.

Real gases have nonzero Joule–Thomson coefficients. 
Depending on the identity of the gas, the pressure, the rela-
tive magnitudes of the attractive and repulsive intermolecular 
forces, and the temperature, the sign of the coefficient may be 
either positive or negative (Fig. 2D.10). A positive sign implies 
that dT is negative when dp is negative, in which case the gas 
cools on expansion. Gases that show a heating effect (μ < 0) at 
one temperature show a cooling effect (μ > 0) when the tem-
perature is below their upper inversion temperature, T1 (Table 
2D.2, Fig. 2D.11). As indicated in Fig. 2D.11, a gas typically has 
two inversion temperatures.

The ‘Linde refrigerator’ makes use of Joule–Thomson expan-
sion to liquefy gases (Fig. 2D.12). The gas at high pressure is 
allowed to expand through a throttle; it cools and is circulated 
past the incoming gas. That gas is cooled, and its subsequent 
expansion cools it still further. There comes a stage when the 
circulating gas becomes so cold that it condenses to a liquid.

For a perfect gas, μ = 0; hence, the temperature of a per-
fect gas is unchanged by Joule–Thomson expansion. (Simple 
adiabatic expansion does cool a perfect gas, because the gas 
does work, Topic 2E.) This characteristic points clearly to the 
involvement of intermolecular forces in determining the size of 
the effect. However, the Joule–Thomson coefficient of a real gas 

Brief illustration 2D.2 The Joule–Thomson effect

The Joule–Thomson coefficient for nitrogen at 298 K and 1 atm 
(Table 2D.2) is +0.25 K bar−1. It follows that the change in tem-
perature the gas undergoes when its pressure changes by −10 
bar under isenthalpic conditions is

∆ ∆T p≈ = + × − = −−μ ( . ) ( ) .0 25 10 2 51K bar bar K

At the same initial temperature and pressure, the molar iso-
thermal Joule coefficient is

μ μT pC, , ( . ) ( . )
.

m m JK mol K bar
Jbar mol

= − = − × +
= −

− − −

− −

29 1 0 25
7 3

1 1 1

1 1

Note that μ is an intensive property but μT is extensive (but 
μT,m, like all molar quantities, is intensive).

Self-test 2D.4 Evaluate the change in temperature when the 
pressure of carbon dioxide changes isenthalpically by −10 bar 
at 300 K and evaluate its molar isothermal Joule coefficient.

Answer: −11 K, 41.2 J bar−1 mol−1

Gas flow

Heater
Porous
plug

Thermocouples

Figure 2D.9 A schematic diagram of the apparatus used for 
measuring the isothermal Joule–Thomson coefficient. The 
electrical heating required to offset the cooling arising from 
expansion is interpreted as ΔH and used to calculate (∂H/∂p)T, 
which is then converted to μ as explained in the text.

Table 2D.2* Inversion temperatures (TI), normal freezing (Tf) 
and boiling (Tb) points, and Joule–Thomson coefficients (μ) at 
1 atm and 298 K

TI/K Tf/K Tb/K μ/(K bar−1)

Ar 723 83.8 87.3

CO2 1500 194.7 +1.10

He 40 4.2 −0.060

N2 621 63.3 77.4 +0.25

* More values are given in the Resource section.

Te
m

p
er

at
u

re
, T

Pressure, p

µ > 0

µ < 0

Cooling

Heating

Figure 2D.10 The sign of the Joule–Thomson coefficient, μ, 
depends on the conditions. Inside the boundary, the blue 
area, it is positive and outside it is negative. The temperature 
corresponding to the boundary at a given pressure is the 
‘inversion temperature’ of the gas at that pressure. For a given 
pressure, the temperature must be below a certain value if 
cooling is required but, if it becomes too low, the boundary 
is crossed again and heating occurs. Reduction of pressure 
under adiabatic conditions moves the system along one of 
the isenthalps, or curves of constant enthalpy. The inversion 
temperature curve runs through the points of the isenthalps 
where their slope changes from negative to positive.
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98 2 The First Law

does not necessarily approach zero as the pressure is reduced 
even though the equation of state of the gas approaches that of 
a perfect gas. The coefficient behaves like the properties dis-
cussed in Topic 1C in the sense that it depends on derivatives 
and not on p, V, and T themselves.

(b) The molecular interpretation of the 
Joule–Thomson effect

The kinetic model of gases (Topic 1B) and the equipartition 
theorem (Foundations B) jointly imply that the mean kinetic 
energy of molecules in a gas is proportional to the temperature. 
It follows that reducing the average speed of the molecules is 
equivalent to cooling the gas. If the speed of the molecules can 
be reduced to the point that neighbours can capture each other 
by their intermolecular attractions, then the cooled gas will 
condense to a liquid.

To slow the gas molecules, we make use of an effect simi-
lar to that seen when a ball is thrown into the air: as it rises 
it slows in response to the gravitational attraction of the Earth 
and its kinetic energy is converted into potential energy. We 
saw in Topic 1C that molecules in a real gas attract each other 
(the attraction is not gravitational, but the effect is the same). It 
follows that, if we can cause the molecules to move apart from 
each other, like a ball rising from a planet, then they should 
slow. It is very easy to move molecules apart from each other: 
we simply allow the gas to expand, which increases the average 
separation of the molecules. To cool a gas, therefore, we allow 
it to expand without allowing any energy to enter from outside 
as heat. As the gas expands, the molecules move apart to fill 
the available volume, struggling as they do so against the attrac-
tion of their neighbours. Because some kinetic energy must be 
converted into potential energy to reach greater separations, 
the molecules travel more slowly as their separation increases. 
This sequence of molecular events explains the Joule–Thomson 
effect: the cooling of a real gas by adiabatic expansion. The cool-
ing effect, which corresponds to μ > 0, is observed under condi-
tions when attractive interactions are dominant (Z < 1, where 
Z is the compression factor defined in eqn 1C.1, Z V= °m m/V ), 
because the molecules have to climb apart against the attrac-
tive force in order for them to travel more slowly. For molecules 
under conditions when repulsions are dominant (Z > 1), the 
Joule–Thomson effect results in the gas becoming warmer, or 
μ < 0.

Checklist of concepts

☐ 1.  The quantity dU is an exact differential; dw and dq 
are not.

☐ 2. The change in internal energy may be expressed in 
terms of changes in temperature and pressure.

☐ 3. The internal pressure is the variation of internal energy 
with volume at constant temperature.

☐ 4.  Joule’s experiment showed that the internal pressure of 
a perfect gas is zero.

☐ 5. The change in internal energy with pressure and tem-
perature is expressed in terms of the internal pressure 
and the heat capacity and leads to a general expression 
for the relation between heat capacities.

☐ 6. The Joule–Thomson effect is the change in temperature 
of a gas when it undergoes isenthalpic expansion.
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Figure 2D.11 The inversion temperatures for three real gases, 
nitrogen, hydrogen, and helium.

Heat
exchanger

Compressor

Cold gas

Throttle

Liquid

Figure 2D.12 The principle of the Linde refrigerator is shown 
in this diagram. The gas is recirculated, and so long as it is 
beneath its inversion temperature it cools on expansion 
through the throttle. The cooled gas cools the high-pressure 
gas, which cools still further as it expands. Eventually liquefied 
gas drips from the throttle.
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Checklist of equations

Property Equation Comment Equation number

Change in U(V,T) dU = (∂U/∂V)T dV + (∂U/∂T)V dT Constant composition 2D.3

Internal pressure πT = (∂U/∂V)T Definition; for a perfect gas, πT = 0 2D.4

Change in U(V,T) dU = πTdV + CVdT Constant composition 2D.5

Expansion coefficient α = (1/V)(∂V/∂T)p Definition 2D.6

Isothermal compressibility κT = − (1/V)(∂V/∂p)T Definition 2D.7

Relation between heat capacities Cp − CV = nR Perfect gas 2D.10

Cp − CV = α2TV/κT 2D.11

Change in H(p,T) dH = –μCpdp + CpdT Constant composition 2D.12

Joule–Thomson coefficient μ = (∂T/∂p)H For a perfect gas, μ = 0 2D.13

Isothermal Joule–Thomson coefficient μT = (∂H/∂p)T For a perfect gas, μT = 0 2D.14

Relation between coefficients μT = −Cpμ 2D.15
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2E adiabatic changes

The temperature falls when a gas expands adiabatically (in a 
thermally insulated container). Work is done, but as no heat 
enters the system, the internal energy falls, and therefore the 
temperature of the working gas also falls. In molecular terms, 
the kinetic energy of the molecules falls as work is done, so their 
average speed decreases, and hence the temperature falls too.

2E.1 The change in temperature

To calculate the change in temperature that results from a 
process we focus first on the change in internal energy. The 
change in internal energy of a perfect gas when the tempera-
ture is changed from Ti to Tf and the volume is changed from 
Vi to Vf can be expressed as the sum of two steps (Fig. 2E.1). In 
the first step, only the volume changes and the temperature is 
held constant at its initial value. However, because the internal 

energy of a perfect gas is independent of the volume the mol-
ecules occupy (Topic 2A), the overall change in internal energy 
arises solely from the second step, the change in temperature at 
constant volume. Provided the heat capacity is independent of 
temperature, this change is

∆ = = ∆−U T T C C TV V( )f i  
Because the expansion is adiabatic, we know that q = 0; then 
because ΔU = q + w, it follows that ΔU = wad. The subscript ‘ad’ 
denotes an adiabatic process. Therefore, by equating the two 
expressions for ΔU, we obtain

w C TVad = ∆  Perfect gas  work of adiabatic change  (2E.1)

That is, the work done during an adiabatic expansion of a per-
fect gas is proportional to the temperature difference between 
the initial and final states. That is exactly what we expect on 
molecular grounds, because the mean kinetic energy is propor-
tional to T, so a change in internal energy arising from tem-
perature alone is also expected to be proportional to ΔT.

In the following Justification we show that, based on this 
result, the initial and final temperatures of a perfect gas that 
undergoes reversible adiabatic expansion (reversible expansion 
in a thermally insulated container) can be calculated from

T T V
V c C R

c

Vf i
i

f
m= 





=
1/

, /
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➤➤ Why do you need to know this material?

Adiabatic processes complement isothermal processes, 
and are used in the discussion of the Second Law of 
thermodynamics.

➤➤ What is the key idea?
The temperature of a perfect gas falls when it does work in 
an adiabatic expansion.

➤➤ What do you need to know already?
This Topic makes use of the discussion of the properties 
of gases (Topic 1A), particularly the perfect gas law. It also 
uses the definitions of heat capacity at constant volume 
(Topic 1B) and constant pressure (Topic 2B), and the 
relation between them (Topic 2D).

Te
m

p
er

at
u

re
, T

Volume, V

Tf

Ti

Vi Vf

Ti,Vi
Ti,Vf

Tf,Vf

U constant

ΔU
 =

 C
V
ΔT

1

2

Figure 2E.1 To achieve a change of state from one 
temperature and volume to another temperature and volume, 
we may consider the overall change as composed of two steps. 
In the first step, the system expands at constant temperature; 
there is no change in internal energy if the system consists of a 
perfect gas. In the second step, the temperature of the system 
is reduced at constant volume. The overall change in internal 
energy is the sum of the changes for the two steps.
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gas  
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 (2E.2a)
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By raising each side of this expression to the power c, an equiva-
lent expression is

VT V T c C Rc c
Vi f mi f= = , /  

This result is often summarized in the form VTc = constant.

2E.2 The change in pressure

We show in the following Justification that the pressure of a per-
fect gas that undergoes reversible adiabatic expansion from a 
volume Vi to a volume Vf is related to its initial pressure by

p V pVf if i
γ γ=  

where γ  = Cp,m/CV,m. This result is commonly summarized in 
the form pVγ = constant.

Brief illustration 2E.1 The change in temperature

Consider the adiabatic, reversible expansion of 0.020 mol Ar, 
initially at 25 °C, from 0.50 dm3 to 1.00 dm3. The molar heat 
capacity of argon at constant volume is 12.47 J K−1 mol−1, so 
c = 1.501. Therefore, from eqn 2B.2a,

Tf K
dm
dm

K=






=( )
.
.

/ .

298
0 50
1 00

188
3

3

1 1 501

 

It follows that ΔT = −110 K, and therefore, from eqn 2E.1, that

w = = −× × −− −{( ) } ( ). .0 020 12 48 110 271 1mol JK mol K J( )  

Note that temperature change is independent of the amount of 
gas but the work is not.

Self-test 2E.1 Calculate the final temperature, the work done, 
and the change of internal energy when ammonia is used in a 
reversible adiabatic expansion from 0.50 dm3 to 2.00 dm3, the 
other initial conditions being the same.

Answer: 194 K, −56 J, −56 J

Justification 2E.2 The relation between pressure 
and volume

The initial and final states of a perfect gas satisfy the perfect 
gas law regardless of how the change of state takes place, so we 
can use pV = nRT to write

pV
p V

T
T

i i

f f

i

f
=

 

However, from eqn 2E.2 we know that Ti/Tf = (Vf/Vi)1/c. 
Therefore,

p
p

V
V

p
p

V
V

c c
i i

f f
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We now use the result from Topic 2B that Cp,m − CV,m = R to 
note that

1 1 1
c

c
c

R C
C

C
C

V

V

p

V
+ = + =

+
= =,

,

,

,

m
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Justification 2E.1 Changes in temperature

Consider a stage in a reversible adiabatic expansion when 
the pressure inside and out is p. The work done when the 
gas expands by dV is dw = −pdV; however, for a perfect gas, 
dU = CV dT. Therefore, because for an adiabatic change (dq = 0) 
dU = dw + dq = dw, we can equate these two expressions for dU 
and write

C T p VVd d= −  
We are dealing with a perfect gas, so we can replace p by 
nRT/V and obtain

C T
T

nR V
V

Vd d= −
 

To integrate this expression we note that T is equal to Ti when 
V is equal to Vi, and is equal to Tf when V is equal to Vf at the 
end of the expansion. Therefore,

C T
T nR V

VV
T

T

V

Vd d
i

f

i

f

∫ ∫= −
 

(We are taking CV to be independent of temperature.) Then, 
because ∫dx/x = ln x + constant, we obtain

C T
T nR V

VV ln lnf

i

f

i
= −

 

Because ln(x/y) = –ln(y/x), this expression rearranges to

C
nR

T
T

V
V

V ln lnf

i

i

f
=

 

With c = CV/nR we obtain (because ln xa = a ln x)

ln lnT
T

V
V

c
f

i

i

f







=
 

which implies that (Tf /Ti)c = (Vi /Vf) and, upon rearrangement, 
eqn 2E.2.

Perfect gas reversible adiabatic 
expansion  (2E.3)

Adiabatic, 
reversible, 
perfect 
gas 

Final 
tempera-
ture 

 (2E.2b)
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102 2 The First Law

For a monatomic perfect gas, C RV ,m = 3
2  (Topic 2A) and 

C Rp,m = 5
2  (from Cp,m − CV,m = R), so γ = 5

3 . For a gas of non linear 
polyatomic molecules (which can rotate as well as translate; 
vibrations make little contribution at normal tempera tures), 
CV,m = 3R and Cp,m = 4R, so γ = 4

3 . The curves of pressure versus 
volume for adiabatic change are known as adiabats, and one 
for a reversible path is illustrated in Fig. 2E.2. Because γ  > 1, 

an adiabat falls more steeply (p ∝ 1/Vγ ) than the correspond-
ing isotherm (p ∝ 1/V). The physical reason for the difference is 
that, in an isothermal expansion, energy flows into the system 
as heat and maintains the temperature; as a result, the pressure 
does not fall as much as in an adiabatic expansion.

Brief illustration 2E.2 Adiabatic expansion

When a sample of argon (for which γ = 5
3 ) at 100 kPa expands 

reversibly and adiabatically to twice its initial volume the final 
pressure will be

p V
V pf

i

f
i kPa kPa= 





= 





× =
γ 1

2 100 32
5 3/

( )
 

For an isothermal doubling of volume, the final pressure 
would be 50 kPa.

Self-test 2E.2 What is the final pressure when a sample of car-
bon dioxide at 100 kPa expands reversibly and adiabatically to 
five times its initial volume?

Answer: 13 kPa

It follows that

p
p

V
V

i

f

i

f







=
γ

1
 

which rearranges to eqn 2E.3.

Checklist of concepts

☐ 1. The temperature of a gas falls when it undergoes adia-
batic expansion (and does work).

☐ 2. An adiabat is a curve showing how pressure varies with 
volume in an adiabatic process.

Checklist of equations

Volume, V
Te

m
pera

tu
re

, T

Pr
es

su
re

, p

Isotherm, p ∝ 1/V

Adiabat, p ∝ 1/V γ

Volume, V

Pr
es

su
re

, p

Figure 2E.2 An adiabat depicts the variation of pressure 
with volume when a gas expands adiabatically. Note that the 
pressure declines more steeply for an adiabat than it does for 
an isotherm because the temperature decreases in the former.

Property Equation Comment Equation number

Work of adiabatic expansion wad = CVΔT Perfect gas 2E.1

Final temperature Tf = Ti(Vi/Vf)1/c

c = CV,m/R
Perfect gas, reversible expansion 2E.2a

VT V Tc c
i fi f= 2E.2b

Adiabats p V pV
C Cp V

f f i i

m m

,γ γ

γ
=

= , ,/
2E.3
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chaPter 2  The First Law

Assume all gases are perfect unless stated otherwise. Unless otherwise stated, thermochemical data are for 298.15 K.

TOPIC 2A Internal energy

Discussion questions
2A.1 Describe and distinguish the various uses of the words ‘system’ and ‘state’ 
in physical chemistry.

2A.2 Describe the distinction between heat and work in thermodynamic and 
molecular terms, the latter in terms of populations and energy levels.

2A.3 Identify varieties of additional work.

Exercises
2A.1(a) Use the equipartition theorem to estimate the molar internal energy 
relative to U(0) of (i) I2, (ii) CH4, (iii) C6H6 in the gas phase at 25 °C.
2A.1(b) Use the equipartition theorem to estimate the molar internal energy 
relative to U(0) of (i) O3, (ii) C2H6, (iii) SO2 in the gas phase at 25 °C.

2A.2(a) Which of (i) pressure, (ii) temperature, (iii) work, (iv) enthalpy are 
state functions?
2A.2(b) Which of (i) volume, (ii) heat, (iii) internal energy, (iv) density are 
state functions?

2A.3(a) A chemical reaction takes place in a container of cross-sectional area 
50 cm2. As a result of the reaction, a piston is pushed out through 15 cm 
against an external pressure of 1.0 atm. Calculate the work done by the 
system.
2A.3(b) A chemical reaction takes place in a container of cross-sectional area 
75.0 cm2. As a result of the reaction, a piston is pushed out through 25.0 cm 
against an external pressure of 150 kPa. Calculate the work done by the 
system.

2A.4(a) A sample consisting of 1.00 mol Ar is expanded isothermally at 20 °C 
from 10.0 dm3 to 30.0 dm3 (i) reversibly, (ii) against a constant external 
pressure equal to the final pressure of the gas, and (iii) freely (against zero 
external pressure). For the three processes calculate q, w, and ΔU.

2A.4(b) A sample consisting of 2.00 mol He is expanded isothermally at 0 °C 
from 5.0 dm3 to 20.0 dm3 (i) reversibly, (ii) against a constant external pressure 
equal to the final pressure of the gas, and (iii) freely (against zero external 
pressure). For the three processes calculate q, w, and ΔU.

2A.5(a) A sample consisting of 1.00 mol of perfect gas atoms, for which 
C RV ,m = 3

2 , initially at p1 = 1.00 atm and T1 = 300 K, is heated reversibly to 
400 K at constant volume. Calculate the final pressure, ΔU, q, and w.
2A.5(b) A sample consisting of 2.00 mol of perfect gas molecules, for which 
C RV ,m = 5

2 , initially at p1 = 111 kPa and T1 = 277 K, is heated reversibly to 356 K 
at constant volume. Calculate the final pressure, ΔU, q, and w.

2A.6(a) A sample of 4.50 g of methane occupies 12.7 dm3 at 310 K. (i) Calculate 
the work done when the gas expands isothermally against a constant external 
pressure of 200 Torr until its volume has increased by 3.3 dm3. (ii) Calculate 
the work that would be done if the same expansion occurred reversibly.
2A.6(b) A sample of argon of mass 6.56 g occupies 18.5 dm3 at 305 K. 
(i) Calculate the work done when the gas expands isothermally against a 
constant external pressure of 7.7 kPa until its volume has increased by 2.5 dm3. 
(ii) Calculate the work that would be done if the same expansion occurred 
reversibly.

Problems
2A.1 Calculate the work done during the isothermal reversible expansion of a 
van der Waals gas (Topic 1C). Plot on the same graph the indicator diagrams 
(graphs of pressure against volume) for the isothermal reversible expansion of 
(a) a perfect gas, (b) a van der Waals gas in which a = 0 and b = 5.11 × 10−2 dm3 
mol−1, and (c) a = 4.2 dm6 atm mol−2 and b = 0. The values selected exaggerate 
the imperfections but give rise to significant effects on the indicator diagrams. 
Take Vi = 1.0 dm3, n = 1.0 mol, and T = 298 K.

2A.2 A sample consisting of 1.0 mol CaCO3(s) was heated to 800 °C, when 
it decomposed. The heating was carried out in a container fitted with a 
piston that was initially resting on the solid. Calculate the work done during 
complete decomposition at 1.0 atm. What work would be done if instead of 
having a piston the container was open to the atmosphere?

2A.3 Calculate the work done during the isothermal reversible expansion of 
a gas that satisfies the virial equation of state, eqn 1C.3. Evaluate (a) the work 

for 1.0 mol Ar at 273 K (for data, see Table 1C.1) and (b) the same amount of a 
perfect gas. Let the expansion be from 500 cm3 to 1000 cm3 in each case.

2A.4 Express the work of isothermal reversible expansion of a van der Waals 
gas in reduced variables (Topic 1C) and find a definition of reduced work that 
makes the overall expression independent of the identity of the gas. Calculate 
the work of isothermal reversible expansion along the critical isotherm from 
Vc to xVc.

2A.5 Suppose that a DNA molecule resists being extended from an 
equilibrium, more compact conformation with a restoring force F = −kf x, 
where x is the difference in the end-to-end distance of the chain from an 
equilibrium value and kf is the force constant. Use this model to write an 
expression for the work that must be done to extend a DNA molecule by a 
distance x. Draw a graph of your conclusion.
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104 2 The First Law

2A.6 A better model of a DNA molecule is the ‘one-dimensional freely jointed 
chain’, in which a rigid unit of length l can only make an angle of 0° or 180 ° 
with an adjacent unit. In this case, the restoring force of a chain extended by 
x = nl is given by

F kT
l

n
N= +

−






=2
1
1ln 




 
where k is Boltzmann’s constant. (a) What is the magnitude of the force that 
must be applied to extend a DNA molecule with N = 200 by 90 nm? (b) Plot 
the restoring force against ν, noting that ν can be either positive or negative. 
How is the variation of the restoring force with end-to-end distance different 
from that predicted by Hooke’s law? (c) Keep in mind that the difference in 

end-to-end distance from an equilibrium value is x = nl and, consequently, 
dx = ldn = Nldν, and write an expression for the work of extending a DNA 
molecule. (d) Calculate the work of extending a DNA molecule from ν = 0 
to ν = 1.0. Hint: You must integrate the expression for w. The task can be 
accomplished easily with mathematical software.

2A.7 As a continuation of Problem 2A.6, (a) show that for small extensions of 
the chain, when í  1, the restoring force is given by

F kT
l

nkT
Nl≈ =

(b) Is the variation of the restoring force with extension of the chain given in 
part (a) different from that predicted by Hooke’s law? Explain your answer.

TOPIC 2B enthalpy

Discussion questions
2B.1 Explain the difference between the change in internal energy and the 
change in enthalpy accompanying a process.

2B.2 Why is the heat capacity at constant pressure of a substance normally 
greater than its heat capacity at constant volume?

Exercises
2B.1(a) When 229 J of energy is supplied as heat to 3.0 mol Ar(g), the 
temperature of the sample increases by 2.55 K. Calculate the molar heat 
capacities at constant volume and constant pressure of the gas.
2B.1(b) When 178 J of energy is supplied as heat to 1.9 mol of gas molecules, 
the temperature of the sample increases by 1.78 K. Calculate the molar heat 
capacities at constant volume and constant pressure of the gas.

2B.2(a) The constant-pressure heat capacity of a sample of a perfect gas was  
found to vary with temperature according to the expression Cp/(J K−1) =  
20.17 + 0.3665(T/K). Calculate q, w, and ΔH when the temperature is raised 
from 25 °C to 100 °C (i) at constant pressure, (ii) at constant volume.

2B.2(b) The constant-pressure heat capacity of a sample of a perfect gas was  
found to vary with temperature according to the expression Cp/(J K−1) =  
20.17 + 0.4001(T/K). Calculate q, w, and ΔH when the temperature is raised 
from 25 °C to 100 °C (i) at constant pressure, (ii) at constant volume.

2B.3(a) When 3.0 mol O2 is heated at a constant pressure of 3.25 atm, its 
temperature increases from 260 K to 285 K. Given that the molar heat capacity 
of O2 at constant pressure is 29.4 J K−1 mol−1, calculate q, ΔH, and ΔU.
2B.3(b) When 2.0 mol CO2 is heated at a constant pressure of 1.25 atm, its 
temperature increases from 250 K to 277 K. Given that the molar heat capacity 
of CO2 at constant pressure is 37.11 J K−1 mol−1, calculate q, ΔH, and ΔU.

Problems
2B.1 The following data show how the standard molar constant-pressure heat 
capacity of sulfur dioxide varies with temperature. By how much does the 
standard molar enthalpy of SO2(g) increase when the temperature is raised 
from 298.15 K to 1500 K?

2B.2 The following data show how the standard molar constant-pressure heat 
capacity of ammonia depends on the temperature. Use mathematical software 
to fit an expression of the form of eqn 2B.8 to the data and determine the 
values of a, b, and c. Explore whether it would be better to express the data as 
Cp,m = α + βT + γT 2, and determine the values of these coefficients.

2B.3 A sample consisting of 2.0 mol CO2 occupies a fixed volume of 15.0 dm3 
at 300 K. When it is supplied with 2.35 kJ of energy as heat its temperature 
increases to 341 K. Assume that CO2 is described by the van der Waals 
equation of state (Topic 1C) and calculate w, ΔU, and ΔH.

2B.4 (a) Express (∂CV/∂V)T as a second derivative of U and find its relation to 
(∂U/∂V)T and (∂Cp/∂p)T as a second derivative of H and find its relation to 
(∂H/∂p)T. (b) From these relations show that (∂CV/∂V)T = 0 and (∂Cp/∂p)T = 0 
for a perfect gas.

T/K 300 400 500 600 700 800 900 1000

Cp, /(JK mol )m
< − −1 1 35.678 38.674 41.994 45.229 48.269 51.112 53.769 56.244

T/K 300 500 700 900 1100 1300 1500

Cp, /(J K mol )m
< − −1 1 39.909 46.490 50.829 53.407 54.993 56.033 56.759
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TOPIC 2C thermochemistry

Discussion questions
2C.1 Describe two calorimetric methods for the determination of enthalpy 
changes that accompany chemical processes.

2C.2 Distinguish between ‘standard state’ and ‘reference state’, and indicate 
their applications.

Exercises
2C.1(a) For tetrachloromethane, ΔvapH< = 30.0 kJ mol−1. Calculate q, w, ΔH, 
and ΔU when 0.75 mol CCl4(l) is vaporized at 250 K and 750 Torr.
2C.1(b) For ethanol, ΔvapH< = 43.5 kJ mol−1. Calculate q, w, ΔH, and ΔU when 
1.75 mol C2H5OH(l) is vaporized at 260 K and 765 Torr.

2C.2(a) The standard enthalpy of formation of ethylbenzene is –12.5 kJ mol−1. 
Calculate its standard enthalpy of combustion.
2C.2(b) The standard enthalpy of formation of phenol is –165.0 kJ mol−1. 
Calculate its standard enthalpy of combustion.

2C.3(a) The standard enthalpy of combustion of cyclopropane is –2091 kJ 
mol−1 at 25 °C. From this information and enthalpy of formation data for 
CO2(g) and H2O(g), calculate the enthalpy of formation of cyclopropane. The 
enthalpy of formation of propene is +20.42 kJ mol−1. Calculate the enthalpy of 
isomerization of cyclopropane to propene.
2C.3(b) From the following data, determine ΔfH< for diborane, B2H6(g), at 
298 K:

( ) ( ) ( ) ( )

( ) ( )

1 3 3 1941

2 2
2 6 2 2 3 2

1B H O B O H O(g) kJ mol

B s

g g s r+ → + =∆ H < − −

++ → =

+ →

3
2 2 2 3

1

2
1
2 2 2

2368O B O kJ mol

(3) H O H O(g)

g s

g g
r( ) ( )

( ) ( )

∆

∆

H < − −

rr kJ molH < = − −241 8 1.  
2C.4(a) Given that the standard enthalpy of formation of HCl(aq) is 
−167 kJ mol−1, what is the value of ΔfH<(Cl−, aq)?
2C.4(b) Given that the standard enthalpy of formation of HI(aq) is 
−55 kJ mol−1, what is the value of ΔfH<(I−, aq)?

2C.5(a) When 120 mg of naphthalene, C10H8(s), was burned in a bomb 
calorimeter the temperature rose by 3.05 K. Calculate the calorimeter 
constant. By how much will the temperature rise when 150 mg of phenol, 
C6H5OH(s), is burned in the calorimeter under the same conditions?
2C.5(b) When 225 mg of anthracene, C14H10(s), was burned in a bomb 
calorimeter the temperature rose by 1.75 K. Calculate the calorimeter 
constant. By how much will the temperature rise when 125 mg of phenol, 
C6H5OH(s), is burned in the calorimeter under the same conditions? 
(ΔcH<(C14H10,s) = –7061 kJ mol−1.)

2C.6(a) Given the reactions (1) and (2) below, determine (i) ΔrH<and ΔrU< for 
reaction (3), (ii) ΔfH< for both HCl(g) and H2O(g) all at 298 K.

( ) ( ) ( )
( ) ( ) ( )

.1
2

2 184 62
2

2 2
1

2 2

H Cl HCl(g) kJ mol
H O

g g
g g

r+ → =

+ →

∆ H < − −

HH O(g) kJ mol
HCl(g) O Cl H O(g)g g

r2
1

2 2 2

483 64
4 2 23

∆ H < =
+ → +

− −.
( ) ( ) ( )

2C.6(b) Given the reactions (1) and (2) below, determine (i) ΔrH< and ΔrU< 

for reaction (3), (ii) ΔfH< for both HI(g) and H2O(g) all at 298 K.

( ) ( ) ( )
( ) ( )

.1
2

2 52 96
2 2

2 2
1

2 2 2

H I HI(g) kJ mol
H O H

g s
g

r+ → = +

+ →

∆ H < −

(g) OO(g) kJ mol
HI(g) O I H O(g)g s

r∆ H < =
+ → +

− −483 64
4 2 23

1

2 2 2

.
( ) ( ) ( )

2C.7(a) For the reaction C2H5OH(l) + 3 O2(g) → 2 CO2(g) + 3 H2O(g), ΔrU< = 
–1373 kJ mol−1 at 298 K. Calculate ΔrH<.
2C.7(b) For the reaction 2 C6H5COOH(s) + 15 O2(g) → 14 CO2(g) + 6 H2O(g), 
ΔrU< = –772.7 kJ mol−1 at 298 K. Calculate ΔrH<.

2C.8(a) From the data in Tables 2C.2 and 2C.3, calculate ΔrH< and ΔrU< at 
(i) 298 K, (ii) 478 K for the reaction C(graphite) + H2O(g) → CO(g) + H2(g). 
Assume all heat capacities to be constant over the temperature range of 
interest.
2C.8(b) Calculate ΔrH< and ΔrU< at 298 K and ΔrH< at 427 K for the 
hydrogenation of ethyne (acetylene) to ethene (ethylene) from the enthalpy of 
combustion and heat capacity data in Tables 2C.5 and 2C.6. Assume the heat 
capacities to be constant over the temperature range involved.

2C.9(a) Estimate ΔrH< (500 K) for the combustion of methane, CH4(g) +  
2 O2(g) → CO2(g) + 2 H2O(g) by using the data on the temperature 
dependence of heat capacities in Table 2B.1.
2C.9(b) Estimate ΔrH< (478 K) for the combustion of naphthalene, 
C10H8(l) + 12 O2(g) → 10 CO2(g) + 4 H2O(g) by using the data on the 
temperature dependence of heat capacities in Table 2B.1.

2C.10(a) Set up a thermodynamic cycle for determining the enthalpy of 
hydration of Mg2+ ions using the following data: enthalpy of sublimation 
of Mg(s), +167.2 kJ mol−1; first and second ionization enthalpies of Mg(g), 
7.646 eV and 15.035 eV; dissociation enthalpy of Cl2(g), +241.6 kJ mol−1; 
electron gain enthalpy of Cl(g), –3.78 eV; enthalpy of solution of MgCl2(s), 
–150.5 kJ mol−1; enthalpy of hydration of Cl−(g), –383.7 kJ mol−1.
2C.10(b) Set up a thermodynamic cycle for determining the enthalpy of 
hydration of Ca2+ ions using the following data: enthalpy of sublimation 
of Ca(s), +178.2 kJ mol−1; first and second ionization enthalpies of Ca(g), 
589.7 kJ mol−1 and 1145 kJ mol−1; enthalpy of vaporization of bromine, 
+30.91 kJ mol−1; dissociation enthalpy of Br2(g), +192.9 kJ mol−1; electron 
gain enthalpy of Br(g), –331.0 kJ mol−1; enthalpy of solution of CaBr2(s), 
–103.1 kJ mol−1; enthalpy of hydration of Br−(g), −289 kJ mol−1.

Problems
2C.1 A sample of the sugar d-ribose (C5H10O5) of mass 0.727 g was placed 
in a constant-volume bomb calorimeter and then ignited in the presence of 
excess oxygen. The temperature rose by 0.910 K. In a separate experiment in 
the same calorimeter, the combustion of 0.825 g of benzoic acid, for which the 
internal energy of combustion is –3251 kJ mol−1, gave a temperature rise of 
1.940 K. Calculate the enthalpy of formation of d-ribose.

2C.2 The standard enthalpy of formation of bis(benzene)chromium 
was measured in a calorimeter. It was found for the reaction 
Cr(C6H6)2(s) → Cr(s) + 2 C6H6(g) that ΔrU<(583 K) = +8.0 kJ mol−1. Find 
the corresponding reaction enthalpy and estimate the standard enthalpy 
of formation of the compound at 583 K. The constant-pressure molar 
heat capacity of benzene is 136.1 J K−1 mol−1 in its liquid range and 
81.67 J K−1 mol−1 as a gas.
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2C.3‡ From the enthalpy of combustion data in Table 2C.1 for the alkanes 
methane through octane, test the extent to which the relation ΔcH< =  
k{(M/(g mol−1)}n holds and find the numerical values for k and n. 
Predict ΔcH< for decane and compare to the known value.

2C.4‡ Kolesov et al. reported the standard enthalpy of combustion and of 
formation of crystalline C60 based on calorimetric measurements (V.P. 
Kolesov et al., J. Chem. Thermodynamics 28, 1121 (1996)). In one of their 
runs, they found the standard specific internal energy of combustion to be 
–36.0334 kJ g−1 at 298.15 K. Compute ΔcH< and ΔfH< of C60.

2C.5‡ A thermodynamic study of DyCl3 (E.H.P. Cordfunke et al., J. Chem. 
Thermodynamics 28, 1387 (1996)) determined its standard enthalpy of 
formation from the following information

( ) ( ) ( )
( )
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1DyCl DyCl aq in HCl kJmol
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s M  r→ =∆ H < − −

ss) HCl aq DyCl aq in HCl(aq) H gM M

r

+ → +

=

3 4 0 4 0
699

3
3
2 2( ) ( ) ( ), . , .

∆ H < − ..
, . .( ) ( ) ( ) ( )

43
4 0 158 313

1

2
1
2 2

1
2

kJmol
H Cl HCl aq kJmg g M r

−

−+ → =∆ H < ool−1

Determine ΔfH<(DyCl3, s) from these data.

2C.6‡ Silylene (SiH2) is a key intermediate in the thermal decomposition 
of silicon hydrides such as silane (SiH4) and disilane (Si2H6). H.K. Moffat 
et al. (J. Phys. Chem. 95, 145 (1991)) report ΔfH<(SiH2) = +274 kJ mol−1. If 
ΔfH<(SiH4) = +34.3 kJ mol−1 and ΔfH<(Si2H6) = +80.3 kJ mol−1, compute the 
standard enthalpies of the following reactions:

(a) SiH4(g) → SiH2(g) + H2(g)
(b) Si2H6(g) → SiH2(g) + SiH4(g)

2C.7 As remarked in Problem 2B.2, it is sometimes appropriate to express 
the temperature dependence of the heat capacity by the empirical expression 
Cp,m = α + βT + γ T 2. Use this expression to estimate the standard enthalpy of 
combustion of methane at 350 K. Use the following data:

2C.8 Figure 2.1 shows the experimental DSC scan of hen white lysozyme 
(G. Privalov et al., Anal. Biochem. 79, 232 (1995)) converted to joules 
(from calories). Determine the enthalpy of unfolding of this protein by 
integration of the curve and the change in heat capacity accompanying the 
transition.

2C.9 An average human produces about 10 MJ of heat each day through 
metabolic activity. If a human body were an isolated system of mass 65 kg with 
the heat capacity of water, what temperature rise would the body experience? 
Human bodies are actually open systems, and the main mechanism of heat 
loss is through the evaporation of water. What mass of water should be 
evaporated each day to maintain constant temperature?

2C.10 In biological cells that have a plentiful supply of oxygen, glucose is 
oxidized completely to CO2 and H2O by a process called aerobic oxidation. 
Muscle cells may be deprived of O2 during vigorous exercise and, in that 
case, one molecule of glucose is converted to two molecules of lactic acid 
(CH3CH(OH)COOH) by a process called anaerobic glycolysis. (a) When 
0.3212 g of glucose was burned in a bomb calorimeter of calorimeter 
constant 641 J K−1 the temperature rose by 7.793 K. Calculate (i) the 
standard molar enthalpy of combustion, (ii) the standard internal energy of 
combustion, and (iii) the standard enthalpy of formation of glucose.  
(b) What is the biological advantage (in kilojoules per mole of energy 
released as heat) of complete aerobic oxidation compared with anaerobic 
glycolysis to lactic acid?

TOPIC 2D state functions and exact differentials

Discussion questions
2D.1 Suggest (with explanation) how the internal energy of a van der Waals 
gas should vary with volume at constant temperature.

2D.2 Explain why a perfect gas does not have an inversion temperature.

Exercises
2D.1(a) Estimate the internal pressure, πT , of water vapour at 1.00 bar and 
400 K, treating it as a van der Waals gas. Hint: Simplify the approach by 
estimating the molar volume by treating the gas as perfect.
2D.1(b) Estimate the internal pressure, πT , of sulfur dioxide at 1.00 bar and 
298 K, treating it as a van der Waals gas. Hint: Simplify the approach by 
estimating the molar volume by treating the gas as perfect.

2D.2(a) For a van der Waals gas, πT a V= / m
2 . Calculate ΔUm for the isothermal 

expansion of nitrogen gas from an initial volume of 1.00 dm3 to 20.00 dm3 at 
298 K. What are the values of q and w?
2D.2(b) Repeat Exercise 2D.2(a) for argon, from an initial volume of 1.00 dm3 
to 30.00 dm3 at 298 K.

‡ These problems were provided by Charles Trapp and Carmen Giunta.
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Figure 2.1 The experimental DSC scan of hen white lysozyme.

α/(J K−1 mol−1) β/(mJ K−2 mol−1) γ /(µJ K−3 mol−1)

CH4(g) 14.16 75.5 –17.99

CO2(g) 26.86 6.97 –0.82

O2(g) 25.72 12.98 –3.862

H2O(g) 30.36 9.61 1.184
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2D.3(a) The volume of a certain liquid varies with temperature as

V V T T= + × + ×<{ . . / . / }( ) ( )0 75 3 9 10 1 48 104 6 2− −K K

where V< is its volume at 300 K. Calculate its expansion coefficient, α, at 320 K.
2D.3(b) The volume of a certain liquid varies with temperature as

V V T T= + × + ×<{ . . / . / }( ) ( )0 77 3 7 10 1 52 104 6 2− −K K

where V< is its volume at 298 K. Calculate its expansion coefficient, α, at 310 K.

2D.4(a) The isothermal compressibility of water at 293 K is 4.96 × 10−5 atm−1. 
Calculate the pressure that must be applied in order to increase its density by 
0.10 per cent.
2D.4(b) The isothermal compressibility of lead at 293 K is 2.21 × 10−6 atm−1. 
Calculate the pressure that must be applied in order to increase its density by 
0.10 per cent.

2D.5(a) Given that μ = 0.25 K atm−1 for nitrogen, calculate the value of its 
isothermal Joule–Thomson coefficient. Calculate the energy that must be 
supplied as heat to maintain constant temperature when 10.0 mol N2 flows 
through a throttle in an isothermal Joule–Thomson experiment and the 
pressure drop is 85 atm.
2D.5(b) Given that μ = 1.11 K atm−1 for carbon dioxide, calculate the value of 
its isothermal Joule–Thomson coefficient. Calculate the energy that must be 
supplied as heat to maintain constant temperature when 10.0 mol CO2 flows 
through a throttle in an isothermal Joule–Thomson experiment and the 
pressure drop is 75 atm.

Problems
2D.1‡ In 2006, the Intergovernmental Panel on Climate Change (IPCC) 
considered a global average temperature rise of 1.0–3.5 °C likely by the year 
2100, with 2.0 °C its best estimate. Predict the average rise in sea level due to 
thermal expansion of sea water based on temperature rises of 1.0 °C, 2.0 °C, 
and 3.5 °C given that the volume of the Earth’s oceans is 1.37 × 109 km3 and 
their surface area is 361 × 106 km2, and state the approximations which go into 
the estimates.

2D.2 The heat capacity ratio of a gas determines the speed of sound in it 
through the formula cs = (γ RT/M)1/2, where γ  = Cp/CV and M is the molar mass 
of the gas. Deduce an expression for the speed of sound in a perfect gas of 
(a) diatomic, (b) linear triatomic, (c) nonlinear triatomic molecules at high 
temperatures (with translation and rotation active). Estimate the speed of 
sound in air at 25 °C.

2D.3 Starting from the expression Cp – CV = T(∂p/∂T)V(∂V/∂T)p, use the 
appropriate relations between partial derivatives to show that

C C
T V T

V pp V
p

T
− =

∂ ∂
∂ ∂
( / )

( / )

2

 
Evaluate Cp – CV for a perfect gas.

2D.4 (a) Write expressions for dV and dp given that V is a function of p and T 
and p is a function of V and T. (b) Deduce expressions for d ln V and d ln p in 
terms of the expansion coefficient and the isothermal compressibility.

2D.5 Rearrange the van der Waals equation of state, p = nRT/(V – nb) – 
n2a/V 2, to give an expression for T as a function of p and V (with n constant). 
Calculate (∂T/∂p)V and confirm that (∂T/∂p)V = 1/(∂p/∂T)V . Go on to confirm 
Euler’s chain relation (Mathematical background 2).

2D.6 Calculate the isothermal compressibility and the expansion coefficient 
of a van der Waals gas (see Problem 2D.5). Show, using Euler’s chain relation 
(Mathematical background 2), that κTR = α(Vm – b).

2D.7 The speed of sound, cs, in a gas of molar mass M is related to the ratio of 
heat capacities γ  by cs = (γ RT/M)1/2. Show that cs = (γ p/ρ)1/2, where ρ is the 
mass density of the gas. Calculate the speed of sound in argon at 25 °C.

2D.8‡ A gas obeying the equation of state p(V – nb) = nRT is subjected to a 
Joule–Thomson expansion. Will the temperature increase, decrease, or remain 
the same?

2D.9 Use the fact that ( )/ /∂ ∂ =U V a VT m
2  for a van der Waals gas (Topic 1C) 

to show that μCp,m ≈ (2a/RT) – b by using the definition of μ and appropriate 
relations between partial derivatives. Hint: Use the approximation pVm ≈ RT 
when it is justifiable to do so.

2D.10‡ Concerns over the harmful effects of chlorofluorocarbons on 
stratospheric ozone have motivated a search for new refrigerants. One such 
alternative is 2,2-dichloro-1,1,1-trifluoroethane (refrigerant 123). Younglove 
and McLinden published a compendium of thermophysical properties of this 
substance (B.A. Younglove and M. McLinden, J. Phys. Chem. Ref. Data 23, 
7 (1994)), from which properties such as the Joule–Thomson coefficient μ 
can be computed. (a) Compute μ at 1.00 bar and 50 °C given that (∂H/∂p)T  =  
–3.29 × 103 J MPa−1 mol−1 and Cp,m = 110.0 J K−1 mol−1. (b) Compute the 
temperature change which would accompany adiabatic expansion of 2.0 mol 
of this refrigerant from 1.5 bar to 0.5 bar at 50 °C.

2D.11‡ Another alternative refrigerant (see preceding problem) is 
1,1,1,2-tetrafluoroethane (refrigerant HFC-134a). A compendium of 
thermophysical properties of this substance has been published (R. Tillner-
Roth and H.D. Baehr, J. Phys. Chem. Ref. Data 23, 657 (1994)) from which 
properties such as the Joule–Thomson coefficient μ can be computed. (a) 
Compute μ at 0.100 MPa and 300 K from the following data (all referring to 
300 K):

(The specific constant-pressure heat capacity is 0.7649 kJ K−1 kg−1.) (b) 
Compute μ at 1.00 MPa and 350 K from the following data (all referring to 
350 K):

(The specific constant-pressure heat capacity is 1.0392 kJ K−1 kg−1.)

p/MPa 0.80 1.00 1.2

Specific enthalpy/(kJ kg−1) 461.93 459.12 42B.15

p/MPa 0.080 0.100 0.12

Specific enthalpy/(kJ kg−1) 426.48 426.12 425.76
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108 2 The First Law

TOPIC 2E adiabatic changes

Discussion questions
2E.1 Why are adiabats steeper than isotherms? 2E.2 Why do heat capacities play a role in the expressions for adiabatic 

expansion?

Exercises
2E.1(a) Use the equipartition principle to estimate the values of γ  = Cp/CV 
for gaseous ammonia and methane. Do this calculation with and without 
the vibrational contribution to the energy. Which is closer to the expected 
experimental value at 25 °C?
2E.1(b) Use the equipartition principle to estimate the value of γ  = Cp/CV 
for carbon dioxide. Do this calculation with and without the vibrational 
contribution to the energy. Which is closer to the expected experimental 
value at 25 °C?

2E.2(a) Calculate the final temperature of a sample of argon of mass 12.0 g that 
is expanded reversibly and adiabatically from 1.0 dm3 at 273.15 K to 3.0 dm3.
2E.2(b) Calculate the final temperature of a sample of carbon dioxide of mass 
16.0 g that is expanded reversibly and adiabatically from 500 cm3 at 298.15 K 
to 2.00 dm3.

2E.3(a) A sample consisting of 1.0 mol of perfect gas molecules with  
CV = 20.8 J K−1 is initially at 4.25 atm and 300 K. It undergoes reversible 
adiabatic expansion until its pressure reaches 2.50 atm. Calculate the final 
volume and temperature and the work done.

2E.3(b) A sample consisting of 2.5 mol of perfect gas molecules with 
Cp,m = 20.8 J K−1 mol−1 is initially at 240 kPa and 325 K. It undergoes reversible 
adiabatic expansion until its pressure reaches 150 kPa. Calculate the final 
volume and temperature and the work done.

2E.4(a) A sample of carbon dioxide of mass 2.45 g at 27.0 °C is allowed to 
expand reversibly and adiabatically from 500 cm3 to 3.00 dm3. What is the 
work done by the gas?
2E.4(b) A sample of nitrogen of mass 3.12 g at 23.0 °C is allowed to expand 
reversibly and adiabatically from 400 cm3 to 2.00 dm3. What is the work done 
by the gas?

2E.5(a) Calculate the final pressure of a sample of carbon dioxide that expands 
reversibly and adiabatically from 67.4 kPa and 0.50 dm3 to a final volume of 
2.00 dm3. Take γ  = 1.4.
2E.5(b) Calculate the final pressure of a sample of water vapour that expands 
reversibly and adiabatically from 97.3 Torr and 400 cm3 to a final volume of 
5.0 dm3. Take γ  = 1.3.

Problem
2E.1 The constant-volume heat capacity of a gas can be measured by observing 
the decrease in temperature when it expands adiabatically and reversibly. The 
value of γ  = Cp/CV can be inferred if the decrease in pressure is also measured 
and the constant-pressure heat capacity deduced by combining the two values. 

A fluorocarbon gas was allowed to expand reversibly and adiabatically to 
twice its volume; as a result, the temperature fell from 298.15 K to 248.44 K 
and its pressure fell from 202.94 kPa to 81.840 kPa. Evaluate Cp.

Integrated activities
2.1 Give examples of state functions and discuss why they play a critical role in 
thermodynamics.

2.2 The thermochemical properties of hydrocarbons are commonly investigated 
by using molecular modelling methods. (a) Use software to predict ΔcH< values 
for the alkanes methane through pentane. To calculate ΔcH< values, estimate 
the standard enthalpy of formation of CnH2n+2(g) by performing semi-empirical 
calculations (for example, AM1 or PM3 methods) and use experimental 
standard enthalpy of formation values for CO2(g) and H2O(l). (b) Compare 
your estimated values with the experimental values of ΔcH< (Table 2C.4) 
and comment on the reliability of the molecular modelling method. (c) Test 
the extent to which the relation ΔcH< = constant × {(M/(g mol−1)}n holds and 
determine the numerical values of the constant and n.

2.3 Use mathematical software, a spreadsheet, or the Living graphs on the web 
site for this book to:

(a) Calculate the work of isothermal reversible expansion of 1.0 mol CO2(g) 
at 298 K from 1.0 m3 to 3.0 m3 on the basis that it obeys the van der Waals 
equation of state.
(b) Explore how the parameter γ  affects the dependence of the pressure on the 
volume. Does the pressure–volume dependence become stronger or weaker 
with increasing volume?
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Mathematical background 2 Multivariate calculus

A thermodynamic property of a system typically depends on 
a number of variables, such as the internal energy depending 
on the amount, volume, and temperature. To understand how 
these properties vary with the conditions we need to under-
stand how to manipulate their derivatives. This is the field of 
multivariate calculus, the calculus of several variables.

MB2.1 Partial derivatives
A partial derivative of a function of more than one variable, 
such as f(x,y), is the slope of the function with respect to one of 
the variables, all the other variables being held constant (Fig. 
MB2.1). Although a partial derivative shows how a function 
changes when one variable changes, it may be used to deter-
mine how the function changes when more than one variable 
changes by an infinitesimal amount. Thus, if f is a function of 
x and y, then when x and y change by dx and dy, respectively, f 
changes by

d d df
f
x

x
f
y

y
y x

= ∂
∂







+ ∂
∂







 
(MB2.1)

where the symbol ∂ (‘curly d’) is used (instead of d) to denote 
a partial derivative and the subscript on the parentheses indi-
cates which variable is being held constant. The quantity df is 
also called the differential of f. Successive partial derivatives 
may be taken in any order:
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(MB2.2)

In the following, z is a variable on which x and y depend (for 
example, x, y, and z might correspond to p, V, and T).

Relation 1. When x is changed at constant z:
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(MB2.3a)

Relation 2
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Relation 3
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(MB2.3c)

By combining Relations 2 and 3 we obtain the Euler chain 
relation:
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 euler chain relation  (MB2.4)

MB2.2 Exact differentials
The relation in eqn MB2.2 is the basis of a test for an exact dif-
ferential; that is, the test of whether

d d df g x y x h x y y= +( , ) ( , )  (MB2.5)

Brief illustration MB2.1 Partial derivatives

Suppose that f(x,y) = ax3y + by2 (the function plotted in Fig. 
MB2.1) then
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= +f
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ax y
f
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Then, when x and y undergo infinitesimal changes, f changes 
by

d 3 d 2 d2 3f ax y x ax by y= + +( )  

To verify that the order of taking the second partial derivative 
is irrelevant, we form
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f(x,y)

(∂f/∂y)x

(∂f/∂x)y

Figure MB2.1 A function of two variables, f(x,y), as depicted 
by the coloured surface and the two partial derivatives, 
(∂f/∂x)y and (∂f/∂y)x, the slope of the function parallel to 
the x- and y-axes, respectively. The function plotted here is 
f(x,y) = ax3y + by2 with a = 1 and b = –2.
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110 Mathematical background 2

Brief illustration MB2.2 Exact differentials

Suppose, instead of the form df = 3ax2ydx + (ax3 + 2by)dy in 
the previous Brief illustration, we were presented with the 
expression

d d df ax y x ax by y= + +3 22 2

g x y h x y( , ) ( , )� � �� ��
( )  

with ax2 in place of ax3 inside the second parentheses. To test 
whether this is an exact differential, we form
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These two expressions are not equal, so this form of df is not an 
exact differential and there is not a corresponding integrated 
function of the form f(x,y).

Brief illustration MB2.3 The reconstruction  
of an equation

We consider the differential df = 3ax2ydx + (ax3 + 2by)dy, which 
we know to be exact. Because (∂f/∂x)y = 3ax2y, we can integrate 
with respect to x with y held constant, to obtain

f f ax y x ay x x ax y k= = = = +∫ ∫ ∫d d d3 32 2 3

 

where the ‘constant’ of integration k may depend on y (which 
has been treated as a constant in the integration), but not on 
x. To find k(y), we note that (∂f/∂y)x = ax3 + 2by, and therefore
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Therefore

d
d

k
y

by= 2
 

from which it follows that k = by2 + constant. We have found, 
therefore, that

f x y ax y by( , )= + +3 2 constant  

which, apart from the constant, is the original function in the 
Brief illustration MB2.1. The value of the constant is pinned 
down by stating the boundary conditions; thus, if it is known 
that f(0,0) = 0, then the constant is zero.

has the form in eqn MB2.1. If it has that form, then g can be 
identified with (∂f/∂x)y and h can be identified with (∂f/∂y)x. 
Then eqn MB2.2 becomes

∂
∂







= ∂
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g
y

h
x

x y  
 test for exact differential  (MB2.6)

If df is exact, then we can do two things:

•	 From a knowledge of the functions g and h we can 
reconstruct the function f.

•	 Be confident that the integral of df between specified 
limits is independent of the path between those limits.

The first conclusion is best demonstrated with a specific 
example.

To demonstrate that the integral of df is independent of the 
path is now straight forward. Because df is a differential, its 
integral between the limits a and b is

df f b f a
a

b

= −∫ ( ) ( )
 

The value of the integral depends only on the values at the end 
points and is independent of the path between them. If df is 
not an exact differential, the function f does not exist, and this 
argument no longer holds. In such cases, the integral of df does 
depend on the path.

Brief illustration MB2.4 Path-dependent integration

Consider the inexact differential (the expression with ax2 in 
place of ax3 inside the second parentheses):

d 3 d 2 d2 2f ax y x ax by y= + +( )  

Suppose we integrate df from (0,0) to (2,2) along the two paths 
shown in Fig. MB2.2. Along Path 1,

x

y

(0,2)

(2,0)

Path 1Path 2

(2,2)y = 2

y = 0

x 
= 

2

x 
= 

0

Figure MB2.2  The two integration paths referred to in Brief 
illustration MB2.4.
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An inexact differential may sometimes be converted into an 
exact differential by multiplication by a factor known as an inte-
grating factor. A physical example is the integrating factor 1/T 
that converts the inexact differential dqrev into the exact differ-
ential dS in thermodynamics (Topic 3A).

Brief illustration MB2.5 An integrating factor

We have seen that the differential df = 3ax2ydx + (ax2 + 2by)
dy is inexact; the same is true when we set b = 0 and consider 
df = 3ax2ydx + ax2dy instead. Suppose we multiply this df by 
xmyn and write xmyndf = df ′, then we obtain

d d df ax y x ax y ym n m n′ = ++ + +3 2 1 2

g x y h x y( , ) ( , )� �� �� ��� ��

 

We evaluate the following two partial derivatives:
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For the new differential to be exact, these two partial deriva-
tives must be equal, so we write

3 1 22 1a n x y a m x ym n m n( ) ( )+ = ++ +
 

which simplifies to

3( 1) 2n x m+ = +  

The only solution that is independent of x is n = –1 and m = –2. 
It follows that

d 3 d df a x a y y′ = +( / )  

is an exact differential. By the procedure already illustrated, its 
integrated form is f ′(x,y) = 3ax + a ln y + constant.

d d d

d d

Path
f ax y x ax by y

a y b y

1

2

0 0

2 0
2

2 0

2 2

0

2

3 2

0 4 2

∫ ∫ ∫
∫

= + +

= + +

,

,

,

,

( )

yy a b= +∫ 8 4
0

2

 

whereas along Path 2,
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The two integrals are not the same.
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the second and third laws

Some things happen naturally, some things don’t. Some 
aspect of the world determines the spontaneous direction 
of change, the direction of change that does not require 
work to bring it about. An important point, though, is that 
throughout this text ‘spontaneous’ must be interpreted as a 
natural tendency that may or may not be realized in practice. 
Thermodynamics is silent on the rate at which a spontaneous 
change in fact occurs, and some spontaneous processes (such 
as the conversion of diamond to graphite) may be so slow 
that the tendency is never realized in practice whereas  others 
(such as the expansion of a gas into a vacuum) are almost 
instantaneous.

3A entropy

The direction of change is related to the distribution of energy 
and matter, and spontaneous changes are always accompanied 
by a dispersal of energy or matter. To quantify this concept we 
introduce the property called ‘entropy’, which is central to the 
formulation of the ‘Second Law of thermodynamics’. That law 
governs all spontaneous change.

3B the measurement of entropy

To make the Second Law quantitative, it is necessary to meas-
ure the entropy of a substance. We see that measurement, per-
haps with calorimetric methods, of the energy transferred as 
heat during a physical process or chemical reaction leads to 
determination of the entropy change and, consequently, the 
direction of spontaneous change. The discussion in this Topic 
also leads to the ‘Third Law of thermodynamics’, which helps 
us to understand the properties of matter at very low tempera-
tures and to set up an absolute measure of the entropy of a 
substance.

3C concentrating on the system

One problem with dealing with the entropy is that it requires 
separate calculations of the changes taking place in the system 
and the surroundings. Providing we are willing to impose cer-
tain restrictions on the system, that problem can be overcome 
by introducing the ‘Gibbs energy’. Indeed, most thermody-
namic calculations in chemistry focus on the change in Gibbs 
energy, not the direct measurement of the entropy change.

3D combining the First and 
second laws

Finally, we bring the First and Second Laws together and begin 
to see the considerable power of thermodynamics for account-
ing for the properties of matter.

What is the impact of this material?

The Second Law is at the heart of the operation of engines of 
all types, including devices resembling engines that are used 
to cool objects. See Impact I3.1 for an application to the tech-
nology of refrigeration. Entropy considerations are also impor-
tant in modern electronic materials for it permits a quantitative 
discussion of the concentration of impurities. See Impact I3.2 
for a note about how measurement of the entropy at low tem-
peratures gives insight into the purity of materials used as 
superconductors.

 To read more about the impact of this 
material, scan the QR code, or go to  
bcs.whfreeman.com/webpub/chemistry/
pchem10e/impact/pchem-3-1.html
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3A entropy

What determines the direction of spontaneous change? It is not 
the total energy of the isolated system. The First Law of ther-
modynamics states that energy is conserved in any process, and 
we cannot disregard that law now and say that everything tends 
towards a state of lower energy. When a change occurs, the total 
energy of an isolated system remains constant but it is parcelled 
out in different ways. Can it be, therefore, that the direction of 
change is related to the distribution of energy? We shall see that 
this idea is the key, and that spontaneous changes are always 
accompanied by a dispersal of energy or matter.

3A.1 The Second Law

We can begin to understand the role of the dispersal of energy 
and matter by thinking about a ball (the system) bouncing on 
a floor (the surroundings). The ball does not rise as high after 
each bounce because there are inelastic losses in the mater-
ials of the ball and floor. The kinetic energy of the ball’s over-
all motion is spread out into the energy of thermal motion of 
its particles and those of the floor that it hits. The direction of 
spontaneous change is towards a state in which the ball is at rest 
with all its energy dispersed into disorderly thermal motion of 
molecules in the air and of the atoms of the virtually infinite 
floor (Fig. 3A.1).

A ball resting on a warm floor has never been observed to 
start bouncing. For bouncing to begin, something rather spe-
cial would need to happen. In the first place, some of the ther-
mal motion of the atoms in the floor would have to accumulate 
in a single, small object, the ball. This accumulation requires 
a spontaneous localization of energy from the myriad vibra-
tions of the atoms of the floor into the much smaller number of 
atoms that constitute the ball (Fig. 3A.2). Furthermore, whereas 
the thermal motion is random, for the ball to move upwards its 
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➤➤ Why do you need to know this material?

Entropy is the concept on which almost all applications of 
thermodynamics in chemistry are based: it explains why 
some reactions take place and others do not.

➤➤ What is the key idea?
The change in entropy of a system can be calculated from 
the heat transferred to it reversibly.

➤➤ What do you need to know already?
You need to be familiar with the First-Law concepts of 
work, heat, and internal energy (Topic 2A). The Topic draws 
on the expression for work of expansion of a perfect gas 
(Topic 2A) and on the changes in volume and temperature 
that accompany the reversible adiabatic expansion of a 
perfect gas (Topic 2D).
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114 3 The Second and Third Laws

atoms must all move in the same direction. The localization of 
random, disorderly motion as concerted, ordered motion is so 
unlikely that we can dismiss it as virtually impossible.1

We appear to have found the signpost of spontaneous change: 
we look for the direction of change that leads to dispersal of the 
total energy of the isolated system. This principle accounts for 
the direction of change of the bouncing ball, because its energy 
is spread out as thermal motion of the atoms of the floor. The 
reverse process is not spontaneous because it is highly improb-
able that energy will become localized, leading to uniform 
motion of the ball’s atoms.

Matter also has a tendency to disperse in disorder. A gas 
does not contract spontaneously because to do so the random 
motion of its molecules, which spreads out the distribution of 

molecules throughout the container, would have to take them 
all into the same region of the container. The opposite change, 
spontaneous expansion, is a natural consequence of matter 
becoming more dispersed as the gas molecules occupy a larger 
volume.

The recognition of two classes of process, spontaneous and 
non-spontaneous, is summarized by the Second Law of ther-
modynamics. This law may be expressed in a variety of equiva-
lent ways. One statement was formulated by Kelvin:

No process is possible in which the sole result is the 
absorption of heat from a reservoir and its complete 
conversion into work.

For example, it has proved impossible to construct an engine 
like that shown in Fig. 3A.3, in which heat is drawn from a hot 
reservoir and completely converted into work. All real heat 
engines have both a hot source and a cold sink; some energy is 
always discarded into the cold sink as heat and not converted 
into work. The Kelvin statement is a generalization of the every-
day observation that we have already discussed, that a ball at 
rest on a surface has never been observed to leap spontaneously 
upwards. An upward leap of the ball would be equivalent to the 
conversion of heat from the surface into work. Another state-
ment of the Second Law is due to Rudolf Clausius (Fig. 3A.4):

Heat does not flow spontaneously from a cool body to a 
hotter body.

To achieve the transfer of heat to a hotter body, it is necessary to 
do work on the system, as in a refrigerator.

These two empirical observations turn out to be aspects of 
a single statement in which the Second Law is expressed in 
terms of a new state function, the entropy, S. We shall see that 
the entropy (which we shall define shortly, but is a measure 
of the energy and matter dispersed in a process) lets us assess 
whether one state is accessible from another by a spontaneous 
change:

The entropy of an isolated system increases in the course of 
a spontaneous change: ΔStot > 0

1 Concerted motion, but on a much smaller scale, is observed as Brownian 
motion, the jittering motion of small particles suspended in a liquid or gas.

Figure 3A.1 The direction of spontaneous change for a ball 
bouncing on a floor. On each bounce some of its energy 
is degraded into the thermal motion of the atoms of the 
floor, and that energy disperses. The reverse has never been 
observed to take place on a macroscopic scale.

(a) (b)

Figure 3A.2 The molecular interpretation of the irreversibility 
expressed by the Second Law. (a) A ball resting on a warm 
surface; the atoms are undergoing thermal motion (vibration, 
in this instance), as indicated by the arrows. (b) For the ball to 
fly upwards, some of the random vibrational motion would 
have to change into coordinated, directed motion. Such a 
conversion is highly improbable.

Hot source

Work
Heat

Flow of energy

Engine

Figure 3A.3 The Kelvin statement of the Second Law denies 
the possibility of the process illustrated here, in which heat is 
changed completely into work, there being no other change. 
The process is not in conflict with the First Law because energy 
is conserved.
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where Stot is the total entropy of the system and its surround-
ings. Thermodynamically irreversible processes (like cooling to 
the temperature of the surroundings and the free expansion of 
gases) are spontaneous processes, and hence must be accompa-
nied by an increase in total entropy.

In summary, the First Law uses the internal energy to identify 
permissible changes; the Second Law uses the entropy to identify 
the spontaneous changes among those permissible changes.

3A.2 The definition of entropy

To make progress, and to turn the Second Law into a quantita-
tively useful expression, we need to define and then calculate 
the entropy change accompanying various processes. There are 
two approaches, one classical and one molecular. They turn out 
to be equivalent, but each one enriches the other.

(a) The thermodynamic definition of entropy
The thermodynamic definition of entropy concentrates on 
the change in entropy, dS, that occurs as a result of a physical 
or chemical change (in general, as a result of a ‘process’). The 
definition is motivated by the idea that a change in the extent 
to which energy is dispersed depends on how much energy is 
transferred as heat. As explained in Topic 2A, heat stimulates 
random motion in the surroundings. On the other hand, work 
stimulates uniform motion of atoms in the surroundings and 
so does not change their entropy.

The thermodynamic definition of entropy is based on the 
expression

d d revS q
T=

 
Definition  entropy change  (3A.1)

For a measurable change between two states i and f,

∆S q
T=∫ d rev

i

f

 
(3A.2)

That is, to calculate the difference in entropy between any two 
states of a system, we find a reversible path between them, and 
integrate the energy supplied as heat at each stage of the path 
divided by the temperature at which heating occurs.

A note on good practice According to eqn 3A.1, when the 
energy transferred as heat is expressed in joules and the 
temperature is in kelvins, the units of entropy are joules per 
kelvin (J K−1). Entropy is an extensive property. Molar entropy, 
the entropy divided by the amount of substance, Sm = S/n, is 
expressed in joules per kelvin per mole (J K−1 mol−1). The units 
of entropy are the same as those of the gas constant, R, and 
molar heat capacities. Molar entropy is an intensive property.

Example 3A.1 Calculating the entropy change for the 
isothermal expansion of a perfect gas

Calculate the entropy change of a sample of perfect gas when it 
expands isothermally from a volume Vi to a volume Vf.

Method The definition of entropy instructs us to find the energy 
supplied as heat for a reversible path between the stated initial 
and final states regardless of the actual manner in which the pro-
cess takes place. A simplification is that the expansion is isother-
mal, so the temperature is a constant and may be taken outside 
the integral in eqn 3A.2. The energy absorbed as heat during a 
reversible isothermal expansion of a perfect gas can be calcu-
lated from ΔU = q + w and ΔU = 0, which implies that q = −w in 
general and therefore that qrev = −wrev for a reversible change. The 
work of reversible isothermal expansion is calculated in Topic 
2A. The change in molar entropy is calculated from ΔSm = ΔS/n.

Answer Because the temperature is constant, eqn 3A.2 
becomes

∆S T q q
T= =∫1 d rev
rev

i

f

From Topic 2A we know that

q w nRT V
Vrev rev

f

i
 ln= − =

It follows that

∆ ∆S nR V
V S R V

V= = ln and  ln f

i
m

f

i

Self-test 3A.1 Calculate the change in entropy when the pres-
sure of a fixed amount of perfect gas is changed isothermally 
from pi to pf. What is this change due to?

Answer: ΔS = nR ln(pi/pf); the change in volume when  
the gas is compressed or expands

Cold sink

Hot source

Figure 3A.4 The Clausius statement of the Second Law denies 
the possibility of the process illustrated here, in which energy 
as heat migrates from a cool source to a hot sink, there being 
no other change. The process is not in conflict with the First 
Law because energy is conserved.
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The definition in eqn 3A.1 is used to formulate an expression 
for the change in entropy of the surroundings, ΔSsur. Consider an 
infinitesimal transfer of heat dqsur to the surroundings. The sur-
roundings consist of a reservoir of constant volume, so the energy 
supplied to them by heating can be identified with the change 
in the internal energy of the surroundings, dUsur .2 The internal 
energy is a state function, and dUsur is an exact differential. These 
properties imply that dUsur is independent of how the change is 
brought about and in particular is independent of whether the 
process is reversible or irreversible. The same remarks therefore 
apply to dqsur, to which dUsur is equal. Therefore, we can adapt the 
definition in eqn 3A.1, delete the constraint ‘reversible’, and write

d
d drev,sur

sur

sur

sur
S

q
T

q
T= =

 
 entropy change of the surroundings  (3A.3a)

Furthermore, because the temperature of the surroundings is 
constant whatever the change, for a measurable change

∆S q
Tsur

sur

sur
=

 
(3A.3b)

That is, regardless of how the change is brought about in the 
system, reversibly or irreversibly, we can calculate the change of 
entropy of the surroundings by dividing the heat transferred by 
the temperature at which the transfer takes place.

Equation 3A.3 makes it very simple to calculate the changes 
in entropy of the surroundings that accompany any process. 
For instance, for any adiabatic change, qsur = 0, so

∆Ssur =0   adiabatic change  (3A.4)

This expression is true however the change takes place, revers-
ibly or irreversibly, provided no local hot spots are formed in 
the surroundings. That is, it is true so long as the surroundings 
remain in internal equilibrium. If hot spots do form, then the 
localized energy may subsequently disperse spontaneously and 
hence generate more entropy.

We are now in a position to see how the definition of 
entropy is consistent with Kelvin’s and Clausius’s statements 
of the Second Law. In the arrangement shown in Fig. 3A.3, the 
entropy of the hot source is reduced as energy leaves it as heat, 
but no other change in entropy occurs (the transfer of energy 
as work does not result in the production of entropy); conse-
quently the arrangement does not produce work. In Clausius 
version, the entropy of the cold source in Fig 3A.4 decreases 
when a certain quantity of energy leaves it as heat, but when 
that heat enters the hot sink the rise in entropy is not as great. 
Therefore, overall there is a decrease in entropy: the process is 
not spontaneous.

(b) The statistical definition of entropy
The entry point into the molecular interpretation of the Second 
Law of thermodynamics is Boltzmann’s insight, first mentioned 
in Foundations B, that an atom or molecule can possess only 
certain values of the energy, called its ‘energy levels’. The con-
tinuous thermal agitation that molecules experience at T > 0 
ensures that they are distributed over the available energy lev-
els. Boltzmann also made the link between the distribution of 
molecules over energy levels and the entropy. He proposed that 
the entropy of a system is given by

S k= lnW   boltzmann formula for the entropy  (3A.5)

where k = 1.381 × 10−23 J K−1 and W is the number of micro-
states, the number of ways in which the molecules of a system 
can be arranged while keeping the total energy constant. Each 
microstate lasts only for an instant and corresponds to a cer-
tain distribution of molecules over the available energy levels. 
When we measure the properties of a system, we are measur-
ing an average taken over the many microstates the system can 
occupy under the conditions of the experiment. The concept 
of the number of microstates makes quantitative the ill-defined 
qualitative concepts of ‘disorder’ and ‘the dispersal of matter 
and energy’ that are used widely to introduce the concept of 
entropy: a more disorderly distribution of matter and a greater 
dispersal of energy corresponds to a greater number of micro-
states associated with the same total energy. This point is dis-
cussed in much greater detail in Topic 15E.

Equation 3A.5 is known as the Boltzmann formula and the 
entropy calculated from it is sometimes called the statistical 

Brief illustration 3A.1 The entropy change of the 
surroundings

To calculate the entropy change in the surroundings when 
1.00 mol H2O(l) is formed from its elements under standard 
conditions at 298 K, we use ΔH< = −286 kJ from Table 2C.2. 
The energy released as heat is supplied to the surroundings, 
now regarded as being at constant pressure, so qsur = +286 kJ. 
Therefore,

∆Ssur
Jmol

JK=
×

=+
−

−2 86 10
298 960

5 1
1.

K  

2 Alternatively, the surroundings can be regarded as being at constant 
pressure, in which case we could equate dqsur to dHsur.

This strongly exothermic reaction results in an increase in the 
entropy of the surroundings as energy is released as heat into 
them.

Self-test 3A.2 Calculate the entropy change in the surround-
ings when 1.00 mol N2O4(g) is formed from 2.00 mol NO2(g) 
under standard conditions at 298 K.

Answer: −192 J K−1
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entropy. We see that if W  = 1, which corresponds to one micro-
state (only one way of achieving a given energy, all molecules 
in exactly the same state), then S = 0 because ln 1 = 0. However, 
if the system can exist in more than one microstate, then W  > 1 
and S > 0. If the molecules in the system have access to a greater 
number of energy levels, then there may be more ways of 
achieving a given total energy; that is, there are more micro-
states for a given total energy, W is greater, and the entropy is 
greater than when fewer states are accessible. Therefore, the 
statistical view of entropy summarized by the Boltzmann for-
mula is consistent with our previous statement that the entropy 
is related to the dispersal of energy and matter. In particular, for 
a gas of particles in a container, the energy levels become closer 
together as the container expands (Fig. 3A.5; this is a conclu-
sion from quantum theory that is verified in Topic 8A). As a 
result, more microstates become possible, W  increases, and the 
entropy increases, exactly as we inferred from the thermody-
namic definition of entropy.

The molecular interpretation of entropy advanced by 
Boltzmann also suggests the thermodynamic definition given 

by eqn 3A.1. To appreciate this point, consider that molecules 
in a system at high temperature can occupy a large number 
of the available energy levels, so a small additional transfer 
of energy as heat will lead to a relatively small change in the 
number of accessible energy levels. Consequently, the number 
of microstates does not increase appreciably and neither does 
the entropy of the system. In contrast, the molecules in a sys-
tem at low temperature have access to far fewer energy levels 
(at T = 0, only the lowest level is accessible), and the transfer of 
the same quantity of energy by heating will increase the num-
ber of accessible energy levels and the number of microstates 
significantly. Hence, the change in entropy upon heating will be 
greater when the energy is transferred to a cold body than when 
it is transferred to a hot body. This argument suggests that the 
change in entropy for a given transfer of energy as heat should 
be greater at low temperatures than at high, as in eqn 3A.1.

3A.3 The entropy as a state function

Entropy is a state function. To prove this assertion, we need to 
show that the integral of dS is independent of path. To do so, 
it is sufficient to prove that the integral of eqn 3A.1 around an 
arbitrary cycle is zero, for that guarantees that the entropy is 
the same at the initial and final states of the system regardless 
of the path taken between them (Fig. 3A.6). That is, we need to 
show that

d d revS q
T= =∫∫ 0  

(3A.6)

where the symbol ∫  denotes integration around a closed path. 
There are three steps in the argument:

1. First, to show that eqn 3A.6 is true for a special cycle 
(a ‘Carnot cycle’) involving a perfect gas.

Brief illustration 3A.2 The Boltzmann formula

Suppose that each diatomic molecule in a solid sample can 
be arranged in either of two orientations and that there are 
N = 6.022 × 1023 molecules in the sample (that is, 1 mol of mol-
ecules). Then W  = 2N and the entropy of the sample is

S k NkN= = = × × ×
=

− −

−

ln2 ln2 6 22 1 1 381 1 JK ln2
5 76JK

23 23 1

1

( . ) ( . )
.

0 0 0

Self-test 3A.3 What is the molar entropy of a similar system 
in which each molecule can be arranged in four different 
orientations?

Answer: 11.5 J K−1 mol−1

Figure 3A.5 When a box expands, the energy levels move 
closer together and more become accessible to the molecules. 
As a result the number of ways of achieving the same energy 
(the value of W  ) increases, and so therefore does the entropy.

Pr
es

su
re

, p

Volume, V

Initial state

Final state

Figure 3A.6 In a thermodynamic cycle, the overall change in a 
state function (from the initial state to the final state and then 
back to the initial state again) is zero.
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118 3 The Second and Third Laws

2. Then to show that the result is true whatever the working 
substance.

3. Finally, to show that the result is true for any cycle.

(a) The Carnot cycle
A Carnot cycle, which is named after the French engineer Sadi 
Carnot, consists of four reversible stages (Fig. 3A.7):

1. Reversible isothermal expansion from A to B at Th; the 
entropy change is qh/Th, where qh is the energy supplied 
to the system as heat from the hot source.

2. Reversible adiabatic expansion from B to C. No energy 
leaves the system as heat, so the change in entropy is 
zero. In the course of this expansion, the temperature 
falls from Th to Tc, the temperature of the cold sink.

3. Reversible isothermal compression from C to D at Tc. 
Energy is released as heat to the cold sink; the change in 
entropy of the system is qc/Tc; in this expression qc is 
negative.

4. Reversible adiabatic compression from D to A. No energy 
enters the system as heat, so the change in entropy is 
zero. The temperature rises from Tc to Th.

The total change in entropy around the cycle is the sum of the 
changes in each of these four steps:

d h

h

c

c
S q

T
q
T= +∫

However, we show in the following Justification that for a 
 perfect gas

q
q

T
T

h

c

h

c
= −

 
(3A.7)

Substitution of this relation into the preceding equation gives 
zero on the right, which is what we wanted to prove.

Justification 3A.1 Heating accompanying reversible 
adiabatic expansion

This Justification is based on two features of the cycle. One fea-
ture is that the two temperatures Th and Tc in eqn 3A.7 lie on 
the same adiabat in Fig. 3A.7. The second feature is that the 
energy transferred as heat during the two isothermal stages 
are

q nRT V
V q nRT V

Vh h
B

A
c c

D

C
= =ln ln

 

We now show that the two volume ratios are related in a very 
simple way. From the relation between temperature and volume 
for reversible adiabatic processes (VTc = constant, Topic 2D):

V T V T V T V Tc c c
A h D c C c B h

c= =  
Multiplication of the first of these expressions by the second 
gives

V V T T V V T Tc c c c
A C h c D B h c=  

which, on cancellation of the temperatures, simplifies to

V
V

V
V

D

C

A

B
=

 

With this relation established, we can write

q nRT V
V nRT V

V nRT V
Vc c

D

C
c

A

B
c

B

A
= = = −ln ln ln

 

and therefore

q
q

nRT V V
nRT V V

T
T

h

c

h B A

B A

h

c
= − = −ln( / )

ln( / )c  

as in eqn 3A.7. For clarification, note that qh is negative (heat 
is withdrawn from the hot source) and qc is positive (heat is 
deposited in the cold sink), so their ratio is negative.

Brief illustration 3A.3 The Carnot cycle

The Carnot cycle can be regarded as a representation of the 
changes taking place in an actual idealized engine, where 
heat is converted into work. (However, other cycles are closer 
approximations to real engines.) In an engine running in 
accord with the Carnot cycle, 100 J of energy is withdrawn 
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su
re

, p

Volume, V

Adiabat

AdiabatIsotherm

Isotherm
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Figure 3A.7 The basic structure of a Carnot cycle. In Step 1, 
there is isothermal reversible expansion at the temperature 
Th. Step 2 is a reversible adiabatic expansion in which the 
temperature falls from Th to Tc. In Step 3 there is an isothermal 
reversible compression at Tc, and that isothermal step is 
followed by an adiabatic reversible compression, which 
restores the system to its initial state.
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In the second step we need to show that eqn 3A.6 applies 
to any material, not just a perfect gas (which is why, in antici-
pation, we have not labelled it in blue). We begin this step of 
the argument by introducing the efficiency, η (eta), of a heat 
engine:

η = =work performed
heat absorbed from hot source h

w
q  

We are using modulus signs to avoid complications with signs: 
all efficiencies are positive numbers. The definition implies that 
the greater the work output for a given supply of heat from the 
hot reservoir, the greater is the efficiency of the engine. We can 
express the definition in terms of the heat transactions alone, 
because (as shown in Fig. 3A.8), the energy supplied as work by 
the engine is the difference between the energy supplied as heat 
by the hot reservoir and returned to the cold reservoir:

η =
−

= −
q q

q
q
q

h c

h

c

h
1

 
(3A.9)

It then follows from eqn 3A.7 written as |qc|/|qh| = Tc/Th (see the 
concluding remark in Justification 3A.1) that

η = −1 T
T

c

h  
 Carnot efficiency  (3A.10)

Now we are ready to generalize this conclusion. The Second 
Law of thermodynamics implies that all reversible engines have 
the same efficiency regardless of their construction. To see the 
truth of this statement, suppose two reversible engines are cou-
pled together and run between the same two reservoirs (Fig. 
3A.9). The working substances and details of construction of 
the two engines are entirely arbitrary. Initially, suppose that 
engine A is more efficient than engine B, and that we choose 
a setting of the controls that causes engine B to acquire energy 
as heat qc from the cold reservoir and to release a certain 

from the hot source (qh = −100 J) at 500 K and some is used 
to do work, with the remainder deposited in the cold sink at 
300 K. According to eqn 3A.7, the amount of heat deposited is

q q T
T
c

c h
h

 J
K
K  J=− × = − − × =+( )100

300
500 60

 

That means that 40 J was used to do work.

Self-test 3A.4 How much work can be extracted when the tem-
perature of the hot source is increased to 800 K?

Answer: 62 J

Definition of 
efficiency (3A.8)

Brief illustration 3A.4 Thermal efficiency

A certain power station operates with superheated steam 
at 300 °C (Th = 573 K) and discharges the waste heat into the 
environment at 20 °C (Tc = 293 K). The theoretical efficiency is 
therefore

η = − =1 293
573 0 489 48 9 K

 K  or  per cent. , .
 

In practice, there are other losses due to mechanical friction 
and the fact that the turbines do not operate reversibly.

Self-test 3A.5 At what temperature of the hot source would the 
theoretical efficiency reach 80 per cent?

Answer: 1465 K

Cold sink

Hot source

qc

qh

Th

Tc

20

15

5
w

Figure 3A.8 Suppose an energy qh (for example, 20 kJ) is 
supplied to the engine and qc is lost from the engine (for 
example, qc = −15 kJ) and discarded into the cold reservoir. 
The work done by the engine is equal to qh + qc (for example, 
20 kJ + (−15 kJ) = 5 kJ). The efficiency is the work done divided by 
the energy supplied as heat from the hot source.

Cold sink

qc
qc

qh qh’

Tc

ww

q

B

Cold sink

qc
qc

qh qh’

Tc

w

Hot source Th

A B A

qqh – qh’

w

Hot source Th

A

(a) (b)

Figure 3A.9 (a) The demonstration of the equivalence of the 
efficiencies of all reversible engines working between the same 
thermal reservoirs is based on the flow of energy represented in 
this diagram. (b) The net effect of the processes is the conversion 
of heat into work without there being a need for a cold sink: this 
is contrary to the Kelvin statement of the Second Law.
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quantity of energy as heat into the hot reservoir. However, 
because engine A is more efficient than engine B, not all the 
work that A produces is needed for this process, and the differ-
ence can be used to do work. The net result is that the cold 
reser voir is unchanged, work has been done, and the hot reser-
voir has lost a certain amount of energy. This outcome is con-
trary to the Kelvin statement of the Second Law, because some 
heat has been converted directly into work. In molecular terms, 
the random thermal motion of the hot reservoir has been con-
verted into ordered motion characteristic of work. Because 
the conclusion is contrary to experience, the initial assump-
tion that engines A and B can have different efficiencies must 
be false. It follows that the relation between the heat transfers 
and the temperatures must also be independent of the work-
ing material, and therefore that eqn 3A.10 is always true for any 
substance involved in a Carnot cycle.

For the final step in the argument, we note that any reversible 
cycle can be approximated as a collection of Carnot cycles and 
the integral around an arbitrary path is the sum of the integrals 
around each of the Carnot cycles (Fig. 3A.10). This approxi-
mation becomes exact as the individual cycles are allowed to 
become infinitesimal. The entropy change around each indi-
vidual cycle is zero (as demonstrated above), so the sum of 
entropy changes for all the cycles is zero. However, in the sum, 
the entropy change along any individual path is cancelled by 
the entropy change along the path it shares with the neighbour-
ing cycle. Therefore, all the entropy changes cancel except for 
those along the perimeter of the overall cycle. That is,

all

rev

perimeter

rev∑ ∑= =q
T

q
T 0

 

In the limit of infinitesimal cycles, the non-cancelling edges of 
the Carnot cycles match the overall cycle exactly, and the sum 

becomes an integral. Equation 3A.6 then follows immediately. 
This result implies that dS is an exact differential and therefore 
that S is a state function.

(b) The thermodynamic temperature
Suppose we have an engine that is working reversibly between a 
hot source at a temperature Th and a cold sink at a temperature 
T, then we know from eqn 3A.10 that

T T= −( )1 hη  (3A.11)

This expression enabled Kelvin to define the thermody-
namic temperature scale in terms of the efficiency of a heat 
engine: we construct an engine in which the hot source is at 
a known temperature and the cold sink is the object of inter-
est. The temperature of the latter can then be inferred from 
the measured efficiency of the engine. The Kelvin scale 
(which is a special case of the thermodynamic temperature 
scale) is currently defined by using water at its triple point 
as the notional hot source and defining that temperature as 
273.16 K exactly.3

(c) The Clausius inequality

We now show that the definition of entropy is consistent with 
the Second Law. To begin, we recall that more work is done 
when a change is reversible than when it is irreversible. That 
is, |dwrev| ≥ |dw|. Because dw and dwrev are negative when 
energy leaves the system as work, this expression is the same 
as −dwrev ≥ −dw, and hence dw − dwrev ≥ 0. Because the internal 
energy is a state function, its change is the same for irrevers-
ible and reversible paths between the same two states, so we can 
also write:

d d d d drev revU q w q w= + = +  

Brief illustration 3A.5 The thermodynamic temperature

A heat engine was constructed that used a hot source at the 
triple point temperature of water and used as a cold source a 
cooled liquid. The efficiency of the engine was measured as 
0.400. The temperature of the liquid is therefore

T = − × =( . ) ( . )1 4 273 16K 164K0 00  
Self-test 3A.6 What temperature would be reported for the hot 
source if a thermodynamic efficiency of 0.500 was measured 
when the cold sink was at 273.16 K?

Answer: 546 K

3 Discussions are in progress to replace this definition by another that is 
independent of the specification of a particular substance.

Pr
es

su
re

, p

Volume, V

Figure 3A.10 A general cycle can be divided into small Carnot 
cycles. The match is exact in the limit of infinitesimally small 
cycles. Paths cancel in the interior of the collection, and only 
the perimeter, an increasingly good approximation to the 
true cycle as the number of cycles increases, survives. Because 
the entropy change around every individual cycle is zero, the 
integral of the entropy around the perimeter is zero too.
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3A Entropy  121

It follows that dqrev − dq = dw − dwrev ≥ 0, or dqrev ≥ dq, and there-
fore that dqrev/T ≥ dq/T. Now we use the thermodynamic defini-
tion of the entropy (eqn 3A.1; dS = dqrev/T) to write

d dS q
T≥

 
 clausius inequality  (3A.12)

This expression is the Clausius inequality. It proves to be of 
great importance for the discussion of the spontaneity of chem-
ical reactions, as is shown in Topic 3C.

We now suppose that the system is isolated from its sur-
roundings, so that dq = 0. The Clausius inequality implies that

dS ≥0  (3A.13)

and we conclude that in an isolated system the entropy cannot 
decrease when a spontaneous change occurs. This statement cap-
tures the content of the Second Law.

3A.4 Entropy changes accompanying 
specific processes

We now see how to calculate the entropy changes that accom-
pany a variety of basic processes.

(a) Expansion
We established in Example 3A.1 that the change in entropy of a 
perfect gas that expands isothermally from Vi to Vf is

∆S nR V
V=  ln f

i  

Because S is a state function, the value of ΔS of the system is 
independent of the path between the initial and final states, 
so this expression applies whether the change of state occurs 
reversibly or irreversibly. The logarithmic dependence of 
entropy on volume is illustrated in Fig. 3A.12.

The total change in entropy, however, does depend on how 
the expansion takes place. For any process the energy lost as heat 
from the system is acquired by the surroundings, so dqsur = −dq. 
For a reversible change we use the expression in Example 3A.1 
(qrev = nRT ln(Vf/Vi)); consequently, from eqn 3A.3b

∆S q
T

q
T nR V

Vsur
sur rev f

i
 ln= = − = −

 
(3A.15)

entropy change for the 
isothermal expansion of 
a perfect gas

(3A.14)

1 10 20 30
0

1

2

3

4

ΔS
/n

R

Vf/Vi

Figure 3A.12 The logarithmic increase in entropy of a perfect 
gas as it expands isothermally.

Brief illustration 3A.6 The Clausius inequality

Consider the transfer of energy as heat from one system—the 
hot source—at a temperature Th to another system—the cold 
sink—at a temperature Tc (Fig. 3A.11).

When |dq| leaves the hot source (so dqh < 0), the Clausius 
inequality implies that dS ≥ dqh/Th. When |dq| enters the cold 
sink the Clausius inequality implies that dS ≥ dqc/Tc (with 
dqc > 0). Overall, therefore,

d d dh

h

c

c
S q

T
q
T≥ +

 
However, dqh = −dqc, so

d d d dc

h

c

c c h
cS q

T
q
T T T q≥ − + = −





1 1

 
which is positive (because dqc > 0 and Th ≥ Tc). Hence, cooling 
(the transfer of heat from hot to cold) is spontaneous, as we 
know from experience.

Self-test 3A.7 What is the change in entropy when 1.0 J of 
energy as heat transfers from a large block of iron at 30 °C to 
another large block at 20 °C?

Answer: +0.1 mJ K−1

Cold sink

Hot source

dq

Th

Tc
S

S dS = –|dq|/Th

dS = +|dq|/Tc

Figure 3A.11 When energy leaves a hot reservoir as heat, 
the entropy of the reservoir decreases. When the same 
quantity of energy enters a cooler reservoir, the entropy 
increases by a larger amount. Hence, overall there is an 
increase in entropy and the process is spontaneous. Relative 
changes in entropy are indicated by the sizes of the arrows.
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122 3 The Second and Third Laws

This change is the negative of the change in the system, so we 
can conclude that ΔStot = 0, which is what we should expect 
for a reversible process. If, on the other hand, the isothermal 
expansion occurs freely (w = 0), then q = 0 (because ΔU = 0). 
Consequently, ΔSsur = 0, and the total entropy change is given 
by eqn 3A.17 itself:

∆S nR V
Vtot

f

i
 ln=

 
(3A.16)

In this case, ΔStot > 0, as we expect for an irreversible process.

(b) Phase transitions
The degree of dispersal of matter and energy changes when a 
substance freezes or boils as a result of changes in the order with 
which the molecules pack together and the extent to which the 
energy is localized or dispersed. Therefore, we should expect 
the transition to be accompanied by a change in entropy. For 
example, when a substance vaporizes, a compact condensed 
phase changes into a widely dispersed gas and we can expect 
the entropy of the substance to increase considerably. The 
entropy of a solid also increases when it melts to a liquid and 
when that liquid turns into a gas.

Consider a system and its surroundings at the normal tran-
sition temperature, Ttrs, the temperature at which two phases 
are in equilibrium at 1 atm. This temperature is 0 °C (273 K) 
for ice in equilibrium with liquid water at 1 atm, and 100 °C 
(373 K) for water in equilibrium with its vapour at 1 atm. At 
the transition temperature, any transfer of energy as heat 
between the system and its surroundings is reversible because 
the two phases in the system are in equilibrium. Because at 

constant pressure q = ΔtrsH, the change in molar entropy of the 
system is4

∆ ∆
trs

trs

trs
S H

T=
 

If the phase transition is exothermic (ΔtrsH < 0, as in freezing or 
condensing), then the entropy change of the system is negative. 
This decrease in entropy is consistent with the increased order 
of a solid compared with a liquid and with the increased order 
of a liquid compared with a gas. The change in entropy of the 
surroundings, however, is positive because energy is released 
as heat into them, and at the transition temperature the total 
change in entropy is zero. If the transition is endothermic 
(ΔtrsH > 0, as in melting and vaporization), then the entropy 
change of the system is positive, which is consistent with dis-
persal of matter in the system. The entropy of the surroundings 
decreases by the same amount, and overall the total change in 
entropy is zero.

Table 3A.1 lists some experimental entropies of transi-
tion. Table 3A.2 lists in more detail the standard entropies 
of vaporization of several liquids at their boiling points. An 
interesting feature of the data is that a wide range of liquids 
give approximately the same standard entropy of vaporiza-
tion (about 85 J K−1 mol−1): this empirical observation is called 

Brief illustration 3A.7 Entropy of expansion

When the volume of any perfect gas is doubled at any constant 
temperature, Vf/Vi = 2 and the change in molar entropy of the 
system is

∆Sm
1 1 1 18 3145JK mol ln 2 5 76JK mol= × = +− − − −( . ) .  

If the change is carried out reversibly, the change in entropy 
of the surroundings is –5.76 J K−1 mol−1 (the ‘per mole’ mean-
ing per mole of gas molecules in the sample). The total change 
in entropy is 0. If the expansion is free, the change in molar 
entropy of the gas is still +5.76 J K−1 mol−1, but that of the sur-
roundings is 0, and the total change is +5.76 J K−1 mol−1.

Self-test 3A.8 Calculate the change in entropy when a per-
fect gas expands isothermally to 10 times its initial volume (a) 
reversibly, (b) irreversibly against zero pressure.

Answer: (a) ΔSm = +19 J K−1 mol−1, ΔSsurr = −19 J K−1 mol−1, ΔStot = 0;
(b) ΔSm = +19 J K−1 mol−1, ΔSsurr = 0, ΔStot = +19 J K−1 mol−1

4 According to Topic 2C, ΔtrsH is an enthalpy change per mole of sub-
stance; so ΔtrsS is also a molar quantity.

Table 3A.1* Standard entropies (and temperatures) of phase 
transitions, ΔtrsS</(J K−1 mol−1)

Fusion (at Tf) Vaporization (at Tb)

Argon, Ar 14.17 (at 83.8 K) 74.53 (at 87.3 K)

Benzene, C6H6 38.00 (at 279 K) 87.19 (at 353 K)

Water, H2O 22.00 (at 273.15 K) 109.0 (at 373.15 K)

Helium, He 4.8 (at 8 K and 30 bar) 19.9 (at 4.22 K)

* More values are given in the Resource section.

Table 3A.2* The standard enthalpies and entropies of 
vaporization of liquids at their normal boiling points

ΔvapH</(kJ mol−1) θb/°C ΔvapS</
(J K−1 mol−1)

Benzene 30.8 80.1 87.2

Carbon tetrachloride 30 76.7 85.8

Cyclohexane 30.1 80.7 85.1

Hydrogen sulfide 18.7 –60.4 87.9

Methane 8.18 –161.5 73.2

Water 40.7 100.0 109.1

* More values are given in the Resource section.

At the 
transition 
temperature

entropy 
of phase 
transition

(3A.17)
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3A Entropy  123

Trouton’s rule. The explanation of Trouton’s rule is that a 
comparable change in volume occurs when any liquid evapor-
ates and becomes a gas. Hence, all liquids can be expected 
to have similar standard entropies of vaporization. Liquids 
that show significant deviations from Trouton’s rule do so on 
account of strong molecular interactions that result in a par-
tial ordering of their molecules. As a result, there is a greater 
change in disorder when the liquid turns into a vapour than 
for a fully disordered liquid. An example is water, where the 
large entropy of vaporization reflects the presence of struc-
ture arising from hydrogen-bonding in the liquid. Hydrogen 
bonds tend to organize the molecules in the liquid so that they 
are less random than, for example, the molecules in  liquid 
hydrogen sulfide (in which there is no hydrogen bonding). 
Methane has an unusually low entropy of vaporization. A part 
of the reason is that the entropy of the gas itself is slightly low 
(186 J K−1 mol−1 at 298 K); the entropy of N2 under the same 
conditions is 192 J K−1 mol−1. As explained in Topic 12B, fewer 
rotational states are accessible at room temperature for mol-
ecules with low moments of inertia (like CH4) than for mole-
cules with relatively high moments of inertia (like N2), so their 
molar entropy is slightly lower.

(c) Heating

Equation 3A.2 can be used to calculate the entropy of a system 
at a temperature Tf from a knowledge of its entropy at another 
temperature Ti and the heat supplied to change its temperature 
from one value to the other:

S T S T q
TT

T
( ) ( )f i

revd
i

f

= +∫  
(3A.18)

We shall be particularly interested in the entropy change when 
the system is subjected to constant pressure (such as from the 
atmosphere) during the heating. Then, from the definition of 
constant-pressure heat capacity (eqn 2B.5, Cp = (∂H/∂T)p, writ-
ten as dqrev = CpdT):

S T S T
C T
T
p

T

T
( ) ( )f i

d
i

f

= +∫  

The same expression applies at constant volume, but with Cp 
replaced by CV. When Cp is independent of temperature in the 
temperature range of interest, it can be taken outside the inte-
gral and we obtain

S T S T C T
T S T C T

Tp p
T

T
( ) ( ) ( ) lnf i i

f

i

d
i

f

= + = +∫  
(3A.20)

with a similar expression for heating at constant volume. The 
logarithmic dependence of entropy on temperature is illustrated 
in Fig. 3A.13.

Constant 
pressure

entropy variation 
with temperature (3A.19)

Brief illustration 3A.8 Trouton’s rule

There is no hydrogen bonding in liquid bromine and Br2 is a 
heavy molecule that is unlikely to display unusual behaviour 
in the gas phase, so it is safe to use Trouton’s rule. To predict 
the standard molar enthalpy of vaporization of bromine given 
that it boils at 59.2 °C, we use the rule in the form

∆vap b
1 185JK molH T< = × − −( )

Substitution of the data then gives

∆vap
1 1 3 1

1

332 4K 85 JK mol 2 8 1 J mol
28kJmol

H < = × = + ×
= +

− − −

−

( . ) ( ) . 0

The experimental value is +29.45 kJ mol−1.

Self-test 3A.9 Predict the enthalpy of vaporization of ethane 
from its boiling point, −88.6 °C.

Answer: 16 kJ mol−1

Brief illustration 3A.9 Entropy change on heating

The molar constant-volume heat capacity of water at 298 K is 
75.3 J K−1 mol−1. The change in molar entropy when it is heated 
from 20 °C (293 K) to 50 °C (323 K), supposing the heat cap-
acity to be constant in that range, is therefore

∆S S Sm m m

1

K K JK mol
K
K

7 34JK

= − = ×

= +

( ) ( )

.

( . ) ln323 293 75 3
323
293

1 1− −

− mmol 1−

Self-test 3A.10 What is the change when further heating takes 
the temperature from 50 °C to 80 °C?

Answer: +5.99 J K−1 mol−1

1 10 20 30
0
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ΔS
/n

R

Tf/Ti

1

2

3

4

Figure 3A.13 The logarithmic increase in entropy of a 
substance as it is heated at constant volume. Different curves 
correspond to different values of the heat capacity (which is 
assumed constant over the temperature range) expressed as 
Cm/R.
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124 3 The Second and Third Laws

(d) Composite processes

In many cases, more than one parameter changes. For instance, 
it might be the case that both the volume and the temperature 
of a gas are different in the initial and final states. Because S is a 
state function, we are free to choose the most convenient path 
from the initial state to the final state, such as reversible isother-
mal expansion to the final volume, followed by reversible heat-
ing at constant volume to the final temperature. Then the total 
entropy change is the sum of the two contributions.

Example 3A.2 Calculating the entropy change for a 
composite process

Calculate the entropy change when argon at 25 °C and 1.00 
bar in a container of volume 0.500 dm3 is allowed to expand to 
1.000 dm3 and is simultaneously heated to 100 °C.

Method As remarked in the text, use reversible isothermal 
expansion to the final volume, followed by reversible heat-
ing at constant volume to the final temperature. The entropy 
change in the first step is given by eqn 3A.16 and that of the 
second step, provided CV is independent of temperature, by 
eqn 3A.20 (with CV in place of Cp). In each case we need to 
know n, the amount of gas molecules, and can calculate it 
from the perfect gas equation and the data for the initial state 
from n = piVi/RTi. The molar heat capacity at constant volume 
is given by the equipartition theorem as 3

2R . (The equiparti-
tion theorem is reliable for monatomic gases: for others and 
in general use experimental data like that in Tables 2C.1 and 
2C.2 of the Resource section, converting to the value at con-
stant volume by using the relation Cp,m − CV,m = R.)

Answer From eqn 3A.16 the entropy change in the isothermal 
expansion from Vi to Vf is

∆S nR V
V( ) lnStep f

i
1 =

 

From eqn 3A.20, the entropy change in the second step, from 
Ti to Tf at constant volume, is

∆S nC T
T nR T

T nR T
TV( ) ln ln ln,

/

Step m
f

i

f

i

f

i
2 3

2

3 2

= = = 



  

The overall entropy change of the system, the sum of these two 
changes, is

∆S nR V
V nR T

T nR V
V

T
T= + 





= 





ln ln ln
/ /

f

i

f

i

f

i

f

i

3 2 3 2

 

(We have used ln x + ln y = ln xy.) Now we substitute n = piVi/RTi 
and obtain

∆S pV
T

V
V

T
T

i i

i
= 





ln
/

f

i

f

i

3 2

 

At this point we substitute the data:

∆S =
× × ×

× 





−( . ) ( . )
ln .

.
1 00 10 0 500 10

298
1 000
0 500

373
298

5 3 3Pa m
K 

= + −

3 2

10 173

/

. JK  

A note on good practice It is sensible to proceed as gener-
ally as possible before inserting numerical data so that, if 
required, the formula can be used for other data and to 
avoid rounding errors.

Self-test 3A.11 Calculate the entropy change when the same ini-
tial sample is compressed to 0.0500 dm3 and cooled to −25 °C.

Answer: −0.44 J K−1

Checklist of concepts

☐ 1. The entropy acts as a signpost of spontaneous change.
☐ 2. Entropy change is defined in terms of heat transactions 

(the Clausius definition).
☐ 3. The Boltzmann formula defines absolute entro-

pies in terms of the number of ways of achieving a 
configuration.

☐ 4. The Carnot cycle is used to prove that entropy is a state 
function.

☐ 5. The efficiency of a heat engine is the basis of the defini-
tion of the thermodynamic temperature scale and one 
realization, the Kelvin scale.

☐ 6. The Clausius inequality is used to show that the 
entropy increases in a spontaneous change and there-
fore that the Clausius definition is consistent with the 
Second Law.

☐ 7. The entropy of a perfect gas increases when it expands 
isothermally.

☐ 8. The change in entropy of a substance accompanying a 
change of state at its transition temperature is calcu-
lated from its enthalpy of transition.

☐ 9. The increase in entropy when a substance is heated is 
expressed in terms of its heat capacity.
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Checklist of equations

Property Equation Comment Equation number

Thermodynamic entropy dS = dqrev/T Definition 3A.1

Entropy change of surroundings ΔSsur = qsur/Tsur 3A.3b

Boltzmann formula S = k ln W Definition 3A.5

Carnot efficiency η = 1 − Tc/Th Reversible processes 3A.10

Thermodynamic temperature T = (1 − η)Th 3A.11

Clausius inequality dS ≥ dq/T 3A.12

Entropy of isothermal expansion ΔS = nR ln(Vf/Vi) Perfect gas 3A.14

Entropy of transition ΔtrsS = ΔtrsH/Ttrs At the transition temperature 3A.17

Variation of the entropy with 
temperature

S(Tf) = S(Ti) + C ln(Tf/Ti) The heat capacity, C, is independent of temperature  
and no phase transitions occur

3A.20
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3B the measurement of entropy

The entropy of a substance can be determined in two ways. 
One, which is the subject of this Topic, is to make calorimetric 
measurements of the heat required to raise the temperature of 
a sample from T = 0 to the temperature of interest. The other, 

which is described in Topic 15E, is to use calculated parame-
ters or spectroscopic data and to calculate the entropy by using 
Boltzmann’s statistical definition.

3B.1 The calorimetric measurement 
of entropy

It is established in Topic 3A that the entropy of a system at a 
temperature T is related to its entropy at T = 0 by measuring its 
heat capacity Cp at different temperatures and evaluating the 
integral in eqn 3A.19 ( ( ) ( ) / )S T S T C T T

T

T
pf i

i

f d= + ∫ . The entropy 
of transition (ΔtrsH/Ttrs) for each phase transition between T = 0 
and the temperature of interest must then be included in the 
overall sum. For example, if a substance melts at Tf and boils 
at Tb, then its molar entropy above its boiling temperature is 
given by

S S
C T

T TT pT

m m
m s

d
f
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( , ),= +∫0
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(3B.1)

All the properties required, except Sm(0), can be measured 
calor imetrically, and the integrals can be evaluated either 
graphically or, as is now more usual, by fitting a polynomial to 
the data and integrating the polynomial analytically. The former 
procedure is illustrated in Fig. 3B.1: the area under the curve of 
Cp,m/T against T is the integral required. Provided all measure-
ments are made at 1 bar on a pure material, the final value is 
the standard entropy, S<(T) and, on division by the amount 
of substance n, its standard molar entropy, S S TT nm

< <( ) ( )/ .=  
Because dT/T = d ln T, an alternative procedure is to evaluate 
the area under a plot of Cp,m against ln T.

Contents

3b.1 The calorimetric measurement of entropy 126
brief illustration 3b.1: the standard molar entropy 127
example 3b.1: calculating the entropy at low 
temperatures 127

3b.2 The Third Law 127
(a) The Nernst heat theorem 127

brief illustration 3b.2: the nernst heat theorem 128
example 3b.2: estimating a residual entropy 128

(b) Third-Law entropies 129
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brief illustration 3b.4: absolute and relative ion 
entropies 130

Checklist of concepts 130
Checklist of equations 130

➤➤ Why do you need to know this material?

For entropy to be a quantitatively useful concept it is 
important to be able to measure it: the calorimetric 
procedure is described here. The discussion also introduces 
the Third Law of thermodynamics, which has important 
implications for the measurement of entropies and (as 
shown in later Topics) the attainment of absolute zero.

➤➤ What is the key idea?
The entropy of a perfectly crystalline solid is zero at T = 0.

➤➤ What do you need to know already?
You need to be familiar with the expression for the 
temperature dependence of entropy and how entropies 
of transition are calculated (Topic 3A). The discussion of 
residual entropy draws on the Boltzmann formula for the 
entropy (Topic 3A).
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One problem with the determination of entropy is the dif-
ficulty of measuring heat capacities near T = 0. There are good 
theoretical grounds for assuming that the heat cap acity of 
a non-metallic solid is proportional to T3 when T is low (see 
Topic 7A), and this dependence is the basis of the Debye 
extrapolation. In this method, Cp is measured down to as low a 
temperature as possible and a curve of the form aT3 is fitted to 
the data. That fit determines the value of a, and the expression 
Cp,m = aT3 is assumed valid down to T = 0.

3B.2 The Third Law

We now address the problem of the value of S(0). At T = 0, all 
energy of thermal motion has been quenched, and in a perfect 
crystal all the atoms or ions are in a regular, uniform array. The 
localization of matter and the absence of thermal motion sug-
gest that such materials also have zero entropy. This conclu-
sion is consistent with the molecular interpretation of entropy, 
because S = 0 if there is only one way of arranging the molecules 
and only one microstate is accessible (all molecules occupy the 
ground state, W  = 1).

(a) The Nernst heat theorem
The experimental observation that turns out to be consistent 
with the view that the entropy of a regular array of molecules is 
zero at T = 0 is summarized by the Nernst heat theorem:

The entropy change accompanying any physical or 
chemical transformation approaches zero as the 
temperature approaches zero: ΔS → 0 as T → 0 provided 
all the substances involved are perfectly ordered.

Example 3B.1  Calculating the entropy at low 
temperatures

The molar constant–pressure heat capacity of a certain solid 
at 4.2 K is 0.43 J K−1 mol−1. What is its molar entropy at that 
temperature?

Method Because the temperature is so low, we can assume 
that the heat capacity varies with temperature as aT3, in which 
case we can use eqn 3A.19 (quoted in the opening paragraph 
of 3B.1) to calculate the entropy at a temperature T in terms of 
the entropy at T = 0 and the constant a. When the integration 
is carried out, it turns out that the result can be expressed in 
terms of the heat capacity at the temperature T, so the data can 
be used directly to calculate the entropy.

Answer The integration required is

S T S aT
T T S a T T

S aT S C

T T

m m m

m m

d d( ) ( ) ( )

( ) ( )

= + = +

= + = +
∫ ∫0 0

0 0

3

0

2

0
1
3

3 1
3 pp T, ( )m  

from which it follows that

S Sm m
1 14 2K 14JK mol( . ) ( ) .= + − −0 0

Self-test 3B.1 For metals, there is also a contribution to the 
heat capacity from the electrons which is linearly proportional 
to T when the temperature is low. Find its contribution to the 
entropy at low temperatures.

Answer: S(T) = S(0) + Cp(T)
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Figure 3B.1 The variation of Cp/T with the temperature 
for a sample is used to evaluate the entropy, which is 
equal to the area beneath the upper curve up to the 
corresponding temperature, plus the entropy of each phase 
transition passed.

Brief illustration 3B.1  The standard molar entropy

The standard molar entropy of nitrogen gas at 25 °C has been 
calculated from the following data:

Therefore, Sm
<(298.15 K) = Sm(0) + 192.1 J K−1 mol−1.

*This extrapolation is explained immediately following.

Sm
</(J K−1 mol−1)

Debye extrapolation* 1.92

Integration, from 10 K to 35.61 K 25.25

Phase transition at 35.61 K 6.43

Integration, from 35.61 K to 63.14 K 23.38

Fusion at 63.14 K 11.42

Integration, from 63.14 K to 77.32 K 11.41

Vaporization at 77.32 K 72.13

Integration, from 77.32 K to 298.15 K 39.20

Correction for gas imperfection 0.92

Total 192.06
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128 3 The Second and Third Laws

It follows from the Nernst theorem, that if we arbitrarily 
ascribe the value zero to the entropies of elements in their per-
fect crystalline form at T = 0, then all perfect crystalline com-
pounds also have zero entropy at T = 0 (because the change in 
entropy that accompanies the formation of the compounds, 
like the entropy of all transformations at that temperature, 
is zero). This conclusion is summarized by the Third Law of 
thermodynamics:

The entropy of all perfect crystalline substances is zero 
at T = 0.  third law of thermodynamics 

As far as thermodynamics is concerned, choosing this common 
value as zero is a matter of convenience. The molecular inter-
pretation of entropy, however, justifies the value S = 0 at T = 0 
because then, as we have remarked, W  = 1.

In certain cases W   > 1 at T = 0 and therefore S(0) > 0. This is 
the case if there is no energy advantage in adopting a particular 
orientation even at absolute zero. For instance, for a diatomic 
molecule AB there may be almost no energy difference between 
the arrangements …AB AB AB… and …BA AB BA…, so W  > 1 
even at T = 0. If S(0) > 0 we say that the substance has a residual 
entropy. Ice has a residual entropy of 3.4 J K−1 mol−1. It stems from 
the arrangement of the hydrogen bonds between neighbouring 
water molecules: a given O atom has two short OeH bonds and 

two long O…H bonds to its neighbours, but there is a degree of 
randomness in which two bonds are short and which two are long.

Brief illustration 3B.2  The Nernst heat theorem

Consider the entropy of the transition between orthorhombic 
sulfur, α, and monoclinic sulfur, β, which can be calculated 
from the transition enthalpy (−402 J mol−1) at the transition 
temperature (369 K):

∆ trs m m
Jmol

K
JK mol

S S S= − =
−

= −

−

− −

( ) ( )

.

β α
402

369
1 09

1

1 1
 

The two individual entropies can also be determined by 
measuring the heat capacities from T = 0 up to T = 369 K. It is 
found that Sm(α) = Sm(α,0) + 37 J K−1 mol−1 and Sm(β) = Sm(β,0) 
+ 38 J K−1 mol−1. These two values imply that at the transition 
temperature

∆ trs m m
1 11JK molS S S= − = − − −( , ) ( , )α β0 0  

On comparing this value with the one above, we conclude that 
Sm(α,0) − Sm(β,0) ≈ 0, in accord with the theorem.

Self-test 3B.2 Two forms of a metallic solid (see Self-test 3B.1) 
undergo a phase transition at Ttrs, which is close to T = 0. What 
is the enthalpy of transition at Ttrs in terms of the heat capaci-
ties of the two polymorphs?

Answer: ΔtrsH(Ttrs) = TtrsΔCp(Ttrs)

Example 3B.2  Estimating a residual entropy

Estimate the residual entropy of ice by taking into account the 
distribution of hydrogen bonds and chemical bonds about the 
oxygen atom of one H2O molecule. The experimental value is 
3.4 J K−1 mol−1.

Method Focus on the O atom, and consider the number of 
ways that that O atom can have two short (chemical) bonds 
and two long hydrogen bonds to its four neighbours. Refer to 
Fig. 3B.2.

Answer Suppose each H atom can lie either close to or far from 
its ‘parent’ O atom, as depicted in Fig. 3B.2. The total number 
of these conceivable arrangements in a sample that contains 
N H2O molecules and therefore 2N H atoms is 22N. Now con-
sider a single central O atom. The total number of possible 
arrangements of locations of H atoms around the central O 
atom of one H2O molecule is 24 = 16. Of these 16 possibilities, 
only 6 correspond to two short and two long bonds. That is, 
only 6

16
3
8=  of all possible arrangements are possible, and for 

N such molecules only (3/8)N of all possible arrangements are 
possible. Therefore, the total number of allowed arrangements 
in the crystal is 22N(3/8)N = 4N(3/8)N = (3/2)N. If we suppose that 
all these arrangements are energetically identical, the residual 
entropy is

S k Nk nN k nR
N

( )0 3
2

3
2

3
2

3
2= ( ) = = = ln  ln  ln  lnA

(a)

(b)

Figure 3B.2 The model of ice showing (a) the local structure 
of an oxygen atom and (b) the array of chemical and 
hydrogen bonds used to calculate the residual entropy of ice.
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3B The measurement of entropy  129

(b) Third-Law entropies
Entropies reported on the basis that S(0) = 0 are called Third-
Law entropies (and commonly just ‘entropies’). When the sub-
stance is in its standard state at the temperature T, the standard 
(Third-Law) entropy is denoted S<(T). A list of values at 298 K 
is given in Table 3B.1.

The standard reaction entropy, ΔrS<, is defined, like the 
standard reaction enthalpy in Topic 2C, as the difference 
between the molar entropies of the pure, separated products 
and the pure, separated reactants, all substances being in their 
standard states at the specified temperature:

∆r
Products

m
Reactants

mS S S< < <= −∑ ∑ 

 
In this expression, each term is weighted by the appropriate 
stoichiometric coefficient. A more sophisticated approach is to 
adopt the notation introduced in Topic 2C and to write

∆r
J

J m JS S< <=∑ ( )
 

(3B.2b)

where the νJ are signed (+ for products, − for reactants) stoichi-
ometric numbers. Standard reaction entropies are likely to be 
positive if there is a net formation of gas in a reaction, and are 
likely to be negative if there is a net consumption of gas.

Just as in the discussion of enthalpies in Topic 2C, where it is 
acknowledged that solutions of cations cannot be prepared in 
the absence of anions, the standard molar entropies of ions in 
solution are reported on a scale in which the standard entropy 
of the H+ ions in water is taken as zero at all temperatures:

S< ( , )H aq+ = 0  Convention  Ions in solution  (3B.3)

The values based on this choice are listed in Table 2C.5 in the 
Resource section.1 Because the entropies of ions in water are val-
ues relative to the hydrogen ion in water, they may be either 
positive or negative. A positive entropy means that an ion has a 
higher molar entropy than H+ in water and a negative entropy 
means that the ion has a lower molar entropy than H+ in water. 
Ion entropies vary as expected on the basis that they are related 
to the degree to which the ions order the water molecules 
around them in the solution. Small, highly charged ions induce 
local structure in the surrounding water, and the disorder of 

and the residual molar entropy would be

S Rm
1 1 ln 3 4JK mol( ) .0 3

2= = − −

in accord with the experimental value.

Self-test 3B.3 What would be the residual molar entropy of 
HCF3 on the assumption that each molecule could take up one 
of four tetrahedral orientations in a crystal?

Answer: 11.5 J K−1 mol−1

Brief illustration 3B.3 The standard reaction entropy

To  c a lc u l a t e  t he  s t a nd a rd  re a c t ion  e nt r op y  o f 
H g O g H O(l)2 2 2( ) ( )+ →1

2  at 298 K, we use the data in Table 2C.5 
of the Resource section to write

∆r m 2 m 2 m 2

1 1

H O  l H  g O  g
69 9JK mol 1

S S S S< < < <= − +

= −− −

( , ) { ( , ) ( , )}
.

1
2

33 7 2 5 1 JK mol
163 4JK mol

1 1

1 1

0 01
2. ( . )

.
+{ }

= −

− −

− −

The negative value is consistent with the conversion of two 
gases to a compact liquid.

A note on good practice Do not make the mistake of set-
ting the standard molar entropies of elements equal to 
zero: they have nonzero values (provided T > 0), as we 
have already discussed.

Self-test 3B.4 Calculate the standard reaction entropy for the 
combustion of methane to carbon dioxide and liquid water at 
298 K.

Answer: −243 J K−1 mol−1

Definition 
standard 
reaction 
entropy

 (3B.2a)

1 In terms of the language introduced in Topic 5A, the entropies of ions 
in solution are actually partial molar entropies, for their values include the 
consequences of their presence on the organization of the solvent molecules 
around them.

Table 3B.1* Standard Third-Law entropies at 298 K,  
Sm

</(J K−1 mol−1)

Sm
</(J K−1 mol−1)

Solids

Graphite, C(s) 5.7

Diamond, C(s) 2.4

Sucrose, C12H22O11(s) 360.2

Iodine, I2(s) 116.1

Liquids

Benzene, C6H6(l) 173.3

Water, H2O(l) 69.9

Mercury, Hg(l) 76.0

Gases

Methane, CH4(g) 186.3

Carbon dioxide, CO2(g) 213.7

Hydrogen, H2(g) 130.7

Helium, He(g) 126.2

Ammonia, NH3(g) 192.4

* More values are given in the Resource section.
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130 3 The Second and Third Laws

the solution is decreased more than in the case of large, singly 
charged ions. The absolute, Third-Law standard molar entropy 
of the proton in water can be estimated by proposing a model 
of the structure it induces, and there is some agreement on the 
value −21 J K−1 mol−1. The negative value indicates that the pro-
ton induces order in the solvent.

Brief illustration 3B.4  Absolute and relative ion 
entropies

The standard molar entropy of Cl−(aq) is +57 J K−1 mol−1 and 
that of Mg2+(aq) is –128 J K−1 mol−1. That is, the partial molar 

entropy of Cl−(aq) is 57 J K−1 mol−1 higher than that of the pro-
ton in water (presumably because it induces less local struc-
ture in the surrounding water), whereas that of Mg2+(aq) is 
128 J K−1 mol−1 lower (presumably because its higher charge 
induces more local structure in the surrounding water).

Self-test 3B.5 Estimate the absolute values of the partial molar 
entropies of these ions.

Answer: +36 J K−1 mol−1, −149 J K−1 mol−1

Checklist of concepts

☐ 1. Entropies are determined calorimetrically by measur-
ing the heat capacity of a substance from low tempera-
tures up to the temperature of interest.

☐ 2. The Debye-T3 law is used to estimate heat capacities of 
non-metallic solids close to T = 0.

☐ 3. The Nernst heat theorem states that the entropy change 
accompanying any physical or chemical transformation 
approaches zero as the temperature approaches zero: 
ΔS → 0 as T → 0 provided all the substances involved 
are perfectly ordered.

☐ 4. The Third Law of thermodynamics states that the 
entropy of all perfect crystalline substances is zero at 
T = 0.

☐ 5. The residual entropy of a solid is the entropy arising 
from disorder that persists at T = 0.

☐ 6. Third-Law entropies are entropies based on S(0) = 0.
☐ 7. The standard entropies of ions in solution are based on 

setting S<(H+,aq) = 0 at all temperatures.
☐ 8. The standard reaction entropy, ΔrS< , is the difference 

between the molar entropies of the pure, separated 
products and the pure, separated reactants, all sub-
stances being in their standard states.

Checklist of equations

Property Equation Comment Equation number

Standard molar entropy from 
calorimetry

See eqn 3B.1 Sum of contributions from T = 0 to temperature of 
interest

3B.1

Standard reaction entropy
∆

∆

r

Products

m

Reactants

m

r

J

J m J

S S S

S S

< <

< <

<= −

=

∑ ∑
∑

 

 ( )

ν: (positive) stoichiometric coefficients; 
νJ: (signed) stoichiometric numbers

3B.2
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3C concentrating on the system

Entropy is the basic concept for discussing the direction of natu-
ral change, but to use it we have to analyse changes in both the 
system and its surroundings. In Topic 3A it is shown that it is 
always very simple to calculate the entropy change in the sur-
roundings (from ΔSsur = qsur/Tsur); here we see that it is possible to 
devise a simple method for taking that contribution into account 
automatically. This approach focuses our attention on the system 
and simplifies discussions. Moreover, it is the foundation of all 
the applications of chemical thermodynamics that follow.

3C.1 The Helmholtz and Gibbs 
energies

Consider a system in thermal equilibrium with its surround-
ings at a temperature T. When a change in the system occurs 
and there is a transfer of energy as heat between the system 
and the surroundings, the Clausius inequality (eqn 3A.12, 
dS ≥ dq/T) reads

d dS q
T− ≥0

 
(3C.1)

We can develop this inequality in two ways according to the 
conditions (of constant volume or constant pressure) under 
which the process occurs.

(a) Criteria of spontaneity
First, consider heating at constant volume. Then, in the absence 
of additional (non-expansion) work, we can write dqV = dU; 
consequently

d dS U
T− ≥0

 
(3C.2)

Contents

3c.1 The Helmholtz and Gibbs energies 131
(a) Criteria of spontaneity 131

brief illustration 3c.1: spontaneous changes  
at constant volume 132
brief illustration 3c.2: the spontaneity  
of endothermic reactions 132

(b) Some remarks on the Helmholtz energy 133
brief illustration 3c.3: spontaneous change  
at constant volume 133

(c) Maximum work 133
example 3c.1: calculating the maximum  
available work 134

(d) Some remarks on the Gibbs energy 134
(e) Maximum non-expansion work 135

example 3c.2: calculating the maximum  
non–expansion work of a reaction 135

3c.2 Standard molar Gibbs energies 136
(a) Gibbs energies of formation 136

brief illustration 3c.4: the standard reaction  
gibbs energy 136
brief illustration 3c.5: gibbs energies of  
formation of ions 136

(b) The Born equation 137
brief illustration 3c.6: the born equation 137

Checklist of concepts 138
Checklist of equations 138

➤➤ What do you need to know already?
This Topic develops the Clausius inequality (Topic 3A) and 
draws on information about standard states and reaction 
enthalpy introduced in Topic 2C. The derivation of the 
Born equation uses information about the energy of one 
electric charge in the field of another (Foundations B).

➤➤ Why do you need to know this material?
Most processes of interest in chemistry occur at constant 
temperature and pressure. Under these conditions, 
thermodynamic processes are discussed in terms of the 
Gibbs energy, which is introduced in this Topic. The 
Gibbs energy is the foundation of the discussion of phase 
equilibria, chemical equilibrium, and bioenergetics.

➤➤ What is the key idea?
The Gibbs energy is a signpost of spontaneous change at 
constant temperature and pressure, and is equal to the 
maximum non-expansion work that a system can do.
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132 3  The Second and Third Laws

The importance of the inequality in this form is that it expresses 
the criterion for spontaneous change solely in terms of the state 
functions of the system. The inequality is easily rearranged into

T S U Vd d    (constant  no additional work)≥ ,  (3C.3)

Because T > 0, at either constant internal energy (dU = 0) or 
constant entropy (dS = 0) this expression becomes, respectively,

d dS UU V S V, ,≥ ≤0 0  (3C.4)

where the subscripts indicate the constant conditions.
Equation 3C.4 expresses the criteria for spontaneous change 

in terms of properties relating to the system. The first inequality 
states that, in a system at constant volume and constant internal 
energy (such as an isolated system), the entropy increases in a 
spontaneous change. That statement is essentially the content  
of the Second Law. The second inequality is less obvious, for it 
says that if the entropy and volume of the system are constant, 
then the internal energy must decrease in a spontaneous change. 
Do not interpret this criterion as a tendency of the system to 
sink to lower energy. It is a disguised statement about entropy 
and should be interpreted as implying that if the entropy of the 
system is unchanged, then there must be an increase in entropy 
of the surroundings, which can be achieved only if the energy of 
the system decreases as energy flows out as heat.

When energy is transferred as heat at constant pressure, 
and there is no work other than expansion work, we can write 
dqp = dH and obtain

T S H pd d     (constant  no additional work)≥ ,  (3C.5)

At either constant enthalpy or constant entropy this inequality 
becomes, respectively,

d      dS HH p S p, ,≥ ≤0 0  (3C.6)

The interpretations of these inequalities are similar to those of 
eqn 3C.4. The entropy of the system at constant pressure must 
increase if its enthalpy remains constant (for there can then be 
no change in entropy of the surroundings). Alternatively, the 
enthalpy must decrease if the entropy of the system is constant, 
for then it is essential to have an increase in entropy of the 
surroundings.

Because eqns 3C.4 and 3C.6 have the forms dU − TdS ≤ 0 and 
dH − TdS ≤ 0, respectively, they can be expressed more simply 
by introducing two more thermodynamic quantities. One is the 
Helmholtz energy, A, which is defined as

A U TS= −  Definition  helmholtz energy  (3C.7)

The other is the Gibbs energy, G:

G H TS= −  Definition  gibbs energy  (3C.8)

All the symbols in these two definitions refer to the system.
When the state of the system changes at constant tempera-

ture, the two properties change as follows:

( )a  d d d     (b) d d dA U T S G H T S= − = −  (3C.9)

When we introduce eqns 3C.4 and 3C.6, respectively, we obtain 
the criteria of spontaneous change as

( ) , ,a  d      (b) dA GT V T p≤ ≤0 0  

These inequalities, especially the second, are the most impor-
tant conclusions from thermodynamics for chemistry. They are 
developed in subsequent sections, Topics, and chapters.

Brief illustration 3C.2 The spontaneity of endothermic 
reactions

The existence of spontaneous endothermic reactions provides 
an illustration of the role of G. In such reactions, H increases, 
the system rises spontaneously to states of higher enthalpy, 
and dH > 0. Because the reaction is spontaneous we know that 
dG < 0 despite dH > 0; it follows that the entropy of the system 
increases so much that TdS outweighs dH in dG = dH − TdS. 
Endothermic reactions are therefore driven by the increase 
of entropy of the system, and this entropy change overcomes 
the reduction of entropy brought about in the surroundings 
by the inflow of heat into the system (dSsur = −dH/T at constant 
pressure).

Self-test 3C.2 Why are so many exothermic reactions 
spontaneous?

Answer: With dH < 0, it is common for  
dG < 0 unless TdS is strongly negative.

criteria of spontaneous 
change  (3C.10)

Brief illustration 3C.1 Spontaneous changes at constant 
volume

A concrete example of the criterion dSU,V ≥ 0 is the diffusion of 
a solute B through a solvent A that form an ideal solution (in 
the sense of Topic 5B, in which AA, BB, and AB interactions 
are identical). There is no change in internal energy or volume 

of the system or the surroundings as B spreads into A, but the 
process is spontaneous.

Self-test 3C.1 Invent an example of the criterion dUS,V ≤ 0.
Answer: A phase change in which one perfectly ordered phase changes 

into another of lower energy and equal density at T = 0
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(b) Some remarks on the Helmholtz energy
A change in a system at constant temperature and volume is 
spontaneous if dAT,V ≤ 0. That is, a change under these con-
ditions is spontaneous if it corresponds to a decrease in the 
Helmholtz energy. Such systems move spontaneously towards 
states of lower A if a path is available. The criterion of equilib-
rium, when neither the forward nor reverse process has a ten-
dency to occur, is

dAT V, = 0  (3C.11)

The expressions dA = dU − TdS and dA < 0 are sometimes inter-
preted as follows. A negative value of dA is favoured by a nega-
tive value of dU and a positive value of TdS. This observation 
suggests that the tendency of a system to move to lower A is 
due to its tendency to move towards states of lower internal 
energy and higher entropy. However, this interpretation is false 
because the tendency to lower A is solely a tendency towards 
states of greater overall entropy. Systems change spontaneously 
if in doing so the total entropy of the system and its surround-
ings increases, not because they tend to lower internal energy. 
The form of dA may give the impression that systems favour 
lower energy, but that is misleading: dS is the entropy change 
of the system, −dU/T is the entropy change of the surroundings 
(when the volume of the system is constant), and their total 
tends to a maximum.

(c) Maximum work
It turns out, as we show in the following Justification, that A 
carries a greater significance than being simply a signpost of 
spontaneous change: the change in the Helmholtz function is 
equal to the maximum work accompanying a process at constant 
temperature:

d dmaxw A=  Constant temperature  maximum work  (3C.12)

As a result, A is sometimes called the ‘maximum work func-
tion’, or the ‘work function’.1

When a macroscopic isothermal change takes place in the 
system, eqn 3C.12 becomes

w Amax = ∆  Constant temperature  maximum work  (3C.13)

with

∆ ∆ ∆A U T S= −   constant temperature  (3C.14)

This expression shows that, depending on the sign of TΔS, not 
all the change in internal energy may be available for doing 
work. If the change occurs with a decrease in entropy (of the 
system), in which case TΔS < 0, then the right-hand side of this 
equation is not as negative as ΔU itself, and consequently the 
maximum work is less than ΔU. For the change to be spontane-
ous, some of the energy must escape as heat in order to generate 
enough entropy in the surroundings to overcome the reduc-
tion in entropy in the system (Fig. 3C.1). In this case, Nature is 
demanding a tax on the internal energy as it is converted into 
work. This is the origin of the alternative name ‘Helmholtz free 
energy’ for A, because ΔA is that part of the change in internal 
energy that we are free to use to do work.

Further insight into the relation between the work that a sys-
tem can do and the Helmholtz energy is to recall that work is 

Brief illustration 3C.3 Spontaneous change at constant 
volume

A bouncing ball comes to rest. The spontaneous direction of 
change is one in which the energy of the ball (potential at the 
top of its bounce, kinetic when it strikes the f loor) spreads 
out into the surroundings on each bounce. When the ball is 
still, the energy of the universe is the same as initially, but the 
energy of the ball is dispersed over the surroundings.

Self-test 3C.3 What other spontaneous similar mechanical 
processes have a similar explanation?

Answer: One example: A pendulum coming to rest through friction.

Justification 3C.1 Maximum work

To demonstrate that maximum work can be expressed in 
terms of the changes in Helmholtz energy, we combine the 
Clausius inequality dS ≥ dq/T in the form TdS ≥ dq with the 
First Law, dU = dq + dw, and obtain

d d dU T S w≤ +

dU is smaller than the term of the right because dq has been 
replaced by TdS, which in general is larger than dq. This 
expression rearranges to

d d dw U T S≥ −

It follows that the most negative value of dw, and therefore the 
maximum energy that can be obtained from the system as 
work, is given by

d d dmaxw U T S= −

and that this work is done only when the path is traversed 
reversibly (because then the equality applies). Because at con-
stant temperature dA = dU − TdS, we conclude that dwmax = dA.

1 Arbeit is the German word for work; hence the symbol A.
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134 3  The Second and Third Laws

energy transferred to the surroundings as the uniform motion 
of atoms. We can interpret the expression A = U − TS as show-
ing that A is the total internal energy of the system, U, less a 
contribution that is stored as energy of thermal motion (the 
quantity TS). Because energy stored in random thermal motion 
cannot be used to achieve uniform motion in the surroundings, 
only the part of U that is not stored in that way, the quantity 
U − TS, is available for conversion into work.

If the change occurs with an increase of entropy of the system 
(in which case TΔS > 0), the right–hand side of the equation is 
more negative than ΔU. In this case, the maximum work that 
can be obtained from the system is greater than ΔU. The expla-
nation of this apparent paradox is that the system is not isolated 
and energy may flow in as heat as work is done. Because the 
entropy of the system increases, we can afford a reduction of 

the entropy of the surroundings yet still have, overall, a sponta-
neous process. Therefore, some energy (no more than the value 
of TΔS) may leave the surroundings as heat and contribute to 
the work the change is generating (Fig. 3C.2). Nature is now 
providing a tax refund.

(d) Some remarks on the Gibbs energy
The Gibbs energy (the ‘free energy’) is more common in 
chemistry than the Helmholtz energy because, at least in lab-
oratory chemistry, we are usually more interested in changes 
occurring at constant pressure than at constant volume. The 
criterion dGT,p ≤ 0 carries over into chemistry as the obser-
vation that, at constant temperature and pressure, chemical 
reactions are spontaneous in the direction of decreasing Gibbs 
energy. Therefore, if we want to know whether a reaction is 

Example 3C.1 Calculating the maximum available work

When 1.000 mol C6H12O6 (glucose) is oxidized to  carbon  
dioxide and water at 25 °C according to the equation 
C6H12O6(s) + 6 O2(g) → 6 CO2(g) + 6 H2O(l) calorimetric 
measurements give Δ rU< =  −2808 kJ mol−1 and Δ rS < =  
+182.4 J K−1 mol−1 at 25 °C. How much of this energy change 
can be extracted as (a) heat at constant pressure, (b) work?

Method We know that the heat released at constant pressure 
is equal to the value of ΔH, so we need to relate ΔrH< to ΔrU<, 
which is given. To do so, we suppose that all the gases involved 
are perfect, and use eqn 2B.4 (ΔH = ΔU + ΔngRT) in the form 
ΔrH = ΔrU + ΔνgRT. For the maximum work available from the 
process we use eqn 3C.13.

Answer (a) Because Δνg = 0, we know that ΔrH< = ΔrU< =  
−2808 kJ mol−1. Therefore, at constant pressure, the energy 
available as heat is 2808 kJ mol−1. (b) Because T = 298 K, the 
value of ΔrA< is

∆ ∆ ∆r r r
12862kJmolA U T S< < <= − = − −

Therefore, the combustion of 1.000 mol C6H12O6 can be used 
to produce up to 2862 kJ of work. The maximum work avail-
able is greater than the change in internal energy on account 
of the positive entropy of reaction (which is partly due to the 
generation of a large number of small molecules from one big 
one). The system can therefore draw in energy from the sur-
roundings (so reducing their entropy) and make it available 
for doing work.

Self-test 3C.4 Repeat the calculation for the combustion of 
1.000 mol CH4(g) under the same conditions, using data from 
Table 2C.4.

Answer: |qp| = 890 kJ, |wmax| = 813 kJ

ΔU  < 0

ΔS  < 0

q

w < ΔU

ΔSsur > 0

Figure 3C.1 In a system not isolated from its surroundings, 
the work done may be different from the change in internal 
energy. Moreover, the process is spontaneous if overall the 
entropy of the global, isolated system increases. In the process 
depicted here, the entropy of the system decreases, so that of 
the surroundings must increase in order for the process to be 
spontaneous, which means that energy must pass from the 
system to the surroundings as heat. Therefore, less work than 
ΔU can be obtained.

ΔU  < 0

ΔS  > 0

q

w > ΔU

ΔSsur < 0

Figure 3C.2 In this process, the entropy of the system 
increases; hence we can afford to lose some entropy of the 
surroundings. That is, some of their energy may be lost as heat 
to the system. This energy can be returned to them as work. 
Hence the work done can exceed ΔU.
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spontaneous, the pressure and temperature being constant, 
we assess the change in the Gibbs energy. If G decreases as the 
reaction proceeds, then the reaction has a spontaneous ten-
dency to convert the reactants into products. If G increases, 
then the reverse reaction is spontaneous. The criterion for 
equilibrium, when neither the forward nor reverse process is 
spontaneous, under conditions of constant temperature and 
pressure is

dGT p, = 0  (3C.15)

The existence of spontaneous endothermic reactions provides 
an illustration of the role of G. In such reactions, H increases, 
the system rises spontaneously to states of higher enthalpy, 
and dH > 0. Because the reaction is spontaneous we know that 
dG < 0 despite dH > 0; it follows that the entropy of the system 
increases so much that TdS outweighs dH in dG = dH − TdS. 
Endothermic reactions are therefore driven by the increase 
of entropy of the system, and this entropy change overcomes 
the reduction of entropy brought about in the surroundings 
by the inflow of heat into the system (dSsur = −dH/T at constant 
pressure).

(e) Maximum non-expansion work
The analogue of the maximum work interpretation of ΔA, and 
the origin of the name ‘free energy’, can be found for ΔG. In the 
following Justification, we show that at constant temperature 
and pressure, the maximum additional (non-expansion) work, 
wadd,max, is given by the change in Gibbs energy:

d dadd maxw G, =  

The corresponding expression for a measurable change is

w Gadd max, = ∆  

This expression is particularly useful for assessing the electrical 
work that may be produced by fuel cells and electrochemical 
cells, and we shall see many applications of it.

 (3C.16a)
Constant 
temperature 
and pressure

maximum 
non-expansion 
work

 (3C.16b)
Constant 
temperature 
and pressure

maximum 
non-expansion 
work

Justification 3C.2 Maximum non-expansion work

Because H = U + pV, the change in enthalpy for a general 
change in conditions is

d d d d( )H q w pV= + +

The corresponding change in Gibbs energy (G = H − TS) is

d d d d d d d( ) d dG H T S S T q w pV T S S T= − − = + + − −

When the change is isothermal we can set dT = 0; then

d d d d( ) dG q w pV T S= + + −

When the change is reversible, dw = dwrev and dq = dqrev = TdS, 
so for a reversible, isothermal process

d d d d( ) d d d( )rev revG T S w pV T S w pV= + + − = +

The work consists of expansion work, which for a reversible 
change is given by −pdV, and possibly some other kind of work 
(for instance, the electrical work of pushing electrons through 
a circuit or of raising a column of liquid); this additional work 
we denote dwadd. Therefore, with d(pV) = pdV + Vdp,

d d d d d d dadd rev add revG p V w p V V p w V p= − + + + = +( ), ,

If the change occurs at constant pressure (as well as constant 
temperature), we can set dp = 0 and obtain dG = dwadd,rev. 
Therefore, at constant temperature and pressure, dwadd,rev = dG.  
However, because the process is reversible, the work done 
must now have its maximum value, so eqn 3C.16 follows.

Example 3C.2 Calculating the maximum non-expansion 
work of a reaction

How much energy is available for sustaining muscular and 
nervous activity from the combustion of 1.00 mol of glucose 
molecules under standard conditions at 37 °C (blood tempera-
ture)? The standard entropy of reaction is +182.4 J K−1 mol−1.

Method The non-expansion work available from the reaction 
is equal to the change in standard Gibbs energy for the reaction 
(ΔrG<, a quantity defined more fully below). To calculate this 
quantity, it is legitimate to ignore the temperature-depend-
ence of the reaction enthalpy, to obtain ΔrH< from Table 2C.5, 
and to substitute the data into ΔrG< = ΔrH< − TΔrS<.

Answer Because t he standard react ion ent ha lpy is 
−2808 kJ mol−1, it follows that the standard reaction Gibbs 
energy is

∆r
1 1 1

1

28 8kJmol 31 K 182 4JK mol
2865kJmol

G< = − − ×
= −

− − −

−

0 0( ) ( . )

Therefore, wadd,max = −2865 kJ for the combustion of 1 mol 
glucose molecules, and the reaction can be used to do up to 
2865 kJ of non-expansion work. To place this result in per-
spective, consider that a person of mass 70 kg needs to do 2.1 kJ 
of work to climb vertically through 3.0 m; therefore, at least 
0.13 g of glucose is needed to complete the task (and in practice 
significantly more).

Self-test 3C.5 How much non-expansion work can be obtained 
from the combustion of 1.00 mol CH4(g) under standard con-
ditions at 298 K? Use ΔrS< = −243 J K−1 mol−1.

Answer: 818 kJ
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3C.2 Standard molar Gibbs energies

Standard entropies and enthalpies of reaction can be combined 
to obtain the standard Gibbs energy of reaction (or ‘standard 
reaction Gibbs energy’), ΔrG<:

∆ ∆ ∆r r rG H T S< < <= −  

The standard Gibbs energy of reaction is the difference in 
standard molar Gibbs energies of the products and reactants in 
their standard states at the temperature specified for the reac-
tion as written.

(a) Gibbs energies of formation
As in the case of standard reaction enthalpies, it is convenient 
to define the standard Gibbs energies of formation, ΔfG<, the 
standard reaction Gibbs energy for the formation of a com-
pound from its elements in their reference states.2 Standard 
Gibbs energies of formation of the elements in their refer-
ence states are zero, because their formation is a ‘null’ reac-
tion. A selection of values for compounds is given in Table 
3C.1. From the values there, it is a simple matter to obtain the 
standard Gibbs energy of reaction by taking the appropriate 
combination:

∆ ∆ ∆rG G G< < <= −∑ ∑
Products

f m
Reactants

f m 

 

In the notation introduced in Topic 2C,

∆ ∆r
J

J f m JG G< <=∑ ( )
 

(3C.18b)

Just as is done in Topics 2C and 3B, where it is acknowledged 
that solutions of cations cannot be prepared without their 
accompanying anions, we define one ion, conventionally the 
hydrogen ion, to have zero standard Gibbs energy of formation 
at all temperatures:

∆ f H aqG< ( , )+ = 0  Convention  Ions in solution  (3C.19)

In essence, this definition adjusts the actual values of the Gibbs 
energies of formation of ions by a fixed amount, which is cho-
sen so that the standard value for one of them, H+(aq), has the 
value zero.

The factors responsible for the magnitude of the Gibbs 
energy of formation of an ion in solution can be identified by 
analysing it in terms of a thermodynamic cycle. As an illustra-
tion, we consider the standard Gibbs energy of formation of 
Cl− in water, which is −131 kJ mol−1. We do so by treating the 
formation reaction

 (3C.17)Definition
standard gibbs 
energy of 
reaction

2 The reference state of an element is defined in Topic 2C.

 (3C.18a)
Practical 
implemen
tation

standard 
gibbs 
energy of 
reaction

Brief illustration 3C.4 The standard reaction Gibbs 
energy

To calculate the standard Gibbs energy of the reaction 
CO(g) O g CO g2 2+ →1

2 ( ) ( )  at 25 °C, we write

∆ ∆ ∆ ∆r f 2 f f 2
1

CO g CO g O g
394 4 kJmol

G G G G< < < <= − +
= − −−

( , ) { ( , ) ( , )}
. {

1
2

(( . ) ( )}
.

− +
= −

−

−

137 2 kJmol
257 2kJmol

1

1

1
2 0

 

Self-test 3C.6 Calculate the standard reaction Gibbs energy 
for the combustion of CH4(g) at 298 K.

Answer: −818 kJ mol−1

Brief illustration 3C.5 Gibbs energies of formation  
of ions

For the reaction

1
2

1
2H g Cl g H aq Cl aq 131 23kJmol2 2 r

1( ) ( ) ( ) ( ) .+ → + =−+ − −∆ G<

we can write

∆ ∆ ∆ ∆r f f fH aq Cl aq Cl aqG G G G< < < <= + =+ − −( , ) ( , ) ( , )

and hence identify ΔfG<(Cl−,aq) as −131.23 kJ mol−1.

Self-test 3C.7 Evaluate ΔfG<(Ag+,aq) from Ag(s) Cl g2+ →1
2 ( )

Ag aq Cl aq+ −+( ) ( ), ΔrG< = −54.12 kJ mol−1

Answer: +77.11 kJ mol−1

Table 3C.1* Standard Gibbs energies of formation at 
298 K, ΔfG</(kJ mol−1)

ΔfG</(kJ mol−1)

Diamond, C(s) +2.9

Benzene, C6H6(l) +124.3

Methane, CH4(g) −50.7

Carbon dioxide, CO2(g) −394.4

Water, H2O(l) −237.1

Ammonia, NH3(g) −16.5

Sodium chloride, NaCl(s) −384.1

* More values are given in the Resource section.
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1
2

1
2H g X g H aq X aq2 2( ) ( ) ( ) ( )+ → ++ −

 

as the outcome of the sequence of steps shown in Fig. 3C.3 
(with values taken from the Resource section). The sum of the 
Gibbs energies for all the steps around a closed cycle is zero, so

∆ ∆ ∆f
1

solv solvCl aq 1287 kJ mol H ClG G G< < <( , ) ( ) ( )− − + −= + +

The standard Gibbs energies of formation of the gas-phase ions 
are unknown. We have therefore used ionization energies and 
electron affinities and have assumed that any differences from 
the Gibbs energies arising from conversion to enthalpy and the 
inclusion of entropies to obtain Gibbs energies in the formation 
of H+ are cancelled by the corresponding terms in the electron 
gain of X. The conclusions from the cycles are therefore only 
approximate. An important point to note is that the value of 
ΔfG< of an ion X is not determined by the properties of X alone 
but includes contributions from the dissociation, ionization, 
and hydration of hydrogen.

(b) The Born equation
Gibbs energies of solvation of individual ions may be estimated 
from an equation derived by Max Born, who identified ΔsolvG< 
with the electrical work of transferring an ion from a vacuum 
into the solvent treated as a continuous dielectric of relative 
permittivity εr. The resulting Born equation, which is derived 
in the following Justification, is

∆solv
i A

i r
G z e N

r
< = − −





2 2

08
1 1

πε ε  
 born equation  (3C.20a)

where zi is the charge number of the ion and ri its radius (NA is 
Avogadro’s constant). Note that ΔsolvG< < 0, and that ΔsolvG< is 
strongly negative for small, highly charged ions in media of high 
relative permittivity. For water, for which εr = 78.54 at 25 °C,

∆solv
i

i pm kJmolG z
r

< = − × × −
2

4 16 86 10/ .
 

(3C.20b)

Brief illustration 3C.6 The Born equation

To see how closely the Born equation reproduces the experi-
mental data, we calculate the difference in the values of ΔfG< 
for Cl− and I− in water at 25 °C, given their radii as 181 pm and 
220 pm, respectively, is

∆ ∆solv solvCl I kJmolG G< <( ) ( ) .− − −− = − −





× ×

=

1
181

1
220 6 86 104 1

−− −67 1kJmol

This estimated difference is in good agreement with the exper-
imental difference, which is −61 kJ mol−1.

Self-test 3C.8 Estimate the value of ΔsolvG<(Cl−) − ΔsolvG<(Br−) 
in water from experimental data and from the Born equation.

Answer: −26 kJ mol−1 experimental; −29 kJ mol−1 calculated

Justification 3C.3 The Born equation

The strategy of the calculation is to identify the Gibbs energy of 
solvation with the work of transferring an ion from a  vacuum 
into the solvent. That work is calculated by taking the differ-
ence of the work of charging an ion when it is in the solution 
and the work of charging the same ion when it is in a vacuum.

The Coulomb interaction between two charges Q1 and Q2 
separ ated by a distance r is described by the Coulombic poten-
tial energy:

V r Q Q
r( )= 1 2

4πε

where ε is the medium’s permittivity. The relative permittiv-
ity (formerly called the ‘dielectric constant’) of a substance is 
defined as εr = ε/ε0. Ions do not interact as strongly in a sol-
vent of high relative permittivity (such as water, with εr = 80 
at 293 K) as they do in a solvent of lower relative permittivity 
(such as ethanol, with εr = 25 at 293 K). See Topic 16A for more 
details. The potential energy of a charge Q1 in the presence of 
a charge Q2 can be expressed in terms of the Coulomb poten-
tial, φ :

V r Q r r Q
r( ) ( ) ( )= =1

2
4φ φ ε      π

We model an ion as a sphere of radius ri immersed in a medium 
of permittivity ε. The charge of the sphere is Q, the electric 
potential, φ, at its surface is the same as the potential due to 

E
n

th
al

p
y,

 H

+106

+1312

+218

–349

H+(g) + Cl(g) + e–(g)

H+(g) + Cl–(g)

H+(g) + Cl–(aq)

H+(aq) + Cl–(aq)

H+(g) + ½ Cl2(g) + e–

H(g) + ½ Cl2(g)

½ H2(g) + ½ Cl2(g)

–{ΔfG
<(H+,aq) +ΔfG

<(Cl–,aq)}

ΔsolvG
<(H+)

ΔsolvG
<(Cl–)

+70

+1312

+218

–295

H+(g) + I(g) + e–(g)

H+(g) + I–(g)

H+(g) + I–(aq)

H+(aq) + I–(aq)

H+(g) + ½ I2(s) + e–

H(g) + ½ I2(s)

½ H2(g) + ½ I2(s)

–{ΔfG
<(H+,aq) +ΔfG

<(I–,aq)}

ΔsolvG
<(H+)

ΔsolvG
<(I–)

(a) (b)

Figure 3C.3 The thermodynamic cycles for the discussion of 
the Gibbs energies of solvation (hydration) and formation of  
(a) chloride ions, (b) iodide ions in aqueous solution. The 
changes in Gibbs energies around the cycle sum to zero 
because G is a state function.
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Calorimetry (for ΔH directly, and for S via heat capacities) is 
only one of the ways of determining Gibbs energies. They may 
also be obtained from equilibrium constants (Topic 6A) and 
electrochemical measurements (Topic 6D), and for gases they 
may be calculated using data from spectroscopic observations 
(Topic 15F).

a point charge at its centre, so we can use the last expression 
and write

φ ε( )r Q
ri
i

= 4π

The work of bringing up a charge dQ to the sphere is φ(ri)dQ. 
Therefore, the total work of charging the sphere from 0 to zie is

w r Q r Q Q z e
r

z ez e
= = =∫∫ φ ε ε( )i

i

i

i
d d

ii 1
4 8

2 2

00 π π

This electrical work of charging, when multiplied by 
Avogadro’s constant, is the molar Gibbs energy for charging 
the ions.
 The work of charging an ion in a vacuum is obtained by set-
ting ε = ε0, the vacuum permittivity. The corresponding value 
for charging the ion in a medium is obtained by setting ε = εrε0, 
where εr is the relative permittivity of the medium. It follows 

that the change in molar Gibbs energy that accompanies the 
transfer of ions from a vacuum to a solvent is the difference of 
these two quantities:

∆solv
i A

i

i A

i

i A

r i

i AG z e N
r

z e N
r

z e N
r

z e N< = − = −
2 2 2 2

0

2 2

0

2 2

8 8 8π π πε ε ε ε 88

8 1 1
0

2 2

0

π

π

ε

ε ε

r
z e N

r

i

i A

i r
= − −





which is eqn 3B.20.

Checklist of concepts

☐ 1. The Clausius inequality implies a number of criteria 
for spontaneous change under a variety of conditions 
that may be expressed in terms of the properties of the 
system alone; they are summarized by introducing the 
Helmholtz and Gibbs energies.

☐ 2. A spontaneous process at constant temperature and 
volume is accompanied by a decrease in the Helmholtz 
energy.

☐ 3. The change in the Helmholtz function is equal to the 
maximum work accompanying a process at constant 
temperature.

☐ 4. A spontaneous process at constant temperature and 
pressure is accompanied by a decrease in the Gibbs 
energy.

☐ 5. The change in the Gibbs function is equal to the maxi-
mum non-expansion work accompanying a process at 
constant temperature and pressure.

☐ 6. Standard Gibbs energies of formation are used to cal-
culate the standard Gibbs energies of reactions.

☐ 7. The standard Gibbs energies of formation of ions may 
be estimated from a thermodynamic cycle and the 
Born equation.

Checklist of equations

Property Equation Comment Equation number

Criteria of spontaneity (a) dSU,V ≥ 0  (b) dUS,V ≤ 0 Constant volume (etc.)* 3C.4

(a) dSH,p ≥ 0  (b) dHS,p ≤ 0 Constant pressure (etc.) 3C.6

Helmholtz energy A = U − TS Definition 3C.7

Gibbs energy G = H − TS Definition 3C.8

(a) dAT,V ≤ 0  (b) dGT,p ≤ 0 Constant temperature (etc.) 3C.10

Equilibrium dAT,V = 0 Constant volume (etc.) 3C.11

Maximum work dwmax = dA, 
wmax = ΔA

Constant temperature 3C.12
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Property Equation Comment Equation number

Equilibrium dGT,p = 0 Constant pressure (etc.) 3C.15

Maximum non-expansion work dwadd,max = dG, 
wadd,max = ΔG

Constant temperature and pressure 3C.16

Standard Gibbs energy of reaction ΔrG< = ΔrH< − TΔrS< Definition 3C.17

∆ ∆r
J

J f m JG G< <= ∑  ( ) Practical implementation 3C.18

Ions in solution ΔfG<(H+,aq) = 0 Convention 3C.19

Born equation ∆solv i A i r/G z e N r< = − −( )( / )2 2
08 1 1πε ε Solvent a continuum 3C.20

* ‘etc.’ indicates that the conditions are as expressed by the subscripts.
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3D combining the First and second laws

The First Law of thermodynamics may be written dU = dq + dw. 
For a reversible change in a closed system of constant compo-
sition, and in the absence of any additional (non-expansion) 
work, we may set dwrev = −pdV and (from the definition of 
entropy) dqrev = TdS, where p is the pressure of the system and 
T its temperature. Therefore, for a reversible change in a closed 
system,

d d dU T S p V= −   the fundamental equation  (3D.1)

However, because dU is an exact differential, its value is inde-
pendent of path. Therefore, the same value of dU is obtained 
whether the change is brought about irreversibly or revers-
ibly. Consequently, eqn 3D.1 applies to any change—reversible 
or irreversible—of a closed system that does no additional (non-
expansion) work. We shall call this combination of the First and 
Second Laws the fundamental equation.

The fact that the fundamental equation applies to both 
reversible and irreversible changes may be puzzling at first 
sight. The reason is that only in the case of a reversible change 
may TdS be identified with dq and −pdV with dw. When the 
change is irreversible, TdS > dq (the Clausius inequality) and 
−pdV > dw. The sum of dw and dq remains equal to the sum of 
TdS and −pdV, provided the composition is constant.

3D.1 Properties of the internal energy

Equation 3D.1 shows that the internal energy of a closed system 
changes in a simple way when either S or V is changed (dU ∝ dS 
and dU ∝ dV). These simple proportionalities suggest that U is 
best regarded as a function of S and V. We could regard U as a 
function of other variables, such as S and p or T and V, because 
they are all interrelated; but the simplicity of the fundamental 
equation suggests that U(S,V) is the best choice.

The mathematical consequence of U being a function of 
S and V is that we can express an infinitesimal change dU in 
terms of changes dS and dV by

d d dU U
S S U

V V
V S

= ∂
∂







+ ∂
∂





  

(3D.2)

The two partial derivatives are the slopes of the plots of U 
against S and V, respectively. When this expression is compared 

➤➤ Why do you need to know this material?
The First and Second Laws of thermodynamics are both 
relevant to the behaviour of bulk matter, and we can bring 
the whole force of thermodynamics to bear on a problem 
by setting up a formulation that combines them.

➤➤ What is the key idea?
The fact that infinitesimal changes in thermodynamic 
functions are exact differentials leads to relations between 
a variety of properties.

➤➤ What do you need to know already?
You need to be aware of the definitions of the state 
functions U (Topic 2A), H (Topic 2B), S (Topic 3A), and 
A and G (Topic 3C). The mathematical derivations in 
this Topic draw frequently on the properties of partial 
derivatives and exact differentials, which are described in 
Mathematical background 2.
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term-by-term to the thermodynamic relation, eqn 3D.1, we see 
that for systems of constant composition,

∂
∂







= ∂
∂







= −U
S T U

V p
V S

     
 

(3D.3)

The first of these two equations is a purely thermodynamic 
defin ition of temperature as the ratio of the changes in the 
internal energy (a First-Law concept) and entropy (a Second-
Law concept) of a constant-volume, closed, constant-compo-
sition system. We are beginning to generate relations between 
the properties of a system and to discover the power of thermo-
dynamics for establishing unexpected relations.

(a) The Maxwell relations
An infinitesimal change in a function f(x,y) can be written 
df = gdx + hdy, where g and h may be functions of x and y. The 
mathematical criterion for df being an exact differential (in the 
sense that its integral is independent of path) is that

∂
∂







= ∂
∂







g
y

h
xx y  

(3D.4)

This criterion is discussed in Mathematical background 2. 
Because the fundamental equation, eqn 3D.1, is an expression 
for an exact differential, the functions multiplying dS and dV 
(namely T and −p) must pass this test. Therefore, it must be the 
case that

∂
∂







= − ∂
∂







T
V

p
SS V  

 a maxwell relation  (3D.5)

We have generated a relation between quantities which, at first 
sight, would not seem to be related.

Equation 3D.5 is an example of a Maxwell relation. However, 
apart from being unexpected, it does not look particularly 
interesting. Nevertheless, it does suggest that there might be 
other similar relations that are more useful. Indeed, we can use 
the fact that H, G, and A are all state functions to derive three 
more Maxwell relations. The argument to obtain them runs in 
the same way in each case: because H, G, and A are state func-
tions, the expressions for dH, dG, and dA satisfy relations like 
eqn 3D.4. All four relations are listed in Table 3D.1.

(b) The variation of internal energy with 
volume
The quantity πT = (∂U/∂V)T, which represents how the internal 
energy changes as the volume of a system is changed isother-
mally, plays a central role in the manipulation of the First Law, 
and in Topic 2D we use the relation

πT
V

T p
T p= ∂

∂






−
 

 a thermodynamic equation of state  (3D.6)

Example 3D.1 Using the Maxwell relations

Use the Maxwell relations in Table 3D.1 to show that the 
entropy of a perfect gas is proportional to ln V.

Method The natural place to start, given that you are invited 
to use the Maxwell relations, is by considering the relation for 
(∂S/∂V)T, as that differential coefficient shows how the entropy 

varies with volume at constant temperature. Be alert for an 
opportunity to use the perfect gas equation of state.

Answer From Table 3D.1,

∂
∂







= ∂
∂







S
V

p
T

T V

Now use the perfect gas equation of state to write

∂
∂







= ∂
∂







=p
T

nRT V
T

nR
V

V V

( / )

At this point, we can write

∂
∂







=S
V

nR
V

T

and therefore, at constant temperature

d d constantS nR V
V nR V= = +∫∫ ln

The integral of the left is S + constant, which completes the 
demonstration.

Self-test 3D.1 How does the entropy depend on the volume of 
a van der Waals gas? Discuss.

Answer: S varies as nR ln(V – nb); molecules in a smaller  
available volume

Table 3D.1 The Maxwell relations

State function Exact differential Maxwell relation

U dU = TdS – pdV ∂
∂







= − ∂
∂







T
V

p
SS V

H dH = TdS + Vdp ∂
∂







= ∂
∂







T
p

V
SS p

A dA = −pdV – SdT ∂
∂







= ∂
∂







p
T

S
VV T

G dG = Vdp – SdT ∂
∂







= − ∂
∂







V
T

S
pp T
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142 3 The Second and Third Laws

This relation is called a thermodynamic equation of state 
because it is an expression for pressure in terms of a variety of 
thermodynamic properties of the system. We are now ready to 
derive it by using a Maxwell relation.

3D.2 Properties of the Gibbs energy

The same arguments that we have used for U can be used for 
the Gibbs energy G = H − TS. They lead to expressions showing 
how G varies with pressure and temperature that are important 
for discussing phase transitions and chemical reactions.

(a) General considerations
When the system undergoes a change of state, G may change 
because H, T, and S all change and

d d d( ) d d dG H TS H T S S T= − = − −  

Because H = U + pV, we know that

d d d( ) d d dH U pV U p V V p= + = + +  

and therefore

d d d d d dG U p V V p T S S T= + + − −  

For a closed system doing no non-expansion work, we can 
replace dU by the fundamental equation dU = TdS − pdV and 
obtain

d d d d d d dG T S p V p V V p T S S T= − + + − −  

Four terms now cancel on the right, and we conclude that for 
a closed system in the absence of non-expansion work and at 
constant composition

d d dG V p S T= −  

Example 3D.2 Deriving a thermodynamic relation

Show thermodynamically that πT = 0 for a perfect gas, and 
compute its value for a van der Waals gas.

Method Proving a result ‘thermodynamically’ means basing 
it entirely on general thermodynamic relations and equations 
of state, without drawing on molecular arguments (such as the 
existence of intermolecular forces). We know that for a per-
fect gas, p = nRT/V, so this relation should be used in eqn 3D.6. 
Similarly, the van der Waals equation is given in Table 1C.3, and 
for the second part of the question it should be used in eqn 3D.6.

Answer For a perfect gas we write

∂
∂







=
∂

∂






=p
T

nRT V
T

nR
V

V V

/

Then, eqn 3D.6 becomes

πT
nRT
V p= − =0

The equation of state of a van der Waals gas is

p nRT
V nb a n

V= − −
2

2

Because a and b are independent of temperature,

∂
∂







=
∂ −

∂






= −
p
T

nRT V nb
T

nR
V nb

V V

/( )

Justification 3D.1 The thermodynamic equation of state

We obtain an expression for the coefficient πT by dividing both 
sides of eqn 3D.1 by dV, imposing the constraint of constant 
temperature, which gives

∂
∂







= ∂
∂







∂
∂







+ ∂
∂







U
V

U
S

S
V

U
V

T V T

πT T��� �� ��� ��

SS

p��� ��

Next, we introduce the two relations in eqn 3D.3 (as indicated 
by the annotations) and the definition of πT to obtain

πT
T

T S
V p= ∂

∂






−
 

The third Maxwell relation in Table 3D.1 turns (∂S/∂V)T into 
(∂p/∂T)V, which completes the derivation of eqn 3D.6.

Therefore, from eqn 3D.6,

πT
nRT
V nb p nRT

V nb
nRT
V nb a n

V
a n
V

= − − = − − − −






=
2

2

2

2

This result for πT implies that the internal energy of a van der 
Waals gas increases when it expands isothermally (that is, 
(∂U/∂V)T > 0), and that the increase is related to the param-
eter a, which models the attractive interactions between the 
particles. A larger molar volume, corresponding to a greater 
average separation between molecules, implies weaker mean 
intermolecular attractions, so the total energy is greater.

Self-test 3D.2 Calculate πT for a gas that obeys the virial equa-
tion of state (Table 1C.3).

Answer: πT VRT B T V= ∂ ∂ +2
m( / ) / 2 

the fundamental 
equation of chemical 
thermodynamics

 (3D.7)
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3D Combining the First and Second Laws  143

This expression, which shows that a change in G is proportional 
to a change in p or T, suggests that G may be best regarded as 
a function of p and T. It may be regarded as the fundamental 
equation of chemical thermodynamics as it is so central to the 
application of thermodynamics to chemistry: it suggests that 
G is an important quantity in chemistry because the pressure 
and temperature are usually the variables under our control. In 
other words, G carries around the combined consequences of 
the First and Second Laws in a way that makes it particularly 
suitable for chemical applications.

The same argument that led to eqn 3D.3, when applied to the 
exact differential dG = Vdp − SdT, now gives

∂
∂







= − ∂
∂







=G
T S G

p V
p T

     
 

These relations show how the Gibbs energy varies with temper-
ature and pressure (Fig. 3D.1). The first implies that:

•	 Because S > 0 for all substances, G always decreases 
when the temperature is raised (at constant pressure 
and composition).

•	 Because (∂G/∂T)p becomes more negative as S 
increases, G decreases most sharply with increasing 
temperature when the entropy of the system is large.

Therefore, the Gibbs energy of the gaseous phase of a substance, 
which has a high molar entropy, is more sensitive to tempera-
ture than its liquid and solid phases (Fig. 3D.2). Similarly, the 
second relation implies that:

•	 Because V > 0 for all substances, G always 
increases when the pressure of the system is 
increased (at constant temperature and 
composition).

•	 Because (∂G/∂p)T increases with V, G is more sensitive to 
pressure when the volume of the system is large.

Because the molar volume of the gaseous phase of a substance 
is greater than that of its condensed phases, the molar Gibbs 
energy of a gas is more sensitive to pressure than its liquid and 
solid phases (Fig. 3D.3).

the variation of 

G with T and p  (3D.8)

 P
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te

rp
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tio

n 

Brief illustration 3D.1 The variation of molar Gibbs energy

The standard molar entropy of liquid water at 298 K is 
69.91 J K−1 mol−1. It follows that when the temperature is 
increased by 5.0 K, the molar Gibbs energy changes by

Temperature, T
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Solid

Figure 3D.2 The variation of the Gibbs energy with the 
temperature is determined by the entropy. Because the entropy 
of the gaseous phase of a substance is greater than that of the 
liquid phase, and the entropy of the solid phase is smallest, the 
Gibbs energy changes most steeply for the gas phase, followed 
by the liquid phase, and then the solid phase of the substance.

Pressure, p
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Figure 3D.3 The variation of the Gibbs energy with the 
pressure is determined by the volume of the sample. Because 
the volume of the gaseous phase of a substance is greater than 
that of the same amount of liquid phase, and the entropy of the 
solid phase is smallest (for most substances), the Gibbs energy 
changes most steeply for the gas phase, followed by the liquid 
phase, and then the solid phase of the substance. Because 
the volumes of the solid and liquid phases of a substance are 
similar, their molar Gibbs energies vary by similar amounts as 
the pressure is changed.

Slope = –S

Slope = +V

Gibbs
energy, G

Te
mperature, T

Pressure, p

Figure 3D.1 The variation of the Gibbs energy of a system 
with (a) temperature at constant pressure and (b) pressure at 
constant temperature. The slope of the former is equal to the 
negative of the entropy of the system and that of the latter is 
equal to the volume.
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144 3 The Second and Third Laws

(b) The variation of the Gibbs energy with 
temperature
Because the equilibrium composition of a system depends on 
the Gibbs energy, to discuss the response of the composition to 
temperature we need to know how G varies with temperature.

The first relation in eqn 3D.8, (∂G/∂T)p =  − S, is our start-
ing point for this discussion. Although it expresses the varia-
tion of G in terms of the entropy, we can express it in terms of 
the enthalpy by using the definition of G to write S = (H − G)/T. 
Then

∂
∂







= −G
T

G H
Tp  

(3D.9)

In Topic 6A it is shown that the equilibrium constant of a reac-
tion is related to G/T rather than to G itself, and it is easy to 
deduce from the last equation (see the following Justification) 
that

∂
∂







= −G T
T

H
Tp

/
2

 
 gibbs–helmholtz equation  (3D.10)

This expression is called the Gibbs–Helmholtz equation. It 
shows that if we know the enthalpy of the system, then we know 
how G/T varies with temperature.

The Gibbs–Helmholtz equation is most useful when it 
is applied to changes, including changes of physical state 
and chemical reactions at constant pressure. Then, because 
ΔG = Gf − Gi for the change of Gibbs energy between the final 
and initial states and because the equation applies to both Gf 
and Gi, we can write

∂
∂







= −∆ ∆G T
T

H
Tp

/
2

 
(3D.11)

This equation shows that if we know the change in enthalpy 
of a system that is undergoing some kind of transformation 
(such as vaporization or reaction), then we know how the cor-
responding change in Gibbs energy varies with temperature. As 
we shall see, this is a crucial piece of information in chemistry.

(c) The variation of the Gibbs energy with 
pressure
To find the Gibbs energy at one pressure in terms of its value at 
another pressure, the temperature being constant, we set dT = 0 
in eqn 3D.7, which gives dG = Vdp, and integrate:

G p G p V p
p

p
( ) ( )f i d

i

f

= +∫  
(3D.12a)

For molar quantities,

G p G p V p
p

p

m f m i md
i

f

( ) ( )= +∫  
(3D.12b)

This expression is applicable to any phase of matter, but 
to evalu ate it we need to know how the molar volume, Vm, 
depends on the pressure.

The molar volume of a condensed phase changes only 
slightly as the pressure changes (Fig. 3D.4), so we can treat Vm 
as a constant and take it outside the integral:

G p G p V p
p

p

m f m i m d
i

f

( ) ( )= + ∫  

That is,

G p G p p p Vm f m i f i m( ) ( ) ( )= + −  

Under normal laboratory conditions (pf  − pi)Vm is very small 
and may be neglected. Hence, we may usually suppose that the 
Gibbs energies of solids and liquids are independent of pres-
sure. However, if we are interested in geophysical problems, 
then because pressures in the Earth’s interior are huge, their 
effect on the Gibbs energy cannot be ignored. If the pressures 
are so great that there are substantial volume changes over the 
range of integration, then we must use the complete expression, 
eqn 3D.12.

Justification 3D.2 The Gibbs–Helmholtz equation

First, we note that

∂
∂







= ∂
∂







+ = ∂
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=

G T
T T
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T G T

T T
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−












G
T
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Then we use eqn 3D.9 to write

∂
∂







− = − − = −G
T

G
T

G H
T

G
T

H
T

p

When this expression is substituted in the preceding one, we 
obtain eqn 3D.10.

Incompressible 
solid or liquid 

molar 
gibbs 
energy

 (3D.13)

δ δ δG G
T T S T

p
m

m
m JK mol K

kJm

≈ ∂
∂







= − = − ×

= −

− −( . ) ( . )

.

69 91 5 0

0 35

1 1

ool−1

Self-test 3D.3 The mass density of liquid water is 0.9970 g cm−3 
at 298 K. By how much does its molar Gibbs energy change 
when the pressure is increased by 0.10 bar?

Answer: +0.18 J mol−1
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3D Combining the First and Second Laws  145

The molar volumes of gases are large, so the Gibbs energy of 
a gas depends strongly on the pressure. Furthermore, because 
the volume also varies markedly with the pressure, we cannot 
treat it as a constant in the integral in eqn 3D.12b (Fig. 3D.5). 
For a perfect gas we substitute Vm = RT/p into the integral, treat 
RT as a constant, and find

G p G p RT p p G p RT p
pp

p

m f m i m i
f

i
d

i

f

( ) ( ) ( ) ln= + = +∫ 1
 

(3D.14)

This expression shows that when the pressure is increased ten-
fold at room temperature, the molar Gibbs energy increases by 
RT ln 10 ≈ 6 kJ mol−1. It also follows from this equation that if 
we set pi = p< (the standard pressure of 1 bar), then the molar 
Gibbs energy of a perfect gas at a pressure p (set pf = p) is related 
to its standard value by

G p G RT p
pm m( ) ln= +<

<

 

Example 3D.3 Evaluating the pressure dependence of a 
Gibbs energy of transition

Suppose that for a certain phase transition of a solid 
ΔtrsV = +1.0 cm3 mol−1 is independent of pressure. By how 
much does that Gibbs energy of transition change when the 
pressure is increased from 1.0 bar (1.0 × 105 Pa) to 3.0 Mbar 
(3.0 × 1011 Pa)?

Method Start with eqn 3D.12b to obtain expressions for the 
Gibbs energy of each of the phases 1 and 2 of the solid

G p G p V p

G p G p V p

p

p

p

p

m f m i m

m f m i m

d

d

i

f

i

f

, , ,

, , ,

( ) ( )

( ) ( )

1 1 1

2 2 2

= +

= +

∫
∫

 

Now subtract the second expression from the first, noting that 
Gm,2− Gm,1 = ΔtrsG and Vm,2− Vm,1 = ΔtrsV:

∆ ∆∆trs m f trs m trs md
i

f

G p G p V pi
p

p
( ) ( )= +∫

 
Use the data to complete the calculation.

Answer Because ΔtrsV is independent of pressure, the expres-
sion above simplifies to

∆ ∆ ∆

∆ ∆

trs m f trs m trs m

trs m i trs m f

d
i

f

G p G p V p

G p V p p

i
p

p
( ) ( )

( ) (

= +

= + −
∫

ii )

Inserting the data gives

∆ ∆trs trs
6 3 1

11

3Mbar 1bar 1 1 m mol
3 1 Pa 1

G G( ) ( ) ( . )
( . .

= + × ×
× −

− −0 0
0 0 0××

= + × −

1 Pa
1bar 3 1 kJmol

5

trs
2 1

0
0 0

)
( ) .∆ G

where we have used 1 Pa m3 = 1 J.

Self-test 3D.4 Calculate the change in Gm for ice at −10 °C, 
with density 917 kg m−3, when the pressure is increased from 
1.0 bar to 2.0 bar.

Answer: +2.0 J mol−1

Perfect 
gas 

molar 
gibbs 
energy  

 (3D.15)

Pressure, p
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m
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pi pf

V = nRT/p

∫V dp

Figure 3D.5 The difference in Gibbs energy for a perfect gas at 
two pressures is equal to the area shown below the perfect-gas 
isotherm.

Pressure, p
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m
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Δp

Volume assumed
constant

Actual volume

pi pf

Figure 3D.4 The difference in Gibbs energy of a solid or liquid 
at two pressures is equal to the rectangular area shown. We 
have assumed that the variation of volume with pressure is 
negligible.

Brief illustration 3D.2 The pressure dependence of the 
Gibbs energy of a gas

Suppose we are interested in the molar Gibbs energy of water 
vapour (treated as a perfect gas) when the pressure is increased 
isothermally from 1.0 bar to 2.0 bar at 298 K. According to 
eqn 3D.14

G Gm mbar bar JK mol K
bar

( ). ( . ) ( . ) ( )

ln
.
.

2 0 1 0 8 3145 298
2 0
1

1 1= + × ×− −<

00 1 0 1 7 1
bar bar kJmol







= + −Gm
<( ). .
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146 3 The Second and Third Laws

The logarithmic dependence of the molar Gibbs energy on 
the pressure predicted by eqn 3D.15 is illustrated in Fig. 3D.6. 
This very important expression, the consequences of which we 
unfold in the following chapters, applies to perfect gases (which 
is usually a good enough approximation). The following sec-
tion shows how to accommodate imperfections.

(d) The fugacity
At various stages in the development of physical chemistry it is 
necessary to switch from a consideration of idealized systems 
to real systems. In many cases it is desirable to preserve the 
form of the expressions that have been derived for an idealized 
system. Then deviations from the idealized behaviour can be 
expressed most simply. For instance, the pressure-dependence 
of the molar Gibbs energy of a real gas might resemble that 
shown in Fig. 3D.7. To adapt eqn 3D.14 to this case, we replace 
the true pressure, p, by an effective pressure, called the fugac-
ity,1 f, and write

G G RT f pm m  ln /= +< <( )  Definition  Fugacity  (3D.16)

The fugacity, a function of the pressure and temperature, is 
defined so that this relation is exactly true. A very similar 
approach is taken in the discussion of real solutions (Topic 5E), 

where ‘activities’ are effective concentrations. Indeed, f/p < may 
be regarded as a gas-phase activity.

Although thermodynamic expressions in terms of fugacities 
derived from this expression are exact, they are useful only if 
we know how to interpret fugacities in terms of actual pres-
sures. To develop this relation we write the fugacity as

f p=φ  Definition  Fugacity coefficient  (3D.17)

where φ is the dimensionless fugacity coefficient, which in gen-
eral depends on the temperature, the pressure, and the identity 
of the gas. We show in the following Justification that the fuga-
city coefficient is related to the compression factor, Z, of a gas 
(Topic 1C) by

lnφ = −∫ Z
p p

p 1
0

d
 

(3D.18)

Provided we know how Z varies with pressure up to the pres-
sure of interest, this expression enable us to determine the 
fugacity coefficient and hence, through eqn 3D.17, to relate the 
fugacity to the pressure of the gas.

1 The name ‘fugacity’ comes from the Latin for ‘fleetness’ in the sense of 
‘escaping tendency’; fugacity has the same dimensions as pressure.

Justification 3D.3 The fugacity coefficient

Equation 3D.12a is true for all gases whether real or perfect. 
Expressing it in terms of the fugacity by using eqn 3D.16 turns 
it into
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Figure 3D.7 The molar Gibbs energy of a real gas. As p → 0, the 
molar Gibbs energy coincides with the value for a perfect gas 
(shown by the purple line). When attractive forces are dominant 
(at intermediate pressures), the molar Gibbs energy is less than 
that of a perfect gas and the molecules have a lower ‘escaping 
tendency’. At high pressures, when repulsive forces are 
dominant, the molar Gibbs energy of a real gas is greater than 
that of a perfect gas. Then the ‘escaping tendency’ is increased.

Note that whereas the change in molar Gibbs energy for a con-
densed phase is a few joules per mole, for a gas the change is of 
the order of kilojoules per mole

Self-test 3D.5 By how much does the molar Gibbs energy of 
a perfect gas differ from its standard value at 298 K when its 
pressure is 0.10 bar?

Answer: –5.7 kJ mol−1
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Figure 3D.6 The molar Gibbs energy of a perfect gas varies as ln p, 
and the standard state is reached at p<. Note that, as p → 0, the 
molar Gibbs energy becomes negatively infinite.
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3D Combining the First and Second Laws  147

For a perfect gas, φ = 1 at all pressures and temperatures. We 
know from Fig. 1C.9 that for most gases Z < 1 up to moderate 
pressures, but that Z > 1 at higher pressures. If Z < 1 through-
out the range of integration, then the integrand in eqn 3D.18 is 
negative and φ < 1. This value implies that f < p (the molecules 
tend to stick together) and that the molar Gibbs energy of the 
gas is less than that of a perfect gas. At higher pressures, the 
range over which Z > 1 may dominate the range over which 
Z < 1. The integral is then positive, φ > 1, and f > p (the repul-
sive interactions are dominant and tend to drive the particles 
apart). Now the molar Gibbs energy of the gas is greater than 
that of the perfect gas at the same pressure.

Figure 3D.8, which has been calculated using the full van 
der Waals equation of state, shows how the fugacity coeffi-
cient depends on the pressure in terms of the reduced variables 

(Topic 1C). Because critical constants are available in Table 
1C.2, the graphs can be used for quick estimates of the fugaci-
ties of a wide range of gases. Table 3D.2 gives some explicit val-
ues for nitrogen.

In this expression, f is the fugacity when the pressure is p and 
f ′ is the fugacity when the pressure is p′. If the gas were perfect, 
we would write

V p RT p p RT p
pp
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p

p
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d d  , ln
RT p��� ��
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The difference between the two equations is
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nn f p
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which can be rearranged into

ln ( )f p
f p RT V V p

p

p/
/ dm perfect,m′ ′ ′

= −∫1

 

When p′ → 0, the gas behaves perfectly and f ′ becomes equal 
to the pressure, p′. Therefore, f ′/p′ → 1 as p′ → 0. If we take this 
limit, which means setting f ′/p′ = 1 on the left and p′ = 0 on the 
right, the last equation becomes

ln ( )f
p RT V V p

p
= −∫1

0
m perfect,m d

Then, with φ = f/p,

ln ( ),φ = −∫1
0RT V V p
p

m perfect m d

For a perfect gas, Vperfect,m = RT/p. For a real gas, Vm = RTZ/p, 
where Z is the compression factor of the gas (Topic 1C). With 
these two substitutions, we obtain eqn 3D.18.

Brief illustration 3D.3 The fugacity of a real gas

To use Fig. 3D.8 to estimate the fugacity of carbon dioxide 
at 400 K and 400 atm, we note from Table 1C.2 that its criti-
cal constants are pc = 72.85 atm and Tc = 304.2 K. In terms of 
reduced variables, the gas has pr = (400 atm)/(72.85 atm) = 5.5 
and Tr = (400 K)/(304.2 K) =1.31. From Fig. 3D.8 (interpolating 
by eye), these conditions correspond to φ ≈ 0.4 and therefore to 
f ≈ 160 atm.

Self-test 3D.6 At what temperature would carbon dioxide have 
a fugacity of 400 atm when its pressure is 400 atm?

Answer: At about Tr = 2.5, corresponding to T = 760 K

Table 3D.2* The fugacity of nitrogen at 273 K, f/atm

p/atm f/atm

1 0.999 55

10 9.9560

100 97.03

1000 1839

* More values are given in the Resource section.
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Figure 3D.8 The fugacity coefficient of a van der Waals gas 
plotted using the reduced variables of the gas. The curves are 
labelled with the reduced temperature Tr = T/Tc.
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148 3 The Second and Third Laws

Checklist of concepts

☐ 1. The fundamental equation, a combination of the First 
and Second Laws, is an expression for the change in 
internal energy that accompanies changes in the vol-
ume and entropy of a system.

☐ 2. Relations between thermodynamic properties are gen-
erated by combining thermodynamic and mathemati-
cal expressions for changes in their values.

☐ 3. The Maxwell relations are a series of relations between 
derivatives of thermodynamic properties based on 
criteria for changes in the properties being exact 
differentials.

☐ 4. The Maxwell relations are used to derive the thermo-
dynamic equation of state and to determine how the 
internal energy of a substance varies with volume.

☐ 5. The variation of the Gibbs energy of a system suggests 
that it is best regarded as a function of pressure and 
temperature.

☐ 6. The Gibbs energy of a substance decreases with temper-
ature and increases with pressure.

☐ 7.  The variation of Gibbs energy with temperature 
is related to the enthalpy by the Gibbs–Helmholtz 
equation.

☐ 8. The Gibbs energies of solids and liquids are almost 
independent of pressure; those of gases vary linearly 
with the logarithm of the pressure.

☐ 9. The fugacity is a kind of effective pressure of a real gas.

Checklist of equations

Property Equation Comment Equation number

Fundamental equation dU = TdS − pdV No additional work 3D.1

Fundamental equation of chemical thermodynamics dG = Vdp − SdT No additional work 3D.7

Variation of G (∂G/∂p)T = V and (∂G/∂T)p = −S Composition constant 3D.8

Gibbs–Helmholtz equation (∂(G/T)/∂T)p = −H/T2 Composition constant 3D.10

Pressure dependence of G Gm(pf) = Gm(pi) + (pf − pi)Vm Incompressible substance 3D.13

Gm(pf) = Gm(pi) + RT ln(pf/pi) Perfect gas 3D.14

G G RT p pm m  ln /= +< <( ) Perfect gas 3D.15

Fugacity G G RT f pm m  ln /= +< <( ) Definition 3D.16

Fugacity coefficient f = φp Definition 3D.17

ln {( )/ }φ = −∫ Z p p
p

1
0

d Determination 3D.18
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chaPter 3  The Second and Third Laws
Assume that all gases are perfect and that data refer to 298.15 K unless otherwise stated.

TOPIC 3A entropy

Discussion questions
3A.1 The evolution of life requires the organization of a very large number 
of molecules into biological cells. Does the formation of living organisms 
violate the Second Law of thermodynamics? State your conclusion clearly 
and present detailed arguments to support it.

3A.2 Discuss the significance of the terms ‘dispersal’ and ‘disorder’ in the 
context of the Second Law.

3A.3 Discuss the relationships between the various formulations of the Second 
Law of thermodynamics.

3A.4 Account for deviations from Trouton’s rule for liquids such as water and 
ethanol. Is their entropy of vaporization larger or smaller than 85 J K−1 mol−1? 
Why?

Exercises
3A.1(a) During a hypothetical process, the entropy of a system increases by 
125 J K−1 while the entropy of the surroundings decreases by 125 J K−1. Is the 
process spontaneous?
3A.1(b) During a hypothetical process, the entropy of a system increases by 
105 J K−1 while the entropy of the surroundings decreases by 95 J K−1. Is the 
process spontaneous?

3A.2(a) A certain ideal heat engine uses water at the triple point as the hot 
source and an organic liquid as the cold sink. It withdraws 10.00 kJ of heat 
from the hot source and generates 3.00 kJ of work. What is the temperature of 
the organic liquid?
3A.2(b) A certain ideal heat engine uses water at the triple point as the hot 
source and an organic liquid as the cold sink. It withdraws 2.71 kJ of heat from 
the hot source and generates 0.71 kJ of work. What is the temperature of the 
organic liquid?

3A.3(a) Calculate the change in entropy when 100 kJ of energy is transferred 
reversibly and isothermally as heat to a large block of copper at (i) 0 °C,  
(ii) 50 °C.
3A.3(b) Calculate the change in entropy when 250 kJ of energy is transferred 
reversibly and isothermally as heat to a large block of lead at (i) 20 °C, (ii) 100 °C.

3A.4(a) Which of F2(g) and I2(g) is likely to have the higher standard molar 
entropy at 298 K?
3A.4(b) Which of H2O(g) and CO2(g) is likely to have the higher standard 
molar entropy at 298 K?

3A.5(a) Calculate the change in entropy when 15 g of carbon dioxide gas is 
allowed to expand from 1.0 dm3 to 3.0 dm3 at 300 K.
3A.5(b) Calculate the change in entropy when 4.00 g of nitrogen is allowed to 
expand from 500 cm3 to 750 cm3 at 300 K.

3A.6(a) Predict the enthalpy of vaporization of benzene from its normal 
boiling point, 80.1 °C.
3A.6(b) Predict the enthalpy of vaporization of cyclohexane from its normal 
boiling point, 80.7 °C.

3A.7(a) Calculate the molar entropy of a constant-volume sample of neon at 
500 K given that it is 146.22 J K−1 mol−1 at 298 K.
3A.7(b) Calculate the molar entropy of a constant-volume sample of argon at 
250 K given that it is 154.84 J K−1 mol−1 at 298 K.

3A.8(a) Calculate ΔS (for the system) when the state of 3.00 mol of perfect gas 
atoms, for which Cp,m =  5

2 R, is changed from 25 °C and 1.00 atm to 125 °C and 
5.00 atm. How do you rationalize the sign of ΔS?

3A.8(b) Calculate ΔS (for the system) when the state of 2.00 mol  
diatomic perfect gas molecules, for which C Rp,m = 5

2 , is changed from  
25 °C and 1.50 atm to 135 °C and 7.00 atm. How do you rationalize the sign  
of ΔS?

3A.9(a) Calculate ΔStot when two copper blocks, each of mass 1.00 kg, one at 
50 °C and the other at 0 °C are placed in contact in an isolated container. The 
specific heat capacity of copper is 0.385 J K−1 g−1 and may be assumed constant 
over the temperature range involved.
3A.9(b) Calculate ΔStot when two iron blocks, each of mass 10.0 kg , one at 
100 °C and the other at 25 °C, are placed in contact in an isolated container. 
The specific heat capacity of iron is 0.449 J K−1 g−1 and may be assumed 
constant over the temperature range involved.

3A.10(a) Calculate the change in the entropies of the system and the 
surroundings, and the total change in entropy, when a sample of nitrogen 
gas of mass 14 g at 298 K and 1.00 bar doubles its volume in (i) an isothermal 
reversible expansion, (ii) an isothermal irreversible expansion against pex = 0, 
and (iii) an adiabatic reversible expansion.
3A.10(b) Calculate the change in the entropies of the system and the 
surroundings, and the total change in entropy, when the volume of a sample 
of argon gas of mass 21 g at 298 K and 1.50 bar increases from 1.20 dm3 
to 4.60 dm3 in (i) an isothermal reversible expansion, (ii) an isothermal 
irreversible expansion against pex = 0, and (iii) an adiabatic reversible 
expansion.

3A.11(a) The enthalpy of vaporization of chloroform (CHCl3) is 29.4 kJ mol−1 at 
its normal boiling point of 334.88 K. Calculate (i) the entropy of vaporization 
of chloroform at this temperature and (ii) the entropy change of the 
surroundings.
3A.11(b) The enthalpy of vaporization of methanol is 35.27 kJ mol−1 at its 
normal boiling point of 64.1 °C. Calculate (i) the entropy of vaporization 
of methanol at this temperature and (ii) the entropy change of the 
surroundings.

3A.12(a) Calculate the change in entropy of the system when 10.0 g of ice at 
−10.0 °C is converted into water vapour at 115.0 °C and at a constant pressure 
of 1 bar. The constant-pressure molar heat capacity of H2O(s) and H2O(l) is 
75.291 J K−1 mol−1 and that of H2O(g) is 33.58 J K−1 mol−1.
3A.12(b) Calculate the change in entropy of the system when 15.0 g of ice at 
−12.0 °C is converted to water vapour at 105.0 °C at a constant pressure of 
1 bar. For data, see the preceding exercise.
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150 3 The Second and Third Laws

Problems
3A.1 Represent the Carnot cycle on a temperature–entropy diagram and 
show that the area enclosed by the cycle is equal to the work done.

3A.2 The cycle involved in the operation of an internal combustion engine 
is called the Otto cycle. Air can be considered to be the working substance 
and can be assumed to be a perfect gas. The cycle consists of the following 
steps: (1) Reversible adiabatic compression from A to B, (2) reversible 
constant-volume pressure increase from B to C due to the combustion of 
a small amount of fuel, (3) reversible adiabatic expansion from C to D, 
and (4) reversible and constant-volume pressure decrease back to state A. 
Determine the change in entropy (of the system and of the surroundings) for 
each step of the cycle and determine an expression for the efficiency of the 
cycle, assuming that the heat is supplied in Step 2. Evaluate the efficiency for 
a compression ratio of 10:1. Assume that in state A, V = 4.00 dm3, p = 1.00 atm, 
and T = 300 K, that VA =10VB, pC/pB = 5, and that C Rp,m = 7

2 .

3A.3 Prove that two reversible adiabatic paths can never cross. Assume that the 
energy of the system under consideration is a function of temperature only. 
(Hint: Suppose that two such paths can intersect, and complete a cycle with 
the two paths plus one isothermal path. Consider the changes accompanying 
each stage of the cycle and show that they conflict with the Kelvin statement 
of the Second Law.)

3A.4 To calculate the work required to lower the temperature of an object, 
we need to consider how the coefficient of performance c (see Impact I3.1) 
changes with the temperature of the object. (a) Find an expression for the 
work of cooling an object from Ti to Tf when the refrigerator is in a room at 
a temperature Th. Hint: Write dw = dq/c(T), relate dq to dT through the heat 
capacity Cp, and integrate the resulting expression. Assume that the heat 
capacity is independent of temperature in the range of interest. (b) Use the 
result in part (a) to calculate the work needed to freeze 250 g of water in a 
refrigerator at 293 K. How long will it take when the refrigerator operates at 
100 W?

3A.5 The expressions that apply to the treatment of refrigerators (Problem 
3A.4) also describe the behaviour of heat pumps, where warmth is obtained 
from the back of a refrigerator while its front is being used to cool the outside 
world. Heat pumps are popular home heating devices because they are very 
efficient. Compare heating of a room at 295 K by each of two methods:  
(a) direct conversion of 1.00 kJ of electrical energy in an electrical heater, and 
(b) use of 1.00 kJ of electrical energy to run a reversible heat pump with the 
outside at 260 K. Discuss the origin of the difference in the energy delivered to 
the interior of the house by the two methods.

3A.6 Calculate the difference in molar entropy (a) between liquid water and 
ice at –5 °C, (b) between liquid water and its vapour at 95 °C and 1.00 atm. 
The differences in heat capacities on melting and on vaporization are 
37.3 J K−1 mol−1 and –41.9 J K−1 mol−1, respectively. Distinguish between the 
entropy changes of the sample, the surroundings, and the total system, and 
discuss the spontaneity of the transitions at the two temperatures.

3A.7 The molar heat capacity of chloroform (trichloromethane, CHCl3) in the 
range 240 K to 330 K is given by Cp,m/(J K−1 mol−1) = 91.47 + 7.5 × 10−2 (T/K). 

In a particular experiment, 1.00 mol CHCl3 is heated from 273 K to 300 K. 
Calculate the change in molar entropy of the sample.

3A.8 A block of copper of mass 2.00 kg (Cp,m = 24.44 J K−1 mol−1) and 
temperature 0 °C is introduced into an insulated container in which there 
is 1.00 mol H2O(g) at 100 °C and 1.00 atm. (a) Assuming all the steam is 
condensed to water, what will be the final temperature of the system, the 
heat transferred from water to copper, and the entropy change of the water, 
copper, and the total system? (b) In fact, some water vapour is present at 
equilibrium. From the vapour pressure of water at the temperature calculated 
in (a), and assuming that the heat capacities of both gaseous and liquid water 
are constant and given by their values at that temperature, obtain an improved 
value of the final temperature, the heat transferred, and the various entropies. 
(Hint: You will need to make plausible approximations.)

3A.9 A sample consisting of 1.00 mol of perfect gas molecules at 27 °C is 
expanded isothermally from an initial pressure of 3.00 atm to a final pressure 
of 1.00 atm in two ways: (a) reversibly, and (b) against a constant external 
pressure of 1.00 atm. Determine the values of q, w, ΔU, ΔH, ΔS, ΔSsurr, and 
ΔStot for each path.

3A.10 A block of copper of mass 500 g and initially at 293 K is in thermal 
contact with an electric heater of resistance 1.00 kΩ and negligible mass. 
A current of 1.00 A is passed for 15.0 s. Calculate the change in entropy 
of the copper, taking Cp,m = 24.4 J K−1 mol−1. The experiment is then 
repeated with the copper immersed in a stream of water that maintains its 
temperature at 293 K. Calculate the change in entropy of the copper and 
the water in this case.

3A.11 Find an expression for the change in entropy when two blocks of the 
same substance and of equal mass, one at the temperature Th and the other 
at Tc, are brought into thermal contact and allowed to reach equilibrium. 
Evaluate the change for two blocks of copper, each of mass 500 g, with 
Cp,m = 24.4 J K−1 mol−1, taking Th = 500 K and Tc = 250 K.

3A.12 According to Newton’s law of cooling, the rate of change of temperature 
is proportional to the temperature difference between the system and its 
surroundings. Given that S(T) − S(Ti) = C ln(T/Ti), where Ti is the initial 
temperature and C the heat capacity, deduce an expression for the rate of 
change of entropy of the system as it cools.

3A.13 The protein lysozyme unfolds at a transition temperature of 75.5 °C and 
the standard enthalpy of transition is 509 kJ mol−1. Calculate the entropy of 
unfolding of lysozyme at 25.0 °C, given that the difference in the constant-
pressure heat capacities upon unfolding is 6.28 kJ K−1 mol−1 and can be 
assumed to be independent of temperature. Hint: Imagine that the transition 
at 25.0 °C occurs in three steps: (i) heating of the folded protein from 25.0 °C 
to the transition temperature, (ii) unfolding at the transition temperature, 
and (iii) cooling of the unfolded protein to 25.0 °C. Because the entropy is a 
state function, the entropy change at 25.0 °C is equal to the sum of the entropy 
changes of the steps.

TOPIC 3B the measurement of entropy

Discussion question
3B.1 Discuss why the standard entropies of ions in solution may be positive, 
negative, or zero.
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Exercises
3B.1(a) Calculate the residual molar entropy of a solid in which the 
molecules can adopt (i) three, (ii) five, (iii) six orientations of equal energy 
at T = 0.
3B.1(b) Suppose that the hexagonal molecule C6HnF6–n has a residual entropy 
on account of the similarity of the H and F atoms. Calculate the residual for 
each value of n.

3B.2(a) Calculate the standard reaction entropy at 298 K of

( ) ( )i 2CH CHO(g) O g 2CH COOH(l)3 2 3+ →

( ) ( ) ( )
( ) ( )
ii 2 AgCl(s) Br l 2 AgBr(s) Cl g
iii Hg(l) Cl g HgCl

2 2

2 2

+ → +
+ → (( )s  

3B.2(b) Calculate the standard reaction entropy at 298 K of

( ) ( ( )
( ) ( ) ( )
i Zn(s) Cu aq) Zn aq Cu(s)
ii C H O s 12O g 1

2 2

12 22 11 2

+ → +
+ →

+ +

22CO g 11H O(l)2 2( )+  

Problems
3B.1 The standard molar entropy of NH3(g) is 192.45 J K−1 mol−1 at 298 K, 
and its heat capacity is given by eqn 2B.8 with the coefficients given in Table 
2B.1. Calculate the standard molar entropy at (a) 100 °C and (b) 500 °C.

3B.2 The molar heat capacity of lead varies with temperature as follows:

Calculate the standard Third-Law entropy of lead at (a) 0 °C and (b) 25 °C.

3B.3 From standard enthalpies of formation, standard entropies, and standard 
heat capacities available from tables in the Resource section, calculate:  
(a) the standard enthalpies and entropies at 298 K and 398 K for the reaction 
CO2(g) + H2(g) → CO(g) + H2O(g). Assume that the heat capacities are 
constant over the temperature range involved.

3B.4 The molar heat capacity of anhydrous potassium hexacyanoferrate(II) 
varies with temperature as follows:

Calculate the molar enthalpy relative to its value at T = 0 and the Third-Law 
entropy at each of these temperatures.

3B.5 The compound 1,3,5-trichloro-2,4,6-trifluorobenzene is an intermediate 
in the conversion of hexachlorobenzene to hexafluorobenzene, and its 
thermodynamic properties have been examined by measuring its heat 
capacity over a wide temperature range (R.L. Andon and J.F. Martin, J. Chem. 
Soc. Faraday Trans. I, 871 (1973)). Some of the data are as follows:

Calculate the molar enthalpy relative to its value at T = 0 and the Third-Law 
molar entropy of the compound at these temperatures.

3B.6‡ Given that Sm
< = 29.79 J K−1 mol−1 for bismuth at 100 K and the following 

tabulated heat capacity data (D.G. Archer, J. Chem. Eng. Data 40, 1015 (1995)), 
compute the standard molar entropy of bismuth at 200 K.

Compare the value to the value that would be obtained by taking the heat 
capacity to be constant at 24.44 J K−1 mol−1 over this range.

3B.7 Derive an expression for the molar entropy of a monatomic solid on the 
basis of the Einstein and Debye models and plot the molar entropy against the 
temperature (use T/θ in each case, with θ the Einstein or Debye temperature). 
Use the following expressions for the temperature-dependence of the heat 
capacities:

Einstein e
em

E E
E E

E: ( ) ( ) ( ),
/

/
C T Rf T f T TV

T

T= =





 −









3

1

2 2θ θ

θ 

= = 



 −

2

2 4

2
0

3 3
1

Debye e
e

dm
D D

D

D

: )
( )

( ) ( ( ),

/
C T Rf T f T T x xV

x

xθ

θ TT

∫  
Use mathematical software to evaluate the appropriate expressions.

3B.8 An average human DNA molecule has 5 × 108 binucleotides (rungs on the 
DNA ladder) of four different kinds. If each rung were a random choice of one 
of these four possibilities, what would be the residual entropy associated with 
this typical DNA molecule?

TOPIC 3C concentrating on the system

Discussion questions
3C.1 The following expressions have been used to establish criteria for 
spontaneous change: dAT,V < 0 and dGT,p < 0. Discuss the origin, significance, 
and applicability of each criterion.

3C.2 Under what circumstances, and why, can the spontaneity of a process be 
discussed in terms of the properties of the system alone?

‡ These problems were provided by Charles Trapp and Carmen Giunta.

T/K 10 15 20 25 30 50

Cp,m/(J K−1 mol−1) 2.8 7.0 10.8 14.1 16.5 21.4

T/K 70 100 150 200 250 298

Cp,m/(J K−1 mol−1) 23.3 24.5 25.3 25.8 26.2 26.6

T/K 10 20 30 40 50 60

Cp,m/(J K−1 mol−1) 2.09 14.43 36.44 62.55 87.03 111.0

T/K 70 80 90 100 110 150

Cp,m/(J K−1 mol−1) 131.4 149.4 165.3 179.6 192.8 237.6

T/K 160 170 180 190 200

Cp,m/(J K−1 mol−1) 247.3 256.5 265.1 273.0 280.3

T/K 14.14 16.33 20.03 31.15 44.08 64.81

Cp,m/(J K−1 mol−1) 9.492 12.70 18.18 32.54 46.86 66.36

T/K 100.90 140.86 183.59 225.10 262.99 298.06

Cp,m/(J K−1 mol−1) 95.05 121.3 144.4 163.7 180.2 196.4

T/K 100 120 140 150 160 180 200

Cp,m/
(J K−1 mol−1)

23.00 23.74 24.25 24.44 24.61 24.89 25.11
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152 3 The Second and Third Laws

Exercises
3C.1(a) Combine the reaction entropies calculated in Exercise 3B.2(a) with 
the reaction enthalpies, and calculate the standard reaction Gibbs energies 
at 298 K.
3C.1(b) Combine the reaction entropies calculated in Exercise 3B.2(b) with the 
reaction enthalpies, and calculate the standard reaction Gibbs energies  
at 298 K.

3C.2(a) Calculate the standard Gibbs energy of the reaction 4 HI(g) + O2(g) →  
2 I2(s) + 2 H2O(l) at 298 K, from the standard entropies and enthalpies of 
formation given in the Resource section.
3C.2(b) Calculate the standard Gibbs energy of the reaction CO(g) +  
CH3CH2OH(l) → CH3CH2COOH(l) at 298 K, from the standard entropies 
and enthalpies of formation given in the Resource section.

3C.3(a) Calculate the maximum non-expansion work per mole that may be 
obtained from a fuel cell in which the chemical reaction is the combustion of 
methane at 298 K.
3C.3(b) Calculate the maximum non-expansion work per mole that may be 
obtained from a fuel cell in which the chemical reaction is the combustion of 
propane at 298 K.

3C.4(a) Use standard Gibbs energies of formation to calculate the standard 
reaction Gibbs energies at 298 K of the reactions

( ) ( )
( ) ( )
i 2CH CHO(g) O g 2CH COOH(l)
ii 2 AgCl(s) Br l 2 AgBr(s

3 2 3

2

+ →
+ → )) Cl g

iii Hg(l) Cl g HgCl s
2

2 2

+
+ →

( )
( ) ( ) ( )  

3C.4(b) Use standard Gibbs energies of formation to calculate the standard 
reaction Gibbs energies at 298 K of the reactions

( ) ( ( )
( ) ( ) ( )
i Zn(s) Cu aq) Zn aq Cu(s)
ii C H O s 12O g 1

2 2

12 22 11 2

+ → +
+ →

+ +

22CO g 11H O(l)2 2( )+  
3C.5(a) The standard enthalpy of combustion of ethyl acetate (CH3COOC2H5) 
is –2231 kJ mol−1 at 298 K and its standard molar entropy is 259.4 J K−1 mol−1. 
Calculate the standard Gibbs energy of formation of the compound at 298 K.
3C.5(b) The standard enthalpy of combustion of the amino acid glycine 
(NH2CH2COOH) is –969 kJ mol−1 at 298 K and its standard molar entropy is 
103.5 J K−1 mol−1. Calculate the standard Gibbs energy of formation of glycine 
at 298 K.

Problems
3C.1 Consider a perfect gas contained in a cylinder and separated by a 
frictionless adiabatic piston into two sections A and B. All changes in B 
are isothermal; that is, a thermostat surrounds B to keep its temperature 
constant. There is 2.00 mol of the gas molecules in each section. Initially 
TA = TB = 300 K, VA = VB = 2.00 dm3. Energy is supplied as heat to Section A  
and the piston moves to the right reversibly until the final volume of Section 
B is 1.00 dm3. Calculate (a) ΔSA and ΔSB, (b) ΔAA and ΔAB, (c) ΔGA and ΔGB, 
(d) ΔS of the total system and its surroundings. If numerical values cannot be 
obtained, indicate whether the values should be positive, negative, or zero or 
are indeterminate from the information given. (Assume CV,m = 20 J K−1 mol−1.)

3C.2 Calculate the molar internal energy, molar entropy, and molar Helmholtz 
energy of a collection of harmonic oscillators and plot your expressions as a 
function of T/θV, where θV = h/k.

3C.3 In biological cells, the energy released by the oxidation of foods is stored 
in adenosine triphosphate (ATP or ATP4−). The essence of ATP’s action is 
its ability to lose its terminal phosphate group by hydrolysis and to form 
adenosine diphosphate (ADP or ADP3−):

ATP aq H O(l) ADP aq HPO aq H O aq4
2

3
3

− − − ++ → + +( ) ( ) ( ) ( )4
2

 

At pH = 7.0 and 37 °C (310 K, blood temperature) the enthalpy and 
Gibbs energy of hydrolysis are ΔrH = −20 kJ mol−1 and ΔrG = −31 kJ mol−1, 
respectively. Under these conditions, the hydrolysis of 1 mol ATP4−(aq) 
results in the extraction of up to 31 kJ of energy that can be used to do non-
expansion work, such as the synthesis of proteins from amino acids, muscular 
contraction, and the activation of neuronal circuits in our brains. (a) Calculate 
and account for the sign of the entropy of hydrolysis of ATP at pH = 7.0 and 
310 K. (b) Suppose that the radius of a typical biological cell is 10 µm and 
that inside it 1 × 106 ATP molecules are hydrolysed each second. What is the 
power density of the cell in watts per cubic metre (1 W = 1 J s−1)? A computer 
battery delivers about 15 W and has a volume of 100 cm3. Which has the 
greater power density, the cell or the battery? (c) The formation of glutamine 
from glutamate and ammonium ions requires 14.2 kJ mol−1 of energy input. It 
is driven by the hydrolysis of ATP to ADP mediated by the enzyme glutamine 
synthetase. How many moles of ATP must be hydrolysed to form 1 mol 
glutamine?

TOPIC 3D combining the First and second laws

Discussion questions
3D.1 Suggest a physical interpretation of the dependence of the Gibbs energy 
on the temperature.

3D.2 Suggest a physical interpretation of the dependence of the Gibbs energy 
on the pressure.

Exercises
3D.1(a) Suppose that 2.5 mmol N2(g) occupies 42 cm3 at 300 K and expands 
isothermally to 600 cm3. Calculate ΔG for the process.
3D.1(b) Suppose that 6.0 mmol Ar(g) occupies 52 cm3 at 298 K and expands 
isothermally to 122 cm3. Calculate ΔG for the process.

3D.2(a) The change in the Gibbs energy of a certain constant–pressure process 
was found to fit the expression ΔG/J = −85.40 + 36.5(T/K). Calculate the value 
of ΔS for the process.
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3D.2(b) The change in the Gibbs energy of a certain constant-pressure process 
was found to fit the expression ΔG/J = −73.1 + 42.8(T/K). Calculate the value of 
ΔS for the process.

3D.3(a) Estimate the change in the Gibbs energy and molar Gibbs energy of 
1.0 dm3 of octane when the pressure acting on it is increased from 1.0 atm to 
100 atm. The mass density of octane is 0.703 g cm−3.

3D.3(b) Estimate the change in the Gibbs energy and molar Gibbs energy of 
100 cm3 of water when the pressure acting on it is increased from 100 kPa to 
500 kPa. The mass density of water is 0.997 g cm−3.

3D.4(a) Calculate the change in the molar Gibbs energy of hydrogen gas when 
its pressure is increased isothermally from 1.0 atm to 100.0 atm at 298 K.
3D.4(b) Calculate the change in the molar Gibbs energy of oxygen when its 
pressure is increased isothermally from 50.0 kPa to 100.0 kPa at 500 K.

Problems
3D.1 Calculate ΔrG< (375 K) for the reaction 2 CO(g) + O2(g) → 2 CO2(g) 
from the value of ΔrG< (298 K), ΔrH< (298 K), and the Gibbs–Helmholtz 
equation.

3D.2 Estimate the standard reaction Gibbs energy of N2(g) + 3 H2(g) →  
2 NH3(g) at (a) 500 K, (b) 1000 K from their values at 298 K.

3D.3 At 298 K the standard enthalpy of combustion of sucrose is −5797 
kJ mol−1 and the standard Gibbs energy of the reaction is –6333 kJ mol−1. 
Estimate the additional non-expansion work that may be obtained by raising 
the temperature to blood temperature, 37 °C.

3D.4 Two empirical equations of state of a real gas are as follows:

van der Waals

Dieterici e
m m

m

m

:

:
/

p RT
V b

a
V

p RT
V b

a RTV

= − −

= −

−

2

 
Evaluate (∂S/∂V)T for each gas. For an isothermal expansion, for which kind of 
gas (also consider a perfect gas) will ΔS be greatest? Explain your conclusion.

3D.5 Two of the four Maxwell relations were derived in the text, but two were 
not. Complete their derivation by showing that (∂S/∂V)T = (∂p/∂T)V and 
(∂T/∂p)S = (∂V/∂S)p.

3D.6 (a) Use the Maxwell relations to express the derivatives (∂S/∂V)T , 
(∂V/∂S)p, (∂p/∂S)V , and (∂V/∂S)p in terms of the heat capacities, the expansion 
coefficient α = (1/V)(∂V/∂T)p, and the isothermal compressibility, κT = −(1/V)
(∂V/∂p)T . (b) The Joule coefficient, μJ, is defined as μJ = (∂T/∂V)U. Show that 
μJCV = p – αT/κT.

3D.7 Suppose that S is regarded as a function of p and T. Show that TdS = CpdT –  
αTVdp. Hence, show that the energy transferred as heat when the pressure 

on an incompressible liquid or solid is increased by Δp is equal to −αTVΔp, 
where α = (1/V)(∂V/∂T)p. Evaluate q when the pressure acting on 100 cm3 of 
mercury at 0 °C is increased by 1.0 kbar. (α = 1.82 × 10−4 K−1.)

3D.8 Equation 3D.6 (πT = T(∂p/∂T)V – p) expresses the internal pressure πT in 
terms of the pressure and its derivative with respect to temperature. Express 
πT in terms of the molecular partition function.

3D.9 Explore the consequences of replacing the equation of state of a perfect 
gas by the van der Waals equation of state for the pressure-dependence 
of the molar Gibbs energy. Proceed in three steps. First, consider the case 
when a = 0 and only repulsions are significant. Then consider the case when 
b = 0 and only attractions are significant. For the latter, you should consider 
making the approximation that the attractions are weak. Finally, explore the 
full expression by using mathematical software. In each case plot your results 
graphically and account physically for the deviations from the perfect gas 
expression.

3D.10‡ Nitric acid hydrates have received much attention as possible 
catalysts for heterogeneous reactions which bring about the Antarctic 
ozone hole. Worsnop et al. (Science 259, 71 (1993)) investigated the 
thermodynamic stability of these hydrates under conditions typical of 
the polar winter stratosphere. They report thermodynamic data for the 
sublimation of mono-, di-, and trihydrates to nitric acid and water vapour, 
HNO3⋅nH2O(s) → HNO3(g) + nH2O(g), for n = 1, 2, and 3. Given ΔrG< and 
ΔrH< for these reactions at 220 K, use the Gibbs–Helmholtz equation to 
compute ΔrG< at 190 K.

Integrated activities
3.1 A gaseous sample consisting of 1.00 mol molecules is described  
by the equation of state pVm = RT(1 + Bp). Initially at 373 K, it undergoes 
Joule–Thomson expansion from 100 atm to 1.00 atm. Given that  
C Rp,m = 5

2 , μ = 0.21 K atm−1, B = −0.525(K/T) atm−1 and that these are 
constant over the temperature range involved, calculate ΔT and ΔS for  
the gas.

3.2 Discuss the relationship between the thermodynamic and statistical 
definitions of entropy.

3.3 Use mathematical software, a spreadsheet, or the Living graphs on the web 
site for this book to:

(a) Evaluate the change in entropy of 1.00 mol CO2(g) on expansion from 
0.001 m3 to 0.010 m3 at 298 K, treated as a van der Waals gas.
(b) Allow for the temperature dependence of the heat capacity by writing 
C = a + bT + c/T2, and plot the change in entropy for different values of the 
three coefficients (including negative values of c).
(c) Show how the first derivative of G, (∂G/∂p)T, varies with pressure, and 
plot the resulting expression over a pressure range. What is the physical 
significance of (∂G/∂p)T?
(d) Evaluate the fugacity coefficient as a function of the reduced volume 
of a van der Waals gas and plot the outcome for a selection of reduced 
temperatures over the range 0.8 ≤ Vr ≤ 3.

n 1 2 3

ΔrG</(kJ mol−1) 46.2 69.4 93.2

ΔrH</(kJ mol−1) 127 188 237
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chaPter 4

Physical transformations of  
pure substances

Vaporization, melting (fusion), and the conversion of graph-
ite to diamond are all examples of changes of phase without 
change of chemical composition. The discussion of the phase 
transitions of pure substances is among the simplest applica-
tions of thermodynamics to chemistry, and is guided by the 
principle that the tendency of systems at constant temperature 
and pressure is to minimize their Gibbs energy.

4A Phase diagrams of pure substances

First, we see that one type of phase diagram is a map of the 
pressures and temperatures at which each phase of a substance 
is the most stable. The thermodynamic criterion of phase sta-
bility enables us to deduce a very general result, the ‘phase rule’, 
which summarizes the constraints on the equilibria between 
phases. In preparation for later chapters, we express the rule in 
a general way that can be applied to systems of more than one 
component. Then, we describe the interpretation of empirically 
determined phase diagrams for a selection of substances.

4B thermodynamic aspects of phase 
transitions

Here we consider the factors that determine the positions 
and shapes of the boundaries between the regions on a phase 

diagram. The practical importance of the expressions we derive 
is that they show how the vapour pressure of a substance varies 
with temperature and how the melting point varies with pres-
sure. Transitions between phases are classified by noting how 
various thermodynamic functions change when the transition 
occurs. This chapter also introduces the ‘chemical potential’, a 
property that will be at the centre of our discussions of mix-
tures and chemical reactions.

What is the impact of this material?

The properties of carbon dioxide in its supercritical fluid phase 
can form the basis for novel and useful chemical separation 
methods, and have considerable promise for ‘green’ chemistry 
synthetic procedures. Its properties and applications are dis-
cussed in Impact I4.1.

 To read more about the impact of this 
material, scan the QR code, or go to  
bcs.whfreeman.com/webpub/chemistry/
pchem10e/impact/pchem-4-1.html
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4A Phase diagrams of pure substances

One of the most succinct ways of presenting the physical 
changes of state that a substance can undergo is in terms of its 
‘phase diagram’. This material is also the basis of the discussion 
of mixtures in Chapter 5.

4A.1 The stabilities of phases

Thermodynamics provides a powerful language for describ-
ing and understanding the stabilities and transformations of 
phases, but to apply it we need to employ definitions carefully.

(a) The number of phases
A phase is a form of matter that is uniform throughout in chem-
ical composition and physical state. Thus, we speak of solid, 
liquid, and gas phases of a substance, and of its various solid 
phases, such as the white and black allotropes of phosphorus or 
the aragonite and calcite polymorphs of calcium carbonate.

A note on good practice An allotrope is a particular molecu-
lar form of an element (such as O2 and O3) and may be 
solid, liquid, or gas. A polymorph is one of a number of 
solid phases of an element or compound.

The number of phases in a system is denoted P. A gas, or 
a gaseous mixture, is a single phase (P = 1), a crystal of a sub-
stance is a single phase, and two fully miscible liquids form a 
single phase.

Brief illustration 4A.1 The number of phases

A solution of sodium chloride in water is a single phase 
(P = 1). Ice is a single phase even though it might be chipped 
into small fragments. A slurry of ice and water is a two-
phase system (P = 2) even though it is difficult to map the 
physical boundaries between the phases. A system in which 
calcium carbonate undergoes the thermal decomposition 
CaCO3(s) → CaO(s) + CO2(g) consists of two solid phases 
(one consisting of calcium carbonate and the other of calcium 
oxide) and one gaseous phase (consisting of carbon dioxide), 
so P = 3.

Self-test 4A.1 How many phases are present in a sealed, half-
full vessel containing water?

Answer: 2

➤➤ Why do you need to know this material?

Phase diagrams summarize the behaviour of substances 
under different conditions. In metallurgy, the ability to 
control the microstructure resulting from phase equilibria 
makes it possible to tailor the mechanical properties of the 
materials to a particular application.

➤➤ What is the key idea?
A pure substance tends to adopt the phase with the lowest 
chemical potential.

➤➤ What do you need to know already?
This Topic builds on the fact that the Gibbs energy is a 
signpost of spontaneous change under conditions of 
constant temperature and pressure (Topic 3C).
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156 4 Physical transformations of pure substances

Two metals form a two-phase system (P = 2) if they are 
immiscible, but a single-phase system (P = 1), an alloy, if they 
are miscible. This example shows that it is not always easy to 
decide whether a system consists of one phase or of two. A 
solution of solid B in solid A—a homogeneous mixture of the 
two substances—is uniform on a molecular scale. In a solution, 
atoms of A are surrounded by atoms of A and B, and any sam-
ple cut from the sample, even microscopically small, is repre-
sentative of the composition of the whole.

A dispersion is uniform on a macroscopic scale but not on 
a microscopic scale, for it consists of grains or droplets of one 
substance in a matrix of the other. A small sample could come 
entirely from one of the minute grains of pure A and would 
not be representative of the whole (Fig. 4A.1). Dispersions 
are important because, in many advanced materials (includ-
ing steels), heat treatment cycles are used to achieve the pre-
cipitation of a fine dispersion of particles of one phase (such 
as a carbide phase) within a matrix formed by a saturated solid 
solution phase.

(b) Phase transitions
A phase transition, the spontaneous conversion of one phase 
into another phase, occurs at a characteristic temperature for a 
given pressure. The transition temperature, Ttrs, is the temper-
ature at which the two phases are in equilibrium and the Gibbs 
energy of the system is minimized at the prevailing pressure.

Detecting a phase transition is not always as simple as seeing 
water boil in a kettle, so special techniques have been developed. 
One technique is thermal analysis, which takes advantage of 
the heat that is evolved or absorbed during any transition. The 
transition is detected by noting that the temperature does not 
change even though heat is being supplied or removed from the 
sample (Fig. 4A.2). Differential scanning calorimetry (Topic 
2C) is also used. Thermal techniques are useful for solid–solid 
transitions, where simple visual inspection of the sample may 
be inadequate. X-ray diffraction (Topic 18A) also reveals the 
occurrence of a phase transition in a solid, for different struc-
tures are found on either side of the transition temperature.

As always, it is important to distinguish between the ther-
modynamic description of a process and the rate at which the 
process occurs. A phase transition that is predicted from ther-
modynamics to be spontaneous may occur too slowly to be 
significant in practice. For instance, at normal temperatures 
and pressures the molar Gibbs energy of graphite is lower than 
that of diamond, so there is a thermodynamic tendency for dia-
mond to change into graphite. However, for this transition to 
take place, the C atoms must change their locations, which is an 
immeasurably slow process in a solid except at high tempera-
tures. The discussion of the rate of attainment of equilibrium is 
a kinetic problem and is outside the range of thermodynamics. 
In gases and liquids the mobilities of the molecules allow phase 
transitions to occur rapidly, but in solids thermodynamic insta-
bility may be frozen in. Thermodynamically unstable phases 
that persist because the transition is kinetically hindered are 
called metastable phases. Diamond is a metastable but persis-
tent phase of carbon under normal conditions.

(c) Thermodynamic criteria of phase stability
All our considerations will be based on the Gibbs energy of a 
substance, and in particular on its molar Gibbs energy, Gm. In 

Brief illustration 4A.2 Phase transitions

At 1 atm, ice is the stable phase of water below 0 °C, but above 
0 °C liquid water is more stable. This difference indicates that 
below 0 °C the Gibbs energy decreases as liquid water changes 
into ice and that above 0 °C the Gibbs energy decreases as ice 
changes into liquid water. The numerical values of the Gibbs 
energies are considered in the next Brief illustration.

Self-test 4A.2 Which has the higher standard molar Gibbs 
energy at 105 °C, liquid water or its vapour?

Answer: Liquid water

Tf
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Time, t
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cooling

Liquid
freezing

Solid
cooling

Figure 4A.2 A cooling curve at constant pressure. The flat 
section corresponds to the pause in the fall of temperature 
while the first-order exothermic transition (freezing) occurs. 
This pause enables Tf to be located even if the transition cannot 
be observed visually.

(a) (b)

Figure 4A.1 The difference between (a) a single-phase 
solution, in which the composition is uniform on a microscopic 
scale, and (b) a dispersion, in which regions of one component 
are embedded in a matrix of a second component.
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4A Phase diagrams of pure substances  157

fact, this quantity plays such an important role in this chap-
ter and the rest of the text that we give it a special name and 
symbol, the chemical potential, μ (mu). For a one-component 
system, ‘molar Gibbs energy’ and ‘chemical potential’ are syno-
nyms, so μ = Gm, but in Topic 5A we see that chemical poten-
tial has a broader significance and a more general definition. 
The name ‘chemical potential’ is also instructive: as we develop 
the concept, we shall see that μ is a measure of the potential 
that a substance has for undergoing change in a system. In this 
chapter and Chapter 5, it reflects the potential of a substance 
to undergo physical change. In Chapter 6, we see that μ is the 
potential of a substance to undergo chemical change.

We base the entire discussion on the following consequence 
of the Second Law (Fig. 4A.3):

At equilibrium, the chemical potential of a 
substance is the same throughout a sample, 
regardless of how many phases are present.

To see the validity of this remark, consider a system in which the 
chemical potential of a substance is μ1 at one location and μ2 at 
another location. The locations may be in the same or in differ-
ent phases. When an infinitesimal amount dn of the substance 
is transferred from one location to the other, the Gibbs energy 
of the system changes by –μ1dn when material is removed from 
location 1, and it changes by +μ2dn when that material is added 
to location 2. The overall change is therefore dG = (μ2 – μ1)dn. If 
the chemical potential at location 1 is higher than that at loca-
tion 2, the transfer is accompanied by a decrease in G, and so 
has a spontaneous tendency to occur. Only if μ1 = μ2 is there no 
change in G, and only then is the system at equilibrium.

4A.2 Phase boundaries

The phase diagram of a pure substance shows the regions of 
pressure and temperature at which its various phases are ther-
modynamically stable (Fig. 4A.4). In fact, any two intensive 
variables may be used (such as temperature and magnetic field; 
in Topic 5A mole fraction is another variable), but in this Topic 
we concentrate on pressure and temperature. The lines separat-
ing the regions, which are called phase boundaries (or coex-
istence curves), show the values of p and T at which two phases 
coexist in equilibrium and their chemical potentials are equal.

(a) Characteristic properties related to phase 
transitions
Consider a liquid sample of a pure substance in a closed vessel. 
The pressure of a vapour in equilibrium with the liquid is called 
the vapour pressure of the substance (Fig. 4A.5). Therefore, 
the liquid–vapour phase boundary in a phase diagram shows 
how the vapour pressure of the liquid varies with temperature. 
Similarly, the solid–vapour phase boundary shows the tempera-
ture variation of the sublimation vapour pressure, the vapour 
pressure of the solid phase. The vapour pressure of a substance 
increases with temperature because at higher temperatures 

Brief illustration 4A.3 Gibbs energy and phase transition

The standard molar Gibbs energy of formation of water 
vapour at 298 K (25 °C) is –229 kJ mol−1 and that of liquid water 
at the same temperature is –237 kJ mol−1. It follows that there 
is a decrease in Gibbs energy when water vapour condenses 
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to the liquid at 298 K, so condensation is spontaneous at that 
temperature (and 1 bar).

Self-test 4A.3 The standard Gibbs energies of formation 
of  HN3 at 298 K are +327 kJ mol−1 and +328 kJ mol−1 for the 
liquid and gas phases, respectively. Which phase of hydrogen 
azide is the more stable at that temperature and 1 bar?

Answer: Liquid

Same chemical
potential

Figure 4A.3 When two or more phases are in equilibrium, 
the chemical potential of a substance (and, in a mixture, a 
component) is the same in each phase and is the same at all 
points in each phase.
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T3 Tc

Critical
point

Triple
point

Figure 4A.4 The general regions of pressure and temperature 
where solid, liquid, or gas is stable (that is, has minimum molar 
Gibbs energy) are shown on this phase diagram. For example, 
the solid phase is the most stable phase at low temperatures 
and high pressures. In the following paragraphs we locate the 
precise boundaries between the regions.
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158 4 Physical transformations of pure substances

more molecules have sufficient energy to escape from their 
neighbours.

When a liquid is heated in an open vessel, the liquid vapor-
izes from its surface. When the vapour pressure is equal to the 
external pressure, vaporization can occur throughout the bulk 
of the liquid and the vapour can expand freely into the sur-
roundings. The condition of free vaporization throughout the 
liquid is called boiling. The temperature at which the vapour 
pressure of a liquid is equal to the external pressure is called 
the boiling temperature at that pressure. For the special case of 
an external pressure of 1 atm, the boiling temperature is called 
the normal boiling point, Tb. With the replacement of 1 atm by  
1 bar as standard pressure, there is some advantage in using the 
standard boiling point instead: this is the temperature at which 
the vapour pressure reaches 1 bar. Because 1 bar is slightly less 
than 1 atm (1.00 bar = 0.987 atm), the standard boiling point 
of a liquid is slightly lower than its normal boiling point. The 
normal boiling point of water is 100.0 °C; its standard boiling 
point is 99.6 °C. We need to distinguish normal and standard 
properties only for precise work in thermodynamics because 
any thermodynamic properties that we intend to add together 
must refer to the same conditions.

Boiling does not occur when a liquid is heated in a rigid, 
closed vessel. Instead, the vapour pressure, and hence the den-
sity of the vapour, rise as the temperature is raised (Fig. 4A.6). 
At the same time, the density of the liquid decreases slightly as 
a result of its expansion. There comes a stage when the density 
of the vapour is equal to that of the remaining liquid and the 
surface between the two phases disappears. The temperature at 
which the surface disappears is the critical temperature, Tc, of 
the substance. The vapour pressure at the critical temperature 
is called the critical pressure, pc. At and above the critical tem-
perature, a single uniform phase called a supercritical fluid fills 
the container and an interface no longer exists. That is, above 
the critical temperature, the liquid phase of the substance does 
not exist.

The temperature at which, under a specified pressure, the 
liquid and solid phases of a substance coexist in equilibrium is 

called the melting temperature. Because a substance melts at 
exactly the same temperature as it freezes, the melting tempera-
ture of a substance is the same as its freezing temperature. The 
freezing temperature when the pressure is 1 atm is called the 
normal freezing point, Tf, and its freezing point when the pres-
sure is 1 bar is called the standard freezing point. The normal 
and standard freezing points are negligibly different for most 
purposes. The normal freezing point is also called the normal 
melting point.

There is a set of conditions under which three different 
phases of a substance (typically solid, liquid, and vapour) all 
simultaneously coexist in equilibrium. These conditions are 
represented by the triple point, a point at which the three phase 
boundaries meet. The temperature at the triple point is denoted 
T3. The triple point of a pure substance is outside our control: it 
occurs at a single definite pressure and temperature character-
istic of the substance.

As we can see from Fig. 4A.4, the triple point marks the low-
est pressure at which a liquid phase of a substance can exist. 
If (as is common) the slope of the solid–liquid phase bound-
ary is as shown in the diagram, then the triple point also marks 
the lowest temperature at which the liquid can exist; the critical 
temperature is the upper limit.

Brief illustration 4A.4 The triple point

The triple point of water lies at 273.16 K and 611 Pa (6.11 mbar, 
4.58 Torr), and the three phases of water (ice, liquid water, and 
water vapour) coexist in equilibrium at no other combina-
tion of pressure and temperature. This invariance of the tri-
ple point was the basis of its use in the about-to-be superseded 
definition of the Kelvin scale of temperature (Topic 3A).

Vapour
pressure,
p

Liquid
or solid

Vapour

Figure 4A.5 The vapour pressure of a liquid or solid is the 
pressure exerted by the vapour in equilibrium with the 
condensed phase.

(a) (b) (c)

Figure 4A.6 (a) A liquid in equilibrium with its vapour.  
(b) When a liquid is heated in a sealed container, the density 
of the vapour phase increases and that of the liquid decreases 
slightly. There comes a stage (c) at which the two densities are 
equal and the interface between the fluids disappears. This 
disappearance occurs at the critical temperature. The container 
needs to be strong: the critical temperature of water is 374 °C 
and the vapour pressure is then 218 atm.
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(b) The phase rule
In one of the most elegant arguments of the whole of chemi-
cal thermodynamics, which is presented in the following 
Justification, J.W. Gibbs deduced the phase rule, which gives 
the number of parameters that can be varied independently (at 
least to a small extent) while the number of phases in equilib-
rium is preserved. The phase rule is a general relation between 
the variance, F, the number of components, C, and the number 
of phases at equilibrium, P, for a system of any composition:

F C P= +− 2   the phase rule  (4A.1)

A component is a chemically independent constituent of a sys-
tem. The number of components, C, in a system is the minimum 
number of types of independent species (ions or molecules) 
necessary to define the composition of all the phases present in 
the system. In this chapter we deal only with one-component 
systems (C = 1), so for this chapter

F P= 3 −  A onecomponent system  the phase rule  (4A.2)

By a constituent of a system we mean a chemical species that is 
present. The variance (or number of degrees of freedom), F, of a 
system is the number of intensive variables that can be changed 
independently without disturbing the number of phases in 
equilibrium.

In a single-component, single-phase system (C = 1, P = 1), the 
pressure and temperature may be changed independently with-
out changing the number of phases, so F = 2. We say that such a 
system is bivariant, or that it has two degrees of freedom. On 

the other hand, if two phases are in equilibrium (a liquid and 
its vapour, for instance) in a single-component system (C = 1, 
P = 2), the temperature (or the pressure) can be changed at 
will, but the change in temperature (or pressure) demands an 
accompanying change in pressure (or temperature) to preserve 
the number of phases in equilibrium. That is, the variance of 
the system has fallen to 1.

Self-test 4A.4 How many triple points are present (as far as it is 
known) in the full phase diagram for water shown later in this 
Topic in Fig. 4A.9?

Answer: 6

Brief illustration 4A.5 The number of components

A mixture of ethanol and water has two constituents. A solu-
tion of sodium chloride has three constituents: water, Na+ 
ions, and Cl− ions but only two components because the num-
bers of Na+ and Cl− ions are constrained to be equal by the 
requirement of charge neutrality.

Self-test 4A.5 How many components are present in an aque-
ous solution of acetic acid, allowing for its partial deprotona-
tion and the autoprotolysis of water?

Answer: 2

Justification 4A.1 The phase rule

Consider first the special case of a one-component system for 
which the phase rule is F = 3 − P. For two phases α and β in 
equilibrium (P = 2, F = 1) at a given pressure and temperature, 
we can write

μ μ( ; , ) = ( ; , )α βp T p T

(For instance, when ice and water are in equilibrium, we have 
μ(s; p,T) = μ(l; p,T) for H2O.) This is an equation relating p and 
T, so only one of these variables is independent (just as the 
equation x + y = xy is a relation for y in terms of x: y = x/(x − 1)). 
That conclusion is consistent with F = 1. For three phases of a 
one-component system in mutual equilibrium (P = 3, F = 0),

μ μ μ( ; , ) = ( ; , )= ( ; , )α β γp T p T p T

This relation is actually two equations for two unknowns, μ(α; 
p,T) = μ(β; p,T) and μ(β; p,T) = μ(γ; p,T), and therefore has a 
solution only for a single value of p and T (just as the pair of 
equations x+y = xy and 3x − y = xy has the single solution x = 2 
and y = 2). That conclusion is consistent with F = 0. Four phases 
cannot be in mutual equilibrium in a one-component system 
because the three equalities

μ μ
μ μ
μ μ

( ; , ) = ( ; , )
( ; , ) = ( ; , )
( ; , ) = ( ; , )

α β
β γ
γ δ

p T p T
p T p T
p T p T

are three equations for two unknowns (p and T) and are not 
consistent (just as x + y = xy, 3x − y = xy, and x + y = 2xy2 have no 
solution).

Now consider the general case. We begin by counting the 
total number of intensive variables. The pressure, p, and tem-
perature, T, count as 2. We can specify the composition of a 
phase by giving the mole fractions of C − 1 components. We 
need specify only C − 1 and not all C mole fractions because 
x1 + x2+ … +xC = 1, and all mole fractions are known if all 
except one are specified. Because there are P phases, the total 
number of composition variables is P(C − 1). At this stage, the 
total number of intensive variables is P(C − 1) + 2.

At equilibrium, the chemical potential of a component J 
must be the same in every phase:

μ μ( ; , ) = ( ; , ) =α βp T p T P… for phases
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160 4 Physical transformations of pure substances

4A.3 Three representative phase 
diagrams

For a one-component system, such as pure water, F = 3 − P. 
When only one phase is present, F = 2 and both p and T can 
be varied independently (at least over a small range) with-
out changing the number of phases. In other words, a single 
phase is represented by an area on a phase diagram. When two 
phases are in equilibrium F = 1, which implies that pressure is 
not freely variable if the temperature is set; indeed, at a given 
temperature, a liquid has a characteristic vapour pressure. It 
follows that the equilibrium of two phases is represented by 
a line in the phase diagram. Instead of selecting the tempera-
ture, we could select the pressure, but having done so the two 
phases would be in equilibrium at a single definite temperature. 
Therefore, freezing (or any other phase transition) occurs at a 
definite temperature at a given pressure.

When three phases are in equilibrium, F = 0 and the system 
is invariant. This special condition can be established only at a 
definite temperature and pressure that is characteristic of the 
substance and outside our control. The equilibrium of three 
phases is therefore represented by a point, the triple point, on a 
phase diagram. Four phases cannot be in equilibrium in a one-
component system because F cannot be negative.

(a) Carbon dioxide
The phase diagram for carbon dioxide is shown in Fig. 4A.8. 
The features to notice include the positive slope (up from left to 
right) of the solid–liquid boundary; the direction of this line is 
characteristic of most substances. This slope indicates that the 
melting temperature of solid carbon dioxide rises as the pres-
sure is increased. Notice also that, as the triple point lies above 
1 atm, the liquid cannot exist at normal atmospheric pressures 
whatever the temperature. As a result, the solid sublimes when 
left in the open (hence the name ‘dry ice’). To obtain the liquid, 
it is necessary to exert a pressure of at least 5.11 atm. Cylinders 
of carbon dioxide generally contain the liquid or compressed 
gas; at 25 °C that implies a vapour pressure of 67 atm if both 

Brief illustration 4A.6 Characteristics of phase diagrams

Figure 4A.7 shows a reasonably typical phase diagram of a sin-
gle pure substance, with one forbidden feature, the ‘quadruple 
point’ where phases β, γ, δ, and ε are said to be in equilibrium. 
Two triple points are shown (for the equilibria α  β  γ 
and α  β  δ, respectively), corresponding to P = 3 and 
F = 0. The lines represent various equilibria, including α  β, 
α  δ, and γ  ε.

Self-test 4A.6 What is the minimum number of components 
necessary before five phases can be in mutual equilibrium in 
a system?

Answer: 3

That is, there are P − 1 equations of this kind to be satisfied 
for each component J. As there are C components, the total 
number of equations is C(P − 1). Each equation reduces our 
freedom to vary one of the P(C − 1) + 2 intensive variables. It 
follows that the total number of degrees of freedom is

F P C C P C P= ( )+ ( )= +− − − −1 2 1 2

which is eqn 4A.1.
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Figure 4A.7 The typical regions of a one-component phase 
diagram. The lines represent conditions under which the 
two adjoining phases are in equilibrium. A point represents 
the unique set of conditions under which three phases 
coexist in equilibrium. Four phases cannot mutually coexist 
in equilibrium.
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Figure 4A.8 The experimental phase diagram for carbon 
dioxide. Note that, as the triple point lies at pressures well 
above atmospheric, liquid carbon dioxide does not exist under 
normal conditions (a pressure of at least 5.11 atm must be 
applied). The path ABCD is discussed in Brief illustration 4A.7
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gas and liquid are present in equilibrium. When the gas squirts 
through the throttle it cools by the Joule–Thomson effect, so 
when it emerges into a region where the pressure is only 1 atm, 
it condenses into a finely divided snow-like solid. That carbon 
dioxide gas cannot be liquefied except by applying high pres-
sure reflects the weakness of the intermolecular forces between 
the nonpolar carbon dioxide molecules (Topic 16B).

(b) Water
Figure 4A.9 shows the phase diagram for water. The liquid–
vapour boundary in the phase diagram summarizes how the 
vapour pressure of liquid water varies with temperature. It also 
summarizes how the boiling temperature varies with pressure: 
we simply read off the temperature at which the vapour pres-
sure is equal to the prevailing atmospheric pressure. The solid–
liquid boundary shows how the melting temperature varies 
with the pressure; its very steep slope indicates that enormous 
pressures are needed to bring about significant changes. Notice 
that the line has a negative slope (down from left to right) up to 
2 kbar, which means that the melting temperature falls as the 

pressure is raised. The reason for this almost unique behaviour 
can be traced to the decrease in volume that occurs on melting: 
it is more favourable for the solid to transform into the liquid 
as the pressure is raised. The decrease in volume is a result of 
the very open structure of ice: as shown in Fig. 4A.10, the water 
molecules are held apart, as well as together, by the hydrogen 
bonds between them but the hydrogen-bonded structure par-
tially collapses on melting and the liquid is denser than the 
solid. Other consequences of its extensive hydrogen bonding 
are the anomalously high boiling point of water for a molecule 
of its molar mass and its high critical temperature and pressure.

Figure 4A.9 shows that water has one liquid phase but many 
different solid phases other than ordinary ice (‘ice I’). Some of 
these phases melt at high temperatures. Ice VII, for instance, 
melts at 100 °C but exists only above 25 kbar. Two further 
phases, Ice XIII and XIV, were identified in 2006 at –160 °C but 
have not yet been allocated regions in the phase diagram. Note 
that five more triple points occur in the diagram other than the 
one where vapour, liquid, and ice I coexist. Each one occurs at a 
definite pressure and temperature that cannot be changed. The 
solid phases of ice differ in the arrangement of the water mol-
ecules: under the influence of very high pressures, hydrogen 
bonds buckle and the H2O molecules adopt different arrange-
ments. These polymorphs of ice may contribute to the advance 
of glaciers, for ice at the bottom of glaciers experiences very 
high pressures where it rests on jagged rocks.

Brief illustration 4A.7 A phase diagram 1

Consider the path ABCD in Fig. 4A.8. At A the carbon diox-
ide is a gas. When the temperature and pressure are adjusted 
to B, the vapour condenses directly to a solid. Increasing the 
pressure and temperature to C results in the formation of the 
liquid phase, which evaporates to the vapour when the condi-
tions are changed to D.

Self-test 4A.7 Describe what happens on circulating around 
the critical point, Path E.

Answer: Liquid → scCO2 → vapour → liquid

Brief illustration 4A.8 A phase diagram 2

Consider the path ABCD in Fig. 4A.9. At A, water is present 
as ice V. Increasing the pressure to B at the same temperature 
results in the formation of a polymorph, ice VIII. Heating to C 
leads to the formation of ice VII, and reduction in pressure to 
D results in the solid melting to liquid.

Self-test 4A.8 Describe what happens on circulating around 
the critical point, Path F.

Answer: Vapour → liquid → scH2O → vapour
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Figure 4A.9 The experimental phase diagram for water 
showing the different solid phases. The path ABCD is discussed 
in Brief illustration 4A.8.

Figure 4A.10 A fragment of the structure of ice (ice-I). Each 
O atom is linked by two covalent bonds to H atoms and by two 
hydrogen bonds to a neighbouring O atom, in a tetrahedral 
array.
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162 4 Physical transformations of pure substances

(c) Helium
When considering helium at low temperatures it is necessary 
to distinguish between the isotopes 3He and 4He. Figure 4A.11 
shows the phase diagram of helium-4. Helium behaves unusu-
ally at low temperatures because the mass of its atoms is so low 
and their small number of electrons results in them interacting 
only very weakly with their neighbours. For instance, the solid 
and gas phases of helium are never in equilibrium however low 
the temperature: the atoms are so light that they vibrate with a 
large-amplitude motion even at very low temperatures and the 

solid simply shakes itself apart. Solid helium can be obtained, 
but only by holding the atoms together by applying pressure. 
The isotopes of helium behave differently for quantum mechan-
ical reasons that are explained in Part 2. (The difference stems 
from the different nuclear spins of the isotopes and the role of 
the Pauli exclusion principle: helium-4 has I = 0 and is a boson; 
helium-3 has I = 12  and is a fermion.)

Pure helium-4 has two liquid phases. The phase marked He-I 
in the diagram behaves like a normal liquid; the other phase, 
He-II, is a superfluid; it is so called because it flows without vis-
cosity.1 Provided we discount the liquid crystalline substances 
discussed in Impact I5.1 on line, helium is the only known 
substance with a liquid–liquid boundary, shown as the λ-line 
(lambda line) in Fig. 4A.11.

The phase diagram of helium-3 differs from the phase dia-
gram of helium-4, but it also possesses a superfluid phase. 
Helium-3 is unusual in that melting is exothermic (ΔfusH < 0) 
and therefore (from ΔfusS = ΔfusH/Tf) at the melting point the 
entropy of the liquid is lower than that of the solid.

Brief illustration 4A.9 A phase diagram 3

Consider the path ABCD in Fig. 4A.11. At A, helium is pre-
sent as a vapour. On cooling to B it condenses to helium-I, 
and further cooling to C results in the formation of helium-
II. Adjustment of the pressure and temperature to D results 
in a system in which three phases, helium-I, helium-II, and 
vapour, are in mutual equilibrium.

Self-test 4A.9 Describe what happens on the path EFGH.
Answer: He-I → solid → solid → He-II

Checklist of concepts

☐ 1.  A phase is a form of matter that is uniform throughout 
in chemical composition and physical state.

☐ 2. A phase transition is the spontaneous conversion of 
one phase into another and may be studied by tech-
niques that include thermal analysis.

☐ 3. The thermodynamic analysis of phases is based on the 
fact that at equilibrium, the chemical potential of a sub-
stance is the same throughout a sample.

☐ 4.  A substance is characterized by a variety of parameters 
that can be identified on its phase diagram.

☐ 5. The phase rule relates the number of variables that 
may be changed while the phases of a system remain in 
mutual equilibrium.

☐ 6. Carbon dioxide is a typical substance but shows fea-
tures that can be traced to its weak intermolecular 
forces.

☐ 7. Water shows anomalies that can be traced to its exten-
sive hydrogen bonding.

☐ 8. Helium shows anomalies that can be traced to its low 
mass and weak interactions.

1 Water might also have a superfluid liquid phase.
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Figure 4A.11 The phase diagram for helium (4He). The λ-line 
marks the conditions under which the two liquid phases are 
in equilibrium. Helium-II is the superfluid phase. Note that a 
pressure of over 20 bar must be exerted before solid helium 
can be obtained. The labels hcp and bcc denote different 
solid phases in which the atoms pack together differently: 
hcp denotes hexagonal closed packing and bcc denotes 
body-centred cubic (see Topic 18B for a description of these 
structures). The path ABCD is discussed in Brief illustration 4A.9.
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Checklist of equations

Property Equation Comment Equation number

Chemical potential μ = Gm For a pure substance

Phase rule F = C − P + 2 4A.1
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4B thermodynamic aspects  
of phase transitions

As explained in Topic 4A, the thermodynamic criterion of 
phase equilibrium is the equality of the chemical potentials of 
each phase. For a one-component system, the chemical poten-
tial is the same as the molar Gibbs energy of the phase. As Topic 
3D explains how the Gibbs energy varies with temperature and 
pressure, by combining these two aspects, we can expect to be 
able to deduce how phase equilibria vary as the conditions are 
changed.

4B.1 The dependence of stability  
on the conditions

At very low temperatures and provided the pressure is not 
too low, the solid phase of a substance has the lowest chemi-
cal potential and is therefore the most stable phase. However, 
the chemical potentials of different phases change with tem-
perature in different ways, and above a certain temperature 
the chemical potential of another phase (perhaps another solid 
phase, a liquid, or a gas) may turn out to be the lowest. When 
that happens, a transition to the second phase is spontaneous 
and occurs if it is kinetically feasible to do so.

Contents
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(c) The vapour pressure of a liquid subjected to  
pressure 166
brief illustration 4b.2: the effect of pressurization 167 

4b.2 The location of phase boundaries 167
(a) The slopes of the phase boundaries 167

brief illustration 4b.3: the clapeyron equation 168
(b) The solid–liquid boundary 168

brief illustration 4b.4: the solid–liquid boundary 169
(c) The liquid–vapour boundary 169

example 4b.2: estimating the effect of pressure  
on the boiling temperature 169
brief illustration 4b.5: the clausius–clapeyron  
equation 170

(d) The solid–vapour boundary 170
brief illustration 4b.6: the solid–vapour boundary 170

4b.3 The Ehrenfest classification of phase  
transitions 171
(a) The thermodynamic basis 171

brief illustration 4b.7: discontinuities  
of the transitions 171

(b) Molecular interpretation 172
Checklist of concepts 173
Checklist of equations 173

➤➤ Why do you need to know this material?
This Topic illustrates how thermodynamics is used to 
discuss the equilibria of the phases of one-component 
systems and shows how to make predictions about the 
effect of pressure on freezing and boiling points.

➤➤ What is the key idea?
The effect of temperature and pressure on the chemical 
potentials of phases in equilibrium is determined by the 
molar entropy and molar volume, respectively, of the 
phases.

➤➤ What do you need to know already?
You need to be aware that phases are in equilibrium when 
their chemical potentials are equal (Topic 4A) and that 
the variation of the molar Gibbs energy of a substance 
depends on its molar volume and entropy (Topic 3D). We 
draw on expressions for the entropy of transition (Topic 3B) 
and the perfect gas law (Topic 1A).
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(a) The temperature dependence of 
phase stability

The temperature dependence of the Gibbs energy is expressed in 
terms of the entropy of the system by eqn 3D.8 ((∂G/∂T)p = −S). 
Because the chemical potential of a pure substance is just 
another name for its molar Gibbs energy, it follows that

∂
∂







= −μ
T S

p
m

 
 Variation of chemical potential with T  (4B.1)

This relation shows that, as the temperature is raised, the chem-
ical potential of a pure substance decreases: Sm > 0 for all sub-
stances, so the slope of a plot of μ against T is negative.

Equation 4B.1 implies that because Sm(g) > Sm(l) the slope 
of a plot of μ against temperature is steeper for gases than for 
liquids. Because Sm(l) > Sm(s) almost always, the slope is also 
steeper for a liquid than the corresponding solid. These fea-
tures are illustrated in Fig. 4B.1. The steep negative slope of 
μ(l) results in it falling below μ(s) when the temperature is high 
enough, and then the liquid becomes the stable phase: the solid 
melts. The chemical potential of the gas phase plunges steeply 
downwards as the temperature is raised (because the molar 
entropy of the vapour is so high), and there comes a tempera-
ture at which it lies lowest. Then the gas is the stable phase and 
vaporization is spontaneous.

(b) The response of melting to 
applied pressure
Most substances melt at a higher temperature when subjected 
to pressure. It is as though the pressure is preventing the forma-
tion of the less dense liquid phase. Exceptions to this behav-
iour include water, for which the liquid is denser than the solid. 
Application of pressure to water encourages the formation of 
the liquid phase. That is, water freezes and ice melts at a lower 
temperature when it is under pressure.

We can rationalize the response of melting temperatures 
to pressure as follows. The variation of the chemical poten-
tial with pressure is expressed (from the second of eqns 3D.8, 
(∂G/∂p)T = V) by

∂
∂







=μ
p V

T
m

 
 Variation of chemical potential with p  (4B.2)

This equation shows that the slope of a plot of chemical potential 
against pressure is equal to the molar volume of the substance. 
An increase in pressure raises the chemical potential of any 
pure substance (because Vm > 0). In most cases, Vm(l) > Vm(s) 
and the equation predicts that an increase in pressure increases 
the chemical potential of the liquid more than that of the solid. 
As shown in Fig. 4B.2a, the effect of pressure in such a case is 
to raise the melting temperature slightly. For water, however, 
Vm(l) < Vm(s), and an increase in pressure increases the chemi-
cal potential of the solid more than that of the liquid. In this 
case, the melting temperature is lowered slightly (Fig. 4B.2b).

Example 4B.1 Assessing the effect of pressure on the 
chemical potential

Calculate the effect on the chemical potentials of ice and water 
of increasing the pressure from 1.00 bar to 2.00 bar at 0 °C. The 
density of ice is 0.917 g cm−3 and that of liquid water is 0.999 
g cm−3 under these conditions.

Brief illustration 4B.1 The temperature variation of µ

The standard molar entropy of liquid water at 100 °C is 86.8 
J K−1 mol−1 and that of water vapour at the same temperature 
is 195.98 J K−1 mol−1. It follows that when the temperature is 
raised by 1.0 K the changes in chemical potential are

δ δ δ δμ μ(l) l 87Jmol ( ) g 196Jmolm
1

m
1≈ = ≈ =S T S T( ) ( )− −g

At 100 °C the two phases are in equilibrium with equal chemi-
cal potentials, so at 1.0 K higher the chemical potential of the 
vapour is lower (by 109 J mol−1) than that of the liquid and 
vaporization is spontaneous.

Self-test 4B.1 The standard molar entropy of liquid water at 
0 °C is 65 J K−1 mol−1 and that of ice at the same temperature is 
43 J K−1 mol−1. What is the effect of increasing the temperature 
by 1.0 K?

Answer: δμ(l)≈–65 J mol−1, δμ(s)≈–43 J mol−1; ice melts
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Figure 4B.1 The schematic temperature dependence of the 
chemical potential of the solid, liquid, and gas phases of a 
substance (in practice, the lines are curved). The phase with 
the lowest chemical potential at a specified temperature 
is the most stable one at that temperature. The transition 
temperatures, the melting and boiling temperatures (Tf and 
Tb, respectively), are the temperatures at which the chemical 
potentials of the two phases are equal.
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166 4 Physical transformations of pure substances

(c) The vapour pressure of a liquid subjected 
to pressure
When pressure is applied to a condensed phase, its vapour pres-
sure rises: in effect, molecules are squeezed out of the phase and 
escape as a gas. Pressure can be exerted on the condensed phase 
mechanically or by subjecting it to the applied pressure of an 
inert gas (Fig. 4B.3). In the latter case, the vapour pressure is 
the partial pressure of the vapour in equilibrium with the con-
densed phase. We then speak of the partial vapour pressure of 
the substance. One complication (which we ignore here) is that, 
if the condensed phase is a liquid, then the pressurizing gas 
might dissolve and change the properties of the liquid. Another 
complication is that the gas phase molecules might attract 
molecules out of the liquid by the process of gas solvation, the 
attachment of molecules to gas-phase species.

As shown in the following Justification, the quantitative rela-
tion between the vapour pressure, p, when a pressure ΔP is 
applied and the vapour pressure, p*, of the liquid in the absence 
of an additional pressure is

p p V P RT= * ( ) /e m l ∆
 

This equation shows how the vapour pressure increases when 
the pressure acting on the condensed phase is increased.

Method From eqn 4B.2 in the form dμ = Vmdp, we know 
that the change in chemical potential of an incompressible 
substance when the pressure is changed by Δp is Δμ = VmΔp. 
Therefore, to answer the question, we need to know the 
molar volumes of the two phases of water. These values are 
obtained from the mass density, ρ, and the molar mass, 
M, by using Vm = M/ρ. We therefore use the expression 
Δμ = MΔp/ρ.

Answer The molar mass of water is 18.02 g mol−1 (1.802 ×  
10−2 kg mol−1); therefore,
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We interpret the numerical results as follows: the chemical 
potential of ice rises more sharply than that of water, so if they 
are initially in equilibrium at 1 bar, then there will be a ten-
dency for the ice to melt at 2 bar.

Self-test 4B.2 Calculate the effect of an increase in pressure 
of 1.00 bar on the liquid and solid phases of carbon dioxide 
(molar mass 44.0 g mol−1) in equilibrium with densities 2.35 
g cm−3 and 2.50 g cm−3, respectively.

Answer: Δμ(l) = +1.87 J mol−1, Δμ(s) = +1.76 J mol−1; solid forms

effect of applied pressure 
ΔP on vapour pressure p  (4B.3)

Justification 4B.1 The vapour pressure of a pressurized 
liquid

We calculate the vapour pressure of a pressurized liquid by 
using the fact that at equilibrium the chemical potentials 
of the liquid and its vapour are equal: μ(l) = μ(g). It follows 
that, for any change that preserves equilibrium, the resulting 
change in μ(l) must be equal to the change in μ(g); therefore, 
we can write dμ(g) = dμ(l). When the pressure P on the liquid is 
increased by dP, the chemical potential of the liquid changes by 
dμ(l) = Vm(l)dP. The chemical potential of the vapour changes 
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Figure 4B.2 The pressure dependence of the chemical 
potential of a substance depends on the molar volume 
of the phase. The lines show schematically the effect of 
increasing pressure on the chemical potential of the solid 
and liquid phases (in practice, the lines are curved), and the 
corresponding effects on the freezing temperatures. (a) In this 
case the molar volume of the solid is smaller than that of the 
liquid and μ(s) increases less than μ(l). As a result, the freezing 
temperature rises. (b) Here the molar volume is greater for the 
solid than the liquid (as for water), μ(s) increases more strongly 
than μ(l), and the freezing temperature is lowered.
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Figure 4B.3 Pressure may be applied to a condensed phase 
either (a) by compressing the condensed phase or (b) by 
subjecting it to an inert pressurizing gas. When pressure is 
applied, the vapour pressure of the condensed phase increases.
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4B.2 The location of phase 
boundaries

The precise locations of the phase boundaries—the pressures 
and temperatures at which two phases can coexist—can be 
found by making use of the fact that, when two phases are in 
equilibrium, their chemical potentials must be equal. Therefore, 
where the phases α and β are in equilibrium,

μ μ( ; , )= ( ; , )α βp T p T  (4B.4)

By solving this equation for p in terms of T, we get an equation 
for the phase boundary.

(a) The slopes of the phase boundaries
It turns out to be simplest to discuss the phase bounda-
ries in terms of their slopes, dp/dT. Let p and T be changed 
infinitesimally, but in such a way that the two phases α and β 
remain in equilibrium. The chemical potentials of the phases 
are initially equal (the two phases are in equilibrium). They 
remain equal when the conditions are changed to another point 
on the phase boundary, where the two phases continue to be in 
equilibrium (Fig. 4B.4). Therefore, the changes in the chemical 
potentials of the two phases must be equal and we can write 
dμ(α) = dμ(β). Because, from eqn 3D.7 (dG = Vdp − SdT), we 
know that dμ = −SmdT + Vmdp for each phase, it follows that

− −S T V p S T V pm m m md d d d( ) ( ) ( ) ( )α α β β+ = +  

where Sm(α) and Sm(β) are the molar entropies of the phases 
and Vm(α) and Vm(β) are their molar volumes. Hence

{ ( ) ( )} { ( ) ( )}S S T V V pm m m md dβ α β α− −=  

by dμ(g) = Vm(g)dp where dp is the change in the vapour pres-
sure we are trying to find. If we treat the vapour as a perfect 
gas, the molar volume can be replaced by Vm(g) = RT/p, and we 
obtain dμ(g) = RTdp/p. Next, we equate the changes in chemi-
cal potentials of the vapour and the liquid:

RT p
p V Pd l dm= ( )

We can integrate this expression once we know the limits of 
integration.
 When there is no additional pressure acting on the liquid, 
P (the pressure experienced by the liquid) is equal to the nor-
mal vapour pressure p*, so when P = p*, p = p* too. When there 
is an additional pressure ΔP on the liquid, with the result that 
P = p + ΔP, the vapour pressure is p (the value we want to find). 
Provided the effect of pressure on the vapour pressure is small (as 
will turn out to be the case) a good approximation is to replace 
the p in p + ΔP by p* itself, and to set the upper limit of the inte-
gral to p* + ΔP. The integrations required are therefore as follows:

RT p
p V P

p

p

p

p Pd l dm
* *

*
( )∫ ∫=

+∆

We now divide both sides by RT and assume that the molar 
volume of the liquid is the same throughout the small range of 
pressures involved:

d l d l dm
mp

p RT V P V
RT P

p

p

p

p P

p

p P

* *

*

*

*
( ) ( )∫ ∫ ∫= =

+ +1 ∆ ∆

Then both integrations are straightforward, and lead to

ln ( )
*

p
p

V
RT P= m l ∆

which rearranges to eqn 4B.3 because eln x = x.

Brief illustration 4B.2 The effect of pressurization

For water, which has density 0.997 g cm−3 at 25 °C and therefore 
molar volume 18.1 cm3 mol−1, when the pressure is increased 
by 10 bar (that is, ΔP = 1.0 × 106 Pa)

V P
RT

m l m mol Pa
JK mol
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1 1 (( )
. .
. .

298
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8 3145 298 0 0073

1

K
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× = …

where we have used 1 J = 1 Pa m3. It follows that p = 1.0073p*, an 
increase of 0.73 per cent.

Self-test 4B.3 Calculate the effect of an increase in pressure of 
100 bar on the vapour pressure of benzene at 25 °C, which has 
density 0.879 g cm−3.

Answer: 43 per cent increase
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dT

Phase α

Phase βPr
es

su
re

, p

Temperature, T

Figure 4B.4 When pressure is applied to a system in which two 
phases are in equilibrium (at a), the equilibrium is disturbed. 
It can be restored by changing the temperature, so moving 
the state of the system to b. It follows that there is a relation 
between dp and dT that ensures that the system remains in 
equilibrium as either variable is changed.
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Then, with ΔtrsS = Sm(β) − Sm(α) and ΔtrsV = Vm(β) − Vm(α), which 
are the (molar) entropy and volume of transition, respectively,

∆ ∆trs trsd dS T V p=  

This relation rearranges into the Clapeyron equation:

d
d

trs

trs

p
T

S
V= ∆

∆  
 clapeyron equation  (4B.5a)

The Clapeyron equation is an exact expression for the slope 
of the tangent to the boundary at any point and applies to any 
phase equilibrium of any pure substance. It implies that we can 
use thermodynamic data to predict the appearance of phase 
diagrams and to understand their form. A more practical appli-
cation is to the prediction of the response of freezing and boil-
ing points to the application of pressure, when it can be used in 
the form obtained by inverting both sides:

d
d

trs

trs

T
p

V
S= ∆

∆  
(4B.5b)

(b) The solid–liquid boundary
Melting (fusion) is accompanied by a molar enthalpy change 
ΔfusH and occurs at a temperature T. The molar entropy of 
melting at T is therefore ΔfusH/T (Topic 3B), and the Clapeyron 
equation becomes

d
d

fus

fus

p
T

H
T V= ∆

∆  
 slope of solid–liquid boundary  (4B.6)

where ΔfusV is the change in molar volume that occurs on melt-
ing. The enthalpy of melting is positive (the only exception is 
helium-3) and the volume change is usually positive and always 
small. Consequently, the slope dp/dT is steep and usually posi-
tive (Fig. 4B.5).

We can obtain the formula for the phase boundary by 
integrating dp/dT, assuming that ΔfusH and ΔfusV change so 
little with temperature and pressure that they can be treated 
as constant. If the melting temperature is T* when the pres-
sure is p*, and T when the pressure is p, the integration 
required is

d dfus

fus
p H

V
T
Tp

p

T

T

* *∫ ∫= ∆
∆  

Therefore, the approximate equation of the solid–liquid bound-
ary is

p p H
V

T
T= +* ln

*
∆
∆

fus

fus  
(4B.7)

This equation was originally obtained by yet another 
Thomson—James, the brother of William, Lord Kelvin. When 
T is close to T*, the logarithm can be approximated by using

ln
*

ln *
*

*
*

T
T

T T
T

T T
T

= + −





≈ −1
 

where we have used the expansion ln(1+x) = x − 12x2+… 
(Mathematical background 1) and neglected all but the leading 
term; therefore

p p H
T V T T≈ + −( )* * *∆

∆
fus

fus  
(4B.8)

This expression is the equation of a steep straight line when p is 
plotted against T (as in Fig. 4B.5).

Brief illustration 4B.3 The Clapeyron equation

The standard volume and entropy of transition of water from 
ice to liquid are −1.6 cm3 mol−1 and +22 J K−1 mol−1, respectively, 
at 0 °C. The slope of the solid–liquid phase boundary at that 
temperature is therefore

d
d

m mol
J mol

K
Jm

K PT
p =

− ×
= × = ×

− −
−

−
−1 6 10

22
7 3 10 7 3 10

6 3 1

1 1
8

3
8.

. .− − − − aa−1

which corresponds to −7.3 mK bar−1. An increase of 100 bar 
therefore results in a lowering of the freezing point of water 
by 0.73 K.

Self-test 4B.4 The standard volume and entropy of transi-
tion of water from liquid to vapour are +30 dm3 mol−1 and 
+109 J K−1 mol−1, respectively, at 100 °C. By how much does 
the boiling temperature change when the pressure is reduced 
from 1.0 bar to 0.80 bar?

Answer: −5.5 K

Pr
es

su
re

, p

Temperature, T

Solid

Liquid

Figure 4B.5 A typical solid–liquid phase boundary slopes 
steeply upwards. This slope implies that, as the pressure is 
raised, the melting temperature rises. Most substances behave 
in this way.
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(c) The liquid–vapour boundary

The entropy of vaporization at a temperature T is equal to 
ΔvapH/T; the Clapeyron equation for the liquid–vapour bound-
ary is therefore

d
d

vap

vap

p
T

H
T V=
∆
∆  

 slope of liquid–vapour boundary  (4B.9)

The enthalpy of vaporization is positive; ΔvapV is large and posi-
tive. Therefore, dp/dT is positive, but it is much smaller than for 
the solid–liquid boundary. It follows that dT/dp is large, and 
hence that the boiling temperature is more responsive to pres-
sure than the freezing temperature.

Because the molar volume of a gas is so much greater than 
the molar volume of a liquid, we can write ΔvapV ≈ Vm(g) (as in 
Example 4B.2). Moreover, if the gas behaves perfectly, Vm(g) =  
RT/p. These two approximations turn the exact Clapeyron 
equation into

d
d /

vap vapp
T

H
T RT p

p H
RT

= =
∆ ∆
( ) 2

 

which, by using dx/x = d ln x, rearranges into the Clausius–
Clapeyron equation for the variation of vapour pressure with 
temperature:

d
d

vapln p
T

H
RT

=
∆

2
 

Like the Clapeyron equation (which is exact), the Clausius–
Clapeyron equation (which is an approximation) is important 
for understanding the appearance of phase diagrams, particu-
larly the location and shape of the liquid–vapour and solid–
vapour phase boundaries. It lets us predict how the vapour 
pressure varies with temperature and how the boiling tempera-
ture varies with pressure. For instance, if we also assume that 
the enthalpy of vaporization is independent of temperature, 
eqn 4B.10 can be integrated as follows:

Example 4B.2 Estimating the effect of pressure on the 
boiling temperature

Estimate the typical size of the effect of increasing pressure on 
the boiling point of a liquid.

Method To use eqn 4B.9 we need to estimate the right-hand 
side. At the boiling point, the term ΔvapH/T is Trouton’s con-
stant (Topic 3B). Because the molar volume of a gas is so 
much greater than the molar volume of a liquid, we can write 
∆vap m m m(g) l (g)V V V V= − ≈( )  and take for Vm(g) the molar 
volume of a perfect gas (at low pressures, at least).

Answer Trouton’s constant has the value 85 J K−1 mol−1. The 
molar volume of a perfect gas is about 25 dm3 mol−1 at 1 atm 
and near but above room temperature. Therefore,

d
d

J K mol
m mol

Pa Kp
T ≈

×
= ×

− −

− −
−85

2 5 10
3 4 10

1 1

2 3 1
3 1

.
.

We have used 1 J = 1 Pa m3. This value corresponds to 0.034 
atm K−1 and hence to dT/dp = 29 K atm−1. Therefore, a change of 
pressure of +0.1 atm can be expected to change a boiling tem-
perature by about +3 K.

Self-test 4B.6 Estimate dT/dp for water at its normal boiling 
point using the information in Table 3A.2 and Vm(g) = RT/p.

Answer: 28 K atm−1

Vapour is a 
perfect gas

clausius–clapeyron 
equation  (4B.10)

Brief illustration 4B.4 The solid–liquid boundary

The enthalpy of fusion of ice at 0 °C and 1 bar (273 K) is 6.008 
kJ mol−1 and the volume of fusion is –1.6 cm3 mol−1. It follows 
that the solid–liquid phase boundary is given by the equation

p T T≈ +
×

× − ×
−

≈

−

− −1
6 008 10

273 1 6 10
1

3 1

6 3 1bar
Jmol

K m mol
bar

.
( ) ( . )

( *)

−− × −−1 4 107 1. *( )Pa K T T

That is,

p T T/bar /K= − −1 140( *)

with T* = 273 K. This expression is plotted in Fig. 4B.6.

Self-test 4B.5 The enthalpy of fusion of benzene is 10.59 kJ  
mol−1 at its melting point of 279 K and its volume of fusion 
is close to +0.50 cm3 mol−1 (an estimated value). What is the 
equation of its solid–liquid phase boundary?

Answer: p/bar = 1 + 760(T − T*), as in Fig. 4B.6

1

5

10

15

–0.1 –0.05 0.050 0.1

Pr
es

su
re

, p
/b

ar

Temperature difference, (T – T*)/K

(a) Water

(b) Benzene

Figure 4B.6 The solid–liquid phase boundaries (the melting 
point curves) for water and benzene, as calculated in Brief 
illustration 4B.4.
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d dvap vapln *ln *

ln
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H
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T
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where p* is the vapour pressure when the temperature is T* and 
p the vapour pressure when the temperature is T. Therefore, 
because the integral on the left evaluates to ln(p/p*), the two 
vapour pressures are related by

p p
H

R T T= = −





−* *e vapχ χ
∆ 1 1

 
(4B.11)

Equation 4B.11 is plotted as the liquid–vapour boundary in Fig. 
4B.7. The line does not extend beyond the critical temperature 
Tc, because above this temperature the liquid does not exist.

(d) The solid–vapour boundary

The only difference between this case and the last is the 
replacement of the enthalpy of vaporization by the enthalpy 
of sublimation, ΔsubH. Because the enthalpy of sublima-
tion is greater than the enthalpy of vaporization (recall that 
ΔsubH = ΔfusH + ΔvapH), the equation predicts a steeper slope for 
the sublimation curve than for the vaporization curve at simi-
lar temperatures, which is near where they meet at the triple 
point (Fig. 4B.8).

Brief illustration 4B.5 The Clausius–Clapeyron equation

Equation 4B.11 can be used to estimate the vapour pressure 
of a liquid at any temperature from its normal boiling point, 
the temperature at which the vapour pressure is 1.00 atm 
(101 kPa). The normal boiling point of benzene is 80 °C (353 K) 
and (from Table 3A.2), ΔvapH< = 30.8 kJ mol−1. Therefore, to 
calculate the vapour pressure at 20 °C (293 K), we write

χ =
×

−






=
−

− −

3 08 10
8 3145

1
293

1
353 2 14

4 1

1 1

.
.

.
Jmol

JK mol K K …

and substitute this value into eqn 4B.11 with p* = 101 kPa. The 
result is 12 kPa. The experimental value is 10 kPa.

A note on good practice Because exponential functions 
are so sensitive, it is good practice to carry out numerical 
calculations like this without evaluating the intermediate 
steps and using rounded values.

Brief illustration 4B.6 The solid–vapour boundary

The enthalpy of fusion of ice at the triple point of water 
(6.1 mbar, 273 K) is negligibly different from its standard 
enthalpy of fusion at its freezing point, which is 6.008 kJ 
mol−1. The enthalpy of vaporization at that temperature is 45.0 
kJ mol−1 (once again, ignoring differences due to the pressure 
not being 1 bar). The enthalpy of sublimation is therefore 51.0 
kJ mol−1. Therefore, the equations for the slopes of (a) the liq-
uid–vapour and (b) the solid–vapour phase boundaries at the 
triple point are

( ) ln .
( . ) ( )

.a d
d

Jmol
JK mol K

Kp
T =

×
×

=
−

− −
−45 0 10

8 3145 273
0 0726

3 1

1 1 2
11

3 1

1 1 2
51 0 10

8 3145 273
0 0823( ) ln .

( . ) ( )
.b d

d
Jmol

JK mol K
p

T =
×

×
=

−

− − KK−1

We see that the slope of ln p plotted against T is greater for the 
solid–vapour boundary than for the liquid–vapour boundary 
at the triple point.

Self-test 4B.7 Confirm that the same may be said for the plot 
of p against T at the triple point.

Answer: dp/dT = pd ln p/dT , p = p3 = 6.1 mbar

Pr
es

su
re

, p

Temperature, T

Liquid

Solid

Vapour

Figure 4B.8 Near the point where they coincide (at the triple 
point), the solid–vapour boundary has a steeper slope than the 
liquid–vapour boundary because the enthalpy of sublimation 
is greater than the enthalpy of vaporization and the 
temperatures that occur in the Clausius–Clapeyron equation 
for the slope have similar values.

Pr
es

su
re

, p

Temperature, T

Vapour

Liquid

Figure 4B.7 A typical liquid–vapour phase boundary. The 
boundary can be regarded as a plot of the vapour pressure 
against the temperature. Note that, in some depictions of 
phase diagrams in which a logarithmic pressure scale is used, 
the phase boundary has the opposite curvature (see Fig. 
4B.8). This phase boundary terminates at the critical point (not 
shown).
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4B.3 The Ehrenfest classification  
of phase transitions

There are many different types of phase transition, including 
the familiar examples of fusion and vaporization and the less 
familiar examples of solid–solid, conducting–superconduct-
ing, and fluid–superfluid transitions. We shall now see that it 
is possible to use thermodynamic properties of substances, and 
in particular the behaviour of the chemical potential, to clas-
sify phase transitions into different types. Classification is com-
monly a first step towards a molecular interpretation and the 
identification of common features. The classification scheme 
was originally proposed by Paul Ehrenfest, and is known as the 
Ehrenfest classification.

(a) The thermodynamic basis
Many familiar phase transitions, like fusion and vaporization, 
are accompanied by changes of enthalpy and volume. These 
changes have implications for the slopes of the chemical poten-
tials of the phases at either side of the phase transition. Thus, at 
the transition from a phase α to another phase β,

∂
∂







− ∂
∂







= − =

∂
∂






μ μ
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β α β α
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trs

trs
∆ ∆

 (4B.12)

Because ΔtrsV and ΔtrsH are non-zero for melting and vaporiza-
tion, it follows that for such transitions the slopes of the chemical 
potential plotted against either pressure or temperature are dif-
ferent on either side of the transition (Fig. 4B.9a). In other words, 
the first derivatives of the chemical potentials with respect to 
pressure and temperature are discontinuous at the transition.

A transition for which the first derivative of the chemi-
cal potential with respect to temperature is discontinuous is 
classified as a first-order phase transition. The constant-pres-
sure heat capacity, Cp, of a substance is the slope of a plot of 
the enthalpy with respect to temperature. At a first-order phase 
transition, H changes by a finite amount for an infinitesimal 
change of temperature. Therefore, at the transition the heat 
capacity is infinite. The physical reason is that heating drives 
the transition rather than raising the temperature. For example, 
boiling water stays at the same temperature even though heat is 
being supplied.

A second-order phase transition in the Ehrenfest sense is 
one in which the first derivative of μ with respect to tempera-
ture is continuous but its second derivative is discontinuous.  
A continuous slope of μ (a graph with the same slope on either 
side of the transition) implies that the volume and entropy (and 
hence the enthalpy) do not change at the transition (Fig. 4B.9b). 
The heat capacity is discontinuous at the transition but does not 
become infinite there. An example of a second-order transition 
is the conducting–superconducting transition in metals at low 
temperatures.1

The term λ-transition is applied to a phase transition that 
is not first-order yet the heat capacity becomes infinite at the 
transition temperature. Typically, the heat capacity of a system 
that shows such a transition begins to increase well before the 
transition (Fig. 4B.10), and the shape of the heat capacity curve 
resembles the Greek letter lambda. Examples of λ-transitions 
include order–disorder transitions in alloys, the onset of fer-
romagnetism, and the fluid–superfluid transition of liquid 
helium.

Brief illustration 4B.7 Discontinuities of the transitions

The melting of water at its normal melting point of 0 °C has 
ΔtrsV = –1.6 cm3 mol−1 and ΔtrsH = 6.008 kJ mol−1, so
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and both slopes are discontinuous.

Self-test 4B.8 Evaluate the difference in slopes at the normal 
boiling point.

Answer: +31 dm3 mol−1, –109 J mol−1

1 A metallic conductor is a substance with an electrical conductivity that 
decreases as the temperature increases. A superconductor is a solid that con-
ducts electricity without resistance. See Topic 18C for more details.

(b)

Temperature, T

Volume, 
V

Enthalpy, 
H

Chemical
potential,
µ

Entropy,
S

Heat
capacity, 
Cp

(a) First-
order

Second-
order

Figure 4B.9 The changes in thermodynamic properties 
accompanying (a) first-order and (b) second-order phase 
transitions.
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(b) Molecular interpretation
First-order transitions typically involve the relocation of 
atoms, molecules, or ions with a consequent change in the 
energies of their interactions. Thus, vaporization eliminates 
the attractions between molecules and a first-order phase tran-
sition from one ionic polymorph to another (as in the con-
version of calcite to aragonite) involves the adjustment of the 
relative positions of ions.

One type of second-order transition is associated with a 
change in symmetry of the crystal structure of a solid. Thus, 
suppose the arrangement of atoms in a solid is like that repre-
sented in Fig. 4B.11a, with one dimension (technically, of the 
unit cell) longer than the other two, which are equal. Such a 
crystal structure is classified as tetragonal (see Topic 18A). 
Moreover, suppose the two shorter dimensions increase more 
than the long dimension when the temperature is raised. There 
may come a stage when the three dimensions become equal. 
At that point the crystal has cubic symmetry (Fig. 4B.11b), 
and at higher temperatures it will expand equally in all three 
directions (because there is no longer any distinction between 
them). The tetragonal → cubic phase transition has occurred, 
but as it has not involved a discontinuity in the interaction 
energy between the atoms or the volume they occupy, the tran-
sition is not first-order.

The order–disorder transition in β-brass (CuZn) is an exam-
ple of a λ-transition. The low-temperature phase is an orderly 
array of alternating Cu and Zn atoms. The high-temperature 
phase is a random array of the atoms (Fig. 4B.12). At T = 0 
the order is perfect, but islands of disorder appear as the tem-
perature is raised. The islands form because the transition is 

cooperative in the sense that, once two atoms have exchanged 
locations, it is easier for their neighbours to exchange their 
locations. The islands grow in extent and merge throughout the 
crystal at the transition temperature (742 K). The heat capacity 
increases as the transition temperature is approached because 
the cooperative nature of the transition means that it is increas-
ingly easy for the heat supplied to drive the phase transition 
rather than to be stored as thermal motion.

Fast

Fast

Slow

Tetragonal
phase

Cubic phase

Equal
rates

Equal
ratesEqual

rates

Phase
transition

(a) (b)

Figure 4B.11 One version of a second-order phase transition 
in which (a) a tetragonal phase expands more rapidly in two 
directions than a third, and hence becomes a cubic phase, 
which (b) expands uniformly in three directions as the 
temperature is raised. There is no rearrangement of atoms 
at the transition temperature, and hence no enthalpy of 
transition.

(a) (b) (c)

Figure 4B.12 An order–disorder transition. (a) At T = 0, there is 
perfect order, with different kinds of atoms occupying alternate 
sites. (b) As the temperature is increased, atoms exchange 
locations and islands of each kind of atom form in regions 
of the solid. Some of the original order survives. (c) At and 
above the transition temperature, the islands occur at random 
throughout the sample.
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Figure 4B.10 The λ-curve for helium, where the heat capacity 
rises to infinity. The shape of this curve is the origin of the name 
λ-transition.
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Checklist of concepts

☐ 1. The chemical potential of a substance decreases with 
increasing temperature at a rate determined by its 
molar entropy.

☐ 2. The chemical potential of a substance increases with 
increasing pressure at a rate determined by its molar 
volume.

☐ 3. When pressure is applied to a condensed phase, its 
vapour pressure rises.

☐ 4. The Clapeyron equation is an expression for the slope 
of a phase boundary.

☐ 5. The Clausius–Clapeyron equation is an approximation 
that relates the slope of the liquid–vapour boundary to 
the enthalpy of vaporization.

☐ 6. According to the Ehrenfest classification, different 
types of phase transition are identified by the behav-
iour of thermodynamic properties at the transition 
temperature.

☐ 7. The classification reveals the type of molecular process 
occurring at the phase transition.

Checklist of equations

Property Equation Comment Equation number

Variation of μ with temperature (∂μ/∂T)p = −Sm 4B.1

Variation of μ with pressure (∂μ/∂p)T = Vm 4B.2

Vapour pressure in the presence  
of applied pressure

p p V P RT= * ( ) /e m l ∆ ΔP = Papplied – p* 4B.3

Clapeyron equation dp/dT = ΔtrsS/ΔtrsV 4B.5a

Clausius–Clapeyron equation d ln p/dT = ΔvapH/RT 2 Assumes Vm(g) ≫ Vm(l) and vapour  
is a perfect gas

4B.10
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chaPter 4  Physical transformations  
of pure substances

TOPIC 4A Phase diagrams of pure substances

Discussion questions
4A.1 Describe how the concept of chemical potential unifies the discussion 
of phase equilibria.

4A.2 Why does the chemical potential change with pressure even if the system 
is incompressible (that is, remains at the same volume when pressure is 
applied)?

4A.3 Explain why four phases cannot be in equilibrium in a one-component 
system.

4A.4 Discuss what would be observed as a sample of water is taken along a 
path that encircles and is close to its critical point.

Exercises
4A.1(a) How many phases are present at each of the points marked in Fig. 4.1a?
4A.1(b) How many phases are present at each of the points marked in Fig. 4.1b?

4A.2(a) The difference in chemical potential between two regions of a system is 
+7.1 kJ mol−1. By how much does the Gibbs energy change when 0.10 mmol of 
a substance is transferred from one region to the other?
4A.2(b) The difference in chemical potential between two regions of a system is 
–8.3 kJ mol−1. By how much does the Gibbs energy change when 0.15 mmol of 
a substance is transferred from one region to the other?

4A.3(a) What is the maximum number of phases that can be in mutual 
equilibrium in a two-component system?
4A.3(b) What is the maximum number of phases that can be in mutual 
equilibrium in a four-component system?

For problems relating to one-component phase diagrams, see the Integrated 
activities section of this chapter.

TOPIC 4B thermodynamic aspects of phase transitions

Discussion questions
4B.1 What is the physical reason for the fact that the chemical potential of a 
pure substance decreases as the temperatures is raised?

4B.2 What is the physical reason for the fact that the chemical potential of a 
pure substance increases as the pressure is raised?

4B.3 How may differential scanning calorimetry (DSC) be used to identify 
phase transitions?

4B.4 Distinguish between a first-order phase transition, a second-order phase 
transition, and a λ-transition at both molecular and macroscopic levels.

Exercises
4B.1(a) Estimate the difference between the normal and standard melting 
points of ice.
4B.1(b) Estimate the difference between the normal and standard boiling 
points of water.

4B.2(a) Water is heated from 25 °C to 100 °C. By how much does its chemical 
potential change?
4B.2(b) Iron is heated from 100 °C to 1000 °C. By how much does its chemical 
potential change? Take Sm

< = 53 J K−1 mol−1 for the entire range.
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Temperature Temperature

a

a

b

b

c c

d

d

(a) (b)

Figure 4.1 The phase diagrams referred to in (a) Exercise 4A.1(a) and  
(b) Exercise 4A.1(b).
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4B.3(a) By how much does the chemical potential of copper change when the 
pressure exerted on a sample is increased from 100 kPa to 10 MPa?
4B.3(b) By how much does the chemical potential of benzene change when the 
pressure exerted on a sample is increased from 100 kPa to 10 MPa?

4B.4(a) Pressure was exerted with a piston on water at 20 °C. The vapour 
pressure of water under 1.0 bar is 2.34 kPa. What is its vapour pressure when 
the pressure on the liquid is 20 MPa?
4B.4(b) Pressure was exerted with a piston on molten naphthalene at 95 °C. 
The vapour pressure of naphthalene under 1.0 bar is 2.0 kPa. What is its 
vapour pressure when the pressure on the liquid is 15 MPa?

4B.5(a) The molar volume of a certain solid is 161.0 cm3 mol−1 at 1.00 atm 
and 350.75 K, its melting temperature. The molar volume of the liquid at 
this temperature and pressure is 163.3 cm3 mol−1. At 100 atm the melting 
temperature changes to 351.26 K. Calculate the enthalpy and entropy of fusion 
of the solid.
4B.5(b) The molar volume of a certain solid is 142.0 cm3 mol−1 at 1.00 atm 
and 427.15 K, its melting temperature. The molar volume of the liquid at 
this temperature and pressure is 152.6 cm3 mol−1. At 1.2 MPa the melting 
temperature changes to 429.26 K. Calculate the enthalpy and entropy of fusion 
of the solid.

4B.6(a) The vapour pressure of dichloromethane at 24.1 °C is 53.3 kPa and its 
enthalpy of vaporization is 28.7 kJ mol−1. Estimate the temperature at which its 
vapour pressure is 70.0 kPa.
4B.6(b) The vapour pressure of a substance at 20.0 °C is 58.0 kPa and its 
enthalpy of vaporization is 32.7 kJ mol−1. Estimate the temperature at which its 
vapour pressure is 66.0 kPa.

4B.7(a) The vapour pressure of a liquid in the temperature range 200 K to 
260 K was found to fit the expression ln(p/Torr)=16.255 − 2501.8/(T/K). What 
is the enthalpy of vaporization of the liquid?
4B.7(b) The vapour pressure of a liquid in the temperature range 200 K to 
260 K was found to fit the expression ln(p/Torr)=18.361 − 3036.8/(T/K). What 
is the enthalpy of vaporization of the liquid?

4B.8(a) The vapour pressure of benzene between 10 °C and 30 °C fits the 
expression log(p/Torr) = 7.960 − 1780/(T/K). Calculate (i) the enthalpy of 
vaporization and (ii) the normal boiling point of benzene.
4B.8(b) The vapour pressure of a liquid between 15 °C and 35 °C fits the 
expression log(p/Torr) = 8.750 − 1625/(T/K). Calculate (i) the enthalpy of 
vaporization and (ii) the normal boiling point of the liquid.

4B.9(a) When benzene freezes at 5.5 °C its density changes from 0.879 g cm−3 
to 0.891 g cm−3. Its enthalpy of fusion is 10.59 kJ mol−1. Estimate the freezing 
point of benzene at 1000 atm.
4B.9(b) When a certain liquid freezes at −3.65 °C its density changes from 
0.789 g cm−3 to 0.801 g cm−3. Its enthalpy of fusion is 8.68 kJ mol−1. Estimate 
the freezing point of the liquid at 100 MPa.

4B.10(a) In July in Los Angeles, the incident sunlight at ground level has a 
power density of 1.2 kW m−2 at noon. A swimming pool of area 50 m2 is 
directly exposed to the sun. What is the maximum rate of loss of water? 
Assume that all the radiant energy is absorbed.
4B.10(b) Suppose the incident sunlight at ground level has a power density of 
0.87 kW m−2 at noon. What is the maximum rate of loss of water from a lake 
of area 1.0 ha? (1 ha = 104 m2.) Assume that all the radiant energy is absorbed.

4B.11(a) An open vessel containing (i) water, (ii) benzene, (iii) mercury stands 
in a laboratory measuring 5.0 m × 5.0 m × 3.0 m at 25 °C. What mass of each 
substance will be found in the air if there is no ventilation? (The vapour 
pressures are (i) 3.2 kPa, (ii) 13.1 kPa, (iii) 0.23 Pa.)
4B.11(b) On a cold, dry morning after a frost, the temperature was −5 °C and 
the partial pressure of water in the atmosphere fell to 0.30 kPa. Will the frost 
sublime? What partial pressure of water would ensure that the frost remained?

4B.12(a) Naphthalene, C10H8, melts at 80.2 °C. If the vapour pressure of the 
liquid is 1.3 kPa at 85.8 °C and 5.3 kPa at 119.3 °C, use the Clausius–Clapeyron 
equation to calculate (i) the enthalpy of vaporization, (ii) the normal boiling 
point, and (iii) the enthalpy of vaporization at the boiling point.
4B.12(b) The normal boiling point of hexane is 69.0 °C. Estimate (i) its 
enthalpy of vaporization and (ii) its vapour pressure at 25 °C and 60 °C.

4B.13(a) Calculate the melting point of ice under a pressure of 50 bar. Assume 
that the density of ice under these conditions is approximately 0.92 g cm−3 and 
that of liquid water is 1.00 g cm−3.
4B.13(b) Calculate the melting point of ice under a pressure of 10 MPa. 
Assume that the density of ice under these conditions is approximately 0.915 
g cm−3 and that of liquid water is 0.998 g cm−3.

4B.14(a) What fraction of the enthalpy of vaporization of water is spent on 
expanding the water vapour?
4B.14(b) What fraction of the enthalpy of vaporization of ethanol is spent on 
expanding its vapour?

Problems
4B.1 The temperature dependence of the vapour pressure of solid  
sulfur dioxide can be approximately represented by the relation  
log(p/Torr) = 10.5916 − 1871.2/(T/K) and that of liquid sulfur dioxide by 
log(p/Torr) = 8.3186 − 1425.7/(T/K). Estimate the temperature and pressure 
of the triple point of sulfur dioxide.

4B.2 Prior to the discovery that freon-12 (CF2Cl2) was harmful to the Earth’s 
ozone layer, it was frequently used as the dispersing agent in spray cans for 
hair spray, etc. Its enthalpy of vaporization at its normal boiling point of 
−29.2 °C is 20.25 kJ mol−1. Estimate the pressure that a can of hair spray using 
freon-12 had to withstand at 40 °C, the temperature of a can that has been 
standing in sunlight. Assume that ΔvapH is a constant over the temperature 
range involved and equal to its value at –29.2 °C.

4B.3 The enthalpy of vaporization of a certain liquid is found to be 14.4 kJ mol−1 
at 180 K, its normal boiling point. The molar volumes of the liquid and the 
vapour at the boiling point are 115 cm3 mol−1 and 14.5 dm3 mol−1, respectively. 
(a) Estimate dp/dT from the Clapeyron equation and (b) the percentage error 
in its value if the Clausius–Clapeyron equation is used instead.

4B.4 Calculate the difference in slope of the chemical potential against 
temperature on either side of (a) the normal freezing point of water and (b) the 

normal boiling point of water. (c) By how much does the chemical potential of 
water supercooled to −5.0 °C exceed that of ice at that temperature?

4B.5 Calculate the difference in slope of the chemical potential against 
pressure on either side of (a) the normal freezing point of water and  
(b) the normal boiling point of water. The densities of ice and water at 0 °C 
are 0.917 g cm−3 and 1.000 g cm−3, and those of water and water vapour at 
100 °C are 0.958 g cm−3 and 0.598 g dm−3, respectively. By how much does the 
chemical potential of water vapour exceed that of liquid water at 1.2 atm and 
100 °C?

4B.6 The enthalpy of fusion of mercury is 2.292 kJ mol−1, and its normal 
freezing point is 234.3 K with a change in molar volume of +0.517 cm−3 mol−1 
on melting. At what temperature will the bottom of a column of mercury 
(density 13.6 g cm−3) of height 10.0 m be expected to freeze?

4B.7 50.0 dm3 of dry air was slowly bubbled through a thermally insulated 
beaker containing 250 g of water initially at 25 °C. Calculate the final 
temperature. (The vapour pressure of water is approximately constant at 
3.17 kPa throughout, and its heat capacity is 75.5 J K−1 mol−1. Assume that the 
air is not heated or cooled and that water vapour is a perfect gas.)

4B.8 The vapour pressure, p, of nitric acid varies with temperature as follows:
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176 4  Physical transformations of pure substances

What are (a) the normal boiling point and (b) the enthalpy of vaporization of 
nitric acid?

4B.9 The vapour pressure of the ketone carvone (M = 150.2 g mol−1), a 
component of oil of spearmint, is as follows:

What are (a) the normal boiling point and (b) the enthalpy of vaporization of 
carvone?

4B.10‡ In a study of the vapour pressure of chloromethane, A. Bah and N. 
Dupont-Pavlovsky (J. Chem. Eng. Data 40, 869 (1995)) presented data for the 
vapour pressure over solid chloromethane at low temperatures. Some of that 
data is as follows:

Estimate the standard enthalpy of sublimation of chloromethane at 150 K. 
(Take the molar volume of the vapour to be that of a perfect gas, and that of 
the solid to be negligible.)

4B.11 Show that, for a transition between two incompressible solid phases,  
ΔG is independent of the pressure.

4B.12 The change in enthalpy is given by dH = CpdT + Vdp. The Clapeyron 
equation relates dp and dT at equilibrium, and so in combination the two 
equations can be used to find how the enthalpy changes along a phase 
boundary as the temperature changes and the two phases remain in 
equilibrium. Show that d(ΔH/T) = ΔCp d ln T.

4B.13 In the ‘gas saturation method’ for the measurement of vapour pressure, a 
volume V of gas (as measured at a temperature T and a pressure p) is bubbled 
slowly through the liquid that is maintained at the temperature T, and a mass 
loss m is measured. Show that the vapour pressure, p, of the liquid is related 
to its molar mass, M, by p = AmP/(1 + Am), where A = RT/MPV. The vapour 
pressure of geraniol (M = 154.2 g mol−1), which is a component of oil of roses, 
was measured at 110 °C. It was found that, when 5.00 dm3 of nitrogen at 760 

Torr was passed slowly through the heated liquid, the loss of mass was 0.32 g. 
Calculate the vapour pressure of geraniol.

4B.14 The vapour pressure of a liquid in a gravitational field varies with the 
depth below the surface on account of the hydrostatic pressure exerted by 
the overlying liquid. Adapt eqn. 4B.3 to predict how the vapour pressure of a 
liquid of molar mass M varies with depth. Estimate the effect on the vapour 
pressure of water at 25 °C in a column 10 m high.

4B.15 Combine the ‘barometric formula’, p = p0e−a/H, where H = 8 km, for the 
dependence of the pressure on altitude, a, with the Clausius–Clapeyron 
equation, and predict how the boiling temperature of a liquid depends on the 
altitude and the ambient temperature. Take the mean ambient temperature as 
20 °C and predict the boiling temperature of water at 3000 m.

4B.16 Figure 4B.1 gives a schematic representation of how the chemical 
potentials of the solid, liquid, and gaseous phases of a substance vary with 
temperature. All have a negative slope, but it is unlikely that they are truly 
straight lines as indicated in the illustration. Derive an expression for the 
curvatures (specifically, the second derivatives with respect to temperature) of 
these lines. Is there a restriction on the curvature of these lines? Which state 
of matter shows the greatest curvature?

4B.17 The Clapeyron equation does not apply to second-order phase 
transitions, but there are two analogous equations, the Ehrenfest equations, 
that do. They are:

(a) d
d b d

d
m m

m

p
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p
T

C C
TVT T
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− =

−
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α α
κ κ α α

2 1

2 1

2 1

2 1; ;

, ; , ;( )

where α is the expansion coefficient, κT the isothermal compressibility, 
and the subscripts 1 and 2 refer to two different phases. Derive these two 
equations. Why does the Clapeyron equation not apply to second-order 
transitions?

4B.18 For a first-order phase transition, to which the Clapeyron equation does 
apply, prove the relation

C C V H
VS p= − α ∆

∆
trs

trs  
where CS = (∂q/∂T)S is the heat capacity along the coexistence curve of two 
phases.

Integrated activities
4.1 Construct the phase diagram for benzene near its triple point at 36 Torr 
and 5.50 °C using the following data: ΔfusH = 10.6 kJ mol−1, ΔvapH = 30.8 kJ mol−1, 
 ρ(s) = 0.891 g cm−3, ρ(l) = 0.879 g cm−3.

4.2‡ In an investigation of thermophysical properties of toluene, R.D. 
Goodwin (J. Phys. Chem. Ref. Data 18, 1565 (1989)) presented expressions for 
two phase boundaries. The solid–liquid boundary is given by

p p x x/ / ( . . )bar bar 1 5 6 11 7273= + +000 0  
where x = T/T3 – 1 and the triple point pressure and temperature are 
p3 = 0.4362 µbar and T3 = 178.15 K. The liquid–vapour curve is given by:

ln( bar) 1 418/ 21 157 15 996 14 15

5 12 4 733

2

3

p y y y
y

/ . . . .

. .

= + +

+

− −

−

0 0

0 0 44(1 )1 7− y . 0

where y = T/Tc = T/(593.95 K). (a) Plot the solid–liquid and liquid–vapour 
phase boundaries. (b) Estimate the standard melting point of toluene. (c) 
Estimate the standard boiling point of toluene. (d) Compute the standard 
enthalpy of vaporization of toluene, given that the molar volumes of the liquid 
and vapour at the normal boiling point are 0.12 dm3 mol−1 and 30.3 dm3 mol−1, 
respectively.

4.3 Proteins are polymers of amino acids that can exist in ordered structures 
stabilized by a variety of molecular interactions. However, when certain 
conditions are changed, the compact structure of a polypeptide chain may 
collapse into a random coil. This structural change may be regarded as a 
phase transition occurring at a characteristic transition temperature, the 
melting temperature, Tm, which increases with the strength and number ‡ These problems were supplied by Charles Trapp and Carmen Giunta.

θ/°C 0 20 40 50 70 80 90 100

p/kPa 1.92 6.38 17.7 27.7 62.3 89.3 124.9 170.9

θ/°C 57.4 100.4 133.0 157.3 203.5 227.5

p/Torr 1.00 10.0 40.0 100 400 760

T/K 145.94 147.96 149.93 151.94 153.97 154.94

p/Pa 13.07 18.49 25.99 36.76 50.86 59.56
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of intermolecular interactions in the chain. A thermodynamic treatment 
allows predictions to be made of the temperature Tm for the unfolding of a 
helical polypeptide held together by hydrogen bonds into a random coil. If a 
polypeptide has N amino acids, N − 4 hydrogen bonds are formed to form an 
α-helix, the most common type of helix in naturally occurring proteins (see 
Topic 17A). Because the first and last residues in the chain are free to move, 
N − 2 residues form the compact helix and have restricted motion. Based on 
these ideas, the molar Gibbs energy of unfolding of a polypeptide with N ≥ 5 
may be written as

∆ ∆ ∆unfold hb hb 4 2G N H N T S= ( ) ( )− − −  
where ΔhbH and ΔhbS are, respectively, the molar enthalpy and entropy of 
dissociation of hydrogen bonds in the polypeptide. (a) Justify the form of the 
equation for the Gibbs energy of unfolding. That is, why are the enthalpy and 
entropy terms written as (N − 4)ΔhbH and (N − 2)ΔhbS, respectively? (b) Show 
that Tm may be written as

T N H
N Sm

hb
hb

= −
−

( )
( )

4
2

∆
∆  

(c) Plot Tm/(ΔhbHm/ΔhbSm) for 5 ≤ N ≤ 20. At what value of N does Tm change by 
less than 1 per cent when N increases by 1?

4.4‡ A substance as well-known as methane still receives research attention 
because it is an important component of natural gas, a commonly used fossil 
fuel. Friend et al. have published a review of thermophysical properties of 

methane (D.G. Friend, J.F. Ely, and H. Ingham, J. Phys. Chem. Ref. Data 18, 
583 (1989)), which included the following data describing the liquid–vapour 
phase boundary. 

(a) Plot the liquid–vapour phase boundary. (b) Estimate the standard boiling 
point of methane. (c) Compute the standard enthalpy of vaporization of 
methane, given that the molar volumes of the liquid and vapour at the 
standard boiling point are 3.80 × 10−2 and 8.89 dm3 mol−1, respectively.

4.5‡ Diamond is the hardest substance and the best conductor of heat yet 
characterized. For these reasons, it is used widely in industrial applications 
that require a strong abrasive. Unfortunately, it is difficult to synthesize 
diamond from the more readily available allotropes of carbon, such as 
graphite. To illustrate this point, calculate the pressure required to convert 
graphite into diamond at 25 °C. The following data apply to 25 °C and 100 kPa. 
Assume the specific volume, Vs, and κT are constant with respect to pressure 
changes.

T/K 100 108 110 112 114 120 130 140 150 160 170 190

p/MPa 0.034 0.074 0.088 0.104 0.122 0.192 0.368 0.642 1.041 1.593 2.329 4.521

Graphite Diamond

ΔrG</(kJ mol−1) 0 +2.8678

Vs/(cm3 g−1) 0.444  0.284

κT/kPa 3.04 × 10−8  0.187 × 10−8
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chaPter 5

simple mixtures

Mixtures are an essential part of chemistry, either in their own 
right or as starting materials for chemical reactions. This group 
of Topics deals with the rich physical properties of mixtures and 
shows how to express them in terms of thermodynamic quantities.

5A the thermodynamic description 
of mixtures

The first Topic in this chapter develops the concept of chemical 
potential as an example of a partial molar quantity and explores 
how to use the chemical potential of a substance to describe the 
physical properties of mixtures. The underlying principle to 
keep in mind is that at equilibrium the chemical potential of a 
species is the same in every phase. We see, by making use of the 
experimental observations known as Raoult’s and Henry’s laws, 
how to express the chemical potential of a substance in terms of 
its mole fraction in a mixture.

5B the properties of solutions

In this Topic, the concept of chemical potential is applied to the 
discussion of the effect of a solute on certain thermodynamic 
properties of a solution. These properties include the lowering of 
vapour pressure of the solvent, the elevation of its boiling point, 
the depression of its freezing point, and the origin of osmotic 
pressure. We see that it is possible to construct a model of a cer-
tain class of real solutions called ‘regular solutions’, and see how 
they have properties that diverge from those of ideal solutions.

5C Phase diagrams of binary systems

One widely used device used to summarize the equilibrium 
properties of mixtures is the phase diagram. We see how to 
construct and interpret these diagrams. The Topic introduces 
systems of gradually increasing complexity. In each case we 

shall see how the phase diagram for the system summarizes 
empirical observations on the conditions under which the vari-
ous phases of the system are stable.

5D Phase diagrams of ternary systems

Many modern materials (and ancient ones too) have more than 
two components. In this Topic we show how phase diagrams 
are extended to the description of systems of three components 
and how to interpret triangular phase diagrams.

5E activities

The extension of the concept of chemical potential to real solu-
tions involves introducing an effective concentration called an 
‘activity’. We see how the activity may be defined and meas-
ured. We shall also see how, in certain cases, the activity may be 
interpreted in terms of intermolecular interactions.

5F the activities of ions

One of the most important types of mixtures encountered in 
chemistry is an electrolyte solution. Such solutions often devi-
ate considerably from ideal behaviour on account of the strong, 
long-range interactions between ions. In this Topic we show 
how a model can be used to estimate the deviations from ideal 
behaviour when the solution is very dilute, and how to extend 
the resulting expressions to more concentrated solutions.

What is the impact of this material?

We consider just two applications of this material, one from 
biology and the other from materials science, from among the 
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5 Simple mixtures  179

huge number that could be chosen for this centrally important 
field. In Impact I5.1, we see how the phenomenon of osmosis 
contributes to the ability of biological cells to maintain their 
shapes. In Impact I5.2, we see how phase diagrams are used to 
describe the properties of the technologically important liquid 
crystals.

To read more about the impact of this 
material, scan the QR code, or go to  
bcs.whfreeman.com/webpub/chemistry/
pchem10e/impact/pchem-5-1.html
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5A the thermodynamic description 
of mixtures

As a first step towards dealing with chemical reactions (which 
are treated in Topic 6A), here we consider mixtures of sub-
stances that do not react together. At this stage we deal mainly 
with binary mixtures, which are mixtures of two components, 
A and B. We shall therefore often be able to simplify equations 
by making use of the relation xA + xB = 1. In Topic 1A it is estab-
lished that the partial pressure, which is the contribution of one 
component to the total pressure, is used to discuss the prop-
erties of mixtures of gases. For a more general description of 
the thermodynamics of mixtures we need to introduce other 
analogous ‘partial’ properties.

One preliminary remark is in order. Throughout this and 
related Topics we need to refer to various measures of con-
centration of a solute in a solution. The molar concentration 
(colloquially, the ‘molarity’, [J] or cJ) is the amount of solute 
divided by the volume of the solution and is usually expressed 
in moles per cubic decimetre (mol dm−3; more informally, 
mol L−1). We write c< = 1 mol dm−3. The term molality, b, is the 
amount of solute divided by the mass of solvent and is usually 
expressed in moles per kilogram of solvent (mol kg−1). We write 
b< = 1 mol kg−1.

5A.1 Partial molar quantities

The easiest partial molar property to visualize is the ‘partial 
molar volume’, the contribution that a component of a mixture 
makes to the total volume of a sample.

Contents

5a.1 Partial molar quantities 180
(a) Partial molar volume 181

example 5a.1: determining a partial molar volume 182
(b) Partial molar Gibbs energies 182
(c) The wider significance of the chemical potential 183
(d) The Gibbs–Duhem equation 183

brief illustration 5a.1: the gibbs–duhem equation 184
example 5a.2: using the gibbs–duhem equation 184

5a.2 The thermodynamics of mixing 184
(a) The Gibbs energy of mixing of perfect gases 185

example 5a.3: calculating a gibbs energy of mixing 185
(b) Other thermodynamic mixing functions 186

brief illustration 5a.2: the entropy of mixing 186

5a.3 The chemical potentials of liquids 187
(a) Ideal solutions 187

brief illustration 5a.3: raoult’s law 188
(b) Ideal–dilute solutions 188

example 5a.4: Investigating the validity of raoult’s  
and henry’s laws 189
brief illustration 5a.4: henry’s law and gas solubility 190

Checklist of concepts 190
Checklist of equations 190

➤➤ What do you need to know already?
This Topic extends the concept of chemical potential 
to substances in mixtures by building on the concept 
introduced in the context of pure substances (Topic 4A). 
It makes use of the relation between entropy and the 
temperature dependence of the Gibbs energy (Topic 3D) 
and the concept of partial pressure (Topic 1A). It uses the 
notation of partial derivatives (Mathematical background 2) 
but does not draw on their advanced properties.

➤➤ Why do you need to know this material?
Chemistry deals with a wide variety of mixtures, including 
mixtures of substances that can react together. Therefore, 
it is important to generalize the concepts introduced 
in Chapter 4 to deal with substances that are mingled 
together. This Topic also introduces the fundamental 
equation of chemical thermodynamics on which many 
of the applications of thermodynamics to chemistry are 
based.

➤➤ What is the key idea?
The chemical potential of a substance in a mixture is a 
logarithmic function of its concentration.
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5A The thermodynamic description of mixtures  181

(a) Partial molar volume
Imagine a huge volume of pure water at 25 °C. When a further 
1 mol H2O is added, the volume increases by 18 cm3 and we 
can report that 18 cm3 mol−1 is the molar volume of pure water. 
However, when we add 1 mol H2O to a huge volume of pure 
ethanol, the volume increases by only 14 cm3. The reason for 
the different increase in volume is that the volume occupied by 
a given number of water molecules depends on the identity of 
the molecules that surround them. In the latter case there is so 
much ethanol present that each H2O molecule is surrounded by 
ethanol molecules. The network of hydrogen bonds that nor-
mally hold H2O molecules at certain distances from each other 
in pure water does not form. The packing of the molecules in 
the mixture results in the H2O molecules increasing the volume 
by only 14 cm3. The quantity 14 cm3 mol−1 is the partial molar 
volume of water in pure ethanol. In general, the partial molar 
volume of a substance A in a mixture is the change in volume 
per mole of A added to a large volume of the mixture.

The partial molar volumes of the components of a mixture 
vary with composition because the environment of each type of 
molecule changes as the composition changes from pure A to 
pure B. It is this changing molecular environment, and the con-
sequential modification of the forces acting between molecules, 
that results in the variation of the thermodynamic properties 
of a mixture as its composition is changed. The partial molar 
volumes of water and ethanol across the full composition range 
at 25 °C are shown in Fig. 5A.1.

The partial molar volume, VJ , of a substance J at some gen-
eral composition is defined formally as follows:

V V
n

p T n
J

J
= ∂

∂




 , , ′  

Definition  Partial molar volume  (5A.1)

where the subscript n′ signifies that the amounts of all other 
substances present are constant. The partial molar volume is 

the slope of the plot of the total volume as the amount of J is 
changed, the pressure, temperature, and amount of the other 
components being constant (Fig. 5A.2). Its value depends on 
the composition, as we saw for water and ethanol.

A note on good practice The IUPAC recommendation is to 
denote a partial molar quantity by X , but only when there is 
the possibility of confusion with the quantity X. For instance, 
to avoid confusion, the partial molar volume of NaCl in water 
could be written V (NaCl, aq) to distinguish it from the total 
volume of the solution, V.

The definition in eqn 5A.1 implies that when the composi-
tion of the mixture is changed by the addition of dnA of A and 
dnB of B, then the total volume of the mixture changes by
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(5A.2)

Provided the relative composition is held constant as the 
amounts of A and B are increased, the partial molar volumes 
are both constant. In that case we can obtain the final volume 
by integration, treating VA and VB as constants:

V V n V n V n V n

V n V n

n n n n
= + = +

= +
∫ ∫ ∫ ∫A A B B A A B B

A A B B

A B A B

d d d d
0 0 0 0

 

(5A.3)

Although we have envisaged the two integrations as being 
linked (in order to preserve constant relative composition), 
because V is a state function the final result in eqn 5A.3 is valid 
however the solution is in fact prepared.

V(b)
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Amount of A, nA
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m
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 V
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Figure 5A.2 The partial molar volume of a substance is the 
slope of the variation of the total volume of the sample plotted 
against the composition. In general, partial molar quantities 
vary with the composition, as shown by the different slopes at 
the compositions a and b. Note that the partial molar volume 
at b is negative: the overall volume of the sample decreases as 
A is added.
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Figure 5A.1 The partial molar volumes of water and ethanol 
at 25 °C. Note the different scales (water on the left, ethanol on 
the right).
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182 5 Simple mixtures

Partial molar volumes can be measured in several ways. One 
method is to measure the dependence of the volume on the 
composition and to fit the observed volume to a function of the 
amount of the substance. Once the function has been found, 
its slope can be determined at any composition of interest by 
differentiation.

Molar volumes are always positive, but partial molar quanti-
ties need not be. For example, the limiting partial molar vol-
ume of MgSO4 in water (its partial molar volume in the limit 
of zero concentration) is −1.4 cm3 mol−1, which means that the 
addition of 1 mol MgSO4 to a large volume of water results in a 
decrease in volume of 1.4 cm3. The mixture contracts because 
the salt breaks up the open structure of water as the Mg2+ and 
SO4

2− ions become hydrated, and it collapses slightly.

(b) Partial molar Gibbs energies
The concept of a partial molar quantity can be extended to 
any extensive state function. For a substance in a mixture, 
the chemical potential is defined as the partial molar Gibbs 
energy:

µ
′

J
J

= ∂
∂







G
n

p T n, ,  
Definition  chemical potential  (5A.4)

That is, the chemical potential is the slope of a plot of Gibbs 
energy against the amount of the component J, with the pres-
sure and temperature (and the amounts of the other sub-
stances) held constant (Fig. 5A.4). For a pure substance we can 
write G = nJGJ,m, and from eqn 5A.4 obtain μJ = GJ,m: in this case, 
the chemical potential is simply the molar Gibbs energy of the 
substance, as is used in Topic 4B.

Self-test 5A.1 At 25 °C, the density of a 50 per cent by mass 
ethanol/water solution is 0.914 g cm−3. Given that the partial 
molar volume of water in the solution is 17.4 cm3 mol−1, what is 
the partial molar volume of the ethanol?

Answer: 56.4 cm3 mol−1; 54.6 cm3 mol−1 by the formula above

µ(a)

µ(b)

G
ib

b
s 

en
er

g
y,

 G

a b

Amount of A, nA

Figure 5A.4 The chemical potential of a substance is the 
slope of the total Gibbs energy of a mixture with respect to 
the amount of substance of interest. In general, the chemical 
potential varies with composition, as shown for the two values 
at a and b. In this case, both chemical potentials are positive.

Example 5A.1 Determining a partial molar volume

A polynomial fit to measurements of the total volume of a water/
ethanol mixture at 25 °C that contains 1.000 kg of water is

v= + − +1002 93 54 6664 0 363 94 0 0282562 3. . . .x x x

where v  = V/cm3, x = nE/mol, and nE is the amount of 
CH3CH2OH present. Determine the partial molar volume of 
ethanol.

Method Apply the definition in eqn 5A.1 taking care to con-
vert the derivative with respect to n to a derivative with respect 
to x and keeping the units intact.

Answer The partial molar volume of ethanol, VE, is

V V
n

V
np T n p T n

E
E EW

W

cm

mol
cm
mol= ∂

∂






=
∂( )
∂( )









, , , ,

/

/

3 3

== ∂
∂







−v
x

p T n, , W

cm mol3 1

Then, because

d
d
v
x x x= +54 6664 2 0 363 94 3 0 028 256 2. ( . ) ( . )−

we can conclude that

V x xE cm mol/( ) . . .3 1 254 6664 0 727 88 0 084 768− −= +  
Figure 5A.3 shows a graph of this function.
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Figure 5A.3 The partial molar volume of ethanol, as 
expressed by the polynomial in Example 5A.1.
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5A The thermodynamic description of mixtures  183

By the same argument that led to eqn 5A.2, it follows that the 
total Gibbs energy of a binary mixture is

G n n= +A A B Bμ μ  (5A.5)

where μA and μB are the chemical potentials at the composition 
of the mixture. That is, the chemical potential of a substance 
in a mixture is the contribution of that substance to the total 
Gibbs energy of the mixture. Because the chemical potentials 
depend on composition (and the pressure and temperature), 
the Gibbs energy of a mixture may change when these variables 
change, and for a system of components A, B, etc., the equation 
dG = Vdp − SdT becomes

d d d d dA A B BG V p S T n n= − + + +μ μ    
 Fundamental equation of chemical thermodynamics  (5A.6)

This expression is the fundamental equation of chemical ther-
modynamics. Its implications and consequences are explored 
and developed in this and the next two chapters.

At constant pressure and temperature, eqn 5A.6 simplifies to

d d dA A B BG n n= + +μ μ   (5A.7)

We saw in Topic 3C that under the same conditions 
dG = dwadd,max. Therefore, at constant temperature and pressure,

d d dadd max A A B Bw n n, = + +μ μ   (5A.8)

That is, additional (non-expansion) work can arise from the 
changing composition of a system. For instance, in an electro-
chemical cell, the chemical reaction is arranged to take place 
in two distinct sites (at the two electrodes). The electrical work 
the cell performs can be traced to its changing composition as 
products are formed from reactants.

(c) The wider significance of the chemical 
potential
The chemical potential does more than show how G varies 
with composition. Because G = U + pV − TS, and therefore 
U = − pV + TS + G, we can write a general infinitesimal change in 
U for a system of variable composition as

d d d d d d
d d d d
d d d

U p V V p S T T S G
p V V p S T T S
V p S T n

= − − + + +
= − − + + +

− + +
 

A A B( μ μ dd
d d d d

n
p V T S n n

B

A A B B

+
= − + + + +




)
μ μ

This expression is the generalization of eqn 3D.1 (that 
dU = TdS − pdV) to systems in which the composition may 
change. It follows that at constant volume and entropy,

d d dA A B BU n n= + +μ μ   (5A.9)

and hence that

µ
′

J
J

= ∂
∂







U
n

S V n, ,  
(5A.10)

Therefore, not only does the chemical potential show how G 
changes when the composition changes, it also shows how the 
internal energy changes too (but under a different set of condi-
tions). In the same way it is possible to deduce that

( ) ( )
, , , ,

a bJ
J

J
J

µ µ
′ ′

= ∂
∂







= ∂
∂







H
n

A
n

S p n T V n  
(5A.11)

Thus we see that the μJ shows how all the extensive ther-
modynamic properties U, H, A, and G depend on the com-
position. This is why the chemical potential is so central to 
chemistry.

(d) The Gibbs–Duhem equation
Because the total Gibbs energy of a binary mixture is given by 
eqn 5A.5 and the chemical potentials depend on the compo-
sition, when the compositions are changed infinitesimally we 
might expect G of a binary system to change by

d d d d dG n n n n= + + +μ μ μ μA A B B A A B B  

However, we have seen that at constant pressure and tempera-
ture a change in Gibbs energy is given by eqn 5A.7. Because G 
is a state function, these two equations must be equal, which 
implies that at constant temperature and pressure

n nA A B Bd dμ μ+ =0  (5A.12a)

This equation is a special case of the Gibbs–Duhem equation:

nJ J
J

dμ =∑ 0
 

 gibbs–duhem equation  (5A.12b)

The significance of the Gibbs–Duhem equation is that the 
chemical potential of one component of a mixture cannot 
change independently of the chemical potentials of the other 
components. In a binary mixture, if one partial molar quantity 
increases, then the other must decrease, with the two changes 
related by

d dμ μB
A

B
A= − n

n  
(5A.13)
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184 5 Simple mixtures

The same line of reasoning applies to all partial molar quan-
tities. We can see in Fig. 5A.1, for example, that where the par-
tial molar volume of water increases, that of ethanol decreases. 
Moreover, as eqn 5A.13 shows, and as we can see from Fig 5A.1, 
a small change in the partial molar volume of A corresponds to 
a large change in the partial molar volume of B if nA/nB is large, 
but the opposite is true when this ratio is small. In practice, the 
Gibbs–Duhem equation is used to determine the partial molar 
volume of one component of a binary mixture from measure-
ments of the partial molar volume of the second component.

5A.2 The thermodynamics of mixing

The dependence of the Gibbs energy of a mixture on its com-
position is given by eqn 5A.5, and we know that at constant 
temperature and pressure systems tend towards lower Gibbs 
energy. This is the link we need in order to apply thermody-
namics to the discussion of spontaneous changes of composi-
tion, as in the mixing of two substances. One simple example 
of a spontaneous mixing process is that of two gases introduced 
into the same container. The mixing is spontaneous, so it must 

Brief illustration 5A.1 The Gibbs–Duhem equation

If the composition of a mixture is such that nA = 2nB, and 
a small change in composition results in μA changing by 
δμA = +1 J mol−1, μB will change by

δ − −μB Jmol Jmol= × =− −2 1 21 1( )  

Self-test 5A.2 Suppose that nA = 0.3nB and a small change in 
composition results in μA changing by δμA = –10 J mol−1, by 
how much will μB change?

Answer: +3 J mol−1

Example 5A.2 Using the Gibbs–Duhem equation

The experimental values of the partial molar volume of 
K2SO4(aq) at 298 K are found to fit the expression

vB = +32 280 18 216 1 2. . /x

where vB = VK SO2 4
cm mol/( )3 1−  and x is the numerical value of 

the molality of K2SO4 (x = b/b < ; see the remark in the introduc-
tion to this chapter). Use the Gibbs–Duhem equation to derive 
an equation for the molar volume of water in the solution. The 
molar volume of pure water at 298 K is 18.079 cm3 mol−1.

Method Let A denote H2O, the solvent, and B denote K2SO4, 
the solute. The Gibbs–Duhem equation for the partial molar 
volumes of two components is nAdVA + nBdVB = 0. This relation 
implies that dvA = − (nB/nA)dvB, and therefore that vA can be 
found by integration:

v v v
v

A A
B

A
Bd

B

= −∫* n
n0

where vA A
3 1cm mol* /( )=V −  is the numerical value of the molar 

volume of pure A. The first step is to change the variable vB 
to x = b/b < and then to integrate the right-hand side between 
x = 0 (pure B) and the molality of interest.

Answer It follows from the information in the question that, 
with B = K2SO4, dvB/dx = 9.108x−1/2. Therefore, the integration 
required is

v vA A
B

A
d= − −∫* . /

/
9 108 1 2

0

n
n x x

b b<

However, the ratio of amounts of A (H2O) and B (K2SO4) is 
related to the molality of B, b = nB/(1 kg water) and nA = (1 kg 
water)/MA where MA is the molar mass of water, by

n
n

n
M

n M bM xb MB

A

B

A

B A
A A1kg / 1kg= = = =( )

<

and hence

v v

v

A A

A A

d= −

= −

∫A

b b
M b x x

M b b b

*

*

.

( . )( / )

/
/

/

9 108

2
3 9 108

1 2

0

3 2

<

< <

<

 
It then fol lows, by subst itut ing the data (including 
MA = 1.802 × 10−2 kg mol−1, the molar mass of water), that

V b bA cm mol/ . . /( ) ( ) /3 1 3 218 079 0 1094− = − <

The partial molar volumes are plotted in Fig. 5A.5.

Self-test 5A.3 Repeat the calculation for a salt B for which VB/
(cm3 mol−1) = 6.218 + 5.146b − 7.147b2.

Answer: VA/(cm3 mol−1) = 18.079 − 0.0464b2 + 0.0859b3
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Figure 5A.5 The partial molar volumes of the components 
of an aqueous solution of potassium sulfate.
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5A The thermodynamic description of mixtures  185

correspond to a decrease in G. We shall now see how to express 
this idea quantitatively.

(a) The Gibbs energy of mixing of perfect 
gases
Let the amounts of two perfect gases in the two containers be 
nA and nB; both are at a temperature T and a pressure p (Fig. 
5A.6). At this stage, the chemical potentials of the two gases 
have their ‘pure’ values, which are obtained by applying the defin-
ition μ = Gm to eqn 3D.15 (Gm(p) = Gm

< + RT ln(p/p<)):

μ μ= +<
<

RT p
p

ln
  

Perfect gas  Variation of chemical potential with pressure  (5A.14a)

where μ< is the standard chemical potential, the chemical 
potential of the pure gas at 1 bar. It will be much simpler nota-
tionally if we agree to let p denote the pressure relative to p<; 
that is, to replace p/p< by p, for then we can write

μ μ= +< RT pln  (5A.14b)

To use the equations, we have to remember to replace p by p/p< 
again. In practice, that simply means using the numerical value 
of p in bars. The Gibbs energy of the total system is then given 
by eqn 5A.5 as

G n n n RT p n RT pi A A B B A A B Bln  ln= + = + + +μ μ μ μ( ) ( )< <

 
(5A.15a)

After mixing, the partial pressures of the gases are pA and pB, 
with pA+pB = p. The total Gibbs energy changes to

G n RT p n RT pf A A A B B Bln ln= + + +( ) ( )μ μ< <

 (5A.15b)

The difference Gf − Gi, the Gibbs energy of mixing, ΔmixG, is 
therefore

∆mix A
A

B
BG n RT p

p n RT p
p= +ln ln

 
(5A.15c)

At this point we may replace nJ by xJn, where n is the total 
amount of A and B, and use the relation between partial pres-
sure and mole fraction (Topic 1A, pJ = xJp) to write pJ/p = xJ for 
each component, which gives

∆mix A A B Bln lnG nRT x x x x= +( )   
Perfect gases  gibbs energy of mixing  (5A.16)

Because mole fractions are never greater than 1, the logarithms 
in this equation are negative, and ΔmixG < 0 (Fig. 5A.7). The 
conclusion that ΔmixG is negative for all compositions con-
firms that perfect gases mix spontaneously in all proportions. 
However, the equation extends common sense by allowing us 
to discuss the process quantitatively.

Example 5A.3 Calculating a Gibbs energy of mixing

A container is divided into two equal compartments (Fig. 
5A.8). One contains 3.0 mol H2(g) at 25 °C; the other contains 
1.0 mol N2(g) at 25 °C. Calculate the Gibbs energy of mixing 
when the partition is removed. Assume perfect behaviour.

Method Equation 5A.16 cannot be used directly because the two 
gases are initially at different pressures. We proceed by calculat-
ing the initial Gibbs energy from the chemical potentials. To do 
so, we need the pressure of each gas. Write the pressure of nitro-
gen as p; then the pressure of hydrogen as a multiple of p can be 
found from the gas laws. Next, calculate the Gibbs energy for the 
system when the partition is removed. The volume occupied by 
each gas doubles, so its initial partial pressure is halved.

nA, T, p
nB, T, p

T, pA, pB with pA + pB = p

Figure 5A.6 The arrangement for calculating the 
thermodynamic functions of mixing of two perfect gases.
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Mole fraction of A, xA

Figure 5A.7 The Gibbs energy of mixing of two perfect 
gases and (as discussed later) of two liquids that form an 
ideal solution. The Gibbs energy of mixing is negative for 
all compositions and temperatures, so perfect gases mix 
spontaneously in all proportions.
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186 5 Simple mixtures

(b) Other thermodynamic mixing functions

In Topic 3D it is shown that (∂G/∂T)p,n = –S. It follows immedi-
ately from eqn 5A.16 that, for a mixture of perfect gases initially 
at the same pressure, the entropy of mixing, ΔmixS, is

∆ ∆
mix

mix
A A B B

A B

S G
T nR x x x x

p n n
= − ∂

∂






= − +( )
, ,

ln ln
  

Perfect gases  entropy of mixing  (5A.17)

Because ln x < 0, it follows that ΔmixS > 0 for all compositions 
(Fig. 5A.9).

Brief illustration 5A.2 The entropy of mixing

For equal amounts of perfect gas molecules that are mixed at 
the same pressure we set xA = xB = 1

2  and obtain

∆mix ln ln ln 2S nR nR= + =− { }1
2

1
2

1
2

1
2

with n the total amount of gas molecules. For 1 mol of each 
species, so n = 2 mol,

∆mix
12 mol ln 2 11 5JmolS R=( ) =+× −.

An increase in entropy is what we expect when one gas dis-
perses into the other and the disorder increases.

0
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Figure 5A.9 The entropy of mixing of two perfect gases and 
(as discussed later) of two liquids that form an ideal solution. 
The entropy increases for all compositions and temperatures, 
so perfect gases mix spontaneously in all proportions. 
Because there is no transfer of heat to the surroundings 
when perfect gases mix, the entropy of the surroundings is 
unchanged. Hence, the graph also shows the total entropy of 
the system plus the surroundings when perfect gases mix.

Answer Given that the pressure of nitrogen is p, the pressure 
of hydrogen is 3p; therefore, the initial Gibbs energy is

G RT p
RT p

i  mol H ln 
 mol N ln

= + +
+

( . ) ( )
( . ) ( )
{ }

{ }
3 0 3

1 0
2

2

μ
μ

<

<

 
When the partition is removed and each gas occupies twice 
the original volume, the partial pressure of nitrogen falls to 
1
2 p and that of hydrogen falls to 3

2 p. Therefore, the Gibbs 
energy changes to

G RT p
RT p

f  mol H ln
 mol N ln 

= + +
+

( ){ }
{ }

. ( )
( . ) ( )

3 0
1 0

2
3
2

2
1
2

μ
μ

<

<

The Gibbs energy of mixing is the difference of these two 
quantities:

∆mix mol mol

mol

G RT
p
p RT

p
p

RT

= +

= − −

( . ) ln ( . ) ln

( . ) ln (

3 0 3 1 0

3 0 2 1

3
2

1
2

.. ) ln
( . ) ln .

0 2
4 0 2 6 9

mol
mol kJ

RT
RT= − = −  

In this example, the value of ΔmixG is the sum of two contribu-
tions: the mixing itself, and the changes in pressure of the two 
gases to their final total pressure, 2p. When 3.0 mol H2 mixes 
with 1.0 mol N2 at the same pressure, with the volumes of the 
vessels adjusted accordingly, the change of Gibbs energy is 
–5.6 kJ. However, do not be misled into interpreting this nega-
tive change in Gibbs energy as a sign of spontaneity: in this 
case, the pressure changes, and ΔG < 0 is a signpost of sponta-
neous change only at constant temperature and pressure.

Self-test 5A.4 Suppose that 2.0 mol H2 at 2.0 atm and 25 °C 
and 4.0 mol N2 at 3.0 atm and 25 °C are mixed by removing the 
partition between them. Calculate ΔmixG.

Answer: –9.7 kJ

3.0 mol H2

3.0 mol H2
1.0 mol N2

1.0 mol N2

3p

2p

p

p(H2) = 3/2p
p(N2) = 1/2p

Figure 5A.8 The initial and final states considered in 
the calculation of the Gibbs energy of mixing of gases at 
different initial pressures.
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5A The thermodynamic description of mixtures  187

We can calculate the isothermal, isobaric (constant pressure) 
enthalpy of mixing, ΔmixH, the enthalpy change accompany-
ing mixing, of two perfect gases from ΔG = ΔH − TΔS. It follows 
from eqns 5A.16 and 5A.17 that

∆mixH = 0  Perfect gases  enthalpy of mixing  (5A.18)

The enthalpy of mixing is zero, as we should expect for a system 
in which there are no interactions between the molecules form-
ing the gaseous mixture. It follows that the whole of the driv-
ing force for mixing comes from the increase in entropy of the 
system because the entropy of the surroundings is unchanged.

5A.3 The chemical potentials 
of liquids

To discuss the equilibrium properties of liquid mixtures we 
need to know how the Gibbs energy of a liquid varies with 
composition. To calculate its value, we use the fact that, as 
established in Topic 4A, at equilibrium the chemical potential 
of a substance present as a vapour must be equal to its chemical 
potential in the liquid.

(a) Ideal solutions
We shall denote quantities relating to pure substances by a 
superscript *, so the chemical potential of pure A is written 
μA*  and as μA* (l) when we need to emphasize that A is a liquid. 
Because the vapour pressure of the pure liquid is pA*  it follows 
from eqn 5A.14 that the chemical potential of A in the vapour 
(treated as a perfect gas) is μA A

< = +RT pln  (with pA to be inter-
preted as the relative pressure, pA/p<). These two chemical 
potentials are equal at equilibrium (Fig. 5A.10), so we can write

μ μA A A
* *ln= +< RT p  (5A.19a)

If another substance, a solute, is also present in the liquid, the 
chemical potential of A in the liquid is changed to μA and its 
vapour pressure is changed to pA. The vapour and solvent are 
still in equilibrium, so we can write

μ μA A A= +< RT pln  (5A.19b)

Next, we combine these two equations to eliminate the stand-
ard chemical potential of the gas. To do so, we write eqn 5A.19a 
as μ μA A A

< = −* *lnRT p  and substitute this expression into eqn 
5A.19b to obtain

μ μ μA A A A A
A

A

= − + = +* * *
*

ln ln lnRT p RT p RT p
p  

(5A.20)

In the final step we draw on additional experimental informa-
tion about the relation between the ratio of vapour pressures 
and the composition of the liquid. In a series of experiments on 
mixtures of closely related liquids (such as benzene and methyl-
benzene), the French chemist François Raoult found that the 
ratio of the partial vapour pressure of each component to its 
vapour pressure as a pure liquid, p pA A/ * , is approximately equal 
to the mole fraction of A in the liquid mixture. That is, he estab-
lished what we now call Raoult’s law:

p x pA A A= *  Ideal solution  raoult’s law  (5A.21)

This law is illustrated in Fig. 5A.11. Some mixtures obey 
Raoult’s law very well, especially when the components are 

Self-test 5A.5 Calculate the change in entropy for the arrange-
ment in Example 5A.3.

Answer: +23 J mol−1

Partial
pressure 
of A

Partial
pressure 
of B

Total
pressure

pB*

pA*

Pr
es

su
re

Mole fraction of A, xA

Figure 5A.11 The total vapour pressure and the two partial 
vapour pressures of an ideal binary mixture are proportional to 
the mole fractions of the components.

A(g) + B(g)

A(l) + B(l)

µA(g, p)

µA(l)
=

Figure 5A.10 At equilibrium, the chemical potential of 
the gaseous form of a substance A is equal to the chemical 
potential of its condensed phase. The equality is preserved if 
a solute is also present. Because the chemical potential of A in 
the vapour depends on its partial vapour pressure, it follows 
that the chemical potential of liquid A can be related to its 
partial vapour pressure.
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188 5 Simple mixtures

structurally similar (Fig. 5A.12). Mixtures that obey the law 
throughout the composition range from pure A to pure B are 
called ideal solutions.

For an ideal solution, it follows from eqns 5A.19a and 5A.21 
that

μ μA A A= +* lnRT x  Ideal solution  chemical potential  (5A.22)

This important equation can be used as the definition of an ideal 
solution (so that it implies Raoult’s law rather than stemming 

from it). It is in fact a better definition than eqn 5A.21 because 
it does not assume that the vapour is a perfect gas.

The molecular origin of Raoult’s law is the effect of the 
solute on the entropy of the solution. In the pure solvent, 
the molecules have a certain disorder and a corresponding 
entropy; the vapour pressure then represents the tendency 
of the system and its surroundings to reach a higher entropy. 
When a solute is present, the solution has a greater disorder 
than the pure solvent because we cannot be sure that a mole-
cule chosen at random will be a solvent molecule. Because the 
entropy of the solution is higher than that of the pure solvent, 
the solution has a lower tendency to acquire an even higher 
entropy by the solvent vaporizing. In other words, the vapour 
pressure of the solvent in the solution is lower than that of the 
pure solvent.

Some solutions depart significantly from Raoult’s law (Fig. 
5A.13). Nevertheless, even in these cases the law is obeyed 
increasingly closely for the component in excess (the solvent) 
as it approaches purity. The law is another example of a limiting 
law (in this case, achieving reliability as xA → 1) and is a good 
approximation for the properties of the solvent if the solution 
is dilute.

(b) Ideal–dilute solutions
In ideal solutions the solute, as well as the solvent, obeys Raoult’s 
law. However, the English chemist William Henry found experi-
mentally that, for real solutions at low concentrations, although 
the vapour pressure of the solute is proportional to its mole frac-
tion, the constant of proportionality is not the vapour pressure 
of the pure substance (Fig. 5A.14). Henry’s law is:

p x KB B B=  Ideal–dilute solution  henry’s law  (5A.23)

In this expression, xB is the mole fraction of the solute and 
KB is an empirical constant (with the dimensions of pressure) 

Brief illustration 5A.3 Raoult’s law

The vapour pressure of benzene at 20 °C is 75 Torr and that of 
methylbenzene is 21 Torr at the same temperature. In an equi-
molar mixture, xbenzene = xmethylbenzene = 1

2  so the vapour pres-
sure of each one in the mixture is

p
p

benzene

methylbenzene

75 Torr 38Torr
21 Torr 11Torr

= × =
= × =

1
2
1
2

The total vapour pressure of the mixture is 49 Torr. Given 
the two partial vapour pressures, it follows from the defini-
tion of partial pressure (Topic 1A) that the mole fractions 
in the vapour are xvap,benzene = (38 Torr)/(49 Torr) = 0.78 and 
xvap,methylbenzene = (11 Torr)/(49 Torr) = 0.22. The vapour is richer 
in the more volatile component (benzene).

Self-test 5A.6 At 90 °C the vapour pressure of 1,2-dimethy l-
benzene is 20 kPa and that of 1,3-dimethylbenzene is 18 kPa. 
What is the composition of the vapour when the liquid mix-
ture has the composition x12 = 0.33 and x13 = 0.67?

Answer: xvap,12 = 0.35, xvap,13 = 0.65
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Figure 5A.12 Two similar liquids, in this case benzene and 
methylbenzene (toluene), behave almost ideally, and the 
variation of their vapour pressures with composition resembles 
that for an ideal solution.
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Figure 5A.13 Strong deviations from ideality are shown by 
dissimilar liquids, in this case carbon disulfide and acetone 
(propanone).
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5A The thermodynamic description of mixtures  189

chosen so that the plot of the vapour pressure of B against its 
mole  fraction is tangent to the experimental curve at xB = 0. 
Henry’s law is therefore also a limiting law, achieving reliability 
as xB → 0.

Mixtures for which the solute B obeys Henry’s law and 
the solvent A obeys Raoult’s law are called ideal–dilute solu-
tions. The difference in behaviour of the solute and solvent 
at low concentrations (as expressed by Henry’s and Raoult’s 
laws, respectively) arises from the fact that in a dilute solution 
the solvent molecules are in an environment very much like 
the one they have in the pure liquid (Fig. 5A.15). In contrast, 
the solute molecules are surrounded by solvent molecules, 
which is entirely different from their environment when pure. 
Thus, the solvent behaves like a slightly modified pure liquid, 
but the  solute behaves entirely differently from its pure state 
unless the  solvent and solute molecules happen to be very simi-
lar. In the latter case, the solute also obeys Raoult’s law.

Mole fraction of B, xB
0 1

Pr
es

su
re

, p

Ideal–dilute
solution
(Henry)

Ideal solution
(Raoult)

Real
solution

KB

pB*

Figure 5A.14 When a component (the solvent) is nearly pure, 
it has a vapour pressure that is proportional to mole fraction 
with a slope pB

* (Raoult’s law). When it is the minor component 
(the solute) its vapour pressure is still proportional to the mole 
fraction, but the constant of proportionality is now KB (Henry’s 
law).

Figure 5A.15 In a dilute solution, the solvent molecules 
(the blue spheres) are in an environment that differs only 
slightly from that of the pure solvent. The solute particles 
(the purple spheres), however, are in an environment totally 
unlike that of the pure solute.

Example 5A.4 Investigating the validity of Raoult’s and 
Henry’s laws

The vapour pressures of each component in a mixture of pro-
panone (acetone, A) and trichloromethane (chloroform, C) 
were measured at 35 °C with the following results:

Confirm that the mixture conforms to Raoult’s law for the 
component in large excess and to Henry’s law for the minor 
component. Find the Henry’s law constants.

Method Both Raoult’s and Henry’s laws are statements about 
the form of the graph of partial vapour pressure against mole 
fraction. Therefore, plot the partial vapour pressures against 
mole fraction. Raoult’s law is tested by comparing the data 
with the straight line p x p

J J J= *  for each component in the 
region in which it is in excess (and acting as the solvent). 
Henry’s law is tested by finding a straight line p x K

J J J= *  that 
is tangent to each partial vapour pressure at low x, where the 
component can be treated as the solute.

Answer The data are plotted in Fig. 5A.16 together with the 
Raoult’s law lines. Henry’s law requires KA = 16.9 kPa for pro-
panone and KC = 20.4 kPa for trichloromethane. Notice how 
the system deviates from both Raoult’s and Henry’s laws even 
for quite small departures from x = 1 and x = 0, respectively. 
We deal with these deviations in Topic 5E.

Self-test 5A.7 The vapour pressure of chloromethane at various 
mole fractions in a mixture at 25 °C was found to be as follows:

Estimate Henry’s law constant.
Answer: 5 MPa

xC 0 0.20 0.40 0.60 0.80 1
pC/kPa 0 4.7 11 18.9 26.7 36.4
pA/kPa 46.3 33.3 23.3 12.3 4.9 0

Pr
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su
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, p
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0 1Mole fraction of chloroform, x(CHCl3)

p*(acetone)

K(acetone)

p*(chloroform)

K(chloroform)

Henry’s law

Raoult’s law

0

10

20

30

40

50

Figure 5A.16 The experimental partial vapour pressures 
of a mixture of chloroform (trichloromethane) and acetone 
(propanone) based on the data in Example 5A.3. The values 
of K are obtained by extrapolating the dilute solution 
vapour pressures, as explained in the Example.

x 0.005 0.009 0.019 0.024
p/kPa 27.3 48.4 101 126
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190 5 Simple mixtures

For practical applications, Henry’s law is expressed in terms 
of the molality, b, of the solute, pB = bBKB. Some Henry’s law 
data for this convention are listed in Table 5A.1. As well as pro-
viding a link between the mole fraction of solute and its partial 
pressure, the data in the table may also be used to calculate gas 
solubilities. A knowledge of Henry’s law constants for gases in 
blood and fats is important for the discussion of respiration, 
especially when the partial pressure of oxygen is abnormal, as 
in diving and mountaineering, and for the discussion of the 
action of gaseous anaesthetics.

Brief illustration 5A.4 Henry’s law and gas solubility

To estimate the molar solubility of oxygen in water at 25 °C 
and a partial pressure of 21 kPa, its partial pressure in the 
atmosphere at sea level, we write

b
p
KO

O

O

kPa
kPa kg mol

mol kg
2

2

2

21
7 9 10

2 9 104 1
4 1= =

×
= ×−

− −

.
.

The mola l ity of the saturated solut ion is therefore 
0.29 mmol kg−1. To convert this quantity to a molar concentra-
tion, we assume that the mass density of this dilute solution is 
essentially that of pure water at 25 °C, or ρ = 0.997 kg dm−3. It 
follows that the molar concentration of oxygen is

[ ] ( . ) ( . )
.

O mol kg kg dm
mmol dm

2 O= = × ×
=

− − −

−

b
2

2 9 10 0 997
0 29

4 1 3

3

ρ

Self-test 5A.8 Calculate the molar solubility of nitrogen in 
water exposed to air at 25 °C; partial pressures were calculated 
in Example 1A.3 of Topic 1A.

Answer: 0.51 mmol dm−3

Checklist of concepts

☐ 1. The molar concentration of a solute is the amount of 
solute divided by the volume of the solution.

☐ 2. The molality of a solute is the amount of solute divided 
by the mass of solvent.

☐ 3. The partial molar volume of a substance is the contri-
bution to the volume that a substance makes when it is 
part of a mixture.

☐ 4. The chemical potential is the partial molar Gibbs 
energy and enables us to express the dependence of the 
Gibbs energy on the composition of a mixture.

☐ 5. The chemical potential also shows how, under a variety 
of different conditions, the thermodynamic functions 
vary with composition.

☐ 6. The Gibbs–Duhem equation shows how the changes in 
chemical potential of the components of a mixture are 
related.

☐ 7. The Gibbs energy of mixing is calculated by forming 
the difference of the Gibbs energies before and after 
mixing: the quantity is negative for perfect gases at the 
same pressure.

☐ 8. The entropy of mixing of perfect gases initially at the 
same pressure is positive and the enthalpy of mixing is 
zero.

☐ 9. Raoult’s law provides a relation between the vapour 
pressure of a substance and its mole fraction in a mix-
ture; it is the basis of the definition of an ideal solution.

☐ 10. Henry’s law provides a relation between the vapour 
pressure of a solute and its mole fraction in a mixture; it 
is the basis of the definition of an ideal–dilute solution.

Checklist of equations

Table 5A.1* Henry’s law constants for gases in water at 298 K, 
K/(kPa kg mol−1)

K/(kPa kg mol−1)

CO2 3.01 × 103

H2 1.28 × 105

N2 1.56 × 105

O2 7.92 × 104

* More values are given in the Resource section.

Property Equation Comment Equation number

Partial molar volume VJ = (∂V/∂nJ)p,T,n′ Definition 5A.1

Chemical potential μJ = (∂G/∂nJ)p,T,n′ Definition 5A.4

Total Gibbs energy G = nAμA + nBμB 5A.5
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5A The thermodynamic description of mixtures  191

Property Equation Comment Equation number

Fundamental equation of chemical 
thermodynamics

dG = Vdp – SdT + μAdnA + μBdnB+… 5A.6

Gibbs–Duhem equation ∑JnJdμJ = 0 5A.12b

Chemical potential of a gas μ = μ< + RT ln (p/p<) Perfect gas 5A.14a

Gibbs energy of mixing ΔmixG = nRT(xA ln xA + xB ln xB) Perfect gases and ideal solutions 5A.16

Entropy of mixing ΔmixS = –nR(xA ln xA + xB ln xB) Perfect gases and ideal solutions 5A.17

Enthalpy of mixing ΔmixH = 0 Perfect gases and ideal solutions 5A.18

Raoult’s law p x pA A A= * True for ideal solutions; limiting law as xA→1 5A.21

Chemical potential of component μ μA A A= +* lnRT x Ideal solution 5A.22

Henry’s law pB = xBKB True for ideal–dilute solutions; limiting law as xB → 0 5A.23
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5B the properties of solutions

First, we consider the simple case of mixtures of liquids that mix 
to form an ideal solution. In this way, we identify the thermo-
dynamic consequences of molecules of one species mingling 
randomly with molecules of the second species. The calculation 
provides a background for discussing the deviations from ideal 
behaviour exhibited by real solutions. Then we consider the 
effect of a solute on the properties of ideal and real solutions.

5B.1 Liquid mixtures

Thermodynamics can provide insight into the properties of liq-
uid mixtures, and a few simple ideas can bring the whole field 
of study together. The development here is based on the rela-
tion derived in Topic 5A between the chemical potential of a 
component (which here we call J for reasons that will become 
clear) in an ideal mixture or solution, μJ, its value when pure, 
μJ

*, and its mole fraction in the mixture, xJ:

μ μJ J J= +* lnRT x   Ideal solution  chemical potential  (5B.1)

(a) Ideal solutions

The Gibbs energy of mixing of two liquids to form an ideal 
solution is calculated in exactly the same way as for two gases 
(Topic 5A). The total Gibbs energy before liquids are mixed is

G n ni A A B B= +μ μ* *  (5B.2a)

where the * denotes the pure liquid. When they are mixed, the 
individual chemical potentials are given by eqn 5B.1 and the 
total Gibbs energy is

G n RT x n RT xf A A A B B Bln  ln= + + +( ) ( )* *μ μ  (5B.2b)

Consequently, the Gibbs energy of mixing, the difference of 
these two quantities, is

∆mix A A B Bln lnG nRT x x x x= +( )  

where n = nA + nB. As for gases, it follows that the ideal entropy 
of mixing of two liquids is

∆mix A A B Bln lnS nR x x x x= +− ( )   (5B.4)Ideal 
solution

entropy of 
mixing

 (5B.3)Ideal 
solution

gibbs energy 
of mixing
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➤➤ Why do you need to know this material?
Mixtures and solutions play a central role in chemistry, and 
it is important to understand how their compositions affect 
their thermodynamic properties, such as their boiling and 
freezing points. One very important property of a solution 
is its osmotic pressure, which is used, among other things, 
to determine the molar masses of macromolecules.

➤➤ What is the key idea?
The chemical potential of a substance in a mixture is the 
same in each phase in which it occurs.

➤➤ What do you need to know already?
This Topic is based on the expression derived from Raoult’s 
law (Topic 5A) in which chemical potential is related to 
mole fraction. The derivations make use of the Gibbs–
Helmholtz equation (Topic 3D) and the effect of pressure 
on chemical potential (Topic 3D). Some of the derivations 
are the same as those used in the discussion of the mixing 
of perfect gases (Topic 5A).
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5B The properties of solutions  193

Because ΔmixH = ΔmixG + TΔmixS = 0, the ideal enthalpy of mix-
ing is zero, ΔmixH = 0. The ideal volume of mixing, the change 
in volume on mixing, is also zero because it follows from eqn 
3D.8 ((∂G/∂p)T = V) that ΔmixV = (∂ΔmixG/∂p)T, but ΔmixG in eqn 
5B.3 is independent of pressure, so the derivative with respect 
to pressure is zero.

Equations 5B.3 and 5B.4 are the same as those for the mix-
ing of two perfect gases and all the conclusions drawn there are 
valid here: the driving force for mixing is the increasing entropy 
of the system as the molecules mingle and the enthalpy of mix-
ing is zero. It should be noted, however, that solution ideality 
means something different from gas perfection. In a perfect gas 
there are no forces acting between molecules. In ideal solutions 
there are interactions, but the average energy of A–B interac-
tions in the mixture is the same as the average energy of A–A 
and B–B interactions in the pure liquids. The variation of the 
Gibbs energy and entropy of mixing with composition is the 
same as that for gases (Figs. 5A.7 and 5A.9); both graphs are 
repeated here (as Figs. 5B.1 and 5B.2).

A note on good practice It is on the basis of this distinc-
tion that the term ‘perfect gas’ is preferable to the more 

common ‘ideal gas’. In an ideal solution there are interac-
tions, but they are effectively the same between the various 
species. In a perfect gas, not only are the interactions the 
same, but they are also zero. Few people, however, trouble 
to make this valuable distinction.

Real solutions are composed of particles for which A–A, 
A–B, and B–B interactions are all different. Not only may 
there be enthalpy and volume changes when liquids mix, 
but there may also be an additional contribution to the 
entropy arising from the way in which the molecules of one 
type might cluster together instead of mingling freely with 
the others. If the enthalpy change is large and positive or if 
the entropy change is adverse (because of a reorganization 
of the molecules that results in an orderly mixture), then 
the Gibbs energy might be positive for mixing. In that case, 
separation is spontaneous and the liquids may be immisci-
ble. Alternatively, the liquids might be partially miscible, 
which means that they are miscible only over a certain range 
of compositions.

(b) Excess functions and regular solutions
The thermodynamic properties of real solutions are expressed 
in terms of the excess functions, XE, the difference between the 
observed thermodynamic function of mixing and the function 
for an ideal solution:

X X XE
mix mix

ideal= ∆ ∆−  Definition  excess function  (5B.5)

The excess entropy, SE, for example, is calculated using the 
value of ΔmixSideal given by eqn 5B.4. The excess enthalpy and 
volume are both equal to the observed enthalpy and volume of 
mixing, because the ideal values are zero in each case.

Brief illustration 5B.1 Ideal solutions

Consider a mixture of benzene and methylbenzene, which 
form an approximately ideal solution, and suppose 1.0 mol 
C6H6(l) is mixed with 2.0 mol C6H5CH3(l). For the mixture, 
xbenzene = 0.33 and xmethylbenzene = 0.67. The Gibbs energy and 
entropy of mixing at 25 °C, when RT = 2.48 kJ mol−1, are

∆

∆

mix
1

1

/ 2 48kJmol 33 ln 33 67 ln 67

1 6kJmol

G n = × +
=

( . ) ( . . . . )

.

−

−−
0 0 0 0

mmix
1 1/ 8 3145 J K mol 33 ln 33 67 ln 67

5 3JK

S n = × +
= +

–( . ) ( . . . . )

. –

− − 0 0 0 0
11 1mol–

The enthalpy of mixing is zero (presuming that the solution 
is ideal).

Self-test 5B.1 Calculate the Gibbs energy and entropy of mix-
ing when the proportions are reversed.

Answer: same: –1.6 kJ mol−1, + 5.3 J K−1 mol−1
0
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Figure 5B.1 The Gibbs energy of mixing of two liquids that 
form an ideal solution.
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Figure 5B.2 The entropy of mixing of two liquids that form an 
ideal solution.
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194 5 Simple mixtures

Deviations of the excess energies from zero indicate the 
extent to which the solutions are non-ideal. In this connec-
tion a useful model system is the regular solution, a solution 
for which HE  ≠ 0 but SE = 0. We can think of a regular solution 
as one in which the two kinds of molecules are distributed 
randomly (as in an ideal solution) but have different energies 
of interactions with each other. To express this concept more 
quantitatively we can suppose that the excess enthalpy depends 
on composition as

H n RTx xE
A B= ξ  (5B.6)

where ξ (xi) is a dimensionless parameter that is a measure of 
the energy of AB interactions relative to that of the AA and BB 
interactions. (For HE expressed as a molar quantity, discard 
the n.) The function given by eqn 5B.6 is plotted in Fig. 5B.4, 
and we see it resembles the experimental curve in Fig. 5B.3a. If 
ξ < 0, mixing is exothermic and the solute–solvent interactions 
are more favourable than the solvent–solvent and solute–solute 
interactions. If ξ > 0, then the mixing is endothermic. Because 
the entropy of mixing has its ideal value for a regular solution, 
the excess Gibbs energy is equal to the excess enthalpy, and the 
Gibbs energy of mixing is

∆mix A A B B A Bln lnG nRT x x x x x x= + +( )ξ  (5B.7)

Figure 5B.5 shows how ΔmixG varies with composition for 
different values of ξ. The important feature is that for ξ > 2 
the graph shows two minima separated by a maximum. The 
implication of this observation is that, provided ξ > 2, then the 
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Figure 5B.4 The excess enthalpy according to a model in 
which it is proportional to ξxAxB, for different values of the 
parameter ξ.

Brief illustration 5B.2 Excess functions

Figure 5B.3 shows two examples of the composition depend-
ence of molar excess functions. In Fig 5B.3a, the positive val-
ues of HE, which implies that ΔmixH > 0, indicate that the A–B 
interactions in the mixture are less attractive than the A–A 
and B–B interactions in the pure liquids (which are benzene 
and pure cyclohexane). The symmetrical shape of the curve 
reflects the similar strengths of the A–A and B–B interactions. 
Figure 5B.3b shows the composition dependence of the excess 
volume, VE, of a mixture of tetrachloroethene and cyclo-
pentane. At high mole fractions of cyclopentane, the solu-
tion contracts as tetrachloroethene is added because the ring 
structure of cyclopentane results in inefficient packing of the 
molecules but as tetrachloroethene is added, the molecules in 
the mixture pack together more tightly. Similarly, at high mole 
fractions of tetrachloroethene, the solution expands as cyclo-
pentane is added because tetrachloroethene molecules are 
nearly flat and pack efficiently in the pure liquid but become 
disrupted as bulky ring cyclopentane is added. 

Self-test 5B.2 Would you expect the excess volume of mixing 
of oranges and melons to be positive or negative?

Answer: Positive; close-packing disrupted
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Figure 5B.3 Experimental excess functions at 25 °C. (a) HE 
for benzene/cyclohexane; this graph shows that the mixing 
is endothermic (because ΔmixH = 0 for an ideal solution). (b) 
The excess volume, V E, for tetrachloroethene/cyclopentane; 
this graph shows that there is a contraction at low 
tetrachloroethene mole fractions, but an expansion at high 
mole fractions (because ΔmixV = 0 for an ideal mixture).
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Figure 5B.5 The Gibbs energy of mixing for different values of 
the parameter ξ.
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5B The properties of solutions  195

system will separate spontaneously into two phases with com-
positions corresponding to the two minima, for that separation 
corresponds to a reduction in Gibbs energy. We develop this 
point in Topic 5C.

5B.2 Colligative properties

The properties we consider are the lowering of vapour pressure, 
the elevation of boiling point, the depression of freezing point, 
and the osmotic pressure arising from the presence of a solute. 
In dilute solutions these properties depend only on the number 
of solute particles present, not their identity. For this reason, 
they are called colligative properties (denoting ‘depending on 
the collection’). In this development, we denote the solvent by 
A and the solute by B.

We assume throughout the following that the solute is not 
volatile, so it does not contribute to the vapour. We also assume 
that the solute does not dissolve in the solid solvent: that is, the 

pure solid solvent separates when the solution is frozen. The 
latter assumption is quite drastic, although it is true of many 
mixtures; it can be avoided at the expense of more algebra, but 
that introduces no new principles.

(a) The common features of colligative 
properties
All the colligative properties stem from the reduction of the 
chemical potential of the liquid solvent as a result of the pres-
ence of solute. For an ideal solution (one that obeys Raoult’s 
law, Topic 5A; p x pA A A= *), the reduction is from μA

*  for the pure 
solvent to μ μA A Aln= +* RT x  when a solute is present (ln xA 
is negative because xA < 1). There is no direct influence of the 
solute on the chemical potential of the solvent vapour and the 
solid solvent because the solute appears in neither the vapour 
nor the solid. As can be seen from Fig. 5B.6, the reduction in 
chemical potential of the solvent implies that the liquid–vapour 
equilibrium occurs at a higher temperature (the boiling point is 
raised) and the solid–liquid equilibrium occurs at a lower tem-
perature (the freezing point is lowered).

The molecular origin of the lowering of the chemical poten-
tial is not the energy of interaction of the solute and solvent 
particles, because the lowering occurs even in an ideal solution 
(for which the enthalpy of mixing is zero). If it is not an enthalpy 
effect, it must be an entropy effect. The vapour pressure of the 
pure liquid reflects the tendency of the solution towards greater 
entropy, which can be achieved if the liquid vaporizes to form 
a gas. When a solute is present, there is an additional contri-
bution to the entropy of the liquid, even in an ideal solution. 
Because the entropy of the liquid is already higher than that of 
the pure liquid, there is a weaker tendency to form the gas (Fig. 
5B.7). The effect of the solute appears as a lowered vapour pres-
sure, and hence a higher boiling point. Similarly, the enhanced 
molecular randomness of the solution opposes the tendency 
to freeze. Consequently, a lower temperature must be reached 

Example 5B.1 Identifying the parameter for a regular 
solution

Identify the value of the parameter ξ that would be appropri-
ate to model a mixture of benzene and cyclohexane at 25 °C 
and estimate the Gibbs energy of mixing to produce an equi-
molar mixture.

Method Refer to Fig. 5B.3a and identify the value at the curve 
maximum, and then relate it to eqn 5B.6 written as a molar 
quantity (HE = ξRTxAxB). For the second part, assume that 
the solution is regular and that the Gibbs energy of mixing is 
given by eqn 5B.7.

Answer The experimental value occurs close to xA = xB = 1
2
 and 

its value is close to 710 J mol−1. It follows that

ξ = =
× × ×

=
−

− −
H

RTx x

E

A B

J mol
J K mol K

701
8 3145 298

1 1
1

1 1 1
2

1
2( . ) ( )

. 33
 

The total Gibbs energy of mixing to achieve the stated compo-
sition (provided the solution is regular) is therefore

∆mix
1

1 1

ln 2 7 1Jmol

 1 72 kJmol 7 1kJmol 1

G n RT/

. . .

= +
= + =

−
− −

−

− −

0

0 0 022kJmol 1−

Self-test 5B.3 Fit the entire data set, as best as can be inferred 
from the graph in Fig. 5B.3a, to an expression of the form in 
eqn 5B.6 by a curve-fitting procedure.

Answer: The best fit of the form Ax(1 – x) to the data pairs

is A = 690 J mol−1

X 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
HE/(J mol−1) 150 350 550 680 700 690 600 500 280
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Figure 5B.6 The chemical potential of a solvent in the 
presence of a solute. The lowering of the liquid’s chemical 
potential has a greater effect on the freezing point than on the 
boiling point because of the angles at which the lines intersect.
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196 5 Simple mixtures

before equilibrium between solid and solution is achieved. 
Hence, the freezing point is lowered.

The strategy for the quantitative discussion of the elevation of 
boiling point and the depression of freezing point is to look for 
the temperature at which, at 1 atm, one phase (the pure solvent 
vapour or the pure solid solvent) has the same chemical potential 
as the solvent in the solution. This is the new equilibrium tem-
perature for the phase transition at 1 atm, and hence corresponds 
to the new boiling point or the new freezing point of the solvent.

(b) The elevation of boiling point
The heterogeneous equilibrium of interest when considering 
boiling is between the solvent vapour and the solvent in solu-
tion at 1 atm (Fig. 5B.8). The equilibrium is established at a 
temperature for which

μ μA A Ag l ln* *( ) ( )= + RT x  (5B.8)

(The pressure of 1 atm is the same throughout, and will not be 
written explicitly.) We show in the following Justification that 
this equation implies that the presence of a solute at a mole 
fraction xB causes an increase in normal boiling point from T* 
to T* + ΔTb, where

∆ ∆T Kx K
RT

Hb B
vap

= =
*2

 

Justification 5B.1 The elevation of the boiling point  
of a solvent

Equation 5B.8 can be rearranged into

ln
* *

x
RT

G
RTA

A A vap(g) (l)= − =μ μ ∆

where ΔvapG is the Gibbs energy of vaporization of the  
pure  solvent (A). First, to f ind the relation between a 
change in composition and the resulting change in boiling 
temperature, we differentiate both sides with respect to tem-
perature and use the Gibbs–Helmholtz equation (Topic 3D, 
(∂(G/T)/∂T)p = −H/T2) to express the term on the right:

d
d

d /
d

A vap vapln ( )x
T R

G T
T

H

RT
= = −1

2

∆ ∆

Now multiply both sides by dT and integrate from xA = 1, cor-
responding to ln xA = 0 (and when T = T*, the boiling point of 
pure A) to xA (when the boiling point is T):

d dA
vapA

ln
ln

*
x

R
H

T
T

x

T

T

= −∫ ∫1

0
2

∆

The left-hand side integrates to ln xA, which is equal to 
ln(1 – xB). The right-hand side can be integrated if we assume 
that the enthalpy of vaporization is a constant over the small 
range of temperatures involved and can be taken outside the 
integral. Thus, we obtain

ln( )
*

1
1

2− = − ∫x
H

R T
T

T

T

B
vap d

∆

and therefore

ln( )
*

1
1 1− = −





x
H

R T T
B

vap∆

We now suppose that the amount of solute present is so small 
that xB ≪ 1, and use the expansion ln (1 − x) = − x − 12 x2 + … ≈ − x 
(Mathematical background 1) and hence obtain

x
H

R T TB
vap= −





∆ 1 1
*

Ideal 
solution

elevation of 
boiling point  (5B.9)

pA* pA

(a) (b)

Figure 5B.7 The vapour pressure of a pure liquid represents 
a balance between the increase in disorder arising from 
vaporization and the decrease in disorder of the surroundings. 
(a) Here the structure of the liquid is represented highly 
schematically by the grid of squares. (b) When solute (the dark 
squares) is present, the disorder of the condensed phase is 
higher than that of the pure liquid, and there is a decreased 
tendency to acquire the disorder characteristic of the vapour.

A(g)

A(l) + B

µA*(g,p)

µA(l)

=

Figure 5B.8 The heterogeneous equilibrium involved in the 
calculation of the elevation of boiling point is between A in the 
pure vapour and A in the mixture, A being the solvent and B a 
non-volatile solute.
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Because eqn 5B.9 makes no reference to the identity of the 
solute, only to its mole fraction, we conclude that the eleva-
tion of boiling point is a colligative property. The value of ΔT 
does depend on the properties of the solvent, and the big-
gest changes occur for solvents with high boiling points. By 
Trouton’s rule (Topic 3B), ΔvapH/T* is a constant; therefore eqn 
5B.9 has the form ΔT ∝ T* and is independent of ΔvapH itself. 
For practical applications of eqn 5B.9, we note that the mole 
fraction of B is proportional to its molality, b, in the solution, 
and write

∆T K bb b=  Empirical relation  boiling point elevation  (5B.10)

where Kb is the empirical boiling-point constant of the solvent 
(Table 5B.1).

(c) The depression of freezing point
The heterogeneous equilibrium now of interest is between 
pure solid solvent A and the solution with solute present at a 
mole fraction xB (Fig. 5B.9). At the freezing point, the chemical 
potentials of A in the two phases are equal:

μ μA A A(s) l* * ( ) ln= + RT x  (5B.11)

The only difference between this calculation and the last is 
the appearance of the solid’s chemical potential in place of the 
vapour’s. Therefore we can write the result directly from eqn 5B.9:

∆ ∆T K x K
RT

Hf B
fus

= =′ ′
*2

 
 Freezing point depression  (5B.12)

where ΔTf is the freezing point depression, T* – T, and ΔfusH 
is the enthalpy of fusion of the solvent. Larger depressions are 
observed in solvents with low enthalpies of fusion and high 
melting points. When the solution is dilute, the mole fraction is 
proportional to the molality of the solute, b, and it is common 
to write the last equation as

∆T K bf f=  Empirical relation  Freezing point depression  (5B.13)

where Kf is the empirical freezing-point constant (Table 5B.1). 
Once the freezing-point constant of a solvent is known, the 
depression of freezing point may be used to measure the molar 
mass of a solute in the method known as cryoscopy; however, 
the technique is of little more than historical interest.

Brief illustration 5B.4 Depression of freezing point

The freezing-point constant of water is 1.86 K kg mol−1, so a 
solute present at a molality of 0.10 mol kg−1 would result in a 
depression of freezing point of only 0.19 K. The freezing-point 
constant of camphor is significantly larger, at 40 K kg mol−1, so 
the depression would be 4.0 K. Camphor was once widely used 
for estimates of molar mass by cryoscopy.

Self-test 5B.5 Why are freezing-point constants typically 
larger than the corresponding boiling-point constants of a 
solvent?

Answer: Enthalpy of fusion is smaller than the enthalpy  
of vaporization of a substance

Finally, because T ≈ T*, it also follows that

1 1
2 2T T

T T

TT

T T

T

T

T*

*

*

*

* *
− = − ≈ − = ∆ b

with ΔTb = T – T*. The previous equation then rearranges into 
eqn 5B.9.

Brief illustration 5B.3 Elevation of boiling point

The boiling-point constant of water is 0.51 K kg mol−1, so a 
solute present at a molality of 0.10 mol kg−1 would result in an 
elevation of boiling point of only 0.051 K. The boiling-point 
constant of benzene is significantly larger, at 2.53 K kg mol−1, 
so the elevation would be 0.25 K.

Self-test 5B.4 Identify the feature that accounts for the differ-
ence in boiling-point constants of water and benzene.

Answer: High enthalpy of vaporization of water; given molality corres-
ponds to a smaller mole fraction

Table 5B.1* Freezing-point (Kf) and boiling-point (Kb) constants

Kf/(K kg mol−1) Kb/(K kg mol−1)

Benzene 5.12 2.53

Camphor 40

Phenol 7.27 3.04

Water 1.86 0.51

* More values are given in the Resource section.

A(s)

A(l) + B
µA(l)

µA*(s)
=

Figure 5B.9 The heterogeneous equilibrium involved in the 
calculation of the lowering of freezing point is between A in 
the pure solid and A in the mixture, A being the solvent and B a 
solute that is insoluble in solid A.
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198 5 Simple mixtures

(d) Solubility
Although solubility is not a colligative property (because solu-
bility varies with the identity of the solute), it may be estimated 
by the same techniques as we have been using. When a solid 
solute is left in contact with a solvent, it dissolves until the solu-
tion is saturated. Saturation is a state of equilibrium, with the 
undissolved solute in equilibrium with the dissolved solute. 
Therefore, in a saturated solution the chemical potential of the 
pure solid solute, μB (s)* , and the chemical potential of B in solu-
tion, μB, are equal (Fig. 5B.10). Because the latter is related to 
the mole fraction in the solution by μ μB B B(l) ln= +* RT x , we 
can write

μ μB B B(s) (l) ln* *= + RT x  (5B.14)

This expression is the same as the starting equation of the last 
section, except that the quantities refer to the solute B, not the 
solvent A. We now show in the following Justification that

ln x
H

R T TB
fus

f

= −





∆ 1 1

 
 Ideal solubility  (5B.15)

where ΔfusH is the enthalpy of fusion of the solute and Tf is its 
melting point.

Equation 5B.15 is plotted in Fig. 5B.11. It shows that the 
solubility of B decreases exponentially as the temperature is 
lowered from its melting point. The illustration also shows that 
solutes with high melting points and large enthalpies of melt-
ing have low solubilities at normal temperatures. However, 
the detailed content of eqn 5B.15 should not be treated too 
seriously because it is based on highly questionable approxi-
mations, such as the ideality of the solution. One aspect of its 
approximate character is that it fails to predict that solutes will 
have different solubilities in different solvents, for no solvent 
properties appear in the expression.

Justification 5B.2 The solubility of an ideal solute

The starting point is the same as in Justification 5B.1 but the 
aim is different. In the present case, we want to find the mole 
fraction of B in solution at equilibrium when the temperature 
is T. Therefore, we start by rearranging eqn 5B.14 into

ln
* *

x
RT

G
RTB

B B fus(s) (l)= − = −μ μ ∆

As in Justification 5B.1, we relate the change in composition 
d ln xB to the change in temperature by differentiation and use 
of the Gibbs–Helmholtz equation. Then we integrate from the 
melting temperature of B (when xB = 1 and ln xB = 0) to the lower 
temperature of interest (when xB has a value between 0 and 1):

d dB
fus

B

f

ln
ln

x
R

H
T

T
x

T

T

=∫ ∫1

0
2

∆

If we suppose that the enthalpy of fusion of B is constant over 
the range of temperatures of interest, it can be taken outside 
the integral, and we obtain eqn 5B.15.

Brief illustration 5B.5 Ideal solubility

The ideal solubility of naphthalene in benzene is calculated 
from eqn 5B.15 by noting that the enthalpy of fusion of naph-
thalene is 18.80 kJ mol−1 and its melting point is 354 K. Then, 
at 20 °C,

ln
.
.

xnaphthalene
J mol

JK mol K
= × −

−

− −
1 880 10
8 3145

1
354

1
29

4 1

1 1 33
1 32

K






= − …. .

and therefore xnaphthalene = 0.26. This mole fraction corresponds 
to a molality of 4.5 mol kg−1 (580 g of naphthalene in 1 kg of 
benzene).

Self-test 5B.6 Plot the solubility of naphthalene as a func-
tion of temperature against mole fraction: in Topic 5C we 

B(s)

B
dissolved in

A µB(solution)

µB*(s)

Figure 5B.10 The heterogeneous equilibrium involved in the 
calculation of the solubility is between pure solid B and B in the 
mixture.
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Figure 5B.11 The variation of solubility (the mole fraction 
of solute in a saturated solution) with temperature (Tf  is the 
freezing temperature of the solute). Individual curves are 
labelled with the value of ΔfusH/RTf .
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(e) Osmosis
The phenomenon of osmosis (from the Greek word for ‘push’) 
is the spontaneous passage of a pure solvent into a solution 
separated from it by a semipermeable membrane, a membrane 
permeable to the solvent but not to the solute (Fig. 5B.13). The 
osmotic pressure, Π, is the pressure that must be applied to 
the solution to stop the influx of solvent. Important examples 
of osmosis include transport of fluids through cell membranes, 
dialysis and osmometry, the determination of molar mass by 
the measurement of osmotic pressure. Osmometry is widely 
used to determine the molar masses of macromolecules.

In the simple arrangement shown in Fig. 5B.14, the opposing 
pressure arises from the head of solution that the osmosis itself 
produces. Equilibrium is reached when the hydrostatic pres-
sure of the column of solution matches the osmotic pressure. 

The complicating feature of this arrangement is that the entry of 
solvent into the solution results in its dilution, and so it is more 
difficult to treat than the arrangement in Fig. 5B.13, in which 
there is no flow and the concentrations remain unchanged.

The thermodynamic treatment of osmosis depends on not-
ing that, at equilibrium, the chemical potential of the solvent 
must be the same on each side of the membrane. The chemical 
potential of the solvent is lowered by the solute, but is restored 
to its ‘pure’ value by the application of pressure. As shown in the 
following Justification, this equality implies that for dilute solu-
tions the osmotic pressure is given by the van ’t Hoff equation:

Π =  [B]RT   van ’t hoff equation  (5B.16)

where [B] = nB/V is the molar concentration of the solute.

Justification 5B.3 The van ’t Hoff equation

On the pure solvent side the chemical potential of the solvent, 
which is at a pressure p, is μA

* ( )p . On the solution side, the 
chemical potential is lowered by the presence of the solute, 
which reduces the mole fraction of the solvent from 1 to xA. 
However, the chemical potential of A is raised on account of 
the greater pressure, p + Π, that the solution experiences. At 
equilibrium the chemical potential of A is the same in both 
compartments, and we can write

µ µ ΠA A A
*( ) ( , )p x p= +

The presence of solute is taken into account in the normal way 
by using eqn 5B.1:

µ Π µ ΠA A A Aln( , ) ( )*x p p RT x+ = + +

Equation 3D.12b,

G p G p V p
p

p

m f m i md
i

f

( ) ( )= +∫

p p + Π

Pure solvent Solution

µA*(p) µA(p + Π)

Equal at equilibrium

Figure 5B.13 The equilibrium involved in the calculation of 
osmotic pressure, Π, is between pure solvent A at a pressure 
p on one side of the semipermeable membrane and A as a 
component of the mixture on the other side of the membrane, 
where the pressure is p + П.

see that such diagrams are ‘temperature–composition phase 
diagrams’.

Answer: See Fig. 5B.12.

0 0.2 0.4 0.6 0.8 1xnaphthalene

250

300

350

200

Tf

T
/K

Figure 5B.12 The theoretical solubility of naphthalene in 
benzene, as calculated in Selftest 5B.6.

Height proportional
to osmotic pressure

Solution

Solvent
Semipermeable 
membrane

Figure 5B.14 In a simple version of the osmotic pressure 
experiment, A is at equilibrium on each side of the membrane 
when enough has passed into the solution to cause a 
hydrostatic pressure difference.
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written as

µ µ
Π

A A md* *( ) ( )p p V p
p

p

+ = +
+

∫Π

where Vm is the molar volume of the pure solvent A, shows 
how to take the effect of pressure into account:. When these 
three equations are combined and the μA

*(p) are cancelled we 
are left with

− =
+

∫RT x V p
p

p

ln A md
Π

 
(5B.17)

This expression enables us to calculate the additional pressure 
Π that must be applied to the solution to restore the chemical 
potential of the solvent to its ‘pure’ value and thus to restore 
equilibrium across the semipermeable membrane. For dilute 
solutions, ln xA may be replaced by ln(1 − xB) ≈  −xB. We may 
also assume that the pressure range in the integration is so 
small that the molar volume of the solvent is a constant. That 
being so, Vm may be taken outside the integral, giving

RTx VB m= Π

When the solution is dilute, xB ≈ nB/nA. Moreover, because 
nAVm = V, the total volume of the solvent, the equation simpli-
fies to eqn 5B.16.

Because the effect of osmotic pressure is so readily measura-
ble and large, one of the most common applications of osmom-
etry is to the measurement of molar masses of macromolecules, 
such as proteins and synthetic polymers. As these huge mol-
ecules dissolve to produce solutions that are far from ideal, it 
is assumed that the van ’t Hoff equation is only the first term of 
a virial-like expansion, much like the extension of the perfect 
gas equation to real gases (in Topic 1C) to take into account 
molecular interactions:

Π [ ]= + + …{ } [J] 1 J   RT B   osmotic virial expansion  (5B.18)

(We have denoted the solute J to avoid too many different Bs 
in this expression.) The additional terms take the non-ideality 
into account; the empirical constant B is called the osmotic 
virial coefficient.

Example 5B.2 Using osmometry to determine the molar 
mass of a macromolecule

The osmotic pressures of solutions of poly(vinyl chloride), 
PVC, in cyclohexanone at 298 K are given below. The pres-
sures are expressed in terms of the heights of solution (of mass 
density ρ = 0.980 g cm−3) in balance with the osmotic pressure. 
Determine the molar mass of the polymer.

c/(g dm−3) 1.00 2.00 4.00 7.00 9.00
h/cm 0.28 0.71 2.01 5.10 8.00

Method The osmotic pressure is measured at a series of mass 
concentrations, c, and a plot of Π /c against c is used to deter-
mine the molar mass of the polymer. We use eqn 5B.18 with 
[J] = c/M where c is the mass concentration of the polymer 
and M is its molar mass. The osmotic pressure is related to the 
hydrostatic pressure by Π  = ρgh (Example 1A.1) with g = 9.81 m 
s−2. With these substitutions, eqn 5B.18 becomes

h
c

RT
gM

Bc
M

RT
gM

RTB
gM

c= + +







= +





+ρ ρ ρ
1 2 

Therefore, to find M, plot h/c against c, and expect a straight 
line with intercept RT/ρgM at c = 0.

Answer The data give the following values for the quantities 
to plot:

The points are plotted in Fig. 5B.15. The intercept is at 0.20. 
Therefore,

M
RT

g
= ×

= ×

−

− −

ρ
1

0 20

8 3145 298
980

1 3
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.

( . ) ( )
(
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− − − −

−

×
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×
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9 81
1

2 0 10
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) ( . ) .

.

where we have used 1 kg m2 s−2 = 1 J. Modern osmometers give 
readings of osmotic pressure in pascals, so the analysis of 
the data is more straightforward and eqn 5B.18 can be used 
directly. As explained in Topic 17D, the value obtained from 
osmometry is the ‘number average molar mass’.

Self-test 5B.7 Estimate the depression of freezing point of the 
most concentrated of these solutions, taking Kf as about 10 K/
(mol kg−1).

Answer: 0.8 mK

0.8

0.6

0.4

0.2

(h
/c

)/
(c

m
 g

–1
 d

m
3 )

0 2 4 6 8 10
c/(g dm–3)

Figure 5B.15 The plot involved in the determination of  
molar mass by osmometry. The molar mass is calculated  
from the intercept at c = 0.

c/(g dm−3) 1.00 2.00 4.00 7.00 9.00
(h/c)/(cm g−1 dm3) 0.28 0.36 0.503 0.729 0.889
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Checklist of concepts

☐ 1. The Gibbs energy of mixing of two liquids to form an 
ideal solution is calculated in the same way as for two 
perfect gases.

☐ 2. The enthalpy of mixing is zero and the Gibbs energy is 
due entirely to the entropy of mixing.

☐ 3. A regular solution is one in which the entropy of mix-
ing is the same as for an ideal solution but the enthalpy 
of mixing is non-zero.

☐ 4. A colligative property depends only on the number of 
solute particles present, not their identity.

☐ 5. All the colligative properties stem from the reduction of 
the chemical potential of the liquid solvent as a result of 
the presence of solute.

☐ 6. The elevation of boiling point is proportional to the 
molality of the solute.

☐ 7. The depression of freezing point is also proportional to 
the molality of the solute.

☐ 8. Solutes with high melting points and large enthalpies of 
melting have low solubilities at normal temperatures.

☐ 9. The osmotic pressure is the pressure that when applied 
to a solution prevents the influx of solvent through a 
semipermeable membrane.

☐ 10. The relation of the osmotic pressure to the molar con-
centration of the solute is given by the van ’t Hoff equa-
tion and is a sensitive way of determining molar mass.

Checklist of equations

Property Equation Comment Equation number

Gibbs energy of mixing ΔmixG = nRT(xA ln xA + xB ln xB) Ideal solutions 5B.3

Entropy of mixing ΔmixS = –nR(xA ln xA + xB ln xB) Ideal solutions 5B.4

Enthalpy of mixing ΔmixH = 0 Ideal solutions

Excess function XE  = ΔmixX – ΔmixXideal Definition 5B.5

Regular solution (SE = 0) HE = nξRTxAxB Model 5B.6

Elevation of boiling point ΔTb = Kbb Empirical, non-volatile solute 5B.10

Depression of freezing point ΔTf = Kfb Empirical, solute insoluble in solid solvent 5B.13

Ideal solubility ln xB = (ΔfusH/R)(1/Tf − 1/T) Ideal solution 58.15

van ’t Hoff equation Π = [B]RT Valid as [B] → 0 5B.16

Osmotic virial expansion Π = [J]RT{1 + B[J] + …} Empirical 5B.18
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5C Phase diagrams of binary systems

One-component phase diagrams are described in Topic 4A. The 
phase equilibria of binary systems are more complex because 
composition is an additional variable. However, they provide 
very useful summaries of phase equilibria for both ideal and 
empirically established real systems.

5C.1 Vapour pressure diagrams

The partial vapour pressures of the components of an ideal 
solution of two volatile liquids are related to the composition of 
the liquid mixture by Raoult’s law (Topic 5A)

p x p p x pA A A B B B= =* *
 (5C.1)

where pA*  is the vapour pressure of pure A and pB
* that of pure B. 

The total vapour pressure p of the mixture is therefore

p p p x p x p p p p x= + = + = +A B A A B B B A B A
* * * * *( )−   

 total vapour pressure  (5C.2)

This expression shows that the total vapour pressure (at some 
fixed temperature) changes linearly with the composition from 
pB

* to pA*  as xA changes from 0 to 1 (Fig. 5C.1).

(a) The composition of the vapour
The compositions of the liquid and vapour that are in mutual 
equilibrium are not necessarily the same. Common sense sug-
gests that the vapour should be richer in the more volatile 
component. This expectation can be confirmed as follows. The 
partial pressures of the components are given by eqn 1A.8 of 
Topic 1A (pJ = xJp). It follows from that definition that the mole 
fractions in the gas, yA and yB, are

y
p
p

y
p
pA

A
B

B= =
 

(5C.3)

➤➤ Why do you need to know this material?
Phase diagrams are used widely in materials science, 
metallurgy, geology, and the chemical industry to 
summarize the composition of mixtures and it is important 
to be able to interpret them.

➤➤ What is the key idea?
A phase diagram is a map showing the conditions under 
which each phase of a system is the most stable.

➤➤ What do you need to know already?
It would be helpful to review the interpretation of one-
component phase diagrams and the phase rule (Topic 4A). 
The early part of this Topic draws on Raoult’s law (Topic 4B) 
and the concept of partial pressure (Topic 1A).

Contents

5c.1 Vapour pressure diagrams 202
(a) The composition of the vapour 202

brief illustration 5c.1: the composition  
of the vapour 203

(b) The interpretation of the diagrams 203
example 5c.1: constructing a vapour pressure  
diagram 205

(c) The lever rule 205
brief illustration 5c.2: the lever rule 206

5c.2 Temperature–composition diagrams 206
(a) The distillation of mixtures 206

brief illustration 5c.3: theoretical plates 207
(b) Azeotropes 207

brief illustration 5c.4: azeotropes 208
(c) Immiscible liquids 208

5c.3 Liquid–liquid phase diagrams 208
(a) Phase separation 208

example 5c.2: Interpreting a liquid–liquid 
phase diagram 209

(b) Critical solution temperatures 209
brief illustration 5c.5: Phase separation 211

(c) The distillation of partially miscible liquids 211
example 5c.3: Interpreting a phase diagram 212

5c.4 Liquid–solid phase diagrams 212
(a) Eutectics 212

brief illustration 5c.6: Interpreting a binary 
phase diagram 213

(b) Reacting systems 214
(c) Incongruent melting 214

Checklist of concepts 215
Checklist of equations 215

iranchembook.ir/edu



5C Phase diagrams of binary systems  203

Provided the mixture is ideal, the partial pressures and the total 
pressure may be expressed in terms of the mole fractions in the 
liquid by using eqn 5C.1 for pJ and eqn 5C.2 for the total vapour 
pressure p, which gives

y
x p

p p p x
y yA

A A

B A B A
B A=

+ −
= −

*

* * *( )
1

 

Figure 5C.2 shows the composition of the vapour plotted 
against the composition of the liquid for various values of 
p pA B

* */ >1. We see that in all cases yA > xA, that is, the vapour 
is richer than the liquid in the more volatile component. Note 
that if B is non-volatile, so that pB

* =0  at the temperature of 
interest, then it makes no contribution to the vapour (yB = 0).

Equation 5C.3 shows how the total vapour pressure of the 
mixture varies with the composition of the liquid. Because we 
can relate the composition of the liquid to the composition of 

the vapour through eqn 5C.3, we can now also relate the total 
vapour pressure to the composition of the vapour:

p
p p

p p p
=

+ −
A B

A B A A

* *

* * *( )y  
 total vapour pressure  (5C.5)

This expression is plotted in Fig. 5C.3.

(b) The interpretation of the diagrams

If we are interested in distillation, both the vapour and the 
li quid compositions are of equal interest. It is therefore sensible 

Brief illustration 5C.1 The composition of the vapour

The vapour pressures of benzene and methylbenzene at 20 °C 
are 75 Torr and 21 Torr, respectively. The composition of the 
vapour in equilibrium with an equimolar liquid mixture  
(xbenzene = xmethylbenzene = 1

2 ) is

y

y

benzene

methylbe

Torr

Torr Torr
=

×( )
+ −( )×

=
1
2

1
2

75

21 75 21
0 78.

nnzene = − =1 0 78 0 22. .

The vapour pressure of each component is

p

p

benzene

methylbenzene

75Torr 38Torr

21Torr 1 Torr

= =

= =

1
2

1
2 0

( )

( )  

for a total vapour pressure of 48 Torr.

Self-test 5C.1 What is the composition of the vapour in equi-
librium with a mixture in which the mole fraction of benzene 
is 0.75?

Answer: 0.91, 0.09Mole fraction of A in the liquid, xA
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Figure 5C.2 The mole fraction of A in the vapour of a binary 
ideal solution expressed in terms of its mole fraction in the 
liquid, calculated using eqn 5C.4 for various values of p pA B* */  
(the label on each curve) with A more volatile than B. In all cases 
the vapour is richer than the liquid in A.
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Figure 5C.3 The dependence of the vapour pressure of the 
same system as in Fig. 5C.2, but expressed in terms of the mole 
fraction of A in the vapour by using eqn 5C.5. Individual curves 
are labelled with the value of p pA B* */ .
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Figure 5C.1 The variation of the total vapour pressure of a 
binary mixture with the mole fraction of A in the liquid when 
Raoult’s law is obeyed.

composition 
of vapour  (5C.4)
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204 5 Simple mixtures

to combine Figs. 5C.2 and 5C.3 into one (Fig. 5C.4). The point 
a indicates the vapour pressure of a mixture of composition 
xA, and the point b indicates the composition of the vapour 
that is in equilibrium with the liquid at that pressure. A richer 
interpretation of the phase diagram is obtained, however, if we 
interpret the horizontal axis as showing the overall composi-
tion, zA, of the system (essentially, the mole fraction showing 
how the mixture was prepared). If the horizontal axis of the 
vapour pressure diagram is labelled with zA, then all the points 
down to the solid diagonal line in the graph correspond to a 
system that is under such high pressure that it contains only 
a liquid phase (the applied pressure is higher than the vapour 
pressure), so zA = xA, the composition of the liquid. On the 
other hand, all points below the lower curve correspond to a 
system that is under such low pressure that it contains only a 
vapour phase (the applied pressure is lower than the vapour 
pressure), so zA = yA.

Points that lie between the two lines correspond to a system 
in which there are two phases present, one a liquid and the 
other a vapour. To see this interpretation, consider the effect of 
lowering the pressure on a liquid mixture of overall composi-
tion a in Fig. 5C.5. The lowering of pressure can be achieved 
by drawing out a piston (Fig. 5C.6). The changes to the system 
do not affect the overall composition, so the state of the system 
moves down the vertical line that passes through a. This verti-
cal line is called an isopleth, from the Greek words for ‘equal 
abundance’. Until the point a1 is reached (when the pressure 
has been reduced to p1), the sample consists of a single liquid 
phase. At a1 the liquid can exist in equilibrium with its vapour. 
As we have seen, the composition of the vapour phase is given 
by point a1′ . A line joining two points representing phases in 
equilibrium is called a tie line. The composition of the liquid 
is the same as initially (a1 lies on the isopleth through a), so 

we have to conclude that at this pressure there is virtually no 
vapour present; however, the tiny amount of vapour that is pre-
sent has the composition a1′

Now consider the effect of lowering the pressure to p2, so 
taking the system to a pressure and overall composition repre-
sented by the point a2′ . This new pressure is below the vapour 
pressure of the original liquid, so it vaporizes until the vapour 
pressure of the remaining liquid falls to p2. Now we know that 
the composition of such a liquid must be a2. Moreover, the 
composition of the vapour in equilibrium with that liquid must 
be given by the point a2′  at the other end of the tie line. If the 
pressure is reduced to p3, a similar readjustment in composi-
tion takes place, and now the compositions of the liquid and 
vapour are represented by the points a3 and a3′ , respectively. The 
latter point corresponds to a system in which the composition 
of the vapour is the same as the overall composition, so we have 
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Figure 5C.4 The dependence of the total vapour pressure of 
an ideal solution on the mole fraction of A in the entire system. 
A point between the two lines corresponds to both liquid 
and vapour being present; outside that region there is only 
one phase present. The mole fraction of A is denoted zA, as 
explained in the text.
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Figure 5C.5 The points of the pressure–composition diagram 
discussed in the text. The vertical line through a is an isopleth, a 
line of constant composition of the entire system.

(a) (b) (c)

Figure 5C.6(a) A liquid in a container exists in equilibrium  
with its vapour. The superimposed fragment of the phase 
diagram shows the compositions of the two phases and  
their abundances (by the lever rule; see section 5C.1(c)).  
(b) When the pressure is changed by drawing out a piston, the 
compositions of the phases adjust as shown by the tie line in 
the phase diagram. (c) When the piston is pulled so far out that 
all the liquid has vaporized and only the vapour is present, the 
pressure falls as the piston is withdrawn and the point on the 
phase diagram moves into the one-phase region.
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to conclude that the amount of liquid present is now virtually 
zero, but the tiny amount of liquid present has the composition 
a3. A further decrease in pressure takes the system to the point 
a4; at this stage, only vapour is present and its composition is 
the same as the initial overall composition of the system (the 
composition of the original liquid).

(c) The lever rule
A point in the two-phase region of a phase diagram indicates 
not only qualitatively that both liquid and vapour are present, 
but represents quantitatively the relative amounts of each. To 
find the relative amounts of two phases α and β that are in equi-
librium, we measure the distances lα and lβ along the horizontal 
tie line, and then use the lever rule (Fig. 5C.9):

n l n lα α β β=   lever rule  (5C.6)

Here nα is the amount of phase α and nβ the amount of phase β. 
In the case illustrated in Fig. 5C.9, because lβ ≈ 2lα, the amount 
of phase α is about twice the amount of phase β.

Justification 5C.1 The lever rule

To prove the lever rule we write the total amount of A and B 
molecules as n = nα + nβ, where nα is the amount of molecules 
in phase α and nβ the amount in phase β. The mole fraction 
of A in phase α is xA,α, so the amount of A in that phase is 

Example 5C.1 Constructing a vapour pressure diagram

The following temperature/composition data were obtained 
for a mixture of octane (O) and methylbenzene (M) at 1.00 
atm, where x is the mole fraction in the liquid and y the mole 
fraction in the vapour at equilibrium.

The boiling points are 110.6 °C and 125.6 °C for M and O, 
respectively. Plot the temperature–composition diagram for the 
mixture. What is the composition of the vapour in equilibrium 
with the liquid of composition (a) xM = 0.250 and (b) xO = 0.250?

Method Plot the composition of each phase (on the horizontal 
axis) against the temperature (on the vertical axis). The two 
boiling points give two further points corresponding to xM = 1 
and xM = 0, respectively. Use a curve-fitting program to draw 
the phase boundaries. For the interpretation, draw the appro-
priate tie-lines.

Answer The points are plotted in Fig. 5C.7. The two sets of 
points are fitted to the polynomials a+bx+cx2+dx3 with
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Figure 5C.7 The plot of data and the fitted curves for a 
mixture of octane and methylbenzene (M) in Example 5C.1.

The tie lines at xM = 0.250 and xO = 0.250 (corresponding to 
xM = 0.750) have been drawn on the graph starting at the lower 
(liquid curve). They intersect the upper (vapour curve) at 
yM = 0.36 and 0.80, respectively.

Self-test 5C.2 Repeat the analysis for the following data on 
hexane and heptane at 70 °C:

Answer: See Fig. 5C.8.

θ/°C 65 66 70 77 85 100
xhexane 0 0.20 0.40 0.60 0.80 1
yhexane 0 0.02 0.08 0.20 0.48 1
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64.83 + 4.63x +14.09x2 + 16.20x3

64.67 + 79.08x –106.27x2 + 62.52x3

Figure 5C.8 The plot of data and the fitted curves for a 
mixture of hexane (Hx) and heptane in Selftest 5C.2.
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206 5 Simple mixtures

5C.2 Temperature–composition 
diagrams

To discuss distillation we need a temperature–composition 
diagram, a phase diagram in which the boundaries show the 
composition of the phases that are in equilibrium at various 
temperatures (and a given pressure, typically 1 atm). An exam-
ple is shown in Fig. 5C.10. Note that the liquid phase now lies in 
the lower part of the diagram.

(a) The distillation of mixtures
Consider what happens when a liquid of composition a1 in Fig. 
5C.10 is heated. It boils when the temperature reaches T2. Then 
the liquid has composition a2 (the same as a1) and the vapour 
(which is present only as a trace) has composition a2′ . The 
vapour is richer in the more volatile component A (the com-
ponent with the lower boiling point). From the location of a2, 
we can state the vapour’s composition at the boiling point, and 
from the location of the tie line joining a2 and a2′  we can read off 
the boiling temperature (T2) of the original liquid mixture.

In a simple distillation, the vapour is withdrawn and con-
densed. This technique is used to separate a volatile liquid from 
a non-volatile solute or solid. In fractional distillation, the 
boiling and condensation cycle is repeated successively. This 
technique is used to separate volatile liquids. We can follow 
the changes that occur by seeing what happens when the first 
condensate of composition a3 is reheated. The phase diagram 
shows that this mixture boils at T3 and yields a vapour of com-
position a3′ , which is even richer in the more volatile compo-
nent. That vapour is drawn off, and the first drop condenses to 
a liquid of composition a4. The cycle can then be repeated until 

nαxA,α. Similarly, the amount of A in phase β is nβxA,β. The 
total amount of A is therefore

n n x n xA A A= +α α β β, ,

Let the composition of the entire mixture be expressed by the 
mole fraction zA (this is the label on the horizontal axis, and 
reflects how the sample is prepared). The total amount of A 
molecules is therefore

n nz n z n zA A A A= = +α β

By equating these two expressions it follows that

n x z n z xα α β β− −( ) ( ), ,A A A A=

which corresponds to eqn 5C.6.

Brief illustration 5C.2 The lever rule

At p1 in Fig. 5C.5, the ratio lvap/lliq is almost infinite for this tie 
line, so nliq/nvap is also almost infinite, and there is only a trace 
of vapour present. When the pressure is reduced to p2, the 
value of lvap/lliq is about 0.3, so nliq/nvap≈0.3 and the amount of 
liquid is about 0.3 times the amount of vapour. When the pres-
sure has been reduced to p3, the sample is almost completely 
gaseous and because lvap/lliq≈0 we conclude that there is only a 
trace of liquid present.

Self-test 5C.3 Suppose that in a phase diagram, when the sam-
ple was prepared with the mole fraction of component A equal 
to 0.40 it was found that the compositions of the two phases 
in equilibrium corresponded to the mole fractions xA,α = 0.60 
and xA,β = 0.20. What is the ratio of amounts of the two phases?

Answer: nα/nβ = 1.0
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Figure 5C.9 The lever rule. The distances lα and lβ are used 
to find the proportions of the amounts of phases α (such as 
vapour) and β (for example, liquid) present at equilibrium. 
The lever rule is so called because a similar rule relates the 
masses at two ends of a lever to their distances from a pivot 
(mαlα = mβlβ for balance).
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Figure 5C.10 The temperature–composition diagram 
corresponding to an ideal mixture with the component A 
more volatile than component B. Successive boilings and 
condensations of a liquid originally of composition a1 lead to a 
condensate that is pure A. The separation technique is called 
fractional distillation.
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in due course almost pure A is obtained in the vapour and pure 
B remains in the liquid.

The efficiency of a fractionating column is expressed in 
terms of the number of theoretical plates, the number of effec-
tive vaporization and condensation steps that are required 
to achieve a condensate of given composition from a given 
distillate.

(b) Azeotropes

Although many liquids have temperature–composition phase 
diagrams resembling the ideal version in Fig. 5C.10, in a num-
ber of important cases there are marked deviations. A maxi-
mum in the phase diagram (Fig. 5C.12) may occur when the 
favourable interactions between A and B molecules reduce 
the vapour pressure of the mixture below the ideal value and 
so raise its boiling temperature: in effect, the A–B interactions 
stabilize the liquid. In such cases the excess Gibbs energy, GE 
(Topic 5B), is negative (more favourable to mixing than ideal). 

Phase diagrams showing a minimum (Fig. 5C.13) indicate 
that the mixture is destabilized relative to the ideal solution, 
the A–B interactions then being unfavourable; in this case, the 
boiling temperature is lowered. For such mixtures GE is positive 
(less favourable to mixing than ideal), and there may be contri-
butions from both enthalpy and entropy effects.

Deviations from ideality are not always so strong as to lead to 
a maximum or minimum in the phase diagram, but when they 
do there are important consequences for distillation. Consider 
a liquid of composition a on the right of the maximum in Fig. 
5C.12. The vapour (at a2′) of the boiling mixture (at a2) is richer 
in A. If that vapour is removed (and condensed elsewhere), 
then the remaining liquid will move to a composition that is 
richer in B, such as that represented by a3, and the vapour in 
equilibrium with this mixture will have composition a2′ . As that 
vapour is removed, the composition of the boiling liquid shifts 
to a point such as a4, and the composition of the vapour shifts 
to a4′ . Hence, as evaporation proceeds, the composition of the 
remaining liquid shifts towards B as A is drawn off. The boil-
ing point of the liquid rises, and the vapour becomes richer in 
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Figure 5C.12 A high-boiling azeotrope. When the liquid of 
composition a is distilled, the composition of the remaining 
liquid changes towards b but no further.
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Figure 5C.13 A low-boiling azeotrope. When the mixture at a is 
fractionally distilled, the vapour in equilibrium in the fractionating 
column moves towards b and then remains unchanged.

Brief illustration 5C.3 Theoretical plates

To achieve the degree of separation shown in Fig. 5C.11a, the 
fractionating column must correspond to three theoretical 
plates. To achieve the same separation for the system shown in 
Fig. 5C.11b, in which the components have more similar par-
tial pressures, the fractionating column must be designed to 
correspond to five theoretical plates.

Self-test 5C.4 Refer to Fig. 5C.11b: suppose the composition 
of the mixture corresponds to zA = 0.1; how many theoretical 
plates would be required to achieve a composition zA = 0.9?

Answer: 5
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Figure 5C.11 The number of theoretical plates is the 
number of steps needed to bring about a specified degree 
of separation of two components in a mixture. The two 
systems shown correspond to (a) 3, (b) 5 theoretical plates.
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B. When so much A has been evaporated that the liquid has 
reached the composition b, the vapour has the same composi-
tion as the liquid. Evaporation then occurs without change of 
composition. The mixture is said to form an azeotrope.1 When 
the azeotropic composition has been reached, distillation can-
not separate the two liquids because the condensate has the 
same composition as the azeotropic liquid.

The system shown in Fig. 5C.13 is also azeotropic, but shows 
its azeotropy in a different way. Suppose we start with a mixture 
of composition a1, and follow the changes in the composition 
of the vapour that rises through a fractionating column (essen-
tially a vertical glass tube packed with glass rings to give a large 
surface area). The mixture boils at a2 to give a vapour of compo-
sition a2′ . This vapour condenses in the column to a liquid of the 
same composition (now marked a3). That liquid reaches equi-
librium with its vapour at a3′ , which condenses higher up the 
tube to give a liquid of the same composition, which we now 
call a4. The fractionation therefore shifts the vapour towards 
the azeotropic composition at b, but not beyond, and the azeo-
tropic vapour emerges from the top of the column.

(c) Immiscible liquids

Finally we consider the distillation of two immiscible liquids, 
such as octane and water. At equilibrium, there is a tiny amount 
of A dissolved in B, and similarly a tiny amount of B dissolved 
in A: both liquids are saturated with the other component (Fig. 
5C.14a). As a result, the total vapour pressure of the mixture 
is close to p p p= +A B

* *. If the temperature is raised to the value 
at which this total vapour pressure is equal to the atmospheric 
pressure, boiling commences and the dissolved substances are 
purged from their solution. However, this boiling results in a 
vigorous agitation of the mixture, so each component is kept 
saturated in the other component, and the purging continues as 

the very dilute solutions are replenished. This intimate contact 
is essential: two immiscible liquids heated in a container like 
that shown in Fig. 5C.14b would not boil at the same tempera-
ture. The presence of the saturated solutions means that the 
‘mixture’ boils at a lower temperature than either component 
would alone because boiling begins when the total vapour pres-
sure reaches 1 atm, not when either vapour pressure reaches 
1 atm. This distinction is the basis of steam distillation, which 
enables some heat-sensitive, water-insoluble organic com-
pounds to be distilled at a lower temperature than their normal 
boiling point. The only snag is that the composition of the con-
densate is in proportion to the vapour pressures of the compo-
nents, so oils of low volatility distil in low abundance.

5C.3 Liquid–liquid phase diagrams

Now we consider temperature–composition diagrams for sys-
tems that consist of pairs of partially miscible liquids, which 
are liquids that do not mix in all proportions at all tempera-
tures. An example is hexane and nitrobenzene. The same prin-
ciples of interpretation apply as to liquid–vapour diagrams.

(a) Phase separation
Suppose a small amount of a liquid B is added to a sample of 
another liquid A at a temperature T ′. Liquid B dissolves com-
pletely, and the binary system remains a single phase. As more 
B is added, a stage comes at which no more dissolves. The sam-
ple now consists of two phases in equilibrium with each other, 
the most abundant one consisting of A saturated with B, the 
minor one a trace of B saturated with A. In the temperature–
composition diagram drawn in Fig. 5C.15, the composition of 
the former is represented by the point a′ and that of the latter 
by the point a″. The relative abundances of the two phases are 
given by the lever rule. When more B is added, A dissolves in 
it slightly. The compositions of the two phases in equilibrium 
remain a′ and a″. A stage is reached when so much B is present 

Brief illustration 5C.4 Azeotropes

Examples of the behaviour of the type shown in Fig. 5C.12 
include (a) trichloromethane/propanone and (b) nitric acid/
water mixtures. Hydrochloric acid/water is azeotropic at 
80 per cent by mass of water and boils unchanged at 108.6 °C. 
Examples of the behaviour of the type shown in Fig. 5C.13 
include (c) dioxane/water and (d) ethanol/water mixtures. 
Ethanol/water boils unchanged when the water content is 
4 per cent by mass and the temperature is 78 °C.

Self-test 5C.5 Suggest a molecular interpretation of the two 
types of behaviour.

Answer: (a,b) favourable A–B interactions; (c,d) unfavourable  
A–B interactions

(a) (b)

Figure 5C.14 The distillation of (a) two immiscible liquids 
can be regarded as (b) the joint distillation of the separated 
components, and boiling occurs when the sum of the partial 
pressures equals the external pressure.

1 The name comes from the Greek words for ‘boiling without changing’.

iranchembook.ir/edu



5C Phase diagrams of binary systems  209

that it can dissolve all the A, and the system reverts to a single 
phase. The addition of more B now simply dilutes the solution, 
and from then on a single phase remains.

The composition of the two phases at equilibrium varies with 
the temperature. For the system shown in Fig. 5C.15, raising 
the temperature increases the miscibility of A and B. The two-
phase region therefore becomes narrower because each phase 
in equilibrium is richer in its minor component: the A-rich 
phase is richer in B and the B-rich phase is richer in A. We can 
construct the entire phase diagram by repeating the observa-
tions at different temperatures and drawing the envelope of the 
two-phase region.

(b) Critical solution temperatures

The upper critical solution temperature, Tuc (or upper conso-
lute temperature), is the highest temperature at which phase 
separation occurs. Above the upper critical temperature the 
two components are fully miscible. This temperature exists 
because the greater thermal motion overcomes any potential 
energy advantage in molecules of one type being close together. 
One example is the nitrobenzene/hexane system shown in Fig. 
5C.16. An example of a solid solution is the palladium/hydro-
gen system, which shows two phases, one a solid solution of 
hydrogen in palladium and the other a palladium hydride, up 
to 300 °C but forms a single phase at higher temperatures (Fig. 
5C.17).

The thermodynamic interpretation of the upper critical solu-
tion temperature focuses on the Gibbs energy of mixing and 
its variation with temperature. The simple model of a real solu-
tion (specifically, of a regular solution) discussed in Topic 5B 
results in a Gibbs energy of mixing that behaves as shown in 

(0.59 mol C6H14) and 50 g of nitrobenzene (0.41 mol C6H5NO2) 
was prepared at 290 K. What are the compositions of the 
phases, and in what proportions do they occur? To what tem-
perature must the sample be heated in order to obtain a single 
phase?

Method The compositions of phases in equilibrium are given 
by the points where the tie-line representing the temperature 
intersects the phase boundary. Their proportions are given by 
the lever rule (eqn 5C.6). The temperature at which the com-
ponents are completely miscible is found by following the iso-
pleth upwards and noting the temperature at which it enters 
the one-phase region of the phase diagram.

Answer We denote hexane by H and nitrobenzene by N; refer 
to Fig. 5C.16. The point xN = 0.41, T = 290 K occurs in the two-
phase region of the phase diagram. The horizontal tie line cuts 
the phase boundary at xN = 0.35 and xN = 0.83, so those are the 
compositions of the two phases. According to the lever rule, 
the ratio of amounts of each phase is equal to the ratio of the 
distances lα and lβ:
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That is, there is about 7 times more hexane-rich phase than 
nitrobenzene-rich phase. Heating the sample to 292 K takes it 
into the single-phase region. Because the phase diagram has 
been constructed experimentally, these conclusions are not 
based on any assumptions about ideality. They would be mod-
ified if the system were subjected to a different pressure.

Self-test 5C.6 Repeat the problem for 50 g of hexane and 100 g 
of nitrobenzene at 273 K.

Answer: xN = 0.09 and 0.95 in ratio 1:1.3; 294 K
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Figure 5C.15 The temperature–composition diagram for a 
mixture of A and B. The region below the curve corresponds 
to the compositions and temperatures at which the liquids are 
partially miscible. The upper critical temperature, Tuc, is the 
temperature above which the two liquids are miscible in all 
proportions.

Example 5C.2 Interpreting a liquid–liquid phase 
diagram

The phase diagram for the system nitrobenzene/hexane 
at 1 atm is shown in Fig. 5C.16. A mixture of 50 g of hexane 
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Figure 5C.16 The temperature–composition diagram for 
hexane and nitrobenzene at 1 atm, with the points and 
lengths discussed in the text.
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210 5 Simple mixtures

Fig. 5C.18. Provided the parameter ξ introduced in eqn 5B.6 
(HE = ξRTxAxB) is greater than 2, the Gibbs energy of mixing 
has a double minimum. As a result, for ξ > 2 we can expect 
phase separation to occur. The same model shows that the com-
positions corresponding to the minima are obtained by looking 
for the conditions at which ∂ΔmixG/∂x = 0, and a simple manip-
ulation of eqn 5B.7 (ΔmixG = nRT(xA ln xA + xB ln xB + ξxAxB),  
with xB = 1 − xA) shows that we have to solve
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∂
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The Gibbs-energy minima therefore occurs where

ln ( )
x

x
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A
A1

1 2− = − −ξ
 

(5C.7)

This equation is an example of a ‘transcendental equation’, an 
equation that does not have a solution that can be expressed 
in a closed form. The solutions (the values of xA that satisfy 
the equation) can be found numerically by using mathemati-
cal software or by plotting the terms on the left and right 
against xA for a choice of values of ξ and identifying the values 
of xA where the plots intersect (which is where the two expres-
sions are equal) (Fig. 5C.19). The solutions found in this way 
are plotted in Fig. 5C.20. We see that, as ξ decreases, which 
can be interpreted as an increase in temperature provided the 
intermolecular forces remain constant (so that HE remains 
constant), then the two minima move together and merge 
when ξ = 2.
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Figure 5C.17 The phase diagram for palladium and palladium 
hydride, which has an upper critical temperature at 300 °C.
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Figure 5C.18 The temperature variation of the Gibbs energy of 
mixing of a system that is partially miscible at low temperatures. 
A system of composition in the region P = 2 forms two phases 
with compositions corresponding to the two local minima of 
the curve. This illustration is a duplicate of Fig. 5B.5.
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Figure 5C.19 The graphical procedure for solving eqn 5C.7. 
When ξ < 2, the only intersection occurs at x = 0. When ξ ≥ 2, 
there are two solutions (those for ξ = 3 are marked).
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Figure 5C.20 The location of the phase boundary as 
computed on the basis of the ξ-parameter model introduced in 
Topic 5B.
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Some systems show a lower critical solution temperature, 
Tlc (or lower consolute temperature), below which they mix in 
all proportions and above which they form two phases. An 
example is water and triethylamine (Fig. 5C.22). In this case, 
at low temperatures the two components are more miscible 
because they form a weak complex; at higher temperatures the 
complexes break up and the two components are less miscible.

Some systems have both upper and lower critical solution 
temperatures. They occur because, after the weak complexes 
have been disrupted, leading to partial miscibility, the thermal 
motion at higher temperatures homogenizes the mixture again, 
just as in the case of ordinary partially miscible liquids. The 
most famous example is nicotine and water, which are partially 
miscible between 61 °C and 210 °C (Fig. 5C.23).

(c) The distillation of partially miscible liquids
Consider a pair of liquids that are partially miscible and form 
a low-boiling azeotrope. This combination is quite common 
because both properties reflect the tendency of the two kinds 

of molecule to avoid each other. There are two possibilities: one 
in which the liquids become fully miscible before they boil; the 
other in which boiling occurs before mixing is complete.

Figure 5C.24 shows the phase diagram for two components 
that become fully miscible before they boil. Distillation of a 
mixture of composition a1 leads to a vapour of composition 
b1, which condenses to the completely miscible single-phase 
solution at b2. Phase separation occurs only when this distil-
late is cooled to a point in the two-phase liquid region, such as 
b3. This description applies only to the first drop of distillate. If 
distillation continues, the composition of the remaining li quid 
changes. In the end, when the whole sample has evaporated 
and condensed, the composition is back to a1.

Figure 5C.25 shows the second possibility, in which there is 
no upper critical solution temperature. The distillate obtained 
from a liquid initially of composition a1 has composition b3 and 
is a two-phase mixture. One phase has composition b3

′  and the 
other has composition b3″.
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Figure 5C.22 The temperature–composition diagram for 
water and triethylamine. This system shows a lower critical 
temperature at 292 K. The labels indicate the interpretation of 
the boundaries.

Brief illustration 5C.5 Phase separation

In the system composed of benzene and cyclohexane treated 
in Example 5B.1 it is established that ξ = 1.13, so we do not 
expect a two-phase system; that is, the two components are 
completely miscible at the temperature of the experiment. The 
single solution of the equation

ln . ( )
x

x
xA

A
A1

1 13 1 2 0− + − =
 

is xA = 1
2 , corresponding to a single minimum of the Gibbs 

energy of mixing, and there is no phase separation.

Self-test 5C.7 Would phase separation be expected if the 
excess enthalpy were modelled by the expression HE = ξRTx xA B

2 2   
(Fig. 5C.21a)?

Answer: No, see Fig. 5C.21b
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Figure 5C.21(a) The excess enthalpy and (b) the graphical 
solution of the resulting equation for the minima of the 
Gibbs energy of mixing in Selftest 5C.7.
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Figure 5C.23 The temperature–composition diagram for 
water and nicotine, which has both upper and lower critical 
temperatures. Note the high temperatures for the liquid 
(especially the water): the diagram corresponds to a sample 
under pressure.
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212 5 Simple mixtures

The behaviour of a system of composition represented by the 
isopleth e in Fig. 5C.25 is interesting. A system at e1 forms two 
phases, which persist (but with changing proportions) up to 
the boiling point at e2. The vapour of this mixture has the same 
composition as the liquid (the liquid is an azeotrope). Similarly, 

condensing a vapour of composition e3 gives a two-phase liq-
uid of the same overall composition. At a fixed temperature, the 
mixture vaporizes and condenses like a single substance.

5C.4 Liquid–solid phase diagrams

Knowledge of the temperature–composition diagrams for solid 
mixtures guides the design of important industrial processes, 
such as the manufacture of liquid crystal displays and semicon-
ductors. In this section, we shall consider systems where solid 
and liquid phases may both be present at temperatures below 
the boiling point.

(a) Eutectics
Consider the two-component liquid of composition a1 in Fig. 
5C.27. The changes that occur as the system is cooled may be 
expressed as follows:

•	 a1→  a2. The system enters the two-phase region 
labelled ‘Liquid+B’. Pure solid B begins to come out of 
solution and the remaining liquid becomes richer in A

Example 5C.3 Interpreting a phase diagram

State the changes that occur when a mixture of composition 
xB = 0.95 (a1) in Fig. 5C.26 is boiled and the vapour condensed.

Method The area in which the point lies gives the number of 
phases; the compositions of the phases are given by the points 
at the intersections of the horizontal tie line with the phase 
boundaries; the relative abundances are given by the lever rule .

Answer The initial point is in the one-phase region. When 
heated it boils at 350 K (a2) giving a vapour of composition 
xB = 0.66 (b1). The liquid gets richer in B, and the last drop (of 
pure B) evaporates at 390 K. The boiling range of the liquid is 
therefore 350 to 390 K. If the initial vapour is drawn off, it has a 
composition xB = 0.66. This composition would be maintained 
if the sample were very large, but for a finite sample it shifts to 
higher values and ultimately to xB = 0.95. Cooling the distillate 
corresponds to moving down the xB = 0.66 isopleth. At 330 K, 
for instance, the liquid phase has composition xB = 0.87, the 
vapour xB = 0.49; their relative proportions are 1:3. At 320 K 
the sample consists of three phases: the vapour and two liq-
uids. One liquid phase has composition xB = 0.30; the other 
has composition xB = 0.80 in the ratio 0.62:1. Further cooling 
moves the system into the two-phase region, and at 298 K the 
compositions are 0.20 and 0.90 in the ratio 0.82:1. As further 
distillate boils over, the overall composition of the distillate 
becomes richer in B. When the last drop has been condensed 
the phase composition is the same as at the beginning.

Self-test 5C.8 Repeat the discussion, beginning at the point 
xB = 0.4, T = 298 K.
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Figure 5C.24 The temperature–composition diagram for a 
binary system in which the upper critical temperature is less 
than the boiling point at all compositions. The mixture forms a 
low-boiling azeotrope.
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Figure 5C.25 The temperature–composition diagram for a 
binary system in which boiling occurs before the two liquids 
are fully miscible.
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Figure 5C.26 The points of the phase diagram in Fig. 5C.25 
that are discussed in Example 5C.3.
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•	 a2 → a3. More of the solid B forms, and the relative 
amounts of the solid and liquid (which are in 
equilibrium) are given by the lever rule. At this stage 
there are roughly equal amounts of each. The liquid 
phase is richer in A than before (its composition is 
given by b3) because some B has been deposited.

•	 a3 → a4. At the end of this step, there is less liquid 
than at a3, and its composition is given by e2. This 
liquid now freezes to give a two-phase system of pure 
B and pure A.

The isopleth at e2 in Fig. 5C.27 corresponds to the eutectic 
composition, the mixture with the lowest melting point.2 A 
li quid with the eutectic composition freezes at a single temper-
ature, without previously depositing solid A or B. A solid with 
the eutectic composition melts, without change of composition, 
at the lowest temperature of any mixture. Solutions of composi-
tion to the right of e2 deposit B as they cool, and solutions to 
the left deposit A: only the eutectic mixture (apart from pure 
A or pure B) solidifies at a single definite temperature without 
gradually unloading one or other of the components from the 
liquid.

One technologically important eutectic is solder, which in 
one form has mass composition of about 67 per cent tin and 
33 per cent lead and melts at 183 °C. The eutectic formed by 23 
per cent NaCl and 77 per cent H2O by mass melts at –21.1 °C. 
When salt is added to ice under isothermal conditions (for 
example, when spread on an icy road) the mixture melts if the 
temperature is above –21.1 °C (and the eutectic composition 
has been achieved). When salt is added to ice under adiabatic 
conditions (for example, when added to ice in a vacuum flask) 
the ice melts, but in doing so it absorbs heat from the rest of the 
mixture. The temperature of the system falls and, if enough salt 

is added, cooling continues down to the eutectic temperature. 
Eutectic formation occurs in the great majority of binary alloy 
systems, and is of great importance for the microstructure of 
solid materials. Although a eutectic solid is a two-phase system, 
it crystallizes out in a nearly homogeneous mixture of micro-
crystals. The two microcrystalline phases can be distinguished 
by microscopy and structural techniques such as X-ray diffrac-
tion (Topic 18A).

Thermal analysis is a very useful practical way of detecting 
eutectics. We can see how it is used by considering the rate of 
cooling down the isopleth through a1 in Fig. 5C.27. The liquid 
cools steadily until it reaches a2, when B begins to be deposited 
(Fig. 5C.28). Cooling is now slower because the solidification 
of B is exothermic and retards the cooling. When the remain-
ing liquid reaches the eutectic composition, the temperature 
remains constant until the whole sample has solidified: this 
region of constant temperature is the eutectic halt. If the liquid 
has the eutectic composition e initially, the liquid cools steadily 
down to the freezing temperature of the eutectic, when there 
is a long eutectic halt as the entire sample solidifies (like the 
freezing of a pure liquid).
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2 The name comes from the Greek words for ‘easily melted’.

Brief illustration 5C.6 Interpreting a binary phase 
diagram

Figure 5C.29 is the phase diagram for the binary system sil-
ver/tin. The regions have been labelled to show which each one 
represents. When a liquid of composition a is cooled, solid sil-
ver with dissolved tin begins to precipitate at a1 and the sam-
ple solidifies completely at a2.

Self-test 5C.9 Describe what happens when the sample of 
composition b is cooled.
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Figure 5C.27 The temperature–composition phase diagram 
for two almost immiscible solids and their completely miscible 
liquids. Note the similarity to Fig. 5C.25. The isopleth through 
e2 corresponds to the eutectic composition, the mixture with 
lowest melting point.
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Figure 5C.28 The cooling curves for the system shown in Fig. 
5C.27. For isopleth a, the rate of cooling slows at a2 because 
solid B deposits from solution. There is a complete halt at a4 
while the eutectic solidifies. This halt is longest for the eutectic 
isopleth, e. The eutectic halt shortens again for compositions 
beyond e (richer in A). Cooling curves are used to construct the 
phase diagram.
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214 5 Simple mixtures

Monitoring the cooling curves at different overall compo-
sitions gives a clear indication of the structure of the phase 
diagram. The solid–liquid boundary is given by the points at 
which the rate of cooling changes. The longest eutectic halt 
gives the location of the eutectic composition and its melting 
temperature.

(b) Reacting systems
Many binary mixtures react to produce compounds, and tech-
nologically important examples of this behaviour include the 
Group 13/15 (III/V) semiconductors, such as the gallium 
arsenide system, which forms the compound GaAs. Although 
three constituents are present, there are only two components 
because GaAs is formed from the reaction Ga + As → GaAs. 
We shall illustrate some of the principles involved with a sys-
tem that forms a compound C that also forms eutectic mixtures 
with the species A and B (Fig. 5C.30).

A system prepared by mixing an excess of B with A con-
sists of C and unreacted B. This is a binary B, C system, which 
we suppose forms a eutectic. The principal change from the 
eutectic phase diagram in Fig. 5C.27 is that the whole of the 
phase diagram is squeezed into the range of compositions lying 
between equal amounts of A and B (xB = 0.5, marked C in Fig. 
5C.30) and pure B. The interpretation of the information in the 
diagram is obtained in the same way as for Fig. 5C.27. The solid 
deposited on cooling along the isopleth a is the compound C. 
At temperatures below a4 there are two solid phases, one con-
sisting of C and the other of B. The pure compound C melts 
congruently, that is, the composition of the liquid it forms is 
the same as that of the solid compound.

(c) Incongruent melting
In some cases the compound C is not stable as a liquid. An 
example is the alloy Na2K, which survives only as a solid (Fig. 
5C.31). Consider what happens as a liquid at a1 is cooled:

•	 a1 → a2. A solid solution rich in Na is deposited, and 
the remaining liquid is richer in K.

•	 a2 → just below a3. The sample is now entirely solid 
and consists of a solid solution rich in Na and solid 
Na2K.

Now consider the isopleth through b1:

•	 b1 → b2. No obvious change occurs until the phase 
boundary is reached at b2 when a solid solution rich 
in Na begins to deposit.

Answer: Solid Ag with dissolved Sn begins to precipitate at b1, and the 
liquid becomes richer in Sn as the temperature falls further. At b2 solid 
Ag3Sn begins to precipitate, and the liquid becomes richer in Sn. At b3 

the system has its eutectic composition (a solid solution of Sn and Ag3Sn) 
and it freezes without further change in composition.

Te
m

p
er

at
u

re
, θ

/°
C

Mass percentage of Ag/%
0

0
20 40 60 80 100

1000

800

600

400

200

Liquid

A
g

3S
n

ab

b1

b2

b3   

Figure 5C.29 The phase diagram for silver/tin discussed in 
Brief illustration 5C.6.
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Figure 5C.30 The phase diagram for a system in which A and B 
react to form a compound C = AB. This resembles two versions 
of Fig. 5C.27 in each half of the diagram. The constituent C is a 
true compound, not just an equimolar mixture.
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Figure 5C.31 The phase diagram for an actual system (sodium 
and potassium) like that shown in Fig. 5C.30, but with two 
differences. One is that the compound is Na2K, corresponding 
to A2B and not AB as in that illustration. The second is that 
the compound exists only as the solid, not as the liquid. The 
transformation of the compound at its melting point is an 
example of incongruent melting.
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•	 b2 → b3. A solid solution rich in Na deposits, but at b3 
a reaction occurs to form Na2K: this compound is 
formed by the K atoms diffusing into the solid Na.

•	 b3. At b3, three phases are in mutual equilibrium: the 
liquid, the compound Na2K, and a solid solution rich 
in Na. The horizontal line representing this three-
phase equilibrium is called a peritectic line. At this 
stage the liquid Na/K mixture is in equilibrium with 
a little solid Na2K, but there is still no liquid 
compound

•	 b3 → b4. As cooling continues, the amount of solid 
compound increases until at b4 the liquid reaches its 
eutectic composition. It then solidifies to give a two-
phase solid consisting of a solid solution rich in K 
and solid Na2K.

If the solid is reheated, the sequence of events is reversed. No 
liquid Na2K forms at any stage because it is too unstable to exist 
as a liquid. This behaviour is an example of incongruent melt-
ing, in which a compound melts into its components and does 
not itself form a liquid phase.

Checklist of concepts

☐ 1. Raoult’s law is used to calculate the total vapour pres-
sure of a binary system of two volatile liquids.

☐ 2. The composition of the vapour in equilibrium with a 
binary mixture is calculated by using Dalton’s law.

☐ 3. The composition of the vapour and the liquid phase in 
equilibrium are located at each end of a tie line.

☐ 4. The lever rule is used to deduce the relative abundances 
of each phase in equilibrium.

☐ 5. A phase diagram can be used to discuss the process of 
fractional distillation.

☐ 6. Depending on the relative strengths of the intermo-
lecular forces, high- or low-boiling azeotropes may be 
formed.

☐ 7. The vapour pressure of a system composed of immis-
cible liquids is the sum of the vapour pressures of the 
pure liquids.

☐ 8. A phase diagram may be used to discuss the distillation 
of partially miscible liquids.

☐ 9. Phase separation of partially miscible liquids may occur 
when the temperature is below the upper critical solu-
tion temperature or above the lower critical solution 
temperature; the process may be discussed in terms of 
the model of a regular solution.

☐ 10. A phase diagram summarizes the temperature–com-
position properties of a binary system with solid and 
liquid phases; at the eutectic composition the liquid 
phase solidifies without change of composition.

☐ 11. The phase equilibria of binary systems in which the 
components react may also be summarized by a phase 
diagram.

☐ 12. In some cases, a solid compound does not survive 
melting.

Checklist of equations
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Property Equation Comment Equation number

Composition of vapour y x p p p p x y

y
A A A B A B A B

A

= + −
= −

* * * */( ( ) )

1

Ideal solution 5C.4

Total vapour pressure p p p p p p y= + −A B A B A A* * * * */( ( ) ) Ideal solution 5C.5

Lever rule nαlα = nβlβ 5C.6
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5D Phase diagrams of ternary systems

This short Topic is a brief introduction to the depiction of 
phases of systems of three components. In terms of the phase 
rule (Topic 5A), C = 3, so F = 5 − P. If we restrict systems to 
constant temperature and pressure, two degrees of freedom 
are discarded and we are left with F″ = 3 − P. An area on a 
ternary phase diagram therefore represents a region where 
a single phase is present, a line represents the equilibrium 
between two phases of varying composition, and a point cor-
responds to a composition at which three phases are present 
in equilibrium.

5D.1 Triangular phase diagrams

The mole fractions of the three components of a ternary system 
satisfy xA + xB + xC = 1. A phase diagram drawn as an equilateral 
triangle ensures that this property is satisfied automatically 
because the sum of the distances to a point inside an equilateral 
triangle of side 1 and measured parallel to the edges is equal 
to 1 (Fig. 5D.1).

Figure 5D.1 shows how this approach works in practice. The 
edge AB corresponds to xC = 0, and likewise for the other two 
edges. Hence, each of the three edges corresponds to one of the 
three binary systems (A,B), (B,C), and (C,A). An interior point 
corresponds to a system in which all three components are pre-
sent. The point P, for instance, represents xA = 0.50, xB = 0.10, 
xC = 0.40.

Any point on a straight line joining an apex to a point on the 
opposite edge (the broken line in Fig. 5D.1) represents a com-
position that is progressively richer in A the closer the point is 
to the A apex but for which the concentration ratio B:C remains 
constant. Therefore, if we wish to represent the changing com-
position of a system as A is added, we draw a line from the 
A apex to the point on BC representing the initial binary sys-
tem. Any ternary system formed by adding A then lies at some 
point on this line.
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➤➤ Why do you need to know this material?
Ternary phase diagrams have become important 
in materials science as more complex materials are 
investigated, such as the ceramics found to have super-
conducting properties.

➤➤ What is the key idea?
A phase diagram is a map showing the conditions under 
which each phase of a system is the most stable.

➤➤ What do you need to know already?
It would be helpful to review the interpretation of two-
component phase diagrams (Topic 5C) and the phase 
rule (Topic 5A). The interpretation of the phase diagrams 
presented here uses the lever rule (Topic 5C).
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Figure 5D.1 The triangular coordinates used for the discussion 
of three-component systems. Each edge corresponds to a 
binary system. All points along the dotted line a correspond to 
mole fractions of C and B in the same ratio.
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5D Phase diagrams of ternary systems  217

A single triangle represents the equilibria when one of the 
discarded degrees of freedom (the temperature, for instance) 
has a certain value. Different temperatures give rise to different 
equilibrium behaviour and therefore different triangular phase 
diagrams. Each one may therefore be regarded as a horizontal 
slice through a three-dimensional triangular prism, such as 
that shown in Fig. 5D.3.

5D.2 Ternary systems

Ternary phase diagrams are widely used in metallurgy and 
materials science in general. Although they can become quite 
complex, they can be interpreted in much the same way as 
binary diagrams. Here we give two examples.

(a) Partially miscible liquids
The phase diagram for a ternary system in which W (in due 
course: water) and A (in due course: acetic acid) are fully misci-
ble, A and C (in due course: chloroform) are fully miscible, but 
W and C are only partially miscible is shown in Fig. 5D.4. This 
illustration is for the system water/acetic acid/chloroform at 
room temperature, which behaves in this way. It shows that the 
two fully miscible pairs, (A,W) and (A,C), form single-phase 
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Figure 5D.3 When temperature is included as a variable, the 
phase diagram becomes a triangular prism. Horizontal sections 
through the prism correspond to the triangular phase diagrams 
being discussed.
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Figure 5D.4 The phase diagram, at fixed temperature 
and pressure, of the three-component system acetic acid, 
chloroform, and water. Only some of the tie lines have been 
drawn in the two-phase region. All points along the line a 
correspond to chloroform and water present in the same ratio.

Brief illustration 5D.1 The representation of composition

The following points are represented on Fig. 5D.2:

Note that the points d, e, f have xA/xB = 0.50 and lie on a 
straight line.

Self-test 5D.1 Mark the following points on the triangle.

Answer: See Fig. 5D.2.

Point xA xB xC

a 0.20 0.80 0

b 0.42 0.26 0.32

c 0.80 0.10 0.10

d 0.10 0.20 0.70

e 0.20 0.40 0.40

f 0.30 0.60 0.10

Point xA xB xC

g 0.25 0.25 0.50

h 0.50 0.25 0.25

i 0.80 0 0.20

j 0.60 0.25 0.15

k 0.20 0.75 0.0.05
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Figure 5D.2 The points referred to in Brief illustration 5D.1 
(black) and Selftest 5D.1 (blue).
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218 5 Simple mixtures

regions and that (W,C) system (along the base of the triangle) 
has a two-phase region. The base of the triangle corresponds to 
one of the horizontal lines in a two-component phase diagram. 
The tie lines in the two-phase regions are constructed experi-
mentally by determining the compositions of the two phases 
that are in equilibrium, marking them on the diagram, and 
then joining them with a straight line.

A single-phase system is formed when enough A is added to 
the binary (W,C) mixture. This effect is shown by following the 
line a in Fig. 5D.4:

•	 a1. The system consists of two phases and the relative 
amounts of the two phases can be read off by using 
the lever rule.

•	 a1 → a2. The addition of A takes the system along the 
line joining a1 to the A apex. At a2 the solution still 
has two phases, but there is slightly more W in the 
largely C phase (represented by the point a2″) and 
more C in the largely W phase a2′  because the 
presence of A helps both to dissolve. The phase 
diagram shows that there is more A in the W-rich 
phase than in the C-rich phase (a2′  is closer than ( )a2″  
to the A apex).

•	 a2 → a3. At a3 two phases are present, but the C-rich 
layer is present only as a trace (lever rule).

•	 a3 → a4. Further addition of A takes the system 
towards and beyond a4, and only a single phase is 
present.

The point marked P in Fig. 5D.4 is called the plait point. It 
is yet another example of a critical point. At the plait point, the 
compositions of the two phases in equilibrium become identi-
cal. For convenience, the general interpretation of a triangular 
phase diagram is summarized in Fig. 5D.5.

(b) Ternary solids
The triangular phase diagram in Fig. 5D.6 is typical of that for a 
solid alloy with varying compositions of three metals, A, B, and C.

Brief illustration 5D.2 Partially miscible liquids

Suppose we have a mixture of water (W in Fig. 5D.4) and chlo-
roform (C) with xW = 0.40 and xC = 0.60, and acetic acid (A) is 
added to it. The relative proportions of A and C remain con-
stant, so the point representing the overall composition moves 
along the straight line b from xC = 0.60 on the base to the ace-
tic acid apex. The initial composition is in a two-phase region: 
one phase has the composition (xW, xC, xA) = (0.95, 0.05, 0) and 
the other has composition (xW, xC, xA) = (0.12, 0.88, 0). When 
sufficient acetic acid has been added to raise its mole fraction 
to 0.18 the system consists of two phases of composition (0.07, 
0.82, 0.11) and (0.57, 0.20, 0.23) in almost equal abundance.

Self-test 5D.2 Specify the system when enough acid has been 
added to raise its mole fraction to 0.34.

Answer: A trace of a phase of composition (0.12, 0.61, 0.27) and a domi-
nating phase of composition (0.28, 0.37, 0.35)

Brief illustration 5D.3 Stainless steel

Figure 5D.6 is a simplified version of the phase diagram for 
a stainless steel consisting of iron, chromium, and nickel. 
The axes are labelled with the mass percentage compositions 
instead of the mole fractions, but as the three percentages add 
up to 100 per cent, the interpretation of points in the triangle 
is essentially the same as for mole fractions. The point a corre-
sponds to the composition 74 per cent Fe, 18 per cent Cr, and 8 
per cent Ni. It corresponds to the most common form of stain-
less steel, ‘18-8 stainless steel’. The composition corresponding 
to point b lies in the two-phase region, one phase consisting of 
Cr and the other of the alloy γ-FeNi.

Self-test 5D.3 Identify the composition represented by point c.
Answer: Three phases, Fe, Ni, and γ-FeNi
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Figure 5D.5 The interpretation of a triangular phase diagram. 
The region inside the curved line consists of two phases, 
and the compositions of the two phases in equilibrium are 
given by the points at the ends of the tie lines (the tie lines are 
determined experimentally).
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Figure 5D.6 A simplified triangular phase diagram of the 
ternary system represented by a stainless steel composed of 
iron, chromium, and nickel.
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5D Phase diagrams of ternary systems  219

Checklist of concepts

☐ 1. A phase diagram drawn as an equilateral triangle 
ensures that the property xA + xB + xC = 1 is satisfied 
automatically.

☐ 2. At the plait point, the compositions of the two phases 
in equilibrium are identical.
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5E activities

In this Topic we see how to adjust the expressions developed 
in Topics 5A and 5B to take into account deviations from ideal 
behaviour. In Topic 3D it is remarked that a quantity called 
‘fugacity’ takes into account the effects of gas imperfections in a 

manner that resulted in the least upset of the form of equations. 
Here we see how the expressions encountered in the treatment 
of ideal solutions can also be preserved almost intact by intro-
ducing the concept of ‘activity’. As in other Topics collected in 
this chapter, we denote the solvent by A, the solute by B, and a 
general component by J.

5E.1 The solvent activity

The general form of the chemical potential of a real or ideal sol-
vent is given by a straightforward modification of eqn 5A.14 
( ( / )* *μ μA A A Aln= + RT p p , where pA

*  is the vapour pressure of 
pure A and pA is the vapour pressure of A when it is a com-
ponent of a solution). The solvent in an ideal solution obeys 
Raoult’s law (Topic 5A, p x pA A A= *) at all concentrations and 
we can express the chemical potential as eqn 5A.22 (that is, as 
μ μA A Aln= +* RT x ). The form of the this relation can be pre-
served when the solution does not obey Raoult’s law by writing

μ μA A Aln= +* RT a  Definition  activity of solvent  (5E.1)

The quantity aA is the activity of A, a kind of ‘effective’ mole 
fraction, just as the fugacity is an effective pressure.

Because eqn 5E.1 is true for both real and ideal solu-
tions (the only approximation being the use of pressures 
rather than fugacities), we can conclude by comparing it with 
μ μA A A Aln /= +* *( )RT p p  that

a
p

p
A

A

A

=
*  

Measurement  activity of solvent  (5E.2)

We see that there is nothing mysterious about the activity of a 
solvent: it can be determined experimentally simply by meas-
uring the vapour pressure and then using eqn 5E.2.

Brief illustration 5E.1 Solvent activity

The vapour pressure of 0.500 m KNO3(aq) at 100 °C is 
99.95 kPa, so the activity of water in the solution at this tem-
perature is

aA
kPa
kPa

= =99 95
101 325

0 9864
.
.

.
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➤➤ Why do you need to know this material?
Ideal solutions are a good starting point for the discussion 
of mixtures, but to understand real solutions it is important 
to be able to describe deviations from ideal behaviour and 
to express them in terms of molecular interactions.

➤➤ What is the key idea?
The activity of a species, i.e. its effective concentration, 
helps to preserve the form of the expressions derived on 
the basis of ideal behaviour but extends their reach to real 
mixtures.

➤➤ What do you need to know already?
This Topic is based on the expression for chemical potential 
of a species derived from Raoult’s and Henry’s laws (Topic 
5A). It also uses the formulation of a model of a regular 
solution introduced in Topic 5B. You need to be aware of 
the expression for the Gibbs energy of mixing of an ideal 
solution (Topic 5B).
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5E Activities  221

Because all solvents obey Raoult’s law more closely as the 
concentration of solute approaches zero, the activity of the sol-
vent approaches the mole fraction as xA → 1:

a x xA A Aas → → 1  (5E.3)

A convenient way of expressing this convergence is to intro-
duce the activity coefficient, γ (gamma), by the definition

a x xA A A A A1 as 1= → →γ γ   
Definition  activity coefficient of solvent  (5E.4)

at all temperatures and pressures. The chemical potential of the 
solvent is then

µ µ γA A A Aln ln= + +* RT x RT  

The standard state of the solvent is established when xA = 1 and 
the pressure is 1 bar.

5E.2 The solute activity

The problem with defining activity coefficients and standard 
states for solutes is that they approach ideal–dilute (Henry’s 
law) behaviour as xB → 0, not as xB → 1 (corresponding to pure 
solute). We shall show how to set up the definitions for a solute 
that obeys Henry’s law exactly, and then show how to allow for 
deviations.

(a) Ideal–dilute solutions
A solute B that satisfies Henry’s law (Topic 5A) has a vapour 
pressure given by pB = KBxB, where KB is an empirical constant. 
In this case, the chemical potential of B is

μ μ μ

μ

B B
B

B
B

B

B
B= + = + +*

*
*

*
ln ln lnRT

p

p
RT

K

p
RT x

B
<

� ��� ���

 
(5E.6)

Both KB and pB
* are characteristics of the solute, so the second 

term may be combined with the first to give a new standard 
chemical potential, μB

< .

μ μB B
B

B

< = +*
*

lnRT
K
p  

(5E.7)

It then follows that the chemical potential of a solute in an 
ideal–dilute solution is related to its mole fraction by

μ μB B B= +< RT xln  (5E.8)

If the solution is ideal, K pB B= *  and eqn 5E.7 reduces to μ μB B
< = * ,  

as we should expect.

(b) Real solutes
We now permit deviations from ideal–dilute, Henry’s law 
behaviour. For the solute, we introduce aB in place of xB in eqn 
5E.8, and obtain

μ μB B B= +< RT aln  Definition  activity of solute  (5E.9)

The standard state remains unchanged in this last stage, and 
all the deviations from ideality are captured in the activity aB. 
The value of the activity at any concentration can be obtained 
in the same way as for the solvent, but in place of eqn 5E.2 we 
use

a
p
KB

B

B

=
 

Measurement  activity of solute  (5E.10)

As we did for the solvent, it is sensible to introduce an activity 
coefficient through

a xB B B=γ  Definition  activity coefficient of solute  (5E.11)

Now all the deviations from ideality are captured in the activity 
coefficient γB. Because the solute obeys Henry’s law as its con-
centration goes to zero, it follows that

a x xB B B Band 1 as→ → →γ 0  (5E.12)

Self-test 5E.1 The vapour pressure of water in a saturated solu-
tion of calcium nitrate at 20 °C is 1.381 kPa; the vapour pres-
sure of pure water at that temperature is 2.3393 kPa. What is 
the activity of water in this solution?

Answer: 0.5903

chemical potential 
of solvent  (5E.5)

Brief illustration 5E.2 The solute activity

In Example 5A.4 it is established that in a mixture of pro-
panone (acetone, A) and trichloromethane (chloroform, C) 
at 298 K Kpropanone = 23.3 kPa whereas ppropanone 4 63kPa* .= . It fol-
lows from eqn 5E.7 that

μ μ

μ

propanone propanone

propanone

kPa
kPa

< = +

= +

*

*

ln
.

.

(

RT
23 3
4 63

88 3145 298
23 3
4 63

4 00

1 1. ) ln
.

.

.*

JK mol K

kJmpropanone

− − ×( )×

= +μ ool−1

 
and the standard value differs from the value for the pure 
li quid by 4.00 kJ mol−1.

Self-test 5E.2 In the same mixture, with trichlorometh-
ane treated as the solute, Ktrichloromethane = 22.0 kPa, whereas 
p

trichloromethane
36 4kPa* .= . What is the relation between the 

standard chemical potential and that of the pure liquid?
Answer: μ μtrichloromethane trichloromethane kJ mol< = − −* .1 25 1
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222 5 Simple mixtures

at all temperatures and pressures. Deviations of the solute from 
ideality disappear as zero concentration is approached.

(c) Activities in terms of molalities
The selection of a standard state is entirely arbitrary, so we are 
free to choose one that best suits our purpose and the descrip-
tion of the composition of the system. Because compositions 
are often expressed as molalities, b, in place of mole fractions it 
is convenient to write

μ μB B B= +< RT bln  (5E.13)

where μB
<  has a different value from the standard values intro-

duced earlier. According to this definition, the chemical poten-
tial of the solute has its standard value μB

<  when the molality 
of B is equal to b< (that is, at 1 mol kg−1). Note that as bB → 0, 
μB → ∞; that is, as the solution becomes diluted, so the solute 
becomes increasingly stabilized. The practical consequence of 
this result is that it is very difficult to remove the last traces of a 
solute from a solution.

Now, as before, we incorporate deviations from ideality by 
introducing a dimensionless activity aB, a dimensionless activ-
ity coefficient γB, and writing

a
b
b

bB B
B

B Bwhere  as = → →γ γ
<

, 1 0
 

(5E.14)

at all temperatures and pressures. The standard state remains 
unchanged in this last stage and, as before, all the deviations 
from ideality are captured in the activity coefficient γB. We then 
arrive at the following succinct expression for the chemical 
potential of a real solute at any molality:

μ μB B B= +< RT aln  (5E.15)

(d) The biological standard state

One important illustration of the ability to choose a standard 
state to suit the circumstances arises in biological applications. 
The conventional standard state of hydrogen ions (unit activ-
ity, corresponding to pH = 0)1 is not appropriate to normal 
biological conditions. Therefore, in biochemistry it is common 
to adopt the biological standard state, in which pH = 7 (an 
activity of 10−7, neutral solution) and to label the correspond-
ing standard thermodynamic functions as G4, H4, μ4, and S4 
(some texts use X°′).

Example 5E.1 Measuring activity

Use the following information to calculate the activity and 
activity coefficient of trichloromethane (chloroform, C) in 
propanone (acetone, A) at 25 °C, treating it first as a solvent 
and then as a solute.

Method For the activity of chloroform as a solvent (the 
Raoult’s law activity), form aC C C= p p/ * and γC = aC/xC. For its 
activity as a solute (the Henry’s law activity), form aC = pC/KC 
and γC = aC/xC with the new activity.

Answer Because pC 36 4kPa* .=  and KC = 22.0 kPa, we can 
construct the following tables. For instance, at xC = 0.20, in 
the Raoult’s law case we find aC = (4.7 kPa)/(36.4 kPa) = 0.13 
and γC = 0.13/0.20 = 0.65; likewise, in the Henry’s law case, 
aC = (4.7 kPa)/(22.0 kPa) = 0.21 and γC = 0.21/0.20 = 1.05.

From Raoult’s law (chloroform regarded as the solvent):

From Henry’s law (chloroform regarded as the solute):

These values are plotted in Fig. 5E.1. Notice that γC → 1 as 
xC → 1 in the Raoult’s law case, but that γC → 1 as xC → 0 in the 
Henry’s law case.
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Figure 5E.1 The variation of activity and activity coefficient 
for a chloroform/acetone (trichloromethane/propanone) 
solution with composition according to (a) Raoult’s law, 
(b) Henry’s law.

xC 0 0.20 0.40 0.60 0.80 1
pC/kPa 0 4.7 11 18.9 26.7 36.4
pA/kPa 46.3 33.3 23.3 12.3 4.9 0

aC 0 0.21 0.50 0.86 1.21 1.65
γC 1 1.05 1.25 1.43 1.51 1.65

aC 0 0.13 0.30 0.52 0.73 1.00
γC 0.65 0.75 0.87 0.91 1.00

Self-test 5E.3 Calculate the activities and activity coefficients 
for acetone according to the two conventions.

Answer: At xA = 0.60, for instance aR = 0.50; γ R = 0.83; aH = 1.00, γ H = 1.67

1 Recall from introductory chemistry courses that pH = –log a(H3O+).
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To find the relation between the thermodynamic and biological 
standard values of the chemical potential of hydrogen ions we 
need to note from eqn 5E.15 that

μ μ μH H H H pH+ + + += + = −< <RT a RTln ( ln )10  

It follows that

μ μH H+ +
⊕ = −< 7 10RT ln  

5E.3 The activities of regular 
solutions

The material on regular solutions in Topic 5B gives further 
insight into the origin of deviations from Raoult’s law and 
its relation to activity coefficients. The starting point is the 
model expression for the excess (molar) enthalpy (eqn 5B.6, 
HE = ξRTxAxB) and its implication for the Gibbs energy of mix-
ing for a regular solution. We show in the following Justification 
that for this model the activity coefficients are given by

ln lnA B B Aγ ξ γ ξ= =x x2 2

  margules equations  (5E.17)

These relations are called the Margules equations.

At this point we can use the Margules equations to write the 
activity of A as

a x x xx x
A A A A Ae eB A= = = −γ ξ ξ2 21( )

 (5E.18)

with a similar expression for aB. The activity of A, though, is 
just the ratio of the vapour pressure of A in the solution to the 
vapour pressure of pure A (eqn 5E.2, a p pA A A/= * ), so we can 
write

p p x x
A A Ae A= −* ( )ξ 1 2

 (5E.19)

This function is plotted in Fig. 5E.2. We see that

•	 When ξ = 0, corresponding to an ideal solution, 
p p xA A A= * , in accord with Raoult’s law.

•	 Positive values of ξ (endothermic mixing, 
unfavourable solute–solvent interactions) give 
vapour pressures higher than ideal.

•	 Negative values of ξ (exothermic mixing, favourable 
solute–solvent interactions) give a lower vapour 
pressure.

All the plots of eqn 5E.19 approach linearity and coincide 
with the Raoult’s law line as xA → 1 and the exponential func-
tion in eqn 5E.19 approaches 1. When xA ≪ 1, eqn 5E.19 
approaches

p p xA A Ae= * ξ
 (5E.20)

This expression has the form of Henry’s law once we iden-
tify K with e A

ξp* , which is different for each solute–solvent 
system.

Brief illustration 5E.3 The biological standard state

At 298 K, 7RT ln10 =  39.96 kJ mol−1, so the two stand-
ard values differ by about 40 kJ mol−1 and specif ically 
μ μH H kJ mol+ +

⊕ −= −< 39 96 1. .  Thus, in a reaction of the form 
A + 2 H+(aq) → B, the standard and biological standard Gibbs 
energies are related as follows:

∆r B A H B A H

B A H

2 2 14 ln1

2

G RT⊕ = + = +

= +
+ +μ μ μ μ μ μ

μ μ μ

< < < < < <

< <

–{ } –{ – }

–{

0

++ + = +

= +

< <

<

}

. –

14 ln 1 14 ln1

79 92kJmol

r

r
1

RT G RT

G

0 0∆

∆  

Self-test 5E.4 Find the relation between the standard and 
biological standard Gibbs energies of a reaction of the form 
A → B + 3 H+(aq).

Answer: ΔrG4 = ΔrG< – 119.88 kJ mol−1

Justification 5E.1 The Margules equations

The Gibbs energy of mixing to form an ideal solution is

∆mix A A B Bln lnG nRT x x x x= +{ }  
(This is eqn 5B.16 of Topic 5B.) The corresponding expression 
for a non-ideal solution is

∆mix A A B Bln lnG nRT x a x a= +{ }  

This relation follows in the same way as for an ideal mixture 
but with activities in place of mole fractions. If each activity is 
replaced by γx, this expression becomes

∆mix A A A B B B

A A B B A A B

ln ln

ln ln ln ln

G nRT x x x x

nRT x x x x x x

= +
= + + +

{ }

{

γ γ
γ γγ B}

Now we introduce the two expressions in eqn 5E.17, and use 
xA + xB = 1, which gives

∆mix A A B B A B B A

A A B B

ln ln

ln ln

G nRT x x x x x x x x

nRT x x x x

= + + +
= + +

{ }

{

ξ ξ
ξ

2 2

xx x x x

nRT x x x x x x
A B A B

A A B B A Bln ln

( )}

{ }

+
= + +ξ  

Note that the activity coefficients behave correctly for dilute 
solutions: γA → 1 as xB → 0 and γ B → 1 as xA → 0.
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relation between standard 
state and biological 
standard state

 (5E.16)
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224 5 Simple mixtures

Checklist of concepts

☐ 1. The activity is an effective concentration that preserves 
the form of the expression for the chemical potential. 
See Table 5E.1.

☐ 2. The chemical potential of a solute in an ideal–dilute 
solution is defined on the basis of Henry’s law.

☐ 3. The activity of a solute takes into account departures 
from Henry’s law behaviour.

☐ 4. An alternative approach to the definition of the solute 
activity is based on the molality of the solute.

☐ 5. The biological standard state of a species in solution is 
defined as pH = 7 (and 1 bar).

☐ 6. The Margules equations relate the activities of the com-
ponents of a model regular solution to its composition. 
They lead to expressions for the vapour pressures of the 
components of a regular solution.

Brief illustration 5E.4 The Margules equations

In Example 5B.1 of Topic 5B it is established that ξ = 1.13 for 
a mixture of benzene and cyclohexane at 25 °C. Because ξ > 0 
we can expect the vapour pressure of the mixture to be greater 
than its ideal value. The total vapour pressure of the mixture 
is therefore

p p x

p x

x=

+

−
benzene benzene

cyclohexane cycloh

e benzene*

*

. ( )1 13 1 2

eexanee cyclohexane1 13 1 2. ( )−x

This expression is plotted in Fig. 5E.3a using pbenzene = 10.0 kPa 
and pcyclohexane  1 4 kPa* .= 0 .

Self-test 5E.5 Suppose it is found that for a hypothetical mix-
ture ξ = −1.13, but with other properties the same. Draw the 
vapour pressure diagram.

Answer: See Fig. 5E.3b
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Figure 5E.3 The computed vapour pressure curves for a 
mixture of benzene and cyclohexane at 25 °C (a) as derived 
in Brief illustration 5E.4 and (b) Selftest 5E.5.
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Figure 5E.2 The vapour pressure of a mixture based on a 
model in which the excess enthalpy is proportional to ξRTxAxB. 
An ideal solution corresponds to ξ = 0 and gives a straight line, 
in accord with Raoult’s law. Positive values of ξ give vapour 
pressures higher than ideal. Negative values of ξ give a lower 
vapour pressure.

Table 5E.1 Activities and standard states: a summary*

Component Basis Standard state Activity Limits

Solid or liquid Pure, 1 bar a = 1

Solvent Raoult Pure solvent, 1 bar a = p/p*, a = γ x γ  → 1 as x → 1 (pure solvent)

Solute Henry (1) A hypothetical state of the pure solute a = p/K, a = γ x γ  → 1 as x → 0

(2) A hypothetical state of the solute at molality b< a b b=γ / < γ  → 1 as b → 0

Gas Fugacity† Pure, a hypothetical state of 1 bar and behaving as a perfect gas f = γ p γ  → 1 as p → 0

* In each case, μ = μ < + RT ln a.
† Fugacity is discussed in Topic 3D.

iranchembook.ir/edu



5E Activities  225

Checklist of equations

Property Equation Comment Equation number

Chemical potential of solvent μ μA A Aln= +* RT a Definition 5E.1

Activity of solvent a p pA A A= / * aA → xA as xA → 1 5E.2

Activity coefficient of solvent aA= γAxA γA → 1 as xA → 1 5E.4

Chemical potential of solute μ μB B B= +< RT aln Definition 5E.9

Activity of solute aB = pB/KB aB → xB as xB → 0 5E.10

Activity coefficient of solute aB = γBxB γB → 1 as xB → 0 5E.11

Conversion to biological standard state μ μ
H H+ +
⊕ = −< 7 10RT ln 5E.16

Margules equations In x  In xA B Aγ ξ γ ξ= =2 2, B Regular solution 5E.17

Vapour pressure p p x x
A A Ae A= −* ( )ξ 1 2 Regular solution 5E.19
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5F the activities of ions

If the chemical potential of the cation M+ is denoted μ+ and that 
of the anion X− is denoted μ−, the total molar Gibbs energy of 
the ions in the electrically neutral solution is the sum of these 
partial molar quantities. The molar Gibbs energy of an ideal 
solution of such ions is

Gm
ideal ideal ideal= ++ −

μ μ  (5F.1)

with μJ
ideal = μJ

< + RT ln xJ. However, for a real solution of M+ 
and X− of the same molality we write μJ = μJ

< + RT ln aJ with 
aJ = γJxJ, which implies that μJ = μJ

ideal + RT ln γJ. It then follows 
that

G RT RT

G RT

i i

i

m
deal deal

m
deal

ln ln

ln

= + = + + +
= +

+ + +

+

µ µ µ µ γ γ
γ γ

− − −

−  
(5F.2)

All the deviations from ideality are contained in the last term.

5F.1 Mean activity coefficients

There is no experimental way of separating the product γ+γ− 
into contributions from the cations and the anions. The best we 
can do experimentally is to assign responsibility for the non-
ideality equally to both kinds of ion. Therefore, for a 1,1-elec-
trolyte, we introduce the ‘mean activity coefficient’ as the 
geometric mean of the individual coefficients, where the geo-
metric mean of xp and yq is (xpyq)1/(p+q). Thus:

γ γ γ± += ( ) / 1 2
−  (5F.3)

and express the individual chemical potentials of the ions as

µ µ γ µ µ γ+ + ± − ±= + = +ideal idealln lnRT RT−  (5F.4)

The sum of these two chemical potentials is the same as before, 
eqn 5F.2, but now the non-ideality is shared equally.

We can generalize this approach to the case of a compound 
MpXq that dissolves to give a solution of p cations and q anions 
from each formula unit. The molar Gibbs energy of the ions is 
the sum of their partial molar Gibbs energies:

G p q G pRT qRTm m
ideal= + = + ++ +µ µ γ γ− −ln ln  (5F.5)
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➤➤ Why do you need to know this material?
Interactions between ions are so strong that the 
approximation of replacing activities by molalities is valid 
only in very dilute solutions (less than 1 mmol kg−1 in total 
ion concentration) and in precise work activities themselves 
must be used. We need, therefore, to pay special attention 
to the activities of ions in solution, especially in preparation 
for the discussion of electrochemical phenomena.

➤➤ What is the key idea?
The chemical potential of an ion is lowered as a result of its 
electrostatic interaction with its ionic atmosphere.

➤➤ What do you need to know already?
This Topic builds on the relation between chemical 
potential and mole fraction (Topic 5A) and on the relation 
between Gibbs free energy and non-expansion work 
(Topic 3D). If you intend to work through the derivation 
of the Debye–Hückel theory, you need to be familiar 
with some concepts from electrostatics, including the 
Coulomb potential and its relation to charge density 
through Poisson’s equation (which is explained in the 
Topic); this Topic also draws on the Boltzmann distribution 
(Foundations B and, in much more detail, Topic 15A).
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5F The activities of ions  227

If we introduce the mean activity coefficient now defined in a 
more general way as

γ γ γ± + −= = +( ) /p q s s p q1

 

and write the chemical potential of each ion as

µ µ γi i RT= + ±
ideal ln  (5F.7)

we get the same expression as in eqn 5F.2 for Gm when we write 
Gm = pμ+ + qμ−. However, both types of ion now share equal 
responsibility for the non-ideality.

(a) The Debye–Hückel limiting law
The long range and strength of the Coulombic interaction 
between ions means that it is likely to be primarily responsible 
for the departures from ideality in ionic solutions and to domi-
nate all the other contributions to non-ideality. This domina-
tion is the basis of the Debye–Hückel theory of ionic solutions, 
which was devised by Peter Debye and Erich Hückel in 1923. 
We give here a qualitative account of the theory and its prin-
cipal conclusions. The calculation itself, which is a profound 
example of how a seemingly intractable problem can be for-
mulated and then resolved by drawing on physical insight, is 
described the following section.

Oppositely charged ions attract one another. As a result, ani-
ons are more likely to be found near cations in solution, and 
vice versa (Fig. 5F.1). Overall, the solution is electrically neu-
tral, but near any given ion there is an excess of counter ions 
(ions of opposite charge). Averaged over time, counter ions are 
more likely to be found near any given ion. This time-averaged, 
spherical haze around the central ion, in which counter ions 
outnumber ions of the same charge as the central ion, has a 
net charge equal in magnitude but opposite in sign to that on 

the central ion, and is called its ionic atmosphere. The energy, 
and therefore the chemical potential, of any given central ion is 
lowered as a result of its electrostatic interaction with its ionic 
atmosphere. This lowering of energy appears as the difference 
between the molar Gibbs energy Gm and the ideal value Gm

ideal 
of the solute, and hence can be identified with RT ln γ±. The 
stabilization of ions by their interaction with their ionic atmos-
pheres is part of the explanation why chemists commonly use 
dilute solutions, in which the stabilization is less important, to 
achieve precipitation of ions from electrolyte solutions.

The model leads to the result that at very low concentra-
tions the activity coefficient can be calculated from the Debye–
Hückel limiting law

log 1 2γ ± += – /A z z I−   debye–hückel limiting law  (5F.8)

where A = 0.509 for an aqueous solution at 25 °C and I is the 
dimensionless ionic strength of the solution:

I z b b
i

i i= ∑1
2

2( )/ <

 
Definition  Ionic strength  (5F.9)

In this expression, zi is the charge number of an ion i (positive 
for cations and negative for anions) and bi is its molality. The 
ionic strength occurs widely wherever ionic solutions are dis-
cussed, as we shall see. The sum extends over all the ions pre-
sent in the solution. For solutions consisting of two types of ion 
at molalities b+ and b−,

I b z b z b= ++ + − 1
2

2 2( )/−
<  (5F.10)

The ionic strength emphasizes the charges of the ions because 
the charge numbers occur as their squares. Table 5F.1 sum-
marizes the relation of ionic strength and molality in an easily 
usable form.

The name ‘limiting law’ is applied to eqn 5F.8 because 
ionic solutions of moderate molalities may have activity 

Brief illustration 5F.1 The limiting law

The mean activity coefficient of 5.0 mmol kg−1 KCl(aq) at 
25 °C is calculated by writing I b b b b b= + =+

1
2 ( )/−

< </ , where 
b is the molality of the solution (and b+ = b− = b). Then, from 
eqn 5F.8,

log 509 5 1 33 1 2γ ± = × × =– . ( . ) .– /0 0 0 0 0− …

Hence, γ± = 0.92. The experimental value is 0.927.

Self-test 5F.1 Calculate the ionic strength and the mean activ-
ity coefficient of 1.00 mmol kg−1 CaCl2(aq) at 25 °C.

Answer: 3.00 mmol kg−1, 0.880

 (5F.6)Definition mean activity 
coefficient

Figure 5F.1 The picture underlying the Debye–Hückel theory 
is of a tendency for anions to be found around cations, and of 
cations to be found around anions (one such local clustering 
region is shown by the grey sphere). The ions are in ceaseless 
motion, and the diagram represents a snapshot of their 
motion. The solutions to which the theory applies are far less 
concentrated than shown here.
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228 5 Simple mixtures

coefficients that differ from the values given by this expres-
sion, yet all solutions are expected to conform as b → 0. Table 
5F.2 lists some experimental values of activity coefficients 
for salts of various valence types. Figure 5F.2 shows some of 
these values plotted against I1/2, and compares them with the 
theoretical straight lines calculated from eqn 5F.8. The agree-
ment at very low molalities (less than about 1 mmol kg−1, 
depending on charge type) is impressive and convincing evi-
dence in support of the model. Nevertheless, the departures 
from the theoretical curves above these molalities are large, 
and show that the approximations are valid only at very low 
concentrations.

(b) Extensions of the limiting law

When the ionic strength of the solution is too high for the limit-
ing law to be valid, the activity coefficient may be estimated 
from the extended Debye–Hückel law (sometimes called the 
Truesdell–Jones equation):

log
/

/γ ±
+ −= −

+
A z z I

BI

1 2

1 21  
 extended debye–hückel law  (5F.11a)

where B is a dimensionless constant. A more flexible extension 
is the Davies equation proposed by C.W. Davies in 1938:

log
/

/γ ±
+ −= −

+
+

A z z I

BI
CI

1 2

1 21  
 davies equation  (5F.11b)

where C is another dimensionless constant. Although B can be 
interpreted as a measure of the closest approach of the ions, it 
(like C) is best regarded as an adjustable empirical parameter. 
A curve drawn on the basis of the Davies equation is shown 
in Fig. 5F.3. It is clear that eqn 5F.11 accounts for some activ-
ity coefficients over a moderate range of dilute solutions (up 
to about 0.1 mol kg−1); nevertheless it remains very poor near 
1 mol kg−1.

Current theories of activity coefficients for ionic solutes 
take an indirect route. They set up a theory for the depend-
ence of the activity coefficient of the solvent on the concentra-
tion of the solute, and then use the Gibbs–Duhem equation 
(eqn 5A.12a, nAdμA + nBdμB = 0) to estimate the activity coef-
ficient of the solute. The results are reasonably reliable for 
solutions with molalities greater than about 0.1 mol kg−1 and 
are valuable for the discussion of mixed salt solutions, such 
as sea water.

Table 5F.1 Ionic strength and molality, I = kb/b <

k X− X2− X3− X4−

M+ 1 3 6 10

M2+ 3 4 15 12

M3+ 6 15 9 42

M4+ 10 12 42 16

For example, the ionic strength of an M2X3 solution of molality b, which is 
understood to give M3+ and X2– ions in solution is 15b/b <.

Table 5F.2* Mean activity coefficients in water at 298 K

b/b< KCl CaCl2

0.001 0.966 0.888

0.01 0.902 0.732

0.1 0.770 0.524

1.0 0.607 0.725

* More values are given in the Resource section.

NaCl
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MgSO4
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(1,2)
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0
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100I1/2
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–0.2

lo
g

 γ
±

Figure 5F.2 An experimental test of the Debye–Hückel limiting 
law. Although there are marked deviations for moderate ionic 
strengths, the limiting slopes as I → 0 are in good agreement 
with the theory, so the law can be used for extrapolating data 
to very low molalities.

0
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4 8 12 16
100I1/2

–0.08
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–0.04
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 γ
±

Extended
law

Limiting
law

Figure 5F.3 The Davies equation gives agreement with 
experiment over a wider range of molalities than the limiting 
law (as shown here for a 1,1-electrolyte), but it fails at higher 
molalities.

iranchembook.ir/edu



5F The activities of ions  229

5F.2 The Debye–Hückel theory

The strategy for the calculation is to establish the relation 
between the work needed to charge an ion and its chemical 
potential, and then to relate that work to the ion’s interaction 
with the atmosphere of counter ions that has assembled around 
it as a result of the competition of the attraction between oppo-
sitely charged ions, the repulsion of like-charged ions, and the 
distributing effect of thermal motion.

(a) The work of charging
Imagine a solution in which all the ions have their actual posi-
tions, but in which their Coulombic interactions have been 
turned off and so are behaving ‘ideally’. The difference in molar 
Gibbs energy between the ideal and real solutions is equal to we, 
the electrical work of charging the system in this arrangement. 
For a salt MpXq, we write

w p q p qe
ideal ideal= + − ++ − + −( ) ( )μ μ μ μ

G Gm m
ideal, charged , un� �� �� ccharged

ideal ideal

� ��� ���

= − −++ + − −p q( ) ( )μ μ μ μ  

(5F.12)

From eqn 5F.7 we write

µ µ µ µ γ+ + − − ±= =− −ideal ideal lnRT  

So it follows that

lnγ ± = = +w
sRT

s p qe

 
(5F.13)

This equation tells us that we must first find the final distribu-
tion of the ions and then the work of charging them in that 
distribution.

(b) The potential due to the charge 
distribution
As explained in Foundations B, the Coulomb potential at a dis-
tance r from an isolated ion of charge zie in a medium of per-
mittivity ε is

φ εi
i

i
iZ

r
Z

z e= =
4π  

(5F.14)

The ionic atmosphere causes the potential to decay with  
distance more sharply than this expression implies. Such 
shielding is a familiar problem in electrostatics, and its  
effect is taken into account by replacing the Coulomb poten-
tial by the shielded Coulomb potential, an expression of the 
form

φi
i r rZ

r
= −e D/

 
 shielded coulomb potential  (5F.15)

where rD is called the Debye length. When rD is large, the 
shielded potential is virtually the same as the unshielded 
potential. When it is small, the shielded potential is much 
smaller than the unshielded potential, even for short dis-
tances (Fig. 5F.4). We establish in the following Justification 
that

r
RT

F IbD =





ε
ρ2 2

1 2

<

/

 
 debye length  (5F.16)

Brief illustration 5F.2 The work of charging

The measured mean activity coefficient of 5.0 mmol kg−1 
KCl(aq) at 25 °C is 0.927. It follows that the average work 
involved in charging the ions in their environment in the solu-
tion is given by eqn 5F.13 in the form

w sRTe JK mol K

kJmo

= = × × ×
= −

±
− −ln ( . ) ( ) ln .

.

γ 2 8 3145 298 0 927

0 38

1 1

ll−1

Self-test 5F.2 The measured mean activity coefficient of 
0.1 mol kg−1 Na2SO4(aq) at 25 °C is 0.445. What is the work of 
charging the ions in the solution?

Answer: –6.02 kJ mol−1
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Figure 5F.4 The variation of the shielded Coulomb  
potential with distance for different values of the Debye  
length, rD/a. The smaller the Debye length, the more sharply 
the potential decays to zero. In each case, a is an arbitrary unit 
of length.
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230 5 Simple mixtures

Brief illustration 5F.3 The Debye length

To estimate the Debye length in an aqueous solution of ionic 
strength 0.100 and density 1.000 g cm−3 at 25 °C we write

rD
( J C m ) J= × × ×− − −80 10 8 854 10 8 314512 1 2 1. . ( .

ε� ������� �������
KK mol K

kg m

− −

−
×

× × ×
−

1 1

3

298

2 1000 9 649 1

) ( )

( ) ( .

1.000 gcm 3
� ��� ��� 00 0 100 1

9

4 1 2 1

1 2

C mol mol kg− −× ×



















=

) ( . ) ( )

.

/

b<

� �� ��

772 10 0 97210× − m  or nm, .

Self-test 5F.3 Estimate the Debye length in an ethanol solu-
tion of ionic strength 0.100 and density 0.789 g cm−3 at 25 °C. 
Use εr = 25.3.

Answer: 0.615 nm

Justification 5F.1 The Debye length

To calculate rD, we need to know how the charge density, ρi, 
of the ionic atmosphere, the charge in a small region divided 
by the volume of the region, varies with distance from the ion. 
This step draws on another standard result of electrostatics, 
in which charge density and potential are related by Poisson’s 
equation:

∇ = −2φ ρ
ε  

 Poisson’s equation          

where ∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. Because we are consider-
ing only a spherical ionic atmosphere, we can use a simplified 
form of this equation in which the charge density varies only 
with distance from the central ion:

1
2

2

r r
r

r
i id

d
d
d
φ ρ

ε






= −

Substitution of the expression for the shielded potential, eqn 
5F.15, results in

rD
i

i

2 = − εφ
ρ

To solve this equation we need to relate ρi and φi.
For this next step we draw on the fact that the energy of 

an ion depends on its closeness to the central ion, and then 
use the Boltzmann distribution (Foundations B) to work out 
the probability that an ion will be found at each distance. The 
energy of an ion j of charge zje at a distance where it experi-
ences the potential φi of the central ion i relative to its energy 
when it is far away in the bulk solution is its charge times the 
potential zje,φi. Therefore, according to the Boltzmann distri-
bution, the ratio of the molar concentration, cj, of ions at a dis-
tance r and the molar concentration in the bulk, c j

°, where the 
energy is zero, is

c

c
j

j

z e kTj i

°
−= e φ /

The charge density, ρi, at a distance r from the ion i is the molar 
concentration of each type of ion multiplied by the charge per 
mole of ions, zieNA. The quantity eNA = F, the magnitude of the 
charge per mole of electrons, is Faraday’s constant. It follows that

ρ φ φ
i

z e kT z e kTc z F c z F c z F c z Fi i= + = ++ + − − +° +
−

−° −
−+ −e e/ /

At this stage we need to simplify the expression to avoid the 
awkward exponential terms. Because the average electrostatic 
interaction energy is small compared with kT we may use the 
expansion ex = 1 + x + … and write the charge density as

ρ φ φ
i

i ic z F
z e
kT

c z F
z e
kT

c z

= − +





+ − +





= +

+° +
+

−° −
−

+° +

1 1� �

( cc z F c z c z
Fe
kT

i
−° − +° + −° −− + +) ( )

0� �� ��
�2 2 φ

The first term in the expansion is zero because it is the charge 
density in the bulk, uniform solution, and the solution is elec-
trically neutral. Replacing e by F/NA and NAk by R results in 
the following expression:

ρ φ
i

ic z c z
F
RT

= − ++° + −° −( )2 2
2

The unwritten terms are assumed to be too small to be 
significant. This one remaining term, in blue, can be expressed 
in terms of the ionic strength, eqn 5F.9, by noting that in the 
dilute aqueous solutions we are considering there is little dif-
ference between molality and molar concentration, and c ≈ bρ, 
where ρ is the mass density of the solvent

c z c z b z b z Ib+° + −° − +° + −° −+ ≈ +( ) =2 2 2 2 2

2Ib<

<

� ��� ���
ρ ρ

With these approximations, the last equation becomes

ρ ρ φ
i

iIb F
RT

= − 2 2<

We can now substitute this expression into r i iD /2 = −εφ ρ , when 
the φi cancel and we obtain eqn 5F.16.

(c) The activity coefficient
To calculate the activity coefficient we need to find the electri-
cal work of charging the central ion when it is surrounded by its 
atmosphere. This calculation is carried through in the follow-
ing Justification, which leads to the conclusion that the work of 
charging an ion i when it is surrounded by the atmosphere it 
has assembled is

w
z F
N ri
i

e
A D

, = −
2 2

8π ε  
 work of charging  (5F.17)
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We can now collect the various pieces of this calculation and 
arrive at an expression for the mean activity coefficient. It fol-
lows from eqn 5F.13 with we = pwe,+ + qwe,−, the total work of 
charging p cations and q anions in the presence of their atmos-
pheres, that the mean activity coefficient of the ions is
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The replacement of rD with the expression in eqn 5F.16 gives
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where we have grouped terms in such a way as to show that 
this expression is beginning to take the form of eqn 5F.8  
(log γ± = –|z+z−|AI1/2). Indeed, conversion to common loga-
rithms (by using ln x = ln 10 × log x) gives
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which is eqn 5F.8 with
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Justification 5F.2 The work of charging

To calculate the work of charging the central ion we need to 
know the potential at the ion due to its atmosphere, ϕatmos. This 
potential is the difference between the total potential, given by 
eqn 5F.15, and the potential due to the central ion itself:
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The potential at the central ion (at r = 0) is obtained by taking 
the limit of this expression as r → 0 and is
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This expression shows us that the potential due to the ionic 
atmosphere is equivalent to the potential arising from a single 
charge of equal magnitude but opposite sign to that of the cen-
tral ion and located at a distance rD from the ion. If the charge 
of the central ion were Q and not zie, then the potential due to 
its atmosphere would be

φ εatmosphere
D

( )0
4

= − Q
rπ

The work of adding a charge dQ to a region where the electri-
cal potential is ϕatmosphere(0), Table 2A.1 (from dw = ϕdQ), is

d de atmospherew Q=φ ( )0

Therefore, the total molar work of fully charging the ion i in 
the presence of its atmosphere is
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where in the last step we have used F = NAe. This expression is 
eqn. 5F.17.

Brief illustration 5F.4 The Debye–Hückel constant

To evaluate the constant A for water at 25.00 °C, we use 
ρ = 0.9971 g cm−3 and ε = 78.54ε0 to find
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Self-test 5F.4 Evaluate the constant A for ethanol at 25 °C, 
when εr = 25.3 and ρ = 0.789 g cm−3.

Answer: 2.47
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232 5 Simple mixtures

Checklist of concepts

☐ 1. Mean activity coefficients apportion deviations from ide-
ality equally to the cations and anions in an ionic solution.

☐ 2. The Debye–Hückel theory ascribes deviations from 
ideality to the Coulombic interaction of an ion with the 
ionic atmosphere that assembles around it.

☐ 3. The Debye–Hückel limiting law is extended by includ-
ing two further empirical constants.

Checklist of equations

Property Equation Comment Equation number

Mean activity coefficient γ γ γ± + −
+=( ) /( )p q p q1 Definition 5F.6

Debye–Hückel limiting law log γ± = −A|z+z−|I1/2 Valid as I → 0 5F.8

Ionic strength I z b b
i

i i= ∑1
2

2( / )< Definition 5F.9

Davies equation log /( )/ /γ ± + −= − + +A z z I BI CI1 2 1 21 A, B, C empirical constants 5F.11
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chaPter 5  Simple mixtures

TOPIC 5A the thermodynamic description of mixtures

Discussion questions
5A.1 Explain the concept of partial molar quantity, and justify the remark that 
the partial molar property of a solute depends on the properties of the solvent 
too.

5A.2 Explain how thermodynamics relates non-expansion work to a change in 
composition of a system.

5A.3 Are there any circumstances under which two (real) gases will not mix 
spontaneously?

5A.4 Explain how Raoult’s law and Henry’s law are used to specify the 
chemical potential of a component of a mixture.

5A.5 Explain the molecular origin of Raoult’s law and Henry’s law.

Exercises
5A.1(a) A polynomial fit to measurements of the total volume of a binary 
mixture of A and B is

v = + − +987 93 35 677 4 45923 173252. . . .x x x0 0 0  
where v = V/cm3, x = nB/mol, and nB is the amount of B present. Determine the 
partial molar volumes of A and B.
5A.1(b) A polynomial fit to measurements of the total volume of a binary 
mixture of A and B is

v = + + +778 55 22 5749 56892 1 23 2342 3. . . . .− x x x x0 0 0 0 0 00

where v = V/cm3, x = nB/mol, and nB is the amount of B present. Determine the 
partial molar volumes of A and B.

5A.2(a) The volume of an aqueous solution of NaCl at 25 °C was measured at 
a series of molalities b, and it was found that the volume fitted the expression 
v = 1003 + 16.62x + 1.77x3/2 + 0.12x2 where v = V/cm3, V is the volume of a 
solution formed from 1.000 kg of water and x b b= / <. Calculate the partial 
molar volume of the components in a solution of molality 0.100 mol kg−1.
5A.2(b) At 18 °C the total volume V of a solution formed from MgSO4 and 
1.000 kg of water fits the expression v = 1001.21 + 34.69(x – 0.070)2, where 
v = V/cm3 and x = b/bx b b= / <. Calculate the partial molar volumes of the salt 
and the solvent when in a solution of molality 0.050 mol kg−1.

5A.3(a) Suppose that nA = 0.10nB and a small change in composition results in 
μA changing by δμA = +12 J mol−1, by how much will μB change?
5A.3(b) Suppose that nA = 0.22nB and a small change in composition results in 
μA changing by δμA = –15 J mol−1, by how much will μB change?

5A.4(a) Consider a container of volume 5.0 dm3 that is divided into two 
compartments of equal size. In the left compartment there is nitrogen at 
1.0 atm and 25 °C; in the right compartment there is hydrogen at the same 
temperature and pressure. Calculate the entropy and Gibbs energy of mixing 
when the partition is removed. Assume that the gases are perfect.
5A.4(b) Consider a container of volume 250 cm3 that is divided into two 
compartments of equal size. In the left compartment there is argon at 100 kPa 
and 0 °C; in the right compartment there is neon at the same temperature 
and pressure. Calculate the entropy and Gibbs energy of mixing when the 
partition is removed. Assume that the gases are perfect.

5A.5(a) Air is a mixture with mass percentage composition 75.5 (N2), 23.2 
(O2), 1.3 (Ar). Calculate the entropy of mixing when it is prepared from the 
pure (and perfect) gases.

5A.5(b) When carbon dioxide is taken into account, the mass percentage 
composition of air is 75.52 (N2), 23.15 (O2), 1.28 (Ar), and 0.046 (CO2). What 
is the change in entropy from the value in the preceding exercise?

5A.6(a) The vapour pressure of benzene at 20 °C is 10 kPa and that of 
methylbenzene is 2.8 kPa at the same temperature. What is the vapour 
pressure of a mixture of equal masses of each component?
5A.6(b) At 90 °C the vapour pressure of 1,2-dimethylbenzene is 20 kPa and that 
of 1,3-dimethylbenzene is 18 kPa. What is the composition of the vapour of an 
equimolar mixture of the two components?

5A.7(a) The partial molar volumes of acetone (propanone) and chloroform 
(trichloromethane) in a mixture in which the mole fraction of CHCl3 is 
0.4693 are 74.166 cm3 mol−1 and 80.235 cm3 mol−1, respectively. What is the 
volume of a solution of mass 1.000 kg?
5A.7(b) The partial molar volumes of two liquids A and B in a mixture in which 
the mole fraction of A is 0.3713 are 188.2 cm3 mol−1 and 176.14 cm3 mol−1, 
respectively. The molar masses of the A and B are 241.1 g mol−1 and 
198.2 g mol−1. What is the volume of a solution of mass 1.000 kg?

5A.8(a) At 25 °C, the density of a 50 per cent by mass ethanol–water solution 
is 0.914 g cm−3. Given that the partial molar volume of water in the solution is 
17.4 cm3 mol−1, calculate the partial molar volume of the ethanol.
5A.8(b) At 20 °C, the density of a 20 per cent by mass ethanol/water solution is 
968.7 kg m−3. Given that the partial molar volume of ethanol in the solution is 
52.2 cm3 mol−1, calculate the partial molar volume of the water.

5A.9(a) At 300 K, the partial vapour pressure of HCl (that is, the partial 
pressure of the HCl vapour) in liquid GeCl4 is as follows:

Show that the solution obeys Henry’s law in this range of mole fractions, and 
calculate Henry’s law constant at 300 K.
5A.9(b) At 310 K, the partial vapour pressure of a substance B dissolved in a 
liquid A is as follows:

Show that the solution obeys Henry’s law in this range of mole fractions, and 
calculate Henry’s law constant at 310 K.

xHCl 0.005 0.012 0.019

pHCl/kPa 32.0 76.9 121.8

xB 0.010 0.015 0.020

pB/kPa 82.0 122.0 166.1
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234 5 Simple mixtures

5A.10(a) Calculate the molar solubility of nitrogen in benzene exposed to air at 
25 °C; partial pressures were calculated in Example 1A.3 of Topic 1A.
5A.10(b) Calculate the molar solubility of methane at 1.0 bar in benzene at 25 °C.

5A.11(a) Use Henry’s law and the data in Table 5A.1 to calculate the solubility 
(as a molality) of CO2 in water at 25 °C when its partial pressure is (i) 0.10 
atm, (ii) 1.00 atm.
5A.11(b) The mole fractions of N2 and O2 in air at sea level are approximately 
0.78 and 0.21. Calculate the molalities of the solution formed in an open flask 
of water at 25 °C.

5A.12(a) A water carbonating plant is available for use in the home and 
operates by providing carbon dioxide at 5.0 atm. Estimate the molar 
concentration of the soda water it produces.
5A.12(b) After some weeks of use, the pressure in the water carbonating plant 
mentioned in the previous exercise has fallen to 2.0 atm. Estimate the molar 
concentration of the soda water it produces at this stage.

Problems
5A.1 The experimental values of the partial molar volume of a salt in water are 
found to fit the expression vB = 5.117 + 19.121x1/2, where vB = VB/(cm3 mol−1) 
and x is the numerical value of the molality of B (x = b/b<). Use the Gibbs–
Duhem equation to derive an equation for the molar volume of water in 
the solution. The molar volume of pure water at the same temperature is 
18.079 cm3 mol−1.

5A.2 The compound p-azoxyanisole forms a liquid crystal. 5.0 g of the solid 
was placed in a tube, which was then evacuated and sealed. Use the phase rule 
to prove that the solid will melt at a definite temperature and that the liquid 
crystal phase will make a transition to a normal liquid phase at a definite 
temperature.

5A.3 The following table gives the mole fraction of methylbenzene (A) in 
liquid and gaseous mixtures (xA and yA, respectively) with butanone at 
equilibrium at 303.15 K and the total pressure p. Take the vapour to be perfect 
and calculate the partial pressures of the two components. Plot them against 
their respective mole fractions in the liquid mixture and find the Henry’s law 
constants for the two components.

5A.4 The densities of aqueous solutions of copper(II) sulfate at 20 °C were 
measured as set out below. Determine and plot the partial molar volume of 
CuSO4 in the range of the measurements.

where m(CuSO4) is the mass of CuSO4 dissolved in 100 g of solution.

5A.5 Haemoglobin, the red blood protein responsible for oxygen transport, 
binds about 1.34 cm3 of oxygen per gram. Normal blood has a haemoglobin 
concentration of 150 g dm−3. Haemoglobin in the lungs is about 97 per cent 
saturated with oxygen, but in the capillary is only about 75 per cent saturated. 
What volume of oxygen is given up by 100 cm3 of blood flowing from the 
lungs in the capillary?

5A.6 Use the data from Example 5A.1 to determine the value of b at which VE 
has a minimum value.

TOPIC 5B the properties of solutions

Discussion questions
5B.1 Explain what is meant by a regular solution; what additional features 
distinguish a real solution from a regular solution?

5B.2 Explain the physical origin of colligative properties.

5B.3 Colligative properties are independent of the identity of the solute. Why, 
then, can osmometry be used to determine the molar mass of a solute?

Exercises
5B.1(a) Predict the partial vapour pressure of HCl above its solution in liquid 
germanium tetrachloride of molality 0.10 mol kg−1. For data, see Exercise 
5A.10(a).
5B.1(b) Predict the partial vapour pressure of the component B above its 
solution in A in Exercise 5A.10(b) when the molality of B is 0.25 mol kg−1. 
The molar mass of A is 74.1 g mol−1.

5B.2(a) The vapour pressure of benzene is 53.3 kPa at 60.6 °C, but it fell to 
51.5 kPa when 19.0 g of a non-volatile organic compound was dissolved in 
500 g of benzene. Calculate the molar mass of the compound.

5B.2(b) The vapour pressure of 2-propanol is 50.00 kPa at 338.8 K, but it fell to 
49.62 kPa when 8.69 g of a non-volatile organic compound was dissolved in 
250 g of 2-propanol. Calculate the molar mass of the compound.

5B.3(a) The addition of 100 g of a compound to 750 g of CCl4 lowered the 
freezing point of the solvent by 10.5 K. Calculate the molar mass of the 
compound.
5B.3(b) The addition of 5.00 g of a compound to 250 g of naphthalene lowered 
the freezing point of the solvent by 0.780 K. Calculate the molar mass of the 
compound.

xA 0 0.0898 0.2476 0.3577 0.5194 0.6036

yA 0 0.0410 0.1154 0.1762 0.2772 0.3393

p/kPa 36.066 34.121 30.900 28.626 25.239 23.402

xA 0.7188 0.8019 0.9105 1

yA 0.4450 0.5435 0.7284 1

p/kPa 20.6984 18.592 15.496 12.295

m(CuSO4)/g 5 10 15 20

ρ/(g cm−3) 1.051 1.107 1.167 1.230
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5B.4(a) The osmotic pressure of an aqueous solution at 300 K is 120 kPa. 
Calculate the freezing point of the solution.
5B.4(b) The osmotic pressure of an aqueous solution at 288 K is 99.0 kPa. 
Calculate the freezing point of the solution.

5B.5(a) Calculate the Gibbs energy, entropy, and enthalpy of mixing when 
0.50 mol C6H14 (hexane) is mixed with 2.00 mol C7H16 (heptane) at 298 K; 
treat the solution as ideal.
5B.5(b) Calculate the Gibbs energy, entropy, and enthalpy of mixing when 
1.00 mol C6H14 (hexane) is mixed with 1.00 mol C7H16 (heptane) at 298 K; 
treat the solution as ideal.

5B.6(a) What proportions of hexane and heptane should be mixed (i) by mole 
fraction, (ii) by mass in order to achieve the greatest entropy of mixing?
5B.6(b) What proportions of benzene and ethylbenzene should be mixed (i) by 
mole fraction, (ii) by mass in order to achieve the greatest entropy of mixing?

5B.7(a) The enthalpy of fusion of anthracene is 28.8 kJ mol−1 and its melting 
point is 217 °C. Calculate its ideal solubility in benzene at 25 °C.
5B.7(b) Predict the ideal solubility of lead in bismuth at 280 °C given that its 
melting point is 327 °C and its enthalpy of fusion is 5.2 kJ mol−1.

5B.8(a) The osmotic pressure of solutions of polystyrene in toluene were 
measured at 25 °C and the pressure was expressed in terms of the height of the 
solvent of density 1.004 g cm−3:

Calculate the molar mass of the polymer.

5B.8(b) The molar mass of an enzyme was determined by dissolving it in water, 
measuring the osmotic pressure at 20 °C, and extrapolating the data to zero 
concentration. The following data were obtained:

Calculate the molar mass of the enzyme.

5B.9(a) A dilute solution of bromine in carbon tetrachloride behaves as an 
ideal dilute solution. The vapour pressure of pure CCl4 is 33.85 Torr at 298 K. 
The Henry’s law constant when the concentration of Br2 is expressed as a mole 
fraction is 122.36 Torr. Calculate the vapour pressure of each component, 
the total pressure, and the composition of the vapour phase when the mole 
fraction of Br2 is 0.050, on the assumption that the conditions of the ideal 
dilute solution are satisfied at this concentration.

5B.9(b) The vapour pressure of a pure liquid A is 23 kPa at 20 °C and its 
Henry’s law constant in liquid B is 73 kPa. Calculate the vapour pressure of 
each component, the total pressure, and the composition of the vapour phase 
when the mole fraction of A is 0.066 on the assumption that the conditions of 
the ideal dilute solution are satisfied at this concentration.

5B.10(a) At 90 °C, the vapour pressure of methylbenzene is 53.3 kPa and that of 
1,2-dimethylbenzene is 20.0 kPa. What is the composition of a liquid mixture 
that boils at 90 °C when the pressure is 0.50 atm? What is the composition of 
the vapour produced?
5B.10(b) At 90 °C, the vapour pressure of 1,2-dimethylbenzene is 20 kPa 
and that of 1,3-dimethylbenzene is 18 kPa What is the composition of a 
liquid mixture that boils at 90 °C when the pressure is 19 kPa? What is the 
composition of the vapour produced?

5B.11(a) The vapour pressure of pure liquid A at 300 K is 76.7 kPa and that of 
pure liquid B is 52.0 kPa. These two compounds form ideal liquid and gaseous 
mixtures. Consider the equilibrium composition of a mixture in which the 
mole fraction of A in the vapour is 0.350. Calculate the total pressure of the 
vapour and the composition of the liquid mixture.
5B.11(b) The vapour pressure of pure liquid A at 293 K is 68.8 kPa and that of 
pure liquid B is 82.1 kPa. These two compounds form ideal liquid and gaseous 
mixtures. Consider the equilibrium composition of a mixture in which the 
mole fraction of A in the vapour is 0.612. Calculate the total pressure of the 
vapour and the composition of the liquid mixture.

5B.12(a) It is found that the boiling point of a binary solution of A and B with 
xA = 0.6589 is 88 °C. At this temperature the vapour pressures of pure A and B 
are 127.6 kPa and 50.60 kPa, respectively. (i) Is this solution ideal? (ii) What is 
the initial composition of the vapour above the solution?
5B.12(b) It is found that the boiling point of a binary solution of A and B with 
xA = 0.4217 is 96 °C. At this temperature the vapour pressures of pure A and B 
are 110.1 kPa and 76.5 kPa, respectively. (i) Is this solution ideal? (ii) What is 
the initial composition of the vapour above the solution?

5B.13(a) Dibromoethene (DE, pDE
* 22 9 kPa= .  at 358 K) and dibromopropene 

(DP, pDP* 17 1kPa= .  at 358 K) form a nearly ideal solution. If xDE = 0.60, what is 
(i) ptotal when the system is all liquid, (ii) the composition of the vapour when 
the system is still almost all liquid.
5B.13(b) Benzene and toluene form nearly ideal solutions. Consider an 
equimolar solution of benzene and toluene. At 20 °C the vapour pressures of 
pure benzene and toluene are 9.9 kPa and 2.9 kPa, respectively. The solution 
is boiled by reducing the external pressure below the vapour pressure. 
Calculate (i) the pressure when boiling begins, (ii) the composition of each 
component in the vapour, and (iii) the vapour pressure when only a few drops 
of liquid remain. Assume that the rate of vaporization is low enough for the 
temperature to remain constant at 20 °C.

Problems
5B.1 Potassium fluoride is very soluble in glacial acetic acid and the solutions 
have a number of unusual properties. In an attempt to understand them, 
freezing point depression data were obtained by taking a solution of known 
molality and then diluting it several times (J. Emsley, J. Chem. Soc. A, 2702 
(1971)). The following data were obtained:

Calculate the apparent molar mass of the solute and suggest an interpretation. 
Use ΔfusH = 11.4 kJ mol−1 and Tf* 29 K= 0 .

5B.2 In a study of the properties of an aqueous solution of Th(NO3)4 (by 
A. Apelblat, D. Azoulay, and A. Sahar, J. Chem. Soc. Faraday Trans., I, 1618 
(1973)), a freezing point depression of 0.0703 K was observed for an aqueous 
solution of molality 9.6 mmol kg−1. What is the apparent number of ions per 
formula unit?

5B.3‡ Aminabhavi et al. examined mixtures of cyclohexane with various long-
chain alkanes (T.M. Aminabhavi et al., J. Chem. Eng. Data 41, 526 (1996)). 
Among their data are the following measurements of the density of a mixture 
of cyclohexane and pentadecane as a function of mole fraction of cyclohexane 
(xc) at 298.15 K:

Compute the partial molar volume for each component in a mixture which 
has a mole fraction of cyclohexane of 0.7988.

5B.4‡ Comelli and Francesconi examined mixtures of propionic acid with 
various other organic liquids at 313.15 K (F. Comelli and R. Francesconi, 
J. Chem. Eng. Data 41,101 (1996)). They report the excess volume of mixing 

c/(g dm−3) 2.042 6.613 9.521 12.602

h/cm 0.592 1.910 2.750  3.600

c/(mg cm−3) 3.221 4.618 5.112  6.722

h/cm 5.746 8.238 9.119 11.990

b/(mol kg−1) 0.015 0.037 0.077 0.295 0.602

ΔT/K 0.115 0.295 0.470 1.381 2.67

xc 0.6965 0.7988 0.9004

ρ/(g cm−3) 0.7661 0.7674 0.7697

‡ These problems were provided by Charles Trapp and Carmen Giunta.
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propionic acid with oxane as VE = x1x2{a0 + a1(x1 – x2)}, where x1 is the mole 
fraction of propionic acid, x2 that of oxane, a0 = –2.4697 cm3 mol−1 and 
a1 = 0.0608 cm3 mol−1. The density of propionic acid at this temperature is 
0.97174 g cm−3; that of oxane is 0.86398 g cm−3. (a) Derive an expression for 
the partial molar volume of each component at this temperature. (b) Compute 
the partial molar volume for each component in an equimolar mixture.

5B.5‡ Equation 5B.15 indicates, after it has been converted into an expression 
for xB, that solubility is an exponential function of temperature. The data in 
the table below gives the solubility, S, of calcium acetate in water as a function 
of temperature.

Determine the extent to which the data fit the exponential S = S0eτ/T and 
obtain values for S0 and τ. Express these constants in terms of properties of 
the solute.

5B.6 The excess Gibbs energy of solutions of methylcyclohexane (MCH) and 
tetrahydrofuran (THF) at 303.15 K were found to fit the expression

G RTx x x xE 21 4857 1 77 2 1 191 2 1= +{ }( ) . . ( ) . ( )− − − −0 0 0 0 0  
where x is the mole fraction of the methylcyclohexane. Calculate the Gibbs 
energy of mixing when a mixture of 1.00 mol of MCH and 3.00 mol of THF is 
prepared.

5B.7‡ Figure 5.1 shows ΔmixG(xPb,T) for a mixture of copper and lead. (a) 
What does the graph reveal about the miscibility of copper and lead and the 
spontaneity of solution formation? What is the variance (F) at (i) 1500 K, (ii) 
1100 K? (b) Suppose that at 1500 K a mixture of composition (i) xPb = 0.1, (ii) 
xPb = 0.7, is slowly cooled to 1100 K. What is the equilibrium composition of 
the final mixture? Include an estimate of the relative amounts of each phase. 
(c) What is the solubility of (i) lead in copper, (ii) copper in lead at 1100 K?

5B.8 The excess Gibbs energy of a certain binary mixture is equal to  
gRTx (1 − x) where g is a constant and x is the mole fraction of a solute A.  
Find an expression for the chemical potential of A in the mixture and sketch 
its dependence on the composition.

5B.9 Use the Gibbs–Helmholtz equation to find an expression for d ln xA 
in terms of dT. Integrate d ln xA from xA = 0 to the value of interest, and 

integrate the right-hand side from the transition temperature for the pure 
liquid A to the value in the solution. Show that, if the enthalpy of transition is 
constant, then eqns 5B.9 and 5B.12 are obtained.

5B.10‡ Polymer scientists often report their data in a variety of units. For 
example, in the determination of molar masses of polymers in solution 
by osmometry, osmotic pressures are often reported in grams per square 
centimetre (g cm−2) and concentrations in grams per cubic centimetre 
(g cm−3). (a) With these choices of units, what would be the units of R in the 
van ’t Hoff equation? (b) The data in the table below on the concentration 
dependence of the osmotic pressure of polyisobutene in chlorobenzene at 
25 °C have been adapted from J. Leonard and H. Daoust (J. Polymer Sci. 57, 
53 (1962)). From these data, determine the molar mass of polyisobutene by 
plotting Π/c against c. (c) ‘Theta solvents’ are solvents for which the second 
osmotic coefficient is zero; for ‘poor’ solvents the plot is linear and for 
good solvents the plot is nonlinear. From your plot, how would you classify 
chlorobenzene as a solvent for polyisobutene? Rationalize the result in terms 
of the molecular structure of the polymer and solvent. (d) Determine the 
second and third osmotic virial coefficients by fitting the curve to the virial 
form of the osmotic pressure equation. (e) Experimentally, it is often found 
that the virial expansion can be represented as

Π / / ( )c RT M B gB cc= + + +1   2′ ′2 …  
and in good solvents, the parameter g is often about 0.25. With terms beyond 
the second power ignored, obtain an equation for (Π/c)1/2 and plot this 
quantity against c. Determine the second and third virial coefficients from the 
plot and compare to the values from the first plot. Does this plot confirm the 
assumed value of g?

5B.11‡ K. Sato, F.R. Eirich, and J.E. Mark (J. Polymer Sci., Polym. Phys. 14, 619 
(1976)) have reported the data in the table below for the osmotic pressures 
of polychloroprene (ρ = 1.25 g cm−3) in toluene (ρ = 0.858 g cm−3) at 30 °C. 
Determine the molar mass of polychloroprene and its second osmotic virial 
coefficient.

5B.12 Use mathematical software, a spreadsheet, or the Living graphs on 
the web site for this book to draw graphs of ΔmixG against xA at different 
temperatures in the range 298 K to 500 K. For what value of xA does ΔmixG 
depend on temperature most strongly?

5B.13 Using the graph in Fig. 5B.4, fix ξ and vary the temperature. For what 
value of xA does the excess enthalpy depend on temperature most strongly?

5B.14 Derive an expression for the temperature coefficient of the solubility, 
dxB/dT, and plot it as a function of temperature for several values of the 
enthalpy of fusion.

5B.15 Calculate the osmotic virial coefficient B from the data in Example 5B.2.

TOPIC 5C Phase diagrams of binary systems

Discussion questions
5C.1 Draw phase diagrams for the following types of systems. Label the 
regions of the diagrams, stating what materials (possibly compounds or 
azeotropes) are present and whether they are solid liquid or gas:

(a) two-component, temperature–composition, solid–liquid diagram, 
one compound AB formed that melts congruently, negligible solid–solid 
solubility;

θ/°C  0 20 40 60 80

S/(g (100 g solvent)−1) 36.4 34.9 33.7 32.7 31.7

Mole fraction of B, xB
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Figure 5.1 The Gibbs energy of mixing of copper and lead.

10−2(Π/c)/(g cm−2/g cm−3) 2.6 2.9 3.6 4.3 6.0 12.0

c/(g cm−3) 0.0050 0.010 0.020 0.033 0.057 0.10

10−2(Π/c/(g cm−2//g cm−3) 19.0 31.0 38.0 52 63

c/(g cm−3) 0.145 0.195 0.245 0.27 0.29

c/(mg cm−3) 1.33 2.10 4.52 7.18 9.87

Π/(N m−2) 30 51 132 246 390
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(b) two-component, temperature–composition, solid–liquid diagram, one 
compound of formula AB2 that melts incongruently, negligible solid–solid 
solubility;
(c) two-component, constant temperature–composition, liquid–vapour 
diagram, formation of an azeotrope at xB = 0.333, complete miscibility.

5C.2 What molecular features determine whether a mixture of two liquids will 
show high- and low-boiling azeotropic behaviour?

5C.3 What factors determine the number of theoretical plates required to 
achieve a desired degree of separation in fractional distillation?

Exercises
5C.1(a) The following temperature–composition data were obtained for 
a mixture of octane (O) and methylbenzene (M) at 1.00 atm, where x is 
the mole fraction in the liquid and y the mole fraction in the vapour at 
equilibrium.

The boiling points are 110.6 °C and 125.6 °C for M and O, respectively. 
Plot the temperature–composition diagram for the mixture. What is the 
composition of the vapour in equilibrium with the liquid of composition 
(i) xM = 0.250 and (ii) xO = 0.250?
5C.1(b) The following temperature–composition data were obtained for a 
mixture of two liquids A and B at 1.00 atm, where x is the mole fraction in the 
liquid and y the mole fraction in the vapour at equilibrium.

The boiling points are 124 °C for A and 155 °C for B. Plot the temperature/
composition diagram for the mixture. What is the composition of the vapour 
in equilibrium with the liquid of composition (i) xA = 0.50 and (ii) xB = 0.33?

5C.2(a) Methylethyl ether (A) and diborane, B2H6 (B), form a compound 
which melts congruently at 133 K. The system exhibits two eutectics, one at 
25 mol per cent B and 123 K and a second at 90 mol per cent B and 104 K. 
The melting points of pure A and B are 131 K and 110 K, respectively. Sketch 
the phase diagram for this system. Assume negligible solid–solid solubility.
5C.2(b) Sketch the phase diagram of the system NH3/N2H4 given that the two 
substances do not form a compound with each other, that NH3 freezes at 
–78 °C and N2H4 freezes at +2 °C, and that a eutectic is formed when the mole 
fraction of N2H4 is 0.07 and that the eutectic melts at –80 °C.

5C.3(a) Figure 5.2 shows the phase diagram for two partially miscible liquids, 
which can be taken to be that for water (A) and 2-methyl-1-propanol (B). 
Describe what will be observed when a mixture of composition xB = 0.8 is 
heated, at each stage giving the number, composition, and relative amounts of 
the phases present.

5C.3(b) Refer to Fig. 5.2 again. Describe what will be observed when a 
mixture of composition xB = 0.3 is heated, at each stage giving the number, 
composition, and relative amounts of the phases present.

5C.4(a) Indicate on the phase diagram in Fig. 5.3 the feature that denotes 
incongruent melting. What is the composition of the eutectic mixture and at 
what temperature does it melt?

5C.4(b) Indicate on the phase diagram in Fig. 5.4 the feature that denotes 
incongruent melting. What are the compositions of any eutectic mixtures and 
at what temperatures do they melt?

5C.5(a) Sketch the cooling curves for the isopleths a and b in Fig. 5.3.
5C.5(b) Sketch the cooling curves for the isopleths a and b in Fig. 5.4.

5C.6(a) Use the phase diagram in Fig. 5.3 to state (i) the solubility of Ag in Sn 
at 800 °C and (ii) the solubility of Ag3Sn in Ag at 460 °C, (iii) the solubility of 
Ag3Sn in Ag at 300 °C.
5C.6(b) Use the phase diagram in Fig. 5.3 to state (i) the solubility of B in A at 
500 °C and (ii) the solubility of B in A at 390 °C, (iii) the solubility of AB2 in B 
at 300 °C.

5C.7(a) Figure 5.5 shows the experimentally determined phase diagrams for 
the nearly ideal solution of hexane and heptane. (i) Label the regions of the 

θ/°C 110.9 112.0 114.0 115.8 117.3 119.0 121.1 123.0

xM 0.908 0.795 0.615 0.527 0.408 0.300 0.203 0.097

yM 0.923 0.836 0.698 0.624 0.527 0.410 0.297 0.164

θ/°C 125 130 135 140 145 150

xA 0.91 0.65 0.45 0.30 0.18 0.098

yA 0.99 0.91 0.77 0.61 0.45 0.25
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Figure 5.2 The phase diagram for two partially miscible liquids.
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Figure 5.3 The phase diagram referred to in Exercise 5C.4(a).
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Figure 5.4 The phase diagram referred to in Exercise 5C.4(b).
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238 5 Simple mixtures

diagrams to which phases are present. (ii) For a solution containing 1 mol 
each of hexane and heptane molecules, estimate the vapour pressure at 70 °C 
when vaporization on reduction of the external pressure just begins. (iii) 
What is the vapour pressure of the solution at 70 °C when just one drop of 
liquid remains. (iv) Estimate from the figures the mole fraction of hexane 
in the liquid and vapour phases for the conditions of part b. (v) What are 
the mole fractions for the conditions of part c? (vi) At 85 °C and 760 Torr, 
what are the amounts substance in the liquid and vapour phases when 
zheptane = 0.40?

5C.7(b) Uranium tetrafluoride and zirconium tetrafluoride melt at 1035 °C and 
912 °C respectively. They form a continuous series of solid solutions with a 
minimum melting temperature of 765 °C and composition x(ZrF4) = 0.77. At 
900 °C, the liquid solution of composition x(ZrF4) = 0.28 is in equilibrium with 
a solid solution of composition x(ZrF4) = 0.14. At 850 °C the two compositions 
are 0.87 and 0.90, respectively. Sketch the phase diagram for this system and 
state what is observed when a liquid of composition x(ZrF4) = 0.40 is cooled 
slowly from 900 °C to 500 °C.

5C.8(a) Methane (melting point 91 K) and tetrafluoromethane (melting point 
89 K) do not form solid solutions with each other, and as liquids they are 
only partially miscible. The upper critical temperature of the liquid mixture 
is 94 K at x(CF4) = 0.43 and the eutectic temperature is 84 K at x(CF4) = 0.88. 
At 86 K, the phase in equilibrium with the tetrafluoromethane-rich solution 
changes from solid methane to a methane-rich liquid. At that temperature, 
the two liquid solutions that are in mutual equilibrium have the compositions 
x(CF4) = 0.10 and x(CF4) = 0.80. Sketch the phase diagram.
5C.8(b) Describe the phase changes that take place when a liquid mixture of 
4.0 mol B2H6 (melting point 131 K) and 1.0 mol CH3OCH3 (melting point 
135 K) is cooled from 140 K to 90 K. These substances form a compound 
(CH3)2OB2H6 that melts congruently at 133 K. The system exhibits one 
eutectic at x(B2H6) = 0.25 and 123 K and another at x(B2H6) = 0.90 and 104 K.

5C.9(a) Refer to the information in Exercise 5C.8(a) and sketch the cooling 
curves for liquid mixtures in which x(CF4) is (i) 0.10, (ii) 0.30, (iii) 0.50, 
(iv) 0.80, and (v) 0.95.
5C.9(b) Refer to the information in Exercise 5C.8(b) and sketch the cooling 
curves for liquid mixtures in which x(B2H6) is (i) 0.10, (ii) 0.30, (iii) 0.50, 
(iv) 0.80, and (v) 0.95.

5C.10(a) Hexane and perfluorohexane show partial miscibility below 22.70 °C. 
The critical concentration at the upper critical temperature is x = 0.355, where 
x is the mole fraction of C6F14. At 22.0 °C the two solutions in equilibrium have 
x = 0.24 and x = 0.48, respectively, and at 21.5 °C the mole fractions are 0.22 and 
0.51. Sketch the phase diagram. Describe the phase changes that occur when 
perfluorohexane is added to a fixed amount of hexane at (i) 23 °C, (ii) 22 °C.
5C.10(b) Two liquids, A and B, show partial miscibility below 52.4 °C. The 
critical concentration at the upper critical temperature is x = 0.459, where x 
is the mole fraction of A. At 40.0 °C the two solutions in equilibrium have 
x = 0.22 and x = 0.60, respectively, and at 42.5 °C the mole fractions are 0.24 
and 0.48. Sketch the phase diagram. Describe the phase changes that occur 
when B is added to a fixed amount of A at (i) 48 °C, (ii) 52.4 °C.

Problems
5C.1‡ 1-Butanol and chlorobenzene form a minimum-boiling azeotropic 
system. The mole fraction of 1-butanol in the liquid (x) and vapour (y) phases 
at 1.000 atm is given below for a variety of boiling temperatures (H. Artigas  
et al., J. Chem. Eng. Data 42, 132 (1997)).

Pure chlorobenzene boils at 404.86 K. (a) Construct the chlorobenzene-rich 
portion of the phase diagram from the data. (b) Estimate the temperature at 
which a solution for which the mole fraction of 1-butanol is 0.300 begins to 
boil. (c) State the compositions and relative proportions of the two phases 
present after a solution initially 0.300 1-butanol is heated to 393.94 K.

5C.2‡ An, Zhao, Jiang, and Shen investigated the liquid–liquid coexistence 
curve of N,N-dimethylacetamide and heptane (X. An et al., J. Chem. 
Thermodynamics 28, 1221 (1996)). Mole fractions of N,N-dimethylacetamide 
in the upper (x1) and lower (x2) phases of a two-phase region are given 
opposite as a function of temperature:

(a) Plot the phase diagram. (b) State the proportions and compositions of the 
two phases that form from mixing 0.750 mol of N,N-dimethylacetamide with 
0.250 mol of heptane at 296.0 K. To what temperature must the mixture be 
heated to form a single-phase mixture?

5C.3 Phosphorus and sulfur form a series of binary compounds. The best 
characterized are P4S3, P4S7, and P4S10, all of which melt congruently. 
Assuming that only these three binary compounds of the two elements 
exist, (a) draw schematically only the P/S phase diagram. Label each region 
of the diagram with the substance that exists in that region and indicate its 
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Figure 5.5 Phase diagrams for the nearly ideal solution of hexane and 
heptane.

T/K 396.57 393.94 391.60 390.15 389.03 388.66 388.57

x 0.1065 0.1700 0.2646 0.3687 0.5017 0.6091 0.7171

y 0.2859 0.3691 0.4505 0.5138 0.5840 0.6409 0.7070

T/K 309.820 309.422 309.031 308.006 306.686

x1 0.473 0.400 0.371 0.326 0.239

x2 0.529 0.601 0.625 0.657 0.690

T/K 304.553 301.803 299.097 296.000 294.534

x1 0.255 0.218 0.193 0.168 0.157

x2 0.724 0.758 0.783 0.804 0.814
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phase. Label the horizontal axis as xS and give the numerical values of xS that 
correspond to the compounds. The melting point of pure phosphorus is 44 °C 
and that of pure sulfur is 119 °C. (b) Draw, schematically, the cooling curve for 
a mixture of composition xS = 0.28. Assume that a eutectic occurs at xS = 0.2 
and negligible solid–solid solubility.

5C.4 The following table gives the break and halt temperatures found in the 
cooling curves of two metals A and B. Construct a phase diagram consistent 
with the data of these curves. Label the regions of the diagram, stating 
what phases and substances are present. Give the probable formulas of any 
compounds that form.

5C.5 Consider the phase diagram in Fig. 5.6, which represents a solid–liquid 
equilibrium. Label all regions of the diagram according to the chemical 
species that exist in that region and their phases. Indicate the number of 
species and phases present at the points labelled b, d, e, f, g, and k. Sketch 
cooling curves for compositions xB = 0.16, 0.23, 0.57, 0.67, and 0.84.

5C.6 Sketch the phase diagram for the Mg/Cu system using the following 
information: θf(Mg) = 648 °C, θf(Cu) = 1085 °C; two intermetallic compounds 
are formed with θf(MgCu2) = 800 °C and θf(Mg2Cu) = 580 °C; eutectics of mass 
percentage Mg composition and melting points 10 per cent (690 °C), 33 per 
cent (560 °C), and 65 per cent (380 °C). A sample of Mg/Cu alloy containing 
25 per cent Mg by mass was prepared in a crucible heated to 800 °C in an 

inert atmosphere. Describe what will be observed if the melt is cooled slowly 
to room temperature. Specify the composition and relative abundances of the 
phases and sketch the cooling curve.

5C.7‡ The temperature–composition diagram for the Ca/Si binary system is 
shown in Fig. 5.7. (a) Identify eutectics, congruent melting compounds, and 
incongruent melting compounds. (b) If a 20 per cent by atom composition 
melt of silicon at 1500 °C is cooled to 1000 °C, what phases (and phase 
composition) would be at equilibrium? Estimate the relative amounts of 
each phase. (c) Describe the equilibrium phases observed when an 80 per 
cent by atom composition Si melt is cooled to 1030 °C. What phases, and 
relative amounts, would be at equilibrium at a temperature (i) slightly higher 
than 1030 °C, (ii) slightly lower than 1030 °C? Draw a graph of the mole 
percentages of both Si(s) and CaSi2(s) as a function of mole percentage of melt 
that is freezing at 1030 °C.

5C.8 Iron(II) chloride (melting point 677 °C) and potassium chloride 
(melting point 776 °C) form the compounds KFeCl3 and K2FeCl4 at elevated 
temperatures. KFeCl3 melts congruently at 380 °C and K2FeCl4 melts 
incongruently at 399 °C. Eutectics are formed with compositions x = 0.38 
(melting point 351 °C) and x = 0.54 (melting point 393 °C), where x is the 
mole fraction of FeCl2. The KCl solubility curve intersects the K2FeCl4 curve 
at x = 0.34. Sketch the phase diagram. State the phases that are in equilibrium 
when a mixture of composition x = 0.36 is cooled from 400 °C to 300 °C.

5C.9 To reproduce the results of Fig. 5C.2, first rearrange eqn 5C.4 so that yA is 
expressed as a function of xA and the ratio p pA B* */ . Then plot yA against xA for 
several values of ratio p pA B 1* */ > .

5C.10 To reproduce the results of Fig. 5C.3, first rearrange eqn 5C.5 so that 
the ratio p pA B* */  is expressed as a function of yA and the ratio p pA B* */ . Then plot 
p pA A*/  against yA for several values of p pA B 1* */ > .

5C.11 Working from eqn 5B.7, write an expression for Tmin, the temperature at 
which ΔmixG has a minimum, as a function of ξ and xA. Then, plot Tmin against 
xA for several values of ξ. Provide a physical interpretation for any maxima or 
minima that you observe in these plots.

5C.12 Use eqn 5C.7 to generate plots of ξ against xA by one of two methods: 
(a) solve the transcendental equation ln{(x/(1 – x)} + ξ(1 – 2x) = 0 numerically, 
or (b) plot the first term of the transcendental equation against the second and 
identify the points of intersection as ξ is changed.

TOPIC 5D Phase diagrams of ternary systems

Discussion questions
5D.1 What is the maximum number of phases that can be in equilibrium in a 
ternary system?

5D.2 Does the lever rule apply to a ternary system?

5D.3 Could a regular tetrahedron be used to depict the properties of a four-
component system?
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Figure 5.6 The phase diagram referred to in Problem 5C.5.
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Exercises
5D.1(a) Mark the following features on triangular coordinates: (i) the point 
(0.2, 0.2, 0.6), (ii) the point (0, 0.2, 0.8), (iii) the point at which all three mole 
fractions are the same.
5D.1(b) Mark the following features on triangular coordinates: (i) the point 
(0.6, 0.2, 0.2), (ii) the point (0.8, 0.2, 0), (iii) the point (0.25, 0.25, 0.50).

5D.2(a) Mark the following points on a ternary phase diagram for the 
system NaCl/Na2SO4·10H2O/H2O: (i) 25 per cent by mass NaCl, 25 per cent 
Na2SO4·10H2O, and the rest H2O; (ii) the line denoting the same relative 
composition of the two salts but with changing amounts of water.
5D.2(b) Mark the following points on a ternary phase diagram for the 
system NaCl/Na2SO4·10H2O/H2O: (i) 33 per cent by mass NaCl, 33 per cent 
Na2SO4·10H2O, and the rest H2O; (ii) the line denoting the same relative 
composition of the two salts but with changing amounts of water.

5D.3(a) Refer to the ternary phase diagram in Fig. 5D.4. How many phases 
are present, and what are their compositions and relative abundances, in a 
mixture that contains 2.3 g of water, 9.2 g of chloroform, and 3.1 g of acetic 
acid? Describe what happens when (i) water, (iii) acetic acid is added to the 
mixture.
5D.3(b) Refer to the ternary phase diagram in Fig. 5D.4. How many phases 
are present, and what are their compositions and relative abundances, in a 
mixture that contains 55.0 g of water, 8.8 g of chloroform, and 3.7 g of acetic 
acid? Describe what happens when (i) water, (ii) acetic acid is added to the 
mixture.

5D.4(a) Figure 5.8 shows the phase diagram for the ternary system NH4Cl/
(NH4)2SO4/H2O at 25 °C. Identify the number of phases present for mixtures 
of compositions (i) (0.2, 0.4, 0.4), (ii) (0.4, 0.4, 0.2), (iii) (0.2, 0.1, 0.7),  
(iv) (0.4, 0.16, 0.44). The numbers are mole fractions of the three components 
in the order (NH4Cl,(NH4)2SO4,H2O).

5D.4(b) Refer to Fig. 5.8 and identify the number of phases present for 
mixtures of compositions (i) (0.4, 0.1, 0.5), (ii) (0.8, 0.1, 0.1), (iii) (0, 0.3,0.7),  
(iv) (0.33, 0.33, 0.34). The numbers are mole fractions of the three 
components in the order (NH4Cl,(NH4)2SO4,H2O).

5D.5(a) Referring to Fig. 5.8, deduce the molar solubility of (i) NH4Cl, (ii) 
(NH4)2SO4 in water at 25 °C.
5D.5(b) Describe what happens when (i) (NH4)2SO4 is added to a saturated 
solution of NH4Cl in water in the presence of excess NH4Cl, (ii) water is 
added to a mixture of 25 g of NH4Cl and 75 g of (NH4)2SO4.

Problems
5D.1 At a certain temperature, the solubility of I2 in liquid CO2 is x(I2) = 0.03. 
At the same temperature its solubility in nitrobenzene is 0.04. Liquid carbon 
dioxide and nitrobenzene are miscible in all proportions, and the solubility of 
I2 in the mixture varies linearly with the proportion of nitrobenzene. Sketch a 
phase diagram for the ternary system.

5D.2 The binary system nitroethane/decahydronaphthalene (DEC) shows 
partial miscibility, with the two-phase region lying between x = 0.08 and 
x = 0.84, where x is the mole fraction of nitroethane. The binary system 
liquid carbon dioxide/DEC is also partially miscible, with its two-phase 
region lying between y = 0.36 and y = 0.80, where y is the mole fraction of 
DEC. Nitroethane and liquid carbon dioxide are miscible in all proportions. 

The addition of liquid carbon dioxide to mixtures of nitroethane and DEC 
increases the range of miscibility, and the plait point is reached when z, the 
mole fraction of CO2, is 0.18 and x = 0.53. The addition of nitroethane to 
mixtures of carbon dioxide and DEC also results in another plait point at 
x = 0.08 and y = 0.52. (a) Sketch the phase diagram for the ternary system, 
(b) For some binary mixtures of nitroethane and liquid carbon dioxide the 
addition of arbitrary amounts of DEC will not cause phase separation. Find 
the range of concentration for such binary mixtures.

5D.3 Prove that a straight line from the apex A of a ternary phase diagram 
to the opposite edge BC represents mixtures of constant ratio of B and C, 
however much A is present.

TOPIC 5E activities

Discussion questions
5E.1 What are the contributions that account for the difference between 
activity and concentration?

5E.2 How is Raoult’s law modified so as to describe the vapour pressure of real 
solutions?

5E.3 Summarize the ways in which activities may be measured.

Exercises
5E.1(a) Substances A and B are both volatile liquids with pA

∗ = 300 Torr, 
pB

∗ = 250  Torr, and KB = 200 Torr (concentration expressed in mole fraction). 
When xA = 0.9, bB = 2.22 mol kg−1, pA = 250 Torr, and pB = 25 Torr. Calculate the 

activities and activity coefficients of A and B. Use the mole fraction, Raoult’s 
law basis system for A and the Henry’s law basis system (both mole fractions 
and molalities) for B.
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Figure 5.8 The phase diagram for the ternary system NH4Cl/(NH4)2SO4/
H2O at 25 °C.
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5E.1(b) Given that p*(H2O) = 0.02308 atm and p(H2O) = 0.02239 atm in a 
solution in which 0.122 kg of a involatile solute (M = 241 g mol−1) is dissolved 
in 0.920 kg water at 293 K, calculate the activity and activity coefficient of 
water in the solution.

5E.2(a) By measuring the equilibrium between liquid and vapour phases of 
an acetone(A)/methanol(M) solution at 57.2 °C at 1.00 atm, it was found that 
xA = 0.400 when yA = 0.516. Calculate the activities and activity coefficients 
of both components in this solution on the Raoult’s law basis. The vapour 
pressures of the pure components at this temperature are: pA* kPa=105  and 
pM* kPa=73 5. . (xA is the mole fraction in the liquid and yA the mole fraction 
in the vapour.)
5E.2(b) By measuring the equilibrium between liquid and vapour phases of 
a solution at 30 °C at 1.00 atm, it was found that xA = 0.220 when yA = 0.314. 

Calculate the activities and activity coefficients of both components in 
this solution on the Raoult’s law basis. The vapour pressures of the pure 
components at this temperature are: pA* kPa=73 0.  and pB*  92 1kPa= . . (xA is 
the mole fraction in the liquid and yA the mole fraction in the vapour.)

5E.3(a) Find the relation between the standard and biological standard Gibbs 
energies of a reaction of the form A → 2B + 2 H+(aq).
5E.3(b) Find the relation between the standard and biological standard Gibbs 
energies of a reaction of the form 2 A → B + 4 H+(aq).

5E.4(a) Suppose it is found that for a hypothetical regular solution that ξ = 1.40, 
pA* kPa=15 0.  and pB* 11 6 kPa= . . Draw the vapour-pressure diagram.
5E.4(b) Suppose it is found that for a hypothetical regular solution that ξ = –1.40, 
pA* kPa=15 0.  and pB* 11 6 kPa= . . Draw the vapour-pressure diagram.

Problems
5E.1‡ Francesconi, Lunelli, and Comelli studied the liquid–vapour equilibria of 
trichloromethane and 1,2-epoxybutane at several temperatures (Francesconi 
et al., J. Chem. Eng. Data 41, 310 (1996)). Among their data are the following 
measurements of the mole fractions of trichloromethane in the liquid phase 
(xT) and the vapour phase (yT) at 298.15 K as a function of pressure.

Compute the activity coefficients of both components on the basis of Raoult’s 
law.

5E.2 The osmotic coefficient ϕ is defined as ϕ = −(xA/xB) ln aA. By writing 
r = xB/xA, and using the Gibbs–Duhem equation, show that we can calculate 

the activity of B from the activities of A over a composition range by using the 
formula

ln ( )
a
r r

r
r

B d= − + −∫φ φ φ
0

1

0  
5E.3 Show that the osmotic pressure of a real solution is given by ΠV = –RT ln 
aA. Go on to show that, provided the concentration of the solution is low, this 
expression takes the form ΠV = ϕRT[B] and hence that the osmotic coefficient 
ϕ (which is defined in Problem 5E.2) may be determined from osmometry.

5E.4 Use mathematical software, a spreadsheet, or the Living graphs on the web 
site for this book to plot p pA A*/  against xA with ξ = 2.5 by using eqn 5E.19 and 
then eqn 5E.20. Above what value of xA do the values of p pA A*/  given by these 
equations differ by more than 10 per cent?

TOPIC 5F the activities of ions

Discussion questions
5F.1 Why do the activity coefficients of ions in solution differ from 1? Why are 
they less than 1 in dilute solutions?

5F.2 Describe the general features of the Debye–Hückel theory of electrolyte 
solutions.

5F.3 Suggest an interpretation of the additional terms in extended versions of 
the Debye–Hückel limiting law.

Exercises
5F.1(a) Calculate the ionic strength of a solution that is 0.10 mol kg−1 in 
KCl(aq) and 0.20 mol kg−1 in CuSO4(aq).
5F.1(b) Calculate the ionic strength of a solution that is 0.040 mol kg−1 in 
K3[Fe(CN)6](aq), 0.030 mol kg−1 in KCl(aq), and 0.050 mol kg−1 in NaBr(aq).

5F.2(a) Calculate the masses of (i) Ca(NO3)2 and, separately, (ii) NaCl to add to 
a 0.150 mol kg−1 solution of KNO3(aq) containing 500 g of solvent to raise its 
ionic strength to 0.250.
5F.2(b) Calculate the masses of (i) KNO3 and, separately, (ii) Ba(NO3)2 to add 
to a 0.110 mol kg−1 solution of KNO3(aq) containing 500 g of solvent to raise 
its ionic strength to 1.00.

5F.3(a) Estimate the mean ionic activity coefficient and activity of a solution at 
25 °C that is 0.010 mol kg−1 CaCl2(aq) and 0.030 mol kg−1 NaF(aq).
5F.3(b) Estimate the mean ionic activity coefficient and activity of a solution at 
25 °C that is 0.020 mol kg−1 NaCl(aq) and 0.035 mol kg−1 Ca(NO3)2(aq).

5F.4(a) The mean activity coefficients of HBr in three dilute aqueous solutions 
at 25 °C are 0.930 (at 5.0 mmol kg−1), 0.907 (at 10.0 mmol kg−1), and 0.879 
(at 20.0 mmol kg−1). Estimate the value of B in eqn 5F.11a.
5F.4(b) The mean activity coefficients of KCl in three dilute aqueous solutions 
at 25 °C are 0.927 (at 5.0 mmol kg−1), 0.902 (at 10.0 mmol kg−1), and 0.816 
(at 50.0 mmol kg−1). Estimate the value of B in eqn 5F.11a.

Problems
5F.1 The mean activity coefficients for aqueous solutions of NaCl at 25 °C are 
given opposite. Confirm that they support the Debye–Hückel limiting law and 
that an improved fit is obtained with the Davies equation.

p/kPa 23.40 21.75 20.25 18.75 18.15 20.25 22.50 26.30

x 0 0.129 0.228 0.353 0.511 0.700 0.810 1

y 0 0.065 0.145 0.285 0.535 0.805 0.915 1

b/(mmol kg−1) 1.0 2.0 5.0 10.0 20.0

γ± 0.9649 0.9519 0.9275 0.9024 0.8712
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242 5 Simple mixtures

5F.2 Consider the plot of log γ± against I1/2 with B = 1.50 and C = 0 in the 
Davies equation as a representation of experimental data for a certain MX 
electrolyte. Over what range of ionic strengths does the application of the 

limiting law lead to an error in the value of the activity coefficient of less than 
10 per cent of the value predicted by the extended law?

Integrated activities
5.1 The table below lists the vapour pressures of mixtures of iodoethane 
(I) and ethyl acetate (A) at 50 °C. Find the activity coefficients of both 
components on (a) the Raoult’s law basis, (b) the Henry’s law basis with 
iodoethane as solute.

5.2 Plot the vapour pressure data for a mixture of benzene (B) and acetic 
acid (A) given below and plot the vapour pressure/composition curve for 
the mixture at 50 °C. Then confirm that Raoult’s and Henry’s laws are obeyed 
in the appropriate regions. Deduce the activities and activity coefficients of 
the components on the Raoult’s law basis and then, taking B as the solute, its 
activity and activity coefficient on a Henry’s law basis. Finally, evaluate the 
excess Gibbs energy of the mixture over the composition range spanned by 
the data.

5.3‡ Chen and Lee studied the liquid–vapour equilibria of cyclohexanol with 
several gases at elevated pressures (J.-T. Chen and M.-J. Lee, J. Chem. Eng. 
Data 41, 339 (1996)). Among their data are the following measurements of 
the mole fractions of cyclohexanol in the vapour phase (y) and the liquid 
phase (x) at 393.15 K as a function of pressure.

Determine the Henry’s law constant of CO2 in cyclohexanol, and compute the 
activity coefficient of CO2.

5.4‡ The following data have been obtained for the liquid–vapour equilibrium 
compositions of mixtures of nitrogen and oxygen at 100 kPa.

Plot the data on a temperature–composition diagram and determine the 
extent to which it fits the predictions for an ideal solution by calculating the 
activity coefficients of O2 at each composition.

5.5 Use the Gibbs–Duhem equation to derive the Gibbs–Duhem–Margules 
equation

∂
∂







= ∂
∂







ln
ln

ln
ln

, ,

f
x

f
x

p T p T
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A

B

B
 

where f is the fugacity. Use the relation to show that when the fugacities are 
replaced by pressures, that if Raoult’s law applies to one component in a 
mixture it must also apply to the other.

5.6 Use the Gibbs–Duhem equation to show that the partial molar volume (or 
any partial molar property) of a component B can be obtained if the partial 
molar volume (or other property) of A is known for all compositions up to the 
one of interest. Do this by proving that

V V
x

x
V

V

V

B B
A

A
A

A

A

d= − −
∗

∗∫ 1  
where the xA are functions of the VA. Use the following data (which are for 
298 K) to evaluate the integral graphically to find the partial molar volume of 
acetone at x = 0.500.

5.7 Show that the freezing-point depression of a real solution in which the 
solvent of molar mass M has activity aA obeys

d
d

A

f

ln
( )

a
T

M
K∆ = −

 
and use the Gibbs–Duhem equation to show that

d
d

B

B f

ln
( )

a
T b K∆ = − 1

 
where aB is the solute activity and bB is its molality. Use the Debye–Hückel 
limiting law to show that the osmotic coefficient (ϕ, Problem 5E.2) is given by 
ϕ = 1 – 1

3
A′I with A′ = 2.303A and I = b/b<.

5.8 For the calculation of the solubility c of a gas in a solvent, it is often 
convenient to use the expression c = Kp, where K is the Henry’s law constant. 
Breathing air at high pressures, such as in scuba diving, results in an 
increased concentration of dissolved nitrogen. The Henry’s law constant for 
the solubility of nitrogen is 0.18 µg/(g H2O atm). What mass of nitrogen is 
dissolved in 100 g of water saturated with air at 4.0 atm and 20 °C? Compare 
your answer to that for 100 g of water saturated with air at 1.0 atm. (Air is 
78.08 mole per cent N2.) If nitrogen is four times as soluble in fatty tissues as 
in water, what is the increase in nitrogen concentration in fatty tissue in going 
from 1 atm to 4 atm?

xA 0.0160 0.0439 0.0835 0.1138 0.1714

pA/kPa 0.484 0.967 1.535 1.89 2.45

pB/kPa 35.05 34.29 33.28 32.64 30.90

xA 0.2973 0.3696 0.5834 0.6604 0.8437 0.9931

pA/kPa 3.31 3.83 4.84 5.36 6.76 7.29

pB/kPa 28.16 26.08 20.42 18.01 10.0 0.47

xI 0 0.0579 0.1095 0.1918 0.2353 0.3718

pI/kPa 0 3.73 7.03 11.7 14.05 20.72

pA/kPa 37.38 35.48 33.64 30.85 29.44 25.05

xI 0.5478 0.6349 0.8253 0.9093 1.0000

pI/kPa 28.44 31.88 39.58 43.00 47.12

pA/kPa 19.23 16.39 8.88 5.09 0

p/bar 10.0 20.0 30.0 40.0 60.0 80.0

ycyc 0.0267 0.0149 0.0112 0.009 47 0.008 35 0.009 21

xcyc 0.9741 0.9464 0.9204 0.892 0.836 0.773

T/K 77.3 78 80 82 84 86 88 90.2

x(O2) 0 10 34 54 70 82 92 100

y(O2) 0 2 11 22 35 52 73 100

p*(O2)/Torr 154 171 225 294 377 479 601 760

x(CHCl3) 0 0.194 0.385 0.559 0.788 0.889 1.000

Vm/(cm3 mol−1) 73.99 75.29 76.50 77.55 79.08 79.82 80.67
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5.9 Dialysis may be used to study the binding of small molecules to 
macromolecules, such as an inhibitor to an enzyme, an antibiotic to DNA, 
and any other instance of cooperation or inhibition by small molecules 
attaching to large ones. To see how this is possible, suppose inside the dialysis 
bag the molar concentration of the macromolecule M is [M] and the total 
concentration of small molecule A is [A]in. This total concentration is the 
sum of the concentrations of free A and bound A, which we write [A]free 
and [A]bound, respectively. At equilibrium, μA,free = μA,out, which implies that 
[A]free = [A]out, provided the activity coefficient of A is the same in both 
solutions. Therefore, by measuring the concentration of A in the solution 
outside the bag, we can find the concentration of unbound A in the 
macromolecule solution and, from the difference [A]in − [A]free = [A]in − [A]out, 
the concentration of bound A. Now we explore the quantitative consequences 
of the experimental arrangement just described. 

(a) The average number of A molecules bound to M molecules, ν, is

 = = −[ ]
[ ]

[ ] [ ]
[ ]

A
M

A A
M

bound in out

 
The bound and unbound A molecules are in equilibrium, M + A ⇌ MA. 
Recall from introductory chemistry that we may write the equilibrium 
constant for binding, K, as

K = [ ]
[ ] [ ]

MA
M Afree free  

Now show that

K = −


( )[ ]1 A out  
(b) If there are N identical and independent binding sites on each 
macromolecule, each macromolecule behaves like N separate smaller 
macromolecules, with the same value of K for each site. It follows that the 
average number of A molecules per site is ν/N. Show that, in this case, we may 
write the Scatchard equation:




[ ]A out
= −KN K

 
(c) To apply the Scatchard equation, consider the binding of ethidium 
bromide (E−) to a short piece of DNA by a process called intercalation, in 
which the aromatic ethidium cation fits between two adjacent DNA base 
pairs. An equilibrium dialysis experiment was used to study the binding of 
ethidium bromide (EB) to a short piece of DNA. A 1.00 µmol dm−3 aqueous 
solution of the DNA sample was dialysed against an excess of EB. The 
following data were obtained for the total concentration of EB:

From these data, make a Scatchard plot and evaluate the intrinsic equilibrium 
constant, K, and total number of sites per DNA molecule. Is the identical and 
independent sites model for binding applicable?

5.10 The form of the Scatchard equation given Problem 5.9 applies only when 
the macromolecule has identical and independent binding sites. For non-
identical independent binding sites, the Scatchard equation is



[ ] [ ]A Aout out
= +∑

i

i i

i

N K
K1

 
Plot ν/[A] for the following cases. (a) There are four independent sites on an 
enzyme molecule and the intrinsic binding constant is K = 1.0 × 107. (b) There 
are a total of six sites per polymer. Four of the sites are identical and have an 
intrinsic binding constant of 1 × 105. The binding constants for the other two 
sites are 2 × 106.

5.11 The addition of a small amount of a salt, such as (NH4)2SO4, to a solution 
containing a charged protein increases the solubility of the protein in water. 
This observation is called the salting-in effect. However, the addition of large 
amounts of salt can decrease the solubility of the protein to such an extent 
that the protein precipitates from solution. This observation is called the 
salting-out effect and is used widely by biochemists to isolate and purify 
proteins. Consider the equilibrium PXν(s) ⇌ Pν+(aq) + ν X−(aq), where Pν+ is a 
polycationic protein of charge ν+ and X− is its counter ion. Use Le Chatelier’s 
principle and the physical principles behind the Debye–Hückel theory to 
provide a molecular interpretation for the salting-in and salting-out effects.

5.12 Some polymers can form liquid crystal mesophases with unusual physical 
properties. For example, liquid crystalline Kevlar (1) is strong enough to be 
the material of choice for bulletproof vests and is stable at temperatures up 
to 600 K. What molecular interactions contribute to the formation, thermal 
stability, and mechanical strength of liquid crystal mesophases in Kevlar?

N
H

NH

O

O

O H

H

n

1 Kevlar

[EB]/(µmol dm−3)

Side without DNA 0.042 0.092 0.204 0.526 1.150

Side with DNA 0.292 0.590 1.204 2.531 4.150
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chaPter 6

chemical equilibrium

Chemical reactions tend to move towards a dynamic equilib-
rium in which both reactants and products are present but have 
no further tendency to undergo net change. In some cases, 
the concentration of products in the equilibrium mixture is so 
much greater than that of the unchanged reactants that for all 
practical purposes the reaction is ‘complete’. However, in many 
important cases the equilibrium mixture has significant con-
centrations of both reactants and products.

6A the equilibrium constant

This Topic develops the concept of chemical potential and 
shows how it is used to account for the equilibrium composi-
tion of chemical reactions. The equilibrium composition cor-
responds to a minimum in the Gibbs energy plotted against 
the extent of reaction. By locating this minimum we establish 
the relation between the equilibrium constant and the standard 
Gibbs energy of reaction.

6B the response of equilibria to the 
conditions

The thermodynamic formulation of equilibrium enables us to 
establish the quantitative effects of changes in the conditions. 
One very important aspect of equilibrium is the control that 
can be exercised by varying the conditions, such as the pressure 
or temperature.

6C electrochemical cells

Because many reactions involve the transfer of electrons, they 
can be studied (and utilized) by allowing them to take place in 
a cell equipped with electrodes, with the spontaneous reaction 

forcing electrons through an external circuit. We shall see that 
the electric potential of the cell is related to the reaction Gibbs 
energy, so providing an electrical procedure for the determina-
tion of thermodynamic quantities.

6D electrode potentials

Electrochemistry is in part a major application of thermody-
namic concepts to chemical equilibria as well as being of great 
technological importance. As elsewhere in thermodynamics, 
we see how to report electrochemical data in a compact form 
and apply it to problems of real chemical significance, espe-
cially to the prediction of the spontaneous direction of reac-
tions and the calculation of equilibrium constants.

What is the impact of this material?

The thermodynamic description of spontaneous reactions has 
numerous practical and theoretical applications. We highlight 
two applications. One is to the discussion of biochemical pro-
cesses, where one reaction drives another (Impact I6.1). That, 
ultimately, is why we have to eat, for we see that the reaction 
that takes place when one substance is oxidized can drive non-
spontaneous reactions, such as protein synthesis, forward. 
Another makes use of the great sensitivity of electrochemical 
processes to the concentration of electroactive materials, and 
we see how specially designed electrodes are used in analysis 
(Impact I6.2).

To read more about the impact of this 
material, scan the QR code, or go to  
bcs.whfreeman.com/webpub/chemistry/
pchem10e/impact/pchem-6-1.html
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6A the equilibrium constant

As explained in Topic 3C, the direction of spontaneous change 
at constant temperature and pressure is towards lower val-
ues of the Gibbs energy, G. The idea is entirely general, and 
in this Topic we apply it to the discussion of chemical reac-
tions. There is a tendency of a mixture of reactants to undergo 
reaction until the Gibbs energy of the mixture has reached a 
minimum: that state corresponds to a state of chemical equi-
librium. The equilibrium is dynamic in the sense that the for-
ward and reverse reactions continue, but at matching rates. As 
always in the application of thermodynamics, spontaneity is a 
tendency: there might be kinetic reasons why that tendency is 
not realized.

6A.1 The Gibbs energy minimum

We locate the equilibrium composition of a reaction mixture by 
calculating the Gibbs energy of the reaction mixture and iden-
tifying the composition that corresponds to minimum G. Here 
we proceed in two steps: first, we consider a very simple equi-
librium, and then we generalize it.

(a) The reaction Gibbs energy
Consider the equilibrium A ⇌ B. Even though this reaction 
looks trivial, there are many examples of it, such as the isomeri-
zation of pentane to 2-methylbutane and the conversion of 
l-alanine to d-alanine.

Suppose an infinitesimal amount dξ of A turns into B, then 
the change in the amount of A present is dnA = −dξ and the 
change in the amount of B present is dnB = +dξ. The quantity 
ξ (xi) is called the extent of reaction; it has the dimensions 
of amount of substance and is reported in moles. When the 
extent of reaction changes by a measurable amount Δξ, the 
amount of A present changes from nA,0 to nA,0 − Δξ and the 
amount of B changes from nB,0 to nB,0 + Δξ. In general, the 
amount of a component J changes by νJΔξ, where νJ is the 
stoichiometric number of the species J (positive for products, 
negative for reactants).

Brief illustration 6A.1 The extent of reaction

If initially 2.0 mol A is present and we wait until Δξ = +1.5 mol, 
then the amount of A remaining will be 0.5 mol. The amount 
of B formed will be 1.5 mol.

Contents

6a.1 The Gibbs energy minimum 245
(a) The reaction Gibbs energy 245

brief illustration 6a.1: the extent of reaction 245
(b) Exergonic and endergonic reactions 246

brief illustration 6a.2: exergonic and endergonic 
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equilibrium constants 251

(d) Molecular interpretation of the equilibrium constant 251
brief illustration 6a.7: contributions to K 252

Checklist of concepts 252
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➤➤ Why do you need to know this material?
Equilibrium constants lie at the heart of chemistry and 
are a key point of contact between thermodynamics and 
laboratory chemistry. The material in this Topic shows how 
they arise and explains the thermodynamic properties that 
determine their values.

➤➤ What is the key idea?
The composition of a reaction mixture tends to change 
until the Gibbs energy is a minimum.

➤➤ What do you need to know already?
Underlying the whole discussion is the expression of the 
direction of spontaneous change in terms of the Gibbs 
energy of a system (Topic 3C).This material draws on the 
concept of chemical potential and its dependence on the 
concentration or pressure of the substance (Topic 5A). 
You need to know how to express the total Gibbs energy 
of a mixture in terms of the chemical potentials of its 
components (Topic 5A).
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246 6 Chemical equilibrium

The reaction Gibbs energy, ΔrG, is defined as the slope of the 
graph of the Gibbs energy plotted against the extent of reaction:

∆rG
G

p T

= ∂
∂





ξ ,  

Definition  reaction gibbs energy  (6A.1)

Although Δ normally signifies a difference in values, here it sig-
nifies a derivative, the slope of G with respect to ξ. However, to 
see that there is a close relationship with the normal usage, sup-
pose the reaction advances by dξ. The corresponding change in 
Gibbs energy is

d d d d d dA A B B A B B AG n n= + = − + =µ µ µ ξ µ ξ µ − µ ξ( )  

This equation can be reorganized into
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p T
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That is,

∆r B AG = −μ μ  (6A.2)

We see that ΔrG can also be interpreted as the difference 
between the chemical potentials (the partial molar Gibbs ener-
gies) of the reactants and products at the current composition of 
the reaction mixture.

Because chemical potentials vary with composition, the 
slope of the plot of Gibbs energy against extent of reaction, 
and therefore the reaction Gibbs energy, changes as the reac-
tion proceeds. The spontaneous direction of reaction lies in 
the direction of decreasing G (that is, down the slope of G 
plotted against ξ). Thus we see from eqn 6A.2 that the reac-
tion A → B is spontaneous when μA > μB, whereas the reverse 
reaction is spontaneous when μB > μA. The slope is zero, and 
the reaction is at equilibrium and spontaneous in neither 
direction, when

∆rG = 0   condition of equilibrium  (6A.3)

This condition occurs when μB = μA (Fig. 6A.1). It follows that, 
if we can find the composition of the reaction mixture that 
ensures μB = μA, then we can identify the composition of the 
reaction mixture at equilibrium. Note that the chemical poten-
tial is now fulfilling the role its name suggests: it represents 
the potential for chemical change, and equilibrium is attained 
when these potentials are in balance.

(b) Exergonic and endergonic reactions
The spontaneity of a reaction at constant temperature and pres-
sure can be expressed in terms of the reaction Gibbs energy:

•	 If ΔrG < 0, the forward reaction is spontaneous.
•	 If ΔrG > 0, the reverse reaction is spontaneous.
•	 If ΔrG = 0, the reaction is at equilibrium.

A reaction for which ΔrG < 0 is called exergonic (from the 
Greek words for work producing). The name signifies that, 
because the process is spontaneous, it can be used to drive 
another process, such as another reaction, or used to do non-
expansion work. A simple mechanical analogy is a pair of 
weights joined by a string (Fig. 6A.2): the lighter of the pair 
of weights will be pulled up as the heavier weight falls down. 
Although the lighter weight has a natural tendency to move 
downward, its coupling to the heavier weight results in it being 
raised. In biological cells, the oxidation of carbohydrates act as 

Self-test 6A.1 Suppose the reaction is 3 A → 2 B and that ini-
tially 2.5 mol A is present. What is the composition when 
Δξ = +0.5 mol?

Answer: 1.0 mol A, 1.0 mol B

G
ib

b
s 

en
er

g
y,

 G

Extent of reaction, ξ

ΔrG < 0

ΔrG = 0

ΔrG > 0

Figure 6A.1 As the reaction advances (represented by motion 
from left to right along the horizontal axis) the slope of the 
Gibbs energy changes. Equilibrium corresponds to zero slope 
at the foot of the valley.

Figure 6A.2 If two weights are coupled as shown here, then 
the heavier weight will move the lighter weight in its non-
spontaneous direction: overall, the process is still spontaneous. 
The weights are the analogues of two chemical reactions: a 
reaction with a large negative ΔG can force another reaction 
with a smaller ΔG to run in its non-spontaneous direction.
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6A The equilibrium constant  247

the heavy weight that drives other reactions forward and results 
in the formation of proteins from amino acids, muscle contrac-
tion, and brain activity. A reaction for which ΔrG > 0 is called 
endergonic (signifying work consuming). The reaction can be 
made to occur only by doing work on it, such as electrolysing 
water to reverse its spontaneous formation reaction.

6A.2 The description of equilibrium

With the background established, we are now ready to see 
how to apply thermodynamics to the description of chemical 
equilibrium.

(a) Perfect gas equilibria
When A and B are perfect gases we can use eqn 5A.14b 
(μ = μ< + RT ln p, with p interpreted as p/p<) to write

∆

∆

r B A B B A A

r
B

A

ln lnG RT p RT p

G RT p
p

= = + +

= +

µ − µ µ − µ( ) ( )

ln

< <

<

 
(6A.4)

If we denote the ratio of partial pressures by Q, we obtain

∆ ∆r r
B

A
G G RT Q Q

p
p= + =< ln

 
(6A.5)

The ratio Q is an example of a ‘reaction quotient’, a quantity we 
define more formally shortly. It ranges from 0 when pB = 0 (cor-
responding to pure A) to infinity when pA = 0 (corresponding 
to pure B). The standard reaction Gibbs energy, ΔrG< (Topic 
3C), is the difference in the standard molar Gibbs energies of 
the reactants and products, so for our reaction

∆r m m B AB AG G G< < < < <= − = −( ) ( ) μ μ  (6A.6)

Note that in the definition of ΔrG<, the Δr has its normal mean-
ing as the difference ‘products – reactants’. In Topic 3C we saw 
that the difference in standard molar Gibbs energies of the 
products and reactants is equal to the difference in their stand-
ard Gibbs energies of formation, so in practice we calculate 
ΔrG< from

∆ ∆ ∆r f fB AG G G< < <= ( ) ( )−  (6A.7)

At equilibrium, ΔrG = 0. The ratio of partial pressures at equilib-
rium is denoted K, and eqn 6A.5 becomes

0 = +∆r lnG RT< K  

which rearranges to

RT K G K p
pln = − =





∆r
< B

A equilibrium  
(6A.8)

This relation is a special case of one of the most important equa-
tions in chemical thermodynamics: it is the link between tables 
of thermodynamic data, such as those in the Resource section, 
and the chemically important ‘equilibrium constant’, K (again, a 
quantity we define formally shortly).

In molecular terms, the minimum in the Gibbs energy, which 
corresponds to ΔrG = 0, stems from the Gibbs energy of mixing 
of the two gases. To see the role of mixing, consider the reac-
tion A → B. If only the enthalpy were important, then H and 
therefore G would change linearly from its value for pure reac-
tants to its value for pure products. The slope of this straight 
line is a constant and equal to ΔrG< at all stages of the reaction 
and there is no intermediate minimum in the graph (Fig. 6A.3). 
However, when the entropy is taken into account, there is an 
additional contribution to the Gibbs energy that is given by eqn 
5A.16 (ΔmixG = nRT(xA ln xA + xB ln xB)). This expression makes 
a U-shaped contribution to the total change in Gibbs energy. 

Brief illustration 6A.3 The equilibrium constant

The standard Gibbs energy of the isomerization of pentane to 
2-methylbutane at 298 K, the reaction CH3(CH2)3CH3(g) →  
(CH3)2CHCH2CH3(g), is close to −6.7 kJ mol−1 (this is an esti-
mate based on enthalpies of formation; its actual value is not 
listed). Therefore, the equilibrium constant for the reaction is

K = = =− − × × …− − −e eJ mol J K mol K( . )/( . ) ( ) .6 7 10 8 3145 298 2 73 1 1 1 15

Self-test 6A.3 Suppose it is found that at equilibrium the par-
tial pressures of A and B in the gas-phase reaction A ⇌ B are 
equal. What is the value of ΔrG<?

Answer: 0

Brief illustration 6A.2 Exergonic and endergonic 
reactions

The standard Gibbs energy of the reaction H (g) O g2 2+ →1
2 ( )

H O(l)2  at 298 K is −237 kJ mol−1, so the reaction is exergonic 
and in a suitable device (a fuel cell, for instance) operating at 
constant temperature and pressure could produce 237 kJ of 
electrical work for each mole of H2 molecules that react. The 
reverse reaction, for which ΔrG< = +237 kJ mol−1 is endergonic 
and at least 237 kJ of work must be done to achieve it.

Self-test 6A.2 Classify the formation of methane from its ele-
ments as exergonic or endergonic under standard conditions 
at 298 K.

Answer: Endergonic

iranchembook.ir/edu



248 6 Chemical equilibrium

As can be seen from Fig. 6A.3, when it is included there is an 
intermediate minimum in the total Gibbs energy, and its posi-
tion corresponds to the equilibrium composition of the reac-
tion mixture.

We see from eqn 6A.8 that, when ΔrG<> 0, K < 1. Therefore, 
at equilibrium the partial pressure of A exceeds that of B, 
which means that the reactant A is favoured in the equilibrium. 
When ΔrG< < 0, K > 1, so at equilibrium the partial pressure 
of B exceeds that of A. Now the product B is favoured in the 
equilibrium.

A note on good practice A common remark is that ‘a reac-
tion is spontaneous if ΔrG< < 0’. However, whether or not a 
reaction is spontaneous at a particular composition depends 
on the value of ΔrG at that composition, not ΔrG< . It is far 
better to interpret the sign of ΔrG< as indicating whether K is 
greater or smaller than 1. The forward reaction is spontaneous 
(ΔrG < 0) when Q < K and the reverse reaction is spontaneous 
when Q > K.

(b) The general case of a reaction
We can now extend the argument that led to eqn 6A.8 to a 
general reaction. First, we note that a chemical reaction may 
be expressed symbolically in terms of (signed) stoichiometric 
numbers as

0 =∑
J

JJ

 
Symbolic form  chemical equation  (6A.9)

where J denotes the substances and the νJ are the corresponding 
stoichiometric numbers in the chemical equation. In the reac-
tion 2 A + B → 3 C + D, for instance, these numbers have the 

values νA = −2, νB = −1, νC = +3, and νD = +1. A stoichio metric 
number is positive for products and negative for reactants. 
Then we define the extent of reaction ξ so that, if it changes by 
Δξ, then the change in the amount of any species J is νJΔξ.

With these points in mind and with the reaction Gibbs 
energy, ΔrG, defined in the same way as before (eqn 6A.1) we 
show in the following Justification that the Gibbs energy of 
reaction can always be written

∆ ∆r rG G RT Q= +< ln  

with the standard reaction Gibbs energy calculated from

∆ ∆ ∆r
Products

f
Reactants

fG G G< < <= −∑ ∑ 

 

where the ν are the (positive) stoichiometric coefficients. More 
formally,

∆ ∆r
J

J f JG G< <=∑ ( )
 

where the νJ are the (signed) stoichiometric numbers. The reac-
tion quotient, Q, has the form

Q = activities of products
activities of reactants

 

with each species raised to the power given by its stoichio metric 
coefficient. More formally, to write the general expression for Q 
we introduce the symbol Π to denote the product of what fol-
lows it (just as Σ denotes the sum), and define Q as

Q a=∏
J

J
J

 
Definition  reaction quotient  (6A.12b)

Because reactants have negative stoichiometric numbers, they 
automatically appear as the denominator when the product is 
written out explicitly. Recall from Table 5E.1 that, for pure solids 
and liquids, the activity is 1, so such substances make no contribu-
tion to Q even though they may appear in the chemical equation.

Brief illustration 6A.4 The reaction quotient

Consider the reaction 2 A + 3 B → C + 2 D, in which case 
νA = −2, νB = −3, νC = +1, and νD = +2. The reaction quotient is 
then

Q a a a a
a a
a a

= =− −
A B C D

C D

A B

2 3 2
2

2 3

Self-test 6A.4 Write the reaction quotient for A + 2 B → 3 C.
Answer: Q a a a= C A B/3 2

 (6A.11b)
Formal 
expression

reaction 
gibbs 
energy

 (6A.10)
reaction gibbs energy 
at an arbitrary stage

 (6A.11a)
Practical 
implemen
tation

reaction 
gibbs 
energy

 (6A.12a)
General 
form

reaction 
quotient

0

0

G
ib

b
s 

en
er

g
y,

 G

Including
mixing

Without
mixing

Mixing

Extent of reaction, ξ

Figure 6A.3 If the mixing of reactants and products is ignored, 
then the Gibbs energy changes linearly from its initial value 
(pure reactants) to its final value (pure products) and the slope 
of the line is ΔrG< . However, as products are produced, there 
is a further contribution to the Gibbs energy arising from their 
mixing (lowest curve). The sum of the two contributions has 
a minimum. That minimum corresponds to the equilibrium 
composition of the system.
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6A The equilibrium constant  249

Now we conclude the argument, starting from eqn 6A.10. At 
equilibrium, the slope of G is zero: ΔrG = 0. The activities then 
have their equilibrium values and we can write

K a=








∏

J
J

equilibrium

J

 
Definition  equilibrium constant  (6A.13)

This expression has the same form as Q but is evaluated using 
equilibrium activities. From now on, we shall not write the 
‘equilibrium’ subscript explicitly, and will rely on the context 
to make it clear that for K we use equilibrium values and for 
Q we use the values at the specified stage of the reaction. An 
equilibrium constant K expressed in terms of activities (or 
fugacities) is called a thermodynamic equilibrium constant. 
Note that, because activities are dimensionless numbers, the 
thermodynamic equilibrium constant is also dimensionless. In 
elementary applications, the activities that occur in eqn 6A.13 
are often replaced as follows:

In such cases, the resulting expressions are only approxima-
tions. The approximation is particularly severe for electrolyte 
solutions, for in them activity coefficients differ from 1 even in 
very dilute solutions (Topic 5F).

At this point we set ΔrG = 0 in eqn 6A.10 and replace Q by K. 
We immediately obtain

∆rG RT K< = − ln   thermodynamic equilibrium constant  (6A.14)

This is an exact and highly important thermodynamic rela-
tion, for it enables us to calculate the equilibrium constant of 
any reaction from tables of thermodynamic data, and hence to 
predict the equilibrium composition of the reaction mixture. In 
Topic 15F we see that the right-hand side of eqn 6A.14 may be 
expressed in terms of spectroscopic data for gas-phase species; 
so this expression also provides a link between spectroscopy 
and equilibrium composition.

Justification 6A.1 The dependence of the reaction Gibbs 
energy on the reaction quotient

Consider a reaction with stoichiometric numbers νJ. When 
the reaction advances by dξ , the amounts of reactants and 
products change by dnJ = νJdξ. The resulting infinitesimal 
change in the Gibbs energy at constant temperature and pres-
sure is

d d d d
J

J J

J

J J

J

J JG n= = =








∑ ∑ ∑µ µ ξ µ ξ 

It follows that

∆r
J

J JG G

p T
= ∂

∂






=∑ξ µ
,



To make progress, we note that the chemical potential of a spe-
cies J is related to its activity by eqn 5E.9 ( μ μJ J Jln= +< RT a ). 
When this expression is substituted into eqn 6A.11 we obtain

∆

∆ ∆

∆

r
J

J J
J

J J

r
J

J J r
J

G RT a

G RT a G RT

= +

= + = +

∑ ∑

∑

 



μ<

< <

<
rG� �� ��

ln

ln ln∏∏
= +

a

G RT Q

J

r

J

Q���

∆ < ln

In the second line we use first a ln x = ln xa and then ln x + ln 
y + … = ln xy…, so

i

i

i

ix x∑ ∏=








ln ln

Brief illustration 6A.5 The equilibrium constant

The equilibrium constant for the heterogeneous equilibrium 
CaCO3(s) ⇌ CaO(s) + CO2(g) is

K a a a
a a
a= =−

CaCO s CaO s CO g
CaO s CO g

CaCO s
3 2

2

3

1
( ) ( ) ( )

( ) ( )

( )

1

1

�

��� ���
=aCO g2 ( )

Provided the carbon dioxide can be treated as a perfect gas, we 
can go on to write

K p p= CO /
2

<

and conclude that in this case the equilibrium constant is the 
numerical value of the decomposition vapour pressure of cal-
cium carbonate.

Self-test 6A.5 Write the equilibrium constant for the reaction 
N2(g) + 3 H2(g) ⇌ 2 NH3(g), with the gases treated as perfect.

Answer: K a a a p p p p= =NH N H NH N H/ /
3 2 2 3 2 2

2 3 2 2 3<

Example 6A.1 Calculating an equilibrium constant

Calculate the equilibrium constant for the ammonia synthesis 
reaction, N2(g) + 3 H2(g) ⇌ 2 NH3(g), at 298 K and show how K 
is related to the partial pressures of the species at equilibrium 

State Measure Approximation 
for aJ

Definition

Solute molality b bJ J/ < b< = 1 mol kg−1

molar concentration [J]/c< c< = 1 mol dm−3

Gas phase partial pressure pJ/p< p< = 1 bar
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250 6 Chemical equilibrium

when the overall pressure is low enough for the gases to be 
treated as perfect.

Method Calculate the standard reaction Gibbs energy from 
eqn 6A.10 and convert it to the value of the equilibrium con-
stant by using eqn 6A.14. The expression for the equilibrium 
constant is obtained from eqn 6A.13, and because the gases are 
taken to be perfect, we replace each activity by the ratio pJ/p < , 
where pJ is the partial pressure of species J.

Answer The standard Gibbs energy of the reaction is

∆ ∆ ∆ ∆
∆

r f 3 f 2 f 2

f 3

2 NH g N g 3 H g
2 NH g 2

G G G G
G

< < < <

<

= − +
= = ×

( , ) { ( , ) ( , )}
( , ) (( . )−16 45kJmol 1−

Then,

ln
( . )

( . ) ( )
.

K = − × − ×
×

= × ×−

− −
2 1 645 10

8 3145 298
2 1 6454 1

1 1

Jmol
JK mol K

110
8 3145 298

13 2
4

.
.× = …

Hence, K = 5.8 × 105. This result is thermodynamically exact. 
The thermodynamic equilibrium constant for the reaction is

K
a

a a
= NH

N H

3

2 2

2

3

and this ratio has the value we have just calculated. At low 
overall pressures, the activities can be replaced by the ratios 
pJ/p < and an approximate form of the equilibrium constant is

K
p p

p p p p

p p

p p
= =

( )

( )( )
NH

N H

NH

N H

/

/ /
3

2 2

3

2 2

2

3

2 2

3

<

< <

<

Self-test 6A.6 Evaluate the equi l ibrium constant for 
N2O4(g) ⇌ 2 NO2(g) at 298 K.

Answer: K = 0.15

Example 6A.2 Estimating the degree of dissociation 
at equilibrium

The degree of dissociation (or extent of dissociation, α) is 
defined as the fraction of reactant that has decomposed; if 
the initial amount of reactant is n and the amount at equilib-
rium is neq, then α = (n − neq)/n. The standard reaction Gibbs 
energy for the decomposition H2O(g) → H2(g) + 1

2 O2(g) is 
+118.08 kJ mol−1 at 2300 K. What is the degree of dissociation 
of H2O at 2300 K and 1.00 bar?

Method The equilibrium constant is obtained from the stand-
ard Gibbs energy of reaction by using eqn 6A.11, so the task is 
to relate the degree of dissociation, α, to K and then to find its 
numerical value. Proceed by expressing the equilibrium com-
positions in terms of α, and solve for α in terms of K. Because 
the standard reaction Gibbs energy is large and positive, we 
can anticipate that K will be small, and hence that α ≪ 1, 

which opens the way to making approximations to obtain its 
numerical value.

Answer The equilibrium constant is obtained from eqn 6A.14 
in the form

ln
.

( . ) ( )
.

K G
RT= − = −

×
×

= −

−

− −
∆r Jmol

JK mol K

< 1 1808 10
8 3145 2300

1

5 1

1 1

11808 10
8 3145 2300 6 17

5×
× = …. .−

It follows that K = 2.08 × 10−3. The equilibrium composition 
can be expressed in terms of α by drawing up the following 
table:

where, for the entries in the last row, we have used pJ = xJp (eqn 
1A.8). The equilibrium constant is therefore

K
p p

p
p= =

− +
H O

H O

2 2

2

1 2 3 2 1 2

1 21 2

/ / /

/( )( )
α
α α

In this expression, we have written p in place of p/p <, to sim-
plify its appearance. Now make the approximation that α ≪ 1, 
and hence obtain

K
p≈ α 3 2 1 2

1 22

/ /

/

Under the stated condition, p = 1.00 bar (that is, p/p < = 1.00), 
so α ≈ (21/2K)2/3 = 0.0205. That is, about 2 per cent of the water 
has decomposed.

A note on good practice Always check that the approxima-
tion is consistent with the final answer. In this case α ≪ 1, 
in accord with the original assumption.

Self-test 6A.7 Given that the standard Gibbs energy of reac-
tion at 2000 K is +135.2 kJ mol−1 for the same reaction, suppose 
that steam at 200 kPa is passed through a furnace tube at that 
temperature. Calculate the mole fraction of O2 present in the 
output gas stream.

Answer: 0.00221

H2O H2 + 1
2 2O

Initial amount n 0 0

Change to reach 
equilibrium

−αn +αn + 1
2

αn

Amount at 
equilibrium

(1 − α)n αn 1
2

αn Total: ( )1 1
2

+ α n

Mole fraction, xJ 1
1 1

2

−
+

α
α

α
1 1

2+
1
2

1
21
α

α+

Partial pressure, pJ ( )1

1 1
2

−
+

α
α

p αp

1 1
2+

1
2

1
21

α
α
p

+
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6A The equilibrium constant  251

(c) The relation between equilibrium 
constants

Equilibrium constants in terms of activities are exact, but it is 
often necessary to relate them to concentrations. Formally, we 
need to know the activity coefficients, and then to use aJ = γJxJ, 
aJ = γJbJ/b<, or aJ = [J]/c<, where xJ is a mole fraction, bJ is a 
molality, and [J] is a molar concentration. For example, if we 
were interested in the composition in terms of molality for an 
equilibrium of the form A + B ⇌ C + D, where all four species 
are solutes, we would write

K a a
a a

b b
b b K K= = × =C D

A B

C D

A B

C D

A B

γ γ
γ γ γ b

 
(6A.15)

The activity coefficients must be evaluated at the equilibrium 
composition of the mixture (for instance, by using one of the 
Debye–Hückel expressions, Topic 5F), which may involve a 
complicated calculation, because the activity coefficients are 
known only if the equilibrium composition is already known. 
In elementary applications, and to begin the iterative calcula-
tion of the concentrations in a real example, the assumption is 
often made that the activity coefficients are all so close to unity 
that Kγ  = 1. Then we obtain the result widely used in elementary 
chemistry that K ≈ Kb, and equilibria are discussed in terms of 
molalities (or molar concentrations) themselves.

A special case arises when we need to express the equilib-
rium constant of a gas-phase reaction in terms of molar con-
centrations instead of the partial pressures that appear in the 
thermodynamic equilibrium constant. Provided we can treat 
the gases as perfect, the pJ that appear in K can be replaced by 
[J]RT, and

K a
p
p

RT
p

RT
p

= =






= 





= ×

∏ ∏ ∏

∏ ∏
J

J
J

J

J

J J

J

J

J

J

J

J









< <

<

[ ]

[ ]J 





J

 

(Products can always be factorized like that: abcdef is the same 
as abc × def.) The (dimensionless) equilibrium constant Kc is 
defined as

K
cc = 



∏

J

J[ ]J
<



 
Definition  Kc for gas-phase reactions  (6A.16)

It follows that

K K c RT
pc= ×





∏

J

J<

<



 
(6A.17a)

If now we write Δν =∑JνJ, which is easier to think of as 
ν(products) – ν(reactants), then the relation between K and Kc 
for a gas-phase reaction is

K K c RT
pc= ×







<

<

∆

 

The term in parentheses works out as T/(12.03 K).

(d) Molecular interpretation of the 
equilibrium constant

Deeper insight into the origin and significance of the equilib-
rium constant can be obtained by considering the Boltzmann 
distribution of molecules over the available states of a system 
composed of reactants and products (Foundations B). When 
atoms can exchange partners, as in a reaction, the available 
states of the system include arrangements in which the atoms 
are present in the form of reactants and in the form of prod-
ucts: these arrangements have their characteristic sets of energy 
levels, but the Boltzmann distribution does not distinguish 
between their identities, only their energies. The atoms distrib-
ute themselves over both sets of energy levels in accord with 
the Boltzmann distribution (Fig. 6A.4). At a given temperature, 
there will be a specific distribution of populations, and hence a 
specific composition of the reaction mixture.

It can be appreciated from the illustration that, if the reac-
tants and products both have similar arrays of molecular 
energy levels, then the dominant species in a reaction mix-
ture at equilibrium will be the species with the lower set of 
energy levels. However, the fact that the Gibbs energy occurs 
in the expression is a signal that entropy plays a role as well as 
energy. Its role can be appreciated by referring to Fig. 6A.4. In 
Fig. 6A.4b we see that, although the B energy levels lie higher 
than the A energy levels, in this instance they are much more 
closely spaced. As a result, their total population may be con-
siderable and B could even dominate in the reaction mixture at 
equilibrium. Closely spaced energy levels correlate with a high 

Brief illustration 6A.6 The relation between equilibrium 
constants

For the reaction N2(g) + 3 H2(g) → 2 NH3(g), Δν = 2 − 4 = −2, so

K K T K Tc c= ×






= ×






−

12 03
12 032 2

.
.

K
K

At 298.15 K the relation is

K K
K

c
c= ×





=12 03
298 15 614 2

2
.
. .

K
K

so Kc = 614.2K. Note that both K and Kc are dimensionless.

Self-test 6A.8 Find the relation between K and Kc for the equi-
librium H (g) O g H O(l) at298K2 2 2+ →1

2 ( ) .
Answer: Kc = 123K

 (6A.17b)
relation between K and 
Kc for gas-phase reactions
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252 6 Chemical equilibrium

entropy (Topic 15E), so in this case we see that entropy effects 
dominate adverse energy effects. This competition is mirrored 
in eqn 6A.14, as can be seen most clearly by using ΔrG<  = 
ΔrH<− TΔrS< and writing it in the form

K H RT S R= −e er r/ /∆ ∆< <

 (6A.18)

Note that a positive reaction enthalpy results in a lowering of 
the equilibrium constant (that is, an endothermic reaction can 
be expected to have an equilibrium composition that favours 
the reactants). However, if there is positive reaction entropy, 
then the equilibrium composition may favour products, despite 
the endothermic character of the reaction.

Checklist of concepts

☐ 1. The reaction Gibbs energy is the slope of the plot of 
Gibbs energy against extent of reaction.

☐ 2. Reactions are either exergonic or endergonic.
☐ 3. The reaction Gibbs energy depends logarithmically on 

the reaction quotient.

☐ 4. When the reaction Gibbs energy is zero the reaction 
quotient has a value called the equilibrium constant.

☐ 5. Under ideal conditions, the thermodynamic equilib-
rium constant may be approximated by expressing it in 
terms of concentrations and partial pressures.

Checklist of equations

Brief illustration 6A.7 Contributions to K

In Example 6A.1 it is established that ΔrG< = −33.0 kJ mol−1 
for the reaction N2(g) + 3 H2(g) ⇌ 2 NH3(g) at 298 K. From 
the tables of data in the Resource section, we can find that 
ΔrH< = −92.2 kJ mol−1 and ΔrS< = −198.8 J K−1 mol−1. The con-
tributions to K are therefore

K =

×

− − × ×

−

− − −

−

e

e

J mol J K mol K

J K

( . )/( . ) ( )

( .

9 22 10 8 3145 298

198 8

4 1 1 1

11 1 1 18 3145

37 2 23 9

mol J K mol

e e

− −

= ×… − …

)/( . )

. .

−

We see that the exothermic character of the reaction encour-
ages the formation of products (it results in a large increase in 
entropy of the surroundings) but the decrease in entropy of 
the system as H atoms are pinned to N atoms opposes their 
formation.

Self-test 6A.9 Analyse the equilibrium N2O4(g) ⇌ 2 NO2(g) 
similarly.

Answer: K = e−26.7… × e21.1…; enthalpy opposes, entropy encourages

E
n
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g
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A B

Boltzmann
distribution

E
n
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g
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Population, P

A B

Boltzmann
distribution

(a) (b)

Figure 6A.4 The Boltzmann distribution of populations over 
the energy levels of two species A and B with similar densities 
of energy levels. The reaction A → B is endothermic in this 
example. (a) The bulk of the population is associated with the 
species A, so that species is dominant at equilibrium. (b) Even 
though the reaction A → B is endothermic, the density of 
energy levels in B is so much greater than that in A that the 
population associated with B is greater than that associated 
with A, so B is dominant at equilibrium.

Property Equation Comment Equation number

Reaction Gibbs energy ΔrG = (∂G/∂ξ)p,T Definition 6A.1

Reaction Gibbs energy ΔrG = ΔrG< + RT ln Q 6A.10

Standard reaction Gibbs energy ∆ ∆ ∆

∆

r

Products

f

Reactants

f

J

J f J

G G G

G

< < <

<

= −

=

∑ ∑
∑

 

 ( )

ν are positive; νJ are signed 6A.11
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Property Equation Comment Equation number

Reaction quotient Q a= Π
J J

J Definition; evaluated at arbitrary stage of reaction 6A.12

Thermodynamic equilibrium constant
K a=





Π
J J

equilibrium

J
Definition 6A.13

Equilibrium constant ΔrG< = −RT ln K 6A.14

Relation between K and Kc K = Kc(c<RT/p<)Δν Gas-phase reactions; perfect gases 6A.17b
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6B the response of equilibria 
to the conditions

The equilibrium constant for a reaction is not affected by the 
presence of a catalyst or an enzyme (a biological catalyst). As 
explained in detail in Topics 20H and 22C, catalysts increase the 
rate at which equilibrium is attained but do not affect its posi-
tion. However, it is important to note that in industry reactions 
rarely reach equilibrium, partly on account of the rates at which 
reactants mix. The equilibrium constant is also independent 
of pressure, but as we shall see, that does not necessarily mean 

that the composition at equilibrium is independent of pressure. 
The equilibrium constant does depend on the temperature in 
a manner that can be predicted from the standard reaction 
enthalpy.

6B.1 The response to pressure

The equilibrium constant depends on the value of ΔrG<, which 
is defined at a single, standard pressure. The value of ΔrG<, and 
hence of K, is therefore independent of the pressure at which 
the equilibrium is actually established. In other words, at a 
given temperature K is a constant.

The conclusion that K is independent of pressure does not 
necessarily mean that the equilibrium composition is inde-
pendent of the pressure, and the effect depends on how the 
pressure is applied.

The pressure within a reaction vessel can be increased by 
injecting an inert gas into it. However, so long as the gases are 
perfect, this addition of gas leaves all the partial pressures of the 
reacting gases unchanged: the partial pressures of a perfect gas 
is the pressure it would exert if it were alone in the container, so 
the presence of another gas has no effect. It follows that pres-
surization by the addition of an inert gas has no effect on the 
equilibrium composition of the system (provided the gases are 
perfect).

Alternatively, the pressure of the system may be increased by 
confining the gases to a smaller volume (that is, by compres-
sion). Now the individual partial pressures are changed but 
their ratio (as it appears in the equilibrium constant) remains 
the same. Consider, for instance, the perfect gas equilibrium 
A ⇌ 2 B, for which the equilibrium constant is

K p
p p

= B

A

2

<

 

The right-hand side of this expression remains constant only 
if an increase in pA cancels an increase in the square of pB. This 
relatively steep increase of pA compared to pB will occur if the 
equilibrium composition shifts in favour of A at the expense of 
B. Then the number of A molecules will increase as the volume 
of the container is decreased and its partial pressure will rise 
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➤➤ Why do you need to know this material?
Chemists, and chemical engineers designing a chemical 
plant, need to know how an equilibrium will respond to 
changes in the conditions, such as a change in pressure or 
temperature. The variation with temperature also provides 
a way to determine the enthalpy and entropy of a reaction.

➤➤ What is the key idea?
A system at equilibrium, when subjected to a disturbance, 
responds in a way that tends to minimize the effect of the 
disturbance.

➤➤ What do you need to know already?
This Topic builds on the relation between the equilibrium 
constant and the standard Gibbs energy of reaction (Topic 
6A). To express the temperature dependence of K it draws 
on the Gibbs–Helmholtz equation (Topic 3D).
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6B The response of equilibria to the conditions  255

more rapidly than can be ascribed to a simple change in volume 
alone (Fig. 6B.1).

The increase in the number of A molecules and the corre-
sponding decrease in the number of B molecules in the equi-
librium A ⇌ 2 B is a special case of a principle proposed by the 
French chemist Henri Le Chatelier, which states that:

A system at equilibrium, when subjected to a 
disturbance, responds in a way that tends to 
minimize the effect of the disturbance.

The principle implies that, if a system at equilibrium is com-
pressed, then the reaction will adjust so as to minimize the 
increase in pressure. This it can do by reducing the number of 
particles in the gas phase, which implies a shift A ← 2 B.

To treat the effect of compression quantitatively, we suppose 
that there is an amount n of A present initially (and no B). At 
equilibrium the amount of A is (1 − α)n and the amount of B is 
2αn, where α is the degree of dissociation of A into 2B. It fol-
lows that the mole fractions present at equilibrium are

x n
n n xA B= −

− + = −
+ = +

( )
( )

1
1 2

1
1

2
1

α
α α

α
α

α
α

The equilibrium constant for the reaction is

K p
p p

x p
x pp

p p= = =
−

B

A

B

A

/2 2 2 2

2
4

1< <

<α
α

( )

which rearranges to

α =
+







1
1 4

1 2

p Kp/ <

/

 
(6B.1)

This formula shows that, even though K is independent of 
pressure, the amounts of A and B do depend on pressure (Fig. 
6B.2). It also shows that as p is increased, α decreases, in accord 
with Le Chatelier’s principle.

6B.2 The response to temperature

Le Chatelier’s principle predicts that a system at equilibrium 
will tend to shift in the endothermic direction if the tempera-
ture is raised, for then energy is absorbed as heat and the rise 
in temperature is opposed. Conversely, an equilibrium can be 
expected to shift in the exothermic direction if the temperature 
is lowered, for then energy is released and the reduction in tem-
perature is opposed. These conclusions can be summarized as 
follows:

 Exothermic reactions: increased temperature favours the 
reactants.

le
 c
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Brief illustration 6B.1 Le Chatelier’s principle

To predict the effect of an increase in pressure on the composi-
tion of the ammonia synthesis at equilibrium, Example 6A.1, 
we note that the number of gas molecules decreases (from 4 
to 2). So, Le Chatelier’s principle predicts that an increase in 
pressure will favour the product. The equilibrium constant is

K
p p
p p

x p p
x x p

x p
x x p

Kx= = = = ×NH

N H

NH

N H

NH

N H

3

2 2

3

2 2

3

2 2

2

3

2 2 2

3 4

2 2

3 2

< < < pp
p
<2

2
 

where Kx is the part of the equilibrium constant expression 
that contains the equilibrium mole fractions of reactants and 
products (note that, unlike K itself, Kx is not an equilibrium 
constant). Therefore, doubling the pressure must increase Kx 
by a factor of 4 to preserve the value of K.

Self-test 6B.1 Predict the ef fect of a tenfold pressure 
increase on the equilibrium composition of the reaction  
3 N2(g) + H2(g) ⇌ 2 N3H(g).

Answer: 100-fold increase in Kx

(a) (b)

Figure 6B.1 When a reaction at equilibrium is compressed 
(from a to b), the reaction responds by reducing the number 
of molecules in the gas phase (in this case by producing the 
dimers represented by the linked spheres).
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Figure 6B.2 The pressure dependence of the degree of 
dissociation, α , at equilibrium for an A(g) ⇌ 2 B(g) reaction for 
different values of the equilibrium constant K. The value α = 0 
corresponds to pure A; α = 1 corresponds to pure B
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256 6 Chemical equilibrium

 Endothermic reactions: increased temperature favours 
the products.

We shall now justify these remarks thermodynamically and see 
how to express the changes quantitatively.

(a) The van ’t Hoff equation
The van ’t Hoff equation, which is derived in the following 
Justification, is an expression for the slope of a plot of the equi-
librium constant (specifically, ln K) as a function of tempera-
ture. It may be expressed in either of two ways:

d
d

rlnK
T

H
RT

= ∆ <

2  
 van ‘t hoff equation  (6B.2a)

d
d( )

rln
/
K
T

H
R1 = − ∆ <

 

Equation 6B.2a shows that d ln K/dT < 0 (and therefore that 
dK/dT < 0) for a reaction that is exothermic under standard 

conditions (ΔrH< < 0). A negative slope means that ln K, and 
therefore K itself, decreases as the temperature rises. Therefore, 
as asserted above, in the case of an exothermic reaction the 
equilibrium shifts away from products. The opposite occurs in 
the case of endothermic reactions.

Insight into the thermodynamic basis of this behaviour 
comes from the expression ΔrG< = ΔrH< – TΔrS< written in the 
form –ΔrG</T = −ΔrH</T + ΔrS<. When the reaction is exo-
thermic, –ΔrH</T corresponds to a positive change of entropy 
of the surroundings and favours the formation of products. 
When the temperature is raised, –ΔrH</T decreases and the 
increasing entropy of the surroundings has a less important 
role. As a result, the equilibrium lies less to the right. When 
the reaction is endothermic, the principal factor is the increas-
ing entropy of the reaction system. The importance of the 
un favourable change of entropy of the surroundings is reduced 
if the temperature is raised (because then ΔrH</T is smaller), 
and the reaction is able to shift towards products.

These remarks have a molecular basis that stems from the 
Boltzmann distribution of molecules over the available energy 
levels (Foundations B, and in more detail in Topic 15F). The 
typical arrangement of energy levels for an endothermic reac-
tion is shown in Fig. 6B.3a. When the temperature is increased, 
the Boltzmann distribution adjusts and the populations change 
as shown. The change corresponds to an increased popula-
tion of the higher energy states at the expense of the popula-
tion of the lower energy states. We see that the states that arise 
from the B molecules become more populated at the expense 
of the A molecules. Therefore, the total population of B states 
increases, and B becomes more abundant in the equilibrium 
mixture. Conversely, if the reaction is exothermic (Fig. 6B.3b), 

Justification 6B.1 The van ’t Hoff equation

From eqn 6A.14, we know that

lnK G
RT= − ∆r

<

 

Differentiation of ln K with respect to temperature then gives

d
d

d( / )
d

rlnK
T R

G T
T= − 1 ∆ <

 

The differentials are complete (that is, they are not partial 
derivatives) because K and ΔrG< depend only on temperature, 
not on pressure. To develop this equation we use the Gibbs–
Helmholtz equation (eqn 3D.10, d(ΔG/T) = −ΔH/T2) in the 
form

d( / )
d

r r∆ ∆G T
T

H
R

< <

= −
 

where ΔrH< is the standard reaction enthalpy at the tem-
perature T. Combining the two equations gives the van ’t 
Hoff equation, eqn 6B.2a. The second form of the equation is 
obtained by noting that

d /
d so d d /( ) , ( )1 1 12

2T
T T

T T T= − = −
 

It follows that eqn 6B.2a can be rewritten as

− =d
d( )

rln
/
K

T T
H

RT2 21
∆ <

 

which simplifies into eqn 6B.2b.

Alternative 
version 

van ‘t hoff 
equation  (6B.2b)
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Figure 6B.3 The effect of temperature on a chemical 
equilibrium can be interpreted in terms of the change in the 
Boltzmann distribution with temperature and the effect of that 
change in the population of the species. (a) In an endothermic 
reaction, the population of B increases at the expense of A as 
the temperature is raised. (b) In an exothermic reaction, the 
opposite happens.
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6B The response of equilibria to the conditions  257

then an increase in temperature increases the population of the 
A states (which start at higher energy) at the expense of the B 
states, so the reactants become more abundant.

The temperature dependence of the equilibrium constant 
provides a non-calorimetric method of determining ΔrH<. A 
drawback is that the reaction enthalpy is actually temperature-
dependent, so the plot is not expected to be perfectly linear. 
However, the temperature dependence is weak in many cases, 
so the plot is reasonably straight. In practice, the method is not 
very accurate, but it is often the only method available.

Brief illustration 6B.2 The temperature dependence of K

To estimate the equilibrium constant or the synthesis of 
ammonia at 500 K from its value at 298 K (6.1 × 105 for the 
reaction written as N2(g) + 3 H2(g) ⇌ 2 NH3(g)) we use the 
standard reaction enthalpy, which can be obtained from Table 
2C.2 in the Resource section by using ΔrH< = 2ΔfH< (NH3,g) 
and assume that its value is constant over the range of tem-
peratures. Then, with ΔrH< = −92.2 kJ mol−1, from eqn 6B.3 we 
find

ln ln( . )
.

.
K2

5
4 1

1 16 1 10
9 22 10

8 3145
1

500= × −
− ×





×
−

− −

Jmol
JK mol KK K−







= − …

1
298

1 7.  

It follows that K2 = 0.18, a lower value than at 298 K, as expected 
for this exothermic reaction.

Self-test 6B.3 The equilibrium constant for N2O4(g) ⇌  
2 NO2(g) was calculated in Self-test 6A.6. Estimate its value at 
100 °C.

Answer: 15

(b) The value of K at different temperatures
To find the value of the equilibrium constant at a temperature 
T2 in terms of its value K1 at another temperature T1, we inte-
grate eqn 6B.2b between these two temperatures:

ln ln ( / )
/

/
K K R H T

T

T

2 1
1

11 1
1

2

− = − ∫ ∆r d<

 
(6B.4)

If we suppose that ΔrH< varies only slightly with temperature 
over the temperature range of interest, then we may take it out-
side the integral. It follows that

ln lnK K H
R T T2 1

2 1

1 1− = − −





∆r
<

 

temperature 
dependence of K  (6B.5)

Example 6B.1 Measuring a reaction enthalpy

The data below show the temperature variation of the equilib-
rium constant of the reaction Ag2CO3(s) ⇌ Ag2O(s) + CO2(g). 
Calculate the standard reaction enthalpy of the decomposition.

Method It follows from eqn 6B.2b that, provided the reaction 
enthalpy can be assumed to be independent of temperature, 
a plot of –ln K against 1/T should be a straight line of slope 
ΔrH</R.

Answer We draw up the following table:

T/K 350 400 450 500
K 3.98 × 10−4 1.41 × 10−2 1.86 × 10−1 1.48

T/K 350 400 450 500
(103 K)/T 2.86 2.50 2.22 2.00
–ln K 6.83 4.26 1.68 −0.39

2 2.2 2.4 2.6 2.8 3

8

6

4

2

0

–l
n

 K

(103 K)/T

Figure 6B.4 When –ln K is plotted against 1/T, a straight 
line is expected with slope equal to ΔrH</R if the standard 
reaction enthalpy does not vary appreciably with 
temperature. This is a non-calorimetric method for the 
measurement of reaction enthalpies.

These points are plotted in Fig. 6B.4. The slope of the graph is 
+9.6 × 103, so

∆r
3 19 6 1 K 8 kJmolH R< = + × × = + −( . )0 0

Self-test 6B.2 The equilibrium constant of the reaction  
2 SO2(g) + O2(g) ⇌ 2 SO3(g) is 4.0 × 1024 at 300 K, 2.5 × 1010 at 
500 K, and 3.0 × 104 at 700 K. Estimate the reaction enthalpy 
at 500 K.

Answer: −200 kJ mol−1
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258 6 Chemical equilibrium

Checklist of concepts

☐ 1. The thermodynamic equilibrium constant is independ-
ent of pressure.

☐ 2. The response of composition to changes in the condi-
tions is summarized by Le Chatelier’s principle.

☐ 3. The dependence of the equilibrium constant on the 
temperature is expressed by the van ’t Hoff equation 
and can be explained in terms of the distribution of 
molecules over the available states.

Checklist of equations

Property Equation Comment Equation number

van ’t Hoff equation d ln K/dT = ΔrH</RT 2 6B.2a

d ln K/d(1/T) = −ΔrH</R Alternative version 6B.2b

Temperature dependence of equilibrium constant ln K2 − ln K1 = −(ΔrH</R)(1/T2 − 1/T1) ΔrH< assumed constant 6B.5
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6C electrochemical cells

An electrochemical cell consists of two electrodes, or metal-
lic conductors, in contact with an electrolyte, an ionic conduc-
tor (which may be a solution, a liquid, or a solid). An electrode 
and its electrolyte comprise an electrode compartment. The 
two electrodes may share the same compartment. The various 
kinds of electrode are summarized in Table 6C.1. Any ‘inert 
metal’ shown as part of the specification is present to act as a 
source or sink of electrons, but takes no other part in the reac-
tion other than acting as a catalyst for it. If the electrolytes are 
different, the two compartments may be joined by a salt bridge, 
which is a tube containing a concentrated electrolyte solution 
(for instance, potassium chloride in agar jelly) that completes 
the electrical circuit and enables the cell to function. A galvanic 
cell is an electrochemical cell that produces electricity as a 
result of the spontaneous reaction occurring inside it. An elec-
trolytic cell is an electrochemical cell in which a non-spontan-
eous reaction is driven by an external source of current.

6C.1 Half-reactions and electrodes

It will be familiar from introductory chemistry courses that oxi-
dation is the removal of electrons from a species, a reduction is 
the addition of electrons to a species, and a redox reaction is a 
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example 6c.1 using the temperature coefficient  
of the cell potential 265
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➤➤ Why do you need to know this material?
One very special case of the material treated in Topic 
6B that has enormous fundamental, technological, and 
economic significance concerns reactions that take place 
in electrochemical cells. Moreover, the ability to make very 
precise measurements of potential differences (‘voltages’) 
means that electrochemical methods can be used to 
determine thermodynamic properties of reactions that 
may be inaccessible by other methods.

➤➤ What is the key idea?
The electrical work that a reaction can perform at constant 
pressure and temperature is equal to the reaction Gibbs 
energy.

➤➤ What do you need to know already?
This Topic develops the relation between the Gibbs energy 
and non-expansion work (Topic 3C). You need to be aware 

of how to calculate the work of moving a charge through 
an electrical potential difference (Topic 2A). The equations 
make use of the definition of the reaction quotient Q and 
the equilibrium constant K (Topic 6A).

Table 6C.1 Varieties of electrode

Electrode 
type

Designation Redox 
couple

Half-reaction

Metal/
metal 
ion

M(s)|M+(aq) M+/M M+(aq) + e− → M(s)

Gas Pt(s)|X2(g)|X+(aq) X+/X2 X (aq) e X g2
+ −+ → 1

2
( )

Pt(s)|X2(g)|X−(aq) X2/X− 1
2

X (g) e X aq2 + →− −( )

Metal/
insoluble 
salt

M(s)|MX(s)|X−(aq) MX/M,X− MX(s) + e− → M(s) + X−(aq)

Redox Pt(s)|M+(aq),M2+(aq) M2+/M+ M2+(aq) + e− → M+(aq)
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260 6 Chemical equilibrium

reaction in which there is a transfer of electrons from one spe-
cies to another. The electron transfer may be accompanied by 
other events, such as atom or ion transfer, but the net effect is 
electron transfer and hence a change in oxidation number of 
an element. The reducing agent (or reductant) is the electron 
donor; the oxidizing agent (or oxidant) is the electron accep-
tor. It should also be familiar that any redox reaction may be 
expressed as the difference of two reduction half-reactions, 
which are conceptual reactions showing the gain of electrons. 
Even reactions that are not redox reactions may often be 
expressed as the difference of two reduction half-reactions. The 
reduced and oxidized species in a half-reaction form a redox 
couple. In general we write a couple as Ox/Red and the corres-
ponding reduction half-reaction as

Ox e Red+ → –  (6C.1)

We shall often find it useful to express the composition of an 
electrode compartment in terms of the reaction quotient, Q, 
for the half-reaction. This quotient is defined like the reaction 
quotient for the overall reaction (Topic 6A, Q a= Π

J
J

J ), but the 
electrons are ignored because they are stateless.

The reduction and oxidation processes responsible for the 
overall reaction in a cell are separated in space: oxidation takes 
place at one electrode and reduction takes place at the other. 
As the reaction proceeds, the electrons released in the oxi-
dation Red1 → Ox1 + ν e− at one electrode travel through the 
external circuit and re-enter the cell through the other elec-
trode. There they bring about reduction Ox2 + ν e− → Red2. 
The electrode at which oxidation occurs is called the anode; 
the electrode at which reduction occurs is called the cathode. 
In a galvanic cell, the cathode has a higher potential than the 
anode: the species undergoing reduction, Ox2, withdraws elec-
trons from its electrode (the cathode, Fig. 6C.1), so leaving a 
relative positive charge on it (corresponding to a high poten-
tial). At the anode, oxidation results in the transfer of electrons 
to the electrode, so giving it a relative negative charge (corres-
ponding to a low potential).

6C.2 Varieties of cells

The simplest type of cell has a single electrolyte common to 
both electrodes (as in Fig. 6C.1). In some cases it is neces-
sary to immerse the electrodes in different electrolytes, as 
in the ‘Daniell cell’ in which the redox couple at one elec-
trode is Cu2+/Cu and at the other is Zn2+/Zn (Fig. 6C.2). In 
an electrolyte concentration cell, the electrode compart-
ments are identical except for the concentrations of the elec-
trolytes. In an electrode concentration cell the electrodes 
themselves have different concentrations, either because they 
are gas electrodes operating at different pressures or because 
they are amalgams (solutions in mercury) with different 
concentrations.

Brief illustration 6C.1 Redox couples

The dissolution of si lver chloride in water AgCl(s) →  
Ag+(aq) + Cl−(aq), which is not a redox reaction, can be 
expressed as the difference of the following two reduction 
half-reactions:

AgCl(s) e Ag(s) Cl aq

Ag (aq) e Ag(s)

+ → +
+ →

− −

+ −

( )

The redox couples are AgCl/Ag,Cl− and Ag+/Ag, respectively.

Self-test 6C.1 Express the formation of H2O from H2 and O2 
in acidic solution (a redox reaction) as the difference of two 
reduction half-reactions.

Answer: 4 H+(aq) + 4 e− → 2 H2(g), O2(g) + 4 H+(aq) + 4 e− → 2 H2O(l)

Brief illustration 6C.2 The reaction quotient

The reaction quotient for the reduction of O2 to H2O in acid 
solution, O2(g) + 4 H+(aq) + 4 e− → 2 H2O(l), is

Q
a

a a
p

a p
= ≈

+ +

H O

H O H O

2

2 2

2

4 4

<

The approximations used in the second step are that the activ-
ity of water is 1 (because the solution is dilute) and the oxygen 
behaves as a perfect gas, so a p pO O /

2 2
≈ < .

Self-test 6C.2 Write the half-reaction and the reaction quo-
tient for a chlorine gas electrode.

Answer: Cl2(g) + 2 e− → 2 Cl−(aq), Q a p p≈ −Cl Cl/2
2

<

Electrons

Anode Cathode

+–

Oxidation Reduction

Figure 6C.1 When a spontaneous reaction takes place  
in a galvanic cell, electrons are deposited in one electrode  
(the site of oxidation, the anode) and collected from  
another (the site of reduction, the cathode), and so there  
is a net flow of current which can be used to do work.  
Note that the + sign of the cathode can be interpreted as 
indicating the electrode at which electrons enter the  
cell, and the – sign of the anode is where the electrons  
leave the cell.
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6C Electrochemical cells  261

(a) Liquid junction potentials
In a cell with two different electrolyte solutions in contact, as in 
the Daniell cell, there is an additional source of potential differ-
ence across the interface of the two electrolytes. This potential 
is called the liquid junction potential, Elj. Another example of 
a junction potential is that between different concentrations of 
hydrochloric acid. At the junction, the mobile H+ ions diffuse 
into the more dilute solution. The bulkier Cl− ions follow, but 
initially do so more slowly, which results in a potential differ-
ence at the junction. The potential then settles down to a value 
such that, after that brief initial period, the ions diffuse at the 
same rates. Electrolyte concentration cells always have a liquid 
junction; electrode concentration cells do not.

The contribution of the liquid junction to the potential can 
be reduced (to about 1 to 2 mV) by joining the electrolyte com-
partments through a salt bridge (Fig. 6C.3). The reason for the 
success of the salt bridge is that provided the ions dissolved in 
the jelly have similar mobilities, then the liquid junction poten-
tials at either end are largely independent of the concentrations 
of the two dilute solutions, and so nearly cancel.

(b) Notation

We use the following notation for cells:

6C.3 The cell potential

The current produced by a galvanic cell arises from the sponta-
neous chemical reaction taking place inside it. The cell reaction 
is the reaction in the cell written on the assumption that the 
right-hand electrode is the cathode, and hence that the spon-
taneous reaction is one in which reduction is taking place in 
the right-hand compartment. Later we see how to predict if the 
right-hand electrode is in fact the cathode; if it is, then the cell 
reaction is spontaneous as written. If the left-hand electrode 
turns out to be the cathode, then the reverse of the correspond-
ing cell reaction is spontaneous.

To write the cell reaction corresponding to a cell diagram, we 
first write the right-hand half-reaction as a reduction (because 
we have assumed that to be spontaneous). Then we subtract 
from it the left-hand reduction half-reaction (for, by implica-
tion, that electrode is the site of oxidation).

Brief illustration 6C.3 Cell notation

A cell in which two electrodes share the same electrolyte is

Pt(s) H g HCl(aq) AgCl Ag(s)2( )

The cell in Fig. 6C.2 is denoted

Zn(s) ZnSO (aq) CuSO aq Cu(s)4 4| ( )|  

The cell in Fig. 6C.3 is denoted

Zn(s) ZnSO aq CuSO aq Cu(s)4 4( ) ( )

An example of an electrolyte concentration cell in which the 
liquid junction potential is assumed to be eliminated is

Pt(s) H g HCl(aq ) HCl(aq ) H g Pt(s)2 1 2 2( ) , , ( )b b
 

Self-test 6C.3 Write the symbolism for a cell in which the half-
reactions are 4 H+(aq) + 4 e− → 2 H2(g) and O2(g) + 4 H+(aq) +  
4 e− → 2 H2O(l), (a) with a common electrolyte, (b) with sepa-
rate compartments joined by a salt bridge.

Answer: (a) Pt(s)|H2(g)|HCl(aq,b)|O2(g)|Pt(s);  
(b) Pt(s)|H2(g)|HCl(aq,b1)||HCl(aq,b2)|O2(g)|Pt(s)

+–

Copper

Copper(II) sulfate
solution

Zinc sulfate
solution

Porous
pot

Zinc

Figure 6C.2 One version of the Daniell cell. The copper 
electrode is the cathode and the zinc electrode is the anode. 
Electrons leave the cell from the zinc electrode and enter it 
again through the copper electrode.

Electrode Electrode
Salt bridge

ZnSO4(aq) CuSO4(aq)

Zn Cu

Electrode compartments

Figure 6C.3 The salt bridge, essentially an inverted U-tube full 
of concentrated salt solution in a jelly, has two opposing liquid 
junction potentials that almost cancel.

| A phase boundary

 A liquid junction

|| An interface for which it is assumed that the 
junction potential has been eliminated
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262 6 Chemical equilibrium

(a) The Nernst equation
A cell in which the overall cell reaction has not reached chemi-
cal equilibrium can do electrical work as the reaction drives 
electrons through an external circuit. The work that a given 
transfer of electrons can accomplish depends on the potential 
difference between the two electrodes. When the potential dif-
ference is large, a given number of electrons travelling between 
the electrodes can do a large amount of electrical work. When 
the potential difference is small, the same number of electrons 
can do only a small amount of work. A cell in which the overall 
reaction is at equilibrium can do no work, and then the poten-
tial difference is zero.

According to the discussion in Topic 3C, we know that 
the maximum non-expansion work a system can do at con-
stant temperature and pressure is given by eqn 3C.16b 
(we,max = ΔG). In electrochemistry, the non-expansion work is 
identified with electrical work, the system is the cell, and ΔG 
is the Gibbs energy of the cell reaction, ΔrG. Maximum work 
is produced when a change occurs reversibly. It follows that, 
to draw thermodynamic conclusions from measurements of 
the work that a cell can do, we must ensure that the cell is 
operating reversibly. Moreover, it is established in Topic 6A 
that the reaction Gibbs energy is actually a property related, 
through RT ln Q, to a specified composition of the reaction 
mixture. Therefore, to make use of ΔrG we must ensure that 
the cell is operating reversibly at a specific, constant composi-
tion. Both these conditions are achieved by measuring the cell 
potential when it is balanced by an exactly opposing source of 
potential so that the cell reaction occurs reversibly, the com-
position is constant, and no current flows: in effect, the cell 
reaction is poised for change, but not actually changing. The 

resulting potential difference is called the cell potential, Ecell, 
of the cell.

A note on good practice The cell potential was formerly, and 
is still widely, called the electromotive force (emf) of the cell. 
IUPAC prefers the term ‘cell potential’ because a potential 
difference is not a force.

As we show in the following Justification, the relation between 
the reaction Gibbs energy and the cell potential is

− =FE Gcell r∆   the cell potential  (6C.2)

where F is Faraday’s constant, F = eNA, and ν is the stoichio-
metric coefficient of the electrons in the half-reactions into 
which the cell reaction can be divided. This equation is the key 
connection between electrical measurements on the one hand 
and thermodynamic properties on the other. It will be the basis 
of all that follows.

It follows from eqn 6C.2 that, by knowing the reaction 
Gibbs energy at a specified composition, we can state the cell 

Justification 6C.1 The relation between the cell 
potential and the reaction Gibbs energy

We consider the change in G when the cell reaction advances 
by an infinitesimal amount dξ at some composition. From 
Justification 6A.1, specifically the equation ΔrG = (∂G/∂ξ)T,p, 
we can write (at constant temperature and pressure)

d drG G= ∆ ξ

The maximum non-expansion (electrical) work that the reac-
tion can do as it advances by dξ at constant temperature and 
pressure is therefore

d de rw G= ∆ ξ

This work is infinitesimal, and the composition of the system 
is virtually constant when it occurs.

Suppose that the reaction advances by dξ, then νdξ elec-
trons must travel from the anode to the cathode. The total 
charge transported between the electrodes when this change 
occurs is −νeNAdξ (because νdξ is the amount of electrons in 
moles and the charge per mole of electrons is −eNA). Hence, 
the total charge transported is −νFdξ because eNA = F. The 
work done when an infinitesimal charge −νFdξ travels from 
the anode to the cathode is equal to the product of the charge 
and the potential difference Ecell (see Table 2A.1, the entry 
dw = Qdϕ):

d de cellw FE=− ξ

When this relation is equated to the one above (dwe = ΔrGdξ), 
the advancement dξ cancels, and we obtain eqn 6C.2.

Brief illustration 6C.4 The cell reaction

For the cell Zn(s)|ZnSO4(aq)||CuSO4(aq)|Cu(s) the two elec-
trodes and their reduction half-reactions are

Right-hand electrode Cu (aq) 2e Cu(s)

Left-hand electrode

2: + −+ →
:: ( )Zn aq 2e Zn(s)2+ −+ →

Hence, the overall cell reaction is the difference Right – Left:

Cu (aq) 2e  Zn (aq) 2e Cu(s) Zn(s)2 2+ − + −+ − − → −

which, after cancellation of the 2e−, rearranges to

Cu (aq) Zn(s) Cu(s) Zn aq2 2+ ++ → + ( )  

Self-test 6C.4 Construct the overall cell reaction for the cells:
(a) Pt(s)|H2(g)|HCl(aq,b)|O2(g)|Pt(s);
(b) Pt(s)|H2(g)|HCl(aq,bL)||HCl(aq,bR)|O2(g)|Pt(s).

Answer: (a) 2 H2(g) + O2(g) → 2 H2O(l);  
(b) 2 H2(g) + O2(g) + 4 H+(bR) → 2 H2O(l) + 4 H+(bL)
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6C Electrochemical cells  263

potential at that composition. Note that a negative reaction 
Gibbs energy, corresponding to a spontaneous cell reaction, 
corresponds to a positive cell potential. Another way of look-
ing at the content of eqn 6C.2 is that it shows that the driv-
ing power of a cell (that is, its potential) is proportional to the 
slope of the Gibbs energy with respect to the extent of reac-
tion. It is plausible that a reaction that is far from equilibrium 
(when the slope is steep) has a strong tendency to drive elec-
trons through an external circuit (Fig. 6C.4). When the slope 
is close to zero (when the cell reaction is close to equilibrium), 
the cell potential is small.

We can go on to relate the cell potential to the activities 
of the participants in the cell reaction. We know that the 

reaction Gibbs energy is related to the composition of the 
reaction mixture by eqn 6A.10 (ΔrG = ΔrG< + RT ln Q); it fol-
lows, on division of both sides by −νF and recognizing that 
ΔrG/( − νF) = Ecell, that

E
G
F

RT
F

Qcell
r= − −∆ <

� �
ln

 

The first term on the right is written

E
G
Fcell

r<
<

= − ∆
�  

Definition  Standard cell potential  (6C.3)

and called the standard cell potential. That is, the standard cell 
potential is the standard reaction Gibbs energy expressed as a 
potential difference (in volts). It follows that

E E
RT

F
Qcell cell= −<

�
ln

 
 Nernst equation  (6C.4)

This equation for the cell potential in terms of the composition 
is called the Nernst equation; the dependence that it predicts 
is summarized in Fig. 6C.5. One important application of the 
Nernst equation is to the determination of the pH of a solution 
and, with a suitable choice of electrodes, of the concentration of 
other ions (Topic 6D).

We see from eqn 6C.4 that the standard cell potential can 
be interpreted as the cell potential when all the reactants and 
products in the cell reaction are in their standard states, for 
then all activities are 1, so Q = 1 and ln Q = 0. However, the fact 
that the standard cell potential is merely a disguised form of 
the standard reaction Gibbs energy (eqn 6C.3) should always 
be kept in mind and underlies all its applications.

Brief illustration 6C.5 The reaction Gibbs energy

Equation 6C.2 provides an electrical method for measuring a 
reaction Gibbs energy at any composition of the reaction mix-
ture: we simply measure the cell potential and convert it to ΔrG. 
Conversely, if we know the value of ΔrG at a particular com-
position, then we can predict the cell potential. For example, if 
ΔrG = −1 × 102 kJ mol−1 and ν = 1, then

E
G
Fcell
r Jmol

Cmol
V= − = − − ×

× ×
=

−

−
∆
�

( )
( . )

1 10
1 9 6485 10

1
5 1

4 1

where we have used 1 J = 1 C V.

Self-test 6C.5 Estimate the potential of a fuel cell in which the 
reaction is H (g) O g H O(l)2 2 2+ →1

2 ( ) .
Answer: 1.2 V

G
ib

b
s 

en
er

g
y,

 G

Extent of reaction, ξ

ΔrG < 0

ΔrG = 0

ΔrG > 0

E > 0

E < 0

E = 0

Figure 6C.4 A spontaneous reaction occurs in the direction 
of decreasing Gibbs energy. When expressed in terms of a 
cell potential, the spontaneous direction of change can be 
expressed in terms of the cell potential, Ecell. The reaction is 
spontaneous as written (from left to right on the illustration) 
when Ecell > 0. The reverse reaction is spontaneous when Ecell < 0. 
When the cell reaction is at equilibrium, the cell potential is zero.
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T
/F

)

ν

Figure 6C.5 The variation of cell potential with the value 
of the reaction quotient for the cell reaction for different 
values of ν (the number of electrons transferred). At 298 K, 
RT/F = 25.69 mV, so the vertical scale refers to multiples of this 
value.
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264 6 Chemical equilibrium

An important feature of a standard cell potential is that it is 
unchanged if the chemical equation for the cell reaction is mul-
tiplied by a numerical factor. A numerical factor increases the 
value of the standard Gibbs energy for the reaction. However, it 
also increases the number of electrons transferred by the same 
factor, and by eqn 6D.2 the value of Ecell

<  remains unchanged. A 
practical consequence is that a cell potential is independent of 
the physical size of the cell. In other words, the cell potential is 
an intensive property.

(b) Cells at equilibrium
A special case of the Nernst equation has great importance in 
electrochemistry and provides a link to the discussion of equi-
librium in Topic 6A. Suppose the reaction has reached equi-
librium; then Q = K, where K is the equilibrium constant of 
the cell reaction. However, a chemical reaction at equilibrium 
cannot do work, and hence it generates zero potential differ-
ence between the electrodes of a galvanic cell. Therefore, setting 
Ecell = 0 and Q = K in the Nernst equation gives

E
RT

F
Kcell

< =


ln
 

This very important equation (which could also have been 
obtained more directly by substituting eqn 6A.14, ΔrG< = 
 −RT ln K, into eqn 6C.3) lets us predict equilibrium constants 
from measured standard cell potentials. However, before we 
use it extensively, we need to establish a further result.

6C.4 The determination of 
thermodynamic functions

The standard potential of a cell is related to the standard reaction 
Gibbs energy through eqn 6C.3 (written as − =FE Gcell r

< <∆ ).  
Therefore, by measuring Ecell

<  we can obtain this important 
thermodynamic quantity. Its value can then be used to calcu-
late the Gibbs energy of formation of ions by using the conven-
tion explained in Topic 3C, that ΔfG<(H+,aq) = 0.

The temperature coefficient of the standard cell poten-
tial, d /dcellE T< , gives the standard entropy of the cell reaction. 
This conclusion follows from the thermodynamic relation 
(∂G/∂T)p = −S derived in Topic 3D and eqn 6C.3, which com-
bine to give

d
d

cell rE
T

S
F

< <

= ∆
  

Brief illustration 6C.7 Equilibrium constants

Because the standard potential of the Daniell cell is +1.10 V, the 
equilibrium constant for the cell reaction Cu2+(aq) + Zn(s) →  
Cu(s) + Zn2+(aq), for which ν = 2, is K = 1.5 × 1037 at 298 K. 
We conclude that the displacement of copper by zinc goes 

Brief illustration 6C.8 The reaction Gibbs energy

The reaction taking place in the cell

Pt(s) H g H aq Ag aq Ag(s) 7996V2 cell( ) ( ) ( ) .+ + = +E< 0

is

Ag (aq)  H g H (aq) Ag(s) Ag aq2 r f
+ + ++ → + = −1

2 ( ) ( , )∆ ∆G G< <

Therefore, with ν = 1, we find

∆f

4 1

(Ag aq)

9 6485 1 Cmol 7996V

77 15kJ

G FE< <+

−

= − −
= × ×
= +

, ( )

( . ) ( . )

.

0 0

mmol 1−

which is in close agreement with the value in Table 2C.2 of the 
Resource section.

Self-test 6C.8 Derive the value of ΔfG< (H2O, l) at 298 K from 
the standard potential of the cell Pt(s)|H2(g)|HCl(aq)|O2(g)|Pt, 
Ecell 1 23V< = + . .

Answer: −237 kJ mol−1

Brief illustration 6C.6 The Nernst equation

Because RT/F = 25.7 mV at 25 °C, a practical form of the Nernst 
equation is

E E Qcell cell
mV= −< 25 7.

ln


It then follows that, for a reaction in which ν = 1, if Q is 
increased by a factor of 10, then the cell potential decreases by 
59.2 mV.

Self-test 6C.6 By how much does the cell potential change 
when Q is decreased by a factor of 10 for a reaction in which 
ν = 2?

Answer: −29.6 V

virtually to completion. Note that a cell potential of about 1 V 
is easily measurable but corresponds to an equilibrium con-
stant that would be impossible to measure by direct chemical 
analysis.

Self-test 6C.7 What would be the standard cell potential for a 
reaction with K = 1?

Answer: 0

 (6C.5)equilibrium constant and 
standard cell potential

 (6C.6)temperature coefficient 
of standard cell potential
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Answer At T = 298 K, Ecell /V 7131V< = 0 0. ,  so

∆r cell
4 11 9 6485 1 Cmol 7131V

6 88 1

G FE< <= − = − × × ×
= − ×

− ( ) ( . ) ( . )

.

0 0 0

0 00 03 1 1C V mol 6 88 kJmol− −= − .

The temperature coefficient of the cell potential is

d
d

V K /K V KcellE
T

T
<

= − × − × −− − − −4 99 10 2 3 45 10 2984 1 6 1. ( . )( )

At T = 298 K this expression evaluates to

d
d

V KcellE
T

<

= − × − −4 99 10 4 1.

So, from eqn 6C.6 the reaction entropy is

∆r
cell 4 1 4d

d
9 6485 1 Cmol 4 99 1 V

48

S F
E
T

<
<

= = × × × ×

=

 ( ) ( . ) ( . )

.

1 0 0− −−

− 22JK mol1 1− −

The negative value stems in part from the elimination of gas in 
the cell reaction. It then follows that

∆ ∆ ∆r r r kJmol

K kJK mol

H G T S< < <= + = −
+ × −

=

−

− −

6 880

298 0 0482

1

1 1

.

( ) ( . )

−− −21 2kJmol 1.

One difficulty with this procedure lies in the accurate meas-
urement of small temperature coefficients of cell potential. 
Nevertheless, it is another example of the striking ability of 
thermodynamics to relate the apparently unrelated, in this 
case to relate electrical measurements to thermal properties.

Self-test 6C.9 Predict the standard potential of the Harned 
cell at 303 K from tables of thermodynamic data.

Answer: +0.2222 V

The derivative is complete (not partial) because Ecell
<  like ΔrG<, 

is independent of the pressure. Hence we have an electrochemi-
cal technique for obtaining standard reaction entropies and 
through them the entropies of ions in solution.

Finally, we can combine the results obtained so far and use 
them to obtain the standard reaction enthalpy:

∆ ∆ ∆r r r cell
celld

d
H G T S F E T

E
T

< < < <
<

= + = − −







 
(6C.7)

This expression provides a non-calorimetric method for 
measuring ΔrH< and, through the convention ΔfH<(H+, 
aq) = 0 the standard enthalpies of formation of ions in solu-
tion (Topic 2C).

Example 6C.1 Using the temperature coefficient of the 
cell potential

The standard potential of the cell Pt(s)|H2(g)|HBr(aq)|AgBr(s)|
Ag(s) was measured over a range of temperatures, and the data 
were found to fit the following polynomial:

E T Tcell
4 6 2/V 7131 4 99 1 ( /K 298) 3 45 1 /K 298< = − × − − × −− −0 0 0 0. . . ( )

The cel l react ion is AgBr(s) H g Ag(s) HBr(aq)2+ → +1
2 ( ) .  

Evaluate the standard reaction Gibbs energy, enthalpy, and 
entropy at 298 K.

Method The standard Gibbs energy of reaction is obtained 
by using eqn 6C.2 after evaluating Ecell

<  at 298 K and by using 
1 V C = 1 J. The standard entropy of reaction is obtained by 
using eqn 6C.6, which involves differentiating the polyno-
mial with respect to T and then setting T = 298 K. The reaction 
enthalpy is obtained by combining the values of the standard 
Gibbs energy and entropy.

Checklist of concepts

☐ 1. A redox reaction is expressed as the difference of two 
reduction half-reactions; each one defines a redox 
couple.

☐ 2. Galvanic cells are classified as electrolyte concentra-
tion and electrode concentration cells.

☐ 3. A liquid junction potential arises at the junction of two 
electrolyte solutions.

☐ 4. The cell notation specifies the structure of a cell.

☐ 5. The Nernst equation relates the cell potential to the 
composition of the reaction mixture.

☐ 6. The standard cell potential may be used to calculate the 
equilibrium constant of the cell reaction.

☐ 7. The temperature coefficient of the cell potential is used 
to measure thermodynamic properties of electroactive 
species.
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266 6 Chemical equilibrium

Checklist of equations

Property Equation Comment Equation number

Cell potential and reaction Gibbs energy −νFEcell = ΔrG Constant temperature and pressure 6C.2

Standard cell potential E G Fcell r /< <= −∆  Definition 6C.3

Nernst equation E E RT F Qcell cell /= −< ( )ln 6C.4

Equilibrium constant of cell reaction E RT F Kcell /< =( )ln 6C.5

Temperature coefficient of cell potential d /d /cell rE T S F< <= ∆  6C.6
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6D electrode potentials

As explained in Topic 6C, a galvanic cell is a combination 
of two electrodes each of which can be considered to make 
a characteristic contribution to the overall cell potential. 

Although it is not possible to measure the contribution of 
a single electrode, we can define the potential of one of the 
electrodes as zero and then assign values to others on that 
basis.

6D.1 Standard potentials

The specially selected electrode is the standard hydrogen elec-
trode (SHE):

Pt(s) H g H aq2( ) ( )+ =E< 0  

at all temperatures. To achieve the standard conditions, the 
activity of the hydrogen ions must be 1 (that is, pH = 0) and 
the pressure (more precisely, the fugacity) of the hydrogen gas 
must be 1 bar. The standard potential, E<(X), of another cou-
ple X is then assigned by constructing a cell in which it is the 
right-hand electrode and the standard hydrogen electrode is 
the left-hand electrode:

Pt(s) H g H aq X (X)2 cell( ) ( )||+ =E E< <

  
Convention  standard potentials  (6D.2)

The standard potential of a cell of the form L||R, where L is the 
left-hand electrode of the cell as written (not as arranged on the 
bench) and R is the right-hand electrode, is then given by the 
difference of the two standard potentials:

L R (R) Lcell|| ( )E E E< < <= −   standard cell potential  (6D.3)

A list of standard potentials at 298 K is given in Table 6D.1, 
and longer lists in numerical and alphabetical order are in the 
Resource section.

Contents

6d.1 Standard potentials 267
brief illustration 6d.1 standard electrode potentials 268

(a) The measurement procedure 268
example 6d.1: evaluating a standard electrode  
potential 268

(b) Combining measured values 269
example 6d.2: evaluating a standard potential  
from two others 269

6d.2 Applications of standard potentials 269
(a) The electrochemical series 269

brief illustration 6d.2: the electrochemical series 270
(b) The determination of activity coefficients 270

brief illustration 6d.3: activity coefficients 270
(c) The determination of equilibrium constants 270

brief illustration 6d.4: equilibrium constants 270
Checklist of concepts 271
Checklist of equations 271

➤➤ Why do you need to know this material?
A very powerful, compact, and widely used way to 
report standard cell potentials is to ascribe a potential to 
each electrode. Electrode potentials are widely used in 
chemistry to assess the oxidizing and reducing power of 
redox couples and to infer thermodynamic properties, 
including equilibrium constants.

➤➤ What is the key idea?
Each electrode of a cell can be supposed to make a 
characteristic contribution to the cell potential; redox 
couples with low electrode potentials tend to reduce 
those with higher potentials.

➤➤ What do you need to know already?
This Topic develops the concepts in Topic 6D, so you need 
to understand the concept of cell potential and standard 
cell potential (Topic 6D); it makes use of the Nernst equation 
(Topic 6D). The measurement of standard potentials makes 
use of the Debye–Hückel limiting law (Topic 5F).

 (6D.1)standard 
potentials

Convention

Table 6D.1* Standard potentials at 298 K, E</V

Couple E</V

Ce4+(aq) + e− → Ce3+(aq) +1.61

Cu2+(aq) + 2 e− → Cu(s) +0.34

H (aq) e H g2
+ + →– ( )1

2
0

AgCl(s) + e− → Ag(s) + Cl−(aq) +0.22

Zn2+(aq) + 2 e− → Zn(s) −0.76

Na+(aq) + e− → Na(s) −2.71

* More values are given in the Resource section.
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268 6 Chemical equilibrium

(a) The measurement procedure
The procedure for measuring a standard potential can be illus-
trated by considering a specific case, the silver chloride elec-
trode. The measurement is made on the ‘Harned cell’:

Pt(s) H g HCl(aq ) AgCl(s) Ag(s)

H (g) AgCl(s) HCl(aq) Ag(

2

2

( ) ,b
1
2 + → + ss)

(AgCl/Ag Cl ) (SHE) AgCl/Ag Cl 1cellE E E E< < < <= = =, ( , ),− −−   

for which the Nernst equation is

E E
RT
F

a a

acell
H Cl

H

AgCl/Ag Cl= −− + −< ( , ) ln /
2

1 2

 

We shall set aH2
1=  from now on, and for simplicity write the 

standard potential of the AgCl/Ag,Cl− electrode as E<; then

E E
RT
F

a acell H Cl= − + −
< ln

 

We show in the following Justification that as the molality 
b → 0,

E
RT
F

E C bcell ln + = + ×
×

2 1 2b

y
x� ��� ���

� ���
<

intercept slope

/

 
(6D.4)

where C is a constant. To use this equation, which has the form 
y = intercept + slope × x with x = b1/2, the expression on the left 
is evaluated at a range of molalities, plotted against b1/2, and 
extrapolated to b = 0. The intercept at b1/2 = 0 is the value of E< 
for the silver/silver chloride electrode. In precise work, the b1/2 
term is brought to the left, and a higher-order correction term 
from extended versions of the Debye–Hückel law is used on the 
right.

Justification 6D.1 The Harned cell potential

The activities in the expression for Ecell can be expressed in 
terms of the molality b of HCl(aq) through a b bH /+ = ±γ < and 
a b bCl /− = ±γ <  as established in Topic 5E, so, with b/b< replaced 
by b

ln ln

ln ln

E E
RT
F

b
RT
F

E
RT
F

b
RT
F

cell = − −

= − −

±

±

<

<

2 2

2 2

γ

γ

and therefore

E
RT
F

b E
RT
Fcell + = − ±

2 2
ln ln< γ

From the Debye–Hückel limiting law for a 1,1-electrolyte (eqn 
5F.8, log γ± = −A|z+z−|I1/2), as b → 0

log ( / )/ /γ ± += =− −−A z z I A b b1 2 1 2<

Therefore, because ln x = ln 10 log x,

ln log ( ) /γ γ± ±= =ln 1 ln 1 / 1 20 0−A b b<

and the equation for Ecell becomes

E
RT
F

b E b b
ART
F bcell as+ = + →2

0
2 10

1 2
1 2ln

ln
( ) /

/<
<

With the term in blue denoted C, this equation becomes  
eqn 6D.4.

Brief illustration 6D.1 Standard electrode potentials

The cell Ag(s)|AgCl(s)|HCl(aq)|O2(g)|Pt(s) can be regarded as 
formed from the following two electrodes, with their standard 
potentials taken from the Resource section:

Self-test 6D.1 What is the standard potential of the cell Pt(s)| 
Fe2+(aq),Fe3+(aq)||Ce4+(aq),Ce3+(aq)|Pt(s)?

Answer: +0.84 V

Electrode Half-reaction Standard 
potential

R: Pt(s)|O2(g)|H+(aq) O2(g) + 4 H+(aq) + 4 e− → 2 H2O(l) +1.23 V

L: Ag(s)|AgCl(s)|Cl−(aq) AgCl(s) + e− → Ag(s) + Cl−(aq) +0.22 V

Ecell
< = +1.01 V

Example 6D.1 Evaluating a standard electrode potential

The potential of the Harned cell at 25 °C has the following 
values:

Determine the standard potential of the silver–silver chloride 
electrode.

Method As explained in the text, evaluate y = Ecell + (2RT/F) 
ln b and plot it against b1/2; then extrapolate to b = 0. Use 
2RT/F = 0.051 39 V.

Answer To determine the standard potential of the cell we 
draw up the following table:

The data are plotted in Fig. 6D.1; as can be seen, they extrapo-
late to E< = +0.2232 V (the value obtained, to preserve the pre-
cision of the data, by linear regression).

b/(10−3b<) 3.215 5.619 9.138 25.63

{b/(10−3b<)}1/2 1.793 2.370 3.023 5.063

Ecell/V 0.520 53 0.492 57 0.468 60 0.418 24
y/V 0.2256 0.2263 0.2273 0.2299

b/(10−3b<) 3.215 5.619 9.138 25.63

Ecell/V 0.520 53 0.492 57 0.468 60 0.418 24
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(b) Combining measured values

The standard potentials in Table 6D.1 may be combined to give 
values for couples that are not listed there. However, to do so, 
we must take into account the fact that different couples may 
correspond to the transfer of different numbers of electrons. 
The procedure is illustrated in the following Example.

The generalization of the calculation in Example 6D.2 is

  c a b(c) (a) bE E E< < <= – ( )  

with the νr the stoichiometric coefficients of the electrons in 
each half-reaction

6D.2 Applications of standard 
potentials

Cell potentials are a convenient source of data on equilibrium 
constants and the Gibbs energies, enthalpies, and entropies of 
reactions. In practice the standard values of these quantities are 
the ones normally determined.

(a) The electrochemical series
We have seen that for two redox couples, OxL/RedL and OxR/RedR, 
and the cell

L R Ox /Red Ox /Red

Ox e Red Ox e Red

R

L R R

R R L L

cell

=
+ → + →
=

 – –

( ) – (E E E< < < LL)  

 cell convention  (6D.6a)

that the cell reaction

R L  Red Ox Ox RedL R L R– : + → +  (6D.6b)

has K > 1 as written if Ecell
< >0, and therefore if E<(L) < E<(R). 

Because in the cell reaction RedL reduces OxR, we can conclude 
that:

RedL has a thermodynamic tendency (in the sense K > 1) to 
reduce OxR if E<(L) < E<(R)

More briefly: low reduces high.

Example 6D.2 Evaluating a standard potential from  
two others

Given that the standard potentials of the Cu2+/Cu and Cu+/Cu 
couples are +0.340 V and +0.522 V, respectively, evaluate E<(Cu2+, 
Cu+).

Method First, we note that reaction Gibbs energies may be added 
(as in a Hess’s law analysis of reaction enthalpies). Therefore, we 
should convert the E< values to ΔrG< values by using eqn 6C.2 
(−νFE< = ΔrG<), add them appropriately, and then convert the 
overall ΔrG< to the required E< by using eqn 6D.2 again. This 
roundabout procedure is necessary because, as we shall see, 
although the factor F cancels, the factor ν in general does not.

Answer The electrode half-reactions are as follows:

(a) Cu (aq) 2 e Cu(s) (a) 34 V

so (a) 2( 34 V)

2

r

+ + → = +
=

– . ,

– .

(

E

G F

<

<

0 0

0 0∆
bb Cu (aq) e Cu(s) (b) 522V

so (b) 522Vr

) . ,

–( . )

–+ + → = +
=

E

G F

<

<

0

0∆

 (6D.5)combination of 
standard potentials

Self-test 6D.2 The data below are for the cell Pt(s)|H2(g)| 
HBr(aq,b)|AgBr(s)|Ag(s) at 25 °C. Determine the standard cell 
potential.

Answer: +0.071 V

b/(10−4b<) 4.042 8.444 37.19

Ecell/V 0.47381 0.43636 0.36173

0.2300

02290

0.2280

0.2270

0.2260

0.2250

0.2240

0.2230

E
/V

 +
 0

.0
51

39
 ln

 b

0 1 2 3 4 5
(b/1000b<)1/2

Figure 6D.1 The plot and the extrapolation used for the 
experimental measurement of a standard cell potential. The 
intercept at b1/2 = 0 is Ecell

< .

The required reaction is

(c) Cu (aq) e Cu aq (c) c /2
r

+ ++ → =– ( ) – ( )E G F< <∆

Because (c) = (a) – (b), the standard Gibbs energy of reaction 
(c) is

– – –( . ) –(– . )

( . )

∆ ∆ ∆r r r(c) (a) (b) 68 V 522V

158V

G G G F F

F

< < <= =
= +

0 0 0

0

Therefore, E<(c) = +0.158 V.

Self-test 6D.3 Evaluate E< (Fe3+, Fe2+) from E< (Fe3+, Fe) and 
E<(Fe2+,Fe).

Answer: +0.76 V
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270 6 Chemical equilibrium

Table 6D.2 shows a part of the electrochemical series, the 
metallic elements (and hydrogen) arranged in the order of 
their reducing power as measured by their standard potentials 
in aqueous solution. A metal low in the series (with a lower 
standard potential) can reduce the ions of metals with higher 
standard potentials. This conclusion is qualitative. The quanti-
tative value of K is obtained by doing the calculations we have 
described previously and review below.

(b) The determination of activity coefficients
Once the standard potential of an electrode in a cell is known, 
we can use it to determine mean activity coefficients by meas-
uring the cell potential with the ions at the concentration 
of interest. For example, the mean activity coefficient of the 
ions in hydrochloric acid of molality b is obtained from the 
relation

E
RT
F

b E
RT
Fcell + = − ±

2 2
ln ln< γ

 

in Justification 6D.1 in the form

ln lnγ ± = − −E E
RT F

bcell cell

/

<

2  
(6D.7)

(c) The determination of equilibrium 
constants
The principal use for standard potentials is to calculate the 
standard potential of a cell formed from any two electrodes. To 
do so, we construct E E Ecell (R) L< < <= – ( ) and use eqn 6C.5 of 
Topic 6C (E RT Fcell /< =( )  ln K, arranged into ln K FE RT=  cell /< ).

Brief illustration 6D.2 The electrochemical series

Zinc lies above magnesium in the electrochemical series, so 
zinc cannot reduce magnesium ions in aqueous solution. Zinc 
can reduce hydrogen ions, because hydrogen lies higher in the 
series. However, even for reactions that are thermodynami-
cally favourable, there may be kinetic factors that result in 
very slow rates of reaction.

Self-test 6D.4 Can nickel reduce hydrogen ions to hydrogen 
gas?

Answer: Yes

Brief illustration 6D.3 Activity coefficients

The data in Example 6D.1 include the fact that Ecell = 0.468 60 V 
when b = 9.138 × 10−3b < . Because 2RT/F = 0.051 39 V, and in the 
Example it is established that Ecell V< =0 2232. , the mean activ-
ity coefficient at this molality is

ln
. .

.
ln( . ) .γ ±

−= − − × = …0 2232 0 46860
0 05139

9 138 10 0 07883V V
V

−

Therefore, γ± = 0.9242.

Self-test 6D.5 Evaluate the mean activity coefficient when 
b = 5.619 × 10−3b < .

Answer: 0.9417

Table 6D.2* The electrochemical series of the metals

Least strongly reducing

Gold

Platinum

Silver

Mercury

Copper

(Hydrogen)

Lead

Tin

Nickel

Iron

Zinc

Chromium

Aluminium

Magnesium

Sodium

Calcium

Potassium

Most strongly reducing

* The complete series can be inferred from Table 6D.1 in the Resource section.

Brief illustration 6D.4 Equilibrium constants

A disproportionation reaction is a reaction in which a species 
is both oxidized and reduced. To study the disproportionation 
2 Cu+(aq) → Cu(s) + Cu2+(aq) at 298 K we combine the follow-
ing electrodes:

The standard potential of the cell is therefore

Ecell 52 V 16V 36 V< = = +0 0 0. . .−

We can now calculate the equilibrium constant of the cell 
reaction. Because ν = 1, from eqn 6C.5 with RT/F = 0.025 693 V,

ln
.

.
.K = = …0 36

0 025693
14 0

V
V

Hence, K = 1.2 × 106.

Self-test 6D.6 Evaluate the equilibrium constant for the reac-
tion Sn(s) + Sn4+(aq) ⇌ 2 Sn2+(aq).

Answer: 6.5 × 109

R: Cu(s)|Cu+(aq) Cu+(aq) + e− → Cu(s) E<(R) = +0.52 V

L: Pt(s)|Cu2+(aq),Cu+(aq) Cu2+(aq) + e− → Cu+(s) E<(R) = +0.16 V
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Checklist of concepts

☐ 1. The standard potential of a couple is the cell potential 
in which it forms the right-hand electrode and the left-
hand electrode is a standard hydrogen electrode.

☐ 2. The electrochemical series lists the metallic elements in 
the order of their reducing power as measured by their 
standard potentials in aqueous solution: low reduces high.

☐ 3. The cell potential is used to measure the activity coef-
ficient of electroactive ions.

☐ 4. The standard cell potential is used to infer the equi-
librium constant of the cell reaction.

Checklist of equations

Property Equation Comment Equation number

Standard cell potential E E Ecell (R) L< < <= – ( ) Cell: L||R 6D.3

Combined potentials νcE<(c) = νaE<(a) − νbE<(b) 6D.5
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272 6 Chemical equilibrium

chaPter 6  Chemical equilibrium

TOPIC 6A the equilibrium constant

Discussion questions
6A.1 Explain how the mixing of reactants and products affects the position 
of chemical equilibrium.

6A.2 What is the justification for not including a pure liquid or solid in the 
expression for an equilibrium constant?

Exercises
6A.1(a) Consider the reaction A → 2 B. Initially, 1.50 mol A is present and no 
B. What are the amounts of A and B when the extent of reaction is 0.60 mol?
6A.1(b) Consider the reaction 2 A → B. Initially, 1.75 mol A and 0.12 mol B 
are present. What are the amounts of A and B when the extent of reaction is 
0.30 mol?

6A.2(a) When the reaction A → 2 B advances by 0.10 mol (that is, 
Δξ = +0.10 mol) the Gibbs energy of the system changes by –6.4 kJ mol−1. What 
is the Gibbs energy of reaction at this stage of the reaction?
6A.2(b) When the reaction 2 A → B advances by 0.051 mol (that is, 
Δξ = +0.051 mol) the Gibbs energy of the system changes by –2.41 kJ mol−1. 
What is the Gibbs energy of reaction at this stage of the reaction?

6A.3(a) The standard Gibbs energy of the reaction N2(g) + 3 H2(g) → 2 NH3(g) 
is –32.9 kJ mol−1 at 298 K. What is the value of ΔrG when Q = (i) 0.010, (ii) 1.0, 
(iii) 10.0, (iv) 100 000, (v) 1 000 000? Estimate (by interpolation) the value of 
K from the values you calculate. What is the actual value of K?
6A.3(b) The standard Gibbs energy of the reaction 2 NO2(g) → N2O4(g) is 
–4.73 kJ mol−1 at 298 K. What is the value of ΔrG when Q = (i) 0.10, (ii) 1.0,  
(iii) 10, (iv) 100? Estimate (by interpolation) the value of K from the values 
you calculate. What is the actual value of K?

6A.4(a) At 2257 K and 1.00 bar total pressure, water is 1.77 per cent dissociated 
at equilibrium by way of the reaction 2 H2O(g) ⇌ 2 H2(g) + O2(g). Calculate K.
6A.4(b) For the equilibrium, N2O4(g) ⇌ 2 NO2(g), the degree of dissociation, 
α, at 298 K is 0.201 at 1.00 bar total pressure. Calculate K.

6A.5(a) Dinitrogen tetroxide is 18.46 per cent dissociated at 25 °C and 1.00 bar 
in the equilibrium N2O4(g) ⇌ 2 NO2(g). Calculate K at (i) 25 °C, (ii) 100 °C 
given that ΔrH< = +56.2 kJ mol−1 over the temperature range.
6A.5(b) Molecular bromine is 24 per cent dissociated at 1600 K and 1.00 bar in 
the equilibrium Br2(g) ⇌ 2 Br(g). Calculate K at (i) 1600 °C, (ii) 2000 °C given 
that ΔrH< = +112 kJ mol−1 over the temperature range.

6A.6(a) From information in the Resource section, calculate the standard 
Gibbs energy and the equilibrium constant at (i) 298 K and (ii) 400 K for the 
reaction PbO(s) + CO(g) ⇌ Pb(s) + CO2(g). Assume that the reaction enthalpy 
is independent of temperature.
6A.6(b) From information in the Resource section, calculate the standard Gibbs 
energy and the equilibrium constant at (i) 25 °C and (ii) 50 °C for the reaction 
CH4(g) + 3 Cl2(g) ⇌ CHCl3(l) + 3 HCl(g). Assume that the reaction enthalpy is 
independent of temperature.

6A.7(a) Establish the relation between K and Kc for the reaction 
H2CO(g) ⇌ CO(g) + H2(g).
6A.7(b) Establish the relation between K and Kc for the reaction  
3 N2(g) + H2(g) ⇌ 2 HN3(g).

6A.8(a) In the gas-phase reaction 2 A + B ⇌ 3 C + 2 D, it was found that, when 
1.00 mol A, 2.00 mol B, and 1.00 mol D were mixed and allowed to come 
to equilibrium at 25 °C, the resulting mixture contained 0.90 mol C at a 
total pressure of 1.00 bar. Calculate (i) the mole fractions of each species at 
equilibrium, (ii) Kx, (iii) K, and (iv) ΔrG<.
6A.8(b) In the gas-phase reaction A + B ⇌ C + 2 D, it was found that, when 
2.00 mol A, 1.00 mol B, and 3.00 mol D were mixed and allowed to come 
to equilibrium at 25 °C, the resulting mixture contained 0.79 mol C at a 
total pressure of 1.00 bar. Calculate (i) the mole fractions of each species at 
equilibrium, (ii) Kx, (iii) K, and (iv) ΔrG<.

6A.9(a) The standard reaction Gibbs energy of the isomerization of borneol 
(C10H17OH) to isoborneol in the gas phase at 503 K is +9.4 kJ mol−1. Calculate 
the reaction Gibbs energy in a mixture consisting of 0.15 mol of borneol and 
0.30 mol of isoborneol when the total pressure is 600 Torr.
6A.9(b) The equilibrium pressure of H2 over solid uranium and uranium 
hydride, UH3, at 500 K is 139 Pa. Calculate the standard Gibbs energy of 
formation of UH3(s) at 500 K.

6A.10(a) The standard Gibbs energy of formation of NH3(g) is –16.5 kJ mol−1 at 
298 K. What is the reaction Gibbs energy when the partial pressures  
of the N2, H2, and NH3 (treated as perfect gases) are 3.0 bar, 1.0 bar, and 
4.0 bar, respectively? What is the spontaneous direction of the reaction in  
this case?
6A.10(b) The standard Gibbs energy of formation of PH3(g) is +13.4 kJ mol−1 at 
298 K. What is the reaction Gibbs energy when the partial pressures of the H2 
and PH3 (treated as perfect gases) are 1.0 bar and 0.60 bar, respectively? What 
is the spontaneous direction of the reaction in this case?

6A.11(a) For CaF2(s) ⇌ Ca2+(aq) + 2 F−(aq), K = 3.9 ×10−11 at 25 °C and the 
standard Gibbs energy of formation of CaF2(s) is –1167 kJ mol−1. Calculate the 
standard Gibbs energy of formation of CaF2(aq).
6A.11(b) For PbI2(s) ⇌ Pb2+(aq) + 2 I−(aq), K = 1.4 × 10−8 at 25 °C and the 
standard Gibbs energy of formation of PbI2(s) is –173.64 kJ mol−1. Calculate 
the standard Gibbs energy of formation of PbI2(aq).

Problems
6A.1 The equilibrium constant for the reaction I2(s) + Br2(g) ⇌ 2 IBr(g) 
is 0.164 at 25 °C. (a) Calculate ΔrG< for this reaction. (b) Bromine gas is 
introduced into a container with excess solid iodine. The pressure and 
temperature are held at 0.164 atm and 25 °C, respectively. Find the partial 
pressure of IBr(g) at equilibrium. Assume that all the bromine is in the 
liquid form and that the vapour pressure of iodine is negligible. (c) In fact, 

solid iodine has a measurable vapour pressure at 25 °C. In this case, how 
would the calculation have to be modified?

6A.2 Calculate the equilibrium constant of the reaction CO(g) + H2(g) ⇌  
H2CO(g) given that, for the production of liquid formaldehyde, 
ΔrG< = +28.95 kJ mol−1 at 298 K and that the vapour pressure of formaldehyde 
is 1500 Torr at that temperature.
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6A.3 A sealed container was filled with 0.300 mol H2(g), 0.400 mol I2(g), and 
0.200 mol HI(g) at 870 K and total pressure 1.00 bar. Calculate the amounts 
of the components in the mixture at equilibrium given that K = 870 for the 
reaction H2(g) + I2(g) ⇌ 2 HI(g).

6A.4‡ Nitric acid hydrates have received much attention as possible catalysts 
for heterogeneous reactions that bring about the Antarctic ozone hole. 
Standard reaction Gibbs energies are as follows:

(i) H2O(g) → H2O(s) ΔrG< −23.6 kJ mol−1

(ii) H2O(g) + HNO3(g) → HNO3⋅H2O(s) ΔrG< −57.2 kJ mol−1

(iii) 2 H2O(g) + HNO3(g) → HNO3⋅2H2O(s) ΔrG< −85.6 kJ mol−1

(iv) 3 H2O(g) + HNO3(g) → HNO3⋅3H2O(s) ΔrG< −112.8 kJ mol−1

Which solid is thermodynamically most stable at 190 K if pH2
bar= 0 13. µ  

and pHNO3
nbar = 0 41.  Hint: Try computing ΔrG for each reaction under the 

prevailing conditions; if more than one solid form spontaneously, examine 
ΔrG for the conversion of one solid to another.

6A.5 Express the equilibrium constant of a gas-phase reaction A + 3 B ⇌ 2 C in 
terms of the equilibrium value of the extent of reaction, ξ, given that initially 
A and B were present in stoichiometric proportions. Find an expression for 
ξ as a function of the total pressure, p, of the reaction mixture and sketch a 
graph of the expression obtained.

TOPIC 6B the response to equilibria to the conditions

Discussion questions
6B.1 Suggest how the thermodynamic equilibrium constant may respond 
differently to changes in pressure and temperature from the equilibrium 
constant expressed in terms of partial pressures.

6B.2 Account for Le Chatelier’s principle in terms of thermodynamic 
quantities.

6B.3 Explain the molecular basis of the van ’t Hoff equation for the 
temperature dependence of K.

Exercises
6B.1(a) The standard reaction enthalpy of Zn(s) + H2O(g) → ZnO(s) + H2(g) 
is approximately constant at +224 kJ mol−1 from 920 K up to 1280 K. The 
standard reaction Gibbs energy is +33 kJ mol−1 at 1280 K. Estimate the 
temperature at which the equilibrium constant becomes greater than 1.
6B.1(b) The standard enthalpy of a certain reaction is approximately constant 
at +125 kJ mol−1 from 800 K up to 1500 K. The standard reaction Gibbs energy 
is +22 kJ mol−1at 1120 K. Estimate the temperature at which the equilibrium 
constant becomes greater than 1.

6B.2(a) The equilibrium constant of the reaction 2 C3H6(g) ⇌ C2H4(g) + C4H8(g) 
is found to fit the expression ln K = A + B/T + C/T2 between 300 K and 600 K, 
with A = –1.04, B = –1088 K, and C = 1.51 × 105 K2. Calculate the standard 
reaction enthalpy and standard reaction entropy at 400 K.
6B.2(b) The equilibrium constant of a reaction is found to fit the expression 
ln K = A + B/T + C/T3 between 400 K and 500 K with A = –2.04, B = –1176 K, 
and C = 2.1 × 107 K3. Calculate the standard reaction enthalpy and standard 
reaction entropy at 450 K.

6B.3(a) Calculate the percentage change in Kx for the reaction 
H2CO(g) ⇌ CO(g) + H2(g) when the total pressure is increased from 1.0 bar to 
2.0 bar at constant temperature.
6B.3(b) Calculate the percentage change in Kx for the reaction 
CH3OH(g) + NOCl(g) ⇌ HCl(g) + CH3NO2(g) when the total pressure is 
increased from 1.0 bar to 2.0 bar at constant temperature.

6B.4(a) The equilibrium constant for the gas-phase isomerization of borneol 
(C10H17OH) to isoborneol at 503 K is 0.106. A mixture consisting of 7.50 g of 
borneol and 14.0 g of isoborneol in a container of volume 5.0 dm3 is heated to 
503 K and allowed to come to equilibrium. Calculate the mole fractions of the 
two substances at equilibrium.

6B.4(b) The equilibrium constant for the reaction N2(g) + O2(g) ⇌ 2 NO(g) 
is 1.69 × 10−3 at 2300 K. A mixture consisting of 5.0 g of nitrogen and 2.0 g of 
oxygen in a container of volume 1.0 dm3 is heated to 2300 K and allowed to 
come to equilibrium. Calculate the mole fraction of NO at equilibrium.

6B.5(a) What is the standard enthalpy of a reaction for which the equilibrium 
constant is (i) doubled, (ii) halved when the temperature is increased by 10 K 
at 298 K?
6B.5(b) What is the standard enthalpy of a reaction for which the equilibrium 
constant is (i) doubled, (ii) halved when the temperature is increased by 15 K 
at 310 K?

6B.6(a) Estimate the temperature at which CaCO3(calcite) decomposes.
6B.6(b) Estimate the temperature at which CuSO4⋅5H2O undergoes 
dehydration.

6B.7(a) The dissociation vapour pressure of a salt A2B(s) ⇌ A2(g) + B(g) 
at 367 °C is 208 kPa but at 477 °C it has risen to 547 kPa. Calculate (i) the 
equilibrium constant, (ii) the standard reaction Gibbs energy, (iii) the 
standard enthalpy, (iv) the standard entropy of dissociation, all at 422 °C. 
Assume that the vapour behaves as a perfect gas and that ΔH< and ΔS< are 
independent of temperature in the range given.
6B.7(b) The dissociation vapour pressure of NH4Cl at 427 °C is 608 kPa but at 
459 °C it has risen to 1115 kPa. Calculate (i) the equilibrium constant, (ii) the 
standard reaction Gibbs energy, (iii) the standard enthalpy, (iv) the standard 
entropy of dissociation, all at 427 °C. Assume that the vapour behaves as a 
perfect gas and that ΔH< and ΔS< are independent of temperature in the 
range given.

Problems
6B.1 Consider the dissociation of methane, CH4(g), into the elements H2(g) 
and C(s, graphite). (a) Given that ΔfH<(CH4,g) = −74.85 kJ mol−1 and that 

ΔrS< = −80.67 J K−1 mol−1 at 298 K, calculate the value of the equilibrium 
constant at 298 K. (b) Assuming that ΔrH< is independent of temperature, 
calculate K at 50 °C. (c) Calculate the degree of dissociation, α , of methane 

‡ These problems were supplied by Charles Trapp and Carmen Giunta.
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at 25 °C and a total pressure of 0.010 bar. (d) Without doing any numerical 
calculations, explain how the degree of dissociation for this reaction will 
change as the pressure and temperature are varied.

6B.2 The equilibrium pressure of H2 over U(s) and UH3(s) between 450 K 
and 715 K fits the expression ln(p/Pa) = A + B/T + C ln(T/K), with A = 69.32, 
B = –1.464 × 104 K, and C = –5.65. Find an expression for the standard enthalpy 
of formation of UH3(s) and from it calculate ∆f Cp

<.

6B.3 The degree of dissociation, α, of CO2(g) into CO(g) and O2(g) at high 
temperatures was found to vary with temperature as follows:

Assuming ΔrH< to be constant over this temperature range, calculate K, 
ΔrG<, ΔrH<, and ΔrS<. Make any justifiable approximations.

6B.4 The standard reaction enthalpy for the decomposition of CaCl2⋅NH3(s) 
into CaCl2(s) and NH3(g) is nearly constant at +78 kJ mol−1 between 350 K 
and 470 K. The equilibrium pressure of NH3 in the presence of CaCl2⋅NH3 is 
1.71 kPa at 400 K. Find an expression for the temperature dependence of ΔrG< 
in the same range.

6B.5 Acetic acid was evaporated in a container of volume 21.45 cm3 at 437 K 
and at an external pressure of 101.9 kPa, and the container was then sealed. 
The mass of acid present in the sealed container was 0.0519 g. The experiment 
was repeated with the same container but at 471 K, and it was found that 

0.0380 g of acetic acid was present. Calculate the equilibrium constant for the 
dimerization of the acid in the vapour and the enthalpy of vaporization.

6B.6 The dissociation of I2 can be monitored by measuring the total pressure, 
and three sets of results are as follows:

where nI is the amount of I atoms per mole of I2 molecules in the mixture, 
which occupied 342.68 cm3. Calculate the equilibrium constants of 
the dissociation and the standard enthalpy of dissociation at the mean 
temperature.

6B.7‡ The 1980s saw reports of ΔrG<(SiH2) ranging from 243 to 289 kJ mol−1. 
If the standard enthalpy of formation is uncertain by this amount, by what 
factor is the equilibrium constant for the formation of SiH2 from its elements 
uncertain at (a) 298 K, (b) 700 K?

6B.8 Find an expression for the standard reaction Gibbs energy at a 
temperature T′ in terms of its value at another temperature T and the 
coefficients a, b, and c in the expression for the molar heat capacity listed 
in Table 2B.1. Evaluate the standard Gibbs energy of formation of H2O(l) at 
372 K from its value at 298 K.

6B.9 Derive an expression for the temperature dependence of Kc for a gas-
phase reaction.

TOPIC 6C electrochemical cells

Discussion questions
6C.1 Explain why reactions that are not redox reactions may be used to 
generate an electric current.

6C.2 Explain the role of a salt bridge.

6C.3 Why is it necessary to measure the cell potential under zero-current 
conditions?

6C.4 Can you identify other contributions to the cell potential when a current 
is being drawn from the cell?

Exercises
6C.1(a) Write the cell reaction and electrode half-reactions and calculate the 
standard potential of each of the following cells:

(i) Zn|ZnSO4(aq)||AgNO3(aq)|Ag
(ii) Cd|CdCl2(aq)||HNO3(aq)|H2(g)|Pt
(iii) Pt|K3[Fe(CN)6](aq),K4[Fe(CN)6](aq)||CrCl3(aq)|Cr

6C.1(b) Write the cell reaction and electrode half-reactions and calculate the 
standard potential of each the following cells:

(i) Pt|Cl2(g)|HCl(aq)||K2CrO4(aq)|Ag2CrO4(s)|Ag
(ii) Pt|Fe3+(aq),Fe2+(aq)||Sn4+(aq),Sn2+(aq)|Pt
(iii) Cu|Cu2+(aq)||Mn2+(aq),H+(aq)|MnO2(s)|Pt

6C.2(a) Devise cells in which the following are the reactions and calculate the 
standard cell potential in each case:

(i) Zn(s) + CuSO4(aq) → ZnSO4(aq) + Cu(s)
(ii) 2 AgCl(s) + H2(g) → 2 HCl(aq) + 2 Ag(s)
(iii) 2 H2(g) + O2(g) → 2 H2O(l)

6C.2(b) Devise cells in which the following are the reactions and calculate the 
standard cell potential in each case:

(i) 2 Na(s) + 2 H2O(l) → 2 NaOH(aq) + H2(g)
(ii) H2(g) + I2(g) → 2 HI(aq)
(iii) H3O+(aq) + OH−(aq) → 2 H2O(l)

6C.3(a) Use the Debye–Hückel limiting law and the Nernst 
equation to estimate the potential of the cell Ag|AgBr(s)|KBr(aq, 
0.050 mol kg−1)||Cd(NO3)2(aq, 0.010 mol kg−1)|Cd at 25 °C.
6C.3(b) Consider the cell Pt|H2(g,p<)| HCl(aq)|AgCl(s)|Ag, for which the cell 
reaction is 2 AgCl(s) + H2(g) → 2 Ag(s) + 2 HCl(aq). At 25 °C and a molality of 
HCl of 0.010 mol kg−1, Ecell = +0.4658 V. (i) Write the Nernst equation for the cell 
reaction. (ii) Calculate ΔrG for the cell reaction. (iii) Assuming that the Debye–
Hückel limiting law holds at this concentration, calculate E<(Cl−, AgCl, Ag).

T/K 1395 1443 1498

α/10−4 1.44 2.50 4.71

T/K 973 1073 1173

100p/atm 6.244 6.500 9.181

104nI 2.4709 2.4555 2.4366
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Problems
6C.1 A fuel cell develops an electric potential from the chemical reaction 
between reagents supplied from an outside source. What is the cell potential 
of a cell fuelled by (a) hydrogen and oxygen, (b) the combustion of butane at 
1.0 bar and 298 K?

6C.2 Although the hydrogen electrode may be conceptually the simplest 
electrode and is the basis for our reference state of electrical potential 
in electrochemical systems, it is cumbersome to use. Therefore, several 
substitutes for it have been devised. One of these alternatives is the 
quinhydrone electrode (quinhydrone, Q⋅QH2, is a complex of quinone, 
C6H4O2 = Q, and hydroquinone, C6H4O2H2 = QH2). The electrode half-
reaction is Q(aq) + 2 H+(aq) + 2 e− → QH2(aq), E< = +0.6994 V. If the cell 
Hg|Hg2Cl2(s)|HCl(aq)|Q⋅QH2|Au is prepared, and the measured cell potential 

is +0.190 V, what is the pH of the HCl solution? Assume that the Debye–
Hückel limiting law is applicable.

6C.3 Fuel cells provide electrical power for spacecraft (as in the NASA space 
shuttles) and also show promise as power sources for automobiles. Hydrogen 
and carbon monoxide have been investigated for use in fuel cells, so their 
solubilities in molten salts are of interest. Their solubilities in a molten 
NaNO3/KNO3 mixture were found to fit the following expressions:

log . log .s
T

s
TH CO/K /K2

5 39
980

5 98
980= − − = − −  

where s is the solubility in mol cm−3 bar−1. Calculate the standard molar 
enthalpies of solution of the two gases at 570 K.

TOPIC 6D electrode potentials

Discussion questions
6D.1 Describe a method for the determination of the standard potential of a 
redox couple.

6D.2 Devise a method for the determination of the pH of an aqueous solution.

Exercises
6D.1(a) Calculate the equilibrium constants of the following reactions at 
25 °C from standard potential data:

(i) Sn(s) + Sn4+(aq) ⇌ 2 Sn2+(aq)
(ii) Sn(s) + 2 AgCl(s) ⇌ SnCl2(aq) + 2 Ag(s)

6D.1(b) Calculate the equilibrium constants of the following reactions at 25 °C 
from standard potential data:

(i) Sn(s) + CuSO4(aq) ⇌ Cu(s) + SnSO4(aq)
(ii) Cu2+(aq) + Cu(s) ⇌ 2 Cu+(aq)

6D.2(a) The potential of the cell Ag|AgI(s)|AgI(aq)|Ag is +0.9509 V at 25 °C. 
Calculate (i) the solubility product of AgI and (ii) its solubility.
6D.2(b) The potential of the cell Bi|Bi2S3(s)|Bi2S3(aq)|Bi is –0.96 V at 25 °C. 
Calculate (i) the solubility product of Bi2S3 and (ii) its solubility.

Problems
6D.1 The potential of the cell Pt|H2(g,p <)|HCl(aq,b)|Hg2Cl2(s)|Hg(l) has 
been measured with high precision with the following results at 25 °C:

Determine the standard cell potential and the mean activity coefficient 
of HCl at these molalities. (Make a least-squares fit of the data to the best 
straight line.)

6D.2 The standard potential of the AgCl/Ag,Cl− couple fits the expression

E</V 23659 4 8564 1 / C 3 42 5 1 / C

5 869 1

4 6 2= − × ° − × °

+ ×

− −0 0 0 0

0

. . ( ) . ( )

.

θ θ
−− °9 3/ C( )θ

Calculate the standard Gibbs energy and enthalpy of formation of Cl−(aq) and 
its entropy at 298 K.

Integrated activities
6.1‡ Thorn et al. (J. Phys. Chem. 100, 14178 (1996)) carried out a study of 
Cl2O(g) by photoelectron ionization. From their measurements, they 
report ΔfH< (Cl2O) = +77.2 kJ mol−1. They combined this measurement 
with literature data on the reaction Cl2O (g) + H2O(g) → 2 HOCl(g), for 
which K = 8.2 × 10−2 and ΔrS< = +16.38 J K−1 mol−1, and with readily available 
thermodynamic data on water vapour to report a value for ΔfH< (HOCl). 
Calculate that value. All quantities refer to 298 K.

6.2 Given that ΔrG< = −212.7 kJ mol−1 for the reaction in the Daniell cell at 
25 °C, and b(CuSO4) = 1.0 × 10−3 mol kg−1 and b(ZnSO4) = 3.0 × 10−3 mol kg−1, 
calculate (a) the ionic strengths of the solutions, (b) the mean ionic activity 
coefficients in the compartments, (c) the reaction quotient, (d) the standard 
cell potential, and (e) the cell potential. (Take γ+ = γ− = γ± in the respective 
compartments.)

b/(mmol kg−1) 1.6077 3.0769 5.0403 7.6938 10.9474

E/V 0.60080 0.56825 0.54366 0.52267 0.50532
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276 6 Chemical equilibrium

6.3 Consider the cell, Zn(s)|ZnCl2(0.0050 mol kg−1)|Hg2Cl2(s)|Hg(l), for which 
the cell reaction is Hg2Cl2(s) + Zn(s) → 2 Hg(l) + 2 Cl−(aq) + Zn2+(aq). Given 
that E<(Zn2+,Zn) = −0.7628 V, E<(Hg2Cl2,Hg) = +0.2676 V, and that the cell 
potential is +1.2272 V, (a) write the Nernst equation for the cell. Determine 
(b) the standard cell potential, (c) ΔrG, ΔrG<, and K for the cell reaction, (d) 
the mean ionic activity and activity coefficient of ZnCl2 from the measured 
cell potential, and (e) the mean ionic activity coefficient of ZnCl2 from the 
Debye–Hückel limiting law. (f) Given that (∂Ecell/∂T)p = –4.52 × 10−4 V K−1, 
calculate ΔrS and ΔrH.

6.4 Careful measurements of the potential of the cell Pt|H2(g,p<)|NaOH(aq, 
0.0100 mol kg−1),Nacl(aq, 0.011 25 mol kg−1)|AgCl(s)|Ag(s) have been 
reported. Among the data is the following information:

Calculate pKw at these temperatures and the standard enthalpy and entropy of 
the autoprotolysis of water at 25.0 °C.

6.5 Measurements of the potential of cells of the type Ag|AgX(s)|MX(b1)| 
MxHg|MX(b2)|AgX(s)|Ag, where MxHg denotes an amalgam and the electrolyte 
is an LiCl in ethylene glycol, are given below. Estimate the activity coefficient 
at the concentration marked * and then use this value to calculate activity 
coefficients from the measured cell potential at the other concentrations. 
Base your answer on the Davies equation (eqn 5F.11) with A = 1.461, B = 1.70, 
C = 0.20, and I = b/b<. For b2 = 0.09141 mol kg−1:

6.6‡ The table below summarizes the potential of the cell Pd|H2(g, 1 bar)| 
BH(aq, b), B(aq, b)|AgCl(s)|Ag. Each measurement is made at equimolar 
concentrations of 2-aminopyridinium chloride (BH) and 2-aminopyridine 
(B). The data are for 25 °C and it is found that E< = 0.222 51 V. Use the data 
to determine pKa for the acid at 25 °C and the mean activity coefficient (γ±) 
of BH as a function of molality (b) and ionic strength (I). Use the Davies 
equation (eqn 5F.11) with A = 0.5091 and B and C are parameters that 
depend upon the ions. Draw a graph of the mean activity coefficient with 
b = 0.04 mol kg−1 and 0 ≤ I ≤ 0.1.

Hint: Use mathematical software or a spreadsheet.

6.7 Here we investigate the molecular basis for the observation that the 
hydrolysis of ATP is exergonic at pH = 7.0 and 310 K. (a) It is thought that 
the exergonicity of ATP hydrolysis is due in part to the fact that the standard 
entropies of hydrolysis of polyphosphates are positive. Why would an 
increase in entropy accompany the hydrolysis of a triphosphate group into 
a diphosphate and a phosphate group? (b) Under identical conditions, the 
Gibbs energies of hydrolysis of H4ATP and MgATP2–, a complex between the 
Mg2+ ion and ATP4–, are less negative than the Gibbs energy of hydrolysis 
of ATP4–. This observation has been used to support the hypothesis that 
electrostatic repulsion between adjacent phosphate groups is a factor that 
controls the exergonicity of ATP hydrolysis. Provide a rationale for the 
hypothesis and discuss how the experimental evidence supports it. Do these 
electrostatic effects contribute to the ΔrH or ΔrS terms that determine the 
exergonicity of the reaction? Hint. In the MgATP2–complex, the Mg2+ ion and 
ATP4– anion form two bonds: one that involves a negatively charged oxygen 
belonging to the terminal phosphate group of ATP4– and another that involves 
a negatively charged oxygen belonging to the phosphate group adjacent to the 
terminal phosphate group of ATP4–.

6.8 To get a sense of the effect of cellular conditions on the ability of ATP to 
drive biochemical processes, compare the standard Gibbs energy of hydrolysis 
of ATP to ADP with the reaction Gibbs energy in an environment at 37 °C 
in which pH = 7.0 and the ATP, ADP, and Pi

−  concentrations are all 1.0 mmol 
dm−3.

6.9 Under biochemical standard conditions, aerobic respiration produces 
approximately 38 molecules of ATP per molecule of glucose that is completely 
oxidized. (a) What is the percentage efficiency of aerobic respiration under 
biochemical standard conditions? (b) The following conditions are more 
likely to be observed in a living cell: pCO atm,

2
5 3 10 2= × −.  pO atm,

2
0 132= .  

[glucose] = 5.6 pmol dm−3, [ATP] = [ADP] = [Pi] = 0.10 mmol dm−3, pH = 7.4, 
T = 310 K. Assuming that activities can be replaced by the numerical values 
of molar concentrations, calculate the efficiency of aerobic respiration under 
these physiological conditions. (c) A typical diesel engine operates between 
Tc = 873 K and Th = 1923 K with an efficiency that is approximately 75 per cent 
of the theoretical limit of 1 − Tc/Th (see Topic 3A). Compare the efficiency 
of a typical diesel engine with that of aerobic respiration under typical 
physiological conditions (see part b). Why is biological energy conversion 
more or less efficient than energy conversion in a diesel engine?

6.10 In anaerobic bacteria, the source of carbon may be a molecule other than 
glucose and the final electron acceptor is some molecule other than O2. Could 
a bacterium evolve to use the ethanol/nitrate pair instead of the glucose/O2 
pair as a source of metabolic energy?

6.11 The standard potentials of proteins are not commonly measured by 
the methods described in this chapter because proteins often lose their 
native structure and function when they react on the surfaces of electrodes. 
In an alternative method, the oxidized protein is allowed to react with an 
appropriate electron donor in solution. The standard potential of the protein 
is then determined from the Nernst equation, the equilibrium concentrations 
of all species in solution, and the known standard potential of the electron 
donor. We illustrate this method with the protein cytochrome c. The one-
electron reaction between cytochrome c, cyt, and 2,6-dichloroindophenol, 
D, can be followed spectrophotometrically because each of the four species 
in solution has a distinct absorption spectrum. We write the reaction as 
cytox + Dred ⇌ cytred + Dox, where the subscripts ‘ox’ and ‘red’ refer to oxidized 
and reduced states, respectively. (a) Consider Ecyt

<  and ED
< to be the standard 

potentials of cytochrome c and D, respectively. Show that, at equilibrium, a 
plot of ln([Dox]eq/[Dred]eq) versus ln([cytox]eq/[cytred]eq) is linear with slope 
of 1 and y-intercept F E E RT( ) ,cyt D /< <−  where equilibrium activities are 
replaced by the numerical values of equilibrium molar concentrations. (b) The 
following data were obtained for the reaction between oxidized cytochrome 
c and reduced D in a pH 6.5 buffer at 298 K. The ratios [Dox]eq/[Dred]eq and 
[cytox]eq/[cytred]eq were adjusted by titrating a solution containing oxidized 
cytochrome c and reduced D with a solution of sodium ascorbate, which is 
a strong reductant. From the data and the standard potential of D of 0.237 V, 
determine the standard potential cytochrome c at pH 6.5 and 298 K.

6.12‡ The dimerization of ClO in the Antarctic winter stratosphere is believed 
to play an important part in that region’s severe seasonal depletion of ozone. 
The following equilibrium constants are based on measurements on the 
reaction 2 ClO(g) → (ClO)2(g).

(a) Derive the values of ΔrH< and ΔrS< for this reaction. (b) Compute the 
standard enthalpy of formation and the standard molar entropy of (ClO)2 
given ΔrH<(ClO,g) = +101.8 kJ mol−1 and Sm

1 1(ClO g) 266 6J K mol< , . .= − −

θ/°C 20.0 25.0 30.0

Ecell/V 1.04774 1.04864 1.04942

b/(mol kg−1) 0.01 0.02 0.03 0.04 0.05

Ecell(25 °C)/V 0.74452 0.72853 0.71928 0.71314 0.70809

b/(mol kg−1) 0.06 0.07 0.08 0.09 0.10

Ecell(25 °C)/V 0.70380 0.70059 0.69790 0.69571 0.69338

b1/(mol kg−1) 0.0555 0.09141 0.1652 0.2171 1.040 1.350*

E/V –0.0220 0.0000 0.0263 0.0379 0.1156 0.1336

[Dox]eq/[Dred]eq 0.00279 0.00843 0.0257 0.0497 0.0748 0.238 0.534

[cytox]eq/[cytred]eq 0.0106 0.0230 0.0894 0.197 0.335 0.809 1.39

T/K 233 248 258 268 273 280

K 4.13 × 108 5.00 × 107 1.45 × 107 5.37 × 106 3.20 × 106 9.62 × 105

T/K 288 295 303

K 4.28 × 105 1.67 × 105 6.02 × 104
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6.13‡ Suppose that an iron catalyst at a particular manufacturing plant 
produces ammonia in the most cost-effective manner at 450 °C when the 
pressure is such that ΔrG for the reaction 1

2
3
2 2N g H g NH g2 3( ) ( ) ( )+ →  is 

equal to –500 J mol−1. (a) What pressure is needed? (b) Now suppose that 
a new catalyst is developed that is most cost-effective at 400 °C when the 
pressure gives the same value of ΔrG. What pressure is needed when the new 

catalyst is used? What are the advantages of the new catalyst? Assume that 
(i) all gases are perfect gases or that (ii) all gases are van der Waals gases. 
Isotherms of ΔrG(T, p) in the pressure range 100 atm ≤ p ≤ 400 atm are needed 
to derive the answer. (c) Do the isotherms you plotted confirm Le Chatelier’s 
principle concerning the response of equilibrium changes in temperature and 
pressure?
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Part t wo

In Part 1, we examined the properties of bulk matter from the viewpoint of thermodynamics. In Part 
2 we examine the structures and properties of individual atoms and molecules from the viewpoint 
of quantum mechanics and explain how their structures are determined spectroscopically. The two 
viewpoints, the macroscopic and the microscopic, merge in Chapter 15, where we show how struc-
tural data are used to predict and explain the bulk thermodynamic properties encountered in Part 
1. The final three chapters of this Part focus on the way that intermolecular forces lead to the aggre-
gation of molecules, how molecular properties influence the properties of the resulting liquids and 
solids, and how the structures of these condensed phases are determined.

 7 Introduction to quantum theory

  Mathematical background 3: Complex numbers

 8 The quantum theory of motion

  Mathematical background 4: Differential equations

 9 Atomic structure and spectra

  Mathematical background 5: Vectors

 10 Molecular structure

  Mathematical background 6: Matrices

 11 Molecular symmetry

 12 Rotational and vibrational spectra

 13 Electronic transitions

 14 Magnetic resonance

 15 Statistical thermodynamics

 16 Molecular interactions

 17 Macromolecules and self-assembly

 18 Solids

  Mathematical background 7: Fourier series and Fourier transforms

Structure
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chaPter 7

Introduction to quantum theory

It was once thought that the motion of atoms and subatomic 
particles could be expressed using ‘classical mechanics’, the 
laws of motion introduced in the seventeenth century by Isaac 
Newton, for these laws were very successful at explaining the 
motion of everyday objects and planets. However, a proper 
description of electrons, atoms, and molecules requires a differ-
ent kind of mechanics, ‘quantum mechanics’, which we intro-
duce in this chapter and then apply throughout the remainder 
of the text.

7A the origins of quantum mechanics

Experimental evidence accumulated towards the end of the 
nineteenth century showed that classical mechanics failed 
when it was applied to particles as small as electrons. More spe-
cifically, careful measurements led to the conclusion that par-
ticles may not have an arbitrary energy and that the classical 
concepts of particle and wave blend together. In this Topic we 
see how these observations set the stage for the development of 
the concepts and equations of quantum mechanics through the 
early twentieth century.

7B dynamics of microscopic systems

In quantum mechanics, all the properties of a system are 
expressed in terms of a wavefunction which is obtained by 

solving the ‘Schrödinger equation’. In this Topic we see how to 
interpret wavefunctions.

7C the principles of quantum theory

This Topic introduces some of the mathematical techniques 
of quantum mechanics in terms of operators. We also see that 
quantum theory introduces the ‘uncertainty principle’, one of 
the most profound departures from classical mechanics.

What is the impact of this material?

In Impact I7.1 we highlight an application of quantum mechan-
ics that still requires much research before it becomes a useful 
technology. It is based on the speculation that through ‘quan-
tum computing’ calculations can be carried out on many states 
of a system simultaneously, leading to a new generation of very 
fast computers.

To read more about the impact of this 
material, scan the QR code, or go to  
bcs.whfreeman.com/webpub/chemistry/
pchem10e/impact/pchem-7-1.html
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7A the origins of quantum mechanics

The basic principles of classical mechanics are reviewed 
in Foundations B. In brief, they show that classical physics 

(1)  predicts a precise trajectory for particles, with precisely 
specified locations and momenta at each instant, and (2) allows 
the translational, rotational, and vibrational modes of motion 
to be excited to any energy simply by controlling the forces that 
are applied. These conclusions agree with everyday experience. 
Everyday experience, however, does not extend to individ-
ual atoms, and careful experiments have shown that classical 
mechanics fails when applied to the transfers of very small 
energies and to objects of very small mass.

We also investigate the properties of light. The classical view, 
discussed in Foundations C, is of light as an oscillating electro-
magnetic field that spreads as a wave through empty space with 
a wavelength, λ (lambda), a frequency, ν (nu), and a constant 
speed, c (Fig. C.1). Again, a number of experimental results are 
not consistent with this interpretation.

This Topic describes the experiments that revealed limita-
tions of classical physics. The remaining Topics of the Chapter 
show how a new picture of light and matter led to the formu-
lation of an entirely new and hugely successful theory called 
quantum mechanics.

7A.1 Energy quantization

Here we outline three experiments conducted near the end of 
the nineteenth century and which drove scientists to the view 
that energy can be transferred only in discrete amounts.

(a) Black-body radiation
A hot object emits electromagnetic radiation. At high tempera-
tures, an appreciable proportion of the radiation is in the visible 
region of the spectrum and a higher proportion of short-wave-
length blue light is generated as the temperature is raised. This 
behaviour is seen when a heated metal bar glowing red hot 
becomes white hot when heated further. The dependence is 
illustrated in Fig. 7A.1, which shows how the energy output 
varies with wavelength at several temperatures. The curves are 
those of an ideal emitter called a black body, which is an object 
capable of emitting and absorbing all wavelengths of radiation 
uniformly. A good approximation to a black body is a pinhole 
in an empty container maintained at a constant temperature: 
any radiation leaking out of the hole has been absorbed and 
re-emitted inside so many times as it reflected around inside 

Contents

7a.1 Energy quantization 282
(a) Black-body radiation 282

example 7a.1: using the Planck distribution 284
(b) Heat capacities 285

brief illustration 7a.1: the debye formula 286
(c) Atomic and molecular spectra 286

brief illustration 7a.2: the bohr frequency condition 287

7a.2 Wave–particle duality 287
(a) The particle character of electromagnetic radiation 287
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wavelength capable of photoejection 289

(b) The wave character of particles 289
example 7a.4: estimating the de broglie wavelength 290
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➤➤ Why do you need to know this material?
You should know how experimental results motivated 
the development of quantum theory, which underlies 
all descriptions of the structure of atoms and molecules 
and pervades the whole of spectroscopy and chemistry 
in general.

➤➤ What is the key idea?
Experimental evidence led to the conclusions that energy 
cannot be continuously varied and that the classical 
concepts of a ‘particle’ and a ‘wave’ blend together when 
applied to light, atoms, and molecules.

➤➤ What do you need to know already?
You should be familiar with the basic principles of classical 
mechanics, which are reviewed in Foundations B. The 
discussion of heat capacities of solids formally makes use 
of material in Topic 2A but is introduced independently 
here.
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7A The origins of quantum mechanics  283

the container that it has come to thermal equilibrium with the 
walls (Fig. 7A.2).

The approach adopted by nineteenth-century scientists 
to explain black-body radiation was to calculate the energy 
density, dE, the total energy in a region of the electromag-
netic field divided by the volume of the region (units: joules 
per metre-cubed, J m−3), due to all the oscillators correspond-
ing to wavelengths between λ and λ + dλ. This energy density 
is proportional to the width, dλ, of this range, and is written

d dE = ρ λ λ( , )T  (7A.1)

where ρ (rho), the constant of proportionality between dE 
and dλ, is called the density of states (units: joules per metre4, 
J m−4). A high density of states at the wavelength λ and tem-
perature T simply means that there is a lot of energy associated 
with wavelengths lying between λ and λ + dλ at that tempera-
ture. The total energy density in a region is the integral over all 
wavelengths:

E( ) ( , )T T=
∞

∫ ρ λ λd
0  

(7A.2)

It depends on the temperature: the higher the temperature, the 
greater the energy density. Just as the mass of an object is its 
mass density multiplied by its volume, the total energy within 
a region of volume V is this energy density multiplied by the 
volume:

E T V T( ) ( )= E  (7A.3)

The physicist Lord Rayleigh thought of the electromagnetic 
field as a collection of oscillators of all possible frequencies. He 
regarded the presence of radiation of frequency ν (and there-
fore of wavelength λ = c/ν, eqn C.3) as signifying that the elec-
tromagnetic oscillator of that frequency had been excited (Fig. 
7A.3). Rayleigh knew that according to the classical equipar-
tition principle (Foundations B), the average energy of each 
oscillator, regardless of its frequency, is kT. On that basis, with 
minor help from James Jeans, he arrived at the Rayleigh–Jeans 
law for the density of states:

ρ λ
λ

( , )T
kT= 8
4

π
 

 rayleigh–Jeans law  (7A.4)

where k is Boltzmann’s constant (k = 1.381 × 10−23 J K−1).
Although the Rayleigh–Jeans law is quite successful at long 

wavelengths (low frequencies), it fails badly at short wave-
lengths (high frequencies). Thus, as λ decreases, ρ increases 
without going through a maximum (Fig. 7A.4). The equation 
therefore predicts that oscillators of very short wavelength 
(corresponding to ultraviolet radiation, X-rays, and even 
γ-rays) are strongly excited even at room temperature. The total 
energy density in a region, the integral in eqn 7A.2, is also pre-
dicted to be infinite at all temperatures above zero. This absurd 
result, which implies that a large amount of energy is radiated 
in the high-frequency region of the electromagnetic spectrum, 
is called the ultraviolet catastrophe. According to classical 
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Figure 7A.1 The energy distribution in a black-body cavity at 
several temperatures. Note how the spectral density of states 
increases in the region of shorter wavelength as the temperature 
is raised, and how the peak shifts to shorter wavelengths.

Detected
radiation

Pinhole

Container
at  a
temperature T

Figure 7A.2 An experimental representation of a black body 
is a pinhole in an otherwise closed container. The radiation 
is reflected many times within the container and comes to 
thermal equilibrium with the walls. Radiation leaking out 
through the pinhole is characteristic of the radiation within the 
container.

(a)

(b)

Figure 7A.3 The electromagnetic vacuum can be regarded 
as able to support oscillations of the electromagnetic field. 
When a high-frequency, short-wavelength oscillator (a) is 
excited, that frequency of radiation is present. The presence of 
low-frequency, long-wavelength radiation (b) signifies that an 
oscillator of the corresponding frequency has been excited.
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284 7 Introduction to quantum theory

physics, even cool objects should radiate in the visible and 
ultraviolet regions, so objects should glow in the dark; there 
should in fact be no darkness.

In 1900, the German physicist Max Planck found that he 
could account for the experimental observations by proposing 
that the energy of each electromagnetic oscillator is limited to 
discrete values and cannot be varied arbitrarily. This proposal 
is contrary to the viewpoint of classical physics in which all 
possible energies are allowed and every oscillator has a mean 
energy kT. The limitation of energies to discrete values is called 
the quantization of energy. In particular, Planck found that he 
could account for the observed distribution of energy if he sup-
posed that the permitted energies of an electromagnetic oscil-
lator of frequency ν are integer multiples of hν:

E nh n= =          1 20, , ,…  (7A.5)

where h is a fundamental constant now known as Planck’s 
constant. On the basis of this assumption, Planck was able to 
derive what is now called the Planck distribution:

ρ λ
λ λ( , )

( )/T hc
hc kT=

−
8

15
π

e  
 Planck distribution  (7A.6)

This expression fits the experimental curve very well at all 
wavelengths (Fig. 7A.5), and the value of h, which is an unde-
termined parameter in the theory, may be obtained by varying 
its value until a best fit is obtained. The currently accepted value 
for h is 6.626 × 10−34 J s.

As usual, it is a good idea to ‘read’ the content of an equation:

•	 The Planck distribution resembles the Rayleigh–
Jeans law (eqn 7A.4) apart from the all-important 
exponential factor in the denominator. For short 
wavelengths, hc/νkT ≫ 1 and ehc/λkT → ∞ faster than 
λ5 → 0; therefore ρ → 0 as λ → 0 or ν → ∞. Hence, the 
energy density approaches zero at high frequencies, 
in agreement with observation.

•	 For long wavelengths, hc/λkT ≪ 1, and the 
denominator in the Planck distribution can be 
replaced by (see Mathematical background 1)

ehc kT hc
kT

hc
kT

/λ
λ λ− = + +





− ≈1 1 1

When this approximation is substituted into eqn 7A.6, 
we find that the Planck distribution reduces to the 
Rayleigh–Jeans law.

•	 As we should infer from the graph in Fig. 7A.5, the 
total energy density (the integral in eqn 7A.2 and 
therefore the area under the curve) is no longer 
infinite, and in fact
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(7A.7)

That is, the energy density increases as the fourth 
power of the temperature.
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Example 7A.1 Using the Planck distribution

Compare the energy output of a black-body radiator (such as 
an incandescent lamp) at two different wavelengths by calcu-
lating the ratio of the energy output at 450 nm (blue light) to 
that at 700 nm (red light) at 298 K.

Method Use eqn 7A.6. At a temperature T, the ratio of the 
spectral density of states at a wavelength λ1 to that at λ2 is

ρ λ
ρ λ

λ
λ

λ

λ
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( )

/

/
1

2

2

1

5
2

1

1
1

T
T

hc kT

hc kT= 





× −
−

e
e

E
n

er
g

y 
d

is
tr

ib
u

ti
o

n
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Wavelength, λ

Rayleigh–Jeans
law

Experimental

Figure 7A.4 The Rayleigh–Jeans law (eqn 7A.4) predicts an 
infinite spectral density of states at short wavelengths. This 
approach to infinity is called the ultraviolet catastrophe.

ρ/
{8

π(
kT

)5 /
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c)
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0 0.5 1 1.5 2
λkT/hc

Figure 7A.5 The Planck distribution (eqn 7A.6) accounts 
very well for the experimentally determined distribution 
of black-body radiation. Planck’s quantization hypothesis 
essentially quenches the contributions of high frequency, short 
wavelength oscillators. The distribution coincides with the 
Rayleigh–Jeans distribution at long wavelengths.
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7A The origins of quantum mechanics  285

It is easy to see why Planck’s approach was successful whereas 
Rayleigh’s was not. The thermal motion of the atoms in the 
walls of the black body excites the oscillators of the electromag-
netic field. According to classical mechanics, all the oscillators 
of the field share equally in the energy supplied by the walls, 
so even the highest frequencies are excited. The excitation of 
very high frequency oscillators results in the ultraviolet catas-
trophe. According to Planck’s hypothesis, however, oscillators 
are excited only if they can acquire an energy of at least hν. 
This energy is too large for the walls to supply in the case of the 
very high frequency oscillators, so the latter remain unexcited. 
The effect of quantization is to reduce the contribution from 
the high frequency oscillators, for they cannot be significantly 
excited with the energy available.

(b) Heat capacities
In the early nineteenth century, the French scientists Pierre-
Louis Dulong and Alexis-Thérèse Petit determined the heat 
capacities, CV = (∂U/∂T)V (Topic 2A), of a number of mona-
tomic solids. On the basis of some somewhat slender experi-
mental evidence, they proposed that the molar heat capacities 
of all monatomic solids are the same and (in modern units) 
close to 25 J K−1 mol−1.

Dulong and Petit’s law is easy to justify in terms of classi-
cal physics in much the same way as Rayleigh attempted to 
explain black-body radiation. If classical physics were valid, 
the equipartition principle could be used to infer that the 
mean energy of an atom as it oscillates about its mean posi-
tion in a solid is kT for each direction of displacement. As 
each atom can oscillate in three dimensions, the average 

energy of each atom is 3kT; for N atoms the total energy is 
3NkT. The contribution of this motion to the molar internal 
energy is therefore

U N kT RTm A3 3= =  (7A.8a)

because NAk = R, the gas constant. The molar constant volume 
heat capacity is then predicted to be

C U
T RV

V
,m

m= ∂
∂







= 3
 

(7A.8b)

This result, with 3R = 24.9 J K−1 mol−1, is in striking accord with 
Dulong and Petit’s value.

Unfortunately (for Dulong and Petit), significant deviations 
from their law were observed when advances in refrigeration 
techniques made it possible to measure heat capacities at low 
temperatures. It was found that the molar heat capacities of all 
monatomic solids are lower than 3R at low temperatures, and 
that the values approach zero as T → 0. To account for these 
observations, Einstein (in 1905) assumed that each atom oscil-
lated about its equilibrium position with a single frequency ν. 
He then invoked Planck’s hypothesis to assert that the energy 
of oscillation is confined to discrete values, and specifically to 
nhν, where n is an integer. Einstein discarded the equiparti-
tion result, calculated the vibrational contribution of the atoms 
to the total molar internal energy of the solid (by a method 
described in Topic 15E), and obtained the expression now 
known as the Einstein formula:
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The Einstein temperature, θE = hν/k, is a way of expressing 
the frequency of oscillation of the atoms as a temperature and 
allows us to be quantitative about what we mean by ‘high tem-
perature’ (T ≫ θE) and ‘low temperature’ (T ≪ θE) in this con-
text. Note that a high vibrational frequency corresponds to a 
high Einstein temperature.

As before, we now ‘read’ this expression:

•	 At high temperatures (when T ≫ θE) the exponentials 
in fE can be expanded as 1 + θE/T + … and higher 
terms ignored. The result is

f T T
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(7A.10a)

Consequently, the classical result (CV,m = 3R) is 
obtained at high temperatures.

•	 At low temperatures (when T ≪ θE) and eθE /T 1 ,

f T T T
T

T
T

E
E Ee

e e
E

E
E( )

/

/
/≈











=





−θ θθ

θ
θ

2 2 2 2

 
(7A.10b)
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Insert the data to evaluate this ratio.

Answer With λ1 = 450 nm and λ2 = 700 nm:
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At room temperature, the proportion of short wavelength 
radiation is insignificant.

Self-test 7A.1 Repeat the calculation for a temperature of 
13.6 MK, which is close to the temperature at the core of the 
Sun.

Answer: 5.85
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286 7 Introduction to quantum theory

The strongly decaying exponential function goes to zero 
more rapidly than 1/T goes to infinity; so fE → 0 as T → 0, 
and the heat capacity therefore approaches zero too.

We see that Einstein’s formula accounts for the decrease of 
heat capacity at low temperatures. The physical reason for this 
success is that at low temperatures only a few oscillators possess 
enough energy to oscillate significantly so the solid behaves as 
though it contains far fewer atoms than is actually the case. At 
higher temperatures, there is enough energy available for all 
the oscillators to become active: all 3N oscillators contribute, 
many of their energy levels are accessible, and the heat capacity 
approaches its classical value.

Figure 7A.6 shows the temperature dependence of the heat 
capacity predicted by the Einstein formula. The general shape 
of the curve is satisfactory, but the numerical agreement is in 
fact quite poor. The poor fit arises from Einstein’s assumption 
that all the atoms oscillate with the same frequency, whereas in 
fact they oscillate over a range of frequencies from zero up to a 
maximum value, νD. This complication is taken into account by 
averaging over all the frequencies present, the final result being 
the Debye formula:
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where θD = hνD/k is the Debye temperature. The integral in eqn 
7A.11 has to be evaluated numerically, but that is simple with 
mathematical software. The details of this modification, which, 
as Fig. 7A.7 shows, gives improved agreement with experi-
ment, need not distract us at this stage from the main conclu-
sion, which is that quantization must be introduced in order to 
explain the thermal properties of solids.

(c) Atomic and molecular spectra
The most compelling and direct evidence for the quantiza-
tion of energy comes from spectroscopy, the detection and 
analysis of the electromagnetic radiation absorbed, emitted, 
or scattered by a substance. The record of the intensity of light 
intensity transmitted or scattered by a molecule as a function 
of frequency (ν), wavelength (λ), or wavenumber ( / ) = c  is 
called its spectrum (from the Latin word for appearance).

A typical atomic spectrum is shown in Fig. 7A.8, and a typical 
molecular spectrum is shown in Fig. 7A.9. The obvious feature of 
both is that radiation is emitted or absorbed at a series of discrete 
frequencies. This observation can be understood if the energy 
of the atoms or molecules is also confined to discrete values, 
for then energy can be discarded or absorbed only in discrete 
amounts (Fig. 7A.10). Then, if the energy of an atom decreases by 
ΔE, the energy is carried away as radiation of frequency ν, and an 
emission ‘line’, a sharply defined peak, appears in the spectrum. 
We say that a molecule undergoes a spectroscopic transition, a 
change of state, when the Bohr frequency condition

∆E h=    bohr frequency condition  (7A.12)

Brief illustration 7A.1 The Debye formula

The Debye temperature for lead is 105 K, corresponding to a 
vibrational frequency of 2.2 × 1012 Hz. As we see from Fig. 7A.7, 
fD ≈ 1 for T > θD and the heat capacity is almost classical. For 
lead at 25 °C, corresponding to T/θD = 2.8, fD = 0.99 and the 
heat capacity has almost its classical value.

Self-test 7A.2 Evaluate the Debye temperature for diamond 
(νD = 4.6 × 1013 Hz). What fraction of the classical value of the 
heat capacity does diamond reach at 25 °C?

Answer: 2230 K; 15 per cent
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Figure 7A.6 Experimental low-temperature molar heat 
capacities and the temperature dependence predicted on the 
basis of Einstein’s theory. His equation (eqn 7A.10) accounts for 
the dependence fairly well, but is everywhere too low.
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Figure 7A.7 Debye’s modification of Einstein’s calculation 
(eqn 7A.11) gives very good agreement with experiment. For 
copper, T/θD = 2 corresponds to about 170 K, so the detection of 
deviations from Dulong and Petit’s law had to await advances 
in low-temperature physics.

 (7A.11)debye 
formula
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7A The origins of quantum mechanics  287

is fulfilled. We develop the principles and applications of atomic 
spectroscopy in Topics 9A–9C and of molecular spectroscopy 
in Topics 12A–14D.

7A.2 Wave–particle duality

At this stage we have established that the energies of the elec-
tromagnetic field and of oscillating atoms are quantized. In 
this section we see the experimental evidence that led to the 
revision of two other basic concepts concerning natural phe-
nomena. One experiment shows that electromagnetic radia-
tion—which classical physics treats as wave-like—actually also 
displays the characteristics of particles. Another experiment 
shows that electrons—which classical physics treats as parti-
cles—also display the characteristics of waves.

(a) The particle character of electromagnetic 
radiation
The observation that electromagnetic radiation of frequency 
ν can possess only the energies 0, hν, 2hν, … suggests (and 
at this stage it is only a suggestion) that it can be thought of 
as consisting of 0, 1, 2, … particles, each particle having an 
energy hν. Then, if one of these particles is present, the energy 
is hν, if two are present the energy is 2hν, and so on. These 
particles of electromagnetic radiation are now called photons. 
The observation of discrete spectra from atoms and molecules 
can be pictured as the atom or molecule generating a photon 

Brief illustration 7A.2 The Bohr frequency condition

Atomic sodium produces a yellow glow (as in some street 
lamps) resulting from the emission of radiation of 590 nm. 
The spectroscopic transition responsible for the emission 
involves electronic energy levels that have a separation given 
by eqn 7A.12:

∆E h hc= = =
× × ×

×
= ×

 λ
( . ) ( . )

.

6 626 10 2 998 10
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3 37 10

34 8 1

9

− −

−

Js ms
m

−−19 J

This energy difference can be expressed in a variety of ways. 
For instance, multiplication by Avogadro’s constant results in 
an energy separation per mole of atoms, of 203 kJ mol−1, com-
parable to the energy of a weak chemical bond. The calculated 
value of ΔE also corresponds to 2.10 eV (Foundations B).

Self-test 7A.3 Neon lamps emit red radiation of wavelength 
736 nm. What is the energy separation of the levels in joules, 
kilojoules per mole, and electronvolts responsible for the 
emission?

Answer: 2.70 × 10−19 J, 163 kJ mol−1, 1.69 eV
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Figure 7A.8 A region of the spectrum of radiation emitted by 
excited iron atoms consists of radiation at a series of discrete 
wavelengths (or frequencies).
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Figure 7A.9 When a molecule changes its state, it does so by 
absorbing radiation at definite frequencies. This spectrum is 
part of that due to the electronic, vibrational, and rotational 
excitation of sulfur dioxide (SO2) molecules. This observation 
suggests that molecules can possess only discrete energies, 
not an arbitrary energy.

hν = E3 – E2

hν = E2 – E1

hν = E3 – E1
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E
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y,
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Figure 7A.10 Spectroscopic transitions, such as those shown 
above, can be accounted for if we assume that a molecule 
emits electromagnetic radiation as it changes between 
discrete energy levels. Note that high-frequency radiation is 
emitted when the energy change is large.
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288 7 Introduction to quantum theory

of energy hν when it discards an energy of magnitude ΔE, with 
ΔE = hν.

So far, the existence of photons is only a suggestion. 
Experimental evidence for their existence comes from the 
measurement of the energies of electrons produced in the pho-
toelectric effect. This effect is the ejection of electrons from 
metals when they are exposed to ultraviolet radiation. The 
experimental characteristics of the photoelectric effect are as 
follows:

•	 No electrons are ejected, regardless of the intensity of the 
radiation, unless its frequency exceeds a threshold value 
characteristic of the metal.

•	 The kinetic energy of the ejected electrons increases 
linearly with the frequency of the incident radiation but 
is independent of the intensity of the radiation.

•	 Even at low light intensities, electrons are ejected 
immediately if the frequency is above the threshold.

Figure 7A.11 illustrates the first and second characteristics.
These observations strongly suggest that the photoelectric 

effect depends on the ejection of an electron when it is involved 
in a collision with a particle-like projectile that carries enough 
energy to eject the electron from the metal. If we suppose that 
the projectile is a photon of energy hν, where ν is the frequency 
of the radiation, then the conservation of energy requires that 
the kinetic energy of the ejected electron ( )E mk e

2= 1
2 v  should 

obey

E m hk e
2= = −1

2 v  Φ   Photoelectric effect  (7A.13)

In this expression, Φ (uppercase phi) is a characteristic of the 
metal called its work function, the energy required to remove 
an electron from the metal to infinity (Fig. 7A.12), the analogue 
of the ionization energy of an individual atom or molecule. We 

Example 7A.2 Calculating the number of photons

Calculate the number of photons emitted by a 100 W yellow 
lamp in 1.0 s. Take the wavelength of yellow light as 560 nm 
and assume 100 per cent efficiency.

Method Each photon has an energy hν, so the total number 
of photons needed to produce an energy E is E/hν. To use this 
equation, we need to know the frequency of the radiation 
(from ν = c/λ) and the total energy emitted by the lamp. The 
latter is given by the product of the power (P, in watts) and the 
time interval for which the lamp is turned on (E = PΔt).

Answer The number of photons is

N E
h

P t
h c

P t
hc= = =


∆ ∆

( / )λ
λ

Substitution of the data gives

N =
× × ×
× × ×

− −

−

( . ) ( ) ( . )
( . ) ( .

5 60 10 100 1 0
6 626 10 2 998 10

7 1

34 8
m Js s
Js mss− = ×1

202 8 10) .

Note that it would take the lamp nearly 40 min to produce 
1 mol of these photons.

A note on good practice To avoid rounding and other 
numerical errors, it is best to carry out algebraic calcu-
lations first, and to substitute numerical values into a 
single, final formula. Moreover, an analytical result may 
be used for other data without having to repeat the entire 
calculation.

Self-test 7A.4 How many photons does a monochromatic (sin-
gle frequency) infrared rangefinder of power 1 mW and wave-
length 1000 nm emit in 0.1 s?

Answer: 5 × 1014
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Figure 7A.11 In the photoelectric effect, it is found that 
no electrons are ejected when the incident radiation has a 
frequency below a value characteristic of the metal, and, above 
that value, the kinetic energy of the photoelectrons varies 
linearly with the frequency of the incident radiation.
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Figure 7A.12 The photoelectric effect can be explained if 
it is supposed that the incident radiation is composed of 
photons that have energy proportional to the frequency of the 
radiation. (a) The energy of the photon is insufficient to drive 
an electron out of the metal. (b) The energy of the photon is 
more than enough to eject an electron, and the excess energy 
is carried away as the kinetic energy of the photoelectron.
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can now see that the existence of photons accounts for the three 
observations we have summarized:

•	 Photoejection cannot occur if hν < Φ because the photon 
brings insufficient energy.

•	 Equation 7A.13 predicts that the kinetic energy of an 
ejected electron should increase linearly with frequency.

•	 When a photon collides with an electron, it gives up all 
its energy, so we should expect electrons to appear as 
soon as the collisions begin, provided the photons have 
sufficient energy.

A practical application of eqn 7A.13 is that it provides a tech-
nique for the determination of Planck’s constant, for the slopes 
of the lines in Fig. 7A.11 are all equal to h.

(b) The wave character of particles
Although contrary to the long-established wave theory of 
light, the view that light consists of particles had been held 
before, but discarded. No significant scientist, however, had 
taken the view that matter is wave-like. Nevertheless, experi-
ments carried out in 1925 forced people to consider that 
possibility. The crucial experiment was performed by the 
American physicists Clinton Davisson and Lester Germer, 
who observed the diffraction of electrons by a crystal (Fig. 
7A.13). Diffraction is the interference caused by an object in 
the path of waves. Depending on whether the interference is 
constructive or destructive, the result is a region of enhanced 
or diminished intensity of the wave. Davisson and Germer’s 
success was a lucky accident, because a chance rise of temper-
ature caused their polycrystalline sample to anneal, and the 
ordered planes of atoms then acted as a diffraction grating. 
At almost the same time, G.P. Thomson, working in Scotland, 
showed that a beam of electrons was diffracted when passed 
through a thin gold foil.

The Davisson–Germer experiment, which has since been 
repeated with other particles (including α particles and 
molecular hydrogen), shows clearly that particles have wave-
like properties, and the diffraction of neutrons is a well-
established technique for investigating the structures and 
dynamics of condensed phases (Topic 18A). We have also 
seen that waves of electromagnetic radiation have particle-
like properties. Thus we are brought to the heart of modern 

Example 7A.3 Calculating the maximum wavelength 
capable of photoejection

A photon of radiation of wavelength 305 nm ejects an electron 
from a metal with a kinetic energy of 1.77 eV. Calculate the 
maximum wavelength of radiation capable of ejecting an elec-
tron from the metal.

Method Use eqn 7A.13 rearranged into Φ = hν − Ek with ν = c/λ 
to calculate the work function of the metal from the data. The 
threshold for photoejection, the frequency able to remove the 
electron but not give it any excess energy, then corresponds 
to radiation of frequency νmin = Φ/h. Use this value of the 
frequency to calculate the maximum wavelength capable of 
photoejection.

Answer From the expression for the work function Φ = hν − Ek 
the minimum frequency for photoejection is
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k k= = − = −

=
Φ

λ

ν λ

h
h E

h
c E

h

c/

The maximum wavelength is therefore

λ λ λmax
min k k/ / / /= = − = −
c c

c E h E hc

1
1

Now we substitute the data. The kinetic energy of the elec-
tron is

E
E
hc
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Therefore, with 1/λ = 1/305 nm = 3.27… × 106 m−1,

λmax m m m=
× − …×

= ×− −
−1

3 27 10 1 42 10 5 40 106 1 6 1
7

( . ) ( . ) .
…

or 540 nm.

Self-test 7A.5 When ultraviolet radiation of wavelength 
165 nm strikes a certain metal surface, electrons are ejected 
with a speed of 1.24 Mm s−1. Calculate the speed of electrons 
ejected by radiation of wavelength 265 nm.

Answer: 735 km s−1

Electron
beam

Diffracted
electrons

Ni crystal

Figure 7A.13 The Davisson–Germer experiment. The 
scattering of an electron beam from a nickel crystal shows a 
variation of intensity characteristic of a diffraction experiment 
in which waves interfere constructively and destructively in 
different directions.
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physics. When examined on an atomic scale, the classical 
concepts of particle and wave melt together, particles taking 
on the characteristics of waves, and waves the characteristics 
of particles.

Some progress towards coordinating these properties had 
already been made by the French physicist Louis de Broglie 
when, in 1924, he suggested that any particle, not only pho-
tons, travelling with a linear momentum p = mv (with m the 
mass and v the speed of the particle) should have in some 
sense a wavelength given by what is now called the de Broglie 
relation:

λ = h
p  

 de broglie relation  (7A.14)

That is, a particle with a high linear momentum has a short 
wavelength (Fig. 7A.14). Macroscopic bodies have such high 
momenta even when they are moving slowly (because their 
mass is so great), that their wavelengths are undetectably small, 
and the wavelike properties cannot be observed. This unde-
tectability is why, in spite of its deficiencies, classical mechanics 
can be used to explain the behaviour of macroscopic bodies. 
It is necessary to invoke quantum mechanics only for micro-
scopic systems, such as atoms and molecules, in which masses 
are small.

We now have to conclude that not only has electromagnetic 
radiation the character classically ascribed to particles, but 
electrons (and all other particles) have the characteristics clas-
sically ascribed to waves. This joint particle and wave character 
of matter and radiation is called wave − particle duality.

Example 7A.4 Estimating the de Broglie wavelength

Estimate the wavelength of electrons that have been acceler-
ated from rest through a potential difference of 40 kV.

Method To use the de Broglie relation, we need to know the 
linear momentum, p, of the electrons. To calculate the linear 
momentum, we note that the energy acquired by an electron 
accelerated through a potential difference Δφ is eΔφ, where 
e is the magnitude of its charge. At the end of the period of 
acceleration, all the acquired energy is in the form of kinetic 
energy, E m p mk e

2 2
e/2= =1

2 v , so we can determine p by setting 
p2/2me equal to eΔφ. As before, carry through the calculation 
algebraically before substituting the data.

Answer The expression p2/2me = eΔφ solves to p = (2meeΔφ)1/2; 
then, from the de Broglie relation λ = h/p,

λ
φ

= h
m e( ) /2 1 2

e ∆

Substitution of the data and the fundamental constants (from 
inside the front cover) gives

λ =
×

× × × × × ×

−

− −

6 626 10
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34

31 19 4
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/1 2

126 1 10= × − m
 

For the manipulation of units we have used 1 V C = 1 J and 
1 J = 1 kg m2 s−2. The wavelength of 6.1 pm is shorter than typical 
bond lengths in molecules (about 100 pm). Electrons acceler-
ated in this way are used in the technique of electron diffraction 
for the visualization of biological systems (Impact I7.1) and the 
determination of the structures of solid surfaces (Topic 22A).

Self-test 7A.6 Calculate the wavelength of (a) a neutron with a 
translational kinetic energy equal to kT at 300 K, (b) a tennis 
ball of mass 57 g travelling at 80 km h−1.

Answer: (a) 178 pm, (b) 5.2 × 10−34 m

Checklist of concepts

☐ 1. A black body is an object capable of emitting and 
absorbing all wavelengths of radiation uniformly.

☐ 2. The vibrations of atoms can take up energy only in dis-
crete amounts.

Short wavelength,
high momentum

Long wavelength,
low momentum

Figure 7A.14 An illustration of the de Broglie relation  
between momentum and wavelength. The wave is 
associated with a particle. A particle with high momentum 
corresponds to a wave with a short wavelength, and  
vice versa.
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☐ 3. Atomic and molecular spectra show that atoms and 
molecules can take up energy only in discrete amounts.

☐ 4. The photoelectric effect establishes the view that elec-
tromagnetic radiation, regarded in classical physics as 
wavelike, consists of particles (photons).

☐ 5. The diffraction of electrons establishes the view that elec-
trons, regarded in classical physics as particles, are wave-
like with a wavelength given by the de Broglie relation.

☐ 6. Wave–particle duality is the recognition that the con-
cepts of particle and wave blend together.

Checklist of equations

Property Equation Comment Equation number

Planck distribution ρ(λ,T) = 8πhc/{λ5(ehc/λkT − 1)} 7A.6

Heat capacity CV,m(T) = 3Rf(T) f = fE or fD

Einstein formula f T T T T
E E /( ) ( / ) ( ){ }/ /= −θ θ θ2 2 21e eE E Einstein temperature: θE = hν/k 7A.9

Debye formula f T T x xT x x
D D

D e e d( ) ( / ) /( )/
= −∫3 13

0
4 2θ

θ
Debye temperature: θD = hνD/k 7A.11

Bohr frequency condition ΔE = hν Conservation of energy 7A.12

Photoelectric effect E m hk e
2= =1

2 v −Φ Φ is the work function 7A.13

de Broglie relation λ = h/p λ is the wavelength of a particle  
of linear momentum p

7A.14
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7B dynamics of microscopic systems

Wave–particle duality (Topic 7A) strikes at the heart of clas-
sical physics, where particles and waves are treated as entirely 
distinct entities. Experiments have also shown that the ener-
gies of electromagnetic radiation and of matter cannot be var-
ied continuously, and that for small objects the discreteness of 
energy is highly significant. In classical mechanics, in contrast, 
energies can be varied continuously. Such total failure of clas-
sical physics for small objects implied that its basic concepts 
are false. A new mechanics—quantum mechanics—had to be 
devised to take its place.

A new mechanics can be constructed from the ashes of clas-
sical physics by supposing that, rather than travelling along a 
definite path, a particle is distributed through space like a wave. 
This remark may seem mysterious: it will be interpreted more 
fully shortly. The mathematical representation of the wave that 
in quantum mechanics replaces the classical concept of trajec-
tory is called a wavefunction, ψ (psi), a function that contains 
all the dynamical information about a system, such as its loca-
tion and momentum.

7B.1 The Schrödinger equation

In 1926, the Austrian physicist Erwin Schrödinger proposed an 
equation for finding the wavefunction of any system. The time-
independent Schrödinger equation for a particle of mass m 
moving in one dimension with energy E in a system that does 
not change with time (for instance, its volume remains con-
stant) is

− + =2 2

22m x V x Ed
d

ψ ψ ψ( )
 

The factor V(x) is the potential energy of the particle at the 
point x; because the total energy E is the sum of potential and 
kinetic energies, the first term must be related (in a manner 
we explore later) to the kinetic energy of the particle; ħ = h/2π 
(which is read h-cross or h-bar) is a convenient modification 
of Planck’s constant with the value 1.055 × 10−34 J s. Three sim-
ple but important general forms of the potential energy are (the 
explicit forms are found in the corresponding Topics):

•	 For a particle moving freely in one dimension the 
potential energy is constant, so V(x) = V. It is often 
convenient to write V = 0 (Topic 8A).

•	 For a particle free to oscillate to-and-fro near a point x0, 
V(x) ∝ (x − x0)2 (Topic 8B).

•	 For two electric charges Q1 and Q2 separated by a 
distance x, V(x) ∝ Q1Q2/x (Foundations B).

The following Justification shows that the Schrödinger equa-
tion is plausible and the discussions later in the chapter will 
help to overcome its apparent arbitrariness. For the present, we 

➤➤ Why do you need to know this material?
Quantum theory provides the essential foundation for 
understanding of the properties of electrons in atoms and 
molecules.

➤➤ What is the key idea?
All the dynamical properties of a system are contained 
in the wavefunction, which is obtained by solving the 
Schrödinger equation.

➤➤ What do you need to know already?
You need to be aware of the shortcomings of classical 
physics that drove the development of quantum theory 
(Topic 7A).

time-independent 
schrödinger 
equation

 (7B.1)
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7B Dynamics of microscopic systems  293

shall treat the equation simply as a quantum-mechanical pos-
tulate that replaces Newton’s postulate of his apparently equally 
arbitrary equation of motion (that force = mass × acceleration). 
Various ways of expressing the Schrödinger equation, of incor-
porating the time-dependence of the wavefunction, and of 
extending it to more dimensions, are collected in Table 7B.1. In 
the Topics of Chapter 8 we solve the equation for a number of 
important cases; in this chapter we are mainly concerned with 
its significance, the interpretation of its solutions, and seeing 
how it implies that energy is quantized.

7B.2 The Born interpretation of the 
wavefunction

A central principle of quantum mechanics is that the wavefunc-
tion contains all the dynamical information about the system it 
describes. Here we concentrate on the information it carries 
about the location of the particle.

The interpretation of the wavefunction in terms of the 
location of the particle is based on a suggestion made by 
Max Born. He made use of an analogy with the wave theory 
of light, in which the square of the amplitude of an electro-
magnetic wave in a region is interpreted as its intensity and 
therefore (in quantum terms) as a measure of the probability 
of finding a photon present in the region. The Born interpre-
tation of the wavefunction focuses on the square of the wave-
function (or the square modulus, |ψ|2 = ψ *ψ, if ψ is complex; 
see Mathematical background 3). For a one-dimensional sys-
tem (Fig. 7B.1):

If the wavefunction of a particle has the value ψ at 
some point x, then the probability of finding the 
particle between x and x + dx is proportional to 
|ψ |2dx.

Thus, |ψ|2 is the probability density, and to obtain the prob-
ability it must be multiplied by the length of the infinitesimal 
region dx. The wavefunction ψ itself is called the probability 
amplitude. For a particle free to move in three dimensions 
(for example, an electron near a nucleus in an atom), the 

Justification 7B.1 The plausibility of the Schrödinger 
equation

The Schrödinger equation can be seen to be plausible by not-
ing that it implies the de Broglie relation (eqn 7A.14, p = h/λ) 
for a freely moving particle. After writing V(x) = V, we can 
rearrange eqn 7B.1 into

d
d

2

2 2
2ψ ψx
m V E= −


( )

General strategies for solving differential equations of this and 
other types that occur frequently in physical chemistry are 
treated in Mathematical background 4 at the end of Chapter 8;  
we need only the simplest procedures in this Topic. In this 
case a solution is

ψ = = −







cos ( ) /

kx k m E V2
2

1 2



We now recognize that cos kx is a wave of wavelength λ = 2π/k, 
as can be seen by comparing cos kx with the standard form 
of a harmonic wave, cos(2πx/λ) (Foundations C). The quan-
tity E − V is equal to the kinetic energy of the particle, Ek, so 
k = (2mEk/2)1/2, which implies that Ek = k22/2m. Because 
Ek = p2/2m (Foundations B), it follows that p = k. Therefore, 
the linear momentum is related to the wavelength of the wave-
function by

p h h= × =2
2

π
πλ λ

which is the de Broglie relation.

Table 7B.1 The Schrödinger equation

Expression Equation Comment

Time-independent 
Schrödinger 
equation

H Eψ ψ= General case

− + =2 2

22m x
V x x E xd

d
ψ ψ ψ( ) ( ) ( )

One 
dimension

− ∂
∂

+ ∂
∂







+

=

2 2

2

2

22m x y
V x y x y

E x y

ψ ψ ψ

ψ

( , ) ( , )

( , )

Two 
dimensions

− ∇ + =2
2

2m V Eψ ψ ψ
Three 

dimensions

Laplacian operator
∇ = ∂

∂
+ ∂

∂
+ ∂

∂
2

2

2

2

2

2

2x y z

∇ = ∂
∂

+

= ∂
∂

+ ∂
∂ +

= ∂
∂

∂
∂ +

2
2

2 2
2

2

2 2
2

2
2

2
2

1 1

2 1

1 1

r r
r

r

r r r r

r r r r r

Λ

Λ

Λ

Alternative 
forms

Legendrian 
operator Λ

φ θ θ θ θθ
2

2

2

2
1 1= ∂

∂
+ ∂

∂
∂

∂sin sin sin

Time-dependent 
Schrödinger 
equation

H tΨ = ∂
∂i� ψ�

bo
rn

 
in

te
rp

re
ta

tio
n
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294 7  Introduction to quantum theory

wavefunction depends on the point r with coordinates x, y, and 
z, and the interpretation of ψ(r) is as follows (Fig. 7B.2):

If the wavefunction of a particle has the value ψ at some 
point r, then the probability of finding the particle in an 
infinitesimal volume dτ = dxdydz at that point is 
proportional to |ψ |2dτ.

The Born interpretation does away with any worry about the 
significance of a negative (and, in general, complex) value of ψ 
because |ψ|2 is real and never negative. There is no direct sig-
nificance in the negative (or complex) value of a wavefunction: 
only the square modulus, a positive quantity, is directly physi-
cally significant, and both negative and positive regions of a 
wavefunction may correspond to a high probability of finding a 
particle in a region (Fig. 7B.3). However, later we shall see that 
the presence of positive and negative regions of a wavefunction 
is of great indirect significance, because it gives rise to the possi-
bility of constructive and destructive interference between dif-
ferent wavefunctions.

Example 7B.1 Interpreting a wavefunction

In Topic 9A it is shown that the wavefunction of an electron in 
the lowest energy state of a hydrogen atom is proportional to 
e−r a/ 0, with a0 a constant and r the distance from the nucleus. 
Calculate the relative probabilities of finding the electron 
inside a region of volume δV = 1.0 pm3, which is small even on 
the scale of the atom, located at (a) the nucleus, (b) a distance 
a0 from the nucleus.

Method The region of interest is so small on the scale of the 
atom that we can ignore the variation of ψ within it and write 
the probability, P, as proportional to the probability density 
(ψ 2; note that ψ is real) evaluated at the point of interest mul-
tiplied by the volume of interest, δV. That is, P ∝ ψ 2δV, with 
ψ 2 2 0∝ −e r a/ .

Answer In each case δV = 1.0 pm3. (a) At the nucleus, r = 0, so

P ∝ × = ×e 1 pm 1 1 pm3 30 0 0 0( . ) ( . ) ( . )

(b) At a distance r = a0 in an arbitrary direction,

P ∝ × = ×−e (1 pm ) ( 14) (1 pm )2 3 3. . .0 0 0  

Therefore, the ratio of probabilities is 1.0/0.14 = 7.1. Note that 
it is more probable (by a factor of 7) that the electron will be 
found at the nucleus than in a volume element of the same 
size located at a distance a0 from the nucleus. The negatively 
charged electron is attracted to the positively charged nucleus, 
and is likely to be found close to it.

A note on good practice The square of a wavefunction is 
a probability density, and (in three dimensions) has the 
dimensions of 1/length3. It becomes a (unitless) prob-
ability when multiplied by a volume. In general, we have 
to take into account the variation of the amplitude of the 
wavefunction over the volume of interest, but here we are 
supposing that the volume is so small that the variation of 
ψ in the region can be ignored.

dx

|ψ |2

Probability 
= |ψ |2dx

x x + dx

Figure 7B.1 The wavefunction ψ is a probability amplitude in 
the sense that its square modulus (ψ *ψ or |ψ |2) is a probability 
density. The probability of finding a particle in the region 
dx located at x is proportional to |ψ |2dx. We represent 
the probability density by the density of shading in the 
superimposed band.

dxdy

dz

z

x y

r

Figure 7B.2 The Born interpretation of the wavefunction 
in three-dimensional space implies that the probability of 
finding the particle in the volume element dτ = dxdydz at some 
location r is proportional to the product of dτ and the value of 
|ψ |2 at that location.

Wavefunction Probability density

Figure 7B.3 The sign of a wavefunction has no direct 
physical significance: the positive and negative regions of 
this wavefunction both correspond to the same probability 
distribution (as given by the square modulus of ψ and depicted 
by the density of the shading).
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7B Dynamics of microscopic systems  295

(a) Normalization

A mathematical feature of the Schrödinger equation is that if 
ψ is a solution, then so is Nψ, where N is any constant. This 
feature is confirmed by noting that ψ occurs in every term in 
eqn 7B.1, so any constant factor can be cancelled. This free-
dom to vary the wavefunction by a constant factor means that 
it is always possible to find a normalization constant, N, such 
that the proportionality of the Born interpretation becomes an 
equality.

We find the normalization constant by noting that, for a nor-
malized wavefunction Nψ, the probability that a particle is in the 
region dx is equal to (Nψ *)(Nψ)dx (we are taking N to be real). 
Furthermore, the sum over all space of these individual prob-
abilities must be 1 (the probability of the particle being some-
where is 1). Expressed mathematically, the latter requirement is

N x2 1ψ ψ* d =
−∞

∞

∫  
(7B.2)

Wavefunctions for which the integral in eqn 7B.2 exists (in the 
sense of having a finite value) are said to be ‘square-integrable’. 
It follows that

N
x

=




−∞

∞

∫
1

1 2

ψ ψ*
/

d
 

(7B.3)

Therefore, by evaluating the integral, we can find the value of N 
and hence ‘normalize’ the wavefunction. From now on, unless 
we state otherwise, we always use wavefunctions that have been 
normalized to 1; that is, from now on we assume that ψ already 
includes a factor which ensures that (in one dimension)

ψ ψ* dx =
−∞

∞

∫ 1
 

(7B.4a)

In three dimensions, the wavefunction is normalized if

ψ ψ* d d dx y z =
−∞

∞

−∞

∞

−∞

∞

∫∫∫ 1
 

(7B.4b)

or, more succinctly, if

ψ τψ* d =∫ 1
 

 normalization integral  (7B.4c)

where dτ = dxdydz and the limits of this definite integral are 
not written explicitly: in all such integrals, the integration is 
over all the space accessible to the particle. For systems with 
spherical symmetry it is best to work in spherical polar coor-
dinates (The chemist’s toolkit 7B.1), so the explicit form of eqn 
7B.4c is

ψ ψ θ θ φ* sinr r2

0

2

00
1d d d =∫∫∫

∞ ππ

 
(7B.4d)

Self-test 7B.1 The wavefunction for the electron in its lowest 
energy state in the ion He+ is proportional to e−2 0r a/ . Repeat the 
calculation for this ion. Any comment?

Answer: 55; more compact wavefunction

The chemist’s toolkit 7B.1 Spherical polar coordinates

For systems with spherical symmetry it is best to work in 
spherical polar coordinates r, θ, and ϕ (Sketch 1)

x r y r z r= = =sin cos , ,θ φ θ φ θsin sin cos  

where:
 r, the radius, ranges from 0 to ∞
 θ, the colatitude, ranges from 0 to π
 ϕ, the azimuth, ranges from 0 to 2π

That these ranges cover space is illustrated in Sketch 2. 
Standard manipulations then yield

d d d d2τ θ θ φ= r rsin

θ
φ

x

y

z

r

dr

rdφ
r sin θ dθ

r 2 sin θ drdθdφ

Sketch 1 The spherical polar coordinates used for 
discussing systems with spherical symmetry.

φ

0

π

θ

02π

Sketch 2 The surface of a sphere is covered by allowing θ 
to range from 0 to π, and then sweeping that arc around a 
complete circle by allowing ϕ to range from 0 to 2π.

spherical polar 
coordinates 

iranchembook.ir/edu



296 7  Introduction to quantum theory

(b) Constraints on the wavefunction
The Born interpretation puts severe restrictions on the accept-
ability of wavefunctions. The principal constraint is that ψ must 
not be infinite over a finite region. If it were, it would not be 
square-integrable, and the normalization constant would be 
zero. The normalized function would then be zero everywhere, 
except where it is infinite, which would be unacceptable (the 
particle must be somewhere). Note that infinitely sharp spikes 
are acceptable provided they have zero width.

The requirement that ψ is finite everywhere rules out many 
possible solutions of the Schrödinger equation, because many 
mathematically acceptable solutions rise to infinity and are 
therefore physically unacceptable. We could imagine a solu-
tion of the Schrödinger equation that gives rise to more than 
one value of |ψ|2 at a single point. The Born interpretation 
implies that such solutions are unacceptable, because it would 
be absurd to have more than one probability that a particle is at 
the same point. This restriction is expressed by saying that the 
wavefunction must be single-valued; that is, have only one value 
at each point of space.

The Schrödinger equation itself also implies some math-
ematical restrictions on the type of functions that can occur. 
Because it is a second-order differential equation, the second 
derivative of ψ must be well-defined if the equation is to be 
applicable everywhere. We can take the second derivative of a 
function only if it is continuous (so there are no sharp steps in 
it, Fig. 7B.4) and if its first derivative, its slope, is continuous (so 
there are no kinks in the wavefunction).

There are cases, and we shall meet them, where acceptable 
wavefunctions have kinks. These cases arise when the poten-
tial energy has peculiar properties, such as rising abruptly to 
infinity. When the potential energy is smoothly well-behaved 
and finite, the slope of the wavefunction must be continuous; 
if the potential energy becomes infinite, then the slope of the 
wavefunction need not be continuous. There are only two cases 

Example 7B.2 Normalizing a wavefunction

Normalize the wavefunction used for the hydrogen atom in 
Example 7B.1.

Method We need to find the factor N that guarantees that the 
integral in eqn 7B.4c is equal to 1. Because the system is spheri-
cal, it is most convenient to use spherical coordinates (The 
chemist’s toolkit 7B.1) and to carry out the integrations speci-
fied in eqn 7B.4d. Relevant integrals are found in the Resource 
section.

Answer The integration required is the product of three 
factors:

ψ τ θ θ φψ* / sind = −
∞

∫ ∫ ∫N r rr a2 2 2

0 0 0

2
0

4

e d d d

1
0
3

2 2a� ��� ��� � �� �� �
π π

π���

∫ = πa N0
3 2

Therefore, for this integral to equal 1, we must set

N
a

= 





1
0
3

1 2

π

/

and the normalized wavefunction is

ψ = 





−1
0
3

1 2

0

πa
r a

/
/e

Note that because a0 is a length, the dimensions of ψ are  
1/length3/2 and therefore those of ψ2 are 1/length3 (for 
instance, 1/m3) as is appropriate for a probability density.

If Example 7B.1 is now repeated, we can obtain the actual 
probabilities of finding the electron in the volume element at 
each location, not just their relative values. Given (from inside 
the front cover) that a0 = 52.9 pm, the results are (a) 2.2 × 10−6, 
corresponding to 1 chance in about 500 000 inspections of 
finding the electron in the test volume, and (b) 2.9 × 10−7, cor-
responding to 1 chance in 3.4 million.

Self-test 7B.2 Normalize the wavefunction given in Self-test 
7B.1.

Answer: N a= ( ) /8/ 1 2π 0
3

In these coordinates, the integral of a function f(r,θ,φ) over all 
space takes the form

f r r r( , , ) sinθ φ θ θ φ2

0

2

00
d d d

ππ

∫∫∫
∞

where the limits on the first integral sign refer to r, those on 
the second to θ, and those on the third to φ.

ψ

(a) (b)

(c) (d)

ψ

Figure 7B.4 The wavefunction must satisfy stringent 
conditions for it to be acceptable: (a) unacceptable because 
it is not continuous; (b) unacceptable because its slope is 
discontinuous; (c) unacceptable because it is not single-valued; 
(d) unacceptable because it is infinite over a finite region.
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of this behaviour in elementary quantum mechanics, and the 
peculiarity will be mentioned when we meet them.

At this stage we see that ψ:

•	 must not be infinite over a non-infinitesimal 
region

•	 must be single-valued
•	 must be continuous
•	 must have a continuous slope.

(c) Quantization
The restrictions just noted are so severe that acceptable solu-
tions of the Schrödinger equation do not in general exist for 
arbitrary values of the energy E. In other words, a particle may 
possess only certain energies, for otherwise its wavefunction 
would be physically unacceptable. That is, as a consequence of 
the restrictions on its wavefunction, the energy of a particle is 
quantized. We can find the acceptable energies by solving the 
Schrödinger equation for motion of various kinds, and select-
ing the solutions that conform to the restrictions listed above. 
That task is taken forward in Chapter 8.

7B.3 The probability density

Once we have obtained the normalized wavefunction, we can 
then proceed to determine the probability density. As an exam-
ple, consider a particle of mass m free to move parallel to the 
x-axis with zero potential energy. The Schrödinger equation is 
obtained from eqn 7B.1 by setting V = 0, and is

− =2 2

22m
x

x E xd
d
ψ ψ( ) ( )

 
(7B.5)

As shown in the following Justification, the solutions of this 
equation have the form

ψ ( )x A B E k
m

kx kx= + =e ei i−
2 2

2


 
(7B.6)

where A and B are constants. (See Mathematical background 3 
at the end of this chapter for more on complex numbers.)

We see in Topic 8A what determines the values of A and B; 
here we can treat them as arbitrary constants that we can vary 
at will. Suppose that B = 0 in eqn 7B.6, then the wavefunction is 
simply

ψ ( )x A kx= ei
 (7B.7)

Where is the particle? To find out, we calculate the probability 
density:

| ( )| ( )*( ) ( * )( )ψ x A A A A Akx kx kx kx2 i i i i 2e e e e= = =−
 (7B.8)

This probability density is independent of x; so, wherever we 
look in a region of fixed length located anywhere along the 
x-axis, there is an equal probability of finding the particle (Fig. 
7B.5a). In other words, if the wavefunction of the particle is 
given by eqn 7B.7, then we cannot predict where we will find 
it. The same would be true if the wavefunction in eqn 7B.6 had 
A = 0; then the probability density would be |B|2, a constant.

Now suppose that in the wavefunction A = B. Then, because 
cos e ei ikx kx kx= + −1

2 ( ) (Mathematical background 3), eqn 7B.6 
becomes

ψ ( ) ( )x A A kxkx kx= + =−e e 2 cosi i
 (7B.9)

The probability density now has the form

| ( )| ( )*( )ψ x A kx A kx A kx2 2 22 cos 2 cos 4 cos= =  (7B.10)

Justification 7B.2 The wavefunction of a free particle in 
one dimension

To verify that ψ (x) in eqn 7B.6 is a solution of eqn 7B.5, we 
simply substitute it into the left-hand side of the equation and 
show that E = k22/2m. To begin, we write

− = − + − 2 2

2

2 2

22 2m
x

x m x A Bkx kxd
d

d
d e ei iψ ( ) ( )

co
ns

tr
ai

nt
s 

on
  

th
e 

w
av

ef
un

ct
io

n

Because de±ax/dx = ±ae±ax and i2 = −1, the second derivatives 
evaluate to

− + − = +− −� �
��2

2 2
2 2

2 2m A k B k k
m A Bkx kx kx kx{ ( ) ( ) } ( )i e i e e ei i i i

E xψ ( )���� ���
= E xψ ( )

|ψ 2| = 1 Im ψ =
 sin kx

Re ψ =
 cos kx

(a) (b)

cos kx cos2 kx

Figure 7B.5 (a) The square modulus of a wavefunction 
corresponding to the wavefunction in eqn 7B.7 is a constant; 
so it corresponds to a uniform probability of finding the particle 
anywhere. (b) The probability distribution corresponding to the  
wavefunction in eqn 7B.7.
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298 7  Introduction to quantum theory

This function is illustrated in Fig. 7B.5b. As we see, the prob-
ability density periodically varies between 0 and 4|A|2. The 
locations where the probability density is zero correspond to 
nodes in the wavefunction. Specifically, a node is a point where 
a wavefunction passes through zero. The location where a wave-
function approaches zero without actually passing through 
zero is not a node.

To calculate the probability of finding the system in a region 
of space that is not infinitesimal we sum (that is, we integrate) 
the probability density over the region of space of interest. For 
example, for a one-dimensional wavefunction, the probability 
P of finding the particle between x1 and x2 is given by

P x x
x

x
=∫ ψ ( ) 2

1

2

d
 

Onedimensional region  Probability  (7B.11)

Checklist of concepts

☐ 1. A wavefunction is a mathematical function that con-
tains all the dynamical information about a system.

☐ 2. The Schrödinger equation is a second-order differen-
tial equation used to calculate the wavefunction of a 
system.

☐ 3. According to the Born interpretation, the prob-
ability density is proportional to the square of the 
wavefunction.

☐ 4. A wavefunction is normalized if the integral of its 
square is equal to 1.

☐ 5. A wavefunction must be single-valued, continuous, not 
infinite over a non-infinitesimal region of space, and 
have a continuous slope.

☐ 6. The quantization of energy stems from the constraints 
that an acceptable wavefunction must satisfy.

☐ 7.  A node is a point where a wavefunction passes through 
zero.

Checklist of equations

Example 7B.3 Determining a probability

The lowest-energy electrons of a carbon nanotube can 
described by the normalized wavefunction (2/L)1/2sin(πx/L), 
where L is the length of the nanotube. What is the probability 
of finding the electron between x = L/4 and x = L/2?

Method Use eqn 7B.11 and the normalized wavefunction to 
write an expression for the probability of finding the electron 
in the region of interest. Relevant integrals are given in the 
Resource section.

Answer From eqn 7B.11 and the wavefunction provided, the 
expression for the probability is

P L x L x
L

L
= 



∫ 2 2

4

2
sin d( / )

/

/
π

It follows that

P L
x x L

L L
L

L
= 





−





= 



IntegralT.2 2

2
2

4
2

4

2
sin /

/
( )

/

/
π

π 
− − +





=

L L L
4 8 0 4

0 409

π

.

There is a chance of about 41 per cent that the electron will be 
found between x = L/4 and x = L/2 along the nanotube.

Self-test 7B.3 The next higher energy wavefunction of the 
electron in the nanotube is described by the normalized wave-
function (2/L)1/2sin(2πx/L). What is the probability of finding 
the electron between x = L/4 and x = L/2?

Answer: 0.25

Property Equation Comment Equation number

The time-independent Schrödinger equation −( / )( / ) ( ) ,� �2 2 22 d d orm x V x E H Eψ ψ ψ ψ ψ+ = = One-dimensional system 7B.1

Normalization integral ψ τψ* d =∫ 1 Integration over all space 7B.4c

Probability of locating a particle P x x
x

x
=∫ ψ ( ) 2

1

2

d One-dimensional region 7B.11
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7C the principles of quantum theory

A wavefunction contains all the information it is possible 
to obtain about the dynamical properties of the particle (for 
example, its location and momentum). The Born interpretation 

(Topic 7B) tells us as much as we can know about location, but 
how do we extract any additional dynamical information?

7C.1 Operators

To formulate a systematic way of extracting information from 
the wavefunction, we first note that any Schrödinger equation 
may be written in the succinct form

H Eψ ψ=
  operator form of schrödinger equation  (7C.1a)

with (in one dimension)

H
m x

V x= − +�2 2

22
d

d
( )�

 
 hamiltonian operator  (7C.1b)

The quantity H  (commonly read aitch-hat) is an operator, 
something that carries out a mathematical operation on the 
function ψ. In this case, the operation is to take the second 
derivative of ψ and (after multiplication by −ħ2/2m) to add the 
result to the outcome of multiplying ψ by V(x).

The operator H  plays a special role in quantum mechanics, 
and is called the hamiltonian operator after the nineteenth-
century mathematician William Hamilton, who developed a 
form of classical mechanics which, it subsequently turned out, 
is well suited to the formulation of quantum mechanics. The 
hamiltonian operator is the operator corresponding to the total 
energy of the system, the sum of the kinetic and potential ener-
gies. Consequently, we can infer that the first term in eqn 7C.1b 
(the term proportional to the second derivative) must be the 
operator for the kinetic energy.

(a) Eigenvalue equations
When the Schrödinger equation is written as in eqn 7C.1a, it is 
seen to be an eigenvalue equation, an equation of the form

( )( ) ( ) (Operator function constant factor same function)= ×  
(7C.2a)

If we denote a general operator by Ω  (where Ω is uppercase 
omega) and a constant factor by ω (lowercase omega), then an 
eigenvalue equation has the form

Ωψ ωψ=   eigenvalue equation  (7C.2b)

➤➤ Why do you need to know this material?
The wavefunction is the central feature in quantum 
mechanics, so you need to know how to extract dynamical 
information from it. The procedures described here allow 
you to predict the results of measurements of observables.

➤➤ What is the key idea?
The wavefunction is obtained by solving the Schrödinger 
equation, and the dynamical information it contains is 
extracted by determining the eigenvalues of hermitian 
operators.

➤➤ What do you need to know already?
You need to know that the state of a system is fully 
described by a wavefunction (Topic 7B). You also need 
to be familiar with elementary integration (Mathematical 
background 1) and manipulation of complex functions 
(Mathematical background 3).
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300 7  Introduction to quantum theory

The factor ω is called the eigenvalue of the operator. The eigen-
value in eqn 7C.1a is the energy. The function ψ in an equation 
of this kind is called an eigenfunction of the operator Ω  and is 
different for each eigenvalue. So, in this technical language, we 
would write eqn 7C.2a as

( )( ) ( ) ( )Operator eigenfunction eigenvalue eigenfunction= ×  
(7C.2c)

The eigenfunction in eqn 7C.1a is the wavefunction corres-
ponding to the energy E. It follows that another way of saying 
‘solve the Schrödinger equation’ is to say ‘find the eigenvalues 
and eigenfunctions of the hamiltonian operator for the system’.

(b) The construction of operators

The importance of eigenvalue equations is that the pattern

( (Energy operator) energy)ψ ψ= ×  

exemplified by the Schrödinger equation is repeated for other 
observables, or measurable properties of a system, such as the 
momentum or the electric dipole moment. Thus, it is often the 
case that we can write

( )

( )

Operator corresponding to an observable

value of observable

ψ
= ××ψ  

The symbol Ω  in eqn 7C.2b is then interpreted as an opera-
tor (for example, the hamiltonian operator) corresponding to 
an observable (for example, the energy), and the eigenvalue 
ω is the value of that observable (for example, the value of the 
energy, E). Therefore, if we know both the wavefunction ψ and 
the operator Ω  corresponding to the observable Ω of interest, 
and the wavefunction is an eigenfunction of the operator Ω , 
then we can predict the outcome of an observation of the prop-
erty Ω (for example, an atom’s energy) by picking out the factor 
ω in the eigenvalue equation, eqn 7C.2b.

A basic postulate of quantum mechanics tells us how to set 
up the operator corresponding to a given observable:

Observables, Ω, are represented by operators, Ω , built 
from the following position and momentum operators:

� �x x p
xx= × = �

i
d

d  
 specification of operators  (7C.3)

That is, the operator for location along the x-axis is multipli-
cation (of the wavefunction) by x and the operator for linear 
momentum parallel to the x-axis is proportional to taking the 
derivative (of the wavefunction) with respect to x.

Example 7C.2 Determining the value of an observable

What is the linear momentum of a free particle described by 
the wavefunction ψ(x) = Aeikx + Be−ikx (eqn 7B.6) with (a) B = 0, 
(b) A = 0?

Method We operate on ψ with the operator corresponding 
to linear momentum (eqn 7C.3), and inspect the result. If the 
outcome is the original wavefunction multiplied by a constant 
(that is, we generate an eigenvalue equation), then the constant 
is identified with the value of the observable.

Answer (a) With B = 0,

�p
x

A
x

A k kx

kx
kxψ ψ ψ= = = × =� � �

�
�

i
d
d i

de
d i

i e
i

i

Eigenvalue

This is an eigenvalue equation, and by comparing it with eqn 
7C.2b we find that px = +k.

(b) For the wavefunction with A = 0,

�p
x

B
x

A k kx

kx
kxψ ψ ψ= = = × − = −

−� � �
�

�

i
d
d i

de
d i

i e
i

i( )

Eigenvalue

The magnitude of the linear momentum is the same in each 
case (k), but the signs are different: in (a) the particle is travel-
ling to the right (positive x) but in (b) it is travelling to the left 
(negative x).

Example 7C.1 Identifying an eigenfunction

Show that eax is an eigenfunction of the operator d/dx, and 
find the corresponding eigenvalue. Show that eax2  is not an 
eigenfunction of d/dx.

Method We need to operate on the function with the opera-
tor and check whether the result is a constant factor times the 
original function.

Answer For Ω =  d/dx (the operation ‘differentiate with respect 
to x’) and ψ = eax:

Ωψ ψ= = =d
d

e e
x

a aax ax

 

Therefore eax is indeed an eigenfunction of d/dx, and its eigen-
value is a. For ψ = eax2,

Ωψ ψ= = = ×d
d

e e
x

ax axax ax2 2

2 2
 

which is not an eigenvalue equation of Ω . Even though the 
same function ψ occurs on the right, ψ is now multiplied by a 
variable factor (2ax), not a constant factor. Alternatively, if the 
right hand side is written 2

2

a x ax( )e , we see that it is a constant 
(2a) times a different function.

Self-test 7C.1 Is the function cos ax an eigenfunction of (a) d/dx,  
(b) d2/dx2?

Answer: (a) No, (b) yes
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7C The principles of quantum theory  301

We use the definitions in eqn 7C.3 to construct operators 
for other spatial observables. For example, suppose we wanted 
the operator for a potential energy of the form V x k x( )= 1

2 f
2 , 

with kf a constant (later, we shall see that this potential energy 
describes the vibrations of atoms in molecules). Then it follows 
from eqn 7C.3 that the operator corresponding to V(x) is mul-
tiplication by x2:

V x k x( )= ×1
2

2
f


 (7C.4)

In normal practice, the multiplication sign is omitted. To con-
struct the operator for kinetic energy, we make use of the clas-
sical relation between kinetic energy and linear momentum, 
which in one dimension is E p mxk 2= 2 /  (Foundations B). Then, 
by using the operator for px in eqn 7C.3 we find:

�E
m x x m xk i

d
d i

d
d

d
d

= 











= −1
2 2

2 2

2

� � �

 
(7C.5)

It follows that the operator for the total energy, the hamiltonian 
operator, is

��� �H E V
m x

V x= + = − +k

d
d

�2 2

22
( )

 
 hamiltonian operator  (7C.6)

with V x( )  the multiplicative operator in eqn 7C.4 (or some 
other appropriate expression for the potential energy).

The expression for the kinetic energy operator, eqn 7C.5, ena-
bles us to develop an important point about the Schrödinger 
equation. In mathematics, the second derivative of a function 
is a measure of its curvature: a large second derivative indicates 
a sharply curved function (Fig. 7C.1). It follows that a sharply 
curved wavefunction is associated with a high kinetic energy, 
and one with a low curvature is associated with a low kinetic 
energy. This interpretation is consistent with the de Broglie rela-
tion, which predicts a short wavelength (a sharply curved wave-
function) when the linear momentum (and hence the kinetic 
energy) is high. However, it extends the interpretation to wave-
functions that do not spread through space and resemble those 
shown in Fig. 7C.1. The curvature of a wavefunction in general 
varies from place to place. Wherever a wavefunction is sharply 
curved, its contribution to the total kinetic energy is large (Fig. 
7C.2). Wherever the wavefunction is not sharply curved, its con-
tribution to the overall kinetic energy is low. As we shall shortly 
see, the observed kinetic energy of the particle is an integral of 

all the contributions of the kinetic energy from each region. 
Hence, we can expect a particle to have a high kinetic energy if 
the average curvature of its wavefunction is high. Locally there 
can be both positive and negative contributions to the kinetic 
energy (because the curvature can be either positive, ∪, or nega-
tive, ∩), but the average is always positive (see Problem 7C.12).

The association of high curvature with high kinetic energy will 
turn out to be a valuable guide to the interpretation of wavefunc-
tions and the prediction of their shapes. For example, suppose 
we need to know the wavefunction of a particle with a given total 
energy and a potential energy that decreases with increasing x 
(Fig. 7C.3). Because the difference E − V = Ek increases from left 
to right, the wavefunction must become more sharply curved as 
x increases: its wavelength decreases as the local contributions to 
its kinetic energy increase. We can therefore guess that the wave-
function will look like the function sketched in the illustration, 
and more detailed calculation confirms this to be so.

Self-test 7C.2 The operator for the angular momentum of a 
particle travelling in a circle in the xy-plane is lz =( / ) /�� i d dφ ,  
where φ is its angular position. What is the angular momen-
tum of a particle described by the wavefunction e−2iφ?

Answer: lz = −2ħ

High curvature,
high kinetic energy

Low curvature,
low kinetic energyW
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u
n
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n
, ψ
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Figure 7C.1 Even if the wavefunction does not have the form 
of a periodic wave, it is still possible to infer from it the average 
kinetic energy of a particle by noting its average curvature. This 
figure shows two wavefunctions: the sharply curved function 
corresponds to a higher kinetic energy than the less sharply 
curved function.
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high kinetic energy
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Figure 7C.2 The observed kinetic energy of a particle is an 
average of contributions from the entire space covered by the 
wavefunction. Sharply curved regions contribute a high kinetic 
energy to the average; slightly curved regions contribute only a 
small kinetic energy.
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302 7  Introduction to quantum theory

(c) Hermitian operators
All the quantum mechanical operators that correspond to 
observables have a very special mathematical property: they 
are ‘hermitian’. An hermitian operator is one for which the fol-
lowing relation is true:

 ψ Ωψ τ ψ Ω τψi j j i
* *

*

d d∫ ∫={ }  
Definition   hermiticity   (7C.7)

That is, the same result is obtained by letting the operator act on 
ψj and then integrating or by letting it act on ψi instead, inte-
grating, and then taking the complex conjugate of the result. 
One trivial consequence of hermiticity is that it reduces the 
number of integrals we need to evaluate. However, as we shall 
see, hermiticity has much more profound implications.

It is easy to confirm that the position operator (x ×) is her-
mitian because we are free to change the order of the factors in 
the integrand:

ψ ψ τ ψ ψ τ ψ ψ τi j j i j ix x x* * *
*

d d d∫ ∫ ∫= ={ }
 

The demonstration that the linear momentum operator is her-
mitian is more involved because we cannot just alter the order 
of functions we differentiate; but it is hermitian, as we show in 
the following Justification.

Hermitian operators are enormously important by virtue of 
two properties:

•	 The eigenvalues of hermitian operators are real: ω* = ω 
(as we prove in the following Justification).

•	 The eigenfunctions of hermitian operators are 
‘orthogonal’ in the sense defined below.

All observables have real values (in the mathematical sense, 
such as x = 2 m and E = 10 J), so all observables are represented 
by hermitian operators.

Justification 7C.2 The reality of eigenvalues

For a wavefunction ψ that is normalized and is an eigenfunc-
tion of an hermitian operator Ω  with eigenvalue ω , we can 
write

ψ τ ψ τ ω ψ ψ τ ωΩψ ωψ* * *d d d= = =∫∫∫
However, by taking the complex conjugate we can write

� �ω ψ ψ τ ψ τ ωΩ Ωψ* *
*

*={ } ==∫ ∫d d

hermiticity�

The conclusion that ω* = ω confirms that ω is real.

with p̂x  given in eqn 7C.3. To do so, we use ‘integration by 
parts’ (see Mathematical background 1), the relation

f
g
x

x fg g
f
x

x
d
d

d
d
d

d∫ ∫= −
 

In the present case we write

�ψ τ ψ
ψ

ψ

ψ

ψ

i x j i
j

i j

p
x

x* *

*

d
i

d
d

d

i

∫ ∫=

= −

−∞

∞

−∞

∞

�

��
��� ��

��f
g x

fg

d /d

0

�� �
�

i
d
d

dψ ψ
j

i

x
x

g
f x

−∞

∞

∫
*

d /d

 

The first term on the right of the second equality is zero, 
because all wavefunctions are either zero or converge to the 
same value at infinity in either direction, so we are left with

�ψ τ ψ ψ ψ ψ

ψ

ψi x j j
i

j
i

j

p
x

x
x

x*
*

*
*

d
i

d
d

d
i

d
d

d∫ ∫ ∫= − = 







=

−∞

∞

−∞

∞� �

**
*

px iψ τd∫{ }�
 

as we set out to prove. In the final line we have used (ψ*)* = ψ.

Justification 7C.1 The hermiticity of the linear 
momentum operator

Our task is to show that

 ψ τ ψ τψ ψi x j j x ip p* *
*

d d∫ ∫={ }
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Figure 7C.3 The wavefunction of a particle in a potential 
decreasing towards the right and hence subjected to 
a constant force to the right. Only the real part of the 
wavefunction is shown, the imaginary part is similar, but 
displaced to the right.
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(d) Orthogonality

To say that two different functions ψi and ψj are orthogonal 
means that the integral (over all space) of their product is zero:

ψ τψi j i j* d for= ≠∫ 0
 

Definition  orthogonality  (7C.8)

A general feature of quantum mechanics which we prove in the 
following Justification is that wavefunctions corresponding to 
different eigenvalues of a hermitian operator are orthogonal. For 
example, the hamiltonian operator is hermitian (it corresponds 
to an observable, the energy). Therefore, if ψ1 corresponds to 
one energy, and ψ2 corresponds to a different energy, then we 
know at once that the two functions are orthogonal and that the 
integral (over all space) of their product is zero.

Justification 7C.3 The orthogonality of wavefunctions

Suppose we have two eigenfunctions of Ω , with unequal 
eigenvalues:

 Ωψ ω ψ Ωψ ω ψi i i j j j= =and  

with ωi not equal to ωj. Multiply the first of these eigenvalue 
equations on both sides by ψ j

* and the second by ψ i
*, and inte-

grate over all space:





ψ ψ τ ω ψ τ

ψ ψ τ ω ψ τ

Ω ψ

Ω ψ

j i i j i

i j j ji

* *

* *

d d

d d

=

=

∫∫
∫∫  

Now take the complex conjugate of the first of these two 
expressions (noting that, by the hermiticity of Ω , the eigen-
values are real):

ψ ψ τ ω ψ τ ω ψ τΩ ψ ψj i i j i i i j
*

*
* *d d d∫ ∫ ∫{ } = =

 

However, by hermiticity, the first term on the left is

 ψ ψ τ ψ τ ω ψ τΩ Ωψ ψj i i j j i j
*

*
* *d d d∫ ∫ ∫{ } = =

 

Subtraction of this line from the preceding line then gives

0 = − ∫( ) *ω ω ψ τψi j i j d
 

But we know that the two eigenvalues are not equal, so the 
integral must be zero, as we set out to prove.

The property of orthogonality is of great importance in 
quantum mechanics because it enables us to eliminate a large 
number of integrals from calculations. Orthogonality plays a 

central role in the theory of chemical bonding (Chapter 10) and 
spectroscopy (Chapters 12–14). Sets of functions that are nor-
malized and mutually orthogonal are called orthonormal.

Example 7C.3 Verifying orthogonality

It is shown in Topic 8A that two possible wavefunctions for an 
electron confined to a one-dimensional quantum dot (a col-
lection of atoms with dimensions in the range of nanometres 
and of great interest in nanotechnology) are of the form sin x  
and sin 2x. These two wavefunctions are eigenfunctions of the 
kinetic energy operator, which is hermitian, and correspond 
to different eigenvalues:

E x
m

x
x m

x

E x
m

x

� � �

� �

k
e e

e
k

sin
d sin

d
sin

sin
d sin

d

= − =

= −

2 2

2

2

2 2

2 2

2
2

2
xx m

x2

22
2= �

e
sin

 

Verify that the two wavefunctions are mutually orthogonal.

Method To verify the orthogonality of two functions, we inte-
grate their product, sin 2x sin x, over all space, which we may 
take to span from x = 0 to x = 2π, because both functions repeat 
themselves outside that range. Hence proving that the integral 
of their product is zero within that range implies that the inte-
gral over the whole of space is also zero (Fig. 7C.4). Relevant 
integrals are given in the Resource section.

Answer It follows that, for a = 2 and b = 1, and given the fact 
that sin 0 = 0, sin 2π = 0, and sin 6π = 0,

sin sin d
sin sin

2
2

3
6

0
0

2

0

2

0

2

x x x
x xπ π π

∫ = − =
IntegralT.5

and the two functions are mutually orthogonal.

x

1

0.5

0

0

–0.5

–1 π 2π

sin x sin 2x

f(
x)

Figure 7C.4 The integral of the function f(x) = sin 2x sin x is 
equal to the area (tinted) below the green curve, and is zero, 
as can be inferred by symmetry. The function, and the value 
of the integral, repeats itself for all replications of the section 
between 0 and 2π, so the integral from –∞ to +∞ is zero.
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304 7  Introduction to quantum theory

7C.2 Superpositions and expectation 
values

Suppose that the wavefunction of a free particle is ψ(x) = 2A 
cos kx (this is one of the possibilities treated in Topic 7B, eqn 
7B.9). What is the linear momentum of the particle it describes? 
We quickly run into trouble if we use the operator technique. 
When we operate with px , we find

�p
x

A
kx

x
k

A kxxψ
ψ= = = −� � �

i
d
d i

dcos
d i

2 2
sin

 
(7C.9)

This expression is not an eigenvalue equation, because the 
function on the right (sin kx) is different from that on the left 
(cos kx).

When the wavefunction of a particle is not an eigenfunction 
of an operator, the property to which the operator corresponds 
does not have a definite value. However, in the current example 
the momentum is not completely indefinite because the cosine 
wavefunction is a linear combination, or sum,1 of eikx and e−ikx, 
and these two functions, as we have seen, individually corre-
spond to definite momentum states. We say that the total wave-
function is a superposition of more than one wavefunction. 
Symbolically we can write the superposition as

ψ ψ ψ= +→ ←

+

Particle with
linear momentum

Particle with
linear mom

k�

�
eentum

−k�

�

 

The interpretation of this composite wavefunction is that if 
the momentum of the particle is repeatedly measured in a long 
series of observations, then its magnitude will found to be kħ in 
all the measurements (because that is the value for each com-
ponent of the wavefunction). However, because the two com-
ponent wavefunctions occur equally in the superposition, half 
the measurements will show that the particle is moving to the 
right (px = +kħ), and half the measurements will show that it is 
moving to the left (px = −kħ). According to quantum mechan-
ics, we cannot predict in which direction the particle will in fact 
be found to be travelling; all we can say is that, in a long series 

of observations, if the particle is described by this wavefunc-
tion, then there are equal probabilities of finding the particle 
travelling to the right and to the left.

The same interpretation applies to any wavefunction written 
as a linear combination of eigenfunctions of an operator. Thus, 
suppose the wavefunction is known to be a superposition of 
many different linear momentum eigenfunctions and written 
as the linear combination

ψ ψ ψ ψ= + + =∑c c c
k

k k1 1 2 2 
 

where the ck are numerical (possibly complex) coefficients and 
the ψk correspond to different momentum states. The func-
tions ψk are said to form a complete set in the sense that any 
arbitrary function can be expressed as a linear combination of 
them. Then according to quantum mechanics:

•	 When the momentum is measured, in a single 
observation one of the eigenvalues corresponding to 
the ψk that contribute to the superposition will be 
found.

•	 The probability of measuring a particular eigenvalue 
in a series of observations is proportional to the 
square modulus (|ck|2) of the corresponding 
coefficient in the linear combination.

•	 The average value of a large number of observations 
is given by the expectation value, 〈Ω〉, of the operator 
corresponding to the observable of interest.

The expectation value of an operator Ω  is defined as

〈 〉Ω ψ Ωψ τ=∫ * d
 

Definition  expectation value  (7C.11)

This formula is valid only for normalized wavefunctions. As 
we see in the following Justification, an expectation value is the 
weighted average of a large number of observations of a property.

Justification 7C.4 The expectation value of an operator

If ψ is an eigenfunction of Ω  with eigenvalue ω, the expecta-
tion value of Ω  is

�〈 〉Ω ψ Ω τ ψ τ ω ψ τ ωψ ωψ ψ
ωψ

= = = =∫ ∫∫* * *
�

d d d
 

because ω is a constant and may be taken outside the integral, 
and the resulting integral is equal to 1 for a normalized wave-
function. The interpretation of this expression is that, because 
every observation of the property Ω results in the value ω 
(because the wavefunction is an eigenfunction of Ω ), the 
mean value of all the observations is also ω.

A wavefunction that is not an eigenfunction of the opera-
tor of interest can be written as a linear combination of 

1 A linear combination is more general than a sum, for it includes 
weighted sums of the form ax + by + … where a, b, … are constants. A sum is 
a linear combination with a = b = … = 1.

linear 
combination of 
basis functions

 (7C.10)

Self-test 7C.3 When the electron is excited to higher energies, 
its wavefunction may become sin 3x. Confirm that the func-
tions sin x and sin 3x are mutually orthogonal.

Answer: sin sin d3 0
0
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x x x =∫
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The mean kinetic energy of a particle in one dimension is the 
expectation value of the operator given in eqn 7C.5. Therefore, 
we can write

�〈 〉E x
m x

xEk k d
d
d

d= = −∫ ∫ψ ψψ ψ
* *

�2 2

22  
(7C.12)

This conclusion confirms the previous assertion that the kinetic 
energy is a kind of average over the curvature of the wavefunc-
tion: we get a large contribution to the observed value from 
regions where the wavefunction is sharply curved (so d2ψ/dx2 is 
large) and the wavefunction itself is large (so that ψ * is large too).

7C.3 The uncertainty principle

We have seen that if the wavefunction is Aeikx, then the parti-
cle it describes has a definite state of linear momentum, namely 
travelling to the right with momentum px = +kħ. However, we 
have also seen that the position of the particle described by this 
wavefunction is completely unpredictable. In other words, if 
the momentum is specified precisely, it is impossible to predict 
the location of the particle. This statement is one half of a spe-
cial case of the Heisenberg uncertainty principle, one of the 
most celebrated results of quantum mechanics:

It is impossible to specify simultaneously, with 
arbitrary precision, both the momentum and the 
position of a particle.

Before discussing the principle further, we must establish 
its other half: that if we know the position of a particle exactly, 
then we can say nothing about its momentum. The argument 
draws on the idea of regarding a wavefunction as a superposi-
tion of eigenfunctions, and runs as follows.

If we know that the particle is at a definite location, its wave-
function must be large there and zero everywhere else (Fig. 
7C.5). Such a wavefunction can be created by superimposing 
a large number of harmonic (sine and cosine) functions, or, 

eigenfunctions. For simplicity, suppose the wavefunction is 
the sum of two eigenfunctions (the general case, eqn 7C.10, 
can be developed analogously). Then

〈 〉Ω τψ ψ Ω ψ ψ

ψ ψ Ωψ Ωψ

= + +

= + +

∫( )

( )

( )

( )

*

*

c c c c

c c c c

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

d�

( ) ( )*

* *

d

d

d

τ

τ

ψ τ

ψ ψ ω ψ ω ψ

ω ψ

∫
∫

∫

= + +

=

� �

c c c c

c c

1 1 2 2 1 1 1 2 2 2

1 1 1 1 1

1� �� ��� � �� ��

� �� ��

+

+ +

∫

∫

c c

c c c c

2 2 2 2 2

1 2 2 1 2 2 1 1 2

* *

* * * *

ω ψ

ω ψ ω

ψ τ

ψ τ ψ

d

d

1

0

ψψ τ1 d∫
0� �� ��

 

The first two integrals on the right are both equal to 1 because 
the wavefunctions are individually normalized. Because ψ1 
and ψ2 correspond to different eigenvalues of an hermitian 
operator, they are orthogonal, so the third and fourth inte-
grals on the right are zero. We can conclude that

〈 〉Ω ω ω= +c c1
2

1 2
2

2  

This expression shows that the expectation value is the sum of 
the two eigenvalues weighted by the probabilities that each one 
will be found in a series of measurements. Hence, the expecta-
tion value is the weighted mean of a series of observations.

Example 7C.4 Calculating an expectation value

Calculate the average value of the distance of an electron from 
the nucleus in the hydrogen atom in its state of lowest energy.

Method The average radius is the expectation value of the 
operator corresponding to the distance from the nucleus, 
which is multiplication by r. To evaluate 〈r〉, we need to know 
the normalized wavefunction (from Example 7B.2) and then 
evaluate the integral in eqn 7C.11.

Answer The average value is given by the expectation value

〈 〉r r r= =∫∫ψ ψ τ ψ τ* | |d d2

 

which we evaluate by using spherical polar coordinates and 
the appropriate expression for the volume element, dτ =  
r2dr sinθ dθdφ (The chemist’s toolkit 7B.1). Using the normal-
ized function in Example 7B.2 and a standard integral from 
the Resource section, gives

〈 〉r
a

r rr a= −
∞

∫1
4 0

3
3 2

0

0

π
e d/ sin

Use  Integral  E1,
3! /20

4 4a� ��� ���

θθ θ φ d d
0 0

2
3
2 0

π π

π

∫ ∫ =

2 2� �� �� ���

a
 

Because a0 = 52.9 pm (see inside the front cover), 〈r〉 = 79.4 pm. 
This result means that if a very large number of measurements 
of the distance of the electron from the nucleus are made, then 
their mean value will be 79.4 pm. However, each different 
observation will give a different and unpredictable individual 
result because the wavefunction is not an eigenfunction of the 
operator corresponding to r.

Self-test 7C.4 Evaluate the root mean square distance, 〈r2〉1/2, 
of the electron from the nucleus in the hydrogen atom.

Answer: 31/2a0 = 91.6 pm
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306 7  Introduction to quantum theory

equivalently, a number of eikx functions. In other words, we can 
create a sharply localized wavefunction, called a wavepacket, 
by forming a linear combination of wavefunctions that cor-
respond to many different linear momenta. The superposi-
tion of a few harmonic functions gives a wavefunction that 
spreads over a range of locations (Fig. 7C.6). However, as the 
number of wavefunctions in the superposition increases, the 
wavepacket becomes sharper on account of the more complete 
interference between the positive and negative regions of the 
individual waves. When an infinite number of components 
are used, the wavepacket is a sharp, infinitely narrow spike, 
which corresponds to perfect localization of the particle. Now 
the particle is perfectly localized. However, we have lost all 
information about its momentum because, as we saw above, a 
measurement of the momentum will give a result correspond-
ing to any one of the infinite number of waves in the super-
position, and which one it will give is unpredictable. Hence, 
if we know the location of the particle precisely (implying 
that its wavefunction is a superposition of an infinite number 
of momentum eigenfunctions), then its momentum is com-
pletely unpredictable.

A quantitative version of this result is

∆ ∆p q ≥ 1
2    heisenberg uncertainty principle  (7C.13a)

In this expression Δp is the ‘uncertainty’ in the linear momen-
tum parallel to the axis q, and Δq is the uncertainty in position 
along that axis. These ‘uncertainties’ are precisely defined, for 
they are the root mean square deviations of the properties from 
their mean values:

∆ ∆p p p q q q= − = −{ } { }/ /〈 〉 〈 〉 〈 〉 〈 〉2 2 1 2 2 2 1 2

 (7C.13b)

If there is complete certainty about the position of the parti-
cle (Δq = 0), then the only way that eqn 7C.13a can be satisfied 
is for Δp = ∞, which implies complete uncertainty about the 
momentum. Conversely, if the momentum parallel to an axis is 

known exactly (Δp = 0), then the position along that axis must 
be completely uncertain (Δq = ∞).

The p and q that appear in eqn 7C.13 refer to the same direc-
tion in space. Therefore, whereas simultaneous specification of 
the position on the x-axis and momentum parallel to the x-axis 
are restricted by the uncertainty relation, simultaneous location 
of position on x and motion parallel to y or z are not restricted. 
The restrictions that the uncertainty principle implies are sum-
marized in Table 7C.1.

Example 7C.5 Using the uncertainty principle

Suppose the speed of a projectile of mass 1.0 g is known to 
within 1 µm s−1. Calculate the minimum uncertainty in its 
position.

Method Estimate Δp from mΔv, where Δv is the uncertainty 
in the speed; then use eqn 7C.13a to estimate the minimum 
uncertainty in position, Δq.

Answer The minimum uncertainty in position is

∆ ∆q
m

=

= ×
× × × ×

= ×
−

− − −
−


2

1 055 10
2 1 0 10 1 10

5 10
34

3 6 1
26

v
.

( . ) ( )
Js

kg ms
m

 

where we have used 1 J = 1 kg m2 s−2. The uncertainty is com-
pletely negligible for all practical purposes concerning macro-
scopic objects. However, if the mass is that of an electron, then 
the same uncertainty in speed implies an uncertainty in posi-
tion far larger than the diameter of an atom (the analogous 
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Figure 7C.5 The wavefunction for a particle at a well-defined 
location is a sharply spiked function which has zero amplitude 
everywhere except at the particle’s position.
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Figure 7C.6 The wavefunction for a particle with an ill-
defined location can be regarded as the linear combination 
of several wavefunctions of definite wavelength that interfere 
constructively in one place but destructively elsewhere. As more 
waves are used in the superposition (as given by the numbers 
attached to the curves), the location becomes more precise 
at the expense of uncertainty in the particle’s momentum. An 
infinite number of waves are needed in the superposition to 
construct the wavefunction of the perfectly localized particle.
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7C The principles of quantum theory  307

The Heisenberg uncertainty principle is more general than 
eqn 7C.13 suggests. It applies to any pair of observables called 
complementary observables, which are defined in terms of the 
properties of their operators. Specifically, two observables Ω1 
and Ω2 are complementary if

  Ω Ω ψ Ω Ω ψ1 22 1≠  

where the term on the left implies that Ω2 acts first, then Ω1  acts 
on the result, and the term on the right implies that the opera-
tions are performed in the opposite order. When the effect of 
two operators applied in succession depends on their order (as 
this equation implies), we say that they do not commute. The 
different outcomes of the effect of applying Ω1  and Ω2  in a dif-
ferent order are expressed by introducing the commutator of 
the two operators, which is defined as

     [ , ]Ω Ω Ω Ω Ω Ω1 2 1 2 2 1= −  Definition  commutator  (7C.15)

We show in the following Justification that the commutator of 
the operators for position and linear momentum is

��[ , ]x px = i�  (7C.16)

The commutator in eqn 7C.16 is of such vital significance 
in quantum mechanics that it is taken as a fundamental dis-
tinction between classical mechanics and quantum mechan-
ics. In fact, this commutator may be taken as a postulate  
of quantum mechanics, and is used to justify the choice of 
the operators for position and linear momentum given in 
eqn 7C.3.

With the concept of commutator established, the 
Heisenberg uncertainty principle can be given its most gen-
eral form. For any two pairs of observables, Ω1 and Ω2, the 
uncertainties (to be precise, the root mean square deviations 
of their values from the mean) in simultaneous determina-
tions are related by

∆ ∆Ω Ω Ω Ω1 2
1
2 1 2≥ 〈 〉[ , ] 

 
(7C.17)

We obtain the special case of eqn 7C.13a when we identify the 
observables with x and px and use eqn 7C.16 for their commu-
tator. (See Mathematical background 3 for the meaning of the 
the |…| notation.)

Complementary observables are observables with non-
commuting operators. With the discovery that some pairs of 
observables are complementary (we meet more examples in 
Topic 8C), we are at the heart of the difference between clas-
sical and quantum mechanics. Classical mechanics supposed, 
falsely as we now know, that the position and momentum of a 
particle could be specified simultaneously with arbitrary pre-
cision. However, quantum mechanics shows that position and 
momentum are complementary, and that we have to make a 

calculation gives Δq = 60 m); so the concept of a trajectory, the 
simultaneous possession of a precise position and momen-
tum, is untenable.

Self-test 7C.5 Estimate the minimum uncertainty in the speed 
of an electron in a one-dimensional region of length 2a0.

Answer: 500 km s−1

Justification 7C.5 The commutator of position and 
momentum

To show that the operators for position and momentum do not 
commute (and hence are complementary observables) we con-
sider the effect of  xpx  (that is, the effect of px  followed by the 

effect on the outcome of multiplication by x) on a wavefunc-
tion ψ :

��x xp
xxψ
ψ= × �

i
d
d  

Next, we consider the effect of  p xx  on the same function (that 
is, the effect of multiplication by x followed by the effect of px  
on the outcome):

� �p
x
x

x
x

xx ψ ψ ψ ψ= = +





� �
i

d( )
d i

d
d

 
For this step we have used the standard rule about differen-
tiating a product of functions (d( fg)/dx = fdg/dx + gdf/dx). The 
second expression is clearly different from the first, so the two 
operators do not commute. Their commutator can be inferred 
from the difference of the two expressions:

� � � �xp p xx xψ ψ ψ ψ− = − =�
�

i
i

 

This relation is true for any wavefunction ψ, so the operator 
relation in eqn 7C.16 follows immediately.

Table 7C.1 Constraints of the uncertainty principle*

Variable 1

Variable 2 x y z px py pz

x

y

z

px

py

pz

* Pairs of observables that cannot be determined simultaneously with arbitrary 
precision are marked with a blue rectangle; all others are unrestricted.

complementarity 
of observables  (7C.14)
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308 7  Introduction to quantum theory

choice: we can specify position at the expense of momentum, 
or momentum at the expense of position.

The realization that some observables are complementary 
allows us to make considerable progress with the calculation of 
atomic and molecular properties; but it does away with some of 
the most cherished concepts of classical physics.

7C.4 The postulates of quantum 
mechanics

Here and in Topic 7B we have developed the principles of quan-
tum theory. They can be summarized as a series of postulates, 
which will form the basis for chemical applications of quantum 
mechanics through the text.

The wavefunction: All dynamical information is contained 
in the wavefunction ψ for the system, which is a mathemati-
cal function found by solving the Schrödinger equation for the 
system. In one dimension:

− + =2 2

22m x
V x E

d
d

ψ ψ ψ( )
 

The Born interpretation: If the wavefunction of a particle has 
the value ψ at some point r, then the probability of finding the 
particle in an infinitesimal volume dτ = dxdydz at that point is 
proportional to |ψ|2dτ.

Acceptable wavefunctions: An acceptable wavefunction must 
be single-valued, continuous, not infinite over a finite region of 
space, and have a continuous slope.

Observables: Observables, Ω, are represented by operators, 
Ω , built from the following position and momentum operators:

� �x x p
xx= × = �

i
d

d  
or, more generally, from operators that satisfy the commutation 
relation

� �[ , ]x px = i�  

The Heisenberg uncertainty relation: It is impossible to specify 
simultaneously, with arbitrary precision, both the momentum 
and the position of a particle and, more generally, any pair of 
observables with operators that do not commute.

Checklist of concepts

☐ 1. The Schrödinger equation is an eigenvalue equation.
☐ 2. An operator carries out a mathematical operation on a 

function.
☐ 3. The hamiltonian operator is the operator correspond-

ing to the total energy of the system, the sum of the 
kinetic and potential energies.

☐ 4. The wavefunction corresponding to a specific energy is 
an eigenfunction of the hamiltonian operator.

☐ 5. The value of an observable is an eigenvalue of the corres-
ponding operator constructed from the operators for 
position and linear momentum.

☐ 6. Two different functions are orthogonal if the integral 
(over all space) of their product is zero.

☐ 7. Hermitian operators have real eigenvalues and orthog-
onal eigenfunctions.

☐ 8. Observables are represented by hermitian operators.
☐ 9. Sets of functions that are normalized and mutually 

orthogonal are called orthonormal.
☐ 10. When the system is not described by a single eigenfunc-

tion of an operator, it may be expressed as a superposi-
tion of such eigenfunctions.

☐ 11. The mean value of a series of observations is given by 
the expectation value of the corresponding operator.

☐ 12. The uncertainty principle restricts the precision with 
which complementary observables may be specified 
and measured simultaneously.

☐ 13. Complementary observables are observables for which 
the corresponding operators do not commute.

Checklist of equations 

Property Equation Comment Equation number

Hermiticity  ψ τ τΩψ ψ Ωψi j j i
* *

*
d d∫ ∫= 








Real eigenvalues, orthogonal eigenfunctions 7C.7

Orthogonality ψ τψi j i j* d for= ≠∫ 0 Integration over all space 7C.8
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Property Equation Comment Equation number

Expectation value 〈 〉Ω ψ Ω τψ=∫ * d Definition 7C.11

Commutator of two operators      [ , ]Ω Ω Ω Ω Ω Ω1 2 1 2 2 1= −

Special case: [ , ]x px = i�� �

The observables are complementary if
 

 [Ω Ω1 2 0, ] ≠ 7C.15

Heisenberg uncertainty principle ∆ ∆Ω Ω Ω Ω1 2
1
2 1 2≥ 〈[ ]〉, 

Special case: ∆ ∆p q ≥ 1
2



7C.17
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chaPter 7  Introduction to quantum theory

TOPIC 7A the origins of quantum mechanics

Discussion questions
7A.1 Summarize the evidence that led to the introduction of quantum 
mechanics.

7A.2 Explain how Planck’s introduction of quantization accounted for the 
properties of black-body radiation.

7A.3 Explain how Einstein’s introduction of quantization accounted for the 
properties of heat capacities at low temperatures.

7A.4 Explain the meaning and consequences of wave–particle duality.

Exercises
7A.1(a) Calculate the size of the quantum involved in the excitation of (i) an 
electronic oscillation of period 1.0 fs, (ii) a molecular vibration of period 
10 fs, (iii) a pendulum of period 1.0 s. Express the results in joules and 
kilojoules per mole.
7A.1(b) Calculate the size of the quantum involved in the excitation of (i) an 
electronic oscillation of period 2.50 fs, (ii) a molecular vibration of period 
2.21 fs, (iii) a balance wheel of period 1.0 ms. Express the results in joules and 
kilojoules per mole.

7A.2(a) Calculate the energy per photon and the energy per mole of photons 
for radiation of wavelength (i) 600 nm (red), (ii) 550 nm (yellow), (iii) 400 nm 
(blue).
7A.2(b) Calculate the energy per photon and the energy per mole of photons 
for radiation of wavelength (i) 200 nm (ultraviolet), (ii) 150 pm (X-ray), (iii) 
1.00 cm (microwave).

7A.3(a) Calculate the speed to which a stationary H atom would be accelerated 
if it absorbed each of the photons used in Exercise 7A.2(a).
7A.3(b) Calculate the speed to which a stationary 4He atom (mass 4.0026mu) 
would be accelerated if it absorbed each of the photons used in Exercise 7A.2(b).

7A.4(a) A glow-worm of mass 5.0 g emits red light (650 nm) with a power 
of 0.10 W entirely in the backward direction. To what speed will it have 
accelerated after 10 y if released into free space and assumed to live?
7A.4(b) A photon-powered spacecraft of mass 10.0 kg emits radiation of 
wavelength 225 nm with a power of 1.50 kW entirely in the backward direction. 
To what speed will it have accelerated after 10.0 y if released into free space?

7A.5(a) A sodium lamp emits yellow light (550 nm). How many photons does 
it emit each second if its power is (i) 1.0 W, (ii) 100 W?
7A.5(b) A laser used to read CDs emits red light of wavelength 700 nm. How 
many photons does it emit each second if its power is (i) 0.10 W, (ii) 1.0 W?

7A.6(a) The work function for metallic caesium is 2.14 eV. Calculate the 
kinetic energy and the speed of the electrons ejected by light of wavelength 
(i) 700 nm, (ii) 300 nm.

7A.6(b) The work function for metallic rubidium is 2.09 eV. Calculate the 
kinetic energy and the speed of the electrons ejected by light of wavelength  
(i) 650 nm, (ii) 195 nm.

7A.7(a) In an X-ray photoelectron experiment, a photon of wavelength 150 pm 
ejects an electron from the inner shell of an atom and it emerges with a speed 
of 21.4 Mm s−1. Calculate the binding energy of the electron.
7A.7(b) In an X-ray photoelectron experiment, a photon of wavelength 121 pm 
ejects an electron from the inner shell of an atom and it emerges with a speed 
of 56.9 Mm s−1. Calculate the binding energy of the electron.

7A.8(a) To what speed must an electron be accelerated for it to have a 
wavelength of 100 pm? What accelerating potential difference is needed?
7A.8(b) To what speed must a proton be accelerated for it to have a wavelength 
of 100 pm? What accelerating potential difference is needed?

7A.9(a) To what speed must an electron be accelerated for it to have a 
wavelength of 3.0 cm?
7A.9(b) To what speed must a proton be accelerated for it to have a wavelength 
of 3.0 cm?

7A.10(a) The fine-structure constant, α, plays a special role in the structure of 
matter; its approximate value is 1/137. What is the wavelength of an electron 
travelling at a speed αc, where c is the speed of light?
7A.10(b) Calculate the linear momentum of photons of wavelength 350 nm. 
What speed does a hydrogen molecule need to travel to have the same linear 
momentum?

7A.11(a) Calculate the de Broglie wavelength of (i) a mass of 1.0 g travelling at 
1.0 cm s−1, (ii) the same, travelling at 100 km s−1, (iii) an He atom travelling at 
1000 m s−1 (a typical speed at room temperature).
7A.11(b) Calculate the de Broglie wavelength of an electron accelerated from 
rest through a potential difference of (i) 100 V, (ii) 1.0 kV, (iii) 100 kV.

Problems
7A.1 The Planck distribution gives the energy in the wavelength range dλ 
at the wavelength λ. Calculate the energy density in the range 650 nm to 
655 nm inside a cavity of volume 100 cm3 when its temperature is (a) 25 °C, 
(b) 3000 °C.

7A.2 Demonstrate that the Planck distribution reduces to the Rayleigh–Jeans 
law at long wavelengths.

7A.3 Derive Wien’s law, that λmaxT is a constant, where λmax is the wavelength 
corresponding to maximum in the Planck distribution at the temperature T,  

and deduce an expression for the constant as a multiple of the second 
radiation constant, c2 = hc/k.

7A.4 For a black body, the temperature and the wavelength of  
emission maximum, λmax, are related by Wien’s law, λmax 2T c= 1

5 ,  
where c2 = hc/k (see Problem 7A.3). Values of λmax from a small  
pinhole in an electrically heated container were determined at a series of 
temperatures, and the results are given in the following table. Deduce a value 
for Planck’s constant.

iranchembook.ir/edu



 Exercises and problems  311

7A.5‡ Solar energy strikes the top of the Earth’s atmosphere at a rate of 
343 W m−2. About 30 per cent of this energy is reflected directly back into 
space by the Earth or the atmosphere. The Earth–atmosphere system absorbs 
the remaining energy and re-radiates it into space as black-body radiation. 
What is the average black-body temperature of the Earth? What is the 
wavelength of the most plentiful of the Earth’s black-body radiation? Hint: Use 
Wien’s law, Problem 7A.3.

7A.6 Use the Planck distribution to deduce the Stefan–Boltzmann law that the 
total energy density of black-body radiation is proportional to T4, and find the 
constant of proportionality.

7A.7‡ Prior to Planck’s derivation of the distribution law for black-body 
radiation, Wien found empirically a closely related distribution function 
which is very nearly but not exactly in agreement with the experimental 

results, namely ρ = (a/λ5)e−b/λkT. This formula shows small deviations from 
Planck’s at long wavelengths. (i) By fitting Wien’s empirical formula to Planck’s 
at short wavelengths determine the constants a and b. (ii) Demonstrate that 
Wien’s formula is consistent with Wien’s law (Problem 7A.3) and with the 
Stefan–Boltzmann law (Problem 7A.6).

7A.8‡ The temperature of the Sun’s surface is approximately 5800 K. On 
the assumption that the human eye evolved to be most sensitive at the 
wavelength of light corresponding to the maximum in the Sun’s radiant 
energy distribution, determine the colour of light to which the eye is the most 
sensitive.

7A.9 The Einstein frequency is often expressed in terms of an equivalent 
temperature θE, where θE = hν/k. Confirm that θE has the dimensions of 
temperature, and express the criterion for the validity of the high-temperature 
form of the Einstein equation in terms of it. Evaluate θE for (a) diamond, for 
which ν = 46.5 THz and (b) for copper, for which ν = 7.15 THz. What fraction 
of the Dulong and Petit value of the heat capacity does each substance reach 
at 25 °C?

TOPIC 7B dynamics of microscopic systems

Discussion questions
7B.1 Describe how a wavefunction summarizes the dynamical properties of 
a system and how those properties may be predicted.

7B.2 Discuss the relation between probability amplitude, probability density, 
and probability.

7B.3 Describe the constraints that the Born interpretation puts on acceptable 
wavefunctions.

7B.4 What are the advantages of working with normalized wavefunctions?

Exercises
7B.1(a) Consider a time-independent wavefunction of a particle moving 
in three-dimensional space. Identify the variables upon which the 
wavefunction depends.
7B.1(b) Consider a time-dependent wavefunction of a particle moving in 
two-dimensional space. Identify the variables upon which the wavefunction 
depends.

7B.2(a) Consider a time-independent wavefunction of a hydrogen atom. 
Identify the variables upon which the wavefunction depends. Use spherical 
polar coordinates.
7B.2(b) Consider a time-dependent wavefunction of a helium atom. Identify 
the variables upon which the wavefunction depends. Use spherical polar 
coordinates.

7B.3(a) An unnormalized wavefunction for a light atom rotating around a 
heavy atom to which it is bonded is ψ(φ) = eiφ with 0 ≤ φ ≤ 2π. Normalize this 
wavefunction.
7B.3(b) An unnormalized wavefunction for an electron in a carbon nanotube 
of length L is sin(2πx/L). Normalize this wavefunction.

7B.4(a) For the system described in Exercise 7B.3(a), what is the probability of 
finding the light atom in the volume element dφ at φ = π?
7B.4(b) For the system described in Exercise 7B.3(b), what is the probability of 
finding the electron in the range dx at x = L/2?

7B.5(a) For the system described in Exercise 7B.3(a), what is the probability of 
finding the light atom between φ = π/2 and φ = 3π/2?
7B.5(b) For the system described in Exercise 7B.3(b), what is the probability of 
finding the electron between x = L/4 and x = L/2?

Problems
7B.1 Normalize the following wavefunctions: (i) sin(nπx/L) in the range 
0 ≤ x ≤ L, where n = 1, 2, 3, … (this wavefunction can be used to describe 
delocalized electrons in a linear polyene), (ii) a constant in the range 
–L ≤ x ≤ L, (iii) e−r/a in three-dimensional space (this wavefunction can 
be used to describe the electron in the ion He+), (iv) xe−r/2a in three-
dimensional space. Hint: The volume element in three dimensions is 
dτ = r2dr sin θ dθ dϕ, with 0 ≤ r < ∞, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π.

7B.2 Two (unnormalized) excited state wavefunctions of the H atom are

( ) ( ) ( , , ) sin cos( )/ /i e ii eψ θ φ θ φψr r
a r rr a r a= −





=− −2
0

2 20 0

 
(a) Normalize both functions to 1. (b) Confirm that these two functions are 
mutually orthogonal.

7B.3 A particle free to move along one dimension x (with 0 ≤ x < ∞) is 
described by the unnormalized wavefunction ψ(x) = e−ax with a = 2 m−1.What 
is the probability of finding the particle at a distance x ≥1 m?

7B.4 The ground-state wavefunction for a particle confined to a one-
dimensional box of length L is ψ = (2/L)1/2 sin(πx/L). Suppose the box is ‡ These problems were supplied by Charles Trapp and Carmen Giunta.

θ/°C 1000 1500 2000 2500 3000 3500

λmax/nm 2181 1600 1240 1035  878  763
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10.0 nm long. Calculate the probability that the particle is (a) between 
x = 4.95 nm and 5.05 nm, (b) between x = 1.95 nm and 2.05 nm, (c) between 
x = 9.90 nm and 10.00 nm, (d) in the right half of the box, (e) in the central 
third of the box.

7B.5 The ground-state wavefunction of a hydrogen atom is ψ = −( ) / /1 0
3 1 2 0/ eπa r a  

where a0 = 53 pm (the Bohr radius). (a) Calculate the probability that the 
electron will be found somewhere within a small sphere of radius 1.0 pm 
centred on the nucleus. (b) Now suppose that the same sphere is located at 
r = a0. What is the probability that the electron is inside it?

7B.6 Atoms in a chemical bond vibrate around the equilibrium bond length. 
An atom undergoing vibrational motion is described by the wavefunction 
ψ ( ) /x N x a= −e 2 22 , where a is a constant and −∞ < x < ∞. (a) Normalize this 
function. (b) Calculate the probability of finding the particle in the range 
−a ≤ x ≤ a. Hint: The integral encountered in part (ii) is the error function. It is 
provided in most mathematical software packages.

7B.7 Suppose that the state of the vibrating atom in Problem 7B.6 is described 
by the wavefunction ψ ( ) /x Nx x a= −e 2 22 . Where is the most probable location 
of the particle?

TOPIC 7C the principles of quantum theory

Discussion questions
7C.1 Suggest how the general shape of a wavefunction can be predicted 
without solving the Schrödinger equation explicitly.

7C.2 Describe the relationship between operators and observables in quantum 
mechanics.

7C.3 Account for the uncertainty relation between position and linear 
momentum in terms of the shape of the wavefunction.

7C.4 Describe the properties of wavepackets in terms of the Heisenberg 
uncertainty principle.

Exercises
7C.1(a) Construct the potential energy operator of a particle subjected to a 
harmonic oscillator potential (see Topic 8B).
7C.1(b) Construct the potential energy operator of a particle subjected to a 
Coulomb potential.

7C.2(a) Confirm that the kinetic energy operator, −(2/2m)d2/dx2, is hermitian.
7C.2(b) The operator corresponding to the angular momentum of a particle is 
(/i)d/dφ, where φ is an angle. Is this operator hermitian?

7C.3(a) Functions of the form sin(nπx/L) can be used to model the 
wavefunctions of electrons in a carbon nanotube of length L. Show that the 
wavefunctions sin(nπx/L) and sin(mπx/L), where n ≠ m, are orthogonal for a 
particle confined to the region 0 ≤x ≤ L.
7C.3(b) Functions of the form cos(nπx/L) can be used to model the 
wavefunctions of electrons in metals. Show that the wavefunctions cos(nπx/L) 
and cos(mπx/L), where n ≠ m, are orthogonal for a particle confined to the 
region 0 ≤x ≤ L.

7C.4(a) A light atom rotating around a heavy atom to which it is bonded is 
described by a wavefunction of the form ψ(φ) = eimφ with 0 ≤ φ ≤ 2π and m an 
integer. Show that the m = +1 and m = +2 wavefunctions are orthogonal.
7C.4(b) Repeat Exercise 7C.4(a) for the m = +1 and m = −1 wavefunctions.

7C.5(a) An electron in a carbon nanotube of length L is described by the 
wavefunction ψ(x) = sin(2πx/L). Compute the expectation value of the 
position of the electron.
7C.5(b) An electron in a carbon nanotube of length L is described by the 
wavefunction ψ(x) = (2/L)1/2 sin(πx/L). Compute the expectation value of the 
kinetic energy of the electron.

7C.6(a) An electron in a one-dimensional metal of length L is described by 
the wavefunction ψ(x) = sin(πx/L). Compute the expectation value of the 
momentum of the electron.
7C.6(b) A light atom rotating around a heavy atom to which it is bonded 
is described by a wavefunction of the form ψ(φ) = eiφ with 0 ≤ φ ≤ 2π. If the 
operator corresponding to angular momentum is given by (/i)d/dφ, compute 
the expectation value of the angular momentum of the light atom.

7C.7(a) Calculate the minimum uncertainty in the speed of a ball of mass 500 g 
that is known to be within 1.0 µm of a certain point on a bat. What is the 
minimum uncertainty in the position of a bullet of mass 5.0 g that is known to 
have a speed somewhere between 350.000 01 m s−1 and 350.000 00 m s−1?
7C.7(b) An electron is confined to a linear region with a length of the same 
order as the diameter of an atom (about 100 pm). Calculate the minimum 
uncertainties in its position and speed.

7C.8(a) The speed of a certain proton is 0.45 Mm s−1. If the uncertainty in 
its momentum is to be reduced to 0.0100 per cent, what uncertainty in its 
location must be tolerated?
7C.8(b) The speed of a certain electron is 995 km s−1. If the uncertainty in 
its momentum is to be reduced to 0.0010 per cent, what uncertainty in its 
location must be tolerated?

7C.9(a) Determine the commutators of the operators (i) d/dx and 1/x,  
(ii) d/dx and x2.
7C.9(b) Determine the commutators of the operators a and a+, where 
a = (x + ip)/21/2 and a+ = (x − ip)/21/2.

Problems
7C.1 Write the time-independent Schrödinger equations for (a) an electron 
moving in one dimension about a stationary proton and subjected to a 
Coulomb potential, (b) a free particle, (c) a particle subjected to a constant, 
uniform force.

7C.2 Construct quantum mechanical operators for the following observables: 
(a) kinetic energy in one and in three dimensions, (b) the inverse separation, 

1/x, (c) electric dipole moment in one dimension, (d) the mean square 
deviations of the position and momentum of a particle (in one dimension) 
from the mean values.

7C.3 Identify which of the following functions are eigenfunctions of the 
operator d/dx: (a) eikx, (b) k, (c) kx, (d) e−ax2. Give the corresponding 
eigenvalue where appropriate.
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7C.4 Determine which of the following functions are eigenfunctions of the 
inversion operator i which has the effect of making the replacement x → −x): 
(a) x3 – kx, (b) cos kx, (c) x2 + 3x − 1. State the eigenvalue of i when relevant.

7C.5 Which of the functions in Problem 7C.3 are (a) also eigenfunctions of d2/dx2 
and (b) only eigenfunctions of d2/dx2? Give the eigenvalues where appropriate.

7C.6 Show that the product of a hermitian operator with itself is also a 
hermitian operator.

7C.7 Calculate the average linear momentum of a particle described by the 
following wavefunctions: (a) eikx, (b) cos kx, (c) e−ax2, where in each one x 
ranges from −∞ to +∞.

7C.8 The normalized wavefunctions for a particle confined to move on a 
circle are ψ(φ) = (1/2π)1/2 e−imφ, where m = 0, ±1, ±2, ±3, … and 0 ≤ φ ≤ 2π. 
Determine 〈φ〉.

7C.9 A particle freely moving in one dimension x with 0 ≤ x < ∞ is in a 
state described by the wavefunction ψ(x) = a1/2e−ax/2, where a is a constant. 
Determine the expectation value of the position operator.

7C.10 The wavefunction of an electron in a linear accelerator is ψ =  
(cos χ)eikx + (sin χ)e−ikx, where χ (chi) is a parameter. (i) What is the 
probability that the electron will be found with a linear momentum (a) +k, 
(b) –k? (c) What form would the wavefunction have if it were 90 per cent 
certain that the electron had linear momentum +k? (c) Evaluate the kinetic 
energy of the electron.

7C.11 Two (unnormalized) excited state wavefunctions of the H atom are 
(i) ψ = − −( / ) /2 0

2 0r a r ae  and (ii) ψ θ φ= −r r asin cos e /2 0 . (a) Normalize both 

functions to 1. (b) Confirm that these two functions are mutually orthogonal. 
(c) Evaluate the expectation values of r and r2 for the atom.

7C.12 The ground-state wavefunction of a hydrogen atom is 
ψ = −( / ) / /1 0

3 1 2 0πa r ae . Calculate (a) the mean potential energy and (b) the mean 
kinetic energy of an electron in the ground state of a hydrogenic atom.

7C.13 Show that the expectation value of an operator that can be written as the 
square of an hermitian operator is positive.

7C.14 A particle is in a state described by the wavefunction 
ψ ( ) ( / ) /x a ax= −2 1 4 2π e , where a is a constant and −∞ ≤ x ≤ ∞. Verify that 
the value of the product ΔpΔx is consistent with the predictions from the 
uncertainty principle.

7C.15 A particle is in a state described by the wavefunction ψ(x) = (2a)1/2e−ax, 
where a is a constant and 0 ≤ x ≤ ∞. Determine the expectation value of the 
commutator of the position and momentum operators.

7C.16 Evaluate the commutators (a)  [ , ]H px  and (b)  [ ],H x  where 
 H p V xmx= +2 / ( )2 . Choose (i) V(x) = V, a constant, (ii) V x k x( )= 1

2 f
2.

7C.17 (a) Given that any operators used to represent observables must satisfy 
the commutation relation in eqn 7C.16, what would be the operator for 
position if the choice had been made to represent linear momentum parallel 
to the x-axis by multiplication by the linear momentum. These different 
choices are all valid ‘representations’ of quantum mechanics. (b) With the 
identification of x  in this representation, what would be the operator for 1/x? 
Hint: Think of 1/x as x−1.

Integrated activities
7.1‡ A star too small and cold to shine has been found by S. Kulkarni 
et al. (Science 270, 1478 (1995)). The spectrum of the object shows the 
presence of methane which, according to the authors, would not exist at 
temperatures much above 1000 K. The mass of the star, as determined 
from its gravitational effect on a companion star, is roughly 20 times the 
mass of Jupiter. The star is considered to be a brown dwarf, the coolest ever 
found. (a) From available thermodynamic data, test the stability of methane 
at temperatures above 1000 K. (b) What is λmax for this star? (c) What is 
the energy density of the star relative to that of the Sun (6000 K)? (d) To 
determine whether the star will shine, estimate the fraction of the energy 
density of the star in the visible region of the spectrum.

7.2 Suppose that the wavefunction of an electron in a carbon nanotube is a 
linear combination of cos(nx) functions. (a) Use mathematical software, a 

spreadsheet, or the Living graphs on the web site of this book to construct 
superpositions of cosine functions as

ψ ( ) ( )x N k x
k

N

=
=

∑1

1

cos π

 
where the constant 1/N is introduced to keep the superpositions with the 
same overall magnitude. Set x = 0 at the centre of the screen and build the 
superposition there. (b) Explore how the probability density ψ2(x) changes 
with the value of N. (c) Evaluate the root mean square location of the packet, 
〈x2〉1/2. (d) Determine the probability that a given momentum will  
be observed.
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314 Mathematical background 3

Mathematical background 3 Complex numbers

We describe here general properties of complex numbers 
and functions, which are mathematical constructs frequently 
encountered in quantum mechanics.

MB3.1 Definitions
Complex numbers have the general form

z x y= + i   general form of a complex number  (MB3.1)

where i = (−1)1/2. The real numbers x and y are, respectively, the real 
and imaginary parts of z, denoted Re(z) and Im(z). When y = 0, 
z = x is a real number; when x = 0, z = iy is a pure imaginary number. 
Two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 are equal when 
x1 = x2 and y1 = y2. Although the general form of the imaginary part 
of a complex number is written iy, a specific numerical value is 
typically written in the reverse order; for instance, as 3i.

The complex conjugate of z, denoted z*, is formed by replac-
ing i by –i:

z x y* i= −   complex conjugate  (MB3.2)

The product of z* and z is denoted |z|2 and is called the square 
modulus of z. From eqns MB3.1 and MB3.2,

| | ( )( )z x y x y x y2 2 2i i= + = +−   square modulus  (MB3.3)

since i2 = −1. The square modulus is a real number. The absolute 
value or modulus is itself denoted |z| and is given by:

| | ( ) ( )/ /z z z x y= = +* 1 2 2 2 1 2

  absolute value or modulus  (MB3.4)

Since zz* = |z|2 it follows that z × (z*/|z|2) = 1, from which we can 
identify the (multiplicative) inverse of z (which exists for all 
nonzero complex numbers):

z
z
z

− =1
2

*
| |  

 Inverse of a complex number  (MB3.5)

MB3.2 Polar representation

The complex number z = x + iy can be represented as a point 
in a plane, the complex plane, with Re(z) along the x-axis and 
Im(z) along the y-axis (Fig. MB3.1). If, as shown in the figure, 
r and ϕ denote the polar coordinates of the point, then since 
x = r cos ϕ and y = r sin ϕ, we can express the complex number 
in polar form as

z r= +( sin )cos iφ φ   Polar form of a complex number  (MB3.6)

The angle ϕ, called the argument of z, is the angle that z makes 
with the x-axis. Because y/x = tan ϕ, it follows that the polar 
form can be constructed from

r x y z
y
x

= + = =( ) | | arctan/2 2 1 2 φ
 

(MB3.7a)

To convert from polar to Cartesian form, use

x r y r z x y= = = +cos and  sin to form iφ  φ  (MB3.7b)

One of the most useful relations involving complex numbers is 
Euler’s formula:

e cos isiniφ φ φ= +   euler’s formula  (MB3.8a)

The simplest proof of this relation is to expand the exponen-
tial function as a power series and to collect real and imaginary 
terms. It follows that

cos e e sin i(e e )i i i iφ φφ φ φ φ= + =1
2

1
2( )− −− −  (MB3.8b)

The polar form in eqn MB3.6 then becomes

z r= eiφ  (MB3.9)

Brief illustration MB3.1 Inverse

Consider the complex number z = 8 − 3i. Its square modulus is

| | * ( )*( ) ( )( )z z z2 8 3i 8 3i 8 3i 8 3i 64 9 73= = = + = + =− − −  
The modulus is therefore |z| = 731/2. From eqn MB3.5, the 
inverse of z is

z− = + = +1 8 3
73

8
73

3
73

i
i

 

y = Im(z)

x = Re(z)

z = x + iy 

r

φ

Figure MB3.1 The representation of a complex number z as a 
point in the complex plane using Cartesian coordinates (x,y) or 
polar coordinates (r,ϕ).
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MB3.3 Operations
The following rules apply for arithmetic operations for the 
complex numbers z1 = x1 + iy1 and z2 = x2 + iy2.

1. Addition: z z x x y y1 2 1 2 1 2i( )+ = + + +( )  (MB3.10a)

2. Subtraction: z z x x y y1 2 1 2 1 2i( )– ( – ) –= +  (MB3.10b)

3. Multiplication: 

z z x y x y

x x y y x y y x
1 2 1 1 2 2

1 2 1 2 1 2 1 2

i i

i( )

= + +
= + +

( )( )

( )−

 
(MB3.10c)

4. Division: We interpret z1/z2 as z z1 2
1−  and use eqn MB3.5 

for the inverse:

z
z

z z
z z
z

1

2
1 2

1 1 2

2
2= =−
*

| |
 (MB3.10d)

The polar form of a complex number is commonly used to 
perform arithmetical operations. For instance the product of 
two complex numbers in polar form is

z z r r r r1 2 1 2 1 2
1 2 1 2= = +( )( ) ( )e e ei i iφ φ φ φ

 (MB3.11)

This multiplication can be depicted in the complex plane, as 
shown in Fig. MB3.2.

The nth power and the nth root of a complex number are

z r r z r rn n n n n n n n= = = =( ) ( )i / / / /e e e ei i iφ φ φφ 1 1 1

 (MB3.12)

The depictions in the complex plane are shown in Fig. MB3.3.

Brief illustration MB3.3 Operations with numbers

Consider the complex numbers z1 = 6 + 2i and z2 = –4 – 3i. Then

z z

z z

z z

1 2

1 2

1 2

6 4 2 3 i 2 i

1 5i

6( 4) 2( 3) 6( 3)

+ = − + − = −
− = +

= − − − + −

( ) ( )

{ } {

0

++ − = − −

= + − +





= − +

2( 4) i 18 26i

i
i

i

}

( )
z
z

1

2
6 2

4 3
25

6
5

2
5  

Brief illustration MB3.4 Roots

To determine the 5th root of z = 8 − 3i, we note that from Brief 
illustration MB3.2 its polar form is

z = =− −73 8 5441 2 0 359 0 359/ . ..e ei i
 

The 5th root is therefore

z1 5 0 359 1 5 1 5 0 359 5 0 07188 544 8 544 1 536/ . / / . / .( . ) . .= = =− − −e e ei i i
 

It fol lows that x =  1.536 cos(–0.0718) =  1.532 and y =  
1.536 sin(–0.0718) = –0.110 (note that we work in radians), so

( ) . ./8 3i 1 532 11 i1 5− = −0 0  

Brief illustration MB3.2 Polar representation

Consider the complex number z = 8 − 3i. From Brief illustra-
tion MB3.1, r = |z| = 731/2. The argument of z is

θ = −





= − − °arctan . , .
3

8
0 359 20 6rad or

 
The polar form of the number is therefore

z = −731 2 0 359/ .e i
 

y = Im(z)

x = Re(z)

z1

z1z2

z2

r1

r2

φ1

φ2

r1r2

φ1 + φ2

Figure MB3.2 The multiplication of two complex numbers 
depicted in the complex plane.

y 
= 

Im
(z

)

x = Re(z)
y 

= 
Im

(z
)

x = Re(z)
φ

φ

φ/2

φ/3

φ/4

φ
φ

φφ

r

r

r2

r1/2

r1/3

r1/4

r3

r4

r5

z

z

z2 z1/2

z1/3

z1/4

z3

z4

z5

Figure MB3.3 The nth powers (n = 1, 2, 3, 4, 5) and the nth roots 
(n = 1, 2, 3, 4) of a complex number depicted in the complex 
plane.
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chaPter 8

the quantum theory of motion

The three basic modes of motion—translation (motion 
through space), vibration, and rotation—all play an important 
role in chemistry because they are ways in which molecules 
store energy. Gas-phase molecules, for instance, undergo trans-
lational motion and their kinetic energy is a contribution to 
the total internal energy of a sample. Molecules can also store 
energy as rotational kinetic energy and transitions between 
their rotational energy states can be observed spectroscopically. 
Energy is also stored as molecular vibration, and transitions 
between vibrational states also give rise to spectroscopic signa-
tures. In this Chapter we use the principles of quantum theory 
to calculate the properties of microscopic particles in motion.

8A translation

In this Topic we see that, according to quantum theory, a parti-
cle constrained to move in a finite region of space is described 
by only certain wavefunctions and their corresponding ener-
gies. Hence, quantization emerges as a natural consequence of 
solving the Schrödinger equation and the conditions imposed 
on it. The solutions also bring to light a number of non-classical 
features of particles, especially their ability to tunnel into and 
through regions where classical physics would forbid them to 
be found.

8B Vibrational motion

This Topic introduces the ‘harmonic oscillator’, a simple 
but very important model for the description of molecular 

vibrations. We see that the energies of oscillator are quantized. 
The acceptable wavefunctions also show that the oscillator may 
be found at extensions and compressions that are forbidden by 
classical physics.

8C rotational motion

The energy of a rotating particle is quantized, but in this Topic 
we see that its angular momentum is also restricted to cer-
tain values. The quantization of angular momentum is a very 
important aspect of the quantum theory of electrons in atoms 
and of rotating molecules.

What is the impact of this material?

‘Nanoscience’ is the study of atomic and molecular assem-
blies with dimensions ranging from 1 nm to about 100 nm 
and ‘nanotechnology’ is concerned with the incorporation of 
such assemblies into devices. We encounter several concepts 
of nanoscience throughout the text. In Impact I8.1 we explore 
quantum mechanical effects that render the properties of a 
nanometre-sized assembly dependent on its size.

To read more about the impact of this 
material, scan the QR code, or go to  
bcs.whfreeman.com/webpub/chemistry/
pchem10e/impact/pchem-8-1.html
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8A translation

In this Topic we present the essential features of the solutions of 
the Schrödinger equation for translation, one of the basic types 
of motion. We see that quantization emerges as a natural con-
sequence of the Schrödinger equation and conditions imposed 
on it. The solutions also bring to light a number of non-classical 
features of particles, especially their ability to tunnel into and 
through regions where classical physics would forbid them to 
be found.

8A.1 Free motion in one dimension

The Schrödinger equation for a particle of mass m moving 
freely in one dimension is (Topic 7B)

− =2 2

22m
x

x
E xd

d
ψ ψ( ) ( )

 

and the solutions are (as in eqn 7B.6)

ψ k
kx kx

kA B E k
m= + =−e ei i

2 2

2


 

with A and B constants. Note that we are now labelling both 
the wavefunctions and the energies with the index k. The wave-
functions in eqn 8A.2 are continuous, have continuous slope 
everywhere, are single-valued, and do not go to infinity, and 
so—in the absence of any other information—are acceptable 
for all values of k. Because the energy of the particle is pro-
portional to k2, all non-negative values, including zero, of the 
energy are permitted. It follows that the translational energy of a 
free particle is not quantized.

➤➤ Why do you need to know this material?
The application of quantum theory to translation reveals 
the origin of quantization and other non-classical features 
of physical and chemical phenomena. This material is 
important for the discussion of atoms and molecules that 
are free to move within a restricted volume, such as a gas 
in a container.

➤➤ What is the key idea?
The translational energy levels of a particle confined to 
a finite region of space are quantized, and under certain 
conditions particles can pass into and through classically 
forbidden regions.

➤➤ What do you need to know already?

You should know that the wavefunction is the solution of 
the Schrödinger equation (Topic 7B), and be familiar with 
the techniques of deriving dynamical properties from the 
wavefunction by using operators corresponding to the 
observables (Topic 7C).

Free motion 
in one 
dimension 

schrödinger 
equation  (8A.1)

Free motion 
in one 
dimension 

wave-
functions 
and 
energies

 (8A.2)
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318 8 The quantum theory of motion

The values of the constants A and B depend on how the state 
of motion of the particle is prepared:

•	 If it is shot towards positive x, then its linear 
momentum is +k (Topic 7C), and its wavefunction 
is proportional to eikx. In this case B = 0 and A is a 
normalization factor.

•	 If the particle is shot in the opposite direction, 
towards negative x, then its linear momentum is −k 
and its wavefunction is proportional to e−ikx. In this 
case, A = 0 and B is the normalization factor.

The probability density |ψ|2 is uniform if the particle is in 
either of the pure momentum states eikx or e−ikx. According to 
the Born interpretation (Topic 7B), nothing further can be said 
about the location of the particle. That conclusion is consist-
ent with the uncertainty principle, because if the momentum 
is certain, then the position cannot be specified (the operators 
corresponding to x and p do not commute and thus correspond 
to complementary observables, Topic 8C).

8A.2 Confined motion in one 
dimension

Consider a particle in a box in which a particle of mass m is 
confined to a finite region of space between two impenetra-
ble walls. The potential energy is zero inside the box but rises 
abruptly to infinity at the walls at x = 0 and x = L (Fig. 8A.1). 

When the particle is between the walls, the Schrödinger equa-
tion is the same as for a free particle (eqn 8A.1), so the general 
solutions given in eqn 8A.2 are also the same. However, it will 
prove convenient to use e±ikx = cos kx ± i sin kx (Mathematical 
background 3) to write

ψ k
kx kxx A B A kx kx B kx kx

A B
( ) ( ) ( )

( )
= + = + + −
= +

−e e cos i sin cos i sini i

ccos i sinkx A B kx+ −( )

If we write C = (A − B)i and D = A + B the general solutions take 
the form

ψ k x C kx D kx( ) sin cos= +   general solution for 0 ≤ x ≤ L  (8A.3)

Outside the box the wavefunctions must be zero as the parti-
cle will not be found in a region where its potential energy is 
infinite:

For andx x L xk< > =0 0, ( )ψ  (8A.4)

At this point, there are no restrictions on the value of k and all 
solutions appear to be acceptable.

(a) The acceptable solutions
The requirement of the continuity of the wavefunction (Topic 
7B) implies that ψk(x) as given by eqn 8A.3 must be zero at the 
walls, for it must match the wavefunction inside the material of 
the walls where the functions meet. That is, the wavefunction 
must satisfy the following two boundary conditions, or con-
straints on the function at certain locations:

ψ ψk k L( ) ( )0 0 0= =and  

As we show in the following Justification, the requirement 
that the wavefunction satisfy these boundary conditions 
implies that only certain wavefunctions are acceptable and 

Brief illustration 8A.1 The wavefunction of a freely-
moving particle

An electron at rest that is shot out of an accelerator towards 
positive x through a potential difference of 1.0 V acquires a 
kinetic energy of 1.0 eV or 0.16 aJ (1.6 × 10−19 J). The wavefunc-
tion for such a particle is given by eqn 8A.3 with B = 0 and 
k given by rearranging the expression for the energy in eqn 
8A.2 into

k m Ek=





=
× × × ×

×

− −2 2 9 109 10 1 6 10
1 055 102

1 2 31 19
e



/ ( . ) ( . )
.(

kg J
−−

−







= ×

34 2

1 2

9 15 1 10
Js)

.

/

m

or 5.1 nm−1 (with 1 nm = 10−9 m). Therefore the wavefunction is 
ψ(x) = Ae5.1ix/nm.

Self-test 8A.1 Write the wavefunction for an electron travel-
ling to the left (negative x) after being accelerated through a 
potential difference of 10 kV.

Answer: ψ(x) = Be−510ix/nm
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Particle in a one
dimensional box 

boundary 
conditions  (8A.5)
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Figure 8A.1 A particle in a one-dimensional region with 
impenetrable walls. Its potential energy is zero between x = 0 
and x = L, and rises abruptly to infinity as soon as it touches the 
walls.

iranchembook.ir/edu



8A Translation  319

that the only permitted wavefunctions and energies of the 
particle are

ψ n x C n x
L n( ) sin , ,= 





=π 1 2 
 

(8A.6a)

E n h
mL

nn = =
2 2

28
1 2, ,

 
(8A.6b)

where C is an as yet undetermined constant. Note that the 
wavefunctions and energy are now labelled with the dimen-
sionless integer n instead of the quantity k.

We conclude that the energy of the particle in a one-dimen-
sional box is quantized and that this quantization arises from 
the boundary conditions that ψ must satisfy. This is a general 
conclusion: the need to satisfy boundary conditions implies that 
only certain wavefunctions are acceptable, and hence restricts 
observables to discrete values. So far, only energy has been quan-
tized; shortly we shall see that other physical observables may 
also be quantized.

We need to determine the constant C in eqn 8A.6a. To do 
so, we normalize the wavefunction to 1 by using a standard 
integral from the Resource section. Because the wavefunction is 
zero outside the range 0 ≤ x ≤ L, we use

ψ 2 2

0

2 2
2 1 2d sin d sox C n x

L x C L C L
L

= 





= × = =



∫ π

Integral T.2
, ∫

1 2

0

/L

for all n. Therefore, the complete solution for the particle in a 
box is

ψ

ψ

n

n

x L
n x
L x L

x x x L

( ) sin

( )

/

=











≤ ≤

= < >

2 0

0 0

1 2 π for

for and   

E n h
mL

nn = = …
2 2

28
1 2, ,

 

where the energies and wavefunctions are labelled with the 
quantum number n. A quantum number is an integer (in some 
cases, as we see in Topic 9B, a half-integer) that labels the state 
of the system. For a particle in a one-dimensional box there is 
an infinite number of acceptable solutions, and the quantum 
number n specifies the one of interest (Fig. 8A.2). As well as 
acting as a label, a quantum number can often be used to cal-
culate the energy corresponding to the state and to write down 
the wavefunction explicitly (in the present example, by using 
the relations in eqn 8A.7).

Justification 8A.1 The energy levels and wavefunctions 
of a particle in a one-dimensional box

From the boundary condition ψk(0) = 0 and the fact that, from 
eqn 8A.3, ψk(0) = D (because sin 0 = 0 and cos 0 = 1), we can 
conclude that D = 0. It follows that the wavefunction must be 
of the form ψk(x) = C sin kx. From the second boundary con-
dition, ψk(L) = 0, we know that ψk(L) = C sin kL = 0. We could 
take C = 0, but doing so would give ψk(x) = 0 for all x, which 
would conflict with the Born interpretation (the particle must 
be somewhere). The alternative is to require that kL be chosen 
so that sin kL = 0. This condition is satisfied if

kL n n= =π …1 2, ,

The value n = 0 is ruled out, because it implies k = 0 and 
ψk(x) = 0 everywhere (because sin 0 = 0), which is unaccep-
table. Negative values of n merely change the sign of sin kL 
(because sin(−x) = −sin x) and do not result in new solutions. 
The wavefunctions are therefore

ψ n x C n x L n( ) / , ,= =sin ( ) 1 2π …

as in eqn 8A.6a. At this stage we have begun to label the solu-
tions with the index n instead of k. Because k and Ek are related 
by eqn 8A.2, and k and n are related by kL = nπ, it follows that 
the energy of the particle is limited to En = n2h2/8mL2, as in eqn 
8A.6b.

Onedimensional 
box 

energy 
levels  (8A.7b)

Brief illustration 8A.2 The energy of a particle in a box

A long carbon nanotube can be modelled as a one-dimensional 
structure and its electrons described by particle-in-a-box 
wavefunctions. The lowest energy of an electron in a carbon 
nanotube of length 100 nm is given by eqn 8A.7b with n = 1:

E1

2 34

2

31
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8 9 109 10
=

× ×












× × ×
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( ) .

( . ) (
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s

kg 1100 10
6 02 109 2

24
×

= ×−
−

m
J

)
.

or 0.00602 zJ and its wavefunction is ψ1(x) = (2/L)1/2sin(πx/L).

Self-test 8A.2 What are the energy and wavefunction for the 
next higher energy electron of the system described in this 
Brief illustration?

Answer: E2 = 0.0241zJ, ψ2 (x) = (2/L)1/2 sin(2πx/L)

One
dimen
sional 
box

wave-
functions (8A.7a)
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Figure 8A.2 The allowed energy levels for a particle in a 
box. Note that the energy levels increase as n2, and that their 
separation increases as the quantum number increases. 
Classically, the particle is allowed to have any value of the 
energy in the continuum shown as a shaded area.
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320 8 The quantum theory of motion

(b) The properties of the wavefunctions
Figure 8A.3 shows some of the wavefunctions of a particle in a 
one-dimensional box. We see that:

•	 The wavefunctions are all sine functions with the 
same amplitude but different wavelengths.

•	 Shortening the wavelength results in a sharper 
average curvature of the wavefunction and therefore 
an increase in the kinetic energy of the particle (its 
only source of energy because V = 0 inside the box).

•	 The number of nodes also increases as n increase; 
the wavefunction ψn has n − 1 nodes.

•	 Increasing the number of nodes between walls of a 
given separation increases the average curvature of 
the wavefunction and hence the kinetic energy of the 
particle.

•	 The probability density for a particle in a one-
dimensional box is

ψ n x
L

n x
L

2 22
( )= 





sin π

 
(8A.8)

•	 and varies with position. The non-uniformity in the 
probability density is pronounced when n is small 
(Fig. 8A.4). The most probable locations of the particle 
correspond to the maxima in the probability density.

The probability density ψ n x2 ( ) becomes more uniform as n 
increases provided we ignore the fine detail of the increasingly 
rapid oscillations (Fig. 8A.5). The probability density at high 
quantum numbers reflects the classical result that a particle 
bouncing between the walls spends, on the average, equal times 
at all points. That the quantum result corresponds to the classi-
cal prediction at high quantum numbers is an illustration of the 
correspondence principle, which states that classical mechan-
ics emerges from quantum mechanics as high quantum num-
bers are reached.

Example 8A.1 Determining the probability of finding 
the particle in a finite region

The wavefunctions of an electron in a conjugated polyene can 
be approximated by particle-in-a-box wavefunctions. What is 
the probability, P, of locating the electron between x = 0 (the 
left-hand end of a molecule) and x = 0.2 nm in its lowest energy 
state in a conjugated molecule of length 1.0 nm?

Method According to the Born interpretation, ψ (x)2dx is 
the probability of finding the particle in the small region dx 
located at x; therefore, the total probability of finding the elec-
tron in the specified region is the integral of ψ(x)2dx over that 
region, as given in eqn 7B.11. The wavefunction of the electron 
is given in eqn 8A.7a with n = 1. The integral you need is in the 
Resource section:

Answer The probability of finding the particle in a region 
between x = 0 and x = l is

P x L
n x

L x l
L n

nl
Ln

l l
= = 





= − 



∫ ∫ψ 2

0

2

0

2 1
2

2d sin d sinπ
π

π

Now set n = 1, L = 1.0 nm, and l = 0.2 nm, which gives P = 0.05. 
The result corresponds to a chance of 1 in 20 of finding the 
electron in the region. As n becomes infinite, the sine term, 
which is multiplied by 1/n, makes no contribution to P and the 
classical result for a uniformly distributed particle, P = l/L, is 
obtained.

Self-test 8A.3 Calculate the probability that an electron in the 
state with n = 1 will be found between x = 0.25L and x = 0.75L in 
a conjugated molecule of length L (with x = 0 at the left-hand 
end of the molecule).

Answer: P = 0.82
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Figure 8A.3 The first five normalized wavefunctions of a 
particle in a box. Each wavefunction is a standing wave; 
successive functions possess one more half wave and a 
correspondingly shorter wavelength.

n = 2

n = 2

n = 2

n = 1

n = 1

n = 1

(a)
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(c)

Figure 8A.4 (a) The first two wavefunctions, (b) the 
corresponding probability densities, and (c) a representation of 
the probability density in terms of the darkness of shading.
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(c) The properties of observables
The linear momentum of a particle in a box is not well defined 
because the wavefunction sin kx is not an eigenfunction of the 
linear momentum operator. However, each wavefunction is a 
linear combination of the linear momentum eigenfunctions eikx 
and e−ikx. Then, because sin x = (eix − e−ix)/2i, we can write

ψ n
kx kxx L

n x
L L k( ) ( )sin

/ /

=











= 





− −2 1
2

21 2 1 2π
i e ei i ==nL

π

 
(8A.9)

It follows from the discussion in Topic 7C that half the meas-
urements of the linear momentum will give the value +k and 
−k for the other half. This detection of opposite directions 
of travel with equal probability is the quantum mechanical 
version of the classical picture that a particle in a one-dimen-
sional box rattles from wall to wall and in any given period 
spends half its time travelling to the left and half travelling to 
the right.

Because n cannot be zero, the lowest energy that the parti-
cle may possess is not zero (as would be allowed by classical 
mechanics, corresponding to a stationary particle) but

E h
mL1

2

28
=

 
Particle in a box  Zero-point energy  (8A.10)

This lowest, irremovable energy is called the zero-point energy. 
The physical origin of the zero-point energy can be explained 
in two ways:
•	 The Heisenberg uncertainty principle requires a 

particle to possess kinetic energy if it is confined to a 
finite region: the location of the particle is not 
completely indefinite (Δx ≠ ∞), so the uncertainty in 
its momentum cannot be precisely zero (Δp ≠ 0). 
Because Δp = (〈p2〉 − 〈p〉2)1/2 = 〈p2〉1/2 in this case, Δp ≠ 0 

implies that 〈p2〉 ≠ 0, which implies that the particle 
must always have nonzero kinetic energy.

•	 If the wavefunction is to be zero at the walls, but 
smooth, continuous, and not zero everywhere, then 
it must be curved, and curvature in a wavefunction 
implies the possession of kinetic energy.

The separation between adjacent energy levels with quantum 
numbers n and n + 1 is

E E n h
mL

n h
mL

n h
mLn n+ − = + − = +1

2 2

2

2 2

2

2

2
1

8 8
2 1

8
( ) ( )

 
(8A.11)

This separation decreases as the length of the container 
increases, and is very small when the container has macro-
scopic dimensions. The separation of adjacent levels becomes 
zero when the walls are infinitely far apart. Atoms and mol-
ecules free to move in normal laboratory-sized vessels may 
therefore be treated as though their translational energy is not 
quantized.
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Example 8A.2 Estimating an absorption wavelength

β-Carotene (1) is a linear polyene in which 10 single and 11 
double bonds alternate along a chain of 22 carbon atoms. If 
we take each CeC bond length to be about 140 pm, then the 
length L of the molecular box in β-carotene is L = 2.94 nm. 
Estimate the wavelength of the light absorbed by this molecule 
from its ground state to the next higher excited state.

1  β-Carotene

Method For reasons that will be familiar from introductory 
chemistry, each C atom contributes one p electron to the 
π-orbitals. Use eqn 8A.11 to calculate the energy separation 
between the highest occupied and the lowest unoccupied 
 levels, and convert that energy to a wavelength by using the 
Bohr frequency relation (eqn 7A.12).

Answer There are 22 C atoms in the conjugated chain; each 
contributes one p electron to the levels, so each level up to 
n = 11 is occupied by two electrons. The separation in energy 
between the ground state and the state in which one electron is 
promoted from n = 11 to n = 12 is
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Figure 8A.5 The probability density ψ 2(x) for large quantum 
number (here n = 50, blue, compared with n = 1, red). Notice 
that for high n the probability density is nearly uniform, 
provided we ignore the fine detail of the increasingly rapid 
oscillations.
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322 8 The quantum theory of motion

8A.3 Confined motion in two or more 
dimensions

Now consider a rectangular two-dimensional region of a sur-
face with length L1 in the x-direction and L2 in the y-direction; 
the potential energy is zero everywhere except at the walls, 
where it is infinite (Fig. 8A.6). As a result, the particle is never 
found at the walls and its wavefunction is zero there and every-
where outside the two-dimensional region. Between the walls, 
because the particle has contributions to its kinetic energy from 
its motion in both the x and y directions, the Schrödinger equa-
tion has two kinetic energy terms, one for each axis. For a parti-
cle of mass m the equation is

− ∂
∂

+ ∂
∂







=2 2

2

2

22m x y
Eψ ψ ψ

 
(8A.12)

This is a partial differential equation (Mathematical background 
4), and the resulting wavefunctions are functions of both x and 
y, denoted ψ(x,y). This dependence means that the wavefunc-
tion and the corresponding probability density depend on the 
location in the plane, with each position specified by the values 
of the coordinates x and y.

(a) Separation of variables
A partial differential equation of the form of eqn 8A.12 
can be simplified by the separation of variables technique 
(Mathematical background 4), which divides the equation into 
two or more ordinary differential equations, one for each vari-
able. We show in the Justification below using this technique 
that the wavefunction can be written as a product of functions, 
one depending only on x and the other only on y:

ψ ( , ) ( ) ( )x y X x Y y=  (8A.13a)

and that the total energy is given by

E E EX Y= +  (8A.13b)

where EX is the energy associated with the motion of the parti-
cle parallel to the x-axis, and likewise for EY and motion parallel 
to the y-axis.

or 0.160 aJ. It follows from the Bohr frequency condition 
(ΔE = hν) that the frequency of radiation required to cause this 
transition is

 = =
×
×

= ×
−

−
−∆E

h
1 60 10

6 626 10
2 41 10

19

34
14 1.

.
.

J
Js

s

or 241 THz (1 THz = 1012 Hz), corresponding to a wavelength 
λ = 1240 nm. The experimental value is 603 THz (λ = 497 nm), 
corresponding to radiation in the visible range of the electro-
magnetic spectrum. Considering the crudeness of the model 
we have adopted here, we should be encouraged that the com-
puted and observed frequencies agree to within a factor of 2.5.

Self-test 8A.4 Estimate a typical nuclear excitation energy 
in electronvolts (1 eV = 1.602 × 10−19 J; 1 GeV = 109 eV) by cal-
culating the first excitation energy of a proton confined to a 
one-dimensional box with a length equal to the diameter of a 
nucleus (approximately 1 × 10−15 m, or 1 fm).

Answer: 0.6 GeV

Justification 8A.2 The separation of variables technique 
applied to the particle in a two-dimensional box

We follow the procedure in Mathematical background 4 
and apply it to eqn 8A.12. The first step to confirm that the 
Schrödinger equation can be separated and the wavefunction 
can be factored into the product of two functions X and Y is to 
note that, because X is independent of y and Y is independent 
of x, we can write

∂
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= ∂
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= ∂
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Note the replacement of the partial derivatives by ordinary 
derivatives in each case. Then eqn 8A.12 becomes

− +






=2 2

2

2

22m Y X
x

X Y
y

EXYd
d

d
d

Next, we divide both sides by XY, and rearrange the resulting 
equation into

1 1 22
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X
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mEd
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∞
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Particle
confined
to surface

Figure 8A.6 A two-dimensional square well. The particle is 
confined to the plane bounded by impenetrable walls. As soon 
as it touches the walls, its potential energy rises to infinity.
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Each of the two ordinary differential equations in eqn 
8A.14 is the same as the one-dimensional particle-in-a-box 
Schrödinger equation (Section 8A.2). The boundary condi-
tions are also the same, apart from the detail of requiring 
X(x) to be zero at x = 0 and L1, and Y(y) to be zero at y = 0 
and L2. We can therefore adapt eqn 8A.7a without further 
calculation:

X x L
n x
L x Ln1
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1 2
1

1
1( ) sin

/
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Then, because ψ = XY,
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Similarly, because E = EX + EY, the energy of the particle is lim-
ited to the values

E n
L

n
L

h
mn n1 2

1
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1
2

2
2

2
2

2

8, = +



  

with the two quantum numbers taking the values n1 = 1, 2, … 
and n2 = 1, 2, … independently. The state of lowest energy is 
(n1 = 1, n2 = 1) and E1,1 is the zero-point energy.

Some of the wavefunctions are plotted as contours in Fig. 
8A.7. They are the two-dimensional versions of the wavefunc-
tions shown in Fig. 8A.3. Whereas in one dimension the wave-
functions resemble states of a vibrating string with ends fixed, 
in two dimensions the wavefunctions correspond to vibrations 
of a rectangular plate with fixed edges.

The first term on the left, (1/X)(d2X/dx2), is independent of y, 
so if y is varied only the second term on the left, (1/Y)(d2Y/dy2), 
can change. But the sum of these two terms is a constant, 
2mE/2, given by the right-hand side of the equation. Therefore, 
if the second term did change, then the right-hand side could 
not be constant. Consequently, even the second term cannot 
change when y is changed. In other words, the second term, 
(1/Y)(d2Y/dy2), is a constant, which we write −2mEY/2. By a 
similar argument, the first term, (1/X)(d2X/dx2), is a constant 
when x changes, and we write it −2mEX/2, with E = EX + EY. 
Therefore, we can write

1 2 1 22

2 2

2

2 2X
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mE
Y

Y
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mEX Yd
d

d
d

= − = −
 

These expressions rearrange into the two ordinary (that is, 
single-variable) differential equations

− = − = 2 2

2

2 2

22 2m
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Y
y

E YX Y
d
d

d
d  

(8A.14)

Twodimensional 
box 

energy 
levels  (8A.15b)

Brief illustration 8A.3 The distribution of a particle in a 
two-dimensional box

Consider an electron confined to a square cavity of side L, and 
in the state with quantum numbers n1 = 1, n2 = 2. Because the 
probability density is

ψ1 2
2

2
2 24 2

, ( ), sinx y
L

x
L

y
L= 











π πsin

the most probable locations correspond to sin2(πx/L) = 1 and 
sin2(2πx/L) = 1, or (x,y) = (L/2, L/4) and (L/2, 3L/4). The least 
probable locations (the nodes, where the wavefunction passes 
through zero) correspond to zeroes in the probability density 
within the box, which occur along the line y = L/2.

Self-test 8A.5 Determine the most probable locations of an 
electron in a square cavity of side L when it is in the state with 
quantum numbers n1 = 2, n2 = 3.

Answer: points (x = L/4 and 3L/4; y = L/6, L/2, and 5L/6)

 (8A.15a)
Two
dimensional 
box

wave-
functions

+ +

+ +

–

–

–

– +

(a) (b)

(c) (d)

Figure 8A.7 The wavefunctions for a particle confined to a 
rectangular surface depicted as contours of equal amplitude. 
(a) n1 = 1, n2 = 1, the state of lowest energy; (b) n1 = 1, n2 = 2;  
(c) n1 = 2, n2 = 1; (d) n1 = 2, n2 = 2.
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We treat a particle in a three-dimensional box in the same 
way. The wavefunctions have another factor (for the z-depend-
ence), and the energy has an additional term in n L3

2
3
2/ . Solution 

of the Schrödinger equation by the separation of variables tech-
nique then gives

ψ n n n x y z L L L
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L1 2 3
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 Threedimensional box  wavefunctions  (8A.16a)
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The quantum numbers n1, n2, and n3 are all positive inte-
gers 1, 2, … that can be varied independently. The system has a 
zero-point energy (E1,1,1 = 3h2/8mL2 for a cubic box).

(b) Degeneracy
A special feature of the solutions arises when a two-dimen-
sional box is not merely rectangular but square, with L1 = L2 = L. 
Then the wavefunctions and their energies are
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Square box  energy levels  (8.17b)

Consider the cases n1 = 1, n2 = 2 and n1 = 2, n2 = 1:
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Although the wavefunctions are different, they have the same 
energy. The technical term for different wavefunctions corres-
ponding to the same energy is degeneracy, and in this case we 
say that the state with energy 5h2/8mL2 is ‘doubly degenerate’. 
In general, if N wavefunctions correspond to the same energy, 
then we say that the state is ‘N-fold degenerate’.

The occurrence of degeneracy is related to the symmetry 
of the system. Figure 8A.8 shows contour diagrams of the two 
degenerate functions ψ1,2 and ψ2,1. Because the box is square, 
one wavefunction can be converted into the other simply by 
rotating the plane by 90°. Interconversion by rotation through 
90° is not possible when the plane is not square, and ψ1,2 and 

ψ2,1 are then not degenerate. Similar arguments account for the 
degeneracy of states in a cubic box. Other examples of degener-
acy occur in quantum mechanical systems (for instance, in the 
hydrogen atom, Topic 9A), and all of them can be traced to the 
symmetry properties of the system.

8A.4 Tunnelling

If the potential energy of a particle does not rise to infinity 
when it is in the wall of the container, and E < V, the wavefunc-
tion does not decay abruptly to zero. If the walls are thin (so 
that the potential energy falls to zero again after a finite dis-
tance), then the wavefunction oscillates inside the box, varies 

Three
dimensional 
box 

energy 
levels  (8A.16b)

Brief illustration 8A.4 Degeneracies in a two-
dimensional box

The energy of a particle in a two-dimensional square box of 
side L in the state with n1 = 1, n2 = 7 is

E h
mL

h
mL1 7

2 2
2

2

2

21 7
8

50
8, ( )= + =

This state is degenerate with the state with n1 = 7 and n2 = 1. 
Thus, at first sight the energy level 50h2/8mL2 is doubly degener-
ate. However, in certain systems there may be states that are 
not apparently related by symmetry but are ‘accidentally’ 
degenerate. Such is the case here, for the state with n1 = 5 and 
n2 = 5 also has energy 50h2/8mL2. Accidental degeneracy is 
also encountered in the hydrogen atom (Topic 9A).

Self-test 8A.6 Find a state (n1, n2) for a particle in a rectangular 
box with sides of length L1 = L and L2 = 2L that is accidentally 
degenerate with the state (4,4).

Answer: (n1 = 2, n2 = 8)

Square 
box 

wave-
functions  (8.17a)

+ –

+

–

(a) (b)

Figure 8A.8 The wavefunctions for a particle confined to a 
square well. Note that one wavefunction can be converted 
into the other by rotation of the box by 90°. The two functions 
correspond to the same energy. True degeneracy is a 
consequence of symmetry.
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smoothly inside the region representing the wall, and oscillates 
again on the other side of the wall outside the box (Fig. 8A.9). 
Hence the particle might be found on the outside of a container 
even though according to classical mechanics it has insufficient 
energy to escape. Such leakage by penetration through a classi-
cally forbidden region is called tunnelling.

The Schrödinger equation is used to calculate the probability 
of tunnelling of a particle of mass m incident from the left on 
a rectangular potential energy barrier that extends from x = 0 
to x = L. On the left of the barrier (x < 0) the wavefunctions are 
those of a particle with V = 0, so from eqn 8A.2 we can write

ψ = + =−A B k mEkx kxe e 2i i 1 2 ( ) /
 

The Schrödinger equation for the region representing the bar-
rier (0 ≤ x ≤ L), where the potential energy is the constant V, is

− + =2 2

22m
x

x
V x E xd

d
ψ ψ ψ( ) ( ) ( )

 
(8A.19)

We shall consider particles that have E < V (so, according to 
classical physics, the particle has insufficient energy to pass 
through the barrier), and therefore for which V − E > 0. The 
general solutions of this equation are

ψ κκ κ= + = −−C D m V Ex xe e 2 1 2 { ( )} /
 

as can be verified by differentiating ψ twice with respect to x. 
The important feature to note is that the two exponentials in 
eqn 8A.20 are now real functions, as distinct from the complex, 
oscillating functions for the region where V = 0. To the right of 
the barrier (x > L), where V = 0 again, the wavefunctions are

ψ = =A k mEkx′e 2i 1 2 ( ) /
 

Note that to the right of the barrier, the particle can only be 
moving to the right and therefore terms of the form e−ikx do not 
contribute to the wavefunction in eqn 8A.21.

The complete wavefunction for a particle incident from the 
left consists of (Fig. 8A.10):

•	 an incident wave (Aeikx corresponds to positive 
momentum);

•	 a wave reflected from the barrier (Be−ikx corresponds 
to negative momentum, motion to the left);

•	 the exponentially changing amplitudes inside the 
barrier (eqn 8A.20);

•	 an oscillating wave (eqn 8A.21) representing the 
propagation of the particle to the right after 
tunnelling through the barrier successfully.

The probability that a particle is travelling towards positive x 
(to the right) on the left of the barrier (x < 0) is proportional to 
|A|2, and the probability that it is travelling to the right on the 
right of the barrier (x > L) is |A′|2. The ratio of these two prob-
abilities, |A′|2/|A|2, which reflects the probability of the particle 
tunnelling through the barrier, is called the transmission prob-
ability, T.

To determine the relationship between |A′|2 and |A|2, we 
need to investigate the relationships between the coefficients 
A, B, C, D, and A′. Since the acceptable wavefunctions must 
be continuous at the edges of the barrier (at x = 0 and x = L, 
remembering that e0 = 1):

A B C D C D AL L kL+ = + + =−e e eiκ κ ′  (8A.22a)

Their slopes (their first derivatives) must also be continuous 
there (Fig. 8A.11):

i i e e  i eikA kB C D C D kAL L kL− = − − =−κ κ κ κκ κ ′  (8A.22b)
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rectangular 
barrier
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Figure 8A.10 When a particle is incident on a barrier from the 
left, the wavefunction consists of a wave representing linear 
momentum to the right, a reflected component representing 
momentum to the left, a varying but not oscillating component 
inside the barrier, and a (weak) wave representing motion to 
the right on the far side of the barrier.
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Figure 8A.9 A particle incident on a barrier from the left 
has an oscillating wave function, but inside the barrier there 
are no oscillations (for E < V). If the barrier is not too thick, 
the wavefunction is nonzero at its opposite face, and so 
oscillates begin again there. (Only the real component of the 
wavefunction is shown.)
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326 8 The quantum theory of motion

After straightforward but lengthy algebraic manipulations of 
the above set of equations 8A.22 (see Problem 8A.6), we find

T
L L

= + −
−









− −

1 16 1
2 1

( )
( )

e eκ κ

ε ε  
where ε = E/V. This function is plotted in Fig. 8A.12. The trans-
mission probability for E > V is shown there too. The transmis-
sion probability has the following properties:

•	 T ≈ 0 for E ≪ V;
•	 T increases as E approaches V: the probability of 

tunnelling increases;

•	 T approaches, but is still less than, 1 for E > V: there 
is still a probability of the particle being reflected by 
the barrier even when classically it can pass over it;

•	 T ≈ 1 for E ≫ V, as expected classically.

For high, wide barriers (in the sense that κL ≫ 1), eqn 8A.23a 
simplifies to

T L≈ − −16 (1 )e 2ε ε κ
 

The transmission probability decreases exponentially with the 
thickness of the barrier and with m1/2. It follows that particles of 
low mass are more able to tunnel through barriers than heavy 
ones (Fig. 8A.13). Tunnelling is very important for electrons 
and muons (mµ ≈ 207 me), and moderately important for pro-
tons (mp ≈ 1840me); for heavier particles it is less important.

A number of effects in chemistry (for example, the isotope-
dependence of some reaction rates) depend on the ability of 
the proton to tunnel more readily than the deuteron. The very 
rapid equilibration of proton transfer reactions is also a mani-
festation of the ability of protons to tunnel through barriers and 
transfer quickly from an acid to a base. Tunnelling of protons 
between acidic and basic groups is also an important feature of 
the mechanism of some enzyme-catalysed reactions.

Rectangular 
potential 
barrier 

transmission 
probability  (8A.23a)

Rectangular 
potential 
barrier; κL ≫1

transmission 
probability  (8A.23b)
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Brief illustration 8A.5 Transmission probabilities for a 
rectangular barrier

Suppose that a proton of an acidic hydrogen atom is con-
fined to an acid that can be represented by a barrier of height 
2.000 eV and length 100 pm. The probability that a proton 
with energy 1.995 eV (corresponding to 0.3195 aJ) can escape 
from the acid is computed using 8A.23a, with ε = E/V = 1.995 
eV/2.000 eV = 0.9975 and V − E = 0.005 eV (corresponding to 
8.0 × 10−22 J).
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Figure 8A.11 The wavefunction and its slope must be 
continuous at the edges of the barrier. The conditions for 
continuity enable us to connect the wavefunctions in the three 
zones and hence to obtain relations between the coefficients 
that appear in the solutions of the Schrödinger equation.
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Figure 8A.12 The transmission probabilities for passage 
through a rectangular potential barrier. The horizontal axis 
is the energy of the incident particle expressed as a multiple 
of the barrier height. The curves are labelled with the value 
of L(2mV)1/2/. The graph on the left is for E < V and that on 
the right for E > V. Note that T > 0 for E < V whereas classically 
T would be zero. However, T < 1 for E > V, whereas classically T 
would be 1.
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Figure 8A.13 The wavefunction of a heavy particle decays 
more rapidly inside a barrier than that of a light particle. 
Consequently, a light particle has a greater probability of 
tunnelling through the barrier.
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A problem related to tunnelling is that of a particle in a 
square-well potential of finite depth (Fig. 8A.14). In this kind 
of potential, the wavefunction penetrates into the walls, where 
it decays exponentially towards zero, and oscillates within the 
well. The wavefunctions are found by ensuring, as in the discus-
sion of tunnelling, that they and their slopes are continuous at 
the edges of the potential. Some of the lowest energy solutions 
are shown in Fig. 8A.15. A further difference from the solutions 
for an infinitely deep well is that there is only a finite number 
of bound states. Regardless of the depth and length of the well, 
however, there is always at least one bound state. Detailed con-
sideration of the Schrödinger equation for the problem shows 
that in general the number of levels is equal to N, with

N mVL
h N− < <1 8 1 2( ) /

 
(8A.24)

where V is the depth of the well and L is its length. We see that 
the deeper and wider the well, the greater the number of bound 
states. As the depth becomes infinite, so the number of bound 
states also becomes infinite, as we have already seen.

Checklist of concepts

☐ 1. The translational energy of a free particle is not 
quantized.

☐ 2. The need to satisfy boundary conditions implies that 
only certain wavefunctions are acceptable and there-
fore restricts observables to discrete values.

☐ 3. A quantum number is an integer (in certain cases, a 
half-integer) that labels the state of the system.

☐ 4. A particle in a box possesses a zero-point energy, an 
irremovable minimum energy.

☐ 5. The correspondence principle states that classical 
mechanics emerges from quantum mechanics as high 
quantum numbers are reached.

☐ 6. The wavefunction for a particle in a two- or three-
dimensional box is the product of wavefunctions for the 
particle in a one-dimensional box.

☐ 7. The energy of a particle in a two- or three-dimensional 
box is the sum of energies for the particle in two or 
three one-dimensional boxes.

☐ 8. The zero-point energy for a particle in a two-dimen-
sional box corresponds to the state with quantum num-
bers (n1 = 1, n2 = 1); for three dimensions, (n1 = 1, n2 = 1, 
n3 = 1).

☐ 9. Degeneracy occurs when different wavefunctions cor-
respond to the same energy.

κ =
× × × ×

×
= …×

− −

−

{ ( . ) ( . )}
.

.
/2 1 67 10 8 0 10

1 055 10
1 55 10

27 22 1 2

34
kg J
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110 1m−

We have used 1 J = 1 kg m2 s−2. It follows that

κL = … = …− −( . ) ( ) . .1 55 1 m 1 1 m 1 551 1 12× × ×0 00 00

Equation 8A.23a then yields

T = + −
× × −









= ×
… − … −

−1 16 0 9975 1 0 9975 1 96 10
1 55 1 55 2 1

( )
. ( . ) .

. .e e 33

The larger the value of L(2mV)1/2/ (here, 31) the smaller is the 
value of T for energies close to, but below, the barrier height.

Self-test 8A.7 Suppose that the junction between two semi-
conductors can be represented by a barrier of height 2.00 eV 
and length 100 pm. Calculate the probability that an electron 
of energy 1.95 eV can tunnel through the barrier.

Answer: T = 0.881
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Figure 8A.15 The lowest two bound-state wavefunctions for a 
particle in the well shown in Fig. 8A.14.
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Figure 8A.14 A potential well with a finite depth.
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328 8 The quantum theory of motion

☐ 10. The occurrence of degeneracy is a consequence of the 
symmetry of the system.

☐ 11. Penetration into or through a classically forbidden 
region is called tunnelling.

☐ 12. The probability of tunnelling decreases with an increase 
in the height and width of the potential barrier.

☐ 13. Light particles are more able to tunnel through barriers 
than heavy ones.

Checklist of equations

Property Equation Comment Equation number

Free-particle wavefunctions and 
energies

ψk = Aeikx + Be−ikx Ek = k2ħ2/2m All values of k allowed 8A.2

Particle in a box

One dimension:
 Wavefunctions ψn(x) = (2/L)1/2 sin(nπx/L), 0 ≤ x ≤ L

ψn(x) = 0, x < 0 and x > L
n = 1, 2, … 8A.7a

 Energies En = n2h2/8mL2 8A.7b

 Zero-point energy E1 = h2/8mL2 8A.10

Two dimensions:
 Wavefunctions ψn n x y L L n x L n y L

1 2
2 1 2

1 2
1 1 2 2,

/( ), ( /( ) )sin( )sin( )= π π/ /

  0 ≤ x ≤ L1, 0 ≤ y ≤ L2

ψn n x y
1 2

0, ( ), = outside box

n1, n2 = 1, 2, … 8A.15a

 Energies E n L n L h mn n1 2 1
2

1
2

2
2

2
2 2 8, ( )= +/ / / 8A.15b

Three dimensions:
 Wavefunctions ψn n n x y z L L L

n x L n y L n
1 2 3

8 1 2 3
1 2

1 1 2 2

( ), , /( )
( / ) ( / ) (

/= ×
sin sin sinπ π 33 3πz L/ ),

  0 ≤ x ≤ L1, 0 ≤ y ≤ L2, 0 ≤ z ≤ L3

ψn n n x y z
1 2 3

0, , ( ), , = outside box

n1, n2, n3 = 1, 2, … 8A.16a

 Energies E n L n L n L h mn n n1 2 3 1
2

1
2

2
2

2
2

3
2

3
2 2 8, , ( )= + +/ / / / 8A.16b

Transmission probability T L L= + − −− −{ ( ) / ( )}1 16 12 1e eκ κ ε ε Rectangular potential barrier 8A.23a

T = 16ε(1 − ε)e−2κL High, wide rectangular barrier 8A.23b
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8B Vibrational motion

Atoms in molecules and solids vibrate around their mean posi-
tions as bonds stretch, compress, and bend. Here we consider 
one particular type of vibrational motion, that of ‘harmonic 
motion’ in one dimension.

8B.1 The harmonic oscillator

A particle undergoes harmonic motion, and is said to be a 
harmonic oscillator, if it experiences a restoring force propor-
tional to its displacement:

F k x= − f  Harmonic motion  restoring force  (8B.1)

where kf is the force constant: the stiffer the ‘spring’, the greater 
the value of kf. Because force is related to potential energy by 
F = −dV/dx (see Foundations B), the force in eqn 8B.1 corre-
sponds to the particle having a potential energy

V x k x( )= 1
2

2
f   Parabolic potential energy  (8B.2)

when it is displaced through a distance x from its equilibrium 
position. This expression, which is the equation of a parab-
ola (Fig. 8B.1), is the origin of the term ‘parabolic potential 
energy’ for the potential energy characteristic of a harmonic 
oscillator. The Schrödinger equation for the particle of mass m 
is therefore

Contents

8b.1 The harmonic oscillator 329
(a) The energy levels 330

brief illustration 8b.1: the vibration of a  
diatomic molecule 330

(b) The wavefunctions 331
example 8b.1: confirming that a wavefunction  
is a solution of the schrödinger equation 332
example 8b.2: normalizing a harmonic oscillator  
wavefunction 333

8b.2 The properties of oscillators 333
(a) Mean values 334

example 8b.3: calculating properties of a  
harmonic oscillator 334

(b) Tunnelling 335
example 8b.4: calculating the tunnelling  
probability for the harmonic oscillator 335

Checklist of concepts 336
Checklist of equations 336

➤➤ Why do you need to know this material?
The detection and interpretation of vibrational frequencies 
is the basis of infrared spectroscopy (Topics 12D and 12E). 
Molecular vibration plays a role in the interpretation 
of thermodynamic properties, such as heat capacities 
(Topics 5E and 15F), and of the rates of chemical reactions 
(Topic 21C).

➤➤ What is the key idea?
The quantum mechanical treatment of the simplest model 
of vibrational motion, the harmonic oscillator, reveals 
that the energy is quantized and the wavefunctions are 
products of a polynomial and a Gaussian (bell-shaped) 
function.

➤➤ What do you need to know already?
You should know how to formulate the Schrödinger 
equation given a potential energy function. You should 
also be familiar with the concepts of tunnelling (Topic 8A) 
and the expectation value of an observable (Topic 7B).
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Figure 8B.1 The parabolic potential energy V k x= 1
2 f

2  of 
a harmonic oscillator, where x is the displacement from 
equilibrium. The narrowness of the curve depends on the force 
constant kf: the larger the value of kf, the narrower the well.
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− + =2 2
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d f
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We can anticipate that the energy of an oscillator will be quan-
tized because the wavefunction has to satisfy boundary con-
ditions (as in Topic 8A for a particle in a box): it will not be 
found with very large extensions because its potential energy 
rises to infinity there. That is, when we impose the bound-
ary conditions ψ = 0 at x = ±∞, we can expect to find that only 
certain wavefunctions and their corresponding energies are 
possible.

(a) The energy levels
Equation 8B.3 is a standard equation in the theory of differen-
tial equations and its solutions are well known to mathemati-
cians.1 The permitted energy levels are

E k mv v

v

= +( ) =
=

1
2

1 2

0 1 2
ω ω ( )

, , ,

/
f /

…  

where ω (omega) is the frequency of oscillation of a classical 
harmonic oscillator of the same mass and force constant. Note 
that ω is large when the force constant is large and the mass 
small. It follows that the separation between adjacent levels is

E Ev v+ − =1 ω  (8B.5)

which is the same for all v. Therefore, the energy levels form 
a uniform ladder of spacing ω (Fig. 8B.2). The energy sepa-
ration ω is negligibly small for macroscopic objects (with 
large mass) for which classical mechanics is adequate for 

describing vibrational motion; however, the energy separa-
tion is of great importance for objects with mass similar to 
that of atoms.

Because the smallest permitted value of v is 0, it follows from 
eqn 8B.4 that a harmonic oscillator has a zero-point energy

E0
1
2= ω  Harmonic oscillator  Zero-point energy  (8B.6)

The mathematical reason for the zero-point energy is that 
v cannot take negative values, for if it did the wavefunction 
would not obey the boundary conditions. The physical reason 
is the same as for the particle in a box (Topic 8A): the parti-
cle is confined, its position is not completely uncertain, and 
therefore its momentum, and hence its kinetic energy, cannot 
be exactly zero. We can picture this zero-point state as one in 
which the particle fluctuates incessantly around its equilib-
rium position; classical mechanics would allow the particle to 
be perfectly still.

Atoms vibrate relative to one another in molecules with 
the bond acting like a spring. The question then arises as to 
what mass to use to predict the frequency of the vibration. 
In general, the relevant mass is a complicated combination 
of the masses of all the atoms that move, with each contri-
bution weighted by the amplitude of the atom’s motion. That 
amplitude depends on the mode of motion, such as whether 
the vibration is a bending motion or a stretching motion, so 
each mode of vibration has a characteristic ‘effective mass’. 
For a diatomic molecule AB, however, for which there is only 
one mode of vibration, corresponding to the stretching and 
compression of the bond, the effective mass, μ, has a very 
simple form:

μ =
+

m m
m m

A B

A B  
Diatomic molecule  effective mass  (8B.7)

When A is much heavier than B, mB can be neglected in the 
denominator and the effective mass is μ ≈ mB, the mass of the 
lighter atom. This result is plausible, for in the limit of the heavy 
atom being like a brick wall, only the lighter atom moves and 
hence determines the vibrational frequency.

1 For details, see our Molecular quantum mechanics, Oxford University 
Press, Oxford (2011).
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Figure 8B.2 The energy levels of a harmonic oscillator are 
evenly spaced with separation ħω, with ω = (kf/m)1/2. Even in its 
lowest energy state, an oscillator has an energy greater than 
zero.

Brief illustration 8B.1 The vibration of a diatomic 
molecule

The effective mass of 1H35Cl is

μ = + = ×
+

m m
m m

m m
m m

H Cl

H Cl

u u

u u

( . ) ( . )
( . ) ( . )
1 0078 34 9688
1 0078 34 9688 == 0 9796. mu

which is close to the mass of the proton. The force constant of 
the bond is kf = 516.3 N m−1. It follows from eqn 8B.4, with μ in 
place of m, that

 (8B.4)Harmonic 
oscillator

energy 
levels

 (8B.3)Harmonic 
oscillator

schrödinger 
equation
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8B Vibrational motion  331

The result in Brief illustration 8B.1 implies that excitation 
requires radiation of frequency ν = ΔE/h = 90 THz and wave-
length λ = c/ν = 3.3 µm. It follows that transitions between adja-
cent vibrational energy levels of molecules are stimulated by or 
emit infrared radiation (Topics 12D and 12E).

(b) The wavefunctions
Like the particle in a box (Topic 8A), a particle undergoing har-
monic motion is trapped in a symmetrical well in which the 
potential energy rises to large values (and ultimately to infinity) 
for sufficiently large displacements (compare Figs. 8A.1 and 
8B.1). However, there are two important differences:

•	 Because the potential energy climbs towards infinity 
only as x2 and not abruptly, the wavefunction 
approaches zero more slowly at large displacements 
than for the particle in a box.

•	 As the kinetic energy of the oscillator depends on  
the displacement in a more complex way (on account  
of the variation of the potential energy), the  
curvature of the wavefunction also varies in a more 
complex way.

The detailed solution of eqn 8B.3 confirms these points 
and shows that the wavefunctions for a harmonic oscillator 
have the form

ψ ( ) polynomial in
bell-shaped Gaussian function

x N x= ×
×

( )
( )

where N is a normalization constant. A Gaussian function is a 
bell-shaped function of the form e−x2 (Fig. 8B.3). The precise 
form of the wavefunctions is

ψ

α
α

v v v( ) ( ) /

/

x N H y

y x
mk

y=

= =





−e 2 2

2 1 4


f  

The factor Hv(y) is a Hermite polynomial; the form of these poly-
nomials and some of their properties are listed in Table 8B.1. 
Hermite polynomials, which are members of a class of functions 
called ‘orthogonal polynomials’, have a wide range of important 
properties which allow a number of quantum mechanical cal-
culations to be done with relative ease. Note that the first few 
Hermite polynomials are very simple: for instance, H0(y) = 1 and 
H1(y) = 2y.

Because H0(y) = 1, the wavefunction for the ground state (the 
lowest energy state, with v = 0) of the harmonic oscillator is

ψ α
0 0

2
0

22 2 2( ) / /x N Ny x= =− −e e  

 (8B.8)Harmonic 
oscillator

wave-
functions

 (8B.9a)
Harmonic 
oscillator

ground-state 
wavefunction

ω µ= 





=
× ×







=
−

−
kf Nm

kg

1 2 1

27

1 2
516 3

0 9796 1 66054 10

/ /
.

. ( . )
55 634 1014. × s

or 563.4 THz. (We have used 1 N = 1 kg m s−2.) Therefore the 
separation of adjacent levels is (eqn 8B.5)

E Ev v+ − = =1
34 21 54 57 1 Js 5 941 1 J( . ) ( . ) .0 0 5 634 014 0× × ×10 ×− −s

or 59.41 zJ, about 0.37 eV. This energy separation corresponds 
to 36 kJ mol−1, which is chemically significant. The zero-point 
energy, eqn 8B.6, of this molecular oscillator is 29.71 zJ, which 
corresponds to 0.19 eV, or 18 kJ mol−1.

Self-test 8B.1 Suppose a hydrogen atom is adsorbed on the 
surface of a gold nanoparticle by a bond of force constant 
855 N m−1. Calculate its zero-point vibrational energy.

Answer: 37.7 zJ, 22.7 kJ mol−1, 0.24 eV
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Figure 8B.3 The graph of the Gaussian function, f x x( ) = −e 2.
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Table 8B.1 The Hermite polynomials, Hv(y)*

v Hv(y)

0 1

1 2y

2 4y2 − 2

3 8y3 − 12y

4 16y4 − 48y2 + 12

5 32y5 − 160y3 + 120y

6 64y6 − 480y4 + 720y2 − 120

* The Hermite polynomials are solutions of the differential equation

H yH Hv v vv″ ′− +2 2 = 0

where primes denote differentiation. They satisfy the recursion relation

H yH Hv v vv+ −− +1 12 2 = 0

An important integral is

H H yy
v v v

v v

v v v
′

′

′
e d

if

if
−

−∞

∞
=

≠

=





∫ 2 0

21 2π / !
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332 8 The quantum theory of motion

and the corresponding probability density is

ψ α
0
2

0
2

0
22 2 2( ) /x N Ny x= =− −e e  

The wavefunction and the probability density are shown in Fig. 
8B.4. Both curves have their largest values at zero displacement 
(at x = 0), so they capture the classical picture of the zero-point 
energy as arising from the ceaseless fluctuation of the particle 
about its equilibrium position.

The wavefunction for the first excited state of the oscillator, 
the state with v = 1, is

ψ

α
α

1 1
2

1
2

2
2

2

2 2

( ) ( ) /

/

x N y

N x

y

x

=

= 





−

−

e

e
 

This function has a node at zero displacement (x = 0), and the 
probability density has maxima at x = ±α (Fig. 8B.5).

The shapes of several wavefunctions are shown in Fig. 8B.6 
and the corresponding probability densities are shown in Fig. 
8B.7. At high quantum numbers, harmonic oscillator wave-
functions have their largest amplitudes near the turning points 
of the classical motion (the locations at which V = E, so the 
kinetic energy is zero). We see classical properties emerging in 
the correspondence principle limit of high quantum numbers 
(Topic 8A), for a classical particle is most likely to be found at 
the turning points (where it travels most slowly) and is least 
likely to be found at zero displacement (where it travels most 
rapidly).
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Figure 8B.4 The normalized wavefunction and probability 
density (shown also by shading) for the lowest energy state of a 
harmonic oscillator.
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Figure 8B.5 The normalized wavefunction and probability 
density (shown also by shading) for the first excited state of a 
harmonic oscillator.

Example 8B.1 Confirming that a wavefunction is a 
solution of the Schrödinger equation

Confirm that the ground-state wavefunction (eqn 8B.9a) is a 
solution of the Schrödinger equation, eqn 8B.3.

Method Substitute the wavefunction given in eqn 8B.9a 
into eqn 8B.3. Use the definition of α given in eqn 8B.8 
to determine the energy on the right-hand side of eqn 8B.3 
and confirm that it matches the zero-point energy given in 
eqn 8B.6.

Answer We need to evaluate the second derivative of the 
ground-state wavefunction:

d
d e

d
d

d
d

x N N x

x
N x N x

x x

x

0
2

0 2
2

2

2 0
2

0

2 2 2 2

2 2

e

e

− −

−

= − 





= −

/ /

/

α α

α

α

α 22
2

0
2

2
0 2

2
2

2 2

2 2 2 2















= − + 





=

−

− −

e

e e

x

x xN N x

/

/ /

α

α α

α α
−− +( / ) ( )1 2

0
2 4

0α ψ α ψx /

Substituting ψ0 into eqn 8B.3 and using the definition of α 
(eqn 8B.8), we obtain







2

2

1 2

0

2

2
2

0
1
2

2
0 02 2m

mk
m

mk x k x Ef f
f







− 





+ =
/

ψ ψ ψ ψ

and therefore


2

1 2

0 0
1
2

2
0

1
2

2
0

k
m Ek x k xf

f f






=− +
/

ψ ψψ ψ

The second and third terms on the left-hand side (in blue) can-
cel and we obtain E k m= 1

2 ( ) /
f

1 2/  in accord with eqn 8B.6 for 
the zero-point energy.

Self-test 8B.2 Confirm that the wavefunction in eqn 8B.10 is a 
solution of eqn 8B.3 and determine its energy.

Answer: yes, with E = 3
2 ω

 (8B.9b)Harmonic 
oscillator

ground-state 
probability 
density

 (8B.10)Harmonic 
oscillator

First excited-
state 
wavefunction
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8B Vibrational motion  333

Note the following features of the wavefunctions:

•	 The Gaussian function goes very strongly to zero as 
the displacement increases (in either direction, 
extension or compression), so all the wavefunctions 
approach zero at large displacements.

•	 The exponent y2 is proportional to x2 × (mkf)1/2, so 
the wavefunctions decay more rapidly for large 
masses and stiff springs.

•	 As v increases, the Hermite polynomials become 
larger at large displacements (as xv), so the 
wavefunctions grow large before the Gaussian 
function damps them down to zero: as a result, the 
wavefunctions spread over a wider range as v 
increases (Fig. 8B.7).

8B.2 The properties of oscillators

The average value of a property is calculated by evaluating the 
expectation value of the corresponding operator (eqn 7C.11, 
〈 〉Ω ψ Ωψ τ= ∫ * d ). Now that we know the wavefunctions of 
the harmonic oscillator, we can start to explore its properties by 
evaluating integrals of the type

〈 〉Ω ψ Ωψ=
−∞

∞

∫ v v
* dx

 
(8B.11)

(Here and henceforth, the wavefunctions are all taken to be 
normalized to 1.) When the explicit wavefunctions are substi-
tuted, the integrals look fearsome, but the Hermite polynomials 
have many simplifying features.
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Figure 8B.6 The normalized wavefunctions for the first 
five states of a harmonic oscillator. Note that the number 
of nodes is equal to v and that alternate wavefunctions 
are symmetrical or asymmetrical about y = 0 (zero 
displacement).
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density
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Figure 8B.7 The probability densities for the first five  
states of a harmonic oscillator and the state with v = 18. 
Note how the regions of highest probability density move 
towards the turning points of the classical motion as v 
increases.
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Example 8B.2 Normalizing a harmonic oscillator 
wavefunction

Find the normalization constant for the harmonic oscillator 
wavefunctions.

Method Normalization is carried out by evaluating the inte-
gral of |ψ |2 over all space and then finding the normalization 
factor from eqn 7B.3 ( ( ) )* /N = ∫1 1 2/ dψ ψ τ . The normalized 
wavefunction is then equal to Nψ. In this one-dimensional 
problem, the volume element is dx and the integration is 
from −∞ to +∞. The wavefunctions are expressed in terms of 
the dimensionless variable y = x/α , so begin by expressing the 
integral in terms of y by using dx = αdy. The integrals required 
are given in Table 8B.1.

Answer The unnormalized wavefunction is

ψ v v( ) ( ) /x H y y= −e 2 2

It follows from the integrals given in Table 8B.1 that

ψ ψ α ψ ψ α αv v v v v
v v* * ( ) !/d d e dx y H y yy= = =

−∞

∞

−∞

∞
−

−∞

∞

∫ ∫ ∫ 2 1 22 2π

where v! = v(v − 1)(v − 2)…1. Therefore,

Nv v v
=





1
21 2

1 2

απ /

/

!

Note that, unlike the normalization constant for a particle in 
a box, for a harmonic oscillator Nv is different for each value 
of v.

Self-test 8B.3 Confirm, by explicit evaluation of the integral, 
that ψ0 and ψ1 are orthogonal.

Answer: Show that ∫ =−∞
∞

ψ ψ0 1 0* dx  by using the information in  
Table 8B.1
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334 8 The quantum theory of motion

(a) Mean values
We show in the following example that the mean displacement, 
〈x〉, and the mean square displacement, 〈x2〉, of the oscillator 
when it is in the state with quantum number v are

〈 〉x = 0  Harmonic oscillator  mean displacement  (8B.12a)

〈 〉x
mk

2 1
2 1 2= +( )v


( ) /

f  

The result for 〈x〉 shows that the oscillator is equally likely 
to be found on either side of x = 0 (like a classical oscillator). 
The result for 〈x2〉 shows that the mean square displacement 
increases with v. This increase is apparent from the probability 
densities in Fig. 8B.7, and corresponds to the classical ampli-
tude of swing increasing as the oscillator becomes more highly 
excited.

The mean potential energy of an oscillator, the expectation 
value of V k x= 1

2 f
2, can now be calculated very easily:

〈 〉 〈 〉V k x k
m= = +( ) 





1
2

2 1
2

1
2

1 2

f
fv 

/

 

or

〈 〉V = +( )1
2

1
2v ω

 

Because the total energy in the state with quantum number v is 
( )v+ 1

2 ω , it follows that

〈 〉V E= 1
2 v  Harmonic oscillator  mean potential energy  (8B.13b)

The total energy is the sum of the potential and kinetic ener-
gies, so it follows at once that the mean kinetic energy of the 
oscillator is (as could also be shown using the kinetic energy 
operator)

〈 〉E Ek = 1
2 v  Harmonic oscillator  mean kinetic energy  (8B.13c)

The result that the mean potential and kinetic energies of a 
harmonic oscillator are equal (and therefore that both are 
equal to half the total energy) is a special case of the virial 
theorem:

If the potential energy of a particle has the form  
V = axb, then its mean potential and kinetic energies are 
related by

2 k〈 〉 〈 〉E b V=   Virial theorem  (8B.14)

Example 8B.3 Calculating properties of a harmonic 
oscillator

Consider the harmonic oscillator motion of the HeCl mol-
ecule in Brief illustration 8B.1. Calculate the mean displace-
ment of the oscillator when it is in a state with quantum 
number v.

Method Normalized wavefunctions must be used to calcu-
late the expectation value. The operator for position along x is 
multiplication by the value of x (Topic 7C). The resulting inte-
gral can be evaluated either

•	 by inspection (the integrand is the product of an odd 
and an even function), or

•	 by explicit evaluation using the formulas in Table 8B.1.

The former procedure makes use of the definitions that an 
even function is one for which f(−x) = f(x) and an odd func-
tion is one for which f(−x) = −f(x). Therefore, the product of an 
odd and even function is itself odd, and the integral of an odd 
function over a symmetrical range about x = 0 is zero. The lat-
ter procedure using explicit integration is illustrated here to 
give practice in the calculation of expectation values. We shall 
need the relation x = αy, which implies that dx = αdy.

Answer The integral we require is

〈 〉x x x N H x H x

N H

y y= =

=

−∞

∞
− −

−∞

∞

−

∫ ∫ψ ψ

α

v v v v v

v v

* ( ) ( )

(

/ /d d

e

2 2 2

2 2

2 2e e

yy y

y

y H y

N H yH y

2 2

2

2 2

2 2

/ /) ( )v

v v v

e d

e d

−

−∞

∞

−

−∞

∞

∫
∫=α

Now use the recursion relation (Table 8B.1) to form

yH H Hv v vv= +− +1 1
1
2

which turns the integral into

H yH y H H y H H yy y y
v v v v v vve e e−

−∞

∞

−
−

−∞

∞

+
−

−∞

∞
= +∫ ∫ ∫2 2 2

1 1
1
2d d d

Both integrals are zero (See Table 8B.1), so 〈x〉 = 0. The mean 
displacement is zero because displacements on either side of 
the equilibrium position occur with equal probability.

Self-test 8B.4 Calculate the mean square displacement, 〈x2〉, 
of the H − Cl bond distance from its equilibrium position by 
using the recursion relation in Table 8B.1 twice.

Answer: ( )v+ ×1
2

2115 pm ; eqn 9.12b, with μ in place of m

 (8B.12b)
Harmonic 
oscillator

mean square 
displacement

 (8B.13a)Harmonic 
oscillator

mean potential 
energy
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8B Vibrational motion  335

For a harmonic oscillator b = 2, so 〈Ek〉 = 〈V〉, as we have found. 
The virial theorem is a short cut to the establishment of a num-
ber of useful results, and we use it elsewhere (for example, in 
Topic 9A).

(b) Tunnelling
An oscillator may be found at extensions with V > E, which are 
forbidden by classical physics, for they correspond to negative 
kinetic energy; this is an example of the phenomenon of tun-
nelling (Topic 8A). As shown in Example 8B.4, for the lowest 
energy state of the harmonic oscillator, there is about an 8 per 
cent chance of finding the oscillator stretched beyond its clas-
sical limit and an 8 per cent chance of finding it with a classi-
cally forbidden compression. These tunnelling probabilities are 
independent of the force constant and mass of the oscillator.

Example 8B.4 Calculating the tunnelling probability for 
the harmonic oscillator

Calculate the probability that the ground-state harmonic 
oscillator will be found in a classically forbidden region.

Method Find the expression for the classical turning point, 
xtp, where the kinetic energy vanishes, by equating the poten-
tial energy to the total energy E of the harmonic oscillator. The 
probability of finding the oscillator stretched beyond a dis-
placement xtp is the sum of the probabilities ψ 2dx of finding 
it in any of the intervals dx lying between xtp and infinity, so 
evaluate the integral

P x
x

=
∞

∫ ψ v
2d

tp

The variable of integration is best expressed in terms of y = x/α 
and the integral to be evaluated is a special case of the error 
function, erf z, defined as

erf ( ) /z yy

z
= − −

∞

∫1 2
1 2

2

π
e d

and evaluated for some values of z in Table 8B.2 (this function 
is commonly available in mathematical software packages). 
By symmetry, the probability of being found stretched into a 
classically forbidden region is the same as that of being found 
compressed into a classically forbidden region.

Answer According to classical mechanics, the turning point, 
xtp, of an oscillator occurs when its kinetic energy is zero, 
which is when its potential energy 1

2 k xf
2  is equal to its total 

energy E. This equality occurs when

x E
k x E

ktp
f

tp
f

or2
1 22 2= = ±





/

with E given by eqn 8B.4. The variable of integration in the inte-
gral P is best expressed in terms of y = x/α with α = (ħ2/mkf)1/4, 
and then the right-hand turning point lies at

y
x

ktp
f

= =
+








= +
=

tp

α
ω

α

ω
2

2 1
1
2

2

1 2
1 2( )

( )
/

/v
v

� �( / )f
1/2k m

For the state of lowest energy (v = 0), ytp = 1 and the probability 
of being beyond that point is

P x N y
x

y= =
∞

−
∞

∫ ∫ψ α0
2

0
2

1

2d e d
tp

The normalization constant N0 is calculated from the expres-
sion for Nv in Example 8B.2 ( )/( !)/ /Nv

v v=1 21 2 1 2α π :

N0 1 2 0

1 2

1 2

1 2
1

2 0
1=







=




α απ π/

/

/

/

!

The integral in the expression for P is written in terms of the 
error function erf(1) as

erf( so e d erf(1 1 2 1
2 1 11 2

1

1 2

1

2 2) ( ))/
/= − = −−

∞
−

∞

∫ ∫π
πe dy yy y

It follows that

P = × × − = −

−
∞

∫
α

α
1 1 1 1 11 2

1
2

1 2 1
2π

π/
/ ( ( )) )

N yy0
2 e d

1
2

� � ��� ���
erf erf(

00.843�









=0 079.

In 7.9 per cent of a large number of observations, any oscil-
lator in the state with quantum number v = 0 will be found 
stretched to a classically forbidden extent. There is the same 
probability of finding the oscillator with a classically forbid-
den compression. The total probability of finding the oscilla-
tor tunnelled into a classically forbidden region (stretched or 
compressed) is about 16 per cent.

Self-test 8B.5 Calculate the probability that a harmonic oscil-
lator in the state with quantum number v = 1 will be found at 
a classically forbidden extension. (Follow the argument given 
in Example 8B.4 and use the method of integration by parts 
(Mathematical background 1) to obtain an integral that can be 
expressed in terms of the error function.)

Answer: P = 0.056
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336 8 The quantum theory of motion

The probability of finding the oscillator in classically for-
bidden regions decreases quickly with increasing v, and van-
ishes entirely as v approaches infinity, as we would expect 
from the correspondence principle. Macroscopic oscillators 
(such as pendulums) are in states with very high quantum 
numbers, so the tunnelling probability is wholly negligible 
and classical mechanics is reliable. Molecules, however, are 
normally in their vibrational ground states, and for them 
the probability is very significant and classical mechanics is 
misleading.

Checklist of concepts

☐ 1. A particle undergoing harmonic motion is called a 
harmonic oscillator and experiences a restoring force 
proportional to its displacement;

☐ 2. The potential energy of a harmonic oscillator is a para-
bolic function of the displacement from equilibrium.

☐ 3. The energy levels of a harmonic oscillator form an 
evenly spaced ladder.

☐ 4. The wavefunctions of a harmonic oscillator are prod-
ucts of a Hermite polynomial and a Gaussian (bell-
shaped) function.

☐ 5. There is a zero-point energy, an irremovable minimum 
energy, which is consistent with, and can be interpreted 
in terms of, the uncertainty principle.

☐ 6. The probability of finding the harmonic oscillator 
in classically forbidden regions is significant for the 
ground vibrational state (v = 0) but decreases quickly 
with increasing v.

Checklist of equations

Property Equation Comment Equation number

Energy levels of harmonic oscillator E k mv v= + =( ) ( ) /1
2

1 2ω ω, f / v = 0, 1, 2,… 8B.4

Zero-point energy of harmonic oscillator E0
1
2= ω 8B.6

Wavefunction of harmonic oscillator ψ

α α

α

v v v

v
v v

( ) ( )
/ ( )
( / !)

/

/

/ /

x N H y
y x mk
N

y=

= =

=

−e
/

2 2

2 1 4

1 2 1 21 2
,  f

π

v = 0, 1, 2,… 8B.8

Mean displacement of harmonic oscillator 〈x〉 = 0 8B.12a

Mean square displacement of harmonic oscillator 〈 〉x mk2 1 21
2= +( /( )) /v  f 8B.12b

Virial theorem 2〈Ek〉 = b〈V〉 V = axb 8B.14

Table 8B.2 The error function, erf(z)*

z erf(z)

0 0

0.01 0.0113

0.05 0.0564

0.10 0.1125

0.50 0.5205

1.00 0.8427

1.50 0.9661

2.00 0.9953

*More values are available in mathematical software 
packages.
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8C rotational motion

This Topic provides a quantum mechanical description of rota-
tion in two and three dimensions. The concepts developed here 
form the basis for discussion of atomic structure (Topics 9A 
and 9B) and molecular rotation (Topic 12B).

8C.1 Rotation in two dimensions

We consider a particle of mass m constrained to move in a cir-
cular path (a ‘ring’) of radius r in the xy-plane with constant 
potential energy, which may be taken to be zero (Fig. 8C.1). The 
total energy is equal to the kinetic energy, because V = 0 every-
where. We can therefore write E = p2/2m. According to classi-
cal mechanics (Foundations B), the angular momentum, Jz, 
around the z-axis (which lies perpendicular to the xy-plane) is 
Jz = ±pr, so the energy can be expressed as J mrz

2 /2 2. Because mr2 
is the moment of inertia, I, of the mass on its path, it follows 
that

E
J
I

I mrz= =
2

2

2  

We shall now see that not all the values of the angular momen-
tum are permitted in quantum mechanics, and therefore that 
both angular momentum and rotational energy are quantized.

(a) The qualitative origin of quantized 
rotation
Because Jz = ±pr, and since the de Broglie relation gives p = h/λ 
(Topic 7A) the angular momentum about the z-axis is

J
hr

z = ± λ  
(8C.2)

Opposite signs correspond to opposite directions of travel. This 
equation shows that the shorter the wavelength of the parti-
cle on a circular path of given radius, the greater the angular 
momentum of the particle. It follows that if we can see why the 
wavelength is restricted to discrete values, then we shall under-
stand why the angular momentum is quantized.

Contents

8c.1 Rotation in two dimensions 337
(a) The qualitative origin of quantized rotation 337
(b) The solutions of the Schrödinger equation 338

example 8c.1: using the particle on a ring model 340
(c) Quantization of angular momentum 340

brief illustration 8c.1: nodes in the wavefunction 341

8c.2 Rotation in three dimensions 342
(a) The wavefunctions 342

brief illustration 8c.2: the angular nodes  
of the spherical harmonics 344

(b) The energies 344
example 8c.2: using the rotational energy levels 344

(c) Angular momentum 345
brief illustration 8c.3: the magnitude  
of the angular momentum 345

(d) Space quantization 345
(e) The vector model 346

brief illustration 8c.4: the vector model of the  
angular momentum 347

Checklist of concepts 347
Checklist of equations 347

➤➤ Why do you need to know this material?
The investigation of rotational motion introduces the 
concept of angular momentum, which is central to the 
description of the electronic structure of atoms and 
molecules and the interpretation of details observed in 
molecular spectra.

➤➤ What is the main idea?
The energy and the angular momentum of a rotating 
object are quantized.

➤➤ What do you need to know already?
You should know the postulates of quantum mechanics 
(Topic 7C), and be familiar with the concept of angular 
momentum in classical physics (Foundations B).

Particle on a ring, 
classical expression energy  (8C.1)

z

J

m

x y
p

r

Jz

Figure 8C.1 The angular momentum of a particle of mass m 
on a circular path of radius r in the xy-plane is represented by a 
vector J with the single non-zero component Jz of magnitude 
pr perpendicular to the plane.
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338 8 The quantum theory of motion

Suppose for the moment that λ can take an arbitrary value. In 
that case, the wavefunction depends on the azimuthal angle ϕ as 
shown in Fig. 8C.2a. When ϕ increases beyond 2π, the wavefunc-
tion continues to change, but for an arbitrary wavelength it gives 
rise to a different value at a given point after each circuit, which is 
unacceptable because a wavefunction must be single-valued. An 
acceptable solution is obtained only if the wavefunction repro-
duces itself on successive circuits, as in Fig. 8C.2b. Because only 
some wavefunctions have this property, it follows that only some 
angular momenta are acceptable and therefore that only certain 
rotational energies are allowed. That is, the energy of the particle 
is quantized. Specifically, an integer number of wavelengths must 
fit the circumference of the ring (which is 2πr):

n r nλ = =2 1 2π 0, , ,…  (8C.3)

The value n = 0 corresponds to λ = ∞; a ‘wave’ of infinite wave-
length has a constant height at all values of ϕ. It follows from 
eqns 8C.2 and 8C.3 that the angular momentum is therefore 
limited to the values

J
hr nhr

r
nh

nz = ± = ± = ± = …λ 2 2
0 1 2π π , , ,

 

The sign of Jz (which indicated the sense of the rotation) can be 
absorbed into the quantum number by replacing n by ml = 0, 
±1, ±2, … where we have allowed ml (the conventional notation 
for this quantum number) to have positive and negative integer 

values. At the same time we recognize the presence of h/2π =  
and obtain

J m mz l l= = ± ± … 0, , ,1 2  

Positive values of ml correspond to rotation in a clockwise 
sense around the z-axis (as viewed in the direction of increas-
ing z, Fig. 8C.3) and negative values of ml correspond to coun-
ter-clockwise rotation around z. It then follows from eqns 8C.1 
and 8C.4 that the energy is limited to the values

E
m

I
mm

l
ll

= = ± ± …
2 2

2
0 1 2


, , ,

 

We explore this result further by noting that:

•	 The energies, labelled by ml, are quantized because 
ml must be an integer.

•	 The occurrence of ml as its square means that the 
energy of rotation is independent of the sense of 
rotation (the sign of ml), as we expect physically. 
That is, states with a given nonzero value of |ml| are 
doubly degenerate.

•	 The state described by ml = 0 is non-degenerate, 
consistent with the interpretation that, when ml is 
zero, the particle has an infinite wavelength and is 
‘stationary’; the question of the direction of rotation 
does not arise.

•	 There is no zero-point energy in this system: the 
lowest possible energy is E0 = 0.

(b) The solutions of the Schrödinger 
equation
To obtain the wavefunctions for the particle on a ring and to 
confirm that the energies from eqn 8C.5 are correct, we need 

0
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First circuit

Second
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First, second,... circuits
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(b)

φ

Figure 8C.2 Two solutions of the Schrödinger equation for 
a particle on a ring. The circumference has been opened out 
into a straight line; the points at ϕ = 0 and 2π are identical. The 
solution in (a) is unacceptable because it is not single-valued. 
Moreover, on successive circuits it interferes destructively with 
itself, and does not survive. The solution in (b) is acceptable: it is 
single-valued, and on successive circuits it reproduces itself.

ml > 0

ml < 0
(a) (b)

Figure 8C.3 The angular momentum of a particle confined to a 
plane can be represented by a vector of length |ml| units along 
the z-axis and with an orientation that indicates the direction of 
motion of the particle. The direction is given by the right-hand 
screw rule, so (a) corresponds to ml > 0, clockwise as seen from 
below and (b) corresponds to ml < 0, anticlockwise as seen from 
below.

Particle on 
a ring 

angular 
momenta  (8C.4)

Particle on 
a ring

energy 
levels  (8C.5)

Ph
ys

ic
al

 in
te

rp
re

ta
tio

n

iranchembook.ir/edu



8C Rotational motion  339

to solve the Schrödinger equation explicitly. We show in the 
following Justification that the normalized wavefunctions and 
corresponding energies are

ψ φ
φ

m

m

ll

l

m( )
( )

, , ,/= = ± ± …ei

2
0 1 21 2π  

E
m

Im
l

l
=

2 2

2


 
Particle on a ring  energy levels  (8C.6b)

The wavefunction with ml = 0 is ψ0(ϕ) = 1/(2π)1/2, corresponding 
to uniform amplitude around the ring, and its energy is E0 = 0.

Particle 
on a 
ring 

wave-
functions  (8C.6a)

Justification 8C.1 The solutions of the Schrödinger 
equation for a particle on a ring

The hamiltonian for a particle of mass m travelling on a circle 
in the xy-plane (with V = 0) is the same as that for free motion 
in a plane (eqn 8A.1 of Topic 8A),

Ĥ
m x y

= − ∂
∂

+ ∂
∂







2 2

2

2

22
 

(8C.7)

but with the constraint to a path of constant radius r. It is 
always a good idea to use coordinates that reflect the full sym-
metry of the system, so we introduce the coordinates r and ϕ 
(The chemist’s toolkit 8C.1). By standard manipulations we can 
write

∂
∂

+ ∂
∂

= + ∂
∂

∂
∂

+ ∂
∂

2

2

2

2 2

2

2

2

2

1 1
x y rr r r φ  

(8C.8)

However, because the radius of the path is fixed, the (blue) 
derivatives with respect to r can be discarded. Only the last 
term in eqn 8C.8 then survives and the hamiltonian becomes 
simply

Ĥ
mr

= − 2

2

2

22
d

dφ  
Particle on a ring  hamiltonian  (8C.9a)

The partial derivative has been replaced by a complete deriva-
tive because ϕ is now the only variable. The moment of inertia, 
I = mr2 has appeared automatically so Ĥ  may be written

Ĥ
I

= − 2 2

22
d

dφ  
Particle on a ring  hamiltonian  (8C.9b)

and the Schrödinger equation is

− =2 2

22I
E

d
d

ψ
φ

ψ
 

We rewrite this equation as

d
d

2

2 2

2ψ
φ

ψ= − IE
  

Particle on 
a ring

schrödinger 
equation  (8C.10a)

For a given energy, 2IE/2 is a constant, which for convenience 
(and an eye on the future) we write as ml

2. At this stage ml is 
just a dimensionless number with no restrictions. Then the 
equation becomes

d
d

2

2
2ψ ψ

φ
= −ml

 
(8C.10b)

The (unnormalized) general solutions of this equation are

ψ φ φ
m

m
l

l( )= ei

 (8C.11)

as can be verified by substitution.
We now select the acceptable solutions from among these 

general solutions by imposing the condition that the wave-
function should be single-valued. That is, the wavefunction ψ 
must satisfy a cyclic boundary condition, and match at points 
separated by a complete revolution: ψ(ϕ + 2π) = ψ(ϕ). On sub-
stituting the general wavefunction into this condition, we find

ψ ψ

ψ

φ φ

φ

φ φ
m

m m m
m

m

m

l
l l l

l
l

l

( ) ( )

( )( )

( )+ = = =

=

+2 2 2 2π π π π

π

e e e e

e

i i i i

i 22ml

 

As eiπ = −1 (Euler’s formula, Mathematical background 3), this 
relation is equivalent to

ψ φ ψ φm
m

ml
l

l
( ) ( )( )+ = −2 1 2π  

Because cyclic boundary conditions require ( ) ,− =1 1 22m
l

l m  
must be a positive or a negative even integer (including 0), and 
therefore ml must be an integer: ml = 0, ±1, ±2, ….

We now normalize the wavefunction by finding the normal-
ization constant N given by eqn 7B.3 ( )( * ) /N x= ∫−∞

∞ −ψ ψ d 1 2 , 
which in this case becomes:

N

m ml l

=






=












∫ ∫ −

1 1

0

2 1 2

0

2
1π

πψ φ φψ φ φ*
/ /

d e e di i

1� �� �� 22 1 2

1
2

=
( ) /π

 

(8C.12)

and the normalized wavefunctions for a particle on a ring are 
those given by eqn 8C.6a. The expression for the energies of 
the states (eqn 8C.6b) is obtained by rearranging the relation 
m IEl

2 = 2 / 2  into E m Il= 22 /2 .

The chemist’s toolkit 8C.1 Cylindrical coordinates

For systems with cylindrical symmetry it is best to work in 
cylindrical coordinates, r, ϕ, and z (Sketch 1), with

x r y r= =cos sinθ φ  

and where

r ranges from  
0 to ∞

ϕ ranges from  
0 to 2π

z ranges from  
−∞ to ∞

iranchembook.ir/edu



340 8 The quantum theory of motion

(c) Quantization of angular momentum
We have seen that the angular momentum around the z-axis 
is quantized and confined to the values given in eqn 8C.4 
(Jz = ml). The wavefunction for the particle on a ring is given 
by eqn 8C.6a:

ψ φ φ φ
φ

m

m

l ll

l

m m( )
( ) ( )

( )/ /= = +e
cos sin

i

2
1

21 2 1 2π π i
 

Therefore, as |ml| increases, the increasing angular momentum 
is associated with:

•	 an increase in the number of nodes in the real (cos mlϕ) 
and imaginary (sin mlϕ) parts of the wavefunction (the 
complex function does not have nodes but each of its real 
and imaginary components does);

•	 a decrease in the wavelength and, by the de Broglie 
relation, an increase in the linear momentum with which 
the particle travels round the ring (Fig. 8C.4).

Example 8C.1 Using the particle-on-a-ring model

The particle-on-a-ring model is a crude but illustrative model 
of cyclic, conjugated molecular systems. Treat the π electrons 
in benzene as particles freely moving over a circular ring of 
carbon atoms and calculate the minimum energy required for 
the excitation of a π electron. The carbon–carbon bond length 
in benzene is 140 pm.

Method Because each carbon atom contributes one π electron, 
six electrons in the conjugated system move along the perim-
eter of the ring. Each state is occupied by two electrons, so 
only the ml = 0, +1, and −1 states are occupied (with the last two 
being degenerate). The minimum energy required for excita-
tion corresponds to a transition of an electron from the ml = +1 
(or −1) state to the ml = +2 (or −2) state. Use eqn 8C.6b, and the 
mass of the electron, to calculate the energies of the states.

Answer From eqn 8C.6b, the energy separation between the 
ml = +1 and the ml = +2 states is

∆E E E= − = − × ×
× × × ×+ −

−

−2 1

34 2

314 1
1 055 10

2 9 109 10 1 40 1
( )

( . )
( . ) ( .

Js
kg 00

9 35 10

10 2

19

−

−= ×
m

J

)

.  

Therefore the minimum energy required to excite an electron 
is 0.935 aJ or 563 kJ mol−1. This energy separation corresponds 
to an absorption frequency of 1.41 PHz (1 PHz = 1015 Hz) and 
a wavelength of 213 nm; the experimental value for a transi-
tion of this kind is 260 nm. That such a primitive model gives 
relatively good agreement is encouraging. In addition, even 
though the model is primitive, it gives insight into the origin 
of the quantized π electron energy levels in cyclic conjugated 
systems (Topic 10D).

A note on good practice Note that, when quoting the 
value of ml, it is good practice always to give the sign, 
even if ml is positive. Thus, we write ml = +1, not ml = 1.

Self-test 8C.1 Use the particle on a ring model to calculate the 
minimum energy required for the excitation of a π electron in 
coronene, C24H12 (1). Assume that the radius of the ring is three 
times the carbon–carbon bond length in benzene and that the 
electrons are confined to the periphery of the molecule.

1 Coronene

(model ring in red)

Answer: For transition from ml = +3 to ml = +4: 
ΔE = 0.0147 zJ or 8.83 J mol−1

|ml| = 2|ml| = 1

ml = 0

Figure 8C.4 The real parts of the wavefunctions of a particle on 
a ring. As shorter wavelengths are achieved, the magnitude of 
the angular momentum around the z-axis grows in steps of .

x
y

φ

z

r

Sketch 1 Cylindrical coordinates

The volume element is

d d d dτ φ= r r z  
For motion in a plane we set z = 0 and for the volume element 
use

d d dτ φ= r r  
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8C Rotational motion  341

As we show in the following Justification, we can come to 
the same conclusion about quantization of the z-component 
of angular momentum more formally by using the argument 
about the relation between eigenvalues and the values of 
observables established in Topic 7C.

Brief illustration 8C.1 Nodes in the wavefunction

Whereas the ml = 0 ground-state wavefunction has no nodes, 
the ml = +1 wavefunction

ψ φ φφ
φ

+ = = +1 1 2 1 22
1

2
( )

( ) ( )
( )/ /

e
cos i sin

i

π π  

has nodes at ϕ = π/2 and 3π/2 in its real part and at ϕ = 0 and 
π in its imaginary part. An increase in the number of nodes 
results in greater curvature of the (real and imaginary parts 
of the) wavefunction, consistent with an increase in kinetic 
and, in this case, total energy. Note that the sense of rotation 
(clockwise seen along the z-axis) is reflected in the fact that the 
imaginary component precedes the real component in phase: 
the real chases the imaginary.

Self-test 8C.2 Determine the number of nodes in the real and 
imaginary parts of the wavefunction for a state of general ml.

Answer: 2ml nodes each in real and imaginary part

Justification 8C.2 The quantization of angular 
momentum

In classical mechanics, the angular momentum l of a particle 
with position r and linear momentum p is given by the vec-
tor product l = r × p (see Mathematical background 5 following 
Chapter 9 for a reminder about vector products). For motion 
restricted to two dimensions, with i and j denoting unit vec-
tors (vectors of length 1) pointing along the positive directions 
on the x- and y-axes, respectively,

r i j p i j= + = +x y p px y  

where px is the component of linear momentum parallel to the 
x-axis and py is the component parallel to the y-axis. Therefore,

l r p i j i j k= × = + × + = −( ) ( ) ( )x y p p xp ypx y y x  

where k is the unit vector pointing along the positive z-axis. 
For a particle rotating in the xy-plane, the angular momentum 
vector lies entirely along the z-axis with a magnitude given by 
|xpy − ypx| (Fig. 8C.5).

The operators for the linear momentum components px and 
py are given in Topic 7C, so the operator for angular momen-
tum about the z-axis is

l̂ x
y

y
xz = ∂

∂ − ∂
∂








i

 

z-component of the 
angular momentum 
operator

 (8C.13a)

When expressed in terms of the cylindrical coordinates r and 
ϕ (The chemist’s toolkit 8C.1), this equation becomes

l̂z = ∂
∂


i φ  

(8C.13b)

With the angular momentum operator available, we can test 
if the wavefunction in eqn 8B.6a is an eigenfunction. Because 
the wavefunction depends on only the coordinate ϕ, the par-
tial derivative in eqn 8C.13b can be replaced by a complete 
derivative and we find

ˆ
( ) ( )/ /l m mz m m

m

l

m

l ml l

l l

l
ψ φ ψ φ ψ

φ φ
= = = =  


i

d
d i

d
d

e
i

i
ei i

2 21 2 1 2π π  
(8C.14)

That is, ψ ml
 is an eigenfunction of lz

 , and corresponds to an angu-
lar momentum ml, in accord with eqn 8C.4. When ml is posi-
tive, the angular momentum is positive (clockwise rotation when 
seen from below); when ml is negative, the angular momentum 
is negative (anticlockwise when seen from below). These features 
are the origin of the vector representation of angular momen-
tum, in which the magnitude is represented by the length of a 
vector and the direction of motion by its orientation (Fig. 8C.6)

r

p

i
j

k

x

y

z

J

Figure 8C.5 The classical angular momentum l of a 
particle with position r and linear momentum p is given 
by the vector product l = r × p. For the motion restricted to 
the xy-plane as depicted here, r = xi + yj, p = pxi + py  j, and 
l = (xpy − ypx)k, with i, j, and k denoting unit vectors along the 
positive x-, y-, and z-axes.

Angular
momentum

Figure 8C.6 The basic ideas of the vector representation 
of angular momentum: the magnitude of the angular 
momentum is represented by the length of the vector, and 
the orientation of the motion in space is represented by the 
orientation of the vector (using the right-hand screw rule).
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342 8 The quantum theory of motion

When the particle is in a state of precisely known angu-
lar momentum mlħ its location around the ring is completely 
unknown because the probability density is uniform:

ψ ψ
φ φ

φ

m m

m m

m

l l

l l
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* e e

e
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i

= 











=
−
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/ /
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Angular momentum and angular position are a pair of comple-
mentary observables (in the sense defined in Topic 7C), and the 
inability to specify them simultaneously with arbitrary preci-
sion is another example of the uncertainty principle.

8C.2 Rotation in three dimensions

We now consider a particle of mass m that is free to move any-
where on the surface of a sphere of radius r. The sphere can 
be thought of as a three-dimensional stack of rings with the 
additional freedom for the particle to migrate from one ring to 
another. The cyclic boundary condition for the particle on each 
ring leads to the quantum number ml that is encountered for 
motion on an individual ring. The requirement that the wave-
function must match as a path is traced over the poles as well as 
round the equator of the sphere surrounding the central point 
introduces a second cyclic boundary condition and therefore a 
second quantum number (Fig. 8C.7).

(a) The wavefunctions
The hamiltonian operator for motion in three dimensions 
(Table 7B.1) is

Ĥ
m

V= − ∇ +2
2

2  

∇ = ∂
∂

+ ∂
∂

+ ∂
∂

2
2

2

2

2

2

2x y z  

The laplacian, ∇2 (read ‘del squared’), is a convenient abbrevia-
tion for the sum of the three second derivatives. For the particle 
confined to a spherical surface, V = 0 wherever it is free to travel 
and r is a constant. To take advantage of the symmetry of the 
problem and the fact that r is constant for a particle on a sphere, 
we use spherical polar coordinates (The chemist’s toolkit 7B.1). 
The wavefunction is therefore a function of the colatitude θ, 
and the azimuth ϕ, and we write it ψ(θ,ϕ). The Schrödinger 
equation is therefore

− ∇ =2
2

2m
Eψ ψ

 

This Schrödinger equation is solved by using the technique of 
separation of variables (Mathematical background 4), which 
confirms that, as shown in the following Justification, the wave-
function can be written as a product of functions

ψ θ φ Θ θ Φ φ( , ) ( ) ( )=  (8C.17)

where Θ is a function only of θ and Φ is a function only of ϕ. 
As confirmed in the Justification, the Φ are the solutions for a 
particle on a ring (Section 8C.1) and the overall solutions are 
specified by the orbital angular momentum quantum number 
l and the magnetic quantum number ml. These quantum num-
bers are restricted to the values

l m l l ll= … = − … −0, , , , , ,1 2 1  
The quantum number l is a non-negative integer and, for a 
given value of l, there are 2l + 1 permitted values of ml.

Justification 8C.3 The solutions of the Schrödinger 
equation for a particle on a sphere

Because r is constant, we can discard the part of the laplacian 
that involves differentiation with respect to r, and so write the 
Schrödinger equation as

− =2

2
2

2mr
EΛ ψψ

 
The moment of inertia, I = mr2, has appeared. This expression 
can be rearranged into

Λ εψ εψ2 2

2= − = IE
  

To verify that this expression is separable, we try the substitu-
tion ψ = ΘΦ and use the form of the legendrian in Table 7B.1:

Λ ΘΦ
θ

ΘΦ
φ θ θ θ ΘΦ

θ εΘΦ2
2

2

2

1 1= ∂
∂

+ ∂
∂

∂
∂ = −

sin sin
sin

( ) ( )

 

Particle on 
a sphere

schrödinger 
equation  (8C.18)

φ

θ

Figure 8C.7 The wavefunction of a particle on the surface 
of a sphere must satisfy two cyclic boundary conditions. This 
requirement leads to two quantum numbers for its state of 
angular momentum.

Three 
dimensions

hamiltonian 
operator  (8C.15a)

Three 
dimensions laplacian  (8C.15b)

Particle on 
a sphere

schrödinger 
equation  (8C.16)
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The normalized wavefunctions ψ(θ,ϕ) for a given l and ml 
are usually denoted Yl ml, ( , )θ φ  and are called the spherical har-
monics (Table 8C.1). They are as fundamental to the descrip-
tion of waves on spherical surfaces as the harmonic (sine and 
cosine) functions are to the description of waves on lines and 
planes. These important functions satisfy the equation1

Λ φ φθ θ2 1Y l l Yl m l ml l, ,( ) ( ), ( ) ,= − +  (8C.19)

Figure 8C.8 is a representation of the spherical harmonics for 
l = 0 to 4 and ml = 0; the use of different tints of shading, which 
correspond to different signs of the wavefunction, emphasizes 

We now use the fact that Θ and Φ are each functions of 
one variable, so the partial derivatives become complete 
derivatives:

Θ
θ

Φ
φ

Φ
θ θ θ Θ

θ εΘΦ
sin

d
d sin

d
d

sin
d
d2

2

2 + = −
 

Division through by ΘΦ and multiplication by sin2θ gives

1 2

2
2

Φ φ
θ

Θ θ θ Θ
θ ε θΦd

d
sin d

d
sin

d
d

sin+ = −
 

and, after minor rearrangement,

1
0

2

2
2

Φ
Φ
φ

θ
Θ θ θ Θ

θ ε θd
d

sin d
d

sin
d
d

sin+ + =
 

The first term on the left depends only on ϕ and the remain-
ing two terms depend only on θ. By the argument presented in 
Mathematical background 4, each term is equal to a constant. 
Thus, if we set the first term equal to the constant −ml

2  (using a 
notation chosen with an eye to the future), the separated equa-
tions are

1 2

2
2 2 2

Φ
Φ
φ

θ
Θ θ θ Θ

θ ε θd
d

sin d
d

sin
d
d

sin= − + =m ml l

 

The first of these two equations is the same as that encoun-
tered for the particle on a ring and has the same solutions:

Φ φ= = ± ± …1
2

0 1 21 2( )
, , ,/π

eim
l

l m
 

(Shortly we shall see that ml is in fact bounded for a three-
dimensional system.) The second equation is new, but its solu-
tions are well known to mathematicians as ‘associated Legendre 
functions’. The cyclic boundary condition for the matching of 
the wavefunction at ϕ = 0 and 2π restricts ml to positive and 
negative integer values (including 0), as for a particle on a ring. 
The additional requirement that the wavefunction also match 
on a journey over the poles (Fig. 8C.7) results in the introduc-
tion of the second quantum number, l, with non-negative inte-
ger values. However, the presence of the quantum number ml in 
the second equation implies that the ranges of the two quantum 
numbers are linked, and it turns out that for a given value of l, 
ml ranges in integer steps from −l to +l, as quoted in the text.

1 For a full account of the solution, see our Molecular quantum mechan-
ics (2011).

l = 0, ml = 0 l = 1, ml = 0

l = 2, ml = 0 l = 3, ml = 0 l = 4, ml = 0

Figure 8C.8 A representation of the wavefunctions of a 
particle on the surface of a sphere that emphasizes the location 
of angular nodes: different colours of shading correspond to 
different signs of the wavefunction. Note that the number 
of nodes increases as the value of l increases. All these 
wavefunctions correspond to ml = 0; a path round the vertical 
z-axis of the sphere does not cut through any nodes.

Table 8C.1 The spherical harmonics, Yl ml, ( , )θ φ

l ml Yl ml, ( , )θ φ
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344 8 The quantum theory of motion

the location of the angular nodes (the positions at which the 
wavefunction passes through zero). Note that:

•	 There are no angular nodes around the z-axis for 
functions with ml = 0. The spherical harmonic with 
l = 0, ml = 0 has no nodes at all: it is a ‘wave’ of 
constant height at all positions of the surface.

•	 The spherical harmonic with l = 1, ml = 0 has a single 
angular node at θ = π/2; therefore, the equatorial 
plane is a nodal plane.

•	 The spherical harmonic with l = 2, ml = 0 has two 
angular nodes.

(b) The energies
In general, the number of angular nodes is equal to l. As the 
number of nodes increases, the wavefunctions become more 
buckled, and with this increasing curvature we can anticipate 
that the kinetic energy of the particle (and therefore its total 
energy because the potential energy is zero) increases.

With the wavefunctions ψ identified as the spherical har-
monics Y, eqn 8C.18, the Schrödinger equation for the particle 
on a sphere, can be written as

− = =+
− +

� �2

2
2

2

2
1

2mr
Y E Yl l

I
El m l m l ml l l

I

l

�

���
Λ ψ, , ,, ( )

( 1) ,l Yl ml

or YYl ml,

 

where we have allowed for the possibility that the energies 
depend on the two quantum numbers. By equating the terms 
in blue we can conclude that the allowed energies of the particle 
are

E l l
Il ml, ( )= +1

2

2
 

Particle on a sphere  energy levels  (8C.20)

According to this equation:

•	 The energies are quantized because l = 0, 1, 2, ….
•	 The energies are independent of the value of ml, 

and henceforth we shall denote them simply as El.

•	 Because there are 2l + 1 different wavefunctions 
(one for each value of ml) that correspond to the 
same energy, it follows that a level with quantum 
number l is (2l + 1)-fold degenerate.

•	 There is no zero-point energy, and E0 = 0.

Brief illustration 8C.2 The angular nodes of the 
spherical harmonics

For the spherical harmonic with l = 2, ml = 0, the angular nodes 
correspond to angles where (see Table 8C.1) 3 cos2θ − 1 = 0, or 
cos θ = ±1/31/2. The angular nodes are therefore at 54.7° and 
125.3°.

Self-test 8C.3 Find the angular nodes for the spherical har-
monic l = 3, ml = 0.

Answer: θ = 39.2°, 90°, 140.8°
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Example 8C.2 Using the rotational energy levels

Under certain circumstances, the particle on a sphere is a rea-
sonable model for the description of the rotation of diatomic 
molecules. Consider, for example, the rotation of a 1H127I 
molecule: because of the large difference in atomic masses, it 
is appropriate to picture the 1H atom as orbiting a stationary 
127I atom at a distance r = 160 pm, the equilibrium bond dis-
tance. Determine the energies and degeneracies of the lowest 
four energy levels of an 1H127I molecule freely rotating in three 
dimensions. What is the frequency of the transition between 
the lowest two rotational levels?

Method Because in this model the 127I atom is stationary, the 
moment of inertia is I m r= 1

2
H , with r = 160 pm. The rotational 

energies are given in eqn 8C.20; but for reasons that are devel-
oped in Topic 12B, the angular momentum quantum number 
of rotating molecules is denoted J in place of l, and we use that 
symbol here. The degeneracy of a level with quantum number 
J is 2J + 1, the analogue of 2l + 1. A transition between two rota-
tional levels can be brought about by the emission or absorp-
tion of a photon with a frequency given by the Bohr frequency 
condition (Topic 7A, hν = ΔE).

Answer The moment of inertia is

I = × × × = ×− −( . ) ( . ) .1 675 10 1 60 10 4 29 127 12 2kg m

m r1H 2� ��� ��� � ��� ���
00 47 2− kg m  

It follows that

2 34 2

47 2
22

2
1 055 10

2 4 29 10
1 30 10

I
= ×

× ×
= ×

−

−
−( . )

( . )
.

Js
kg m

J
 

or 0.130 zJ. We now draw up the following table, where the 
molar energies are obtained by multiplying the individual 
energies by Avogadro’s constant:

The energy separation between the two lowest rotational 
energy levels (J = 0 and 1) is 2.60 × 10−22 J, which corresponds to 
a photon frequency of

 = = ×
×

= × =
−

−
−∆E

h
2 60 10

6 626 10
3 92 10 392

22

34
11 1.

.
.

J
Js

s GHz
Hz

 

J E/zJ E/(J mol−1) Degeneracy

0 0 0 1

1 0.260 156 3

2 0.780 470 5

3 1.56 939 7
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8C Rotational motion  345

(c) Angular momentum
The energy of a rotating particle is related classically to its 
angular momentum J by E = J 2/2I (eqn 8C.1). Therefore, by 
comparing this equation with eqn 8C.20, we can deduce that 
because the energy is quantized, then so too is the magnitude of 
the angular momentum, and confined to the values

{ ( )} , , ,/l l l+ = …1 1 21 2  0  

We show in the following Justification that the angular momen-
tum about the z-axis is also quantized, with the values

m m l l ll l = − … −, , ,1  

(d) Space quantization
The result that ml is confined to the values l, l − 1, …, −l for a 
given value of l means that the component of angular momen-
tum about the z-axis—the contribution to the total angular 
momentum of rotation around that axis—may take only 2l + 1 
values. If we represent the angular momentum by a vector of 
length {l(l + 1)}1/2, then it follows that this vector must be ori-
ented so that its projection on the z-axis is ml and that it can 
have only 2l + 1 orientations rather than the continuous range 
of orientations of a rotating classical body (Fig. 8C.9). The 
remarkable implication is that the orientation of a rotating body 
is quantized.

Radiation of this frequency belongs to the microwave region 
of the electromagnetic spectrum, so microwave spectroscopy 
is used to study molecular rotations (Topic 12C). Because the 
transition frequencies depend on the moment of inertia and 
frequencies can be measured with great precision, microwave 
spectroscopy is a very precise technique for the determination 
of bond lengths.

Self-test 8C.4 What is the frequency of the transition between 
the lowest two rotational levels in 2H127I? (Same bond length 
as 1H127I.)

Answer: 196 GHz

Particle 
on a 
sphere

magnitude 
of angular 
momentum

 (8C.21a)

Particle 
on a 
sphere

z-component 
of angular 
momentum

 (8C.21b)

Justification 8C.4 The z-component of angular 
momentum for a particle on a sphere

The operator for the z-component of the angular momentum 
in polar coordinates is

l̂z = ∂
∂


i φ  

With this operator available, we can test if the wavefunction in 
eqn 8C.17 is an eigenfunction:

ˆ ˆl l m mz z l lψ ΘΦ φ ΘΦ Θ φ Φ Θ Φ ψ

Φ

= = ∂
∂ = = × =� �

�

� �
i i

d
d

iml

The partial derivative has been replaced above by a full deriva-
tive because Θ is independent of ϕ and we have used the result, 
as given in Justification 8C.1, that Φ φ∝eiml . Therefore, the 
wavefunctions are eigenfunctions of lz

 , and correspond to an 
angular momentum around the z-axis of ml, in accord with 
eqn 8C.21b.

Brief illustration 8C.3 The magnitude of the angular 
momentum

The lowest four rotational energy levels of the 1H127I molecule 
of Example 8C.2 correspond to J = 0, 1, 2, 3. Using equations 
8C.21a and 8C.21b, we can draw up the following table:

Self-test 8C.5 What is the degeneracy and magnitude of the 
angular momentum for J = 5?

Answer: 11, 301/2

J Magnitude of angular 
momentum/ħ

Degeneracy z-Component of angular 
momentum/ħ

0 0 1 0

1 21/2 3 +1, 0, −1

2 61/2 5 +2, +1, 0, −1, −2

3 121/2 7 +3, +2, +1, 0, −1, −2, −3

ml = +2

ml = +1

ml = 0

ml = –1

ml = –2

z

Figure 8C.9 The permitted orientations of angular momentum 
when l = 2. We shall see soon that this representation is too 
specific because the azimuthal orientation of the vector (its 
angle around z) is indeterminate.
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346 8 The quantum theory of motion

The quantum mechanical result that a rotating body may not 
take up an arbitrary orientation with respect to some specified 
axis (for example, an axis defined by the direction of an exter-
nally applied electric or magnetic field) is called space quan-
tization. It was confirmed by an experiment first performed 
by Otto Stern and Walther Gerlach in 1921, who shot a beam 
of silver atoms through an inhomogeneous magnetic field 
(Fig. 8C.10). The idea behind the experiment was that a sil-
ver atom behaves like a magnet and interacts with the applied 
field (a point explored in more detail in the discussion of ‘spin’ 
in Topic 9B.). According to classical mechanics, because the 
orientation of the angular momentum can take any value, the 
associated magnet can take any orientation. Because the direc-
tion in which the magnet is driven by the inhomogeneous field 
depends on the magnet’s orientation, it follows that a broad 
band of atoms is expected to emerge from the region where 
the magnetic field acts. According to quantum mechanics, 
however, because the orientation of the angular momentum is 
quantized, the associated magnet lies in a number of discrete 
orientations, so several sharp bands of atoms are expected.

In their first experiment, Stern and Gerlach appeared to con-
firm the classical prediction. However, the experiment is dif-
ficult because collisions between the atoms in the beam blur 
the bands. When the experiment was repeated with a beam 
of very low intensity (so that collisions were less frequent), 
they observed discrete bands, and so confirmed the quantum 
prediction.

(e) The vector model
Throughout the preceding discussion, we have referred to 
the z-component of angular momentum (the component 
about an arbitrary axis, which is conventionally denoted z), 
and have made no reference to the x- and y-components (the 

components about the two axes perpendicular to z). The reason 
for this omission is found by examining the operators for the 
three components, each one being given by a term like that in 
eqn 8C.13a:

ˆ

ˆ

ˆ

l y
z

z
y

l z
x

x
z

l x
y

y
x

x

y

z

= ∂
∂ − ∂

∂






= ∂
∂ − ∂

∂






= ∂
∂ − ∂

∂







i

i

i






= ∂
∂


i φ  

The commutation relations among the three operators, which 
you are invited to derive in Problem 8C.11, are

[ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , ,l l l l l l l l lx y z y z x z x y]= = =[ ] [ ]i i i    

Therefore, we cannot specify more than one component (unless 
l = 0). In other words, lx, ly, and lz are complementary observa-
bles. On the other hand, the operator for the square of the mag-
nitude of the angular momentum is

ˆ ˆ ˆ ˆl l l lx y z
2 2 2 2= + +  

This operator commutes with all three components (see 
Problem 8C.11):

[ ]=ˆ ˆ,l lq
2 0  

Therefore, although we may specify the magnitude of the angu-
lar momentum and any of its components, if lz is known, then it 
is impossible to ascribe values to the other two components. It 
follows that the illustration in Fig. 8C.9, which is summarized 
in Fig. 8C.11a, gives a false impression of the state of the system, 
because it suggests definite values for the x- and y-components. 
A better picture must reflect the impossibility of specifying lx 
and ly if lz is known.

The vector model of angular momentum uses pictures like 
that in Fig. 8C.11b. The cones are drawn with side {l(l + 1)}1/2 
units, and represent the magnitude of the angular momentum. 
Each cone has a definite projection (of ml units) on the z-axis, 
representing the system’s precise value of lz. The lx and ly projec-
tions, however, are indefinite. The vector representing the state 
of angular momentum can be thought of as lying with its tip on 
any point on the mouth of the cone. At this stage it should not 
be thought of as sweeping round the cone; that aspect of the 
model will be added when we allow the picture to convey more 
information (Topics 9B and 9C).

angular 
momentum 
operators

 (8C.22)

operator for square of magnitude 
of angular momentum  (8C.24)

q = x, y, and z
commutators of 
angular momen-
tum operators

 (8C.25)

 (8C.23)
angular 
momentum 
commutators

(a)

(b)

(c)

Figure 8C.10 (a) The experimental arrangement for the Stern–
Gerlach experiment: the magnet provides an inhomogeneous 
field. (b) The classically expected result. (c) The observed 
outcome using silver atoms.
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8C Rotational motion  347

Checklist of concepts

☐ 1. The energy and angular momentum for a particle 
rotating in two- or three-dimensions are quantized; 
quantization results from the requirement that the 
wavefunction satisfies a cyclic boundary condition.

☐ 2.  All energy levels of a particle rotating in two dimen-
sions are doubly-degenerate except for the lowest level 
(ml = 0).

☐ 3. There is no zero-point energy for a particle rotating in a 
plane or on a sphere.

☐ 4. It is impossible to specify the angular momentum and 
location of the particle rotating in two dimensions 
simultaneously with arbitrary precision.

☐ 5. For a particle rotating in three dimensions, the cyclic 
boundary conditions imply that the magnitude and 
z-component of the angular momentum are quantized.

☐ 6. Space quantization refers to the quantum mechanical 
result that a rotating body may not take up an arbitrary 
orientation with respect to some specified axis.

☐ 7. Angular momentum and orientation are complemen-
tary observables.

☐ 8. Because the components of angular momentum do 
not commute, only the magnitude of the angular 
momentum and one of its components can be specified 
simultaneously.

☐ 9. In the vector model of angular momentum, the angu-
lar momentum is represented by a cone with a side of 
length {l(l + 1)}1/2 and a projection of ml on the z-axis. 
The vector can be thought of as lying with its tip on an 
indeterminate point on the mouth of the cone.

Checklist of equations

Brief illustration 8C.4 The vector model of the angular 
momentum

If the wavefunction of a rotating molecule is given by the 
spherical harmonic Y3,+2 then the angular momentum can be 
represented by a cone
•	 with a side of length 121/2 (representing the magnitude 

of 121/2ħ); and
•	 with a projection of +2 on the z-axis (representing the 

z-component of +2).

Self-test 8C.6 Analyse the vector model of angular momen-
tum if the wavefunction is given by the spherical harmonic 
Y3,−1.

Answer: length is 121/2, projection is −1

(a) (b)

+2

+1

0

–1

–2

ml

z

+1

0

–1

–2

z +2

Figure 8C.11 (a) A summary of Fig. 8C.9. However, because 
the azimuthal angle of the vector around the z-axis is 
indeterminate, a better representation is as in (b), where each 
vector lies at an unspecified azimuthal angle on its cone.

Property Equation Comment Equation number

Wavefunction of particle on ring ψ φ φ
m

m
l

l( ) ( ) /= e /i 2 1 2π ml = 0, ± 1, ± 2, … 8C.6a

Energy levels of particle on ring E m Im ll
= 2 2 2 / ml = 0, ± 1, ± 2, …; I = mr2 8C.6b

z-Component of angular momentum of particle on ring lz = ml ml = 0, ± 1, ± 2, … 8C.14

Wavefunction of particle on sphere ψ θ φ θ φ( , ) ( , ),=Yl ml
Y is a spherical harmonic

Energy levels of particle on sphere E l l Il ml, ( )= +1 22 / l = 0, 1, 2, … 8C.20
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348 8 The quantum theory of motion

Property Equation Comment Equation number

Magnitude of angular momentum {l(l + 1)}1/2 l = 0, 1, 2, … 8C.21a

z-Component of angular momentum ml ml = l, l − 1, …, − l 8C.21b

Angular momentum commutation relations [ , ]

[ , ]

[ , ]

l l l

l l l

l l l

x y z

y z x

z x y

=

=

=

i

i

i







[ , ] , , ,l l q x y zq
2 0= = and

8C.23

8C.25
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chaPter 8  The quantum theory of motion

TOPIC 8A translation

Discussion questions
8A.1 Discuss the physical origin of quantization energy for a particle confined 
to moving inside a one-dimensional box.

8A.2 Describe the features of the solution of the particle in a one-dimensional 
box that appear in the solutions of the particle in two- and three-dimensional 
boxes. What concept applies to the latter but not to a one-dimensional box?

8A.3 Discuss the physical origins of quantum mechanical tunnelling. Why is 
tunnelling more likely to contribute to the mechanisms of electron transfer 
and proton transfer processes than to mechanisms of group transfer reactions, 
such as AB + C → A + BC (where A, B, and C are large molecular groups)?

Exercises
8A.1(a) Determine the linear momentum and kinetic energy of a free electron 
described by the wavefunction eikx with k = 3 nm−1.
8A.1(b) Determine the linear momentum and kinetic energy of a free proton 
described by the wavefunction e−ikx with k = 5 nm−1.

8A.2(a) Write the wavefunction for a particle of mass 2.0 g travelling to the left 
with a kinetic energy of 20 J.
8A.2(b) Write the wavefunction for a particle of mass 1.0 g travelling to the 
right at 10 m s−1.

8A.3(a) Calculate the energy separations in joules, kilojoules per mole, 
electronvolts, and reciprocal centimetres between the levels (i) n = 2 and n = 1, 
(ii) n = 6 and n = 5 of an electron in a box of length 1.0 nm.
8A.3(b) Calculate the energy separations in joules, kilojoules per mole, 
electronvolts, and reciprocal centimetres between the levels (i) n = 3 and n = 1, 
(ii) n = 7 and n = 6 of an electron in a box of length 1.50 nm.

8A.4(a) Calculate the probability that a particle will be found between 0.49L 
and 0.51L in a box of length L when it has (i) n = 1, (ii) n = 2. Take the 
wavefunction to be a constant in this range.
8A.4(b) Calculate the probability that a particle will be found between 0.65L 
and 0.67L in a box of length L when it has (i) n = 1, (ii) n = 2. Take the 
wavefunction to be a constant in this range.

8A.5(a) Calculate the expectation values of p̂  and p̂2 for a particle in the state 
n = 1 in a one-dimensional square-well potential.
8A.5(b) Calculate the expectation values of p̂  and p̂2 for a particle in the state 
n = 2 in a one-dimensional square-well potential.

8A.6(a) Calculate the expectation values of x̂  and x̂2 for a particle in the state 
n = 1 in a one-dimensional square-well potential.
8A.6(b) Calculate the expectation values of of x̂  and x̂2 for a particle in the 
state n = 2 in a one-dimensional square-well potential.

8A.7(a) An electron is confined to a square well of length L. What would be 
the length of the box such that the zero-point energy of the electron is equal 
to its rest mass energy, mec2? Express your answer in terms of the parameter 
λC = h/mec, the ‘Compton wavelength’ of the electron.
8A.7(b) Repeat Exercise 8A.7(a) for a general particle of mass m in a cubic box.

8A.8(a) What are the most likely locations of a particle in a box of length L in 
the state n = 3?

8A.8(b) What are the most likely locations of a particle in a box of length L in 
the state n = 5?

8A.9(a) Calculate the percentage change in a given energy level of a particle in 
a one-dimensional box when the length of the box is increased by 10 per cent.
8A.9(b) Calculate the percentage change in a given energy level of a particle 
in a cubic box when the length of the edge of the cube is decreased by 10 per 
cent in each direction.

8A.10(a) What is the value of n of a particle in a one-dimensional box such 
that the separation between neighbouring levels is equal to the mean energy 
of thermal motion ( )1

2
kT .

8A.10(b) A nitrogen molecule is confined in a cubic box of volume 1.00 m3. 
(i) Assuming that the molecule has an energy equal to 3

2
kT  at T = 300 K, 

what is the value of n n n nx y z= + +( ) /2 2 2 1 2  for this molecule? (ii) What is the 
energy separation between the levels n and n + 1? (iii) What is its de Broglie 
wavelength?

8A.11(a) For a particle in a rectangular box with sides of length L1 = L and 
L2 = 2L, find a state that is degenerate with the state n1 = n2 = 2. Degeneracy 
is normally associated with symmetry; why, then, are these two states 
degenerate?
8A.11(b) For a particle in a rectangular box with sides of length L1 = L and 
L2 = 2L, find a state that is degenerate with the state n1 = 2, n2 = 8. Degeneracy 
is normally associated with symmetry; why, then, are these two states 
degenerate?

8A.12(a) Consider a particle in a cubic box. What is the degeneracy of the level 
that has an energy three times that of the lowest level?
8A.12(b) Consider a particle in a cubic box. What is the degeneracy of the level 
that has an energy 14

3
 times that of the lowest level?

8A.13(a) Suppose that the junction between two semiconductors can be 
represented by a barrier of height 2.0 eV and length 100 pm. Calculate the 
transmission probability of an electron with energy 1.5 eV.
8A.13(b) Suppose that a proton of an acidic hydrogen atom is confined to an 
acid that can be represented by a barrier of height 2.0 eV and length 100 pm. 
Calculate the probability that a proton with energy 1.5 eV can escape from  
the acid.

Problems
8A.1 Calculate the separation between the two lowest levels for an O2 molecule 
in a one-dimensional container of length 5.0 cm. At what value of n does the 
energy of the molecule reach 1

2
kT  at 300 K, and what is the separation of this 

level from the one immediately below?

8A.2 When β-carotene (1) is oxidized in vivo, it breaks in half and forms two 
molecules of retinal (vitamin A), which is a precursor to the pigment in the 
retina responsible for vision.
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1  β-Carotene

The conjugated system of retinal consists of 11 C atoms and one O atom. In 
the ground state of retinal, each level up to n = 6 is occupied by two electrons. 
Assuming an average internuclear distance of 140 pm, calculate (a) the 
separation in energy between the ground state and the first excited state in 
which one electron occupies the state with n = 7, and (b) the frequency of the 
radiation required to produce a transition between these two states. (c) Using 
your results, choose among the words in parentheses to generate a rule for the 
prediction of frequency shifts in the absorption spectra of linear polyenes:

The absorption spectrum of a linear polyene shifts to (higher/lower) 
frequency as the number of conjugated atoms (increases/decreases).

8A.3‡ A particle is confined to move in a one-dimensional box of length L. 
(a) If the particle is classical, show that the average value of x is 1

2
L and that 

the root-mean square value is L/31/2. (b) Show that for large values of n, a 
quantum particle approaches the classical values. This result is an example of 
the correspondence principle, which states that, for very large values of the 
quantum numbers, the predictions of quantum mechanics approach those of 
classical mechanics.

8A.4 Here we explore further the idea introduced in Impact I8.1 that quantum 
mechanical effects need to be invoked in the description of the electronic 
properties of metallic nanocrystals, here modelled as three-dimensional 
boxes. (a) Set up the Schrödinger equation for a particle of mass m in a 
three-dimensional rectangular box with sides L1, L2, and L3. Show that the 
Schrödinger equation is separable. (b) Show that the wavefunction and the 
energy are defined by three quantum numbers. (c) Specialize the result from 
part (b) to an electron moving in a cubic box of side L = 5 nm and draw 
an energy diagram resembling Fig. 8A.2 and showing the first 15 energy 
levels. Note that each energy level may consist of degenerate energy states. 
(d) Compare the energy level diagram from part (c) with the energy level 

diagram for an electron in a one-dimensional box of length L = 5 nm. Are the 
energy levels more or less sparsely distributed in the cubic box than in the 
one-dimensional box?

8A.5 Many biological electron transfer reactions, such as those associated 
with biological energy conversion, may be visualized as arising from electron 
tunnelling between protein-bound cofactors, such as cytochromes, quinones, 
flavins, and chlorophylls. This tunnelling occurs over distances that are 
often greater than 1.0 nm, with sections of protein separating electron donor 
from acceptor. For a specific combination of donor and acceptor, the rate 
of electron tunnelling is proportional to the transmission probability, with 
κ ≈ 7 nm−1 (eqn 8A.23). By what factor does the rate of electron tunnelling 
between two cofactors increase as the distance between them changes from 
2.0 nm to 1.0 nm?

8A.6 Derive eqn 8A.23a, the expression for the transmission probability and 
show that then κL ≫  1 it reduces to eqn 8A.23b.

8A.7‡ Consider the one-dimensional space in which a particle has one of three 
potential energies depending upon its position. They are: V = 0 for −∞ < x ≤ 0, 
V = V2 for 0 ≤ x ≤ L, and V = V3 for L ≤ x < ∞. The particle wavefunction 
has both a component eik x1  that is incident upon the barrier V2 and a 
reflected component e i− k x1  in Zone 1 (−∞ < x ≤ 0). In Zone 2 (0 ≤ x ≤ L) the 
wavefunction has components ek x2  and e−k x2 . In Zone 3 the wavefunction 
has only a forward component, eik x3 , which represents a particle that has 
traversed the barrier. The energy of the particle, E, is somewhere in the range 
V2 > E > V3. The transmission probability, T, is the ratio of the square modulus 
of Zone 3 amplitude to the square modulus of the incident amplitude. (a) 
Base your calculation on the continuity of the amplitude and slope of the 
wavefunction at the locations of the zone boundaries and derive a general 
equation for T. (b) Show that the general equation for T reduces to eqn 8A.23b 
in the high, wide barrier limit when V1 = V3 = 0. (c) Draw a graph of the 
probability of proton tunnelling when V3 = 0, L = 50 pm, and E = 10 kJ mol−1 in 
the barrier range E < V2 < 2E.

8A.8 The wavefunction inside a long barrier of height V is ψ = Ne−κ x. Calculate 
(a) the probability that the particle is inside the barrier and (b) the average 
penetration depth of the particle into the barrier.

TOPIC 8B Vibrational motion

Discussion questions
8B.1 Describe the variation of the separation of the vibrational energy levels 
with the mass and force constant of the harmonic oscillator.

8B.2 In what ways does the quantum mechanical description of a harmonic 
oscillator merge with its classical description at high quantum numbers?

8B.3 What is the physical reason for the existence of a zero-point vibrational 
energy?

Exercises
8B.1(a) Calculate the zero-point energy of a harmonic oscillator consisting of a 
particle of mass 2.33 × 10−26 kg and force constant 155 N m−1.
8B.1(b) Calculate the zero-point energy of a harmonic oscillator consisting of a 
particle of mass 5.16 × 10−26 kg and force constant 285 N m−1.

8B.2(a) For a certain harmonic oscillator of effective mass 1.33 × 10−25 kg, the 
difference in adjacent energy levels is 4.82 zJ. Calculate the force constant of 
the oscillator.

8B.2(b) For a certain harmonic oscillator of effective mass 2.88 × 10−25 kg, the 
difference in adjacent energy levels is 3.17 zJ. Calculate the force constant of 
the oscillator.

8B.3(a) Calculate the wavelength of a photon needed to excite a transition 
between neighbouring energy levels of a harmonic oscillator of effective mass 
equal to that of a proton (1.0078mu) and force constant 855 N m−1.
8B.3(b) Calculate the wavelength of a photon needed to excite a transition 
between neighbouring energy levels of a harmonic oscillator of effective 
mass equal to that of an oxygen atom (15.9949mu) and force constant 
544 N m−1.‡  These problems were supplied by Charles Trapp and Carmen Giunta.
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8B.4(a) The vibrational frequency of H2 is 131.9 THz. What is the vibrational 
frequency of D2 (D = 2H)?
8B.4(b) The vibrational frequency of H2 is 131.9 THz. What is the vibrational 
frequency of T2 (T = 3H)?

8B.5(a) Calculate the minimum excitation energies of (i) a pendulum of length 
1.0 m on the surface of the Earth, (ii) the balance-wheel of a clockwork watch 
(ν = 5 Hz).
8B.5(b) Calculate the minimum excitation energies of (i) the 33 kHz quartz 
crystal of a watch, (ii) the bond between two O atoms in O2, for which 
kf = 1177 N m−1.

8B.6(a) Assuming that the vibrations of a 35Cl2 molecule are equivalent 
to those of a harmonic oscillator with a force constant kf = 329 N m−1, 
what is the zero-point energy of vibration of this molecule? The effective 
mass of a homonuclear diatomic molecule is half its total mass, and 
m(35Cl) = 34.9688mu.

8B.6(b) Assuming that the vibrations of a 14N2 molecule are equivalent to 
those of a harmonic oscillator with a force constant kf = 2293.8 N m−1, what 
is the zero-point energy of vibration of this molecule? The effective mass of a 
homonuclear diatomic molecule is half its total mass, and m(14N) = 14.0031mu.

8B.7(a) Locate the nodes of the harmonic oscillator wavefunction with v = 4.
8B.7(b) Locate the nodes of the harmonic oscillator wavefunction with v = 5.

8B.8(a) What are the most probable displacements of a harmonic oscillator 
with v = 1?
8B.8(b) What are the most probable displacements of a harmonic oscillator 
with v = 3?

8B.9(a) Calculate the probability that an OeH bond treated as an harmonic 
oscillator will be found at a classically forbidden extension when v = 1 .
8B.9(b) Calculate the probability that an OeH bond treated as an harmonic 
oscillator will be found at a classically forbidden extension when v = 2 .

Problems
8B.1 The mass to use in the expression for the vibrational frequency of a 
diatomic molecule is the effective mass μ = mAmB/(mA + mB), where mA and 
mB are the masses of the individual atoms. The following data on the infrared 
absorption wavenumbers (wavenumbers in cm−1) of molecules are taken from 
Spectra of diatomic molecules, G. Herzberg, van Nostrand (1950):

Calculate the force constants of the bonds and arrange them in order of 
increasing stiffness.

8B.2 Carbon monoxide binds strongly to the Fe2+ ion of the haem group of 
the protein myoglobin. Estimate the vibrational frequency of CO bound to 
myoglobin by using the data in Problem 8B.1 and by making the following 
assumptions: the atom that binds to the haem group is immobilized, the 
protein is infinitely more massive than either the C or O atom, the C atom 
binds to the Fe2+ ion, and binding of CO to the protein does not alter the force 
constant of the C a O bond.

8B.3 Of the four assumptions made in Problem 8B.2, the last two are 
questionable. Suppose that the first two assumptions are still reasonable and 
that you have at your disposal a supply of myoglobin, a suitable buffer in 
which to suspend the protein, 12C16O, 13C16O, 12C18O, 13C18O, and an infrared 
spectrometer. Assuming that isotopic substitution does not affect the force 
constant of the C a O bond, describe a set of experiments that: (a) proves 
which atom, C or O, binds to the haem group of myoglobin, and (b) allows 
for the determination of the force constant of the C a O bond for myoglobin-
bound carbon monoxide.

8B.4 Confirm that a function of the form e−gx2  is a solution of the Schrödinger 
equation for the ground state of a harmonic oscillator and find an expression 
for g in terms of the mass and force constant of the oscillator.

8B.5 Calculate the mean kinetic energy of a harmonic oscillator by using the 
relations in Table 8B.1.

8B.6 Calculate the values of 〈x3〉 and 〈x4〉 for a harmonic oscillator by using the 
relations in Table 8B.1.

8B.7 Extend the calculation in Example 8B.4 by using mathematical software 
to calculate the probability that a harmonic oscillator will be found outside 
the classically allowed displacements for general v and plot the probability as 
a function of v.

8B.8 The intensities of spectroscopic transitions between the vibrational states 
of a molecule are proportional to the square of the integral ∫ψv ′xψvdx over 
all space. Use the relations between Hermite polynomials given in Table 8B.1 
to show that the only permitted transitions are those for which v ′ = v ± 1 and 
evaluate the integral in these cases.

8B.9 Use mathematical software to construct a harmonic oscillator wavepacket 
of the form

Ψ ψ( , ) ( ) /x t c x E t

N

= −

=
∑ v v

v

ve i 

0  
where the wavefunctions and energies are those of a harmonic oscillator and 
with coefficients of your choice (for example, all equal). Explore how the 
wavepacket oscillates to and fro with time.

8B.10 Show that, whatever superposition of harmonic oscillator states is used 
to construct a wavepacket (as in Problem 8B.9), it is localized at the same 
place at the times 0, T, 2T, …, where T is the classical period of the oscillator.

8B.11 The potential energy of the rotation of one CH3 group relative to its 
neighbour in ethane can be expressed as V(φ) = V0 cos 3φ. Show that for 
small displacements the motion of the group is quantized and calculate the 
energy of excitation from v = 0 to v = 1. What do you expect to happen to the 
energy levels and wavefunctions as the excitation increases to high quantum 
numbers?

8B.12 Use the virial theorem to obtain an expression for the relation between 
the mean kinetic and potential energies of an electron in a hydrogen atom.

TOPIC 8C rotational motion

Discussion questions
8C.1 Discuss the physical origin of quantization of energy for a particle 
confined to motion around a ring.

8C.2 Describe the features of the solution of the particle on a ring that appear 
in the solution of the particle on a sphere. What concept applies to the latter 
but not to the former?

8C.3 Describe the vector model of angular momentum in quantum mechanics. 
What features does it capture? What is its status as a model?

H35Cl H81Br HI CO NO

2990 2650 2310 2170 1904
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Exercises
8C.1(a) The rotation of a molecule can be represented by the motion of a 
point mass moving over the surface of a sphere. Calculate the magnitude 
of its angular momentum when l = 1 and the possible components of the 
angular momentum on an arbitrary axis. Express your results as multiples 
of .
8C.1(b) The rotation of a molecule can be represented by the motion of a point 
mass moving over the surface of a sphere with angular momentum quantum 
number l = 2. Calculate the magnitude of its angular momentum and the 
possible components of the angular momentum on an arbitrary axis. Express 
your results as multiples of ħ.

8C.2(a) The wavefunction, ψ(ϕ), for the motion of a particle in a ring is of the 
form ψ = Neimϕ. Determine the normalization constant, N.
8C.2(b) Confirm that wavefunctions for a particle in a ring with different 
values of the quantum number ml are mutually orthogonal.

8C.3(a) Calculate the minimum excitation energy of a proton constrained to 
rotate in a circle of radius 100 pm around a fixed point.
8C.3(b) Calculate the value of |ml| for the system described in the preceding 
exercise corresponding to a rotational energy equal to the classical average 
energy at 25 °C (which is equal to 1

2
kT ).

8C.4(a) The moment of inertia of a CH4 molecule is 5.27 × 10−47 kg m2. What is 
the minimum energy needed to start it rotating?

8C.4(b) The moment of inertia of an SF6 molecule is 3.07 × 10−45 kg m2. What is 
the minimum energy needed to start it rotating?

8C.5(a) Use the data in Exercise 8C.4(a) to calculate the energy needed to 
excite a CH4 molecule from a state with l = 1 to a state with l = 2.
8C.5(b) Use the data in Exercise 8C.4(b) to calculate the energy needed to 
excite an SF6 molecule from a state with l = 2 to a state with l = 3.

8C.6(a) What is the magnitude of the angular momentum of a CH4 molecule 
when it is rotating with its minimum energy?
8C.6(b) What is the magnitude of the angular momentum of an SF6 molecule 
when it is rotating with its minimum energy?

8C.7(a) Draw scale vector diagrams to represent the states (i) l = 1, ml = +1,  
(ii) l = 2, ml = 0.
8C.7(b) Draw the vector diagram for all the permitted states of a particle with 
l = 6.

8C.8(a) The number of states corresponding to a given energy plays a crucial 
role in atomic structure and thermodynamic properties. Determine the 
degeneracy of a body rotating with l = 3.
8C.8(b) The number of states corresponding to a given energy plays a crucial 
role in atomic structure and thermodynamic properties. Determine the 
degeneracy of a body rotating with l = 4.

Problems
8C.1 The particle on a ring is a useful model for the motion of electrons 
around the porphine ring (2), the conjugated macrocycle that forms the 
structural basis of the haem group and the chlorophylls.

HN

NNH

N

2  Porphine (porphin) ring

We may treat the group as a circular ring of radius 440 pm, with 22 electrons 
in the conjugated system moving along the perimeter of the ring. In the 
ground state of the molecule each state is occupied by two electrons. (a) 
Calculate the energy and angular momentum of an electron in the highest 
occupied level. (b) Calculate the frequency of radiation that can induce a 
transition between the highest occupied and lowest unoccupied levels.

8C.2 Use mathematical software to construct a wavepacket for a particle 
moving on a circular ring of the form

Ψ φ φ( , )

,

( / )t c E m I

m

m

m
m E t

m l

l

l

l
l ml

l
= =

=

−∑
0

2 2 2

max

e /i  

 
with coefficients c of your choice (for example, all equal). Explore how the 
wavepacket migrates on the ring but spreads with time.

8C.3 Evaluate the z-component of the angular momentum and the kinetic 
energy of a particle on a ring that is described by the (unnormalized) 
wavefunctions (a) eiφ, (b) e−2iφ, (c) cos φ, and (d) (cos χ)eiφ + (sin χ)e−iφ.

8C.4 Is the Schrödinger equation for a particle on an elliptical ring of semi-
major axes a and b separable? Hint: Although r varies with angle ϕ, the two 
are related by r2 = a2 sin2φ + b2 cos2φ.

8C.5 Calculate the energies of the first four rotational levels of 1H127I free 
to rotate in three dimensions, using for its moment of inertia I = μR2, with 
μ = mHmI/(mH + mI) and R = 160 pm.

8C.6 Confirm that the spherical harmonics (a) Y0,0, (b) Y2,–1, and (c) Y3,+3 
satisfy the Schrödinger equation for a particle free to rotate in three 
dimensions, and find its energy and angular momentum in each case.

8C.7 Confirm that Y3,+3 is normalized to 1. (The integration required is over 
the surface of a sphere.)

8C.8 Show that the function f = cos ax cos by cos cz is an eigenfunction of ∇2, 
and determine its eigenvalue.

8C.9 Develop an expression (in Cartesian coordinates) for the quantum 
mechanical operators for the three components of angular momentum 
starting from the classical definition of angular momentum, l = r × p. Show 
that any two of the components do not mutually commute, and find their 
commutator.

8C.10 Starting from the operator ˆ
ˆ ˆl xp ypz y x= −    , prove that in spherical polar 

coordinates l̂z = –iħ∂/∂ϕ.

8C.11 Show that [l2,lz] = 0, and then, without further calculation, justify the 
remark that ˆ , ˆl lq

2 0=  for all q = x, y, and z.

8C.12 A particle confined to within a spherical cavity is a reasonable starting 
point for the discussion of the electronic properties of spherical metal 
nanoparticles (Impact I8.1). Here, you are invited to show in a series of steps 
that the l = 0 energy levels of an electron in a spherical cavity of radius R are 
quantized and given by

E
n h

m R
n =

2 2

28 e  
(a) The hamiltonian for a particle free to move inside a sphere of radius a is

Ĥ
m

= − ∇2
2

2  
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Show that the Schrödinger equation is separable into radial and angular 
components. That is, begin by writing ψ(r,θ,ϕ) = R(r)Y(θ,ϕ), where R(r) 
depends only on the distance of the particle from the centre of the sphere, 
and Y(θ,ϕ) is a spherical harmonic. Then show that the Schrödinger equation 
can be separated into two equations, one for R(r), the radial equation, and the 
other for Y(θ,ϕ), the angular equation. (b) Consider the case l = 0. Show by 
differentiation that the solution of the radial equation has the form

R r a
n r a
r

( ) ( )
( )/= −2 1 2π πsin /

 
(c) Now go on to show (by acknowledging the appropriate boundary 
conditions) that the allowed energies are given by En = n2h2/8ma2. With 
substitution of me for m and of R for a, this is the equation given above for the 
energy.

Integrated activities
8.1 Describe the features that stem from nanometre-scale dimensions that are 
not found in macroscopic objects.

8.2 Explain why the particle in a box and the harmonic oscillator are useful 
models for quantum mechanical systems: what chemically significant systems 
can they be used to represent?

8.3 Suppose that 1.0 mol perfect gas molecules all occupy the lowest energy 
level of a cubic box. (a) How much work must be done to change the 
volume of the box by ΔV? (b) Would the work be different if the molecules 
all occupied a state n ≠ 1? (c) What is the relevance of this discussion to 
the expression for the expansion work discussed in Topic 2A? (d) Can you 
identify a distinction between adiabatic and isothermal expansion?

8.4 Determine the values of Δx = (〈x2〉 − 〈x〉2)1/2 and Δp = (〈p2〉 − 〈p〉2)1/2 for 
the ground state of (a) a particle in a box of length L and (b) an harmonic 
oscillator. Discuss these quantities with reference to the uncertainty principle.

8.5 Repeat Problem 8.4 for (a) a particle in a box and (b) a harmonic oscillator 
in a general quantum state (n and v, respectively).

8.6 Use mathematical software, a spreadsheet, or the Living graphs on the web 
site of this book for the following exercises:
(a) Plot the probability density for a particle in a box with n = 1, 2, …, 5 and 
n = 50. How do your plots illustrate the correspondence principle?
(b) Plot the transmission probability T against E/V for passage by (i) a 
hydrogen molecule, (ii) a proton, and (iii) an electron through a barrier of 
height V.
(c) To gain some insight into the origins of the nodes in the harmonic 
oscillator wavefunctions, plot the Hermite polynomials Hv(y) for v = 0 
through 5.
(d) Use mathematical software to generate three-dimensional plots of the 
wavefunctions for a particle confined to a rectangular surface with (i) n1 = 1, 
n2 = 1, the state of lowest energy, (ii) n1 = 1, n2 = 2, (iii) n1 = 2, n2 = 1, and (iv) 
n1 = 2, n2 = 2. Deduce a rule for the number of nodal lines in a wavefunction as 
a function of the values of n1 and n2.
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354 Mathematical background 4

Mathematical background 4 Differential equations

A differential equation is a relation between a function and its 
derivatives, as in

a
f

x
b

f
x

cf
d
d

d
d

2

2 0+ + =
 

(MB4.1)

where f is a function of the variable x and the factors a, b, c may 
be either constants or functions of x. If the unknown function 
depends on only one variable, as in this example, the equation 
is called an ordinary differential equation; if it depends on 
more than one variable, as in
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x
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(MB4.2)

it is called a partial differential equation. Here, f is a function 
of x and y, and the factors a, b, c may be either constants or 
functions of both variables. Note the change in symbol from 
d to ∂ to signify a partial derivative (see Mathematical back-
ground 2).

MB4.1 The structure of differential equations
The order of the differential equation is the order of the highest 
derivative that occurs in it: both examples above are second-
order equations. Only rarely in science is a differential equation 
of order higher than two encountered.

A linear differential equation is one for which if f is a solu-
tion then so is constant × f. Both examples above are linear. 
If the 0 on the right were replaced by a different number or a 
function other than f, then they would cease to be linear.

Solving a differential equation means something differ-
ent from solving an algebraic equation. In the latter case, the 
solution is a value of the variable x (as in the solution x = 2 of 
the quadratic equation x2 − 4 = 0). The solution of a differential 
equation is the entire function that satisfies the equation, as in

d
d

2

2 0
f

x
f f x A x B x+ = = +, ( ) sin cos

 
(MB4.3)

with A and B constants. The process of finding a solution of 
a differential equation is called integrating the equation. The 
solution in eqn MB4.3 is an example of a general solution of a 
differential equation; that is, it is the most general solution of 
the equation and is expressed in terms of a number of constants 
(A and B in this case). When the constants are chosen to accord 
with certain specified initial conditions (if one variable is the 
time) or certain boundary conditions (to fulfil certain spatial 
restrictions on the solutions), we obtain the particular solution 
of the equation. The particular solution of a first-order differen-
tial equation requires one such condition; a second-order dif-
ferential equation requires two.

MB4.2 The solution of ordinary differential 
equations

The first-order linear differential equation

d
d

f
x

af+ = 0
 

(MB4.4a)

with a a function of x or a constant can be solved by direct 
integration. To proceed, we use the fact that the quantities df 
and dx (called differentials) can be treated algebraically like any 
quantity and rearrange the equation into

d
d

f
f

a x= −
 

(MB4.4b)

and integrate both sides. For the left-hand side, we use the 
familiar result ∫dy/y = ln y + constant. After pooling all the con-
stants into a single constant C, we obtain:

ln ( )f x a x C= − +∫ d
 

(MB4.4c)

Brief illustration MB4.1 Particular solutions

If we are informed that f(0) = 0, then because from eqn MB4.3 
it follows that f(0) = B, we can conclude that B = 0. That still 
leaves A undetermined. If we are also told that df/dx = 2 at 
x = 0 (that is, f ′(0) = 2, where the prime denotes a first deriva-
tive), then because the general solution (but with B = 0) implies 
that f ′(x) = A cos x, we know that f ′(0) = A, and therefore A = 2. 
The particular solution is therefore f(x) = 2 sin x. Figure MB4.1 
shows a series of particular solutions corresponding to differ-
ent boundary conditions.

1.5
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–1

–1.5

0

0 2 4 6 8 10
x

f(
x)

A = 1, B = 1

A = 0, B = 1
A = ½, B = 1

Figure MB4.1 The solution of the differential equation 
in Brief illustration MB4.1 with three different boundary 
conditions (as indicated by the resulting values of the 
constants A and B).
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Even the solutions of first-order differential equations quickly 
become more complicated. A nonlinear first-order equation of 
the form

d
d

f
x

af b+ =
 

(MB4.5a)

with a and b functions of x (or constants) has a solution of the 
form

f x b x Ca x a x( )e e dd d∫ ∫= +∫  
(MB4.5b)

as may be verified by differentiation. Mathematical software 
packages can often perform the required integrations.

Second-order differential equations are in general much 
more difficult to solve than first-order equations. One powerful 
approach commonly used to lay siege to second-order differen-
tial equations is to express the solution as a power series:

f x c xn
n

n

( )=
=

∞

∑
0  

(MB4.6)

and then to use the differential equation to find a relation 
between the coefficients. This approach results, for instance, in 
the Hermite polynomials that form part of the solution of the 
Schrödinger equation for the harmonic oscillator (Topic 8B). 
Many of the second-order differential equations that occur in 
this text are tabulated in compilations of solutions or can be 
solved with mathematical software, and the specialized tech-
niques that are needed to establish the form of the solutions 
may be found in mathematical texts.

MB4.3 The solution of partial differential 
equations

The only partial differential equations that we need to solve 
are those that can be separated into two or more ordinary 
differential equations by the technique known as separation 
of variables. To discover if the differential equation in eqn 
MB4.2 can be solved by this method we suppose that the full 
solution can be factored into functions that depend only on 
x or only on y, and write f(x,y) = X(x)Y(y). At this stage there 
is no guarantee that the solution can be written in this way. 
Substituting this trial solution into the equation and recog-
nizing that
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We are using d instead of ∂ at this stage to denote differentials 
because each of the functions X and Y depends on one variable, 
x and y, respectively. Division through by XY turns this equa-
tion into
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Now suppose that a is a function only of x, b a function of y, and 
c a constant. (There are various other possibilities that permit 
the argument to continue.) Then the first term depends only on 
x and the second only on y. If x is varied, only the first term can 
change. But as the other two terms do not change and the sum 
of the three terms is a constant (0), even that first term must 
be a constant. The same is true of the second term. Therefore 
because each term is equal to a constant, we can write

a
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We now have two ordinary differential equations to solve by 
the techniques described in Section MB4.2. An example of this 
procedure is given in Topic 8A, for a particle in a two-dimen-
sional region.

Brief illustration MB4.2 The solution of a first-order 
equation

Suppose that in eqn MB4.4a the factor a = 2x; then the general 
solution, eqn MB4.4c, is

ln ( )f x x x C x C= − + = − +∫2 2d
 

(We have absorbed the constant of integration into the con-
stant C.) Therefore

f N Nx x C( ) ,= =−e e
2

 
If we are told that f(0) = 1, then we can infer that N = 1 and 
therefore that f x e x( ) .= − 2
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chaPter 9

atomic structure and spectra

In this chapter we see how to use quantum mechanics to 
describe and investigate the electronic structure of an atom, 
the arrangement of electrons around a nucleus. The concepts 
we meet are of central importance for understanding the struc-
tures and reactions of atoms and molecules, and hence have 
extensive chemical applications.

9A hydrogenic atoms

In this Topic we use the principles of quantum mechanics intro-
duced in Chapters 7 and 8 to describe the internal structures of 
atoms. We start with the simplest type of atom. A ‘hydrogenic 
atom’ is a one-electron atom or ion of general atomic number 
Z; examples are H, He+, Li2+, O7+, and even U91+. Hydrogenic 
atoms are important because their Schrödinger equations can 
be solved exactly. They also provide a set of concepts that are 
used to describe the structures of many-electron atoms and, as 
we see in the Topics of Chapter 10, the structures of molecules 
too. We see what experimental information is available from a 
study of the spectrum of atomic hydrogen. Then we set up the 
Schrödinger equation for an electron in an atom and separate it 
into angular and radial parts. The wavefunctions obtained are 
the hugely important ‘atomic orbitals’ of hydrogenic atoms.

9B many-electron atoms

A ‘many-electron atom’ (or polyelectronic atom) is an atom or 
ion with more than one electron; examples include all neutral 

atoms other than H. So even He, with only two electrons, is a 
many-electron atom. In this Topic we use hydrogenic atomic 
orbitals to describe the structures of many-electron atoms. 
Then, in conjunction with the concept of spin and the Pauli 
exclusion principle, we account for the periodicity of atomic 
properties and the structure of the periodic table.

9C atomic spectra

The spectra of many-electron atoms are more complicated than 
those of hydrogen, but the same principles apply. In this Topic 
we see how such spectra are described by using term symbols, 
and the origin of their finer details.

What is the impact of this material?

In Impact I9.1, we focus on the use of atomic spectroscopy to 
examine stars. By analysing their spectra we see that it is pos-
sible to determine the composition of their outer layers and the 
surrounding gases and to determine features of their physical 
state.

To read more about the impact of this 
material, scan the QR code, or go to  
bcs.whfreeman.com/webpub/chemistry/
pchem10e/impact/pchem-9-1.html
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9A hydrogenic atoms

When an electric discharge is passed through gaseous hydro-
gen, the H2 molecules are dissociated and the energetically 
excited H atoms that are produced emit light of discrete fre-
quencies, producing a spectrum of a series of ‘lines’ (Fig. 9A.1). 
The Swedish spectroscopist Johannes Rydberg noted (in 1890) 
that all the lines are described by the expression

  = −





R
n nH

1 1

1
2

2
2

 
 spectral lines of a hydrogen atom  (9A.1)

with n1 = 1 (the Lyman series), 2 (the Balmer series), and 3 
(the Paschen series), and that in each case n2 = n1 + 1, n1 + 2, …. 
The constant RH is now called the Rydberg constant for the 
hydrogen atom and is found empirically to have the value  
109 677 cm−1.

As eqn 9A.1 suggests, each spectral line can be written as the 
difference of two terms, each of the form

T
R
nn =


H
2  

(9A.2)

The Ritz combination principle states that the wavenumber of 
any spectral line (of any atom, not just hydrogenic atoms) is the 
difference between two terms. We say that two terms T1 and T2 
‘combine’ to produce a spectral line of wavenumber

 =T T1 2−   ritz combination principle  (9A.3)

➤➤ Why do you need to know this material?
An understanding of the structure of the hydrogen atom is 
central to the understanding of all other atoms, the periodic 
table, and bonding. All accounts of the structures of molecules 
are based on the language and concepts it introduces.

➤➤ What is the key idea?
Atomic orbitals are labelled by three quantum numbers 
that specify the energy and angular momentum of an 
electron in a hydrogenic atom.

➤➤ What do you need to know already?
You need to be aware of the concept of wavefunction 
(Topic 7B) and its interpretation. You need to know how 
to set up a Schrödinger equation and how boundary 
conditions limit its solutions (Topic 8A).
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Figure 9A.1 The spectrum of atomic hydrogen. Both the 
observed spectrum and its resolution into overlapping series 
are shown. Note that the Balmer series lies in the visible region.

Contents

9a.1 The structure of hydrogenic atoms 358
(a) The separation of variables 358
(b) The radial solutions 359

brief illustration 9a.1: Probability densities 361

9a.2 Atomic orbitals and their energies 361
(a) The specification of orbitals 361
(b) The energy levels 362

brief illustration 9a.2: the energy levels 362
(c) Ionization energies 362

example 9a.1: measuring an ionization energy 
spectroscopically 363

(d) Shells and subshells 363
brief illustration 9a.3: shells, subshells, and orbitals 364

(e) s Orbitals 364
example 9a.2: calculating the mean radius of an  
orbital 365
brief illustration 9a.4: the location of radial nodes 365

(f ) Radial distribution functions 365
example 9a.3: calculating the most probable  
radius 366

(g) p Orbitals 367
(h) d Orbitals 368

Checklist of concepts 368
Checklist of equations 369

iranchembook.ir/edu



358 9 Atomic structure and spectra

Thus, if each spectroscopic term represents an energy hcT, the dif-
ference in energy when the atom undergoes a transition between 
two terms is ΔE = hcT1 − hcT2 and, according to the Bohr fre-
quency condition (ΔE = hν, Topic 7A), the frequency of the radia-
tion emitted is given by ν = cT1 − cT2. This expression rearranges 
into the Ritz formula when expressed in terms of wavenumbers 
(on division by c;  = /c). The Ritz combination principle applies 
to all types of atoms and molecules, but only for hydrogenic atoms 
do the terms have the simple form (constant)/n2.

Because spectroscopic observations show that electromag-
netic radiation is absorbed and emitted by atoms only at cer-
tain wavenumbers, it follows that only certain energy states of 
atoms are permitted. Our tasks in this Topic are to determine 
the origin of this energy quantization, to find the permitted 
energy levels, and to account for the value of RH. The spectra of 
more complex atoms are treated in Topic 9C.

9A.1 The structure of hydrogenic 
atoms

The Coulomb potential energy of an electron in a hydrogenic 
atom of atomic number Z and therefore nuclear charge Ze is

V r
Ze

r
( )= −

2

04πε  
(9A.4)

where r is the distance of the electron from the nucleus and εo is 
the vacuum permittivity. The hamiltonian for the electron and 
a nucleus of mass mN is therefore

ˆ ˆ ˆ ˆ ( ), ,H E E V r

m m
Ze

= + +

= − ∇ − ∇ −

k electron k nucleus

e
e

N
N

 2
2

2
2

2

2 2 4πεε0r  

The subscripts e and N on ∇2 indicate differentiation with 
respect to the electron or nuclear coordinates, respectively.

(a) The separation of variables
Physical intuition suggests that the full Schrödinger equation 
ought to separate into two equations, one for the motion of the 
atom as a whole through space and the other for the motion 
of the electron relative to the nucleus. We show in the follow-
ing Justification how this separation is achieved, and that the 
Schrödinger equation for the internal motion of the electron 
relative to the nucleus is

− ∇ − =

= +

2
2

2

02 4

1 1 1

µ ψ ε ψ ψ

µ

Ze
r

E

m m

π

e N  

where differentiation is now with respect to the coordinates of 
the electron relative to the nucleus. The quantity μ is called the 
reduced mass. The reduced mass is very similar to the electron 
mass because mN, the mass of the nucleus, is much larger than 
the mass of an electron, so 1/μ ≈ 1/me and therefore μ ≈ me. 
In all except the most precise work, the reduced mass can be 
replaced by me.

hamiltonian for 
a hydrogenic 
atom

 (9A.5)

schrödinger 
equation for a 
hydro genic atom 

 (9A.6)

Justification 9A.1  The separation of internal and 
external motion

Consider a one-dimensional system in which the potential 
energy depends only on the separation of the two particles. 
The total energy is

E
p
m

p
m

V x x= + + −1
2

1

2
2

2
1 22 2

( )

where p1 = m1(dx1/dt) and p2 = m2(dx2/dt). The centre of mass 
(Fig. 9A.2) is located at

X
m
m

x
m
m

x m m m= + = +1
1

2
2 1 2

and the separation of the particles is x = x1 − x2. It follows that

x X
m
m

x x X
m
m

x1
2

2
1= + = −

The linear momenta of the particles can now be expressed in 
terms of the rates of change of x and X:

p m
x
t

m
X
t

m m
m

x
t

p m
x
t

m
X
t

m m
m

x
t

1 1
1

1
1 2

2 2
2

2
1 2
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d
d

d
d

d
d

d
d

d
d

d
d  

Then it follows that

p
m

p
m

m
X
t

x
t

1
2

1

2
2

2

1
2

2

1
2

2

2 2
+ = 





+ 





d
d

d
d

μ
 

where μ is given in eqn 9A.6. By writing P = m(dX/dt) for the 
linear momentum of the system as a whole and p = μ(dx/dt), 
we find

E
P
m

p
V x= + +

2 2

2 2μ ( )

m1

x1 x2

m2

X

x

Figure 9A.2  The coordinates used for discussing the 
separation of the relative motion of two particles from the 
motion of the centre of mass.

iranchembook.ir/edu



9A Hydrogenic atoms  359

Because the potential energy is centrosymmetric (independ-
ent of angle), we can suspect that the equation for the wave-
function is separable into radial and angular components. 
Therefore, we write

ψ θ φ θ φ( , , ) ( )( ) ,r = R r Y  (9A.7)

and examine whether the Schrödinger equation can be sepa-
rated into two equations, one for the radial wavefunction R(r) 
and the other for the angular wavefunction Y(θ,ϕ). As shown 
in the following Justification, the equation does separate, and 
the equations we have to solve are

Λ2 1Y l l Y= − +( )  (9A.8a)

− + =2 2

22μ
d
d eff

u
r

V u Eu
 

(9A.8b)

where u(r) = rR(r) and

V
Ze

r
l l

r
reff ( )

( )= − + +2

0

2

24
1

2πε µ


 
(9A.8c)

Equation 9A.8a is the same as the Schrödinger equation 
for a particle free to move round a central point, and is con-
sidered in Topic 8C. The solutions are the spherical harmon-
ics (Table 8C.1), and are specified by the quantum numbers l 
and ml. We consider them in more detail shortly. Equation 
9A.8b is called the radial wave equation. The radial wave equa-
tion is the description of the motion of a particle of mass μ in 
a one-dimensional region 0 ≤ r < ∞ where the potential energy 
is Veff(r).

(b) The radial solutions
We can anticipate some features of the shapes of the radial 
wavefunctions by analysing the form of Veff. The first term in 
eqn 9A.8c is the Coulomb potential energy of the electron 
in the field of the nucleus. The second term stems from what 
in classical physics would be called the centrifugal force that 
arises from the angular momentum of the electron around 
the nucleus. When l = 0, the electron has no angular momen-
tum, and the effective potential energy is purely Coulombic 
and attractive at all radii (Fig. 9A.3). When l ≠ 0, the centrifu-
gal term gives a positive (repulsive) contribution to the effec-
tive potential energy. When the electron is close to the nucleus 
(r ≈ 0), this repulsive term, which is proportional to 1/r2, domi-
nates the attractive Coulombic component, which is propor-
tional to 1/r, and the net result is an effective repulsion of the 
electron from the nucleus. The two effective potential energies, 
the one for l = 0 and the one for l ≠ 0, are therefore qualitatively 
very different close to the nucleus. However, they are similar 
at large distances because the centrifugal contribution tends to 
zero more rapidly (as 1/r2) than the Coulombic contribution (as 
1/r). Therefore, we can expect the solutions with l = 0 and l ≠ 0 
to be quite different near the nucleus but similar far away from 
it. There are two important features of the radial wavefunction:

•	 Close to the nucleus the radial wavefunction is 
proportional to rl, and the higher the orbital 
angular momentum, the less likely it is that the 
electron will be found there (Fig. 9A.4).

The corresponding hamiltonian (generalized to three dimen-
sions) is therefore

�H
m

= − ∇ − ∇� �2
2

2
2

2 2c m. . μ

where the first term differentiates with respect to the centre of 
mass coordinates and the second with respect to the relative 
coordinates.

Now we write the overall wavefunction as the product 
ψtotal(X,x) = ψc.m.(X)ψ(x), where the first factor is a function of 
only the centre of mass coordinates and the second is a func-
tion of only the relative coordinates. The overall Schrödinger 
equation, Ĥ Eψ ψtotal total total= , then separates by the argument 
that we have used in Topics 8A and 8C, with Etotal = Ec.m. + E.

Justification 9A.2  The separation of angular and 
radial motion

The laplacian in three dimensions is given in Table 7B.1. It fol-
lows that the Schrödinger equation in eqn 9A.6 is

− ∇ + = − ∂
∂

+ ∂
∂ +





+ = 2
2

2 2

2 2
2

2 2
2 1

µ µ ΛRY VRY
r r r r

RY VRY ERY

Because R depends only on r and Y depends only on the angu-
lar coordinates, this equation becomes

− + +





+ =2 2

2 2
2

2
2

µ ΛY
R

r
Y
r

R
r

R
r

Y VRY ERY
d
d

d
d

where the partial derivatives with respect to r have been 
replaced by complete derivatives because R depends only on r. 
If we multiply through by r2/RY, we obtain

− +





+ −� �
� ��

2
2

2

2
2

2
2

2
2

2µ µ Λ

θ φ

R
r

R
r

r
R
r

Vr
Y

Y
d
d

d
d

Depends
on , ���

= Er2

At this point we employ the usual argument. The term in Y is 
the only one that depends on the angular variables, so it must 
be a constant. When we write this constant as ħ2l(l + 1)/2μ, eqn 
9A.8c follows immediately.
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360 9 Atomic structure and spectra

•	 Far from the nucleus all radial wavefunctions  
approach zero exponentially.

We shall not go through the technical steps of solving the 
radial equation for the full range of radii and seeing how the 
form rl close to the nucleus blends into the exponentially decay-
ing form at great distances. For our purposes it is sufficient to 
know that the two limits can be bridged only for integral values 
of a quantum number n, and that the allowed energies corre-
sponding to the allowed solutions are

E
e Z

nn = − ×µ
ε

4

2
0
2 2

2

232π   
 bound state energies  (9A.9)

with n = 1, 2, …. Likewise, the radial wavefunctions depend on 
the values of both n and l (but not on ml because only l appears 
in the radial wave equation), and all of them have the form

R r r rl( ) ( )= ×

Dominant
close to

the nucleus
Bridg

�
polynomial in

ees the two
ends of the function� ���� ����

×(decaying exponenttial in r)

Dominant far
from the nucleus� ������ ������

 
(9A.10)

and therefore look like

R r r L rl r( ) ( )= −e

with various constants and where L(r) is the bridging polyno-
mial. The specific forms of the functions are most simply writ-
ten in terms of the dimensionless quantity ρ (rho), where

ρ µ
ε= = = + =2 4

0 0 0
0

2

2

Zr
na

a
m

a
m m

m
a a

m e
e e N

N e

π 

 
(9A.11)

The Bohr radius, a0, has the value 52.9 pm; it is so called 
because the same quantity appeared in Bohr’s early model of 
the hydrogen atom as the radius of the electron orbit of lowest 
energy. In practice, because me ≪ mN there is so little difference 
between a and a0 that it is safe to use a0 in the definition of ρ 
for all atoms (even for 1H, a = 1.0005a0). Specifically, the radial 
wavefunctions for an electron with quantum numbers n and l 
are the (real) functions

R N Lrn l n l
l

n l
l

, ,
/( ) ( )= − −

+ −ρ ρ ρ
1

2 1 2e   radial wavefunctions  (9A.12)

where L(ρ) is an associated Laguerre polynomial. The notation 
might look fearsome, but the polynomials have quite simple 
forms, such as 1, ρ, and 2 − ρ (they can be picked out in Table 
9A.1). The factor N ensures that the radial wavefunction is nor-
malized to 1 in the sense that

R r rrn l. ( )2 2

0
1d =

∞

∫  
(9A.13)

The r2 comes from the volume element in spherical polar coor-
dinates (The chemist’s toolkit 7B.1). Specifically, we can interpret 
the components of eqn 9A.12 as follows:

•	 The exponential factor ensures that the 
wavefunction approaches zero far from the nucleus.

•	 The factor ρl ensures that (provided l > 0) the 
wavefunction vanishes at the nucleus. The zero at  
r = 0 is not a radial node because the radial 
wavefunction does not pass through zero at that 
point (because r cannot be negative). Nodes passing 
through the nucleus are all angular nodes.

•	 The associated Laguerre polynomial is a function 
that in general oscillates from positive to negative 
values and accounts for the presence of radial nodes.
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Figure 9A.3  The effective potential energy of an electron 
in the hydrogen atom. When the electron has zero orbital 
angular momentum, the effective potential energy is the 
Coulombic potential energy. When the electron has nonzero 
orbital angular momentum, the centrifugal effect gives rise to 
a positive contribution which is very large close to the nucleus. 
The l = 0 and l ≠ 0 wavefunctions are therefore very different 
near the nucleus.
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Figure 9A.4 Close to the nucleus, orbitals with l = 1 are 
proportional to r, orbitals with l = 2 are proportional to r2, 
and orbitals with l = 3 are proportional to r3. Electrons are 
progressively excluded from the neighbourhood of the nucleus 
as l increases. An orbital with l = 0 has a finite, nonzero value at 
the nucleus.
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9A Hydrogenic atoms  361

Expressions for some radial wavefunctions are given in Table 
9A.1 and illustrated in Fig. 9A.5.

9A.2 Atomic orbitals and their 
energies

An atomic orbital is a one-electron wavefunction for an elec-
tron in an atom. Each hydrogenic atomic orbital is defined by 
three quantum numbers, designated n, l, and ml. When an elec-
tron is described by one of these wavefunctions, we say that it 
‘occupies’ that orbital. We could go on to say that the electron 
is in the state |n,l,ml〉. For instance, an electron described by the 
wavefunction ψ1,0,0 and in the state |1,0,0〉 is said to ‘occupy’ the 
orbital with n = 0, l = 0, and ml = 0.

(a) The specification of orbitals
The quantum number n is called the principal quantum num-
ber; it can take the value n = 1, 2, 3, … and determines 
the energy of the electron:

•	 An electron in an orbital with quantum number 
n has an energy given by eqn 9A.9. The two other 
quantum numbers, l and ml, come from the 

Brief illustration 9A.1 Probability densities

To calculate the probability density at the nucleus for an elec-
tron with n = 1, l = 0, and ml = 0, we evaluate ψ at r = 0:

ψ θ φ θ φ1 0 0 1 0 0 0
0

3 2 1 2

0 2
1

4
0, , , ,

/ /

( ) ( ) ( ), , ,= = 











R Y
Z
a π

The probability density is therefore

ψ θ φ1 0 0
2

3

0
30, , ( ), , = Z

aπ

which evaluates to 2.15 × 10−6 pm−3 when Z = 1.

Self-test 9A.1 Evaluate the probability density at the nucleus of 
the electron for an electron with n = 2, l = 0, ml = 0.

Answer: (Z/a0)3/8π

n = 1, l = 0
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Figure 9A.5 The radial wavefunctions of the first few states of 
hydrogenic atoms of atomic number Z. Note that the orbitals 
with l = 0 have a nonzero and finite value at the nucleus. The 
horizontal scales are different in each case: orbitals with high 
principal quantum numbers are relatively distant from the 
nucleus.

Table 9A.1 Hydrogenic radial wavefunctions, Rn,l(r)

n l Rn,l(r)

1 0 2
3 2
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ρ = (2Z/na)r with a = 4πε0ħ2/μe2. For an infinitely heavy nucleus (or one that may be 
assumed to be), μ = me and a = a0, the Bohr radius.
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362 9 Atomic structure and spectra

angular solutions, and specify the angular 
momentum of the electron around the nucleus.

•	 An electron in an orbital with quantum number l 
has an angular momentum of magnitude 
{l(l + 1)}1/2ħ, with l = 0, 1, 2, … , n − 1.

•	 An electron in an orbital with quantum number 
ml has a z-component of angular momentum mlħ, 
with ml = 0, ±1, ±2, … , ±l.

Note how the value of the principal quantum number, n, con-
trols the maximum value of l and l controls the range of values 
of ml.

To define the state of an electron in a hydrogenic atom fully 
we need to specify not only the orbital it occupies but also its 
spin state. In Topic 8C it is mentioned that an electron pos-
sesses an intrinsic angular momentum, its ‘spin’. We develop 
this property further in Topic 9B and show there that spin is 
described by the two quantum numbers s and ms (the ana-
logues of l and ml). The value of s is fixed at 1

2
 for an electron, so 

we do not need to consider it further at this stage. However, ms 
may be either + 1

2  or − 1
2 , and to specify the state of an electron 

in a hydrogenic atom we need to specify which of these values 
describes it. It follows that, to specify the state of an electron in 
a hydrogenic atom, we need to give the values of four quantum 
numbers, namely n, l, ml, and ms.

(b) The energy levels
The energy levels predicted by eqn 9A.9 are depicted in Fig. 
9A.6. The energies, and also the separation of neighbouring 
levels, are proportional to Z2, so the levels are four times as wide 
apart (and the ground state four times lower in energy) in He+ 
(Z = 2) than in H (Z = 1). All the energies given by eqn 9A.9 are 
negative. They refer to the bound states of the atom, in which 
the energy of the atom is lower than that of the infinitely sepa-
rated, stationary electron and nucleus (which corresponds to 
the zero of energy). There are also solutions of the Schrödinger 
equation with positive energies. These solutions correspond to 
unbound states of the electron, the states to which an electron 
is raised when it is ejected from the atom by a high-energy col-
lision or photon. The energies of the unbound electron are not 
quantized and form the continuum states of the atom.

Equation 9A.9, which we can write as

E
hcZ

n
eR

Rn = =−
2

2

4

2
0
2 232

�
�

�
N

N

µ
επ  

 bound state energies  (9A.14)

is consistent with the spectroscopic result summarized by eqn 
9A.1, and we can identify the Rydberg constant for the atom 
as

  R
m

R R
m e

h cN
e

e= × =∞ ∞
µ

ε

4

0
2 38  

 rydberg constant  (9A.15)

where μ is the reduced mass of the atom and R∞ is the Rydberg 
constant. Insertion of the values of the fundamental constants 
into the expression for RH  gives very close agreement with the 
experimental value for hydrogen. The only discrepancies arise 
from the neglect of relativistic corrections (in simple terms, 
the increase of mass with speed), which the non-relativistic 
Schrödinger equation ignores.

(c) Ionization energies
The ionization energy, I, of an element is the minimum energy 
required to remove an electron from the ground state, the state 
of lowest energy, of one of its atoms in the gas phase. Because 

Brief illustration 9A.2 The energy levels

The value of R∞  is given inside the front cover and is  
109 737 cm−1. The reduced mass of a hydrogen atom with 
mp = 1.672 62 × 10−27 kg and me = 9.109 38 × 10−31 kg is

μ = + = × × ×
×

− −m m
m m

e p

e p

kg kg( . ) ( . )
( .
9 109 38 10 1 672 62 10
9 109 38 10

31 27

−− −

−

+ ×
= ×

31 27

31

1 672 62 10

9 104 42 10

kg kg

kg

) ( . )

.

It then follows that

RH
kg
kg

cm cm= ×
×

× =
−

−
− −9 104 42 10

9 109 38 10
109 737 109 677

31

31
1 1.

.

and that the ground state of the electron (n = 1) lies at

E hcR= − = − × × ×
×

− −
H Js cms

cm

( . ) ( . )

(

6 626 08 10 2 997 945 10

109 677

34 10 1

−− −= − × −1 182 178 69 10 2 178 69) . .J ( aJ)

This energy corresponds to –13.598 eV.

Self-test 9A.2 What is the corresponding value for a deute-
rium atom? Take mD = 2.013 55mu.

Answer: –13.602 eV
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Figure 9A.6 The energy levels of a hydrogen atom. The values 
are relative to an infinitely separated, stationary electron and a 
proton.
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9A Hydrogenic atoms  363

the ground state of hydrogen is the state with n = 1, with energy 
E hcR1 = − 

H  and the atom is ionized when the electron has been 
excited to the level corresponding to n = ∞ (see Fig. 9A.6), the 
energy that must be supplied is

I hcR= 
H  (9A.16)

The value of I is 2.179 aJ (1 aJ = 10−18 J), which corresponds to 
13.60 eV.

A note on good practice Ionization energies are sometimes 
referred to as ionization potentials. That is incorrect, but 
not uncommon. If the term is used at all, it should denote 
the potential difference through which an electron must be 
moved for its potential energy to change by an amount equal 
to the ionization energy, and reported in volts.

(d) Shells and subshells
All the orbitals of a given value of n are said to form a single 
shell of the atom. In a hydrogenic atom (and only in a hydro-
genic atom), all orbitals of given n, and therefore belonging to 
the same shell, have the same energy. It is common to refer to 
successive shells by letters:

n = 1 2 3 4…
…K L M N

Thus, all the orbitals of the shell with n = 2 form the L shell of 
the atom, and so on.

The orbitals with the same value of n but different values of l 
are said to form a subshell of a given shell. These subshells are 
generally referred to by letters:

l = 0 1 2 3 4 5 6…
…s p d f g h i

All orbitals of the same subshell have the same energy in both 
hydrogenic and many-electron atoms. The letters then run 
alphabetically (j is not used because in some languages i and 
j are not distinguished). Figure 9A.8 is a version of Fig. 9A.6 
which shows the subshells explicitly. Because l can range from 
0 to n − 1, giving n values in all, it follows that there are n sub-
shells of a shell with principal quantum number n. The organi-
zation of orbitals in the shells is summarized in Fig. 9A.9. In 
general, the number of orbitals in a shell of principal quantum 
number n is n2, so in a hydrogenic atom each energy level is n2-
fold degenerate.

Example 9A.1 Measuring an ionization energy 
spectroscopically

The emission spectrum of atomic hydrogen shows lines at 
82 259, 97 492, 102 824, 105 292, 106 632, and 107 440 cm−1, 
which correspond to transitions to the same lower state. 
Determine (a) the ionization energy of the lower state, (b) the 
value of the Rydberg constant for hydrogen.

Method The spectroscopic determination of ionization energies 
depends on the determination of the series limit, the wavenum-
ber at which the series terminates and becomes a continuum. If 
the upper state lies at an energy −hcR n

H / 2 , then, when the atom 
makes a transition to Elower = –I a photon of wavenumber


 

 = − − = − +R
n

E
hc

R
n

I
hc

H lower H
2 2

A plot of the wavenumbers against 1/n2 should give a straight 
line of slope − RH and intercept I/hc. Use a computer to make 
a least-squares fit of the data in order to obtain a result that 
reflects the precision of the data.

Answer The wavenumbers are plotted against 1/n2 in Fig. 9A.7. 
(a) The (least-squares) intercept lies at 109 679 cm−1, so (b) the 
ionization energy is

I hcR= × × ×
× =

= − −

−


H Js cms( ). ( . )6 626 08 10 2 997 945 10

109 679

34 10 1

1cm 22 1787 10 18. × − J

or 2.1787 aJ, corresponding to 1312.1 kJ mol−1 (the negative of 
the value of E calculated in Brief illustration 9A.2).

Self-test 9A.3 The emission spectrum of atomic deuterium 
shows lines at 15 238, 20 571, 23 039, and 24 380 cm−1, which 
correspond to transitions to the same lower state. Determine 
(a) the ionization energy of the lower state, (b) the ionization 
energy of the ground state, (c) the mass of the deuteron (by 
expressing the Rydberg constant in terms of the reduced mass 

specification of subshells 

specification of shells

of the electron and the deuteron, and solving for the mass of 
the deuteron).

Answer: (a) 328.1 kJ mol−1, (b) 1312.4 kJ mol−1,  
(c) 2.8 × 10−27 kg, a result very sensitive to RD

0 0.1 0.2
1/n2

80

90

100

110

ν/
(1

03  
cm

–1
)

~

Figure 9A.7  The plot of the data in Example 9A.1 used to 
determine the ionization energy of an atom (in this case, of H).

iranchembook.ir/edu



364 9 Atomic structure and spectra

(e) s Orbitals
The orbital occupied in the ground state is the one with n = 1 
(and therefore with l = 0 and ml = 0, the only possible values 
of these quantum numbers when n = 1). From Table 9A.1 and 
Y0,0 = 1/2π1/2 we can write (for Z = 1):

ψ = −1

0
3 1 2

0

( ) /
/

πa
r ae

 
(9A.17)

This wavefunction is independent of angle and has the same 
value at all points of constant radius; that is, the 1 s orbital is 
‘spherically symmetrical’. The wavefunction decays expo-
nentially from a maximum value of 1 0

3 1 2/( ) /πa  at the nucleus 
(at r = 0). It follows that the probability density of the elec-
tron is greatest at the nucleus itself, where it has the value 
1/πa0

3 62 15 10= × − −. pm 3.
We can understand the general form of the ground-state 

wavefunction by considering the contributions of the poten-
tial and kinetic energies to the total energy of the atom. The 
closer the electron is to the nucleus on average, the lower its 
average potential energy. This dependence suggests that the 
lowest potential energy should be obtained with a sharply 
peaked wavefunction that has a large amplitude at the nucleus 
and is zero everywhere else (Fig. 9A.10). However, this shape 
implies a high kinetic energy, because such a wavefunction has 
a very high average curvature. The electron would have very 
low kinetic energy if its wavefunction had only a very low aver-
age curvature. However, such a wavefunction spreads to great 
distances from the nucleus and the average potential energy of 
the electron is correspondingly high. The actual ground-state 
wavefunction is a compromise between these two extremes: the 
wavefunction spreads away from the nucleus (so the expecta-
tion value of the potential energy is not as low as in the first 
example, but nor is it very high) and has a reasonably low aver-
age curvature (so the expectation of the kinetic energy is not 
very low, but nor is it as high as in the first example).

One way of depicting the probability density of the elec-
tron is to represent |ψ|2 by the density of shading (Fig. 9A.11). 
A simpler procedure is to show only the boundary surface, the 
surface that captures a high proportion (typically about 90 per 
cent) of the electron probability. For the 1 s orbital, the bound-
ary surface is a sphere centred on the nucleus (Fig. 9A.12).

Brief illustration 9A.3 Shells, subshells, and orbitals

When n = 1 there is only one subshell, that with l = 0, and that 
subshell contains only one orbital, with ml = 0 (the only value 
of ml permitted). When n = 2, there are four orbitals, one in the 
s subshell with l = 0 and ml = 0, and three in the l = 1 subshell 
with ml = +1, 0,  − 1. When n = 3 there are nine orbitals (one 
with l = 0, three with l = 1, and five with l = 2).

Self-test 9A.4 What subshells and orbitals are available in the 
N shell?

Answer: s (1), p (3), d (5), f (7)

n

1

2

3
4
∞

1s

2s 2p

3s 3p 3d
4s 4p 4d 4f

[1]

[1]

[1]
[1]

[3]

[3]
[3]

[5]
[5] [7]

s p d f
E

n
er

g
y

Figure 9A.8 The energy levels of a hydrogenic atom showing 
the subshells and (in square brackets) the numbers of orbitals in 
each subshell. All orbitals of a given shell have the same energy.

s p d

Subshells

S
h

el
ls

M shell, n = 3

L shell, n = 2

K shell, n = 1

Orbitals

Figure 9A.9 The organization of orbitals (white squares) into 
subshells (characterized by l) and shells (characterized by n).
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Figure 9A.10  The balance of kinetic and potential energies 
that accounts for the structure of the ground state of 
hydrogenic atoms. (a) The sharply curved but localized orbital 
has high mean kinetic energy, but low mean potential energy; 
(b) the mean kinetic energy is low, but the potential energy is 
not very favourable; (c) the compromise of moderate kinetic 
energy and moderately favourable potential energy.
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9A Hydrogenic atoms  365

All s orbitals are spherically symmetric, but differ in the 
number of radial nodes. For example, the 1s, 2s, and 3s orbit-
als have 0, 1, and 2 radial nodes, respectively. In general, an ns 
orbital has n − 1 radial nodes. As n increases, the radius of the 
spherical boundary surface that captures a given fraction of the 
probability also increases.

(f) Radial distribution functions
The wavefunction tells us, through the value of |ψ|2, the prob-
ability of finding an electron in any region. As we have stressed, 
|ψ|2 is a probability density (dimensions: 1/volume) and can be 
interpreted as a (dimensionless) probability when multiplied 
by the (infinitesimal) volume of interest. Thus, we can im agine 
a probe with a fixed volume dτ and sensitive to electrons, and 
which we can move around near the nucleus of a hydrogen 
atom. Because the probability density in the ground state of the 
atom is proportional to e−2 0Zr a/ , the reading from the detector 
decreases exponentially as the probe is moved out along any 
radius but is constant if the probe is moved on a circle of con-
stant radius (Fig. 9A.13).

Now consider the total probability of finding the electron 
anywhere between the two walls of a spherical shell of thickness 

Example 9A.2 Calculating the mean radius of an orbital

Use hydrogenic orbitals to calculate the mean radius of a 1s 
orbital.

Method The mean radius is the expectation value

〈 〉 = =∫ ∫r r rψ ψ ψ* d dτ τ2

We therefore need to evaluate the integral using the wavefunc-
tions given in Table 9A.1 and dτ = r2dr sin θ dθ dϕ. The angular 
parts of the wavefunction (Table 8C.1) are normalized in the 
sense that

Yl ml, sin
2

0

2

0
1

ππ

∫∫ =θ θ φd d

The integral over r required is given in the Resource section.

Answer With the wavefunction written in the form ψ = RY, 
the integration (with the integral over the angular variables, 
which is equal to 1, in blue) is

Brief illustration 9A.4 The location of radial nodes

The radial nodes of a 2s orbital lie at the locations where the 
Legendre polynomial factor (Table 9A.1) is equal to zero. In 
this case the factor is simply ρ − 2 so there is a node at ρ = 2. For 
a 2s orbital, ρ = Zr/a0, so the radial node occurs at r = 2a0/Z (see 
Fig. 9A.5).

Self-test 9A.6 Locate the two nodes of a 3s orbital.
Answer: 1.90a0/Z and 7.10a0/Z

〈 〉 = =∫∫∫ ∫
∞ ∞

r rR r r r R rYn l n ll ml, ,, sin2

0

2 3 2

00

2

0

2ππ
d dd dθ θ φ

For a 1s orbital

R
Z
a

Zr a
1 0

0

3 2

2 0
,

/

/= 





−e

Hence

〈 〉 = = × =−
∞

∫r
Z
a

r r
Z
a Z a

Zr a4 4 3
2

33

0
3

3 2

0

3

0
3

0
4

0e d

 

/ !
( / )

Integral E.1 aa
Z

0

2

Self-test 9A.5 Evaluate the mean radius of a 3s orbital by 
integration.

Answer: 27a0/2Z

(a) 1s (b) 2s

x

x

y

y

z z

Figure 9A.11 Representations of cross-sections through the 
(a) 1s and (b) 2s hydrogenic atomic orbitals in terms of their 
electron probability densities (as represented by the density of 
shading).

x

y

z

Figure 9A.12 The boundary surface of a 1s orbital, within 
which there is a 90 per cent probability of finding the electron. 
All s orbitals have spherical boundary surfaces.
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366 9 Atomic structure and spectra

dr at a radius r. The sensitive volume of the probe is now the 
volume of the shell (Fig. 9A.14), which is 4πr2dr (the product 
of its surface area, 4πr2, and its thickness, dr). Note that the 
volume probed increases with distance from the nucleus and 
is zero at the nucleus itself, when r = 0. The probability that the 
electron will be found between the inner and outer surfaces of 
this shell is the probability density at the radius r multiplied by 
the volume of the probe, or |ψ|2 × 4πr2dr. This expression has 
the form P(r)dr, where

P r r( ) | |= 4 2 2π ψ  (9A.18a)

The more general expression, which also applies to orbitals 
that are not spherically symmetrical is derived in the following 
Justification, and is

P r r R r( ) ( )= 2 2
  radial distribution function  (9A.18b)

where R(r) is the radial wavefunction for the orbital in question.

The radial distribution function, P(r), is a probability density 
in the sense that, when it is multiplied by dr, it gives the prob-
ability of finding the electron anywhere between the two walls of 
a spherical shell of thickness dr at the radius r. For a 1 s orbital,

P r
Z
a

r Zr a( ) /= −4 3

0
3

2 2 0e
 

(9A.19)

Let’s interpret this expression:

•	 Because r2 = 0 at the nucleus, P(0) = 0. The volume of 
the shell of inspection is zero when r = 0.

•	 As r → ∞, P(r) → 0 on account of the exponential 
term. The wavefunction has fallen to zero at great 
distances from the nucleus.

•	 The increase in r2 and the decrease in the 
exponential factor means that P passes through a 
maximum at an intermediate radius (see Fig. 9A.14).

The maximum of P(r), which can be found by differentiation, 
marks the most probable radius at which the electron will be 
found, and for a 1s orbital in hydrogen occurs at r = a0, the Bohr 
radius. When we carry through the same calculation for the 
radial distribution function of the 2s orbital in hydrogen, we 
find that the most probable radius is 5.2a0 = 275 pm. This larger 
value reflects the expansion of the atom as its energy increases.

Justification 9A.3  The general form of the radial 
distribution function

The probability of finding an electron in a volume element  
dτ  when its wavefunct ion is ψ  =  RY  is |RY|2dτ  with  
dτ = r2dr sin θ dθ dϕ. The total probability of finding the elec-
tron at any angle at a constant radius is the integral of this 
probability over the surface of a sphere of radius r, and is writ-
ten P(r)dr; so

P r r r r r R rR r Yl ml
( ) ( )( ) sin,d d d d= =∫∫ 2

0

2

0

2
2 2 2

ππ
θ θ φ

The last equality follows from the fact that the spherical 
harmonics are normalized to 1 (the blue integration, as in 
Example 9A.1).

Example 9A.3 Calculating the most probable radius

Calculate the most probable radius, r*, at which an electron 
will be found when it occupies a 1s orbital of a hydrogenic 
atom of atomic number Z, and tabulate the values for the one-
electron species from H to Ne9+.
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τ

Radius, r

rrr

Figure 9A.13  A constant-volume electron-sensitive detector 
(the small cube) gives its greatest reading at the nucleus, and 
a smaller reading elsewhere. The same reading is obtained 
anywhere on a circle of given radius: the s orbital is spherically 
symmetrical.
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Figure 9A.14 The radial distribution function P(r) is the 
probability density that the electron will be found anywhere 
in a shell of radius r; the probability itself is P(r)dr, where dr is 
the thickness of the shell. For a 1s electron in hydrogen, P(r) is 
a maximum when r is equal to the Bohr radius a0. The value of 
P(r)dr is equivalent to the reading that a detector shaped like a 
spherical shell of thickness dr would give as its radius is varied.
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(g) p Orbitals
The three 2p orbitals are distinguished by the three different 
values that ml can take when l = 1. Because the quantum num-
ber ml tells us the orbital angular momentum around an axis, 
these different values of ml denote orbitals in which the elec-
tron has different orbital angular momenta around an arbitrary 
z-axis but the same magnitude of that momentum (because l 
is the same for all three). The orbital with ml = 0, for instance, 
has zero angular momentum around the z-axis. Its angular 
variation is given by the spherical harmonic Y1,0, which is pro-
portional to cos θ (see Table 8C.1). Therefore, the probability 
density, which is proportional to cos2θ, has its maximum value 
on either side of the nucleus along the z-axis (at θ = 0 and 180°). 
Specifically, the wavefunction of a 2p orbital with ml = 0 is

ψ θ φ θ2 1 0 2 1 1 0 1 2
0

5 2

21
4 2

0
, , , , /

/

/( ) ( ),
( )

cos= = 





−R Y
Z
a

rr Zr a

π e

== r f rcos ( )θ  (9A.20a)

where f(r) is a function only of r. Because in spherical polar 
coordinates z = r cos θ, this wavefunction may also be written

ψ 2 1 0, , ( )= zf r  (9A.20b)

All p orbitals with ml = 0 have wavefunctions of this form, but 
f(r) depends on the value of n. This way of writing the orbital 
is the origin of the name ‘pz orbital’: its boundary surface is 
shown in Fig. 9A.15. The wavefunction is zero everywhere in 
the xy-plane, where z = 0, so the xy-plane is a nodal plane of the 
orbital: the wavefunction changes sign on going from one side 
of the plane to the other.

The wavefunctions of 2p orbitals with ml = ±1 have the fol-
lowing form:

ψ

θ

θ φ

φ

2 1 1 2 1 1 1

1 2
0

5 2
1

8

, , , ,

/

/

i

( ) ( , )

sin

± ±

± −

=

= 





R Y

Z
a

r

r

Z∓ π e e rr a

r f r

/

/
isin ( )

2

1 2

0

1
2

= ±∓ θ φe
 

(9A.21)

In Topic 8A it is shown that a particle that has net motion is 
described by a complex wavefunction. In the present case, the 
functions correspond to non-zero angular momentum about 
the z-axis: e+iϕ corresponds to clockwise rotation when viewed 
from below, and e−iϕ corresponds to anticlockwise rotation 
(from the same viewpoint). They have zero amplitude where 
θ = 0 and 180° (along the z-axis) and maximum amplitude at 
90°, which is in the xy-plane. To draw the functions it is usual 

Method We find the radius at which the radial distribution 
function of the hydrogenic 1s orbital has a maximum value by 
solving dP/dr = 0. If there are several maxima, then we choose 
the one corresponding to the greatest amplitude.

Answer The radial distribution function is given in eqn 
9A.19A. It follows that

d
d

e
P
r

Z
a

r
Zr
a

Zr a= −





−4
2

23

0
3

2

0

2 0/

This function is zero where the term in parentheses is zero, 
which (other than at r = 0) is at

r
a
Z

* = 0

Then, with a0 = 52.9 pm, the most probable radius is

Notice how the 1 s orbital is drawn towards the nucleus as 
the nuclear charge increases. At uranium the most probable 
radius is only 0.58 pm, almost 100 times closer than for hydro-
gen. (On a scale where r* = 10 cm for H, r* = 1 mm for U.) We 
need to be cautious, though, in extending this result to very 
heavy atoms because relativistic effects are then important 
and complicate the calculation.

Self-test 9A.7 Find the most probable distance of a 2 s electron 
from the nucleus in a hydrogenic atom.

Answer: (3 + 51/2)a0/Z = 5.24a0/Z

H He+ Li2+ Be3+ B4+ C5+ N6+ O7+ F8+ Ne9+

r*/pm 52.9 26.5 17.6 13.2 10.6 8.82 7.56 6.61 5.88 5.29

+

+
+

–

–
–

x

y

z px pypz θ

φ

θ = 90°

φ = 90° φ = 0

Figure 9A.15  The boundary surfaces of 2p orbitals.  
A nodal plane passes through the nucleus and separates the 
two lobes of each orbital. The dark and light areas denote 
regions of opposite sign of the wavefunction. The angles  
of the spherical polar coordinate system are also shown.  
All p orbitals have boundary surfaces like those shown  
here.
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368 9 Atomic structure and spectra

to represent them as standing waves. To do so, we take the real 
linear combinations

ψ ψ ψ

ψ

θ φ2 1 2 2 1 1 2 1 1

2 1 2

1
2

2

p

p

i

x

y

r f xf= − = =

=

+ −/ , , , ,

/

( ) sin cos ( ) ( )

(

r r

ψψ ψ θ φ2 1 1 2 1 1, , , , ) sin sin ( ) ( )+ −+ = =r f r yf r
 

(9A.22)

(See the following Justification.) These linear combinations are 
indeed standing waves with no net orbital angular momen-
tum around the z-axis, as they are superpositions of states with 
equal and opposite values of ml. The px orbital has the same 
shape as a pz orbital, but it is directed along the x-axis (see Fig. 
9A.15); the py orbital is similarly directed along the y-axis. The 
wavefunction of any p orbital of a given shell can be written as 
a product of x, y, or z and the same function f (which depends 
on the value of n).

(h) d Orbitals
When n = 3, l can be 0, 1, or 2. As a result, this shell consists of 
one 3s orbital, three 3p orbitals, and five 3d orbitals. Each value 
of the quantum number ml = +2, +1, 0, −1, −2 corresponds to a 
different value for the component of the angular momentum 
about the z-axis. As for the p orbitals, d orbitals with opposite 
values of ml (and hence opposite senses of motion around the 
z-axis) may be combined in pairs to give real standing waves, 
and the boundary surfaces of the resulting shapes are shown 
in Fig. 9A.16. The real linear combinations have the following 
forms, with the function f depending on the value of n:

ψ

ψ

ψ ψ

ψ

d d d

d d

xy yz zx

x y

xyf r yzf r zxf r

x y f r

= = =

= −
−

( ) ( ) ( )

( ) ( )
2 2

1
2

2 2

zz
z r f r

2

3
2

3
1 2

2 2= −
/

( ) ( )
 

(9A.23)

Justification 9A.4  The linear combination of 
degenerate wavefunctions

We justify here the step of taking linear combinations of 
degenerate orbitals when we want to indicate a particu-
lar point. The freedom to do so rests on the fact, as we show 
below, that whenever two or more wavefunctions correspond 
to the same energy, then any linear combination of them is an 
equally valid solution of the Schrödinger equation.

Suppose ψ1 and ψ2 are both solutions of the Schrödinger 
equation with energy E ; then we know that Ηψ ψ1 1= E  
and H Eψ ψ2 2= . Now consider the linear combination 
ψ = c1ψ1 + c2ψ2 where c1 and c2 are arbitrary coefficients. Then 
it follows that

   H H c c c H c H c E c E Eψ ψ ψ ψ ψ ψ ψ ψ= + = + = + =( )1 1 2 2 1 1 2 2 1 1 2 2

Hence, the linear combination is also a solution correspond-
ing to the same energy E.

Checklist of concepts

☐ 1. The Ritz combination principle states that the wave-
number of any spectral line is the difference between 
two terms.

☐ 2. The Schrödinger equation for hydrogenic atoms sepa-
rates into two equations: the solutions of one give the 
angular variation of the wavefunction and the solution 
of the other gives its radial dependence.

☐ 3. Close to the nucleus the radial wavefunction is pro-
portional to rl; far from the nucleus all wavefunctions 
approach zero exponentially.

☐ 4. An atomic orbital is a one-electron wavefunction for an 
electron in an atom.

☐ 5. Atomic orbitals are specified by the quantum numbers 
n, l, and ml.

☐ 6. The energies of the bound states of hydrogenic atoms 
are proportional to Z2/n2.

☐ 7.  The ionization energy of an element is the minimum 
energy required to remove an electron from the ground 
state of one of its atoms.
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Figure 9A.16  The boundary surfaces of 3d orbitals. Two nodal 
planes in each orbital intersect at the nucleus and separate the 
lobes of each orbital. The dark and light areas denote regions of 
opposite sign of the wavefunction. All d orbitals have boundary 
surfaces like those shown here.
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9A Hydrogenic atoms  369

☐ 8. Orbitals of a given value of n form a shell of an atom, 
and within that shell orbitals of the same value of l form 
subshells.

☐ 9. Orbitals of the same shell all have the same energy in 
hydrogenic atoms; orbitals of the same subshell of a 
shell are degenerate in all types of atoms.

☐ 10. s Orbitals are spherically symmetrical and have 
nonzero probability density at the nucleus.

☐ 11. A radial distribution function is the probability den-
sity for the distribution of the electron as a function of 
distance from the nucleus.

☐ 12. There are three p orbitals in a given subshell; each one 
has an angular node.

☐ 13. There are five d orbitals in a given subshell; each one 
has two angular nodes.

Checklist of equations

Property Equation Comment Equation number

Wavenumbers of the spectral lines of a 
hydrogen atom

  = −R n nH( )/ /1 11
2

2
2 RH  is the Rydberg constant for hydrogen (expressed as a 

wavenumber)
9A.1

Wavefunctions of hydrogenic atoms ψ(r,θ,ϕ) = R(r)Y(θ,ϕ) Y are spherical harmonics 9A.7

Bohr radius a0 = 4πε0ħ2/mee2 a0 = 52.9 pm; the most probable radius for a 1s electron  
in hydrogen

9A.11

Rydberg constant for an atom N � �R eN = µ ε4 2
0
2 232/ π  R RN ≈ ∞ , the Rydberg constant; μ = memN/(me + mN) 9A.14

Energies of hydrogenic atoms E hcZ R nn = − 2 2
N/ RN

 is the for the atom N 9A.14

Radial distribution function P(r) = r2R(r)2 P(r) = 4πr2ψ2 for s orbitals 9A.18b
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9B many-electron atoms

The Schrödinger equation for a many-electron atom is highly 
complicated because all the electrons interact with one 
another. One very important consequence of these interac-
tions is that orbitals of the same value of n but different val-
ues of l are no longer degenerate in a many-electron atom. 
Moreover, even for a helium atom, with its two electrons, 
no analytical expression for the orbitals and energies can be 
given, and we are forced to make approximations. We adopt a 
simple approach based on the structure of hydrogenic atoms 
(Topic 9A). In the final section we see the kind of numerical 
computations that are currently used to obtain accurate wave-
functions and energies.

9B.1 The orbital approximation

The wavefunction of a many-electron atom is a very compli-
cated function of the coordinates of all the electrons, and we 
should write it Ψ(r1,r2,…), where ri is the vector from the 
nucleus to electron i (uppercase psi, Ψ, is commonly used to 
denote a many-electron wavefunction). However, in the orbital 
approximation we suppose that a reasonable first approxima-
tion to this exact wavefunction is obtained by thinking of each 
electron as occupying its ‘own’ orbital, and write

Ψ ψ ψ( , , ) ( ) ( )r r r r1 2 1 2… = …   orbital approximation  (9B.1)

We can think of the individual orbitals as resembling the hydro-
genic orbitals, but corresponding to nuclear charges modi-
fied by the presence of all the other electrons in the atom. This 
description is only approximate, as the following Justification 
reveals, but it is a useful model for discussing the chemical 
properties of atoms, and is the starting point for more sophisti-
cated descriptions of atomic structure.

Justification 9B.1 The orbital approximation

The orbital approximation would be exact if there were no 
interactions between electrons. To demonstrate the validity of 
this remark, we need to consider a system in which the ham-
iltonian for the energy is the sum of two contributions, one 
for electron 1 and the other for electron 2:   H H H= +1 2 . In an 
actual atom (such as helium atom), there is an additional term 
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➤➤ Why do you need to know this material?
Many-electron atoms are the building blocks of all 
compounds, and to understand their properties, 
including their ability to participate in chemical bonding, 
it is essential to understand their electronic structure. 
Moreover, a knowledge of that structure explains the 
structure of the periodic table and all that it summarizes.

➤➤ What is the key idea?
Electrons occupy the lowest energy available orbital 
subject to the requirements of the Pauli exclusion principle.

➤➤ What do you need to know already?
This Topic builds on the account of the structure of 
hydrogenic atoms (Topic 9A), especially their shell 
structure. In the discussion of ionization energies and 
electron affinities it makes use of the properties of standard 
reaction enthalpy (Topic 2C).
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9B Many-electron atoms  371

(a) The helium atom
The orbital approximation allows us to express the electronic 
structure of an atom by reporting its configuration, a state-
ment of its occupied orbitals (usually, but not necessarily, in its 
ground state). Thus, as the ground state of a hydrogenic atom 
consists of the single electron in a 1s orbital, we report its con-
figuration as 1s1 (read ‘one-ess-one’).

A He atom has two electrons. We can imagine forming the 
atom by adding the electrons in succession to the orbitals of 
the bare nucleus (of charge 2e). The first electron occupies a 1s 
hydrogenic orbital, but because Z = 2 that orbital is more com-
pact than in H itself. The second electron joins the first in the 
1s orbital, so the electron configuration of the ground state of 
He is 1s2.

It is tempting to suppose that the electronic configurations 
of the atoms of successive elements with atomic numbers Z = 3, 
4, …, and therefore with Z electrons, are simply 1sZ. That, how-
ever, is not the case. The reason lies in two aspects of nature: 
that electrons possess ‘spin’ and must obey the very fundamen-
tal ‘Pauli principle’.

(b) Spin
The quantum mechanical property of electron spin, the posses-
sion of an intrinsic angular momentum, was identified by the 
experiment performed by Otto Stern and Walther Gerlach in 
1921, who shot a beam of silver atoms through an inhomogene-
ous magnetic field, as explained in Topic 8C. Stern and Gerlach 
observed two bands of Ag atoms in their experiment. This obser-
vation seems to conflict with one of the predictions of quantum 
mechanics, because an angular momentum l gives rise to 2l + 1 
orientations, which is equal to 2 only if l = 1

2 , contrary to the 
conclusion that l must be an integer. The conflict was resolved by 
the suggestion that the angular momentum they were observ-
ing was not due to orbital angular momentum (the motion of an 
electron around the atomic nucleus) but arose instead from the 
motion of the electron about its own axis. This intrinsic angular 
momentum of the electron, or ‘spin’, also emerged when Dirac 
combined quantum mechanics with special relativity and estab-
lished the theory of relativistic quantum mechanics.

The spin of an electron about its own axis does not have to 
satisfy the same boundary conditions as those for a particle 
circulating around a central point, so the quantum number for 
spin angular momentum is subject to different restrictions. To 
distinguish this spin angular momentum from orbital angu-
lar momentum we use the spin quantum number s (in place 
of the l in Topic 9A; like l, s is a non-negative number) and ms, 
the spin magnetic quantum number, for the projection on 
the z-axis. The magnitude of the spin angular momentum is 
{s(s + 1)}1/2ħ and the component msħ is restricted to the 2s + 1 
values ms = s, s − 1, …, −s. To account for Stern and Gerlach’s 
observation, s = 1

2  and ms = ± 1
2 .

A note on good practice You will sometimes see the quantum 
number s used in place of ms, and written s = ± 1

2 . That is 
wrong: like l, s is never negative and denotes the magnitude 
of the spin angular momentum. For the z-component, use ms.

(proportional to 1/r12) corresponding to the interaction of the 
two electrons:
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but we are ignoring that term. We shall now show that if 
ψ (r1) is an eigenfunction of H1 with energy E1, and ψ (r2) is 
an eigenfunction of H2  with energy E2, then the product 
Ψ(r1,r2) = ψ (r1)ψ (r2) is an eigenfunction of the combined  
hamiltonian H . To do so we write

  H HΨ ψ ψ ψ ψ ψ ψ( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( )r r r r r r r r1 2 1 2 1 1 2 1 2= + = +H H H1 2 2

== + = +
=

E E E E

E
1 1 2 1 2 2 1 2 1 2

1 2

ψ ψ ψ ψ ψ ψ
Ψ

( ) ( ) ( ) ( ) ( ) ( ) ( )

( , )

r r r r r r

r r

where E = E1 + E2. This is the result we need to prove. However, 
if the electrons interact (as they do in fact), then the proof fails.

Brief illustration 9B.1 Helium wavefunctions

According to the orbital approximation, each electron occu-
pies a hydrogenic 1s orbital of the kind given in Topic 9A. 
If we anticipate (see below) that the electrons experience an 
effective nuclear charge Zeffe rather than its actual charge Ze 
(specifically, as we shall see, 1.69e rather than 2e), then the 
two-electron wavefunction of the atom is
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As can be seen, there is nothing particularly mysterious 
about a two-electron wavefunction: in this case it is a simple 

exponential function of the distances of the two electrons 
from the nucleus.

Self-test 9B.1 Construct the wavefunction for an excited state 
of the He atom with configuration 1s12s1. Use Zeff = 2 for the 
1s electron and Zeff = 1 for the 2s electron. Why those values 
should become clear shortly.

Answer: Ψ ( , ) ( / )( / )e ( / )/r r1 2 0
3

2 0
2 21 2 2 1 2 0= − − +πa r a r r a
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372 9 Atomic structure and spectra

The detailed analysis of the spin of a particle is sophisticated 
and shows that the property should not be taken to be an actual 
spinning motion. It is better to regard ‘spin’ as an intrinsic 
property like mass and charge: every electron has exactly the 
same value and the magnitude of the spin angular momentum 
of an electron cannot be changed. However, the picture of an 
actual spinning motion can be very useful when used with care. 
On the vector model of angular momentum (Topic 8C), the 
spin may lie in two different orientations (Fig. 9B.1). One ori-
entation corresponds to ms = + 1

2  (this state is often denoted α 
or ↑); the other orientation corresponds to ms = − 1

2  (this state 
is denoted β or ↓).

Other elementary particles have characteristic spin. For 
example, protons and neutrons are spin- 1

2  particles (that is, 
s = 1

2 ) and invariably spin with the same angular momentum. 
Because the masses of a proton and a neutron are so much 
greater than the mass of an electron, yet they all have the same 
spin angular momentum, the classical picture would be of these 
two particles spinning much more slowly than an electron. 
Some mesons, another variety of fundamental particle, are 
spin-1 particles (that is, s = 1), as are some atomic nuclei, but for 
our purposes the most important spin-1 particle is the photon. 
The importance of photon spin in spectroscopy is explained 
in Topic 12A; proton spin is the basis of Topic 14A (magnetic 
resonance).

Particles with half-integral spin are called fermions and 
those with integral spin (including 0) are called bosons. Thus, 
electrons and protons are fermions and photons are bosons. It 
is a very deep feature of nature that all the elementary parti-
cles that constitute matter are fermions whereas the elementary 

particles that transmit the forces that bind fermions together 
are all bosons. Photons, for example, transmit the electromag-
netic force that binds together electrically charged particles. 
Matter, therefore, is an assembly of fermions held together by 
forces conveyed by bosons.

(c) The Pauli principle
With the concept of spin established, we can resume our discus-
sion of the electronic structures of atoms. Lithium, with Z = 3, 
has three electrons. The first two occupy a 1s orbital drawn 
even more closely than in He around the more highly charged 
nucleus. The third electron, however, does not join the first two 
in the 1s orbital because that configuration is forbidden by the 
Pauli exclusion principle:

No more than two electrons may occupy any given 
orbital, and if two do occupy one orbital, then their 
spins must be paired.

Electrons with paired spins, denoted ↑↓ , have zero net spin 
angular momentum because the spin of one electron is can-
celled by the spin of the other. Specifically, one electron has 
ms = + 1

2  the other has ms = − 1
2  and in the vector model they 

are orientated on their respective cones so that the resultant 
spin is zero (Fig. 9B.2). The exclusion principle is the key to 
the structure of complex atoms, to chemical periodicity, and 
to molecular structure. It was proposed by Wolfgang Pauli 
in 1924 when he was trying to account for the absence of 
some lines in the spectrum of helium. Later he was able to 
derive a very general form of the principle from theoretical 
considerations.

The Pauli exclusion principle in fact applies to any pair of 
identical fermions. Thus it applies to protons, neutrons, and 
13C nuclei (all of which have s = 1

2 ) and to 35Cl nuclei (which 
have s = 3

2 ). It does not apply to identical bosons, which include 
photons (s = 1) and 12C nuclei (s = 0). Any number of identical 
bosons may occupy the same state (that is, be described by the 
same wavefunction).

Brief illustration 9B.2 Spin

The magnitude of the spin angular momentum, like any angu-
lar momentum, is {s(s + 1)}1/2ħ. For any spin- 1

2  particle, not 
only electrons, this angular momentum is ( ) ./3

4
1 2 0 866 = , or 

9.13 × 10−35 J s. The component on the z-axis is msħ, which for a 
spin- 1

2  particle is ± 1
2 , or ±5.27 × 10−35 J s.

Self-test 9B.2 Evaluate the spin angular momentum of a 
photon.

Answer: 21/2ħ = 1.49 × 10−34 J s
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ms = +½

ms = –½

Figure 9B.1 The vector representation of the spin of an 
electron. The length of the side of the cone is 31/2/2 units and 
the projections are ± 1

2
 units.

ms = +1/2

ms = –1/2

Figure 9B.2 Electrons with paired spins have zero resultant 
spin angular momentum. They can be represented by two 
vectors that lie at an indeterminate position on the cones 
shown here, but wherever one lies on its cone, the other points 
in the opposite direction; their resultant is zero.
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9B Many-electron atoms  373

The Pauli exclusion principle is a special case of a general 
statement called the Pauli principle:

When the labels of any two identical fermions are 
exchanged, the total wavefunction changes sign; when 
the labels of any two identical bosons are exchanged, 
the sign of the total wavefunction remains the same.

By ‘total wavefunction’ is meant the entire wavefunction, 
including the spin of the particles.

To see that the Pauli principle implies the Pauli exclusion 
principle, we consider the wavefunction for two electrons 
Ψ(1,2). The Pauli principle implies that it is a fact of nature 
(which has its roots in the theory of relativity) that the wave-
function must change sign if we interchange the labels 1 and 2 
wherever they occur in the function:

Ψ Ψ( , ) ( , )1 2 2 1=−  (9B.2)

Suppose the two electrons in an atom occupy an orbital ψ, 
then in the orbital approximation the overall wavefunction is 
ψ(1)ψ(2). To apply the Pauli principle, we must deal with the 
total wavefunction, the wavefunction including spin. There are 
several possibilities for two spins: both α, denoted α(1)α(2), 
both β, denoted β(1)β(2), and one α the other β, denoted either 
α(1)β(2) or α(2)β(1). Because we cannot tell which electron is 
α and which is β, in the last case it is appropriate to express the 
spin states as the (normalized) linear combinations

σ α β β α
σ α β

+ = +
=

( )

(

, ( / ){ ( ) ( ) ( ) ( )}

, ) ( / ){ ( ) (

/

/

1 2 1 2 1 2 1 2

1 2 1 2 1

1 2

1 2
− 22 1 2) ( ) ( )}−β α  

(9B.3)

(A stronger justification for taking these linear combinations is 
that they correspond to eigenfunctions of the total spin opera-
tors S2 and Sz, with MS = 0 and, respectively, S = 1 and 0.) These 
combinations allow one spin to be α and the other β with equal 
probability. The total wavefunction of the system is therefore 
the product of the orbital part and one of the four spin states:

ψ ψ ψ ψ
ψ ψ ψ ψ

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) , ( ) ( )( ) (

1 2 1 2 1 2 1 2

1 2 1 2 1 2

α α β β
σ σ+ − 11 2, )  

(9B.4)

The Pauli principle says that for a wavefunction to be accept-
able (for electrons), it must change sign when the electrons are 
exchanged. In each case, exchanging the labels 1 and 2 converts 
the factor ψ(1)ψ(2) into ψ(2)ψ(1), which is the same, because 
the order of multiplying the functions does not change the 
value of the product. The same is true of α(1)α(2) and β(1)β(2). 
Therefore, the first two overall products are not allowed, because 
they do not change sign. The combination σ+(1,2) changes to

σ σα β β α+ += + =( ) ( , ), ( / ){ ( ) ( ) ( ) ( )}/2 1 1 2 2 1 2 1 1 21 2

because it is simply the original function written in a different 
order. The third overall product is therefore also disallowed. 
Finally, consider σ−(1,2):

σ α β β α
α β β

− = −
= −

( , ) ( / ){ ( ) ( ) ( ) ( )}

( / ){ ( ) ( ) (

/

/

2 1 1 2 2 1 2 1

1 2 1 2 1

1 2

1 2− )) ( )} ( , )α σ2 1 2= −−

This combination does change sign (it is ‘antisymmetric’). The 
product ψ(1)ψ(2)σ−(1,2) also changes sign under particle 
exchange, and therefore it is acceptable.

Now we see that only one of the four possible states is allowed 
by the Pauli principle, and the one that survives has paired α 
and β spins. This is the content of the Pauli exclusion principle. 
The exclusion principle (but not the more general Pauli prin-
ciple) is irrelevant when the orbitals occupied by the electrons 
are different, and both electrons may then have, but need not 
have, the same spin state. In each case the overall wavefunction 
must still be antisymmetric overall and must satisfy the Pauli 
principle itself.

A final point in this connection is that the acceptable prod-
uct wavefunction ψ(1)ψ(2)σ−(1,2) can be expressed as a deter-
minant (see The chemist’s toolkit 9B.1):

1
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Any acceptable wavefunction for a closed-shell species can be 
expressed as a Slater determinant, as such determinants are 
known. In general, for N electrons in orbitals ψa, ψb, …
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 (9B.5a)

Writing a many-electron wavefunction in this way ensures that 
it is antisymmetric under the interchange of any pair of elec-
trons (see Problem 9B.2). Because a Slater determinant takes 
up a lot of space, it is normally reported by writing only its 
diagonal elements, as in

Ψ ψ ψ ψ ψ( , , ) ( / !) det ( ) ( ) ( ) ( )/1 2 1 1 2 31 2… …N N Na a b z= α β α β
 

 (9B.5b)notation for a slater determinant
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374 9 Atomic structure and spectra

Now we can return to lithium. In Li (Z = 3), the third elec-
tron cannot enter the 1s orbital because that orbital is already 
full: we say the K shell (the orbital with n = 1, Topic 9A) is com-
plete and that the two electrons form a closed shell. Because a 
similar closed shell is characteristic of the He atom, we denote  
it [He]. The third electron is excluded from the K shell and 
must occupy the next available orbital, which is one with n = 2 
and hence belonging to the L shell (which consists of the four 
orbitals with n = 2). However, we now have to decide whether 
the next available orbital is the 2s orbital or a 2p orbital, and 
therefore whether the lowest energy configuration of the atom 
is [He]2s1 or [He]2p1.

(d) Penetration and shielding
Unlike in hydrogenic atoms, the 2s and 2p orbitals (and, in 
general, all subshells of a given shell) are not degenerate in 
many-electron atoms. An electron in a many-electron atom 
experiences a Coulombic repulsion from all the other electrons 
present. If it is at a distance r from the nucleus, it experiences 
an average repulsion that can be represented by a point nega-
tive charge located at the nucleus and equal in magnitude to 
the total charge of the electrons within a sphere of radius r (Fig. 
9B.3). The effect of this point negative charge, when averaged 
over all the locations of the electron, is to reduce the full charge 

of the nucleus from Ze to Zeff e, the effective nuclear charge. 
In everyday parlance, Zeff itself is commonly referred to as the 
‘effective nuclear charge’. We say that the electron experiences a 
shielded nuclear charge, and the difference between Z and Zeff 
is called the shielding constant, σ:

Z Zeff = −σ   effective nuclear charge  (9B.6)

The electrons do not actually ‘block’ the full Coulombic attrac-
tion of the nucleus: the shielding constant is simply a way of 
expressing the net outcome of the nuclear attraction and the 
electronic repulsions in terms of a single equivalent charge at 
the centre of the atom.

The shielding constant is different for s and p electrons 
because they have different radial distributions (Fig. 9B.4). An 

No net effect of
these electrons

Net effect equivalent 
to a point charge at
the nucleus

r

Figure 9B.3 An electron at a distance r from the nucleus 
experiences a Coulombic repulsion from all the electrons 
within a sphere of radius r and which is equivalent to a point 
negative charge located on the nucleus. The negative charge 
reduces the effective nuclear charge of the nucleus from Ze 
to Zeffe.
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Figure 9B.4 An electron in an s orbital (here a 3s orbital) is 
more likely to be found close to the nucleus than an electron 
in a p orbital of the same shell (note the closeness of the 
innermost peak of the 3s orbital to the nucleus at r = 0). Hence 
an s electron experiences less shielding and is more tightly 
bound than a p electron.

The chemist’s toolkit 9B.1 Determinants

A 2 × 2 determinant is the quantity

a b

c d
ad bc= −

 
 2 × 2 determinant 

A 3 × 3 determinant is evaluated by expanding it as a sum of 
2 × 2 determinants:

a b c

d e f

g h i

a
e f

h i
b

d f

g i
c

d e

g h

a

= − +

= − − − + −( ) ( ) ( )ei fh b di fg c dh eg  

 3 × 3 determinant 

Note the sign change in alternate columns (b occurs with a 
negative sign in the expansion). An important property of a 
determinant is that if any two rows or any two columns are 
interchanged, then the determinant changes sign:

Exchange columns: 

Exchange rows: 

b

d
bc ad

b

d

a

c

a

c
= − = − − = −( )ad bc

cc d
cd da

c da b

a b
= − = − − = −( )ad bc
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s electron has a greater penetration through inner shells than a 
p electron, in the sense that it is more likely to be found close to 
the nucleus than a p electron of the same shell (the wavefunction 
of a p orbital, remember, is zero at the nucleus). Because only 
electrons inside the sphere defined by the location of the electron 
contribute to shielding, an s electron experiences less shielding 
than a p electron. Consequently, by the combined effects of pene-
tration and shielding, an s electron is more tightly bound than a 
p electron of the same shell. Similarly, a d electron penetrates less 
than a p electron of the same shell (recall that the wavefunction 
of a d orbital varies as r2 close to the nucleus, whereas a p orbital 
varies as r), and therefore experiences more shielding.

Shielding constants for different types of electrons in atoms 
have been calculated from their wavefunctions obtained by 
numerical solution of the Schrödinger equation for the atom 
(Table 9B.1). We see that, in general, valence-shell s electrons 
do experience higher effective nuclear charges than p electrons, 
although there are some discrepancies. We return to this point 
shortly.

The consequence of penetration and shielding is that the 
energies of subshells of a shell in a many-electron atom (those 
with the same values of n but different values of l) in general 
lie in the order s < p < d < f. The individual orbitals of a given 
subshell (those with the same value of l but different values of 
ml) remain degenerate because they all have the same radial 
characteristics and so experience the same effective nuclear 
charge.

We can now complete the Li story. Because the shell with 
n = 2 consists of two non-degenerate subshells, with the 2s 
orbital lower in energy than the three 2p orbitals, the third 
electron occupies the 2s orbital. This occupation results in the 
ground-state configuration 1s22s1, with the central nucleus 
surrounded by a complete helium-like shell of two 1s electrons, 
and around that a more diffuse 2s electron. The electrons in 
the outermost shell of an atom in its ground state are called the 
valence electrons because they are largely responsible for the 
chemical bonds that the atom forms. Thus, the valence elec-
tron in Li is a 2s electron and its other two electrons belong to 
its core.

9B.2 The building-up principle

The extension of the argument used to account for the struc-
tures of H, He, and Li is called the building-up principle, or 
the Aufbau principle, from the German word for building up, 
which will be familiar from introductory courses. In brief, we 
imagine the bare nucleus of atomic number Z, and then feed 
into the orbitals Z electrons in succession. The order of occupa-
tion is

1 2 2 3 3 4 3 4 5 4 5 6s s p s p s d p s d p s

Each orbital may accommodate up to two electrons.

Table 9B.1* Effective nuclear charge, Zeff = Z – σ

Element Z Orbital Zeff

He 2 1s 1.6875
C 6 1s 5.6727

2s 3.2166
2p 3.1358

* More values are given in the Resource section.

distribution functions are plotted in Fig. 9B.5. As can be seen, 
the s orbital has greater penetration than the p orbital. The 
average radii of the 2s and 2p orbitals are 99 pm and 84 pm, 
respectively, which shows that the average distance of a 2s 
electron from the nucleus is greater than that of a 2p orbital. 
To account for the lower energy of the 2s orbital we see that 
the extent of penetration is more important than the average 
distance.

Self-test 9B.3 Confirm the values for the average radii. Instead 
of carrying out the integrations, you might prefer to use the 
general formula 〈 〉 = + − +r Zn l, ( / ){ [ ]}n a l l n2

0
1
21 1 ( 1)/ 2 .

Answer: 2s: 1.865a0; 2p: 1.595a0

Brief illustration 9B.3 Penetration and shielding

The effective nuclear charge for 1s, 2s, and 2p electrons in a 
carbon atom are 5.6727, 3.2166, and 3.1358, respectively. The 
radial distribution functions for these orbitals (Topic 9A) are 
generated by forming P(r) = r2R(r)2, where R(r) is the radial 
wavefunction, which are given in Table 9A.1. The three radial 
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Figure 9B.5 The radial distribution functions for electrons 
in a carbon atom, as calculated in Brief illustration 9B.3.
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376 9 Atomic structure and spectra

(a) Hund’s rules
We can be more precise about the configuration of a carbon 
atom than in Brief illustration 9B.4: we can expect the last 
two electrons to occupy different 2p orbitals because they 
will then be further apart on average and repel each other less 
than if they were in the same orbital. Thus, one electron can 
be thought of as occupying the 2px orbital and the other the 
2py orbital (the x, y, z designation is arbitrary, and it would be 
equally valid to use the complex forms of these orbitals), and 
the lowest energy configuration of the atom is [He] s2 2 22 1 1p px y . 
The same rule applies whenever degenerate orbitals of a sub-
shell are available for occupation. Thus, another rule of the 
building-up principle is:

Electrons occupy different orbitals of a given subshell 
before doubly occupying any one of them.

For instance, nitrogen (Z = 7) has the ground-state configura-
tion [He] s2 2 2 22 1 1 1p p px y z , and only when we get to oxygen (Z = 8) 
is a 2p orbital doubly occupied, giving [He] s2 2 2 22 2 1 1p p px y z .

When electrons occupy orbitals singly we invoke Hund’s 
maximum multiplicity rule:

An atom in its ground state adopts a 
configuration with the greatest number of 
unpaired electrons.

The explanation of Hund’s rule is subtle, but it reflects the quan-
tum mechanical property of spin correlation, that, as we dem-
onstrate in the following Justification, electrons with parallel 
spins behave as if they have a tendency to stay well apart, and 
hence repel each other less. In essence, the effect of spin cor-
relation is to allow the atom to shrink slightly, so the  electron–
nucleus interaction is improved when the spins are parallel. 
We can now conclude that, in the ground state of the carbon 
atom, the two 2p electrons have the same spin, that all three 2p 
electrons in the N atoms have the same spin (that is, they are 
parallel), and that the two 2p electrons in different orbitals in 
the O atom have the same spin (the two in the 2px orbital are 
necessarily paired).

Neon, with Z = 10, has the configuration [He]2s22p6, which 
completes the L shell. This closed-shell configuration is 
denoted [Ne], and acts as a core for subsequent elements. The 
next electron must enter the 3s orbital and begin a new shell, 
so an Na atom, with Z = 11, has the configuration [Ne]3s1. Like 
lithium with the configuration [He]2s1, sodium has a single s 
electron outside a complete core. This analysis has brought us 
to the origin of chemical periodicity. The L shell is completed 
by eight electrons, so the element with Z = 3 (Li) should have 
similar properties to the element with Z = 11 (Na). Likewise, 
Be (Z = 4) should be similar to Z = 12 (Mg), and so on, up to 
the noble gases He (Z = 2), Ne (Z = 10), and Ar (Z = 18).

Ten electrons can be accommodated in the five 3d orbit-
als, which accounts for the electron configurations of scan-
dium to zinc. Calculations of the type discussed in Section 
9B.3 show that for these atoms the energies of the 3d orbitals 
are always lower than the energy of the 4s orbital. However, 
spectroscopic results show that Sc has the configuration 
[Ar]3d14s2, instead of [Ar]3d3 or [Ar]3d24s1. To understand 
this observation, we have to consider the nature of electron–
electron repulsions in 3d and 4s orbitals. The most probable 

Brief illustration 9B.4 The building-up principle

Consider the carbon atom, for which Z = 6 and there are six 
electrons to accommodate. Two electrons enter and fill the 1s 
orbital, two enter and fill the 2s orbital, leaving two electrons 
to occupy the orbitals of the 2p subshell. Hence the ground-
state configuration of C is 1s22s22p2, or more succinctly 
[He]2s22p2, with [He] the helium-like 1s2 core.

Self-test 9B.4 What is the ground-state configuration of a Mg 
atom?

Answer: [Ne]3s2
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Justification 9B.2 Spin correlation

Suppose electron 1 is described by a wavefunction ψa(r1) and 
electron 2 is described by a wavefunction ψb(r2); then, in the 
orbital approximation, the joint wavefunction of the elec-
trons is the product Ψ = ψa(r1)ψb(r2). However, this wavefunc-
tion is not acceptable, because it suggests that we know which 
electron is in which orbital, whereas we cannot keep track 
of electrons. According to quantum mechanics, the correct 
description is either of the two following wavefunctions:

Ψ ψ ψ ψ ψ± = ±( / ){ ( ) ( ) ( ) ( )}/1 21 2
1 2 1 1 2a b br r r r

According to the Pauli principle, because Ψ+ is symmetri-
cal under particle interchange, it must be multiplied by an 
antisymmetric spin function (the one denoted σ−). That com-
bination corresponds to a spin-paired state. Conversely, Ψ− is 
antisymmetric, so it must be multiplied by one of the three 
symmetric spin states. These three symmetric states corres-
pond to electrons with parallel spins (see Section 9C.2 for an 
explanation of this point).

Now consider the values of the two combinations when one 
electron approaches another, and r1 = r2. We see that Ψ− van-
ishes, which means that there is zero probability of finding the 
two electrons at the same point in space when they have paral-
lel spins. The other combination does not vanish when the 
two electrons are at the same point in space. Because the two 
electrons have different relative spatial distributions depend-
ing on whether their spins are parallel or not, it follows that 
their Coulombic interaction is different, and hence that the 
two states have different energies.
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9B Many-electron atoms  377

distance of a 3d electron from the nucleus is less than that 
for a 4s electron, so two 3d electrons repel each other more 
strongly than two 4s electrons. As a result, Sc has the configu-
ration [Ar]3d14s2 rather than the two alternatives, for then the 
strong electron–electron repulsions in the 3d orbitals are min-
imized. The total energy of the atom is least despite the cost of 
allowing electrons to populate the high energy 4s orbital (Fig. 
9B.6). The effect just described is generally true for scandium 
through zinc, so their electron configurations are of the form 
[Ar]3dn4s2, where n = 1 for scandium and n = 10 for zinc. Two 
notable exceptions, which are observed experimentally, are 
Cr, with electron configuration [Ar]3d54s1, and Cu, with elec-
tron configuration [Ar]3d104s1.

At gallium, the building-up principle is used in the same way 
as in preceding periods. Now the 4s and 4p subshells consti-
tute the valence shell, and the period terminates with krypton. 
Because 18 electrons have intervened since argon, this row is 
the first ‘long period’ of the periodic table. The existence of the 
d-block elements (the ‘transition metals’) reflects the stepwise 
occupation of the 3d orbitals, and the subtle shades of energy 
differences and effects of electron–electron repulsion along 
this series gives rise to the rich complexity of inorganic d-metal 
chemistry. A similar intrusion of the f orbitals in Periods 6 and 
7 accounts for the existence of the f block of the periodic table 
(the lanthanoids and actinoids).

We derive the configurations of cations of elements in the 
s, p, and d blocks of the periodic table by removing electrons 
from the ground-state configuration of the neutral atom in 
a specific order. First, we remove valence p electrons, then 
valence s electrons, and then as many d electrons as are neces-
sary to achieve the specified charge. The configurations of 
anions of the p-block elements are derived by continuing the 
building-up procedure and adding electrons to the neutral 
atom until the configuration of the next noble gas has been 
reached.

(b) Ionization energies and electron affinities
The minimum energy necessary to remove an electron from 
a many-electron atom in the gas phase is the first ionization 
energy, I1, of the element. The second ionization energy, I2, is the 
minimum energy needed to remove a second electron (from the 
singly charged cation). The variation of the first ionization energy 
through the periodic table is shown in Fig. 9B.7 and some numer-
ical values are given in Table 9B.2. In thermodynamic calculations 
we often need the standard enthalpy of ionization, ΔionH<. As 
shown in the following Justification, the two are related by

∆ = +ionH T I RT<( ) 5
2   enthalpy of ionization  (9B.7a)

Brief illustration 9B.5 Ion configurations

Because the configuration of vanadium is [Ar]3d34s2, the V2+ 
cation has the configuration [Ar]3d3. It is reasonable that we 
remove the more energetic 4s electrons in order to form the 
cation, but it is not obvious why the [Ar]3d3 configuration is 
preferred in V2+ over the [Ar]3d14s2 configuration, which is 
found in the isoelectronic Sc atom. Calculations show that the 
energy difference between [Ar]3d3 and [Ar]3d14s2 depends on 
Zeff. As Zeff increases, transfer of a 4s electron to a 3d orbital 
becomes more favourable because the electron–electron 
repulsions are compensated by attractive interactions between 
the nucleus and the electrons in the spatially compact 3d 
orbital. Indeed, calculations reveal that, for a sufficiently large 
Zeff, [Ar]3d3 is lower in energy than [Ar]3d14s2. This conclu-
sion explains why V2+ has a [Ar]3d3 configuration and also 
accounts for the observed [Ar]4s03dn configurations of the 
M2+ cations of Sc through Zn.

Self-test 9B.5 Write the ground state configuration of the 
O2– ion.

Answer: [He]2s22p6
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Figure 9B.7 The first ionization energies of the elements 
plotted against atomic number.
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Figure 9B.6 Strong electron–electron repulsions in the 3d 
orbitals are minimized in the ground state of Sc if the atom 
has the configuration [Ar]3d14s2 (shown on the left) instead of 
[Ar]3d24s1 (shown on the right). The total energy of the atom is 
lower when it has the [Ar]3d14s2 configuration despite the cost 
of populating the high energy 4s orbital.
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378 9 Atomic structure and spectra

At 298 K, the difference between the ionization enthalpy and 
the corresponding ionization energy is 6.20 kJ mol−1. The same 
expression applies to each successive ionization step, so the 
overall ionization enthalpy for the formation of M2+ is

∆ = + +ionH T I I RT<( ) 1 2 5  (9B.7b)

The electron affinity, Eea, is the energy released when an 
electron attaches to a gas-phase atom (Table 9B.3). In a com-
mon, logical (given its name), but not universal convention 
(which we adopt), the electron affinity is positive if energy is 
released when the electron attaches to the atom (that is, Eea > 0 
implies that electron attachment is exothermic). It follows from 
a similar argument to that given in the Justification above that 
the standard enthalpy of electron gain, ΔegH<, at a tempera-
ture T is related to the electron affinity by

∆ =eg eaH T E RT<( ) − − 5
2   enthalpy of electron gain  (9B.8)

Note the change of sign. In typical thermodynamic cycles the 
5
2 RT  that appears in eqn 9B.7 cancels that in eqn 9B.8, so ioni-

zation energies and electron affinities can be used directly. A 
final preliminary point is that the electron-gain enthalpy of a 
species X is the negative of the ionization enthalpy of its nega-
tive ion:

∆ ∆=eg ionX XH H< <( ) ( )− −
 (9B.9)

As ionization energy is often easier to measure than electron 
affinity, this relation can be used to determine numerical values 
of the latter.

As will be familiar from introductory chemistry, ioniza-
tion energies and electron affinities show periodicities. The 
former is more regular and we concentrate on it. Lithium has 
a low first ionization energy because its outermost electron is 
well shielded from the nucleus by the core (Zeff  = 1.3, compared 
with Z = 3). The ionization energy of beryllium (Z = 4) is greater 
but that of boron is lower because in the latter the outermost 
electron occupies a 2p orbital and is less strongly bound than 
if it had been a 2s electron. The ionization energy increases 
from boron to nitrogen on account of the increasing nuclear 
charge. However, the ionization energy of oxygen is less than 
would be expected by simple extrapolation. The explanation 
is that at oxygen a 2p orbital must become doubly occupied, 
and the electron–electron repulsions are increased above what 
would be expected by simple extrapolation along the row. In 
addition, the loss of a 2p electron results in a configuration with 

Justification 9B.3 The ionization enthalpy and the 
ionization energy

It follows from Kirchhoff’s law (Topic 2C, eqn 2C.7a) that the 
reaction enthalpy, the enthalpy of ionization, for

M(g) M eg g→ ++( ) ( )−

at a temperature T is related to the value at T = 0 by

∆ = ∆ + ∆∫ion ion ion dH T H C Tp

T
< < <( ) ( )0

0

I� �� ��

The molar constant pressure heat capacity of each species 
in the reaction is 5

2 R, so ∆ = +ionC Rp
< 5

2 . The integral in this 
expression therefore evaluates to 5

2 RT . The reaction enthalpy 
at T = 0 is the same as the (molar) ionization energy, I. Equation 
9B.7a then follows.

Brief illustration 9B.6 Ionization energy and electron 
affinity

Tables of thermodynamic data give the standard enthalpies of 
formation of Na(g) and Na+(g) at 298.15 K as +107.32 kJ mol−1 
and +609.358 kJ mol−1, respectively. Therefore, the standard 
enthalpy of ionization is the difference, +502.04 kJ mol−1. The 
ionization energy is therefore

I H R= ∆ ×

= −
ion K K

kJmol kJmol

<( . ) ( . )

. .

298 15 298 15

502 04 6 197

5
2

1 1

−
− −

. .( )= 495 84 5 1391kJmol or eV−

as in Table 9B.2.

Self-test 9B.6 The standard enthalpies of formation of Cl(g) 
and Cl−(g) at 298.15 K are +121.679 kJ mol−1 and −233.13  
kJ mol−1, respectively. What is the electron affinity of chlorine 
atoms?

Answer: +348.61 kJ mol−1, +3.613 eV

Table 9B.2* First and second ionization energies, I/(kJ mol−1)

Element I1/(kJ mol−1) I2/(kJ mol−1)

H 1312

He 2372 5251

Mg 738 1451

Na 496 4562

* More values are given in the Resource section.

Table 9B.3* Electron affinities, Ea/(kJ mol−1)

Cl 349

F 322

H 73

O 141 O− –844

* More values are given in the Resource section.
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9B Many-electron atoms  379

a half-filled subshell (like that of N), which is an arrangement 
of low energy, so the energy of O+ + e− is lower than might be 
expected, and the ionization energy is correspondingly low too. 
(The kink is less pronounced in the next row, between phos-
phorus and sulfur because their orbitals are more diffuse.) The 
values for oxygen, fluorine, and neon fall roughly on the same 
line, the increase of their ionization energies reflecting the 
increasing attraction of the more highly charged nuclei for the 
outermost electrons.

The outermost electron in sodium (Z = 11) is 3s. It is far from 
the nucleus, and the latter’s charge is shielded by the compact, 
complete neon-like core, with the result that Zeff ≈ 2.5. As a 
result, the ionization energy of sodium is substantially lower 
than that of neon (Z = 10, Zeff  ≈ 5.8). The periodic cycle starts 
again along this row, and the variation of the ionization energy 
can be traced to similar reasons.

Electron affinities are greatest close to fluorine, for the 
incoming electron enters a vacancy in a compact valence shell 
and can interact strongly with the nucleus. The attachment of 
an electron to an anion (as in the formation of O2− from O−) is 
invariably endothermic, so Eea is negative. The incoming elec-
tron is repelled by the charge already present. Electron affinities 
are also small, and may be negative, when an electron enters 
an orbital that is far from the nucleus (as in the heavier alkali 
metal atoms) or is forced by the Pauli principle to occupy a new 
shell (as in the noble gas atoms).

9B.3 Self-consistent field orbitals

The central difficulty of the Schrödinger equation is the pres-
ence of the electron–electron interaction terms. The potential 
energy of all the electrons in an N-electron atom is
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(9B.10)

The first term on the right is the total attractive interaction 
between the electrons and the nucleus. The second term is the 
total repulsive interaction between the electrons; rij is the dis-
tance between electrons i and j. The prime on the second sum 
indicates that contributions with i = j are excluded, and the 
factor of one-half prevents double-counting of electron pair 
repulsions (1 interacting with 2 is the same as 2 interacting 
with 1). It is hopeless to expect to find analytical solutions of a 
Schrödinger equation with such a complicated potential energy 
term, but computational techniques are available that give 
very detailed and reliable numerical solutions for the wave-
functions and energies. The techniques were originally intro-
duced by D.R. Hartree (before computers were available) and 

then modified by V. Fock to take into account the Pauli prin-
ciple. In broad outline, the Hartree–Fock self-consistent field 
(HF-SCF) procedure is as follows.

Imagine that we have a rough idea of the structure of the 
atom. In the Ne atom, for instance, the orbital approximation 
suggests the configuration 1s22s22p6 with the orbitals approxi-
mated by hydrogenic atomic orbitals. Now consider one of the 
2p electrons. A Schrödinger equation can be written for this 
electron by ascribing to it a potential energy due to the nuclear 
attraction and the repulsion from the other electrons. This 
equation has the form

ˆ ( ) ( ) ( ) ( )

– (

H V

V

1 1 12 2ψ ψp pother electrons

exchange correction

+
)) ( )

( )

ψ
ψ

2

2 2

1

1

p

p p= E  

(9B.11)

Although the equation is for an electron in the 2p orbital, it 
depends on the wavefunctions of all the other occupied orbitals 
in the atom, and similar equations can be written for them too. 
The various terms are as follows:

•	 The first term on the left is the contribution of the 
kinetic energy and the attraction of the electron to 
the nucleus, just as in a hydrogenic atom

•	 The second term takes into account the potential 
energy of the electron of interest due to the electrons 
in the other occupied orbitals.

•	 The third term is an exchange correction that takes 
into account the spin correlation effects discussed 
earlier.

There is no hope of solving eqn 9B.11 analytically. However, it 
can be solved numerically if we guess an approximate form of 
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Figure 9B.8 The radial distribution functions for the orbitals of 
Na based on SCF calculations. Note the shell-like structure, with 
the 3s orbital outside the inner K and L shells.
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380 9 Atomic structure and spectra

the wavefunctions of all the orbitals except 2p. The procedure is 
then repeated for the other orbitals in the atom, the 1s and 2s 
orbitals. This sequence of calculations gives the form of the 2p, 
2s, and 1s orbitals, and in general they will differ from the set 
used initially to start the calculation. These improved orbitals can 
be used in another cycle of calculation, and a second improved 
set of orbitals is obtained. The recycling continues until the orbit-
als and energies obtained are insignificantly different from those 
used at the start of the current cycle. The solutions are then ‘self-
consistent’ and accepted as solutions of the problem.

Figure 9B.8 shows plots of some of the HF-SCF radial dis-
tribution functions for sodium. They show the grouping of 
electron density into shells, as was anticipated by the early 
chemists, and the differences of penetration as discussed above. 
These SCF calculations therefore support the qualitative dis-
cussions that are used to explain chemical periodicity. They 
also consider ably extend that discussion by providing detailed 
wavefunctions and precise energies.

Checklist of concepts

☐ 1. In the orbital approximation, each electron is regarded 
as occupying its own orbital.

☐ 2. A configuration is a statement of the occupied orbitals.
☐ 3. The Pauli exclusion principle, a special case of the Pauli 

principle, limits to two the number of electrons that can 
occupy a given orbital.

☐ 4. In many-electron atoms, s orbitals lie at a lower energy 
than p orbitals of the same shell due to the combined 
effects of penetration and shielding.

☐ 5. The building-up principle is a procedure for predicting 
the ground state electron configuration of an atom.

☐ 6. Electrons occupy different orbitals of a given subshell 
before doubly occupying any one of them.

☐ 7. An atom in its ground state adopts a configuration with 
the greatest number of unpaired electrons.

☐ 8. The ionization energy and electron affinity vary peri-
odically through the periodic table.

☐ 9. The Schrödinger equation for many-electron atoms is 
solved numerically and iteratively until the solutions 
are self-consistent.

Checklist of equations

Property Equation Comment Equation number

Orbital approximation Ψ(r1,r2,…) = ψ(r1)ψ(r2)… 9B.1

Effective nuclear charge Zeff  = Z – σ The charge is this number times e 9B.6

Relation between enthalpy of ionization and ionization energy ∆ = +ionH T I RT<( ) 5
2 9B.7a

Relation between electron-gain enthalpy and electron affinity ∆ = −eg eaH T E RT<( ) − 5
2 9B.8

Relation between enthalpies ΔegH<(X) = –ΔionH<(X−) 9B.9
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9C atomic spectra

The general idea behind atomic spectroscopy is straightfor-
ward: lines in the spectrum (in either emission or absorption) 

occur when the electron distribution in an atom undergoes a 
transition with a change of energy |ΔE|, and emits or absorbs 
a photon of frequency ν = |ΔE|/h and wavenumber  = ∆| |/E hc.  
Hence, we can expect the spectrum to give information about 
the energies of electrons in atoms.

9C.1 The spectra of hydrogenic 
atoms

The energies of the hydrogenic atoms are given in Topic 9A 
( )/E hcZn = − 2 2R nN . When the electron undergoes a transition, 
a change of state, from an orbital with quantum numbers n1, l1, 
ml1 to another (lower energy) orbital with quantum numbers 
n2, l2, ml2, it undergoes a change of energy ΔE and discards the 
excess energy as a photon of electromagnetic radiation with a 
frequency ν given by the Bohr frequency condition (Topic 7A, 
eqn 7A.12; ΔE = hν).

Not all transitions are observed. A photon has an intrinsic 
spin angular momentum corresponding to s = 1 (Topic 9B). 
Because total angular momentum is conserved, the change 
in angular momentum of the electron must compensate for 
the angular momentum carried away by the photon. Thus, an 
electron in a d orbital (l = 2) cannot make a transition into an 
s orbital (l = 0) because the photon cannot carry away enough 
angular momentum. Similarly, an s electron cannot make a 
transition to another s orbital, because there would then be no 
change in the angular momentum of the electron to make up 
for the angular momentum carried away by the photon. It fol-
lows that some spectroscopic transitions are allowed, meaning 
that they can occur, whereas others are forbidden, meaning 
that they cannot occur.

A selection rule is a statement about which transitions are 
allowed. They are derived (for atoms) by identifying the transi-
tions that conserve angular momentum when a photon is emit-
ted or absorbed. We show in the following Justification that the 
selection rules for hydrogenic atoms are

∆ = ± ∆ = ±l ml1 0 1,   selection rules for hydrogenic atoms  (9C.1)

The principal quantum number n can change by any amount 
consistent with the Δl for the transition, because it does not 
relate directly to the angular momentum.
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➤➤ Why do you need to know this material?
A knowledge of the energies of electrons in atoms is 
essential for understanding many chemical properties and 
concepts, such as chemical bonding and the structure of 
the periodic table.

➤➤ What is the key idea?
The frequency and wavenumber of radiation emitted 
when transitions take place provide information on the 
electronic energy states of atoms.

➤➤ What do you need to know already?
This Topic draws on knowledge of the energy levels of 
hydrogenic atoms (Topic 9A) and the configurations of 
many-electron atoms (Topic 9B). In places, it uses the 
properties of angular momentum (Topic 8C).
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382 9 Atomic structure and spectra

The selection rules and the atomic energy levels jointly 
account for the structure of a Grotrian diagram (Fig. 9C.1), 
which summarizes the energies of the states and the transitions 
between them. The thicknesses of the transition lines in the 
diagram denote their relative intensities in the spectrum.

9C.2 The spectra of complex atoms

The spectra of atoms rapidly become very complicated as the 
number of electrons increases, but there are some important 
and moderately simple features that make atomic spectroscopy 
useful in the study of the composition of samples as large and 
as complex as stars. However, the actual energy levels are not 
given solely by the energies of the orbitals, because the elec-
trons interact with one another in various ways.

Brief illustration 9C.1 Selection rules

To identify the orbitals to which a 4d electron may make radi-
ative transitions, we first identify the value of l and then apply 
the selection rule for this quantum number. Because l = 2, the 
final orbital must have l = 1 or 3. Thus, an electron may make 
a transition from a 4d orbital to any np orbital (subject to 
Δml = 0, ±1) and to any nf orbital (subject to the same rule). 
However, it cannot undergo a transition to any other orbital, 
so a transition to any ns orbital or to another nd orbital is 
forbidden.

Self-test 9C.1 To what orbitals may a 4s electron make electric-
dipole allowed radiative transitions?

Answer: to np orbitals only

Justification 9C.1 The identification of selection rules

The underlying classical idea behind a spectroscopic tran-
sition is that, for an atom or molecule to be able to interact 
with the electromagnetic field and absorb or create a photon 
of frequency ν, it must possess, at least transiently, a dipole 
oscillating at that frequency. This transient dipole is expressed 
quantum mechanically in terms of the transition dipole 
moment, μfi, between the initial and final states, where1

μ μfi f i=∫ψ ψ τ*   d
 

(9C.2)

and μ̂  is the electric dipole moment operator. For a one-
electron atom μ̂  is multiplication by −er with components 
μx = −ex, μy = −ey, and μz = −ez. If the transition dipole moment 
is zero, then the transition is forbidden; the transition is 
allowed if the transition moment is non-zero.

To evaluate a transition dipole moment, we consider each 
component in turn. For example, for the z-component,

µ ψ ψ τz e z,
*

fi f i= − ∫ d
 

To evaluate the integral, we note from Table 8C.1 that z = r cos θ  
= (4π/3)1/2rY1,0, so
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This multiple integral is the product of three factors, an inte-
gral over r and two integrals (in blue) over the angles, so the 
factors on the right can be grouped as follows:
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It follows from the properties of the spherical harmonics that 
the integral

I Y Y Yl l m l ml
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sinθ θ φ
00

2 ππ

is zero unless lf = li ± 1 and ml,f = ml,i + m. Because m = 0 in the 
present case, the angular integral, and hence the z-component 
of the transition dipole moment, is zero unless Δl = ±1 and 
Δml = 0, which is a part of the set of selection rules. The same 
procedure, but considering the x- and y-components, results 
in the complete set of rules.

Paschen

Lyman

Balmer
15 328 (Hα)

102 824

20 571 (Hβ)
23 039 (Hγ)
24 380 (Hδ)

97 492
82 259

s p d

Figure 9C.1 A Grotrian diagram that summarizes the 
appearance and analysis of the spectrum of atomic hydrogen. 
The wavenumbers of the transitions (in cm−1) are indicated.

1 See our Physical chemistry: Quanta, matter, and change (2014) for a 
detailed development of the form of eqn 9C.2.
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(a) Singlet and triplet states

Suppose we were interested in the energy levels of a He atom, 
with its two electrons. We know that the ground-state configu-
ration is 1s2, and can anticipate that an excited configuration 
will be one in which one of the electrons has been promoted 
into a 2s orbital, giving the configuration 1s12s1. The two elec-
trons need not be paired because they occupy different orbitals. 
According to Hund’s maximum multiplicity rule (Topic 9B), 
the state of the atom with the spins parallel lies lower in energy 
than the state in which they are paired. Both states are permis-
sible, and can contribute to the spectrum of the atom.

Parallel and antiparallel (paired) spins differ in their over-
all spin angular momentum. In the paired case, the two spin 
momenta cancel each other, and there is zero net spin (as 
depicted in Fig. 9B.2). The paired-spin arrangement is called a 
singlet. Its spin state is the one denoted σ− in the discussion of 
the Pauli principle:

σ α β β α− = −( , ) ( / ){ ( ) ( ) ( ) ( )}/2 1 1 2 2 1 2 11 2

  singlet spin function  (9C.3a)

The angular momenta of two parallel spins add together to give 
a nonzero total spin, and the resulting state is called a triplet. As 
illustrated in Fig. 9C.2, there are three ways of achieving a nonzero 
total spin, but only one way to achieve zero spin. The three spin 
states are the symmetric combinations introduced in Topic 9B:

α α
σ α β β α
β β

( ) ( )

( / ){ ( ) ( ) ( ) ( )}

( ) ( )

( , ) /

1 2

1 2 1 2 1 2

1 2

1 2 1 2
+ = +

 

 triplet spin functions  (9C.3b)

The fact that the parallel arrangement of spins in the 1s12s1 
configuration of the He atom lies lower in energy than the 
antiparallel arrangement can now be expressed by saying that the 
triplet state of the 1s12s1 configuration of He lies lower in energy 
than the singlet state. This is a general conclusion that applies to 
other atoms (and molecules) and, for states arising from the same 
configuration, the triplet state generally lies lower than the singlet 
state. The origin of the energy difference lies in the effect of spin 
correlation on the Coulombic interactions between electrons, 
as in the case of Hund’s maximum multi plicity rule for ground-
state configurations (Topic 9B). Because the Coulombic inter-
action between electrons in an atom is strong, the difference in 
energies between singlet and triplet states of the same configura-
tion can be large. The two states of 1s12s1 He, for instance, differ 
by 6421 cm−1 (corresponding to 0.80 eV).

The spectrum of atomic helium is more complicated than 
that of atomic hydrogen, but there are two simplifying fea-
tures. One is that the only excited configurations it is necessary 
to consider are of the form 1s1nl1; that is, only one electron is 
excited. Excitation of two electrons requires an energy greater 
than the ionization energy of the atom, so the He+ ion is formed 
instead of the doubly excited atom. Second, no radiative tran-
sitions take place between singlet and triplet states because 
the relative orientation of the two electron spins cannot 
change during a transition. Thus, there is a spectrum arising 
from transitions between singlet states (including the ground 
state) and between triplet states, but not between the two. 
Spectroscopically, helium behaves like two distinct species, and 
the early spectroscopists actually thought of helium as consist-
ing of ‘parahelium’ and ‘orthohelium’. The Grotrian diagram for 
helium in Fig. 9C.3 shows the two sets of transitions.

(b) Spin–orbit coupling
An electron has a magnetic moment that arises from its spin. 
Similarly, an electron with orbital angular momentum (that 
is, an electron in an orbital with l > 0) is in effect a circulating 
current, and possesses a magnetic moment that arises from 
its orbital momentum. The interaction of the spin magnetic 

E
n

er
g

y,
 E

/e
V

0

–10

–20

1S 1P 1D 1F 3F3S 3P 3D

587.6
1083

667.8
51.56
52.22
53.71
58.44

Figure 9C.3 The transitions responsible for the spectrum of 
atomic helium.

MS = +1

MS = 0 MS = –1

(a) S = 0 (b) S = 1

Figure 9C.2 (a) Electrons with paired spins have zero resultant 
spin angular momentum (S = 0). They can be represented by 
two vectors that lie at an indeterminate position on the cones 
shown here, but wherever one lies on its cone, the other 
points in the opposite direction; their resultant is zero. (b) 
When two electrons have parallel spins, they have a nonzero 
total spin angular momentum (S = 1). There are three ways 
of achieving this resultant, which are shown by these vector 
representations. Note that, whereas two paired spins are 
precisely antiparallel, two ‘parallel’ spins are not strictly parallel.
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384 9 Atomic structure and spectra

moment with the magnetic field arising from the orbital angu-
lar momentum is called spin − orbit coupling. The strength of 
the coupling, and its effect on the energy levels of the atom, 
depend on the relative orientations of the spin and orbital mag-
netic moments, and therefore on the relative orientations of the 
two angular momenta (Fig. 9C.4).

One way of expressing the dependence of the spin–orbit inter-
action on the relative orientation of the spin and orbital momenta 
is to say that it depends on the total angular momentum of the 
electron, the vector sum of its spin and orbital momenta. Thus, 
when the spin and orbital angular momenta are nearly paral-
lel, the total angular momentum is high; when the two angular 
momenta are opposed, the total angular momentum is low.

The total angular momentum of an electron is described by the 
quantum numbers j and mj, with j l= + 1

2  (when the two angular 
momenta are in the same direction) or j l= − 1

2  (when they are 
opposed, as in Fig. 9C.5). The different values of j that can arise 
for a given value of l label levels of a term. For l = 0, the only per-
mitted value is j = 1

2  (the total angular momentum is the same as 
the spin angular momentum because there is no other source of 
angular momentum in the atom). When l = 1, j may be either 3

2  
(the spin and orbital angular momenta are in the same sense) or 
1
2  (the spin and angular momenta are in opposite senses).

The dependence of the spin–orbit interaction on the value 
of j is expressed in terms of the spin–orbit coupling constant, 
A  (which is typically expressed as a wavenumber). The cal-

culation in the following Justification leads to the result that 
the energies of the levels with quantum numbers s, l, and j are 
given by

E hcA j j l l s sl s j, , { ( ) ( ) ( )}= + + +1
2 1 1 1 − −  (9C.4)

Brief illustration 9C.2 The levels of a configuration

To identify the levels that may arise from the configurations 
(a) d1, (b) s1 we need to identify the value of l and then the pos-
sible values of j. (a) For a d electron, l = 2 and there are two 
 levels in the configuration, one with j = + =2 1

2
5
2  and the other 

with j = − =2 1
2

3
2 . (b) For an s electron l = 0, so only one level is 

possible, and j = 1
2 .

Self-test 9C.2 Identify the levels of the configurations (a) p1 
and (b) f1.

Answer: (a) 3
2

1
2, ; (b) 7

2
5
2,

l

s

High j

High 
energy

l

s

Low j

Low 
energy(a) (b)

Figure 9C.4 Spin–orbit coupling is a magnetic interaction 
between spin and orbital magnetic moments. When the 
angular momenta are parallel, as in (a), the magnetic moments 
are aligned unfavourably; when they are opposed, as in (b), the 
interaction is favourable. This magnetic coupling is the cause of 
the splitting of a configuration into levels.

s = ½

s = ½

l = 2 l = 2

j = 5/2 j = 3/2

Figure 9C.5 The coupling of the spin and orbital angular 
momenta of a d electron (l = 2) gives two possible values of j 
depending on the relative orientations of the spin and orbital 
angular momenta of the electron.

Brief illustration 9C.3 Spin–orbit coupling

The unpaired electron in the ground state of an alkali metal 
atom has l = 0, so j = 1

2 . Because the orbital angular momen-
tum is zero in this state, the spin–orbit coupling energy is zero 
(as is confirmed by setting j = s and l = 0 in eqn 9C.4). When the 
electron is excited to an orbital with l = 1, it has orbital angular 
momentum and can give rise to a magnetic field that interacts 
with its spin. In this configuration the electron can have j = 3

2  
or j = 1

2 , and the energies of these levels are

E hcA hcA

E hcA

1 1 2 3 2
1
2

3
2

5
2

1
2

3
2

1
2

1 1 2 1 2
1
2

1 2, / , /

, / , /

{ }= × − × − × =

=

 

{{ }1
2

3
2

1
2

3
21 2× − × − × = −hcA

The corresponding energies are shown in Fig. 9C.6. Note 
that the barycentre (the ‘centre of gravity’) of the levels is 

E
n

er
g

y

2p1

+½hcÃ

–hcÃ

j = 3/2

j = 1/2

States

Figure 9C.6 The levels of a 2P term arising from spin–orbit 
coupling. Note that the low-j level lies below the high-j level 
in energy.
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The strength of the spin–orbit coupling depends on the 
nuclear charge. To understand why this is so, imagine riding 
on the orbiting electron and seeing a charged nucleus appar-
ently orbiting around us (like the Sun rising and setting). As 
a result, we find ourselves at the centre of a ring of current. 
The greater the nuclear charge, the greater this current, and 
therefore the stronger the magnetic field we detect. Because 
the spin magnetic moment of the electron interacts with this 
orbital magnetic field, it follows that the greater the nuclear 
charge, the stronger the spin–orbit interaction. The coupling 
increases sharply with atomic number (as Z4). Whereas it is 

only small in H (giving rise to shifts of energy levels of no 
more than about 0.4 cm−1), in heavy atoms like Pb it is very 
large (giving shifts of the order of thousands of reciprocal 
centimetres).

Two spectral lines are observed when the p electron of an 
electronically excited alkali metal atom undergoes a tran-
sition and falls into a lower s orbital. One line is due to a 
transition starting in a j = 3

2  level and the other line is due 
to a transition starting in the j = 1

2  level of the same con-
figuration. The two lines are jointly an example of the fine 
structure of a spectrum, the structure in a spectrum due to 
spin–orbit coupling. Fine structure can be clearly seen in the 
emission spectrum from sodium vapour excited by an elec-
tric discharge (for example, in one kind of street lighting). 
The yellow line at 589 nm (close to 17 000 cm−1) is actually 
a doublet composed of one line at 589.76 nm (16 956.2 cm−1) 
and another at 589.16 nm (16 973.4 cm−1); the components 
of this doublet are the ‘D lines’ of the spectrum (Fig. 9C.7). 
Therefore, in Na, the spin–orbit coupling affects the ener-
gies by about 17 cm−1.

unchanged, because there are four states of energy 1
2 hcA  and 

two of energy −hcA .

Self-test 9C.3 What are the energies of the two terms that can 
arise from a d1 configuration?

Answer: E hcA E hcA2 1 2 5 2 2 1 2 3 22 3, / , / , / , /,= = −

Justification 9C.2 The energy of spin–orbit interaction

The energy of a magnetic moment μ in a magnetic field B is 
equal to their scalar product  − μ⋅B. If the magnetic field arises 
from the orbital angular momentum of the electron, it is pro-
portional to l; if the magnetic moment μ is that of the electron 
spin, then it is proportional to s. It then follows that the energy 
of interaction is proportional to the scalar product s⋅l:

Energy of  interaction = −µ ⋅ ∝ ⋅B s l

(For the various vector manipulations used in this section, 
see Mathematical background 5.) Next, we note that the total 
angular momentum is the vector sum of the spin and orbital 
momenta: j = l + s. The magnitude of the vector j is calculated 
by evaluating

j j l s l s l l s s s l⋅ = + ⋅ + = ⋅ + ⋅ + ⋅( ) ( ) 2

so that

j l s2 2 2 2= + + ⋅s l

That is,

s l⋅ − −= 1
2

2 2{ }j s2 l

This equation is a classical result. To make the transition to 
quantum mechanics, we replace all the quantities on the right 
with their quantum-mechanical values (Topic 8C):

s l⋅ + − + − += 1
2

21 1 1{ ( ) (l ) ( )}j j s sl 

Then, by inserting this expression into the formula for the 
energy of interaction (E ∝ s⋅l) and writing the constant of pro-
portionality as hcA� �/ 2 , we obtain eqn 9C.4.

Example 9C.1 Analysing a spectrum for the spin–orbit 
coupling constant

The origin of the D lines in the spectrum of atomic sodium is 
shown in Fig. 9C.7. Calculate the spin–orbit coupling constant 
for the upper configuration of the Na atom.

Method We see from Fig. 9C.7 that the splitting of the lines 
is equal to the energy separation of the j = 3

2  and 1
2  levels of 

the excited configuration. This separation can be expressed 
in terms of A  by using eqn 9C.4. Therefore, set the observed 
splitting equal to the energy separation calculated from eqn 
9C.4 and solve the equation for A.

58
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16 956

16 97317 cm–1
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Figure 9C.7 The energy-level diagram for the formation of the 
sodium D lines. The splitting of the spectral lines (by 17 cm−1) 
reflects the splitting of the levels of the 2P term.
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(c) Term symbols
We have used expressions such as ‘the j = 3

2  level of a doublet 
term with L = 1’. A term symbol, which is a symbol looking 
like 2P3/2 or 3D2, conveys this information, specifically the total 
spin, total orbital angular momentum, and total overall angular 
momentum, very succinctly.

A term symbol gives three pieces of information:

•	 The letter (P or D in the examples) indicates the total 
orbital angular momentum quantum number, L.

•	 The left superscript in the term symbol (the 2 in 2P3/2) 
gives the multiplicity of the term.

•	 The right subscript on the term symbol (the 3
2  in 2P3/2) is 

the value of the total angular momentum quantum 
number, J.

We shall now say what each of these statements means; the 
contributions to the energies which we are about to discuss are 
summarized in Fig. 9C.8.

When several electrons are present, it is necessary to judge 
how their individual orbital angular momenta add together 
to augment or oppose each other. The total orbital angular 
momentum quantum number, L, tells us the magnitude of the 
angular momentum through {L(L + 1)}1/2ħ. It has 2L + 1 orien-
tations distinguished by the quantum number ML, which can 
take the values L, L − 1, …, − L. Similar remarks apply to the 
total spin quantum number, S, and the quantum number MS, 
and the total angular momentum quantum number, J, and the 
quantum number MJ.

The value of L (a non-negative integer) is obtained by cou-
pling the individual orbital angular momenta by using the 
Clebsch–Gordan series:

L l l l l l l= + + …1 2 1 2 1 21, , ,− −   clebsch–gordan series  (9C.5)

The modulus signs are attached to l1 − l2 because L is non-nega-
tive. The maximum value, L = l1 + l2, is obtained when the two 
orbital angular momenta are in the same direction; the low-
est value, |l1 − l2|, is obtained when they are in opposite direc-
tions. The intermediate values represent possible intermediate 
relative orientations of the two momenta (Fig. 9C.9). For two 
p electrons (for which l1 = l2 = 1), L = 2, 1, 0. The code for con-
verting the value of L into a letter is the same as for the s, p, d, 
f, … designation of orbitals, but uses uppercase Roman letters 
(the convention of using lowercase letters to label orbitals and 
uppercase letters to label overall states applies throughout spec-
troscopy, not just to atoms):

Thus, a p2 configuration for which L = 2, 1, 0 can give rise to 
D, P, and S terms. The terms differ in energy on account of the 

Answer The two levels are split by

∆ −( ) +( )− +( ){ }=  �� E E A A0 0
1
2

3
2

3
2

1
2

1
2

3
21

2
3
2

1
2

1
2

1 1, , , , /hc =

The experimental value of ∆  is 17.2 cm−1; therefore

A = × =− −2
3

1 117 2 11 5( . cm ) . cm

The same calculation repeated for the other alkali metal atoms 
gives Li: 0.23 cm−1, K: 38.5 cm−1, Rb: 158 cm−1, Cs: 370 cm−1. 
Note the increase of A with atomic number (but more slowly 
than Z4 for these many-electron atoms).

Self-test 9C.4 The configuration …4p65d1 of rubidium has two 
levels at 25 700.56 cm−1 and 25 703.52 cm−1 above the ground 
state. What is the spin − orbit coupling constant in this excited 
state?

Answer: 1.18 cm−1

Configuration

Electrostatic

Spin
correlation

Electrostatic

Spin–orbit
interaction

D SP

3P

3P1
3P2

3P0

1P

Magnetic

p2

Orbital
occupation

Figure 9C.8 A summary of the types of interaction that are 
responsible for the various kinds of splitting of energy levels 
in atoms. For light atoms, magnetic interactions are small, but 
in heavy atoms they may dominate the electrostatic (charge–
charge) interactions.

l = 1

l = 1

l = 1

l = 2l = 2 l = 2

L = 3 L = 2 L = 1

Figure 9C.9 The total angular orbital momenta of a p electron 
and a d electron correspond to L = 3, 2, and 1 and reflect the 
different relative orientations of the two momenta.

L: 0 1 2 3 4 5 6 …
S P D F G H I …
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different spatial distribution of the electrons and the conse-
quent differences in repulsion between them.

A closed shell has zero orbital angular momentum because 
all the individual orbital angular momenta sum to zero. 
Therefore, when working out term symbols, we need consider 
only the electrons of the unfilled shell. In the case of a single 
electron outside a closed shell, the value of L is the same as the 
value of l; so the configuration [Ne]3s1 has only an S term.

A note on good practice Throughout our discussion of atomic 
spectroscopy, distinguish italic S, the total spin quantum 
number, from Roman S, the term label.

When there are several electrons to be taken into account, 
we must assess their total spin angular momentum quantum 
number, S (a non-negative integer or half integer). Once again, 
we use the Clebsch − Gordan series in the form

S s s s s s s= + + …1 2 1 2 1 21, , ,− −  (9C.6)

to decide on the value of S, noting that each electron has s = 1
2 ,  

which gives S = 1, 0 for two electrons (Fig. 9C.10). If there are 

three electrons, the total spin angular momentum is obtained 
by coupling the third spin to each of the values of S for the first 
two spins, which results in S = 3

2  and 1
2 .

The multiplicity of a term is the value of 2S + 1. When S = 0 
(as for a closed shell, like 1s2) the electrons are all paired and 
there is no net spin: this arrangement gives a singlet term, 1S. A 
single electron has S s= = 1

2 , so a configuration such as [Ne]3s1 
can give rise to a doublet term, 2S. Likewise, the configuration 
[Ne]3p1 is a doublet, 2P. When there are two unpaired elec-
trons S = 1, so 2S + 1 = 3, giving a triplet term, such as 3D. We 
discussed the relative energies of singlets and triplets earlier in 
the Topic and saw that their energies differ on account of the 
different effects of spin correlation.

As we have seen, the quantum number j tells us the relative 
orientation of the spin and orbital angular momenta of a single 
electron. The total angular momentum quantum number, J (a 
non-negative integer or half integer), does the same for several 
electrons. If there is a single electron outside a closed shell, J = j, 
with j either l = 1

2  or l − 1
2 . The [Ne]3s1 configuration has j = 1

2  
(because l = 0 and s = 1

2 ), so the 2S term has a single level, which 
we denote 2S1/2. The [Ne]3p1 configuration has l = 1; therefore 
j = 3

2  and 1
2 ; the 2P term therefore has two levels, 2P3/2 and 2P1/2. 

These levels lie at different energies on account of the magnetic 
spin–orbit interaction.

If there are several electrons outside a closed shell we have to 
consider the coupling of all the spins and all the orbital angular 
momenta. This complicated problem can be simplified when the 
spin–orbit coupling is weak (for atoms of low atomic number), 
for then we can use the Russell–Saunders coupling scheme. 
This scheme is based on the view that, if spin–orbit coupling 
is weak, then it is effective only when all the orbital momenta 
are operating cooperatively. We therefore imagine that all the 
orbital angular momenta of the electrons couple to give a total L, 
and that all the spins are similarly coupled to give a total S. Only 
at this stage do we imagine the two kinds of momenta coupling 
through the spin − orbit interaction to give a total J. The permit-
ted values of J are given by the Clebsch–Gordan series

Example 9C.2 Deriving the total orbital angular 
momentum of a configuration

Find the terms that can arise from the configurations (a) d2, 
(b) p3.

Method Use the Clebsch–Gordan series and begin by finding 
the minimum value of L (so that we know where the series ter-
minates). When there are more than two electrons to couple 
together, use two series in succession: first couple two elec-
trons, and then couple the third to each combined state, and 
so on.

Answer (a) The minimum value is |l1 − l2| = |2 − 2| = 0. 
Therefore,

L = + + … =2 2 2 2 1 0 4 3 2 1 0, , , , , , ,−

corresponding to G, F, D, P, S terms, respectively. (b) Coupling 
two electrons gives a minimum value of |1 − 1| = 0. Therefore,

L′ −, , , , ,= + + … =1 1 1 1 1 0 2 1 0

Now couple l3 with L′ = 2, to give L = 3, 2, 1; with L′ = 1, to give 
L = 2, 1, 0; and with L′ = 0, to give L = 1. The overall result is

L = 3 2 2 1 1 1 0, , , , , ,

giving one F, two D, three P, and one S term.

Self-test 9C.5 Repeat the question for the configurations  
(a) f1d1 and (b) d3.

Answer: (a) H, G, F, D, P; (b) I, 2H, 3G, 4F, 5D, 3P, S

s = ½

s = ½

s = ½

s = ½

S = 0

S = 1

(a) (b)

Figure 9C.10 For two electrons (each of which has s = 1
2 , only 

two total spin states are permitted (S = 0, 1). (a) The state with 
S = 0 can have only one value of MS (MS = 0) and is a singlet; (b) 
the state with S = 1 can have any of three values of MS (+1, 0, –1) 
and is a triplet. The vector representations of the singlet and 
triplet states are shown in Figs. 9C.2.
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J L S L S L S= + + …, , ,− −1  (9C.7)

For example, in the case of the 3D term of the configuration 
[Ne]2p13p1, the permitted values of J are 3, 2, 1 (because 3D has 
L = 2 and S = 1), so the term has three levels, 3D3, 3D2, and 3D1.

When L ≥ S, the multiplicity is equal to the number of lev-
els. For example, a 2P term ( )L S= =1 1

2>  has the two levels 2P3/2 
and 2P1/2, and 3D (L = 2 > S = 1) has the three levels 3D3, 3D2, 
and 3D1. However, this is not the case when L < S: the term 2S 
( )L S= =0 1

2< , for example, has only the one level 2S1/2.

Russell–Saunders coupling fails when the spin–orbit cou-
pling is large (in heavy atoms, those with high Z). In that case, 

the individual spin and orbital momenta of the electrons are 
coupled into individual j values; then these momenta are com-
bined into a grand total, J. This scheme is called jj-coupling. 
For example, in a p2 configuration, the individual values of j 
are 3

2  and 1
2  for each electron. If the spin and the orbital angu-

lar momentum of each electron are coupled together strongly, 
it is best to consider each electron as a particle with angular 
momentum j = 3

2  or 1
2 . These individual total momenta then 

couple as follows:

For heavy atoms, in which jj-coupling is appropriate, it is best 
to discuss their energies using these quantum numbers.

Although jj-coupling should be used for assessing the ener-
gies of heavy atoms, the term symbols derived from Russell–
Saunders coupling can still be used as labels. To see why this 
procedure is valid, we need to examine how the energies of the 
atomic states change as the spin–orbit coupling increases in 
strength. Such a correlation diagram is shown in Fig. 9C.11. 
It shows that there is a correspondence between the low spin–
orbit coupling (Russell–Saunders coupling) and high spin–
orbit coupling (jj-coupling) schemes, so the labels derived by 
using the Russell–Saunders scheme can be used to label the 
states of the jj-coupling scheme.

Example 9C.3 Deriving term symbols

Write the term symbols arising from the ground-state 
configur ations of (a) Na and (b) F, and (c) the excited configu-
ration 1s22s22p13p1 of C.

Method Begin by writing the configurations, but ignore inner 
closed shells. Then couple the orbital momenta to find L and 
the spins to find S. Next, couple L and S to find J. Finally, 
express the term as 2S+1{L}J, where {L} is the appropriate letter. 
For F, for which the valence configuration is 2p5, treat the sin-
gle gap in the closed-shell 2p6 configuration as a single spin- 1

2  
particle.

Answer (a) For Na, the configuration is [Ne]3s1, and we con-
sider the single 3s electron. Because L = l = 0 and S s= = 1

2 , it is 
possible for J j s= = = 1

2
 only. Hence the term symbol is 2S1/2. 

(b) For F, the configuration is [He]2s22p5, which we can treat 
as [Ne]2p−1 (where the notation 2p−1 signifies the absence of a 
2p electron). Hence L = 1, and S s= = 1

2 . Two values of J = j are 
allowed: J = 3

2
1
2, . Hence, the term symbols for the two levels 

are 2P3/2, 2P1/2. (c) We are treating an excited configuration of 
carbon because, in the ground configuration, 2p2, the Pauli 
principle forbids some terms, and deciding which survive (1D, 
3P, 1S, in fact) is quite complicated. That is, there is a distinc-
tion between ‘equivalent electrons’, which are electrons that 
occupy the same orbitals, and ‘inequivalent electrons’, which 
are electrons that occupy different orbitals. The excited con-
figuration of C under consideration is effectively 2p13p1. This is 
a two-electron problem, and l l s s1 2 1 2

1
21= = = =, . It follows that 

L = 2, 1, 0 and S = 1, 0. The terms are therefore 3D and 1D, 3P and 
1P, and 3S and 1S. For 3D, L = 2 and S = 1; hence J = 3, 2, 1 and 
the levels are 3D3, 3D2, and 3D1. For 1D, L = 2 and S = 0, so the 
single level is 1D2. The triplet of levels of 3P is 3P2, 3P1, and 3P0, 
and the singlet is 1P1. For the 3S term there is only one level, 3S1 
(because J = 1 only), and the singlet term is 1S0.

Self-test 9C.6 Write down the terms arising from the configu-
rations (a) 2s12p1, (b) 2p13d1.

Answer: (a) 3P2, 3P1, 3P0, 1P1; (b) 3F4, 3F3, 3F2,  
1F3, 3D3, 3D2, 3D1, 1D2, 3P1, 3P0, 1P1

j1 j2 J

3
2

3
2 3, 2, 1, 0

3
2

1
2 2, 1

1
2

3
2 2, 1

3
2

3
2 1, 0
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Figure 9C.11 The correlation diagram for some of the states 
of a two-electron system. All atoms lie between the two 
extremes, but the heavier the atom, the closer it lies to the pure 
jj-coupling case.
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(d) Hund’s rules

As we have remarked, the terms arising from a given configu-
ration differ in energy because they represent different relative 
orientations of the angular momenta of the electrons and there-
fore different spatial distributions. The terms arising from the 
ground-state configuration of an atom (and less reliably from 
other configurations) can be put into the order of increasing 
energy by using Hund’s rules, which summarize the preceding 
discussion:

1. For a given configuration, the term of greatest 
multiplicity lies lowest in energy.

As discussed in Topic 9B, this rule is a consequence of electron 
spin correlation, the quantum-mechanical tendency of electrons 
of the same spin orientation to stay apart from one another.

2. For a given multiplicity, the term with the highest value 
of L lies lowest in energy.

This rule can be explained classically by noting that two electrons 
have a high orbital angular momentum if they circulate in the 
same direction, in which case they can stay apart. If they circulate 
in opposite directions, they meet. Thus, a D term is expected to 
lie lower in energy than an S term of the same multiplicity.

3. For atoms with less than half-filled shells, the level with 
the lowest value of J lies lowest in energy; for more than 
half-filled shells, the highest value of J.

This rule stems from considerations of spin–orbit coupling. 
Thus, for a state of low J, the orbital and spin angular momenta 
lie in opposite directions, and so too do the corresponding 
magnetic moments. In classical terms the magnetic moments 
are then antiparallel, with the N pole of one close to the S pole 
of the other, which is a low-energy arrangement.

(e) Selection rules
Any state of the atom, and any spectral transition, can be speci-
fied by using term symbols. For example, the transitions giving 

rise to the yellow sodium doublet (which were shown in Fig. 
9C.7) are

3 3 3 31 2
3 2

1 2
1 2

1 2
1 2

1 2
1 2p P s S p P s S/ / / /→ →

By convention, the upper term precedes the lower. The corres-
ponding absorptions are therefore denoted 2P3/2← 2S1/2 and 
2P1/2 ← 2S1/2. (The configurations have been omitted.)

We have seen (in Section 9C.1) that selection rules arise from 
the conservation of angular momentum during a transition and 
from the fact that a photon has a spin of 1. They can therefore 
be expressed in terms of the term symbols, because the latter 
carry information about angular momentum. A detailed analy-
sis leads to the following rules:

∆ = ∆ = ± ∆ = ± = ← =→S L J J J0 0 1 0 1 0 0, , |but  

where the symbol ←|→ denotes a forbidden transition. The 
rule about ΔS (no change of overall spin) stems from the fact 
that the light does not affect the spin directly. The rules about 
ΔL and Δl express the fact that the orbital angular momentum 
of an individual electron must change (so Δl = ±1), but whether 
or not this results in an overall change of orbital momentum 
depends on the coupling.

The selection rules given above apply when Russell–
Saunders coupling is valid (in light atoms, those of low Z). If 
we insist on labelling the terms of heavy atoms with symbols 
like 3D, then we shall find that the selection rules progressively 
fail as the atomic number increases because the quantum 
numbers S and L become ill defined as jj-coupling becomes 
more appropriate. As explained above, Russell–Saunders term 
symbols are only a convenient way of labelling the terms of 
heavy atoms: they do not bear any direct relation to the actual 
angular momenta of the electrons in a heavy atom. For this 
reason, transitions between singlet and triplet states (for which 
ΔS = ±1), while forbidden in light atoms, are allowed in heavy 
atoms.

Checklist of concepts

☐ 1. Two electrons with paired spins form a singlet state; if 
their spins are parallel, they form a triplet state.

☐ 2. The orbital and spin angular momenta interact 
magnetically.

☐ 3. Spin–orbit coupling results in the levels of a term hav-
ing different energies.

☐ 4. Fine structure in a spectrum is due to transitions to dif-
ferent levels of a term.

☐ 5. A term symbol specifies the angular momentum states 
of an atom.

☐ 6. Angular momenta are combined into a resultant by 
using the Clebsch–Gordan series.

☐ 7. The multiplicity of a term is the value of 2S + 1.
☐ 8. The total angular momentum in light atoms is obtained 

on the basis of Russell–Saunders coupling; in heavy 
atoms, jj-coupling is used.

 (9C.8)selection rules for atoms
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☐ 9. Selection rules for light atoms include the fact that 
changes of total spin do not occur.

☐ 10. Hund’s rules can be expressed as:
• The term with the maximum multiplicity lies lowest 

in energy.

• For a given multiplicity, the term with the highest 
value of L lies lowest in energy.

• For atoms with less than half-filled shells, the level 
with the lowest value of J lies lowest in energy; for 
more than half-filled shells, the highest value of J.

Checklist of equations

Property Equation Comment Equation number

Spin–orbit coupling energies E hcA j ll s j, , { ( ) ( ) }= + − + −1
2

1 1 j l s s( 1)+ 9C.4

Clebsch–Gordan series J = j1 + j2, j1 + j2 − 1, …, | j1 − j2| J, j denote any kind of  
angular momentum

9C.5

Selection rules ΔS = 0, ΔL = 0, ±1, Δl = ±1, ΔJ = 0, ±1, but J = 0 ←|→ J = 0 Light atoms 9C.8
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CHAPTER 9  Atomic structure and atomic spectra

TOPIC 9A Hydrogenic atoms

Discussion questions
9A.1 Describe the separation of variables procedure as it is applied to 
simplify the description of a hydrogenic atom free to move through space.

9A.2 List and describe the significance of the quantum numbers needed to 
specify the internal state of a hydrogenic atom.

9A.3 Explain the significance of (a) a boundary surface and (b) the radial 
distribution function for hydrogenic orbitals.

Exercises
9A.1(a) State the orbital degeneracy of the levels in a hydrogen atom that 
have energy (i) −hcR�H; (ii) − 1

9
hcR�H; (iii) − 1

25
hcR�H.

9A.1(b) State the orbital degeneracy of the levels in a hydrogenic atom (Z in 
parentheses) that have energy (i) −4hcR�N, (2); (ii) − 1

4
hcR�N  (4), and (iii) 

−hcR�N  (5).

9A.2(a) The wavefunction for the ground state of a hydrogen atom is Ne 0−r/a . 
Determine the normalization constant N.
9A.2(b) The wavefunction for the 2s orbital of a hydrogen atom is 
N( )2−r/a r/ a

0
2e 0− . Determine the normalization constant N.

9A.3(a) By differentiation of the 2s radial wavefunction, show that it has two 
extrema in its amplitude, and locate them.
9A.3(b) By differentiation of the 3s radial wavefunction, show that it has three 
extrema in its amplitude, and locate them.

9A.4(a) At what radius does the probability of finding an electron at a point in 
the H atom fall to 50 per cent of its maximum value?
9A.4(b) At what radius in the H atom does the radial distribution function of 
the ground state have (i) 50 per cent, (ii) 75 per cent of its maximum value.

9A.5(a) Locate the radial nodes in the 3s orbital of an H atom.
9A.5(b) Locate the radial nodes in the 4p orbital of an H atom. A 4p orbital is 
proportional to (20 - 10ρ + ρ2)ρe-ρ/2.

9A.6(a) Calculate the average kinetic and potential energies of an electron in 
the ground state of a hydrogen atom.
9A.6(b) Calculate the average kinetic and potential energies of a 2s electron in 
a hydrogenic atom of atomic number Z.

9A.7(a) Write down the expression for the radial distribution function of a 2s 
electron in a hydrogenic atom of atomic number Z and determine the radius 
at which the electron is most likely to be found.
9A.7(b) Write down the expression for the radial distribution function of a 3s 
electron in a hydrogenic atom of atomic number Z and determine the radius 
at which the electron is most likely to be found.

9A.8(a) Write down the expression for the radial distribution function of a 2p 
electron in a hydrogenic atom of atomic number Z and determine the radius 
at which the electron is most likely to be found.
9A.8(b) Write down the expression for the radial distribution function of a 3p 
electron in a hydrogenic atom of atomic number Z and determine the radius 
at which the electron is most likely to be found.

9A.9(a) What is the orbital angular momentum of an electron in the orbitals  
(i) 1s, (ii) 3s, (iii) 3d? Give the numbers of angular and radial nodes in each 
case.
9A.9(b) What is the orbital angular momentum of an electron in the orbitals  
(i) 4d, (ii) 2p, (iii) 3p? Give the numbers of angular and radial nodes in each 
case.

9A.10(a) Locate the radial nodes and nodal planes of each of the 3p orbitals of 
a hydrogenic atom of atomic number Z. To locate the angular nodes, give the 
angle that the plane makes with the z-axis.
9A.10(b) Locate the radial nodes and nodal planes of each of the 4d orbitals 
of a hydrogenic atom of atomic number Z. To locate the angular nodes, give 
the angle that the plane or cone makes with the z-axis. A 4d wavefunction is 
proportional to (6 - ρ)2e-ρ/2.

Problems
9A.1 What is the most probable point (not radius) that a 2p electron will be 
found in the hydrogen atom?

9A.2 Show by explicit integration that (a) hydrogenic 1s and 2s orbitals, (b) 2px 
and 2py orbitals are mutually orthogonal.

9A.3 Explicit expressions for hydrogenic orbitals are given in Tables 8C.1 (for 
the angular component) and 9A.1 (for the radial component). (a) Verify both 
that the 3px orbital is normalized (to 1) and that 3px and 3dxy are mutually 
orthogonal. (b) Determine the positions of both the radial nodes and nodal 
planes of the 3s, 3px, and 3dxy orbitals. (c) Determine the mean radius of the 
3s orbital. (d) Draw a graph of the radial distribution function for the three 
orbitals (of part (b)) and discuss the significance of the graphs for interpreting 
the properties of many-electron atoms. (e) Create both xy-plane polar plots 
and boundary surface plots for these orbitals. Construct the boundary plots 
so that the distance from the origin to the surface is the absolute value of the 
angular part of the wavefunction. Compare the s, p, and d boundary surface 
plots with that of an f orbital; e.g., ψf ∝ x(5z2 - r2)∝sin θ (5 cos2 θ-1) cos φ.

9A.4 Determine whether the px and py orbitals are eigenfunctions of lz. If not, 
does a linear combination exist that is an eigenfunction of lz?

9A.5 Show that lz and l2 both commute with the hamiltonian for a hydrogen 
atom. What is the significance of this result?

9A.6 The ‘size’ of an atom is sometimes considered to be measured by the radius 
of a sphere that contains 90 per cent of the charge density of the electrons in 
the outermost occupied orbital. Calculate the ‘size’ of a hydrogen atom in its 
ground state according to this definition. Go on to explore how the ‘size’ varies 
as the definition is changed to other percentages, and plot your conclusion.

9A.7 Some atomic properties depend on the average value of 1/r rather than 
the average value of r itself. Evaluate the expectation value of 1/r for (a) a 
hydrogen 1s orbital, (b) a hydrogenic 2s orbital, (c) a hydrogenic 2p orbital. 
(d) Does 〈1/r〉 = 1/〈r〉?

9A.8 One of the most famous of the obsolete theories of the hydrogen atom 
was proposed by Bohr. It has been replaced by quantum mechanics, but by 
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a remarkable coincidence (not the only one where the Coulomb potential 
is concerned), the energies it predicts agree exactly with those obtained 
from the Schrödinger equation. In the Bohr atom, an electron travels in a 
circle around the nucleus. The Coulombic force of attraction (Ze2/4πε0r2) is 
balanced by the centrifugal effect of the orbital motion. Bohr proposed that 
the angular momentum is limited to integral values of ħ. When the two forces 
are balanced, the atom remains in a stationary state until it makes a spectral 
transition. Calculate the energies of a hydrogenic atom using the Bohr model.

9A.9 The Bohr model of the atom is specified in Problem 9A.8. (a) What 
features of it are untenable according to quantum mechanics? (b) How does 
the Bohr ground state differ from the actual ground state? (c) Is there an 
experimental distinction between the Bohr and quantum mechanical models 
of the ground state?

9A.10 Atomic units of length and energy may be based on the properties of 
a particular atom. The usual choice is that of a hydrogen atom, with the unit 
of length being the Bohr radius, a0, and the unit of energy being the ‘hartree’, 
Eh, which is equal to twice the (negative of the) energy of the 1s orbital 
(specifically, and more precisely, E hcRh = ∞2 � ). If the positronium atom (e+,e-) 
were used instead, with analogous definitions of units of length and energy, 
what would be the relation between these two sets of atomic units?

9A.11 The distribution of isotopes of an element may yield clues about the 
nuclear reactions that occur in the interior of a star. Show that it is possible 
to use spectroscopy to confirm the presence of both 4He+ and 3He+ in a star 
by calculating the wavenumbers of the n = 3 → n = 2 and of the n = 2 → n = 1 
transitions for each isotope.

TOPIC 9B Many-electron atoms

Discussion questions
9B.1 Outline the electron configurations of many-electron atoms in terms of 
their location in the periodic table.

9B.2 Describe and account for the variation of first ionization energies along 
Period 2 of the periodic table. Would you expect the same variation in Period 3?

9B.3 Describe the orbital approximation for the wavefunction of a many-
electron atom. What are the limitations of the approximation?

Exercises
9B.1(a) Write the ground-state electron configurations of the d-metals from 
scandium to zinc.
9B.1(b) Write the ground-state electron configurations of the d-metals from 
yttrium to cadmium.

9B.2(a) (i) Write the electronic configuration of the Ni2+ ion. (ii) What are the 
possible values of the total spin quantum numbers S and MS for this ion?
9B.2(b) (i) Write the electronic configuration of the V2+ ion. (ii) What are the 
possible values of the total spin quantum numbers S and MS for this ion?

Problems
9B.1 In 1976 it was mistakenly believed that the first of the ‘superheavy’ 
elements had been discovered in a sample of mica. Its atomic number was 
believed to be 126. Without taking relativistic effects into account, calculate 
the most probable distance of the innermost electrons from the nucleus of 
an atom of this element? Does your result suggest that relativistic effects 
should be included in the calculation?

9B.2 The wavefunction of a many-electron closed-shell atom can expressed as 
a Slater determinant. A useful property of determinants is that interchanging 
any two rows or columns changes their sign and therefore that if any two rows 
or columns are identical, then the determinant vanishes. Use this property to 
show that (a) the wavefunction is antisymmetric under particle exchange,  
(b) no two electrons can occupy the same orbital with the same spin.

9B.3 The d-metals iron, copper, and manganese form cations with different 
oxidation states. For this reason, they are found in many oxidoreductases and 

in several proteins of oxidative phosphorylation and photosynthesis. Explain 
why many d-metals form cations with different oxidation states.

9B.4 Thallium, a neurotoxin, is the heaviest member of Group 13 of the 
periodic table and is found most usually in the +1 oxidation state. Aluminium, 
which causes anaemia and dementia, is also a member of the group but 
its chemical properties are dominated by the +3 oxidation state. Examine 
this issue by plotting the first, second, and third ionization energies for the 
Group 13 elements against atomic number. Explain the trends you observe. 
Hints: The third ionization energy, I3, is the minimum energy needed to 
remove an electron from the doubly charged cation): E2+(g) → E3+(g) + e-(g), 
I3 = E(E3+) - E(E2+). For data, see the links to databases of atomic properties 
provided in the text’s web site.

TOPIC 9C Atomic spectra

Discussion questions
9C.1 Discuss the origin of the series of lines in the emission spectra of 
hydrogen. What region of the electromagnetic spectrum is associated with 
each of the series shown in Fig. 9C.1?

9C.2 Specify and account for the selection rules for transitions in hydrogenic atoms.

9C.3 Explain the origin of spin–orbit coupling and how it affects the 
appearance of a spectrum.
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Exercises
9C.1(a) Identify the shortest and longest wavelength lines in the Lyman 
series.
9C.1(b) The Pfund series has n1 = 5. Identify the shortest and longest 
wavelength lines in the Pfund series.

9C.2(a) Compute the wavelength, frequency, and wavenumber of the 
n = 2 → n = 1 transition in He+.
9C.2(b) Compute the wavelength, frequency, and wavenumber of the 
n = 5 → n = 4 transition in Li+2.

9C.3(a) When ultraviolet radiation of wavelength 58.4 nm from a helium lamp 
is directed on to a sample of krypton, electrons are ejected with a speed of 
1.59 Mm s-1. Calculate the ionization energy of krypton.
9C.3(b) When ultraviolet radiation of wavelength 58.4 nm from a helium lamp 
is directed on to a sample of xenon, electrons are ejected with a speed of 1.79 
Mm s-1. Calculate the ionization energy of xenon.

9C.4(a) Which of the following transitions are allowed in the normal electronic 
emission spectrum of an atom: (i) 2s → 1s, (ii) 2p → 1s, (iii) 3d → 2p?
9C.4(b) Which of the following transitions are allowed in the normal electronic 
emission spectrum of an atom: (i) 5d → 2s, (ii) 5p → 3s, (iii) 6p → 4f?

9C.5(a) Calculate the permitted values of j for (i) a d electron, (ii) an f electron.
9C.5(b) Calculate the permitted values of j for (i) a p electron, (ii) an h electron.

9C.6(a) An electron in two different states of an atom is known to have j = 3
2  

and 1
2 . What is its orbital angular momentum quantum number in each case?

9C.6(b) What are the allowed total angular momentum quantum numbers of a 
composite system in which j1 = 5 and j2 = 3?

9C.7(a) What information does the term symbol 1D2 provide about the angular 
momentum of an atom?

9C.7(b) What information does the term symbol 3F4 provide about the angular 
momentum of an atom?

9C.8(a) Suppose that an atom has (i) 2, (ii) 3 electrons in different orbitals. 
What are the possible values of the total spin quantum number S? What is the 
multiplicity in each case?
9C.8(b) Suppose that an atom has (i) 4, (ii) 5, electrons in different orbitals. 
What are the possible values of the total spin quantum number S? What is the 
multiplicity in each case?

9C.9(a) What atomic terms are possible for the electron configuration ns1nd1? 
Which term is likely to lie lowest in energy?
9C.9(b) What atomic terms are possible for the electron configuration np1nd1? 
Which term is likely to lie lowest in energy?

9C.10(a) What values of J may occur in the terms (i) 1S, (ii) 2P, (iii) 3P? How 
many states (distinguished by the quantum number MJ) belong to each level?
9C.10(b) What values of J may occur in the terms (i) 3D, (ii) 4D, (iii) 2G? How 
many states (distinguished by the quantum number MJ) belong to each level?

9C.11(a) Give the possible term symbols for (i) Li [He]2s1, (ii) Na [Ne]3p1.
9C.11(b) Give the possible term symbols for (i) Sc [Ar]3d104s2,  
(ii) Br [Ar]3d104s24p5.

9C.12(a) Which of the following transitions between terms are allowed in the 
normal electronic emission spectrum of a many-electron atom: (i) 3D2 → 3P1, 
(ii) 3P2 → 1S0, (iii) 3F4  →  3D3?
9C.12(b) Which of the following transitions between terms are allowed in the 
normal electronic emission spectrum of a many-electron atom:  
(i) 2P3/2 → 2S1/2, (ii) 3P0  →  3S1, (iii) 3D3  →  1P1?

Problems
9C.1 The Humphreys series is a group of lines in the spectrum of atomic 
hydrogen. It begins at 12 368 nm and has been traced to 3281.4 nm. What 
are the transitions involved? What are the wavelengths of the intermediate 
transitions?

9C.2 A series of lines in the spectrum of atomic hydrogen lies at 656.46 nm, 
486.27 nm, 434.17 nm, and 410.29 nm. What is the wavelength of the next line 
in the series? What is the ionization energy of the atom when it is in the lower 
state of the transitions?

9C.3 The Li2+ ion is hydrogenic and has a Lyman series at 740 747 cm-1,  
877 924 cm-1, 925 933 cm-1, and beyond. Show that the energy levels are of 
the form −hcR n�

Li/
2  and find the value of �RLi  for this ion. Go on to predict the 

wavenumbers of the two longest-wavelength transitions of the Balmer series 
of the ion and find the ionization energy of the ion.

9C.4 A series of lines in the spectrum of neutral Li atoms rise from 
combinations of 1s22p1 2P with 1s2nd1 2D and occur at 610.36 nm, 460.29 nm, 
and 413.23 nm. The d orbitals are hydrogenic. It is known that the 2P term 
lies at 670.78 nm above the ground state, which is 1s22s1 2S. Calculate the 
ionization energy of the ground-state atom.

9C.5‡ W.P. Wijesundera et al. (Phys. Rev. A 51, 278 (1995)) attempted to 
determine the electron configuration of the ground state of lawrencium, 
element 103. The two contending configurations are [Rn]5f147s27p1 and 
[Rn]5f146d17s2. Write down the term symbols for each of these configurations, 
and identify the lowest level within each configuration. Which level would be 
lowest according to a simple estimate of spin–orbit coupling?

9C.6 An emission line from K atoms is found to have two closely spaced 
components, one at 766.70 nm and the other at 770.11 nm. Account for this 
observation, and deduce what information you can.

9C.7 Calculate the mass of the deuteron given that the first line in the Lyman 
series of H lies at 82 259.098 cm-1 whereas that of D lies at 82 281.476 cm-1. 
Calculate the ratio of the ionization energies of H and D.

9C.8 Positronium consists of an electron and a positron (same mass, opposite 
charge) orbiting round their common centre of mass. The broad features 
of the spectrum are therefore expected to be hydrogen-like, the differences 
arising largely from the mass differences. Predict the wavenumbers of the first 
three lines of the Balmer series of positronium. What is the binding energy of 
the ground state of positronium?

9C.9 The Zeeman effect is the modification of an atomic spectrum by the 
application of a strong magnetic field. It arises from the interaction between 
applied magnetic fields and the magnetic moments due to orbital and spin 
angular momenta (recall the evidence provided for electron spin by the Stern–
Gerlach experiment, Topic 8C). To gain some appreciation for the so-called 
normal Zeeman effect, which is observed in transitions involving singlet states, 
consider a p electron, with l = 1 and ml = 0, ±1. In the absence of a magnetic 
field, these three states are degenerate. When a field of magnitude B is present, 
the degeneracy is removed and it is observed that the state with ml = +1 moves 
up in energy by μBB, the state with ml = 0 is unchanged, and the state with 
ml = -1 moves down in energy by μBB, where μB = eħ/2me = 9.274 × 10-24 J T-1 is 
the ‘Bohr magneton’. Therefore, a transition between a 1S0 term and a 1P1 term 
consists of three spectral lines in the presence of a magnetic field where, in the 
absence of the magnetic field, there is only one. (a) Calculate the splitting in 
reciprocal centimetres between the three spectral lines of a transition between 
a 1S0 term and a 1P1 term in the presence of a magnetic field of 2 T (where ‡ These problems were supplied by Charles Trapp and Carmen Giunta.
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1 T = 1 kg s-2 A-1). (b) Compare the value you calculated in (a) with typical 
optical transition wavenumbers, such as those for the Balmer series of the H 
atom. Is the line splitting caused by the normal Zeeman effect relatively small 
or relatively large?

9C.10 Some of the selection rules for hydrogenic atoms were derived in 
Justification 9C.1. Complete the derivation by considering the x- and y-
components of the electric dipole moment operator.

9C.11‡ Stern–Gerlach splittings of atomic beams are small and require either 
large magnetic field gradients or long magnets for their observation. For a 
beam of atoms with zero orbital angular momentum, such as H or Ag, the 
deflection is given by x = ±(μBL2/4Ek)dB/dz, where μB is the Bohr magneton 

(Problem 9C.9), L is the length of the magnet, Ek is the average kinetic energy 
of the atoms in the beam, and dB/dz is the magnetic field gradient across the 
beam. (a) Use the Maxwell–Boltzmann velocity distribution (eqn 1B.4 of Topic 
1B) to show that the average translational kinetic energy of the atoms emerging 
as a beam from a pinhole in an oven at temperature T is 2kT. (b) Calculate the 
magnetic field gradient required to produce a splitting of 1.00 mm in a beam of 
Ag atoms from an oven at 1000 K with a magnet of length 50 cm.

9C.12 Hydrogen is the most abundant element in all stars. However, neither 
absorption nor emission lines due to neutral hydrogen are found in the 
spectra of stars with effective temperatures higher than 25 000 K. Account for 
this observation.

Integrated activities
9.1 An electron in the ground-state He+ ion undergoes a transition to 
a state described by the wavefunction R4,1(r)Y1,1(θ,φ). (a) Describe the 
transition using term symbols. (b) Compute the wavelength, frequency, and 
wavenumber of the transition. (c) By how much does the mean radius of the 
electron change due to the transition?

9.2‡ Highly excited atoms have electrons with large principal quantum 
numbers. Such Rydberg atoms have unique properties and are of interest to 
astrophysicists. (a) For hydrogen atoms with large n, derive a relation for 

the separation of energy levels. (b) Calculate this separation for n = 100; also 
calculate the average radius, the geometric cross section, and the ionization 
energy. (c) Could a thermal collision with another hydrogen atom ionize this 
Rydberg atom? (d) What minimum velocity of the second atom is required? 
(e) Could a normal sized neutral H atom simply pass through the Rydberg 
atom leaving it undisturbed? (f) What might the radial wavefunction for a 
100s orbital be like?
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Mathematical background 5 Vectors

A scalar physical property (such as temperature) in general 
varies through space and is represented by a single value at each 
point of space. A vector physical property (such as the velocity 
or the electric field strength) can also vary through space, but 
in general has a different direction as well as a different magni-
tude at each point.

MB5.1 Definitions
A vector v has the general form (in three dimensions):

v = + +v v vxi j ky z  (MB5.1)

where i, j, and k are unit vectors, vectors of magnitude 1, pointing 
along the positive directions on the x, y, and z axes and vx, vy , and 
vz are the components of the vector on each axis (Fig. MB5.1). 
The magnitude of the vector is denoted v or |v| and is given by

v v v v= + +( ) /
x y z
2 2 2 1 2

  magnitude  (MB5.2)

The vector makes an angle θ to the z-axis and an angle ϕ to the 
x-axis in the xy-plane. It follows that

v v v v

v v
x y

z

= =
=

sin cos sin sin

cos

θ φ θ φ
θ  

 orientation  (MB5.3a)

and therefore that

θ φ= =arccos / arctan /( ) ( )v v v vz y x  (MB5.3b)

MB5.2 Operations

Consider the two vectors

u i j k i j k= + + = + +u u ux y z x y zv v v v  

The operations of addition, subtraction, and multiplication are 
as follows:

1. Addition:

v+ = + + + + +u i j k( ) ( ) ( )v v vx x y y z zu u u  (MB5.4a)

2. Subtraction:

v− = − + − + −u i j k( ) ( ) ( )v v vx x y y z zu u u  (MB5.4b)

3. Multiplication:

(a)  The scalar product, or dot product, of the two vectors 
u and v is

u⋅ = + +v u u ux x y y z zv v v   scalar product  (MB5.4c)

 and is itself a scalar quantity. We can always choose a 
new coordinate system—we shall write it X, Y, Z—in 
which the Z-axis lies parallel to u, so u = uK, where K is 
the unit vector parallel to u. It then follows from eqn 
MB5.4c that u ⋅ v = uvZ. Then, with vZ = v cos θ, where θ is 
the angle between u and v, we find

u⋅ =v uvcosθ   scalar product  (MB5.4d)

(b)  The vector product, or cross product, of two  
vectors is

u

i j k

× =v u u ux y z

x y zv v v

Brief illustration MB5.1 Vector orientation

The vector v = 2i + 3j – k has magnitude

v = + + = ={ ( ) } ./ /2 3 1 14 3 742 2 2 1 2− 1 2

Its direction is given by

θ φ= −( )= ° = = °arccos 1 5 5 arctan(3/2) 56 31 21 14 0/ . ./

Brief illustration MB5.2 Addition and subtraction

Consider the vectors u = i − 4j + k (of magnitude 4.24) and 
v = −4i + 2j + 3k (of magnitude 5.39). Their sum is

u i j k i j k+ = − + − + + + = − − +v ( ) ( ) ( )1 4 4 2 1 3 3 2 4

The magnitude of the resultant vector is 291/2 = 5.39. The differ-
ence of the two vectors is

u i j k i j k− = + + − − + − = − −v (1 4) 4 2 1 3 5 6 2( ) ( )

The magnitude of this resultant is 8.06. Note that in this case 
the difference is longer than either individual vector.

x

y

z

vz

vyvx

v

vθ

φ

i
j

k

Figure MB5.1 The vector v has components vx, vy, and vz on the 
x, y, and z axes, respectively. It has a magnitude v and makes an 
angle θ  to the z-axis and an angle θ  to the x-axis in the xy-plane.
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396 Mathematical background 5

= − − + ( )u u u u u uy z z y x z z x x y y xv v v v v vi j k–( ) ( – )  
  Vector product  (MB5.4e)

(Determinants are discussed in The chemist’s toolkit 9B.1.) Once 
again, choosing the coordinate system so that u = uK, leads to 
the simple expression:

u l× =v ( )uvsinθ   Vector product  (MB5.4f)

where θ is the angle between the two vectors and l is a unit vec-
tor perpendicular to both u and v, with a direction determined 
by the ‘right-hand rule’ as in Fig. MB5.2. A special case is when 
each vector is a unit vector, for then

i j k j k i k i j× = × = × =  (MB5.5)

It is important to note that the order of vector multiplication is 
important and that u × v = –v × u.

MB5.3 The graphical representation  
of vector operations

Consider two vectors v and u making an angle θ (Fig. MB5.3). 
The first step in the addition of u to v consists of joining the 
tip (the ‘head’) of u to the starting point (the ‘tail’) of v. In the 
second step, we draw a vector vres, the resultant vector, origi-
nating from the tail of u to the head of v. Reversing the order of 
addition leads to the same result; that is, we obtain the same vres 
whether we add u to v or v to u. To calculate the magnitude of 
vres, we note that

v v vres
2 22 2 cos2 = + ⋅ + = ⋅ + ⋅ + ⋅ = + +( ) ( )u u u u uv v v v v u u θ  

where θ is the angle between u and v. In terms of the angle 
θ ′ = π –θ  shown in the figure, and cos(π – θ) = –cos θ, we obtain 
the law of cosines:

v v vres
2 2 2 cos2 = +u u– θ   law of cosines  (MB5.6)

for the relation between the lengths of the sides of a triangle.
Subtraction of v from u amounts to addition of –v to u. It fol-

lows that in the first step of subtraction we draw –v by reversing 

Brief illustration MB5.3 Scalar and vector products

The scalar and vector products of the two vectors in Brief 
illustration MB5.2, u = i – 4j + k (of magnitude 4.24) and 
v = –4i + 2j + 3k (of magnitude 5.39) are

u

u

i j k

⋅ = × − + − × + × = −

× = −
−

= − −

v

v

{1 4 } 4 2 1 3 9( ) {( ) } { }

{( )( ) (

1 4 1

4 2 3

4 3 1))( )} {( )( ) ( )( )} {( )( ) ( )( )}2 1 3 1 4 1 2 4 4

14 7 14

i j k

i j k

− − − + − − −
= − − −

The vector product is a vector of magnitude 21.00 pointing in 
a direction perpendicular to the plane defined by the two indi-
vidual vectors.

u
v

u × v

θ

Figure MB5.2 A depiction of the ‘right-hand rule’. When the 
fingers of the right hand rotate u into v, the thumb points in the 
direction of u × v.

v

u

θ

u + v

v

u

θ v

u

θ

π − θ

(a) (b) (c)

Figure MB5.3 (a) The vectors v and u make an angle θ. (b) To 
add u to v, we first join the head of u to the tail of v, making sure 
that the angle θ between the vectors remains unchanged.  
(c) To finish the process, we draw the resultant vector by joining 
the tail of u to the head of v.

–v –v
u

θ

u – v

u

(a) (b)

Figure MB5.4 The graphical method for subtraction of the 
vector v from the vector u (as shown in Fig. MB5.3a) consists of 
two steps: (a) reversing the direction of v to form  − v, and  
(b) adding  − v to u.
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the direction of v (Fig. MB5.4). Then, the second step consists 
of adding –v to u by using the strategy shown in the figure; we 
draw a resultant vector vres by joining the tail of –v to the head 
of u.

Vector multiplication is represented graphically by draw-
ing a vector (using the right-hand rule) perpendicular to the 
plane defined by the vectors u and v, as shown in Fig. MB5.5. 
Its length is equal to uv sin θ, where θ is the angle between u 
and v.

MB5.4 Vector differentiation
The derivative dv/dt, where the components vx, vy , and vz are 
themselves functions of t, is

d
d

d
d

d

d
d
d

v
t t t t

x y z=





+






+





v v v
i j k

 
 derivative  (MB5.7)

The derivatives of scalar and vector products are obtained using 
the rules of differentiating a product:

d
d

d
d

d
d

u u
u

⋅ = 





⋅ + ⋅





v
v

v
t t t  

(MB5.8a)

d
d

d
d

d
d

u u
u

× =





× + ×





v
v

v
t t t  

(MB5.8b)

In the latter, note the importance of preserving the order of 
vectors.

The gradient of a scalar function f(x,y,z), denoted grad f or 
∇f, is

∇ = ∂
∂







+ ∂
∂







+ ∂
∂







f
f
x

f
y

f
z

i j k
 

 gradient  (MB5.9)

where partial derivatives are described in Mathematical back-
ground 2. Note that the gradient of a scalar function is a vector. 
We can treat ∇ as a vector operator (in the sense that it operates 
on a function and results in a vector), and write

∇ = ∂
∂ + ∂

∂ + ∂
∂i j k

x y z  
(MB5.10)

The scalar product of ∇ and ∇f, using eqns MB5.9 and 
MB5.10, is

∇⋅∇ = ∂
∂ + ∂

∂ + ∂
∂







⋅ ∂
∂ + ∂

∂ + ∂
∂







= ∂
∂

+ ∂

f
x y z x y z

f

f
x

f

i j k i j k

2

2

2

∂∂
+ ∂

∂y
f

z2

2

2

 
 

 laplacian  (MB5.11)

Equation MB5.11 defines the Laplacian (∇2 = ∇ ⋅ ∇) of a function.

x

y

z

u

θ
u × v

uv sin θ

x

y

z

u

θ

v × u
uv sin θ

(a) (b)

v v

Figure MB5.5 The direction of the cross products of two 
vectors u and v with an angle θ between them: (a) u × v and  
(b) v × u. Note that the cross product, and the unit vector l of 
eqn MB5.4f, are perpendicular to both u and v but the direction 
depends on the order in which the product is taken. The 
magnitude of the cross product, in either case, is uv sin θ.
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chaPter 10

molecular structure

The concepts developed in Chapter 9, particularly those of orbit-
als, can be extended to a description of the electronic structures 
of molecules. There are two principal quantum mechanical the-
ories of molecular electronic structure. In ‘valence-bond theory’, 
the starting point is the concept of the shared electron pair.

10A Valence-bond theory

In this Topic we see how to write the wavefunction for a shared 
electron pair, and how it may be extended to account for the 
structures of a wide variety of molecules. The theory introduces 
the concepts of σ and π bonds, promotion, and hybridization 
that are used widely in chemistry.

10B Principles of molecular orbital 
theory

Almost all modern computational work makes use of molecu-
lar orbital theory (MO theory), and we concentrate on that the-
ory in this chapter. In MO theory, the concept of atomic orbital 
is extended to that of ‘molecular orbital’, which is a wavefunc-
tion that spreads over all the atoms in a molecule. The Topic 
begins with an account of the hydrogen molecule, which sets 
the scene for the application of MO theory to more compli-
cated molecules.

10C homonuclear diatomic molecules

The principles established for the hydrogen molecule are read-
ily extended to other homonuclear diatomic molecules, the 
principal difference being that more types of atomic orbital 
must be included to give a more varied collection of molecular 
orbitals. The building-up principle for atoms is extended to the 
occupation of molecular orbitals and used to predict the elec-
tronic structure of molecules.

10D heteronuclear diatomic molecules

The MO theory of heteronuclear diatomic molecules intro-
duces the possibility that the atomic orbitals on the two atoms 
contribute unequally to the molecular orbital. As a result, the 
molecule is polar. The polarity can be expressed in terms of the 
concept of electronegativity.

10E Polyatomic molecules

Most molecules are polyatomic, so it is important to be able 
to account for their electronic structure. An early approach to 
the electronic structure of planar conjugated polyenes is the 
‘Hückel method’. This procedure introduces severe approxi-
mations, but sets the scene for more sophisticated procedures. 
These more sophisticated procedures have given rise to what 
is essentially a huge and vibrant theoretical chemistry industry 
in which elaborate computations are used to predict molecular 
properties. In this Topic we see a little of how those calculations 
are formulated.

What is the impact of this material?

The concepts introduced in this chapter pervade the whole of 
chemistry and are encountered throughout the text. We focus 
on two biochemical aspects here. In Impact I10.1 we see how 
simple concepts account for the reactivity of small molecules 
that occur in organisms. In Impact I10.2 we see a little of the 
contribution of computational chemistry to the explanation 
of the thermodynamic and spectroscopic properties of several 
biologically significant molecules.

 To read more about the impact of this 
material, scan the QR code, or go to  
bcs.whfreeman.com/webpub/chemistry/
pchem10e/impact/pchem-10-1.html
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10A Valence-bond theory

Here we summarize essential topics of valence-bond theory 
(VB theory) that should be familiar from introductory chem-
istry and set the stage for the development of molecular orbital 
theory (MO theory). However, there is an important prelimi-
nary point. All theories of molecular structure make the same 

simplification at the outset. Whereas the Schrödinger equation 
for a hydrogen atom can be solved exactly, an exact solution is 
not possible for any molecule because even the simplest mol-
ecule consists of three particles (two nuclei and one electron). 
We therefore adopt the Born–Oppenheimer approximation 
in which it is supposed that the nuclei, being so much heavier 
than an electron, move relatively slowly and may be treated as 
stationary while the electrons move in their field. That is, we 
think of the nuclei as fixed at arbitrary locations, and then solve 
the Schrödinger equation for the wavefunction of the electrons 
alone.

The Born–Oppenheimer approximation allows us to select 
an internuclear separation in a diatomic molecule and then to 
solve the Schrödinger equation for the electrons at that nuclear 
separation. Then we choose a different separation and repeat 
the calculation, and so on. In this way we can explore how the 
energy of the molecule varies with bond length and obtain a 
molecular potential energy curve (Fig. 10A.1). It is called a 
potential energy curve because the kinetic energy of the sta-
tionary nuclei is zero. Once the curve has been calculated or 
determined experimentally (by using the spectroscopic tech-
niques described in Topics 12C–12E and 13A), we can identify 
the equilibrium bond length, Re, the internuclear separation at 
the minimum of the curve, and the bond dissociation energy, 
D0, which is closely related to the depth, De, of the minimum 
below the energy of the infinitely widely separated and sta-
tionary atoms. When more than one molecular parameter is 
changed in a polyatomic molecule, such as its various bond 
lengths and angles, we obtain a potential energy surface; the 
overall equilibrium shape of the molecule corresponds to the 
global minimum of the surface.

➤➤ Why do you need to know this material?

Valence-bond theory was the first quantum mechanical 
theory of bonding to be developed. The language it 
introduced, which includes concepts such as spin pairing, σ 
and π bonds, and hybridization, is widely used throughout 
chemistry, especially in the description of the properties 
and reactions of organic compounds.

➤➤ What is the key idea?
A bond forms when an electron in an atomic orbital on one 
atom pairs its spin with that of an electron in an atomic 
orbital on another atom.

➤➤ What do you need to know already?
You need to know about atomic orbitals (Topic 9A) and the 
concepts of normalization and orthogonality (Topic 7C). 
This Topic also makes use of the Pauli principle (Topic 9B).

Contents

10a.1 Diatomic molecules 400
(a) The basic formulation 400

brief illustration 10.a1: a valence-bond  
wavefunction 400

(b) Resonance 401
brief illustration 10a.2: resonance hybrids 402

10a.2 Polyatomic molecules 402
brief illustration 10a.3: a polyatomic molecule 402

(a) Promotion 403
brief illustration 10a.4: Promotion 403

(b) Hybridization 403
brief illustration 10a.5: hybrid structures 405

Checklist of concepts 405
Checklist of equations 406

E
n

er
g

y

Re

–De

0
Internuclear
separation, R

Figure 10A.1 A molecular potential energy curve. The 
equilibrium bond length corresponds to the energy minimum.
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400 10 Molecular structure

10A.1 Diatomic molecules

We begin the account of VB theory by considering the simplest 
possible chemical bond, the one in molecular hydrogen, H2.

(a) The basic formulation
The spatial wavefunction for an electron on each of two widely 
separated H atoms is

Ψ χ χ( , ) ( ) ( )1 2 1 1 1 2= H s H sA B
r r  (10A.1)

if electron 1 is on atom A and electron 2 is on atom B; in this 
chapter, and as is common in the chemical literature, we use 
χ (chi) to denote atomic orbitals. For simplicity, we shall write 
this wavefunction as Ψ(1,2) = A(1)B(2). When the atoms are 
close, it is not possible to know whether it is electron 1 or elec-
tron 2 that is on A. An equally valid description is therefore 
Ψ(1,2) = A(2)B(1), in which electron 2 is on A and electron 1 
is on B. When two outcomes are equally probable, quantum 
mechanics instructs us to describe the true state of the system 
as a superposition of the wavefunctions for each possibility 
(Topic 7C), so a better description of the molecule than either 
wavefunction alone is one of the (unnormalized) linear com-
binations Ψ(1,2) = A(1)B(2) ± A(2)B(1). The combination with 
lower energy is the one with a + sign, so the valence-bond wave-
function of the electrons in an H2 molecule is

Ψ ( , ) ( ) ( ) ( ) ( )1 2 1 2 2 1= +A B A B  

The reason why this linear combination has a lower energy 
than either the separate atoms or the linear combination with 
a negative sign can be traced to the constructive interference 
between the wave patterns represented by the terms A(1)B(2) 
and A(2)B(1), and the resulting enhancement of the prob-
ability density of the electrons in the internuclear region (Fig. 
10A.2).

The electron distribution described by the wavefunction in 
eqn 10A.2 is called a σ bond. A σ bond has cylindrical sym-
metry around the internuclear axis, and is so called because, 
when viewed along the internuclear axis, it resembles a pair of 
electrons in an s orbital (and σ is the Greek equivalent of s).

A chemist’s picture of a covalent bond is one in which the 
spins of two electrons pair as the atomic orbitals overlap. The ori-
gin of the role of spin, as we show in the following Justification, is 
that the wavefunction in eqn 10A.2 can be formed only by a pair 
of spin-paired electrons. Spin pairing is not an end in itself: it is a 
means of achieving a wavefunction and the probability distribu-
tion it implies that corresponds to a low energy.

Brief illustration 10.A1 A valence-bond wavefunction

The wavefunction in eqn 10A.2 might look abstract, but in fact 
it can be expressed in terms of simple exponential functions. 
Thus, if we use the wavefunction for an H1s orbital (Z = 1) 
given in Topic 9A, then, with the radii measured from their 
respective nuclei (1),

Ψ ( , )
( ) ( )/

/
/

/1 2 1 1
0
3 1 2

0
3 1 2

1 0 2 0= ×− −

π πa a
r a r ae eA B

A B(1) (2� ��� ��� )) (2)� ��� ��� � ��� ���

+

×

−

−

1

1

0
3 1 2

0
3 1 2

2 0

1 0

( )
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/
/
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/

π

π

a

a

r a

r a

e

e

A
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A
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= +− + − +1
0
3
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πa
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a valence-bond 
wavefunction  (10A.2)

A B
R

rA1

rA2 rB1

rB2

e1

e2

r12

1

Self-test 10A.1 Express this wavefunction in terms of the 
Cartesian coordinates of each electron given that the inter-
nuclear separation (along the z-axis) is R.

Answer: r x y z r x y z Ri i i i i i iA Bi= + + = + + −( ) , ( ( ) )/ /2 2 2 1 2 2 2 2 1 2

Justification 10.A1 Electron pairing in VB theory

The Pauli principle requires the overall wavefunction of two 
electrons, the wavefunction including spin, to change sign 
when the labels of the electrons are interchanged (Topic 9B). 
The overall VB wavefunction for two electrons is

A(1)B(2)

A(1)B(2) + A(2)B(1)

A(2)B(1)

Enhanced
electron density

Figure 10A.2 It is very difficult to represent valence-
bond wavefunctions because they refer to two electrons 
simultaneously. However, this illustration is an attempt. The 
atomic orbital for electron 1 is represented by the purple 
shading, and that of electron 2 is represented by the green 
shading. The left illustration represents A(1)B(2), and the right 
illustration represents the contribution A(2)B(1). When the 
two contributions are superimposed, there is interference 
between the purple contributions and between the green 
contributions, resulting in an enhanced (two-electron) density 
in the internuclear region.

iranchembook.ir/edu
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The VB description of H2 can be applied to other homonu-
clear diatomic molecules. For N2, for instance, we consider 
the valence electron configuration of each atom, which is 
2s 2p 2p 2p2 1 1 1

x y z . It is conventional to take the z-axis to be the 
internuclear axis, so we can imagine each atom as having a 2pz 
orbital pointing towards a 2pz orbital on the other atom (Fig. 
10A.3), with the 2px and 2py orbitals perpendicular to the axis. 
A σ bond is then formed by spin pairing between the two elec-
trons in the two 2pz orbitals. Its spatial wavefunction is given by 
eqn 10A.2, but now A and B stand for the two 2pz orbitals.

The remaining N2p orbitals cannot merge to give σ bonds 
as they do not have cylindrical symmetry around the internu-
clear axis. Instead, they merge to form two π bonds. A π bond 
arises from the spin pairing of electrons in two p orbitals that 
approach side-by-side (Fig. 10A.4). It is so called because, 
viewed along the inter-nuclear axis, a π bond resembles a pair 
of electrons in a p orbital (and π is the Greek equivalent of p).

There are two π bonds in N2, one formed by spin pairing in 
two neighbouring 2px orbitals and the other by spin pairing in 
two neighbouring 2py orbitals. The overall bonding pattern in 

N2 is therefore a σ bond plus two π bonds (Fig. 10A.5), which is 
consistent with the Lewis structure :N ≡ N: for nitrogen.

(b) Resonance
Another term introduced into chemistry by VB theory is 
resonance, the superposition of the wavefunctions repre-
senting different electron distributions in the same nuclear 
framework. To understand what this means, consider the 
VB description of a purely covalently bonded HCl molecule, 
which could be written as Ψ = A(1)B(2) + A(2)B(1), with A 
now a H1s orbital and B a Cl2p orbital. However, this descrip-
tion is physically unlikely: it allows electron 1 to be on the H 
atom when electron 2 is on the Cl atom, and vice versa, but it 
does not allow for the possibility that both electrons are on the 
Cl atom (Ψ = B(1)B(2), representing H+Cl−) or even on the H 
atom (Ψ = A(1)A(2), representing the much less likely H−Cl+). 
A better description of the wavefunction for the molecule is as 
a superposition of the covalent and ionic descriptions, and we 
write (with a slightly simplified notation, and ignoring the less 
likely H−Cl+ possibility) Ψ Ψ λΨHCl H Cl H Cl= + + −−  with λ (lambda) 
some numerical coefficient. In general, we write

Ψ Ψ λΨ= +covalent ionic  (10A.3)

Ψ (1 2) (1 2), { ( ) ( ) ( ) ( )} ,= +A B A B1 2 2 1 σ  

where σ represents the spin component of the wavefunction. 
When the labels 1 and 2 are interchanged, this wavefunction 
becomes

Ψ (2 1) 2 1
(2 1)

, { ( ) ( ) ( ) ( )} ( , )
{ ( ) ( ) ( ) ( )} ,

= +
= +

A B A B
A B A B

2 1 1 2
1 2 2 1

σ
σ  

The Pauli principle requires that Ψ(2,1) = −Ψ(1,2), which is 
satisfied only if σ(2,1) = −σ(1,2). The combination of two spins 
that has this property is

σ α β β α− = −( , ) ( / ){ }/1 2 1 2 (1) (2) (1) (2)1 2
 

which corresponds to paired electron spins (Topic 9C). 
Therefore, we conclude that the state of lower energy (and 
hence the formation of a chemical bond) is achieved if the 
electron spins are paired.

Figure 10A.3 The orbital overlap and spin pairing between 
electrons in two collinear p orbitals that results in the formation 
of a σ bond.

–

–

Nodal plane
+

+
Internuclear axis

Figure 10A.4 A π bond results from orbital overlap and 
spin pairing between electrons in p orbitals with their axes 
perpendicular to the internuclear axis. The bond has two lobes 
of electron density separated by a nodal plane.

–

–

– –

–

–

+

+ ++

+

Figure 10A.5 The structure of bonds in a nitrogen molecule, 
with one σ bond and two π bonds. The overall electron density 
has cylindrical symmetry around the internuclear axis.
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402 10 Molecular structure

where Ψcovalent is the two-electron wavefunction for the purely 
covalent form of the bond and Ψionic is the two-electron wave-
function for the ionic form of the bond. The approach summa-
rized by eqn 10A.3, in which we express a wavefunction as the 
superposition of wavefunctions corresponding to a variety of 
structures with the nuclei in the same locations, is called reso-
nance. In this case, where one structure is pure covalent and 
the other pure ionic, it is called ionic–covalent resonance. 
The interpretation of the wavefunction, which is called a reso-
nance hybrid, is that if we were to inspect the molecule, then 
the probability that it would be found with an ionic structure is 
proportional to λ2. If λ2 is very small, the covalent description 
is dominant. If λ2 is very large, the ionic description is domi-
nant. Resonance is not a flickering between the contributing 
states: it is a blending of their characteristics, much as a mule is 
a blend of a horse and a donkey. It is only a mathematical device 
for achieving a closer approximation to the true wavefunction 
of the molecule than that represented by any single contribut-
ing structure alone.

A systematic way of calculating the value of λ is provided by 
the variation principle which is proved in Topic 10C:

If an arbitrary wavefunction is used to calculate the 
energy, then the value calculated is never less than 
the true energy.

The arbitrary wavefunction is called the trial wavefunction. 
The principle implies that, if we vary the parameter λ in the 
trial wavefunction until the lowest energy is achieved (by eval-
uating the expectation value of the hamiltonian for the wave-
function), then that value of λ will be the best and through λ2 
represents the appropriate contribution of the ionic wavefunc-
tion to the resonance hybrid.

10A.2 Polyatomic molecules

Each σ bond in a polyatomic molecule is formed by the spin 
pairing of electrons in atomic orbitals with cylindrical symme-
try around the relevant internuclear axis. Likewise, π bonds are 
formed by pairing electrons that occupy atomic orbitals of the 
appropriate symmetry.

Resonance plays an important role in the valence-bond 
description of polyatomic molecules. One of the most famous 
examples of resonance is in the VB description of benzene, 
where the wavefunction of the molecule is written as a super-
position of the many-electron wavefunctions of the two cova-
lent Kekulé structures:

ψ = ψ + ψ( ) ( )
 

(10A.4)

The two contributing structures have identical energies, so they 
contribute equally to the superposition. The effect of resonance 
(which is represented by a double-headed arrow, , in 
this case) is to distribute double-bond character around the ring 
and to make the lengths and strengths of all the carbon–car-
bon bonds identical. The wavefunction is improved by allowing 
resonance because it allows for a more accurate description of 
the location of the electrons, and in particular the distribution 
can adjust into a state of lower energy. This lowering is called 
the resonance stabilization of the molecule and, in the context 
of VB theory, is largely responsible for the unusual stability of 

Brief illustration 10A.2 Resonance hybrids

Consider a bond described by eqn 10A.3. We might find that 
the lowest energy is reached when λ = 0.1, so the best descrip-
tion of the bond in the molecule is a resonance structure 
described by the wavefunction Ψ = Ψcovalent + 0.1Ψ ionic. This 
wavefunction implies that the probabilities of finding the 
molecule in its covalent and ionic forms are in the ratio 100:1 
(because 0.12 = 0.01).

Brief illustration 10A.3 A polyatomic molecule

The VB description of H2O will make this approach clear. The 
valence-electron configuration of an O atom is 2s 2p 2p 2p2 2 1 1

x y z .  
The two unpaired electrons in the O2p orbitals can each pair 
with an electron in an H1s orbital, and each combination 
results in the formation of a σ bond (each bond has cylindri-
cal symmetry about the respective OeH internuclear axis). 
Because the 2px and 2py orbitals lie at 90° to each other, the two 
σ bonds also lie at 90° to each other (Fig. 10A.6). We predict, 
therefore, that H2O should be an angular molecule, which it is. 
However, the theory predicts a bond angle of 90°, whereas the 
actual bond angle is 104.5°.

Self-test 10A.2 Use VB theory to suggest a shape for the 
ammonia molecule, NH3.

Answer: Trigonal pyramidal with HNH bond angle 90°;  
experimental: 107°

H1s

H1s

O2px

O2py

Figure 10A.6 In a primitive view of the structure of an H2O 
molecule, each bond is formed by the overlap and spin 
pairing of an H1s electron and an O2p electron.Va
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10A Valence-bond theory  403

aromatic rings. Resonance always lowers the energy, and the 
lowering is greatest when the contributing structures have 
similar energies. The wavefunction of benzene is improved still 
further, and the calculated energy of the molecule is lowered 
further still, if we allow ionic–covalent resonance too, by allow-
ing a small admixture of structures such as 

+
–.

(a) Promotion
As pointed out in Brief illustration 10A.3, simple VB theory 
predicts a bond angle of 90°, whereas the actual bond angle 
is 104.5°. Another deficiency of this initial formulation of VB 
theory is its inability to account for carbon’s tetravalence (its 
ability to form four bonds). The ground-state configuration of 
C is 2s 2p 2p2

x y
1 1 , which suggests that a carbon atom should be 

capable of forming only two bonds, not four.
This deficiency is overcome by allowing for promotion, the 

excitation of an electron to an orbital of higher energy. In car-
bon, for example, the promotion of a 2 s electron to a 2p orbital 
can be thought of as leading to the configuration 2s 2p 2p 2p1 1 1

x y z
1 ,  

with four unpaired electrons in separate orbitals. These elec-
trons may pair with four electrons in orbitals provided by four 
other atoms (such as four H1s orbitals if the molecule is CH4), 
and hence form four σ bonds. Although energy was required 
to promote the electron, it is more than recovered by the pro-
moted atom’s ability to form four bonds in place of the two 
bonds of the unpromoted atom.

Promotion, and the formation of four bonds, is a character-
istic feature of carbon because the promotion energy is quite 
small: the promoted electron leaves a doubly occupied 2s 
orbital and enters a vacant 2p orbital, hence significantly reliev-
ing the electron–electron repulsion it experiences in the for-
mer. However, it is important to remember that promotion is 
not a ‘real’ process in which an atom somehow becomes excited 
and then forms bonds: it is a notional contribution to the over-
all energy change that occurs when bonds form.

(b) Hybridization

The description of the bonding in CH4 (and other alkanes) 
is still incomplete because it implies the presence of three σ 
bonds of one type (formed from H1s and C2p orbitals) and a 
fourth σ bond of a distinctly different character (formed from 
H1s and C2s). This problem is overcome by realizing that the 
electron density distribution in the promoted atom is equiva-
lent to the electron density in which each electron occupies a 
hybrid orbital formed by interference between the C2s and 
C2p orbitals of the same atom. The origin of the hybridization 
can be appreciated by thinking of the four atomic orbitals cen-
tred on a nucleus as waves that interfere destructively and con-
structively in different regions, and give rise to four new shapes.

As we show in the following Justification, the specific linear 
combinations that give rise to four equivalent hybrid orbitals 
are

h h
h h

x y z x y z

x y z x y z

1 2

3 4

= + + + = − − +
= − + − = + − −

s p p p s p p p
s p p p s p p p  

As a result of the interference between the component orbit-
als, each hybrid orbital consists of a large lobe pointing in the 
direction of one corner of a regular tetrahedron (Fig. 10A.7). 
The angle between the axes of the hybrid orbitals is the tetrahe-
dral angle, arccos(−1/3) = 109.47°. Because each hybrid is built 
from one s orbital and three p orbitals, it is called an sp3 hybrid 
orbital.

sp3 hybrid 
orbitals  (10A.5)

Justification 10A.2 Determining the form of tetrahedral 
hybrid orbitals

We begin by supposing that each hybrid can be written in 
the form h = as + bxpx + bypy + bzpz. The hybrid h1 that points 
to the (1,1,1) corner of a cube must have equal contributions 
from all three p orbitals, so we can set the three b coefficients 
equal to each other and write h1 = as + b(px + py + pz). The other 
three hybrids have the same composition (they are equivalent, 
apart from their direction in space), but are orthogonal to h1. 
This orthogonality is achieved by choosing different signs for 
the p-orbitals but the same overall composition. For instance, 
we might choose h2 = as + b(−px − py + pz), in which case the 
orthogonality condition is

h h a b a b

a b

x y z x y z1 2

2 2

d s p p p s p p p d

s d

τ τ

τ

∫

∫

∫= + + + + − − +

= −

( ( ))( ( ))
1���

22 2

2 2 2 2

p d sp d

p p d

x x

x y

ab

b a b b

τ τ

τ

∫ ∫

∫

− − −

− + = − −

1 0

0

���
�

��� ��
�

� �� ��
� ++ = − =b a b2 2 2 0

 

We conclude that a solution is a = b (the alternative solution, 
a = −b, simply corresponds to choosing different absolute 

Brief illustration 10A.4 Promotion

Sulfur can form six bonds (an ‘expanded octet’), as in the mol-
ecule SF6. Because the ground-state electron configuration of 
sulfur is [Ne]3s23p4, this bonding pattern requires the pro-
motion of a 3s electron and a 3p electron to two different 3d 
orbitals, which are nearby in energy, to produce the notional 
configuration [Ne]3s13p33d2 with all six of the valence elec-
trons in different orbitals and capable of bond formation with 
six electrons provided by six F atoms.

Self-test 10A.3 Account for the ability of phosphorus to form 
five bonds, as in PF5.

Answer: Promotion of a 3s electron from  
[Ne]3s23p3 to [Ne]3s13p33d1

iranchembook.ir/edu



404 10 Molecular structure

It is now easy to see how the valence-bond description of the 
CH4 molecule leads to a tetrahedral molecule containing four 
equivalent CeH bonds. Each hybrid orbital of the promoted C 
atom contains a single unpaired electron; an H1s electron can 
pair with each one, giving rise to a σ bond pointing in a tetrahe-
dral direction. For example, the (un-normalized) two-electron 
wavefunction for the bond formed by the hybrid orbital h1 and 
the 1sA orbital (with wavefunction that we shall denote A) is

Ψ ( , ) ( ) ( ) ( ) ( )1 2 1 21 1= +h A h A2 1  (10A.6)

As for H2, to achieve this wavefunction, the two electrons it 
describes must be paired. Because each sp3 hybrid orbital has 
the same composition, all four σ bonds are identical apart from 
their orientation in space (Fig. 10A.8).

A hybrid orbital has enhanced amplitude in the internu-
clear region, which arises from the constructive interference 
between the s orbital and the positive lobes of the p orbitals. 
As a result, the bond strength is greater than for a bond formed 
from an s or p orbital alone. This increased bond strength is 
another factor that helps to repay the promotion energy.

Hybridization is used to describe the structure of an ethene 
molecule, H2CaCH2, and the torsional rigidity of double 
bonds. An ethene molecule is planar, with HCH and HCC 
bond angles close to 120°. To reproduce the σ bonding struc-
ture, each C atom is regarded as promoted to a 2 s12p3 con-
figuration. However, instead of using all four orbitals to form 
hybrids, we form sp2 hybrid orbitals:

h

h

h

y

x y

x

1
1 2

2
1 2 1 2

3
1 2 1 2

s 2 p

s p p

s p p

= +

= +( ) −( )
= −( ) −( )

/

/ /

/ /

3
2

1
2

3
2

1
2 yy  

 sp2 hybrid orbitals  (10A.7)

These hybrids lie in a plane and point towards the corners of 
an equilateral triangle at 120° to each other (Fig. 10A.9 and 
Problem 10A.3). The third 2p orbital (2pz) is not included in 
the hybridization; its axis is perpendicular to the plane in 
which the hybrids lie. The different signs of the coefficients, as 
well as ensuring that the hybrids are mutually orthogonal, also 
ensure that constructive interference takes place in different 
regions of space, so giving the patterns in the illustration. The 
sp2-hybridized C atoms each form three σ bonds by spin pair-
ing with either the h1 hybrid of the other C atom or with H1s 
orbitals. The σ framework therefore consists of CeH and CeC 
σ bonds at 120° to each other. When the two CH2 groups lie in 
the same plane, the two electrons in the unhybridized p orbit-
als can pair and form a π bond (Fig. 10A.10). The formation of 
this π bond locks the framework into the planar arrangement, 
for any rotation of one CH2 group relative to the other leads to 
a weakening of the π bond (and consequently an increase in 
energy of the molecule).

phases for the p orbitals) and the two hybrid orbitals are the 
h1 and h2 in eqn 10A.3. A similar argument but with h3 = as + b 
(−px + py − pz) or h4 = as + b(px − py − pz) leads to the other two 
hybrids in eqn 10A.3.

109.47°

Figure 10A.7 An sp3 hybrid orbital formed from the 
superposition of s and p orbitals on the same atom. There 
are four such hybrids: each one points towards the corner of 
a regular tetrahedron. The overall electron density remains 
spherically symmetrical.

C

H

Figure 10A.8 Each sp3 hybrid orbital forms a σ bond by 
overlap with an H1s orbital located at the corner of the 
tetrahedron. This model accounts for the equivalence of the 
four bonds in CH4.

120°

(a) (b)

Figure 10A.9 (a) An s orbital and two p orbitals can be 
hybridized to form three equivalent orbitals that point towards 
the corners of an equilateral triangle. (b) The remaining, 
unhybridized p orbital is perpendicular to the plane.
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10A Valence-bond theory  405

A similar description applies to ethyne, HC ≡ CH, a linear 
molecule. Now the C atoms are sp hybridized, and the σ bonds 
are formed using hybrid atomic orbitals of the form

h hz z1 2s p s p= + = −   sp hybrid orbitals  (10A.8)

These two hybrids lie along the internuclear axis. The elec-
trons in them pair either with an electron in the corresponding 
hybrid orbital on the other C atom or with an electron in one of 
the H1s orbitals. Electrons in the two remaining p orbitals on 
each atom, which are perpendicular to the molecular axis, pair 
to form two perpendicular π bonds (Fig. 10A.11).

Other hybridization schemes, particularly those involving d 
orbitals, are often invoked in elementary descriptions of mol-
ecular structure to be consistent with other molecular geo-
metries (Table 10A.1). The hybridization of N atomic orbitals 

always results in the formation of N hybrid orbitals, which may 
either form bonds or may contain lone pairs of electrons.

Brief illustration 10A.5 Hybrid structures

For example, sp3d2 hybridization results in six equivalent 
hybrid orbitals pointing towards the corners of a regular octa-
hedron; it is sometimes invoked to account for the structure 
of octahedral molecules, such as SF6 (recall the promotion of 
sulfur’s electrons in Brief illustration 10A.4). Hybrid orbitals 
do not always form bonds: they may also contain lone pairs 
of electrons. For example, in the hydrogen peroxide molecule, 
H2O2, each O atom can be regarded as sp3 hybridized. Two of 
the hybrid orbitals form bonds, one OeO bond and one OeH 
bond at approximately 109° (the experimental value is much 
less, at 94.8°). The remaining two hybrids on each atom accom-
modate lone pairs of electrons. Rotation around the O eO 
bond is possible, so the molecule is conformationally mobile.

Self-test 10A.4 Account for the structure of methylamine, 
CH3NH2.

Answer: C, N both sp3 hybridized; a lone pair on N

Checklist of concepts

☐ 1. The Born–Oppenheimer approximation treats the 
nuclei as stationary while the electrons move in their 
field.

☐ 2. A molecular potential energy curve depicts the varia-
tion of the energy of the molecule as a function of bond 
length.

Figure 10A.10 A representation of the structure of a double 
bond in ethene; only the π bond is shown explicitly.

Figure 10A.11 A representation of the structure of a triple 
bond in ethyne; only the π bonds are shown explicitly. The 
overall electron density has cylindrical symmetry around the 
axis of the molecule.

Table 10A.1 Some hybridization schemes

Coordination 
number

Arrangement Composition

2 Linear sp, pd, sd

Angular sd

3 Trigonal planar sp2, p2d

Unsymmetrical planar spd

Trigonal pyramidal pd2

4 Tetrahedral sp3, sd3

Irregular tetrahedral spd2, p3d, dp3

Square planar p2d2, sp2d

5 Trigonal bipyramidal sp3d, spd3

Tetragonal pyramidal sp2d2, sd4, pd4, p3d2

Pentagonal planar p2d3

6 Octahedral sp3d2

Trigonal prismatic spd4, pd5

Trigonal antiprismatic p3d3
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406 10 Molecular structure

☐ 3. The equilibrium bond length is the internuclear sepa-
ration at the minimum of the curve.

☐ 4. The bond dissociation energy is the minimum energy 
need to separate the two atoms of a molecule.

☐ 5. A bond forms when an electron in an atomic orbital on 
one atom pairs its spin with that of an electron in an 
atomic orbital on another atom.

☐ 6. A σ bond has cylindrical symmetry around the inter-
nuclear axis.

☐ 7. A π bond has symmetry like that of a p orbital perpen-
dicular to the internuclear axis.

☐ 8. Promotion is the notional excitation of an electron to 
an empty orbital to enable the formation of additional 
bonds.

☐ 9. Hybridization is the blending together of atomic orbit-
als on the same atom to achieve the appropriate direc-
tional properties and enhanced overlap.

☐ 10. Resonance is the superposition of structures with dif-
ferent electron distributions but the same nuclear 
arrangement.

Checklist of equations

Property Equation Comment Equation number

Valence-bond wavefunction Ψ = A(1)B(2) + A(2)B(1) 10A.2

Resonance Ψ = Ψcovalent + λΨionic Ionic–covalent resonance 10A.3

Hybridization h ci i
i

=∑ χ All atomic orbitals on the same atom; specific forms in the text 10A.5
10A.6
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10B Principles of molecular orbital theory

In molecular orbital theory (MO theory), electrons do not 
belong to particular bonds but spread throughout the entire 
molecule. This theory has been more fully developed than 
valence-bond theory (Topic 10A) and provides the language 
that is widely used in modern discussions of bonding. To intro-
duce it, we follow the same strategy as in Topic 9B, where the 
one-electron H atom was taken as the fundamental species for 

discussing atomic structure and then developed into a descrip-
tion of many-electron atoms. In this chapter we use the sim-
plest molecular species of all, the hydrogen molecule-ion, H2

+, 
to introduce the essential features of bonding and then use it to 
describe the structures of more complex systems.

10B.1 Linear combinations 
of atomic orbitals

The hamiltonian for the single electron in H2
+ is

�H m V V e
r r R= − ∇ + = − + −





�2

1
2

2

0 1 12 4
1 1 1

e A Bπε  
(10B.1)

where rA1 and rB1 are the distances of the electron from the two 
nuclei A and B (1) and R is the distance between the two nuclei. 
In the expression for V, the first two terms in parentheses are 
the attractive contribution from the interaction between the 
electron and the nuclei; the remaining term is the repulsive 
interaction between the nuclei. The collection of fundamental 
constant e2/4πε0 occurs widely throughout this chapter, and we 
shall denote it j0.

A B
R

rA1

rB1

e

1

The one-electron wavefunctions obtained by solving the 
Schrödinger equation Hψ = Eψ are called molecular orbitals 
(MOs). A molecular orbital ψ gives, through the value of |ψ|2, 
the distribution of the electron in the molecule. A molecular 
orbital is like an atomic orbital, but spreads throughout the 
molecule.

(a) The construction of linear combinations
The Schrödinger equation can be solved analytically for H2

+ 
(within the Born–Oppenheimer approximation), but the wave-
functions are very complicated functions; moreover, the solu-
tion cannot be extended to polyatomic systems. Therefore, we 
adopt a simpler procedure that, while more approximate, can 
be extended readily to other molecules.

➤➤ Why do you need to know this material?

Molecular orbital theory is the basis of almost all 
descriptions of chemical bonding, including that of 
individual molecules and of solids. It is the basis of almost 
all computational techniques for the prediction and 
analysis of the properties of molecules.

➤➤ What is the key idea?
Molecular orbitals are wavefunctions that spread over all 
the atom in a molecule and each one can accommodate 
up to two electrons.

➤➤ What do you need to know already?
You need to be familiar with the shapes of atomic 
orbitals (Topic 9B) and how an energy is calculated from 
a wavefunction (Topic 7C). The entire discussion is within 
the framework of the Born–Oppenheimer approximation 
(Topic 10A).
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408 10  Molecular structure

If an electron can be found in an atomic orbital belonging to 
atom A and also in an atomic orbital belonging to atom B, then 
the overall wavefunction is a superposition of the two atomic 
orbitals:

ψ ± = ±N A B( )   linear combination of atomic orbitals  (10B.2)

where, for H2
+, A denotes a 1s atomic orbital on atom A, 

which we denote (as in Topic 10A) χH sA1 , B likewise denotes 
χH sB1 , and N is a normalization factor. The technical term for 
the superposition in eqn 10B.2 is a linear combination of 
atomic orbitals (LCAO). An approximate molecular orbital 
formed from a linear combination of atomic orbitals is 
called an LCAO-MO. A molecular orbital that has cylindri-
cal symmetry around the internuclear axis, such as the one 
we are discussing, is called a σ orbital because it resembles 
an s orbital when viewed along the axis and, more precisely, 
because it has zero orbital angular momentum around the 
internuclear axis.

Figure 10B.1 shows the contours of constant amplitude for 
the molecular orbital ψ+ in eqn 10B.2. Plots like these are read-
ily obtained using commercially available software. The calcu-
lation is quite straightforward, because all we need do is feed in 
the mathematical forms of the two atomic orbitals and then let 
the program do the rest.

Example 10.B1 Normalizing a molecular orbital

Normalize the molecular orbital ψ+ in eqn 10B.2.

Method We need to find the factor N such that ∫ =ψ τψ* d 1, 
where the integration is over the whole of space. To proceed, 
substitute the LCAO into this integral, and make use of the 
fact that the atomic orbitals are individually normalized.

Answer Substitution of the wavefunction gives

ψ ψ τ τ ττ* ( )∫ ∫ ∫ ∫= + +











= +d N SA B AB2 2 2 2 2 1d d d

1 1��� ��� ��� ��S

NN 2

 

where S AB= ∫ dτ  and has a value that depends on the nuclear 
separation (this ‘overlap integral’ will play a significant role 
later). For the integral to be equal to 1, we require

N S=
+
1

2 1 1 2{ ( )} /

In H2
+ , S ≈ 0.59, so N = 0.56.

Self-test 10B.1 Normalize the orbital ψ− in eqn 10B.2.
Answer: N = 1/{2(1 − S)}1/2, so N = 1.10

(a) (b)

Figure 10B.1 (a) The amplitude of the bonding molecular 
orbital in a hydrogen molecule-ion in a plane containing 
the two nuclei and (b) a contour representation of the 
amplitude.

Brief illustration 10B.1 A molecular orbital

We can use the same two H1s orbitals as in Topic 10A, namely

A
a

B
a

r a r a= =− −1 1
0
3 1 2

0
3 1 2

1 0 1 0

( ) ( )/
/

/
/

π π
e eA B

 

and note that rA and rB are not independent (1), but when 
expressed in Cartesian coordinates based on atom A (2) are 
related by rA1 = {x2 + y2 + z2}1/2 and rB1 = {x2 + y2 + (z − R)2}1/2, 
where R is the bond length. The resulting surfaces of constant 
amplitude are shown in Fig. 10B.2.

R

rA1
rB1

e

2

x

y

z

z – R

A

B

0

Figure 10B.2 Surfaces of constant amplitude of the 
wavefunction ψ+ of the hydrogen molecule-ion.
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(b) Bonding orbitals
According to the Born interpretation, the probability density 
of the electron at each point in H2

+ is proportional to the square 
modulus of its wavefunction at that point. The probability den-
sity corresponding to the (real) wavefunction ψ+ in eqn 10B.2 is

ψ + = + +2 N A B AB2 2 2 2( )   bonding probability density  (10B.3)

This probability density is plotted in Fig. 10B.4. An important 
feature becomes apparent when we examine the internuclear 
region, where both atomic orbitals have similar amplitudes. 
According to eqn 10B.3, the total probability density is propor-
tional to the sum of:

•	 A2, the probability density if the electron were 
confined to the atomic orbital A.

•	 B2, the probability density if the electron were 
confined to the atomic orbital B.

•	 2AB, an extra contribution to the density from both 
atomic orbitals.

The last contribution, the overlap density, is crucial, because 
it represents an enhancement of the probability of finding the 
electron in the internuclear region. The enhancement can be 
traced to the constructive interference of the two atomic orbit-
als: each has a positive amplitude in the internuclear region, 
so the total amplitude is greater there than if the electron were 
confined to a single atomic orbital.

We shall frequently make use of the observation bonds form 
due to a build-up of electron density where atomic orbitals over-
lap and interfere constructively. The conventional explanation 
of this observation is based on the notion that accumulation 
of electron density between the nuclei puts the electron in a 
position where it interacts strongly with both nuclei. Hence, 

the energy of the molecule is lower than that of the separate 
atoms, where each electron can interact strongly with only 
one nucleus. This conventional explanation, however, has 
been called into question, because shifting an electron away 
from a nucleus into the internuclear region raises its poten-
tial energy. The modern (and still controversial) explanation 
does not emerge from the simple LCAO treatment given here. 
It seems that, at the same time as the electron shifts into the 
internuclear region, the atomic orbitals shrink. This orbital 
shrinkage improves the electron–nucleus attraction more than 
it is decreased by the migration to the internuclear region, so 
there is a net lowering of potential energy. The kinetic energy 
of the electron is also modified because the curvature of the 
wavefunction is changed, but the change in kinetic energy is 
dominated by the change in potential energy. Throughout the 
following discussion we ascribe the strength of chemical bonds 
to the accumulation of electron density in the internuclear 
region. We leave open the question whether in molecules more 
complicated than H2

+ the true source of energy lowering is that 
accumulation itself or some indirect but related effect.

The σ orbital we have described is an example of a bonding 
orbital, an orbital which, if occupied, helps to bind two atoms 
together. Specifically, we label it 1σ as it is the σ orbital of lowest 
energy. An electron that occupies a σ orbital is called a σ elec-
tron, and if that is the only electron present in the molecule (as 
in the ground state of H2

+), then we report the configuration of 
the molecule as 1σ1.

The energy E1σ of the 1σ orbital is (see Problem 10B.3):

E E j
R

j k
S1 1

0

1σ = + − +
+H s

 
 energy of bonding orbital  (10B.4)

where EH1s is the energy of a H1s orbital, j0/R is the potential 
energy of repulsion between the two nuclei (remember that j0 is 
shorthand for e2/4πε0), and

S AB R
a

R
a

R a= = + + 
















∫ −d eτ 1

0

1
3

0

2

0/

 
(10B.5a)

Figure 10B.4 The electron density calculated by forming the 
square of the wavefunction used to construct Fig. 10B.3. Note 
the accumulation of electron density in the internuclear region.

Self-test 10B.2 Repeat the analysis for ψ−.
Answer: See Fig. 10B.3.

Figure 10B.3 Surfaces of constant amplitude of the 
wavefunction ψ− of the hydrogen molecule-ion.
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j j A
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(10B.5b)
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(10B.5c)

To express j0/a0 = e2/4πε0a0 in electronvolts, divide it by e, and 
then find

j
ea
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m e
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0

0 0 0 0
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0
2 24 4 4

27 211= = × = = …
π π

π
ε ε ε ε

e e V.
 

(10B.5d)

This value should be recognized as 2hcR∞. The integrals are 
plotted in Fig. 10B.5. We can interpret them as follows:

•	 All three integrals are positive and decline towards 
zero at large internuclear separations (S and k on 
account of the exponential term, j on account of the 
factor 1/R). The integral S is discussed in more detail 
in Topic 10B.4c.

•	 The integral j is a measure of the interaction between 
a nucleus and electron density centred on the other 
nucleus.

•	 The integral k is a measure of the interaction 
between a nucleus and the excess electron density in 
the internuclear region arising from overlap.

Figure 10B.6 shows a plot of E1σ against R relative to the 
energy of the separated atoms. The energy of the 1σ orbital 
decreases as the internuclear separation decreases from large 
values because electron density accumulates in the internuclear 
region as the constructive interference between the atomic 
orbitals increases (Fig. 10B.7). However, at small separations 
there is too little space between the nuclei for significant accu-
mulation of electron density there. In addition, the nucleus–
nucleus repulsion (which is proportional to 1/R) becomes 
large. As a result, the energy of the molecule rises at short dis-
tances, and there is a minimum in the potential energy curve. 
Calculations on H2

+ give Re = 2.45a0 = 130 pm and De = 1.76 eV 
(171 kJ mol−1); the experimental values are 106 pm and 2.6 eV, 
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Brief illustration 10B.2 Molecular integrals

It turns out (see next paragraph of text) that the minimum 
value of E1σ occurs at R = 2.45a0. At this separation

S
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Therefore, from eqn 10B.5d, j = 11 eV and k = 8.2 eV.

Self-test 10B.3 Evaluate the integrals when the internuclear 
separation is twice its value at the minimum.

Answer: 0.10, 5.5 eV, 1.2 Ev
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Figure 10B.6 The calculated molecular potential energy 
curves for a hydrogen molecule-ion showing the variation of 
the energies of the bonding and antibonding orbitals as the 
bond length is changed. The alternative notation of the orbitals 
is explained later.

Region of
constructive
interference

Figure 10B.7 A representation of the constructive interference 
that occurs when two H1s orbitals overlap and form a bonding 
σ orbital.
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Figure 10B.5 The integrals (a) S, (b) j and k calculated for H2
+  as 

a function of internuclear distance.
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10B Principles of molecular orbital theory  411

so this simple LCAO-MO description of the molecule, while 
inaccurate, is not absurdly wrong.

(c) Antibonding orbitals
The linear combination ψ− in eqn 10B.2 corresponds to an 
energy higher than that of ψ+. Because it is also a σ orbital we 
label it 2σ. This orbital has an internuclear nodal plane where 
A and B cancel exactly (Figs. 10B.8 and 10B.9). The probability 
density is

ψ − = + −2 N A B AB2 2 2 2( )  

There is a reduction in probability density between the nuclei 
due to the −2AB term (Fig. 10B.10); in physical terms, there is 
destructive interference where the two atomic orbitals over-
lap. The 2σ orbital is an example of an antibonding orbital, an 
orbital that, if occupied, contributes to a reduction in the cohe-
sion between two atoms and helps to raise the energy of the 
molecule relative to the separated atoms.

The energy E2σ of the 2σ antibonding orbital is given by (see 
Problem 10B.3)

E E j
R

j k
S2 1

0

1σ = + − −
−H s  

(10B.7)

where the integrals S, j, and k are the same as before (eqn 10B.5). 
The variation of E2σ with R is shown in Fig. 10B.6, where we see 
the destabilizing effect of an antibonding electron. The effect is 
partly due to the fact that an antibonding electron is excluded 
from the internuclear region and hence is distributed largely 
outside the bonding region. In effect, whereas a bonding elec-
tron pulls two nuclei together, an antibonding electron pulls the 
nuclei apart (Fig. 10B.11). The illustration also shows another 
feature that we draw on later: |E− – EH1s| > |E+ – EH1s|, which indi-
cates that the antibonding orbital is more antibonding than the 
bonding orbital is bonding. This important conclusion stems in 
part from the presence of the nucleus–nucleus repulsion (j0/R): 
this contribution raises the energy of both molecular orbitals. 
Antibonding orbitals are often labelled with an asterisk (*), so the 
2σ orbital could also be denoted 2σ* (and read ‘2 sigma star’).

Brief illustration 10B.3 Antibonding energies

At the minimum of the bonding orbital energy we have 
seen that R = 2.45, and from Brief illustration 10B.2 we know 
that S = 0.60, j = 11 eV, and k = 8.2 eV. It follows that at that 

Region of
destructive
interference

Figure 10B.8 A representation of the destructive interference 
that occurs when two H1s orbitals overlap and form an 
antibonding 2σ orbital.

(a) (b)

Figure 10B.9 (a) The amplitude of the antibonding molecular 
orbital in a hydrogen molecule-ion in a plane containing the 
two nuclei and (b) a contour representation of the amplitude. 
Note the internuclear node.

Figure 10B.10 The electron density calculated by forming the 
square of the wavefunction used to construct Fig.10B.9. Note 
the reduction of electron density in the internuclear region.

(a)

(b)

Figure 10B.11 A partial explanation of the origin of bonding 
and antibonding effects. (a) In a bonding orbital, the nuclei 
are attracted to the accumulation of electron density in the 
internuclear region. (b) In an antibonding orbital, the nuclei are 
attracted to an accumulation of electron density outside the 
internuclear region.

antibonding 
probability density  (10B.6)
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412 10  Molecular structure

10B.2 Orbital notation

For homonuclear diatomic molecules (molecules consisting 
of two atoms of the same element, such as N2), it proves help-
ful to label a molecular orbital according to its inversion sym-
metry, the behaviour of the wavefunction when it is inverted 
through the centre (more formally, the centre of inversion) of 
the molecule. Thus, if we consider any point on the bonding σ 
orbital, and then project it through the centre of the molecule 
and out an equal distance on the other side, then we arrive at an 
identical value of the wavefunction (Fig. 10B.12). This  so-called 
 gerade symmetry (from the German word for ‘even’) is 
denoted by a subscript g, as in σg. The same procedure applied 
to the antibonding 2σ orbital results in the same amplitude but 

opposite sign of the wavefunction. This ungerade symmetry 
(‘odd symmetry’) is denoted by a subscript u, as in σu.

When using the g,u notation, each set of orbitals of the 
same inversion symmetry is labelled separately so, whereas 
1σ becomes 1σg, its antibonding partner, which so far we have 
called 2σ, is the first orbital of a different symmetry, and is 
denoted 1σu. The general rule is that each set of orbitals of the 
same symmetry designation is labelled separately. This point is 
developed in Topic 10C. The inversion symmetry classification 
is not applicable to heteronuclear diatomic molecules (dia-
tomic molecules formed by atoms from two different elements, 
such as CO) because these molecules do not have a centre of 
inversion.

Checklist of concepts

☐ 1. A molecular orbital is constructed as a linear combina-
tion of atomic orbitals.

☐ 2. A bonding orbital arises from the constructive overlap 
of neighbouring atomic orbitals.

☐ 3. An antibonding orbital arises from the destructive 
overlap of neighbouring atomic orbitals.

☐ 4. σ Orbitals have cylindrical symmetry and zero orbital 
angular momentum around the internuclear axis.

☐ 5. A molecular orbital in a homonuclear diatomic mol-
ecule is labelled ‘gerade’ (g) or ‘ungerade’ (u) according 
to its behaviour under inversion symmetry.

Checklist of equations

separation, the energy of the antibonding orbital relative to 
that of a hydrogen atom 1 s orbital is

( ) .
.

.
. .E E2 1

27 2
2 45

11 8 2
1 0 60 4 1σ − = − −

− =H s /eV
 

That is, the antibonding orbital lies (4.1 + 1.76) eV = 5.9 eV 
above the bonding orbital at this internuclear separation.

Self-test 10B.4 What is the separation at twice that internu-
clear distance?

Answer: 1.4 Ev

Property Equation Comment Equation number

Linear combination of atomic orbitals ψ± = N(A ± B) Homonuclear diatomic molecule 10B.2

Energies of σ orbitals E1σ = EH1s + j0/R − (j + k)/(1 + S) S AB

j j A r

k j AB r

= ∫
= ∫
= ∫

d ,

d

d
B

B

τ

τ

τ
0

2

0

( / )

( / )

10B.4
10B.5

E2σ = EH1s + j0/R − (j − k)/(1 − S) 10B.7

+

+

+

–

σg σu

Centre of
inversion

Figure 10B.12 The parity of an orbital is even (g) if its 
wavefunction is unchanged under inversion through the centre 
of symmetry of the molecule, but odd (u) if the wavefunction 
changes sign. Heteronuclear diatomic molecules do not have 
a centre of inversion, so for them the g, u classification is 
irrelevant.
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10C homonuclear diatomic molecules

In Topic 9C the hydrogenic atomic orbitals and the building-up 
principle are used as a basis for the discussion and prediction of 
the ground electronic configurations of many-electron atoms. 
We now do the same for many-electron diatomic molecules by 
using the H2

+ molecular orbitals developed in Topic 10B as a 
basis for their discussion.

10C.1 Electron configurations

The starting point of the building-up principle for diatomic 
molecules is the construction of molecular orbitals by combin-
ing the available atomic orbitals. Once they are available, we 
adopt the following procedure, which is essentially the same as 
the building-up principle for atoms (Topic 9B):

•	 The electrons supplied by the atoms are 
accommodated in the orbitals so as to achieve the 
lowest overall energy subject to the constraint of the 
Pauli exclusion principle, that no more than two 
electrons may occupy a single orbital (and then must 
be paired).

•	 If several degenerate molecular orbitals are available, 
electrons are added singly to each individual orbital 
before doubly occupying any one orbital (because 
that minimizes electron–electron repulsions).

•	 According to Hund‘s maximum multiplicity rule 
(Topic 9B), if two electrons do occupy different 
degenerate orbitals, then a lower energy is obtained 
if they do so with parallel spins.

(a) σ Orbitals and π orbitals

Consider H2, the simplest many-electron diatomic molecule. 
Each H atom contributes a 1s orbital (as in H2

+), so we can 
form the 1σg and 1σu orbitals from them, as explained in Topic 
10B. At the experimental internuclear separation these orbit-
als will have the energies shown in Fig. 10C.1, which is called 
a molecu lar orbital energy level diagram. Note that from two 
atomic orbitals we can build two molecular orbitals. In general, 
from N atomic orbitals we can build N molecular orbitals.

There are two electrons to accommodate, and both can enter 
1σg by pairing their spins, as required by the Pauli principle 
(just as for atoms, Topic 9B). The ground-state configuration 
is therefore 1 g

2σ  and the atoms are joined by a bond consisting 
of an electron pair in a bonding σ orbital. This approach shows 
that an electron pair, which was the focus of Lewis’s account 
of chemical bonding, represents the maximum number of elec-
trons that can enter a bonding molecular orbital.

The same argument explains why He does not form diatomic 
molecules. Each He atom contributes a 1s orbital, so 1σg and 
1σu molecular orbitals can be constructed. Although these 
orbitals differ in detail from those in H2, their general shapes 

Contents

10c.1 Electron configurations 413
(a) σ Orbitals and π orbitals 413

brief illustration 10c.1: ground-state 
configurations 415

(b) The overlap integral 415
brief illustration 10c.2: overlap integrals 415

(c) Period 2 diatomic molecules 416
brief illustration 10c.3: bond order 417
example 10c.1: Judging the relative bond 
strengths of molecules and ions 417

10c.2 Photoelectron spectroscopy 418
brief illustration 10c.4: a photoelectron spectrum 419

Checklist of concepts 419
Checklist of equations 419

➤➤ Why do you need to know this material?
Although the hydrogen molecule-ion establishes the basic 
approach to the construction of molecular orbitals, almost 
all chemically significant molecules have more than one 
electron, and we need to see how to construct their 
electron configurations. Homonuclear diatomic molecules 
are a good starting point, not only because they are simple 
to describe but because they include such important 
species as H2, N2, O2, and the dihalogens.

➤➤ What is the key idea?
Each molecular orbital can accommodate up to two 
electrons.

➤➤ What do you need to know already?
You need to be familiar with the discussion of the bonding 
and antibonding linear combinations of atomic orbitals 
in Topic 10B and the building-up principle for atoms 
(Topic 9B).
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414 10  Molecular structure

are the same and we can use the same qualitative energy level 
diagram in the discussion. There are four electrons to accom-
modate. Two can enter the 1σg orbital, but then it is full, and the 
next two must enter the 1σu orbital (Fig. 10C.2). The ground 
electronic configuration of He2 is therefore 1 1g

2
u
2σ σ . We see that 

there is one bond and one antibond. Because 1σu is raised in 
energy relative to the separate atoms more than 1σg is lowered, 
an He2 molecule has a higher energy than the separated atoms, 
so it is unstable relative to them.

We shall now see how the concepts we have introduced apply 
to homonuclear diatomic molecules in general. In elementary 
treatments, only the orbitals of the valence shell are used to 
form molecular orbitals so, for molecules formed with atoms 
from Period 2 elements, only the 2s and 2p atomic orbitals are 
considered. We shall make that approximation here too.

A general principle of molecular orbital theory is that all 
orbitals of the appropriate symmetry contribute to a molecular 
orbital. Thus, to build σ orbitals, we form linear combinations 
of all atomic orbitals that have cylindrical symmetry about 
the internuclear axis. These orbitals include the 2s orbit-
als on each atom and the 2pz orbitals on the two atoms (Fig. 
10C.3). The general form of the σ orbitals that may be formed 
is therefore

ψ χ χ χ χ= c c c c
z z z zA2s A2s B2s B2s A2p A2p B2p B2p+ + +  (10C.1)

From these four atomic orbitals we can form four molecular orbit-
als of σ symmetry by an appropriate choice of the coefficients c.

The procedure for calculating the coefficients is described in 
Topic 10D and more fully in Topic 10E. Here we adopt a simpler 
route, and suppose that, because the 2s and 2pz orbitals have 
distinctly different energies, they may be treated separately. 
That is, the four σ orbitals fall approximately into two sets, one 
consisting of two molecular orbitals of the form

ψ χ χ= +c cA2s A2s B2s B2s  (10C.2a)

and another consisting of two orbitals of the form

ψ χ χ= +c cA2p A2p B2p B2pz z z z  (10C.2b)

Because atoms A and B are identical, the energies of their 2s 
orbitals are the same, so the coefficients are equal (apart from a 
possible difference in sign); the same is true of the 2pz orbitals. 
Therefore, the two sets of orbitals have the form χA2s  ±  χB2s and 
χ χA p B p2 2z z

± .
The 2s orbitals on the two atoms overlap to give a bond-

ing and an antibonding σ orbital (1σg and 1σu, respectively) 
in exactly the same way as we have already seen for 1s orbit-
als. The two 2pz orbitals directed along the internuclear axis 
overlap strongly. They may interfere either constructively or 
destructively, and give a bonding or antibonding σ orbital (Fig. 
10C.4). These two σ orbitals are labelled 2σg and 2σu, respec-
tively. In general, note how the numbering follows the order 
of increasing energy. We number only the molecular orbitals 
formed from atomic orbitals in the valence shell and ignore any 
combinations of core atomic orbitals.

He1s He1s

1σg

1σu

Figure 10C.2 The ground electronic configuration of the 
hypothetical four-electron molecule He2 has two bonding 
electrons and two antibonding electrons. It has a higher 
energy than the separated atoms, and so is unstable.

2s 2s
2pz 2pz

A B

Figure 10C.3 According to molecular orbital theory, σ orbitals 
are built from all orbitals that have the appropriate symmetry. 
In homonuclear diatomic molecules of Period 2, that means 
that two 2s and two 2pz orbitals should be used. From these 
four orbitals, four molecular orbitals can be built.

2σu

2σg

+ +–

+ +– –

–

Figure 10C.4 A representation of the composition of bonding 
and antibonding σ orbitals built from the overlap of p orbitals. 
These illustrations are schematic.

H1s H1s

1σg

1σu

Figure 10C.1 A molecular orbital energy level diagram for 
orbitals constructed from the overlap of H1s orbitals; the 
separation of the levels corresponds to that found at the 
equilibrium bond length. The ground electronic configuration 
of H2 is obtained by accommodating the two electrons in the 
lowest available orbital (the bonding orbital).
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10C Homonuclear diatomic molecules  415

Now consider the 2px and 2py orbitals of each atom. These 
orbitals are perpendicular to the internuclear axis and may 
overlap broadside-on. This overlap may be constructive or 
destructive and results in a bonding or an antibonding π orbital 
(Fig. 10C.5). The notation π is the analogue of p in atoms, for 
when viewed along the axis of the molecule, a π orbital looks 
like a p orbital and has one unit of orbital angular momentum 
around the internuclear axis. The two neighbouring 2px orbit-
als overlap to give a bonding and antibonding πx orbital, and 
the two 2py orbitals overlap to give two πy orbitals. The πx and 
πy bonding orbitals are degenerate; so too are their antibonding 
partners. We also see from Fig. 10C.5 that a bonding π orbital 
has odd parity (Topic 10B) and is denoted πu and an antibond-
ing π orbital has even parity, denoted πg.

(b) The overlap integral
The extent to which two atomic orbitals on different atoms 
overlap is measured by the overlap integral, S:

S =∫ χ χ τA
*

B d
 

Definition  overlap integral  (10C.3)

This integral also occurs in Topic 10B (in Example 10B.1 and 
eqn 10B.5a). If the atomic orbital χA on A is small wherever 
the orbital χB on B is large, or vice versa, then the product of 
their amplitudes is everywhere small and the integral—the 
sum of these products—is small (Fig. 10C.6). If χA and χB are 

both large in some region of space, then S may be large. If the 
two normalized atomic orbitals are identical (for instance, 1s 
orbitals on the same nucleus), then S = 1. In some cases, simple 
formulas can be given for overlap integrals. For instance, the 
variation of S with internuclear separation for hydrogenic 1s 
orbitals on atoms of atomic number Z is given by

S
ZR
a

ZR
a

ZR a( , ) /1 1 1
1
30 0

2

0s s = + + 
















−e

 

and is plotted in Fig. 10C.7 (eqn 10C.4 is a generalization of 
eqn 10B.5a, which is for H1s orbitals).

Brief illustration 10C.1 Ground-state configurations

The valence configuration of a sodium atom is [Ne]3s1, so 3s 
and 3p orbitals are used to construct molecular orbitals. At 
this level of approximation, we consider (3s,3s)- and (3p,3p)-
overlap separately. In fact, because there are only two electrons 
to accommodate (one from each 3s orbital), we need consider 
only the former. That overlap results in 1σg and 1σu molecular 
orbitals. The only two valence electrons occupy the former, so 
the ground-state configuration of Na2 is 1 gσ2 .

Self-test 10C.1 Identify the ground-state configuration of Be2.
Answer: 1 1g uσ σ2 2  built from Be2s orbitals

Brief illustration 10C.2 Overlap integrals

Familiarity with the magnitudes of overlap integrals is useful 
when considering bonding abilities of atoms, and hydrogenic 
orbitals give an indication of their values. The overlap integral 
between two hydrogenic 2s orbitals is

S
ZR
a

ZR
a

ZR
a

( , )2 2 1
2

1
12

1
2400 0

2

0

4

s s e= + + 





+ 
















−−ZR a/2 0

(1s,1s)-overlap 
integral  (10C.4)

πuπg

++ +

+ –– –

–

Centre of inversion

Figure 10C.5 A schematic representation of the structure of π 
bonding and antibonding molecular orbitals. The figure also 
shows that the bonding π orbital has odd parity, whereas the 
antibonding π orbital has even parity.

–++ –++

(a) (b)

Figure 10C.6 (a) When two orbitals are on atoms that are far 
apart, the wavefunctions are small where they overlap, so S is 
small. (b) When the atoms are closer, both orbitals have significant 
amplitudes where they overlap, and S may approach 1. Note that 
S will decrease again as the two atoms approach more closely 
than shown here because the region of negative amplitude of the 
p orbital starts to overlap the positive amplitude of the s orbital. 
When the centres of the atoms coincide, S = 0.
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Internuclear separation, R/a0

Figure 10C.7 The overlap integral, S, between two H1s orbitals 
as a function of their separation R.
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416 10  Molecular structure

Now consider the arrangement in which an s orbital is super-
imposed on a px orbital of a different atom (Fig. 10C.9). The 
integral over the region where the product of orbitals is positive 
exactly cancels the integral over the region where the product 
of orbitals is negative, so overall S = 0 exactly. Therefore, there is 
no net overlap between the s and p orbitals in this arrangement.

(c) Period 2 diatomic molecules
To construct the molecular orbital energy level diagram for 
Period 2 homonuclear diatomic molecules, we form eight 
molecular orbitals from the eight valence shell orbitals (four 
from each atom). In some cases, π orbitals are less strongly 

bonding than σ orbitals because their maximum overlap occurs 
off-axis. This relative weakness suggests that the molecul ar 
orbital energy level diagram ought to be as shown in Fig. 
10C.10. However, we must remember that we have assumed 
that 2s and 2pz orbitals contribute to different sets of molecular 
orbitals whereas in fact all four atomic orbitals have the same 
symmetry around the internuclear axis and contribute jointly to 
the four σ orbitals. Hence, there is no guarantee that this order 
of energies should prevail, and it is found experimentally (by 
spectroscopy) and by detailed calculation that the order varies 
along Period 2 (Fig. 10C.11). The order shown in Fig. 10C.12 
is appropriate as far as N2, and Fig. 10C.10 is appropriate for 
O2 and F2. The relative order is controlled by the separation of 
the 2s and 2p orbitals in the atoms, which increases across the 
group. The consequent switch in order occurs at about N2.

With the molecular orbital energy level diagram established, 
we can deduce the probable ground configurations of the mol-
ecules by adding the appropriate number of electrons to the 
orbitals and following the building-up rules. Anionic species 
(such as the peroxide ion, O2

2− ) need more electrons than the 

–

+
+

Constructive

Destructive

Figure 10C.9 A p orbital in the orientation shown here has 
zero net overlap (S = 0) with the s orbital at all internuclear 
separations.

This expression is plotted in Fig. 10C.8. For an internuclear 
distance of 8a0/Z, S(2s,2s) = 0.50.

Self-test 10C.2 The side-by-side overlap of two 2p orbitals of 
atoms of atomic number Z is
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Evaluate this overlap integral for R = 8a0/Z.
Answer: See Fig. 10C.8, 0.29

0.2

0.4
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0.8

1

0
0 5 10 15 20

S

ZR/a0

(2s,2s)

(2p,2p)

Figure 10C.8 The overlap integral, S, between two 
hydrogenic 2s orbitals and between two side-by-side 2p 
orbitals as a function of their separation R.

Atom AtomMolecule

2s

2p

2s

2p

2σu

2σg

1σu

1σg

1πu

1πg

Figure 10C.10 The molecular orbital energy level diagram 
for homonuclear diatomic molecules. The lines in the middle 
are an indication of the energies of the molecular orbitals that 
can be formed by overlap of atomic orbitals. As remarked in 
the text, this diagram should be used for O2 (the configuration 
shown) and F2.

2σu

2σg

1σu

1σg

1πu

1πg 2σu
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1σu

1σg

1πu

1πg
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Figure 10C.11 The variation of the orbital energies of Period 2 
homonuclear diatomics
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parent neutral molecules; cationic species (such as O2
+ ) need 

fewer.
Consider N2, which has 10 valence electrons. Two electrons 

pair, occupy, and fill the 1σg orbital; the next two occupy and fill 
the 1σu orbital. Six electrons remain. There are two 1πu orbitals, 
so four electrons can be accommodated in them. The last two 
enter the 2σg orbital. Therefore, the ground-state configuration 
of N2 is 1 1 1 2g

2
u u gσ σ π σ2 4 2 . It is sometimes helpful to include an 

asterisk to denote an antibonding orbital, in which case this 
configuration would be denoted 1 1 1 2g

2
u u gσ σ π σ*2 4 2 .

A measure of the net bonding in a diatomic molecule is its 
bond order, b:

b N N= 1
2

( )− *

 
Definition  bond order  (10C.5)

where N is the number of electrons in bonding orbitals and N* 
is the number of electrons in antibonding orbitals.

The ground-state electron configuration of O2, with 
12 valence electrons, is based on Fig. 10C.10, and is 
1 1 2 1 1g u g u gσ σ σ π π2 2 2 4 2  (or 1 1 2 1 1g u

2
g u g

2σ σ σ π π2 2 4* * ). Its bond order is 
2. According to the building-up principle, however, the two 
1πg electrons occupy different orbitals: one will enter 1πg,x and 

the other will enter 1πg,y. Because the electrons are in different 
orbitals, they will have parallel spins. Therefore, we can predict 
that an O2 molecule will have a net spin angular momentum 
S = 1 and, in the language introduced in Topic 9C, be in a trip-
let state. As electron spin is the source of a magnetic moment, 
we can go on to predict that oxygen should be paramagnetic, a 
substance that tends to move into a magnetic field (see Topic 
18C). This prediction, which VB theory does not make, is con-
firmed by experiment.

An F2 molecule has two more electrons than an O2 mol-
ecule. Its configuration is therefore 1 1 2 1 1g u

2
g
2

u
4

g
4σ σ σ π π2 * *  and 

b = 1. We conclude that F2 is a singly-bonded molecule, in 
agreement with its Lewis structure. The hypothetical molecule 
dineon, Ne2, has two additional electrons: its configuration is 
1 1 2 1 1 2g u

2
g u g

4
uσ σ σ π π σ2 2 4 2* * *  and b = 0. The zero bond order is con-

sistent with the monatomic nature of Ne.
The bond order is a useful parameter for discussing the 

characteristics of bonds, because it correlates with bond length 
and bond strength. For bonds between atoms of a given pair of 
elements:

•	 The greater the bond order, the shorter the bond.
•	 The greater the bond order, the greater the bond 

strength.

Table 10C.1 lists some typical bond lengths in diatomic and 
poly atomic molecules. The strength of a bond is measured by its 
bond dissociation energy, D0, the energy required to separate the 
atoms to infinity or by the well depth De, with D D0

1
2= e − ω . 

Table 10C.2 lists some experimental values of D0.

Brief illustration 10C.3 Bond order

Each electron pair in a bonding orbital increases the bond 
order by 1 and each pair in an antibonding orbital decreases 
b by 1. For H2, b = 1, corresponding to a single bond, H–H, 
between the two atoms. In He2, b = 0, and there is no bond. 
In N2, b = − =1

2 8 2 3( ) . This bond order accords with the Lewis 
structure of the molecule (:N ≡ N:).

Self-test 10C.3 Evaluate the bond orders of O2, O2
+, and O2

− .
Answer: 2, 5

2
, 1
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Example 10C.1 Judging the relative bond strengths of 
molecules and ions

Predict whether N2
+  is likely to have a larger or smaller disso-

ciation energy than N2.

Method Because the molecule with the higher bond order is 
likely to have the higher dissociation energy, compare their 
electronic configurations and assess their bond orders.

Answer From Fig. 10C.12, the electron configurations and 
bond orders are

N 1 1 1 2

N 1 1 1 2

2 g
2

u u g

g
2

u u g

σ σ π σ

σ σ π σ

*

*

2 4 2

2
2 4 1 1

2

3

2

b

b

=

=+

Because the cation has the smaller bond order, we expect it to 
have the smaller dissociation energy. The experimental disso-
ciation energies are 945 kJ mol−1 for N2 and 842 kJ mol−1 for N2

+ .

Self-test 10C.4 Which can be expected to have the higher dis-
sociation energy, F2 or F2

+?
Answer: F2

+

Atom AtomMolecule

2s

2p

2s

2p

2σu

2σg

1σu

1σg

1πu

1πg

Figure 10C.12 An alternative molecular orbital energy level 
diagram for homonuclear diatomic molecules. As remarked in 
the text, this diagram should be used for diatomics up to and 
including N2 (the configuration shown).
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418 10  Molecular structure

10C.2 Photoelectron spectroscopy

So far we have treated molecular orbitals as purely theoretical 
constructs, but is there experimental evidence for their exist-
ence? Photoelectron spectroscopy (PES) measures the ionization 
energies of molecules when electrons are ejected from different 
orbitals by absorption of a photon of known energy, and uses the 
information to infer the energies of molecular orbitals. The tech-
nique is also used to study solids, and in Topic 22A we see the 
important information that it gives about species at or on surfaces.

Because energy is conserved when a photon ionizes a sam-
ple, the sum of the ionization energy, I, of the sample and the 
kinetic energy of the photoelectron, the ejected electron, must 
be equal to the energy of the incident photon hν (Fig. 10C.13):

h m I� = +1
2 e

2v
 

(10C.6)

This equation (which is like the one used for the photoelectric 
effect, eqn 7A.13 of Topic 7A, E m hk e

2= = −1
2 v � Φ , written as 

h m� = +1
2 e

2v Φ ) can be refined in two ways. First, photoelec-
trons may originate from one of a number of different orbit-
als, and each one has a different ionization energy. Hence, 
a series of different kinetic energies of the photoelectrons 
will be obtained, each one satisfying h m Ii� = +1

2 e
2v , where 

Ii is the ionization energy for ejection of an electron from an 
orbital i. Therefore, by measuring the kinetic energies of the 

photoelectrons, and knowing the frequency ν, these ionization 
energies can be determined. Photoelectron spectra are inter-
preted in terms of an approximation called Koopmans’ theo-
rem, which states that the ionization energy Ii is equal to the 
orbital energy of the ejected electron (formally: Ii = –εi). That 
is, we can identify the ionization energy with the energy of the 
orbital from which it is ejected. The theorem is only an approxi-
mation because it ignores the fact that the remaining electrons 
adjust their distributions when ionization occurs.

The ionization energies of molecules are several electronvolts 
even for valence electrons, so it is essential to work in at least 
the ultraviolet region of the spectrum and with wavelengths 
of  less than about 200 nm. Much work has been done with 
radiation generated by a discharge through helium: the He(I) 
line (1s12p1 → 1s2) lies at 58.43 nm, corresponding to a photon 
energy of 21.22 eV. Its use gives rise to the technique of ultravi-
olet photoelectron spectroscopy (UPS). When core electrons 
are being studied, photons of even higher energy are needed to 
expel them: X-rays are used, and the technique is denoted XPS.

The kinetic energies of the photoelectrons are measured using 
an electrostatic deflector that produces different deflections in 
the paths of the photoelectrons as they pass between charged 

Orbital i

hν
Ii

hν – Ii

X

X+ + e–(stationary)

X+ + e–(moving, Ek)

Figure 10C.13 An incoming photon carries an energy hν; an 
energy Ii is needed to remove an electron from an orbital i, and 
the difference appears as the kinetic energy of the electron.

Sample

Lamp

Detector
Electrostatic 
analyser

+

–

Figure 10C.14 A photoelectron spectrometer consists of a 
source of ionizing radiation (such as a helium discharge lamp 
for UPS and an X-ray source for XPS), an electrostatic analyser, 
and an electron detector. The deflection of the electron path 
caused by the analyser depends on the speed of the electrons.

Table 10C.1* Bond lengths, Re/pm

Bond Order Re/pm

HH 1 74.14

NN 3 109.76

HCl 1 127.45

CH 1 114

CC 1 154

CC 2 134

CC 3 120

* More values will be found in the Resource section. Numbers in italics are mean 
values for polyatomic molecules.

Table 10C.2* Bond dissociation energies, D0/(kJ mol−1)

Bond Order D0/(kJ mol−1)

HH 1 432.1

NN 3 941.7

HCl 1 427.7

CH 1 435

CC 1 368

CC 2 720

CC 3 962

* More values will be found in the Resource section. Numbers in italics are mean 
values for polyatomic molecules.
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plates (Fig. 10C.14). As the field strength is increased, electrons 
of different speeds, and therefore kinetic energies, reach the 
detector. The electron flux can be recorded and plotted against 
kinetic energy to obtain the photoelectron spectrum.

It is often observed that photoejection results in cations that 
are excited vibrationally. Because different energies are needed 
to excite different vibrational states of the ion, the photoelec-
trons appear with different kinetic energies. The result is vibra-
tional fine structure, a progression of lines with a frequency 
spacing that corresponds to the vibrational frequency of the 
molecule. Figure 10C.16 shows an example of vibrational fine 
structure in the photoelectron spectrum of HBr.

Self-test 10C.5 Under the same circumstances, photoelectrons 
are also detected at 4.53 eV. To what ionization energy does 
that correspond? Suggest an origin.

Answer: 16.7 eV, 1πu

Checklist of concepts

☐ 1. Electrons are added to available molecular orbitals in a 
manner that achieves the lowest total energy.

☐ 2. As a first approximation, σ orbitals are constructed 
separately from valence s and p orbitals.

☐ 3. An overlap integral is a measure of the extent of orbital 
overlap.

☐ 4. The greater the bond order of a molecule, the shorter 
and stronger is the bond.

☐ 5. Photoelectron spectroscopy is a technique for deter-
mining the energies of electrons in molecular orbitals.

Checklist of equations

Brief illustration 10C.4 A photoelectron spectrum

Photoelectrons ejected from N2 with He(I) radiation have 
kinetic energies of 5.63 eV (1 eV = 8065.5 cm−1, Fig. 10C.15). 
Helium(I) radiation of wavelength 58.43 nm has wave-
number 1.711 × 105 cm−1 and therefore corresponds to an 
energy of 21.22 eV. Then, from eqn 10C.6 with Ii in place of I, 
21.22 eV = 5.63 eV + Ii, so Ii = 15.59 eV. This ionization energy is 
the energy needed to remove an electron from the occupied 
molecular orbital with the highest energy of the N2 molecule, 
the 2σg bonding orbital.

16 17 18 20
Ionization energy, I/eV

19

S
ig

n
al

Figure 10C.15 The photoelectron spectrum of N2. Ionization energy, I/eV

S
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n
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10.5 11.0

10 15

2Π3/2
2Π1/2

Figure 10C.16 The photoelectron spectrum of HBr.

Property Equation Comment Equation number

Overlap integral S =∫ χ χ τA B d* Integration over all space 10C.3

Bond order b N N= −1
2

( )* N and N* are the numbers of electrons in bonding and 
antibonding orbitals, respectively

10C.5

Photoelectron spectroscopy h m I = +1
2 e

2v Interpret I as Ii, the ionization energy from orbital i. 10C.6
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10D heteronuclear diatomic molecules

The electron distribution in a covalent bond in a heteronu-
clear diatomic molecule is not shared equally by the atoms 
because it is energetically favourable for the electron pair to 
be found closer to one atom than to the other. This imbalance 

results in a polar bond, a covalent bond in which the electron 
pair is shared unequally by the two atoms. The bond in HF, for 
instance, is polar, with the electron pair closer to the F atom. 
The accumulation of the electron pair near the F atom results in 
that atom having a net negative charge, which is called a partial 
negative charge and denoted δ−. There is a matching partial 
positive charge, δ + , on the H atom (Fig. 10D.1).

10D.1 Polar bonds

The description of polar bonds in terms of molecular orbital 
theory is a straightforward extension of that for homonuclear 
diatomic molecules (Topic 10C), the principal difference being 
that the atomic orbitals on the two atoms have different ener-
gies and spatial extensions.

(a) The molecular orbital formulation
A polar bond consists of two electrons in a bonding molecular 
orbital of the form

ψ = +c A c BA B   wavefunction of a polar bond  (10D.1)

with unequal coefficients. The proportion of the atomic orbital 
A in the bond is |cA|2 and that of B is |cB|2. A nonpolar bond 
has |cA|2 = |cB|2 and a pure ionic bond has one coefficient zero 
(so the species A+B− would have cA = 0 and cB = 1). The atomic 
orbital with the lower energy makes the larger contribution 

Contents

10d.1 Polar bonds 420
(a) The molecular orbital formulation 420

brief illustration 10d.1: heteronuclear diatomic 
molecules 1 421

(b) Electronegativity 421
brief illustration 10d.2: electronegativity 422

10d.2 The variation principle 422
(a) The procedure 423

brief illustration 10d.3: heteronuclear diatomic 
molecules 2 424

(b) The features of the solutions 424
brief illustration 10d.4: heteronuclear diatomic 
molecules 3 425

Checklist of concepts 425
Checklist of equations 426

➤➤ Why do you need to know this material?
Most molecules are heteronuclear, so you need to 
appreciate the differences in their electronic structure from 
homonuclear species, and how to treat those differences 
quantitatively.

➤➤ What is the key idea?
The bonding molecular orbital of a heteronuclear diatomic 
molecule is composed mostly of the atomic orbital of the 
more electronegative atom; the opposite is true of the 
antibonding orbital.

➤➤ What do you need to know already?
You need to know about the molecular orbitals of 
homonuclear diatomic molecules (Topic 10C) and the 
concepts of normalization and orthogonality (Topic 
7C). This Topic makes use of determinants (The chemist’s 
toolkit 9B.1) and the rules of differentiation (Mathematical 
background 1).

H Fδ+ δ−

Figure 10D.1 The electron density of the molecule HF, 
computed with one of the methods described in Topic 
10E. Different colours show the distribution of electrostatic 
potential and hence net charge, with blue representing the 
region with largest partial positive charge, and red the region 
with largest partial negative charge.
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to the bonding molecular orbital. The opposite is true of the 
antibonding orbital, for which the dominant component comes 
from the atomic orbital with higher energy.

Deciding what values to use for the energies of the atomic 
orbitals in eqn 10D.1 presents a dilemma because they are 
known only after a complicated calculation of the kind 
described in Topic 10E has been performed. An alternative, 
one that gives some insight into the origin of the energies, is 
to estimate them from ionization energies and electron affini-
ties. Thus, the extreme cases of an atom X in a molecule are X+ 
if it has lost control of the electron it supplied, X if it is sharing 
the electron pair equally with its bonded partner, and X− if it 
has gained control of both electrons in the bond. If X+ is taken 
as defining the energy 0, then X lies at –I(X) and X− lies at 
−{I(X) + Eea(X)}, where I is the ionization energy and Eea the 
electron affinity (Fig. 10D.2). The actual energy of the orbital 
lies at an intermediate value, and in the absence of further 
information, we shall estimate it as half-way down to the 
lowest of these values, namely − +1

2 { ( ) ( )}I EX Xea . Then, to 
establish the MO composition and energies, we form lin-
ear combinations of atomic orbitals with these values of the 
energy and anticipate that the atom with the more negative 
value of − +1

2 { ( ) ( )}I EX Xea  contributes the greater amount 
to the bonding orbital. As we shall see shortly, the quantity 
1
2 { ( ) ( )}I EX Xea+  also has a further significance.

(b) Electronegativity
The charge distribution in bonds is commonly discussed in 
terms of the electronegativity, χ (chi), of the elements involved 
(there should be little danger of confusing this use of χ with 
its use to denote an atomic orbital, which is another common 
convention). The electronegativity is a parameter introduced 
by Linus Pauling as a measure of the power of an atom to attract 
electrons to itself when it is part of a compound. Pauling used 
valence-bond arguments to suggest that an appropriate numer-
ical scale of electronegativities could be defined in terms of 
bond dissociation energies, D0, and proposed that the differ-
ence in electronegativities could be expressed as

| | =χ χA B
1 2AB AA BB− − +{ ( ) [ ( ) ( )]} /D D D0

1
2 0 0   

Definition  Pauling electronegativity  (10D.2)

where D0(AA) and D0(BB) are the dissociation energies of 
AeA and BeB bonds and D0(AB) is the dissociation energy of 
an AeB bond, all in electronvolts. (In later work Pauling used 
the geometrical mean of dissociation energies in place of the 
arithmetic mean.) This expression gives differences of electro-
negativities; to establish an absolute scale Pauling chose indi-
vidual values that gave the best match to the values obtained 
from eqn 10D.2. Electronegativities based on this definition 
are called Pauling electronegativities (Table 10D.1). The most 
electronegative elements are those close to F (excluding the 
noble gases); the least are those close to Cs. It is found that 
the greater the difference in electronegativities, the greater the 
polar character of the bond. The difference for HF, for instance, 
is 1.78; a CeH bond, which is commonly regarded as almost 
nonpolar, has an electronegativity difference of 0.51.

Self-test 10D.1 Which atomic orbital, H1s or N2pz, makes the 
dominant contribution to the bonding σ orbital in the HN 
molecular radical? For data, see Tables 9B.2 and 9B.3.

Answer: N2pzE
n

er
g

y

X+ + e–0

X

X––I(X) – Eea(X)

–½{I(X) + Eea(X)}

Eea(X)
–I(X)

I(X)

Figure 10D.2 The procedure for estimating the energy of an 
atomic orbital in a molecule.

Brief illustration 10D.1  Heteronuclear diatomic 
molecules 1

These points can be illustrated by considering HF. The general 
form of the molecular orbital is ψ = cH χH + cFχF, where χH is an 
H1s orbital and χF is an F2pz orbital (with z along the internu-
clear axis, the convention for linear molecules). The relevant 
data are as follows:

We see that the electron distribution in HF is likely to be pre-
dominantly on the F atom. We take the calculation further 
below (in Brief illustrations 10D.3 and 10D.4).

I/eV Eea/eV 1
2 ea{ }/ VI E+ e

H 13.6 0.75  7.2

F 17.4 3.34 10.4

Table 10D.1* Pauling electronegativities

Element χP

H 2.2

C 2.6

N 3.0

O 3.4

F 4.0

Cl 3.2

Cs 0.79

* More values will be found in the Resource section.
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The spectroscopist Robert Mulliken proposed an alterna-
tive definition of electronegativity. He argued that an element 
is likely to be highly electronegative if it has a high ionization 
energy (so it will not release electrons readily) and a high elec-
tron affinity (so it is energetically favourable to acquire elec-
trons). The Mulliken electronegativity scale is therefore based 
on the definition

χ = +1
2 ( )I Eea  Definition  mulliken electronegativity  (10D.3)

where I is the ionization energy of the element and Eea is its 
electron affinity (both in electronvolts). It will be recognized 
that this combination of energies is precisely the one we have 
used to estimate the energy of an atomic orbital in a molecule, 
and can therefore see that the greater the value of the Mulliken 
electronegativity the greater is the contribution of that atom to 
the electron distribution in the bond. There is one word of cau-
tion: the values of I and Eea in eqn 10D.3 are strictly those for a 
special ‘valence state’ of the atom, not a true spectroscopic state. 
We ignore that complication here. The Mulliken and Pauling 
scales are approximately in line with each other. A reasonably 
reliable conversion relation between the two is

χ χPauling Mulliken= −1 35 1 371 2. ./

 (10D.4)

10D.2 The variation principle

A more systematic way of discussing bond polarity and find-
ing the coefficients in the linear combinations used to build 
molecular orbitals is provided by the variation principle which 
is proved in the following Justification:

If an arbitrary wavefunction is used to calculate the 
energy, the value calculated is never less than the 
true energy.

This principle is the basis of all modern molecular structure 
 calculations. The arbitrary wavefunction is called the trial 
wavefunction. The principle implies that, if we vary the coef-
ficients in the trial wavefunction until the lowest energy is 

achieved (by evaluating the expectation value of the hamilto-
nian for each wavefunction), then those coefficients will be the 
best for that particular form of trial function. We might get a 
lower energy if we use a more complicated wavefunction (for 
example, by taking a linear combination of several atomic 
orbitals on each atom), but we shall have the optimum (mini-
mum energy) molecular orbital that can be built from the cho-
sen basis set, the given set of atomic orbitals.

Brief illustration 10D.2 Electronegativity

The bond dissociation energies of hydrogen, chlorine, and 
hydrogen chloride are 4.52 eV, 2.51 eV, and 4.47 eV, respec-
tively. From eqn 10D.2 we find

| | = { }χ χPauling Pauling
1 2H Cl 4 47 4 52 2 51 98 1( ) ( ) . ( . . ) . ./− − + = ≈1

2 0 00  

Self-test 10D.2 Repeat the analysis for HBr. Use data from 
Table 10D.1.

Answer: |χPauling(H) − χPauling(Br)| = 0.73
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Justification 10D.1 The variation principle

To justify the variation principle, consider a trial (normalized) 
wavefunction written as a linear combination ψ ψtrial = ∑

n
n nc  

of the true (but unknown), normalized, and orthogonal eigen-
functions of the hamiltonian, H . The energy associated with 
this trial function is the expectation value

E H=∫ψ ψ τtrial trial d* 
 

The true lowest energy of the system is E0, the eigenvalue 
 corresponding to ψ0. Consider the following difference:

E E H E− = −

=

∫ ∫0 0ψ ψ τ ψ τ

ψ

ψtrial trial trial trial

trial

d d* *

*

�
1� ��� ���

HH E

H E

n

�

�

ψ τ ψ τ

τ

ψ

ψ ψ

trial trial trial

trial trial

d d

d

∫ ∫
∫

∑

−

= −

=

*

* ( )

0

0

cc cH E

c c H E

n n

n

n n

n n

n n n

* *
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ψ









 −











= −
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′ ′
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∑∫

∑

�

�

0 d

00)ψ τ′∫ n d

 

Because  ∫ ∫=′ ′ ′ψ ψ τ ψ τψn n n n nH E* * d d   and  ∫ =′ψ τψn nE*
0 d  

E n n0 ∫ ′ψ τψ* d , we write

ψ τ ψ τψ ψn n n n nH E E E* *( ) ( ) − = −′ ′ ′∫∫ 0 0d d
 

and

E E c c E E
n n

n n n n n− = −
′

′ ′ ′

=

∑ ∫
′

0 0

,

* *( ) ψ τψ d

 0 unless n n� �� ��

 
The eigenfunctions are orthogonal, so only n′ = n contributes 
to this sum, and as each eigenfunction is normalized, each 
surviving integral is 1. Consequently

E E c c E E
n

n n n− = − ≥∑
≥ ≥

0 0 0* ( )

0 0���� ��

 
That is, E ≥ E0, as we set out to prove.
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(a) The procedure

The method can be illustrated by the trial wavefunction in eqn 
10D.1. We show in the following Justification that the coeffi-
cients are given by the solutions of the two secular equations1

( ) ( )α βA A B− + − =E c ES c 0  (10D.5a)
( ) ( )β α− ES c E cA A B+ − = 0  (10D.5b)

where

α τ α τA Bd d= =∫ ∫AHA BHB 
 

 coulomb integrals  (10D.5c)

β τ τ= =∫ ∫AHB BHA d d
 

 resonance integral  (10D.5d)

The parameter α is called a Coulomb integral. It is negative 
and can be interpreted as the energy of the electron when it 
occupies A (for αA) or B (for αB). In a homonuclear diatomic 
molecule, αA = αB. The parameter β is called a resonance inte-
gral (for classical reasons). It vanishes when the orbitals do not 
overlap, and at equilibrium bond lengths it is normally negative.

To solve the secular equations for the coefficients we need to 
know the energy E of the orbital. As for any set of simultaneous 
equations, the secular equations have a solution if the secular 
determinant, the determinant of the coefficients, is zero; that is, if

α β
β α

α α β

β α α

A

B
A B

2 2
A B1 2

− −
− −

= − − − −

= − + +

E SE

SE E
E E SE

S E S

( )( ) ( )

( ) { (

2

− ))} ( )E + −
=

α α βA B
2

0  (10D.7)

Because a quadratic equation of the form ax2 + bx + c = 0 has the 
solutions

x
b b ac

a
= − ± −( ) /2 1 24

2  

1 The name ‘secular’ is derived from the Latin word for age or generation. 
The term comes from astronomy, where the same equations appear in con-
nection with slowly accumulating modifications of planetary orbits.

Justification 10D.2 The variation principle applied to a 
heteronuclear diatomic molecule

The trial wavefunction in eqn 10D.1 is real but not normal-
ized because at this stage the coefficients can take arbitrary 
values. Therefore, we can write ψ* = ψ but do not assume that 
∫ =ψ τ2 1d . When a wavefunction is not normalized, we write 
the expression for the energy as

E
H H

=  →∫
∫

∫
∫

ψ ψ τ

ψ τ

ψ ψ τ

ψ τψ
ψ

*

*

 d

d

d

d

real

2

 

 energy  (10D.6)

We now search for values of the coefficients in the trial func-
tion that minimize the value of E. This is a standard problem 
in calculus, and is solved by finding the coefficients for which

∂
∂ = ∂

∂ =E
c

E
cA B

0 0
 

The first step is to express the two integrals in eqn 10D.6 in 
terms of the coefficients. The denominator is

ψ τ τ

τ τ τ

2 2

2 2 22 2

d d

d d c d

A B

B A B

∫

∫

∫

∫ ∫

= +

+ +=

( )c A c B

A c B c ABcA

1 1��� �� ��� ss��� ��
= + +c c c SA B A Bc2 2 2

because the individual atomic orbitals are normalized 
and the third integral is the overlap integral S (eqn 10C.3, 
S = ∫ χ τχA B d ). The numerator is

ψ ψ τ τ

τ

α

H c A c B H c A c B

c AHA c BHB

� �

� �

d d

d d

A B A B

A B

∫

∫

∫= +

= +

( ) ( )+

2 2

A� �� ��
ττ τ τ

α β β

∫ ∫ ∫+ +

B� �� �� � �� �� � �� ��

c AHB c BHAA B A Bc d c d� �

 

With the integrals written as shown (the two β integrals are 
equal by hermiticity, Topic 7C), the numerator is

ψ α α βψ τ∫ = + +H c c c d cA A B B A B
2 2 2

 

At this point we can write the complete expression for E as

E
c c c

c c c S
= + +

+ +
A A B B A B

A B A B

c
c

2 2

2 2

2
2

α α β

 

Its minimum is found by differentiation with respect to the 
two coefficients and setting the results equal to 0. After some 
straightforward work we obtain

∂
∂ =

+ +
∂
∂ =

− + −

− +

E
c c c c S

E
c

E c SE c

E c
A A B A B

B

A A B

B B

c
2

2

2

2 2

{ }

{

( ) ( )

( ) (

α β

α ββ −
+ +

SE c
c c c S

) }A

A B A Bc2 2 2  

For the derivatives to be equal to 0, the numerators, and specific-
ally the terms in blue, of these expressions must vanish. That is, 
we must find values of cA and cB that satisfy the conditions

( ) ( )

( ) ( )

α β
α β

A A B

B B A

− + − =
− + − =

E c SE c

E c SE c

0

0  

which are the secular equations (eqn 10D.5).
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424 10 Molecular structure

this quadratic equation for E with a = 1 − S2, b = 2βS − (αA + αB), 
and c = αAαB − β2 has the solutions

E
S S S

S± = + − ± + − − − −
−

α α β α α β α βαA B A B A B2 2 4 1
2 1

2 2 2 1 2

2

{( ) ( )( )}
( )

/

 (10D.8a)

which are the energies of the bonding and antibonding molecu-
lar orbitals formed from the two atomic orbitals.

Equation 10D.8a becomes easier to understand in two cases. 
For a homonuclear diatomic molecule we can set αA = αB = α and 
obtain

E

S S S

± =

− ± − − −



−

2 2 2 2 4 12 2 2 2α β α − β α β
β α

( ) ( )( )

(2 2 )2S� ������ ������








−

= − ± −
+ − =

+ −

1 2

22 1

1 1

/

( )

( )
( )( )

(

S

S S
S S

(1 )(1 )S S
���

α β β α α ±±
+ −

β)( )
( )( )

1
1 1

∓S
S S  

and therefore

E
S

E
S+ −= +

+ = −
−

α β α βA A

1 1  

For β < 0, E+ is the lower energy solution. For heteronuclear dia-
tomic molecules we can make the approximation that S = 0 (sim-
ply to get a more transparent expression), and find

E± = + ± − + −

















1
2

1
2

2 1 2

1
2

( ) ( )

/

α α α α β
α αA B A B

A B
  

 Zero overlap approximation  (10D.8c)

(b) The features of the solutions
An important feature of eqn 10D.8c is that as the energy dif-
ference |αA − αB| between the interacting atomic orbitals 
increases, the bonding and antibonding effects decrease (Fig. 
10D.4). Thus, when |αB – αA|  ≫  2|β| we can make the approxi-
mation ( ) /1 11 2+ ≈ +x x1

2  and obtain

E E+ −≈ + − ≈ − −α β
α α α β

α αA
A B

B
A B

2 2

 
(10D.9)

As these expressions show, and as can be seen from the graph, 
when the energy difference is very large, the energies of the 
resulting molecular orbitals differ only slightly from those of 
the atomic orbitals, which implies in turn that the bonding and 
antibonding effects are small. That is:

Homo
nuclear 
diatomic 
molecules

molecular 
orbital 
energies

 (10D.8b)

Brief illustration 10D.3 Heteronuclear diatomic 
molecules 2

In Brief illustration 10D.1 we estimated the H1s and F2p orbital 
energies in HF as –7.2 eV and –10.4 eV, respectively. Therefore 
we set αH = −7.2 eV and αF = −10.4 eV. We take β = −1.0 eV as a 
typical value and S = 0. Substitution of these values into eqn 
10D.8c gives

E± = − − ± − + + −
− +











/eV 1
2

1
2

2

7 2 10 4 7 2 10 4 1
2 0

7 2 10 4
( . . ) ( . . )

.
. .






= − ± = −

1 2

8 8 1 9 0

/

. . . .1 7 and 6 9−

These values, representing a bonding orbital at −10.7 eV and an 
antibonding orbital at −6.9 eV, are shown in Fig. 10D.3.

Self-test 10D.3 Does the neglect of overlap make much differ-
ence? Use S = 0.20 (a typical value), to find the two energies.

Answer: E+ = −10.8 eV, E− = −7.1 eV

7.
2 

eV

6.
9 

eV

10
.7

 e
V

10
.4

 e
V

Ionization limit

H1s

F2p
0.28χH + 0.96χF

0.96χH – 0.28χF

Figure 10D.3 The estimated energies of the atomic orbitals 
in HF and the molecular orbitals they form.
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|αA – αB|/|αA + αB|

E
/|α

A
 +

 α
B
| –

 ½

E+

E–

Figure 10D.4 The variation of the energies of the molecular 
orbitals as the energy difference of the contributing atomic 
orbitals is changed. The plots are for β = −1; the blue lines are 
for the energies in the absence of mixing (that is, β = 0).
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The strongest bonding and antibonding effects 
are obtained when the two contributing orbitals 
have similar energies.

The large difference in energy between core and valence orbit-
als is the justification for neglecting the contribution of core 
orbitals to molecular orbitals constructed from valence atomic 
orbitals. Although the core orbitals of one atom have a simi-
lar energy to the core orbitals of the other atom, so might be 
expected to combine strongly, core–core interaction is largely 
negligible because the overlap between them (and hence the 
value of β) is so small.

The values of the coefficients in the linear combination in eqn 
10D.1 are obtained by solving the secular equations using the 
two energies obtained from the secular determinant. The lower 
energy, E+, gives the coefficients for the bonding molecular 
orbital, the upper energy, E−, the coefficients for the anti bonding 
molecular orbital. The secular equations give expressions for the 
ratio of the coefficients. Thus, the first of the two secular equa-
tions in eqn 10D.5a, (αA − E)cA + (β − ES)cB = 0, gives

c
E

ES
cB

A
A= − −

−






α
β  

(10D.10)

The wavefunction should also be normalized. This condition 
means that the term c c c SA B A Bc2 2 2+ +  established in the preced-
ing Justification must satisfy

c c c SA B A Bc2 2 2 1+ + =  (10D.11)

When the preceding relation is substituted into this expression, 
we find

c
E

ES
S

E
ES

A

A A

=

+ −
−







−
−


















−

1

1 2
2 1 2

α
β

α
β

/

 

(10D.12)

which, together with eqn 10D.10, gives explicit expressions for 
the coefficients once we substitute the appropriate values of 
E = E± given in eqn 10D.8a.

As before, this expression becomes more transparent in 
two cases. First, for a homonuclear diatomic molecule, with 
αA = αB = α and E± given in eqn 10D.8b we find

E
S

c
S

c c+ = +
+ =

+
=α β

1
1

2 1 1 2,
{ ( )}

,/A B A

 
 homonuclear  (10D.13a)

E
S

c
S

c c− = −
− =

−
= −α β

1
1

2 1 1 2,
{ ( )}

,/A B A

 

For a heteronuclear diatomic molecule with S = 0, the coeffi-
cients are given by

c
E

c

E

A

A

B

A

=

+ −

















=

+ −
















1

1

1

1
2 1 2 2α

β
β

α

/ ,



1 2/

  
 Zero overlap approximation  (10D.14)

with the appropriate values of E = E± taken from eqn 10D.8c.

Checklist of concepts

☐ 1.  A polar bond can be regarded as arising from a molec-
ular orbital that is concentrated more on one atom than 
its partner.

☐ 2. The electronegativity of an element is a measure of the 
power of an atom to attract electrons to itself when it is 
part of a compound.

Brief illustration 10D.4 Heteronuclear diatomic 
molecules 3

Here we continue the previous Brief illustration using HF. 
With αH = −7.2 eV, αF = −10.4 eV, β = −1.0 eV, and S = 0 the two 
orbital energies were found to be E+ = −10.7 eV and E− = −6.9 eV. 
When these values are substituted into eqn 10D.14 we find the 
following coefficients:

E

E
+ +

− −

= − = +
= − =

1 7 eV 28 96

6 9 eV 96 28
H F

H F

0 0 0

0 0

. . .

. . .

ψ χ χ
ψ χ χ−

Notice how the lower energy orbital (the one with energy 
−10.7 eV) has a composition that is more F2p orbital than H1s, 
and that the opposite is true of the higher energy, antibonding 
orbital.

Self-test 10D.4 Find the energies and forms of the σ orbitals 
in the HCl molecule using β = −1.0 eV and S = 0. Use data from 
Tables 9C.2 and 9C.3.

Answer: E+ = −8.9 eV, E− = −6.6 eV; ψ− = 0.86χH − 0.51χCl; 
ψ+ = 0.51χH + 0.86χCl

 (10D.13b)
diatomic 
molecules
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426 10 Molecular structure

☐ 3. The variation principle provides a criterion of accept-
ability of an approximate wavefunction.

☐ 4. A basis set refers to the given set of atomic orbitals from 
which the molecular orbitals are constructed.

☐ 5. The bonding and antibonding effects are strong-
est when contributing atomic orbitals have similar 
energies.

Checklist of equations

Property Equation Comment Equation number

Molecular orbital ψ = cAA + cBB 10D.1

Pauling electronegativity | |χ χA B
1 2AB AA BB− = − +{ ( ) [ ( ) ( )]} /D D D0

1
2 0 0 All D0 in electronvolts 10D.2

Mulliken electronegativity χ = +1
2 ( )I Eea I and Eea in electronvolts 10D.3

Coulomb integral α τA d=∫ AHA Definition 10D.5c

Resonance integral β τ τ= =∫ ∫AHB BHA d d Definition 10D.5d

Energy E H=∫ ∫ψ ψ τ ψ τ d d/ 2 Unnormalized real wavefunction 10D.6

Variation principle ∂E/∂c = 0 Minimization of energy
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10E Polyatomic molecules

The molecular orbitals of polyatomic molecules are built in the 
same way as in diatomic molecules (Topic 10D), the only differ-
ence being that more atomic orbitals are used to construct them. 
As for diatomic molecules, polyatomic molecular orbitals spread 
over the entire molecule. A molecular orbital has the general form

ψ χ=∑
o

o oc

 
 general form of lcao  (10E.1)

where χo is an atomic orbital and the sum extends over all the 
valence orbitals of all the atoms in the molecule. To find the 
coefficients, we set up the secular equations and the secular 
determinant, just as for diatomic molecules, solve the latter for 
the energies, and then use these energies in the secular equa-
tions to find the coefficients of the atomic orbitals for each 
molecular orbital.

The principal difference between diatomic and polyatomic 
molecules lies in the greater range of shapes that are possi-
ble: a diatomic molecule is necessarily linear, but a triatomic 
molecule, for instance, may be either linear or angular (bent) 
with a characteristic bond angle. The shape of a polyatomic 
molecule—the specification of its bond lengths and its bond 
angles—can be predicted by calculating the total energy of the 
molecule for a variety of nuclear positions, and then identify-
ing the conformation that corresponds to the lowest energy. 
Such calculations are best done using the latest software, but 
a more primitive approach gives useful insight for conjugated 
polyenes, in which there is an alternation of single and double 
bonds along a chain of carbon atoms. We focus on them in the 
first two sections of this Topic, to set the scene for the more 
sophisticated approaches mentioned in Section 10E.3.

The planarity of conjugated polyenes is an aspect of their sym-
metry, and considerations of molecular symmetry play a vital role 
in setting up and labelling molecular orbitals (see Topic 11B). In 
the present case, planarity provides a distinction between the σ 
and π orbitals of the molecule, and in elementary approaches 
such molecules are commonly discussed in terms of the char-
acteristics of their π orbitals with the σ bonds providing a rigid 
framework that determines the general shape of the molecule.

10E.1 The Hückel approximation

The π molecular orbital energy level diagrams of conjugated 
molecules can be constructed using a set of approximations 

Contents

10e.1 The Hückel approximation 427
(a) An introduction to the method 428

brief illustration 10e.1: ethene 428
(b) The matrix formulation of the method 428

example 10e.1: Finding molecular orbitals  
by matrix diagonalization 429

10e.2 Applications 430
(a) Butadiene and π-electron binding energy 430

example 10e.2: estimating the delocalization energy 431
(b) Benzene and aromatic stability 431

example 10e.3: Judging the aromatic character  
of a molecule 432

10e.3 Computational chemistry 432
(a) Semi-empirical and ab initio methods 433

brief illustration 10e.2: gaussian type orbitals 434
(b) Density functional theory 434
(c) Graphical representations 434

Checklist of concepts 435
Checklist of equations 435

➤➤ Why do you need to know this material?
Most molecules of interest in chemistry are polyatomic, 
so it is important to be able to discuss their electronic 
structure. Although computational procedures are now 
widely available, to understand them it is helpful to see 
how they emerged from the more primitive approach 
described here.

➤➤ What is the key idea?
Molecular orbitals can be expressed as linear combinations 
of all the atomic orbitals of the appropriate symmetry.

➤➤ What do you need to know already?
This Topic extends the approach used for heteronuclear 
diatomic molecules in Topic 10D, particularly the concepts 
of secular determinants and secular equations. The 
principal mathematical technique used is matrix algebra 
(Mathematical background 6); you should be, or become, 
familiar with the use of mathematical software to manipulate 
matrices numerically.
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428 10 Molecular structure

suggested by Erich Hückel in 1931. All the C atoms are 
treated identically, so all the Coulomb integrals α for the 
atomic orbitals that contribute to the π orbitals are set equal. 
For example, in ethene, which we use to introduce the 
method, we take the σ bonds as fixed, and concentrate on 
finding the energies of the single π bond and its companion 
antibond.

(a) An introduction to the method
We express the π orbitals as linear combinations of the C2p 
orbitals that lie perpendicular to the molecular plane. In 
ethene, for instance, we would write

ψ = +c A c BA B  (10E.2)

where the A is a C2p orbital on atom A, and likewise for B. 
Next, the optimum coefficients and energies are found by the 
variation principle as explained in Topic 10D. That is, we solve 
the secular determinant, which in the case of ethene is eqn 
10D.7 with αA = αB = α:

α β
β α

− −
− −

=
E ES

ES E
0

 
(10E.3)

In a modern computation all the resonance integrals and 
overlap integrals would be included, but an indication of 
the molecular orbital energy level diagram can be obtained 
very readily if we make the following additional Hückel 
approximations:

•	 All overlap integrals are set equal to zero.
•	 All resonance integrals between non-neighbours are 

set equal to zero.
•	 All remaining resonance integrals are set equal  

(to β).

These approximations are obviously very severe, but they let 
us calculate at least a general picture of the molecular orbital 
energy levels with very little work. The approximations result in 
the following structure of the secular determinant:

•	 All diagonal elements: α – E.
•	 Off-diagonal elements between neighbouring atoms: β.
•	 All other elements: 0.

These approximations convert eqn 10E.3 to

α β
β α

α β α β α β
−

−
= − − = − + − −

=

E

E
E E E( ) ( )( )2 2

0  

(10E.4)

The roots of the equation are E± = α ± β. The + sign corresponds 
to the bonding combination (β is negative) and the – sign cor-
responds to the antibonding combination (Fig. 10E.1).

The building-up principle leads to the configuration 1π2, 
because each carbon atom supplies one electron to the π system 
and both electrons can occupy the bonding orbital. The high-
est occupied molecular orbital in ethene, its HOMO, is the 1π 
orbital; the lowest unoccupied molecular orbital, its LUMO, is 
the 2π orbital (or, as it is sometimes denoted, the 2π* orbital). 
These two orbitals jointly form the frontier orbitals of the 
molecule. The frontier orbitals are important because they are 
largely responsible for many of the chemical and spectroscopic 
properties of this and analogous molecules.

(b) The matrix formulation of the method
In preparation for making Hückel theory more sophisticated 
and readily applicable to bigger molecules, we need to refor-
mulate it in terms of matrices (see Mathematical background 6 
following this chapter). Our starting point is the pair of secular 
equations developed for a heteronuclear diatomic molecule in 
Topic 10D:

( ) ( )

( ) ( )

α β
β α

A A B

A B B

− + − =
− + − =

E c ES c

ES c E c

0

0  

To prepare to generalize this expression we shall write αJ = HJJ 
(with J = A or B), β = HAB, and label the overlap integrals with 

Brief illustration 10E.1 Ethene

We can estimate that the π* ← π excitation energy of ethene is 
2|β|, the energy required to excite an electron from the 1π to 
the 2π orbital. This transition occurs at close to 40 000 cm−1, 
corresponding to 4.8 eV. It follows that a plausible value of β is 
about –2.4 eV (–230 kJ mol−1).

Self-test 10E.1 The ionization energy of ethene is 10.5 eV. 
Estimate α.

Answer: −8.1 eVh
üc

ke
l a

pp
ro

xi
m

at
io

n

C2p C2p

1π

2π

α + β

α – β

Figure 10E.1 The Hückel molecular orbital energy levels of 
ethene. Two electrons occupy the lower π orbital.
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their respective atoms, so S becomes SAB. We can introduce 
more symmetry into the equations (which makes it simpler to 
generalize them) by replacing the E in αJ − E by ESJJ, with SJJ = 1. 
At this point, the two equations are

( ) ( )

( ) ( )

H ES c H ES c

H ES c H ES c
AA AA A AB AB B

BA BA A BB BB B

− + − =
− + − =

0

0  

There is one further notational change. The coefficients cJ 
depend on the value of E, so we need to distinguish the two sets 
corresponding to the two energies, which we denote Ei with 
i = 1 and 2. We therefore write the coefficients as ci,J, with i = 1 
(the coefficients c1A and c1B for energy E1) or 2 (the coefficients 
c2A and c2B for energy E2). With this notational change, the two 
equations become

( ) ( ). .H E S c H E S ci i i iAA AA A AB AB B− + − = 0  (10E.5a)

( ) ( ). .H E S c H E Si i iBA BA A BB BB i Bc− + − = 0  (10E.5b)

with i = 1 and 2, giving four equations in all. Each pair of equa-
tions can be written in matrix form as

H E S H E S

H E S H E S

c

c
i i

i i

i

i

AA AA AB AB

BA BA BB BB

A

B

− −
− −













=,

,

0
 

(10E.5c)

because multiplying out the matrices gives the two expres-
sions in eqns 10E.5a and 10.5b. If we introduce the following 
matrices

H S c=






=






=






H H

H H

S S

S S

c

ci
i

i

AA AB

BA BB

AA AB

BA BB

A

B

,

,  
(10E.6)

so that

H S− =
− −
− −







E
H E S H E S

H E S H E S
i

i i

i i

AA AA AB AB

BA BA BB BB  

then eqn 10E.5c may be written more succinctly as

( )H S c Hc Sc− = =E Ei i i i i0 or  (10E.7)

As shown in the following Justification, these two sets of equa-
tions (with i = 1 and 2) can be combined into a single matrix 
equation by introducing the matrices

c c c E= =






=






( )
, ,

, ,
1 2

1 2

1 2

1

2

0

0

c c

c c

E

E
A A

B B  
(10E.8)

for then all four equations in eqn 10E.7 are summarized by the 
single expression

Hc ScE=  (10E.9)

In the Hückel approximation, HAA = HBB = α, HAB = HBA= β, 
and we neglect overlap, setting S = 1, the unit matrix (with 1 on 
the diagonal and 0 elsewhere). Then

Hc cE=  

At this point, we multiply from the left by the inverse matrix 
c−1, use c−1c = 1, and find

c Hc E− =1  (10E.10)

In other words, to find the eigenvalues Ei, we have to find a trans-
formation of H that makes it diagonal. This procedure is called 
matrix diagonalization. The diagonal elements then correspond 
to the eigenvalues Ei and the columns of the matrix c that brings 
about this diagonalization are the coefficients of the members of 
the basis set, the set of atomic orbitals used in the calculation, 
and hence give us the composition of the molecular orbitals.

Example 10E.1 Finding molecular orbitals by matrix 
diagonalization

Set up and solve the matrix equations within the Hückel 
approximation for the π orbitals of butadiene (1).

1 Butadiene

Justification 10E.1 The matrix formulation

Substitution of the matrices defined in eqn 10E.8 into eqn 
10E.9 gives

H H

H H

c c

c c

SAA AB

BA BB

A A

B B

AA











=

H c� ��� ��� � �� ��
1 2

1 2

, ,

, ,

SS

S S

c c

c c

E

E
AB

BA BB

A A

B B
















S c� �� �� � �� ��
1 2

1 2

1

2

0

0
, ,

, ,





E� �� ��

The product on the left is

H H

H H

c c

c c

HH c H c

AA AB

BA BB

A A

B B

AAA A AB B













=
+

1 2

1 2

1 1

, ,

, ,

, , AA A AB B

BA A BB B BA A BB B

c H c

H c H c H c H c
2 2

1 1 2 2

, ,

, , , ,

+
+ +







The product on the right is

S S

S S

c c

c c

E

E

S SAA AB

BA BB

A A

B B

AA A

















=1 2

1 2

1

2

0

0
, ,

, ,

BB

BA BB

A A

B B

AA A

S S

c E c E

c E c E

E S c E S













=
+

1 1 2 2

1 1 2 2

1 1 1

, ,

, ,

, AAB B AA A AB B

BA A BB B BA A

c E S c E S c

E S c E S c E S c E S
1 2 2 2 2

1 1 1 1 2 2 2

, , ,

, , ,

+
+ + BBB Bc2,







Comparison of matching terms (like those in blue) recreates 
the four secular equations (two for each value of i).
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10E.2 Applications

Although the Hückel method is very primitive, it can be used 
to account for some of the properties of conjugated polyenes.

(a) Butadiene and π-electron binding 
energy
As we saw in Example 10E.1, the energies of the four LCAO-
MOs for butadiene are

E = ± ±α β α β1 62 62. , .0  (10E.11)

These orbitals and their energies are drawn in Fig. 10E.2. Note 
that the greater the number of internuclear nodes, the higher 
the energy of the orbital. There are four electrons to accommo-
date, so the ground-state configuration is 1π22π2. The frontier 
orbitals of butadiene are the 2π orbital (the HOMO, which is 
largely bonding) and the 3π orbital (the LUMO, which is largely 
antibonding). ‘Largely’ bonding means that an orbital has both 
bonding and antibonding interactions between various neigh-
bours, but the bonding effects dominate. ‘Largely antibonding’ 
indicates that the antibonding effects dominate.

An important point emerges when we calculate the total 
π-electron binding energy, Eπ, the sum of the energies of each 
π electron, and compare it with what we find in ethene. In 
ethene the total energy is

Eπ = + = +2 2 2( )α β α β  

Method The matrices will be four-dimensional for this four-
atom system. Ignore overlap, and construct the matrix H by 
using the Hückel approximation and the parameters α and 
β. Find the matrix c that diagonalizes H: for this step, use 
mathematical software. Full details are given in Mathematical 
background 6, but note that if H = α1 + M, where M is a non-
diagonal matrix, then because αc−11c = αc−1c1 = α1, whatever 
matrix c diagonalizes M leaves α1 unchanged, so to achieve the 
overall diagonalization of H we need to diagonalize only M.

Answer The hamiltonian matrix H is

H =

H H H H

H H H H

H H

H H

H H

H H

11 12 13 14

21 22 23 24

31 32

41 42

33 34

43 44

α β� � � �0 0



















 →
Huckel

approximation
��

α β
β α β

β α β
β α

0 0

0

0

0 0



















 

which we write as

H = +



















α β1

0 1

1 0

0 0

1 0

0 1

0 0

0 1

1 0

M� ��� ���

because most mathematical software can deal only with 
numerical matrices. The diagonalized form of the matrix M is

+
−

−
−



















1 62 0 0 0

0 0 62 0 0

0 0 0 62 0

0 0 0 0 62

.

.

.

.

so we can infer that the diagonalized Hamiltonian matrix is

E =

+
+

−
−



















α β
α β

α β
α β

1 62 0 0 0

0 0 62 0 0

0 0 0 62 0

0 0 0 1 62

.

.

.

.

The matrix that achieves the diagonalization is

c =

−
−

0 372 0 602

0 602 0 372

0 602 0 372

0 372 0 602

0

. .

. .

. .

. .

.. .

. .

. .

. .

602 0 372

0 372 0 602

0 372 0 602

0 602 0 372

−
−

− −
−



















with each column giving the coefficients of the atomic orbitals 
for the corresponding molecular orbital. We can conclude that 
the energies and molecular orbitals are

E

E
1 1 A B C D

2 2

1 62 372 6 2 6 2 372

62

= + = + + +
= + =

α β ψ χ χ χ χ
α β ψ

. . . . .

.

0 0 0 0 0 0

0 0.. . . .

. . .

6 2 372 372 6 2

62 6 2 372
A B C D

3 3 A

0 0 0 0 0

0 0 0 0

χ χ χ χ
α β ψ χ χ

+
= =

− −
− −E BB C D

4 4 A B C

372 6 2

1 62 372 6 2 6 2

−
− − −

0 0 0

0 0 0 0 0 0

. .

. . . . .

χ χ
α β ψ χ χ χ

+
= = + +E 3372 Dχ

where the C2p atomic orbitals are denoted by χA, …, χD. Note 
that the molecular orbitals are mutually orthogonal and, with 
overlap neglected, normalized.

Self-test 10E.2 Repeat the exercise for the allyl radical, 
⋅CH2eCHaCH2.

Answer: E = α + 1.41β, α, α, α − 1.41β; ψ1 = 0.500χA + 0.707χB + 0.500χC, 
ψ2 = 0.707χA  −  0.707χC, ψ3 = 0.500χA − 0.707χB + 0.500χC

C2p

α + 1.62β

α + 0.62β

α – 1.62β

α – 0.62β

1π

2π

3π

4π

+

+

+

+ +

+

+

+ + +

–

––

– –

–

Figure 10E.2 The Hückel molecular orbital energy levels of 
butadiene and the top view of the corresponding π orbitals. 
The four p electrons (one supplied by each C) occupy the two 
lower π orbitals. Note that the orbitals are delocalized.
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In butadiene it is

Eπ = + + + = +2 1 62 2 62 4 4 48( . ) ( . ) .α β α β α β0  

Therefore, the energy of the butadiene molecule lies lower by 
0.48β (about 110 kJ mol−1) than the sum of two individual π 
bonds. This extra stabilization of a conjugated system com-
pared with a set of localized π bonds is called the delocaliza-
tion energy of the molecule.

A closely related quantity is the π-bond formation energy, 
Ebf, the energy released when a π bond is formed. Because the 
contribution of α is the same in the molecule as in the atoms, 
we can find the π-bond formation energy from the π-electron 
binding energy by writing

E E Nbf C= −π α  Definition  π-bond formation energy  (10E.12)

where NC is the number of carbon atoms in the molecule. The 
π-bond formation energy in butadiene, for instance, is 4.48β.

(b) Benzene and aromatic stability

The most notable example of delocalization conferring extra 
stability is benzene and the aromatic molecules based on its 
structure. In elementary accounts, benzene, and other aromatic 
compounds, is often expressed in a mixture of valence-bond 
and molecular orbital terms, with typically valence-bond lan-
guage used for its σ framework and molecular orbital language 
used to describe its π electrons.

First, the valence-bond component. The six C atoms are 
regarded as sp2 hybridized, with a single unhybridized perpen-
dicular 2p orbital. One H atom is bonded by (Csp2,H1s) over-
lap to each C carbon, and the remaining hybrids overlap to give 
a regular hexagon of atoms (Fig. 10E.3). The internal angle of 
a regular hexagon is 120°, so sp2 hybridization is ideally suited 
for forming σ bonds. We see that the hexagonal shape of ben-
zene permits strain-free σ bonding.

Now consider the molecular orbital component of the 
description. The six C2p orbitals overlap to give six π orbitals 
that spread all round the ring. Their energies are calculated 
within the Hückel approximation by diagonalizing the hamil-
tonian matrix

H =

























=

α β
β α β

β α

β

β
β

β

α β
β α β

β α

α

0

0

0 0

0 0 0

0 0

0 0

0 0 0

0 0

0

0

11+

























β

0 1 0

1 0 1

0 1 0

0 0 1

0 0 0

1 0 0

0 0 1

0 0 0

1 0 0

0 1 0

1 0 1

0 1 0

DDiagonalize →

2 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 2

−
−

−





















The MO energies, the eigenvalues of this matrix, are simply

E = ± ± ±α β α β α β2 , ,  (10E.13)

Example 10E.2 Estimating the delocalization energy

Use the Hückel approximation to find the energies of the π 
orbitals of cyclobutadiene, and estimate the delocalization 
energy.

Method Set up the secular determinant using the same basis as 
for butadiene, but note that atoms A and D are also now neigh-
bours. Then solve for the roots of the secular equation and assess 
the total π-bond energy. For the delocalization energy, subtract 
from the total π-bond energy the energy of two π-bonds.

Answer The hamiltonian matrix is

H =



















= +












α β
β α

β
β

β
β

α β
β α

α β

0

0

0

0

0 1

1 0

0 1

1 0

0 1

1 0

0 1

1 0

1






 −



















 →Diagonalize

2 0 0 0

0 0 0 0

0 0 0 0

0 0 0 2

Diagonalization gives the energies of the orbitals as

E = + −α β α α α β2 2, , ,

Four electrons must be accommodated. Two occupy the lowest 
orbital (of energy α + 2β), and two occupy the doubly degener-
ate orbitals (of energy α). The total energy is therefore 4α + 4β. 
Two isolated π bonds would have an energy 4α + 4β; therefore, 
in this case, the delocalization energy is zero.

Self-test 10E.3 Repeat the calculation for benzene (use 
software!).

Answer: See next subsection

C

H

Figure 10E.3 The σ framework of benzene is formed by 
the overlap of Csp2 hybrids, which fit without strain into a 
hexagonal arrangement.
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as shown in Fig. 10E.4. The orbitals there have been given sym-
metry labels that are explained in Topic 11B. Note that the low-
est energy orbital is bonding between all neighbouring atoms, 
the highest energy orbital is antibonding between each pair 
of neighbours, and the intermediate orbitals are a mixture of 
bonding, nonbonding, and antibonding character between 
adjacent atoms.

The simple form of the eigenvalues in eqn 10E.13 suggests 
that there is a more direct way of determining them than by 
using mathematical software. That is in fact the case, for sym-
metry arguments of the kind described in Topic 11B show that 
the 6 × 6 matrix can be factorized into two 1 × 1 matrices and 
two 2 × 2 matrices, which are very easy to deal with.

We now apply the building-up principle to the π system. There 
are six electrons to accommodate (one from each C atom), so 
the three lowest orbitals (a2u and the doubly-degenerate pair e1 g) 
are fully occupied, giving the ground-state configuration a e2u 1g

2 4 .  
A significant point is that the only molecular orbitals occupied 
are those with net bonding character (the analogy with the very 
stable N2 molecule, Topic 10B, should be noted).

The π-electron energy of benzene is

E = + + + = +2 2 4 6 8( ) ( )α β α β α β  

If we ignored delocalization and thought of the molecule as hav-
ing three isolated π bonds, it would be ascribed a π-electron 
energy of only 3(2α + 2β) = 6α + 6β. The delocalization energy is 
therefore 2β ≈ −460 kJ mol−1, which is considerably more than 
for butadiene. The π-bond formation energy in benzene is 8β.

This discussion suggests that aromatic stability can be traced 
to two main contributions. First, the shape of the regular hexa-
gon is ideal for the formation of strong σ bonds: the σ frame-
work is relaxed and without strain. Second, the π orbitals are 

such as to be able to accommodate all the electrons in bonding 
orbitals, and the delocalization energy is large.

10E.3 Computational chemistry

The severe assumptions of the Hückel method are now easy 
to avoid by using a variety of software packages that can be 
used not only to calculate the shapes and energies of molecu-
lar orbitals but also to predict with reasonable accuracy the 

Example 10E.3 Judging the aromatic character of a 
molecule

Decide whether the molecules C4H4 and the molecular ion 
C H4 4

2+ are aromatic when planar.

Method Follow the procedure for benzene. Set up and solve 
the secular equations within the Hückel approximation, 
assuming a planar σ framework, and then decide whether 
the ion has nonzero delocalization energy. Use mathemati-
cal software to diagonalize the hamiltonian (in Topic 11B it is 
shown how to use symmetry to arrive at the eigenvalues more 
simply.)

Answer The hamiltonian matrix is

H =



















= +










α β β
β α β

β α β
β β α

α β

0

0

0

0

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

1








The matrix multiplying β diagonalizes as follows:

0 1 0 1

1 0 1 0

0 1 0 1

1 0 1 0

2 0 0 0

0 0 0 0

0 0 0 0



















 →

−

Diagonalize

00 0 0 2



















It follows that the energy levels of the two species are E = α ±  
2β, α , α. There are four π electrons to accommodate in C4H4, 
so the total π-bonding energy is 2(α + 2β ) + 2α = 4(α + β ). 
The energy of two localized π-bonds is 4(α + β ). Therefore,  
the delocalization energy is zero, so the molecule is not aro-
matic. There are only two π electrons to accommodate in 
C H4 4

2+ , so the total π-bonding energy is 2(α + 2β) = 2α + 4β. 
The energy of a single localized π-bond is 2(α  + β ), so 
the delocalization energy is 2β and the molecular-ion is 
aromatic.

Self-test 10E.4 What is the total π-bonding energy of C H3 3
− ?

Answer: 4α + 2β

b2g

e2u

e1g

a2u

+

+
+

+

+ +
+ + +

+

+
+

++ +

+

+

+

–
–

–

–

–

–

––
–

– –

–

–

–

Figure 10E.4 The Hückel orbitals of benzene and the 
corresponding energy levels. The symmetry labels are 
explained in Topic 11B. The bonding and antibonding character 
of the delocalized orbitals reflects the numbers of nodes 
between the atoms. In the ground state, only the bonding 
orbitals are occupied.
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structure and reactivity of molecules. The full treatment of 
molecular electronic structure has received an enormous 
amount of attention by chemists and has become a keystone of 
modern chemical research. However, the calculations are very 
complex, and all this section seeks to do is to provide a brief 
introduction.1 In every case, the procedures focus on the cal-
culation or estimation of integrals like HJJ and HIJ rather than 
setting them equal to the constants α or β, or ignoring them 
entirely.

In all cases the Schrödinger equation is solved iteratively 
and self-consistently, just as for the self-consistent field (SCF) 
approach to atoms (Topic 9B). First, the molecular orbitals 
for the electrons present in the molecule are formulated as 
LCAOs. One molecular orbital is then selected and all the oth-
ers are used to set up an expression for the potential energy of 
an electron in the chosen orbital. The resulting SchrÖdinger 
equation is then solved numerically to obtain a better version 
of the chosen molecular orbital and its energy. The procedure 
is repeated for all the molecular orbitals and used to calculate 
the total energy of the molecule. The process is repeated until 
the computed orbitals and energy are constant to within some 
tolerance.

(a) Semi-empirical and ab initio methods
In a semi-empirical method, many of the integrals are estimated 
by appealing to spectroscopic data or physical properties such as 
ionization energies, and using a series of rules to set certain inte-
grals equal to zero. A primitive form of this procedure is used in 
Brief illustration 10D.1 of Topic 10D where we identify the inte-
gral α with a combination of the ionization energy and electron 
affinity of an atom. In an ab initio method an attempt is made to 
calculate all the integrals, including overlap integrals. Both pro-
cedures employ a great deal of computational effort and, along 
with cryptanalysts and meteorologists, theoretical chemists are 
among the heaviest users of the fastest computers. The integrals 
that are required involve atomic orbitals that in general may be 
centred on different nuclei. It can be appreciated that, if there 
are several dozen atomic orbitals used to build the molecular 
orbitals, then there will be tens of thousands of integrals of this 
form to evaluate (the number of integrals increases as the fourth 
power of the number of atomic orbitals in the basis). Some kind 
of approximation scheme is necessary.

One severe semi-empirical approximation used in the early 
days of computational chemistry was called complete neglect 
of differential overlap (CNDO), in which all molecular inte-
grals are set to zero unless A and B are the same orbitals centred 
on the same nucleus, and likewise for C and D. The surviving 
integrals are then adjusted until the energy levels are in good 
agreement with experiment or the computed enthalpy of 

formation of the compound is in agreement with experiment. 
More recent semi-empirical methods make less draconian 
decisions about which integrals are to be ignored, but they are 
all descendants of the early CNDO technique.

Commercial packages are also available for ab initio calcula-
tions. Here the problem is to evaluate as efficiently as possible 
thousands of integrals that arise from the Coulombic interac-
tion between two electrons and have the form

( ) ( ) ( ) ( ) ( )AB CD j A B
r

C D| = ∫∫0
12

1 21 1
1

2 2 d dτ τ
 

 Notation  molecular integral  (10E.14a)

with j0 = e2/4πε0 and the possibility that each of the atomic 
orbitals A, B, C, D is centred on a different atom, a so-called 
‘four-centre integral’. This task is greatly facilitated by express-
ing the atomic orbitals used in the LCAOs as linear combina-
tions of Gaussian orbitals. A Gaussian type orbital (GTO) is 
a function of the form e−r2 . The advantage of GTOs over the 
correct orbitals (which for hydrogenic systems are proportional 
to exponential functions of the form e−r) is that the product of 
two Gaussian functions is itself a Gaussian function that lies 
between the centres of the two contributing functions (Fig. 
10E.5). In this way, the four-centre integrals like these become 
two-centre integrals of the form

( ) ( ) ( )AB CD j X
r

Y| = ∫∫0
12

1 21
1

2 d dτ τ
 

(10E.14b)

where X is the Gaussian corresponding to the product AB and 
Y is the corresponding Gaussian from CD. Integrals of this 
form are much easier and faster to evaluate numerically than 
the original four-centre integrals. Although more GTOs have 
to be used to simulate the atomic orbitals, there is an overall 
increase in speed of computation.

1 A more complete account with detailed examples will be found in our 
companion volume, Physical chemistry: Quanta, matter, and change (2014).

G1 G1G2

G2y(
x)

x

(magnified)

Figure 10E.5 The product of two Gaussian functions on 
different centres is itself a Gaussian function located at a 
point between the two contributing Gaussians. The scale 
of the product has been increased relative to that of its two 
components.
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(b) Density functional theory
A technique that has gained considerable ground in recent 
years to become one of the most widely used techniques for the 
calculation of molecular structure is density functional theory 
(DFT). Its advantages include less demanding computational 
effort, less computer time, and—in some cases (particularly 
d-metal complexes)—better agreement with experimental val-
ues than is obtained from other procedures.

The central focus of DFT is the electron density, ρ, rather 
than the wavefunction, ψ. The ‘functional’ part of the name 
comes from the fact that the energy of the molecule is a func-
tion of the electron density, written E[ρ], the electron density is 
itself a function of position, ρ(r), and in mathematics a func-
tion of a function is called a ‘functional’. The occupied orbitals 
are used to construct the electron density from

ρ ψ( ) ( )
,

r r= ∑
m

m

occupied

2

 
 electron probability density  (10E.15)

and are calculated from modified versions of the Schrödinger 
equation known as the Kohn–Sham equations.

The Kohn–Sham equations are solved iteratively and self-
consistently. First, the electron density is guessed. For this step 
it is common to use a superposition of atomic electron densi-
ties. Next, the Kohn–Sham equations are solved to obtain an 
initial set of orbitals. This set of orbitals is used to obtain a bet-
ter approximation to the electron density and the process is 
repeated until the density and the computed energy are con-
stant to within some tolerance.

(c) Graphical representations

One of the most significant developments in computational 
chemistry has been the introduction of graphical representa-
tions of molecular orbitals and electron densities. The raw 
output of a molecular structure calculation is a list of the coef-
ficients of the atomic orbitals in each molecular orbital and 
the energies of these orbitals. The graphical representation of 
a molecular orbital uses stylized shapes to represent the basis 
set, and then scales their size to indicate the coefficient in the 
linear combination. Different signs of the wavefunctions are 
represented by different colours.

Once the coefficients are known, it is possible to construct 
a representation of the electron density in the molecule by 
noting which orbitals are occupied and then forming the 
squares of those orbitals. The total electron density at any 
point is then the sum of the squares of the wavefunctions 
evaluated at that point (as in eqn 10E.15). The outcome is 
commonly represented by an isodensity surface, a surface 
of constant total electron density (Fig. 10E.6). As shown in 
the illustration, there are several styles of representing an 
isodensity surface, as a solid form, as a transparent form with 
a ball-and-stick representation of the molecule within, or as 
a mesh. A related representation is a solvent-accessible sur-
face in which the shape represents the shape of the molecule 
by imagining a sphere representing a solvent molecule roll-
ing across the surface and plotting the locations of the centre 
of that sphere.

One of the most important aspects of a molecule other than 
its geometrical shape is the distribution of charge over its sur-
face, which is commonly depicted as an electrostatic poten-
tial surface (an ‘elpot surface’). The potential energy, Ep, of an 
imaginary positive charge Q at a point is calculated by taking 
into account its interaction with the nuclei and the electron 
density throughout the molecule. Then, because Ep = Qϕ, 
where ϕ is the electric potential, the potential energy can be 
interpreted as a potential and depicted as an appropriate col-
our (Fig. 10E.7). Electron-rich regions usually have negative 
potentials and electron-poor regions usually have positive 
potentials.

Brief illustration 10E.2 Gaussian type orbitals

Suppose we consider a one-dimensional ‘homonuclear’ sys-
tem, with GTOs of the form e−ax2  located at 0 and R. Then one 
of the integrals that would have to be evaluated would include 
the term

χ χA B e e e( ( )) ( )1 1
2 2 2 22 2= =− − − − + −ax a x R ax axR aR

Next we note that − − = − + −2 2 21
2

2 2 1
2

2a x R ax axR aR( ) , so we 
can write

χ χA B e ee( ) ( )
( ) ( )

1 1
2

1
2

1
2

1
2

2
1
2

2 2 22

= =− − − −− −a x R aR aRa x R

which is proportional to a single Gaussian (the term in blue) 
centred on the mid-point of the internuclear separation, at 
x R= 1

2 .

Self-test 10E.5 Repeat the analysis for a heteronuclear species 
with GTOs of the form e−ax2  and e−bx2 .

Answer: χ χA B e( ) ( ) , ( )( / ) / /1 1
2 2 2 2 1 2= = +− − −cx bR c a R c c a b

(a) (b) (c)

Figure 10E.6 Various representations of an isodensity surface 
of ethanol: (a) solid surface, (b) transparent surface, and (c) 
mesh surface.
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Representations such as those we have illustrated are of criti-
cal importance in a number of fields. For instance, they may be 
used to identify an electron-poor region of a molecule that is 
susceptible to association with or chemical attack by an elec-
tron-rich region of another molecule. Such considerations are 
important for assessing the pharmacological activity of poten-
tial drugs.

Checklist of concepts

☐ 1. The Hückel method neglects overlap and interactions 
between atoms that are not neighbours.

☐ 2. The Hückel method may be expressed in a compact 
manner by introducing matrices.

☐ 3. The π-bond formation energy is the energy released 
when a π bond is formed.

☐ 4. The π-electron binding energy is the sum of the ener-
gies of each π electron.

☐ 5. The delocalization energy is the difference between the 
π-electron energy and the energy of the same molecule 
with localized π bonds.

☐ 6. The highest occupied molecular orbital (HOMO) and 
the lowest unoccupied molecular orbital (LUMO) form 
the frontier orbitals of a molecule.

☐ 7. The stability of benzene arises from the geometry of the 
ring and the high delocalization energy.

☐ 8. Semi-empirical calculations approximate integrals 
by estimating integrals using empirical data; ab initio 
methods evaluate all integrals numerically.

☐ 9. Density functional theories develop equations based on 
the electron density rather than the wavefunction itself.

☐ 10. Graphical techniques are used to plot a variety of sur-
faces based on electronic structure calculations.

Checklist of equations

–

+

Figure 10E.7 An elpot diagram of ethanol; the molecule has 
the same orientation as in Fig. 10E.6. Red denotes regions of 
negative electrostatic potential and blue regions of positive 
potential (as in δ−O–Hδ+).

Property Equation Comment Equation number

LCAO ψ χ=∑ co o

o

χ0 are atomic orbitals 10E.1

Hückel equations Hc = ScE Hückel approximation: S = 0 except between 
neighbours

10E.9

Diagonalization c−1Hc = E 10E.10

π-Bond formation energy Ebf = Eπ − NCα Definition; NC is the number of carbon atoms 10E.12

Molecular integrals ( ) ( ) ( )( / ) ( ) ( )AB CD j A B r C D| = ∫ ∫0 12 1 21 1 1 2 2 d dτ τ A, B, C, D are atomic orbitals 10E.14a

Electron probability density ρ ψ( ) ( )

,

r r= ∑ m

m

2

occ

Sum over occupied molecular orbitals m 10E.15
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chaPter 10  Molecular structure

TOPIC 10A Valence-bond theory

Discussion questions
10A.1 Discuss the role of the Born–Oppenheimer approximation in the 
calculation of a molecular potential energy curve or surface.

10A.2 Why are promotion and hybridization invoked in valence-bond theory?

10A.3 Describe the various types of hybrid orbitals and how they are 
used to describe the bonding in alkanes, alkenes, and alkynes. How does 

hybridization explain that in allene, CH2 = C = CH2, the two CH2 groups lie in 
perpendicular planes?

10A.4 Why is spin-pairing so common a features of bond formation (in the 
context of valence-bond theory)?

10A.5 What are the consequences of resonance?

Exercises
10A.1(a) Write the valence-bond wavefunction for the single bond in HF.
10A.1(b) Write the valence-bond wavefunction for the triple bond in N2.

10A.2(a) Write the valence-bond wavefunction for the resonance hybrid 
HF ↔ H+F− ↔ H−F+ (allow for different contributions of each structure).
10A.2(b) Write the valence-bond wavefunction for the resonance hybrid 
N2 ↔ N+N− ↔ N2–N2+ ↔ structures of similar energy.

10A.3(a) Describe the structure of a P2 molecule in valence-bond terms. 
Why is P4 a more stable form of molecular phosphorus than P2?
10A.3(b) Describe the structures of SO2 and SO3 in terms of valence bond 
theory.

10A.4(a) Describe the bonding in 1,3-butadiene using hybrid orbitals.
10A.4(b) Describe the bonding in 1,3-pentadiene using hybrid orbitals.

10A.5(a) Show that the linear combinations h1 = s + px + py + pz and 
h2 = s − px − py + pz are mutually orthogonal.
10A.5(b) Show that the linear combinations h1 = (sin ζ )s + (cos ζ )p and h2 =  
(cos ζ )s − (sin ζ )p are mutually orthogonal for all values of the angle ζ (zeta).

10A.6(a) Normalize the sp2 hybrid orbital h = s + 21/2p given that the s and p 
orbitals are each normalized to 1.
10A.6(b) Normalize the linear combinations in Exercise 10A.5b given that the 
s and p orbitals are each normalized to 1.

Problems
10A.1 An sp2 hybrid orbital that lies in the xy plane and makes an angle of 
120° to the x-axis has the form

ψ = − +






1

3

1

2

3

21 2 1 2

1 2

1 2/ /

/

/
s p px y

 
Use hydrogenic atomic orbitals to write the explicit form of the hybrid orbital. 
Show that it has its maximum amplitude in the direction specified.

10A.2 Confirm that the hybrid orbitals in eqn 10A.5 make angles of 120° to 
each other.

10A.3 Show that two equivalent hybrid orbitals of the form spλ make 
an angle θ to each other, then λ θ= −1/cos . Plot a graph of λ against θ 
and confirm that θ = 180° when no s orbital is included and θ = 120°  
when λ = 2.

TOPIC 10B Principles of molecular orbital theory

Discussion questions
10B.1 What feature of molecular orbital theory is responsible for bond 
formation?

10B.2 Why is spin-pairing so common a features of bond formation (in the 
context of molecular orbital theory)?

Exercises
10B.1(a) Normalize the molecular orbital ψ = ψA + λψB in terms of the 
parameter λ and the overlap integral S.
10B.1(b) A better description of the molecule in Exercise 10B.1(a)  
might be obtained by including more orbitals on each atom in the  
linear combination. Normalize the molecular orbital ψ = ψA + λψB + λ′ψB′ in 
terms of the parameters λ and λ′ and the appropriate overlap  

integrals S, where ψB and ψB′ are mutually orthogonal orbitals  
on atom B.

10B.2(a) Suppose that a molecular orbital has the (unnormalized) form 
0.145A + 0.844B. Find a linear combination of the orbitals A and B that is 
orthogonal to this combination and determine the normalization constants of 
both combinations using S = 0.250.

iranchembook.ir/edu



 Exercises and problems  437

10B.2(b) Suppose that a molecular orbital has the (unnormalized) form 
0.727A + 0.144B. Find a linear combination of the orbitals A and B that is 
orthogonal to this combination and determine the normalization constants of 
both combinations using S = 0.117.

10B.3(a) The energy of H2
+  with internuclear separation R is given by 

eqn 10B.4. The values of the contributions are given below. Plot the 
molecular potential energy curve and find the bond dissociation energy 
(in electronvolts) and the equilibrium bond length.

where Eh = 27.2 eV, a0 = 52.9 pm, and E EH h= − 1
2

.
10B.3(b) The same data as in Exercise 10B.3(a) may be used to calculate the 
molecular potential energy curve for the antibonding orbital, which is given 
by eqn 10B.7. Plot the curve.

10B.4(a) Identify the g or u character of bonding and antibonding π orbitals 
formed by side-by-side overlap of p atomic orbitals.
10B.4(b) Identify the g or u character of bonding and antibonding δ orbitals 
formed by face-to-face overlap of d atomic orbitals.

Problems
10B.1 Calculate the (molar) energy of electrostatic repulsion between two 
hydrogen nuclei at the separation in H2 (74.1 pm). The result is the energy that 
must be overcome by the attraction from the electrons that form the bond. 
Does the gravitational attraction between them play any significant role? Hint: 
The gravitational potential energy of two masses is equal to −Gm1m2/r; G is 
listed inside the front cover.

10B.2 Imagine a small electron-sensitive probe of volume 1.00 pm3 inserted 
into an H2

+  molecule-ion in its ground state. Calculate the probability that 
it will register the presence of an electron at the following positions: (a) at 
nucleus A, (b) at nucleus B, (c) half way between A and B, (c) at a point 
20 pm along the bond from A and 10 pm perpendicularly. Do the same for 
the molecule-ion the instant after the electron has been excited into the 
antibonding LCAO-MO.

10B.3 Derive eqns 10B.4 and 10B.7 by working with the normalized  
LCAO-MOs for the H2

+  molecule-ion. Proceed by evaluating the  
expectation value of the hamiltonian for the ion. Make use of the fact  
that A and B each individually satisfy the Schrödinger equation for an  
isolated H atom.

10B.4 Examine whether occupation of the bonding orbital with one electron 
(as calculated in the preceding problem) has a greater or lesser bonding effect 

than occupation of the antibonding orbital with one electron. Is that true at all 
internuclear separations?

10B.5‡ The LCAO-MO approach described in the text can be used to 
introduce numerical methods needed in quantum chemistry. In this problem 
we evaluate the overlap, Coulomb, and resonance integrals numerically and 
compare the results with the analytical equations (eqns 10B.5). (a) Use the 
LCAO-MO wavefunction and the H2

+  hamiltonian to derive equations for the 
relevant integrals and use mathematical software or an electronic spreadsheet 
to evaluate the overlap, Coulomb, and resonance integrals numerically, 
and the total energy for the 1sσg MO in the range a0 < R < 4a0. Compare the 
results obtained by numerical integration with results obtained analytically. 
(b) Use the results of the numerical integrations to draw a graph of the total 
energy, E(R), and determine the minimum of total energy, the equilibrium 
internuclear distance, and the dissociation energy (D0).

10B.6 (a) Calculate the total amplitude of the normalized bonding and 
antibonding LCAO-MOs that may be formed from two H1s orbitals at a 
separation of 2a0 = 106 pm. Plot the two amplitudes for positions along the 
molecular axis both inside and outside the internuclear region. (b) Plot the 
probability densities of the two orbitals. Then form the difference density, the 
difference between ψ2 and 1

2
2 2( )ψ ψA B+ .

TOPIC 10C homonuclear diatomic molecules

Discussion questions
10C.1 Draw diagrams to show the various orientations in which a p orbital and 
a d orbital on adjacent atoms may form bonding and antibonding molecular 
orbitals.

10C.2 Outline the rules of the building-up principle for homonuclear diatomic 
molecules.

10C.3 What is the role of the Born–Oppenheimer approximation in molecular 
orbital theory?

10C.4 What is the justification for treating s and p atomic orbital contributions 
to molecular orbitals separately?

10C.5 To what extent can orbital overlap be related to bond strength?

Exercises
10C.1(a) Give the ground-state electron configurations and bond orders of  
(i) Li2, (ii) Be2, and (iii) C2.
10C.1(b) Give the ground-state electron configurations of (i) F2

− , (ii) N2, and 
(iii) O2

2− .

10C.2(a) From the ground-state electron configurations of B2 and C2, predict 
which molecule should have the greater dissociation energy.

10C.2(b) From the ground-state electron configurations of Li2 and Be2, predict 
which molecule should have the greater dissociation energy.

10C.3(a) Which has the higher dissociation energy, F2 or F2
+ ?

‡ These problems were supplied by Charles Trapp and Carmen Giunta.

R/a0 0 1 2 3 4

j/Eh 1.000 0.729 0.472 0.330 0.250

k/Eh 1.000 0.736 0.406 0.199 0.092

S 1.000 0.858 0.587 0.349 0.189
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10C.3(b) Arrange the species O O O O22 2 2
2+ − −, , ,  in order of increasing bond 

length.

10C.4(a) Evaluate the bond order of each Period 2 homonuclear diatomic 
molecule.
10C.4(b) Evaluate the bond order of each Period 2 homonuclear diatomic 
cation, X2

+ , and anion, X2
−.

10C.5(a) For each of the species in Exercise 10C.4(b), specify which molecular 
orbital is the HOMO.
10C.5(b) For each of the species in Exercise 10C.4(b), specify which molecular 
orbital is the LUMO.

10C.6(a) What is the speed of a photoelectron ejected from an orbital of 
ionization energy 12.0 eV by a photon of radiation of wavelength 100 nm?
10C.6(b) What is the speed of a photoelectron ejected from a molecule with 
radiation of energy 21 eV and known to come from an orbital of ionization 
energy 12 eV?

10C.7(a) The overlap integral between two hydrogenic 1s orbitals on nuclei 
separated by a distance R is given by eqn 10C.4. At what separation is S = 0.20 
for (i) H2, (ii) He2?
10C.7(b) The overlap integral between two hydrogenic 2s orbitals on nuclei 
separated by a distance R is given by the expression in Brief illustration 10C.2. 
At what separation is S = 0.20 for (i) H2, (ii) He2?

Problems
10C.1 Before doing the calculation below, sketch how the overlap between 
a 1s orbital and a 2p orbital directed towards it can be expected to depend 
on their separation. The overlap integral between an H1s orbital and an 
H2p orbital directed towards it on nuclei separated by a distance R is 
S R a R a R a R a= + + −( ){ ( ) ( ) // 1 / / }e2

0 0
1
3 0

0 . Plot this function, and find the 
separation for which the overlap is a maximum.

10C.2‡ Use the 2px and 2pz hydrogenic atomic orbitals to construct 
simple LCAO descriptions of 2pσ and 2pπ molecular orbitals. (a) Make a 
probability density plot, and both surface and contour plots of the xz-plane 
amplitudes of the 2pzσ and 2pzσ* molecular orbitals. (b) Make surface and 
contour plots of the xz-plane amplitudes of the 2pxπ and 2pxπ* molecular 
orbitals. Include plots for both an internuclear distance, R, of 10a0 and 3a0, 

where a0 = 52.9 pm. Interpret the graphs, and explain why this graphical 
information is useful.

10C.3 Show, if overlap is ignored, (a) that any molecular orbital expressed 
as a linear combination of two atomic orbitals may be written in the form 
ψ = ψA cos θ + ψB sin θ, where θ is a parameter that varies between 0 and π, 
and (b) that if ψA and ψB are orthogonal and normalized to 1, then ψ is also 
normalized to 1. (c) To what values of θ do the bonding and antibonding 
orbitals in a homonuclear diatomic molecule correspond?

10C.4 In a particular photoelectron spectrum using 21.21 eV photons, 
electrons were ejected with kinetic energies of 11.01 eV, 8.23 eV, and 5.22 eV. 
Sketch the molecular orbital energy level diagram for the species, showing the 
ionization energies of the three identifiable orbitals.

TOPIC 10D heteronuclear diatomic molecules

Discussion questions
10D.1 Describe the Pauling and Mulliken electronegativity scales. Why should 
they be approximately in step?

10D.2 Why do both ionization energy and electron affinity play a role in 
estimating the energy of an atomic orbital to use in a molecular structure 
calculation?

10D.3 Discuss the steps involved in the calculation of the energy of a system by 
using the variation principle. Are any assumptions involved?

10D.4 What is the physical significance of the Coulomb and resonance 
integrals?

10D.5 Discuss how the properties of carbon explain the bonding features that 
make it an ideal biological building block.

Exercises
10D.1(a) Give the ground-state electron configurations of (i) CO, (ii) NO, and 
(iii) CN−.
10D.1(b) Give the ground-state electron configurations of (i) XeF, (ii) PN, and 
(iii) SO−.

10D.2(a) Sketch the molecular orbital energy level diagram for XeF and deduce 
its ground-state electron configuration. Is XeF likely to have a shorter bond 
length than XeF+?
10D.2(b) Sketch the molecular orbital energy level diagram for IF and deduce 
its ground-state electron configuration. Is IF likely to have a shorter bond 
length than IF− or IF+?

10D.3(a) Use the electron configurations of NO− and NO+ to predict which is 
likely to have the shorter bond length.
10D.3(b) Use the electron configurations of SO− and SO+ to predict which is 
likely to have the shorter bond length.

10D.4(a) A reasonably reliable conversion between the Mulliken and Pauling 
electronegativity scales is given by eqn 10D.4. Use Table 10D.1 in the 
Resource section to assess how good the conversion formula is for Period 2 
elements.
10D.4(b) A reasonably reliable conversion between the Mulliken and Pauling 
electronegativity scales is given by eqn 10D.4. Use Table 10D.1 in the 
Resource section to assess how good the conversion formula is for Period 3 
elements.

10D.5(a) Estimate the orbital energies to use in a calculation of the molecular 
orbitals of HCl. For data, see Tables 9B.2 and 9B.3.
10D.5(b) Estimate the orbital energies to use in a calculation of the molecular 
orbitals of HBr. For data, see Tables 9B.2 and 9B.3.

10D.6(a) Use the values derived in Exercise 10D.5(a) to estimate the molecular 
orbital energies in HCl; Use S = 0.
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10D.6(b) Use the values derived in Exercise 10D.5(b) to estimate the molecular 
orbital energies in HBr; Use S = 0.

10D.7(a) Now repeat Exercise 10D.6(a), but with S = 0.20.
10D.7(b) Now repeat Exercise 10D.6(b), but with S = 0.20.

Problems
10D.1 Equation 10D.9 follows from eqn 10D.8a by making the 
approximation |αB – αA| ≫ 2|β| and setting S = 0. Explore the consequences 
of not setting S = 0.

10D.2 Suppose that a molecular orbital of a heteronuclear diatomic molecule is 
built from the orbital basis A, B, and C, where B and C are both on one atom 
(they can be envisaged as F2s and F2p in HF, for instance). Set up the secular 
equations for the optimum values of the coefficients and the corresponding 
secular determinant.

10D.3 Continue the preceding problem by setting αA = −7.2 eV, αB = −10.4 eV, 
αB = −8.4 eV, βAB = −1.0 eV, βAC = −0.8 eV, and calculate the orbital energies and 
coefficients with (i) both S = 0, (ii) both S = 0.2.

10D.4 As a variation of the preceding problem explore the consequences  
of increasing the energy separation of the B and C orbitals (use S = 0  
for this stage of the calculation). Are you justified in ignoring orbital C at  
any stage?

TOPIC 10E Polyatomic molecules

Discussion questions
10E.1 Discuss the scope, consequences, and limitations of the 
approximations on which the Hückel method is based.

10E.2 Distinguish between delocalization energy, π-electron binding energy, 
and π-bond formation energy. Explain how each concept is employed.

10E.3 Outline the computational steps used in the self-consistent field 
approach to electronic structure calculations.

10E.4 Explain why the use of Gaussian-type orbitals is generally preferred over 
the use of hydrogenic (exponential) orbitals in basis sets.

10E.5 Distinguish between semi-empirical, ab initio, and density functional 
theory methods of electronic structure determination.

Exercises
10E.1(a) Write down the secular determinants for (i) linear H3, (ii) cyclic H3 
within the Hückel approximation.
10E.1(b) Write down the secular determinants for (i) linear H4, (ii) cyclic H4 
within the Hückel approximation.

10E.2(a) Predict the electron configurations of (i) the benzene anion, (ii) the 
benzene cation. Estimate the π-electron binding energy in each case.
10E.2(b) Predict the electron configurations of (i) the allyl radical, (ii) the 
cyclobutadiene cation. Estimate the π-electron binding energy in each case.

10E.3(a) Compute the delocalization energy and π-bond formation energy of 
(i) the benzene anion, (ii) the benzene cation.
10E.3(b) Compute the delocalization energy and π-bond formation energy of 
(i) the allyl radical, (ii) the cyclobutadiene cation.

10E.4(a) Write down the secular determinants for (i) anthracene (1),  
(ii) phenanthrene (2) within the Hückel approximation and using the C2p 
orbitals as the basis set.

1 Anthracene       2 Phenanthrene

10E.4(b) Write down the secular determinants for (i) azulene (3), (ii) 
acenaphthalene (4) within the Hückel approximation and using the C2p 
orbitals as the basis set.

3 Azulene        4 Acenaphthalene

10E.5(a) Use mathematical software to estimate the π-electron binding energy 
of (i) anthracene (1), (ii) phenanthrene (2) within the Hückel approximation.
10E.5(b) Use mathematical software to estimate the π-electron binding energy 
of (i) azulene (3), (ii) acenaphthalene (4) within the Hückel approximation.

10E.6(a) Write the electronic hamiltonian for HeH+.
10E.6(b) Write the electronic hamiltonian for LiH2+.

Problems
10E.1 Set up and solve the Hückel secular equations for the π electrons of 
CO3

2−. Express the energies in terms of the Coulomb integrals αO and αC 
and the resonance integral β. Determine the delocalization energy of  
the ion.
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10E.2 For monocyclic conjugated polyenes (such as cyclobutadiene and 
benzene) with each of N carbon atoms contributing an electron in a 2p 
orbital, simple Hückel theory gives the following expression for the energies 
Ek of the resulting π molecular orbitals:

E
k
N

k N N

k N N

k = + = ± …±

= ± …± −

α β2
2

0 1 2

0 1 1 2

cos , , /

, , ( )/

π
for even

for odd  
(a) Calculate the energies of the π molecular orbitals of benzene and 
cyclooctatetraene (5). Comment on the presence or absence of degenerate 
energy levels. (b) Calculate and compare the delocalization energies of 
benzene (using the expression above) and hexatriene. What do you conclude 
from your results? (c) Calculate and compare the delocalization energies 
of cyclooctatetraene and octatetraene. Are your conclusions for this pair of 
molecules the same as for the pair of molecules investigated in part (b)?

5 Cyclooctatetraene

10E.3 Set up the secular determinants for the homologous series consisting of 
ethene, butadiene, hexatriene, and octatetraene and diagonalize them by using 
mathematical software. Use your results to show that the π molecular orbitals 
of linear polyenes obey the following rules:

•   The π molecular orbital with lowest energy is delocalized over all carbon 
atoms in the chain.

•   The number of nodal planes between C2p orbitals increases with the energy 
of the π molecular orbital.

10E.4 Set up the secular determinants for cyclobutadiene, benzene, and 
cyclooctatetraene and diagonalize them by using mathematical software. Use 
your results to show that the π molecular orbitals of monocyclic polyenes with 
an even number of carbon atoms follow a pattern in which:

•  The π molecular orbitals of lowest and highest energy are non-degenerate.

•  The remaining π molecular orbitals exist as degenerate pairs.

10E.5 Electronic excitation of a molecule may weaken or strengthen some 
bonds because bonding and antibonding characteristics differ between the 
HOMO and the LUMO. For example, a carbon–carbon bond in a linear 
polyene may have bonding character in the HOMO and antibonding 
character in the LUMO. Therefore, promotion of an electron from the HOMO 
to the LUMO weakens this carbon–carbon bond in the excited electronic 
state, relative to the ground electronic state. Consult Figs. 10E.2 and 10E.4 
and discuss in detail any changes in bond order that accompany the π* ← π 
ultraviolet absorptions in butadiene and benzene.

10E.6‡ Prove that for an open chain of N conjugated carbons the characteristic 
polynomial of the secular determinant (the polynomial obtained by 
expanding the determinant), PN(x), where x = (α − β)/β, obeys the recurrence 
relation PN = xPN − 1 − PN − 2, with P1 = x and P0 = 1.

10E.7 The standard potential of a redox couple is a measure of the 
thermodynamic tendency of an atom, ion, or molecule to accept an electron 
(Topic 6D). Studies indicate that there is a correlation between the LUMO 
energy and the standard potential of aromatic hydrocarbons. Do you expect 
the standard potential to increase or decrease as the LUMO energy decreases? 
Explain your answer.

10E.8‡ In Exercise 10E.1(a) you are invited to set up the Hückel secular 
determinant for linear and cyclic H3. The same secular determinant applies 

to the molecular ions H3
+  and D3

+ . The molecular ion H3
+  was discovered 

as long ago as 1912 by J.J. Thomson but the equilateral triangular structure 
was confirmed by M.J. Gaillard et al. much more recently (Phys. Rev. A 17, 
1797 (1978)). The molecular ion H3

+  is the simplest polyatomic species with 
a confirmed existence and plays an important role in chemical reactions 
occurring in interstellar clouds that may lead to the formation of water, 
carbon monoxide, and ethyl alcohol. The H3

+  ion has also been found in the 
atmospheres of Jupiter, Saturn, and Uranus. (a) Solve the Hückel secular 
equations for the energies of the H3 system in terms of the parameters α 
and β, draw an energy level diagram for the orbitals, and determine the 
binding energies of H3

+ , H3, and H3
− . (b) Accurate quantum mechanical 

calculations by G.D. Carney and R.N. Porter (J. Chem. Phys. 65, 3547 
(1976)) give the dissociation energy for the process H H H H3

+ +→ + +  as 
849 kJ mol−1. From this information and data in Table 10C.2, calculate the 
enthalpy of the reaction H g H g H g2

+ ++ →( ) ( ) ( )3 . (c) From your equations 
and the information given, calculate a value for the resonance integral β in 
H3

+ . Then go on to calculate the binding energies of the other H3  
species in (a).

10E.9‡ There is some indication that other hydrogen ring compounds and 
ions in addition to H3 and D3 species may play a role in interstellar chemistry. 
According to J.S. Wright and G.A. DiLabio (J. Phys. Chem. 96, 10793 (1992)), 
H5

− , H6, and H7
+  are particularly stable whereas H4 and H5

+  are not. Confirm 
these statements by Hückel calculations.

10E.10 Use appropriate electronic structure software and basis sets of your or 
your instructor’s choosing, perform self-consistent field calculations for the 
ground electronic states of H2 and F2. Determine ground-state energies and 
equilibrium geometries. Compare computed equilibrium bond lengths to 
experimental values.

10E.11 Use an appropriate semi-empirical method to compute the equilibrium 
bond lengths and standard enthalpies of formation of (a) ethanol, C2H5OH, 
(b) 1,4-dichlorobenzene, C6H4Cl2. Compare to experimental values and 
suggest reasons for any discrepancies.

10E.12 Molecular electronic structure methods may be used to estimate 
the standard enthalpy of formation of molecules in the gas phase. (a) Use 
a semi-empirical method of your choice or your instructor’s suggestion 
to calculate the standard enthalpy of formation of ethene, butadiene, 
hexatriene, and octatetraene in the gas phase. (b) Consult a database of 
thermochemical data, and, for each molecule in part (a), calculate the 
difference between the calculated and experimental values of the standard 
enthalpy of formation. (c) A good thermochemical database will also 
report the uncertainty in the experimental value of the standard enthalpy 
of formation. Compare experimental uncertainties with the relative errors 
calculated in part (b) and discuss the reliability of your chosen semi-
empirical method for the estimation of thermochemical properties of 
linear polyenes.

10E.13 Molecular orbital calculations based on semi-empirical, ab initio, and 
DFT methods describe the spectroscopic properties of conjugated molecules 
better than simple Hückel theory. (a) Use the computational method of 
your choice (semi-empirical, ab initio, or density functional methods) or 
your instructor’s suggestion to calculate the energy separation between the 
HOMO and LUMO of ethene, butadiene, hexatriene, and octatetraene. 
(b) Plot the HOMO–LUMO energy separations against the experimental 
frequencies for π* ← π ultraviolet absorptions for these molecules (61 500, 
46 080, 39 750, and 32 900 cm−1, respectively). Use mathematical software to 
find the polynomial equation that best fits the data. (c) Use your polynomial 
fit from part (b) to estimate the wavenumber and wavelength of the π* ← π 
ultraviolet absorption of decapentaene from the calculated HOMO–LUMO 
energy separation. (d) Discuss why the calibration procedure of part (b) is 
necessary.
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Integrated activities
10.1 The languages of valence-bond theory and molecular orbital theory are 
commonly combined when discussing unsaturated organic compounds. 
Construct the molecular orbital energy level diagrams of ethene on the basis 
that the molecule is formed from the appropriately hybridized CH2 or CH 
fragments.

10.2 Here we develop a molecular orbital theory treatment of the peptide 
group (6), which links amino acids in proteins, and establish the features that 
stabilize its planar conformation. (a) It will be familiar from introductory 
chemistry that valence bond theory explains the planar conformation by 
invoking delocalization of the π bond over the oxygen, carbon, and nitrogen 
atoms by resonance:

C N

O
α1

α2

C

H

6 Peptide group

C N

O
C

H

C N

O
C

H

–

+

It follows that we can model the peptide group using molecular orbital theory 
by making LCAO-MOs from 2p orbitals perpendicular to the plane defined 
by the O, C, and N atoms. The three combinations have the form:

ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ1 O C N 2 O N 3 O C N= + + = − = − +a b c d e f g h  
where the coefficients a to h are all positive. Sketch the orbitals ψ1, ψ2, and ψ3 
and characterize them as bonding, non-bonding, or antibonding molecular 
orbitals. In a non-bonding molecular orbital, a pair of electrons resides in an 
orbital confined largely to one atom and not appreciably involved in bond 
formation. (b) Show that this treatment is consistent only with a planar 
conformation of the peptide link. (c) Draw a diagram showing the relative 
energies of these molecular orbitals and determine the occupancy of the 
orbitals. Hint: Convince yourself that there are four electrons to be distributed 
among the molecular orbitals. (d) Now consider a non-planar conformation 
of the peptide link, in which the O2p and C2p orbitals are perpendicular to 
the plane defined by the O, C, and N atoms, but the N2p orbital lies on that 
plane. The LCAO-MOs are given by

ψ ψ ψ ψ ψ ψ ψ ψ4 O C 5 N 6 O C= + = = −a b e f g  
Just as before, sketch these molecular orbitals and characterize them as 
bonding, non-bonding, or antibonding. Also, draw an energy level diagram 
and determine the occupancy of the orbitals. (e) Why is this arrangement of 
atomic orbitals consistent with a non-planar conformation for the peptide 
link? (f) Does the bonding MO associated with the planar conformation 
have the same energy as the bonding MO associated with the non-planar 
conformation? If not, which bonding MO is lower in energy? Repeat the 
analysis for the non-bonding and antibonding molecular orbitals. (g) Use 
your results from parts (a)–(f) to construct arguments that support the planar 
model for the peptide link.

10.3 Molecular orbital calculations may be used to predict trends in the 
standard potentials of conjugated molecules, such as the quinones and flavins, 
that are involved in biological electron transfer reactions. It is commonly 
assumed that decreasing the energy of the LUMO enhances the ability of 
a molecule to accept an electron into the LUMO, with an accompanying 
increase in the value of the molecule’s standard potential. Furthermore, a 
number of studies indicate that there is a linear correlation between the 
LUMO energy and the reduction potential of aromatic hydrocarbons. (a) 
The standard potentials at pH = 7 for the one-electron reduction of methyl-
substituted 1,4-benzoquinones (7) to their respective semiquinone radical 
anions are:

O

O

R6

R5

R2

R3

7

Using the computational method of your choice (semi-empirical, ab initio, 
or density functional theory methods), calculate ELUMO, the energy of the 
LUMO of each substituted 1,4-benzoquinone, and plot ELUMO against E<. Do 
your calculations support a linear relation between ELUMO and E<? (b) The 
1,4-benzoquinone for which R2 = R3 = CH3 and R5 = R6 = OCH3 is a suitable 
model of ubiquinone, a component of the respiratory electron transport chain 
(Impact I17.3). Determine ELUMO of this quinone and then use your results 
from part (a) to estimate its standard potential. (c) The 1,4-benzoquinone 
for which R2 = R3 = R5 = CH3 and R6 = H is a suitable model of plastoquinone, 
an electron carrier in photosynthesis. Determine ELUMO of this quinone 
and then use your results from part (a) to estimate its standard potential. 
Is plastoquinone expected to be a better or worse oxidizing agent than 
ubiquinone?

10.4 The variation principle can be used to formulate the wavefunctions 
of electrons in atoms as well as molecules. Suppose that the function 
ψ α α

trial e= −N r( )
2 with N(α) the normalization constant and α an adjustable 

parameter, is used as a trial wavefunction for the 1s orbital of the hydrogen 
atom. Show that

E e( )
/

α α
µ

α= − 





3
2

2
22

2
1 2

π  
where e is the fundamental charge and μ is the reduced mass for the H atom. 
What is the minimum energy associated with this trial wavefunction?

10.5 The particle-in-a-box wavefunctions can be used as a crude 
approximation to the molecular orbitals of conjugated polyenes, when it is 
known as the free-electron molecular orbital (FEMO) method. (a) For a linear 
conjugated polyene with each of N carbon atoms contributing an electron in a 
2p orbital, the energies Ek of the resulting π molecular orbitals are given by:

E
k

N
k Nk = + + = …α β2

1
1 2cos , , ,

π
 

Use this expression to determine a reasonable empirical estimate of the 
resonance integral β for the homologous series consisting of ethene, 
butadiene, hexatriene, and octatetraene given that π* ← π ultraviolet 
absorptions from the HOMO to the LUMO occur at 61 500, 46 080, 39 750, 
and 32 900 cm−1, respectively. (b) Calculate the π-electron delocalization 
energy, Edeloc = Eπ − n(α + β), of octatetraene, where Eπ is the total π-electron 
binding energy and n is the total number of π-electrons. (c) In the context of 
this Hückel model, the π molecular orbitals are written as linear combinations 
of the carbon 2p orbitals. The coefficient of the jth atomic orbital in the kth 
molecular orbital is given by:

R2 R3 R5 R6 E</V

H H H H 0.078

CH3 H H H 0.023

CH3 H CH3 H −0.067

CH3 CH3 CH3 H −0.165

CH3 CH3 CH3 CH3 −0.260
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c
N

jk
N

j Nkj = +




 + = …2

1 1
1 2

1 2/

sin , , ,
π

 
Determine the values of the coefficients of each of the six 2p orbitals in each 
of the six π molecular orbitals of hexatriene. Match each set of coefficients 
(that is, each molecular orbital) with a value of the energy calculated with the 
expression given in part (a) of the molecular orbital. Comment on trends that 
relate the energy of a molecular orbital with its ‘shape’, which can be inferred 
from the magnitudes and signs of the coefficients in the linear combination 
that describes the molecular orbital.

10.6 Use mathematical software, a spreadsheet, or the Living graphs on the 
web site for this book to:

(a) Plot the 1σ orbital (eqn 10B.2, with the atomic orbitals given in Brief 
illustration 10B.1) for different values of the internuclear distance. Point to 
the features of the 1σ orbital that lead to bonding.
(b) Plot the 2σ orbital (eqn 10B.2, with the atomic orbitals given in Brief 
illustration 10B.1) for different values of the internuclear distance. Point to 
the features of the 2σ orbital that lead to antibonding.
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Mathematical background 6 Matrices

A matrix is an array of numbers. We shall consider only square 
matrices, which have the numbers arranged in the same num-
ber of rows and columns. By using matrices, we can manipulate 
large numbers of ordinary numbers simultaneously. A deter-
minant is a particular combination of the numbers that appear 
in a matrix and is used to manipulate the matrix.

Matrices may be combined together by addition or multi-
plication according to generalizations of the rules for ordinary 
numbers. Although we describe below the key algebraic pro-
cedures involving matrices, it is important to note that most 
numerical matrix manipulations are now carried out with 
mathematical software. You are encouraged to use such soft-
ware, if it is available to you.

MB6.1 Definitions
Consider a square matrix M of n2 numbers arranged in n col-
umns and n rows. These n2 numbers are the elements of the 
matrix, and may be specified by stating the row, r, and column, 
c, at which they occur. Each element is therefore denoted Mrc. 
A diagonal matrix is a matrix in which the only nonzero ele-
ments lie on the major diagonal (the diagonal from M11 to 
Mnn). Thus, the matrix

D =














1 0 0

0 2 0

0 0 1  
is a 3 × 3 diagonal square matrix. The condition may be written

M mrc r rc= δ  (MB6.1)

where δrc is the Kronecker delta, which is equal to 1 for r = c 
and to 0 for r ≠ c. In the above example, m1 = 1, m2 = 2, and 
m3 = 1. The unit matrix, 1 (and occasionally I), is a special case 
of a diagonal matrix in which all on the major diagonal are 1.

The transpose of a matrix M is denoted MT and is defined by

M Mmn nm
T =   transpose  (MB6.2)

That is, the element in row n, column m of the original matrix 
becomes the element in row m, column n of the transpose 
(in effect, the elements are reflected across the diagonal). 
The determinant, |M|, of the matrix M is a real number aris-
ing from a specific procedure for taking sums and differences 
of products of matrix elements, as described in The chemist’s 
toolkit 9B.1. For convenience, that discussion is repeated here. 
Thus, a 2 × 2 determinant is evaluated as

a b

c d
ad bc= −

 
 2 × 2 determinant  (MB6.3a)

and a 3 × 3 determinant is evaluated by expanding it as a sum of 
2 × 2 determinants:

a b c

d e f

g h i

a
e f

h i
b

d f

g i
c

d e

g h

a ei fh b di fg c dh eg

= − +

= − − − + −( ) ( ) ( )   
 3 × 3 determinant  (MB6.3b)

Note the sign change in alternate columns (b occurs with a 
negative sign in the expansion). An important property of 
a determinant is that if any two rows or any two columns are 
interchanged, then the determinant changes sign.

MB6.2 Matrix addition and multiplication
Two matrices M and N may be added to give the sum S = M + N, 
according to the rule

S M Nrc rc rc= +   matrix addition  (MB6.4)

That is, corresponding elements are added. Two matrices may also 
be multiplied to give the product P = MN according to the rule

P M Nrc rn nc

n

=∑
 

 matrix multiplication  (MB6.5)

These procedures are illustrated in Fig. MB6.1. It should be 
noticed that in general MN ≠ NM, and matrix multiplication is 
in general non-commutative (that is, the result depends on the 
order of multiplication).

Brief illustration MB6.2 Matrix addition and 
multiplication

Consider the matrices

M N=






=






1 2

3 4

5 6

7 8
and

 

Brief illustration MB6.1 Matrix manipulations

The following grid illustrates the features so far:

Matrix Transpose Determinant

M MT |M|

1 2

3 4







1 3

2 4







1 2

3 4
1 4 2 3 2= × − × = −
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The inverse of a matrix M is denoted M−1, and is defined so 
that

MM M M− −= =1 1 1   Inverse  (MB6.6)

The inverse of a matrix is best constructed by using mathe-
matical software and the tedious analytical approach is rarely 
necessary.

MB6.3 Eigenvalue equations

An eigenvalue equation is an equation of the form

Mx x= λ   eigenvalue equation  (MB6.7a)

where M is a square matrix with n rows and n columns, λ is 
a constant, the eigenvalue, and x is the eigenvector, an n × 1 

(column) matrix that satisfies the conditions of the eigenvalue 
equation and has the form:

x =



















x

x

xn

1

2



 
In general, there are n eigenvalues λ(i), i = 1, 2, …, n, and n cor-
responding eigenvectors x(i). We write eqn MB6.8a as (noting 
that 1x = x)

( )M x− =λ1 0  (MB6.7b)

Equation MB6.7b has a solution only if the determinant 
|M − λ1| of the coefficients of the matrix M − λ1 is zero. It fol-
lows that the n eigenvalues may be found from the solution of 
the secular equation:

| |M − =λ1 0  (MB6.8)

If the inverse of the matrix M − λ1 exists, then, from eqn 
MB6.7b, (M − λ1)−1(M − λ1)x = x = 0, a trivial solution. For a 
nontrivial solution, (M − λ1)−1 must not exist, which is the case 
if eqn MB6.9 holds.

Their sum is

S =






+






=






1 2

3 4

5 6

7 8

6 8

10 12

and their product is

P =












=
× + × × + ×
× + × × + ×







=
1 2

3 4

5 6

7 8

1 5 2 7 1 6 2 8

3 5 4 7 3 6 4 8

119 22

43 50







Brief illustration MB6.4 Simultaneous equations

Once again we use the matrix M in Brief illustration MB6.1, 
and write eqn MB6.7a as

1 2

3 4

1 2

3 4
1

2

1

2













=






−
−

x

x

x

x
λ

λ
λ

 rearranged into











=
x

x
1

2

0

From the rules of matrix multiplication, the latter form 
expands into

( )

( )

1 2

3 4
0

1 2

1 2

− +
+ −







=
λ

λ
x x

x x  
which is simply a statement of the two simultaneous equations

( ) ( )1 2 and3 41 2 1 2− + = + − =λ λx x x x0 0  
The condition for these two equations to have solutions is

| | ( )( )M − =
−

−
= − − − =λ

λ
λ

λ λ1
1 2

3 4
1 4 6 0

This condition corresponds to the quadratic equation

λ λ2 5 2− =– 0

with solutions λ = +5.372 and λ = –0.372, the two eigenvalues 
of the original equation.

+
+

+ +

+

+ ++

+ +

+ + +

=

=
×
××

× ×

×

...

...
+ ...

...

+ ...

...

...

......

(a)

(b)

Figure MB6.1 A diagrammatic representation of (a) matrix 
addition, (b) matrix multiplication.

Brief illustration MB6.3 Inversion

Mathematical software gives the following inversion of M:

Matrix Inverse

M M−1

1 2

3 4







−

−













2 1

3
2

1
2
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The n eigenvalues found by solving the secular equations are 
used to find the corresponding eigenvectors. To do so, we begin 
by considering an n × n matrix X which will be formed from the 
eigenvectors corresponding to all the eigenvalues. Thus, if the 
eigenvalues are λ1, λ2, …, and the corresponding eigenvectors 
are

x x( )

( )

( )

( )

( )

( )

( )

( )

1

1
1

2
1

1

2

1
2

2
2

2

=



















=








x

x

x

x

x

xn n

� �











=



















�
�

x( )

( )

( )

( )

n

n

n

n
n

x

x

x

1

2

 

(MB6.9a)

the matrix X is

X x x x= =( )( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

(

1 2

1
1

1
2

1

2
1

2
2

2

1

�

�
�

� � �
n

n

n

n

x x x

x x x

x )) ( ) ( )x xn n
n2 �



















 

(MB6.9b)

Similarly, we form an n × n matrix Λ with the eigenvalues λ 
along the diagonal and zeroes elsewhere:

Λ =



















λ
λ

λ

1

2

0 0

0 0

0 0

�
�

� � �
� n  

(MB6.10)

Now all the eigenvalue equations Mx(i) = λix(i) may be combined 
into the single matrix equation

MX = XΛ (MB6.11)

Finally, we form X−1 from X and multiply eqn MB6.13 by it 
from the left:

X−1MX = X−1XΛ = Λ (MB6.12)

A structure of the form X−1MX is called a similarity transforma-
tion. In this case the similarity transformation X−1MX makes M 
diagonal (because Λ is diagonal). It follows that if the matrix X 
that causes X−1MX to be diagonal is known, then the problem is 
solved: the diagonal matrix so produced has the eigenvalues as 
its only nonzero elements, and the matrix X used to bring about 
the transformation has the corresponding eigenvectors as its col-
umns. As will be appreciated once again, the solutions of eigen-
value equations are best found by using mathematical software.

which expands to

x x x x

x x x x
1
1

2
1

1
2

2
2

1
1

2
1

1
2

2
2

2 2

3 4 3 4

5( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

+ +
+ +







=

.. .

. .

( ) ( )

( ) ( )

372 0 372

5 372 0 372
1
1

1
2

2
1

2
2

x x

x x

−
−








This is a compact way of writing the four equations

x x x x x x

x x

1
1

2
1

1
1

1
2

2
2

1
2

1
1

2
1

2 5 372 2 0 372

3 4

( ) ( ) ( ) ( ) ( ) ( )

( )

. .+ = + = −

+ (( ) = + = −5 372 3 4 0 3722
1

1
2

2
2

2
2. .( ) ( ) ( ) ( )x x x x

corresponding to the two original simultaneous equations 
and their two roots.

Brief illustration MB6.5 Eigenvalue equations

In Brief illustration MB6.4 we established that if M =






1 2

3 4
 

then λ1 =  +5.372 and λ 2 =  –0.372, with eigenvectors 

x 1 1
1

2
1

( ) =






x

x

( )

( )
 and x( )

( )

( )
.2 1

2

2
2

=






x

x
 We form

X =






=

−






x x

x x
1
1

1
2

2
1

2
2

5 372 0

0 0 372

( ) ( )

( ) ( )

.

.
Λ

The expression MX = XΛ becomes

1 2

3 4
1
1

1
2

2
1

2
2

1
1

1
2

2
1

2
2













=

x x

x x

x x

x x

( ) ( )

( ) ( )

( ) ( )

( ) ( )


 −






5 372 0

0 0 372

.

.

Brief illustration MB6.6 Similarity transformation

To apply the similarity transformation, eqn MB6.12, to the 

matrix 1 2

3 4







 from Brief illustration MB6.1 it is best to use 

mathematical software to find the form of X. The result is

X X=
−







=
−




−
0 416 0 825

0 909 0 566

0 574 0 837

0 922 0 422
1

. .

. .

. .

. .   
This result can be verified by carrying out the multiplication

X MX− =
−













1
0 574 0 837

0 922 0 422

1 2

3 4

0 416 0 825

0 909

. .

. .

. .

. −−






=
−







0 566

5 372 0

0 0 372

.

.

.

The result is indeed the diagonal matrix Λ calculated in Brief 
illustration MB6.4. It follows that the eigenvectors x(1) and x(2) 
are

x x( ) ( )
.

.

.

.
1 2

0 416

0 909

0 825

0 566
=







=
−
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chaPter 11

molecular symmetry

In this chapter we sharpen the concept of ‘shape’ into a precise 
definition of ‘symmetry’, and show that symmetry may be dis-
cussed systematically.

11A symmetry elements

We see how to classify any molecule according to its symme-
try and how to use this classification to discuss the polarity and 
chirality of molecules.

11B group theory

The systematic treatment of symmetry is ‘group theory’. We 
show that it is possible to represent the outcome of symme-
try operations (such as rotations and reflections) by matrices. 
That step allows us to express symmetry operations numeri-
cally and therefore to perform numerical manipulations. One 

important outcome is the ability to classify various combina-
tions of atomic orbitals according to their symmetries. It also 
introduces the hugely important concept of a ‘character table’, 
which is the concept most widely employed in chemical appli-
cations of group theory.

11C applications of symmetry

The symmetry analysis described in the preceding two Topics 
is now put to use. We see that it provides simple criteria for 
deciding whether certain integrals necessarily vanish. One 
important integral is the overlap integral between two orbitals. 
By knowing which atomic orbitals may have nonzero overlap, 
we can decide which ones can contribute to molecular orbitals. 
We also see how to select linear combinations of atomic orbitals 
that match the symmetry of the nuclear framework. Finally, by 
considering the symmetry properties of integrals, we see that 
it is possible to derive the selection rules that govern spectro-
scopic transitions.
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11A symmetry elements

Some objects are ‘more symmetrical’ than others. A sphere is 
more symmetrical than a cube because it looks the same after it 
has been rotated through any angle about any diameter. A cube 
looks the same only if it is rotated through certain angles about 
specific axes, such as 90°, 180°, or 270° about an axis passing 
through the centres of any of its opposite faces (Fig. 11A.1), or 
by 120° or 240° about an axis passing through any of its oppo-
site corners. Similarly, an NH3 molecule is ‘more symmetri-
cal’ than an H2O molecule because NH3 looks the same after 
rotations of 120° or 240° about the axis shown in Fig. 11A.2, 
whereas H2O looks the same only after a rotation of 180°.

This Topic puts these intuitive notions on a more formal 
foundation. In it, we see that molecules can be grouped together 
according to their symmetry, with the tetrahedral species CH4 
and SO4

2− in one group and the pyramidal species NH3 and SO3
2− 

in another. It turns out that molecules in the same group share 
certain physical properties, so powerful predictions can be 
made about whole series of molecules once we know the group 
to which they belong.

➤➤ Why do you need to know this material?
Symmetry arguments can be used to make immediate 
assessments of the properties of molecules, and when 
expressed quantitatively (Topic 11B) can be used to save a 
great deal of calculation.

➤➤ What is the key idea?
Molecules can be classified into groups according to their 
symmetry elements.

➤➤ What do you need to know already?
This Topic does not draw on others directly, but it will be 
useful to be aware of the shapes of a variety of simple 
molecules and ions encountered in introductory chemistry 
courses.

Contents

11a.1 Symmetry operations and symmetry elements 448
brief illustration 11a.1: symmetry elements 449

11a.2  The symmetry classification of molecules 449
brief illustration 11a.2: symmetry classification 449

(a) The groups C1, Ci, and Cs 450
brief illustration 11a.3: C1, Ci, and Cs 450

(b) The groups Cn, Cnv, and Cnh 451
brief illustration 11a.4: Cn, Cnv, and Cnh 451

(c) The groups Dn, Dnh, and Dnd 452
brief illustration 11a.5: Dn, Dnh, and Dnd 452

(d) The groups Sn 452
brief illustration 11a.6: Sn 453

(e) The cubic groups 453
brief illustration 11a.7: the cubic groups 453

(f ) The full rotation group 454

11a.3 Some immediate consequences of symmetry 454
(a) Polarity 454

brief illustration 11a.8: Polar molecules 454
(b) Chirality 455

brief illustration 11a.9: chiral molecules 455
Checklist of concepts 455
Checklist of operations and elements 456

C2 C3

C4

Figure 11A.1 Some of the symmetry elements of a cube. The 
twofold, threefold, and fourfold axes are labelled with the 
conventional symbols.

(a) (b)

C3 C2

Figure 11A.2 (a) An NH3 molecule has a threefold (C3) axis and 
(b) an H2O molecule has a twofold (C2) axis. Both have other 
symmetry elements too.
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448 11 Molecular symmetry

We have slipped in the term ‘group’ in its conventional sense. 
In fact, a group in mathematics has a precise formal signifi-
cance and considerable power and gives rise to the name ‘group 
theory’ for the quantitative study of symmetry. This power is 
revealed in Topic 11B.

11A.1 Symmetry operations and 
symmetry elements

An action that leaves an object looking the same after it has 
been carried out is called a symmetry operation. Typical 
symmetry operations include rotations, reflections, and 
inversions. There is a corresponding symmetry element for 
each symmetry operation, which is the point, line, or plane 
with respect to which the symmetry operation is performed. 
For instance, a rotation (a symmetry operation) is carried 
out around an axis (the corresponding symmetry element). 
We shall see that we can classify molecules by identifying all 
their symmetry elements, and grouping together molecules 
that possess the same set of symmetry elements. This proce-
dure, for example, puts the trigonal pyramidal species NH3 
and SO3

2− into one group and the angular species H2O and SO2 
into another group.

An n-fold rotation (the operation) about an n-fold axis 
of symmetry, Cn (the corresponding element), is a rotation 
through 360°/n. An H2O molecule has one twofold axis, C2. An 
NH3 molecule has one threefold axis, C3, with which is asso-
ciated two symmetry operations, one being 120° rotation in 
a clockwise sense and the other 120° rotation in an anticlock-
wise sense. There is only one twofold rotation associated with 
a C2 axis because clockwise and anticlockwise 180° rotations 
are identical. A pentagon has a C5 axis, with two rotations 
(one clockwise, the other anticlockwise) through 72° associ-
ated with it. It also has an axis denoted C5

2 , corresponding to 
two successive C5 rotations; there are two such operations, one 
through 144° in a clockwise sense and the other through 144° 
in a anticlockwise sense. A cube has three C4 axes, four C3 axes, 
and six C2 axes. However, even this high symmetry is exceeded 
by a sphere, which possesses an infinite number of symmetry 
axes (along any diameter) of all possible integral values of n. 
If a molecule possesses several rotation axes, then the one (or 
more) with the greatest value of n is called the principal axis. 
The principal axis of a benzene molecule is the sixfold axis per-
pendicular to the hexagonal ring (1).

C6

1 Benzene, C6H6

A reflection (the operation) in a mirror plane, σ (the ele-
ment), may contain the principal axis of a molecule or be 
perpendicular to it. If the plane contains the principal axis, it 
is called ‘vertical’ and denoted σv. An H2O molecule has two 
vertical planes of symmetry (Fig. 11A.3) and an NH3 molecule 
has three. A vertical mirror plane that bisects the angle between 
two C2 axes is called a ‘dihedral plane’ and is denoted σd (Fig. 
11A.4). When the plane of symmetry is perpendicular to the 
principal axis it is called ‘horizontal’ and denoted σh. A C6H6 
molecule has a C6 principal axis and a horizontal mirror plane 
(as well as several other symmetry elements).

In an inversion (the operation) through a centre of sym-
metry, i (the element), we imagine taking each point in a mol-
ecule, moving it to the centre of the molecule, and then moving 
it out the same distance on the other side; that is, the point (x, y, 
z) is taken into the point (–x, –y, –z). Neither an H2O molecule 
nor an NH3 molecule has a centre of inversion, but a sphere 
and a cube do have one. A C6H6 molecule does have a centre of 
inversion, so does a regular octahedron (Fig. 11A.5); a regular 
tetrahedron and a CH4 molecule do not.

An n-fold improper rotation (the operation) about an n-
fold axis of improper rotation or an n-fold improper rotation 
axis, Sn, (the symmetry element) is composed of two succes-
sive transformations. The first component is a rotation through 
360°/n, and the second is a reflection through a plane perpen-
dicular to the axis of that rotation; neither operation alone 
needs to be a symmetry operation. A CH4 molecule has three 
S4 axes (Fig. 11A.6).

σv

σv′

Figure 11A.3 An H2O molecule has two mirror planes. They are 
both vertical (that is, contain the principal axis), so are denoted 
σv and ′σ v .

σd σd
σd

Figure 11A.4 Dihedral mirror planes (σd) bisect the C2 axes 
perpendicular to the principal axis.
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11A Symmetry elements  449

The identity, E, consists of doing nothing; the corresponding 
symmetry element is the entire object. Because every molecule 
is indistinguishable from itself if nothing is done to it, every 
object possesses at least the identity element. One reason for 
including the identity is that some molecules have only this 
symmetry element (2).

I

F

C

Br

Cl

2 CBrClFI

11A.2 The symmetry classification  
of molecules

The classification of objects according to symmetry elements 
corresponding to operations that leave at least one common 
point unchanged gives rise to the point groups. There are five 
kinds of symmetry operation (and five kinds of symmetry ele-
ment) of this kind. When we consider crystals (Topic 18A), we 
meet symmetries arising from translation through space. These 
more extensive groups are called space groups.

To classify molecules according to their symmetries, we list 
their symmetry elements and collect together molecules with 
the same list of elements. The name of the group to which a 
molecule belongs is determined by the symmetry elements it 
possesses. There are two systems of notation (Table 11A.1). 
The Schoenflies system (in which a name looks like C4v) is 
more common for the discussion of individual molecules, and 
the Hermann–Mauguin system, or International system (in 
which a name looks like 4mm), is used almost exclusively in 
the discussion of crystal symmetry. The identification of a mol-
ecule’s point group according to the Schoenflies system is sim-
plified by referring to the flow diagram in Fig. 11A.7 and the 
shapes shown in Fig. 11A.8.

Brief illustration 11A.1 Symmetry elements

To identify the symmetry elements of a naphthalene molecule 
(3) we first note that, like all molecules, it has the identity 
element, E. There is one twofold axis of rotation, C2, perpen-
dicular to the plane and two others, ′C2 ,  lying in the plane. 
There is a mirror plane in the plane of the molecule, σh, and 
two perpendicular planes, σv, containing the C2 rotation axis. 
There is also a centre of inversion, i, through the mid-point of 

the molecule. Note that some of these elements are implied by 
others: the centre of inversion, for instance, is implied by a σv 
plane and a ′C2 , axis.

3 Naphthalene, C10H8

C2

C2′

C2′

σh

σv

σv

i

Self-test 11A.1 Identify the symmetry elements of an SF6 
molecule.

Answer: E, 3S4, 3C4, 6C2, 4S6, 4C3, 3σh, 6σd, i

Brief illustration 11A.2 Symmetry classification

To identify the point group to which a ruthenocene mol-
ecule (4) belongs we use the flow diagram in Fig. 11A.7. The 
path to trace is shown by a blue line; it ends at Dnh. Because 

S4

σh

C4
C6

S6

(a) (b)

σh

Figure 11A.6 (a) A CH4 molecule has a fourfold improper 
rotation axis (S4): the molecule is indistinguishable after a 90° 
rotation followed by a reflection across the horizontal plane, 
but neither operation alone is a symmetry operation. (b) The 
staggered form of ethane has an S6 axis composed of a 60° 
rotation followed by a reflection.

Centre of
inversion, i

Figure 11A.5 A regular octahedron has a centre of inversion (i).
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450 11 Molecular symmetry

(a) The groups C1, Ci, and Cs

A molecule belongs to the group C1 if it 
has no element other than the identity. 
It belongs to Ci if it has the identity and 
the inversion alone, and to Cs if it has the 
identity and a mirror plane alone.

the molecule has a fivefold axis, it belongs to the group D5h. If 
the rings were staggered, as they are in an excited state of fer-
rocene that lies 4 kJ mol−1 above the ground state (5), the hori-
zontal reflection plane would be absent, but dihedral planes 
would be present.

Ru

Cp = C5H5

4 Ruthenocene, Ru(Cp)2

Cp = C5H5

Fe

5 Ferrocene, Fe(Cp)2 
(excited state)

Self-test 11A.2 Classify the pentagonal antiprismatic excited 
state of ferrocene (5).

Answer: D5d

Brief illustration 11A.3 C1, Ci, and Cs

The CBrClFI molecule (2) has only the identity element, and 
so belongs to the group C1. Meso-tartaric acid (6) has the iden-
tity and inversion elements, and so belongs to the group Ci. 
Quinoline (7) has the elements (E,σ), and so belongs to the 
group Cs.

Table 11A.1 The notations for point groups*

Ci 1

Cs m

C1 1 C2 2 C3 3 C4 4 C6 6

C2v 2mm C3v 3m C4v 4mm C6v 6mm

C2h 2/m C3h 6 C4h 4/m C6h 6/m

D2 222 D3 32 D4 422 D6 622

D2h mmm D3h 62m D4h 4/mmm D6h 6/mmm

D2d 42m D3d 3m S4 4/m S6 3

T 23 Td 43m Th m3

O 432 Oh m3m

* Shoenflies notation in black, Hermann–Mauguin (International system) in blue. In 
the Hermann–Mauguin system, a number n denotes the presence of an n-fold axis 
and m denotes a mirror plane. A slash (/) indicates that the mirror plane is 
perpendicular to the symmetry axis. It is important to distinguish symmetry 
elements of the same type but of different classes, as in 4/mmm, in which there are 
three classes of mirror plane. A bar over a number indicates that the element is 
combined with an inversion. The only groups listed here are the so-called 
‘crystallographic point groups’.

Name Elements

C1 E

Ci E, i

Cs E, σ

Molecule

Linear?
Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

Y

N

N

NN

N

N N

N

N

N

N

N

N

Ni?

i?

Two or 
more
Cn, n > 2?

C5?

Cn?

Select Cn with the highest n;
then, are there nC2 

perpendicular to Cn?

σh?

σh?

nσd?

nσv?

S2n?S2n

D∞h
C∞v

Ih
Oh

Td

Dnh

Dnd Dn

Cs

C1Ci

σ?

i?

Cnh

Cnv

Cn

Figure 11A.7 A flow diagram for determining the point group 
of a molecule. Start at the top and answer the question posed 
in each diamond (Y = yes, N = no).
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OH

OH

H

H

COOH

COOH

Centre of
inversion

6 Meso-tartaric acid,
   HOOCCH(OH)CH(OH)COOH  

N

7 Quinoline, C9H7N

Self-test 11A.3 Identify the group to which the molecule (8) 
belongs.

8

Answer: C2v

(b) The groups Cn, Cnv, and Cnh

A molecule belongs to the group Cn if it possesses an n-fold axis. 
Note that symbol Cn is now playing a triple role: as the label of 
a symmetry element, a symmetry operation, and a group. If in 
addition to the identity and a Cn axis a molecule has n verti-
cal mirror planes σv, then it belongs to the group Cnv. Objects 
that in addition to the identity and an n-fold principal axis also 
have a horizontal mirror plane σh belong to the groups Cnh. The 
presence of certain symmetry elements may be implied by the 
presence of others: thus, in C2h the elements C2 and σh jointly 
imply the presence of a centre of inver-
sion (Fig. 11A.9). Note also that the 
tables specify the elements, not the 
operations: for instance, there are two 
operations associated with a single C3 
axis (rotations by +120° and –120°).

Brief illustration 11A.4 Cn, Cnv, and Cnh

An H2O2 molecule (9) has the symmetry elements E and C2, 
so belongs to the group C2. An H2O molecule has the symme-
try elements E, C2, and 2σv, so it belongs to the group C2v. An 
NH3 molecule has the elements E, C3, and 3σv, so it belongs to 
the group C3v. A heteronuclear diatomic molecule such as HCl 
belongs to the group C∞v because rotations around the axis by 
any angle and reflections in all the infinite number of planes 
that contain the axis are symmetry operations. Other mem-
bers of the group C∞v include the linear OCS molecule and a 
cone. The molecule trans-CHClaCHCl (10) has the elements 
E, C2, and σh, so belongs to the group C2h.

O

H

C2

9 Hydrogen peroxide, H2O2  

C2

Cl

Cl

σh

10 trans-CHCl=CHCl

S2n

Dnh

Dnd

Dn

Cnh

Cnv

Cn

n = 2 3 4 5 6 ∞

ConePyramid

Plane or bipyramid

Figure 11A.8 A summary of the shapes corresponding to 
different point groups. The group to which a molecule belongs 
can often be identified from this diagram without going 
through the formal procedure in Fig. 11A.7.

Name Elements

Cn E, Cn

Cnv E, Cn, nσv

Cnh E, Cn, σh

σh

i

C2

Figure 11A.9 The presence of a twofold axis and a horizontal 
mirror plane jointly imply the presence of a centre of inversion 
in the molecule.
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452 11 Molecular symmetry

(c) The groups Dn, Dnh, and Dnd

We see from Fig. 11A.7 that a molecule that has an n-fold prin-
cipal axis and n twofold axes perpendicular to Cn belongs to 
the group Dn. A molecule belongs to Dnh if it also possesses 
a horizontal mirror plane. D∞h is also the group of the linear 

OCO and HCCH molecules, and 
of a uniform cylinder. A mol-
ecule belongs to the group Dnd 
if in addition to the elements of 
Dn it possesses n dihedral mirror 
planes σd.

Brief illustration 11A.5 Dn, Dnh, and Dnd

The planar trigonal BF3 molecule has the elements E, C3, 3C2, 
and σh (with one C2 axis along each BeF bond), so belongs to 
D3h (12). The C6H6 molecule has the elements E, C6, 3C2, 3 2′C , 
and σh together with some others that these elements imply, so 
it belongs to D6h. Three of the C2 axes bisect CeC bonds and 
the other three pass through vertices of the hexagon formed 
by the carbon framework of the molecule. The prime on 3 2′C  
indicates that the three C2 axes are different from the other 
three C2 axes. All homonuclear diatomic molecules, such as 
N2, belong to the group D∞h because all rotations around the 
axis are symmetry operations, as are end-to-end rotation and 
end-to-end ref lection. Another example of a Dnh species is 
(13). The twisted, 90° allene (14) belongs to D2d.

B

F

12 Boron trifluoride, BF3

Self-test 11A.4 Identify the group to which the molecule 
B(OH)3 in the conformation shown in (11) belongs.

C3B

OH
σh

11 B(OH)3

Answer: C3h

P

Cl

C3

C2

C2

C2

σh

13 Phosphorus pentachloride, PCl5 (D3h)

C2, S4

C2′C2′

14 Allene, C3H4 (D2d)

Self-test 11A .5 Ident i f y the groups to which (a) the 
tetrachloroaurate(III) ion (15) and (b) the staggered confor-
mation of ethane (16) belong.

Cl

Au

C4

C2

C2C2

σh

–

15 Tetrachloroaurate(III) ion,
      [AuCl4]

–

 

C3,S6

C2

σd

16 Ethane, C2H6 (D3d)

Answer: (a) D4h, (b) D3d

(d) The groups Sn

Molecules that have not been classified into one of the groups 
mentioned so far, but which possess one Sn axis, belong to the 
group Sn. Note that the 
group S2 is the same as Ci, so 
such a molecule will already 
have been classified as Ci.

Name Elements

Dn E C nCn, , ′2

Dnh E C nCn, , ,′2 hσ

Dnd E C nC nn, , ,′2 dσ

Name Elements

Sn E, Sn and not previously 
classified
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(e) The cubic groups
A number of very important molecules possess more than one 
principal axis. Most belong to the cubic groups, and in particu-
lar to the tetrahedral groups T, Td, and Th (Fig. 11A.10a) or to 
the octahedral groups O and Oh (Fig. 11A.10b). A few icosahe-
dral (20-faced) molecules belonging to the icosahedral group, 
I (Fig. 11A.10c), are also known. The groups Td and Oh are the 
groups of the regular tetrahedron and the regular octahedron, 
respectively. If the object possesses the rotational symmetry of 
the tetrahedron or the octahedron, but none of their planes of 
reflection, then it belongs to the simpler groups T or O (Fig. 
11A.11). The group Th is based on T but also contains a centre 
of inversion (Fig. 11A.12).

Brief illustration 11A.6 Sn

Tetraphenylmethane (17) belongs to the point group S4. 
Molecules belonging to Sn with n > 4 are rare.

S4

Ph

Ph

Ph
Ph

   17  Tetraphenylmethane, C(C6H5)4 (S4)

Self-test 11A.6 Identify the group to which the ion in (18) 
belongs.

+
S4

18  N(CH2CH(CH3)CH(CH3)CH2)2
+

Answer: S4

Brief illustration 11A.7 The cubic groups

The molecules CH4 and SF6 belong, respectively, to the groups 
Td and Oh. Molecules belonging to the icosahedral group I 
include some of the boranes and buckminsterfullerene, C60 
(19). The molecules shown in Fig. 11A.11 belong to the groups 
T and O, respectively.

19 Buckminsterfullerene, C60 (I)

Self-test 11A.7 Identify the group to which the object shown 
in 20 belongs.

20

Answer: Th

Name Elements

T E, 4C3, 3C2

Td E, 3C2, 4C3, 3S4, 6σd

Th E, 3C2, 4C3, i, 4S6, 3σh

Name Elements

O E, 3C4, 4C3, 6C2

Oh E, 3S4, 3C4, 6C2, 4S6, 4C3, 3σh, 6σd, i

I E, 6C5, 10C3, 15C2

Ih E, 6S10, 10S6, 6C5, 10C3, 15C2, 15σ, i

(a) (b) (c)

Figure 11A.10 (a) Tetrahedral, (b) octahedral, and (c) 
icosahedral molecules are drawn in a way that shows their 
relation to a cube: they belong to the cubic groups Td, Oh, and 
Ih, respectively.
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454 11 Molecular symmetry

(f) The full rotation group
The full rotation group, R3 (the 3 refers to rotation in three 
dimensions), consists of an infinite number of rotation axes 
with all possible values of n. A sphere and an atom belong to 
R3, but no molecule does. Exploring the consequences of R3 is a 
very important way of applying symmetry arguments to atoms, 

and is an alternative approach 
to the theory of orbital angular 
momentum.

11A.3 Some immediate consequences 
of symmetry

Some statements about the properties of a molecule can be 
made as soon as its point group has been identified.

(a) Polarity
A polar molecule is one with a permanent electric dipole 
moment (HCl, O3, and NH3 are examples). If the molecule 

belongs to the group Cn with n > 1, it cannot possess a charge 
distribution with a dipole moment perpendicular to the sym-
metry axis because the symmetry of the molecule implies 
that any dipole that exists in one direction perpendicular to 
the axis is cancelled by an opposing dipole (Fig. 11A.13a). For 
example, the perpendicular component of the dipole associ-
ated with one OeH bond in H2O is cancelled by an equal but 
opposite component of the dipole of the second OeH bond, so 
any dipole that the molecule has must be parallel to the two-
fold symmetry axis. However, as the group makes no reference 
to operations relating the two ends of the molecule, a charge 
distribution may exist that results in a dipole along the axis 
(Fig. 11A.13b), and H2O has a dipole moment parallel to its 
twofold symmetry axis.

The same remarks apply generally to the group Cnv, so mol-
ecules belonging to any of the Cnv groups may be polar. In 
all the other groups, such as C3h, D, etc., there are symmetry 
operations that take one end of the molecule into the other. 
Therefore, as well as having no dipole perpendicular to the 
axis, such molecules can have none along the axis, for other-
wise these additional operations would not be symmetry 
operations. We can conclude that only molecules belonging to 
the groups Cn, Cnv, and Cs may have a permanent electric dipole 
moment. For Cn and Cnv, that dipole moment must lie along the 
symmetry axis.

Brief illustration 11A.8 Polar molecules

Ozone, O3, which is angular and belongs to the group C2v, may 
be polar (and is), but carbon dioxide, CO2, which is linear and 
belongs to the group D∞h, is not.

Self-test 11A.8 Is tetraphenylmethane polar?
Answer: No (S4)

(a) (b)

Figure 11A.11 Shapes corresponding to the point groups (a) 
T and (b) O. the presence of the decorated slabs reduces the 
symmetry of the object from Td and Oh, respectively.

Figure 11A.12 The shape of an object belonging to the 
group Th.

Name Elements

R3 E, ∞C2, ∞C3, …

(a) (b)

Figure 11A.13 (a) A molecule with a Cn axis cannot have a 
dipole perpendicular to the axis, but (b) it may have one 
parallel to the axis. The arrows represent local contributions 
to the overall electric dipole, such as may arise from bonds 
between pairs of neighbouring atoms with different 
electronegativities.
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(b) Chirality

A chiral molecule (from the Greek word for ‘hand’) is a mol-
ecule that cannot be superimposed on its mirror image. An 
achiral molecule is a molecule that can be superimposed on 
its mirror image. Chiral molecules are optically active in the 
sense that they rotate the plane of polarized light. A chiral mol-
ecule and its mirror-image partner constitute an enantiomeric 
pair of isomers and rotate the plane of polarization in equal but 
opposite directions.

A molecule may be chiral, and therefore optically active, only 
if it does not possess an axis of improper rotation, Sn. We need 
to be aware that an Sn improper rotation axis may be present 
under a different name, and be implied by other symmetry 
elements that are present. For example, molecules belonging 
to the groups Cnh possess an Sn axis implicitly because they 
possess both Cn and σh, which are the two components of an 
improper rotation axis. Any molecule containing a centre of 
inversion, i, also possesses an S2 axis, because i is equivalent to 
C2 in conjunction with σh, and that combination of elements 
is S2 (Fig. 11A.14). It follows that all molecules with centres of 
inversion are achiral and hence optically inactive. Similarly, 
because S1 = σ, it follows that any molecule with a mirror plane 
is achiral.

Brief illustration 11A.9 Chiral molecules

A molecule may be chiral if it does not have a centre of 
inversion or a mirror plane, which is the case with the 
amino acid alanine (21), but not with glycine (22). However, 
a molecule may be achiral even though it does not have a 
centre of inversion. For example, the S4 species (18) is achi-
ral and optically inactive: though it lacks i (that is, S2) it does 
have an S4 axis.

COOH

CH3

H

NH2

21 L-Alanine, NH2CH(CH3)COOH

22 Glycine, NH2CH2COOH

COOH

H

H NH2

Self-test 11A.9 Is tetraphenylmethane chiral?
Answer: No (S4)

Checklist of concepts

☐ 1. A symmetry operation is an action that leaves an object 
looking the same after it has been carried out.

☐ 2. A symmetry element is a point, line, or plane with 
respect to which a symmetry operation is performed.

☐ 3. The notation for point groups commonly used for mol-
ecules and solids is summarized in Table 11A1.

☐ 4. To be polar a molecule must belong to Cn, Cnv, or Cs 
(and have no higher symmetry).

☐ 5. A molecule may be chiral only if it does not possess an 
axis of improper rotation, Sn.

i

S2

Figure 11A.14 Some symmetry elements are implied by the 
other symmetry elements in a group. Any molecule containing 
an inversion also possesses at least an S2 element because i and 
S2 are equivalent.
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456 11 Molecular symmetry

Checklist of operations and elements

Symmetry operation Symbol Symmetry element

n-Fold rotation Cn n-fold axis of rotation

Reflection σ mirror plane

Inversion i centre of symmetry

n-Fold improper rotation Sn n-fold improper axis of rotation

Identity E entire object
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11B group theory

The systematic discussion of symmetry is called group theory. 
Much of group theory is a summary of common sense about 
the symmetries of objects. However, because group theory 
is systematic, its rules can be applied in a straightforward, 
mechanical way. In most cases the theory gives a simple, direct 
method for arriving at useful conclusions with the minimum of 
calculation, and this is the aspect we stress here. In some cases, 
though, they lead to unexpected results.

11B.1 The elements of group theory

A group in mathematics is a collection of transformations that 
satisfy four criteria. Thus, if we write the transformations as R, 
R′, … (which we can think of as reflections, rotations, and so on, 
of the kind introduced in Topic 11A), then they form a group if:

1. One of the transformations is the identity (that is: ‘do 
nothing’).

2. For every transformation R, the inverse transformation 
R−1 is included in the collection so that the combination 
RR−1 (the transformation R−1 followed by R) is equivalent 
to the identity.

3. The combination RR′ (the transformation R′ followed by 
R) is equivalent to a single member of the collection of 
transformations.

4. The combination R(R′R″), the transformation (R′R″) 
followed by R, is equivalent to (RR′)R″, the 
transformation R″ followed by (RR′).

Contents

11b.1  The elements of group theory 457
example 11b.1: showing that symmetry  
operations form a group 457
brief illustration 11b.1: classes 458

11b.2 Matrix representations 458
(a) Representatives of operations 459

brief illustration 11b.2: representatives 459
(b) The representation of a group 459

brief illustration 11b.3: matrix representations 459
(c) Irreducible representations 459
(d) Characters and symmetry species 460

brief illustration 11b.4: symmetry species 461

11b.3 Character tables 461
(a) Character tables and orbital degeneracy 461

example 11b.2: using a character table to judge 
degeneracy 461

(b) The symmetry species of atomic orbitals 462
brief illustration 11b.5: symmetry species  
of atomic orbitals 462

(c) The symmetry species of linear combinations  
of orbitals 463
example 11b.3: Identifying the symmetry  
species of orbitals 463

Checklist of concepts 464
Checklist of equations 464

➤➤ Why do you need to know this material?
Group theory puts qualitative ideas about symmetry on 
to a systematic basis that can be applied to a wide variety 
of calculations; it is used to draw conclusions that might 
not be immediately obvious and as a result can greatly 
simplify calculations. It is also the basis of the labelling 
of atomic and molecular orbitals that is used throughout 
chemistry.

➤➤ What is the key idea?
Symmetry operations may be represented by the effect of 
matrices on a basis.

➤➤ What do you need to know already?
You need to know about the types of symmetry operation 
and element introduced in Topic 11A. This discussion draws 
heavily on matrix algebra, especially matrix multiplication, 
as set out in Mathematical background 6.

Example 11B.1 Showing that symmetry operations form 
a group

Show that C2v = {E,C2,2σv} (specified by its elements) and con-
sisting of the operations {E,C2,σv,σ ′v} is indeed a group in the 
mathematical sense.
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458 11  Molecular symmetry

There is one potentially very confusing point that needs to be 
clarified at the outset. The entities that make up a group are its 
‘elements’. In chemistry, these elements are almost always sym-
metry operations. However, as explained in Topic 11A, we dis-
tinguish ‘symmetry operations’ from ‘symmetry elements’, the 
axes, planes, and so on with respect to which the operation is 
carried out. Finally, there is a third use of the word ‘element’, to 
denote the number lying in a particular location in a matrix. Be 

very careful to distinguish element (of a group), symmetry ele-
ment, and matrix element.

Symmetry operations fall into the same class if they are of 
the same type (for example, rotations) and can be transformed 
into one another by a symmetry operation of the group. The 
two threefold rotations in C3v belong to the same class because 
one can be converted into the other by a reflection (Fig. 11B.2); 
the three reflections all belong to the same class because each 
can be rotated into another by a threefold rotation. The formal 
definition of a class is that two operations R and R′ belong to 
the same class if there is a member S of the group such that

′ = −R S RS1   membership of a class  (11B.1)

where S−1 is the inverse of S.

11B.2 Matrix representations

Group theory takes on great power when the notional ideas 
presented so far are expressed in terms of collections of num-
bers in the form of matrices.

Brief illustration 11B.1 Classes

To show that C3
+ and C3

− belong to the same class in C3v (which 
intuitively we know to be the case as they are both rotations 
around the same axis), take S = σv. The reciprocal of a reflec-
tion is the reflection itself, so σ σv v

− =1 . It follows by using the 
relations derived to confirm the result of Self-test 11B.1 that

σ σ σ σ σ σ′
σ σ′

v v v v v v
− + + −= = =

−

1
3 3 3

v v 3  
C C C

C

Therefore, C3
+ and C3

− are related by an equation of the form of 
eqn 11B.1 and hence belong to the same class.

Self-test 11B.2 Show that the two reflections of the group C2v 
fall into different classes.

Answer: No operation of the group takes σ σv v→ ′

Method We need to show that combinations of the operations 
match the criteria set out above. The operations are specified 
in Topic 11A.

Answer Criterion 1 is fulfilled because the collection of sym-
metry operations includes the identity E. Criterion 2 is fulfilled 
because in each case the inverse of an operation is the opera-
tion itself. Thus, two successive twofold rotations is equivalent 
to the identity: C2C2 = E and likewise for the two reflections 
and the identity itself. Criterion 3 is fulfilled, because in each 
case one operation followed by another is the same as one of 
the four symmetry operations. For instance, a twofold rotation 
C2 followed by the reflection σ ′v is the same as the single reflec-
tion σv (Fig. 11B.1). Thus: σ σ′v 2 vC = .  Criterion 4 is fulfilled, 
as it is immaterial how the operations are grouped together. 
The following group multiplication table for the point group 
can be constructed similarly, where the entries are the product 
symmetry operations RR′:

Self-test 11B.1 Confirm that C3v = {E,C3,3σv} and consisting of 
the operations {E,2C3,3σv} is a group.

Answer: Criteria are fulfilled

R↓ R′ → E C2 σv σ ′v

E E C2 σv σ ′v

C2 C2 E σ ′v σv

σv σv σ ′v E C2

σ ′v σ ′v σv C2 E

σv′

C2

σv

Figure 11B.1 A twofold rotation C2 followed by the 
reflection ′σ v  is the same as the single reflection σv.

C3
+ C3

–

σv

σv′ σv″

Figure 11B.2 Symmetry operations in the same class are 
related to one another by the symmetry operations of the 
group. Thus, the three mirror planes shown here are related 
by threefold rotations, and the two rotations shown here are 
related by reflection in σv.
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(a) Representatives of operations

Consider the set of three p orbitals shown on the C2v SO2 mole-
cule in Fig. 11B.3. Under the reflection operation σv, the change 
(pS, pB, pA) ← (pS, pA, pB) takes place. We can express this trans-
formation by using matrix multiplication (Mathematics back-
ground 6):

( , , ) ( , , ) ( , ,

( )

p p p p p p p p pS B A S A B S A B=












 =

1 0 0

0 0 1

0 1 0

D σ v� �� ��

)) ( )D σ v

 
(11B.2a)

The matrix D(σv) is called a representative of the operation σv. 
Representatives take different forms according to the basis, the 
set of orbitals that has been adopted. In this case, the basis is 
(pS, pA, pB).

(b) The representation of a group
The set of matrices that represents all the operations of the 
group is called a matrix representation, Γ (uppercase gamma), 

of the group for the basis that has been chosen. We denote this 
‘three-dimensional’ representation (a representation consisting 
of 3 × 3 matrices) by Γ(3). The matrices of a representation mul-
tiply together in the same way as the operations they represent. 
Thus, if for any two operations R and R′ we know that RR′ = R″, 
then D(R)D(R′) = D(R″) for a given basis.

The discovery of a matrix representation of the group means 
that we have found a link between symbolic manipulations of 
operations and algebraic manipulations of numbers.

(c) Irreducible representations
Inspection of the representatives shows that they are all of 
block-diagonal form:

D =
















 

 

0 0

0

0  

 block-diagonal form  (11B.3)

The block-diagonal form of the representatives shows us that 
the symmetry operations of C2v never mix pS with the other two 

Brief illustration 11B.2 Representatives

We use the same technique to find matrices that reproduce 
the  other symmetry operations. For instance, C2 has the effect 
(–pS, –pB, –pA) ← (pS, pA, pB), and its representative is

D( )C2

1 0 0

0 0 1

0 1 0

=
−

−
−















 

(11B.2b)

The effect of σ ′v  is (–pS, –pA, –pB) ← (pS, pA, pB), and its repre-
sentative is

D( )′ =
−

−
−













σ v

1 0 0

0 1 0

0 0 1  

(11B.2c)

The identity operation has no effect on the basis, so its repre-
sentative is the 3 × 3 unit matrix:

D( )E =














1 0 0

0 1 0

0 0 1  

(11B.2d)

Self-test 11B.3 Find the representative of the one remaining 
operation of the group, the reflection σv.

Answer: D( )σ v =














1 0 0

0 0 1

0 1 0

Brief illustration 11B.3 Matrix representations

In the group C2v, a twofold rotation followed by a reflection in 
a mirror plane is equivalent to a reflection in the second mir-
ror plane: specifically, ′ =σ σv 2 vC .  When we use the represent-
atives specified above, we find

D D( ) ( )′ =
−

−
−















−
−

−















=σ v C2

1 0 0

0 1 0

0 0 1

1 0 0

0 0 1

0 1 0

1 00 0

0 0 1

0 1 0















= D( )σ v

This multiplication reproduces the group multiplication. The 
same is true of all pairs of representative multiplications, so 
the four matrices form a representation of the group.

Self-test 11B.4 Confirm the result that σ σv v 2′ =C  by using the 
matrix representations developed here.

–

–

–

–
––––

+

+

+

S

A
B

Figure 11B.3 The three px orbitals that are used to illustrate the 
construction of a matrix representation in a C2v molecule (SO2).

iranchembook.ir/edu



460 11  Molecular symmetry

functions. Consequently, the basis can be cut into two parts, 
one consisting of pS alone and the other of (pA, pB). It is readily 
verified that the pS orbital itself is a basis for the one-dimen-
sional representaion

D D D D( ) ( ) ( ) ( )E C= = − = ′ = −1 1 1 12 σ σv v  

which we shall call Γ(1). The remaining two functions (pA, pB) 
are a basis for the two-dimensional representation Γ (2):

D D

D D

( ) ( )

( ) ( )

E C=






=
−

−






=






′ =
−

1 0

0 1

0 1

1 0

0 1

1 0

1

2

σ σv v

00

0 1−




  

These matrices are the same as those of the original three-
dimensional representation, except for the loss of the first row 
and column. We say that the original three-dimensional repre-
sentation has been reduced to the ‘direct sum’ of a one-dimen-
sional representation ‘spanned’ by pS, and a two-dimensional 
representation spanned by (pA, pB). This reduction is consistent 
with the common sense view that the central orbital plays a role 
different from the other two. We denote the reduction symboli-
cally by writing1

Γ Γ Γ( ) ( ) ( )3 1 2= +   direct sum  (11B.4)

The one-dimensional representation Γ (1) cannot be reduced any 
further, and is called an irreducible representation of the group 
(an ‘irrep’). We can demonstrate that the two-dimensional 
representation Γ (2) is reducible (for this basis in this group) by 
switching attention to the linear combinations p1 = pA + pB and 
p2 = pA – pB. These combinations are sketched in Fig. 11B.4. The 
representatives in the new basis can be constructed from the old 
by noting, for example, that under σv, (pB, pA) ← (pA, pB). In this 
way we find the following representation in the new basis:

D D

D D

( ) ( )

( ) ( )

E C=






=
−





=
−







′ =
−

1 0

0 1

1 0

0 1

1 0

0 1

1

2

σ σv v

00

0 1−




  

The new representatives are all in block-diagonal form, in this 

case 


0

0






, and the two combinations are not mixed with each 

other by any operation of the group. We have therefore achieved 
the reduction of Γ (2) to the sum of two one-dimensional repre-
sentations. Thus, p1 spans

D D D D( ) ( ) ( ) ( )E C= = − = ′ = −1 1 1 12 σ σv v  

which is the same one-dimensional representation as that 
spanned by pS, and p2 spans

D D D D( ) ( ) ( ) ( )E C= = = − ′ = −1 1 1 12 σ σv v  

which is a different one-dimensional representation; we shall 
denote these two representations Γ (1)′ and Γ (1)″, respectively. At 
this stage we have reduced the original representation as follows:

Γ Γ Γ Γ( ) ( ) ( ) ( )3 1 1 1= + ′ + ′′  

(d) Characters and symmetry species

The character, χ (chi), of an operation in a particular matrix 
representation is the sum of the diagonal elements of the repre-
sentative of that operation. Thus, in the original basis we are 
using, the characters of the representatives are

The characters of one-dimensional representatives are just the 
representatives themselves. The sum of the characters of the 
reduced representation is unchanged by the reduction:

Although the notation Γ (n) can be used for general represen-
tations, it is common in chemical applications of group theory 

–

–

+

+A

B

–
+

+
A

B

–

Figure 11B.4 Two symmetry-adapted linear combinations of 
the basis orbitals shown in Fig. 11B.3. The two combinations 
each span a one-dimensional irreducible representation, and 
their symmetry species are different.

1 The symbol ⊕ is sometimes used to denote a direct sum to distin-
guish it from an ordinary sum, in which case eqn 11B.4 would be written 
Γ(3) = Γ(1) ⊕ Γ(2).

R E C2 σv σ ′v

χ(R) for Γ  (1) 1 −1 1 −1

χ(R) for Γ  (1)′ 1 −1 1 −1

χ(R) for Γ  (1)″ 1 1 −1 −1

Sum: 3 −1 1 −3

R E C2 σv σ ′v

D(R) 1 0 0

0 1 0

0 0 1















−
−

−















1 0 0

0 0 1

0 1 0

1 0 0

0 0 1

0 1 0















−
−

−















1 0 0

0 1 0

0 0 1

χ(R) 3 −1 1 −3
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to use the labels A, B, E, and T to denote the symmetry species 
of the representation:

 A:  one-dimensional representation, character +1 under 
the principal rotation

 B:  one-dimensional representation, character −1 under 
the principal rotation

 E: two-dimensional irreducible representation
 T: three-dimensional irreducible representation

Subscripts are used to distinguish the irreducible representa-
tions if there is more than one of the same type: A1 is reserved 
for the representation with character +1 for all operations; A2 
has +1 for the principal rotation but −1 for reflections. All the 
irreducible representations of C2v are one-dimensional, and the 
table above is labelled as follows:

At this point we have found three irreducible representations 
of the group C2v. Are these the only irreducible representations 
of the group C2v? There is in fact only one more species of irre-
ducible representations of this group, for a surprising theorem 
of group theory states that

Number of symmetry species number of classes=   
 number of species  (11B.5)

In C2v, for instance, there are four classes of operation (four col-
umns in the character table), so there are only four species of 
irreducible representation. The character table therefore shows 
the characters of all the irreducible representations of this 
group. Another powerful result relates the sum of the dimen-
sions, di, of all the symmetry species Γ (i) to the order of the 
group, the total number of symmetry operations, h:

d hi

i

2 =∑
Species  

 dimensionality and order  (11B.6)

11B.3 Character tables

The tables we have been constructing are called character 
tables and from now on move to the centre of the discussion. 
The columns of a character table are labelled with the symme-
try operations of the group. For instance, for the group C3v the 
columns are headed E, 2C3, and 3σv (Table 11B.1). The num-
bers multiplying each operation are the numbers of members 
of each class. The rows under the labels for the operations 
summarize the symmetry properties of the orbitals. They are 
labelled with the symmetry species.

(a) Character tables and orbital degeneracy
The character of the identity operation E tells us the degeneracy 
of the orbitals. Thus, in a C3v molecule, any orbital with a sym-
metry label A1 or A2 is non-degenerate. Any doubly degenerate 
pair of orbitals in C3v must be labelled E because, in this group, 
only E symmetry species have characters greater than 1. (Take 
care to distinguish the identity operation E (italic, a column 
heading) from the symmetry label E (roman, a row label).)

Because there are no characters greater than 2 in the column 
headed E in C3v, we know that there can be no triply degenerate 
orbitals in a C3v molecule. This last point is a powerful result of 
group theory, for it means that with a glance at the character 
table of a molecule, we can state the maximum possible degener-
acy of its orbitals.

Brief illustration 11B.4 Symmetry species

There are three classes of operation in the group C3v with oper-
ations {E,2C3,3σv}, so there are three symmetry species (they 
turn out to be A1, A2, and E). The order of the group is 6, so 
if we already knew that two of the symmetry species are one 
dimensional, we could infer that the remaining irreducible 
representation is two-dimensional (E) from 12 + 12 + d2 = 6.

Self-test 11B.5 How many symmetry species are there for the 
group Td, with operations {E,8C3,3C2,6σd,6S4}? Can you infer 
their dimensionalities?

Answer: 5 species; 2A + E + 2T for h = 24

Example 11B.2 Using a character table to judge 
degeneracy

Can a trigonal planar molecule such as BF3 have triply 
degenerate orbitals? What is the minimum number of atoms 
from which a molecule can be built that does display triple 
degeneracy?

Symmetry species E C2 σv σ ′v

B2 1 −1 1 −1

B1 1 −1 1 −1

A2 1 1 −1 −1

Table 11B.1* The C3v character table

C3v, 3m E 2C3 3σv h = 6

A1 1 1 1 z z2, x2 + y2

A2 1 1 −1

E 2 −1 0 (x, y) (xy, x2 – y2), (yz, zx)

* More character tables are given in the Resource section.
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(b) The symmetry species of atomic orbitals

The characters in the rows labelled A and B and in the col-
umns headed by symmetry operations other than the identity 
E indicate the behaviour of an orbital under the corresponding 
operations: a +1 indicates that an orbital is unchanged, and a −1 
indicates that it changes sign. It follows that we can identify the 
symmetry label of the orbital by comparing the changes that 
occur to an orbital under each operation, and then comparing 
the resulting +1 or −1 with the entries in a row of the charac-
ter table for the point group concerned. By convention, irredu-
cible representations are labelled with upper case Roman letters 
(such as A1 and E) and the orbitals to which they apply are 
labelled with the lower case equivalents (so an orbital of sym-
metry species A1 is called an a1 orbital). Examples of each type 
of orbital are shown in Fig. 11B.5.

For the rows labelled E or T (which refer to the behaviour 
of sets of doubly and triply degenerate orbitals, respectively), 
the characters in a row of the table are the sums of the charac-
ters summarizing the behaviour of the individual orbitals in the 
basis. Thus, if one member of a doubly degenerate pair remains 
unchanged under a symmetry operation but the other changes 
sign (Fig. 11B.7), then the entry is reported as χ = 1 − 1 = 0. 
Care must be exercised with these characters because the 

Method First identify the point group, and then refer to the 
corresponding character table in the Resource section. The 
maximum number in the column headed by the identity E 
is the maximum orbital degeneracy possible in a molecule 
of that point group. For the second part, consider the shapes 
that can be built from two, three, etc. atoms, and decide which 
number can be used to form a molecule that can have orbitals 
of symmetry species T.

Answer Trigonal planar molecules belong to the point group 
D3h. Reference to the character table for this group shows that 
the maximum degeneracy is 2, as no character exceeds 2 in 
the column headed E. Therefore, the orbitals cannot be triply 
degenerate. A tetrahedral molecule (symmetry group T) has 
an irreducible representation with a T symmetry species. The 
minimum number of atoms needed to build such a molecule is 
four (as in P4, for instance).

Self-test 11B.6 A buckminsterfullerene molecule, C60, belongs 
to the icosahedral point group. What is the maximum possible 
degree of degeneracy of its orbitals?

Answer: 5

sN

a1 a2

e 

Figure 11B.5 Typical symmetry-adapted linear combinations 
of orbitals in a C3v molecule.

Brief illustration 11B.5 Symmetry species of atomic 
orbitals

Consider the O2px orbital in H2O (the x-axis is perpendicular 
to the molecular plane; the y-axis is parallel to the H−H direc-
tion; the z-axis bisects the HOH angle). Because H2O belongs 
to the point group C2v, we know by referring to the C2v char-
acter table (Table 11B.2) that the labels available for the orbit-
als are a1, a2, b1, and b2. We can decide the appropriate label 
for O2px by noting that under a 180° rotation (C2) the orbital 
changes sign (Fig. 11B.6), so it must be either B1 or B2, as only 
these two symmetry types have character −1 under C2. The 
O2px orbital also changes sign under the reflection σ ′v, which 
identifies it as B1. As we shall see, any molecular orbital built 
from this atomic orbital will also be a b1 orbital. Similarly, 
O2py changes sign under C2 but not under σ ′v; therefore, it can 
contribute to b2 orbitals.

Self-test 11B.7 Identify the symmetry species of d orbitals on 
the central atom of a square-planar (D4h) complex.

Answer: A1g + B1g + B2g + Eg

C2

σv

σv′

+

–

Figure 11B.6 A px orbital on the central atom of a C2v 
molecule and the symmetry elements of the group.

Table 11B.2* The C2v character table

C2v, 2mm E C2 σv ′σ v h = 4

A1 1 1 1 1 z z2, y2, x2

A2 1 1 −1 −1 xy

B1 1 −1 1 −1 x zx

B2 1 −1 −1 1 y yz

* More character tables are given in the Resource section.
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transformations of orbitals can be quite complicated; neverthe-
less, the sums of the individual characters are integers.

The behaviour of s, p, and d orbitals on a central atom under 
the symmetry operations of the molecule is so important that 
the symmetry species of these orbitals are generally indicated 
in a character table. To make these allocations, we look at the 
symmetry species of x, y, and z, which appear on the right hand 
side of the character table. Thus, the position of z in Table 11B.1 
shows that pz (which is proportional to zf(r)), has symmetry 
species A1 in C3v, whereas px and py (which are proportional to 
xf(r) and yf(r), respectively) are jointly of E symmetry. In tech-
nical terms, we say that px and py jointly span an irreducible 
representation of symmetry species E. An s orbital on the cen-
tral atom always spans the fully symmetrical irreducible repre-
sentation (typically labelled A1 but sometimes ′A1 ) of a group as 
it is unchanged under all symmetry operations.

The five d orbitals of a shell are represented by xy for dxy, etc., 
and are also listed on the right of the character table. We can see 
at a glance that in C3v, dxy and dx y2 2−  on a central atom jointly 
belong to E and hence form a doubly degenerate pair.

(c) The symmetry species of linear 
combinations of orbitals
So far, we have dealt with the symmetry classification of indi-
vidual orbitals. The same technique may be applied to linear 
combinations of orbitals on atoms that are related by symme-
try transformations of the molecule, such as the combination 
ψ1 = ψA + ψB + ψC of the three H1s orbitals in the C3v molecule 
NH3 (Fig. 11B.8). This combination remains unchanged under 
a C3 rotation and under any of the three vertical reflections of 
the group, so its characters are

χ χ χ σ( ) ( ) ( )E C= = = −1 1 13 v  

Comparison with the C3v character table shows that ψ1 is of 
symmetry species A1, and therefore that it contributes to a1 
molecular orbitals in NH3.

+

+

–

–
+1–1

Figure 11B.7 The two orbitals shown here have different 
properties under reflection through the mirror plane: one 
changes sign (character −1), the other does not (character +1).

sA

sBsC

Figure 11B.8 The three H1s orbitals used to construct symmetry-
adapted linear combinations in a C3v molecule such as NH3.

Example 11B.3 Identifying the symmetry species of 
orbitals

Identify the symmetry species of the orbital ψ = ψA – ψB in a 
C2v NO2 molecule, where ψA is an O2px orbital on one O atom 
and ψB that on the other O atom.

Method The negative sign in ψ indicates that the sign of ψB is 
opposite to that of ψA. We need to consider how the combination 
changes under each operation of the group, and then write the  
character as +1, −1, or 0 as specified above. Then we compare 
the resulting characters with each row in the character table for 
the point group, and hence identify the symmetry species.

Answer The combination is shown in Fig. 11B.9. Under C2, 
ψ changes into itself, implying a character of +1. Under the 
reflection σv, both orbitals change sign, so ψ → –ψ, implying 
a character of −1. Under σ ′v , ψ → –ψ, so the character for this 
operation is also −1. The characters are therefore

χ χ χ σ χ σ( ) 1 ( ) 1 ( ) 1 12 v vE C= = = ′ =– ( ) –  
These values match the characters of the A2 symmetry species, 
so ψ can contribute to an a2 orbital.

Self-test 11B.8 Consider PtCl4
− , in which the Cl ligands form 

a square planar array of point group D4h (1). Identify the sym-
metry type of the combination ψA – ψB + ψC – ψD.

A B

CD

1

Answer: B2g

–
+

+
N 

O

O
–

Figure 11B.9 One symmetry-adapted linear combination of 
O2px orbitals in the C2v NO2 molecule.
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Checklist of concepts

☐ 1. A group in mathematics is a collection of transforma-
tions that satisfy the four criteria set out at the start of 
the Topic.

☐ 2. A matrix representative is a matrix that represents the 
effect of an operation on a basis.

☐ 3. The character is the sum of the diagonal elements of a 
matrix representative of an operation.

☐ 4. A matrix representation is the collection of matrix repre-
sentatives for the operations in the group.

☐ 5. A character table consists of entries showing the char-
acters of all the irreducible representations of a group.

☐ 6. A symmetry species is a label for an irreducible repre-
sentation of a group.

☐ 7. The character of the identity operation E is the degener-
acy of the orbitals that form a basis for an irreducible 
representation of a group.

Checklist of equations

Property Equation Comment Equation number

Class membership R′ = S−1RS All elements are members of the group 11B.1

Number of species rule Number of symmetry species = number of classes 11B.5

Character and order

Species i

id h∑ =2 h is the order of the group 11B.6
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11C applications of symmetry

Group theory shows its power when brought to bear on a vari-
ety of problems in chemistry, among them the construction of 
molecular orbitals and the formulation of spectroscopic selec-
tion rules. This Topic describes these two applications after 
establishing a general result relating to integrals. In Topic 7C 
it is explained how integrals (‘matrix elements’) are central to 
the formulation of quantum mechanics, and knowing with 
very little calculation that various integrals are necessarily zero 
can save a great deal of calculational effort as well as adding to 
insight about the origin of properties.

11C.1 Vanishing integrals

An integral, which we shall denote I, in one dimension is equal 
to the area beneath the curve. In higher dimensions, it is equal 
to volume and various generalizations of volume. The key point 
is that the value of the area, volume, etc. is independent of the 
orientation of the axes used to express the function being inte-
grated, the ‘integrand’ (Fig. 11C.1). In group theory we express 
this point by saying that I is invariant under any symmetry 
operation, and that each symmetry operation brings about the 
trivial transformation I → I.

Contents

11c.1 Vanishing integrals 465
(a) Integrals over the product of two functions 466

example 11c.1: deciding if an integral must  
be zero 1 466

(b) Decomposition of a direct product 467
brief illustration 11c.1: decomposition  
of a direct product 467

(c) Integrals over products of three functions 467
example 11c.2: deciding if an integral  
must be zero 2 467

11c.2 Applications to orbitals 468
(a) Orbital overlap 468

example 11c.3: determining which orbitals 
 can contribute to bonding 468

(b) Symmetry-adapted linear combinations 468
example 11c.4: constructing symmetry- 
adapted orbitals 469

11c.3 Selection rules 469
example 11c.5: deducing a selection rule 469

Checklist of concepts 470
Checklist of equations 470

➤➤ Why do you need to know this material?
This Topic explains how the concepts introduced in Topics 
11A and 11B are put to use. The arguments here are 
essential for understanding how molecular orbitals are 
constructed and underlie the whole of spectroscopy.

➤➤ What is the key idea?
An integral is invariant under symmetry transformations 
of a molecule.

➤➤ What do you need to know already?
This Topic develops the material that began in Topic 
11A, where the symmetry classification of molecules is 
introduced on the basis of their symmetry elements, and 
draws heavily on the properties of characters and character 
tables described in Topic 11B. You need to be aware that 

many quantum-mechanical properties, including transition 
probabilities (Topic 9C), depend on integrals over pairs of 
wavefunctions (Topic 7C).

x

y

x

y

(a) (b)

Figure 11C.1 The value of an integral I (for example, an area) is 
independent of the coordinate system used to evaluate it. That 
is, I is a basis of a representation of symmetry species A1 (or its 
equivalent).
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466 11 Molecular symmetry

(a) Integrals over the product of two 
functions

Suppose we had to evaluate the integral

I f f=∫ 1 2dτ
 

(11C.1)

where f1 and f2 are functions and the integration is over all space. 
For example, f1 might be an atomic orbital A on one atom and 
f2 an atomic orbital B on another atom, in which case I would 
be their overlap integral. If we knew that the integral is zero, 
we could say at once that a molecular orbital does not result 
from (A,B) overlap in that molecule. We shall now see that the 
character tables introduced in Topic 11B provide a quick way of 
judging whether an integral is necessarily zero.

The volume element dτ is invariant under any symmetry 
operation. It follows that the integral is nonzero only if the 
integrand itself, the product f1  f2, is unchanged by any sym-
metry operation of the molecular point group. If the inte-
grand changed sign under a symmetry operation, the integral 
would be the sum of equal and opposite contributions, and 
hence would be zero. It follows that the only contribution to 
a nonzero integral comes from functions for which under any 
symmetry operation of the molecular point group f1  f2→ f1  f2, 
and hence for which the characters of the operations are all 
equal to +1. Therefore, for I not to be zero, the integrand f1  f2 
must have symmetry species A1 (or its equivalent in the specific 
molecular point group).

The following procedure is used to deduce the symmetry 
species spanned by the product f1 f2 and hence to see whether it 
does indeed span A1.

•	 Identify the symmetry species of the individual 
functions f1 and f2 by reference to the character  
table for the molecular point group in question and  
write their characters in two rows in the same order as in 
the table.

•	 Multiply the two numbers in each column, writing the 
results in the same order.

•	 Inspect the row so produced, and see if it can be expressed 
as a sum of characters from each column of the group. 
The integral must be zero if this sum does not use A1.

A shortcut that works when f1 and f2 are bases for irreducible 
representations of a group is to note their symmetry species; 
if they are different (B1 and A2, for instance), then the integral 
of their product must vanish; if they are the same (both B1, for 
instance), then the integral may be nonzero.

It is important to note that group theory is specific about 
when an integral must be zero, but integrals that it allows to be 
nonzero may be zero for reasons unrelated to symmetry. For 
example, the NeH distance in ammonia may be so great that 
the (s1,sN) overlap integral is zero simply because the orbitals 
are so far apart.

Example 11C.1 Deciding if an integral must be zero 1

May the integral of the function f = xy be nonzero when evalu-
ated over a region the shape of an equilateral triangle centred 
on the origin (Fig. 11C.2)?

Method First, note that an integral over a single function f is 
included in the previous discussion if we take f1 = f and f2 = 1 
in eqn 11C.1. Therefore, we need to judge whether f alone 
belongs to the symmetry species A1 (or its equivalent) in the 
point group of the system. To decide that, we identify the point 
group and then examine the character table to see whether f 
belongs to A1 (or its equivalent).

Answer An equilateral triangle has the point-group symme-
try D3h. If we refer to the character table of the group, we see 
that xy is a member of a basis that spans the irreducible repre-
sentation E′. Therefore, its integral must be zero, because the 
integrand has no component that spans ′A1.

Self-test 11C.1 Can the function x2 + y2 have a nonzero integral 
when integrated over a regular pentagon centred on the origin?

Answer: Yes, see Fig. 11C.3.

+

+ –

–

y
x

Figure 11C.2 The integral of the function f = xy over the 
tinted region is zero. In this case, the result is obvious by 
inspection, but group theory can be used to establish 
similar results in less obvious cases. The insert shows the 
shape of the function in three dimensions.

y
x

Figure 11C.3 The integration of a function over a 
pentagonal region. The insert shows the shape of the 
function in three dimensions.
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(b) Decomposition of a direct product

In many cases, the product of functions f1 and f2 spans a sum 
of irreducible representations. For instance, in C2v we may find 
the characters 2,0,0, − 2 when we multiply the characters of f1 
and f2 together. In this case, we note that these characters are 
the sum of the characters for A2 and B1:

To summarize this result we write the symbolic expression 
A2 × B1 = A2 + B1, which is called the decomposition of a direct 
product. This expression is symbolic. The × and + signs in this 
expression are not ordinary multiplication and addition signs: 
formally, they denote technical procedures with matrices 
called a ‘direct product’ and a ‘direct sum’.1 Because the sum 
on the right does not include a component that is a basis for 
an irreducible representation of symmetry species A1, we can 
conclude that the integral of f1  f2 over all space is zero in a C2v 
molecule.

Whereas the decomposition of the characters 2,0,0,−2 can be 
done by inspection in this simple case, in other cases and more 
complex groups the decomposition is often far from obvious. 
For example, if we found the characters 8,−2,−6,4, it might not 
be obvious that the sum contains A1. Group theory, however, 
provides a systematic way of using the characters of the repre-
sentation spanned by a product to find the symmetry species of 
the irreducible representations. The formal recipe is

n
h

R R
R

( ) ( ) ( )Γ χ χΓ= ∑ ( )1

 
 decomposition of direct product  (11C.2)

We implement this expression as follows:

1. Write down a table with columns headed by the 
symmetry operations, R, of the group. Include a column 
for every operation, not just the classes.

2. In the first row write down the characters of the 
representation we want to analyse; these are the χ(R).

3. In the second row, write down the characters of the 
irreducible representation Γ we are interested in; these 
are the χ(Γ)(R).

4. Multiply the two rows together, add the products 
together, and divide by the order of the group, h.

The resulting number, n(Γ), is the number of times Γ occurs in 
the decomposition.

(c) Integrals over products of three functions
Integrals of the form

I f f f=∫ 1 2 3dτ
 

(11C.3)

are also common in quantum mechanics for they include 
matrix elements of operators (Topic 7C), and it is important to 
know when they are necessarily zero. As for integrals over two 
functions, for I to be nonzero, the product f1  f2  f3 must span A1 
(or its equivalent) or contain a component that spans A1. To test 
whether this is so, the characters of all three functions are mul-
tiplied together in the same way as in the rules set out earlier.

1 As mentioned in Topic 11B, for this reason a direct sum is sometimes 
denoted ⊕; likewise, a direct product is sometimes denoted ⊗.

E C2v σv ′σ v

A2 1 1 −1 −1

B1 1 −1 1 −1

A2 + B1 2 0 0 −2

Brief illustration 11C.1 Decomposition of a direct 
product

To find whether A1 does indeed occur in the product with 
characters 8,−2,−6,4 in C2v, we draw up the following table:

The sum of the numbers in the last line is 4; when that number 
is divided by the order of the group, we get 1, so A1 occurs once 
in the decomposition. When the procedure is repeated for all 
four symmetry species, we find that f1  f2 spans A1 + 2A2 + 5B2.

Self-test 11C.2 Does A2 occur among the symmetry species 
of the irreducible representations spanned by a product with 
characters 7,−3,−1,5 in the group C2v?

Answer: No

E C2v σv 4 v′σ h = 4 (the order of the group)

f1 f2 8 −2 −6 4 (the characters of the product)

A1 1 1 1 1 (the symmetry species we are 
interested in)

8 −2 −6 4 (the product of the two sets of 
characters)

Example 11C.2 Deciding if an integral must be zero 2

Does the integral ∫( ) ( )d d dz xyx2 τ  vanish in a C2v molecule?

Method We must refer to the C2v character table (Table 11B.2) 
and the characters of the irreducible representations spanned by 
3z2 − r2 (the form of the dz2 orbital), x, and xy; then we can use the 
procedure set out above (with one more row of multiplication).

Answer We draw up the following table:

E C2 σv ′σ v

f3 = dxy 1 1 −1 −1 A2

f2 = x 1 −1 1 −1 B1

f z1 d= 2 1 1 1 1 A1

f1  f2  f3 1 −1 −1 1
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11C.2 Applications to orbitals

The rules we have outlined let us decide which atomic orbitals 
may have nonzero overlap in a molecule. It is also very useful 
to have a set of procedures to construct linear combinations 
of atomic orbitals (LCAOs) to have a certain symmetry, and 
thus to know in advance whether or not they will have nonzero 
overlap with other orbitals.

(a) Orbital overlap
An overlap integral, S, between two sets of atomic orbitals ψ1 
and ψ2 is

S =∫ψ ψ τ2 1
* d

 
 overlap integral  (11C.4)

and clearly has the same form as eqn 11C.1. It follows from that 
discussion that only orbitals of the same symmetry species may 
have nonzero overlap (S ≠ 0), so only orbitals of the same sym-
metry species form bonding and antibonding combinations. 
It is explained in Topics 10B −10D that the selection of atomic 
orbitals that had mutual nonzero overlap is the central and ini-
tial step in the construction of molecular orbitals by the LCAO 
procedure. We are therefore at the point of contact between 
group theory and the material introduced in those Topics.

(b) Symmetry-adapted linear combinations
In the discussion of the molecular orbitals of NH3 (Topic 
10C) we encounter molecular orbitals of the form ψ = c1sN +  
c2(s1 + s2 + s3), where sN is an N2s atomic orbital and s1, s2, and 
s3 are H1s orbitals. The sN orbital has nonzero overlap with 
the combination of H1s orbitals as the latter has matching 
symmetry. The combination of H1s orbitals is an example 
of a symmetry-adapted linear combination (SALC), which 
are orbitals constructed from equivalent atoms and having 
a specified symmetry. Group theory also provides machin-
ery that takes an arbitrary basis, or set of atomic orbitals (sA, 
etc.), as input and generates combinations of the specified 
symmetry. As illustrated by the example of NH3, SALCs are 
the building blocks of LCAO molecular orbitals and their 
construction is the first step in any molecular orbital treat-
ment of molecules.

The technique for building SALCs is derived by using the 
full power of group theory and involves the use of a projection 
operator, P(Γ ), an operator that takes one of the basis orbitals 
and generates from it—projects from it—an SALC of the sym-
metry species Γ:

P
h

R R P
R

m o
Γ Γ Γ Γχ ψ χ( ) ( ) ( ) ( )= =∑1

( ) for  

 

To implement this rule, do the following:

1. Write each basis orbital at the head of a column  
and in successive rows show the effect of each  
operation R on each orbital. Treat each operation 
individually.

2. Multiply each member of the column by the character, 
χ(Γ )(R), of the corresponding operation.

3. Add together all the orbitals in each column with the 
factors as determined in (2).

4. Divide the sum by the order of the group, h.

The characters are those of B2. Therefore, the integral is neces-
sarily zero.

Self-test 11C.3 Does the integral ∫(px)y(pz)dτ necessarily van-
ish in an octahedral environment?

Answer: No

Example 11C.3 Determining which orbitals can 
contribute to bonding

The four H1s orbitals of methane span A1 + T2. With which of 
the C atom orbitals can they overlap? What bonding pattern 
would be possible if the C atom had d orbitals available?

Method Refer to the Td character table (in the Resource sec-
tion) and look for s, p, and d orbitals spanning A1 or T2.

Answer An s orbital spans A1 in the group Td, so it may have 
nonzero overlap with the A1 combination of H1s orbitals. 
The C2p orbitals span T2, so they may have nonzero overlap 
with the T2 combination. The dxy, dyz, and dzx orbitals span 
T2, so they may overlap the same combination. Neither of the 
other two d orbitals spans A1 (they span E), so they remain 
nonbonding orbitals. It follows that in methane there are 

(C2s,H1s)-overlap a1 orbitals and (C2p,H1s)-overlap t2 orbit-
als. The C3d orbitals might contribute to the latter. The lowest 
energy configuration is probably a t1

2
2
6 , with all bonding orbit-

als occupied.

Self-test 11C.4 Consider the octahedral SF6 molecule, with 
the bonding arising from overlap of S orbitals and a 2p orbital 
on each f luorine directed towards the central sulfur atom. 
The latter span A1g + Eg + T1u. What S orbitals have nonzero 
overlap? Suggest what the ground-state configuration is likely 
to be.

Answer: 3s(A1g), 3p(T1u), 3d(Eg); a t e1g 1u g
2 6 4

 (11C.5)Projection 
operator
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We now form the overall molecular orbital by forming a 
linear combination of all the SALCs of the specified sym-
metry species. In this case, therefore, the a1 molecular orbital 
is ψ = cNsN + c1s1, as specified above. This is as far as group 
theory can take us. The coefficients are found by solving the 
Schrödinger equation; they do not come directly from the 
symmetry of the system.

We run into a problem when we try to generate an SALC of 
symmetry species E, because, for representations of dimen-
sion 2 or more, the rules generate sums of SALCs. This prob-
lem can be illustrated as follows. In C3v, the E characters are 
2,−1,−1,0,0,0, so the column under sN gives

ψ = + + + =1
6 0 0 0 0(2s s s )N N N− −  

The other columns give

However, any one of these three expressions can be expressed as 
a sum of the other two (they are not ‘linearly independent’). The 
difference of the second and third gives 1

2 ( ),s sB C−  and this com-
bination and the first, 1

6 ( )2s s sA B C− −  are the two (now linearly 
independent) SALCs we have used in the discussion of e orbitals.

11C.3 Selection rules

It is explained in Topic 9C and developed further in Topics 
12A, 12C−12E, and 13A that the intensity of a spectral line aris-
ing from a molecular transition between some initial state with 
wavefunction ψi and a final state with wavefunction ψf depends 
on the (electric) transition dipole moment, μfi. The z-compo-
nent of this vector is defined through

µ ψ ψ τz e z,
*

fi f id= − ∫  
 transition dipole moment  (11C.6)

where −e is the charge of the electron. The transition moment 
has the form of the integral in eqn 11C.3; so, once we know the 
symmetry species of the states, we can use group theory to for-
mulate the selection rules for the transitions.

Example 11C.4 Constructing symmetry-adapted orbitals

Construct the A1 symmetry-adapted linear combination of 
H1s orbitals for NH3.

Method Identify the point group of the molecule and have 
available its character table. Then apply the projection opera-
tor technique.

Answer From the (sN,sA,sB,sC) basis in NH3 we form the fol-
lowing table with each row showing the effect of the operation 
shown on the left.

To generate the A1 combination, we take the characters for 
A1 (1,1,1,1,1,1); then rules 2 and 3 lead to ψ ∝ sN + sN + … = 6 sN. 
The order of the group (the number of elements) is 6, so the 
combination of A1 symmetry that can be generated from sN is 
sN itself. Applying the same technique to the column under sA 
gives

ψ = + + + + + = + +1
6

1
3(s s s s s s ) s s sA B C A B C A B C( )

The same combination is built from the other two columns, 
so they give no further information. The combination we have 
just formed is the s1 combination used in Topic 10D (apart 
from the numerical factor).

Self-test 11C.5 Construct the A1 symmetry-adapted linear 
combinations of H1s orbitals for CH4.

Answer: 1
4

( )s s s sA B C D+ + +

sN sA sB sC

E sN sA sB sC

C3
+ sN sB sC sA

C3
− sN sC sA sB

σv sN sA sC sB

′σ v sN sB sA sC

′′σ v sN sC sB sA

1
6 ( )2s s sA B C− − 1

6 ( )2s s sB A C− − 1
6 ( )2s s sC B A− −

Example 11C.5 Deducing a selection rule

Is px → py an allowed transition in a tetrahedral environment?

Method We must decide whether the product pyqpx, with 
q = x, y, or z, spans A1 by using the Td character table.

Answer The procedure works out as follows:

We now use the decomposition procedure described to deduce 
that A1 occurs (once) in this set of characters, so px → py is 
allowed. A more detailed analysis (using the matrix represent-
atives rather than the characters) shows that only q = z gives an 
integral that may be nonzero, so the transition is z-polarized. 
That is, the electromagnetic radiation involved in the transi-
tion has a component of its electric vector in the z-direction.

Self-test 11C.6 What are the allowed transitions, and their 
polarizations, of an electron in a b1 orbital in a C4v molecule?

Answer: b1 → b1(z); b1 → e(x,y)

E 8C3 3C2 6σd 6S4

f3(py)  3 0 −1 1 −1 T2

f2(q)  3 0 −1 1 −1 T2

f1(px)  3 0 −1 1 −1 T2

f1  f2  f3 27 0 −1 1 −1
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Checklist of concepts

☐ 1. Character tables are used to decide whether an integral 
is necessarily zero.

☐ 2. To be nonzero, an integrand must include a component 
that is a basis for the totally symmetric representation.

☐ 3. Only orbitals of the same symmetry species may have 
nonzero overlap.

☐ 4. A symmetry-adapted linear combination (SALC) is a 
linear combination of atomic orbitals constructed from 
equivalent atoms and having a specified symmetry.

Checklist of equations

Property Equation Comment Equation number

Decomposition of direct product n h R R

R

( ) ( ) ( ) ( )( )Γ χ χΓ= ∑1/ Real characters* 11C.2

Overlap integral S d=∫ψ ψ τ2 1
* Definition 11C.4

Projection operator P h R R

R

( ) ( ) ( )Γ Γχ= ∑ ( )1/ To generate ( ) ( )ψ χΓ Γ
m oP= 11C.5

Transition dipole moment µ ψ ψ τz e z,
*

fi f id= − ∫ z-Component 11C.6

* In general, characters may have complex values; throughout this text we encounter only real values.
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TOPIC 11A symmetry elements

Discussion questions
11A.1 Explain how a molecule is assigned to a point group.

11A.2 List the symmetry operations and the corresponding symmetry 
elements of the point groups.

11A.3 State and explain the symmetry criteria that allow a molecule to be 
polar.

11A.4 State the symmetry criteria that allow a molecule to be optically active.

Exercises
11A.1(a) The CH3Cl molecule belongs to the point group C3v. List the 
symmetry elements of the group and locate them in a drawing of the 
molecule.
11A.1(b) The CCl4 molecule belongs to the point group Td. List the symmetry 
elements of the group and locate them in a drawing of the molecule.

11A.2(a) Identify the group to which the naphthalene molecule belongs and 
locate the symmetry elements in a drawing of the molecule.
11A.2(b) Identify the group to which the anthracene molecule belongs and 
locate the symmetry elements in a drawing of the molecule.

11A.3(a) Identify the point groups to which the following objects belong: 
(i) a sphere, (ii) an isosceles triangle, (iii) an equilateral triangle, (iv) an 
unsharpened cylindrical pencil.
11A.3(b) Identify the point groups to which the following objects belong:  
(i) a sharpened cylindrical pencil, (ii) a three-bladed propeller, (iii) a four-
legged table, (iv) yourself (approximately).

11A.4(a) List the symmetry elements of the following molecules and name  
the point groups to which they belong: (i) NO2, (ii) N2O, (iii) CHCl3,  
(iv) CH2aCH2.
11A.4(b) List the symmetry elements of the following molecules and name  
the point groups to which they belong: (i) furan (1), (ii) γ-pyran (2),  
(iii) 1,2,5-trichlorobenzene.

O

1 Furan    

O

2 γ-Pyran

11A.5(a) Assign (i) cis-dichloroethene and (ii) trans-dichloroethene to point 
groups.
11A.5(b) Assign the following molecules to point groups: (i) HF, (ii) IF7 
(pentagonal bipyramid), (iii) XeO2F2 (see-saw), (iv) Fe2(CO)9 (3), (v) cubane, 
C8H8, (vi) tetrafluorocubane, C8H4F4 (4).

CO

CO

Fe

3    

F

H

4

11A.6(a) Which of the following molecules may be polar? (i) pyridine,  
(ii) nitroethane, (iii) gas-phase HgBr2, (iv) B3N3H6.
11A.6(b) Which of the following molecules may be polar? (i) CH3Cl,  
(ii) HW2(CO)10, (iii) SnCl4.

11A.7(a) Identify the point groups to which all isomers of dichloronaphthalene 
belong.
11A.7(b) Identify the point groups to which all isomers of dichloroanthracene 
belong.

11A.8(a) Can molecules belonging to the point groups D2h or C3h be chiral? 
Explain your answer.
11A.8(b) Can molecules belonging to the point groups Th or Td be chiral? 
Explain your answer.

Problems
11A.1 List the symmetry elements of the following molecules and name the 
point groups to which they belong: (a) staggered CH3CH3, (b) chair and 
boat cyclohexane, (c) B2H6, (d) [Co(en)3]3+, where en is ethylenediamine 
(1,2-diaminoethane; ignore its detailed structure), (e) crown-shaped S8. 
Which of these molecules can be (i) polar, (ii) chiral?

11A.2‡ In the square-planar complex anion [trans-Ag(CF3)2(CN)2]−, the 
AgeCN groups are collinear. (a) Assume free rotation of the CF3 groups (that 
is, disregarding the AgCF and AgCH angles) and name the point group of this 
complex ion. (b) Now suppose the CF3 groups cannot rotate freely (because 
the ion was in a solid, for example). Structure (5) shows a plane which bisects 
the NCeAgeCN axis and is perpendicular to it. Name the point group of the 
complex if each CF3 group has a CF bond in that plane (so the CF3 groups do 

not point to either CN group preferentially) and the CF3 groups are  
(i) staggered, (ii) eclipsed.

CNCN

CF3

CF3

Ag

5
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11A.3‡ B.A. Bovenzi and G.A. Pearse, Jr. (J. Chem. Soc. Dalton Trans., 2763 
(1997)) synthesized coordination compounds of the tridentate ligand 
pyridine-2,6-diamidoxime (C7H9N5O2, 6). Reaction with NiSO4 produced 
a complex in which two of the essentially planar ligands are bonded at 
right angles to a single Ni atom. Name the point group and the symmetry 
operations of the resulting [Ni(C7H9N5O2)2]2+ complex cation.

N
NH2

N

H2N

N
OHHO

6

TOPIC 11B group theory

Discussion questions
11B.1 Explain what is meant by a ‘group’.

11B.2 Explain what is meant by (a) a representative and (b) a representation in 
the context of group theory.

11B.3 Explain the construction and content of a character table.

11B.4 Explain what is meant by the reduction of a representation to a direct 
sum of representations.

11B.5 Discuss the significance of the letters and subscripts used to denote the 
symmetry species of a representation.

Exercises
11B.1(a) Use as a basis the valence pz orbitals on each atom in BF3 to find the 
representative of the operation σh. Take z as perpendicular to the molecular 
plane.
11B.1(b) Use as a basis the valence pz orbitals on each atom in BF3 to find the 
representative of the operation C3. Take z as perpendicular to the molecular 
plane.

11B.2(a) Use the matrix representatives of the operations σh and C3 in a 
basis of valence pz orbitals on each atom in BF3 to find the operation and its 
representative resulting from σhC3. Take z as perpendicular to the molecular 
plane.
11B.2(b) Use the matrix representatives of the operations σh and C3 in a 
basis of valence pz orbitals on each atom in BF3 to find the operation and its 
representative resulting from C3σh. Take z as perpendicular to the molecular 
plane.

11B.3(a) Show that all three C2 operations in the group D3h belong to the same 
class.
11B.3(b) Show that all three σv operations in the group D3h belong to the same 
class.

11B.4(a) What is the maximum degeneracy of a particle confined to the 
interior of an octahedral hole in a crystal?
11B.4(b) What is the maximum degeneracy of a particle confined to the 
interior of an icosahedral nanoparticle?

11B.5(a) What is the maximum possible degree of degeneracy of the orbitals 
in benzene?
11B.5(b) What is the maximum possible degree of degeneracy of the orbitals in 
1,4-dichlorobenzene?

Problems
11B.1 The group C2h consists of the elements E, C2, σh, i. Construct the group 
multiplication table and find an example of a molecule that belongs to the 
group.

11B.2 The group D2h has a C2 axis perpendicular to the principal axis and a 
horizontal mirror plane. Show that the group must therefore have a centre of 
inversion.

11B.3 Consider the H2O molecule, which belongs to the group C2v. Take as 
a basis the two H1s orbitals and the four valence orbitals of the O atom and 
set up the 6 × 6 matrices that represent the group in this basis. Confirm by 
explicit matrix multiplication that the group multiplications (a) C2 v vσ σ= ′  
and (b) σ σv v 2′ =C .  Confirm, by calculating the traces of the matrices, (a) that 
symmetry elements in the same class have the same character, (b) that the 
representation is reducible, and (c) that the basis spans 3A1 + B1 + 2B2.

11B.4 Confirm that the z-component of orbital angular momentum is a basis 
for an irreducible representation of A2 symmetry in C3v.

11B.5 Find the representatives of the operations of the group Td in a basis of 
four H1s orbitals, one at each apex of a regular tetrahedron (as in CH4).

11B.6 Confirm that the representatives constructed in Problem 11B.5 
reproduce the group multiplications C C E S C S3 3 4

+ − = = ′, ,4 3  and S4C3 = σd.

11B.7 The (one-dimensional) matrices D(C3) = 1 and D(C2) = 1, and D(C3) = 1 
and D(C2) = −1 both represent the group multiplication C3C2 = C6 in the group 
C6v with D(C6) = +1 and −1, respectively. Use the character tale to confirm 
these remarks. What are the representatives of σv and σd in each case?

11B.8 Construct the multiplication table of the Pauli spin matrices, σ, and the 
2 × 2 unit matrix:

σ σ σ σx y z=






=
−





=
−







=
0 1

1 0

0

0

1 0

0 1

1 0

0 1
0

i

i







Do the four matrices from a group under multiplication?

11B.9 The algebraic forms of the f orbitals are a radial function multiplied by 
one of the factors (a) z(5z2 − 3r2), (b) y(5y2 − 3r2), (c) x(5x2 − 3r2), (d) z(x2 − y2), 
(e) y(x2 − z2), (f) x(z2 − y2), (g) xyz. Identify the irreducible representations 
spanned by these orbitals in (a) C2v, (b) C3v, (c) Td, (d) Oh. Consider a 
lanthanoid ion at the centre of (a) a tetrahedral complex, (b) an octahedral 
complex. What sets of orbitals do the seven f orbitals split into?

‡ These problems were provided by Charles Trapp and Carmen Giunta.
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TOPIC 11C applications of symmetry

Discussion questions
11C.1 Identify and list four applications of character tables. 11C.2 Explain how symmetry arguments are used to construct molecular 

orbitals.

Exercises
11C.1(a) Use symmetry properties to determine whether or not the integral 
∫pxzpzdτ is necessarily zero in a molecule with symmetry C2v.
11C.1(b) Use symmetry properties to determine whether or not the integral 
∫pxzpzdτ is necessarily zero in a molecule with symmetry D3h.

11C.2(a) Is the transition A1 → A2 forbidden for electric dipole transitions in a 
C3v molecule?
11C.2(b) Is the transition A1g → E2u forbidden for electric dipole transitions in 
a D6h molecule?

11C.3(a) Show that the function xy has symmetry species B2 in the group C4v.
11C.3(b) Show that the function xyz has symmetry species A1 in the group D2.

11C.4(a) Consider the C2v molecule NO2. The combination px(A) − px(B) of the 
two O atoms (with x perpendicular to the plane) spans A2. Is there any orbital 
of the central N atom that can have a nonzero overlap with that combination 
of O orbitals? What would be the case in SO2, where 3d orbitals might be 
available?
11C.4(b) Consider the C3v ion NO3

− . Is there any orbital of the central N atom 
that can have a nonzero overlap with the combination 2pz(A) − pz(B) − pz(C) 
of the three O atoms (with z perpendicular to the plane). What would be the 
case in SO3, where 3d orbitals might be available?

11C.5(a) The ground state of NO2 is A1 in the group C2v. To what excited states 
may it be excited by electric dipole transitions, and what polarization of light 
is it necessary to use?
11C.5(b) The ClO2 molecule (which belongs to the group C2v) was trapped in a 
solid. Its ground state is known to be B1. Light polarized parallel to the y-axis 
(parallel to the OO separation) excited the molecule to an upper state. What is 
the symmetry species of that state?

11C.6(a) A set of basis functions is found to span a reducible representation 
of the group C4v with characters 4,1,1,3,1 (in the order of operations in the 
character table in the Resource section). What irreducible representations does 
it span?
11C.6(b) A set of basis functions is found to span a reducible representation 
of the group D2 with characters 6,−2,0,0 (in the order of operations in the 
character table in the Resource section). What irreducible representations does 
it span?

11C.7(a) What states of (i) benzene, (ii) naphthalene may be reached by 
electric dipole transitions from their (totally symmetrical) ground states?
11C.7(b) What states of (i) anthracene, (ii) coronene (7) may be reached by 
electric dipole transitions from their (totally symmetrical) ground states?

7 Coronene

11C.8(a) Write f1 = sin θ and f2 = cos θ, and show by symmetry arguments 
using the group Cs that the integral of their product over a symmetrical range 
around θ = 0 is zero.
11C.8(b) Write f1 = x and f2 = 3x2 − 1, and show by symmetry arguments using 
the group Cs that the integral of their product over a symmetrical range 
around x = 0 is zero.

Problems
11C.1 What irreducible representations do the four H1s orbitals of CH4 span? 
Are there s and p orbitals of the central C atom that may form molecular 
orbitals with them? Could d orbitals, even if they were present on the  
C atom, play a role in orbital formation in CH4?

11C.2 Suppose that a methane molecule became distorted to (a) C3v symmetry 
by the lengthening of one bond, (b) C2v symmetry, by a kind of scissors action 
in which one bond angle opened and another closed slightly. Would more  
d orbitals become available for bonding?

11C.3 Does the product 3x2 − 1 necessarily vanish when integrated over (a) a 
cube, (b) a tetrahedron, (c) a hexagonal prism, each centred on the origin?

11C.4‡ In a spectroscopic study of C60, Negri et al. (J. Phys. Chem. 100, 10849 
(1996)) assigned peaks in the fluorescence spectrum. The molecule has 
icosahedral symmetry (Ih). The ground electronic state is A1g, and the lowest-
lying excited states are T1g and Gg. (a) Are photon-induced transitions allowed 
from the ground state to either of these excited states? Explain your answer.  
(b) What if the molecule is distorted slightly so as to remove its centre of 
inversion?

11C.5 In the square planar XeF4 molecule, consider the symmetry-adapted 
linear combination p1= pA − pB + pC − pD where pA, pB, pC, and pD are 2pz 

atomic orbitals on the fluorine atoms (clockwise labelling of the F atoms). 
Using the reduced point group D4 rather than the full symmetry point group 
of the molecule, determine which of the various s, p, and d atomic orbitals on 
the central Xe atom can form molecular orbitals with p1.

11C.6 The chlorophylls that participate in photosynthesis and the haem groups 
of cytochromes are derived from the porphine dianion group (8), which 
belongs to the D4h point group. The ground electronic state is A1g and the 
lowest-lying excited state is Eu. Is a photon-induced transition allowed from 
the ground state to the excited state? Explain your answer.

N

N–

N

N–

8
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rotational and vibrational spectra

The origin of spectral lines in molecular spectroscopy is the 
absorption, emission, or scattering of a photon when the 
energy of a molecule changes. The difference from atomic 
spectroscopy (Topic 9C) is that the energy of a molecule can 
change not only as a result of electronic transitions but also 
because it can undergo changes of rotational and vibrational 
state. Molecular spectra are therefore more complex than 
atomic spectra. However, they also contain information relat-
ing to more properties, and their analysis leads to values of 
bond strengths, lengths, and angles. They also provide a way of 
determining a variety of molecular properties, such as dipole 
moments.

The general strategy we adopt in this chapter is to set up 
expressions for the energy levels of molecules and then infer 
the form of rotational and vibrational spectra. Electronic spec-
tra are considered in Chapter 13.

12A general features of molecular 
spectroscopy

This Topic begins with a discussion of the theory of absorption 
and emission of radiation, leading to the factors that determine 
the intensities and widths of spectral lines. Then we describe 
features of instrumentation used to monitor the absorption, 
emission, and scattering of radiation spanning a wide range of 
frequencies.

12B molecular rotation

In this Topic we see how to derive expressions for the values 
of the rotational energy levels of diatomic and polyatomic 
molecules. The most direct procedure, which we adopt, is to 
identify the expressions for the energy and angular momen-
tum obtained in classical physics, and then to transform these 
expressions into their quantum mechanical counterparts.

12C rotational spectroscopy

This Topic focuses on the interpretation of pure rotational and 
rotational Raman spectra, in which only the rotational state of 
a molecule changes. We explain in terms of nuclear spin and 
the Pauli principle the observation that not all molecules can 
occupy all rotational states.

12D Vibrational spectroscopy  
of diatomic molecules

In this Topic we consider the vibrational energy levels of diatomic 
molecules and see that we can use the properties of harmonic 
oscillators developed in Topic 8B, but must also take into account 
deviations from harmonic oscillation. We also see that vibrational 
spectra of gaseous samples show features that arise from the rota-
tional transitions that accompany the excitation of vibrations.

12E Vibrational spectroscopy  
of polyatomic molecules

The vibrational spectra of polyatomic molecules may be dis-
cussed as though they consisted of a set of independent har-
monic oscillators, so the same approach as employed for 
diatomic molecules may be used. We also see that the symme-
try properties of the atomic displacements of polyatomic mol-
ecules are helpful for deciding which modes of vibration can be 
studied spectroscopically.

What is the impact of this material?

Molecular spectroscopy is also useful to astrophysicists and 
environmental scientists. In Impact I12.1 we see how the 
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12 Rotational and vibrational spectra  475

identities of molecules found in interstellar space can be 
inferred from their rotational and vibrational spectra. In Impact 
I12.2 we turn our attention back towards the Earth and see how 
the vibrational properties of its atmospheric constituents can 
affect its climate.

To read more about the impact of this 
material, scan the QR code, or go to  
bcs.whfreeman.com/webpub/chemistry/
pchem10e/impact/pchem-12-1.html
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12A general features of molecular 
spectroscopy

In emission spectroscopy, a molecule undergoes a transition 
from a state of high energy E1 to a state of lower energy E2 and 
emits the excess energy as a photon. In absorption spectros-
copy, the net absorption of incident radiation is monitored as 
its frequency is varied. We say net absorption, because, when 
a sample is irradiated, both absorption and emission at a given 
frequency are stimulated, and the detector measures the differ-
ence, the net absorption. In Raman spectroscopy, changes in 
molecular state are explored by examining the frequencies pre-
sent in the radiation scattered by molecules.

The energy, hν, of the photon emitted or absorbed, and 
therefore the frequency ν of the radiation emitted or absorbed, 
is given by the Bohr frequency condition (eqn 7A.12 of Topic 
7A, hν = |E1 − E2|). Emission and absorption spectroscopy give 
the same information about electronic, vibrational, or rota-
tional energy level separations, but practical considerations 
generally determine which technique is employed.

In Raman spectroscopy the difference between the frequen-
cies of the scattered and incident radiation is determined by the 
transitions that take place within the molecule as a result of the 
impact of the incoming photon; this technique is used to study 
molecular vibrations and rotations. About 1 in 107 of the inci-
dent photons that collide with the molecules, give up some of 
their energy, and emerge with a lower energy. These scattered 
photons constitute the lower-frequency Stokes radiation from 
the sample (Fig. 12A.1). Other incident photons may collect 
energy from the molecules (if they are already excited), and 
emerge as higher-frequency anti-Stokes radiation. The compo-
nent scattered without change of frequency is called Rayleigh 
radiation.

Atomic spectroscopy is discussed in Topic 9C. Here we 
set the stage for detailed discussion of rotational (Topics 12B 
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➤➤ Why do you need to know this material?
To interpret data from the wide range of varieties of 
molecular spectroscopy you need to understand the 
experimental and theoretical features that all types of 
spectra share.

➤➤ What is the key idea?
A transition from a low energy state to one of higher 
energy can be stimulated by absorption of electromagnetic 
radiation; a transition from a higher to a lower state may be 
either spontaneous (resulting in emission of radiation) or 
stimulated by radiation.

➤➤ What do you need to know already?
You need to be familiar with quantization of energy in 
molecules (Topics 8A–8C), and the concept of selection 
rules in spectroscopy (Topic 9C).
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12A General features of molecular spectroscopy  477

and 12C), vibrational (Topics 12D and 12E), and electronic 
(the several Topics of Chapter 13) transitions in molecules. 
Techniques that probe transitions between spin states of elec-
trons and nuclei are also useful. They rely on special experi-
mental approaches and theoretical considerations described in 
Chapter 14.

12A.1 The absorption and emission 
of radiation

As mentioned in Foundations B, the separation of rotational 
energy levels (in small molecules, ΔE ≈ 0.01 zJ, corresponding 
to about 0.01 kJ mol−1) is smaller than that of vibrational energy 
levels (ΔE ≈ 10 zJ, corresponding to 10 kJ mol−1), which itself 
is smaller than that of electronic energy levels (ΔE ≈ 0.1–1 aJ, 
corresponding to about 102–103 kJ mol−1). From ν = ΔE/h, it 
follows that rotational, vibrational, and electronic transitions 
result from the absorption of emission of microwave, infrared, 
and ultraviolet/visible/far infrared radiation, respectively (see 
also Chapter 8). Here we turn our attention to the origins of 
spectroscopic transitions, focusing on concepts that apply gen-
erally to all varieties of spectroscopy.

(a) Stimulated and spontaneous 
radiative processes
Albert Einstein identified three contributions to the transitions 
between states. First, he recognized the transition from a low 

energy state to one of higher energy that is driven by the elec-
tromagnetic field oscillating at the transition frequency. This 
process is called stimulated absorption. The rate of this type of 
transition is proportional to the intensity of the incident radia-
tion: the more intense the incident radiation, the greater is the 
rate of the transition and the stronger is the absorption by the 
sample. Einstein wrote this transition rate as

w Bf i fi← = ρ  Stimulated absorption  transition rate  (12A.1)

The constant Bfi is the Einstein coefficient of stimulated 
absorption and ρdν is the energy density of radiation in the 
frequency range from ν to ν + dν, where ν is the frequency 
of the transition. For instance, when the atom or molecule is 
exposed to black-body radiation from a source of temperature 
T, ρ is given by the Planck distribution (eqn 7A.6 of Topic 7A):

ρ =
−

8
1

3 3πh c
h kT




/
/e  

 Planck distribution  (12A.2)

At this stage Bfi is an empirical parameter that characterizes 
the transition: if it is large, then a given intensity of incident 
radiation will induce transitions strongly and the sample will 
be strongly absorbing. The total rate of absorption, Wf←i, is the 
transition rate of a single molecule multiplied by the number of 
molecules Ni in the lower state:

W N w N Bf i i f i i fi← ←= = ρ   total absorption rate  (12A.3)

Einstein considered that the radiation was also able to 
induce the molecule in the upper state to undergo a transition 
to the lower state, and hence to generate a photon of frequency 
ν. Thus, he wrote the rate of this stimulated emission as

w Bf i if→ = ρ  Stimulated emission  transition rate  (12A.4)

where Bif is the Einstein coefficient of stimulated emission. 
This coefficient is in fact equal to the coefficient of stimulated 
absorption as we shall see below. Moreover, only radiation of 
the same frequency as the transition can stimulate an excited 
state to fall to a lower state. At this point, it is tempting to sup-
pose that the total rate of emission is this individual rate mul-
tiplied by the number of molecules in the upper state, Nf, and 
therefore to write Wf→i = NfBif ρ. But here we encounter a prob-
lem: at equilibrium (as in a black-body container), the rate of 
emission is equal to the rate of absorption, so NiBfiρ = NfBif ρ 
and therefore, since Bif= Bfi, Ni = Nf. The conclusion that the 
populations must be equal at equilibrium is in conflict with 
another very fundamental conclusion, that the ratio of popu-
lations is given by the Boltzmann distribution (Foundations B 
and Topic 15A) which implies that Ni ≠ Nf.

Einstein realized that to bring the analysis of transition rates 
into alignment with the Boltzmann distribution there must be 

Incident
radiationE

n
er

g
y

Stokes

Anti-Stokes

Rayleigh

Figure 12A.1 In Raman spectroscopy, an incident photon is 
scattered from a molecule with either an increase in frequency 
(if the radiation collects energy from the molecule) or with 
a lower frequency (if it loses energy to the molecule) to give 
the anti-Stokes and Stokes lines, respectively. Scattering 
without change of frequency results in the Rayleigh lines. The 
process can be regarded as taking place by an excitation of 
the molecule to a wide range of states (represented by the 
shaded band), and the subsequent return of the molecule to a 
lower state; the net energy change is then carried away by the 
photon.
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478 12 Rotational and vibrational spectra

another route for the upper state to decay into the lower state, 
and wrote

w A Bf i if→ = + ρ   emission rate  (12A.5)

The constant A is the Einstein coefficient of spontaneous emis-
sion. The total rate of emission, Wf→i, is therefore

W N w N A Bf i f f i f if→ →= = +( )ρ   total emission rate  (12A.6)

At thermal equilibrium, Ni and Nf do not change over time. 
This condition is reached when the total rates of emission and 
absorption are equal:

N B N A Bi fi f ifρ ρ( )= +   thermal equilibrium  (12A.7)

and therefore

ρ = − = − =N A
N B N B

A B
N N B B

A Bf

i fi f if

fi

i f if fi

fi
divide by f fiN B /

/ /
/

ehh kT B B/ /− if fi  
 (12A.8)

We have used the Boltzmann expression (Foundations B and 
Topic 15A) for the ratio of populations of the upper state (of 
energy Ef) and lower state (of energy Ei):

N
N

E E kTf

i

= − −e f i( )/

h� �� ��

 

This result has the same form as the Planck distribution (eqn 
12A.2), which describes the radiation density at thermal equi-
librium. Indeed when we compare eqns 12A.2 and 12A.8, we 
can conclude that Bif = Bfi (as we promised to show) and that

A
h

c
B=





8 3

3

π 

 
(12A.9)

The important point about eqn 12A.9 is that it shows that the 
relative importance of spontaneous emission increases as the 
cube of the transition frequency and therefore that it is there-
fore potentially of great importance at very high frequencies. 
Conversely, spontaneous emission can be ignored at low transi-
tion frequencies, in which case intensities of those transitions 
can be discussed in terms of stimulated emission and absorp-
tion alone.

(b) Selection rules and transition moments
We first met the concept of a ‘selection rule’ in Topic 9C 
as a statement about whether a transition is forbidden or 
allowed. Selection rules also apply to molecular spectra, and 
the form they take depends on the type of transition. The 
underlying classical idea is that, for the molecule to be able 
to interact with the electromagnetic field and absorb or cre-
ate a photon of frequency ν, it must possess, at least tran-
siently, a dipole oscillating at that frequency. In Topic 9C 
it is shown that this transient dipole is expressed quantum 
mechanically in terms of the transition dipole moment, μfi, 
between states ψi and ψf:

μ μfi *=∫ψ ψ τf i d
 

Definition  transition dipole moment  (12A.10)

where μ̂  is the electric dipole moment operator. The size of the 
transition dipole can be regarded as a measure of the charge 
redistribution that accompanies a transition: a transition is 
active (and generates or absorbs photons) only if the accomp-
anying charge redistribution is dipolar (Fig. 12A.2). Only if the 
transition dipole moment is nonzero does the transition con-
tribute to the spectrum. It follows that, to identify the selection 
rules, we must establish the conditions for which μfi ≠ 0.

A gross selection rule specifies the general features that a 
molecule must have if it is to have a spectrum of a given kind. 
For instance, in Topic 12C it is shown that a molecule gives a 
rotational spectrum only if it has a permanent electric dipole 
moment. This rule and others like it for other types of transition 

Brief illustration 12A.1 The Einstein coefficients

For a transition in the microwave region of the electromag-
netic spectrum (corresponding to an excitation of a molecular 
rotation), a typical frequency is 600 GHz (1 GHz = 109 Hz), or 

6.00 × 1011 s−1. To assess the relative significance of spontane-
ous emission, with rate A, and stimulated emission, with rate 
Bρ, at 298 K, we rearrange eqn 12A.8, with B = Bfi = Bif, when it 
becomes

ρ =
−

A B
h kT

/
/e  1  

to form the ratio

A
B

h kT

ρ = − = × × × ×− − −
e e/ ( . ) ( . )/( .1 6 626 10 6 00 10 1 381 1034 11 1 23J s s J KK K− × −

=

1 298 1

0 101

) ( )

.

and both spontaneous and stimulated emission are significant 
at this wavelength.

Self-test 12A.1 Calculate the ratio A/Bρ at 298 K for a transi-
tion in the infrared region of the electromagnetic spectrum, 
corresponding to excitation of a molecular vibration, with 
wavenumber 2000 cm−1. What conclusion can you draw?

Answer: A/Bρ = 1.6 × 104; for vibrational transitions spontaneous  
emission is more significant than stimulated emission
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12A General features of molecular spectroscopy  479

Justification 12A.1 The Beer–Lambert law

We think of the sample as consisting of a stack of infinitesi-
mal slices, like sliced bread (Fig. 12A.3). The thickness of each 
layer is dx. The change in intensity, dI, that occurs when elec-
tromagnetic radiation passes through one particular slice is 

are explained in relevant Topics. A detailed study of the transi-
tion moment leads to the specific selection rules that express 
the allowed transitions in terms of the changes in quantum 
numbers.

(c) The Beer–Lambert law
Consider the absorption of radiation by a sample. It is found 
empirically that the transmitted intensity I varies with the 
length, L, of the sample and the molar concentration, [J], of the 
absorbing species J in accord with the Beer–Lambert law:

I I L= −
010 ε[J]

  beer–lambert law  (12A.11)

where I0 is the incident intensity. The quantity ε (epsilon) is 
called the molar absorption coefficient (formerly, and still 
widely, the ‘extinction coefficient’). The molar absorption coef-
ficient depends on the frequency of the incident radiation and 
is greatest where the absorption is most intense. Its dimensions 
are 1/(concentration × length), and it is normally conveni-
ent to express it in cubic decimetres per mole per centimetre 
(dm3 mol−1 cm−1); in SI base units it is expressed in metres-
squared per mole (m2 mol−1). The latter units imply that ε may 
be regarded as a (molar) cross-section for absorption and that 
the greater the cross-sectional area of the molecule for absorp-
tion, the greater is its ability to block the passage of the inci-
dent radiation at a given frequency. The Beer–Lambert law is an 
empirical result. However, it is simple to account for its form as 
we show in the following Justification.

(a) (b)

Figure 12A.2 (a) When a 1s electron becomes a 2s electron, 
there is a spherical migration of charge. There is no dipole 
moment associated with this migration of charge, so this 
transition is electric-dipole forbidden. (b) In contrast, when a 
1s electron becomes a 2p electron, there is a dipole associated 
with the charge migration; this transition is allowed.

proportional to the thickness of the slice, the concentration of 
the absorber J, and the intensity of the incident radiation at 
that slice of the sample, so dI ∝[J]Idx. Because dI is negative 
(the intensity is reduced by absorption), we can write

d dI I x= – [J]κ  

where κ (kappa) is the proportionality coefficient. Division of 
both sides by I gives

d
[J]d

I
I

x= −κ
 

This expression applies to each successive slice.

To obtain the intensity that emerges from a sample of thick-
ness L when the intensity incident on one face of the sample 
is I0, we sum all the successive changes. Because a sum over 
infinitesimally small increments is an integral, we write:

d
d d

I
I

x x
I

I L

0 0 0∫ ∫= − = −
[ ]

Integral A.2
ln( / )

J uniform
0I I


κ κ[J] [J]

LL

∫

Integral A.1
L

 

in the second step we have supposed that the concentration is 
uniform, so [J] is independent of x and can be taken outside 
the integral. Therefore

ln [J]
I
I

L
0

= −κ
 

Because ln x = (ln 10)log x, we can write ε = κ/ln 10 and obtain

log [J]
I
I

L
0

= −ε
 

which, on taking (common) antilogarithms, is the Beer–
Lambert law (eqn 12A.11).

x x + dx

Intensity, I

Intensity, I – dI

Length, L

Figure 12A.3 To establish the Beer–Lambert law, the 
sample is supposed to be sliced into a large number of 
planes. The reduction in intensity caused by one plane is 
proportional to the intensity incident on it (after passing 
through the preceding planes), the thickness of the plane, 
and the concentration of absorbing species.
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480 12 Rotational and vibrational spectra

The spectral characteristics of a sample are commonly 
reported as the transmittance, T, of the sample at a given 
frequency:

T
I
I

=
0  

Definition  transmittance  (12A.12)

and the absorbance, A, of the sample:

A
I
I

= log 0

 
Definition  absorbance  (12A.13)

The two quantities are related by A = −log T (note the common 
logarithm) and the Beer–Lambert law becomes

A L=ε[J]  (12A.14)

The product ε[J]L was known formerly as the optical density of 
the sample.

The maximum value of the molar absorption coefficient, 
εmax, is an indication of the intensity of a transition. However, 
as absorption bands generally spread over a range of wavenum-
bers, quoting the absorption coefficient at a single wavenumber 
might not give a true indication of the intensity of a transition. 
The integrated absorption coefficient, A, is the sum of the 
absorption coefficients over the entire band (Fig. 12A.4), and 
corresponds to the area under the plot of the molar absorption 
coefficient against wavenumber:

A = ∫ ε( )  d
band  

Definition  Integrated absorption coefficient  (12A.15)

For lines of similar widths, the integrated absorption coeffi-
cients are proportional to the heights of the lines.

12A.2 Spectral linewidths

A number of effects contribute to the widths of spectroscopic 
lines. Some contributions to linewidths can be modified by 
changing the conditions, and to achieve high resolutions we 
need to know how to minimize these contributions. Other con-
tributions cannot be changed, and represent an inherent limita-
tion on resolution.

Example 12A.1 Determining a molar absorption 
coefficient

Radiation of wavelength 280 nm passed through 1.0 mm of 
a solution that contained an aqueous solution of the amino 
acid tryptophan at a concentration of 0.50 mmol dm−3. The 
light intensity is reduced to 54 per cent of its initial value (so 
T = 0.54). Calculate the absorbance and the molar absorption 
coefficient of tryptophan at 280 nm. What would be the trans-
mittance through a cell of thickness 2.0 mm?

Method From A  =  − log T  =  ε [J]L ,  it fol lows that ε  =  
− (log T)/[J]L. For the transmittance through the thicker cell, 
we use T = 10−A and the value of ε calculated here.

Solution The molar absorption coefficient is

ε = −
× ×

= ×− −
− −log

moldm mm
dm mol mm

0 54
5 0 10 1 0

5 4 104 3
2 3 1 1.

( . ) ( . )
.

 

These units are convenient for the rest of the calculation (but 
the outcome could be reported as 5.4 × 103 dm3 mol−1 cm−1 if 
desired). The absorbance is

A = =– . .log 0 54 0 27  

The absorbance of a sample of length 2.0 mm is

A = × × ×
× =
( . ) ( . )

( . ) .

5 4 10 5 0 10

2 0 0 54

2 3 1 1 4 3dm mol mm moldm

mm

− − − −

It follows that the transmittance is now

T A= = =10 10 0 290 54– – . .  

That is, the emergent light is reduced to 29 per cent of its inci-
dent intensity.

Self-test 12A.2 The transmittance of an aqueous solution that 
contained the amino acid tyrosine at a molar concentration 
of 0.10 mmol dm−3 was measured as 0.14 at 240 nm in a cell 
of length 5.0 mm. Calculate the molar absorption coefficient 
of tyrosine at that wavelength and the absorbance of the 
solution. What would be the transmittance through a cell of 
length 1.0 mm?

Answer: 1.1 × 104 dm3 mol−1 cm−1, A = 0.17, T = 0.68
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Figure 12A.4 The integrated absorption coefficient of a 
transition is the area under a plot of the molar absorption 
coefficient against the wavenumber of the incident radiation.
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(a) Doppler broadening
One important broadening process in gaseous samples is the 
Doppler effect, in which radiation is shifted in frequency when 
the source is moving towards or away from the observer. When 
a source emitting electromagnetic radiation of frequency 
ν moves with a speed s relative to an observer, the observer 
detects radiation of frequency

  receding approaching= −
+







= +
−







1
1

1
1

1 2
s c
s c

s c
s c

/
/

/
/

/


1 2/


 

  doppler shifts  (12A.16a)

where c is the speed of light. For nonrelativistic speeds (s ≪ c), 
these expressions simplify to







receding approaching≈ + ≈ −1 1s c s c/ /  
(12A.16b)

Atoms and molecules reach high speeds in all directions 
in a gas, and a stationary observer detects the correspond-
ing Doppler-shifted range of frequencies. Some molecules 
approach the observer, some move away; some move quickly, 
others slowly. The detected spectral ‘line’ is the absorption or 
emission profile arising from all the resulting Doppler shifts. As 
shown in the following Justification, the profile reflects the dis-
tribution of velocities parallel to the line of sight, which is a bell-
shaped Gaussian curve. The Doppler line shape is therefore also 
a Gaussian (Fig. 12A.5), and we show in the Justification that, 
when the temperature is T and the mass of the atom or mol-
ecule is m, then the observed width of the line at half-height (in 
terms of frequency or wavelength) is

δ δ


obs obs= 





= 





2 2 2 2 2 2
1 2 1 2

c
kT

m c
kT

m
ln ln

/ /

λ λ

 
  doppler broadening  (12A.17)

Doppler broadening increases with temperature because the 
molecules acquire a wider range of speeds. Therefore, to obtain 
spectra of maximum sharpness, it is best to work with cool 
samples.

Brief illustration 12A.2 Doppler broadening

For a molecule like N2 at T = 300 K,

δ
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N ms
= 





=
×

× × ×
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−
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For a transition wavenumber of 2331 cm−1 (from the Raman 
spectrum of N2), corresponding to a frequency of 69.9 THz 
(1 THz = 1012 Hz), the linewidth is 164 MHz.

Self-test 12A.3 What is the Doppler-broadened linewidth of 
the transition at 821 nm in atomic hydrogen at 300 K?

Answer: 4.38 GHz

Justification 12A.2 Doppler broadening

It follows from the Boltzmann distribution (Foundations B 
and Topic 15A) that the probability that an atom or molecule 
of mass m and speed s in a gas phase sample at a temperature 
T has kinetic energy E msk = 1

2
2  is proportional to e−ms kT2 2/ . The 

observed frequencies, νobs, emitted or absorbed by the mol-
ecule are related to its speed by eqn 12A.16b. When s ≪ c, the 
Doppler shift in the frequency is

  obs − ≈ ± s c/  

More specifically, the intensity I of a transition at νobs is pro-
portional to the probability of there being an atom that emits 
or absorbs at νobs, so it follows from the Boltzmann distri-
bution and the expression for the Doppler shift in the form 
s = (νobs − ν)c/ν that

I mc kT( ) ( ) /   
obs e obs∝ − −2 2 22

 (12A.18)

which has the form of a Gaussian function. Because the width 
at half-height of a Gaussian function a x be− −( ) /2 22σ  (where a, b, 
and σ are constants) is δx = 2σ(2 ln 2)1/2, δνobs can be inferred 
directly from the exponent of eqn 12A.18 to give eqn 12A.17.
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Figure 12A.5 The Gaussian shape of a Doppler-broadened 
spectral line reflects the Maxwell distribution of speeds in the 
sample at the temperature of the experiment. Notice that the 
line broadens as the temperature is increased.
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482 12 Rotational and vibrational spectra

(b) Lifetime broadening

It is found that spectroscopic lines from gas-phase samples are 
not infinitely sharp even when Doppler broadening has been 
largely eliminated by working at low temperatures. This residual 
broadening is due to quantum mechanical effects. Specifically, 
when the Schrödinger equation is solved for a system that is 
changing with time, it is found that it is impossible to specify the 
energy levels exactly. If on average a system survives in a state 
for a time τ, the lifetime of the state, then its energy levels are 
blurred to an extent of order δE ≈ ħ/τ. With the energy spread 
expressed as a wavenumber through δ δE hc=  , and the values 
of the fundamental constants introduced, this relation becomes

δ ≈
−5 3 1.

/
cm
psτ  

 lifetime broadening  (12A.19)

and given an indication of lifetime broadening of spectral 
lines. No excited state has an infinite lifetime; therefore, all 
states are subject to some lifetime broadening and the shorter 
the lifetimes of the states involved in a transition the broader 
are the corresponding spectral lines.

Two processes are responsible for the finite lifetimes of 
excited states. The dominant one for low frequency transi-
tions is collisional deactivation, which arises from collisions 
between atoms or with the walls of the container. If the col-
lisional lifetime, the mean time between collisions, is τcol, the 
resulting collisional linewidth is δEcol ≈ ħ/τcol. Because τcol = 1/z, 
where z is the collision frequency, and from the kinetic model 
of gases (Topic 1B), which implies that z is proportional to the 
pressure, we conclude that the collisional linewidth is propor-
tional to the pressure. The collisional linewidth can therefore be 
minimized by working at low pressures.

The rate of spontaneous emission cannot be changed. It is 
a natural limit to the lifetime of an excited state which can-
not be changed by modifying the conditions, and the resulting 
lifetime broadening is the natural linewidth of the transition. 
Because the rate of spontaneous emission increases as ν3, the 

lifetime of the excited state decreases as ν3, and the natural 
linewidth increases with the transition frequency. Thus, rota-
tional (microwave) transitions occur at much lower frequen-
cies than vibrational (infrared) transitions and consequently 
have much longer lifetimes and hence much smaller natural 
linewidths: at low pressures rotational linewidths are due prin-
cipally to Doppler broadening.

12A.3 Experimental techniques

We now turn to practical aspects of molecular spectroscopy. 
Common to all spectroscopic techniques is a spectrometer, 
an instrument that detects the characteristics of radiation scat-
tered, emitted, or absorbed by atoms and molecules. As an 
example, Fig. 12A.6 shows the general layout of an absorption 
spectrometer. Radiation from an appropriate source is directed 
toward a sample and the radiation transmitted strikes a device 
that separates it into different frequencies. The intensity of radi-
ation at each frequency is then analysed by a suitable detector.

(a) Sources of radiation
Sources of radiation are either monochromatic, those spanning 
a very narrow range of frequencies around a central value, or 
polychromatic, those spanning a wide range of frequencies. 
Monochromatic sources that can be tuned over a range of fre-
quencies include the klystron and the Gunn diode, which oper-
ate in the microwave range, and lasers (Topic 13C).

Polychromatic sources that take advantage of black-body 
radiation from hot materials (Topic 7A) can be used from 
the infrared to the ultraviolet regions of the electromagnetic 
spectrum. Examples include mercury arcs inside a quartz 
envelope ( )35 2001 1cm cm− −< < , Nernst filaments and glo-
bars ( )200 40001 1cm cm− −< < , and quartz–tungsten–halogen 
lamps (320 nm < λ < 2500 nm).

Brief illustration 12A.3 Lifetime broadening

A typical electronic excited state natural lifetime is about 
τ = 10−8 s = 1.0 × 104 ps, corresponding to a linewidth of

δ ≈
×

= ×
−

− −5 3
1 0 10

5 3 10
1

4
4 1.

.
.

cm
cm

which corresponds to 16 MHz.

Self-test 12A.4 Consider a molecular rotation with a lifetime 
of about 103 s. What is the linewidth of the spectral line?

Answer: 5 × 10−15 cm−1 (of the order of 10−4 Hz)

Sample

Reference

Source

Beam
combiner

Detector

Figure 12A.6 The layout of a typical absorption spectrometer, 
in which the exciting beams of radiation pass alternately 
through a sample and a reference cell, and the detector is 
synchronized with them so that the relative absorption can be 
determined.
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12A General features of molecular spectroscopy  483

A gas discharge lamp is a common source of ultraviolet and 
visible radiation. In a xenon discharge lamp, an electrical dis-
charge excites xenon atoms to excited states, which then emit 
ultraviolet radiation. In a deuterium lamp, excited D2 molecules 
dissociate into electronically excited D atoms, which emit 
intense radiation in the range 200–400 nm.

For certain applications, radiation is generated in a synchro-
tron storage ring, which consists of an electron beam travelling 
in a circular path with circumferences of up to several hundred 
metres. As electrons travelling in a circle are constantly acceler-
ated by the forces that constrain them to their path, they gener-
ate radiation (Fig. 12A.7). This synchrotron radiation spans a 
wide range of frequencies, including the infrared and X-rays. 
Except in the microwave region, synchrotron radiation is 
much more intense than can be obtained by most conventional 
sources.

(b) Spectral analysis
A common device for the analysis of the wavelengths (or wave-
numbers) in a beam of radiation is a diffraction grating, which 
consists of a glass or ceramic plate into which fine grooves have 
been cut and covered with a reflective aluminium coating. For 
work in the visible region of the spectrum, the grooves are cut 
about 1000 nm apart (a spacing comparable to the wavelength 
of visible light). The grating causes interference between waves 
reflected from its surface, and constructive interference occurs 
at specific angles that depend on the frequency of the radiation 
being used. Thus, each wavelength of light is directed into a 
specific direction (Fig. 12A.8). In a monochromator, a narrow 
exit slit allows only a narrow range of wavelengths to reach the 

detector. Turning the grating around an axis perpendicular to 
the incident and diffracted beams allows different wavelengths 
to be analysed; in this way, the absorption spectrum is built up 
one narrow wavelength range at a time. In a polychromator, 
there is no slit and a broad range of wavelengths can be ana-
lysed simultaneously by array detectors, such as those discussed 
below.

Many spectrometers, particularly those operating in the 
infrared and near-infrared, now almost always use Fourier 
transform techniques of spectral detection and analysis. The 
heart of a Fourier transform spectrometer is a Michelson inter-
ferometer, a device for analysing the frequencies present in a 
composite signal. The total signal from a sample is like a chord 
played on a piano, and the Fourier transform of the signal is 
equivalent to the separation of the chord into its individual 
notes, its spectrum.

The Michelson interferometer works by splitting the beam 
from the sample into two and introducing a varying path dif-
ference, p, into one of them (Fig. 12A.9). When the two compo-
nents recombine, there is a phase difference between them, and 

Linear
accelerator

Booster
synchrotron

Electron
beam

Radiation

Experimental
stations

30 m

10 m

Figure 12A.7 A simple synchrotron storage ring. The electrons 
injected into the ring from the linear accelerator and booster 
synchrotron are accelerated to high speed in the main ring. An 
electron in a curved path is subject to constant acceleration, 
and an accelerated charge radiates electromagnetic energy. 
Different versions of synchrotrons use different strategies 
for generating radiation across a wide spectral range, so 
that experiments at different frequencies can be conducted 
simultaneously.

Diffraction grating

Slit

To detector

Incident
beam λ1 λ2

λ3

Figure 12A.8 A polychromatic beam is dispersed by a 
diffraction grating into three component wavelengths λ1, 
λ2, and λ3. In the configuration shown, only radiation with λ2 
passes through a narrow slit and reaches the detector. Rotating 
the diffraction grating (as shown by the arrows on the dotted 
circle) allows λ1 or λ3 to reach the detector.

Movable mirror, M1

Mirror, M2

Beam
splitter

Compensator

Figure 12A.9 A Michelson interferometer. The beam-splitting 
element divides the incident beam into two beams with a path 
difference that depends on the location of the mirror M1. The 
compensator ensures that both beams pass through the same 
thickness of material.
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484 12 Rotational and vibrational spectra

they interfere either constructively or destructively depending 
on the difference in path lengths. The detected signal oscillates 
as the two components alternately come into and out of phase 
as the path difference is changed (Fig. 12A.10). If the radiation 
has wavenumber , the intensity of the detected signal due to 
radiation in the range of wavenumbers  to   +d , which we 
denote I p( , )d   , varies with p as

I p I p( , ) ( )( cos )        d d= +1 2π  (12A.20)

Hence, the interferometer converts the presence of a particu-
lar wavenumber component in the signal into a variation in 
intensity of the radiation reaching the detector. An actual signal 
consists of radiation spanning a large number of wavenumbers, 
and the total intensity at the detector, which we write I(p), is the 
sum of contributions from all the wavenumbers present in the 
signal:

I I I( ) ( ) ( )( cos )p p, p= = +
∞ ∞

∫ ∫        d d
0 0

1 2π
 

(12A.21)

A plot of I(p) against p is called an interferogram. The prob-
lem is to find I( ) , the variation of intensity with wavenumber, 
which is the spectrum we require, from the record of values of 
I(p). This step is a standard technique of mathematics, and is 
the ‘Fourier transformation’ step from which this form of spec-
troscopy takes its name (see Mathematical background 7 fol-
lowing Chapter 18). Specifically:

I I p I p p( ) { ( ) ( )}cos  = −
∞

∫4 0 21
2

0
π d

 

where I(0) is given by eqn 12A.21 with p = 0. This integration is 
carried out numerically in a computer connected to the spec-
trometer, and the output, I( ) , is the transmission spectrum of 
the sample.

Example 12A.2 Calculating a Fourier transform

Consider a signal consisting of three monochromatic beams 
with the following characteristics:

where the intensities are relative to the first value listed. Plot 
the interferogram associated with this signal. Then calculate 
and plot the Fourier transform of the interferogram.

Method For a signal consisting of only a few monochromatic 
beams, the integral in eqn 12A.21 can be replaced by a sum 
over the finite number of wavenumbers. It follows that the 
interferogram is

I I
i

i( ) ( )( cos )p pi= +∑   1 2π
 

In practice, the path difference p does not vary continuously, 
so the integral over p in eqn 12A.22 must be replaced by a sum 
over discrete path lengths pj, in which case the equation to use 
to generate the Fourier transform of I(p) is

I I I p
j

i j( ) { ( ) ( )}cos  = −∑4 0 21
2pj π

 
It is best to sum over a large number N of data points spanning 
a relatively large overall path difference P, with pj = jP/N (see 
Problem 12A.13). For example, let j range from 0 to 1000 with 
P = 1.0 cm, so that the path length difference increases in steps 
of (1.0/1000) cm = 10 µm.

Answer From the data, the interferogram is

I( ) ( cos ) ( cos ) ( cos )

cos

p p p p= + + × + + × +
= +

1 2 3 1 2 6 1 2

10 2
1 2 3π π π    

ππ π π    1 2 33 2 6 2p p p+ +cos cos  

This function is plotted in Fig. 12A.11. The calculation of the 
Fourier transform I( )  is made easier by the use of mathemat-
ical software. The result is shown in Fig. 12A.12.

 (12A.22)
Fourier 
transformation

In
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)

Path length difference, p

Figure 12A.11 The interferogram calculated from data in 
Example 12A.2.
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Figure 12A.10 An interferogram produced as the path length 
p is changed in the interferometer shown in Fig. 12A.9. Only 
a single frequency component is present in the signal, so the 
graph is a plot of the function I p I p( ) ( cos )= +0 1 2π , where I0 is 
the intensity of the radiation.
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(c) Detectors

A detector is a device that converts radiation into an electric 
signal for appropriate processing and display. Detectors may 
consist of a single radiation sensing element or of several small 
elements arranged in one- or two-dimensional arrays.

A microwave detector is typically a crystal diode consisting of 
a tungsten tip in contact with a semiconductor. The most com-
mon detectors found in commercial infrared spectrometers are 
sensitive in the mid-infrared region. In a photovoltaic device the 
potential difference changes upon exposure to infrared radia-
tion. In a pyroelectric device the capacitance is sensitive to tem-
perature and hence the presence of infrared radiation.

A common detector for work in the ultraviolet and vis-
ible ranges is the photomultiplier tube (PMT), in which the 

photoelectric effect (Topic 7A) is used to generate an electri-
cal signal proportional to the intensity of light that strikes the 
detector. A common, but less sensitive, alternative to the PMT 
is the photodiode, a solid-state device that conducts electric-
ity when struck by photons because light-induced electron 
transfer reactions in the detector material create mobile charge 
carriers (negatively charged electrons and positively charged 
‘holes’).

The charge-coupled device (CCD) is a two-dimensional array 
of several million small photodiode detectors. With a CCD, a 
wide range of wavelengths that emerge from a polychromator 
are detected simultaneously, thus eliminating the need to meas-
ure light intensity one narrow wavelength range at a time. CCD 
detectors are the imaging devices in digital cameras, but are 
also used widely in spectroscopy to measure absorption, emis-
sion, and Raman scattering.

(d) Examples of spectrometers
With a proper choice of spectrometer, absorption spectroscopy 
can probe electronic, vibrational, and rotational transitions in 
molecules. It is often necessary to modify the general design 
of Fig. 12A.6 in order to detect weak signals. For example, to 
detect rotational transitions with a microwave spectrometer it 
is useful to modulate the transmitted intensity by varying the 
energy levels with an oscillating electric field. In this Stark 
modulation, an electric field of about 105 V m−1 (1 kV cm−1) 
and a frequency of between 10 and 100 kHz is applied to the 
sample.

Virtually every commercial absorption spectrometer operat-
ing in the infrared region and designed for the study of vibra-
tional transitions uses Fourier transform techniques. Their 
major advantage is that all the radiation emitted by the source 
is monitored continuously, in contrast to a spectrometer in 
which a monochromator discards most of the generated radia-
tion. As a result, Fourier transform spectrometers have a higher 
sensitivity than conventional spectrometers.

Rotational, vibrational, and electronic transitions can be 
explored by monitoring the spectrum of radiation emitted by a 
sample. Emission by electronic excited states of molecules has 
two forms: fluorescence, which ceases within a few nanosec-
onds of the exciting radiation being extinguished, and phos-
phorescence, which may persist for long periods (Topic 13B). 
In a conventional fluorescence experiment, the source is tuned, 
often with the use of a monochromator, to a wavelength that 
causes electronic excitation of the molecule. Typically, the 
emitted radiation is detected perpendicular to the direction 
of the exciting beam of radiation, and analysed with a second 
monochromator (Fig. 12A.14).

In a typical Raman spectroscopy experiment, a monochro-
matic incident laser beam is passed through the sample and the 
radiation scattered from the front face of sample is monitored 
(Fig. 12A.15). Lasers are used as the source of the incident 

Self-test 12A.5 Explore the effect of varying the wavenumbers 
of the three components of the radiation on the shape of the 
interferogram by changing the value of 3  to 550 cm−1.

Answer: See Fig. 12A.13.
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Figure 12A.12 The Fourier transform of the interferogram 
shown in Fig. 12A.11.
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Figure 12A.13 The interferogram calculated from data in 
Selftest 12A.5.
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486 12 Rotational and vibrational spectra

radiation because an intense beam increases the intensity of 
scattered radiation. The monochromaticity of laser radiation 
makes possible the observation of frequencies of scattered 
light that differs only slightly from that of the incident radia-
tion. Such high resolution is particularly useful for observing 
rotational transitions by Raman spectroscopy. The monochro-
maticity of laser radiation also allows observations to be made 
very close to absorption frequencies. Fourier transform instru-
ments are common, as are spectrometers using polychromators 
connected to CCD detectors.

Raman spectroscopy can be used to study rotational and 
vibrational transitions in molecules. Most commercial instru-
ments are designed for vibrational studies, which lead to appli-
cations in biochemistry, art restoration, and monitoring of 
industrial processes. Raman spectrometers can also be coupled 
to microscopes, resulting in spectra of very small regions of a 
sample.

Checklist of concepts

☐ 1. In Raman spectroscopy, changes in molecular states 
are explored by examining the frequencies present in 
the radiation scattered by molecules.

☐ 2. Stokes radiation is the result of Raman scattering of 
photons that give up some of their energy during (and 
emerge with lower frequency after) collisions with 
molecules.

☐ 3. Anti-Stokes radiation is the result of Raman scattering 
of photons that collect some energy during (and emerge 
with higher frequency after) collisions with molecules.

☐ 4. The component of radiation scattered without change 
of frequency is called Rayleigh radiation.

☐ 5. A transition from a low energy state to one of higher 
energy that is driven by an oscillating electromagnetic 
field is called stimulated absorption.

☐ 6. A transition driven from high energy to low energy is 
called stimulated emission.

☐ 7. A transition from a high energy state to a low energy 
state occurs by the process of spontaneous emission at 
a rate independent of any radiation also present.

☐ 8. The relative importance of spontaneous emission 
increases as the cube of the transition frequency.

☐ 9. A gross selection rule specifies the general features a 
molecule must have if it is to have a spectrum of a given 
kind.

☐ 10. A specific selection rule expresses the allowed transi-
tions in terms of the changes in quantum numbers.

☐ 11. Doppler broadening of a spectral line is caused by 
the distribution of molecular and atomic speeds in a 
sample.

☐ 12. Lifetime broadening arises from the finite lifetime of an 
excited state and a consequent blurring of energy levels.

☐ 13. Collisions between atoms can affect excited state life-
times and spectral linewidths.

☐ 14. The natural linewidth of a transition is an intrinsic 
property that depends on the rate of spontaneous emis-
sion at the transition frequency.

☐ 15. A spectrometer is an instrument that detects the char-
acteristics of radiation scattered, emitted, or absorbed 
by atoms and molecules.

Sample

Source

Detector

Fluorescence

Incident
radiation

Monochromator

Figure 12A.14 A simple emission spectrometer for monitoring 
fluorescence, where light emitted by the sample is detected 
at right angles to the direction of propagation of an incident 
beam of radiation.

Sample

Source

Detector

Monochromator
or interferometer

Figure 12A.15 A common arrangement adopted in Raman 
spectroscopy. A laser beam first passes through a lens 
and then through a small hole in a mirror with a curved 
reflecting surface. The focused beam strikes the sample 
and scattered light is both deflected and focused by the 
mirror. The spectrum is analysed by a monochromator or an 
interferometer.
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Checklist of equations

Property Equation Comment Equation number

Ratio of Einstein coefficients of 
spontaneous and stimulated 
emission

A/B = 8πhν3/c3 Bfi = Bif (= B) 12A.9

Transition dipole moment μ μfi i* d=∫ψ ψ τf  Electric dipole transitions 12A.10

Beer–Lambert law I = I010−ε[J]L Uniform sample 12A.11

Absorbance A = log(I0/I) = −log T Definition 12A.13

Integrated absorption coefficient A =∫ ε( )  d
band

Definition 12A.15

Doppler broadening δνobs = (2ν/c)(2kT ln 2/m)1/2

δλobs = (2λ/c)(2kT ln 2/m)1/2

12A.17

Lifetime broadening δ ≈ −5 3 1. /( / )cm psτ 12A.19

Fourier transformation I I I( ) { ( ) ( )}cos  = −
∞

∫4 0 21
2

0
p p pπ d Spectral data collected with a 

Michelson interferometer
12A.22
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12B molecular rotation

Topic 8C explores the rotational states of diatomic molecules by 
using the particle on a ring and particle on a sphere, respectively, 
as models. Here we use a related but more sophisticated model 
that can be applied to the rotation of polyatomic molecules.

12B.1 Moments of inertia

The key molecular parameter we need for the description of 
molecular rotation is the moment of inertia, I, of the molecule. 
The moment of inertia of a molecule is defined as the mass of 
each atom multiplied by the square of its distance from the 
rotational axis passing through the centre of mass of the mol-
ecule (Fig. 12B.1):

I m x
i

i i=∑ 2

 
Definition  moment of inertia  (12B.1)

where xi is the perpendicular distance of the atom i from the 
axis of rotation. The moment of inertia depends on the masses 
of the atoms present and the molecular geometry, so we can sus-
pect (and see explicitly in Topic 12C) that microwave spectros-
copy will give information about bond lengths and bond angles.

In general, the rotational properties of any molecule can be 
expressed in terms of the moments of inertia about three per-
pendicular axes set in the molecule (Fig. 12B.2). The conven-
tion is to label the moments of inertia Ia, Ib, and Ic, with the axes 
chosen so that Ic ≥ Ib ≥ Ia. For linear molecules, the moment of 
inertia around the internuclear axis is zero (because xi = 0 for all 
the atoms) and the two remaining moments of inertia, which 
are equal, are denoted simply I. The explicit expressions for the 
moments of inertia of some symmetrical molecules are given in 
Table 12B.1.
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12b.1 Moments of inertia 488
example 12b.1: calculating the moment  
of inertia of a molecule 489

12b.2 The rotational energy levels 490
(a) Spherical rotors 490

brief illustration 12b.1: spherical rotors 491
(b) Symmetric rotors 491

example 12b.2: calculating the rotational energy  
levels of a symmetric rotor 492

(c) Linear rotors 493
brief illustration 12b.2: linear rotors 493

(d) Centrifugal distortion 493
brief illustration 12b.3: the effect of centrifugal  
distortion 493

Checklist of concepts 494
Checklist of equations 494

➤➤ Why do you need to know this material?
To understand the origin of rotational spectra and to 
derive structural-information, such as bond lengths, 
about molecules from them, you need to understand the 
quantum mechanical treatment of rotation of polyatomic 
molecules.

➤➤ What is the key idea?
The energy levels of a molecule modelled as a rigid rotor 
may be expressed in terms of quantum numbers and 
parameters related to its moments of inertia.

➤➤ What do you need to know already?
You need to be familiar with the classical description 
of rotational motion (Foundations B). You also need to 
be familiar with the particle on a ring and particle on 
a sphere as quantum mechanical models of rotational 
motion (Topic 8C).

xD

xA

mD

mA

mB

mC

I = 3mAxA
2 + 3mDxD

2

Figure 12B.1 The definition of moment of inertia. In this 
molecule there are three identical atoms attached to the B 
atom and three different but mutually identical atoms attached 
to the C atom. In this example, the centre of mass lies on an 
axis passing through the B and C atoms, and the perpendicular 
distances are measured from this axis.
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12B Molecular rotation  489

Example 12B.1 Calculating the moment of inertia of a 
molecule

Calculate the moment of inertia of an H2O molecule around 
the axis defined by the bisector of the HOH angle (1). The 
HOH bond angle is 104.5° and the bond length is 95.7 pm. Use 
m(1H) = 1.0078mu.

φ/2
xH1

Method According to eqn 12B.1, the moment of inertia is the 
sum of the masses multiplied by the squares of their distances 
from the axis of rotation. The latter can be expressed by using 
trigonometry and the bond angle and bond length.

A note on good practice The mass to use in the calcula-
tion of the moment of inertia is the actual atomic mass, 
not the element’s molar mass; don’t forget to convert from 
relative masses to actual masses by using the atomic mass 
constant mu.

Answer From eqn 12B.1,

I m x m x m x m x
i

i i= = + + =∑ 2 2 2 20 2H H H H H H

Table 12B.1 Moments of inertia*

1. Diatomic molecules

mA mB

R I R
m m

m
= =μ μ2 A B

2. Triatomic linear rotors

mB

mA mC

R´R I m R m R

m R m R
m

= +

− −
A C

A C

2 2

2

′

′( )

mB

mA mA

R R I = 2mAR2

3. Symmetric rotors
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Figure 12B.2 An asymmetric rotor has three different 
moments of inertia; all three rotation axes coincide at the 
centre of mass of the molecule.

4. Spherical rotors

mB

mA

mA mA

mA

R

I m R= 8
3

2
A

mB
mA

mA

mA

mA

mA

mA

R

I = 4mAR2

* In each case, m is the total mass of the molecule.

iranchembook.ir/edu
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We shall suppose initially that molecules are rigid rotors, 
bodies that do not distort under the stress of rotation. Rigid 
rotors can be classified into four types (Fig. 12B.3):

Spherical rotors have three equal moments of inertia 
(examples: CH4, SiH4, and SF6).
Symmetric rotors have two equal moments of inertia and a 
third that is non-zero (examples: NH3, CH3Cl, and 
CH3CN).

 Linear rotors have two equal moments of inertia and a 
third that is zero (examples: CO2, HCl, OCS, and 
HC ≡ CH).

 Asymmetric rotors have three different and non-zero 
moments of inertia (examples: H2O, H2CO, and CH3OH).

Spherical, symmetric, and asymmetric rotors are also called 
spherical tops.

12B.2 The rotational energy levels

The rotational energy levels of a rigid rotor may be obtained 
by solving the appropriate Schrödinger equation. Fortunately, 
however, there is a much less onerous short cut to the exact 
expressions: we note the classical expression for the energy of 
a rotating body, express it in terms of the angular momentum, 
and then import the quantum mechanical properties of angular 
momentum into the equations.

The classical expression for the energy of a body rotating 
about an axis a is

E Ia a a= 1
2

2ω  (12B.2)

where ωa is the angular velocity about that axis and Ia is the 
corresponding moment of inertia. A body free to rotate about 
three axes has an energy

E I I Ia a b b c c= + +1
2

2 1
2

2 1
2

2ω ω ω  (12B.3)

Because the classical angular momentum about the axis a is 
Ja = Iaωa (eqn B.3 of Foundations B) with similar expressions for 
the other axes, it follows that

E
J
I

J
I

J
I

a

a

b

b

c

c

= + +
2 2 2

2 2 2  
Classical expression  rotational energy  (12B.4)

This is the key equation, which can be used in conjunction with 
the quantum mechanical properties of angular momentum 
developed in Topic 8C.

(a) Spherical rotors
When all three moments of inertia are equal to some value I, as 
in CH4 and SF6, the classical expression for the energy is

E
J J J

I I
a b c= + + =
2 2 2 2

2 2
J

 
(12B.5)

where J 2 2 2 2= + +J J Ja b c  is the square of the magnitude of the 
angular momentum. We can immediately generate the quan-
tum expression by making the replacement

If the bond angle of the molecule is denoted φ and the bond 
length is R, trigonometry gives x RH sin= 1

2 φ.  It follows that

I m R= 2 2 2 1
2H sin φ

Substitution of the data gives

I = × × ×
°

× ×
× ×

− −2 1 0078 1 6605 10 9 57 10

104 5

27 11 2

2 1
2

( ) ( )

( )

. . .

.

kg m

sin

.= × −1 92 10 47 2kg m

Note that the mass of the O atom makes no contribution to 
the moment of inertia for this mode of rotation as the atom is 
immobile while the H atoms circulate around it.

Self-test 12B.1 Calculate the moment of inertia of a CH35Cl3 
molecule around a rotational axis that contains the CKH 
bond. The CKCl bond length is 177 pm and the HCCl angle is 
107°; m(35Cl) = 34.97mu.

Answer: 4.99 × 10−45 kg m2

I

I

I

I||

I

I

I⊥I⊥

Ia
Ib

Ic

Linear
rotor

Spherical
rotor

Symmetric
rotor

Asymmetric
rotor

0

Figure 12B.3 A schematic illustration of the classification of 
rigid rotors.
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J 2 21 0 1 2→ + =J J J( ) , , ,� …  

where J is the angular momentum quantum number. Therefore, 
the energy of a spherical rotor is confined to the values

E J J
I

JJ = + = …( ) , , ,1
2

0 1 2
2

 

The resulting ladder of energy levels is illustrated in Fig. 12B.4. 
The energy is normally expressed in terms of the rotational 
constant, B , of the molecule, where

hcB
I

B
cI

� �� �= =
2

2 4
so π  

Spherical rotor  rotational constant  (12B.7)

It follows that B  is a wavenumber. The expression for the energy 
is then

E hcBJ J JJ = + = … ( ) , , ,1 0 1 2  Spherical rotor  energy levels  (12B.8)

It is also common to express the rotational constant as a fre-
quency and to denote it simply B. Then B = ħ/4πI and the energy 
is E = hBJ(J + 1). The two quantities are related by B cB= .

The energy of a rotational state is normally reported as the 
rotational term, F J( ), a wavenumber, by division of both sides 
of eqn 12B.8 by hc:

 F J BJ J( ) ( )= +1  Spherical rotor  rotational terms  (12B.9)

To express the rotational term as a frequency, use F cF= .  The 
separation of adjacent levels is

    F J F J B J J BJ J B J( ) ( ) ( )( ) ( ) ( )+ − = + + − + = +1 1 2 1 2 1  (12B.10)

Because the rotational constant is inversely proportional to I, 
large molecules have closely spaced rotational energy levels.

(b) Symmetric rotors
In symmetric rotors, all three moments of inertia are non-zero 
but two are the same and different from the third (as in CH3Cl, 
NH3, and C6H6); the unique axis of the molecule is its princi-
pal axis (or figure axis). We shall write the unique moment of 
inertia (that about the principal axis) as I|| and the other two 
as I⊥. If I|| > I⊥, the rotor is classified as oblate (like a pancake, 
and C6H6); if I|| < I⊥ it is classified as prolate (like a cigar, and 
CH3Cl). The classical expression for the energy, eqn 12B.5, 
becomes

E
J J

I
J
I

b c a= + +
2 2 2

2 2⊥ ||  
(12B.11)

Again, this expression can be written in terms of J 2 2 2 2= + +J J Ja b c :

E
J

I
J
I I I I

Ja a
a= − + = + −



⊥ ⊥

J J2 2 2 2
2

2 2 2
1

2
1

2 ⊥  
(12B.12)

Now we generate the quantum expression by first replacing 
J 2 by J(J + 1)ħ2. Then, using the quantum theory of angu-
lar momentum (Topic 8C), we note that the component of 
 angular momentum about any axis is restricted to the val-
ues  Kħ, with K = 0, ±1, …, ±J. (K is the quantum number 
used  to signify a component on the principal axis; MJ is 
reserved for a component on an externally defined axis.) 
Therefore, we also replace Ja

2  by K2ħ2. It follows that the rota-
tional terms are

Brief illustration 12B.1 Spherical rotors

Consider 12C35Cl4: from Table 12B.1, the C e Cl bond 
length (RCe Cl = 177 pm) and the mass of the 35Cl nuclide 
(m(35Cl) = 34.97mu), we find

I m R=

= × ×

−

−

× × −

8
3

35 2

8
3

265 807 10

( )

( . )

Cl

kg

C Cl

34.97 (1.66054 10 kg27 ))� ��� ���
× ×

= ×

−

−

( . )

.

1 77 10

4 85 10

10 2

45 2

m

kg m

and, from eqn 12B.7,

�
�

B = ×
× × × ×

−

− −

−

1 05457 10
4 2 998 10 4 85 10

34

8 1 45

.
( . ) ( .

J

kgm s2 2

s
msπ kkg m

m cm

2

1 15 77 0 0577

)

. .= =− −

It follows from eqn 12B.10 that the energy separation between 
the J = 0 and J = 1 levels is   F F B( ) ( ) . .1 0 2 0 1154 1− = = −cm

Self-test 12B.2 Calculate  F F( ) ( )2 0−  for 12C35Cl4.
Answer: 6 0 3462 1B = −. cm

 (12B.6)
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Figure 12B.4 The rotational energy levels of a linear or 
spherical rotor. Note that the energy separation between 
neighbouring levels increases as J increases.
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   F J K BJ J A B K

J K J

( , ) ( ) ( )

, , , , , ,

= + + −
= … = ± … ±

1

0 1 2 0 1

2

  

with

� �� �
�

A
cI

B
cI

= =
⊥4 4π π  

(12B.14)

As eqn 12B.13 matches what we should expect for the depend-
ence of the energy levels on the two distinct moments of inertia 
of the molecule:

•	 When K = 0, there is no component of angular 
momentum about the principal axis, and the energy 
levels depend only on I⊥ (Fig. 12B.5).

•	 When K = ±J, almost all the angular momentum 
arises from rotation around the principal axis, and 
the energy levels are determined largely by I||.

•	 The sign of K does not affect the energy because 
opposite values of K correspond to opposite senses of 
rotation, and the energy does not depend on the 
sense of rotation.

The energy of a symmetric rotor depends on J and K, and 
each level except those with K = 0 is doubly degenerate: the 
states with K and –K have the same energy. However, we must 
not forget that the angular momentum of the molecule has a 
component on an external, laboratory-fixed axis. This compo-
nent is quantized, and its permitted values are MJħ, with MJ = 0, 
±1, …, ±J, giving 2J + 1 values in all (Fig. 12B.6). The quantum 
number MJ does not appear in the expression for the energy, 
but it is necessary for a complete specification of the state of 

 (12B.13)
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rotational 
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Example 12B.2 Calculating the rotational energy levels 
of a symmetric rotor

A 14NH3 molecule is a symmetric rotor with bond length 
101.2 pm and HNH bond angle 106.7°. Calculate its rotational 
terms.

A note on good practice To calculate moments of inertia 
precisely, it is necessary to specify the nuclide.

Method Begin by calculating the rotational constants A and 
B by using the expressions for moments of inertia given in 
Table 12B.1 and eqn 12B.14. Then use eqn 12B.13 to find the 
rotational terms.

Answer Subst itut ion of m A =  1.0078mu, m B =  14.0031 
mu, R = 101.2 pm, and θ = 106.7° into the second of the sym-
metric rotor expressions in Table 12B.1 gives I∥ = 4.4128 × 10−47 
kg m2 and I⊥ = 2.8059 × 10−47 kg m2. Hence, by the same kind of 
calculations as in Brief illustration 12B.1, A = 6 344. cm 1−  and 
B = 9 977. cm 1− . It follows from eqn 12B.13 that

F J K J J K( , )/ . ( ) .cm− = × + −1 29 977 1 3 933  

Multiplication by c converts F( , )J K  to a frequency, denoted 
F(J,K):

F J K J J K( , )/ . ( ) .GHz = × + −299 1 1 108 9 2

 

For J = 1, the energy needed for the molecule to rotate mainly 
about its figure axis (K = ±J) is equivalent to 16.32 cm−1 
(489.3 GHz), but end-over-end rotation (K = 0) corresponds to 
19.95 cm−1 (598.1 GHz).

Self-test 12B.3 A CH3
35Cl molecule has a CeCl bond length of 

178 pm, a CeH bond length of 111 pm, and an HCH angle of 
110.5°. Calculate its rotational energy terms.

Answer: F J( , )/ . ( ) .J K J Kcm 1− = + +0 444 1 4 58 2 ;  
also F(J,K)/GHz = 13.3J(J + 1) + 137K2

J

J

K ≈ J K = 0
(a) (b)

Figure 12B.5 The significance of the quantum number K. (a) 
When |K| is close to its maximum value, J, most of the molecular 
rotation is around the figure axis. (b) When K = 0 the molecule 
has no angular momentum about its principal axis: it is 
undergoing end-over-end rotation.

(b)(a) (c)

J MJ

z

MJ = 0

Figure 12B.6 The significance of the quantum number MJ. (a) 
When MJ is close to its maximum value, J, most of the molecular 
rotation is around the laboratory z-axis. (b) An intermediate 
value of MJ. (c) When MJ = 0 the molecule has no angular 
momentum about the z-axis. All three diagrams correspond 
to a state with K = 0; there are corresponding diagrams for 
different values of K, in which the angular momentum makes 
a different angle to the molecule’s principal axis.
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the rotor. Consequently, all 2J + 1 orientations of the rotating 
molecule have the same energy. It follows that a symmetric 
rotor level is 2(2J + 1)-fold degenerate for K ≠ 0 and (2J + 1)-fold 
degenerate for K = 0.

A spherical rotor can be regarded as a version of a sym-
metric rotor in which  A B= . The quantum number K may still 
take any one of 2J + 1 values, but the energy is independent of 
which value it takes. Therefore, as well as having a (2J + 1)-fold 
degeneracy arising from its orientation in space, the rotor also 
has a (2J + 1)-fold degeneracy arising from its orientation with 
respect to an arbitrary axis in the molecule. The overall degen-
eracy of a symmetric rotor with quantum number J is therefore 
(2J + 1)2. This degeneracy increases very rapidly: when J = 10, 
for instance, there are 441 states of the same energy.

(c) Linear rotors
For a linear rotor (such as CO2, HCl, and C2H2), in which the 
nuclei are regarded as mass points, the rotation occurs only 
about an axis perpendicular to the line of atoms and there is 
zero angular momentum around the line. Therefore, the com-
ponent of angular momentum around the figure axis of a linear 
rotor is identically zero, and K ≡ 0 in eqn 12B.13. The rotational 
terms of a linear molecule are therefore

 F BJ J( ) ( ) , , ,J J= + = …1 0 1 2   

This expression is the same as eqn 12B.9 but we have arrived at 
it in a significantly different way: here K ≡ 0 but for a spherical 
rotor  A B= . A linear rotor has 2J + 1 components on the labora-
tory axis, so its degeneracy is 2J + 1.

(d) Centrifugal distortion
We have treated molecules as rigid rotors. However, the atoms 
of rotating molecules are subject to centrifugal forces that tend 
to distort the molecular geometry and change the moments of 
inertia (Fig. 12B.7). The effect of centrifugal distortion on a dia-
tomic molecule is to stretch the bond and hence to increase the 

moment of inertia. As a result, centrifugal distortion reduces 
the rotational constant and consequently the energy levels are 
slightly closer than the rigid-rotor expressions predict. The 
effect is usually taken into account largely empirically by sub-
tracting a term from the energy and writing

  F J BJ J D J JJ( ) ( ) ( )= + − +1 12 2

 

The parameter DJ  is the centrifugal distortion constant. It is 
large when the bond is easily stretched. The centrifugal distor-
tion constant of a diatomic molecule is related to the vibrational 
wavenumber of the bond,   (which, as we see in Topic 12D, is a 
measure of its stiffness), through the approximate relation (see 
Problem 12.2)



D
B

J = 4 3

2  
 centrifugal distortion constant  (12B.17)

Hence the observation of the convergence of the rotational 
 levels as J increases can be interpreted in terms of the rigidity 
of the bond.

Brief illustration 12B.2 Linear rotors

Equation 12B.10 for the energy separation of adjacent levels 
of a spherical rotor also applies to linear rotors. For 1H35Cl, 
 F F( ) ( ) . ,3 2 63 56 1− = −cm  and it follows that 6 63 56 1B = −. cm  

and B = −10 59 1. cm .

Self-test 12B.4 For 1H81Br,  F F( ) ( ) .1 0 16 93 1− = −cm . Determine 
the value of B.

Answer: 8.465 cm−1

Brief illustration 12B.3 The effect of centrifugal 
distortion

For 12C16O, B =1 931. cm 1−  and  = 2170 1cm− . It follows that

DJ = × = ×
−

−
− −4 1 931

2170
6 116 10

1 3

1 2
6 1( . )

( )
.

cm
cm

cm

and that, because � � �D BJ , centrifugal distortion has a very 
small effect on the energy levels.

Self-test 12B.5 Does centrifugal distortion increase or 
decrease the separation between adjacent energy levels?

Answer: decrease

 (12B.15)Linear 
rotor

rotational 
terms

 (12B.16)rotational terms affected 
by centrifugal distortion

Centrifugal
force

Figure 12B.7 The effect of rotation on a molecule. The 
centrifugal force arising from rotation distorts the molecule, 
opening out bond angles and stretching bonds slightly. The 
effect is to increase the moment of inertia of the molecule and 
hence to decrease its rotational constant.
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494 12 Rotational and vibrational spectra

Checklist of concepts

☐ 1. A rigid rotor is a body that does not distort under the 
stress of rotation.

☐ 2. Rigid rotors are classified spherical, symmetric, linear, 
or asymmetric by noting the number of equal principal 
moments of inertia.

☐ 3. Symmetric rotors are classified as prolate or oblate.

☐ 4. A linear rotor rotates only about an axis perpendicular 
to the line of atoms.

☐ 5. The degeneracies of spherical, symmetric (K ≠ 0), and 
linear rotors are (2J  +  1)2, 2(2J + 1), and 2J + 1, respectively.

☐ 6. Centrifugal distortion arises from forces that change 
the geometry of a molecule.

Checklist of equations

Property Equation Comment Equation number

Moment of inertia
I m x

i

i i=∑ 2 xi is perpendicular distance of  
atom i from the axis of rotation

12B.1

Rotational terms of a spherical or linear rotor  F J BJ J( ) ( )= +1 J

B cI

= …

=

0 1 2

4

, , ,

/� � π

12B.9, 12B.15

Rotational terms of a symmetric rotor   F J K BJ J B K( , ) ( ) ( )= + + −1 2A J

K J

A cI

B cI

= …
= ± … ±

=

= ⊥

0 1 2

0 1

4

4

, , ,

, , ,

/

/

�

�
�

�

�π

π

12B.13

Rotational terms of a spherical or linear rotor  
affected by centrifugal distortion

  F J BJ J D J JJ( ) ( ) ( )= + − +1 12 2 12B.16

Centrifugal distortion constant   D BJ = 4 3 2/ 12B.17
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12C rotational spectroscopy

Pure rotational spectra, in which only the rotational state of a 
molecule changes, can be observed only in the gas phase. In 
spite of this limitation, rotational spectroscopy can provide a 
wealth of information about molecules, including precise bond 
lengths and dipole moments.

Our approach to the description of rotational spectra con-
sists of developing the gross and specific selection rules for 
rotational transitions, examining the appearance of rotational 
spectra, and exploring the information that can be obtained 
from the spectra. This material is also used in the discussion 
of the fine details observed in vibrational spectra (Topic 12D) 
and electronic spectra (Topic 13A). Our discussion of the 
appearance of rotational spectra is based principally on the 
expression for the rotational terms of a linear rotor developed 
in Topic 12B:

Eqn B ( ). . : ( ) /12 9 1 4� � ��F J = + =BJ J B cIπ  

where I is the moment of inertia of the molecule (the energies 
themselves are E =hcF JJ

( )). The same expression applies to 
spherical rotors; the expression for symmetric rotors is slightly 
more elaborate:

Eqn B. . : ( , ) ( ) ( )

/ /

12 13 1

4 4

2� � � �

� �� ��

F J K BJ J A B K

A cI B cI

= + + −

= = ⊥π π  

The values allowed to J, K, and MJ (which does not affect the 
energy but is needed to define the state fully) are set out in 
Topic 12B.

12C.1 Microwave spectroscopy

Typical values of the rotational constant B  for small molecules 
are in the region of 0.1–10 cm−1 (Topic 12B); two examples are 
0.356 cm−1 for NF3 and 10.59 cm−1 for HCl. It follows that rota-
tional transitions can be studied with microwave spectroscopy, 
a technique that monitors the absorption or emission of radia-
tion in the microwave region of the spectrum.

(a) Selection rules
We show in the following Justification that the gross selection 
rule for the observation of a pure rotational transition in a 
microwave spectrum is that a molecule must have a permanent 
electric dipole moment. That is, to absorb or emit microwave 
radiation and undergo a pure rotational transition, a molecule 
must be polar. The classical basis of this rule is that a polar mol-
ecule appears to possess a fluctuating dipole when rotating but 
a nonpolar molecule does not (Fig. 12C.1). The permanent 

Contents

12c.1 Microwave spectroscopy 495
(a) Selection rules 495

brief illustration 12c.1: gross selection rules  
for microwave spectroscopy 496

(b) The appearance of microwave spectra 497
example 12c.1: Predicting the appearance  
of a rotational spectrum 497

12c.2 Rotational Raman spectroscopy 498
example 12c.2: Predicting the form of a raman  
spectrum 500

12c.3 Nuclear statistics and rotational states 500
brief illustration 12c.2: Ortho- and para-hydrogen 502

Checklist of concepts 502
Checklist of equations 502

➤➤ Why do you need to know this material?
Rotational spectroscopy provides very precise details 
of bond lengths and bond angles of molecules in the 
gas phase. Transitions between rotational levels also 
contribute to vibrational and electronic spectra and are 
used in the investigation of gas-phase reactions such as 
those taking place in the atmosphere.

➤➤ What is the key idea?
Analysis of rotational spectra yields the bond lengths and 
dipole moments of molecules in the gas phase.

➤➤ What do you need to know already?
You should be familiar with the quantum mechanical 
treatment of molecular rotation (Topic 12B), the general 
principles of molecular spectroscopy (Topic 12A), and the 
Pauli principle (Topic 9B).

iranchembook.ir/edu



496 12 Rotational and vibrational spectra

dipole can be regarded as a handle with which the molecule 
stirs the electromagnetic field into oscillation (and vice versa 
for absorption).

The specific rotational selection rules are found by evaluat-
ing the transition dipole moment (Topic 12A) between rota-
tional states. We show in the following Justification that, for a 
linear molecule, the transition moment vanishes unless the fol-
lowing conditions are fulfilled:

∆ = ± ∆ = ±J M J1 0 1,  Linear rotors  rotational selection rules  (12C.1)

The transition ΔJ = +1 corresponds to absorption and the tran-
sition ΔJ = –1 corresponds to emission.

•	 The allowed change in J arises from the conservation 
of angular momentum when a photon, a spin-1 
particle, is emitted or absorbed (Fig. 12C.2).

•	 The allowed change in MJ also arises from the 
conservation of angular momentum when a  
photon is emitted into or absorbed from a specific 
direction.

Brief illustration 12C.1 Gross selection rules for 
microwave spectroscopy

Homonuclear diatomic molecules and nonpolar polyatomic 
molecules, such as CO2, CH2=CH2, and C6H6, are rotationally 
inactive. On the other hand, OCS and H2O are polar, and 
have microwave spectra. Spherical rotors cannot have elec-
tric dipole moments unless they become distorted by rota-
tion, so they are rotationally inactive except in special cases. 
An example of a spherical rotor that does become sufficiently 
distorted for it to acquire a dipole moment is SiH4, which has 
a dipole moment of about 8.3 µD by virtue of its rotation when 
J ≈ 10 (for comparison, HCl has a permanent dipole moment of 
1.1 D; molecular dipole moments and their units are discussed 
in Topic 16A).

Self-test 12C.1 Which of the molecules H2, NO, N2O, CH4 can 
have a pure rotational spectrum?

Answer: NO, N2O
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Justification 12C.1 Selection rules for microwave spectra

The starting point for any discussion about selection rules is 
the transition dipole moment (Topic 12A) and the total wave-
function for a molecule, which can be written as ψtotal = ψc.m. 
ψ, where ψc.m. describes the motion of the centre of mass and 
ψ describes the internal motion of the molecule. The Born–
Oppenheimer approximation (Topic 10A) allows us to write 
ψ as the product of an electronic part, ψε, a vibrational part, 
ψν, and a rotational part, which for a diatomic molecule can be 
represented by the spherical harmonics YJ M J, ( , )θ φ  (Topic 8C). 
The transition dipole moment for the spectroscopic transition 
i → f can now be written as

μ μfi f i i i i
d= ∫ψ ψ ψ ψ τε εf f f

* * *
, ,, , Y YJ M J MJ J


 

(12C.2)

and our task is to explore conditions for which this integral 
does not vanish.

For a pure rotational transition the initial and final elec-
tronic and vibrational states are the same, and we identify 
μ μi d= ∫ψ ψ ψ ψε εi i i i

* *
  τ  with the permanent electric dipole 

moment of the molecule in the state i. Equation 12C.2 then 
becomes

μ μfi i i i
d= ∫Y YJ M J MJ Jf f, ,, ,

* τ
 

(12C.3)

The remaining integration is over the angles representing 
the orientation of the molecule. We see immediately that the 
molecule must have a permanent dipole moment in order to 
have a microwave spectrum. This is the gross selection rule for 
microwave spectroscopy.

From this point on, the deduction of the specific selection 
rules proceeds as in the case of atomic transitions (Topic 9C), 
and makes use of the fact that the three components of the 
dipole moment (Fig. 12C.3) are

µ µ θ φ µ µ θ φ µ µ θi i i, , ,sin cos sin sin cosx y z= = =0 0 0  (12C.4)

and can be expressed in terms of the spherical harmonics Yj,m, 
with j = 1 and m = 0, ±1 (see Justification 9C.1). The condition 

µ µµ µ

Figure 12C.1 To a stationary observer, a rotating polar 
molecule looks like an oscillating dipole which can stir the 
electromagnetic field into oscillation (and vice versa for 
absorption). This picture is the classical origin of the gross 
selection rule for rotational transitions.

Photon

Figure 12C.2 When a photon is absorbed by a molecule, the 
angular momentum of the combined system is conserved. If 
the molecule is rotating in the same sense as the spin of the 
incoming photon, then J increases by 1.
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When the transition moment is evaluated for all possible 
relative orientations of the molecule to the line of flight of the 
photon, it is found that the total J + 1 ↔ J transition intensity is 
proportional to

μ μJ J

J
J+ = +

+




1

2

0
21

2 1,

 
(12C.6)

where μ0 is the permanent electric dipole moment of the 
molecule. The intensity is proportional to the square of μ0, so 
strongly polar molecules give rise to much more intense rota-
tional lines than less polar molecules.

For symmetric rotors, an additional selection rule states that 
ΔK = 0. To understand this rule, consider the symmetric rotor 
NH3, where the electric dipole moment lies parallel to the fig-
ure axis. Such a molecule cannot be accelerated into different 
states of rotation around this axis by the absorption of radia-
tion, so ΔK = 0. Therefore, for symmetric rotors the selection 
rules are:

∆ = ± ∆ = ± ∆ =J M KJ1 0 1 0,  

The degeneracy associated with the quantum number MJ 
(the orientation of the rotation in space) is partly removed 
when an electric field is applied to a polar molecule (for exam-
ple, HCl or NH3), as illustrated in Fig. 12C.4. The splitting of 
states by an electric field is called the Stark effect. The energy 
shift depends on the permanent electric dipole moment, μ0, 
so the observation of the Stark effect can be used to measure 
the magnitudes of electric dipole moments with a rotational 
spectrum.

(b) The appearance of microwave spectra
When the selection rules are applied to the expressions for the 
energy levels of a rigid spherical or linear rotor, it follows that 
the wavenumbers of the allowed J + 1 ← J absorptions are

�

…

� �

�
( ) ( ) ( )

( )

, , ,

J J F J F J

B J

J

+ ← = + −

= +
=

1 1

2 1

0 1 2  

When centrifugal distortion (Topic 12B) is taken into account, 
the corresponding expression obtained from eqn 12B.16 is

  ( ) ( ) ( )J J B J D JJ+ ← = + − +1 2 1 4 1 3

 (12C.8b)

However, because the second term is typically very small com-
pared with the first (see Brief illustration 12B.3), the appear-
ance of the spectrum closely resembles that predicted from eqn 
12C.8a.

 (12C.7)
Symmetric 
rotors

rotational 
selection 
rules

Linear and 
spherical 
rotors

wavenumbers 
of rotational 
transitions

 (12C.8a)

0
±1
±2
±3

±4

±5

±6

±7

MJ
Field on

Field off

Figure 12C.4 The effect of an electric field on the energy levels 
of a polar linear rotor. All levels are doubly degenerate except 
that with MJ = 0.

for the non-vanishing of the integral over the product of three 
spherical harmonics, which is described in Topic 9C, then 
implies that

Y Y YJ M j m J MJ Jf f i i
d angles, , ,, ,

*∫ =τ 0
 

(12C.5)

unless MJ,f = MJ,i + m and lines of length Jf, Ji , and j can form a 
triangle (such as 1, 2, and 3, or 1, 1, and 1, but not 1, 2, and 4). 
By exactly the same argument as in Justification 9C.1, we con-
clude that Jf – Ji = ±1 and MJ,f – MJ,i = 0 or ±1.

µz

µ0

µx
µy

θ

φ

Figure 12C.3 The axis system used in the calculation of the 
transition dipole moment.

Example 12C.1 Predicting the appearance of a 
rotational spectrum

Predict the form of the rotational spectrum of 14NH3, for 
which B = 9 977 1. cm− .

Method The 14NH3 molecule is a polar symmetric rotor, so 
the rotational terms are given by    F J K BJ J A B K( , ) ( ) ( )= + + −1 2.  
Because ΔJ = ±1 and ΔK = 0, the expression for the wavenum-
bers of the rotational transitions is identical to eqn 12C.8a and 
depends only on B. For absorption, ΔJ = +1.

Answer We can draw up the following table for the J + 1 ← J 
transitions.

J 0 1 2 3 …
��cm 1− 19.95 39.91 59.86 79.82 …

ν/GHz 598.1 1197 1795 2393 …
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498 12 Rotational and vibrational spectra

The form of the spectrum predicted by eqn 12C.8 is shown 
in Fig. 12C.5. The most significant feature is that it consists of a 
series of lines with wavenumbers 2 4 6� � � …B B B, , ,  and of separa-
tion 2 B. The measurement of the line spacing therefore gives 
B, and hence the moment of inertia perpendicular to the fig-

ure axis of the molecule. Because the masses of the atoms are 
known, it is a simple matter to deduce the bond length of a dia-
tomic molecule. However, in the case of a polyatomic molecule 
such as OCS or NH3, the analysis gives only a single quantity, 
I⊥, and it is not possible to infer both bond lengths (in OCS) or 
the bond length and bond angle (in NH3). This difficulty can be 
overcome by using isotopologues, isotopically substituted mol-
ecules, such as ABC and A′BC; then, by assuming that R(A–B) =  
R(A′–B), both A–B and B–C bond lengths can be extracted 
from the two moments of inertia. A famous example of this 
procedure is the study of OCS; the actual calculation is worked 
through in Problem 12C.5. The assumption that bond lengths 
are unchanged in isotopologues is only an approximation, but 
it is a good approximation in most cases. Nuclear spin (Topic 
14A), which differs from one isotope to another, also affects the 
appearance of high-resolution rotational spectra because spin 
is a source of angular momentum and can couple with the rota-
tion of the molecule itself and hence affect the rotational energy 
levels.

The intensities of spectral lines increase with increasing J 
and pass through a maximum before tailing off as J becomes 
large. The most important reason for the maximum in intensity 

is the existence of a maximum in the population of rotational 
levels. The Boltzmann distribution (Foundations B and Topic 
15A) implies that the population of each state decreases expo-
nentially with increasing J, but the degeneracy of the levels 
increases. These two opposite trends result in the population of 
the energy levels (as distinct from the individual states) passing 
through a maximum. Specifically, the population of a rotational 
energy level J is given by the Boltzmann expression

N NgJ J
E kTJ∝ −e /

 

where N is the total number of molecules in the sample and gJ is 
the degeneracy of the level J. The value of J corresponding to a 
maximum of this expression is found by treating J as a continu-
ous variable, differentiating with respect to J, and then setting 
the result equal to zero. The result is (see Problem 12C.9)

J
kT

hcB
max ≈





−
2

1
2

1 2



/

 

For a typical molecule (for example, OCS, with B = 0 2 1. cm− )  
at room temperature, kT hcB≈1000  , so Jmax ≈ 30. However, 
it must be recalled that the intensity of each transition also 
depends on the value of J (eqn 12C.6) and on the population dif-
ference between the two states involved in the transition. Hence 
the value of J corresponding to the most intense line is not quite 
the same as the value of J for the most highly populated level.

12C.2 Rotational Raman spectroscopy

Raman scattering (Topic 12A) can also lead to rotational tran-
sitions. The gross selection rule for rotational Raman transi-
tions is that the molecule must be anisotropically polarizable. To 
understand this criterion we need to know that the distortion 
of a molecule in an electric field is determined by its polariz-
ability, α (Topic 16A). More precisely, if the strength of the field 
is E, then the molecule acquires an induced dipole moment of 
magnitude

µ α= E  (12C.10)

in addition to any permanent dipole moment it might have. 
An atom is isotropically polarizable. That is, the same distor-
tion is induced whatever the direction of the applied field. The 
polarizability of a spherical rotor is also isotropic. However, 
non-spherical rotors have polarizabilities that do depend on 
the direction of the field relative to the molecule, so these mol-
ecules are anisotropically polarizable (Fig. 12C.6). The electron 
distribution in H2, for example, is more distorted when the field 
is applied parallel to the bond than when it is applied perpen-
dicular to it, and we write α|| > α⊥.

 (12C.9)
Linear 
rotors

rotational state 
with largest 
population

The line spacing is 19.95 cm−1 (598.1 GHz).

Self-test 12C.2 Repeat the problem for CH3
35Cl, for which 

B = 0 444 1. cm− .
Answer: Lines of separation 0.888 cm−1 (26.6 GHz)
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Figure 12C.5 The rotational energy levels of a linear rotor, 
the transitions allowed by the selection rule ΔJ = +1, and a 
typical pure rotational absorption spectrum (displayed here 
in terms of the radiation transmitted through the sample). The 
intensities reflect the populations of the initial level in each 
case and the strengths of the transition dipole moments.
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12C Rotational spectroscopy  499

All linear and diatomic molecules (whether homonuclear 
or heteronuclear) have anisotropic polarizabilities, and so are 
rotationally Raman active. This activity is one reason for the 
importance of rotational Raman spectroscopy, for the tech-
nique can be used to study many of the molecules that are 
inaccessible to microwave spectroscopy. Spherical rotors such 
as CH4 and SF6, however, are rotationally Raman inactive as 
well as microwave inactive. This inactivity does not mean that 
such molecules are never found in rotationally excited states. 
Molecular collisions do not have to obey such restrictive selec-
tion rules, and hence collisions between molecules can result in 
the population of any rotational state.

The specific rotational Raman selection rules are:

Linear rotors

Symmetric rotors

: ,

: , ,

∆
∆

= ±
= ± ±

∆ =

J

J

K

0 2

0 1 2

0  

The ΔJ = 0 transitions do not lead to a shift in frequency of 
the scattered photon in pure rotational Raman spectroscopy, 
and contribute to the unshifted radiation (the Rayleigh radia-
tion, Topic 12A). The specific selection rule for linear rotors is 
explored in the following Justification.

Justification 12C.2 Selection rules for rotational Raman 
spectra

The origin of the gross and specific selection rules for rota-
tional Raman spectroscopy can be illustrated by using a dia-
tomic molecule as an example. The incident electric field, E, of 
a wave of electromagnetic radiation of frequency ωi induces a 
molecular dipole moment that is given by

µ α α ωind i( ) cos= =E Et t  (12C.12)

 (12C.11)
rotational
raman selection 
rules

Distortion

E

E

(a) (b)

Figure 12C.6 An electric field applied to a molecule results 
in its distortion, and the distorted molecule acquires a 
contribution to its dipole moment (even if it is nonpolar 
initially). The polarizability may be different when the field 
is applied (a) parallel or (b) perpendicular to the molecular 
axis (or, in general, in different directions relative to the 
molecule); if that is so, then the molecule has an anisotropic 
polarizability.

1 See our Molecular Quantum Mechanics (2011) for the quantum mechan-
ical calculation of the selection rules for rotational Raman spectroscopy.

If the molecule is rotating at an angular frequency ωR, to an 
external observer its polarizability is also time dependent (if it 
is anisotropic), and we can write

α α α ω= + ∆0 2cos Rt  (12C.13)

where Δα = α‖ − α⊥ and α ranges from α0 + Δα to α0 − Δα 
as the molecule rotates. The 2ωR appears because the polar-
izability returns to its initial value twice each revolution (Fig. 
12C.7). Substituting this expression into the expression for the 
induced dipole moment gives

µ α α ω ω
α ω α ω ω

ind R i

i R i

cos cos

cos cos cos

= + ∆ ×
= + ∆

=

( ) ( )0

0

2

2

t t

t t t

E
E E

coos cos
{cos( ) cos( )}1

2

x y
x y x y= + +

+ ∆ +
−

{


(α ω α ω ω0
1
2 2E Ecos cosi i Rt ))t

t+ −cos( )i Rω ω2 }  
 

(12C.14)

This calculation shows that the induced dipole has a compo-
nent oscillating at the incident frequency (which generates 
Rayleigh radiation), and that it also has two components at 
ωi ± 2ωR, which give rise to the shifted Raman lines. These 
lines appear only if Δα ≠ 0; hence the polarizability must be 
anisotropic for there to be Raman lines. This is the gross selec-
tion rule for rotational Raman spectroscopy.

We also see that the distortion induced in the molecule by 
the incident electric field returns to its initial value after a rota-
tion of 180° (that is, twice a revolution). This is the classical 
origin of the specific selection rule ΔJ = ±2.1

0

π

E

E

E

E

α||

α||

α⊥

α⊥

π32 π12

Figure 12C.7 The distortion induced in a molecule by an 
applied electric field returns the polarizability to its initial 
value after a rotation of only 180° (that is, twice a revolution). 
This is the origin of the ΔJ = ±2 selection rule in rotational 
Raman spectroscopy.
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500 12 Rotational and vibrational spectra

To predict the form of the Raman spectrum of a linear rotor 
we apply the selection rule ΔJ = ±2 to the rotational energy 
 levels (Fig. 12C.8). When the molecule makes a transition with 
ΔJ = +2, the scattered radiation leaves the molecule in a higher 
rotational state, so the wavenumber of the incident radiation, 
initially i ,  is decreased. These transitions account for the 
Stokes lines (the lines at lower than the incident frequency, 
Topic 12A) in the spectrum:

 



 


 



( ) { ( ) ( )}

( )

J J F J F J

B J

+ ← = − + −

= − +

2 2

2 2 3

i

i  
The Stokes lines appear to low frequency of the incident radia-
tion and at displacements 6 10 14� � � …B B B, , ,  from i , for J = 0, 1, 
2, …. When the molecule makes a transition with ΔJ = –2, the 
scattered photon emerges with increased energy. These transi-
tions account for the anti-Stokes lines (the lines at higher than 
the incident frequency, Topic 12A) of the spectrum:

      ( ) { ( ) ( )} ( )J J F J F J B J− ← = + − − = + −2 2 2 2 1i i  
 Linear rotors  wavenumbers of anti-stokes lines  (12C.15b)

The anti-Stokes lines occur at displacements of 6 10 14� � � …B B B, , ,  
(for J = 2, 3, 4, …; J = 2 is the lowest state that can contribute 
under the selection rule ΔJ = –2) to high frequency of the inci-
dent radiation. The separation of adjacent lines in both the 
Stokes and the anti-Stokes regions is 4 B,  so from its meas-
urement I⊥ can be determined and then used to find the bond 
lengths exactly as in the case of microwave spectroscopy.

12C.3 Nuclear statistics and 
rotational states

If eqn 12C.15 is used in conjunction with the rotational Raman 
spectrum of CO2, the rotational constant is inconsistent with 
other measurements of CeO bond lengths. The results are con-
sistent only if it is supposed that the molecule can exist in states 
with even values of J, so the Stokes lines are 2 ← 0, 4 ← 2, … and 
not 2 ← 0, 3 ← 1, 4 ← 2, 5 ← 3, ….

The explanation of the missing lines is the Pauli principle 
(Topic 9B) and the fact that 16O nuclei are spin-0 bosons: just 
as the Pauli principle excludes certain electronic states, so too 
does it exclude certain molecular rotational states. The form 
of the Pauli principle given in Topic 9B states that, when two 
identical bosons are exchanged, the overall wavefunction must 
remain unchanged in every respect, including sign. When a 
CO2 molecule rotates through 180°, two identical O nuclei 
are interchanged, so the overall wavefunction of the molecule 
must remain unchanged. However, inspection of the form of 
the rotational wavefunctions (which have the same form as the 
s, p, etc. orbitals of atoms) shows that they change sign by (–1)J 
under such a rotation (Fig. 12C.9). Therefore, only even values 
of J are permissible for CO2, and hence the Raman spectrum 
shows only alternate lines.

Example 12C.2 Predicting the form of a Raman spectrum

Predict the form of the rotational Raman spectrum of 14N2, 
for which B =1 99 1. cm− , when it is exposed to 336.732 nm laser 
radiation.

 (12C.15a)
Linear 
rotors

wave-
numbers of 
stokes lines
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Figure 12C.8 The rotational energy levels of a linear rotor and 
the transitions allowed by the ΔJ = ±2 Raman selection rules. 
The form of a typical rotational Raman spectrum is also shown. 
The Rayleigh line is much stronger than depicted in the figure; 
it is shown as a weaker line to improve visualization of the 
Raman lines.

Method The molecule is rotationally Raman active because 
end-over-end rotation modulates its polarizability as viewed 
by a stationary observer. The Stokes and anti-Stokes lines are 
given by eqn 12C.15.

Answer Because λ i =  336.732 nm corresponds to i =
29697 2 1. cm− , eqns 12C.15a and 12C.15b give the following 
line positions:

There will be a strong central line at 336.732 nm accompanied 
on either side by lines of increasing and then decreasing inten-
sity (as a result of transition moment and population effects). 
The spread of the entire spectrum is very small, so the incident 
light must be highly monochromatic.

Self-test 12C.3 Repeat the calculation for the rotational 
Raman spectrum of NH cm3

19 977( . )B = − .
Answer: Stokes lines at 29 637.3, 29 597.4, 29 557.5, 29 517.6 cm−1;  

anti-Stokes lines at 29 757.1, 29 797.0 cm−1

J 0 1 2 3
Stokes lines
��cm 1− 29 685.3 29 677.3 29 669.3 29 661.4

λ/nm 336.867 336.958 337.048 337.139
Anti-Stokes  

lines
��cm 1− 29 709.1 29 717.1

λ/nm 336.597 336.507
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12C Rotational spectroscopy  501

The selective occupation of rotational states that stems from 
the Pauli principle is termed nuclear statistics. Nuclear sta-
tistics must be taken into account whenever a rotation inter-
changes equivalent nuclei. However, the consequences are not 
always as simple as for CO2 because there are complicating fea-
tures when the nuclei have nonzero spin: there may be several 
different relative nuclear spin orientations consistent with even 
values of J and a different number of spin orientations consist-
ent with odd values of J. For molecular hydrogen and fluorine, 
for instance, with their two identical spin- 1

2  nuclei, we show 
in the following Justification that there are three times as many 
ways of achieving a state with odd J than with even J, and there 
is a corresponding 3:1 alternation in intensity in their rota-
tional Raman spectra (Fig. 12C.10). In general, for a homonu-
clear diatomic molecule with nuclei of spin I, the numbers of 
ways of achieving states of odd and even J are in the ratio

Number of ways of achieving odd
Number of ways of achieving even

J
J

I
=

( ++
+
1

1

)/

/( )

I

I I

for half-integral spin nuclei

for integral spin nucllei



  

 Homonuclear diatomic molecules  nuclear statistics  (12C.16)

For hydrogen, I = 1
2 , and the ratio is 3:1. For N2, with I = 1, the 

ratio is 1:2.

Frequency

Figure 12C.10 The rotational Raman spectrum of a diatomic 
molecule with two identical spin- 1

2  nuclei shows an alternation 
in intensity as a result of nuclear statistics. The Rayleigh line 
is much stronger than depicted in the figure; it is shown as a 
weaker line to improve visualization of the Raman lines.

Justification 12C.3 The effect of nuclear statistics on 
rotational spectra

Hydrogen nuclei are fermions, so the Pauli principle requires 
the overall wavefunction to change sign under particle inter-
change. However, the rotation of an H2 molecule through 
180° has a more complicated effect than merely relabelling 
the nuclei, because it interchanges their spin states too if the 
nuclear spins are paired (↑↓ ; Itotal = 0) but not if they are paral-
lel (↑↑ , Itotal = 1).

First, consider the case when the spins are parallel and 
their state is α(A)α(B), α(A)β(B) + α(B)β(A), or β(A)β(B). 
The α(A)α(B) and β(A)β(B) combinations are unchanged 
when the molecule rotates through 180° so the rotational 
wavefunction must change sign to achieve an overall change 
of sign. Hence, only odd values of J are allowed. Although at 
first sight the spins must be interchanged in the combination 
α(A)β(B) + α(B)β(A) so as to achieve a simple A ↔ B inter-
change of labels (Fig. 12C.11), β(A)α(B) + β(B)α(A) is the 
same as α(A)β(B) + α(B)β(A) apart from the order of terms, 
so only odd values of J are allowed for it too. In contrast, if 
the nuclear spins are paired, their wavefunction is α(A)β(B) −  
α(B)β(A). This combination changes sign when α and β are 
exchanged (in order to achieve a simple A ↔ B interchange 
overall). Therefore, for the overall wavefunction to change 
sign in this case requires the rotational wavefunction not to 
change sign. Hence, only even values of J are allowed if the 
nuclear spins are paired. In accord with the prediction of eqn 
12C.16, there are three ways of achieving odd J but only one 
of achieving even J.

A AB B

AB

(–1)J

Change
sign if antiparallel

Change sign

Rotate
by 180°

Figure 12C.11 The interchange of two identical fermion 
nuclei results in the change in sign of the overall 
wavefunction. The relabelling can be thought of as 
occurring in two steps: the first is a rotation of the molecule; 
the second is the interchange of unlike spins (represented 
by the different colours of the nuclei). The wavefunction 
changes sign in the second step if the nuclei have 
antiparallel spins.

J = 2J = 1J = 0

+
++

+

–
– –

Figure 12C.9 The symmetries of rotational wavefunctions 
(shown here, for simplicity as a two-dimensional rotor) under 
a rotation through 180°. Wavefunctions with J even do not 
change sign; those with J odd do change sign.
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502 12 Rotational and vibrational spectra

nuclear spins remains distinct from one with paired nuclear 
spins for long periods. The form with parallel nuclear spins 
is called ortho-hydrogen and the form with paired nuclear 
spins is called para-hydrogen. Because ortho-hydrogen can-
not exist in a state with J = 0, it continues to rotate at very 
low temperatures and has an effective rotational zero-point 
energy (Fig. 12C.12).

Self-test 12C.4 Does BeF2 exist in ortho and para forms? Hints: 
(a) Determine the geometry of BeF2, then (b) decide whether 
fluorine nuclei are fermions or bosons.

Answer: Yes

Checklist of concepts

☐ 1. Pure rotational transitions can be studied with 
microwave spectroscopy and rotational Raman 
spectroscopy.

☐ 2. For a molecule to give a pure rotational spectrum, it 
must be polar.

☐ 3. The specific selection rules for microwave spectroscopy 
are ΔJ = ±1, ΔMJ = 0, ±1, ΔK = 0.

☐ 4. Bond lengths and dipole moments may be obtained 
from analysis of rotational spectra.

☐ 5. A molecule must be anisotropically polarizable for it to 
be rotationally Raman active.

☐ 6. The specific selection rules for rotational Raman spec-
troscopy are: (i) linear rotors, ΔJ = 0, ±2; (ii) symmetric 
rotors, ΔJ = 0, ±1, ±2; ΔK = 0.

☐ 7. The appearance of rotational spectra is affected by 
nuclear statistics, the selective occupation of rotational 
states that stems from the Pauli principle.

Checklist of equations

Property Equation Comment Equation number

Wavenumbers of rotational transitions  ( ) ( )J J B J+ ← = +1 2 1 J = 0, 1, 2, … spherical and linear rotors 12C.8a

Rotational state with largest population J kT hcBmax ≈ −( / ) /2 1 2 1
2

 Linear rotors 12C.9

Wavenumbers of (i) Stokes and (ii) anti- 
Stokes lines in the rotational Raman  
spectrum of linear rotors

( ) ( ) ( )

( ) ( ) ( )

i

ii

 

 




 

 

J J B J

J J B J

+ ← = − +

− ← = + −

2 2 2 3

2 2 2 1

i

i

J = 0, 1, 2, … 12C.15

Nuclear statistics Number of waysof achieving odd
Number of waysof achieving even

J
J

I
=

( ++
+
1

1

)/

/( )

I

I I

for half-integral spin nuclei

for integral spin nucleei





Homonuclear diatomic molecules 12C.16

Brief illustration 12C.2 Ortho- and para-hydrogen

Different relative nuclear spin orientations change into one 
another only very slowly, so an H2 molecule with parallel 

J = 1

J = 0

Lowest rotational state
of ortho-hydrogen

Lowest rotational state
of para-hydrogen

Thermal
relaxation

Figure 12C.12 When hydrogen is cooled, the molecules 
with parallel nuclear spins accumulate in their lowest 
available rotational state, the one with J = 1. They can enter 
the lowest rotational state (J = 0) only if the spins change 
their relative orientation and become antiparallel. This is 
a slow process under normal circumstances, so energy is 
slowly released.
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12D Vibrational spectroscopy  
of diatomic molecules

Here we explore the vibrational energy levels of diatomic mol-
ecules and establish the selection rules for spectroscopic transi-
tions between these levels. We also see how the simultaneous 
excitation of rotation modifies the appearance of a vibrational 
spectrum. This material sets the stage for the discussion of 
vibrations of polyatomic molecules in Topic 12E.

12D.1 Vibrational motion

We base our discussion on Fig. 12D.1, which shows a typical 
potential energy curve of a diatomic molecule (it is essentially a 
reproduction of Fig. 8B.1 of Topic 8B). In regions close to Re (at 
the minimum of the curve) the potential energy can be approx-
imated by a parabola, so we can write

V k x x R R= = −1
2

2
f e   Parabolic potential energy  (12D.1)

where kf is the force constant of the bond. The steeper the walls 
of the potential (the stiffer the bond), the greater the force 
constant.

To see the connection between the shape of the molecular 
potential energy curve and the value of kf, note that we can 
expand the potential energy around its minimum by using a 
Taylor series (Mathematical background 1 following Chapter 1), 
which is a common way of expressing how a function varies 
near a selected point (in this case, the minimum of the curve 
at x = 0):

V x V
V
x

x
V
x

x( ) ( )= +
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+0
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1
2

2

2
0

2d
d

d
d


 

(12D.2)

➤➤ Why do you need to know this material?

The observation of the frequencies of transitions between 
the vibrational states of a molecule gives information 
about the identity of the molecule and provides 
quantitative information about the flexibility of its bonds. 
Infrared spectroscopy is a valuable analytical tool and is 
widely used in chemical laboratories.

➤➤ What is the key idea?
The vibrational spectrum of a diatomic molecule can be 
interpreted by using the harmonic oscillator model, with 
modifications that account for bond dissociation and the 
coupling of rotational and vibrational motion.

➤➤ What do you need to know already?

You need to be familiar with the harmonic oscillator (Topic 
8B) and rigid rotor (Topic 12B) models of molecular motion, 
the general principles of spectroscopy (Topic 12A), and the 
interpretation of rotational spectra (Topic 12C).

Contents

12d.1 Vibrational motion 503
brief illustration 12d.1: the vibrational  
frequency of a diatomic molecule 505

12d.2 Infrared spectroscopy 505
brief illustration 12d.2: the gross selection  
rule for infrared spectroscopy 505

12d.3 Anharmonicity 506
(a) The convergence of energy levels 506
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(b) The Birge–Sponer plot 508
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504 12 Rotational and vibrational spectra

The notation (…)0 means that the derivatives are first evalu-
ated and then x is set equal to 0. The term V(0) can be set arbi-
trarily to zero. The first derivative of V is zero at the minimum. 
Therefore, the first surviving term is proportional to the square 
of the displacement. For small displacements we can ignore all 
the higher terms, and so write

V x
V
x

x( )≈ 





1
2

2

2
0

2d
d  

(12D.3)

Therefore, the first approximation to a molecular potential 
energy curve is a parabolic potential, and we can identify the 
force constant as

k
V
xf

d
d

=





2

2
0  

Formal definition  Force constant  (12D.4)

We see that if the potential energy curve is sharply curved 
close to its minimum, then kf will be large and the bond stiff. 
Conversely, if the potential energy curve is wide and shallow, 
then kf will be small and the bond easily stretched or com-
pressed (Fig. 12D.2).

The Schrödinger equation for the relative motion of two 
atoms of masses m1 and m2 with a parabolic potential energy is

− + =2 2

2
1
2

2

2m x
k x E

eff
f

d
d

ψ ψ ψ
 

(12D.5)

where meff is the effective mass:

m
m m

m meff = +
1 2

1 2  
Definition  effective mass  (12D.6)

These equations are derived in the same way as in Topic 8B, but 
here the separation of variables procedure is used to separate 

the relative motion of the atoms from the motion of the mol-
ecule as a whole.

A note on good practice Distinguish effective mass from 
reduced mass. The former is a measure of the mass that is 
moved during a vibration. The latter is the quantity that 
emerges from the separation of relative internal and overall 
translational motion. For a diatomic molecule the two are the 
same, but that is not true in general for vibrations of poly-
atomic molecules. Many, however, do not make this distinc-
tion and refer to both quantities as the ‘reduced mass’.

The Schrödinger equation in eqn 12D.5 is the same as eqn 
8B.3 for a particle of mass m undergoing harmonic motion. 
Therefore, we can use the results of Topic 8B to write down the 
permitted vibrational energy levels:

E
k

mv v v= +( ) =





= …1
2

1 2

0 1 2ω ω f

eff

/

, , ,
  

Diatomic molecule  Vibrational energy levels  (12D.7)

The vibrational terms of a molecule, the energies of its vibra-
tional states expressed as wavenumbers, are denoted G( )v , with 
E hcGv v= ( ), so

  G
c

k
m

( )
/

v v= +( ) = 





1
2

1 2
1

2
  π

f

eff   
Diatomic molecule  Vibrational terms  (12D.8)

The vibrational wavefunctions are the same as those discussed 
in Topic 8B for a harmonic oscillator.

It is important to note that the vibrational terms depend on 
the effective mass of the molecule, not directly on its total mass. 
This dependence is physically reasonable, for if atom 1 were as 
heavy as a brick wall, then we would find meff ≈ m2, the mass 
of the lighter atom. The vibration would then be that of a light 
atom relative to that of a stationary wall (this is approximately 
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Figure 12D.2 The force constant is a measure of the curvature 
of the potential energy close to the equilibrium extension of 
the bond. A strongly confining well (one with steep sides, a stiff 
bond) corresponds to high values of kf.
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Figure 12D.1 A molecular potential energy curve can be 
approximated by a parabola near the bottom of the well. The 
parabolic potential energy results in harmonic oscillations. At 
high excitation energies the parabolic approximation is poor 
(the true potential energy is less confining), and is totally wrong 
near the dissociation limit.
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12D Vibrational spectroscopy of diatomic molecules  505

the case in HI, for example, where the I atom barely moves and 
meff ≈ mH). For a homonuclear diatomic molecule m1 = m2, and 
the effective mass is half the total mass: m meff = 1

2 .

12D.2 Infrared spectroscopy

The gross selection rule for a change in vibrational state brought 
about by absorption or emission of radiation is that the elec-
tric dipole moment of the molecule must change when the atoms 
are displaced relative to one another. Such vibrations are said 
to be infrared active. The classical basis of this rule is that the 
molecule can shake the electromagnetic field into oscillation 
if its dipole changes as it vibrates, and vice versa (Fig. 12D.3); 
its formal basis is given in the following Justification. Note 
that the molecule need not have a permanent dipole: the rule 
requires only a change in dipole moment, possibly from zero. 
Some vibrations do not affect the molecule’s dipole moment 
(for instance, the stretching motion of a homonuclear diatomic 
molecule), so they neither absorb nor generate radiation: such 
vibrations are said to be infrared inactive.

The specific selection rule, which is obtained from an analy-
sis of the expression for the transition moment and the prop-
erties of integrals over harmonic oscillator wavefunctions (as 
shown in the following Justification), is

∆ = ±v 1  Infrared spectroscopy  specific selection rule  (12D.9)

Brief illustration 12D.2 The gross selection rule for 
infrared spectroscopy

Homonuclear diatomic molecules are infrared inactive 
because their dipole moments remain zero however long the 
bond; heteronuclear diatomic molecules are infrared active. 
Weak infrared transitions can be observed from homonuclear 
diatomic molecules trapped within various nanomaterials. 
For instance, when incorporated into solid C60, H2 molecules 
interact through van der Waals forces with the surrounding 
C60 molecules and acquire dipole moments, with the result 
that they have observable infrared spectra.

Self-test 12D.2 Identify the infrared active molecules in the 
group: N2, NO, and CO.

Answer: NO and CO

Brief illustration 12D.1 The vibrational frequency of a 
diatomic molecule

The force constant of the bond in HCl is 516 N m−1, a reasona-
bly typical value for a single bond. The effective mass of 1H35Cl 
is 1.63 × 10−27 kg (note that this mass is very close to the mass of 
the hydrogen atom, 1.67 × 10−27 kg, so the Cl atom is acting like 
a brick wall). These values imply that

ω =
×

















= ×

−

−

−
−516

1 63 10
5 63 10

1

27

1 2

14 1N m
kg

s

kgm s 2


.
.

/

or ν = ω/2π = 89.5 THz (1 THz = 1012 Hz).

Self-test 12D.1 The vibrational frequency ν of 35Cl2 is 16.94 
THz. Calculate the force constant of the bond.

Answer: 327.8 N m−1

Justification 12D.1 Gross and specific selection rules for 
infrared spectra

The gross selection rule for infrared spectroscopy is based on 
an analysis of the transition dipole moment μ μfi f i

* d= ∫ψ ψ τv v , 
(Topic 12B) which arises from eqn 12B.2 of that Topic 
( d )fi * * *

f f i i
μ μ= ∫ψ ψ ψ ψ τε εf f i iv vY YJ M J MJ J, ,, ,

  when the molecule does 
not change electronic or rotational states. For simplicity, we 
consider a one-dimensional oscillator (like a diatomic mol-
ecule, which can stretch and compress only along the direc-
tion parallel to its bond). The electric dipole moment operator 
depends on the location of all the electrons and all the nuclei 
in the molecule, so it varies as the internuclear separation 
changes (Fig. 12D.4). We can write its variation with displace-
ment from the equilibrium separation, x, as

��
�

μ μ μ= +





+0
0

d
dx

x �
 

where μ0  is the electric dipole moment operator when the 
nuclei have their equilibrium separation. It then follows that, 
with f ≠ i and keeping only the term linear in the small dis-
placement x,

�μ μ μ μ
fi f i f i f i

* * *d d
d
d

d= = +



∫ ∫ ∫ψ ψ ψ ψ ψ ψv v v v v vx x

x
x x0

0

0� �� ��

 

Figure 12D.3 The oscillation of a molecule, even if it is 
nonpolar, may result in an oscillating electric dipole moment 
that can interact with the electromagnetic field.
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506 12 Rotational and vibrational spectra

Transitions for which Δv = +1 correspond to absorption and 
those with Δv = –1 correspond to emission. It follows that the 
wavenumbers of allowed vibrational transitions, which are 
denoted ∆ Gv+ 1

2
 for the transition v + 1 ← v, are

∆ = + − =+
   G G Gv v v1

2
1( ) ( ) 

 
(12D.10)

The wavenumbers of vibrational transitions correspond to 
those of radiation in the infrared region of the electromagnetic 
spectrum, so vibrational transitions absorb and generate infra-
red radiation.

At room temperature kT/hc ≈ 200 cm−1, and most vibrational 
wavenumbers are significantly greater than 200 cm−1. It follows 
from the Boltzmann distribution (Foundations B and Topic 
15A) that at room temperature almost all the molecules are 
in their vibrational ground states. Hence, the dominant spec-
tral transition will be the fundamental transition, 1 ← 0. As a 
result, the spectrum is expected to consist of a single absorption 
line. If the molecules are formed in a vibrationally excited state, 
such as when vibrationally excited HF molecules are formed in 
the reaction H2 + F2 → 2 HF*, where the star indicates a vibra-
tionally ‘hot’ molecule, the transitions 5 → 4, 4 → 3, … may also 
appear (in emission). In the harmonic approximation, all these 
lines lie at the same frequency, and the spectrum is also a sin-
gle line. However, as we shall now show, the breakdown of the 
harmonic approximation causes the transitions to lie at slightly 
different frequencies, so several lines are observed.

12D.3 Anharmonicity

The vibrational terms in eqn 12D.8 are only approximate 
because they are based on a parabolic approximation to the 
actual potential energy curve. A parabola cannot be correct at 
all extensions because it does not allow a bond to dissociate. 
At high vibrational excitations the swing of the atoms (more 
precisely, the spread of the vibrational wavefunction) allows the 
molecule to explore regions of the potential energy curve where 
the parabolic approximation is poor and additional terms in 
the Taylor expansion of V (eqn 12D.2) must be retained. The 
motion then becomes anharmonic, in the sense that the restor-
ing force is no longer proportional to the displacement. Because 
the actual curve is less confining than a parabola, we can antici-
pate that the energy levels become more closely spaced at high 
excitations.

(a) The convergence of energy levels
One approach to the calculation of the energy levels in the pres-
ence of anharmonicity is to use a function that resembles the 

The term multiplying μ0 is zero because the states with differ-
ent values of v are orthogonal (Topic 8B). It follows that the 
transition dipole moment is

μ μ
fi

d
d

d
f i

*= 



 ∫x

x x
0

ψ ψv v

 

We see that the right-hand side is zero unless the dipole 
moment varies with displacement. This is the gross selection 
rule for infrared spectroscopy.

The specific selection rule is determined by considering 
the value of ∫ψ ψv vf i

* dx x . We need to write out the wave-
functions in terms of the Hermite polynomials given in 
Topic 8B and then to use their properties. We note that 
x = αy with α = (ħ2/meffk f)1/4 (this is eqn 8B.8 of Topic 8B). 
Then we write

ψ ψ

α

v v v v v v

v v v v

f i f i f i

f i f i

* d e d

e d
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∫
To evaluate the integral we use the ‘recursion’ relation

yH H Hv v vv= +− +1
1
2 1  

which leads to
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The first integral is zero unless v f = v i – 1 and the second is 
zero unless vf = vi + 1 (Table 8B.1). It follows that the transition 
dipole moment is zero unless Δv = ±1.
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Figure 12D.4 The electric dipole moment of a 
heteronuclear diatomic molecule varies as shown by the 
purple curve. For small displacements the change in dipole 
moment is proportional to the displacement.
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true potential energy more closely. The Morse potential energy 
is

V hcD a
m

hcD
a R R= − =







− −
e

eff

e

e e{ }( )

/

1
2

2
2

1 2
ω

  
 morse potential energy  (12D.11)

where De  is the depth of the potential minimum (Fig. 12D.5). 
Near the well minimum the variation of V with displace-
ment resembles a parabola (as can be checked by expanding 
the exponential as far as the first term) but, unlike a parabola, 
eqn 12D.11 allows for dissociation at large displacements. The 
Schrödinger equation can be solved for the Morse potential and 
the permitted energy levels are

�

�

� �

� �

G x

x
a
m D

( )v v v= +( ) − +( )
= =

1
2

1
2

2

2

2 4

 



e

e
eff e

ω  

The dimensionless parameter xe is called the anharmonicity 
constant. The number of vibrational levels of a Morse oscilla-
tor is finite, and v = 0, 1, 2, …, vmax, as shown in Fig. 12D.6 (see 
also Problem 12D.7). The second term in the expression for G  
subtracts from the first with increasing effect as v increases, and 
hence gives rise to the convergence of the levels at high quantum 
numbers.

Although the Morse oscillator is quite useful theoretically, in 
practice the more general expression

� � � � �G x y( )v v v v= +( ) − +( ) + +( ) +1
2

1
2

2 1
2

3
  e e  (12D.13)

where xe, ye, … are empirical dimensionless constants charac-
teristic of the molecule, is used to fit the experimental data and 
to find the dissociation energy of the molecule. When anhar-
monicities are present, the wavenumbers of transitions with 
Δv = +1 are

∆ � � � �� �G G G xv v v v+ = + − = − + +1
2

1 2 1( ) ( ) ( ) e  (12D.14)

Equation 12D.14 shows that, when xe > 0, the transitions move 
to lower wavenumbers as v increases.

Example 12D.1 Estimating an anharmonicity constant

Estimate the anharmonicity constant xe for 1H19F from the 
data in Table 12D.1 of the Resource section.

Method The anharmonicity constant is evaluated from , 
De, and eqn 12D.12. However, note that Table 12D.1 lists 

values of   D D0
1
2= −e   (Fig. 12D.5), so calculate De  first 

before using eqn 12D.12. A useful conversion factor is 
1 kJ mol−1 = 83.593 cm−1.

Answer The depth of the potential minimum is

� � �D De cm= + = × −

×−
−

−

0
1
2

4 14 718 10 ( ).

564.4 kJmol
83.593 cm

1kJmol
1

1

11
� ���� ����

+ ×

= × + ×

−

−

1
2

1

4 1
2

1

4138 32

4 718 10 4138 32

( . )

( . . )

cm

cm  

It follows from eqn 12D.12 that the anharmonicity constant is

xe
cm

cm
=

× + ×
= ×

−

−
−4138 32

4 718 10 4138 32
2 101 10

1

4 1
2

1
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( . . )
.

 

Self-test 12D.3 Estimate the anharmonicity constant for 
1H81Br.

Answer: 2.093 × 10−2
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Figure 12D.5 The dissociation energy of a molecule, hcD0 , 
differs from the depth of the potential well, hcDe, on account of 
the zero-point energy of the vibrations of the bond.
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Figure 12D.6 The Morse potential energy curve reproduces 
the general shape of a molecular potential energy curve. The 
corresponding Schrödinger equation can be solved, and the 
values of the energies obtained. The number of bound levels is 
finite.
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508 12 Rotational and vibrational spectra

Anharmonicity also accounts for the appearance of addi-
tional weak absorption lines corresponding to the transitions 
2 ← 0, 3 ← 0, …, even though these first, second, … overtones 
are forbidden by the selection rule Δv = ±1. The first overtone, 
for example, gives rise to an absorption at

� � � � �G G x( ) ( ) ( )v v v+ − = − + +2 2 2 2 3 e  (12D.15)

The reason for the appearance of overtones is that the selection 
rule is derived from the properties of harmonic oscillator wave-
functions, which are only approximately valid when anharmo-
nicity is present. Therefore, the selection rule is also only an 
approximation. For an anharmonic oscillator, all values of Δv 
are allowed, but transitions with Δv > 1 are allowed only weakly 
if the anharmonicity is slight.

(b) The Birge–Sponer plot
When several vibrational transitions are detectable, a graphi-
cal technique called a Birge–Sponer plot may be used to deter-
mine the dissociation energy, hcD 0, of the bond. The basis of 
the Birge–Sponer plot is that the sum of successive intervals 
∆ Gv+ 1

2
 from the zero-point level to the dissociation limit is the 

dissociation energy:

� � � ��D G G G0 1 2 3 2 1 2= + + =∑ +∆ ∆ ∆/ / /

v

v

 
(12D.16)

just as the height of the ladder is the sum of the separations of 
its rungs (Fig. 12D.7). The construction in Fig. 12D.8 shows 
that the area under the plot of ∆ Gv+ 1

2
 against v+ 1

2  is equal to 
the sum, and therefore to D0. The successive terms decrease 
linearly when only the xe anharmonicity constant is taken into 
account and the inaccessible part of the spectrum can be esti-
mated by linear extrapolation. Most actual plots differ from the 
linear plot as shown in Fig. 12D.8, so the value of D0 obtained 
in this way is usually an overestimate of the true value.
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h2

h3

h4

h5

h6

h7

h8

h = h1 + h2 + h3 + 
         h4 + h5 + h6 + 

 h7 + h8

Figure 12D.7 The dissociation energy is the sum of the 
separations hi of the vibrational energy levels up to the 
dissociation limit just as the length of a ladder is the sum of 
the separations of its rungs.
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Figure 12D.8 The area under a plot of transition wavenumber 
against vibrational quantum number is equal to the 
dissociation energy of the molecule. The assumption that the 
differences approach zero linearly is the basis of the Birge–
Sponer extrapolation.

Example 12D.2 Using a Birge–Sponer plot

The observed vibrational intervals of H2
+  lie at the follow-

ing values for 1 ← 0, 2 ← 1, …, respectively (in cm−1): 2191, 
2064, 1941, 1821, 1705, 1591, 1479, 1368, 1257, 1145, 1033, 918, 
800, 677, 548, 411. Determine the dissociation energy of the 
molecule.

Method Plot the separations against v+ 1
2 , extrapolate line-

arly to the point cutting the horizontal axis, and then measure 
the area under the curve.

Answer The points are plotted in Fig. 12D.9, and a linear 
extrapolation is shown as a dotted line. The area under the 
curve (use the formula for the area of a triangle or count the 
squares) is 214. Each square corresponds to 100 cm−1 (refer to 
the scale of the vertical axis); hence the dissociation energy is 
21 400 cm−1 (corresponding to 256 kJ mol−1).
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Figure 12D.9 The Birge–Sponer plot used in Example 
12D.2. The area is obtained simply by counting the squares 
beneath the line or using the formula for the area of a right 
triangle ( )area base height= × ×1

2 .
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12D.4 Vibration–rotation spectra

Each line of the high resolution vibrational spectrum of a 
gas-phase heteronuclear diatomic molecule is found to con-
sist of a large number of closely spaced components (Fig. 
12D.10). Hence, molecular spectra are often called band 
spectra. The separation between the components is less than 
10 cm−1, which suggests that the structure is due to rotational 
transitions accompanying the vibrational transition. A rota-
tional change should be expected because classically we can 
think of the vibrational transition as leading to a sudden 
increase or decrease in the instantaneous bond length. Just 
as ice-skaters rotate more rapidly when they bring their arms 
in, and more slowly when they throw them out, so the mol-
ecular rotation is either accelerated or retarded by a vibra-
tional transition.

(a) Spectral branches
A detailed analysis of the quantum mechanics of simultaneous 
vibrational and rotational changes shows that the rotational 
quantum number J changes by ±1 during the vibrational tran-
sition of a diatomic molecule. If the molecule also possesses 
angular momentum about its axis, as in the case of the elec-
tronic orbital angular momentum of the paramagnetic mol-
ecule NO with its configuration …π1, then the selection rules 
also allow ΔJ = 0.

The appearance of the vibration–rotation spectrum of a 
diatomic molecule can be discussed in terms of the combined 
vibration–rotation terms, S :

  S J G F J( , ) ( ) ( )v v= +  (12D.17)

If we ignore anharmonicity and centrifugal distortion we can 
use eqn 12D.8 for the first term on the right and eqn 12B.9 
( ( ) ( )) F J BJ J= +1  for the second, and obtain

 S J BJ J( , ) ( )v v= +( ) + +1
2 1  (12D.18)

In a more detailed treatment, B  is allowed to depend on the 
vibrational state because, as v increases, the molecule swells 
slightly and the moment of inertia changes. We shall continue 
with the simple expression initially.

When the vibrational transition v + 1 ← v occurs, J changes 
by ±1 and in some cases by 0 (when ΔJ = 0 is allowed). The 
absorptions then fall into three groups called branches of the 
spectrum. The P branch consists of all transitions with ΔJ = –1:

    P( ) ( , ) ( , )J S J S J BJ= + − − = −v v1 1 2  

This branch consists of lines at � � …� � − −2 4B B, ,   with an 
intensity distribution reflecting both the populations of the 
rotational levels and the magnitude of the J − 1 ← J transition 
moment (Fig. 12D.11). The Q branch consists of all lines with 
ΔJ = 0, and its wavenumbers are all

   Q ( ) ( , ) ( , )J S J S J= + − =v v1   Q branch transitions  (12D.19b)

for all values of J. This branch, when it is allowed (as in NO), 
appears at the vibrational transition wavenumber. In Fig. 
12D.11 there is a gap at the expected location of the Q branch 

Self-test 12D.4 The vibrational levels of HgH converge rapidly, 
and successive intervals are 1203.7 (which corresponds to the 
1 ← 0 transition), 965.6, 632.4, and 172 cm−1. Estimate the dis-
sociation energy.

Answer: 35.6 kJ mol−1
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Figure 12D.10 A high-resolution vibration–rotation spectrum 
of HCl. The lines appear in pairs because H35Cl and H37Cl both 
contribute (their abundance ratio is 3:1). There is no Q branch, 
because ΔJ=0 is forbidden for this molecule.
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Figure 12D.11 The formation of P, Q, and R branches in a 
vibration–rotation spectrum. The intensities reflect the 
populations of the initial rotational levels and magnitudes of 
the transition moments.
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510 12 Rotational and vibrational spectra

because it is forbidden in HCl. The R branch consists of lines 
with ΔJ = +1:

    R ( ) ( , ) ( , ) ( )J S J S J B J= + + − = + +v v1 1 2 1  

This branch consists of lines displaced from   to high wave-
number by 2 4� � …B B, ,  .

The separation between the lines in the P and R branches of a 
vibrational transition gives the value of B . Therefore, the bond 
length can be deduced without needing to take a pure rota-
tional microwave spectrum. However, the latter is more precise 
because microwave frequencies can be measured with greater 
precision than infrared frequencies.

(b) Combination differences

The rotational constant of the vibrationally excited state, B1  (in 
general, Bv), is different from that of the ground vibrational 
state, B0. One contribution to the difference is the anharmon-
i city of the vibration, which results in a slightly extended bond 
in the upper state. However, even in the absence of anharmon-
icity, the average value of 1/R2 (〈1/R2〉) varies with the vibra-
tional state (see Problems 12D.12 and 12D.13). As a result, the 
Q branch (if it exists) consists of a series of closely spaced lines. 
The lines of the R branch converge slightly as J increases; and 
those of the P branch diverge:
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(12D.20)

To determine the two rotational constants individually, we use 
the method of combination differences. This procedure is used 
widely in spectroscopy to extract information about a particu-
lar state. It involves setting up expressions for the difference in 
the wavenumbers of transitions to a common state; the resulting 
expression then depends solely on properties of the other state.

As can be seen from Fig. 12D.12, the transitions R ( )J −1  
and P( )J +1  have a common upper state, and hence can be 
anticipated to depend on B0. Indeed, it is easy to show from eqn 
12D.20 that

   R P( ) ( ) ( )J J B J− − + = +1 1 4 0
1
2  (12D.21a)

Therefore, a plot of the combination difference against J + 1
2  

should be a straight line of slope 4 0
B , so the rotational constant 

of the molecule in the state v = 0 can be determined. (Any devi-
ation from a straight line is a consequence of centrifugal distor-
tion, so that effect can be investigated too.) Similarly, R ( )J  and 
P( )J  have a common lower state, and hence their combination 
difference gives information about the upper state:

   R P( ) ( ) ( )J J B J− = +4 1
1
2  (12D.21b)

Brief illustration 12D.3 The wavenumber of an R branch 
transition

Infrared absorption by 1H81Br gives rise to an R branch from 
v = 0. It follows from eqn 12D.19c and the data in Table 12D.1 
(in the Resource section) that the wavenumber of the line origi-
nating from the rotational state with J = 2 is

   R cm cm

cm

( ) ( . ) ( . )

.

2 6 2648 98 6 8 465

2699 77

1 1

1

= + = + ×
=

− −

−

B

 

Self-test 12D.5 Infrared absorption by 1H127I gives rise to an R 
branch from v = 0. What is the wavenumber of the line origi-
nating from the rotational state with J = 2?

Answer: 2347.16 cm−1

Brief illustration 12D.4 Combination differences

To develop a sense of the relative values of the rotational 
constants for different vibrational states, we can esti-
mate the rotational constants of B0 and B1  from a quick 
calculation involving only a few transitions. For 1H35Cl, 
  R P cm( ) ( ) .0 2 62 6 1− = − , and it follows from eqn 12D.21a, with 
J = 1, that B0

1
2

1 162 6 4 1 10 4= × + =− −. /{ ( )} .cm cm . Similarly, 
  R P cm( ) ( ) .1 1 60 8 1− = − , and it follows from eqn 12D.21b, 

Table 12D.1* Properties of diatomic molecules

 /cm 1− Re/pm B/cm 1− kf/(N m−1) hcD 0/( )kJ mol 1−

1H2 4400 74 60.86 575 432
1H35Cl 2991 127 10.59 516 428
1H127I 2308 161 6.51 314 295
35Cl2 560 199 0.244 323 239

* More values are given in the Resource section.

r branch 
transi-
tions

 (12D.19c)
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Figure 12D.12 The method of combination differences makes 
use of the fact that some transitions share a common level.
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12D Vibrational spectroscopy of diatomic molecules  511

12D.5 Vibrational Raman spectra

The gross selection rule for vibrational Raman transitions 
(see the following Justification) is that the polarizability should 
change as the molecule vibrates. The polarizability plays a role in 
vibrational Raman spectroscopy because the molecule must be 
squeezed and stretched by the incident radiation in order that a 
vibrational excitation may occur during the photon–molecule 
collision.

The specific selection rule for vibrational Raman transitions 
in the harmonic approximation is Δv = ±1. The formal basis for 
the gross and specific selection rules is given in the following 
Justification.

The lines to high frequency of the incident radiation, in the 
language introduced in Topic 12A, the ‘anti-Stokes lines’, are 
those for which Δv = −1. The lines to low frequency, the ‘Stokes 
lines’, correspond to Δv = +1. The intensities of the anti-Stokes 
and Stokes lines are governed largely by the Boltzmann popula-
tions of the vibrational states involved in the transition. It fol-
lows that anti-Stokes lines are usually weak because very few 
molecules are in an excited vibrational state initially.

In gas-phase spectra, the Stokes and anti-Stokes lines have a 
branch structure arising from the simultaneous rotational tran-
sitions that accompany the vibrational excitation (Fig. 12D.13). 
The selection rules are ΔJ = 0, ±2 (as in pure rotational Raman 
spectroscopy), and give rise to the O branch (ΔJ = −2), the Q 
branch (ΔJ = 0), and the S branch (ΔJ = +2):

  
  

  

 

 

  

  

  

O i

Q i

S i

( )

( )

( )

J

J

J

B BJ

B BJ

= − − +
= −

= − − −

2 4

6 4  

again with J = 1 that B1
1
2

1 160 8 4 1 10 1= × + =− −. /{ ( )} .cm cm . The 
linear least-squares procedure applied to a richer data set gives 
B0

110 440= −. cm  and B1
110 136= −. cm . We see that the two 

rotational constants do not differ by much.

Self-test 12D.6 For 12C16O, R cm( ) .0 2147 084 1= − , R( )1 =  
2150.858 cm-1, P cm( ) .1 2139 427 1= − , and  P cm( ) .2 2135 548 1= − .  
Estimate the values of B0  and B1.

Answer: B0
11 923= −. cm , B1

11 905= −. cm

Brief illustration 12D.5 The gross selection rule for 
vibrational Raman spectra

Both homonuclear and heteronuclear diatomic molecules 
swell and contract during a vibration, the control of the nuclei 
over the electrons varies, and hence the molecular polar-
izability changes. Both types of diatomic molecule are there-
fore vibrationally Raman active.

Self-test 12D.7 Can a linear, nonpolar molecule like CO2 have 
a Raman spectrum?

Answer: Yes

Justification 12D.2 Gross and specific selection rules  
for vibrational Raman spectra

For simplicity, we consider a one-dimensional harmonic 
oscillator (like a diatomic molecule). First, we note that the 
oscillating electric field, E(t), of the incident electromagnetic 
radiation can induce a dipole moment that is proportional to 
the strength of the field. We write ˆ ( )μ =α x E(t), where α(x) is 
the polarizability of the molecule (Topic 12B). The transition 
dipole moment is then

µ µfi f i if f i
d d d= = =∫ ∫ ∫ψ ψ ψ α ψ ψ α ψv v v v v v

* * *( ) ( ) ( ) ( )τ x E Et x t x x 

The polarizability varies with the length of the bond because 
the control of the nuclei over the electrons varies as their posi-
tion changes, so α(x) = α0 + (dα/dx)0x + …. Now the calcula-
tion proceeds as in Justification 12D.1, but (dμ/dx)0 is replaced 
by E(t)(dα/dx)0 in the expression for μfi. For f ≠ i,

µfi
d
d

d
f i

= 



 ∫E( ) *t

x
xx

α ψ ψ
0

v v
 

Therefore, the vibration is Raman active only if (dα/dx)0 ≠ 0; 
that is, only if the polarizability varies with displacement, and, 
as we saw in Justification 12D.1, if vf − vi = ±1.

o branch transitions 

Q branch transitions 

s branch transitions

 (12D.22)
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Figure 12D.13 The formation of O, Q, and S branches in a 
vibration–rotation Raman spectrum of a linear rotor. Note that 
the frequency scale runs in the opposite direction to that in 
Fig. 12D.11, because the higher energy transitions (on the right) 
extract more energy from the incident beam and leave it at 
lower frequency.
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512 12 Rotational and vibrational spectra

where i  is the wavenumber of the incident radiation. Note 
that, unlike in infrared spectroscopy, a Q branch is obtained 
for all linear molecules. The spectrum of CO, for instance, is 
shown in Fig. 12D.14: the structure of the Q branch arises from 
the differences in rotational constants of the upper and lower 
vibrational states.

The information available from vibrational Raman spectra 
adds to that from infrared spectroscopy because homonuclear 
diatomics can also be studied. The spectra can be interpreted 
in terms of the force constants, dissociation energies, and bond 
lengths, and some of the information obtained is included in 
Table 12D.1.

Checklist of concepts

☐ 1. The vibrational energy levels of a diatomic molecule 
modelled as a harmonic oscillator depend on a force 
constant kf (a measure of the bond’s stiffness) and the 
effective mass of the vibration.

☐ 2. The gross selection rule for infrared spectra is that the 
electric dipole moment of the molecule must change 
when the atoms are displaced relative to one another.

☐ 3. The specific selection rule for infrared spectra (within 
the harmonic approximation) is Δv = ±1.

☐ 4. The Morse potential energy function can be used to 
model anharmonic motion.

☐ 5. The strongest infrared transitions are the fundamental 
transitions (v = 1 ← v = 0).

☐ 6. Anharmonicity gives rise to weaker overtone transi-
tions (v = 2 ← v = 0, v = 3 ← v = 0, etc.).

☐ 7. A Birge–Sponer plot may be used to determine the dis-
sociation energy of the bond in a diatomic molecule.

☐ 8. In the gas phase vibrational transitions have a P, Q, 
R branch structure due to simultaneous rotational 
transitions.

☐ 9. For a vibration to be Raman active, the polarizability 
must change as the molecule vibrates.

☐ 10. The specific selection rule for vibrational Raman spec-
tra (within the harmonic approximation) is Δv = ±1.

☐ 11. In gas-phase spectra, the Stokes and anti-Stokes lines in 
a Raman spectrum have an O, Q, S branch structure.

Checklist of equations

2000 2100∆ν/cm–1~

O Q S

Figure 12D.14 The structure of a vibrational line in the vibrational 
Raman spectrum of carbon monoxide, showing the O, Q, and 
S branches. The horizontal axis represents the wavenumber 
difference between the incident and scattered radiation.

Property Equation Comment Equation number

Vibrational terms   G c k m( ) ( ) , ( / )( / ) /v v= + =1
2

1 212  π f eff Diatomic molecules; simple 
harmonic oscillator

12D.8

Infrared spectra (vibrational) ∆  Gv+ =1
2

 Diatomic molecules; simple 
harmonic oscillator

12D.10
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Property Equation Comment Equation number

Infrared spectra (vibrational) ∆ � � � �G xv v+ = − + +1
2

2( 1) e  Anharmonic oscillator 12D.14

� � � � �G G x( 2 ( ) 2 2(2 3) ev v v+ − = − + +)   Overtones 12D.15

Dissociation energy � � � ��D G G G0 = + + =∑ +∆ ∆ ∆1/2 3/2 1
2

v

v Birge–Sponer plot 12D.16

Vibration–rotation terms (diatomic 
molecules)

 S J BJ J( , ) ( 1)1
2

v v= + + +( ) Rotation coupled to vibration 12D.18

Infrared spectra (vibration–
rotation)

    P( ) ( , ) ( , )J S J S J BJ= + − − = −v v1 1 2 P branch (ΔJ = –1) 12D.19a

   Q( ) ( , ) ( , )J S J S J= + − =v v1 Q branch (ΔJ = 0) 12D.19b

     R( ) ( , ) ( , ) ( )J S J S J B J= + + − = + +v v1 1 2 1 R branch (ΔJ = +1) 12D.19c

  

  

 

 

R P

R P
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B JJ J

− − + = +
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1 1 4
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0
1
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1
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Combination differences 12D.21

Raman spectra (vibration-rotation)       O i( )J B BJ= − − +2 4 O branch (ΔJ = –2) 12D.22

    Q i( )J = − Q branch (ΔJ = 0)

      S i( )J B BJ= − − −6 4 S branch (ΔJ = +2)
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12E Vibrational spectroscopy  
of polyatomic molecules

There is only one mode of vibration for a diatomic molecule: 
bond stretch. In polyatomic molecules there are several, some-
times hundreds, of modes of vibration because all the bond 
lengths and angles may change. Consequently, the vibrational 
spectra are very complex. Nonetheless, infrared and Raman 
spectroscopy can be used to obtain information about the 
structure of systems as large as animal and plant tissues. Raman 
spectroscopy is particularly useful for characterizing nanoma-
terials, especially carbon nanotubes.

12E.1 Normal modes

We begin by calculating the total number of vibrational modes 
of a polyatomic molecule. We then see that we can choose com-
binations of these atomic displacements that give the simplest 
description of the vibrations.

As we show in the following Justification, the number of 
independent modes of motion of an N-atom molecule depends 
on whether it is linear or nonlinear:

Brief illustration 12E.1 The number of normal modes

Water, H2O, is a nonlinear triatomic molecule, N = 3, and has 
3N − 6 = 3 modes of vibration (and three modes of rotation); 
CO2 is a linear triatomic molecule, and has 3N − 5 = 4 modes 

Contents

12e.1 Normal modes 514
brief illustration 12e.1: the number of normal  
modes 514

12e.2 Infrared absorption spectra 516
example 12e.1: using the gross selection rule  
for infrared spectroscopy 516
example 12e.2: Interpreting an infrared spectrum 517

12e.3 Vibrational Raman spectra 518
brief illustration 12e.2: raman active modes of 
polyatomic molecules 518

(a) Depolarization 518
(b) Resonance Raman spectra 518
(c) Coherent anti-Stokes Raman spectroscopy 519

12e.4 Symmetry aspects of molecular vibrations 520
example 12e.3: Identifying the symmetry  
species of a normal mode 520

(a) Infrared activity of normal modes 520
brief illustration 12e.3: the infrared activity  
of normal modes 520

(b) Raman activity of normal modes 521
brief illustration 12e.4: the raman activity  
of normal modes 521

Checklist of concepts 521
Checklist of equations 522

➤➤ Why do you need to know this material?
The analysis of vibrational spectra provides information 
about the identity and conformation of polyatomic 
molecules in the gas and condensed phases. Even complex 
systems, such as synthetic materials and biological cells, 
can be studied.

➤➤ What is the key idea?
The vibrational spectrum of a polyatomic molecule can 
be interpreted in terms of the coordinated, collective 
harmonic motion of groups of atoms.

➤➤ What do you need to know already?
You need to be familiar with the harmonic oscillator (Topic 
8B), the general principles of spectroscopy (Topic 12A), and 
the selection rules for infrared and Raman spectroscopy 
(Topic 12D). The treatment of the symmetry aspects of 
infrared and Raman active vibrations requires concepts 
from Chapter 11.

Linear molecule: 3N – 5
Nonlinear molecule: 3N – 6
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The next step is to find the best description of the modes. 
One choice for the four modes of CO2, for example, might be 
the ones in Fig. 12E.2a. This illustration shows the stretching 
of one bond (the mode νL), the stretching of the other (νR), 
and the two perpendicular bending modes (ν2). The descrip-
tion, while permissible, has a disadvantage: when one CO bond 
vibration is excited, the motion of the C atom sets the other 
CO bond in motion, so energy flows backwards and forwards 
between νL and νR. Moreover, the position of the centre of mass 
of the molecule varies in the course of either vibration.

The description of the vibrational motion is much sim-
pler if linear combinations of νL and νR are taken. For exam-
ple, one combination is ν1 in Fig. 12E.2b: this mode is the 
symmetric stretch. In this mode, the C atom is buffeted 
simultaneously from each side and the motion continues 
indefinitely. Another mode is ν2, the antisymmetric stretch, 
in which the two O atoms always move in the same direction 
as each other and opposite to that of the C atom. Both modes 
are independent in the sense that, if one is excited, then it 
does not excite the other. They are two of the ‘normal modes’ 
of the molecule, its independent, collective vibrational dis-
placements. The two other normal modes are the two bend-
ing modes ν3. In general, a normal mode is an independent, 
synchronous motion of atoms or groups of atoms that may be 
excited without leading to the excitation of any other normal 
mode and without involving translation or rotation of the 
molecule as a whole.

The four normal modes of CO2, and the Nvib normal modes 
of polyatomics in general, are the key to the description of 
molecular vibrations. Each normal mode, q, behaves like 
an independent harmonic oscillator (if anharmonicities are 
neglected), so each has a series of terms

of vibration (and only two modes of rotation). A biological 
macro molecule with N ≈ 500 atoms can vibrate in nearly 1500 
different independent ways.

Self-test 12E.1 How many normal modes does naphthalene 
(C10H8) have?

Answer: 48

Justification 12E.1 The number of vibrational modes

The total number of coordinates needed to specify the loca-
tions of N atoms is 3N. Each atom may change its location 
by varying one of its three coordinates (x, y, and z), so the 
total number of displacements available is 3N. These dis-
placements can be grouped together in a physically sensible 
way. For example, three coordinates are needed to specify 
the location of the centre of mass of the molecule, so three 
of the 3N displacements correspond to the translational 
motion of the molecule as a whole. The remaining 3N − 3 
displacements are non-translational ‘internal’ modes of the 
molecule.

Two angles are needed to specify the orientation of a linear 
molecule in space: in effect, we need to give only the latitude 
and longitude of the direction in which the molecular axis 
is pointing (Fig. 12E.1a). However, three angles are needed 
for a nonlinear molecule because we also need to specify the 
orientation of the molecule around the direction defined by 
the latitude and longitude (Fig. 12E.1b). Therefore, two (lin-
ear) or three (nonlinear) of the 3N − 3 internal displacements 
are rotational. This leaves 3N − 5 (linear) or 3N − 6 (nonlinear) 
displacements of the atoms relative to one another: these are 
the vibrational modes. It follows that the number of modes of 
vibration Nvib is 3N − 5 for linear molecules and 3N − 6 for non-
linear molecules.

θ

φ
ψ

(a)

(b)

Figure 12E.1 (a) The orientation of a linear molecule 
requires the specification of two angles. (b) The orientation 
of a nonlinear molecule requires the specification of three 
angles.

νL
ν1 (1388 cm–1)

ν2 (2349 cm–1)

ν3 (667 cm–1) ν3 (667 cm–1)

νR

(a) (b)

(c)

Figure 12E.2 Alternative descriptions of the vibrations of 
CO2. (a) The stretching modes are not independent, and if one 
CeO group is excited the other begins to vibrate. They are not 
normal modes of vibration of the molecule. (b) The symmetric 
and antisymmetric stretches are independent, and one can be 
excited without affecting the other: they are normal modes. 
(c) The two perpendicular bending motions are also normal 
modes.
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where q  is the wavenumber of mode q and depends on the 
force constant kf,q for the mode and on the effective mass mq of 
the mode. The effective mass of the mode is a measure of the mass 
that is swung about by the vibration and in general is a combina-
tion of the masses of the atoms. For example, in the symmetric 
stretch of CO2, the C atom is stationary, and the effective mass 
depends on the masses of only the O atoms. In the antisymmetric 
stretch and in the bends, all three atoms move, so all contribute 
to the effective mass. The three normal modes of H2O are shown 
in Fig. 12E.3: note that the predominantly bending mode (ν2) 
has a lower frequency than the others, which are predominantly 
stretching modes. It is generally the case that the frequencies of 
bending motions are lower than those of stretching modes. One 
point that must be appreciated is that only in special cases (such 
as the CO2 molecule) are the normal modes purely stretches or 
purely bends. In general, a normal mode is a composite motion 
of simultaneous stretching and bending of bonds. Another point 
in this connection is that heavy atoms generally move less than 
light atoms in normal modes.

The vibrational state of a polyatomic molecule is specified 
by the vibrational quantum number v for each of the normal 
modes. For example, for the water molecule with three normal 
modes, the vibrational state is designated as (v1,v2,v3) where 
vi is the number of vibrational quanta in normal mode i. The 
vibrational ground state of an H2O molecule is therefore (0,0,0).

12E.2 Infrared absorption spectra

The gross selection rule for infrared activity is that the motion 
corresponding to a normal mode should be accompanied by a 
change of dipole moment. Simple inspection of atomic motions 
is sometimes all that is needed in order to assess whether a nor-
mal mode is infrared active. For example, the symmetric stretch 
of CO2 leaves the dipole moment unchanged (at zero, see Fig. 
12E.2), so this mode is infrared inactive. The antisymmet-
ric stretch, however, changes the dipole moment because the 
molecule becomes unsymmetrical as it vibrates, so this mode 
is infrared active. Because the dipole moment change is paral-
lel to the principal axis, the transitions arising from this mode 

are classified as parallel bands in the spectrum. Both bending 
modes are infrared active: they are accompanied by a chang-
ing dipole perpendicular to the principal axis, so transitions 
involving them lead to a perpendicular band in the spectrum.ν1 (3652 cm–1) ν2 (1595 cm–1) ν3 (3756 cm–1)

Figure 12E.3 The three normal modes of H2O. The mode ν2 is 
predominantly bending, and occurs at lower wavenumber than 
the other two.

Example 12E.1 Using the gross selection rule for 
infrared spectroscopy

State which of the following molecules are infrared active: 
N2O, OCS, H2O, CH2aCH2.

Method Molecules that are infrared active have dipole 
moments that change during the course of a vibration. 
Therefore, judge whether a distortion of the molecule can 
change its dipole moment (including changing it from zero).

Answer All the molecules possess at least one normal mode 
that results in a change of dipole moment, so all are infrared 
active. Note that not all the modes of complicated molecules 
are infrared active. For example, a vibration of CH2aCH2 
in which the CaC bond stretches and contracts (while the 
CeH bonds either do not vibrate or stretch and contract syn-
chronously) is inactive because it leaves the dipole moment 
unchanged (at zero, Fig. 12E.4).

Self-test 12E.2 Identify a normal mode of C6H6 that is not 
infrared active

Answer: A ‘breathing’ mode in which all the carbon–carbon bonds 
contract and stretch synchronously, while the CeH bonds either do not 

vibrate or stretch and contract synchronously (Fig. 12E.5)

Figure 12E.4 A normal mode of CH2 = CH2 (ethene) that is 
not infrared active.

Figure 12E.5 A normal mode of C6H6 (benzene) that is not 
infrared active.

 (12E.1)
Vibrational 
terms of normal 
modes
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The active modes are subject to the specific selection rule 
Δvq = ±1 in the harmonic approximation, so the wavenumber of 
the fundamental transition (the ‘first harmonic’) of each active 
mode is q . A polyatomic molecule has several fundamental 
transitions. For example, the spectrum of a molecule with three 
infrared active normal modes features three fundamental tran-
sitions: (1,0,0) ← (0,0,0), (0,1,0) ← (0,0,0), and (0,0,1) ← (0,0,0). 
Also possible are combination bands corresponding to the 
excitation of more than one normal mode in the transition, 
as in (1,1,0) ← (0,0,0). Moreover, overtone transitions, such as 
(2,0,0) ← (0,0,0), can appear in the spectrum when anharmo-
nicity is important (Topic 12D).

From the analysis of the spectrum, a picture may be con-
structed of the stiffness of various parts of the molecule, that 
is, we can establish its force field, the set of force constants cor-
responding to all the displacements of the atoms. The force field 
may also be estimated by using the computational techniques 
described in Topic 10E. Superimposed on the simple force-field 
scheme are the complications arising from anharmonicities 
and the effects of molecular rotation. In the gas phase, rota-
tional transitions affect the spectrum in a way similar to their 
effect on diatomic molecules (Topic 12D), but as polyatomic 
molecules are typically asymmetric rotors, the resulting band 
structure is very complex.

Molecules are unable to rotate freely in a liquid or a solid. In 
a liquid, for example, a molecule may be able to rotate through 
only a few degrees before it is struck by another, so it changes 
its rotational state frequently. This random changing of ori-
entation is called tumbling. As a result of this intermolecular 
buffeting, the lifetimes of rotational states in liquids are very 
short, so in most cases the rotational energies are ill-defined. 
Collisions occur at a rate of about 1013 s−1 and, even allowing 
for only a 10 per cent success rate in knocking the molecule into 
another rotational state, a lifetime broadening (eqn 12A.19, in 
the form δ π ≈12/ cτ ) of more than 1 cm−1 can easily result. The 
rotational structure of the vibrational spectrum is blurred by 
this effect, so the infrared spectra of molecules in condensed 
phases usually consist of broad lines spanning the entire range 
of the resolved gas-phase spectrum, and showing no branch 
structure.

One very important application of infrared spectroscopy to 
condensed phase samples, and for which the blurring of the 
rotational structure by random collisions is a welcome sim-
plification, is to chemical analysis. The vibrational spectra of 
different groups in a molecule give rise to absorptions at char-
acteristic frequencies because a normal mode of even a very 
large molecule is often dominated by the motion of a small 
group of atoms. The intensities of the vibrational bands that can 
be identified with the motions of small groups are also transfer-
able between molecules. Consequently, the molecules in a sam-
ple can often be identified by examining its infrared spectrum 
and referring to a table of characteristic frequencies and inten-
sities (Table 12E.1).

Table 12E.1* Typical vibrational 
wavenumbers, /cm−1

Vibration type /cm 1−

CeH stretch 2850–2960

CeH bend 1340–1465

CeC stretch, bend 700–1250

CaC stretch 1620–1680

* More values are given in the Resource section.

Example 12E.2 Interpreting an infrared spectrum

The infrared spectrum of an organic compound is shown in 
Fig. 12E.6. Suggest an identification.

Method Some of the features at wavenumbers above 1500 cm−1 
can be identified by comparison with the data in Table 12E.1.

Answer The features of the spectrum include: (a) CeH stretch 
of a benzene ring, indicating a substituted benzene; (b) car-
boxylic acid OeH stretch, indicating a carboxylic acid; (c) the 
strong absorption of a conjugated CbC group, indicating a 
substituted alkyne; (d) this strong absorption is also character-
istic of a carboxylic acid that is conjugated to a carbon–carbon 
multiple bond; (e) a characteristic vibration of a benzene ring, 
confirming the deduction drawn from (a); (f) a characteristic 
absorption of a nitro group (eNO2) connected to a multiply 
bonded carbon–carbon system, suggesting a nitro-substituted 
benzene. The molecule contains as components a benzene ring, 
an aromatic carbon–carbon bond, a –COOH group, and a –NO2 
group. The molecule is in fact O2NeC6H4eCbCeCOOH. A 
more detailed analysis shows it to be the 1,4-isomer.

Self-test 12E.3 Suggest an identification of the organic com-
pound responsible for the spectrum shown in Fig. 12E.7. 
(Hint: The molecular formula of the compound is C3H5ClO.)

Tr
an

sm
itt

an
ce

, T
/%

100

0
4000 3000 2000 1000

Wavenumber, ν/cm–1~

a b b
c

d e
f

Figure 12E.6 A typical infrared absorption spectrum taken 
by forming a sample into a disk with potassium bromide. As 
explained Example 12E.2, the substance can be identified as 
O2NC6H4eCbCeCOOH.
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12E.3 Vibrational Raman spectra

As for diatomic molecules (Topic 12D), the normal modes of 
vibration of molecules are Raman active if they are accompa-
nied by a changing polarizability. A closer analysis of infrared 
and Raman activity of normal modes based on considerations 
of symmetry leads to the exclusion rule:

If the molecule has a centre of symmetry then no 
modes can be both infrared and Raman active.

(A mode may be inactive in both.) Because it is often possi-
ble to judge intuitively if a mode changes the molecular dipole 
moment, we can use this rule to identify modes that are not 
Raman active.

(a) Depolarization
The assignment of Raman lines to particular vibrational 
modes is aided by noting the state of polarization of the scat-
tered light. The depolarization ratio, ρ, of a line is the ratio 
of the intensities, I, of the scattered light with polarizations 

perpendicular and parallel to the plane of polarization of the 
incident radiation:

ρ = ⊥I
I  

Definition  depolarization ratio  (12E.2)

To measure ρ, the intensity of a Raman line is measured 
with a polarizing filter (a ‘half-wave plate’) first parallel and 
then perpendicular to the polarization of the incident beam. 
If the emergent light is not polarized, then both intensities 
are the same and ρ is close to 1; if the light retains its initial 
polarization, then I⊥ = 0, so ρ = 0 (Fig. 12E.8). A line is clas-
sified as depolarized if it has ρ close to or greater than 0.75 
and as polarized if ρ < 0.75. Only totally symmetrical vibra-
tions give rise to polarized lines in which the incident polar-
ization is largely preserved. Vibrations that are not totally 
symmetrical give rise to depolarized lines because the inci-
dent radiation can give rise to radiation in the perpendicular 
direction too.

(b) Resonance Raman spectra
A modification of the basic Raman effect involves using inci-
dent radiation that nearly coincides with the frequency of an 
electronic transition of the sample (Fig. 12E.9). The technique 
is then called resonance Raman spectroscopy. It is charac-
terized by a much greater intensity in the scattered radiation. 
Furthermore, because it is often the case that only a few vibra-
tional modes contribute to the more intense scattering, the 
spectrum is greatly simplified.

Resonance Raman spectroscopy is used to study biologi-
cal molecules that absorb strongly in the ultraviolet and vis-
ible regions of the spectrum. Examples include the pigments 
β-carotene and chlorophyll, which capture solar energy dur-
ing plant photosynthesis. The resonance Raman spectra of 
Fig. 12E.10 show vibrational transitions from only the few pig-
ment molecules that are bound to very large proteins dissolved 

Brief illustration 12E.2 Raman active modes of 
polyatomic molecules

The symmetric stretch of CO2 alternately swells and contracts 
the molecule: this motion changes the size and hence the 
polarizability of the molecule, so the mode is Raman active. 
The other modes of CO2 leave the polarizability unchanged, 
so they are Raman inactive. Furthermore, the exclusion rule 
applies to CO2 because it has a centre of symmetry.

Self-test 12E.4 Does the exclusion rule apply to H2O or CH4?
Answer: No; neither molecule has centre of symmetry

Answer: CH2aCClCH2OH
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Figure 12E.7 The spectrum considered in Selftest 12E.3.
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Figure 12E.8 The definition of the planes used for the 
specification of the depolarization ratio, ρ, in Raman scattering.
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in an aqueous buffer solution. This selectivity arises from the 
fact that water (the solvent), amino acid residues, and the 
peptide group do not have electronic transitions at the laser 
wavelengths used in the experiment, so their conventional 
Raman spectra are weak compared to the enhanced spectra 
of the pigments. Comparison of the spectra in Figs. 12E.10a 
and 12E.10b also shows that, with proper choice of excitation 
wavelength, it is possible to examine individual classes of pig-
ments bound to the same protein: excitation at 488 nm, where 
β-carotene absorbs strongly, shows vibrational bands from 
β-carotene only, whereas excitation at 407 nm, where chloro-
phyll a and β-carotene absorb, reveals features from both types 
of pigments.

(c) Coherent anti-Stokes Raman spectroscopy
The intensity of Raman transitions may be enhanced by coher-
ent anti-Stokes Raman spectroscopy (CARS, Fig. 12E.11). 
The technique relies on the fact that, if two laser beams of fre-
quencies ν1 and ν2 pass through a sample, then they may mix 
together and give rise to coherent radiation of several different 
frequencies, one of which is

  ′ = −2 1 2  (12E.3a)

Suppose that ν2 is varied until it matches any Stokes line from 
the sample, such as the one with frequency ν1 − Δν; then the 
coherent emission will have frequency

     ′ = − −∆ = + ∆2 1 1 1( )  (12E.3b)

which is the frequency of the corresponding anti-Stokes line. 
This coherent radiation forms a narrow beam of high intensity.

An advantage of CARS is that it can be used to study Raman 
transitions in the presence of competing incoherent background 
radiation, and so can be used to observe the Raman spectra of 
species in flames. One example is the vibration–rotation CARS 
spectrum of N2 gas in a methane–air flame shown in Fig 12E.12.
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Figure 12E.9 In the resonance Raman effect the  
incident radiation has a frequency close to an actual  
electronic excitation of the molecule. A photon is emitted  
when the excited state returns to a state close to the ground 
state.
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Figure 12E.10 The resonance Raman spectra of a protein 
complex that is responsible for some of the initial electron 
transfer events in plant photosynthesis. (a) Laser excitation 
of the sample at 407 nm shows Raman bands due to both 
chlorophyll a and β-carotene bound to the protein because 
both pigments absorb light at this wavelength. (b) Laser 
excitation at 488 nm shows Raman bands from β-carotene only 
because chlorophyll a does not absorb light very strongly at 
this wavelength. (Adapted from D.F. Ghanotakis et al., Biochim. 
Biophys. Acta 974, 44 (1989).)
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Figure 12E.11 The experimental arrangement for the CARS 
experiment.
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Figure 12E.12 CARS spectrum of a methane–air flame at 
2104 K. The peaks correspond to the Q branch of the vibration–
rotation spectrum of N2 gas. (Adapted from J.F. Verdieck et al., J. 
Chem. Ed. 59, 495 (1982).)
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520 12 Rotational and vibrational spectra

12E.4 Symmetry aspects of molecular 
vibrations

One of the most powerful ways of dealing with normal 
modes, especially of complex molecules, is to classify them 
according to their symmetries. This section makes extensive 
use of the concepts and procedures introduced in Topic 11C, 
which is an essential background to this discussion. In par-
ticular, each normal mode must belong to one of the sym-
metry species of the molecular point group, as discussed in 
that Topic.

(a) Infrared activity of normal modes
It is best to use group theory to judge the activities of more 
complex modes of vibration. This is easily done by checking the 
character table of the molecular point group for the symmetry 
species of the irreducible representations spanned by x, y, and 
z, for their species are also the symmetry species of the compo-
nents of the electric dipole moment. Then apply the following 
rule, which is developed in the following Justification:

If the symmetry species of a normal mode is 
the same as any of the symmetry species of x, 
y, or z, then the mode is infrared active.

Example 12E.3 Identifying the symmetry species of a 
normal mode

Establish the symmetry species of the normal mode vibrations 
of CH4, which belongs to the group Td.

Method The first step in the procedure is to identify the 
symmetry species of the irreducible representations spanned 
by all the 3N displacements of the atoms, using the charac-
ters of the molecular point group. Find these characters by 
counting 1 if the displacement is unchanged under a symme-
try operation, –1 if it changes sign, and 0 if it is changed into 
some other displacement. Next, subtract the symmetry spe-
cies of the translations. Translational displacements span the 
same symmetry species as x, y, and z, so they can be obtained 
from the right-most column of the character table. Finally, 
subtract the symmetry species of the rotations, which are 
also given in the character table (and denoted there by Rx, 
Ry, and Rz).

Answer There are 3 × 5 = 15 degrees of freedom, of which 
(3 × 5) − 6 = 9 are vibrations. Refer to Fig. 12E.13. Under E, no 
displacement coordinates are changed, so the character is 15. 
Under C3, no displacements are left unchanged, so the char-
acter is 0. Under the C2 indicated, the z-displacement of the 
central atom is left unchanged, whereas its x- and y-compo-
nents both change sign. Therefore χ(C2) = 1 − 1 − 1 + 0 + 0 + 
…= −1. Under the S4 indicated, the z-displacement of the 
central atom is reversed, so χ(S4) = −1. Under σd, the x- and 
z-displacements of C, H3, and H4 are left unchanged and 
the y-displacements are reversed; hence χ(σd) = 3 +3 − 3 = 3. 
The characters are therefore 15, 0, −1, −1, 3. By decomposing  
the direct product (Topic 11C), we find that this representation 
spans A1 + E + T1 + 3T2. The translations span T2; the rotations 
span T1. Hence, the nine vibrations span A1 + E + 2T2. The 
modes are shown in Fig. 12E.14. We shall see in the next sub-
section that symmetry analysis gives a quick way of deciding 
which modes are active.

Brief illustration 12E.3 The infrared activity of normal 
modes

To decide which normal modes of CH4 are IR active, we note 
that we found in Example 12E.3 that their symmetry species 
are A1 + E + 2T2. Therefore, because x, y, and z span T2 in the 
group Td, only the T2 modes are infrared active. The distor-
tions accompanying these modes lead to a changing dipole 

Self-test 12E.5 Establish the symmetry species of the normal 
modes of H2O.

Answer: 2A1 + B2

1

2

3

4

C3

C2,S4

x

y

z σd

Figure 12E.13 The atomic displacements of CH4 and the 
symmetry elements used to calculate the characters.

ν1(A1) ν3(T2) ν4(T2)ν2(E)

Figure 12E.14 Typical normal modes of vibration of a 
tetrahedral molecule. There are in fact two modes of symmetry 
species E and three modes of each T2 symmetry species.

symmetry test 
for Ir activity
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moment. The A1 mode, which is inactive, is the symmetrical 
‘breathing’ mode of the molecule.

Self-test 12E.6 Which of the normal modes of H2O are infra-
red active?

Answer: All three

Justification 12E.2 Using symmetry to identify infrared 
active normal modes

The rule hinges on the form of the transition dipole moment 
(Topic 12A): µ ψ ψfi d,

*
x x x∝∫ v vf i

 in the x-direction, with simi-
lar expressions for the two other components of the transition 
moment. Consider a harmonic oscillator in the x-direction 
undergoing a transition from the ground vibrational state 
(vi = 0) to the first excited state (vf = 1). Because ψ 0

2∝ −e x  and 
ψ1

2∝ −x xe  (Topic 8B), the components of the transition dipole 
moment take the following forms:

•	 x x x x xx x x

x

e e d e d−

−∞

+∞
− −

−∞

+∞

∫ =2 2 2

1 0

2 2

Form of Form of Form of
ψ µ ψ 

∫∫  in the 

x-direction. As can be verified by direct calculation, 
this integral does not vanish.

•	 xy xxe d−

−∞

+∞

∫ 2 2  and xz xxe d−

−∞

+∞

∫ 2 2  in the y- and 

z-directions, respectively. A direct calculation shows 
that both integrals vanish.

Consequently, the excited state wavefunction must have the 
same symmetry as the displacement x.

Brief illustration 12E.4 The Raman activity of normal 
modes

To decide which of the normal modes of CH4 are Raman active, 
refer to the Td character table. It was established in Example 
12E.3 that the symmetry species of the normal modes are 
A1 + E + 2T2. Because the quadratic forms span A1 + E + T2, all 
the normal modes are Raman active. By combining this infor-
mation with that in Brief illustration 12E.3, we see how the 
infrared and Raman spectra of CH4 are assigned. The assign-
ment of spectral features to the T2 modes is straightforward 
because these are the only modes that are both infrared and 
Raman active. This leaves the A1 and E modes to be assigned 
in the Raman spectrum. Measurement of the depolariza-
tion ratio distinguishes between these modes because the A1 
mode, being totally symmetric, is polarized and the E mode is 
depolarized.

Self-test 12E.7 Which of the vibrational modes of H2O are 
Raman active?

Answer: All three

(b) Raman activity of normal modes

Group theory provides an explicit recipe for judging the 
Raman activity of a normal mode. First, we need to know that 
the polarizability transforms in the same way as the quadratic 
forms (x2, xy, etc.) listed in character tables. Then we use the 
following rule:

If the symmetry species of a normal mode is the 
same as the symmetry species of a quadratic 
form, then the mode is Raman active.

Checklist of concepts

☐ 1. A normal mode is an independent, synchronous 
motion of atoms or groups of atoms that may be excited 
without leading to the excitation of any other normal 
mode.

☐ 2. The number of normal modes is 3N − 6 (for nonlinear 
molecules) or 3N − 5 (linear molecules).

☐ 3. A normal mode is infrared active if it is accompanied 
by a change of dipole moment; the specific selection 
rule is Δvq = ±1.

☐ 4. The exclusion rule states that, if the molecule has a cen-
tre of symmetry, then no modes can be both infrared 
and Raman active.

☐ 5. Totally symmetrical vibrations give rise to polarized 
lines.

☐ 6. A normal mode is infrared active if its symmetry species 
is the same as any of the symmetry species of x, y, or z.

☐ 7. A normal mode is Raman active if its symmetry species 
is the same as the symmetry species of a quadratic form.

symmetry 
test for 
raman 
activity
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522 12 Rotational and vibrational spectra

Checklist of equations

Property Equation Comment Equation number

Vibrational terms of normal modes  
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12E.1

Depolarization ratio ρ = I⊥/I‖ Depolarized lines: ρ close to or greater than 0.75. 
Polarized lines: ρ < 0.75

12E.2
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chaPter 12  Rotational and vibrational spectra
Note: The masses of nuclides are listed in Table 0.2 of the Resource section.

TOPIC 12A general features of molecular spectroscopy

Discussion questions
12A.1 What is the physical interpretation of a selection rule?

12A.2 Describe the physical origins of linewidths in absorption and emission 
spectra. Do you expect the same contributions for species in condensed and 
gas phases?

12A.3 Describe the basic experimental arrangements commonly used for 
absorption, emission, and Raman spectroscopy.

Exercises
12A.1(a) Calculate the ratio A/B for transitions with the following 
characteristics: (i) 70.8 pm X-rays, (ii) 500 nm visible light, (iii) 3000 cm−1 
infrared radiation.
12A.1(b) Calculate the ratio A/B for transitions with the following 
characteristics: (i) 500 MHz radiofrequency radiation, (ii) 3.0 cm microwave 
radiation.

12A.2(a) The molar absorption coefficient of a substance dissolved in hexane 
is known to be 723 dm3 mol−1 cm−1 at 260 nm. Calculate the percentage 
reduction in intensity when light of that wavelength passes through 2.50 mm 
of a solution of concentration 4.25 mmol dm−3.
12A.2(b) The molar absorption coefficient of a substance dissolved in hexane 
is known to be 227 dm3 mol−1 cm−1 at 290 nm. Calculate the percentage 
reduction in intensity when light of that wavelength passes through 2.00 mm 
of a solution of concentration 2.52 mmol dm−3.

12A.3(a) A solution of an unknown component of a biological sample when 
placed in an absorption cell of path length 1.00 cm transmits 18.1 per cent 
of light of 320 nm incident upon it. If the concentration of the component is 
0.139 mmol dm−3, what is the molar absorption coefficient?
12A.3(b) When light of wavelength 400 nm passes through 2.50 mm of a 
solution of an absorbing substance at a concentration 0.717 mmol dm−3, the 
transmission is 61.5 per cent. Calculate the molar absorption coefficient of the 
solute at this wavelength and express the answer in cm2 mol−1.

12A.4(a) The molar absorption coefficient of a solute at 540 nm is 386 
dm3 mol−1 cm−1. When light of that wavelength passes through a 5.00 mm cell 
containing a solution of the solute, 38.5 per cent of the light is absorbed. What 
is the molar concentration of the solute?
12A.4(b) The molar absorption coefficient of a solute at 440 nm is 423 
dm3 mol−1 cm−1. When light of that wavelength passes through a 6.50 mm cell 
containing a solution of the solute, 48.3 per cent of the light is absorbed. What 
is the molar concentration of the solute?

12A.5(a) The following data were obtained for the absorption by Br2 in carbon 
tetrachloride using a 2.0 mm cell. Calculate the molar absorption coefficient of 
bromine at the wavelength employed:

12A.5(b) The following data were obtained for the absorption by a dye 
dissolved in methylbenzene using a 2.50 mm cell. Calculate the molar 
absorption coefficient of the dye at the wavelength employed:

12A.6(a) A 2.0 mm cell was filled with a solution of benzene in a non-
absorbing solvent. The concentration of the benzene was 0.010 mol dm−3 
and the wavelength of the radiation was 256 nm (where there is a maximum 
in the absorption). Calculate the molar absorption coefficient of benzene at 
this wavelength given that the transmission was 48 per cent. What will the 
transmittance be in a 4.0 mm cell at the same wavelength?
12A.6(b) A 5.00 mm cell was filled with a solution of a dye. The concentration 
of the dye was 18.5 mmol dm−3. Calculate the molar absorption coefficient of 
the dye at this wavelength given that the transmission was 29 per cent. What 
will the transmittance be in a 2.50 mm cell at the same wavelength? 

12A.7(a) A swimmer enters a gloomier world (in one sense) on diving to 
greater depths. Given that the mean molar absorption coefficient of sea water 
in the visible region is 6.2 × 10−3 dm3 mol−1 cm−1, calculate the depth at which 
a diver will experience (i) half the surface intensity of light, (ii) one tenth the 
surface intensity.
12A.7(b) Given that the maximum molar absorption coefficient of a molecule 
containing a carbonyl group is 30 dm3 mol−1 cm−1 near 280 nm, calculate 
the thickness of a sample that will result in (i) half the initial intensity of 
radiation, (ii) one tenth the initial intensity.

12A.8(a) The absorption associated with a particular transition begins at 
220 nm, peaks sharply at 270 nm, and ends at 300 nm. The maximum value 
of the molar absorption coefficient is 2.21 × 104 dm3 mol−1 cm−1. Estimate the 
integrated absorption coefficient of the transition assuming a symmetrical 
triangular lineshape.
12A.8(b) The absorption associated with a certain transition begins at 
156 nm, peaks sharply at 210 nm, and ends at 275 nm. The maximum value 
of the molar absorption coefficient is 3.35 × 104 dm3 mol−1 cm−1. Estimate 
the integrated absorption coefficient of the transition assuming an inverted 
parabolic lineshape (Fig. 12.1).

12A.9(a) The electronic absorption bands of many molecules in solution 
have half-widths at half-height of about 5000 cm−1. Estimate the integrated 
absorption coefficients of bands for which (i) εmax ≈ 1 × 104 dm3 mol−1 cm−1,  
(ii) εmax ≈ 5 × 102 dm3 mol−1 cm−1.
12A.9(b) The electronic absorption band of a compound in solution had 
a Gaussian lineshape and a half-width at half-height of 4233 cm−1 and 
εmax = 1.54 × 104 dm3 mol−1 cm−1. Estimate the integrated absorption  
coefficient.

[Br2]/(mol dm−3) 0.0010 0.0050 0.0100 0.0500

T/(per cent) 81.4 35.6 12.7 3.0 × 10−3

[dye]/(mol dm−3) 0.0010 0.0050 0.0100 0.0500

T/(per cent) 68 18 3.7 1.03 × 10−5
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524 12 Rotational and vibrational spectra

12A.10(a) What is the Doppler-shifted wavelength of a red (680 nm) traffic 
light approached at 60 km h−1?
12A.10(b) At what speed of approach would a red (680 nm) traffic light appear 
green (530 nm)?

12A.11(a) Estimate the lifetime of a state that gives rise to a line of width 
(i) 0.20 cm−1, (ii) 2.0 cm−1.
12A.11(b) Estimate the lifetime of a state that gives rise to a line of width 
(i) 200 MHz, (ii) 2.45 cm−1.

12A.12(a) A molecule in a liquid undergoes about 1.0 × 1013 collisions in 
each second. Suppose that (i) every collision is effective in deactivating the 
molecule vibrationally and (ii) that one collision in 100 is effective. Calculate 
the width (in cm−1) of vibrational transitions in the molecule.
12A.12(b) A molecule in a gas undergoes about 1.0 × 109 collisions in each 
second. Suppose that (i) every collision is effective in deactivating the 
molecule rotationally and (ii) that one collision in 10 is effective. Calculate the 
width (in hertz) of rotational transitions in the molecule.

Problems
12A.1 The flux of visible photons reaching Earth from the North Star is about 
4 × 103 mm−2 s−1. Of these photons, 30 per cent are absorbed or scattered by 
the atmosphere and 25 per cent of the surviving photons are scattered by the 
surface of the cornea of the eye. A further 9 per cent are absorbed inside the 
cornea. The area of the pupil at night is about 40 mm2 and the response time 
of the eye is about 0.1 s. Of the photons passing through the pupil, about  
43 per cent are absorbed in the ocular medium. How many photons from 
the North Star are focused onto the retina in 0.1 s? For a continuation of this 
story, see R.W. Rodieck, The first steps in seeing, Sinauer, Sunderland (1998).

12A.2 A Dubosq colorimeter consists of a cell of fixed path length and a 
cell of variable path length. By adjusting the length of the latter until the 
transmission through the two cells is the same, the concentration of the 
second solution can be inferred from that of the former. Suppose that a plant 
dye of concentration 25 µg dm−3 is added to the fixed cell, the length of which 
is 1.55 cm. Then a solution of the same dye, but of unknown concentration, is 
added to the second cell. It is found that the same transmittance is obtained 
when the length of the second cell is adjusted to 1.18 cm. What is the 
concentration of the second solution?

12A.3 The Beer–Lambert law is derived on the basis that the concentration of 
absorbing species is uniform. Suppose, instead, that the concentration falls 
exponentially as [J] = [J]0e−x/λ. Develop an expression for the variation of I 
with sample length; suppose that L ≫ λ.

12A.4 It is common to make measurements of absorbance at two wavelengths 
and use them to find the individual concentrations of two components A and 
B in a mixture. Show that the molar concentrations of A and B are
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where A1 and A2 are absorbances of the mixture at wavelengths λ1 and λ2, and 
the molar extinction coefficients of A (and B) at these wavelengths are εA1 and 
εA2 (and εB1 and εB2).

12A.5 When pyridine is added to a solution of iodine in carbon tetrachloride 
the 520 nm band of absorption shifts toward 450 nm. However, the absorbance 
of the solution at 490 nm remains constant: this feature is called an isosbestic 
point. Show that an isosbestic point should occur when two absorbing species 
are in equilibrium.

12A.6‡ Ozone absorbs ultraviolet radiation in a part of the electromagnetic 
spectrum energetic enough to disrupt DNA in biological organisms and that 
is absorbed by no other abundant atmospheric constituent. This spectral 
range, denoted UV-B, spans the wavelengths of about 290 nm to 320 nm. 
The molar extinction coefficient of ozone over this range is given in the table 

below (DeMore et al., Chemical kinetics and photochemical data for use in 
stratospheric modeling: Evaluation Number 11, JPL Publication 94–26 (1994)).

Compute the integrated absorption coefficient of ozone over the wavelength 
range 290–320 nm. (Hint: ε( )  can be fitted to an exponential function quite 
well.)

12A.7 In many cases it is possible to assume that an absorption band has a 
Gaussian lineshape (one proportional to e−x2) centred on the band maximum. 
Assume such a line shape, and show that A = ∫ ≈ ∆ε ε( )d . max /    1 0645 1 2 ,  
where ∆1 2/  is the width at half-height. The absorption spectrum of 
azoethane (CH3CH2N2) between 24 000 cm−1 and 34 000 cm−1 is shown in 
Fig. 12.2. First, estimate A for the band by assuming that it is Gaussian. Then 
use mathematical software to fit a polynomial to the absorption band (or a 
Gaussian), and integrate the result analytically.

12A.8‡ Wachewsky et al. (J. Phys. Chem. 100, 11559 (1996)) examined 
the UV absorption spectrum of CH3I, a species of interest in connection 
with stratospheric ozone chemistry. They found the integrated absorption 
coefficient to be dependent on temperature and pressure to an extent 
inconsistent with internal structural changes in isolated CH3I molecules; 
they explained the changes as due to dimerization of a substantial fraction 
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Figure 12.1 A model parabolic absorption lineshape.

λ/nm 292.0 296.3 300.8 305.4 310.1 315.0 320.0

ε/(dm3 mol−1 cm−1) 1512 865 477 257 135.9 69.5 34.5

‡ These problems were supplied by Charles Trapp and Carmen Giunta.
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Figure 12.2 The absorption spectrum of azoethane.
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of the CH3I, a process which would naturally be pressure and temperature 
dependent. (a) Compute the integrated absorption coefficient over a 
triangular lineshape in the range 31 250 to 34 483 cm−1 and a maximal molar 
absorption coefficient of 150 dm3 mol−1 cm−1 at 31 250 cm−1. (b) Suppose 1.0 
per cent of the CH3I units in a sample at 2.4 Torr and 373 K exists as dimers. 
Compute the absorbance expected at 31 250 cm−1 in a sample cell of length 
12.0 cm. (c) Suppose 18 per cent of the CH3I units in a sample at 100 Torr 
and 373 K exists as dimers. Compute the absorbance expected at 31 250 cm−1 
in a sample cell of length 12.0 cm; compute the molar absorption coefficient 
which would be inferred from this absorbance if dimerization was not 
considered.

12A.9 The spectrum of a star is used to measure its radial velocity with respect 
to the Sun, the component of the star’s velocity vector that is parallel to a 
vector connecting the star’s centre to the centre of the Sun. The measurement 
relies on the Doppler effect. When a star emitting electromagnetic radiation  
of frequency ν moves with a speed s relative to an observer, the observer 
detects radiation of frequency νreceding = νf or νapproaching = ν/f, where f =  
{(1 – s/c)/(1 + s/c)}1/2 and c is the speed of light. (a) Three Fe I lines of the 
star HDE 271 182, which belongs to the Large Magellanic Cloud, occur 
at 438.882 nm, 441.000 nm, and 442.020 nm. The same lines occur at 
438.392 nm, 440.510 nm, and 441.510 nm in the spectrum of an Earth-bound 
iron arc. Determine whether HDE 271 182 is receding from or approaching 
the Earth and estimate the star’s radial speed with respect to the Earth.  
(b) What additional information would you need to calculate the radial 
velocity of HDE 271 182 with respect to the Sun?

12A.10 In Problem 12A.9, we saw that Doppler shifts of atomic spectral lines 
are used to estimate the speed of recession or approach of a star. A spectral 
line of 48Ti8+ (of mass 47.95mu) in a distant star was found to be shifted from 

654.2 nm to 706.5 nm and to be broadened to 61.8 pm. What is the speed of 
recession and the surface temperature of the star?

12A.11 The Gaussian shape of a Doppler-broadened spectral line reflects 
the Maxwell distribution of speeds in the sample at the temperature of the 
experiment. In a spectrometer that makes use of phase-sensitive detection 
the output signal is proportional to the first derivative of the signal intensity, 
dI/dν. Plot the resulting line shape for various temperatures. How is the 
separation of the peaks related to the temperature?

12A.12 The collision frequency z of a molecule of mass m in a gas at a pressure 
p is z = 4σ(kT/πm)1/2p/kT, where σ is the collision cross-section. Find an 
expression for the collision-limited lifetime of an excited state assuming that 
every collision is effective. Estimate the width of rotational transition in HCl 
(σ = 0.30 nm2) at 25 °C and 1.0 atm. To what value must the pressure of the gas 
be reduced in order to ensure that collision broadening is less important than 
Doppler broadening?

12A.13 Refer to Fig. 12A.9, which depicts a Michelson interferometer. The 
mirror M1 moves in finite distance increments, so the path difference p is also 
incremented in finite steps. Explore the effect of increasing the step size on 
the shape of the interferogram for a monochromatic beam of wavenumber   
and intensity I0. That is, draw plots of I(p)/I0 against p, each with a different 
number of data points spanning the same total distance path taken by the 
movable mirror M1.

12A.14 Using mathematical software, elaborate on the results of Example 
12A.2 by: (a) exploring the effect of varying the wavenumbers and intensities 
of the three components of the radiation on the shape of the interferogram; 
and (b) calculating the Fourier transforms of the functions you generated in 
part (a).

TOPIC 12B molecular rotation

Discussion questions
12B.1 Account for the rotational degeneracy of the various types of rigid 
rotor. Would their lack of rigidity affect your conclusions?

12B.2 Describe the differences between an oblate and a prolate symmetric 
rotor and give several examples of each.

Exercises
12B.1(a) Calculate the moment of inertia around the C2 axis (the bisector 
of the OOO angle) and the corresponding rotational constant of an 16O3 
molecule (bond angle 117°; OO bond length 128 pm).
12B.1(b) Calculate the moment of inertia around the C3 axis (the threefold 
symmetry axis) and the corresponding rotational constant of a 31P1H3 
molecule (bond angle 93.5°; PH bond length 142 pm).

12B.2(a) Plot the expressions for the two moments of inertia of a C3v 
symmetric top version of an AB4 molecule (Table 12B.1) with equal bond 
lengths but with the angle θ increasing from 90° to the tetrahedral angle.
12B.2(b) Plot the expressions for the two moments of inertia of a C3v 
symmetric top version of an AB4 molecule (Table 12B.1) with θ equal to the 
tetrahedral angle but with one A–B bond varying. Hint: Write ρ = R RAB AB

′ / , 
and allow ρ to vary from 2 to 1.

12B.3(a) Classify the following rotors: (i) O3, (ii) CH3CH3, (iii) XeO4,  
(iv) FeCp2 (Cp denotes the cyclopentadienyl group, C5H5).
12B.3(b) Classify the following rotors: (i) CH2aCH2, (ii) SO3, (iii) ClF3, (iv) N2O.

12B.4(a) Determine the HC and CN bond lengths in HCN from the rotational 
constants B(1H12C14N) = 44.316 GHz and B(2H12C14N) = 36.208 GHz.
12B.4(b) Determine the CO and CS bond lengths in OCS from the rotational 
constants B(16O12C32S) = 6081.5 MHz, B(16O12C34S) = 5932.8 MHz.

12B.5(a) Estimate the centrifugal distortion constant for 1H127I, for which 
B = 6 511 1. cm−  and  = 2308 1cm− . By what factor would the constant change 

when 2H is substituted for 1H?
12B.5(b) Estimate the centrifugal distortion constant for 79Br81Br, for which 
B = 0 0809 1. cm−  and  = 323 2 1. cm− . By what factor would the constant 

change when the 79Br is replaced by 81Br?

Problems
12B.1 Show that the moment of inertia of a diatomic molecule composed 
of atoms of masses mA and mB and bond length R is equal to meffR2, where 
meff = mAmB/(mA + mB).

12B.2 Confirm the expression given in Table 12B.1 for the moment of inertia 
of a linear ABC molecule. Hint: Begin by locating the centre of mass.
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526 12 Rotational and vibrational spectra

TOPIC 12C rotational spectroscopy

Discussion questions
12C.1 Describe the physical origins of the gross selection rules for microwave 
spectroscopy.

12C.2 Describe the physical origins of the gross selection rules for rotational 
Raman spectroscopy.

12C.3 Describe the role of nuclear statistics in the occupation of energy levels 
in 1H12C ≡ 12C1H, 1H13C ≡ 13C1H, and 2H12C ≡ 12C2H. For nuclear spin data, see 
Table 14A.2.

12C.4 Account for the existence of a rotational zero-point energy in molecular 
hydrogen.

Exercises
12C.1(a) Which of the following molecules may show a pure rotational 
microwave absorption spectrum: (i) H2, (ii) HCl, (iii) CH4, (iv) CH3Cl,  
(v) CH2Cl2?
12C.1(b) Which of the following molecules may show a pure rotational 
microwave absorption spectrum: (i) H2O, (ii) H2O2, (iii) NH3, (iv) N2O?

12C.2(a) Calculate the frequency and wavenumber of the J = 3 ← 2 transition 
in the pure rotational spectrum of 14N16O. The equilibrium bond length is 
115 pm. Does the frequency increase or decrease if centrifugal distortion is 
considered?
12C.2(b) Calculate the frequency and wavenumber of the J = 2 ← 1 transition 
in the pure rotational spectrum of 12C16O. The equilibrium bond length is 
112.81 pm. Does the frequency increase or decrease if centrifugal distortion is 
considered?

12C.3(a) The wavenumber of the J = 3 ← 2 rotational transition of 1H35Cl 
considered as a rigid rotor is 63.56 cm−1; what is the H–Cl bond length?
12C.3(b) The wavenumber of the J = 1 ← 0 rotational transition of 1H81Br 
considered as a rigid rotor is 16.93 cm−1; what is the H–Br bond length?

12C.4(a) The spacing of lines in the microwave spectrum of 27Al1H is 
12.604 cm−1; calculate the moment of inertia and bond length of the molecule.
12C.4(b) The spacing of lines in the microwave spectrum of 35Cl19F is 
1.033 cm−1; calculate the moment of inertia and bond length of the molecule.

12C.5(a) What is the most highly populated rotational level of Cl2 at (i) 25 °C, 
(ii) 100 °C? Take B = 0 244 1. cm− .

12C.5(b) What is the most highly populated rotational level of Br2 at (i) 25 °C, 
(ii) 100 °C? Take B = 0 0809 1. cm− .

12C.6(a) Which of the following molecules may show a pure rotational Raman 
spectrum: (i) H2, (ii) HCl, (iii) CH4, (iv) CH3Cl?
12C.6(b) Which of the following molecules may show a pure rotational Raman 
spectrum: (i) CH2Cl2, (ii) CH3CH3, (iii) SF6, (iv) N2O?

12C.7(a) The wavenumber of the incident radiation in a Raman spectrometer 
is 20 487 cm−1. What is the wavenumber of the scattered Stokes radiation for 
the J = 2 ← 0 transition of 14N2?
12C.7(b) The wavenumber of the incident radiation in a Raman spectrometer 
is 20 623 cm−1. What is the wavenumber of the scattered Stokes radiation for 
the J = 4 ← 2 transition of 16O2?

12C.8(a) The rotational Raman spectrum of 35Cl2 shows a series of Stokes lines 
separated by 0.9752 cm−1 and a similar series of anti-Stokes lines. Calculate the 
bond length of the molecule.
12C.8(b) The rotational Raman spectrum of 19F2 shows a series of Stokes lines 
separated by 3.5312 cm−1 and a similar series of anti-Stokes lines. Calculate the 
bond length of the molecule.

12C.9(a) What is the ratio of weights of populations due to the effects of 
nuclear statistics for 35Cl2?
12C.9(b) What is the ratio of weights of populations due to the effects of 
nuclear statistics for 12C32S2? What effect would be observed when 12C is 
replaced by 13C? For nuclear spin data, see Table 14A.2.

Problems
12C.1 The rotational constant of NH3 is 298 GHz. Compute the separation of 
the pure rotational spectrum lines as a frequency (in GHz), a wavenumber (in 
cm−1), and a wavelength (in mm), and show that the value of B is consistent 
with an N–H bond length of 101.4 pm and a bond angle of 106.78°.

12C.2 Rotational absorption lines from 1H35Cl gas were found at the following 
wavenumbers (R.L. Hausler and R.A. Oetjen, J. Chem. Phys. 21, 1340 (1953)): 
83.32, 104.13, 124.73, 145.37, 165.89, 186.23, 206.60, 226.86 cm−1. Calculate 
the moment of inertia and the bond length of the molecule. Predict the 
positions of the corresponding lines in 2H35Cl.

12C.3 Is the bond length in HCl the same as that in DCl? The wavenumbers 
of the J = 1 ← 0 rotational transitions for H35Cl and 2H35Cl are 20.8784 and 
10.7840 cm−1, respectively. Accurate atomic masses are 1.007 825mu and 
2.0140mu for 1H and 2H, respectively. The mass of 35Cl is 34.96885mu. Based 
on this information alone, can you conclude that the bond lengths are the 
same or different in the two molecules?

12C.4 Thermodynamic considerations suggest that the copper monohalides 
CuX should exist mainly as polymers in the gas phase, and indeed it 
proved difficult to obtain the monomers in sufficient abundance to detect 
spectroscopically. This problem was overcome by flowing the halogen gas 
over copper heated to 1100 K (Manson et al. (J. Chem. Phys. 63, 2724 (1975))). 

For CuBr the J = 13–14, 14–15, and 15–16 transitions occurred at 84 421.34, 
90 449.25, and 96 476.72 MHz, respectively. Calculate the rotational constant 
and bond length of CuBr.

12C.5 The microwave spectrum of 16O12CS gave absorption lines (in GHz) as 
follows:

Using the expressions for moments of inertia in Table 12B.1 and assuming 
that the bond lengths are unchanged by substitution, calculate the CO and 
CS bond lengths in OCS.

12C.6 Equation 12C.8b may be rearranged into

  ( )/{ ( )} ( )J J J B D JJ+ ← + = − +1 2 1 2 1 2
 

which is the equation of a straight line when the left-hand side is plotted 
against (J + 1)2. The following wavenumbers of transitions (in cm−1) were 
observed for 12C16O:

J 1 2 3 4
32S 24.325 92 36.48882 48.651 64 60.814 08
34S 23.732 33 47.462 40
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Determine B , DJ , and the equilibrium bond length of CO.

12C.7‡ In a study of the rotational spectrum of the linear FeCO radical, 
Tanaka et al. (J. Chem. Phys. 106, 6820 (1997)) report the following J + 1 ← J 
transitions:

Evaluate the rotational constant of the molecule. Also, estimate the value of J 
for the most highly populated rotational energy level at 298 K and at 100 K.

12C.8 The rotational terms of a symmetric top, allowing for centrifugal 
distortion, are commonly written

      F J K BJ J A B K D J J D J J K D KJ JK K( , ) ( ) ( ) ( )( )= + + − − + − + −1 1 12 2 2 2 4

(a) Develop an expression for the wavenumbers of the allowed rotational 
transitions. (b) The following transition frequencies (in gigahertz, GHz) were 
observed for CH3F:

Determine the values of as many constants in the expression for the rotational 
terms as these values permit.

12C.9 Develop an expression for the value of J corresponding to the most 
highly populated rotational energy level of a diatomic rotor at a temperature 

T remembering that the degeneracy of each level is 2J + 1. Evaluate the 
expression for ICl (for which B = 0 1142 1. cm− ) at 25 °C. Repeat the problem 
for the most highly populated level of a spherical rotor, taking note of the fact 
that each level is (2J + 1)2-fold degenerate. Evaluate the expression for CH4 (for 
which B = 5 24 1. cm− ) at 25 °C.

12C.10 A. Dalgarno, in Chemistry in the interstellar medium, Frontiers of 
Astrophysics, ed. E.H. Avrett, Harvard University Press, Cambridge (1976), 
notes that although both CH and CN spectra show up strongly in the 
interstellar medium in the constellation Ophiuchus, the CN spectrum has 
become the standard for the determination of the temperature of the cosmic 
microwave background radiation. Demonstrate through a calculation why 
CH would not be as useful for this purpose as CN. The rotational constant  
B0 for CH is 14.190 cm−1.

12C.11 The space immediately surrounding stars, the circumstellar space, is 
significantly warmer because stars are very intense black-body emitters with 
temperatures of several thousand kelvin. Discuss how such factors as cloud 
temperature, particle density, and particle velocity may affect the rotational 
spectrum of CO in an interstellar cloud. What new features in the spectrum of 
CO can be observed in gas ejected from and still near a star with temperatures 
of about 1000 K, relative to gas in a cloud with temperature of about 10 K? 
Explain how these features may be used to distinguish between circumstellar 
and interstellar material on the basis of the rotational spectrum of CO.

12C.12 Pure rotational Raman spectra of gaseous C6H6 and C6D6 
yield the following rotational constants: B(C H ) .6 6

10 18960= cm− , 
B(C ) .6 6

10 15681D cm= − . The moments of inertia of the molecules about 
any axis perpendicular to the C6 axis were calculated from these data as 
I(C6H6) = 1.4759 × 10−45 kg m2, I(C6D6) = 1.7845 × 10−45 kg m2. Calculate the CC, 
CH, and CD bond lengths.

TOPIC 12D Vibrational spectroscopy of diatomic molecules

Discussion questions
12D.1 Discuss the strengths and limitations of the parabolic and Morse 
functions as descriptors of the potential energy curve of a diatomic molecule.

12D.2 Describe the effect of vibrational excitation on the rotational constant of 
a diatomic molecule.

12D.3 How is the method of combination differences used in rotation–
vibration spectroscopy to determine rotational constants?

12D.4 In what ways may the rotational and vibrational spectra of molecules 
change as a result of isotopic substitution?

Exercises
12D.1(a) An object of mass 100 g suspended from the end of a rubber band has 
a vibrational frequency of 2.0 Hz. Calculate the force constant of the rubber 
band.
12D.1(b) An object of mass 1.0 g suspended from the end of a spring  
has a vibrational frequency of 10.0 Hz. Calculate the force constant of the 
spring.

12D.2(a) Calculate the percentage difference in the fundamental vibrational 
wavenumbers of 23Na35Cl and 23Na37Cl on the assumption that their force 
constants are the same.
12D.2(b) Calculate the percentage difference in the fundamental vibrational 
wavenumbers of 1H35Cl and 2H37Cl on the assumption that their force 
constants are the same.

12D.3(a) The wavenumber of the fundamental vibrational transition of 35Cl2 is 
564.9 cm−1. Calculate the force constant of the bond.
12D.3(b) The wavenumber of the fundamental vibrational transition of 79Br81Br 
is 323.2 cm−1. Calculate the force constant of the bond.

12D.4(a) The hydrogen halides have the following fundamental vibrational 
wavenumbers: 4141.3 cm−1 (HF); 2988.9 cm−1 (H35Cl); 2649.7 cm−1 (H81Br); 
2309.5 cm−1 (H127I). Calculate the force constants of the hydrogen–halogen 
bonds.
12D.4(b) From the data in Exercise 12D.4(a), predict the fundamental 
vibrational wavenumbers of the deuterium halides.

12D.5(a) Calculate the relative numbers of Cl2 molecules ( ) = 559.7 −cm 1  in 
the ground and first excited vibrational states at (i) 298 K, (ii) 500 K.
12.5(b) Calculate the relative numbers of Br2 molecules ( ) =321 −cm 1  in the 
second and first excited vibrational states at (i) 298 K, (ii) 800 K.

12D.6(a) For 16O2, ∆ G  values for the transitions v = 1 ← 0, 2 ← 0, and 3 ← 0 
are, respectively, 1556.22, 3088.28, and 4596.21 cm−1. Calculate   and xe. 
Assume ye to be zero.
12D.6(b) For 14N2, ∆ G  values for the transitions v = 1 ← 0, 2 ← 0, and 3 ← 0 
are, respectively, 2329.91, 4631.20, and 6903.69 cm−1. Calculate   and xe. 
Assume ye to be zero.

J: 0 1 2 3 4

3.845 033 7.689 919 11.534 510 15.378 662 19.222 223

J 24 25 26 27 28 29
MHz 214 777.7 223 379.0 231 981.2 240 584.4 249 188.5 257 793.5

51.0718 102.1426 102.1408 153.2103 153.2076
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528 12 Rotational and vibrational spectra

12D.7(a) The first five vibrational energy levels of HCl are at 1481.86, 4367.50, 
7149.04, 9826.48, and 12 399.8 cm−1. Calculate the dissociation energy of the 
molecule in reciprocal centimetres and electronvolts.

12D.7(b) The first five vibrational energy levels of HI are at 1144.83, 3374.90, 
5525.51, 7596.66, and 9588.35 cm−1. Calculate the dissociation energy of the 
molecule in reciprocal centimetres and electronvolts.

Problems
12D.1 Derive an expression for the force constant of an oscillator that can be 
modelled by a Morse potential (eqn 12D.14).

12D.2 Suppose a particle confined to a cavity in a microporous material has a 
potential energy of the form V( ) (e )/x V a x= −−

0
2 2

1 . Sketch V(x). What is the 
value of the force constant corresponding to this potential energy? Would the 
particle undergo simple harmonic motion? Sketch the likely form of the first 
two vibrational wavefunctions.

12D.3 The vibrational levels of NaI lie at the wavenumbers 142.81, 
427.31, 710.31, and 991.81 cm−1. Show that they fit the expression 
( ) ( )v+ v+1

2
1
2

2 �� �xe , and deduce the force constant, zero-point energy, and 
dissociation energy of the molecule.

12D.4 The HCl molecule is quite well described by the Morse potential with 
hcD e eV= 5 33. ,  = 2989 7 1. cm− , and xe cm = 52 05 1. − . Assuming that the 
potential is unchanged on deuteration, predict the dissociation energies  
(hcD 0 , in electronvolts) of (a) HCl, (b) DCl.

12D.5 The Morse potential (eqn 12D.14) is very useful as a simple 
representation of the actual molecular potential energy. When RbH was 
studied, it was found that  = 936 8 1. cm−  and xe cm =14 15 1. − . Plot the 
potential energy curve from 50 pm to 800 pm around Re = 236.7 pm. Then 
go on to explore how the rotation of a molecule may weaken its bond 
by allowing for the kinetic energy of rotation of a molecule and plotting 
V V hcBJ∗ = +  ( )J +1  with � �B c R= /4 2π μ . Plot these curves on the same 
diagram for J = 40, 80, and 100, and observe how the dissociation energy is 
affected by the rotation. (Taking B = 3 020 1. cm−  at the equilibrium bond 
length will greatly simplify the calculation.)

12D.6‡ Luo et al. (J. Chem. Phys. 98, 3564 (1993)) reported experimental 
observation of the He2 complex, a species which had escaped detection 
for a long time. The fact that the observation required temperatures in the 
neighbourhood of 1 mK is consistent with computational studies which 
suggest that hcD e  for He2 is about 1.51 × 10−23 J, hcD 0 J≈ ×2 10 26− , and Re 
about 297 pm. (a) Estimate the fundamental vibrational wavenumber, force 
constant, moment of inertia, and rotational constant based on the harmonic 
oscillator and rigid-rotor approximations. (b) Such a weakly bound complex 
is hardly likely to be rigid. Estimate the vibrational wavenumber and 
anharmonicity constant based on the Morse potential energy.

12D.7 Confirm that a Morse oscillator has a finite number of bound states. 
Determine the value of vmax for the highest bound state.

12D.8 Provided higher order terms are neglected, eqn 12D.17, 
for the vibrational wavenumbers of an anharmonic oscillator, 
∆ = ++

� � � �Gv v1
2

2 1�� ��( ) ex , is the equation of a straight line when the left-
hand side is plotted against v + 1. Use the following data on CO to determine 
the values of   and xe   for CO:

12D.9 The rotational constant for CO is 1.9314 cm−1 and 1.6116 cm−1 in the 
ground and first excited vibrational states, respectively. By how much does the 
internuclear distance change as a result of this transition?

12D.10 The average spacing between the rotational lines of the P and R 
branches of 12C2

1H2 and 12C2
2H2 is 2.352 cm−1 and 1.696 cm−1, respectively. 

Estimate the CC and CH bond lengths.

12D.11 Absorptions in the v = 1 ← 0 vibration–rotation spectrum of 1H35Cl 
were observed at the following wavenumbers (in cm−1):

Assign the rotational quantum numbers and use the method of combination 
differences to determine the rotational constants of the two vibrational levels.

12D.12 Suppose that the internuclear distance may be written R = Re + x where 
Re is the equilibrium bond length. Also suppose that the potential well is 
symmetrical and confines the oscillator to small displacements. Deduce 
expressions for 1/〈R〉2, 1/〈R2〉, and 〈1/R2〉 to the lowest non-zero power of 
〈x2〉/Re

2 and confirm that values are not the same.

12D.13 Continue the development of Problem 12D.12 by using the virial 
expression to relate 〈x2〉 to the vibrational quantum number. Does your result 
imply that the rotational constant increases or decreases as the oscillator 
becomes excited to higher quantum states. What would be the effect of 
anharmonicity?

12D.14 The rotational constant for a diatomic molecule in the vibrational state 
with quantum number v typically fits the expression  B B av v= +e ( )1

2
.  

For the interhalogen molecule IF it is found that Be = 0 27971 1. cm−

and a = 0.187 m−1 (note the change of units). Calculate B0 and B1 and use 
these values to calculate the wavenumbers of the J′ → 3 transitions of the 
P and R branches. You will need the following additional information: 
 = 610.258 −cm 1 and xe cm =3.141 −1. Estimate the dissociation energy of 
the IF molecule.

12D.15 At low resolution, the strongest absorption band in the infrared 
absorption spectrum of 12C16O is centred at 2150 cm−1. Upon closer 
examination at higher resolution, this band is observed to be split into two 
sets of closely spaced peaks, one on each side of the centre of the spectrum at 
2143.26 cm−1. The separation between the peaks immediately to the right and 
left of the centre is 7.655 cm−1. Make the harmonic oscillator and rigid rotor 
approximations and calculate from these data: (a) the vibrational wavenumber 
of a CO molecule, (b) its molar zero-point vibrational energy, (c) the force 
constant of the CO bond, (d) the rotational constant B, and (e) the bond 
length of CO.

12D.16 The analysis of combination differences summarized in the text 
considered the R and P branches. Extend the analysis to the O and S branches 
of a Raman spectrum.

TOPIC 12E Vibrational spectroscopy of polyatomic molecules

Discussion questions
12E.1 Describe the physical origins of the gross selection rules for infrared 
spectroscopy.

12E.2 Describe the physical origins of the gross selection rules for vibrational 
Raman spectroscopy.

v 0 1 2 3 4

∆ +
Gv 1

2

1� �cm 2143.1 2116.1 2088.9 2061.3 2033.5

2998.05 2981.05 2963.35 2944.99 2925.92

2906.25 2865.14 2843.63 2821.59 2799.00
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12E.3 Suppose that you wish to characterize the normal modes of benzene 
in the gas phase. Why is it important to obtain both infrared absorption and 
Raman spectra of your sample?

Exercises
12E.1(a) Which of the following molecules may show infrared absorption 
spectra: (i) H2, (ii) HCl, (iii) CO2, (iv) H2O?
12E.1(b) Which of the following molecules may show infrared absorption 
spectra: (i) CH3CH3, (ii) CH4, (iii) CH3Cl, (iv) N2?

12E.2(a) How many normal modes of vibration are there for the following 
molecules: (i) H2O, (ii) H2O2, (iii) C2H4?
12E.2(b) How many normal modes of vibration are there for the following 
molecules: (i) C6H6, (ii) C6H5H3, (iii) HC ≡ C–C ≡ C–H?

12E.3(a) How many vibrational modes are there for the molecule  
NC–(C ≡ C–C ≡ C–)10CN detected in an interstellar cloud?
12E.3(b) How many vibrational modes are there for the molecule  
NC–(C ≡ C–C ≡ C–)8CN detected in an interstellar cloud?

12E.4(a) Write an expression for the vibrational term for the ground 
vibrational state of H2O in terms of the wavenumbers of the normal modes. 
Neglect anharmonicities, as in eqn 12E.1.
12E.4(b) Write an expression for the vibrational term for the ground 
vibrational state of SO2 in terms of the wavenumbers of the normal modes. 
Neglect anharmonicities, as in eqn 12E.1.

12E.5(a) Which of the three vibrations of an AB2 molecule are infrared or 
Raman active when it is (i) angular, (ii) linear?
12E.5(b) Which of the vibrations of an AB3 molecule are infrared or Raman 
active when it is (i) trigonal planar, (ii) trigonal pyramidal?

12E.6(a) Consider the vibrational mode that corresponds to the uniform 
expansion of the benzene ring. Is it (i) Raman, (ii) infrared active?
12E.6(b) Consider the vibrational mode that corresponds to the boat-like 
bending of a benzene ring. Is it (i) Raman, (ii) infrared active?

12E.7(a) The molecule CH2Cl2 belongs to the point group C2v. The 
displacements of the atoms span 5A1 + 2A2 + 4B1 + 4B2. What are the symmetry 
species of the normal modes of vibration?
12E.7(b) A carbon disulfide molecule belongs to the point group D∞h. The nine 
displacements of the three atoms span A1g + A1u + A2g + 2E1u + E1g. What are the 
symmetry species of the normal modes of vibration?

12E.8(a) Which of the normal modes of CH2Cl2 (Exercise 12E.7(a)) are 
infrared active? Which are Raman active?
12E.8(b) Which of the normal modes of carbon disulfide (Exercise 12E.7(b)) 
are infrared active? Which are Raman active?

Problems
12E.1 Suppose that the out-of-plane distortion of a planar molecule are 
described by a potential energy V V= − −

0 1
4

( e ),bh  where h is the distance by 
which the central atom is displaced. Sketch this potential energy as a function 
of h (allow h to be both negative and positive). What could be said about 
(a) the force constant, (b) the vibrations? Sketch the form of the ground-state 
wavefunction.

12E.2 Predict the shape of the nitronium ion, NO2
+ , from its Lewis structure 

and the VSEPR model. It has one Raman active vibrational mode at 
1400 cm−1, two strong IR active modes at 2360 and 540 cm−1, and one weak IR 
mode at 3735 cm−1. Are these data consistent with the predicted shape of the 
molecule? Assign the vibrational wavenumbers to the modes from which they 
arise.

12E.3 Consider the molecule CH3Cl. (a) To what point group does the 
molecule belong? (b) How many normal modes of vibration does the 
molecule have? (c) What are the symmetry species of the normal modes 
of vibration for this molecule? (d) Which of the vibrational modes of this 
molecule are infrared active? (e) Which of the vibrational modes of this 
molecule are Raman active?

12E.4 Suppose that three conformations are proposed for the nonlinear 
molecule H2O2 (1, 2, and 3). The infrared absorption spectrum of gaseous 
H2O2 has bands at 870, 1370, 2869, and 3417 cm−1. The Raman spectrum 
of the same sample has bands at 877, 1408, 1435, and 3407 cm−1. All bands 
correspond to fundamental vibrational wavenumbers and you may assume 
that: (a) the 870 and 877 cm−1 bands arise from the same normal mode, and 
(b) the 3417 and 3407 cm−1 bands arise from the same normal mode. (i) If 
H2O2 were linear, how many normal modes of vibration would it have?  
(ii) Give the symmetry point group of each of the three proposed 
conformations of nonlinear H2O2. (iii) Determine which of the proposed 
conformations is inconsistent with the spectroscopic data. Explain your 
reasoning.

1    2    3

Integrated activities
12.1 In the group theoretical language developed in Topics 11A–11C, a 
spherical rotor is a molecule that belongs to a cubic or icosahedral point 
group, a symmetric rotor is a molecule with at least a threefold axis of 
symmetry, and an asymmetric rotor is a molecule without a threefold (or 
higher) axis. Linear molecules are linear rotors. Classify each of the following 
molecules as a spherical, symmetric, linear, or asymmetric rotor and justify 
your answers with group theoretical arguments: (a) CH4, (b) CH3CN, (c) CO2, 
(d) CH3OH, (e) benzene, (f) pyridine.

12.2 Derive eqn 12B.17 ( / )  DJ = 4 3B 2  for the centrifugal distortion constant 
DJ of a diatomic molecule of effective mass meff. Treat the bond as an elastic 
spring with force constant kf and equilibrium length re that is subjected to a 
centrifugal distortion to a new length rc. Begin the derivation by letting the 
particles experience a restoring force of magnitude kf(rc – re) that is countered 
perfectly by a centrifugal force meffω2rc, where ω is the angular velocity of the 
rotating molecule. Then introduce quantum mechanical effects by writing the 
angular momentum as {J(J + 1)}1/2ħ. Finally, write an expression for the energy 

iranchembook.ir/edu



530 12 Rotational and vibrational spectra

of the rotating molecule, compare it with eqn 12B.16, and infer an expression 
for DJ .

12.3‡ The H3
+  ion has recently been found in the interstellar medium and 

in the atmospheres of Jupiter, Saturn, and Uranus. The rotational energy 
levels of H3

+ , an oblate symmetric rotor, are given by eqn 12B.13, with 
C  replacing A , when centrifugal distortion and other complications are 

ignored. Experimental values for vibrational–rotational constants are 
(E )=2521.6 cm′ −1 , B=43.55 cm−1 , and C=20.71cm−1 . (a) Show that for 
a nonlinear planar molecule (such as H3

+) that IC = 2IB. The rather large 
discrepancy with the experimental values is due to factors ignored in eqn 
12B.13. (b) Calculate an approximate value of the H–H bond length in H3

+. 
 (c) The value of Re obtained from the best quantum mechanical calculations 
by J.B. Anderson (J. Chem. Phys. 96, 3702 (1991)) is 87.32 pm. Use this result 
to calculate the values of the rotational constants B  and C . (d) Assuming 
that the geometry and force constants are the same in D3

+ and H3
+, calculate 

the spectroscopic constants of D3
+ . The molecular ion D3

+ was first produced 
by Shy et al. (Phys. Rev. Lett 45, 535 (1980)) who observed the ν2(E′) band in 
the infrared.

12.4 Use molecular modelling software and the computational method of your 
choice to construct molecular potential energy curves like the one shown in 
Fig. 12D.1. Consider the hydrogen halides (HF, HCl, HBr, and HI):  
(a) plot the calculated energy of each molecule against the bond length, 
and (b) identify the order of force constants of the H–Hal bonds.

12.5 The computational methods discussed in Topic 10E can be used to 
simulate the vibrational spectrum of a molecule, and it is then possible to 
determine the correspondence between a vibrational frequency and the 
atomic displacements that give rise to a normal mode. (a) Using molecular 
modelling software and the computational method of your choice, calculate 
the fundamental vibrational wavenumbers and depict the vibrational normal 
modes of SO2 in the gas phase graphically. (b) The experimental values of the 
fundamental vibrational wavenumbers of SO2 in the gas phase are 525 cm−1, 
1151 cm−1, and 1336 cm−1. Compare the calculated and experimental values. 
Even if agreement is poor, is it possible to establish a correlation between an 
experimental value of the vibrational wavenumber with a specific vibrational 
normal mode?

12.6 Use appropriate electronic structure software to perform calculations 
on H2O and CO2 with basis sets of your or your instructor’s choosing. 
(a) Compute ground-state energies, equilibrium geometries and vibrational 
frequencies for each molecule. (b) Compute the magnitude of the dipole 
moment of H2O; the experimental value is 1.854 D. (c) Compare computed 
values to experiment and suggest reasons for any discrepancies.

12.7 The protein haemerythrin is responsible for binding and carrying O2 
in some invertebrates. Each protein molecule has two Fe2+ ions that are in 
very close proximity and work together to bind one molecule of O2. The 
Fe2O2 group of oxygenated haemerythrin is coloured and has an electronic 
absorption band at 500 nm. The resonance Raman spectrum of oxygenated 
haemerythrin obtained with laser excitation at 500 nm has a band at 844 cm−1 
that has been attributed to the O–O stretching mode of bound 16O2. (a) Why 
is resonance Raman spectroscopy and not infrared spectroscopy the method 
of choice for the study of the binding of O2 to haemerythrin? (b) Proof 
that the 844 cm−1 band arises from a bound O2 species may be obtained by 
conducting experiments on samples of haemerythrin that have been mixed 
with 18O2, instead of 16O2. Predict the fundamental vibrational wavenumber 
of the 18O–18O stretching mode in a sample of haemerythrin that has been 
treated with 18O2. (c) The fundamental vibrational wavenumbers for the 

O–O stretching modes of O2, O2
−  (superoxide anion), and O2

2−  (peroxide 
anion) are 1555, 1107, and 878 cm−1, respectively. Explain this trend in terms 
of the electronic structures of O2, O2

− , and O2
2−. Hint: Review Topic 10C. 

What are the bond orders of O2, O2
− , and O2

2−? (d) Based on the data given 
above, which of the following species best describes the Fe2O2 group of 
haemerythrin: Fe2

2+O2, Fe2+Fe3+O2
− , or Fe2

3+ O2
2−? Explain your reasoning. (e) 

The resonance Raman spectrum of haemerythrin mixed with 16O18O has two 
bands that can be attributed to the O–O stretching mode of bound oxygen. 
Discuss how this observation may be used to exclude one or more of the four 
proposed schemes (4–7) for binding of O2 to the Fe2 site of haemerythrin.

4     5

6    7

12.8 The moments of inertia of the linear mercury(II) halides are very large, so 
the O and S branches of their vibrational Raman spectra show little rotational 
structure. Nevertheless, the peaks of both branches can be identified and have 
been used to measure the rotational constants of the molecules (R.J.H. Clark 
and D.M. Rippon, J. Chem. Soc. Faraday Soc. II, 69, 1496 (1973)). Show, from 
a knowledge of the value of J corresponding to the intensity maximum, that 
the separation of the peaks of the O and S branches is given by the Placzek–
Teller relation δ =( ) /32 1 2BkT/hc . The following widths were obtained at the 
temperatures stated:

Calculate the bond lengths in the three molecules.

12.9‡ A mixture of carbon dioxide (2.1 per cent) and helium, at 1.00 bar and 
298 K in a gas cell of length 10 cm has an infrared absorption band centred at 
2349 cm−1 with absorbances, A( ) , described by:

A
a

a a

a

a a
( )

( ) ( )


 


 
=

+ −
+

+ −
1

2 3
2

4

5 6
21 1  

where the coefficients are a1 = 0.932, a2 = 0.005050 cm2, a3 = 2333 cm−1, 
a4 = 1.504, a5 =0.01521 cm2, a6 = 2362 cm−1. (a) Draw graphs of A( )  and 
ε( ) . What is the origin of both the band and the band width? What are the 
allowed and forbidden transitions of this band? (b) Calculate the transition 
wavenumbers and absorbances of the band with a simple harmonic oscillator–
rigid rotor model and compare the result with the experimental spectra. 
The CO bond length is 116.2 pm. (c) Within what height, h, is basically all 
the infrared emission from the Earth in this band absorbed by atmospheric 
carbon dioxide? The mole fraction of CO2 in the atmosphere is 3.3 ×10−4 and 
T/K = 288 − 0.0065(h/m) below 10 km. Draw a surface plot of the atmospheric 
transmittance of the band as a function of both height and wavenumber.

HgCl2 HgBr2 HgI2

θ/°C 282 292 292

δ/cm−1 23.8 15.2 11.4
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electronic transitions

Unlike for rotational and vibrational modes, simple analytical 
expressions for the electronic energy levels of molecules cannot 
be given. Therefore, this chapter concentrates on the qualitative 
features of electronic transitions.

13A electronic spectra

A common theme throughout the chapter is that electronic 
transitions occur within a stationary nuclear framework. This 
Topic begins with a discussion of the electronic spectra of dia-
tomic molecules, and we see that in the gas phase it is possible 
to observe simultaneous vibrational and rotational transitions 
that accompany the electronic transition. Then we describe fea-
tures of the electronic spectra of polyatomic molecules.

13B decay of excited states

We begin this Topic with an account of spontaneous emission 
by molecules, including the phenomena of ‘fluorescence’ and 
‘phosphorescence’. Then we see how non-radiative decay of 
excited states can result in transfer of energy as heat to the sur-
roundings or can result in molecular dissociation.

13C lasers

A specially important example of stimulated radiative decay is 
that responsible for the action of lasers, and in this Topic we see 
how this stimulated emission may be achieved and employed.

What is the impact of this material?

Absorption and emission spectroscopy is also useful to bio-
chemists. In Impact I13.1 we describe how the absorption of 
visible radiation by special molecules in the eye initiates the 
process of vision. In Impact I13.2 we see how fluorescence tech-
niques can be used to make very small samples visible, ranging 
from specialized compartments inside biological cells to single 
molecules.

To read more about the impact of this 
material, scan the QR code, or go to  
bcs.whfreeman.com/webpub/chemistry/
pchem10e/impact/pchem-13-1.html
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13A electronic spectra

Consider a molecule in the lowest vibrational state of its 
ground electronic state. The nuclei are (in a classical sense) at 
their equilibrium locations and experience no net force from 
the electrons and other nuclei in the molecule. The electron dis-
tribution is changed when an electronic transition occurs and 
the nuclei become subjected to different forces. In response, 
they start to vibrate around their new equilibrium locations. 
The resulting vibrational transitions that accompany the elec-
tronic transition give rise to the vibrational structure of the 
electronic transition. This structure can be resolved for gaseous 
samples, but in a liquid or solid the lines usually merge together 
and result in a broad, almost featureless band (Fig. 13A.1).

The energies needed to change the electron distributions 
of molecules are of the order of several electronvolts (1 eV is 
equivalent to about 8000 cm−1 or 100 kJ mol−1). Consequently, 
the photons emitted or absorbed when such changes occur 

➤➤ Why do you need to know this material?

Many of the colours of the objects in the world around us 
stem from transitions in which an electron is promoted 
from one orbital of a molecule or ion into another. In some 
cases the relocation of an electron may be so extensive 
that it results in the breaking of a bond and the initiation 
of a chemical reaction. To understand these physical and 
chemical phenomena, you need to explore the origins of 
electronic transitions in molecules.

➤➤ What is the key idea?
Electronic transitions occur within a stationary nuclear 
framework.

➤➤ What do you need to know already?
You need to be familiar with the general features of 
spectroscopy (Topic 12A), the quantum mechanical origins 
of selection rules (Topics 9C, 12C, and 12D), and vibration–
rotation spectra (Topic 12D); it would be helpful to be 
aware of atomic term symbols (Topic 9C). One example 
uses the method of combination differences described in 
Topic 12D.
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Figure 13A.1 The absorption spectrum of chlorophyll in the 
visible region. Note that it absorbs in the red and blue regions, 
and that green light is not absorbed.
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13A Electronic spectra  533

lie in the visible and ultraviolet regions of the spectrum 
(Table 13A.1). What follows is a discussion of absorption pro-
cesses. Emission processes are discussed in Topic 13B.

13A.1 Diatomic molecules

Topic 9C explains how the states of atoms are expressed by 
using term symbols and how the selection rules for electronic 
transitions can be expressed in terms of these term symbols. 
Much the same is true of diatomic molecules, one principal 
difference being the replacement of full spherical symmetry of 
atoms by the cylindrical symmetry defined by the axis of the 
molecule. The second principal difference is the fact that a dia-
tomic molecule can vibrate and rotate.

(a) Term symbols
The term symbols of linear molecules (the analogues of the 
symbols 2P, etc. for atoms) are constructed in a similar way 
to those for atoms, with the Roman uppercase letter (the P in 
this instance for atoms) representing the total orbital angular 
momentum of the electrons around the nucleus. In a linear 
molecule, and specifically a diatomic molecule, a Greek upper-
case letter represents the total orbital angular momentum of 
the electrons around the internuclear axis. If this component of 
orbital angular momentum is Λħ with Λ = 0, ±1, ±2 …, we use 
the following designation:

These labels are the analogues of S, P, D, … for atoms for states 
with L = 0, 1, 2, …. To decide on the value of L for atoms we 
had to use the Clebsch–Gordan series (Topic 9C) to couple the 
individual angular momenta. The procedure to determine Λ is 
much simpler in a diatomic molecule because we simply add 
the values of the individual components of each electron, λħ:

Λ = + +…λ λ1 2  (13A.1)

We note the following:

•	 A single electron in a σ orbital has λ = 0.

The orbital is cylindrically symmetrical and has no angular 
nodes when viewed along the internuclear axis. Therefore, if 
that is the only type of electron present, Λ = 0. The term symbol 
for the ground state of H2

+ with electron configuration 1 gσ2  is 
therefore Σ.
•	 A π electron in a diatomic molecule has one unit of orbital 

angular momentum about the internuclear axis (λ = ±1).

If it is the only electron outside a closed shell, it gives rise to a Π 
term. If there are two π electrons (as in the ground state of O2, 
with configuration …1 gπ2), there are two possible outcomes. If 
the electrons are travelling in opposite directions, then λ1 = +1 
and λ2 = −1 (or vice versa) and Λ = 0, corresponding to a Σ term. 
Alternatively, the electrons might occupy the same π orbital 
and λ1 = λ2 = +1 (or −1), and Λ = ±2, corresponding to a Δ term. 
In O2 it is energetically favourable for the electrons to occupy 
different orbitals, so the ground term is Σ.

As in atoms, we use a left superscript with the value of 2S + 1 
to denote the multiplicity of the term, where S is the total spin 
quantum number of the electrons.

The overall parity of the state (its symmetry under inver-
sion through the centre of the molecule, if it has one) is added 
as a right subscript to the term symbol. For H2

+ in its ground 
state, the parity of the only occupied orbital (1σg) is g, so the 
term itself is also g, and in full dress is 2Σg. If there are several 
electrons, the overall parity is calculated by noting the parity of 
each occupied orbital and using

g g g u u g u g u× = × = × =  (13A.2)

These rules are generated by interpreting g as +1 and u as −1. As 
a consequence:

•	 The term symbol for the ground state of any closed-shell 
homonuclear diatomic molecule is 1Σg because the spin is 

Brief illustration 13A.1 The multiplicity of a term

It follows from the procedure for assigning multiplicity of 
terms that for S s= = 1

2  because there is only one electron, and 
the term symbol is 2Σ, a doublet term. In O2, because in the 
ground state the two π electrons occupy different orbitals (as 
we saw above), they may have either parallel or antiparallel 
spins; the lower energy is obtained (as in atoms) if the spins are 
parallel, so S = 1 and the ground state is 3Σ.

Self-test 13A.1 What is the value of S and the term symbol for 
the ground-state of H2?

Answer: S = 0, 1Σ

Table 13A.1* Colour, wavelength, frequency, and energy of 
light

Colour λ/nm ν/(1014 Hz) E/(kJ mol−1)

Infrared >1000 <3.0 <120

Red 700 4.3 170

Yellow 580 5.2 210

Blue 470 6.4 250

Ultraviolet <400 >7.5 >300

* More values are given in the Resource section.

|Λ| 0 1 2 …

Σ Π Δ …
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534 13 Electronic transitions

zero (a singlet term in which all electrons paired), there is 
no orbital angular momentum from a closed shell, and 
the overall parity is g.

•	 If the molecule is heteronuclear, parity is irrelevant and 
the ground state of a closed-shell species, such as CO, 
is 1Σ.

There is an additional symmetry operation that distinguishes 
different types of Σ term: reflection in a plane containing the 
internuclear axis. A + right superscript on Σ is used to denote 
a wavefunction that does not change sign under this reflec-
tion and a − sign is used if the wavefunction changes sign  
(Fig. 13A.2).

As for atoms, sometimes it is necessary to specify the total 
electronic angular momentum. In atoms we use the quan-
tum number J, which appears as a right subscript in the term 

symbol, as in 2P1/2, with different values of J corresponding to 
different levels of a term. In a linear molecule, only the elec-
tronic angular momentum about the internuclear axis is well 
defined, and has the value Ω.ħ For light molecules, where the 
spin–orbit coupling is weak, Ω is obtained by adding together 
the components of orbital angular momentum around the axis 
(the value of Λ) and the component of the electron spin on that 
axis (Fig. 13A.3). The latter is denoted Σ, where Σ = S, S − 1, 
S − 2, …, −S. (It is important to distinguish between the upright 
term symbol Σ and the sloping quantum number Σ.) Then

Ω Λ Σ= +  (13A.3)

The value of |Ω| may then be attached to the term symbol as a 
right subscript (just like J is used in atoms) to denote the differ-
ent levels. These levels differ in energy, as in atoms, as a result of 
spin–orbit coupling.

Brief illustration 13A.3 Term symbol of O2 2

If we think of O2 in its ground state as having one electron in 
1πg,x, which changes sign under reflection in the yz-plane, and 
the other electron in 1πg,y, which does not change sign under 
reflection in the same plane, then the overall reflection sym-
metry is (closed shell) × (+) × (−) = (−), and the full term symbol 
of the ground electronic state of O2 is 3

gΣ− .  Alternatively, if we 
consider the configuration to be 1 1π π+ −

1 1 ,  with π± ∝ πg,x ± iπg,y 
being two states of definite but opposite orbital angular 
momentum around the axis, then for the triplet state we must 
take the linear combination Ψ(1,2) ∝ π+(1)π−(2) − π+(2)π−(1). 
Because under reflection in the yz-plane π+ → −π− and π− →  
−π+, Ψ(1,2) → π−(1)π+(2) − π−(2)π+(1) = −Ψ(1,2), and the state is 
also (−).

Self-test 13A.3 What is the full term symbol of the ground 
electronic state of Li2

+?
Answer: 2

gΣ+

Brief illustration 13A.4 The term symbol of NO

The ground-state configuration of NO is …πg
1 , so it is a 2Π 

term with Λ= ±1 and Σ = ± 1
2 . Therefore, there are two levels 

of the term, one with Ω = ± 1
2  and the other with ,± 3

2  denoted 
2Π1/2 and 2Π3/2, respectively. Each level is doubly degenerate 
(corresponding to the opposite signs of Ω). In NO, 2Π1/2 lies 
slightly lower than 2Π3/2.

Self-test 13A.4 What are the levels of the term for the ground 
electronic state of O2

−?
Answer: 2Π1/2, 2Π3/2

+
+

+

+

–

–

–– +

Figure 13A.2 The + or − on a term symbol refers to the overall 
symmetry of an electronic wavefunction under reflection in a 
plane containing the two nuclei.

L

S

Λ

Ω

Σ

Figure 13A.3 The coupling of spin and orbital angular 
momenta in a linear molecule: only the components along the 
internuclear axis are conserved.

Brief illustration 13A.2 Term symbol of O2 1

The parity of the ground state of O2 is g × g = g, so it is denoted 
3Σg. An excited configuration of O2 is ,…1 gπ2  with both π elec-
trons in the same orbital. As we have seen, |Λ| = 2, represented 
by Δ. The two electrons must be paired if they occupy the same 
orbital, so S = 0. The overall parity is g × g = g. Therefore, the 
term symbol is 1Δg.

Self-test 13A.2 The term symbol for one of the lowest excited 
states of H2 is 3Πu. To which excited-state configuration does 
this term symbol correspond?

Answer: 1 1g uσ π1 1
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13A Electronic spectra  535

(b) Selection rules

A number of selection rules govern which transitions can be 
observed in the electronic spectrum of a molecule. The selec-
tion rules concerned with changes in angular momentum are

∆ ∆
∆ ∆

Λ
Σ Ω

= ± =
= = ±

0 0

0 0

,

,

1

1

S

 

As in atoms (Topic 9C), the origins of these rules are conserva-
tion of angular momentum during a transition and the fact that 
a photon has a spin of 1.

There are two selection rules concerned with changes in 
symmetry. First, as we show in the following Justification,

For Σ terms, only Σ+ ↔ Σ+ and Σ− ↔ Σ− are allowed.

Second, the Laporte selection rule for centrosymmetric mol-
ecules (those with a centre of inversion) states that the only 
allowed transitions are transitions that are accompanied by a 
change of parity. That is,

For centrosymmetric molecules, only  
u → g and g → u are allowed

A forbidden g → g transition can become allowed if the cen-
tre of symmetry is eliminated by an asymmetrical vibration, 

such as the one shown in Fig. 13A.4. When the centre of sym-
metry is lost, g → g and u → u transitions are no longer parity-
forbidden and become weakly allowed. A transition that 
derives its intensity from an asymmetrical vibration of a mol-
ecule is called a vibronic transition.

The large number of photons in an incident beam generated 
by a laser gives rise to a qualitatively different branch of spec-
troscopy, for the photon density is so great that more than one 
photon may be absorbed by a single molecule and give rise to 
multiphoton processes. One application of multiphoton pro-
cesses is that states inaccessible by conventional one-photon 
spectroscopy become observable because the overall transition 
occurs with no change of parity. For example, in one-photon 
spectroscopy, only g ↔ u transitions are observable; in two-
photon spectroscopy, however, the overall outcome of absorb-
ing two photons is a g ← g or a u ← u transition.

Justification 13A.1 Symmetry-based selection rules

The last two selection rules result from the fact that the 
electric-dipole transition moment introduced in Topic 9C, 
μ μfi f id= ∫ψ ψ τ*   vanishes unless the integrand is invariant 
under all symmetry operations of the molecule.

The z-component of the electric dipole moment opera-
tor is the component of μ responsible for Σ ↔ Σ transitions 
(the other components have Π symmetry and cannot make a 
contribution). The z-component of μ has (+) symmetry with 
respect to ref lection in a plane containing the internuclear 
axis. Therefore, for a (+) ↔ (−) transition, the overall sym-
metry of the transition dipole moment is (+) × (+) × (−) = (−), 
so it must be zero and hence Σ+ ↔ Σ− transitions are not 
allowed. The integrals for Σ+ ↔ Σ+ and Σ− ↔ Σ− transform as 
(+) × (+) × (+) = (+) and (−) × (+) × (−) = (+), respectively, and so 
both transitions are allowed.

The three components of the dipole moment operator 
transform like x, y, and z, and in a centrosymmetric molecule 
are all u. Therefore, for a g → g transition, the overall parity 
of the transition dipole moment is g × u × g = u, so it must be 
zero. Likewise, for a u → u transition, the overall parity is 
u × u × u = u, so the transition dipole moment must also vanish. 
Hence, transitions without a change of parity are forbidden. 
For a g ↔ u transition the integral transforms as g × u × u = g, 
and is allowed.

laporte 
selection rule

Linear 
molecules  

selection rules  
for electronic 

spectra
 (13A.4)

Figure 13A.4 A de d transition is parity-forbidden because it 
corresponds to a ge g transition. However, a vibration of the 
molecule can destroy the inversion symmetry of the molecule 
and the g,u classification no longer applies. The removal of 
the centre of symmetry gives rise to a vibronically allowed 
transition.

Brief illustration 13A.5 Allowed transitions of O2

If we were presented with the following possible tran-
sit ions in t he elec t ronic spec t r u m of O2,  na mely 
3

g
3

u
3

g
1

g
3

g
3

uΣ Σ Σ ∆ Σ Σ− − − − +← ← ←, , ,  we could decide which are 
allowed by constructing the following table and referring to 
the rules. Forbidden values are in red.

Self-test 13A.5 Which of the following electronic transitions 
are allowed in O2: 3

g
1

gΣ Σ− +↔  and 3
g

3
uΣ ∆− ↔ ?

Answer: None

ΔS ΔΛ Σ± ← Σ± Change 
of parity

3
g

3
uΣ Σ− −← 0 0 Σ− ← Σ− g ← u Allowed

3
g

1
gΣ ∆− ← +1 −2 Not applicable g ← g Forbidden

3
g

3
uΣ Σ− +← 0 0 Σ− ← Σ+ g ← u Forbidden
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(c) Vibrational structure

To account for the vibrational structure in electronic spectra of 
molecules (Fig. 13A.5), we apply the Franck–Condon principle:

Because the nuclei are so much more  
massive than the electrons, an electronic 
transition takes place very much faster  
than the nuclei can respond.

As a result of the transition, electron density is rapidly built up 
in new regions of the molecule and removed from others. In 
classical terms, the initially stationary nuclei suddenly experi-
ence a new force field, to which they respond by beginning to 
vibrate and (in classical terms) swing backwards and forwards 
from their original separation (which was maintained during 
the rapid electronic excitation). The stationary equilibrium 
separation of the nuclei in the initial electronic state therefore 
becomes a stationary turning point in the final electronic state 
(Fig. 13A.6). We can imagine the transition as taking place up 
the vertical line in Fig. 13A.6. This interpretation is the origin of 
the expression vertical transition, which denotes an electronic 
transition that occurs without change of nuclear geometry and 
in classical terms, the nuclei remain stationary.

The vibrational structure of the spectrum depends on the rela-
tive horizontal position of the two potential energy curves, and 
a long vibrational progression, a lot of vibrational structure, is 
stimulated if the upper potential energy curve is appreciably dis-
placed horizontally from the lower. The upper curve is usually 
displaced to greater equilibrium bond lengths because electroni-
cally excited states usually have more antibonding character than 
electronic ground states. The separation of the vibrational lines 
depends on the vibrational energies of the upper electronic state.

The quantum mechanical version of the Franck–Condon 
principle refines this picture. Instead of saying that the nuclei 
stay at the same locations and are stationary during the tran-
sition, we say that they retain their initial dynamic state. In 
quantum mechanics, the dynamical state is expressed by the 
wavefunction, so an equivalent statement is that the nuclear 
wavefunction does not change during the electronic transi-
tion. Initially the molecule is in the lowest vibrational state of 
its ground electronic state with a bell-shaped wavefunction cen-
tred on the equilibrium bond length (Fig. 13A.7). To find the 
nuclear state to which the transition takes place, we look for the 
vibrational wavefunction that most closely resembles this initial 
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Figure 13A.5 The electronic spectra of some molecules show 
significant vibrational structure. Shown here is the ultraviolet 
spectrum of gaseous SO2 at 298 K. As explained in the text, 
the sharp lines in this spectrum are due to transitions from a 
lower electronic state to different vibrational levels of a higher 
electronic state. Vibrational structure due to transitions to two 
different excited electronic states is apparent.
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Figure 13A.6 According to the Franck–Condon principle, the 
most intense vibronic transition is from the ground vibrational 
state to the vibrational state lying vertically above it. As a result 
of the vertical transition, the nuclei suddenly experience a new 
force field, to which they respond through their vibrational 
motion. The equilibrium separation of the nuclei in the initial 
electronic state therefore becomes a turning point in the final 
electronic state. Transitions to other vibrational levels also 
occur, but with lower intensity.
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Figure 13A.7 In the quantum mechanical version of the 
Franck–Condon principle, the molecule undergoes a transition 
to the upper vibrational state that most closely resembles the 
vibrational wavefunction of the vibrational ground state of 
the lower electronic state. The two wavefunctions shown here 
have the greatest overlap integral of all the vibrational states of 
the upper electronic state and hence are most closely similar.
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wavefunction, for that corresponds to the nuclear dynamical 
state that is least changed in the transition. Intuitively, we can see 
that the final wavefunction is the one with a large peak close to 
the position of the initial bell-shaped function. As explained in 
Topic 8B, provided the vibrational quantum number is not zero, 
the biggest peaks of vibrational wavefunctions occur close to the 
edges of the confining potential, so we can expect the transition 
to occur to those vibrational states, in accord with the classical 
description. However, several vibrational states have their major 
peaks in similar positions, so we should expect transitions to 
occur to a range of vibrational states, as is observed.

The quantitative form of the Franck–Condon principle and 
the justification of the preceding description is derived from the 
expression for the transition dipole moment (as in Justification 
13A.1). The electric dipole moment operator is a sum over all 
nuclei and electrons in the molecule:

μ = − +∑ ∑e e Z
i

i

I

I Ir R

 
(13A.5)

where the vectors are the distances from the centre of charge 
of the molecule. The intensity of the transition is proportional 
to the square modulus, |μfi|2, of the magnitude of the transition 
dipole moment, and we show in the following Justification that 
this intensity is proportional to the square modulus of the over-
lap integral, S(vf,vi), between the vibrational states of the initial 
and final electronic states. This overlap integral is a measure of 
the match between the vibrational wavefunctions in the upper 
and lower electronic states: S = 1 for a perfect match and S = 0 
when there is no similarity.

Because the transition intensity is proportional to the square 
of the magnitude of the transition dipole moment, the intensity 
of an absorption is proportional to |S(vf,vi)|2, which is known as 
the Franck–Condon factor for the transition:

S( , ) , ,*v v v vf i f i n

2

d
2 =( )∫ψ ψ τ

 
 Franck–condon factor  (13A.6)

It follows that, the greater the overlap of the vibrational state 
wavefunction in the upper electronic state with the vibrational 
wavefunction in the lower electronic state, the greater the 
absorption intensity of that particular simultaneous electronic 
and vibrational transition.

The quantity με,fi is the electric-dipole transition moment aris-
ing from the redistribution of electrons (and a measure of the 
‘kick’ this redistribution gives to the electromagnetic field, 
and vice versa for absorption). The factor S(vf,vi), is the overlap 
integral between the vibrational state with quantum number 
vi in the initial electronic state of the molecule, and the vibra-
tional state with quantum number v f in the final electronic 
state of the molecule.

Justification 13A.2 The Franck–Condon approximation

The overall state of the molecule consists of an electronic 
part, labelled with ε , and a vibrational part, labelled with v. 
Therefore, within the Born–Oppenheimer approximation, the 
transition dipole moment factorizes as follows:

μfi f f i id= − +
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The second term on the right of the second row (including the 
term in blue) is zero, because two different electronic states are 
orthogonal. Therefore,

μ

μ

fi f i e f i nd d

f i

= − ∑∫ ∫e
i

iψ ψ τ ψ ψ τε ε

ε

, , , ,

( , )

* *

,

r

fi� ��� ��� � �

v v

v vS��� ���
= με , ( , )fi f iS v v

 

Example 13A.1 Calculating a Franck–Condon factor

Consider the transition from one electronic state to another, 
their bond lengths being Re and ′Re  and their force constants 
equal. Calculate the Franck–Condon factor for the 0–0 tran-
sition and show that the transition is most intense when the 
bond lengths are equal.

Method We need to calculate S(0,0), the overlap integral of the 
two ground-state vibrational wavefunctions, and then take 
its square. The difference between harmonic and anharmonic 
vibrational wavefunctions is negligible for v = 0, so harmonic 
oscillator wavefunctions can be used (Table 8B.1).

Answer We use the (real) wavefunctions

ψ
α

ψ
α

α α
0 1 2

1 2

2
0 1 2

1 2

21 12 2 2 2= 



 ′ = 





− − ′
π π/

/ /

/e e/
/

x x

where x = R − Re and ′ = ′x R R– ,e  with α = (ħ2/mk f)1/4 (Topic 
8B). The overlap integral is

S R xx x( , ) /
( )/0 0

1
0 0 1 2

22 2 2= ′ =
−∞

∞
− + ′

−∞

∞

∫ ∫ψ ψ
α

αd e d
π  

We now write αz R R R= − + ′1
2 ( )e e  and manipulate this expres-

sion into
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538 13 Electronic transitions

(d) Rotational structure
Just as in vibrational spectroscopy, where a vibrational tran-
sition is accompanied by rotational excitation, so rotational 
transitions accompany the excitation of the vibrational excita-
tion that accompanies electronic excitation. We therefore see 
P, Q, and R branches for each vibrational transition, and the 

electronic transition has a very rich structure. However, the 
principal difference is that electronic excitation can result in 
much larger changes in bond length than vibrational excitation 
causes alone, and the rotational branches have a more complex 
structure than in vibration–rotation spectra.

We suppose that the rotational constants of the electronic 
ground and excited states are B  and , ′B  respectively. The rota-
tional energy levels of the initial and final states are

E J hcBJ J E J hcB J J( ) ( ) ( ) ( )= + ′ = ′ ′ ′+ 1 1  (13A.7)

When a transition occurs with ΔJ = −1 the wavenumber of the 
vibrational component of the electronic transition is shifted 
from   to

        + ′ − − + = − ′+ + ′−B J J BJ J B B J B B J( ) ( ) ( ) ( )1 1 2
 

This transition is a contribution to the P branch (just as in 
Topic 12D). There are corresponding transitions to the Q and R 
branches with wavenumbers that may be calculated in a similar 
way. All three branches are:

P branch ( ) P∆J J B B J B B J= − = − ′+ + ′−1 2: ( ) ( )( )         
 branch structure  (13A.8a)

Q branch ( ) Q∆J J B B J J= = + ′− +0 1: ( ) ( )( )      (13A.8b)

R branch ( ) R∆J J B B J B B J= + = + ′+ + + ′− +1 1 1 2: ( )( ) ( )( )( )        
(13A.8c)

These expressions are the analogues of eqn 12D.19.

Example 13A.2 Estimating rotational constants from 
electronic spectra

The following rotational transitions were observed in 
the 0–0 band of the 1Σ+ ← 1Σ+ electronic transition of 
63Cu 2H: R cm( ) ,.3 23 347 69 1= −  P cm( ) ,.3 23 298 85 1= −  and 
P cm( ) ..5 23 275 77 1= −  Estimate the values of  ′B  and B.

Method Use the method of combination differences intro-
duced in Topic 12D: form the differences   R P( ) ( )J J−  and 
  R P( ) ( )J J− − +1 1  from eqns 13A.8a and 13A.8b, then use the 
resulting expressions to calculate the rotational constants  ′B  
and B from the wavenumbers provided.

Answer From eqns 13A.8a and 13A.8b it follows that
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and the Franck–Condon factor is

S R R( , ) ( ) /0 0 2 22 2= − − ′e e e α

This factor is equal to 1 when ′ =R Re e and decreases as the equi-
librium bond lengths diverge from each other (Fig. 13A.8).

For Br2, Re = 228 pm and there is an upper state with 
′ =Re 266pm.  Taking the vibrational wavenumber as 250 cm−1 

gives S(0,0)2 = 5.1 × 10−10, so the intensity of the 0–0 transi-
tion is only 5.1 × 10−10 what it would have been if the potential 
curves had been directly above each other.

Self-test 13A.6 Suppose the vibrational wavefunctions can be 
approximated by rectangular functions of width W and W′, 
centred on the equilibrium bond lengths (Fig. 13A.9). Find the 
corresponding Franck–Condon factors when the centres are 
coincident and W′ < W.

Answer: S2 = W′/W
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Figure 13A.8 The Franck–Condon factor for the 
arrangement discussed in Example 13A.1.
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Figure 13A.9 The model wavefunctions used in Selftest 
13A.6.
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Suppose that the bond length in the electronically excited 
state is greater than that in the ground state; then  ′ <B B and 
 ′ −B B  is negative. In this case the lines of the R branch converge 
with increasing J and when J is such that    ′ − + > ′+B B J B B( )1  
the lines start to appear at successively decreasing wavenum-
bers. That is, the R branch has a band head (Fig. 13A.10a). 
When the bond is shorter in the excited state than in the ground 
state,  ′ >B B and  ′ −B B  is positive. In this case, the lines of the P 
branch begin to converge and go through a head when J is such 
that    ′ − > ′+B B J B B (Fig. 13A.10b).

13A.2 Polyatomic molecules

The absorption of a photon can often be traced to the excita-
tion of specific types of electrons or to electrons that belong to 
a small group of atoms in a polyatomic molecule. For exam-

ple, when a carbonyl group ( C O) is present, an absorption at 

about 290 nm is normally observed, although its precise loca-
tion depends on the nature of the rest of the molecule. Groups 
with characteristic optical absorptions are called chromo-
phores (from the Greek for ‘colour bringer’), and their presence 
often accounts for the colours of substances (Table 13A.2).

(a) d-Metal complexes
In a free atom, all five d orbitals of a given shell are degenerate. 
In a d-metal complex, where the immediate environment of the 
atom is no longer spherical, the d orbitals are not all degenerate, 
and electrons can absorb energy by making transitions between 
them.

To see the origin of this splitting in an octahedral complex 
such as [Ti(OH2)6]3+ (1), we regard the six ligands as point 
nega tive charges that repel the d electrons of the central ion 
(Fig. 13A.11). As a result, the orbitals fall into two groups, 
with dx y2 2−  and dz2  pointing directly towards the ligand posi-
tions, and dxy, dyz, and dzx pointing between them. An electron 
occupying an orbital of the former group has a less favourable 
potential energy than when it occupies any of the three orbit-
als of the other group, and so the d orbitals split into the two 
sets shown in (2) with an energy difference ΔO: a triply degen-
erate set comprising the dxy, dyz, and dzx orbitals and labelled 
t2g, and a doubly degenerate set comprising the with dx y2 2−  and 
dz2  orbitals and labelled eg. The three t2g orbitals lie below the 
two eg orbitals in energy; the difference in energy ΔO is called 
the ligand-field splitting parameter (the O denoting octahe-
dral symmetry). The ligand field splitting is typically about 10 
per cent of the overall energy of interaction between the ligands 
and the central metal atom, which is largely responsible for the 
existence of the complex. The d orbitals also divide into two 
sets in a tetrahedral complex, but in this case the e orbitals lie 
below the t2 orbitals (the g,u classification is no longer relevant 
as a tetrahedral complex has no centre of inversion) and their 
separation is written ΔT.

Ti
H2O

3+

1  [Ti(OH2)6]
3+

eg

t2g

ΔΟ

3/5ΔΟ

2/5ΔΟ

d

2

(These equations are analogous to eqns 12D.21a and 12D.21b.) 
After using the data provided, we obtain:

For cm

Fo

R P: .( ) ( )J B= − = = ′
−

−3 3 3 48 84 141� �
�

� 

23 347.69 23 298.85

rr cmR P: ( ) .( )J B= − = =
−

−4 3 5 71 92 181� �
�

� 

23 347.69 23 275.77

 

and calculate  ′ = −B 3 489 1. cm  and B = −3 996 1. .cm

Self-test 13A.7 The following rotational transitions were 
observed in the 1Σ+ ← 1Σ+ electronic transition of RhN: 
R cm( ) ,.5 22 387 06 1= − P cm( ) .5 22 376 87 1= −  a n d  P( )7 =
22 373 95 1. .cm−  Estimate the values of  ′B  and B.

Answer:  ′ = −B 0 4632 1. ,cm  B = −0 5042 1. cm

P P RR

(a) B´ < B (b) B´ > B
~ ~ ~ ~

Figure 13A.10 When the rotational constants of a diatomic 
molecule differ significantly in the initial and final states of an 
electronic transition, the P and R branches show a head. (a) 
The formation of a head in the R branch when  ′ <B B;  (b) the 
formation of a head in the P branch when  ′ >B B.

Table 13A.2* Absorption characteristics of some groups  
and molecules

Group /cm−1 λmax/nm εmax/(dm3 mol−1 cm−1)

CaC (π* ← π) 61 000 163 15 000

CaO (π* ← n) 35 000–37 000 270–290 10–20

H2O (π* ← n) 60 000 167 7 000

* More values are given in the Resource section.
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540 13 Electronic transitions

Neither ΔO nor ΔT is large, so transitions between the two 
sets of orbitals typically occur in the visible region of the spec-
trum. The transitions are responsible for many of the colours 
that are so characteristic of d-metal complexes.

According to the Laporte rule (Section 13A.1b), ded tran-
sitions are parity-forbidden in octahedral complexes because 
they are g → g transitions (more specifically eg ← t2g transi-
tions). However, ded transitions become weakly allowed as 
vibronic transitions, joint vibrational and electronic transi-
tions, as a result of coupling to asymmetrical vibrations such as 
that shown in Fig. 13A.4.

A d-metal complex may also absorb radiation as a result of 
the transfer of an electron from the ligands into the d orbitals 
of the central atom, or vice versa. In such charge-transfer tran-
sitions the electron moves through a considerable distance, 
which means that the transition dipole moment may be large 
and the absorption correspondingly intense. In the permanga-
nate ion, MnO4

− ,  the charge redistribution that accompanies 
the migration of an electron from the O atoms to the central 
Mn atom results in strong transition in the range 420–700 nm 
that accounts for the intense purple colour of the ion. Such an 
electronic migration from the ligands to the metal corresponds 
to a ligand-to-metal charge-transfer transition (LMCT). The 
reverse migration, a metal-to-ligand charge-transfer transi-
tion (MLCT), can also occur. An example is the migration of 
a d electron onto the antibonding π orbitals of an aromatic 
ligand. The resulting excited state may have a very long lifetime 
if the electron is extensively delocalized over several aromatic 
rings.

In common with other transitions, the intensities of 
charge-transfer transitions are proportional to the square of 
the transition dipole moment. We can think of the transition 
moment as a measure of the distance moved by the electron 
as it migrates from metal to ligand or vice versa, with a large 
distance of migration corresponding to a large transition 
dipole moment and therefore a high intensity of absorption. 
However, because the integrand in the transition dipole is 
proportional to the product of the initial and final wavefunc-
tions, it is zero unless the two wavefunctions have nonzero 
values in the same region of space. Therefore, although large 
distances of migration favour high intensities, the dimin-
ished overlap of the initial and final wavefunctions for large 
separations of metal and ligands favours low intensities (see 
Problem 13A.9).

(b) π* ← π and π* ← n transitions
Absorption by a CaC double bond results in the excitation of 
a π electron into an antibonding π* orbital (Fig. 13A.13). The 
chromophore activity is therefore due to a π* ← π transition 
(which is normally read ‘π to π-star transition’). Its energy is 
about 7 eV for an unconjugated double bond, which corre-
sponds to an absorption at 180 nm (in the ultraviolet). When 
the double bond is part of a conjugated chain, the energies of 
the molecular orbitals lie closer together and the π* ← π transi-
tion moves to longer wavelength; it may even lie in the visible 
region if the conjugated system is long enough.
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Figure 13A.11 The classification of d orbitals in an octahedral 
environment. The open circles represent the positions of the six 
(point-charge) ligands.

Brief illustration 13A.6 The electronic spectrum  
of a d-metal complex

The spectrum of [Ti(OH2)6]3+ (1) near 20 000 cm−1 (500 nm) is 
shown in Fig. 13A.12, and can be ascribed to the promotion 
of its single d electron from a t2g orbital to an eg orbital. The 
wavenumber of the absorption maximum suggests that ΔO ≈  
20 000 cm−1 for this complex, which corresponds to about 2.5 eV.

Self-test 13A.8 Can a complex of the Zn2+ ion have a ded elec-
tronic transition? Explain your answer.

Answer: No; all five d orbitals are fully occupied

A
b

so
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ce

10 20 30
ν/(103 cm–1)∼

Figure 13A.12 The electronic absorption spectrum of 
[Ti(OH2)6]3+ in aqueous solution.
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One of the transitions responsible for absorption in  carbonyl 
compounds can be traced to the lone pairs of electrons on the 
O atom. The Lewis concept of a ‘lone pair’ of electrons is rep-
resented in molecular orbital theory by a pair of electrons in 
an orbital confined largely to one atom and not appreciably 
involved in bond formation. One of these electrons may be 
excited into an empty π* orbital of the carbonyl group (Fig. 
13A.14), which gives rise to an π* ← n transition (an ‘n to 
π-star transition’). Typical absorption energies are about 4eV 
(290 nm). Because π* ← n transitions in carbonyls are symme-
try forbidden, the absorptions are weak. By contrast, the π* ← π 
transition in a carbonyl, which corresponds to excitation of a π 
electron of the CaO double bond, is allowed by symmetry and 
results in relatively strong absorption.

(c) Circular dichroism
Electronic spectra can reveal additional details of molecular 
structure when experiments are conducted with polarized light, 
electromagnetic radiation with electric and magnetic fields that 
oscillate only in certain directions. A mode of polarization is 
circular polarization, in which the electric and magnetic fields 
rotate around the direction of propagation in either a clockwise 
or a counter-clockwise sense but remain perpendicular to it 
and each other (Fig. 13A.15). Chiral molecules exhibit circular 
dichroism, meaning that they absorb left and right circularly 
polarized light to different extents. For example, the circu-
lar dichroism (CD) spectra of the enantiomeric pairs of chiral 
d-metal complexes are distinctly different, whereas there is little 
difference between their absorption spectra (Fig. 13A.16).

Brief illustration 13A.7 π* ← π and π* ← n transitions

The compound CH3CHaCHCHO has a strong absorption 
in the ultraviolet at 46 950 cm−1 (213 nm) and a weak absorp-
tion at 30 000 cm−1 (330 nm). The former is a π* ← π transi-
tion associated with the delocalized π system CaC—CaO. 
Delocalization extends the range of the CaO π* ← π transition 
to lower wavenumbers (longer wavelengths). The latter is an 
π* ← n transition associated with the carbonyl chromophore.

Self-test 13A.9 Account for the observation that propanone 
(acetone, (CH3)2CO) has a strong absorption at 189 nm and a 
weaker absorption at 280 nm.

Answer: Both transitions are associated with the CaO  
chromophore, with the weaker being an π* ← n transition  

and the stronger a π* ← π transition.

π* π

+

+

++

–
–

–

–

Figure 13A.13 A CaC double bond acts as a chromophore. 
One of its important transitions is the π* ← π transition 
illustrated here, in which an electron is promoted from a π 
orbital to the corresponding antibonding orbital.

π* n

+

+

+
– –

–

Figure 13A.14 A carbonyl group (CaO) acts as a chromophore 
partly on account of the excitation of a nonbonding O lone-
pair electron to an antibonding CO π orbital.
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Figure 13A.16 (a) The absorption spectra of two isomers, 
denoted mer and fac, of [Co(ala)3], where ala is the 
conjugate base of alanine, and (b) the corresponding CD 
spectra. The left- and right-handed forms of these isomers 
give identical absorption spectra. However, the CD spectra are 
distinctly different, and the absolute configurations (denoted Λ 
and Δ) have been assigned by comparison with the CD spectra 
of a complex of known absolute configuration.

Propagation

R

L

Figure 13A.15 In circularly polarized light, the electric 
field rotates at different angles around the direction of 
propagation. The arrays of arrows in these illustrations show 
the view of the electric field (a) right-circularly polarized, (b) 
left-circularly polarized light.
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542 13 Electronic transitions

Checklist of concepts

☐ 1. The term symbols of diatomic molecules express the 
components of electronic angular momentum around 
the internuclear axis.

☐ 2. Selection rules for electronic transitions are based on 
considerations of angular momentum and symmetry.

☐ 3. The Laporte selection rule states that, for centrosym-
metric molecules, only u → g and g → u transitions are 
allowed.

☐ 4. The Franck–Condon principle provides a basis for 
explaining the vibrational structure of electronic 
transitions.

☐ 5. In gas phase samples, rotational structure is present too 
and can give rise to band heads.

☐ 6. Chromophores are groups with characteristic optical 
absorptions.

☐ 7. In d-metal complexes, the presence of ligands removes 
the degeneracy of d orbitals and vibrationally allowed 
d–d transitions can occur between them.

☐ 8. Charge-transfer transitions typically involve the 
migration of electrons between the ligands and the cen-
tral metal atom.

☐ 9. Other chromophores include double bonds (π* ← π 
transitions) and carbonyl groups (π* ← n transitions).

☐ 10.  Circular dichroism is the differential absorption of left 
and right circularly polarized light.

Checklist of equations

Property Equation Comment Equation number

Selection rules (angular momentum) ΔΛ = 0, ±1; ΔS = 0; ΔΣ = 0; ΔΩ = 0, ±1 Linear molecules 13A.4

Franck–Condon factor S( , ) ,
*

,v v v vf i f i nd
2

2

=



∫ψ ψ τ Assumes Franck–Condon principle applies 13A.6

Rotational structure of electronic  
spectra (diatomic molecules)

      P( ) ( ) ( )J B B J B B J= − ′+ + ′− 2 P branch (ΔJ = −1) 13A.8a

    Q( ) ( ) ( )J B B J J= + ′− +1 Q branch (ΔJ = 0) 13A.8b

      R( ) ( )( ) ( )( )J B B J B B J= + ′+ + + ′− +1 1 2 R branch (ΔJ = +1) 13A.8c
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13B decay of excited states

A radiative decay process is a process in which a molecule 
discards its excitation energy as a photon (Topic 12A). In this 
Topic we pay particular attention to spontaneous radiative 
decay processes, which include fluorescence and phosphores-
cence. A more common fate of an electronically excited mol-
ecule is non-radiative decay, in which the excess energy is 
transferred into the vibration, rotation, and translation of the 
surrounding molecules. This thermal degradation converts the 
excitation energy into thermal motion of the environment (that 
is, to ‘heat’). An excited molecule may also dissociate or take 
part in a chemical reaction (Topic 20G).

13B.1 Fluorescence and 
phosphorescence

In fluorescence, spontaneous emission of radiation occurs 
while the sample is being irradiated and ceases within nano-
seconds to milliseconds of the exciting radiation being extin-
guished (Fig. 13B.1). In phosphorescence, the spontaneous 
emission may persist for long periods (even hours, but charac-
teristically seconds or fractions of seconds). The difference sug-
gests that fluorescence is a fast conversion of absorbed radiation 
into re-emitted energy, and that phosphorescence involves the 
storage of energy in a reservoir from which it slowly leaks.

Figure 13B.2 shows the sequence of steps involved in fluo-
rescence of chromophores in solution. The initial stimulated 
absorption takes the molecule to an excited electronic state, and 
if the absorption spectrum were monitored it would look like 
the one shown in Fig. 13B.3a. The excited molecule is subjected 
to collisions with the surrounding molecules, and as it gives up 
energy nonradiatively it steps down (typically within picosec-
onds) the ladder of vibrational levels to the lowest vibrational 
level of the electronically excited molecular state. The sur-
rounding molecules, however, might now be unable to accept 
the larger energy difference needed to lower the molecule to the 
ground electronic state. It might therefore survive long enough 
to undergo spontaneous emission and emit the remaining 
excess energy as radiation. The downward electronic transition 
is vertical, in accord with the Franck–Condon principle (Topic 

Contents
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➤➤ Why do you need to know this material?
Considerable information about the electronic structure 
of a molecule can be obtained from the photons emitted 
when excited electronic states decay radiatively back to 
the ground state.

➤➤ What is the key idea?
Molecules in excited electronic states discard their excess 
energy by emission of electromagnetic radiation, transfer 
as heat to the surroundings, or fragmentation.

➤➤ What do you need to know already?
You need to be familiar with electronic transitions in 
molecules (Topic 13A), the difference between spontaneous 
and stimulated emission of radiation (Topic 12A), and the 
general features of spectroscopy (Topic 12A). You need 
to be aware of the difference between singlet and triplet 
states (Topic 9C) and of the Franck–Condon principle  
(Topic 13A).
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Figure 13B.1 The empirical (observation-based) distinction 
between fluorescence and phosphorescence is that the 
former is extinguished very quickly after the exciting source is 
removed, whereas the latter continues with relatively slowly 
diminishing intensity.
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544 13 Electronic transitions

13A), and the fluorescence spectrum has a vibrational structure 
characteristic of the lower electronic state (Fig. 13B.3b).

Provided they can be seen, the 0–0 absorption and fluo-
rescence transitions can be expected to be coincident. The 
absorption spectrum arises from 1 ← 0, 2 ← 0, … transitions 
that occur at progressively higher wavenumber and with 
intensities governed by the Franck–Condon principle. The 
fluorescence spectrum arises from 0 → 0, 0 → 1, … downward 
transitions that occur with decreasing wavenumbers. The 0–0 
absorption and fluorescence peaks are not always exactly coin-
cident, however, because the solvent may interact differently 
with the solute in the ground and excited states (for instance, 
the hydrogen bonding pattern might differ). Because the sol-
vent molecules do not have time to rearrange during the tran-
sition, the absorption occurs in an environment characteristic 

of the solvated ground state; however, the fluorescence occurs 
in an environment characteristic of the solvated excited state 
(Fig. 13B.4).

Fluorescence occurs at lower frequencies (longer wave-
lengths) than the incident radiation because the emissive 
transition occurs after some vibrational energy has been dis-
carded into the surroundings. The vivid oranges and greens of 
fluorescent dyes are an everyday manifestation of this effect: 
they absorb in the ultraviolet and blue, and fluoresce in the 
visible. The mechanism also suggests that the intensity of the 
fluorescence ought to depend on the ability of the solvent 
molecules to accept the electronic and vibrational quanta. It 
is indeed found that a solvent composed of molecules with 
widely spaced vibrational levels (such as water) can in some 
cases accept the large quantum of electronic energy and so 
extinguish, or ‘quench’, the fluorescence. The rate at which 
fluor escence is quenched by other molecules also gives valu-
able kinetic information (Topic 20G).

Figure 13B.5 shows the sequence of events leading to phos-
phorescence for a molecule with a singlet ground state. The first 
steps are the same as in fluorescence, but the presence of a tri-
plet excited state at an energy close to that of the singlet excited 
state plays a decisive role. The singlet and triplet excited states 
share a common geometry at the point where their potential 
energy curves intersect. Hence, if there is a mechanism for 
unpairing two electron spins (and achieving the conversion of 
↑↓  to ↑↑ ), the molecule may undergo intersystem crossing, 
a non-radiative transition between states of different multipli-
city, and become a triplet state. As in the discussion of atomic 
spectra (Topic 9C), singlet–triplet transitions may occur in 
the presence of spin–orbit coupling. Intersystem crossing is 
expected to be important when a molecule contains a moder-
ately heavy atom (such as sulfur), because then the spin–orbit 
coupling is large.
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Figure 13B.4 The solvent can shift the fluorescence spectrum 
relative to the absorption spectrum. On the left we see that the 
absorption occurs with the solvent (depicted by the ellipses) in 
the arrangement characteristic of the ground electronic state 
of the molecule (the sphere). However, before fluorescence 
occurs, the solvent molecules relax into a new arrangement, 
and that arrangement is preserved during the subsequent 
radiative transition.
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Figure 13B.2 The sequence of steps leading to fluorescence 
by chromophores in solution. After the initial absorption, the 
upper vibrational states undergo radiationless decay by giving 
up energy to the surrounding molecules. A radiative transition 
then occurs from the vibrational ground state of the upper 
electronic state.
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Figure 13B.3 An absorption spectrum (a) shows a vibrational 
structure characteristic of the upper state. A fluorescence 
spectrum (b) shows a structure characteristic of the lower 
state; it is also displaced to lower frequencies (but the 0–0 
transitions are coincident) and resembles a mirror image of 
the absorption.
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13B Decay of excited states  545

If an excited molecule crosses into a triplet state, it con tinues 
to discard energy into the surroundings. However, it is now 
stepping down the triplet’s vibrational ladder, and at the lowest 
energy level it is trapped because the triplet state is at a lower 
energy than the corresponding singlet (Hund’s rule, Topic 9B). 
The solvent cannot absorb the final, large quantum of electronic 
excitation energy, and the molecule cannot radiate its energy 
because return to the ground state is spin-forbidden. The radia-
tive transition, however, is not totally forbidden because the 
spin–orbit coupling that was responsible for the intersystem 
crossing also breaks the selection rule. The molecules are there-
fore able to emit weakly, and the emission may continue long 
after the original excited state was formed.

The mechanism accounts for the observation that the exci-
tation energy seems to get trapped in a slowly leaking reser-
voir. It also suggests (as is confirmed experimentally) that 
phosphorescence should be most intense from solid samples: 
energy transfer is then less efficient and intersystem crossing 
has time to occur as the singlet excited state steps slowly past 
the intersection point. The mechanism also suggests that the 
phosphorescence efficiency should depend on the presence of 
a moderately heavy atom (with strong spin–orbit coupling), 
which is in fact the case.

The various types of non-radiative and radiative transitions 
that can occur in molecules are often represented on a sche-
matic Jablonski diagram of the type shown in Fig. 13B.6.

13B.2 Dissociation and 
predissociation

Another fate for an electronically excited molecule is disso-
ciation, the breaking of bonds (Fig. 13B.7). The onset of dis-
sociation can be detected in an absorption spectrum by seeing 
that the vibrational structure of a band terminates at a certain 
energy. Absorption occurs in a continuous band above this dis-
sociation limit because the final state is an unquantized transla-
tional motion of the fragments. Locating the dissociation limit 
is a valuable way of determining the bond dissociation energy.

In some cases, the vibrational structure disappears but 
resumes at higher photon energies. This effect provides evi-
dence of predissociation, which can be interpreted in terms 
of the molecular potential energy curves shown in Fig. 13B.8. 
When a molecule is excited to a vibrational level, its electrons 

Brief illustration 13B.1 Fluorescence and 
phosphorescence of organic molecules

Fluorescence efficiency decreases, and the phosphores-
cence efficiency increases, in the series of compounds: 
naphthalene, 1-chloronaphthalene, 1-bromonaphthalene, 
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Figure 13B.5 The sequence of steps leading to 
phosphorescence. The important step is the intersystem 
crossing (ISC), the switch from a singlet state to a triplet state 
brought about by spin–orbit coupling. The triplet state acts as 
a slowly radiating reservoir because the return to the ground 
state is spin-forbidden. IC
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Figure 13B.6 A Jablonski diagram (here, for naphthalene) is a 
simplified portrayal of the relative positions of the electronic 
energy levels of a molecule. Vibrational levels of states of a 
given electronic state lie above each other, but the relative 
horizontal locations of the columns bear no relation to the 
nuclear separations in the states. The ground vibrational 
states of each electronic state are correctly located vertically 
but the other vibrational states are shown only schematically. 
(IC: internal conversion; ISC: intersystem crossing.)

1-iodonaphthalene. The replacement of an H atom by suc-
cessively heavier atoms enhances both intersystem crossing 
from the first excited singlet state to the first excited triplet 
state (thereby decreasing the efficiency of fluorescence) and 
the radiative transition from the first excited triplet state to 
the ground singlet state (thereby increasing the efficiency of 
phosphorescence).

Self-test 13B.1 Consider an aqueous solution of a chromo-
phore that f luoresces strongly. Is the addition of iodide ion 
to the solution likely to increase or decrease the efficiency of 
phosphorescence the chromophore?

Answer: increase
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546 13 Electronic transitions

may undergo a redistribution that results in it undergoing an 
internal conversion, a radiationless conversion to another 
state of the same multiplicity. An internal conversion occurs 
most readily at the point of intersection of the two molecular 
potential energy curves, because there the nuclear geometries 
of the two electronic states are the same. The state into which 
the molecule converts may be dissociative, so the states near 
the intersection have a finite lifetime and hence their energies 
are imprecisely defined (lifetime broadening, Topic 12A). As 
a result, the absorption spectrum is blurred in the vicinity of 
the intersection. When the incoming photon brings enough 
energy to excite the molecule to a vibrational level high above 
the intersection, the internal conversion does not occur (the 
nuclei are unlikely to have the same geometry). Consequently, 
the levels resume their well-defined, vibrational character with 
correspondingly well-defined energies, and the line structure 
resumes on the high-frequency side of the blurred region.

Brief illustration 13B.2 The effect of predissociation on 
an electronic spectrum

The O2 molecule absorbs ultraviolet radiation in a transition 
from its 3 Σg

− ground electronic state to a 3 Σu
− excited state that 

is energetically close to a dissociative 3Πu state. In this case, 
the effect of predissociation is more subtle than the abrupt loss 
of vibrational–rotational structure in the spectrum; instead, 
the vibrational structure simply broadens rather than being 
lost completely. As before, the broadening is explained by 
short lifetimes of the excited vibrational states near the inter-
section of the curves describing the bound and dissociative 
excited electronic states.

Self-test 13B.2 What can be estimated from the wavenumber 
of onset of predissociation?

Answer: See Fig. 13B.8; an upper limit on the dissociation  
energy of the ground electronic state

Checklist of concepts

☐ 1. Fluorescence is radiative decay between states of the 
same multiplicity; it ceases as soon as the exciting 
source is removed.

☐ 2.  Phosphorescence is radiative decay between states of 
different multiplicity; it persists after the exciting radia-
tion is removed.

☐ 3. Intersystem crossing is the non-radiative conversion to 
a state of different multiplicity.

☐ 4. A Jablonski diagram is a schematic diagram of the 
types of non-radiative and radiative transitions that 
can occur in molecules.

☐ 5. An additional fate of an electronically excited species is 
dissociation.

☐ 6. Internal conversion is a non-radiative conversion to a 
state of the same multiplicity.

☐ 7. Predissociation is the observation of the effects of dis-
sociation before the dissociation limit is reached.
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Figure 13B.8 When a dissociative state crosses a bound state, 
molecules excited to levels near the crossing may dissociate. 
This process is called predissociation, and is detected in the 
spectrum as a loss of vibrational structure that resumes at 
higher frequencies.
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Figure 13B.7 When absorption occurs to unbound states of 
the upper electronic state, the molecule dissociates and the 
absorption is a continuum. Below the dissociation limit the 
electronic spectrum shows a normal vibrational structure.
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13C lasers

The word laser is an acronym formed from light amplification 
by stimulated emission of radiation. In stimulated emission 
(Topic 12A), an excited state is stimulated to emit a photon 
by radiation of the same frequency: the more photons that are 

present, the greater the probability of the emission. The essen-
tial feature of laser action is positive-feedback: the greater the 
number of photons present of the appropriate frequency, the 
greater the rate at which even more photons of that frequency 
will be stimulated to form.

Laser radiation has a number of striking characteristics 
(Table 13C.1). Each of them (sometimes in combination with 
the others) opens up interesting opportunities in physical 
chemistry. Raman spectroscopy has flourished on account of 
the high intensity monochromatic radiation available from 
lasers (Topic 12A), and the ultra-short pulses that lasers can 
generate make possible the study of light-initiated reactions on 
timescales of femtoseconds and even attoseconds.

13C.1 Population inversion

One requirement of laser action is the existence of a metasta-
ble excited state, an excited state with a long enough lifetime 
for it to participate in stimulated emission. Another require-
ment is the existence of a greater population in the metastable 
state than in the lower state where the transition terminates, for 
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➤➤ Why do you need to know this material?
Radiative decay has great technological importance: lasers 
have brought unprecedented precision to spectroscopy 
and are used in medicine, telecommunications, and many 
aspects of everyday life.

➤➤ What is the key idea?
Laser action is the stimulated emission of coherent radiation 
taking place between states related by a population 
inversion.

➤➤ What do you need to know already?
You need to be familiar with electronic transitions in 
molecules (Topic 13A), the difference between spontaneous 
and stimulated emission of radiation (Topic 12A), and the 
general features of spectroscopy (Topics 12A and 13B).

Table 13C.1 Characteristics of laser radiation and their 
chemical applications

Characteristic Advantage Application

High power Multiphoton process Spectroscopy

Low detector noise Improved sensitivity

High scattering 
intensity

Raman spectroscopy (Topics 
12C–12 E)

Monochromatic High resolution Spectroscopy

State selection Photochemical studies 
(Topic 20G)

Reaction dynamics  
(Topic 21D)

Collimated beam Long path lengths Improved sensitivity

Forward-scattering 
observable

Raman spectroscopy (Topics 
12C–12E)

Coherent Interference between 
separate beams

CARS (Topic 12E)

Pulsed Precise timing of 
excitation

Fast reactions (Topics 13C, 
20G, and 21C)

Relaxation (Topic 20C)

Energy transfer (Topic 20C)
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548 13 Electronic transitions

then there will be a net emission of radiation. Because at ther-
mal equilibrium the opposite is true, it is necessary to achieve a 
population inversion in which there are more molecules in the 
upper state than in the lower.

One way of achieving population inversion is illustrated in 
Fig. 13C.1. The molecule is excited to an intermediate state I, 
which then gives up some of its energy non-radiatively and 
changes into a lower state A; the laser transition is the return 
of A to the ground state X. Because three energy levels are 
involved overall, this arrangement leads to a three-level laser. 
In practice, I consists of many states, all of which can convert 
to the upper of the two laser states A. The I ← X transition is 
stimulated with an intense flash of light in the process called 
pumping. The pumping is often achieved with an electric dis-
charge through xenon or with the light of another laser. The 
conversion of I to A should be rapid, and the laser transitions 
from A to X should be relatively slow.

The disadvantage of the three-level arrangement is that it 
is difficult to achieve population inversion, because so many 
ground-state molecules must be converted to the excited state 
by the pumping action. The arrangement adopted in a four-
level laser simplifies this task by having the laser transition ter-
minate in a state A′ other than the ground state (Fig. 13C.2). 

Because A′ is unpopulated initially, any population in A corre-
sponds to a population inversion and we can expect laser action 
if A is sufficiently metastable. Moreover, this population inver-
sion can be maintained if the A′ → X transitions are rapid, for 
these transitions will deplete any population in A′ that stems 
from the laser transition, and keep the state A′ relatively empty.
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Figure 13C.1 The transitions involved in one kind of three-
level laser. The pumping pulse populates the intermediate 
state I, which in turn populates the metastable state A. The 
laser transition is the stimulated emission A → X.
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Figure 13C.2 The transitions involved in a four-level laser. 
Because the laser transition terminates in an excited state (A′), 
the population inversion between A and A′ is much easier to 
achieve.

Brief illustration 13C.1 Simple lasers

The ruby laser is an example of a three-level laser (Fig. 13C.3). 
Ruby is Al2O3 containing a small proportion of Cr3+ ions. The 
lower level of the laser transition is the 4A2 ground state of the 
Cr3+ ion. The process of pumping a majority of the Cr3+ ions 
into the 4T2 and 4T1 excited states is followed by a radiation-
less transition to the 2E excited state. The laser transition is 
2E → 4A2, and gives rise to red 694 nm radiation.

The neodymium laser is an example of a four-level laser 
(Fig 13C.4). In one form it consists of Nd3+ ions at low con-
centration in yttrium aluminium garnet (YAG, specifically 
Y3Al5O12), and is then known as a Nd:YAG laser. A neodym-
ium laser operates at a number of wavelengths in the infrared, 
the band at 1064 nm being most common.

Self-test 13C.1 In the arrangement discussed here, does a ruby 
laser generate pulses of light or a continuous beam of light?

Answer: Pulses
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Figure 13C.3 The transitions involved in a ruby laser.
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Figure 13C.4 The transitions involved in a neodymium 
laser.
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13C.2 Cavity and mode characteristics

The laser medium is confined to a cavity that ensures that only 
certain photons of a particular frequency, direction of travel, 
and state of polarization are generated abundantly. The cavity is 
essentially a region between two mirrors, which reflect the light 
back and forth. This arrangement can be regarded as a version 
of the particle in a box, with the particle now being a photon. 
As in the treatment of a particle in a box (Topic 8A), the only 
wavelengths that can be sustained satisfy

n L× =1
2λ   resonant modes  (13C.1)

where n is an integer and L is the length of the cavity. That is, 
only an integral number of half-wavelengths fit into the cavity; 
all other waves undergo destructive interference with them-
selves. In addition, not all wavelengths that can be sustained 
by the cavity are amplified by the laser medium (many fall out-
side the range of frequencies of the laser transitions), so only a 
few contribute to the laser radiation. These wavelengths are the 
reson ant modes of the laser.

Photons with the correct wavelength for the resonant modes 
of the cavity and the correct frequency to stimulate the laser 
transition are highly amplified. One photon might be generated 
spontaneously and travel through the medium. It stimulates 
the emission of another photon, which in turn stimulates more 
(Fig. 13C.5). The cascade of energy builds up rapidly, and soon 
the cavity is an intense reservoir of radiation at all the resonant 
modes it can sustain. Some of this radiation can be withdrawn 
if one of the mirrors is partially transmitting.

The resonant modes of the cavity have various natural charac-
teristics, and to some extent may be selected. Only photons that 
are travelling strictly parallel to the axis of the cavity undergo 
more than a couple of reflections, so only they are amplified, 
all others simply vanishing into the surroundings. Hence, laser 
light generally forms a beam with very low divergence. It may 

also be polarized, with its electric vector in a particular plane (or 
in some other state of polarization), by including a polarizing 
filter into the cavity or by making use of polarized transitions in 
a solid medium.

Laser radiation is coherent in the sense that the electromag-
netic waves are all in step. In spatial coherence the waves are 
in step across the cross-section of the beam emerging from 
the cavity. In temporal coherence the waves remain in step 
along the beam. The former is normally expressed in terms of a 
coherence length, lC, the distance across the beam over which 
the waves remain coherent, and is related to the range of wave-
lengths, Δλ, present in the beam:

lC = λ
λ
2

2∆  
 coherence length  (13C.2)

When many wavelengths are present, and Δλ is large, the waves 
get out of step in a short distance and the coherence length is 
small.

Brief illustration 13C.2 Resonant modes

It follows from eqn 13C.1 that the frequencies of the reso-
nant modes are ν = c/λ = (c/2L) × n. For a laser cavity of length 
30.0 cm, the allowed frequencies are
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with n = 1, 2, …, and therefore ν = 500 MHz, 1000 MHz, ….

Self-test 13C.2 Consider a laser cavity of length 1.0 m. What is 
the frequency difference between successive resonant modes?

Answer: 150 MHz

Brief illustration 13C.3 Coherence length

A typical light bulb gives out light with a coherence length of 
only about 400 nm. By contrast, a He–Ne laser with λ = 633 nm 
and Δλ = 2.0 pm has a coherence length of
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Self-test 13C.3 What is the condition that would lead to an 
infinite coherence length?

Answer: A perfectly monochromatic beam, or Δλ = 0

Pump

Thermal
equilibrium 

Population
inversion

Laser
action

(a)

(b)

(c)

Figure 13C.5 A schematic illustration of the steps leading to 
laser action. (a) The Boltzmann population of states, with more 
atoms in the ground state. (b) When the initial state absorbs, 
the populations are inverted (the atoms are pumped to the 
excited state). (c) A cascade of radiation then occurs, as one 
emitted photon stimulates another atom to emit, and so on. 
The radiation is coherent (phases in step).
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550 13 Electronic transitions

13C.3 Pulsed lasers

A laser can generate radiation for as long as the population 
inversion is maintained. A laser can operate continuously 
when heat is easily dissipated, for then the population of the 
upper level can be replenished by pumping. When overheating 
is a problem, the laser can be operated only in pulses, perhaps 
of microsecond or millisecond duration, so that the medium 
has a chance to cool or the lower state discard its population. 
However, it is sometimes desirable to have pulses of radiation 
rather than a continuous output, with a lot of power concen-
trated into a brief pulse. One way of achieving pulses is by Q-
switching, the modification of the resonance characteristics 
of the laser cavity. The name comes from the ‘Q-factor’ used 
as a measure of the quality of a resonance cavity in microwave 
engineering.

The aim of Q-switching is to achieve a healthy population 
inversion in the absence of the resonant cavity, then to plunge the 
population-inverted medium into a cavity and hence to obtain 
a sudden pulse of radiation. The switching may be achieved by 
impairing the resonance characteristics of the cavity in some way 
while the pumping pulse is active and then suddenly to improve 
them (Fig. 13C.6). One technique is to use the ability of some 
crystals to change their optical properties when an electrical 
potential difference is applied. For example, a crystal of potassium 
dihydrogenphosphate (KH2PO4) rotates the plane of polarization 
of light to different extents when a potential difference is switched 
on and off. In this way energy can be stored or released in a laser 
cavity, resulting in an intense pulse of stimulated emission.

The technique of mode locking can produce pulses of pico-
second duration and less. A laser radiates at a number of dif-
ferent frequencies, depending on the precise details of the 
resonance characteristics of the cavity and in particular on the 
number of half-wavelengths of radiation that can be trapped 
between the mirrors (the cavity modes). The resonant modes 
differ in frequency by multiples of c/2L (Brief illustration 
13C.4). Normally, these modes have random phases relative to 
each other. However, it is possible to lock their phases together. 
As we show in the following Justification, interference then 
occurs to give a series of sharp peaks, and the energy of the 
laser is obtained in short bursts (Fig. 13C.7). More specifically, 
the intensity, I, of the radiation varies with time as

I t
N ct L

ct L
( )

( )
( )

∝ π
π

E0
2

2

2

2
2

sin /
sin /  

 mode-locked laser output  (13C.3)

where E0 is the amplitude of the electromagnetic wave describ-
ing the laser beam and N is the number of locked modes. This 
function is shown in Fig. 13C.8. We see that it is a series of peaks 
with maxima separated by t = 2L/c, the round-trip transit time 
of the light in the cavity, and that the peaks become sharper as 
N is increased. In a laser with a cavity of length 30 cm, the peaks 
are separated by 2 ns. If 1000 modes contribute, the width of the 
pulses is 4 ps.

Example 13C.1 Relating the power and energy of a laser

A certain laser can generate radiation in 3.0 ns pulses, each 
of which delivers an energy of 0.10 J, at a pulse repetition fre-
quency of 10 Hz. Assuming that the pulses are rectangular, 
calculate the peak power and the average power of this laser.

Method Power is the energy released in an interval divided 
by the duration of the interval, and is expressed in watts 
(1 W = 1 J s−1). The peak power, Ppeak, of a rectangular pulse is 
defined as the energy delivered in a pulse divided by its dura-
tion. The average power, Paverage, is the total energy delivered 
by a large number of pulses divided by the duration of the 
time interval over which that total energy is measured. If each 
pulse delivers an energy Epulse and in an interval Δt there are 
N pulses, the total energy delivered is NEpulse and the aver-
age power is Paverage = NEpulse/Δt. However, Δt/N is the interval 
between pulses and therefore the inverse of the pulse repeti-
tion frequency, νrepetition. It follows that Paverage = Epulseνrepetition.

Answer From the data,

Ppeak
J

s
Js MJs MW=

×
= × = =−

− −0 10
3 0 10

3 3 10 33 339
7 1 1.

.
.

The pulse repetition frequency rate is 10 Hz. It follows that the 
average power is

Paverage
1 11 J 1 s 1 Js 1 W= × = =− −0 0 0 0 0. . .

The peak power is much higher than the average power 
because this laser emits light for only 30 ns during each second 
of operation.

Self-test 13C.4 Calculate the peak power and average power of 
a laser with a pulse energy of 2.0 mJ, a pulse duration of 30 ps, 
and a pulse repetition rate of 38 MHz.

Answer: Ppeak = 67 MW, Paverage = 76 kW

Pump

Cavity nonresonant

Cavity resonant

Switch

Pulse

(a)

(b)

Figure 13C.6 The principle of Q-switching. (a) The excited 
state is populated while the cavity is non-resonant. (b) Then 
the resonance characteristics are suddenly restored, and the 
stimulated emission emerges in a giant pulse.
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Mode locking is achieved by varying the Q-factor of the 
cavity periodically at the frequency c/2L. The modulation can 
be pictured as the opening of a shutter in synchrony with the 
round-trip travel time of the photons in the cavity, so only 
photons making the journey in that time are amplified. The 
modulation can be achieved by linking a prism in the cavity to 
a transducer driven by a radiofrequency source at a frequency 
c/2L. The transducer sets up standing-wave vibrations in the 
prism and modulates the loss it introduces into the cavity.

Another mechanism for mode-locking lasers is based on the 
optical Kerr effect, which arises from a change in refractive 
index of a well-chosen medium, the Kerr medium, when it is 
exposed to intense laser pulses. Because a beam of light changes 
direction when it passes from a region of one refractive index 
to a region with a different refractive index, changes in refrac-
tive index result in the self-focussing of an intense laser pulse as 
it travels through the Kerr medium (Fig. 13C.9).

To bring about mode-locking, a Kerr medium is included in 
the laser cavity and next to it is a small aperture. The procedure 
makes use of the fact that the gain, the growth in intensity, of a 
frequency component of the radiation in the cavity is very sen-
sitive to amplification, and once a particular frequency begins 
to grow, it can quickly dominate. When the power inside the 
cavity is low, a portion of the photons will be blocked by the 
aperture, creating a significant loss. A spontaneous fluctuation 
in intensity—a bunching of photons—may begin to turn on the 
optical Kerr effect and the changes in the refractive index of the 
Kerr medium will result in a Kerr lens, which is the self-focus-
ing of the laser beam. The bunch of photons can pass through 
and travel to the far end of the cavity, amplifying as it goes. 

Justification 13C.1 The origin of mode locking

The general expression for a (complex) wave of amplitude E0 
and frequency ω is E0eiωt . Therefore, each wave that can be 
supported by a cavity of length L has the form

E En
nc L tt( ) ( / )= +

0
2 2e iπ 

where ν is the lowest frequency. A wave formed by superim-
posing N modes with n = 0, 1, …, N – 1 has the form

( ) ( ) /E E EEt t
n

N

n
i t

n

N

nct L i= = =
=

−

=

−

∑ ∑
0

1

0
2

0

1

0
2e e eiπ π π

S N( )� �� ��

tS N( )

The sum simplifies to:

S N ct L ct L N ct L( ) / / /= + + + + −1 2 1e e ei i ( )iπ π π

The sum of a geometric series is

1
1
1

2 1+ + + + = −
−

−e e e
e
e

x x N x
Nx

x ( )

so, with x = iπct/L,

S N
N ct L

ct L( )
/

/= −
−

e
e

i

i

π

π
1

1

On multiplication of both the numerator and denominator by 
e−iπct/2L and a little rearrangement this expression becomes

S N
N ct L N ct L

ct L ct L
N ct L( )

/ /

/ /
/= −

−
×

−

−
−e e

e e
e

i i

i i
( )i

π π

π π
π

2 2

2 2
1 2

At this point we use sin x = (1/2i)(eix − e−ix), and obtain

S N
N ct L

ct L
N ct L( )

( )
( )

/= × −sin /
sin /

e( )iπ
π

π2
2

1 2

The intensity, I(t), of the radiation is proportional to the square 
modulus of the total amplitude, so

I t
N ct L

ct L
( )

( )
( )

*∝ π
π

E E E= 0
2

2

2

2
2

sin /
sin /

which is eqn 13C.3.

1 ns
1 ps

Time, t

Figure 13C.7 The output of a mode-locked laser consists of a 
stream of very narrow pulses (here 1 ps in duration) separated 
by an interval equal to the time it takes for light to make a 
round trip inside the cavity (here 1 ns).

Time, ct/2L
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Figure 13C.8 The structure of the pulses generated by a 
mode-locked laser.
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552 13 Electronic transitions

The Kerr lens immediately disappears (if the medium is well 
chosen), but is re-created when the intense pulse returns from 
the mirror at the far end. In this way, that particular bunch of 
photons may grow to considerable intensity because it alone is 
stimulating emission in the cavity.

13C.4 Time-resolved spectroscopy

The ability of lasers to produce pulses of very short duration is 
particularly useful in chemistry when we want to monitor pro-
cesses in time. In time-resolved spectroscopy, laser pulses are 
used to obtain the absorption, emission, or Raman spectrum of 
reactants, intermediates, products, and even transition states of 
reactions. It is also possible to study energy transfer, molecular 
rotations, vibrations, and conversion from one mode of motion 
to another.

The arrangement shown in Fig. 13C.10 is often used to study 
ultrafast chemical reactions that can be initiated by light (Topic 
20G). A strong and short laser pulse, the pump, promotes a 
molecule A to an excited electronic state A* that can either emit 
a photon (as fluorescence or phosphorescence) or react with 
another species B to yield a product C:

Here [AB] denotes either an intermediate or an activated com-
plex. The rates of appearance and disappearance of the various 
species are determined by observing time-dependent changes 
in the absorption spectrum of the sample during the course 
of the reaction. This monitoring is done by passing a weak 
pulse of white light, the probe, through the sample at different 
times after the laser pulse. Pulsed ‘white’ light can be gener-
ated directly from the laser pulse by the phenomenon of con-
tinuum generation, in which focusing a short laser pulse on 
a vessel containing water, carbon tetrachloride, or sapphire 

results in an outgoing beam with a wide distribution of fre-
quencies. A time delay between the strong laser pulse and the 
‘white’ light pulse can be introduced by allowing one of the 
beams to travel a longer distance before reaching the sample. 
For example, a difference in travel distance of Δd = 3 mm cor-
responds to a time delay Δt = Δd/c ≈10 ps between two beams, 
where c is the speed of light. The relative distances travelled 
by the two beams in Fig 13C.10 are controlled by directing 
the ‘white’ light beam to a motorized stage carrying a pair of 
mirrors.

Variations of the arrangement in Fig 13C.10 can be used for 
the observation of the decay of an excited state and of time-
resolved Raman spectra during the course of the reaction. The 
lifetime of A* can be determined by exciting A as before and 
measuring the decay of the fluorescence intensity after the 
pulse with a fast photodetector system. In this case, continuum 
generation is not necessary. Time-resolved resonance Raman 
spectra of A, A*, B, [AB], or C can be obtained by initiating 
the reaction with a strong laser pulse of a certain wavelength 
and then, sometime later, irradiating the sample with another 
laser pulse that can excite the resonance Raman spectrum of 
the desired species. Also in this case continuum generation is 
not necessary.

13C.5 Examples of practical lasers

Figure 13C.11 summarizes the requirements for an efficient 
laser. In practice, the requirements can be satisfied by using a 
variety of different systems. We have already considered the 
ruby and neodymium lasers, and here we review other arrange-
ments that are commonly available. We also include some 
lasers that operate by using other than electronic transitions. 
Noticeably absent from this discussion are the ubiquitous diode 
lasers, which we discuss in Topic 18D.

A + hν → A* (absorption)

A* → A (emission)
A* + B → [AB] → C (reaction)

Aperture

Laser
beam

Kerr medium

Figure 13C.9 An illustration of the Kerr effect. An intense laser 
beam is focused inside a Kerr medium and passes through a 
small aperture in the laser cavity. This effect may be used to 
mode-lock a laser, as explained in the text.

Detector

Laser

Monochromator

Beamsplitter

Sample
cell

Continuum
generation

LensLens

Prisms on
motorized stage

Figure 13C.10 A configuration used for time-resolved 
absorption spectroscopy, in which the same pulsed laser is 
used to generate a monochromatic pump pulse and, after 
continuum generation in a suitable liquid, a ‘white’ light probe 
pulse. The time delay between the pump and probe pulses 
may be varied.
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(a) Gas lasers
Because gas lasers can be cooled by a rapid flow of the gas 
through the cavity, they can be used to generate high powers. 
The pumping is normally achieved using a gas that is different 
from the gas responsible for the laser emission itself.

In the helium–neon laser the active medium is a mixture 
of helium and neon in a mole ratio of about 5:1 (Fig. 13C.12). 
The initial step is the excitation of an He atom to the meta-
stable 1s12s1 configuration by using an electric discharge (the 
collisions of electrons and ions cause transitions that are not 
restricted by electric-dipole selection rules). The excitation 
energy of this transition happens to match an excitation energy 
of neon, and during an He–Ne collision efficient transfer of 
energy may occur, leading to the production of highly excited, 
metastable Ne atoms with unpopulated intermediate states. 
Laser action generating 633 nm radiation (among about 100 
other lines) then occurs.

The argon-ion laser (Fig. 13C.13), one of a number of ‘ion 
lasers’, consists of argon at about 1 Torr, through which is passed 
an electric discharge. The discharge results in the formation of 
Ar+ and Ar2+ ions in excited states, which undergo a laser tran-
sition to a lower state. These ions then revert to their ground 

states by emitting hard (short wavelength) ultraviolet radiation 
(at 72 nm), and are then neutralized by a series of electrodes in 
the laser cavity. One of the design problems is to find materials 
that can withstand this damaging residual radiation. There are 
many lines in the laser transition because the excited ions may 
make transitions to many lower states, but two strong emissions 
from Ar+ are at 488 nm (blue) and 514 nm (green); other transi-
tions occur elsewhere in the visible region, in the infrared, and 
in the ultraviolet. The krypton-ion laser works similarly. It is 
less efficient, but gives a wider range of wavelengths, the most 
intense being at 647 nm (red), but it can also generate yellow, 
green, and violet light.

The carbon dioxide laser works on a slightly different 
principle (Fig. 13C.14), for its radiation (between 9.2 µm and 
10.8 µm, with the strongest emission at 10.6 µm, in the infra-
red) arises from vibrational transitions. Most of the working gas 
is nitrogen, which becomes vibrationally excited by electronic 
and ionic collisions in an electric discharge. The vibrational 
levels happen to coincide with the ladder of antisymmetric 
stretch (ν3, see Fig. 12E.2) energy levels of CO2, which pick up 
the energy during a collision. Laser action then occurs from the 
lowest excited level of ν3 to the lowest excited level of the sym-
metric stretch (ν1), which has remained unpopulated during 
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Figure 13C.11 A summary of the features needed for efficient 
laser action.

Helium Neon 3.4 μm1s12s1 1S

1s12s1 3S
1.2 μm 632.8 nm

1s2 1S

Figure 13C.12 The transitions involved in a helium–neon 
laser. The pumping (of the neon) depends on a coincidental 
matching of the helium and neon energy separations, so 
excited He atoms can transfer their excess energy to Ne atoms 
during a collision.

Ar+

Ar

72 nm

454 to 514 nm

e–

e–

Figure 13C.13 The transitions involved in an argon-ion laser.
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Figure 13C.14 The transitions involved in a carbon dioxide 
laser. The pumping also depends on the coincidental matching 
of energy separations; in this case the vibrationally excited 
N2 molecules have excess energies that correspond to a 
vibrational excitation of the antisymmetric stretch of CO2. The 
laser transition is from  = 1 of mode 3 to  = 1 of mode 1.
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the collisions. This transition is allowed by anharmonicities 
in the molecular potential energy. Some helium is included in 
the gas to help remove energy from this state and maintain the 
population inversion.

In a nitrogen laser, the efficiency of the stimulated transi-
tion (at 337 nm, in the ultraviolet, the transition C3Πu → B3Πg) 
is so great that a single passage of a pulse of radiation is enough 
to generate laser radiation and mirrors are unnecessary: such 
lasers are said to be superradiant.

(b) Exciplex lasers
The population inversion needed for laser action is achieved in 
an underhand way in exciplex lasers, for in these (as we shall 
see) the lower state does not effectively exist. This odd situa-
tion is achieved by forming an exciplex, a combination of two 
atoms that survives only in an excited state and which disso-
ciates as soon as the excitation energy has been discarded. An 
exciplex can be formed in a mixture of xenon, chlorine, and 
neon (which acts as a buffer gas). An electric discharge through 
the mixture produces excited Cl atoms, which attach to the 
Xe atoms to give the exciplex XeCl*. The exciplex survives for 
about 10 ns, which is time for it to participate in laser action 
at 308 nm (in the ultraviolet). As soon as XeCl* has discarded 
a photon, the atoms separate because the molecular potential 
energy curve of the ground state is dissociative, and the ground 
state of the exciplex cannot become populated (Fig. 13C.15). 
The KrF* exciplex laser is another example: it produces radia-
tion at 249 nm.

The term ‘excimer laser’ is also widely encountered and 
used loosely when ‘exciplex laser’ is more appropriate. An 
exciplex has the form AB* whereas an excimer, an excited 
dimer, is AA*.

(c) Dye lasers
Gas lasers and most solid state lasers operate at discrete fre-
quencies and, although the frequency required may be selected 
by suitable optics, the laser cannot be tuned continuously. The 
tuning problem is overcome by using a titanium–sapphire laser 
(see below) or a dye laser, which has broad spectral character-
istics because the solvent broadens the vibrational structure 
of the transitions into bands. Hence, it is possible to scan the 
wavelength continuously (by rotating the diffraction grating 
in the cavity) and achieve laser action at any chosen wave-
length. A commonly used dye is rhodamine 6G in methanol 
(Fig. 13C.16). As the gain is very high, only a short length of the 
optical path need be through the dye. The excited states of the 
active medium, the dye, are sustained by another laser or a flash 
lamp, and the dye solution is flowed through the laser cavity to 
avoid thermal degradation.

(d) Vibronic lasers
The titanium–sapphire laser (‘Ti:sapphire laser’), which con-
sists of Ti3+ ions at low concentration in an alumina (Al2O3) 
crystal. The electronic absorption spectrum of Ti3+ ion in sap-
phire is very similar to that shown in Fig. 13A.12, with a broad 
absorption band centred at around 500 nm that arises from 
vibronically allowed d–d transitions of the Ti3+ ion in an octa-
hedral environment provided by oxygen atoms of the host lat-
tice. As a result, the emission spectrum of Ti3+ in sapphire is 
also broad and laser action occurs over a wide range of wave-
lengths (Fig. 13C.17). Therefore, the titanium sapphire laser is 
an example of a vibronic laser, in which the laser transitions 
originate from vibronic transitions in the laser medium. The 
titanium sapphire laser is usually pumped by another laser, 
such as a Nd:YAG laser or an argon-ion laser, and can be oper-
ated in either a continuous or pulsed fashion.
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Figure 13C.15 The molecular potential energy curves for an 
exciplex. The species can survive only as an excited state (in this 
case a charge-transfer complex, A+B−), because on discarding 
its energy it enters the lower, dissociative state. Because only 
the upper state can exist, there is never any population in the 
lower state.
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Figure 13C.16 The optical absorption spectrum of the dye 
rhodamine 6G and the region used for laser action.
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Sapphire is an example of a Kerr medium that facilitates the 
mode locking of titanium sapphire lasers, resulting in very short 
(20–100 fs, 1 fs = 10−15 s) pulses. When considered together with 
broad wavelength tunability (700–1000 nm), these features of 
the titanium sapphire laser justify its wide use in modern spec-
troscopy and photochemistry.

Checklist of concepts

☐ 1. Laser action is the stimulated emission of coher-
ent radiation between states related by a population 
inversion.

☐ 2. A population inversion is a condition in which the 
population of an upper state is greater than that of a 
rele vant lower state.

☐ 3. The resonant modes of a laser are the wavelengths of 
radiation sustained inside a laser cavity.

☐ 4. Laser pulses are generated by the techniques of  
Q-switching and mode locking.

☐ 5. In time-resolved spectroscopy, laser pulses are used to 
obtain the absorption, emission, or Raman spectrum of 
reactants, intermediates, products, and even transition 
states of reactions.

☐ 6. Practical lasers include gas, dye, exciplex, and vibronic 
lasers.

Checklist of equations

2E

2T2

Pu
m

p

Figure 13C.17 The transitions involved in a Ti:sapphire laser. 
Monochromatic light from a pump laser induces a 2E ← 2T2 
transition in a Ti3+ ion that resides in a site with octahedral 
symmetry. After radiationless vibrational excitation in the 2E 
state, laser emission occurs from a very large number of closely 
spaced vibronic states of the medium. As a result, the laser 
emits radiation over a broad spectrum that spans from about 
700 nm to about 1000 nm.

Property Equation Comment Equation number

Resonant modes n L× =1
2

λ Laser cavity of length L 13C.1

Coherence length lC = λ2/2Δλ 13C.2

Mode-locked laser output I t N ct L ct L( ) { ( ) ( )}∝ π πE0
2 2 22 2sin / /sin / N locked modes 13C.3
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chaPter 13  Electronic transitions

TOPIC 13A electronic spectra

Discussion questions
13A.1 Explain the origin of the term symbol 3

gΣ −  for the ground state of 
dioxygen.

13A.2 Explain the basis of the Franck–Condon principle and how it leads to 
the formation of a vibrational progression.

13A.3 How do the band heads in P and R branches arise? Could the Q branch 
show a head?

13A.4 Explain how colour can arise from molecules.

13A.5 Suppose that you are a colour chemist and had been asked to intensify 
the colour of a dye without changing the type of compound, and that the dye 
in question was a conjugated polyene. (a) Would you choose to lengthen or to 
shorten the chain? (b) Would the modification to the length shift the apparent 
colour of the dye towards the red or the blue?

Exercises
13A.1(a) One of the excited states of the C2 molecule has the valence electron 
configuration 1 1 1 1g u u gσ σ2 2 3 1π π .  Give the multiplicity and parity of the term.
13A.1(b) Another of the excited states of the C2 molecule has the valence 
electron configuration 1 1 1 1g u u gσ σ2 2 2 2π π . Give the multiplicity and parity of 
the term.

13A.2(a) Which of the following transitions are electric-dipole allowed?  
(i) 2Π ↔ 2Π, (ii) 1Σ ↔ 1Σ, (iii) Σ ↔ Δ, (iv) Σ+ ↔ Σ−, (v) Σ+ ↔ Σ+.
13A.2(b) Which of the following transitions are electric-dipole allowed?  
(i) 1 g

1
uΣ Σ+ +↔ ,  (ii) 3 g

3
uΣ Σ+ +↔ , (iii) π* ↔ n.

13A.3(a) The ground-state wavefunction of a certain molecule is described by 
the vibrational wavefunction ψ 0 0

2= −N axe . Calculate the Franck–Condon 
factor for a transition to a vibrational state described by the wavefunction 
ψ v v= − −N a x xe ( ) / .0

2 2

13A.3(b) The ground-state wavefunction of a certain molecule is described by 
the vibrational wavefunction ψ 0 0

2= −N axe .  Calculate the Franck–Condon 
factor for a transition to a vibrational state described by the wavefunction 
ψ v v= − −N x a x xe ( ) / .0

2 2

13A.4(a) Suppose that the ground vibrational state of a molecule is modelled 
by using the particle-in-a-box wavefunction ψ0 = (2/L)1/2 sin(πx/L) for 0 ≤ x ≤ L 
and 0 elsewhere. Calculate the Franck–Condon factor for a transition to a 
vibrational state described by the wavefunction ′ = −ψ (2/ ) sin{ ( /4)/ }L x L L1 2/ π  
for L/4 ≤ x ≤ 5L/4 and 0 elsewhere.
13A.4(b) Suppose that the ground vibrational state of a molecule is modelled 
by using the particle-in-a-box wavefunction ψ0 = (2/L)1/2 sin(πx/L) for 0 ≤ x ≤ L 
and 0 elsewhere. Calculate the Franck–Condon factor for a transition to a 
vibrational state described by the wavefunction ψ ′ = (2/L)1/2 sin{π(x −L/2)/L}
for L/2 ≤ x ≤ 3L/2 and 0 elsewhere.

13A.5(a) Use eqn 13A.8a to infer the value of J corresponding to the location of 
the band head of the P branch of a transition.
13A.5(b) Use eqn 13A.8c to infer the value of J corresponding to the location 
of the band head of the R branch of a transition.

13A.6(a) The following parameters describe the electronic ground state and 
an excited electronic state of SnO: B = −0 0. ,354 cm 1   ′ = −B 0 0. .31 1cm 1  Which 
branch of the transition between them shows a head? At what value of J will 
it occur?
13A.6(b) The following parameters describe the electronic ground state and 
an excited electronic state of BeH: B = −1 3 8cm 10 0. ,  ′ = −B 1 47 cm 10 0. . Which 
branch of the transition between them shows a head? At what value of J will 
it occur?

13A.7(a) The R-branch of the 1
u

1
gΠ Σ← +  transition of H2 shows a band head 

at the very low value of J = 1. The rotational constant of the ground state is 

60.80 cm−1. What is the rotational constant of the upper state? Has the bond 
length increased or decreased in the transition?
13A.7(b) The P-branch of the 2Π ← 2Σ+ transition of CdH shows a band head 
at J = 25. The rotational constant of the ground state is 5.437 cm−1. What is 
the rotational constant of the upper state? Has the bond length increased or 
decreased in the transition?

13A.8(a) The complex ion [Fe(OH2)6]3+ has an electronic absorption spectrum 
with a maximum at 700 nm. Estimate a value of ΔO for the complex.
13A.8(b) The complex ion [Fe(CN)6]3− has an electronic absorption spectrum 
with a maximum at 305 nm. Estimate a value of ΔO for the complex.

13A.9(a) Suppose that we can model a charge-transfer transition in a one-
dimensional system as a process in which a rectangular wavefunction that 
is nonzero in the range 0 ≤ x ≤ a makes a transition to another rectangular 
wavefunction that is nonzero in the range 1

2
a x b≤ ≤ . Evaluate the transition 

moment ∫ψ ψf idx x.  (Assume a < b.)
13A.9(b) Suppose that we can model a charge-transfer transition in a 
one-dimensional system as a process in which an electron described by 
a rectangular wavefunction that is nonzero in the range 0 ≤ x ≤ a makes a 
transition to another rectangular wavefunction that is nonzero in the range 
ca ≤ x ≤ a where 0 ≤ c ≤ 1. Evaluate the transition moment ∫ψ ψf idx x  and 
explore its dependence on c.

13A.10(a) Suppose that we can model a charge-transfer transition in a one-
dimensional system as a process in which a Gaussian wavefunction centred 
on x = 0 and width a makes a transition to another Gaussian wavefunction 
of the same width centred on x a= 1

2
. Evaluate the transition moment 

∫ψ ψf idx x.

13A.10(b) Suppose that we can model a charge-transfer transition in a one-
dimensional system as a process in which an electron described by a Gaussian 
wavefunction centred on x = 0 and width a makes a transition to another 
Gaussian wavefunction of width a/2 and centred on x = 0. Evaluate the 
transition moment ∫ψ ψf idx x.

13A.11(a) The two compounds 2,3-dimethyl-2-butene (1) and 2,5-dimethyl-
2,4-hexadiene (2) are to be distinguished by their ultraviolet absorption 
spectra. The maximum absorption in one compound occurs at 192 nm and 
in the other at 243 nm. Match the maxima to the compounds and justify the 
assignment.

1 2,3-Dimethyl-2-butene 2 2,5-Dimethyl-2,4-hexadiene
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13A.11(b) 3-Buten-2-one (3) has a strong absorption at 213 nm and a weaker 
absorption at 320 nm. Justify these features and assign the ultraviolet 
absorption transitions.

O

3 3-Buten-2-one

Problems
13A.1‡ J.G. Dojahn et al. (J. Phys. Chem. 100, 9649 (1996)) characterized the 
potential energy curves of the ground and electronic states of homonuclear 
diatomic halogen anions. These anions have a 2

uΣ+  ground state and 2Πg, 
2Πu, and 2

gΣ+  excited states. To which of the excited states are electric-dipole 
transitions allowed? Explain your conclusion.

13A.2 The vibrational wavenumber of the oxygen molecule in its electronic 
ground state is 1580 cm−1, whereas that in the excited state ( ),B3

uΣ−  to which 
there is an allowed electronic transition, is 700 cm−1. Given that the separation 
in energy between the minima in their respective potential energy curves 
of these two electronic states is 6.175 eV, what is the wavenumber of the 
lowest energy transition in the band of transitions originating from the v = 0 
vibrational state of the electronic ground state to this excited state? Ignore any 
rotational structure or anharmonicity.

13A.3 A transition of particular importance in O2 gives rise to the Schumann–
Runge band in the ultraviolet region. The wavenumbers (in cm−1) of 
transitions from the ground state to the vibrational levels of the first excited 
state ( )3

uΣ−  are 50 062.6, 50 725.4, 51 369.0, 51 988.6, 52 579.0, 53 143.4,  
53 679.6, 54 177.0, 54 641.8, 55 078.2, 55 460.0, 55 803.1, 56 107.3, 56 360.3, 
56 570.6. What is the dissociation energy of the upper electronic state? (Use a 
Birge–Sponer plot, Topic 12D.) The same excited state is known to dissociate 
into one ground state O atom and one excited state atom with an energy 
190 kJ mol−1 above the ground state. (This excited atom is responsible for a 
great deal of photochemical mischief in the atmosphere.) Ground state O2 
dissociates into two ground state atoms. Use this information to calculate the 
dissociation energy of ground-state O2 from the Schumann–Runge data.

13A.4 You are now ready to understand more deeply the features of 
photoelectron spectra (Topic 10B). Figure 13.1 shows the photoelectron 
spectrum of HBr. Disregarding for now the fine structure, the HBr lines fall 
into two main groups. The least tightly bound electrons (with the lowest 
ionization energies and hence highest kinetic energies when ejected) are those 
in the lone pairs of the Br atom. The next ionization energy lies at 15.2 eV, 
and corresponds to the removal of an electron from the HBr σ bond. (a) The 
spectrum shows that ejection of a σ electron is accompanied by a considerable 
amount of vibrational excitation. Use the Franck–Condon principle to 
account for this observation. (b) Go on to explain why the lack of much 
vibrational structure in the other band is consistent with the nonbonding role 
of the Br4px and Br4py lone-pair electrons.

13A.5 The highest kinetic energy electrons in the photoelectron spectrum of 
H2O using 21.22 eV radiation are at about 9 eV and show a large vibrational 
spacing of 0.41 eV. The symmetric stretching mode of the neutral H2O 
molecule lies at 3652 cm−1. (a) What conclusions can be drawn from the 
nature of the orbital from which the electron is ejected? (b) In the same 
spectrum of H2O, the band near 7.0 eV shows a long vibrational series 
with spacing 0.125 eV. The bending mode of H2O lies at 1596 cm−1. What 
conclusions can you draw about the characteristics of the orbital occupied by 
the photoelectron?

13A.6 A lot of information about the energy levels and wavefunctions of 
small inorganic molecules can be obtained from their ultraviolet spectra. An 
example of a spectrum with considerable vibrational structure, that of gaseous 
SO2 at 25 °C, is shown in Fig. 13A.5. Estimate the integrated absorption 
coefficient for the transition. What electronic states are accessible from the A1 
ground state of this C2v molecule by electric dipole transitions?

13A.7 Assume that the electronic states of the π electrons of a conjugated 
molecule can be approximated by the wavefunctions of a particle in a 
one-dimensional box, and that the magnitude of the dipole moment can 
be related to the displacement along this length by μ = −ex. Show that the 
transition probability for the transition n = 1 → n = 2 is nonzero, whereas 
that for n = 1 → n = 3 is zero. Hints: The following relation will be useful: 
sin sin cos( ) cos( )x y x y x y= − − +1

2
1
2

. Relevant integrals are found in the 
Resource section.

13A.8 1,3,5-Hexatriene (a kind of ‘linear’ benzene) was converted into benzene 
itself. On the basis of a free-electron molecular orbital model (in which 
hexatriene is treated as a linear box and benzene as a ring), would you expect 
the lowest energy absorption to rise or fall in energy?

13A.9 Estimate the magnitude of the transition dipole moment of a charge-
transfer transition modelled as the migration of an electron from a H1s 
orbital on one atom to another H1s orbital on an atom a distance R away. 
Approximate the transition moment by −eRS where S is the overlap integral 
of the two orbitals. Sketch the transition moment as a function of R using the 
curve for S given in Fig. 10C.7. Why does the intensity of a charge-transfer 
transition fall to zero as R approaches 0 and infinity?

13A.10 Figure 13.2 shows the UV-visible absorption spectra of a selection of 
amino acids. Suggest reasons for their different appearances in terms of the 
structures of the molecules.
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Figure 13.1 The photoelectron spectrum of HBr.
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Figure 13.2 Electronic absorption spectra of selected amino acids.‡ These problems were supplied by Charles Trapp and Carmen Giunta.
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558 13 Electronic transitions

TOPIC 13B decay of excited states

Discussion questions
13B.1 Describe the mechanism of fluorescence. In what respects is a 
fluorescence spectrum not the exact mirror image of the corresponding 
absorption spectrum?

13B.2 What is the evidence for the correctness of the mechanism of 
fluorescence?

Exercises
13B.1(a) The line marked A in Fig. 13.3 is the fluorescence spectrum of 
benzophenone in solid solution in ethanol at low temperatures observed when 
the sample is illuminated with 360 nm ultraviolet radiation. What can be said 
about the vibrational energy levels of the carbonyl group in (i) its ground 
electronic state and (ii) its excited electronic state?
13B.1(b) When naphthalene is illuminated with 360 nm ultraviolet radiation 
it does not absorb, but the line marked B in Fig. 13.3 is the phosphorescence 
spectrum of a solid solution of a mixture of naphthalene and benzophenone 
in ethanol. Now a component of fluorescence from naphthalene can be 
detected. Account for this observation.

13B.2(a) The oxygen molecule absorbs ultraviolet radiation in a transition 
from its 3

gΣ− ground electronic state to an excited state that is energetically 
close to a dissociative 5Πu state. The absorption band has a relatively large 
experimental linewidth. Account for this observation.
13B.2(b) The hydrogen molecule absorbs ultraviolet radiation in a transition 
from its 1

gΣ+  ground electronic state to an excited state that is energetically 
close to a dissociative 1

uΣ+  state. The absorption band has a relatively large 
experimental linewidth. Account for this observation.

Problem
13B.1 The fluorescence spectrum of anthracene vapour shows a series of peaks 
of increasing intensity with individual maxima at 440 nm, 410 nm, 390 nm, 
and 370 nm followed by a sharp cut-off at shorter wavelengths. The absorption 

spectrum rises sharply from zero to a maximum at 360 nm with a trail of 
peaks of lessening intensity at 345 nm, 330 nm, and 305 nm. Account for these 
observations.

TOPIC 13C lasers

Discussion questions
13C.1 Describe the principles of (a) continuous-wave and (b) pulsed laser 
action.

13C.2 How might you use a Q-switched or mode-locked laser in the study of a 
very fast chemical reaction that can be initiated by absorption of light?

Exercises
13C.1(a) Consider an evacuated laser cavity of length 1.0 cm. What are the 
allowed wavelengths and frequencies of the resonant modes?
13C.1(b) Consider an evacuated laser cavity of length 3.0 m. What are the 
allowed wavelengths and frequencies of the resonant modes?

13C.2(a) A certain laser can generate radiation in pulses, each of which delivers 
an energy of 0.10 mJ, with peak power of 5.0 MW and average power of 
7.0 kW. What are the pulse duration and repetition frequency?
13C.2(b) A certain laser can generate radiation in pulses, each of which 
delivers an energy of 20.0 µJ, with peak power of 100 kW and average power of 
0.40 mW. What are the pulse duration and repetition frequency?

Problems
13C.1 Light-induced degradation of molecules, also called photobleaching, is a 
serious problem in fluorescence microscopy. A molecule of a fluorescent dye 

commonly used to label biopolymers can withstand about 106 excitations by 
photons before light-induced reactions destroy its π system and the molecule 
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Figure 13.3 The fluorescence and phosphorescence spectra of two 
solutions.
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 Exercises and problems  559

no longer fluoresces. For how long will a single dye molecule fluoresce while 
being excited by 1.0 mW of 488 nm radiation from a continuous-wave argon 
ion laser? You may assume that the dye has an absorption spectrum that peaks 
at 488 nm and that every photon delivered by the laser is absorbed by the 
molecule.

13C.2 Use mathematical software or an electronic spreadsheet to simulate the 
output of a mode-locked laser (that is, plots such as that shown in Fig. 13C.8) 
for L = 30 cm and N = 100 and 1000.

Integrated activities
13.1‡ One of the principal methods for obtaining the electronic spectra of 
unstable radicals is to study the spectra of comets, which are almost entirely 
due to radicals. Many radical spectra have been detected in comets, including 
that due to CN. These radicals are produced in comets by the absorption of 
far-ultraviolet solar radiation by their parent compounds. Subsequently, their 
fluorescence is excited by sunlight of longer wavelength. The spectra of comet 
Hale–Bopp (C/1995 O1) have been the subject of many recent studies. One 
such study is that of the fluorescence spectrum of CN in the comet at large 
heliocentric distances by R.M. Wagner and D.G. Schleicher (Science 275, 1918 
(1997)), in which the authors determine the spatial distribution and rate of 
production of CN in the coma (the cloud constituting the major part of the 
head of the comet). The (0–0) vibrational band is centred on 387.6 nm and the 
weaker (1–1) band with relative intensity 0.1 is centred on 386.4 nm. The band 
heads for (0–0) and (0–1) are known to be 388.3 and 421.6 nm, respectively. 
From these data, calculate the energy of the excited S1 state relative to the 
ground S0 state, the vibrational wavenumbers and the difference in the 
vibrational wavenumbers of the two states, and the relative populations of 
the v = 0 and v = 1 vibrational levels of the S1 state. Also estimate the effective 
temperature of the molecule in the excited S1 state. Only eight rotational levels 
of the S1 state are thought to be populated. Is that observation consistent with 
the effective temperature of the S1 state?

13.2 Use a group theoretical argument to decide which of the following 
transitions are electric-dipole allowed: (a) the π* ← π transition in ethene,  
(b) the π* ← n transition in a carbonyl group in a C2v environment.

13.3 Use molecule (4) as a model of the trans conformation of the 
chromophore found in rhodopsin. In this model, the methyl group bound 
to the nitrogen atom of the protonated Schiff ’s base replaces the protein. (a) 
Using molecular modelling software and the computational method of your 
instructor’s choice, calculate the energy separation between the HOMO and 

LUMO of (4). (b) Repeat the calculation for the 11-cis form of (4).  
(c) Based on your results from parts (a) and (b), do you expect the 
experimental frequency for the π* ← π visible absorption of the trans form of 
(4) to be higher or lower than that for the 11-cis form of (4)?

N
H

+

C11

4

13.4 Aromatic hydrocarbons and I2 form complexes from which charge-
transfer electronic transitions are observed. The hydrocarbon acts as an 
electron donor and I2 as an electron acceptor. The energies hνmax of the 
charge-transfer transitions for a number of hydrocarbon–I2 complexes are 
given below:

Investigate the hypothesis that there is a correlation between the energy 
of the HOMO of the hydrocarbon (from which the electron comes in the 
charge-transfer transition) and hνmax. Use one of the computational methods 
discussed in Topic 10E to determine the energy of the HOMO of each 
hydrocarbon in the data set.

13.5 Spin angular momentum is conserved when a molecule dissociates into 
atoms. What atom multiplicities are permitted when (a) an O2 molecule,  
(b) an N2 molecule dissociates into atoms?

Hydro-
carbon

benzene biphenyl naphthalene phenan-
threne

pyrene anthracene

hνmax/eV 4.184 3.654 3.452 3.288 2.989 2.890
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chaPter 14

magnetic resonance

The techniques of ‘magnetic resonance’ probe transitions 
between spin states of nuclei and electrons in molecules. 
‘Nuclear magnetic resonance’ (NMR) spectroscopy, the focus 
of this chapter, is one of the most widely used procedures in 
chemistry for the exploration of structural and dynamical prop-
erties of molecules of all sizes, up to as large as biopolymers.

14A general principles

The chapter begins with an account of the principles that gov-
ern spectroscopic transitions between spin states of nuclei and 
electrons in molecules. It also describes simple experimental 
arrangements for the detection of these transitions. The con-
cepts developed in this Topic prepare the ground for a dis-
cussion of the chemical applications of NMR and ‘electron 
paramagnetic resonance’ (EPR).

14B Features of nmr spectra

This Topic contains a discussion of conventional NMR, show-
ing how the properties of a magnetic nucleus are affected by 
its electronic environment and the presence of magnetic nuclei 
in its vicinity. These concepts lead to understanding of how 
molecular structure governs the appearance of NMR spectra.

14C Pulse techniques in nmr

In this Topic we turn to the modern versions of NMR, which 
are based on the use of pulses of electromagnetic radiation 
and the processing of the resulting signal by ‘Fourier trans-
form’ techniques. It is through the application of these pulse 

techniques that NMR spectroscopy can probe a vast array of 
small and large molecules in a variety of environments.

14D electron paramagnetic resonance

The experimental techniques for EPR resemble those used in 
the early days of NMR. The information obtained is used to 
investigate species with unpaired electrons. This Topic includes 
a brief survey of the applications of EPR to the study of organic 
radicals and d-metal complexes.

What is the impact of this material?

Magnetic resonance techniques are ubiquitous in chemistry, 
as they are an enormously powerful analytical and structural 
technique, especially in organic chemistry and biochemistry. 
One of the most striking applications of nuclear magnetic 
resonance is in medicine. ‘Magnetic resonance imaging’ 
(MRI) is a portrayal of the concentrations of protons in a 
solid object (Impact I14.1). The technique is particularly use-
ful for diagnosing disease. In Impact I14.2 we highlight an 
application of electron paramagnetic resonance in materials 
science and biochemistry: the use of a ‘spin probe’, a radical 
that interacts with biopolymer or a nanostructure and has 
an EPR spectrum that reveals its structural and dynamical 
properties.

To read more about the impact of  
this material, scan the QR code, or go to 
bcs.whfreeman.com/webpub/chemistry/
pchem10e/impact/pchem-14-1.html
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14A general principles

When two pendulums share a slightly flexible support and 
one is set in motion, the other is forced into oscillation by the 
motion of the common axle. As a result, energy flows between 
the two pendulums. The energy transfer occurs most efficiently 
when the frequencies of the two pendulums are identical. The 

condition of strong effective coupling when the frequencies of 
two oscillators are identical is called resonance. Resonance is 
the basis of a number of everyday phenomena, including the 
response of radios to the weak oscillations of the electromag-
netic field generated by a distant transmitter. Historically, spec-
troscopic techniques that measure transitions between nuclear 
and electron spin states have carried the term ‘resonance’ in 
their names because they have depended on matching a set 
of energy levels to a source of monochromatic radiation and 
observing the strong absorption that occurs at resonance. In 
fact, all spectroscopy is a form of resonant coupling between 
the electromagnetic field and the molecules; what distinguishes 
magnetic resonance is that the energy levels themselves are 
modified by the application of a magnetic field.

The Stern–Gerlach experiment (Topic 9B) provided evi-
dence for electron spin. It turns out that many nuclei also 
possess spin angular momentum. Orbital and spin angular 
momenta give rise to magnetic moments, and to say that elec-
trons and nuclei have magnetic moments means that, to some 
extent, they behave like small bar magnets with energies that 
depend on their orientation in an applied magnetic field. Here 
we establish how the energies of electrons and nuclei depend 
on the applied field. This material sets the stage for the explora-
tion of the structure and dynamics of many kinds of molecules 
by magnetic resonance spectroscopy (Topics 14B–14D).

14A.1 Nuclear magnetic resonance

The application of resonance that we describe here depends 
on the fact that many nuclei possess spin angular momentum 
characterized by a nuclear spin quantum number I (the ana-
logue of s for electrons). To understand the nuclear magnetic 
resonance (NMR) experiment we need to describe the behav-
iour of nuclei in magnetic fields and then the basic techniques 
for detecting spectroscopic transitions.

(a) The energies of nuclei in magnetic fields
The nuclear spin quantum number, I, is a fixed characteristic 
property of a nucleus in its ground state (the only state we con-
sider) and, depending on the nuclide, is either an integer or a 
half-integer (Table 14A.1). A nucleus with spin quantum num-
ber I has the following properties:

Contents

14a.1 Nuclear magnetic resonance 561
(a) The energies of nuclei in magnetic fields 561

brief illustration 14a.1: the resonance  
condition in nmr 563

(b) The NMR spectrometer 563
brief illustration 14a.2: nuclear spin populations 564

14a.2 Electron paramagnetic resonance 564
(a) The energies of electrons in magnetic fields 565
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➤➤ Why do you need to know this material?
Nuclear magnetic resonance spectroscopy is used widely 
in chemistry and medicine. To understand the power 
of magnetic resonance, you need to understand the 
principles that govern spectroscopic transitions between 
spin states of electrons and nuclei in molecules.

➤➤ What is the key idea?
Resonant absorption occurs when the separation of the 
energy levels of spins in a magnetic field matches the 
energy of incident photons.

➤➤ What do you need to know already?
You need to be familiar with the quantum mechanical 
concept of spin (Topic 9B), the Boltzmann distribution 
(Foundations B and Topic 15A), and the general features of 
spectroscopy (Topic 12A).
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562 14 Magnetic resonance

•	 An angular momentum of magnitude {I(I + 1)}1/2.
•	 A component of angular momentum mI on a 

specified axis (‘the z-axis’), where mI = I, I − 1, …, −I.
•	 If I > 0, a magnetic moment with a constant 

magnitude and an orientation that is determined by 
the value of mI.

According to the second property, the spin, and hence the mag-
netic moment, of the nucleus may lie in 2I + 1 different orien-
tations relative to an axis. A proton has I = 1

2  and its spin may 
adopt either of two orientations; a 14N nucleus has I = 1 and its 
spin may adopt any of three orientations; both 12C and 16O have 
I = 0 and hence zero magnetic moment.

Classically, the energy of a magnetic moment μ in a mag-
netic field B is equal to the scalar product (Mathematical back-
ground 5 following Chapter 9)

E = − ⋅µ B  (14A.1)

More formally, B is the magnetic induction and is measured 
in tesla, T; 1 T = 1 kg s−2 A−1. The (non-SI) unit gauss, G, is also 
occasionally used: 1 T = 104 G. Quantum mechanically, we write 
the hamiltonian as

ˆ ˆH = − ⋅µ B
 (14A.2)

To write an expression for μ̂ , we use the fact that, just as for 
electrons (Topic 9B), the magnetic moment of a nucleus is 

proportional to its angular momentum. The operators in eqn 
14A.2 are then:

ˆ ˆ ˆˆµ = = − ⋅γ γN NandI IH B  (14A.3a)

where γN is the nuclear magnetogyric ratio of the speci-
fied nucleus, an empirically determined characteristic arising 
from its internal structure (Table 14A.2). For a magnetic field 
of magnitude B0 along the z-direction, the hamiltonian in eqn 
14A.3a becomes

ˆ ˆH Iz= −γ NB0  (14A.3b)

Because the eigenvalues of the operator Î z  are mI, the eigen-
values of this hamiltonian are

E mm II
= −γ NB0  

When written in terms of the nuclear magneton, μN,

μN
p

JT= = × − −e
m


2
5 051 10 27 1.

 
 nuclear magneton  (14A.4b)

(where mp is the mass of the proton) and an empirical con-
stant called the nuclear g-factor, gI, the energy in eqn 14A.4a 
becomes

E g m gm I I II
= − =µ γ

µN
N

N

B0



 

Nuclear g-factors are experimentally determined dimension-
less quantities with values typically between –6 and +6 (Table 
14A.2). Positive values of gI and γN denote a magnetic moment 
that lies in the same direction as the spin angular momentum 
vector; negative values indicate that the magnetic moment and 
spin lie in opposite directions. A nuclear magnet is about 2000 
times weaker than the magnet associated with electron spin.

For the remainder of our discussion of nuclear magnetic 
resonance we assume that γN is positive, as is the case for the 
majority of nuclei. In such cases, it follows from eqn 14A.4c 
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Table 14A.1 Nuclear constitution and the nuclear spin 
quantum number*

Number of protons Number of neutrons I

Even Even 0

Odd Odd Integer (1, 2, 3, …)
Even Odd Half-integer ( , , , )1

2
3
2

5
2

…

Odd Even Half-integer ( , , , )1
2

3
2

5
2

…

* The spin of a nucleus may be different if it is in an excited state; throughout this 
chapter we deal only with the ground state of nuclei.

Table 14A.2* Nuclear spin properties

Nuclide Natural abundance/% Spin I g-factor, gI Magnetogyric ratio, γN/(107 T−1 s−1) NMR frequency at 1 T, ν/MHz

1n 1
2

−3.826 −18.32 29.164

1H 99.98 1
2

5.586 26.75 42.576

2H 0.02 1 0.857 4.11 6.536
13C 1.11 1

2
1.405 6.73 10.708

14N 99.64 1 0.404 1.93 3.078

* More values are given in the Resource section.

 (14A.4a)energies of a nuclear 
spin in a magnetic field

 (14A.4c)energies of a nuclear 
spin in a magnetic field
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14A General principles  563

that states with mI > 0 lie below states with mI < 0. It follows that 
the energy separation between the lower mI = + 1

2 ( )α  and upper 
mI = − 1

2 ( )β  states of a spin- 1
2 nucleus, a nucleus with I = 1

2 , is

∆E E E= − = − − =− +1 2 1 2
1
2 0

1
2 0 0/ / ( )γ γ γN N N  B B B  (14A.5)

and resonant absorption occurs when the resonance condition

h = =γ γ
N

NorB B
0

0

2π  

is fulfilled (Fig. 14A.1). At resonance there is strong coupling 
between the spins and the radiation, and absorption occurs as 
the spins flip from the lower energy state to the upper state.

It is sometimes useful to compare the quantum mechanical 
and classical pictures of magnetic nuclei pictured as tiny bar 
magnets. A bar magnet in an externally applied magnetic field 
undergoes the motion called precession as it twists round the 
direction of the field (Fig. 14A.2). The rate of precession νL is 
called the Larmor precession frequency:

L
N= γ B0

2π  
Definition  larmor frequency of a nucleus  (14A.7)

It follows by comparing this expression with eqn 14A.6 that 
resonance absorption by spin- 1

2  nuclei occurs when the 
Larmor precession frequency νL is the same as the frequency of 
the applied electromagnetic field, ν.

(b) The NMR spectrometer
In its simplest form, NMR is the study of the properties of 
molecules containing magnetic nuclei by applying a magnetic 
field and observing the frequency of the resonant electromag-
netic field. Larmor frequencies of nuclei at the fields normally 
employed (about 12 T) typically lie in the radiofrequency region 
of the electromagnetic spectrum (close to 500 MHz), so NMR 
is a radiofrequency technique. For much of our discussion we 
consider spin- 1

2  nuclei, but NMR is applicable to nuclei with any 
non-zero spin. As well as protons, which are the most common 
nuclei studied by NMR, spin- 1

2  nuclei include 13C, 19F, and 31P.
An NMR spectrometer consists of the appropriate sources of 

radiofrequency radiation and a magnet that can produce a uni-
form, intense field. Most modern instruments use a supercon-
ducting magnet capable of producing fields of the order of 10 T 
and more (Fig. 14A.3). The sample is rotated rapidly to average 
out magnetic inhomogeneities; however, although sample spin-
ning is essential for the investigation of small molecules, for 
large molecules it can lead to irreproducible results and is often 
avoided. Although a superconducting magnet (Topic 18C) 
operates at the temperature of liquid helium (4 K), the sample 
itself is normally at room temperature or held in a variable tem-
perature enclosure between, typically, −150 and +100 °C.

Modern NMR spectroscopy uses pulses of radiofrequency 
radiation. These techniques of Fourier-transform (FT) NMR 
make possible the determination of structures of very large mol-
ecules in solution and in solids. They are discussed in Topic 14C.

The intensity of an NMR transition depends on a number of 
factors. We show in the following Justification that

Intensity ∝ −( )N Nα β B0  (14A.8a)

Brief illustration 14A.1 The resonance condition in NMR

To calculate the frequency at which radiation comes into reso-
nance with proton ( )I = 1

2  spins in a 12.0 T magnetic field we 
use eqn 14A.6 as follows:

ν

γ

= × × = ×
− −( . ) ( . )

.
2 6752 10 12 0

2
5 11 10

8 1 1
8T s T

s

N 0� ���� ���� ��� ��B

π
−−

=

1

511 MHz

Self-test 14A.1 Determine the resonance frequency for 31P 
nuclei, for which γ N = 1.0841 × 108 T−1 s−1, under the same 
conditions.

Answer: 207 MHz

Magnetic
field off

Magnetic
field on

α,

β,

mI = +½

mI = –½

γNhB0

Figure 14A.1 The nuclear spin energy levels of a spin- 1
2  

nucleus with positive magnetogyric ratio (for example, 1H or 
13C) in a magnetic field. Resonance occurs when the energy 
separation of the levels matches the energy of the photons in 
the electromagnetic field.

z

ms = +½

ms = –½

Figure 14A.2 The interactions between the mI states of a spin-
1
2  nucleus and an external magnetic field may be visualized 
as the precession of the vectors representing the angular 
momentum.

 (14A.6)Spin 1
2 nuclei resonance 

condition
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564 14 Magnetic resonance

where

N N
N

kTα β− ≈ γ NB0

2  
Nuclei  Population difference  (14A.8b)

with N the total number of spins (N = Nα + Nβ). It follows that 
decreasing the temperature increases the intensity by increas-
ing the population difference.

By combining eqns 14A.8a and 14A.8b we see that the inten-
sity is proportional to B0

2, so NMR transitions can be enhanced 
significantly by increasing the strength of the applied magnetic 
field. The use of high magnetic fields also simplifies the appear-
ance of spectra (a point explained in Topic 14B) and so allows 
them to be interpreted more readily. We can also conclude that 
absorptions of nuclei with large magnetogyric ratios (1H, for 
instance) are more intense than those with small magnetogyric 
ratios (13C, for instance).

14A.2 Electron paramagnetic 
resonance

Electron paramagnetic resonance (EPR), or electron spin 
resonance (ESR), is the study of molecules and ions contain-
ing unpaired electrons by observing the magnetic field at which 
they come into resonance with radiation of known frequency. 

Brief illustration 14A.2 Nuclear spin populations

For protons γ N = 2.675 × 108 T−1 s−1. Therefore, for 1 000 000 
protons in a field of 10 T at 20 °C
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Even in such a strong field there is only a tiny imbalance of 
population of about 35 in a million.

Self-test 14A.2 For 13C nuclei, γ N = 6.7283 × 107 T−1 s−1. 
Determine the magnetic field that would need to be achieved 
in order to induce the same imbalance in the distribution of 
13C spins at 20 °C.

Answer: 40 T

Justification 14A.1 Intensities in NMR spectra

From the general considerations of transition intensities in 
Topic 12A, we know that the rate of absorption of electromag-
netic radiation is proportional to the population of the lower 
energy state (Nα in the case of a proton NMR transition) and 
the rate of stimulated emission is proportional to the popula-
tion of the upper state (Nβ). At the low frequencies typical of 
magnetic resonance, spontaneous emission can be neglected 

as it is very slow. Therefore, the net rate of absorption is pro-
portional to the difference in populations, and we can write

Rate of absorption ∝ −N Nα β

The intensity of absorption, the rate at which energy is 
absorbed, is proportional to the product of the rate of absorp-
tion (the rate at which photons are absorbed) and the energy 
of each photon. The latter is proportional to the frequency ν of 
the incident radiation (through E = hν). At resonance, this fre-
quency is proportional to the applied magnetic field (through 
ν = γ NB0/2π), so we can write

Rate of absorption ∝ −( )N Nα β B0

as in eqn 14A.8a. To write an expression for the population 
difference, we use the Boltzmann distribution (Foundations B 
and Topic 15A) to write the ratio of populations as

N
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The expansion of the exponential term is appropriate for 
ΔE = γ NB0 ≪ kT, a condition usually met for nuclear spins. It 
follows that
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which is eqn 14A.8b.

Superconducting
magnet

Probe
Computer

Preamplifier Receiver Detector Transmitter

Figure 14A.3 The layout of a typical NMR spectrometer. The 
link from the transmitter to the detector indicates that the 
high frequency of the transmitter is subtracted from the high 
frequency received signal to give a low frequency signal for 
processing.
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14A General principles  565

As we have done for NMR, we write expressions for the reso-
nance condition in EPR and then describe the general features 
of EPR spectrometers.

(a) The energies of electrons 
in magnetic fields
The spin magnetic moment of an electron, which has a spin 
quantum number s = 1

2  (Topic 9B), is proportional to its spin 
angular momentum. The spin magnetic moment and hamilto-
nian operators are, respectively,

ˆ ˆ ˆˆµ = = − ⋅γ γ ee ands sH B  (14A.9a)

where ŝ  is the spin angular momentum operator, and γe is the 
magnetogyric ratio of the electron:

γ e
e

e

= − g e
m2  

Electrons  magnetogyric ratio  (14A.9b)

with ge = 2.002 319… as the g-value of the electron. (Note that 
the current convention is to include the g-value in the defini-
tion of the magnetogyric ratio.) Dirac’s relativistic theory, his 
modification of the Schrödinger equation to make it consist-
ent with Einstein’s special relativity, gives ge = 2; the additional 
0.002 319… arises from interactions of the electron with the 
electromagnetic fluctuations of the vacuum that surrounds the 
electron. The negative sign of γe (arising from the sign of the 
electron’s charge) shows that the magnetic moment is opposite 
in direction to the angular momentum vector.

For a magnetic field of magnitude B0 in the z-direction,

ˆ ˆH sz= −γ eB0  (14A.10)

Because the eigenvalues of the operator ŝz  are ms with 
ms = + 1

2 ( )α  and ms = − 1
2 ( )β , it follows that the energies of an 

electron spin in a magnetic field are

E mm ss
= −γ eB0  

They can also be expressed in terms of the Bohr magneton, μB, as

E g mm ss
= e Bμ B0  

where

μB
e

JT= = × − −e
m


2
9 274 10 24 1.

 
 bohr magneton  (14A.11c)

The Bohr magneton, a positive quantity, is often regarded as the 
fundamental quantum of magnetic moment.

In the absence of a magnetic field, the states with differ-
ent values of ms are degenerate. When a field is present, the 

degeneracy is removed: the state with ms = + 1
2  moves up in energy 

by 1
2 0g e Bμ B  and the state with ms = − 1

2  moves down by 1
2 0g e Bμ B .  

From eqn 14A.11b, the separation between the (upper) 
ms = + 1

2 ( )α  and (lower) ms = − 1
2 ( )β  levels of an electron spin in 

a magnetic field of magnitude B0 in the z-direction is

∆E E E g g

g

= − = − −
=

+ −1 2 1 2
1
2 0

1
2 0

0

/ / ( )e B e B

e B

μ μ
μ

B B
B  

(14A.12a)

The energy separations come into resonance with the electro-
magnetic radiation of frequency ν when

h g = e Bμ B0  Electrons  resonance condition  (14A.12b)

This is the resonance condition for EPR (Fig. 14A.4). At reso-
nance there is strong coupling between the electron spins and 
the radiation, and strong absorption occurs as the spins make 
the transition α ← β.

Brief illustration 14A.3 The resonance condition in EPR

Magnetic fields of about 0.30 T (the value used in most com-
mercial EPR spectrometers) correspond to resonance at

ν

µ
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−

Js
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which corresponds to a wavelength of 3.6 cm.

Self-test 14A.3 Determine the magnetic field for EPR tran-
sitions in a spectrometer that uses radiation of wavelength 
0.88 cm.

Answer: 1.2 T

Magnetic
field off

Magnetic
field on

α,

β,

ms = +½

ms = –½

geµBB0

Figure 14A.4 Electron spin levels in a magnetic field. Note 
that the β state is lower in energy than the α state (because the 
magnetogyric ratio of an electron is negative). Resonance is 
achieved when the frequency of the incident radiation matches 
the frequency corresponding to the energy separation.

 (14A.11a)energies of an electron 
spin in a magnetic field

 (14A.11b)energies of an electron 
spin in a magnetic field
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566 14 Magnetic resonance

(b) The EPR spectrometer
It follows from Brief illustration 14A.3 that most commer-
cial EPR spectrometers operate at wavelengths of approxi-
mately 3 cm. Because 3 cm radiation falls in the microwave 
region of the electromagnetic spectrum, EPR is a microwave 
technique.

Both Fourier-transform (FT) and continuous wave (CW) 
EPR spectrometers are available. The FT-EPR instrument is 
based on the concepts developed in Topic 14C for NMR spec-
troscopy, except that pulses of microwaves are used to excite 
electron spins in the sample. The layout of the more common 
CW-EPR spectrometer is shown in Fig. 14A.5. It consists of a 
microwave source (a klystron or a Gunn oscillator), a cavity in 
which the sample is inserted in a glass or quartz container, a 
microwave detector, and an electromagnet with a field that can 
be varied in the region of 0.3 T. The EPR spectrum is obtained 
by monitoring the microwave absorption as the field is 
changed, and a typical spectrum (of the benzene radical anion, 
C H6 6

− ) is shown in Fig. 14A.6. The peculiar appearance of the 
spectrum, which is in fact displayed as the first-derivative of the 

absorption, arises from the detection technique, which is sensi-
tive to the slope of the absorption curve (Fig. 14A.7).

As usual, the intensities of spectral lines in EPR depend on 
the difference in populations between the ground and excited 
states. For an electron, the β state lies below the α state in 
energy and, by a similar argument to that for nuclei,

N N
Ng

kTβ α− ≈ e Bμ B0

2  
Electrons  Population difference  (14A.13)

where N is the total number of spins.

Brief illustration 14A.4 Electron spin populations

When 1000 electron spins are exposed to a 1.0 T magnetic field 
at 20 °C (293 K),

N Nβ α− ≈ × × × ×− −1000 2 0023 9 274 10 1 024 1
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There is an imbalance of populations of only about 2 electrons 
in a thousand. However, the imbalance is much larger for 
electron spins than for nuclear spins (Brief illustration 14A.2) 
because the energy separation between the spin states of elec-
trons is larger than that for nuclear spins even at the lower 
magnetic field strengths normally employed.

Self-test 14A.4 It is common to conduct EPR experiments 
at very low temperatures. At what temperature would the 
imbalance in spin populations be 5 electrons in 100, with 
B0 = 0.30 T?

Answer: 4 K

Microwave
source

Detector

Sample
cavity

Electromagnet

Modulation
unit

Phase
sensitive
detector

Figure 14A.5 The layout of a continuous-wave EPR 
spectrometer. A typical magnetic field is 0.3 T, which requires 
9 GHz (3 cm) microwaves for resonance.

Field strength

Figure 14A.6 The EPR spectrum of the benzene radical anion, 
C H6 6

− , in fluid solution.

Absorption, A

Slope

Slope

Field, B

Derivative
of absorption, dA/dB 

S
ig

n
al

Figure 14A.7 When phase-sensitive detection is used, the 
signal is the first derivative of the absorption intensity. Note 
that the peak of the absorption corresponds to the point where 
the derivative passes through zero.
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Checklist of concepts

☐ 1. The nuclear spin quantum number, I, of a nucleus is 
either a non-negative integer or half-integer.

☐ 2. Nuclei with different values of mI have different ener-
gies in the presence of a magnetic field.

☐ 3. Nuclear magnetic resonance (NMR) is the observation 
of resonant absorption of radiofrequency electromag-
netic radiation by nuclei in a magnetic field.

☐ 4. NMR spectrometers consist of a source of radiofre-
quency radiation and a magnet that provides a strong, 
uniform field.

☐ 5. The resonance absorption intensity increases with the 
strength of the applied magnetic field (as B0

2).
☐ 6. Electrons with different values of ms have different 

energies in the presence of a magnetic field.
☐ 7. Electron paramagnetic resonance (EPR) is the observa-

tion of resonant absorption of microwave electromag-
netic radiation by unpaired electrons in a magnetic field.

☐ 8. EPR spectrometers consist of a microwave source, a 
cavity in which the sample is inserted, a microwave 
detector, and an electromagnet.

Checklist of equations

Property Equation Comment Equation number

Nuclear magneton μN = e/2mp μN = 5.051 × 10−27 J T−1 14A.4b

Energies of a nuclear spin in a magnetic field E m

g m

m I

I I

I
= −
= −

γ
µ

N

N

B
B
0

0

14A.4c

Resonance condition (spin- 1
2  nuclei) hν = γNB0

γN > 0 14A.6

Larmor frequency νL = γNB0/2π γN > 0 14A.7

Population difference (nuclei) Nα − Nβ ≈ NγNB0/2kT 14A.8b

Magnetogyric ratio (electron) γe = −gee/2me ge = 2.002 319 14A.9b

Energies of an electron spin in a magnetic field E m

g m

m s

s

s
= −
=

γ
µ
e

e B

B
B

0

0

14A.11b

Bohr magneton μB = e/2me μB = 9.274 × 10−24 J T−1 14A.11c

Resonance condition (electrons) hν = geμBB0
14A.12b

Population difference (electrons) Nβ − Nα ≈ NgeμBB0/2kT 14A.13
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14B Features of nmr spectra

Nuclear magnetic moments interact with the local magnetic 
field. The local field may differ from the applied field because 
the latter induces electronic orbital angular momentum (that 
is, the circulation of electronic currents) which gives rise to a 
small additional magnetic field δB at the nuclei. This additional 
field is proportional to the applied field, and it is conventional 
to write

δB B= −σ 0  Definition  shielding constant  (14B.1)

where the dimensionless quantity σ is called the shielding con-
stant of the nucleus (σ is usually positive but may be negative). 
The ability of the applied field to induce an electronic current 
in the molecule, and hence affect the strength of the resulting 
local magnetic field experienced by the nucleus, depends on 
the details of the electronic structure near the magnetic nucleus 
of interest, so nuclei in different chemical groups have differ-
ent shielding constants. The calculation of reliable values of the 
shielding constant is very difficult, but trends in it are quite well 
understood and we concentrate on them.

14B.1 The chemical shift

Because the total local field Bloc is

B B B Bloc 1= + = −0 0δ ( )σ  (14B.2)

the nuclear Larmor frequency (eqn 14A.7 of Topic 14A, 
νL = γNB/2π) becomes
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➤➤ Why do you need to know this material?
To make progress with the analysis of NMR spectra and 
extract the wealth of information they contain you need to 
understand how the appearance of a spectrum correlates 
with molecular structure.

➤➤ What is the key idea?
The resonance frequency of a magnetic nucleus is 
affected by its electronic environment and the presence of 
magnetic nuclei in its vicinity.

➤➤ What do you need to know already?
You need to be familiar with the general principles 
of magnetic resonance (Topic 14A) and specifically 
that resonance occurs when the frequency of the 
radiofrequency field matches the Larmor frequency.
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L
N loc N= = −

γ γ σ
B B

2 2
10

π π ( )
 

(14B.3)

This frequency is different for nuclei in different environments. 
Hence, different nuclei, even of the same element, come into 
resonance at different frequencies if they are in different molec-
ular environments.

The chemical shift of a nucleus is the difference between 
its resonance frequency and that of a reference standard. The 
standard for protons is the proton resonance in tetramethylsi-
lane, Si(CH3)4, commonly referred to as TMS, which bristles 
with protons and dissolves without reaction in many solutions. 
For 13C, the reference frequency is the 13C resonance in TMS, 
and for 31P it is the 31P resonance in 85 per cent H3PO4(aq). 
Other references are used for other nuclei. The separation of 
the resonance of a particular group of nuclei from the stand-
ard increases with the strength of the applied magnetic field 
because the induced field is proportional to the applied field; 
the stronger the latter, the greater the shift.

Chemical shifts are reported on the δ scale, which is defined as

δ = − × 



°

°
106

 
Definition  δ scale  (14B.4)

where ν° is the resonance frequency of the standard. The advan-
tage of the δ scale is that shifts reported on it are independent of 
the applied field (because both numerator and denominator are 
proportional to the applied field). The resonance frequencies 
themselves, however, do depend on the applied field through

  = + ( / )1 60 δ  (14B.5)

The relation between δ and σ is obtained by substituting eqn 
14B.3 into eqn 14B.4:

δ σ σ
σ

σ σ
σ

σ σ

= − − −
−

×

= −
−

× ≈ − ×

( ) ( )
( )

( )

1 1
1

10

1
10 10

0 0

0

6

6 6
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B

°
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°

 

 relation between δ and σ   (14B.6)

The last line follows from σ° ≪ 1. As the shielding constant σ, 
gets smaller, δ increases. Therefore, we speak of nuclei with 
large chemical shifts as being strongly deshielded. Some typical 
chemical shifts are given in Fig. 14B.1. As can be seen from the 
illustration, the nuclei of different elements have very differ-
ent ranges of chemical shifts. The ranges exhibit the variety of 
electronic environments of the nuclei in molecules: the higher 
the atomic number of the element, the greater the number of 
electrons around the nucleus and hence the greater the range of 
the extent of shielding. By convention, NMR spectra are plotted 
with δ increasing from right to left.

Brief illustration 14B.1 The δ scale

A nucleus with δ = 1.00 in a spectrometer where ν° = 500 MHz 
(a ‘500 MHz NMR spectrometer’), will have a shift relative to 
the reference equal to

 − = × = × = ( / ) . ( ) .5 MHz 1 1 5 Hz 1 5 Hz600 0 00 00 00 00

because 1 MHz = 106 Hz. In a spectrometer operating at 
ν° = 100 MHz, the shift relative to the reference would be only 
100 Hz.

A note on good practice In much of the literature, chemi-
cal shifts are reported in parts per million, ppm, in 
recognition of the factor of 106 in the definition; this is 
unnecessary. If you see ‘δ = 10 ppm’, interpret it, and use it 
in eqn 14B.5, as δ = 10.

Self-test 14B.1 What is the shift of the resonance from TMS of 
a group of nuclei with δ = 3.50 and an operating frequency of 
350 MHz?

Answer: 1.23 kHz

Example 14B.1 Interpreting the NMR spectrum of 
ethanol

Figure 14B.2 shows the NMR spectrum of ethanol. Account 
for the observed chemical shifts.

Method Consider the effect of an electron-withdrawing atom: 
it deshields strongly those protons to which it is bound, and 
has a smaller effect on distant protons.

Answer The spectrum is consistent with the following 
assignments:

•	 The CH3 protons form one group of nuclei with δ = 1.

RCH3 –CH2–R–NH2–CH–RC–CH3 ArC–CH3–CO–CH3
ROH–C=CH–

ArOH
Ar–H–CHO–COOH

024681012

R3C
–

R3C
+

R–C–H
>C=C<X

–C=C– –C=C<
C–X in ArX
R–C=N–

R–COOHR–CHO
R2C=O

R=C=R

300 200 100 0

δ

δ

(a)

(b)

Figure 14B.1 The range of typical chemical shifts for (a) 1H 
resonances and (b) 13C resonances.
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570 14 Magnetic resonance

14B.2 The origin of shielding constants

The calculation of shielding constants is difficult, even for small 
molecules, for it requires detailed information (using the tech-
niques outlined in Topic 10E) about the distribution of elec-
tron density in the ground and excited states and the excitation 
energies of the molecule. Nevertheless, considerable success 
has been achieved with small molecules such as H2O and CH4 
and even large molecules, such as proteins, are within the scope 
of some types of calculation. However, it is easier to understand 
the different contributions to chemical shifts by studying the 
large body of empirical information now available.

The empirical approach supposes that the observed shield-
ing constant is the sum of three contributions:

σ σ σ σ= + +(local) (neighbour) solvent( )  (14B.7)

The local contribution, σ (local), is essentially the contribution 
of the electrons of the atom that contains the nucleus in ques-
tion. The neighbouring group contribution, σ (neighbour), is 
the contribution from the groups of atoms that form the rest 
of the molecule. The solvent contribution, σ (solvent), is the 
contribution from the solvent molecules.

(a) The local contribution
It is convenient to regard the local contribution to the shielding 
constant as the sum of a diamagnetic contribution, σd, and a 
paramagnetic contribution, σp:

σ σ σ( )local d p= +   local contribution to the shielding constant  (14B.8)

A diamagnetic contribution to σ (local) opposes the applied 
magnetic field and shields the nucleus in question. A paramag-
netic contribution to σ (local) reinforces the applied magnetic 
field and deshields the nucleus in question. Therefore, σd > 0 
and σp < 0. The total local contribution is positive if the diamag-
netic contribution dominates, and is negative if the paramag-
netic contribution dominates.

The diamagnetic contribution arises from the ability of the 
applied field to generate a circulation of charge in the ground-
state electron distribution of the atom. The circulation gener-
ates a magnetic field that opposes the applied field and hence 
shields the nucleus. The magnitude of σd depends on the elec-
tron density close to the nucleus and can be calculated from the 
Lamb formula:1

σ µ
d

e

= e
m r

2
0

12
1

π  
 lamb formula  (14B.9)

where μ0 is the vacuum permeability (a fundamental con-
stant, see inside the front cover) and r is the electron–nucleus 
distance.

Example 14B.2 Using the Lamb formula

Calculate the shielding constant for the proton in a free H 
atom.

Method To calculate σd from the Lamb formula, calcu-
late the expectation value of 1/r for a hydrogen 1s orbital. 
Wavefunctions are given in Table 9A.1.

Answer The wavefunction for a hydrogen 1s orbital is

•	 The two CH2 protons are in a different part of the 
molecule, experience a different local magnetic field, 
and resonate at δ = 3.

•	 The OH proton is in another environment, and has a 
chemical shift of δ = 4.

The increasing value of δ (that is, the decrease in shielding) 
is consistent with the electron-withdrawing power of the O 
atom: it reduces the electron density of the OH proton most, 
and that proton is strongly deshielded. It reduces the electron 
density of the distant methyl protons least, and those nuclei 
are least deshielded.

The relative intensities of the signals are commonly repre-
sented as the height of step-like curves superimposed on the 
spectrum, as in Fig. 14B.2. In ethanol the group intensities are 
in the ratio 3:2:1 because there are three CH3 protons, two CH2 
protons, and one OH proton in each molecule.

Self-test 14B.2 The NMR spectrum of acetaldehyde (etha-
nal) has lines at δ = 2.20 and δ = 9.80. Which feature can be 
assigned to the CHO proton?

Answer: δ = 9.80

1.23.64.0 δ

CH3CH2OHCH3CH2OHCH3CH2OH 

Figure 14B.2 The 1H-NMR spectrum of ethanol. The bold 
letters denote the protons giving rise to the resonance peak, 
and the step-like curve is the integrated signal.

1 For a derivation, see our Molecular quantum mechanics (2011).
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The diamagnetic contribution is the only contribution in 
closed-shell free atoms. It is also the only contribution to the 
local shielding for electron distributions that have spherical or 
cylindrical symmetry. Thus, it is the only contribution to the 
local shielding from inner cores of atoms, for cores remain 
nearly spherical even though the atom may be a component of 
a molecule and its valence electron distribution is highly dis-
torted. The diamagnetic contribution is broadly proportional 
to the electron density of the atom containing the nucleus of 
interest. It follows that the shielding is decreased if the electron 
density on the atom is reduced by the influence of an electro-
negative atom nearby. That reduction in shielding as the elec-
tronegativity of a neighbouring atom increases translates into 
an increase in the chemical shift δ (Fig. 14B.3).

The local paramagnetic contribution, σp, arises from the abil-
ity of the applied field to force electrons to circulate through the 
molecule by making use of orbitals that are unoccupied in the 
ground state. It is zero in free atoms and around the axes of lin-
ear molecules (such as ethyne, HC ≡ CH) where the electrons 
can circulate freely and a field applied along the internuclear 
axis is unable to force them into other orbitals. We can expect 
large paramagnetic contributions from small atoms (because the 
induced currents are then close to the nucleus) in molecules with 
low lying excited states (because an applied field can then induce 
significant currents). In fact, the paramagnetic contribution is 
the dominant local contribution for atoms other than hydrogen.

(b) Neighbouring group contributions
The neighbouring group contribution arises from the currents 
induced in nearby groups of atoms. Consider the influence 

of the neighbouring group X on the proton H in a molecule 
such as H–X. The applied field generates currents in the elec-
tron distribution of X and gives rise to an induced magnetic 
moment proportional to the applied field; the constant of pro-
portionality is the magnetic susceptibility, χ (chi), of the group 
X: μinduced = χB0. The susceptibility is negative for a diamagnetic 
group because the induced moment is opposite to the direction 
of the applied field. The induced moment gives rise to a mag-
netic field with a component parallel to the applied field and 
at a distance r and angle θ (1) that has the form (The chemist’s 
toolkit 14B.1):

θ
r

1

µinduced

Blocal
induced cos∝ −µ θ
r3

21 3( )
 

 local dipolar field  (14B.10a)

The chemist’s toolkit 14B.1 Dipolar fields

Standard electromagnetic theory gives the magnetic field at a 
point r from a point magnetic dipole μ as

B = −





µ0
3 24

3
πr r

µ ( )rµ⋅r

where μ0 is the vacuum permeability (a fundamental constant 
with the defined value 4π × 10−7 T2 J−1 m3). The electric field due 
to a point electric dipole is given by a similar expression:
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Self-test 14B.3 Derive a general expression for σd that applies 
to all hydrogenic atoms.

Answer: Ze2μ0/12πmea0
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Figure 14B.3 The variation of chemical shielding with 
electronegativity. The shifts for the methyl protons agree with 
the trend expected with increasing electronegativity. However, 
to emphasize that chemical shifts are subtle phenomena, 
notice that the trend for the methylene protons is opposite 
to that expected. For these protons another contribution (the 
magnetic anisotropy of C–H and C–X bonds) is dominant.
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We see that the strength of the additional magnetic field expe-
rienced by the proton is inversely proportional to the cube of the 
distance r between H and X. If the magnetic susceptibility is inde-
pendent of the orientation of the molecule (is ‘isotropic’), the local 
field averages to zero because 1 − 3 cos2 θ is zero when averaged 
over a sphere (see Problem 14B.7). To a good approximation, the 
shielding constant σ(neighbour) depends on the distance r

σ χ χ θ
( ) ( )

cos
neighbour ∝ − −



⊥

1 3 2

3r  

θ
r

χ||

χ⊥

2

X

H

where χ∥ and χ⊥ are, respectively, the parallel and perpen-
dicular components of the magnetic susceptibility, and θ is 
the angle between the XeH axis and the symmetry axis of 
the neighbouring group (2). Equation 14B.10b shows that the 
neighbouring group contribution may be positive or nega-
tive according to the relative magnitudes of the two magnetic 
susceptibilities and the relative orientation of the nucleus with 
respect to X. If 54.7° < θ < 125.3°, then 1 − 3 cos2 θ is positive, 
but it is negative otherwise (Figs. 14B.4 and 14B.5).

E = −





1
4

3

0
3 2πε r r

µ µ( )⋅r r

where ε0 is the vacuum permittivity, which is related to μ0 by 
ε0 = 1/μ0c2. The component of magnetic field in the z-direc-
tion is

Bz r
z

r
= −





µ µ0
3 24

3
π z

r( )µ⋅

with z = r cos θ, the z-component of the distance vector r. If 
the magnetic dipole is also parallel to the z-direction, it fol-
lows that
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Figure 14B.4 A depiction of the field arising from a point 
magnetic dipole. The three shades of colour represent the 
strength of field declining with distance (as 1/r3), and each 
surface shows the angle dependence of the z-component of 
the field for each distance.
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Figure 14B.5 The variation of the function 1 − 3 cos2 θ with the 
angle θ.

Brief illustration 14B.2 Ring currents

A special case of a neighbouring group effect is found in aro-
matic compounds. The strong anisotropy of the magnetic sus-
ceptibility of the benzene ring is ascribed to the ability of the 
field to induce a ring current, a circulation of electrons around 
the ring, when it is applied perpendicular to the molecular 
plane. Protons in the plane are deshielded (Fig. 14B.6), but 
any that happen to lie above or below the plane (as members of 
substituents of the ring) are shielded.

B
Ring
current

Magnetic
field

Figure 14B.6 The shielding and deshielding effects of the 
ring current induced in the benzene ring by the applied 
field. Protons attached to the ring are deshielded but a 
proton attached to a substituent that projects above the 
ring is shielded.
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(c) The solvent contribution
A solvent can influence the local magnetic field experienced by 
a nucleus in a variety of ways. Some of these effects arise from 
specific interactions between the solute and the solvent (such as 
hydrogen-bond formation and other forms of Lewis acid–base 
complex formation). The anisotropy of the magnetic suscepti-
bility of the solvent molecules, especially if they are aromatic, 
can also be the source of a local magnetic field. Moreover, if 
there are steric interactions that result in a loose but specific 
interaction between a solute molecule and a solvent molecule, 
then protons in the solute molecule may experience shielding 
or deshielding effects according to their location relative to the 
solvent molecule.

14B.3 The fine structure

The splitting of resonances into individual lines by spin–spin 
coupling shown in Fig. 14B.2 is called the fine structure of the 

spectrum. It arises because each magnetic nucleus may con-
tribute to the local field experienced by the other nuclei and 
so modify their resonance frequencies. The strength of the 
interaction is expressed in terms of the scalar coupling con-
stant, J. The scalar coupling constant is so called because the 
energy of interaction it describes is proportional to the scalar 
product of the two interacting spins: E ∝ I1⋅I2. As explained in 
Mathematical background 5, a scalar product depends on the 
angle between the two vectors, so writing the energy in this way 
is simply a way of saying that the energy of interaction between 
two spins depends on their relative orientation. The constant 
of proportionality in this expression is written hJ/2 (so E =  
(hJ/2)I1⋅I2): because each spin angular momentum is propor-
tional to , E is then proportional to hJ and J is a frequency 
(with units hertz, Hz). For nuclei that are constrained to align 
with the applied field in the z-direction, the only contribution 
to I1⋅I2 is I1zI2z, with eigenvalues m1m22, so in that case the 
energy due to spin–spin coupling is

E hJm mm m1 2 1 2=   spin–spin coupling energy  (14B.11)

(a) The appearance of the spectrum

In NMR, letters far apart in the alphabet (typically A and X) 
are used to indicate nuclei with very different chemical shifts; 
letters close together (such as A and B) are used for nuclei with 
similar chemical shifts. We shall consider first an AX system, a 
molecule that contains two spin- 1

2  nuclei A and X with very dif-
ferent chemical shifts in the sense that the difference in chemi-
cal shift corresponds to a frequency that is large compared to J.

For a spin- 1
2  AX system there are four spin states: αAαX, 

αAβX, βAαX, βAβX. The energy depends on the orientation of 
the spins in the external magnetic field, and if spin–spin cou-
pling is neglected

E m m

h m h m

m mA X N A A N X X

A A X X

= − − − −
= − −

γ σ γ σ ( ) ( )1 10 0B B
   

(14B.12a)

where νA and νX are the Larmor frequencies of A and X and 
mA and mX are their quantum numbers ( , )m mA X= ± = ±1

2
1
2 .  

This expression gives the four lines on the left of Fig. 14B.8. 
When spin–spin coupling is included (by using eqn 14B.11), 
the energy levels are

E h m h m hJm mm mA X A A X X A X= − − +   (14B.12b)

If J > 0, a lower energy is obtained when mAmX < 0, which is 
the case if one spin is α and the other is β. A higher energy is 
obtained if both spins are α or both spins are β. The opposite 
is true if J < 0. The resulting energy level diagram (for J > 0) is 
shown on the right of Fig. 14B.8. We see that the αα and ββ 

Self-test 14B.4 Consider ethyne, HC ≡ CH. Are its protons 
shielded or deshielded by currents induced by the triple bond?

Answer: Shielded

Brief illustration 14B.3 The effect of aromatic solvents

An aromatic solvent like benzene can give rise to local cur-
rents that shield or deshield a proton in a solute molecule. The 
arrangement shown in Fig. 14B.7 leads to shielding of a proton 
on the solute molecule.

Self-test 14B.5 Refer to Fig. 14B.7 and suggest an arrangement 
that leads to deshielding of a proton on the solute molecule.

Answer: Proton on the solute molecule coplanar  
with the benzene ring

B

Figure 14B.7 An aromatic solvent (benzene here) can give 
rise to local currents that shield or deshield a proton in a 
solute molecule. In this relative orientation of the solvent 
and solute, the proton on the solute molecule is shielded.
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states are both raised by 1
4 hJ  and that the αβ and βα states are 

both lowered by 1
4 hJ .

When a transition of nucleus A occurs, nucleus X remains 
unchanged. Therefore, the A resonance is a transition for which 
ΔmA = +1 and ΔmX = 0. There are two such transitions, one in 
which βA ← αA occurs when the X nucleus is α, and the other in 
which βA ← αA occurs when the X nucleus is β. They are shown 
in Fig. 14B.8 and in a slightly different form in Fig. 14B.9. The 
energies of the transitions are

∆E h hJ= ±A
1
2  (14B.13a)

Therefore, the A resonance consists of a doublet of separa-
tion J centred on the chemical shift of A (Fig. 14B.10). Similar 
remarks apply to the X resonance, which consists of two 

transitions according to whether the A nucleus is α or β (as 
shown in Fig. 14B.9). The transition energies are

∆E h hJ= ±X
1
2  (14B.13b)

It follows that the X resonance also consists of two lines of the 
same separation J, but they are centred on the chemical shift of 
X (as shown in Fig. 14B.10).

If there is another X nucleus in the molecule with the same 
chemical shift as the first X (giving an AX2 species), the X 
resonance of the AX2 species is split into a doublet by A, as 
in the AX case discussed above (Fig. 14B.11). The resonance 
of A is split into a doublet by one X, and each line of the dou-
blet is split again by the same amount by the second X (Fig. 
14B.12). This splitting results in three lines in the intensity 
ratio 1:2:1 (because the central frequency can be obtained in 
two ways).

No spin–spin
coupling

With
spin–spin
coupling

βΑβXβΑβX

βΑαX
βΑαX

αΑαX

αΑαX

αΑβX
αΑβX

¼hJ

¼hJ

¼hJ

¼hJ

½hνL(A) + ½hνL(X) 

–½hνL(A) + ½hνL(X) 

–½hνL(A) – ½hνL(X) 

½hνL(A) – ½hνL(X) 
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Figure 14B.8 The energy levels of an AX system. The four levels 
on the left are those of the two spins in the absence of spin–spin 
coupling. The four levels on the right show how a positive spin–
spin coupling constant affects the energies. The transitions 
shown are for β ← α of A or X, the other nucleus (X or A, 
respectively) remaining unchanged. We have exaggerated the 
effect for clarity. In practice, the splitting caused by spin–spin 
coupling is much smaller than that caused by the applied field.

βΑαX

αΑαX

αΑβX

βΑβX

Figure 14B.9 An alternative depiction of the energy levels 
and transitions shown in Fig. 14B.8. Once again, we have 
exaggerated the effect of spin–spin coupling.
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Figure 14B.10 The effect of spin–spin coupling on an AX 
spectrum. Each resonance is split into two lines separated by 
J. The pairs of resonances are centred on the chemical shifts of 
the protons in the absence of spin–spin coupling.

J

δX

X resonance
in AX

X resonance
in AX2

Figure 14B.11 The X resonance of an AX2 species is also a 
doublet, because the two equivalent X nuclei behave like a 
single nucleus; however, the overall absorption is twice as 
intense as that of an AX species.
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Three equivalent X nuclei (an AX3 species) split the reso-
nance of A into four lines of intensity ratio 1:3:3:1 (Fig. 14B.13). 
The X resonance remains a doublet as a result of the splitting 
caused by A. In general, N equivalent spin- 1

2  nuclei split the 
resonance of a nearby spin or group of equivalent spins into 
N + 1 lines with an intensity distribution given by Pascal’s tri-
angle (3). Successive rows of this triangle are formed by adding 
together the two adjacent numbers in the line above.

3

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

(b) The magnitudes of coupling constants
The scalar coupling constant of two nuclei separated by N bonds 
is denoted NJ, with subscripts for the types of nuclei involved. 
Thus, 1JCH is the coupling constant for a proton joined directly 
to a 13C atom, and 2JCH is the coupling constant when the same 
two nuclei are separated by two bonds (as in 13CeCeH). A typ-
ical value of 1JCH is in the range 120 to 250 Hz; 2JCH is between 
10 and 20 Hz. Both 3J and 4J can give detectable effects in a 
spectrum, but couplings over larger numbers of bonds can gen-
erally be ignored. One of the longest range couplings that has 
been detected is 9JHH = 0.4 Hz between the CH3 and CH2 pro-
tons in CH3C b CeC b CeC b CeCH2OH.

As remarked (in the discussion following eqn 14B.12b), the 
sign of JXY indicates whether the energy of two spins is lower 
when they are parallel (J < 0) or when they are antiparallel 
(J > 0). It is found that 1JCH is often positive, 2JHH is often nega-
tive, 3JHH is often positive, and so on. An additional point is that 
J varies with the angle between the bonds (Fig. 14B.14). Thus, a 
3JHH coupling constant is often found to depend on the dihedral 
angle φ (4) according to the Karplus equation:

φH
H

4

Example 14B.3 Accounting for the fine structure in a 
spectrum

Account for the fine structure in the NMR spectrum of the 
C–H protons of ethanol.

Method Consider how each group of equivalent protons (for 
instance, three methyl protons) split the resonances of the 
other groups of protons. There is no splitting within groups of 
equivalent protons. Each splitting pattern can be decided by 
referring to Pascal’s triangle.

Answer The three protons of the CH3 group split the reso-
nance of the CH2 protons into a 1:3:3:1 quartet with a split-
ting J. Likewise, the two protons of the CH2 group split the 
resonance of the CH3 protons into a 1:2:1 triplet with the same 
splitting J. The OH resonance is not split because the OH pro-
tons migrate rapidly from molecule to molecule (including 
molecules of impurities in the sample) and their effect aver-
ages to zero. In gaseous ethanol, where this migration does not 
occur, the OH resonance appears as a triplet, showing that the 
CH2 protons interact with the OH proton.

Self-test 14B.6 What fine structure can be expected for the pro-
tons in 14

4NH+? The spin quantum number of nitrogen-14 is 1.
Answer: 1:1:1 triplet from N

δA

Figure 14B.12 The origin of the 1:2:1 triplet in the A resonance 
of an AX2 species. The resonance of A is split into two by 
coupling with one X nucleus (as shown in the inset), and then 
each of those two lines is split into two by coupling to the 
second X nucleus. Because each X nucleus causes the same 
splitting, the two central transitions are coincident and give rise 
to an absorption line of double the intensity of the outer lines.

δA

Figure 14B.13 The origin of the 1:3:3:1 quartet in the A 
resonance of an AX3 species. The third X nucleus splits each of 
the lines shown in Fig. 14B.11 for an AX2 species into a doublet, 
and the intensity distribution reflects the number of transitions 
that have the same energy.
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3
HH cos cos2J A B C= + +φ φ   karplus equation  (14B.14)

with A, B, and C empirical constants with values close to +7 Hz, 
−1 Hz, and +5 Hz, respectively, for an HCCH fragment. It fol-
lows that the measurement of 3JHH in a series of related com-
pounds can be used to determine their conformations. The 
coupling constant 1JCH also depends on the hybridization of the 
C atom, as the following values indicate:

(c) The origin of spin–spin coupling
Spin–spin coupling is a very subtle phenomenon and it is bet-
ter to treat J as an empirical parameter than to use calculated 
 values. However, we can get some insight into its origins, if not 
its precise magnitude—or always reliably its sign—by consider-
ing the magnetic interactions within molecules.

A nucleus with spin projection mI gives rise to a magnetic 
field with z-component Bnuc at a distance R, where, to a good 
approximation,

Bnuc
N= − −γ µ θ 0

3
2

4
1 3

πR
mI( cos )

 
(14B.15)

The angle θ is defined in (1); we saw a version of this expression 
in eqn 14B.10a.

Spin–spin coupling in molecules in solution can be explained 
in terms of the polarization mechanism, in which the inter-
action is transmitted through the bonds. The simplest case to 
consider is that of 1JXY, where X and Y are spin- 1

2  nuclei joined 
by an electron-pair bond. The coupling mechanism depends 
on the fact that the energy depends on the relative orientation 
of the bonding electrons and the nuclear spins. This electron–
nucleus coupling is magnetic in origin, and may be either a 
dipolar interaction or a Fermi contact interaction. A pictorial 
description of the latter is as follows. First, we regard the mag-
netic moment of the nucleus as arising from the circulation of a 
current in a tiny loop with a radius similar to that of the nucleus 
(Fig. 14B.15). Far from the nucleus the field generated by this 
loop is indistinguishable from the field generated by a point 
magnetic dipole. Close to the loop, however, the field differs 
from that of a point dipole. The magnetic interaction between 
this non-dipolar field and the electron’s magnetic moment is 

Brief illustration 14B.4 The Karplus equation

The investigation of HeNeCeH couplings in polypeptides 
can help reveal their conformation. For 3JHH coupling in such 
a group, A = +5.1 Hz, B = −1.4 Hz, and C = +3.2 Hz. For a helical 
polymer, φ is close to 120°, which would give 3JHH≈ 4 Hz. For 
the sheet-like conformation, φ is close to 180°, which would 
give 3JHH ≈ 10 Hz.

Self-test 14B.7 NMR experiments reveal that for HeCeCeH 
coupling in polypeptides, A = +3.5 Hz, B = −1.6 Hz, and 
C = +4.3 Hz. In an investigation of the polypeptide flavodoxin, 
the 3JHH coupling constant for such a grouping was deter-
mined to be 2.1 Hz. Is this value consistent with a helical or 
sheet conformation?

Answer: Helical conformation

Brief illustration 14B.5 Magnetic fields from nuclei

The z-component of the magnetic field arising from a proton 
( )mI = 1

2  at R = 0.30 nm, with its magnetic moment parallel to 
the z-axis (θ = 0) is

Bnuc
JT T J m= − × × ×− − − −( . )2 821 10 4 1026 1 7 2 1 3

γ µN 0�� ���� ���� � ���� �
π

����
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4
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× −
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−

−

−
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( )

.

m

T
R

mI(1 3cos )2 θ

00 10. mT

A field of this magnitude can give rise to the splitting of 
resonance signals in solid samples. In a liquid, the angle θ 
sweeps over all values as the molecule tumbles, and the factor 
1 − 3 cos2 θ averages to zero. Hence the direct dipolar interac-
tion between spins cannot account for the fine structure of the 
spectra of rapidly tumbling molecules.

Self-test 14B.8 In gypsum, CaSO4⋅2H2O, the splitting in the 
H2O resonance can be interpreted in terms of a magnetic field 
of 0.715 mT generated by one proton and experienced by the 
other. With θ = 0, what is the separation of the protons in the 
H2O molecule?

Answer: 158 pm
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Figure 14B.14 The variation of the spin–spin coupling constant 
with angle predicted by the Karplus equation for an HCCH 
group and an HNCH group.
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the contact interaction. The contact interaction—essentially 
the failure of the point-dipole approximation—depends on the 
very close approach of an electron to the nucleus and hence can 
occur only if the electron occupies an s orbital (which is the 
reason why 1JCH depends on the hybridization ratio). We shall 
suppose that it is energetically favourable for an electron spin 
and a nuclear spin to be antiparallel (as is the case for a proton 
and an electron in a hydrogen atom).

If the X nucleus is α, a β electron of the bonding pair will 
tend to be found nearby, because that is an energetically favour-
able arrangement (Fig. 14B.16). The second electron in the 
bond, which must have α spin if the other is β (by the Pauli 
principle; Topic 9B), will be found mainly at the far end of 
the bond because electrons tend to stay apart to reduce their 
mutual repulsion. Because it is energetically favourable for the 
spin of Y to be antiparallel to an electron spin, a Y nucleus with 
β spin has a lower energy than when it has α spin. The oppo-
site is true when X is β, for now the α spin of Y has the lower 
energy. In other words, the antiparallel arrangement of nuclear 
spins lies lower in energy than the parallel arrangement as a 

result of their magnetic coupling with the bond electrons. That 
is, 1JCH is positive.

To account for the value of 2JXY, as for 2JHH in HeCeH, 
we need a mechanism that can transmit the spin alignments 
through the central C atom (which may be 12C, with no nuclear 
spin of its own). In this case (Fig. 14B.17), an X nucleus with 
α spin polarizes the electrons in its bond, and the α electron is 
likely to be found closer to the C nucleus. The more favourable 
arrangement of two electrons on the same atom is with their 
spins parallel (Hund’s rule, Topic 9B), so the more favourable 
arrangement is for the α electron of the neighbouring bond 
to be close to the C nucleus. Consequently, the β electron of 
that bond is more likely to be found close to the Y nucleus, 
and therefore that nucleus will have a lower energy if it is α. 
Hence, according to this mechanism, the lower energy will be 
obtained if the Y spin is parallel to that of X. That is, 2JHH is 
negative.

The coupling of nuclear spin to electron spin by the Fermi 
contact interaction is most important for proton spins, but it is 
not necessarily the most important mechanism for other nuclei. 
These nuclei may also interact by a dipolar mechanism with the 
electron magnetic moments and with their orbital motion, and 
there is no simple way of specifying whether J will be positive 
or negative.

(d) Equivalent nuclei
A group of nuclei are chemically equivalent if they are related 
by a symmetry operation of the molecule and have the same 
chemical shifts. Chemically equivalent nuclei are nuclei that 
would be regarded as ‘equivalent’ according to ordinary chemi-
cal criteria. Nuclei are magnetically equivalent if, as well as 
being chemically equivalent, they also have identical spin–spin 
interactions with any other magnetic nuclei in the molecule.

Figure 14B.15 The origin of the Fermi contact interaction. 
From far away, the magnetic field pattern arising from a ring 
of current (representing the rotating charge of the nucleus, 
the pale grey sphere) is that of a point dipole. However, if an 
electron can sample the field close to the region indicated by 
the sphere, the field distribution differs significantly from that 
of a point dipole. For example, if the electron can penetrate the 
sphere, then the spherical average of the field it experiences is 
not zero.

Fermi Pauli Fermi

X

X

Y

Y

Figure 14B.16 The polarization mechanism for spin–spin 
coupling (1JHH). The two arrangements have slightly different 
energies. In this case, J is positive, corresponding to a lower 
energy when the nuclear spins are antiparallel.

FermiFermi

Pauli Pauli

X
Y

Hund

C

Figure 14B.17 The polarization mechanism for 2JHH spin–spin 
coupling. The spin information is transmitted from one bond 
to the next by a version of the mechanism that accounts for the 
lower energy of electrons with parallel spins in different atomic 
orbitals (Hund’s rule of maximum multiplicity). In this case, J < 0, 
corresponding to a lower energy when the nuclear spins are 
parallel.
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Strictly speaking, CH3 protons are magnetically inequiva-
lent. However, they are in practice made magnetically equiva-
lent by the rapid rotation of the CH3 group, which averages out 
any differences. Magnetically inequivalent species can give very 
complicated spectra (for instance, the proton and 19F spectra of 
H2C = CF2 each consist of 12 lines), and we shall not consider 
them further.

An important feature of chemically equivalent magnetic 
nuclei is that, although they do couple together, the cou-
pling has no effect on the appearance of the spectrum. The 
qualitative reason for the invisibility of the coupling is that all 
allowed nuclear spin transitions are collective reorientations of 
groups of equivalent nuclear spins that do not change the rela-
tive orientations of the spins within the group (Fig. 14B.18). 
Then, because the relative orientations of nuclear spins are 

not changed in any transition, the magnitude of the coupling 
between them is undetectable. Hence, an isolated CH3 group 
gives a single, unsplit line because all the allowed transitions of 
the group of three protons occur without change of their rela-
tive orientations.

To express these conclusions more quantitatively, we first 
need to establish the energy levels of a collection of equivalent 
nuclei. As shown in the following Justification for an A2 system, 
they have the values depicted on the right of Fig. 14B.19.

Brief illustration 14B.6 Chemical and magnetic 
equivalence

The difference between chemical and magnetic equivalence is 
illustrated by CH2F2 and H2C = CF2. In each of these molecules 
the protons are chemically equivalent: they are related by sym-
metry and undergo the same chemical reactions. However, 
although the protons in CH2F2 are magnetically equivalent, 
those in CH2 = CF2 are not. One proton in the latter has a cis 
spin-coupling interaction with a given F nucleus whereas 
the other proton has a trans interaction with it. In contrast, 
in CH2F2 both protons are connected to a given F nucleus by 
identical bonds, so there is no distinction between them.

Self-test 14B.9 Are the CH3 protons in ethanol magnetically 
inequivalent?

Answer: Yes, on account of their different interactions  
with the CH2 protons in the next group

α

α
α

α

α α

β
ββ

β
β

β

(a)

(b) Two intermediate
orientations

φ

φ
φ

Figure 14B.18 (a) A group of two equivalent nuclei realigns 
as a group, without change of angle between the spins, when 
a resonant absorption occurs. Hence it behaves like a single 
nucleus and the spin–spin coupling between the individual 
spins of the group is undetectable. (b) Three equivalent 
nuclei also realign as a group without change of their relative 
orientations.

ββ

αα

αβ + βα
αβ – βα

No
spin–spin
coupling

With
spin–spin
coupling

I = 1, MI = +1

I = 1, MI = 0

I = 0, MI = 0

I = 1, MI = –1

1
4

+ J

1
4

+ J

1
4

+ J

3
4– J

Figure 14B.19 The energy levels of an A2 system in the 
absence of spin–spin coupling are shown on the left. When 
spin–spin coupling is taken into account, the energy levels 
on the right are obtained. Note that the three states with 
total nuclear spin I = 1 correspond to parallel spins and give 
rise to the same increase in energy (J is positive); the one 
state with I = 0 (antiparallel nuclear spins) has a lower energy 
in the presence of spin–spin coupling. The only allowed 
transitions are those that preserve the angle between the 
spins, and so take place between the three states with I = 1. 
They occur at the same resonance frequency as they would 
have in the absence of spin–spin coupling.

Justification 14B.1 The energy levels of an A2 system

Consider an A2 system of two spin- 1
2  nuclei. First, consider the 

energy levels in the absence of spin–spin coupling. There are 
four spin states that (just as for two electrons) can be classified 
according to their total spin I (the analogue of S for two elec-
trons) and their total projection MI on the z-axis. The states 
are analogous to those for two electrons in singlet and triplet 
states (Topic 9C):

The sign in αβ + βα signifies an in-phase alignment of spins 
and I = 1; the − sign in αβ − βα signifies an alignment out of 
phase by π, and hence I = 0. The effect of a magnetic field on 
these four states is shown in Fig. 14B.19: the energies of the 

Spins parallel, I = 1: MI = +1 αα
MI = 0 (1/21/2){αβ + βα}
MI = −1 ββ

Spins paired, I = 0: MI =0 (1/21/2){αβ − βα}
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We now consider the allowed transitions between the states 
of an A2 system shown in Fig. 14B.18. The radiofrequency field 
affects the two equivalent protons equally, so it cannot change 
the orientation of one proton relative to the other; therefore, the 
transitions take place within the set of states that correspond 
to parallel spin (those labelled I = 1), and no spin-parallel state 
can change to a spin-antiparallel state (the state with I = 0). Put 
another way, the allowed transitions are subject to the selection 
rule ΔI = 0.This selection rule is in addition to the rule ΔMI = ±1 
that arises from the conservation of angular momentum and 
the unit spin of the photon. The allowed transitions are shown 
in Fig. 14B.19: we see that there are only two transitions, and 
that they occur at the same resonance frequency that the nuclei 
would have in the absence of spin–spin coupling. Hence, the 
spin–spin coupling interaction does not affect the appearance 
of the spectrum.

(e) Strongly coupled nuclei
NMR spectra are usually much more complex than the 
foregoing simple analysis suggests. We have described the 
extreme case in which the differences in chemical shifts are 
much greater than the spin–spin coupling constants. In such 
cases it is simple to identify groups of magnetically equiva-
lent nuclei and to think of the groups of nuclear spins as 

reorienting relative to each other. The spectra that result are 
called first-order spectra.

Transitions cannot be allocated to definite groups when the 
differences in their chemical shifts are comparable to their 
spin–spin coupling interactions. The complicated spectra that 
are then obtained are called strongly coupled spectra (or ‘sec-
ond-order spectra’) and are much more difficult to analyse.

A clue to the type of analysis that is appropriate is given 
by the notation for the types of spins involved. Thus, an AX 
spin system (which consists of two nuclei with a large chemi-
cal shift difference) has a first-order spectrum. An AB sys-
tem, on the other hand (with two nuclei of similar chemical 
shifts), gives a spectrum typical of a strongly coupled system. 
An AX system may have widely different Larmor frequen-
cies because A and X are nuclei of different elements (such 
as 13C and 1H), in which case they form a heteronuclear spin 
system. AX may also denote a homonuclear spin system in 

Brief illustration 14B.7 Strongly coupled spectra

Figure 14B.20 shows NMR spectra of an A2 system (top) and 
an AX system (bottom). Both are simple ‘first-order’ spectra. 
At intermediate relative values of the chemical shift differ-
ence and the spin–spin coupling, complex ‘strongly coupled’ 
spectra are obtained. Note how the inner two lines of the bot-
tom spectrum move together, grow in intensity, and form the 
single central line of the top spectrum. The two outer lines 
diminish in intensity and are absent in the top spectrum.

Self-test 14B.10 Explain why, in some cases, a second-order 
spectrum may become simpler (and first-order) at high fields.

Answer: The difference in resonance frequencies increases with  
field, but spin–spin coupling constants are independent of it

ν°Δδ << J

ν°Δδ >> J

ν°Δδ ≈ J

ν°Δδ ≈ J

Figure 14B.20 The NMR spectra of an A2 system (top) and an 
AX system (bottom) are simple ‘first-order’ spectra.

two states with MI = 0 are unchanged by the field because they 
are composed of equal proportions of α and β spins.

The spin–spin coupling energy is proportional to the scalar 
product of the vectors representing the spins, E = (hJ/2)I1⋅I2. 
The scalar product can be expressed in terms of the total 
nuclear spin I = I1 + I2 by noting that

I I I2
1 2 1 2 1 22= + ⋅ + = + + ⋅( ) ( )I I I I I I1

2
2
2

rearranging this expression to

I I1 2
2⋅ = − −1

2 1
2

2
2{ }I I I

and replacing the magnitudes by their quantum mechanical 
values:

I I1 2 1 1 2 2
21 1 1⋅ = + − + − +1

2 { ( ) ( ) ( )}I I I I I I 

Then, because I I1 2= = 1
2 , it follows that

E hJ I I= + −1
2

3
2{ ( ) }1

For parallel spins, I = 1 and E hJ= + 1
4 ; for antiparallel spins 

I = 0 and E hJ= − 3
4 , as in Fig. 14B.19. We see that three of the 

states move in energy in one direction and the fourth (the 
one with antiparallel spins) moves three times as much in the 
opposite direction.
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580 14 Magnetic resonance

which the nuclei are of the same element but in markedly dif-
ferent environments.

14B.4 Conformational conversion  
and exchange processes

The appearance of an NMR spectrum is changed if magnetic 
nuclei can jump rapidly between different environments. 
Consider a molecule, such as N,N-dimethylformamide, that 
can jump between conformations; in its case, the methyl 
shifts depend on whether they are cis or trans to the carbonyl 
group (Fig. 14B.21). When the jumping rate is low, the spec-
trum shows two sets of lines, one each from molecules in each 
conformation. When the interconversion is fast, the spectrum 
shows a single line at the mean of the two chemical shifts. 
At intermediate inversion rates, the line is very broad. This 
maximum broadening occurs when the lifetime, τ, of a con-
formation gives rise to a linewidth that is comparable to the dif-
ference of resonance frequencies, δν and both broadened lines 
blend together into a very broad line. Coalescence of the two 
lines occurs when

τ = 21 2/

πδ  
 condition for coalescence of two nmr lines  (14B.16)

Brief illustration 14B.8 The effect of chemical exchange 
on NMR spectra

The NO group in N,N-dimethylnitrosamine, (CH3)2NeNO 
(5), rotates about the NeN bond and, as a result, the magnetic 

A similar explanation accounts for the loss of fine struc-
ture in solvents able to exchange protons with the sample. For 
example, hydroxyl protons are able to exchange with water 
protons. When this chemical exchange occurs, a molecule 
ROH with an α-spin proton (we write this ROHα) rapidly 
converts to ROHβ and then perhaps to ROHα again because 
the protons provided by the solvent molecules in successive 
exchanges have random spin orientations. Therefore, instead 
of seeing a spectrum composed of contributions from both 
ROHα and ROHβ molecules (that is, a spectrum showing a 
doublet structure due to the OH proton) we see a spectrum 
that shows no splitting caused by coupling of the OH proton 
(as in Fig. 14B.2 and as discussed in Example 14B.3). The effect 
is observed when the lifetime of a molecule due to this chemi-
cal exchange is so short that the lifetime broadening is greater 
than the doublet splitting. Because this splitting is often very 
small (a few hertz), a proton must remain attached to the 
same molecule for longer than about 0.1s for the splitting to 
be observable. In water, the exchange rate is much faster than 
that, so alcohols show no splitting from the OH protons. In 
dry dimethylsulfoxide (DMSO), the exchange rate may be 
slow enough for the splitting to be detected.

environments of the two CH3 groups are interchanged. The 
two CH3 resonances are separated by 390 Hz in a 600 MHz 
spectrometer. According to eqn 14B.16,

τ =
×

=−
2
390

1 2
1 2

1

/

( )
.

π s
ms

It follows that the signal will collapse to a single line when the 
interconversion rate exceeds about 1/τ = 830s−1.

5 N,N-Dimethylnitrosamine

Self-test 14B.11 What would you deduce from the observa-
tion of a single line from the same molecule in a 300 MHz 
spectrometer?

Answer: Conformation lifetime less than 2.3 ms

H
C

N

O

Figure 14B.21 When a molecule changes from one 
conformation to another, the positions of its protons are 
interchanged and the protons jump between magnetically 
distinct environments.
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Checklist of concepts

☐ 1. The chemical shift of a nucleus is the difference 
between its resonance frequency and that of a reference 
standard.

☐ 2. The shielding constant is the sum of a local contribu-
tion, a neighbouring group contribution, and a solvent 
contribution.

☐ 3. The local contribution is the sum of a diamagnetic con-
tribution and a paramagnetic contribution.

☐ 4. The neighbouring group contribution arises from the 
currents induced in nearby groups of atoms.

☐ 5. The solvent contribution can arise from specific molecu-
lar interactions between the solute and the solvent.

☐ 6. Fine structure is the splitting of resonances into indi-
vidual lines by spin–spin coupling.

☐ 7. Spin–spin coupling is expressed in terms of the spin–
spin coupling constant J and depends on the relative 
orientation of two nuclear spins.

☐ 8. The coupling constant decreases as the number of 
bonds separating two nuclei increases.

☐ 9. Spin–spin coupling can be explained in terms of the 
polarization mechanism and the Fermi contact 
interaction.

☐ 10. Chemically and magnetically equivalent nuclei have 
the same chemical shifts.

☐ 11. In strongly coupled spectra, transitions cannot be allo-
cated to definite groups.

☐ 12. Coalescence of two NMR lines occurs when a conforma-
tional interchange or chemical exchange of nuclei is fast.

Checklist of equations

Property Equation Comment Equation number

δ Scale of chemical shifts δ = {(ν − ν°)/ν°} × 106 Definition 14B.4

Relation between chemical shift and shielding 
constant

δ ≈ (σ ° − σ) × 106 14B.6

Local contribution to the shielding constant σ(local) = σd + σp 14B.8

Lamb formula σd = (e2μ0/12πme)〈1/r〉 14B.9

Neighbouring group contribution to the 
shielding constant

σ(neighbour)∝(χ∥ − χ⊥){(1 − 3cos2θ)/r3} The angle θ is defined in (1) 14B.10b

Karplus equation 3JHH = A + B cos φ + C cos 2φ A, B, and C are empirical constants 14B.14

Condition for coalescence of two NMR lines τ = 21/2/πδν Conformational conversions and 
exchange processes

14B.16

iranchembook.ir/edu



14C Pulse techniques in nmr

The common method of detecting the energy separation 
between nuclear spin states in NMR spectroscopy is more 
sophisticated than simply looking for the frequency at which 
resonance occurs. One of the best analogies that have been 
suggested to illustrate the preferred way of observing an NMR 
spectrum is that of detecting the spectrum of vibrations of a 
bell. We could stimulate the bell with a gentle vibration at a 
gradually increasing frequency, and note the frequencies at 
which it resonated with the stimulation. A lot of time would 
be spent getting zero response when the stimulating frequency 
was between the bell’s vibrational modes. However, if we were 
simply to hit the bell with a hammer, we would immediately 
obtain a clang composed of all the frequencies that the bell 
can produce. The equivalent in NMR is to monitor the radia-
tion nuclear spins emit as they return to equilibrium after the 
appropriate stimulation. The resulting Fourier-transform 
NMR (FT-NMR) spectroscopy gives greatly increased sensitiv-
ity, so opening up much of the periodic table to the technique. 
Moreover, multiple-pulse FT-NMR gives chemists unparalleled 
control over the information content and display of spectra.

14C.1 The magnetization vector

Consider a sample composed of many identical spin- 1
2  nuclei. 

By analogy with the discussion of angular momenta in Topic 
8C, a nuclear spin can be represented by a vector of length 
{I(I + 1)}1/2 units with a component of length m1 units along 
the z-axis. As the uncertainty principle does not allow us to 
specify the x- and y-components of the angular momentum, all 
we know is that the vector lies somewhere on a cone around 
the z-axis. For I = 1

2 , the length of the vector is 1
2 31 2/  and when 

mI = + 1
2  it makes an angle of arccos( ) 551 21

2
1
2 3/( )/ = ° to the z-axis 

(Fig. 14C.1).
In the absence of a magnetic field, the sample consists of 

equal numbers of α and β nuclear spins with their vectors lying 
at random angles on the cones. These angles are unpredict-
able, and at this stage we picture the spin vectors as stationary. 

➤➤ Why do you need to know this material?

To understand how nuclear magnetic resonance 
spectroscopy is used to study large molecules and even 
diagnose disease, you need to understand how spectral 
information is obtained by analysing the response of 
nuclei to the application of strong pulses of radiofrequency 
radiation.

➤➤ What is the key idea?
Fourier-transform NMR spectroscopy is the analysis of 
the radiation emitted by nuclear spins as they return to 
equilibrium after stimulation by one or more pulses of 
radiofrequency radiation.

➤➤ What do you need to know already?
You need to be familiar with the general principles of 
magnetic resonance (Topic 14A), the features of NMR 
spectra (Topics 14B), the vector model of angular 
momentum (Topic 8B), the magnetic properties of 

molecules (Topic 18C), and Fourier transforms (Topic 12A 
and Mathematical background 7). The development makes 
use of the concept of precession at the Larmor frequency 
(Topic 14A).
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The magnetization, M, of the sample, its net nuclear magnetic 
moment, is zero (Fig. 14C.2a).

Two changes occur in the magnetization when a magnetic 
field of magnitude B0 is present and aligned in the z-direction:

•	 The energies of the two orientations change, the α spins 
moving to low energy and the β spins to high energy 
(provided γ N > 0).

At 10 T, the Larmor frequency for protons is 427 MHz, and in 
the vector model the individual vectors are pictured as precess-
ing at this rate (Topic 14A). This motion is a pictorial repre-
sentation of the difference in energy of the spin states (it is not 
an actual representation of reality but is inspired by the actual 
motion of a classical bar magnet in a magnetic field). As the 
field is increased, the Larmor frequency increases and the pre-
cession becomes faster.

•	 The populations of the two spin states (the numbers of α 
and β spins) at thermal equilibrium change, with slightly 
more α spins than β spins (see Topic 14A).

Despite its smallness, this imbalance means that there is a net 
magnetization that we can represent by a vector M pointing in 

the z-direction and with a length proportional to the popula-
tion difference (Fig. 14C.2b).

(a) The effect of the radiofrequency field
Now consider the effect of a radiofrequency field circularly 
polarized in the xy-plane, so that the magnetic component of 
the electromagnetic field (the only component we need to con-
sider) is rotating around the z-direction in the same sense as 
the Larmor precession of the nuclei. The strength of the rotat-
ing magnetic field is B1.

To interpret the effects of radiofrequency pulses on the mag-
netization, it is useful to imagine stepping on to a platform, a 
so-called rotating frame, that rotates around the direction 
of the applied field. Suppose we choose the frequency of the 
radio frequency field to be equal to the Larmor frequency of the 
spins, νL = γNB0/2π; this choice is equivalent to selecting the res-
onance condition in the conventional experiment. The rotating 
magnetic field is in step with the precessing spins, the nuclei 
experience a steady B1 field, and precess about it at a frequency 
γNB1/2π (Fig. 14C.3). Now suppose that the B1 field is applied 
in a pulse of duration ∆τ γ= ×1

4 2 / N 1π B , the magnetization tips 
through an angle of 1

4 0× = °2 /2 (9 )π π  away from the vertical 
z-direction and we say that we have applied a 90° pulse, or a 
‘π/2 pulse’ (Fig. 14C.4a).

Now imagine stepping out of the rotating frame. To a fixed 
external observer (the role played by a radiofrequency coil), the 
magnetization vector is now rotating at the Larmor frequency in 
the xy-plane (Fig. 14C.4b). The rotating magnetization induces 
in the coil a signal that oscillates at the Larmor frequency and 
which can be amplified and processed. In practice, the process-
ing takes place after subtraction of a constant high frequency 
component (the radiofrequency used for B1), so that all the sig-
nal manipulation takes place at frequencies of a few kilohertz.

As time passes, the individual spins move out of step (partly 
because they are precessing at slightly different rates, as we 

Brief illustration 14C.1 Radiofrequency pulses

The duration of a radiofrequency pulse depends on the 
strength of the B1 field. If a 90° pulse requires 10 µs, then for 
protons

B1 8 1 1 52 2 675 10 1 0 10
5 9=

× × × ×
=− − − −

π
( . ) ( . )

.
T s s

γ τN

� ���� ���� � �� ��
∆

×× −10 4 T

or 0.59 mT.

Self-test 14C.1 How long would a 180° pulse require for 
protons?

Answer: 20 µs

α

β

(a) (b)

M

Figure 14C.2 The magnetization of a sample of spin- 1
2  

nuclei is the resultant of all their magnetic moments. (a) In the 
absence of an externally applied field, there are equal numbers 
of α and β spins at random angles around the z-axis (the field 
direction) and the magnetization is zero. (b) In the presence 
of a field, the spins precess around their cones (that is, there 
is an energy difference between the α and β states) and there 
are slightly more α spins than β spins. As a result, there is a net 
magnetization along the z-axis.

z

½√3
½

Figure 14C.1 The vector model of angular momentum 
for a single spin- 1

2  nucleus. The angle around the z-axis is 
indeterminate.

iranchembook.ir/edu



584 14 Magnetic resonance

explain later), so the magnetization vector shrinks exponen-
tially with a time constant T2 and induces an ever weaker signal 
in the detector coil. The form of the signal that we can expect is 
therefore the oscillating-decaying free-induction decay (FID) 
shown in Fig. 14C.5. The y-component of the magnetization 
varies as

M t M ty
t T( ) cos( ) /= −

0 2 2πL e   Free-induction decay  (14C.1)

We have considered the effect of a B1 pulse applied at exactly 
the Larmor frequency. However, virtually the same effect is 
obtained off resonance, provided that the pulse is applied close 
to νL. If the difference in frequency is small compared to the 
inverse of the duration of the 90° pulse, the magnetization will 
end up in the xy-plane. Note that we do not need to know the 
Larmor frequency beforehand: the short pulse is the analogue 
of the hammer blow on the bell, exciting a range of frequencies. 
The detected signal shows that a particular resonant frequency 
is present.

(b) Time- and frequency-domain signals

We can think of the magnetization vector of a homonuclear 
AX spin system with spin–spin coupling constant J = 0 as 
consisting of two parts, one formed by the A spins and the 
other by the X spins. When the 90° pulse is applied, both mag-
netization vectors are rotated into the xy-plane. However, 
because the A and X nuclei precess at different frequencies, 
they induce two signals in the detector coils, and the overall 
FID curve may resemble that in Fig. 14C.6a. The composite 
FID curve is the analogue of the struck bell emitting a rich 
tone composed of all the frequencies (in this case, just the two 
resonance frequencies of the uncoupled A and X nuclei) at 
which it can vibrate.

The problem we must address is how to recover the reso-
nance frequencies present in a free-induction decay. We know 
that the FID curve is a sum of decaying oscillating functions, 
so the problem is to analyse it into its components by carry-
ing out a Fourier transformation. The analysis of the FID curve 
is achieved by the standard mathematical technique of Fourier 
transformation, which is explained more fully in Mathematical 
background 7 following chapter 18.

(a) (b)

M
M

B1
B1

νL

ν = νL

Figure 14C.3 (a) In a resonance experiment, a circularly 
polarized radiofrequency magnetic field B1 is applied in the 
xy-plane (the magnetization vector lies along the z-axis). (b) If 
we step into a frame rotating at the radiofrequency, B1 appears 
to be stationary, as does the magnetization M if the Larmor 
frequency is equal to the radiofrequency. When the two 
frequencies coincide, the magnetization vector of the sample 
rotates around the direction of the B1 field.

M

M

B0

B1

Detecting
coil

νL

90° pulse

(a) (b)

Figure 14C.4 (a) If the radiofrequency field is applied for a 
certain time, the magnetization vector is rotated into the 
xy-plane. (b) To an external stationary observer (the coil), the 
magnetization vector is rotating at the Larmor frequency, and 
can induce a signal in the coil.

S
ig

n
al

Time, t

Figure 14C.5 A simple free-induction decay of a sample of 
spins with a single resonance frequency.

S
ig

n
al

Time, t

Frequency, ν

(a)

(b)

Figure 14C.6 (a) A free-induction decay signal of a sample of 
AX species and (b) its analysis into its frequency components.
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We start by noting that the signal S(t) in the time domain, 
the total FID curve, is the sum (more precisely, the integral) 
over all the contributing frequencies

S t I t( ) ( )= −

−∞

∞

∫  e di2π

 
(14C.2)

Because e2πiνt = cos(2πνt) + i sin(2πνt), this expression is a sum 
over harmonically oscillating functions, with each one weighted 
by the intensity I(ν).

We need I(ν), the spectrum in the frequency domain; it is 
obtained by evaluating the integral

I S t tt( ) ( ) =
∞

∫2 2

0
Re e diπ

 
(14C.3)

where Re means take the real part of the following expression. 
This integral gives a nonzero value if S(t) contains a component 
that matches the oscillating function e2iπνt. The integration is 
carried out at a series of frequencies ν on a computer that is 
built into the spectrometer. When the signal in Fig. 14C.6a is 
transformed in this way, we get the frequency-domain spec-
trum shown in Fig. 14C.6b. One line represents the Larmor fre-
quency of the A nuclei and the other that of the X nuclei.

The FID curve in Fig. 14C.7 is obtained from a sample of 
ethanol. The frequency-domain spectrum obtained from it by 
Fourier transformation is the one discussed in Topic 14B (see 
Fig. 14B.2). We can now see why the FID curve in Fig. 14C.7 
is so complex: it arises from the precession of a magnetization 
vector that is composed of eight components, each with a char-
acteristic frequency.

14C.2 Spin relaxation

There are two reasons why the component of the magnetiza-
tion vector in the xy-plane shrinks. Both reflect the fact that 
the nuclear spins are not in thermal equilibrium with their 
surroundings (for then M lies parallel to z). At thermal equi-
librium the spins have a Boltzmann distribution, with more α 
spins than β spins and lie at random orientations on their pre-
cessional cones. The return to equilibrium is the process called 
spin relaxation.

(a) Longitudinal and transverse relaxation
Consider the effect of a 180° pulse, which may be visualized 
in the rotating frame as a flip of the net magnetization vector 
from one direction along the z-axis (with more α spins than 
β spins) to the opposite direction (with more β spins than α 
spins). After the pulse, the populations revert to their thermal 
equilibrium values exponentially. As they do so, the z-compo-
nent of magnetization reverts to its equilibrium value M0 with 
a time constant called the longitudinal relaxation time, T1 
(Fig. 14C.8):

M t Mz
t T( ) /− ∝ −

0
1e  Definition   longitudinal relaxation time   (14C.4)

Because this relaxation process involves giving up energy to 
the surroundings (the ‘lattice’) as β spins revert to α spins, the 
time constant T1 is also called the spin–lattice relaxation time. 
Spin–lattice relaxation is caused by local magnetic fields that 
fluctuate at a frequency close to the resonance frequency of 
the β → α transition. Such fields can arise from the tumbling 
motion of molecules in a fluid sample. If molecular tumbling 
is too slow or too fast compared to the resonance frequency, it 
will give rise to a fluctuating magnetic field with a frequency 
that is either too low or too high to stimulate a spin change 
from β to α, so T1 will be long. Only if the molecule tumbles 
at about the resonance frequency will the fluctuating magnetic 

Brief illustration 14C.2 Fourier analysis

Fourier analysis is a common feature of most mathemati-
cal software packages, but one simple example is the Fourier 
transform of the function

S t S t t T( ) ( )cos( ) /= −0 2 2πL e

which describes the behaviour of the FID signal in eqn 14C.1. 
The result is (Problem 14C.3)

I
S T

T
( )

( )
( ) ( )


 

=
+ −

0
1 2

2
2

2
2

L π

which has the so-called ‘Lorentzian’ shape, with a maximum 
intensity at I(νL) = S(0)T2.

Self-test 14C.2 What is the width at half-height Δν1/2 of the 
Lorentzian function above?

Answer: Δν1/2= 1/πT2

TimeS
ig

n
al

Figure 14C.7 A free-induction decay signal of a sample 
of ethanol. Its Fourier transform is the frequency-domain 
spectrum shown in Fig. 14B.2. The total length of the image 
corresponds to about 1s.
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field be able to induce spin changes effectively, and only then 
will T1 be short. The rate of molecular tumbling increases with 
temperature and with reducing viscosity of the solvent, so we 
can expect a dependence like that shown in Fig. 14C.9. The 
quantitative treatment of relaxation times depends on setting 
up models of molecular motion and using, for instance, the dif-
fusion equation (Topic 19C) adapted for rotational motion.

Now consider the events following a 90° pulse. The mag-
netization vector in the xy-plane is large when the spins are 
bunched together immediately after the pulse. However, this 
orderly bunching of spins is not at equilibrium and, even if 

there were no spin–lattice relaxation, we would expect the indi-
vidual spins to spread out until they were uniformly distrib-
uted with all possible angles around the z-axis (Fig. 14C.10). At 
that stage, the component of magnetization vector in the plane 
would be zero. The randomization of the spin directions occurs 
exponentially with a time constant called the transverse relaxa-
tion time, T2:

M ty
t T( ) /∝ −e 2

 Definition  transverse relaxation time  (14C.5)

Because the relaxation involves the relative orientation of the 
spins around their respective cones, T2 is also known as the 
spin–spin relaxation time. Any relaxation process that changes 
the balance between α and β spins will also contribute to this 
randomization, so the time constant T2 is almost always less 
than or equal to T1.

Local magnetic fields also affect spin–spin relaxation. When 
the fluctuations are slow, each molecule lingers in its local mag-
netic environment and the spin orientations randomize quickly 
around their cones. If the molecules move rapidly from one 
magnetic environment to another, the effects of differences in 
local magnetic field average to zero: individual spins do not 
precess at very different rates, they can remain bunched for 
longer, and spin–spin relaxation does not take place as quickly. 
In other words, slow molecular motion corresponds to short 
T2 and fast motion corresponds to long T2 (as shown in Fig. 
14C.9). Calculations show that, when the motion is fast, the 
main orientational randomizing effect arises from β → α tran-
sitions rather than different precession rates on the cones, and 
then T2 ≈ T1.
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High 
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Figure 14C.9 The variation of the two relaxation times with 
the rate at which the molecules move (either by tumbling or 
migrating through the solution). The horizontal axis can be 
interpreted as representing temperature or viscosity. Note that 
at rapid rates of motion, the two relaxation times coincide.

α

β

α

β

t t +T2

Figure 14C.10 The transverse relaxation time, T2, is the time 
constant for the phases of the spins to become randomized 
(another condition for equilibrium) and to change from the 
orderly arrangement shown on the left to the disorderly 
arrangement on the right (long after a time T2 has elapsed). 
Note that the populations of the states remain the same; only 
the relative phase of the spins relaxes. In actuality, T2 is the time 
constant for relaxation to the arrangement on the right and T2 
ln 2 is the half-life of the arrangement on the left.

α

β

α

β

t t + T1

Figure 14C.8 In longitudinal relaxation the spins relax back 
towards their thermal equilibrium populations. On the left 
we see the precessional cones representing spin- 1

2  angular 
momenta, and they do not have their thermal equilibrium 
populations (there are more β spins than α spins). On the 
right, which represents the sample a long time after a time 
T1 has elapsed, the populations are those characteristic of a 
Boltzmann distribution. In actuality, T1 is the time constant for 
relaxation to the arrangement on the right and T1 ln 2 is the 
half-life of the arrangement on the left.
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If the y-component of magnetization decays with a time con-
stant T2, the spectral line is broadened (Fig. 14C.11), and its 
width at half-height becomes (see Brief illustration 14C.2)

∆1 2
2

1
/ = πT  

 width at half-height of an nmr line  (14C.6)

Typical values of T2 in proton NMR are of the order of seconds, 
so linewidths of around 0.1 Hz can be anticipated, in broad 
agreement with observation.

So far, we have assumed that the equipment, and in particu-
lar the magnet, is perfect, and that the differences in Larmor 
frequencies arise solely from interactions within the sample. In 
practice, the magnet is not perfect, and the field is different at 
different locations in the sample. The inhomogeneity broadens 
the resonance, and in most cases this inhomogeneous broad-
ening dominates the broadening we have discussed so far. It is 
common to express the extent of inhomogeneous broadening 
in terms of an effective transverse relaxation time, T2

*, by using 
a relation like eqn 14C.6, but writing

T2
1 2

1*

/

= π∆  

where Δν1/2 is the observed width at half-height of a line with a 
Lorentzian shape of the form I ∝ 1/(1+ ν2).

(b) The measurement of T1 and T2

The longitudinal relaxation time T1 can be measured by the 
inversion recovery technique. The first step is to apply a 180° 
pulse to the sample. A 180° pulse is achieved by applying the 
B1 field for twice as long as for a 90° pulse, so the magnetiza-
tion vector precesses through 180° and points in the z-direction 
(Fig. 14C.12). No signal can be seen at this stage because there 
is no component of magnetization in the xy-plane (where the 
coil can detect it). The β spins begin to relax back into α spins, 
and the magnetization vector first shrinks exponentially, fall-
ing through zero to its thermal equilibrium value, M0. After an 
interval τ, a 90° pulse is applied that rotates the remaining mag-
netization into the xy-plane, where it generates an FID signal. 
The frequency-domain spectrum is then obtained by Fourier 
transformation.

The intensity of the spectrum obtained in this way depends 
on the length of the magnetization vector that is rotated into 
the xy-plane. The length of that vector changes exponentially as 
the interval between the two pulses is increased, so the inten-
sity of the spectrum also changes exponentially with increasing 
τ. We can therefore measure T1 by fitting an exponential curve 
to the series of spectra obtained with different values of τ.

The measurement of T2 (as distinct from T2
*) depends on 

being able to eliminate the effects of inhomogeneous broad-
ening. The cunning required is at the root of some of the most 
important advances that have been made in NMR since its 
introduction.

A spin echo is the magnetic analogue of an audible echo: 
transverse magnetization is created by a radiofrequency pulse, 
decays away, is reflected by a second pulse, and grows back to 
form an echo. The sequence of events is shown in Fig. 14C.13. 
We can consider the overall magnetization as being made up of 
a number of different magnetizations, each of which arises from 
a spin packet of nuclei with very similar precession frequencies. 
The spread in these frequencies arises because the applied field 
B0 is inhomogeneous, so different parts of the sample experi-
ence different fields. The precession frequencies also differ if 
there is more than one chemical shift present. As will be seen, 

Definition effective transverse 
relaxation time  14C.7)

Brief illustration 14C.3 Inhomogeneous broadening

Consider a line in a spectrum with a width of 10 Hz. It follows 
from eqn 14C.7 that the effective transverse relaxation time is

T2 1

1
10

32*

( )
=

×
=−π s

ms

Self-test 14C.3 Name two processes that could contribute to 
further broadening of the NMR line.

Answer: Conformational conversion or chemical exchange (Topic 14B)

Δν1/2 = 1/πT2

0
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Figure 14C.11 A Lorentzian absorption line. The width at half-
height is inversely proportional to the parameter T2 and the 
longer the transverse relaxation time, the narrower the line.
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Figure 14C.12 (a) The result of applying a 180° pulse to 
the magnetization in the rotating frame and the effect of a 
subsequent 90° pulse. (b) The amplitude of the frequency-
domain spectrum varies with the interval between the two 
pulses because spin–lattice relaxation has time to occur.
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the importance of a spin echo is that it can suppress the effects of 
both field inhomogeneities and chemical shifts.

First, a 90° pulse is applied to the sample. We follow events 
by using the rotating frame, in which B1 is stationary along the 
rotating x-axis and causes the magnetization to rotate into the 
xy-plane. The spin packets now begin to fan out because they 
have different Larmor frequencies, with some above the radio-
frequency and some below. The detected signal depends on the 
resultant of the spin-packet magnetization vectors, and decays 
with a time-constant T2

* because of the combined effects of field 
inhomogeneity and spin–spin relaxation.

After an evolution period τ, a 180° pulse is applied to the 
sample; this time, about the y-axis of the rotating frame (the 
axis of the pulse is changed from x to y by a 90° phase shift of 
the radiofrequency radiation). The pulse rotates the magnetiza-
tion vectors of the faster spin packets into the positions pre-
viously occupied by the slower spin packets, and vice versa. 
Thus, as the vectors continue to precess, the fast vectors are 
now behind the slow; the fan begins to close up again, and the 
resultant signal begins to grow back into an echo. After another 
interval of length τ, all the vectors will once more be aligned 
along the y-axis, and the fanning out caused by the field inho-
mogeneity is said to have been refocused: the spin echo has 
reached its maximum.

The important feature of the technique is that the size of the 
echo is independent of any local fields that remain constant 
during the two τ intervals. If a spin packet is ‘fast’ because it 
happens to be composed of spins in a region of the sample that 
experiences higher than average fields, then it remains fast 
throughout both intervals, and what it gains on the first inter-
val it loses on the second interval. Hence, the size of the echo is 
independent of inhomogeneities in the magnetic field, for these 
remain constant. The true transverse relaxation arises from 
fields that vary on a molecular distance scale, and there is no 

guarantee that an individual ‘fast’ spin will remain ‘fast’ in the 
refocusing phase: the spins within the packets therefore spread 
with a time constant T2. Hence, the effects of the true relaxation 
are not refocused, and the size of the echo decays with the time 
constant T2 (Fig. 14C.14).

14C.3 Spin decoupling

Carbon-13 is a dilute-spin species in the sense that it is unlikely 
that more than one 13C nucleus will be found in any given small 
molecule (provided the sample has not been enriched with that 
isotope; the natural abundance of 13C is only 1.1 per cent). Even 
in large molecules, although more than one 13C nucleus may be 
present, it is unlikely that they will be close enough to give an 
observable splitting. Hence, it is not normally necessary to take 
into account 13C–13C spin–spin coupling within a molecule.

Protons are abundant-spin species in the sense that a mol-
ecule is likely to contain many of them. Protons are abundant-
spin species. If we were observing a 13C-NMR spectrum, we 
would obtain a very complex spectrum on account of the 
coupling of the one 13C nucleus with many of the protons 
that are present. To avoid this difficulty, 13C-NMR spec-
tra are normally observed using the technique of proton 
decoupling. Thus, if the CH3 protons of ethanol are irradi-
ated with a second, strong, resonant radiofrequency pulse, 
they undergo rapid spin reorientations and the 13C nucleus 
senses an average orientation. As a result, its resonance is a 
single line and not a 1:3:3:1 quartet. Proton decoupling has 
the additional advantage of enhancing sensitivity, because the 
intensity is concentrated into a single transition frequency 
instead of being spread over several transition frequencies. If 
care is taken to ensure that the other parameters on which the 
strength of the signal depends are kept constant, the inten-
sities of proton-decoupled spectra are proportional to the 
number of 13C nuclei present. The technique is widely used to 
characterize synthetic polymers.
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Figure 14C.13 The sequence of pulses leading to the 
observation of a spin echo.
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Figure 14C.14 The exponential decay of spin echoes can be 
used to determine the transverse relaxation time.
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14C.4 The nuclear Overhauser effect

One advantage of protons in NMR is their high magnetogyric 
ratio, which results in relatively large Boltzmann population dif-
ferences and also strong coupling to the radiofrequency field, and 
hence greater resonance intensities than for most other nuclei. In 
the steady-state nuclear Overhauser effect (NOE), spin relaxa-
tion processes involving internuclear dipole–dipole interactions 
are used to transfer this population advantage to another nucleus 
(such as 13C or another proton), so that the latter’s resonances are 
modified. In a dipole–dipole interaction between two nuclei, one 
nucleus influences the behaviour of another nucleus in much the 
same way that the orientation of a bar magnet is influenced by 
the presence of another bar magnet nearby.

To understand the effect, consider the populations of the 
four levels of a homonuclear (for instance, proton) AX system; 
these levels are shown in Fig. 14B.9. At thermal equilibrium, 
the population of the αAαX level is the greatest, and that of 
the βAβX level is the least; the other two levels have the same 
energy and an intermediate population. The thermal equilib-
rium absorption intensities reflect these populations, as shown 
in Fig. 14C.15. Now consider the combined effect of spin 
relaxation and keeping the X spins saturated. When we satu-
rate the X transition, the populations of the X levels are equal-
ized (NαX = NβX) and all transitions involving αX ↔ βX spin flips 
are no longer observed. At this stage there is no change in the 
popu lations of the A levels. If that were all there were to hap-
pen, all we would see would be the loss of the X resonance and 
no effect on the A resonance.

Now consider the effect of spin relaxation. Relaxation 
can occur in a variety of ways if there is a dipolar interaction 
between the A and X spins. One possibility is for the mag-
netic field acting between the two spins to cause them both to 
flip simultaneously from β to α, so the αAαX and βAβX states 
regain their thermal equilibrium populations. However, the 
populations of the αAβX and βAαX levels remain unchanged 
at the values characteristic of saturation. As we see from Fig. 
14C.16, the population difference between the states joined by 

transitions of A is now greater than at equilibrium, so the res-
onance absorption is enhanced. Another possibility is for the 
dipolar interaction between the two spins to cause αA to flip to 
βA and simultaneously βX to flip to αX (or vice versa). This tran-
sition equilibrates the populations of αAβX and βAαX but leaves 
the αAαX and βAβX populations unchanged. Now we see from 
the illustration that the population differences in the states 
involved in the A transitions are decreased, so the resonance 
absorption is diminished.

Which effect wins? Does the NOE enhance the A absorp-
tion or does it diminish it? As in the discussion of relaxation 
times in Section 14C.2, the efficiency of the intensity-enhancing 
βAβX ↔ βAαX relaxation is high if the dipole field oscillates close 
to the transition frequency, which in this case is about 2ν; like-
wise, the efficiency of the intensity-diminishing αAβX ↔ βAαX 
relaxation is high if the dipole field is stationary (as there is no 
frequency difference between the initial and final states). A large 
molecule rotates so slowly that there is very little motion at 2ν, 
so we expect an intensity decrease (Fig. 14C.17). A small mole-
cule rotating rapidly can be expected to have substantial motion 
at 2ν, and a consequent enhancement of the signal. In practice, 
the enhancement lies somewhere between the two extremes and 
is reported in terms of the parameter η (eta), where

η = −I I
I

A A

A




 

 noe enhancement parameter  (14C.8)
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Figure 14C.15 The energy levels of an AX system and an 
indication of their relative populations. Each green square 
above the line represents an excess population and each white 
square below the line represents a population deficit. The 
transitions of A and X are marked.
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Figure 14C.16 (a) When the X transition is saturated, the 
populations of its two states are equalized and the population 
excess and deficit become as shown (using the same symbols 
as in Fig. 14C.15). (b) Dipole − dipole relaxation relaxes the 
populations of the highest and lowest states, and they 
regain their original populations. (c) The A transitions reflect 
the difference in populations resulting from the preceding 
changes, and are enhanced compared with those shown in 
Fig. 14C.15.
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Here IA
  and IA are the intensities of the NMR signals due to 

nucleus A before and after application of the long (> T1) radio-
frequency pulse that saturates transitions due to the X nucleus. 
When A and X are nuclei of the same species, such as pro-
tons, η lies between −1 (diminution) and + 1

2  (enhancement). 
However, η also depends on the values of the magnetogyric 
ratios of A and X. In the case of maximal enhancement it is pos-
sible to show that

η γ
γ= X

A2  
(14C.9)

where γA and γX are the magnetogyric ratios of nuclei A and X, 
respectively.

The NOE is also used to determine inter-proton distances. 
The Overhauser enhancement of a proton A generated by satu-
rating a spin X depends on the fraction of A’s spin–lattice relax-
ation that is caused by its dipolar interaction with X. Because 
the dipolar field is proportional to r−3, where r is the internu-
clear distance, and the relaxation effect is proportional to the 
square of the field, and therefore to r−6, the NOE may be used to 
determine the geometries of molecules in solution. The deter-
mination of the structure of a small protein in solution involves 
the use of several hundred NOE measurements, effectively cast-
ing a net over the protons present. The enormous importance 
of this procedure is that we can determine the conformation of 
biological macromolecules in an aqueous environment and do 
not need to try to make the single crystals that are essential for 
an X-ray diffraction investigation (Topic 18A).

14C.5 Two-dimensional NMR

An NMR spectrum contains a great deal of information and, if 
many protons are present, is very complex when the fine struc-
tures of different groups of lines overlap. The complexity would 
be reduced if we could use two axes to display the data, with 
resonances belonging to different groups lying at different loca-
tions on the second axis. This separation is essentially what is 
achieved in two-dimensional NMR.

Much modern NMR work makes use of correlation spec-
troscopy (COSY) in which a clever choice of pulses and Fourier 
transformation techniques makes it possible to determine all 
spin–spin couplings in a molecule. A typical outcome for an 
AX system is shown in Fig. 14C.18. The diagram shows con-
tours of equal signal intensity on a plot of intensity against the 
frequency coordinates ν1 and ν2. The diagonal peaks are signals 
centred on (δA,δA) and (δX,δX) and lie along the diagonal where 
ν1 = ν2. That is, the spectrum along the diagonal is equivalent to 
the one-dimensional spectrum obtained with the conventional 
NMR technique (as in Fig. 14B.2). The cross peaks (or off-diag-
onal peaks) are signals centred on (δA,δX) and (δX,δA) and owe 
their existence to the coupling between the A and X nuclei.

Although information from two-dimensional NMR spec-
troscopy is trivial in an AX system, it can be of enormous help 

Brief illustration 14C.4 NOE enhancement

From eqn 14C.9 and the data in Table 14A.2, the NOE 
enhancement parameter for 13C close to a saturated proton is
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which shows that an enhancement of about a factor of 2 can 
be achieved.

Self-test 14C.4 Interpret the following features of the NMR 
spectra of a protein: (a) saturation of a proton resonance 
assigned to the side chain of a methionine residue changes the 
intensities of proton resonances assigned to the side chains of 
a tryptophan and a tyrosine residue; (b) saturation of proton 
resonances assigned to the tryptophan residue did not affect 
the spectrum of the tyrosine residue.

Answer: The tryptophan and tyrosine residues are close to the 
m ethionine residue, but are far from each other
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Figure 14C.17 (a) When the X transition is saturated, just as 
in Fig. 14C.16 the populations of its two states are equalized 
and the population excess and deficit become as shown. (b) 
Dipole–dipole relaxation relaxes the populations of the two 
intermediate states, and they regain their original populations. 
(c) The A transitions reflect the difference in populations 
resulting from the preceding changes, and are diminished 
compared with those shown in Fig. 14C.15.
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in the interpretation of more complex spectra, leading to a map 
of the couplings between spins and to the determination of the 
bonding network in complex molecules. Indeed, the spectrum 
of a synthetic or biological polymer that would be impossible 
to interpret in one-dimensional NMR can often be interpreted 
reasonably rapidly by two-dimensional NMR.

Example 14C.1 Interpreting a two-dimensional NMR 
spectrum

Figure 14C.19 is a portion of the COSY spectrum of the amino 
acid isoleucine (1). Assign the resonances to protons bound to 
the carbon atoms.

O

OH

NH2

ab

c

d

e
1  Isoleucine

Method Cross peaks in this spectrum arise from the cou-
pling of protons that are separated as in HeCeCeH. That is, 
the fine structure in the spectrum is determined by the val-
ues of 3JHH coupling constants (Topic 14B). Identify expected 
couplings from the arrangement of bonds in the molecular 
structure. Then match spectral and molecular features, tak-
ing into consideration the effects of chemical and magnetic 
equivalence (Topic 14B). For example, expect two cross-peaks 
to arise from coupling of a proton to two inequivalent protons, 
even if both protons are bound to the same carbon atom.

Answer From the molecular structure, we expect that: (i) the 
Ca eH proton is coupled only to the Cb eH proton, (ii) the 
Cb eH protons are coupled to the Ca eH, CceH, and Cd eH 
protons, and (iii) the inequivalent Cd eH protons are coupled 

δ

δ

Figure 14C.18 An idealization of the COSY spectrum of an AX 
spin system.

to the Cb eH and Ce eH protons. We proceed with the assign-
ments by noting that:

•	 The resonance at δ = 1.9 shares cross-peaks with 
resonances at δ = 3.6, 1.4, 1.2, and 0.9.

Only the Cb eH proton is coupled to protons with four differ-
ent resonances: the Ca eH proton, the equivalent CceH pro-
tons, and the two inequivalent Cd eH protons. It follows that 
the resonance at δ = 1.9 corresponds to the Cb eH proton.

•	 The resonance at δ = 3.6 shares a cross-peak with only 
one other resonance at δ = 1.9.

We already know that the resonance at δ = 1.9 corresponds to 
the Cb eH proton. Only the Ca eH proton is coupled to the 
Cb eH proton and to no other protons. It follows that the reso-
nance at δ = 3.6 corresponds to the CaeH proton.

•	 The proton with resonance at δ = 0.8 is not coupled to 
the proton with resonance at δ = 1.9, which we have 
assigned to the Cb eH proton.

Only the equivalent Ce eH protons are not coupled to the 
Cb eH proton, which we have already assigned to the reso-
nance at δ = 1.9. Hence we assign the resonance at δ = 0.8 to the 
Ce eH protons.

•	 The resonances at δ = 1.4 and 1.2 do not share cross-
peaks with the resonance at δ =0.9.

Yet to be assigned are the resonances corresponding to the 
Cc eH and Cd eH protons. In the light of the expected cou-
plings, the resonances from the inequivalent Cd eH protons 
do not share cross-peaks with the resonance from the equiva-
lent CceH protons. It follows that the resonance at δ = 0.9 can 
be assigned to the equivalent Cc eH protons and the reso-
nances at δ = 1.4 and 1.2 to the inequivalent CdeH protons.

4
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1

δ

δ

Figure 14C.19 Proton COSY spectrum of isoleucine. (The 
Example and corresponding spectrum are adapted from K.E. 
van Holde et al., Principles of physical biochemistry, Prentice 
Hall, Upper Saddle River (1998).)
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We have seen that the nuclear Overhauser effect can provide 
information about internuclear distances through analysis of 
enhancement patterns in the NMR spectrum before and after 
saturation of selected resonances. In nuclear Overhauser effect 
spectroscopy (NOESY) a map of all possible NOE interactions is 
obtained by using a proper choice of radiofrequency pulses and 
Fourier transformation techniques. Like a COSY spectrum, a 
NOESY spectrum consists of a series of diagonal peaks that cor-
respond to the one-dimensional NMR spectrum of the sample. 
The off-diagonal peaks indicate which nuclei are close enough 
to each other to give rise to a nuclear Overhauser effect. NOESY 
data provide internuclear distances of up to about 0.5 nm.

14C.6 Solid-state NMR

The principal difficulty with the application of NMR to solids is 
the low resolution characteristic of solid samples. Nevertheless, 
there are good reasons for seeking to overcome these difficul-
ties. They include the possibility that a compound of interest is 
unstable in solution or that it is insoluble, so conventional solu-
tion NMR cannot be employed. Moreover, many species, such 
as polymers and nanomaterials, are intrinsically interesting as 
solids, and it is important to be able to determine their struc-
tures and dynamics when X-ray diffraction techniques fail.

There are three principal contributions to the linewidths of 
solids. One is the direct magnetic dipolar interaction between 
nuclear spins. As pointed out in the discussion of spin–spin 
coupling (Topic 14B), a nuclear magnetic moment gives rise to 
a local magnetic field which points in different directions at dif-
ferent locations around the nucleus. If we are interested only in 
the component parallel to the direction of the applied magnetic 
field (because only this component has a significant effect), 
then, provided certain subtle effects arising from transforma-
tion from the static to the rotating frame are neglected, we can 
use a classical expression in The chemist’s toolkit 14B.1 to write 
the magnitude of the local magnetic field as

Bloc
N= − −γ µ θ 0

3
2

4
1 3

m
R

I

π
( cos )

 
(14C.10)

Unlike in solution, in a solid this field is not motionally aver-
aged to zero. Many nuclei may contribute to the total local field 

experienced by a nucleus of interest, and different nuclei in a 
sample may experience a wide range of fields. Typical dipole 
fields are of the order of 1 mT, which corresponds to splittings 
and linewidths of the order of 10 kHz.

A second source of linewidth is the anisotropy of the chemi-
cal shift. Chemical shifts arise from the ability of the applied 
field to generate electron currents in molecules. In general, this 
ability depends on the orientation of the molecule relative to 
the applied field. In solution, when the molecule is tumbling 
rapidly, only the average value of the chemical shift is relevant. 
However, the anisotropy is not averaged to zero for stationary 
molecules in a solid, and molecules in different orientations 
have resonances at different frequencies. The chemical shift 

Brief illustration 14C.5 Dipolar fields in solids

When the angle θ can vary only between 0 and θmax, eqn 
14C.10 becomes
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3

2

4
m

R
I

π
(cos cos )

When θmax = 30° and R = 160 pm, the local field generated by a 
proton is
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Self-test 14C.6 Calculate the distance at which the local field 
from a 13C nucleus is 0.50 mT, with θmax = 40°.

Answer: R = 99 pm

Magnetic field

54.74°

Figure 14C.20 In magic-angle spinning, the sample spins at 
54.74° (that is, arccos 1/31/2) to the applied magnetic field. Rapid 
motion at this angle averages dipole − dipole interactions and 
chemical shift anisotropies to zero.

Self-test 14C.5 The proton chemical shifts for the NH, CαH, 
and CβH groups of alanine (H2NCH(CH3)COOH) are 8.25, 
4.35, and 1.39, respectively. Describe the COSY spectrum of 
alanine between δ = 1.00 and 8.50.

Answer: Only the NH and CαH protons and the CαH and CβH protons 
are expected to show coupling, so the spectrum has only two off- 

diagonal peaks, one at (8.25, 4.35) and the other at (4.35, and 1.39)
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anisotropy also varies with the angle between the applied field 
and the principal axis of the molecule as 1 − 3 cos2 θ.

The third contribution is the electric quadrupole interaction. 
Nuclei with I > 1

2  have an electric quadrupole moment, a meas-
ure of the extent to which the distribution of charge over the 
nucleus is not uniform (for instance, the positive charge may 
be concentrated around the equator or at the poles). An elec-
tric quadrupole interacts with an electric field gradient, such as 
may arise from a non-spherical distribution of charge around 
the nucleus. This interaction also varies as 1 − 3 cos2 θ.

Fortunately, there are techniques available for reducing the 
linewidths of solid samples. One technique, magic-angle spin-
ning (MAS), takes note of the 1 − 3 cos2θ dependence of the 
dipole–dipole interaction, the chemical shift anisotropy, and 
the electric quadrupole interaction. The ‘magic angle’ is the 

angle at which 1 − 3 cos2θ = 0, and corresponds to 54.74°. In the 
technique, the sample is spun at high speed at the magic angle 
to the applied field (Fig. 14C.20). All the dipolar interactions 
and the anisotropies average to the value they would have at 
the magic angle, but at that angle they are zero. The difficulty 
with MAS is that the spinning frequency must not be less than 
the width of the spectrum, which is of the order of kilohertz. 
However, gas-driven sample spinners that can be rotated at up 
to 25 kHz are now routinely available, and a considerable body 
of work has been done.

Pulsed techniques similar to those described in the previous 
section may also be used to reduce linewidths. Elaborate pulse 
sequences have also been devised that reduce linewidths by 
averaging procedures that make use of twisting the magnetiza-
tion vector through an elaborate series of angles.

Checklist of concepts

☐ 1.  Free-induction decay (FID) is the decay of the magnet-
ization after the application of a radiofrequency pulse.

☐ 2. Fourier transformation of the FID curve gives the NMR 
spectrum.

☐ 3. During longitudinal (or spin–lattice) relaxation, β 
spins revert to α spins.

☐ 4. Transverse (or spin–spin) relaxation is the randomiza-
tion of spin directions around the z-axis.

☐ 5. The longitudinal relaxation time T1 can be measured 
by the inversion recovery technique.

☐ 6. The transverse relaxation time T2 can be measured by 
observing spin echoes.

☐ 7. In proton decoupling of 13C-NMR spectra, protons are 
made to undergo rapid spin reorientations and the 13C 
nucleus senses an average orientation.

☐ 8. The nuclear Overhauser effect (NOE) is the modifica-
tion of the intensity of one resonance by the saturation 
of another.

☐ 9. In two-dimensional NMR, spectra are displayed in 
two axes, with resonances belonging to different groups 
lying at different locations on the second axis.

☐ 10. Magic-angle spinning (MAS) is technique in which the 
NMR linewidths in a solid sample are reduced by spin-
ning at an angle of 54.74° to the applied magnetic field.

Checklist of equations

Property Equation Comment Equation number

Free-induction decay M t M ty
t T( ) cos( ) /= −

0 2 2πL e T2 is the transverse relaxation time 14C.1

Longitudinal relaxation M t Mz
t T( ) /− ∝ −

0
1e T1 is the spin–lattice relaxation time 14C.4

Transverse relaxation M ty
t T( ) /∝ −e 2 14C.5

Width at half-height of an NMR line Δν1/2 = 1/πT2 14C.6

Effective transverse relaxation time T2 1 21* / /= π∆ Definition; inhomogeneous broadening 14C.7

NOE enhancement parameter η = −( )/I I IA A A
  Definition 14C.8
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Electron paramagnetic resonance (EPR), which is also known 
as electron spin resonance (ESR), is used to study radicals 
formed during chemical reactions or by radiation, radicals that 
act as probes of biological structure, many d-metal complexes, 

and molecules in triplet states (such as those involved in phos-
phorescence, Topic 13B). The sample may be a gas, a liquid, or 
a solid, but the free rotation of molecules in the gas phase gives 
rise to complications.

14D.1 The g-value

The resonance frequency for a transition between the ms = − 1
2  

and the ms = + 1
2  levels of an electron is

h g = e Bμ B0  Free electron  resonance condition  (14D.1)

where ge ≈ 2.0023 (Topic 14A). The magnetic moment of an 
unpaired electron in a radical also interacts with an external 
field, but the field it experiences differs from the applied field 
due to the presence of local magnetic fields arising from elec-
tron currents induced in the molecular framework. This differ-
ence is taken into account by replacing ge by g and expressing 
the resonance condition as

h g = μBB0   ePr resonance condition  (14D.2)

where g is the g-value of the radical.

The g-value is related to the ease with which the applied field 
can stir up currents through the molecular framework and the 
strength of the magnetic field the currents generate. Therefore, 

Brief illustration 14D.1 The g-value of a radical

The centre of the EPR spectrum of the methyl radical occurred 
at 329.40 mT in a spectrometer operating at 9.2330 GHz (radia-
tion belonging to the X band of the microwave region). Its 
g-value is therefore

g = × × ×− −( . ) ( . )
( .

6 626 08 10 9 2330 10
9 27

34 9 1Js s

h� ���� ���� � ��� ���

440 10 0 32940
2 002724 1

0

× ×
=− −JT T

B

) ( . )
.

μ
� ���� ���� � �� ��

B

Self-test 14D.1 At what magnetic field would the methyl 
radical come into resonance in a spectrometer operating at 
34.000 GHz (radiation belonging to the Q band of the micro-
wave region)?

Answer: 1.213 T

Contents

14d.1 The g-value 594
brief illustration 14d.1: the g-value of a radical 594

14d.2 Hyperfine structure 595
(a) The effects of nuclear spin 595

example 14d.1: Predicting the hyperfine  
structure of an ePr spectrum 596

(b) The McConnell equation 596
brief illustration 14d.2: the mcconnell equation 597

(c) The origin of the hyperfine interaction 597
brief illustration 14d.3: the composition  
of a molecular orbital from analysis of the  
hyperfine structure 597

Checklist of concepts 598
Checklist of equations 598

➤➤ Why do you need to know this material?
Many materials and biological systems contain species 
bearing unpaired electrons. Furthermore, some chemical 
reactions generate intermediates that contain unpaired 
electrons. You need to know how to characterize the 
structures of such species with special spectroscopic 
techniques.

➤➤ What is the key idea?
The electron paramagnetic resonance spectrum of a 
radical arises from the ability of the applied magnetic 
field to induce local electron currents and the magnetic 
interaction between the unpaired electron and nuclei 
with spin.

➤➤ What do you need to know already?
You need to be familiar with the concepts of electron 
spin (Topic 9B) and the general principles of magnetic 
resonance (Topic 14A). The discussion refers to spin–
orbit coupling in atoms (Topic 9C) and the Fermi contact 
interaction in molecules (Topic 14B).
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the g-value gives some information about electronic structure 
and plays a similar role in EPR to that played by shielding con-
stants in NMR.

Two factors are responsible for the difference of the g-value 
from ge. Electrons migrate through the molecular framework 
by making use of excited states (Fig. 14D.1). This circulation 
gives rise to a local magnetic field that adds to the applied field. 
The extent to which these currents are induced is inversely pro-
portional to the separation of energy levels, ΔE, in the radical or 
complex. Secondly, the strength of the field experienced by the 
electron spin as a result of these electronic currents is propor-
tional to the spin–orbit coupling constant, ξ (Topic 9C). We can 
conclude that the g-value differs from ge by an amount that is 
proportional to ξ/ΔE. This proportionality is widely observed. 
Many organic radicals, for which ΔE is large and ξ (for carbon) 
is small, have g-values close to 2.0027, not far removed from 
ge itself. Inorganic radicals, which commonly are built from 
heavier atoms and therefore have larger spin–orbit coupling 
constants, have g-values typically in the range 1.9 to 2.1. The 
g-values of paramagnetic d-metal complexes often differ con-
siderably from ge, varying from 0 to 6, because in them ΔE is 
small on account of the small splitting of d-orbitals brought 
about by interactions with ligands (Topic 13A).

The g-value is anisotropic: that is, its magnitude depends on 
the orientation of the radical with respect to the applied field. 
The anisotropy arises from the fact that the extent to which an 
applied field induces currents in the molecule, and therefore 
the magnitude of the local field, depends on the relative orien-
tation of the molecules and the field. In solution, when the mol-
ecule is tumbling rapidly, only the average value of the g-value 
is observed. Therefore, anisotropy of the g-value is observed 
only for radicals trapped in solids.

14D.2 Hyperfine structure

The most important feature of an EPR spectrum is its hyper-
fine structure, the splitting of individual resonance lines into 
components. In general in spectroscopy, the term ‘hyperfine 

structure’ means the structure of a spectrum that can be traced 
to interactions of the electrons with nuclei other than as a result 
of the latter’s point electric charge. The source of the hyperfine 
structure in EPR is the magnetic interaction between the elec-
tron spin and the magnetic dipole moments of the nuclei pre-
sent in the radical which give rise to local magnetic fields.

(a) The effects of nuclear spin
Consider the effect on the EPR spectrum of a single H nucleus 
located somewhere in a radical. The proton spin is a source of 
magnetic field and, depending on the orientation of the nuclear 
spin, the field it generates adds to or subtracts from the applied 
field. The total local field is therefore

B Bloc = + = ±0
1
2am mI I  (14D.3)

where a is the hyperfine coupling constant. Half the radicals in 
a sample have mI = + 1

2 , so half resonate when the applied field 
satisfies the condition

h g a
h

g
a

= + = −μ μB
B

or( ),B B0
1
2 0

1
2

 
(14D.4a)

The other half (which have mI = − 1
2 ) resonate when

h g a
h

g
a

= − = +μ μB
B

or( ),B B0
1
2 0

1
2

 
(14D.4b)

Therefore, instead of a single line, the spectrum shows two lines 
of half the original intensity separated by a and centred on the 
field determined by g (Fig. 14D.2).

β
α

No hyperfine splitting
Hyperfine splitting
due to one proton

αN

αN

βN

βN

hν

hν

Figure 14D.2 The hyperfine interaction between an electron 
and a spin- 1

2  nucleus results in four energy levels in place of the 
original two. As a result, the spectrum consists of two lines (of 
equal intensity) instead of one. The intensity distribution can 
be summarized by a simple stick diagram. The diagonal lines 
show the energies of the states as the applied field is increased, 
and resonance occurs when the separation of states matches 
the fixed energy of the microwave photon.

Figure 14D.1 An applied magnetic field can induce circulation 
of electrons that makes use of excited state orbitals (shown 
with a white line).
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596 14 Magnetic resonance

If the radical contains an 14N atom (I = 1), its EPR spectrum 
consists of three lines of equal intensity, because the 14N nucleus 
has three possible spin orientations, and each spin orientation 
is possessed by one-third of all the radicals in the sample. In 
general, a spin-I nucleus splits the spectrum into 2I +1 hyper-
fine lines of equal intensity.

When there are several magnetic nuclei present in the radi-
cal, each one contributes to the hyperfine structure. In the case 
of equivalent protons (for example, the two CH2 protons in the 
radical CH3CH2) some of the hyperfine lines are coincident. If 
the radical contains N equivalent protons, then there are N + 1 
hyperfine lines with an intensity distribution given by Pascal’s 
triangle (Topic 14B, reproduced here as 1). The spectrum of 
the benzene radical anion in Fig. 14D.3, which has seven lines 
with intensity ratio 1:6:15:20:15:6:1, is consistent with a radical 
containing six equivalent protons. More generally, if the radical 
contains N equivalent nuclei with spin quantum number I, then 
there are 2NI + 1 hyperfine lines with an intensity distribution 
based on a modified version of Pascal’s triangle as shown in the 
following Example.

1

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

(b) The McConnell equation
The hyperfine structure of an EPR spectrum is a kind of fing-
erprint that helps to identify the radicals present in a sample. 
Moreover, because the magnitude of the splitting depends 
on the distribution of the unpaired electron in the vicinity 
of the magnetic nuclei, the spectrum can be used to map the 

Example 14D.1 Predicting the hyperfine structure of an 
EPR spectrum

A radical contains one 14N nucleus (I = 1) with hyperfine con-
stant 1.61 mT and two equivalent protons ( )I = 1

2  with hyper-
fine constant 0.35 mT. Predict the form of the EPR spectrum.

Method Consider the hyperfine structure that arises from 
each type of nucleus or group of equivalent nuclei in succes-
sion. So, split a line with one nucleus, then each of those lines 

Field strength

a

Figure 14D.3 The EPR spectrum of the benzene radical anion, 
C H6 6

− , in fluid solution, with a the hyperfine splitting of the 
spectrum. The centre of the spectrum is determined by the 
g-value of the radical.

is split by a second nucleus (or group of nuclei), and so on. 
It is best to start with the nucleus with the largest hyperfine 
splitting; however, any choice could be made, and the order 
in which nuclei are considered does not affect the conclusion.

Answer The 14N nucleus gives three hyperfine lines of equal 
intensity separated by 1.61 mT. Each line is split into doublets 
of spacing 0.35 mT by the first proton, and each line of these 
doublets is split into doublets with the same 0.35 mT splitting 
(Fig. 14D.4). The central lines of each split doublet coincide, 
so the proton splitting gives 1:2:1 triplets of internal splitting 
0.35 mT. Therefore, the spectrum consists of three equivalent 
1:2:1 triplets.

Self-test 14D.2 Predict the form of the EPR spectrum of a rad-
ical containing three equivalent 14N nuclei.

Answer: See Fig. 14D.5.

1.61 mT
0.35 mT

1 : 2 : 1 1 : 2 : 1

Figure 14D.4 The analysis of the hyperfine structure 
of radicals containing one 14N nucleus (I = 1) and two 
equivalent protons.

1 3 6 7 6 3 1

Figure 14D.5 The analysis of the hyperfine structure of 
radicals containing three equivalent 14N nuclei.
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molecular orbital occupied by the unpaired electron. For exam-
ple, because the hyperfine splitting in C H6 6

−  is 0.375 mT, and 
one proton is close to a C atom that has one-sixth the unpaired 
electron spin density (because the electron is spread uniformly 
around the ring), the hyperfine splitting caused by a proton in 
the electron spin entirely confined to a single adjacent C atom 
should be 6 × 0.375 mT = 2.25 mT. If in another aromatic radical 
we find a hyperfine splitting constant a, then the spin density, 
ρ, the probability that an unpaired electron is on the atom, can 
be calculated from the McConnell equation:

a Q= ρ   mcconnell equation  (14D.5)

with Q = 2.25 mT. In this equation, ρ is the spin density on a C 
atom and a is the hyperfine splitting observed for the H atom to 
which it is attached. This expression simply represents the fact 
that the hyperfine coupling to the H atom is likely to be propor-
tional to the spin density on the C atom to which it is attached.

(c) The origin of the hyperfine interaction

The hyperfine interaction is an interaction between the mag-
netic moments of the unpaired electron and the nuclei. There 
are two contributions to the interaction.

An electron in a p orbital centred on a nucleus does not 
approach the nucleus very closely, so it experiences a field that 
appears to arise from a point magnetic dipole. The resulting 
interaction is called the dipole–dipole interaction. The con-
tribution of a magnetic nucleus to the local field experienced 
by the unpaired electron is given by an expression like that in 
eqn 14B.10a (a dependence proportional to (1 − 3 cos2 θ)/r3). 
A characteristic of this type of interaction is that it is aniso-
tropic and averages to zero when the radical is free to tumble. 
Therefore, hyperfine structure due to the dipole–dipole inter-
action is observed only for radicals trapped in solids.

An s electron is spherically distributed around a nucleus and 
so has zero average dipole–dipole interaction with the nucleus 
even in a solid sample. However, because it has a nonzero 
probability of being at the nucleus, it is incorrect to treat the 
interaction as one between two point dipoles. As explained in 
Topic 14B, an s electron has a Fermi contact interaction with 
the nucleus, a magnetic interaction that occurs when the point 
dipole approximation fails. The contact interaction is isotropic 
(that is, independent of the radical’s orientation), and conse-
quently is shown even by rapidly tumbling molecules in fluids 
(provided the spin density has some s character).

The dipole–dipole interactions of p electrons and the Fermi 
contact interaction of s electrons can be quite large. For exam-
ple, a 2p electron in a nitrogen atom experiences an average 
field of about 3.4 mT from the 14N nucleus. A 1s electron in a 
hydrogen atom experiences a field of about 50 mT as a result 
of its Fermi contact interaction with the central proton. More 
values are listed in Table 14D.1. The magnitudes of the con-
tact interactions in radicals can be interpreted in terms of the 
s orbital character of the molecular orbital occupied by the 
unpaired electron, and the dipole–dipole interaction can be 
interpreted in terms of the p character. The analysis of hyper-
fine structure therefore gives information about the compo-
sition of the orbital, and especially the hybridization of the 
atomic orbitals.

Brief illustration 14D.2 The McConnell equation

The hyperfine structure of the EPR spectrum of C H10 8
−, the 

naphthalene radical anion, can be interpreted as arising from 
two groups of four equivalent protons. Those at the 1, 4, 5, and 
8 positions in the ring have a = 0.490 mT and those in the 2, 3, 
6, and 7 positions have a = 0.183 mT. The densities obtained by 
using the McConnell equation are, respectively (2),

ρ ρ= = = =0 490
2 25

0 218
0 183
2 25

0 0813
.
.

.
.
.

.
mT

mT
and

mT
mT

a

Q

� �� ��

��� ��

0.08
0.22 –

2

Self-test 14D.3 The spin density in C H14 10
− , the anthracene 

radical anion, is shown in (3). Predict the form of its EPR 
spectrum.

0.048

0.097 0.193
–

3

Answer: A 1:2:1 triplet of splitting 0.43 mT split into a 1:4:6:4:1 quintet 
of splitting 0.22 mT, split into a 1:4:6:4:1 quintet of splitting 0.11 mT, 

3 × 5 × 5 = 75 lines in all

Brief illustration 14D.3 The composition of a molecular 
orbital from analysis of the hyperfine structure

From Table 14D.1, the hyperfine interaction between a 2s elec-
tron and the nucleus of a nitrogen atom is 55.2 mT. The EPR 
spectrum of NO2 shows an isotropic hyperfine interaction of 

Table 14D.1* Hyperfine coupling constants for atoms, a/mT

Nuclide Isotropic coupling Anisotropic coupling

1H 50.8 (1s)
2H 7.8 (1s)
14N 55.2 (2s) 4.8 (2p)
19F 1720 (2s) 108.4 (2p)

*More values are given in the Resource section.

iranchembook.ir/edu



598 14 Magnetic resonance

We still have the source of the hyperfine structure of the C H6 6
−  

anion and other aromatic radical anions to explain. The sample 
is fluid, and as the radicals are tumbling the hyperfine structure 
cannot be due to the dipole–dipole interaction. Moreover, the 
protons lie in the nodal plane of the π orbital occupied by the 
unpaired electron, so the structure cannot be due to a Fermi 
contact interaction. The explanation lies in a polarization 
mechanism similar to the one responsible for spin–spin cou-
pling in NMR. There is a magnetic interaction between a pro-
ton and the α electrons ( )ms = ± 1

2  which results in one of the 
electrons tending to be found with a greater probability nearby 

(Fig. 14D.6). The electron with opposite spin is therefore more 
likely to be close to the C atom at the other end of the bond. The 
unpaired electron on the C atom has a lower energy if it is paral-
lel to that electron (Hund’s rule favours parallel electrons on 
atoms), so the unpaired electron can detect the spin of the pro-
ton indirectly. Calculation using this model leads to a hyperfine 
interaction in agreement with the observed value of 2.25 mT.

Checklist of concepts

☐ 1. The EPR resonance condition is written in terms of the 
g-value of the radical.

☐ 2. The value of g depends on the ability of the applied field 
to induce local electron currents in the radical.

☐ 3. The hyperfine structure of an EPR spectrum is its split-
ting of individual resonance lines into components 
by the magnetic interaction between the electron and 
nuclei with spin.

☐ 4. If a radical contains N equivalent nuclei with spin 
quantum number I, then there are 2NI + 1 hyperfine 
lines with an intensity distribution given by a modified 
version of Pascal’s triangle.

☐ 5. Hyperfine structure can be explained by dipole–dipole 
interactions, Fermi contact interactions, and the 
polarization mechanism.

☐ 6. The spin density is the probability that an unpaired 
electron is on the atom.

Checklist of equations

5.7 mT. The s character of the molecular orbital occupied by 
the unpaired electron is the ratio 5.7/55.2 = 0.10. For a continu-
ation of this story, see Problem 14D.6.

Self-test 14D.4 In NO2 the anisotropic part of the hyperfine 
coupling is 1.3 mT. What is the p character of the molecular 
orbital occupied by the unpaired electron?

Answer: 0.38

Hund
Pauli Fermi

High energyLow energy

C H

(a) (b)

Figure 14D.6 The polarization mechanism for the hyperfine 
interaction in π-electron radicals. The arrangement in (a) is 
lower in energy than that in (b), so there is an effective coupling 
between the unpaired electron and the proton.

Property Equation Comment Equation number

EPR resonance condition hν = gμBB0
No hyperfine interaction 14D.2

h g a = ±μB( )B0
1
2 Hyperfine interaction between an electron and a proton 14D.4

McConnell equation a = Qρ Q = 2.25 mT 14D.5
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chaPter 14  Magnetic resonance

TOPIC 14A general principles

Discussion questions
14A.1 To determine the structures of macromolecules by NMR spectroscopy, 
chemists use spectrometers that operate at the highest available fields and 
frequencies. Justify this choice.

14A.2 Compare the effects of magnetic fields on the energies of nuclei and the 
energies of electrons.

14A.3 What is the Larmor frequency? What is its role in magnetic resonance?

Exercises
14A.1(a) Given that g is a dimensionless number, what are the units of γN 
expressed in tesla and hertz?
14A.1(b) Given that g is a dimensionless number, what are the units of γN 
expressed in SI base units?

14A.2(a) For a proton, what are the magnitude of the spin angular momentum 
and its allowed components along the z-axis? What are the possible 
orientations of the angular momentum in terms of the angle it makes with the 
z-axis?
14A.2(b) For a 14N nucleus, what are the magnitude of the spin angular 
momentum and its allowed components along the z-axis? What are the 
possible orientations of the angular momentum in terms of the angle it makes 
with the z-axis?

14A.3(a) What is the resonance frequency of a proton in a magnetic field of 
13.5 T?
14A.3(b) What is the resonance frequency of a 19F nucleus in a magnetic field 
of 17.1 T?

14A.4(a) 33S has a nuclear spin of 3
2

 and a nuclear g-factor of 0.4289. Calculate 
the energies of the nuclear spin states in a magnetic field of 6.800 T.
14A.4(b) 14N has a nuclear spin of 1 and a nuclear g-factor of 0.404. Calculate 
the energies of the nuclear spin states in a magnetic field of 10.50 T.

14A.5(a) Calculate the frequency separation of the nuclear spin levels of a 
13C nucleus in a magnetic field of 15.4 T given that the magnetogyric ratio is 
6.73 × 10−7 T−1s−1.
14A.5(b) Calculate the frequency separation of the nuclear spin levels of a 
14N nucleus in a magnetic field of 14.4 T given that the magnetogyric ratio is 
1.93 × 10−7 T−1s−1.

14A.6(a) In which of the following systems is the energy level separation 
larger? (i) A proton in a 600 MHz NMR spectrometer, (ii) a deuteron in the 
same spectrometer.
14A.6(b) In which of the following systems is the energy level separation 
larger? (i) A 14N nucleus in (for protons) a 600 MHz NMR spectrometer,  
(ii) an electron in a radical in a field of 0.300 T.

14A.7(a) Calculate the relative population differences (δN/N, where δN 
denotes a small difference Nα − Nβ) for protons in fields of (i) 0.30 T, (ii) 1.5 T, 
and (iii) 10 T at 25 °C.
14A.7(b) Calculate the relative population differences (δN/N, where δN 
denotes a small difference Nα − Nβ) for 13C nuclei in fields of (i) 0.50 T,  
(ii) 2.5 T, and (iii) 15.5 T at 25 °C.

14A.8(a) The first generally available NMR spectrometers operated at a 
frequency of 60 MHz; today it is not uncommon to use a spectrometer that 
operates at 800 MHz. What are the relative population differences of 13C spin 
states in these two spectrometers at 25 °C?
14A.8(b) What are the relative population differences of 19F spin states in 
spectrometers operating at 60 MHz and 450 MHz at 25 °C?

14A.9(a) What magnetic field would be required in order to use an EPR 
X-band spectrometer (9 GHz) to observe 1H-NMR and a 300 MHz 
spectrometer to observe EPR?
14A.9(b) Some commercial EPR spectrometers use 8 mm microwave radiation 
(the ‘Q band’). What magnetic field is needed to satisfy the resonance 
condition?

Problems
14A.1 A scientist investigates the possibility of neutron spin resonance, and 
has available a commercial NMR spectrometer operating at 300 MHz. What 
field is required for resonance? What is the relative population difference at 
room temperature? Which is the lower energy spin state of the neutron?

14A.2‡ The relative sensitivity of NMR lines for equal numbers of different 
nuclei at constant temperature for a given frequency is Rν ∝ (I + 1)μ3 whereas 
for a given field it is RB ∝ {(I + 1)/I2}μ3. (a) From the data in Table 14A.2, 
calculate these sensitivities for the deuteron, 13C, 14N, 19F, and 31P relative to 
the proton. (b) Develop the equation for RB from the equation for Rν.

14A.3 With special techniques, known collectively as magnetic resonance 
imaging (MRI), it is possible to obtain NMR spectra of entire organisms. A 
key to MRI is the application of a magnetic field that varies linearly across 
the specimen. Consider a flask of water held in a field that varies in the 

z-direction according to B0 + Gzz, where Gz is the field gradient along the z-
direction. Then the water protons will be resonant at the frequencies

L
N( ) ( )z zz= +γ

2 0π B G
 

(Similar equations may be written for gradients along the x- and y-directions.) 
Application of a 90° radiofrequency pulse with ν = νL(z) will result in a 
signal with an intensity that is proportional to the numbers of protons at 
the position z. Now suppose a uniform disk-shaped organ is in a linear field 
gradient, and that the MRI signal is proportional to the number of protons 
in a slice of width δz at each horizontal distance z from the centre of the disk. 
Sketch the shape of the absorption intensity for the MRI image of the disk 
before any computer manipulation has been carried out.

‡ These problems were supplied by Charles Trapp and Carmen Giunta.
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TOPIC 14B Features of nmr spectra

Discussion questions
14B.1 Describe the significance of the chemical shift in relation to the terms 
‘high-field’ and ‘low-field’.

14B.2 Discuss in detail the origins of the local, neighbouring group, and 
solvent contributions to the shielding constant.

14B.3 Explain why groups of equivalent protons do not exhibit the spin–spin 
coupling that exists between them.

14B.4 Explain the difference between magnetically equivalent and chemically 
equivalent nuclei, and give two examples of each.

14B.5 Discuss how the Fermi contact interaction and the polarization 
mechanism contribute to spin–spin couplings in NMR.

Exercises
14B.1(a) What are the relative values of the chemical shifts observed for nuclei 
in the spectrometers mentioned in Exercise 14A.9a in terms of (i) δ values, 
(ii) frequencies?
14B.1(b) What are the relative values of the chemical shifts observed for nuclei 
in the spectrometers mentioned in Exercise 14A.9b in terms of (i) δ values, 
(ii) frequencies?

14B.2(a) The chemical shift of the CH3 protons in acetaldehyde (ethanal) is 
δ = 2.20 and that of the CHO proton is 9.80. What is the difference in local 
magnetic field between the two regions of the molecule when the applied field 
is (i) 1.5 T, (ii) 15 T?
14B.2(b) The chemical shift of the CH3 protons in diethyl ether is δ = 1.16 and 
that of the CH2 protons is 3.36. What is the difference in local magnetic field 
between the two regions of the molecule when the applied field is (i) 1.9 T,  
(ii) 16.5 T?

14B.3(a) Sketch the appearance of the 1H-NMR spectrum of acetaldehyde 
(ethanal) using J = 2.90 Hz and the data in Exercise 14B.2(a) in a spectrometer 
operating at (i) 250 MHz, (ii) 800 MHz.
14B.3(b) Sketch the appearance of the 1H-NMR spectrum of diethyl ether 
using J = 6.97 Hz and the data in Exercise 14B.2(b) in a spectrometer operating 
at (i) 400 MHz, (ii) 650 MHz.

14B.4(a) Sketch the form of the 19F-NMR spectra of a natural sample of 1 BF0
4
−  

and 11
4BF−.

14B.4(b) Sketch the form of the 31P-NMR spectra of a sample of 31PF6
− .

14B.5(a) From the data in Table 14A.2, predict the frequency needed for 
19F-NMR in an NMR spectrometer designed to observe proton  

resonance at 800 MHz. Sketch the proton and 19F resonances in the NMR 
spectrum of FH2

+ .
14B.5(b) From the data in Table 14A.2, predict the frequency needed for 
31P-NMR in an NMR spectrometer designed to observe proton resonance at 
500 MHz. Sketch the proton and 31P resonances in the NMR spectrum of PH4

+.

14B.6(a) Construct a version of Pascal’s triangle to show the fine structure that 
might arise from spin–spin coupling to a group of four spin- 3

2
 nuclei.

14B.6(b) Construct a version of Pascal’s triangle to show the fine structure that 
might arise from spin–spin coupling to a group of three spin- 5

2
 nuclei.

14B.7(a) Sketch the form of an A3M2X4 spectrum, where A, M, and X are 
protons with distinctly different chemical shifts and JAM > JAX > JMX.
14B.7(b) Sketch the form of an A2M2X5 spectrum, where A, M, and X are 
protons with distinctly different chemical shifts and JAM > JAX > JMX.

14B.8(a) Which of the following molecules have sets of nuclei that are 
chemically but not magnetically equivalent? (i) CH3CH3, (ii) CH2 = CH2.
14B.8(b) Which of the following molecules have sets of nuclei that are 
chemically but not magnetically equivalent? (i) CH2 = C = CF2, (ii) cis- and 
trans-[Mo(CO)4(PH3)2].

14B.9(a) A proton jumps between two sites with δ = 2.7 and δ = 4.8. At what 
rate of interconversion will the two signals collapse to a single line in a 
spectrometer operating at 550 MHz?
14B.9(b) A proton jumps between two sites with δ = 4.2 and δ = 5.5. At what 
rate of interconversion will the two signals collapse to a single line in a 
spectrometer operating at 350 MHz?

Problems
14B.1 You are designing an MRI spectrometer (see Problem 14A.3). What field 
gradient (in microtesla per metre, µT m−1) is required to produce a separation 
of 100 Hz between two protons separated by the long diameter of a human 
kidney (taken as 8 cm) given that they are in environments with δ = 3.4? The 
radiofrequency field of the spectrometer is at 400 MHz and the applied field 
is 9.4 T.

14B.2 Refer to Fig. 14B.14 and use mathematical software, a spreadsheet, 
or the Living graphs on the web site of this book to draw a family of curves 
showing the variation of 3JHH with ϕ for which A = +7.0 Hz, B = −1.0 Hz, and C 
varies slightly from a typical value of +5.0 Hz. What is the effect of changing 
the value of the parameter C on the shape of the curve? In a similar fashion, 
explore the effect of the values of A and B on the shape of the curve.

14B.3‡ Various versions of the Karplus equation (eqn 14B.14) have been used 
to correlate data on vicinal proton coupling constants in systems of the type 
R1R2CHCHR3R4. The original version, (M. Karplus, J. Am. Chem. Soc. 85, 
2870 (1963)), is 3JHH = A cos2 ϕHH + B. When R3 = R4 = H, 3JHH = 7.3 Hz; when 
R3 = CH3 and R4 = H, 3JHH = 8.0 Hz; when R3 = R4 = CH3, 3JHH = 11.2 Hz. Assume 

that only staggered conformations are important and determine which 
version of the Karplus equation fits the data better.

14B.4‡ It might be unexpected that the Karplus equation, which was first 
derived for 3JHH coupling constants, should also apply to vicinal coupling 
between the nuclei of metals such as tin. T.N. Mitchell and B. Kowall 
(Magn. Reson. Chem. 33, 325 (1995)) have studied the relation between 3JHH 
and 3JSnSn in compounds of the type Me3SnCH2CHRSnMe3 and find that 
3JSnSn = 78.86 3JHH + 27.84 Hz. (a) Does this result support a Karplus type 
equation for tin? Explain your reasoning. (b) Obtain the Karplus equation 
for 3JSnSn and plot it as a function of the dihedral angle. (c) Draw the 
preferred conformation.

14B.5 Show that the coupling constant as expressed by the Karplus equation 
passes through a minimum when cos ϕ = B/4C.

14B.6 In a liquid, the dipolar magnetic field averages to zero: show this result 
by evaluating the average of the field given in eqn 14B.15. Hint: the surface 
area element is sin θ dθdϕ in polar coordinates.
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TOPIC 14C Pulse techniques in nmr

Discussion questions
14C.1 Discuss in detail the effects of a 90° pulse and of a 180° pulse on a 
system of spin- 1

2
 nuclei in a static magnetic field.

14C.2 Suggest a reason why the relaxation times of 13C nuclei are typically 
much longer than those of 1H nuclei.

14C.3 Suggest a reason why the spin–lattice relaxation time of a small 
molecule (like benzene) in a mobile, deuterated hydrocarbon solvent 
increases whereas that of a large molecule (like a polymer) decreases.

14C.4 Discuss the origin of the nuclear Overhauser effect and how it can be 
used to measure distances between protons in a biopolymer.

14C.5 Discuss the origins of diagonal and cross peaks in the COSY spectrum 
of an AX system.

Exercises
14C.1(a) The duration of a 90° or 180° pulse depends on the strength of the B1 
field. If a 180° pulse requires 12.5 µs, what is the strength of the B1 field? How 
long would the corresponding 90° pulse require?
14C.1(b) The duration of a 90° or 180° pulse depends on the strength of the B1 
field. If a 90° pulse requires 5 µs, what is the strength of the B1 field? How long 
would the corresponding 180° pulse require?

14C.2(a) What is the effective transverse relaxation time when the width of a 
resonance line is 1.5 Hz?
14C.2(b) What is the effective transverse relaxation time when the width of a 
resonance line is 12 Hz?

14C.3(a) Predict the maximum enhancement (as the value of η) that could be 
obtained in a NOE observation in which 31P is coupled to protons.
14C.3(b) Predict the maximum enhancement (as the value of η) that could be 
obtained in a NOE observation in which 19F is coupled to protons.

14C.4(a) Figure 14.1 shows the proton COSY spectrum of 1-nitropropane. 
Account for the appearance of off-diagonal peaks in the spectrum.
14C.4(b) The proton chemical shifts for the NH, CαH, and CβH groups of 
alanine are 8.25 ppm, 4.35 ppm, and 1.39 ppm, respectively. Sketch the COSY 
spectrum of alanine between 1.00 and 8.50 ppm.

Problems
14C.1‡ Suppose that the FID in Fig. 14C.5 was recorded in a 400 MHz 
spectrometer, and that the interval between maxima in the oscillations in the 
FID is 0.12s. What is the Larmor frequency of the nuclei and the spin–spin 
relaxation time?

14C.2 Use mathematical software to construct the FID curve for a set of three 
nuclei with resonances at δ = 3.2, 4.1, and 5.0 in a spectrometer operating at 
800 MHz. Suppose that T1 = 1.0s. Go on to plot FID curves that show how they 
vary as the magnetic field of the spectrometer is changed.

14C.3 To gain some appreciation for the numerical work done by computers 
interfaced to NMR spectrometers, perform the following calculations. (a) The 
total FID F(t) of a signal containing many frequencies, each corresponding to 
a different nucleus, is given by

F t S t

j

j j
t T j( ) cos( ) /=∑ −

0 2 2πL e

 
where, for each nucleus j, S0j is the maximum intensity of the signal, νLj is the 
Larmor frequency, and T2j is the spin–spin relaxation time. Plot the FID for 
the case

(b) Explore how the shape of the FID curve changes with changes in the 
Larmor frequency and the spin–spin relaxation time. (c) Use mathematical 
software to calculate and plot the Fourier transforms of the FID curves you 
calculated in parts (a) and (b). How do spectral linewidths vary with the value 
of T2? Hint: This operation can be performed with the ‘fast Fourier transform’ 
routine available in most mathematical software packages. Please consult the 
package’s user manual for details.

14C.4 (a) In many instances it is possible to approximate the NMR lineshape 
by using a Lorentzian function of the form

I
S T

T
Lorentzian( )

( )
ω

ω ω
=

+ −
0 2

2
2

0
21  

where I(ω) is the intensity as a function of the angular frequency ω = 2πν, ω0 
is the resonance frequency, S0 is a constant, and T2 is the spin–spin relaxation 
time. Confirm that for this lineshape the width at half-height is 1/πT2.  
(b) Under certain circumstances, NMR lines are Gaussian functions of the 
frequency, given by

I S T T
Gaussian e( ) ( )ω ω ω= − −

0 2 2
2

0
2

 
Confirm that for the Gaussian lineshape the width at half-height is equal to 
2(ln 2)1/2/T2. (c) Compare and contrast the shapes of Lorentzian and Gaussian 
lines by plotting two lines with the same values of S0, T2, and ω0.

12345

2

3

5

1

4

NO2CH2CH2CH3

NO2CH2CH2CH3

NO2CH2CH2CH3

δ

δ

Figure 14.1 The COSY spectrum of 1-nitropropane 
(NO2CH2CH2CH3). The circles show enhanced views of the 
spectral features. (Spectrum provided by Prof. G. Morris.)

S01 = 1.0 νL1 = 50 MHz T21 = 0.50 µs

S02 = 3.0 νL2 = 10 MHz T22 = 1.0 µs
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14C.5 The shape of a spectral line, I(ω), is related to the free induction decay 
signal G(t) by

I a G t tt( ) ( )ω ω=
∞

∫Re e di

0  
where a is a constant and ‘Re’ means take the real part of what follows. 
Calculate the lineshape corresponding to an oscillating, decaying function 
G(t) = cos ωt e−t/τ.

14C.6 In the language of Problem 14C.5, show that if G(t) = (a cos ωt +  
b cos ωt)e−t/τ, then the spectrum consists of two lines with intensities 
proportional to a and b and located at ω = ω1 and ω2, respectively.

14C.7 The z-component of the magnetic field at a distance R from a magnetic 
moment parallel to the z-axis is given by eqn 14C.10. In a solid, a proton at a 
distance R from another can experience such a field and the measurement of 
the splitting it causes in the spectrum can be used to calculate R. In gypsum, 
for instance, the splitting in the H2O resonance can be interpreted in terms of 

a magnetic field of 0.715 mT generated by one proton and experienced by the 
other. What is the separation of the protons in the H2O molecule?

14C.8 Interpret the following features of the NMR spectra of hen lysozyme:  
(a) saturation of a proton resonance assigned to the side chain of 
methionine-105 changes the intensities of proton resonances assigned to 
the side chains of tryptophan-28 and tyrosine-23; (b) saturation of proton 
resonances assigned to tryptophan-28 did not affect the spectrum of 
tyrosine-23.

14C.9 In a liquid crystal a molecule might not rotate freely in all directions 
and the dipolar interaction might not average to zero. Suppose a molecule 
is trapped so that, although the vector separating two protons may rotate 
freely around the z-axis, the colatitude may vary only between 0 and θ ′. Use 
mathematical software to average the dipolar field over this restricted range 
of orientation and confirm that the average vanishes when θ ′ is equal to π 
(corresponding to free rotation over a sphere). What is the average value of 
the local dipolar field for the H2O molecule in Problem 14C.7 if it is dissolved 
in a liquid crystal that enables it to rotate up to θ ′ = 30°?

TOPIC 14D electron paramagnetic resonance

Discussion questions
14D.1 Describe how the Fermi contact interaction and the polarization 
mechanism contribute to hyperfine interactions in EPR.

14D.2 Explain how the EPR spectrum of an organic radical can be used to 
identify and map the molecular orbital occupied by the unpaired electron.

Exercises
14D.1(a) The centre of the EPR spectrum of atomic hydrogen lies at 329.12 mT 
in a spectrometer operating at 9.2231 GHz. What is the g value of the electron 
in the atom?
14D.1(b) The centre of the EPR spectrum of atomic deuterium lies at 
330.02 mT in a spectrometer operating at 9.2482 GHz. What is the g value of 
the electron in the atom?

14D.2(a) A radical containing two equivalent protons shows a three-line 
spectrum with an intensity distribution 1:2:1. The lines occur at 330.2 mT, 
332.5 mT, and 334.8 mT. What is the hyperfine coupling constant for each 
proton? What is the g value of the radical given that the spectrometer is 
operating at 9.319 GHz?
14D.2(b) A radical containing three equivalent protons shows a four-line 
spectrum with an intensity distribution 1:3:3:1. The lines occur at 331.4 mT, 
333.6 mT, 335.8 mT, and 338.0 mT. What is the hyperfine coupling constant for 
each proton? What is the g value of the radical given that the spectrometer is 
operating at 9.332 GHz?

14D.3(a) A radical containing two inequivalent protons with hyperfine 
constants 2.0 mT and 2.6 mT gives a spectrum centred on 332.5 mT.  
At what fields do the hyperfine lines occur and what are their relative 
intensities?
14D.3(b) A radical containing three inequivalent protons with hyperfine 
constants 2.11 mT, 2.87 mT, and 2.89 mT gives a spectrum centred on 

332.8 mT. At what fields do the hyperfine lines occur and what are their 
relative intensities?

14D.4(a) Predict the intensity distribution in the hyperfine lines of the EPR 
spectra of (i) ·CH3, (ii) ·CD3.
14D.4(b) Predict the intensity distribution in the hyperfine lines of the EPR 
spectra of (i) ·CH2CH3, (ii) ·CD2CD3.

14D.5(a) The benzene radical anion has g = 2.0025. At what field should you 
search for resonance in a spectrometer operating at (i) 9.313 GHz,  
(ii) 33.80 GHz?
14D.5(b) The naphthalene radical anion has g = 2.0024. At what field should 
you search for resonance in a spectrometer operating at (i) 9.501 GHz,  
(ii) 34.77 GHz?

14D.6(a) The EPR spectrum of a radical with a single magnetic nucleus is split 
into four lines of equal intensity. What is the nuclear spin of the nucleus?
14D.6(b) The EPR spectrum of a radical with two equivalent nuclei of a 
particular kind is split into five lines of intensity ratio 1:2:3:2:1. What is the 
spin of the nuclei?

14D.7(a) Sketch the form of the hyperfine structures of radicals XH2 and XD2, 
where the nucleus X has I = 5

2
.

14D.7(b) Sketch the form of the hyperfine structures of radicals XH3 and XD3, 
where the nucleus X has I = 3

2
.

Problems
14D.1 It is possible to produce very high magnetic fields over small volumes by 
special techniques. What would be the resonance frequency of an electron spin 
in an organic radical in a field of 1.0 kT? How does this frequency compare to 
typical molecular rotational, vibrational, and electronic energy-level separations?

14D.2 The angular NO2 molecule has a single unpaired electron and can be 
trapped in a solid matrix or prepared inside a nitrite crystal by radiation 
damage of NO2

−  ions. When the applied field is parallel to the OO direction 
the centre of the spectrum lies at 333.64 mT in a spectrometer operating 

iranchembook.ir/edu



 Exercises and problems  603

at 9.302 GHz. When the field lies along the bisector of the ONO angle, the 
resonance lies at 331.94 mT. What are the g values in the two orientations?

14D.3 The hyperfine coupling constant in ·CH3 is 2.3 mT. Use the information in 
Table 14D.1 to predict the splitting between the hyperfine lines of the spectrum 
of ·CD3. What are the overall widths of the hyperfine spectra in each case?

14D.4 The p-dinitrobenzene radical anion can be prepared by reduction 
of p-dinitrobenzene. The radical anion has two equivalent N nuclei (I = 1) 
and four equivalent protons. Predict the form of the EPR spectrum using 
a(N) = 0.148 mT and a(H) = 0.112 mT.

14D.5 The hyperfine coupling constants observed in the radical anions 1, 2, 
and 3 are shown (in millitesla, mT). Use the value for the benzene radical 
anion to map the probability of finding the unpaired electron in the π orbital 
on each C atom.

NO2 NO2
NO2

NO2

NO2 NO2

– –
–

0.0110.0172

0.011

0.0172 0.450
0.108

0.2720.450
0.112 0.112

0.112 0.112

1 2 3

14D.6 When an electron occupies a 2s orbital on an N atom it has a hyperfine 
interaction of 55.2 mT with the nucleus. The spectrum of NO2 shows an 
isotropic hyperfine interaction of 5.7 mT. For what proportion of its time is 
the unpaired electron of NO2 occupying a 2s orbital? The hyperfine coupling 
constant for an electron in a 2p orbital of an N atom is 3.4 mT. In NO2 the 
anisotropic part of the hyperfine coupling is 1.3 mT. What proportion of its 
time does the unpaired electron spend in the 2p orbital of the N atom in NO2? 
What is the total probability that the electron will be found on (a) the  
N atoms, (b) the O atoms? What is the hybridization ratio of the N atom? 
Does the hybridization support the view that NO2 is angular?

14D.7 Sketch the EPR spectra of the di-tert-butyl nitroxide radical (4) at 
292 K in the limits of very low concentration (at which electron exchange is 
negligible), moderate concentration (at which electron exchange effects begin 
to be observed), and high concentration (at which electron exchange effects 
predominate).

N
O

4 di-tert-Butyl nitroxide

Integrated activities
14.1 Consider the following series of molecules: benzene, methylbenzene, 
trifluoromethylbenzene, benzonitrile, and nitrobenzene in which the 
substituents para to the C atom of interest are H, CH3, CF3, CN, and 
NO2, respectively. (a) Use the computational method of your choice to 
calculate the net charge at the C atom para to these substituents in this 
series of organic molecules. (b) It is found empirically that the 13C chemical 
shift of the para C atom increases in the order: methylbenzene, benzene, 
trifluoromethylbenzene, benzonitrile, nitrobenzene. Is there a correlation 
between the behaviour of the 13C chemical shift and the computed net charge 
on the 13C atom? (c) The 13C chemical shifts of the para C atoms in each of the 
molecules that you examined computationally are as follows:

Is there a linear correlation between net charge and 13C chemical shift of the 
para C atom in this series of molecules? (d) If you did find a correlation in 
part (c), explain the physical origins of the correlation.

14.2 The computational techniques described in Topic 10E have shown 
that the amino acid tyrosine participates in a number of biological electron 
transfer reactions, including the processes of water oxidation to O2 in plant 
photosynthesis and of O2 reduction to water in oxidative phosphorylation. 
During the course of these electron transfer reactions, a tyrosine radical forms 
with spin density delocalized over the side chain of the amino acid. (a) The 
phenoxy radical shown in 5 is a suitable model of the tyrosine radical. Using 
molecular modelling software and the computational method of your choice 
(semi-empirical or ab initio methods), calculate the spin densities at the O atom 
and at all of the C atoms in 5. (b) Predict the form of the EPR spectrum of 5. 

O

5 Phenoxy radical

14.3 Two groups of protons have δ = 4.0 and δ = 5.2 and are interconverted by 
a conformational change of a fluxional molecule. In a 60 MHz spectrometer 
the spectrum collapsed into a single line at 280 K but at 300 MHz the collapse 
did not occur until the temperature had been raised to 300 K. What is the 
activation energy of the interconversion?

14.4 NMR spectroscopy may be used to determine the equilibrium constant 
for dissociation of a complex between a small molecule, such as an enzyme 
inhibitor I, and a protein, such as an enzyme E:

EI E I E I EII + =K [ ][ ]/[ ]  
In the limit of slow chemical exchange, the NMR spectrum of a proton in 
I would consist of two resonances: one at νI for free I and another at νEI for 
bound I. When chemical exchange is fast, the NMR spectrum of the same 
proton in I consists of a single peak with a resonance frequency ν given 
by ν = fIνI + fEIνEI, where fI = [I]/([I] + [EI]) and fEI = [EI]/([I] + [EI]) are, 
respectively, the fractions of free I and bound I. For the purposes of analysing 
the data, it is also useful to define the frequency differences δν = ν − νI and 
Δν = νEI − νI. Show that when the initial concentration of I, [I]0, is much 
greater than the initial concentration of E, [E]0, a plot of [I]0 against δν−1 is a 
straight line with slope [E]0Δν and y-intercept −KI.

Substituent CH3 H CF3 CN NO2

δ 128.4 128.5 128.9 129.1 129.4
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statistical thermodynamics

Statistical thermodynamics provides the link between the 
microscopic properties of matter and its bulk properties. It pro-
vides a means of calculating thermodynamic properties from 
structural and spectroscopic data and gives insight into the 
molecular origins of chemical properties.

15A the boltzmann distribution

The ‘Boltzmann distribution’, which is used to predict the popu-
lations of states in systems at thermal equilibrium, is among the 
most important equations in chemistry for it summarizes the 
populations of states; it also provides insight into the nature of 
‘temperature’. The structure of the Topic separates its key impli-
cations from its rather heavy derivation.

15B Partition functions

The Boltzmann distribution introduces the concept of a ‘parti-
tion function’, which is the central mathematical concept of the 
rest of the chapter. We see how to interpret the partition func-
tion and how to calculate it in a number of simple cases.

15C molecular energies

A partition function is the thermodynamic version of a wave-
function, and contains all the thermodynamic information about 
a system. As a first step in extracting that information, we see 
how to use partition functions to calculate the mean values of the 
basic modes of motion of a collection of independent molecules.

15D the canonical ensemble

Molecules do interact with one another, and statistical thermo-
dynamics would be incomplete without being able to take these 

interactions into account. This Topic shows how that is done in 
principle by introducing the ‘canonical ensemble’, and hints at 
how this concept can be used.

15E the internal energy and  
the entropy

The main work of the chapter is to show how molecular parti-
tion functions are used to calculate (and give insight into) the 
two basic thermodynamic functions, the internal energy and 
the entropy. The latter is based on another central equation 
introduced by Boltzmann, his definition of ‘statistical entropy’.

15F derived functions

With expressions relating internal energy and entropy to par-
tition functions, we are ready to develop expressions for the 
derived thermodynamic functions, such as the Helmholtz and 
Gibbs energies. Then, with the Gibbs energy available, we can 
make the final step into the calculations of chemically signifi-
cant expressions by showing how equilibrium constants can be 
calculated from structural and spectroscopic data.

What is the impact of this material?

There are numerous applications of statistical arguments 
in biochemistry. We have selected one of the most directly 
related to partition functions: Impact I15.1 describes the 
helix–coil equilibrium in a polypeptide and the role of 
co operative behaviour.

To read more about the impact of this 
material, scan the QR code, or go to  
bcs.whfreeman.com/webpub/chemistry/
pchem10e/impact/pchem-15-1.html
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15A the boltzmann distribution

The problem we address in this Topic is the calculation of the 
populations of states for any type of molecule in any mode 
of motion at any temperature. The only restriction is that the 

molecules should be independent, in the sense that the total 
energy of the system is a sum of their individual energies. We 
are discounting (at this stage) the possibility that in a real sys-
tem a contribution to the total energy may arise from interac-
tions between molecules. We also adopt the principle of equal 
a priori probabilities, the assumption that all possibilities for 
the distribution of energy are equally probable. ‘A priori’ in this 
context loosely means ‘as far as one knows’. We have no reason 
to presume otherwise than that for a collection of molecules at 
thermal equilibrium, a vibrational state of a certain energy, for 
instance, is as likely to be populated as a rotational state of the 
same energy.

One very important conclusion that will emerge from the 
following analysis is that the overwhelmingly most probable 
populations of the available states depend on a single param-
eter, the ‘temperature’. That is, the work we do here provides 
a molecular justification for the concept of temperature and 
some insight into this crucially important quantity.

15A.1 Configurations and weights

Any individual molecule may exist in states with energies ε0, 
ε1, …. For reasons that will become clear, we shall always take the 
lowest available state as the zero of energy (that is, we set ε0 = 0), 
and measure all other energies relative to that state. To obtain the 
actual energy of the system we may have to add a constant to the 
energy calculated on this basis. For example, if we are consider-
ing the vibrational contribution to the energy, then we must add 
the total zero-point energy of any oscillators in the system.

(a) Instantaneous configurations
At any instant there will be N0 molecules in the state 0 
with energy ε0, N1 in the state 1 with ε1, and so on, with 
N0 + N1 + … = N, the total number of molecules in the system. 
Initially we suppose that all the states have exactly the same 
energy. The specification of the set of populations N0, N1,… in 
the form {N0,N1,…} is a statement of the instantaneous con-
figuration of the system. The instantaneous configuration fluc-
tuates with time because the populations change, perhaps as a 
result of collisions. At this stage the energies of all the configu-
rations are identical so there is no restriction on how many of 
the N molecules are in each state.
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➤➤ Why do you need to know this material?

The Boltzmann distribution is the key to understanding a 
great deal of chemistry. All thermodynamic properties can be 
interpreted in its terms, as can the temperature dependence 
of equilibrium constants and the rates of chemical reactions. 
It also illuminates the meaning of ‘temperature’. There is, 
perhaps, no more important unifying concept in chemistry.

➤➤ What is the key idea?
The most probable distribution of molecules over the 
available energy levels subject to certain restraints 
depends on a single parameter, the temperature.

➤➤ What do you need to know already?
You need to be aware that molecules can exist only in 
certain discrete energy levels (Foundations B and Topic 7A) 
and that in some cases more than one state has the same 
energy. The principal mathematical tools used in this Topic 
are simple probability theory and Lagrange multipliers; 
the latter is explained in The chemist’s toolkit 15A.1.
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606 15 Statistical thermodynamics

We can picture a large number of different instantaneous 
configurations. One, for example, might be {N,0,0,…}, corres-
ponding to every molecule being in state 0. Another might be 
{N − 2,2,0,0,…}, in which two molecules are in state 1. The lat-
ter configuration is intrinsically more likely to be found than 
the former because it can be achieved in more ways: {N,0,0,…} 
can be achieved in only one way, but {N − 2,2,0,…} can be 
achieved in 1

2 N N( )−1  different ways (Fig. 15A.1; see the fol-
lowing Justification). If, as a result of collisions, the system 
were to fluctuate between the configurations {N,0,0,…} and 
{N − 2,2,0,…}, it would almost always be found in the second, 
more likely configuration, especially if N were large. In other 
words, a system free to switch between the two configurations 
would show properties characteristic almost exclusively of the 
second configuration. A general configuration {N0,N1,…} can 
be achieved in W different ways, where W is called the weight 
of the configuration. The weight of the configuration {N0,N1,…} 
is given by the expression

W = N
N N N

!
! ! !0 1 2   

 weight of a configuration  (15A.1)

with x! = x(x − 1)…1 and by definition 0! = 1. Equation 15A.1 is 
a generalization of the formula W = −1

2 N N( )1 , and reduces to 
it for the configuration {N − 2,2,0,…}.

It will turn out to be more convenient to deal with the natu-
ral logarithm of the weight, ln W, rather than with the weight 
itself. We shall therefore need the expression

ln ln
!

! ! !
ln ! ln ! ! !W = = −

=

= −

=

N
N N N

N N N N
0 1 2

0 1 2�
�

�
ln ) ln ln

ln l

( x
y x y

xy nn lnx y+

− − − − = −∑�
�ln ! ln ! ln ! ln ! ln ! ln !N N N N N N

i

i0 1 2

Brief illustration 15A.1 The weight of a configuration

To calculate the number of ways of distributing 20 identical 
objects with the arrangement 1, 0, 3, 5, 10, 1, we note that the 
configuration is {1,0,3,5,10,1} with N = 20; therefore the weight is

W = = ×20
1 0 3 5 10 1

9 31 108!
! ! ! ! ! !

.
 

Self-test 15A.1 Calculate the weight of the configuration in 
which 20 objects are distributed in the arrangement 0, 1, 5, 0, 
8, 0, 3, 2, 0, 1.

Answer: 4.19 × 1010

Figure 15A.1 Whereas a configuration {5,0,0,…} can be 
achieved in only one way, a configuration {3,2,0,…} can be 
achieved in the ten different ways shown here, where the 
tinted blocks represent different molecules.

Justification 15A.1 The weight of a configuration

First, consider the weight of the configuration {N–2,2,0,0,…}, 
which is prepared from the configuration {N,0,0,0,…} by the 
migration of two molecules from state 0 into state 2. One 
cand idate for migration to state 1 can be selected in N ways. 
There are N − 1 candidates for the second choice, so the total 
number of choices is N(N − 1). However, we should not distin-
guish the choice (Jack, Jill) from the choice (Jill, Jack) because 
they lead to the same configurations. Therefore, only half the 
choices lead to distinguishable configurations, and the total 
number of distinguishable choices is 1

2 N N( )−1 .
Now we generalize this remark. Consider the number of 

ways of distributing N balls into bins. The first ball can be 
selected in N different ways, the next ball in N − 1 different 
ways for the balls remaining, and so on. Therefore, there are 
N(N − 1)…1 = N! ways of selecting the balls for distribution 
over the bins. However, if there are N0 balls in the bin labelled 
ε0, there would be N0! different ways in which the same balls 
could have been chosen (Fig. 15A.2). Similarly, there are N1! 
ways in which the N1 balls in the bin labelled ε1 can be chosen, 
and so on. Therefore, the total number of distinguishable ways 

of distributing the balls so that there are N0 in bin ε0, N1 in bin 
ε1, etc. regardless of the order in which the balls were chosen is 
N!/N0!N1!…, which is the content of eqn 15A.1.

3! 6! 5! 4!

N = 18

Figure 15A.2 The 18 molecules shown here can be 
distributed into four receptacles (distinguished by the 
three vertical lines) in 18! different ways. However, 3! of the 
selections that put three molecules in the first receptacle 
are equivalent, 6! that put six molecules into the second 
receptacle are equivalent, and so on. Hence the number 
of distinguishable arrangements is 18!/3!6!5!4!, or about 
515 million.
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15A The Boltzmann distribution  607

One reason for introducing ln W is that it is easier to make 
approximations. In particular, we can simplify the factorials by 
using Stirling’s approximation

ln ! ln lnx x x x≈ +( ) − +1
2

1
2 2π  

This approximation is in error by less than 1 per cent when x is 
greater than about 10. We deal with far larger values of x, and 
the simplified version

ln lnx x x x!≈ −  x  ≫ 1  stirling’s approximation  (15A.2b)

is adequate. Then the approximate expression for the weight is

ln ln ln

ln ln [

W = −{ }− −{ }

= − − + =

∑
∑ ∑

N N N N N N

N N N N N N N N

i

i i i

i

i i

i

ibecause ]]

ln ln= −∑N N N N
i

i i

 
(15A.3)

(b) The most probable distribution

We have seen that the configuration {N − 2,2,0,…} dominates 
{N,0,0,…}, and it should be easy to believe that there may be 
other configurations that have a much greater weight than 
both. We shall see, in fact, that there is a configuration with so 
great a weight that it overwhelms all the rest in importance to 
such an extent that the system will almost always be found in 
it. The properties of the system will therefore be characteristic 
of that particular dominating configuration. This dominating 
configuration can be found by looking for the values of Ni that 
lead to a maximum value of W. Because W  is a function of all 
the Ni, we can do this search by varying the Ni and looking for 
the values that correspond to dW = 0 (just as in the search for 
the maximum of any function), or equivalently a maximum 
value of ln W. However, there are two difficulties with this 
procedure.

At this point we allow the states to have different energies. 
The first difficulty that results from this change is the need to 
take into account the fact that the only permitted configura-
tions are those corresponding to the specified, constant, total 
energy of the system. This requirement rules out many configu-
rations; {N,0,0,…} and {N − 2,2,0,…}, for instance, have differ-
ent energies (unless ε0 and ε1 happen to have the same energy), 
so both cannot occur in the same isolated system. It follows that 
in looking for the configuration with the greatest weight, we 
must ensure that the configuration also satisfies the condition

i

i iN E∑ =ε
 

Constant energy  energy constraint  (15A.4)

where E is the total energy of the system.
The second constraint is that, because the total number of 

molecules present is also fixed (at N), we cannot arbitrarily vary 
all the populations simultaneously. Thus, increasing the popu-
lation of one state by 1 demands that the population of another 
state must be reduced by 1. Therefore, the search for the maxi-
mum value of W is also subject to the condition

i

iN N∑ =
 

We show in the next section that the populations in the config-
uration of greatest weight, subject to the two constraints in eqns 
15A.4 and 15A.5, depend on the energy of the state according 
to the Boltzmann distribution:

N
N

i

i

i

i
=

∑

−

−
e
e

βε

βε

 
 boltzmann distribution  (15A.6a)

The denominator on eqn 15A.6a is denoted q and called the 
partition function:

q =∑ −

i

ie βε

 

Definition  Partition function  (15A.6b)

At this stage the partition function is no more than a conveni-
ent abbreviation for the sum; but in Topic 15B we see that it 
is central to the statistical interpretation of thermodynamic 
properties.

Equation 15A.6a is the justification of the remark that a sin-
gle parameter, here denoted β, determines the most probable 
populations of the states of the system. We confirm in Topic 
15D and anticipate throughout this Topic that

β = 1
kT  

(15A.7)

where T is the thermodynamic temperature and k is 
Boltzmann’s constant. In other words:

The temperature is the unique parameter that governs the 
most probable populations of states of a system at thermal 
equilibrium.

x ≫ 1
stirling’s 
approxi-
mation

 (15A.2a)

number 
constraint  (15A.5)

Constant total 
number of molecules

Brief illustration 15A.2 The Boltzmann distribution

Suppose that two conformations of a molecule differ in energy 
by 5.0 kJ mol−1 (corresponding to 8.3 zJ for a single molecule; 
1 zJ = 10−21 J), so conformation A lies at energy 0 and conforma-
tion B lies at ε = 8 zJ. At 20 °C (293 K) the denominator in eqn 
15A.6a is

i

kTi∑ − − − × × ×= + = + − − −
e e e J J Kβε ε1 1 8 3 10 1 381 10 29321 23 1/ ( . )/( . ) ( KK) .=1 13
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608 15 Statistical thermodynamics

(c) The relative population of states
If we are interested only in the relative populations of states, the 
sum in the denominator of the Boltzmann distribution need 
not be evaluated, because it cancels when the ratio is taken:

N
N

i

j

i

j

i j= =
−

−
− −e

e
e

βε

βε
β ε ε( )

 

That β ∝ 1/T is plausible is demonstrated by noting from eqn 
15A.8a that for a given energy separation the ratio of popula-
tions N1/N0 decreases as β increases, which is what is expected 
as the temperature decreases. At T = 0 (β = ∞) all the popula-
tion is in the ground state and the ratio is zero. Equation 15A.8a 
is enormously important for understanding a wide range of 
chemical phenomena and is the form in which the Boltzmann 
distribution is commonly employed (for instance, in the dis-
cussion of the intensities of spectral transitions, Topics 12A and 
14A). It tells us that the relative population of two states falls off 
exponentially with their difference in energy.

A very important point to note is that the Boltzmann distri-
bution gives the relative populations of states, not energy levels. 
Several states might correspond to the same energy, and each 
state has a population given by eqn 15A.6. If we want to consider 
the relative populations of energy levels rather than states, then 
we need to take into account this degeneracy. Thus, if the level of 
energy εi is gi-fold degenerate (in the sense that there are gi states 
with that energy), and the level of energy εj is gj-fold degenerate, 
then the relative total populations of the levels are given by

N
N

g

g

g
g

i

j

i

j

i

j

i

j

i j= =
−

−
− −( )e

e
e

βε

βε
β ε ε

 

15A.2 The derivation of the 
Boltzmann distribution

We have remarked that ln W is easier to handle than W. 
Therefore, to find the form of the Boltzmann distribution, we 
look for the condition for ln W  being a maximum rather than 
dealing directly with W. Because ln W depends on all the Ni, 
when a configuration changes and the Ni change to Ni + dNi, the 
function ln W  changes to ln W + d ln W, where

d ln
ln

W
W= ∂

∂




∑

i i
iN

Nd

 

All this expression states is that a change in ln W  is the sum of 
contributions arising from changes in each value of Ni.

Method Although the ground state is non-degenerate, the 
level with J = 1 is triply degenerate (MJ = 0, ±1); see Topic 12B. 
From Topic 12B, the energy of state with quantum number 
J is ε J hcBJ J= + ( )1 . Use B = 10.591 cm−1 A useful relation is 
kT/hc = 207.22 cm−1 at 298.15 K.

Answer The energy separation of states with J = 1 and J = 0 is

ε ε1 0 2− = hcB  

The ratio of the population of a state with J = 1 and any one of 
its three states MJ to the population of the single state with J = 0 
is therefore

N
N
J M hcBJ,

0

2= −e β

 

The relative populations of the levels, taking into account the 
three-fold degeneracy of the upper state, is

N
N

J hcB

0

23= −e β

 

Insertion of hcB hcB kT β = / = (10.591 cm−1)/(207.22 cm−1) =  
0.0511… then gives

N
N

J

0

2 0 05113 2 708= =− × …e . .
 

We see that because the J = 1 level is triply degenerate, it has a 
higher population than the level with J = 0, despite being of 
higher energy. As the example illustrates, it is very important to 
take note of whether you are asked for the relative populations 
of individual states or of a (possibly degenerate) energy level.

Self-test 15A.3 What is the ratio of the populations of the lev-
els with J = 2 and J = 1 at the same temperature?

Answer: 1.359

The proportion of molecules in conformation B at this tem-
perature is therefore

N
N

B
J J KKe= =

− × × ×− − −( . )/( . ) ( )

.
.

8 3 10 1 381 10 29321 23 1

1 13
0 11

 
or 11 per cent of the molecules.

Self-Test 15A.2 Suppose that there is a third conformation a 
further 0.50 kJ mol−1 above B. What proportion of molecules 
will now be in conformation B?

Answer: 0.10, 10 per cent

Example 15A.1 Calculating the relative populations 
of rotational states

Calculate the relative populations of the J = 1 and J = 0 rota-
tional states of HCl at 25 °C.

Thermal 
equilibrium

boltzmann 
population 
ratio

 (15A.8a)

Thermal 
equili
brium, 
degene
racies

boltzmann 
population 
ratio

 (15A.8b)
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15A The Boltzmann distribution  609

(a) The role of constraints
At a maximum, d ln W = 0. However, when the Ni change, they 
do so subject to the two constraints

i

i i

i

iN N∑ ∑= =ε d d0 0

 
 constraints  (15A.9)

The first constraint recognizes that the total energy must not 
change, and the second recognizes that the total number of 
molecules must not change. These two constraints prevent us 
from solving d ln W  = 0 simply by setting all (∂ ln W/∂Ni) = 0 
because the dNi are not all independent.

The way to take constraints into account was devised by the 
French mathematician Lagrange, and is called the method of 
undetermined multipliers (The chemist’s toolkit 15A.1). All we 
need of that method is as follows:

•	 Each constraint is multiplied by a constant and then 
added to the main variation equation.

•	 The variables are then treated as though they were all 
independent.

•	 The constants are evaluated at the end of the calculation.

Thus, as there are two constraints we introduce the two con-
stants α and − β and write

i i
i

i

i

i

i i

i i
i

N
N N N

N

∑ ∑ ∑

∑

∂
∂







+ −

= ∂
∂







+ −


ln

ln

W

W

d d dα β ε

α βε






=dNi 0

 

All the dNi are now treated as independent. Hence the only way 
of satisfying d ln W = 0 is to require that for each i,

∂
∂







+ − =lnW
Ni

iα βε 0
 

(15A.10)

The chemist’s toolkit 15A.1 The method of 
undetermined multipliers

Suppose we need to find the maximum (or minimum) value of 
some function f that depends on several variables x1, x2, …, xn. 
When the variables undergo a small change from xi to xi + δxi 
the function changes from f to f + δf, where

δ δf
f
x

x
i

i

n

i= ∂
∂







=
∑

1

At a minimum or maximum, δf = 0, so then

∂
∂







=
=

∑ f
x

x
i

i

n

i

1

0δ

If the xi were all independent, all the δxi would be arbitrary, 
and this equation could be solved by setting each (∂f/∂xi) = 0 
individually. When the xi are not all independent, the δxi are 
not all independent, and the simple solution is no longer valid. 
We proceed as follows.

Let the constraint connecting the variables be an equa-
tion of the form g = 0. The constraint g = 0 is always valid, so g 
remains unchanged when the xi are varied:

δ δg
g
x

x
i

i

n

i= ∂
∂







=
=

∑
1

0

Because δg is zero, we can multiply it by a parameter, λ, and 
add it to the preceding equation:

∂
∂







+ ∂
∂















=
=

∑ f
x

g
x

x
i i

i

n

iλ
1

0δ

This equation can be solved for one of the δx, δxn for instance, 
in terms of all the other δxi. All those other δxi (i = 1, 2, …,  
n − 1) are independent, because there is only one constraint on 
the system. But λ is arbitrary; therefore we can choose it so that

∂
∂







+ ∂
∂







=f
x

g
xn n

λ 0
 

(A)

Then

∂
∂







+ ∂
∂















=
=

−

∑ f
x

g
x

x
i ii

n

iλ
1

1

0δ

Now the n − 1 variations δxi are independent, so the solution 
of this equation is

∂
∂







+ ∂
∂







= = … −f
x

g
x

i n
i i

λ 0 1 2 1, , ,

However, eqn A has exactly the same form as this equation, so 
the maximum or minimum of f can be found by solving

∂
∂







+ ∂
∂







= = …f
x

g
x

i n
i i

λ 0 1 2, , ,

If there is more than one constraint, g1 = 0, g2 = 0, …, and this 
final result generalizes to

∂
∂







+ ∂
∂







+ ∂
∂







+ = = …f
x

g
x

g
x

i n
i i i

λ λ1
1

2
2 0 1 2 , , , ,

with a corresponding multiplier, λ1, λ2, … for each constraint.
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when the Ni have their most probable values. We show in the 
following Justification that

∂
∂ = −ln

ln
W

N
N
Ni

i

 
(15A.11)

It follows from eqn 15A.10 that

− + − =ln
N
N

i
iα βε 0

 
and therefore that

N
N

i i= −eα βε

 
(15A.12)

which is very close to being the Boltzmann distribution.

(b) The values of the constants
At this stage we note that

N N N N
i

i

i i

i i= = =∑ ∑ ∑− −e eα βε α βεe

 

Because the N cancels on each side of this equality, it follows 
that

eα
βε=

∑ −
1

i

ie
 

(15A.13)

and therefore

N
N

i

i

i i

i

i
= = =

∑
− −

−

−e e
e
e

α βε α βε
βε

βεe

 

which is eqn 15A.6a.
The development of statistical concepts of thermodynamics 

begins with the Boltzmann distribution, with quantum theory 
(Chapter 7) providing insight into and ways of calculating the 
energies εi in eqn 15A.14.

Justification 15.A.2 The derivative of the weight

Equation 15A.3 for W  is

ln ln lnW = −∑N N N N
i

i i

 
There is a small housekeeping step to take before differentiat-
ing ln W  with respect to Ni: this equation is identical to

ln ln lnW = −∑N N N N
j

j j

 
because all we have done is to change the ‘name’ of the states 
from i to j. This step makes sure that we do not confuse the i in 
the differentiation variable (Ni) with the i in the summation. 
Now differentiation of this expression gives

∂
∂ = −

∂
∂

∂
∂ ∑ln ( )( )W

N
N N

N
N N

Ni
j

j j

ii

ln ln

 
The derivative of the (blue) first term on the right is obtained 
as follows:

∂( )
∂ = ∂

∂






+ ∂
∂







∂ ∂

N N
N

N
N

N N
N

Ni i i

ln

1 (1/ ) /��� � �

ln
ln

N N Ni�� ��

�

= + ∂
∂ = +ln lnN

N
N

N
i

1

1
 

The (blue) ln N in the first term on the right in the second 
line arises because N = N1 + N2 + … and so the derivative of 
N with respect to any of the Ni is 1: that is, ∂N/∂Ni = 1. The 
second term on the right in the second line arises because 
∂(ln N)/∂Ni = (1/N)∂N/∂Ni. The final 1 is then obtained in the 
same way as in the preceding remark, by using ∂N/∂Ni = 1.

For the derivative of the second term we first note that

∂
∂ =

∂
∂







ln N
N N

N
N

j

i j

j

i

1

 

If i ≠ j, Nj is independent of Ni, so ∂Nj/∂Ni = 0. However, if i = j, 
∂Ni/∂Ni = 1. Therefore,

∂
∂ =

N
N

j

i
ijδ

 

with δij the Kronecker delta (δij = 1 if i = j, δij = 0 otherwise). 
Then
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j j
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j j
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On bringing the two terms together we can write

∂
∂ = + − + = −ln

ln (ln ) ln
W

N
N N

N
Ni

i
i1 1

 

as in eqn 15A.11.

boltzmann 
distribution  (15A.14)
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Checklist of concepts

☐ 1. The principle of equal a priori probabilities assumes 
that all possibilities for the distribution of energy are 
equally probable.

☐ 2. The instantaneous configuration of a system of N mol-
ecules is the specification of the set of populations N0, 
N1, … of the energy levels ε0, ε1, ….

☐ 3. The Boltzmann distribution gives the numbers of mol-
ecules in each state of a system at any temperature.

☐ 4. The relative populations of energy levels, as opposed to 
states, must take into account the degeneracies of the 
energy levels.

Checklist of equations

Property Equation Comment Equation number

Boltzmann distribution N Ni
i/ e /= − βε q β  = 1/kT 15A.6a

Partition function q =∑ −

i

ie βε see Topic 15B 15A.6b

Boltzmann population ratio N N g gi j i j
i j/ / e= − −( ) ( )β ε ε gj, gj are degeneracies 15A.8b
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15B molecular partition functions

The partition function q = ∑ −
i

ie βε  is introduced in Topic 15A 
simply as a symbol to denote the sum over states that occurs 
in the denominator of the Boltzmann distribution (eqn 15A.6a, 
pi

i= −e /βε q , with pi = Ni/N), but it is far more important than 
that might suggest. For instance, it contains all the informa-
tion needed to calculate the bulk properties of a system of 
independent particles. In this respect q plays a role for bulk 
matter very similar to that played by the wavefunction in quan-
tum mechanics for individual molecules: q is a kind of thermal 
wavefunction. This Topic shows how the partition function is 
calculated in a variety of important cases in preparation for see-
ing how thermodynamic information is extracted (in Topics 
15C and 15E).

15B.1 The significance of the partition 
function

The molecular partition function is

q = ∑ −

states

e
i

iβε

 
Definition  molecular partition function  (15B.1a)

where β = 1/kT. As emphasized in Topic 15A, the sum is over 
states, not energy levels. If gi states have the same energy εi (so 
the level is gi-fold degenerate), we write

q = ∑ −

levels

e
i

i
ig βε

 

where the sum is now over energy levels (sets of states with 
the same energy), not individual states. Also as emphasized in 
Topic 15A, we always take the lowest available state as the zero 
of energy and set ε0 = 0.
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➤➤ Why do you need to know this material?
Statistical thermodynamics provides the link between 
molecular properties that have been calculated or derived 
from spectroscopy and thermodynamic properties, including 
equilibrium concepts. The connection is the partition 
function. Therefore, this material is an essential foundation 
for understanding physical and chemical properties of bulk 
matter in terms of the properties of the constituent 
molecules.

➤➤ What is the key idea?
The partition function is calculated by drawing on calculated 
or spectroscopically derived structural information about 
molecules.

➤➤ What do you need to know already?
You need to know that the Boltzmann distribution 
expresses the most probable distribution of molecules 

over the available energy levels (Topic 15A). In that Topic 
we introduce the concept of partition function, which is 
developed here. You need to be aware of the expressions 
for the rotational and vibrational levels of molecules 
(Topics 12B and 12D) and the energy levels of a particle in 
a box (Topic 8A).

Alternative 
definition

molecular partition 
function  (15B.1b)
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15B Molecular partition functions  613

We have derived the following important expression for the 
partition function for a uniform ladder of states of spacing ε:

q =
− −

1
1 e βε  

Uniform ladder  Partition function  (15B.2a)

We can use this expression to interpret the physical signifi-
cance of a partition function. To do so, we first note that the 
Boltzmann distribution for this arrangement of energy  levels 
gives the fraction, pi = Ni/N, of molecules in the state with 
energy εi as

p qi

i

i= = −
−

− −e
e e

βε
βε βε( )1

 
Uniform ladder  Population  (15B.2b)

Figure 15B.4 shows how pi varies with temperature. At very low 
temperatures (large β), where q is close to 1, only the lowest 
state is significantly populated. As the temperature is raised, the 
population breaks out of the lowest state, and the upper states 
become progressively more highly populated. At the same time, 
the partition function rises from 1 towards 2, so we see that its 
value gives an indication of the range of states populated at any 
given temperature. The name ‘partition function’ reflects the 
sense in which q measures how the total number of molecules 
is distributed—partitioned—over the available states.

The corresponding expressions for a two-level system 
derived in Self-test 15B.1 are

q = + −1 e βε
 Twolevel system  Partition function  (15B.3a)

p qi

i i

= =
+

− −

−
e e

e

βε βε

βε1  
Twolevel system  Population  (15B.3b)

Brief illustration 15B.1 A partition function

Suppose a molecule is confined to the following non-degener-
ate energy levels: 0, ε, 2ε, … (Fig. 15B.1; later we shall see that 
this array of levels is used when considering molecular vibra-
tion). Then the molecular partition function is

q = + + + = + + +− − − −1 12 2e e e eβε βε βε βε ( )

The sum of the geometrical series 1 + x + x2 + … is 1/(1 − x), so 
in this case

q =
− −

1
1 e βε

This function is plotted in Fig. 15B.2.

Self-test 15B.1 Suppose the molecule can exist in only two 
states, with energies 0 and ε. Derive and plot the expression 
for the partition function.

Answer: q = + −1 e βε , Fig.15 B.3

0

ε

ε

2ε
3ε

. .
 .

Figure 15B.1 The equally-spaced infinite array of energy 
levels used in the calculation of the partition function. 
A harmonic oscillator has the same spectrum of levels.
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Figure 15B.2 The partition function for the system 
shown in Fig. 15B.1 (a harmonic oscillator) as a function of 
temperature.
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Figure 15B.3 The partition function for a two-level system 
as a function of temperature. The two graphs differ in the 
scale of the temperature axis to show the approach to 1 as 
T → 0 and the slow approach to 2 as T → ∞.
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In this case, because ε0 = 0 and ε1 = ε,

p p0 1

1
1 1

=
+

=
+−

−

−e
e

eβε

βε

βε  
(15B.4)

These functions are plotted in Fig. 15B.5. Notice how the popu-
lations are p0 = 1 and p1 = 0 and the partition function is q = 1 
(one state occupied) at T = 0. However, the populations tend 
towards equality ( , )p p0

1
2

1
2= =1  and q = 2 (two states occupied) 

as T → ∞.

A note on good practice A common error is to suppose that 
when T = ∞ all the molecules in the system will be found in 
the upper energy state; however, we see from eqn 15B.4 that 
as T → ∞, the populations of states become equal. The same 
conclusion is true of multi-level systems too: as T → ∞, all 
states become equally populated.

We can now generalize the conclusion that the partition 
function indicates the number of thermally accessible states. 
When T is close to zero, the parameter β = 1/kT is close to infin-
ity. Then every term except one in the sum defining q is zero 
because each one has the form e−x with x → ∞. The exception is 
the term with ε0 ≡ 0 (or the g0 states at zero energy if they are g0-
fold degenerate), because then ε0/kT ≡ 0 whatever the tempera-
ture, including zero. As there is only one surviving term when 
T = 0, and its value is g0, it follows that

lim
T

g
→

=
0

0q
 

That is, at T = 0, the partition function is equal to the degen-
eracy of the ground state (commonly, but not necessarily, 1).

Now consider the case when T is so high that for each term 
in the sum εj/kT ≈ 0. Because e−x = 1 when x = 0, each term in the 
sum now contributes 1. It follows that the sum is equal to the 
number of molecular states, which in general is infinite:

lim
T→∞

= ∞q
 

In some idealized cases, the molecule may have only a finite 
number of states; then the upper limit of q is equal to the num-
ber of states, as we saw for the two-level system.

In summary, we see that:

The molecular partition function gives an indication of the 
number of states that are thermally accessible to a molecule 
at the temperature of the system.

At T = 0, only the ground level is accessible and q = g0. At very 
high temperatures, virtually all states are accessible, and q is 
correspondingly large.

15B.2 Contributions to the partition 
function

The energy of a molecule is the sum of contributions from its 
different modes of motion:

ε ε ε ε εi i i i i= + + +T R V E

 (15B.5)

where T denotes translation, R rotation, V vibration, and E 
the electronic contribution. The electronic contribution is not 
actually a ‘mode of motion’, but it is convenient to include it 
here. The separation of terms in eqn 15B.5 is only approximate 
(except for translation) because the modes are not completely 
independent, but in most cases it is satisfactory. The separation 
of the electronic and vibrational motions is justified provided 
only the ground electronic state is occupied (for otherwise the 
vibrational characteristics depend on the electronic state) and, 
for the electronic ground state, that the Born–Oppenheimer 

Low
temperature

High
temperature

3.0 1.0 0.7 0.3
1.05 1.58 1.99 3.86

βε:

Figure 15B.4 The populations of the energy levels of the 
system shown in Fig.15B.1 at different temperatures, and the 
corresponding values of the partition function as calculated 
from eqn 15B.2b. Note that β = 1/kT.

0
0

0 5 10
Temperature, kT/ε Temperature, kT/ε

1 1

0.5 1

Po
p

u
la

ti
o

n
, p

0.5 0.5

0

p0

p0

p1

p1

Figure 15B.5 The fraction of populations of the two states 
of a two-level system as a function of temperature (eqn 
15B.4). Note that as the temperature approaches infinity, the 
populations of the two states become equal (and the fractions 
both approach 0.5).
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approximation is valid (Topic 10A). The separation of the 
vibrational and rotational modes is justified to the extent that 
the rotational constant (Topic 12B) is independent of the vibra-
tional state.

Given that the energy is a sum of independent contributions, 
the partition function factorizes into a product of contributions:

q = =

=

∑ ∑− − − − −

i i

i

i i i i ie e
all states

translat

T R V Eβε βε βε βε βε

( )

( iional rotational vibrational electronic

e
) ( ) ( ) ( )

∑ ∑ ∑ ∑ −

i i i

βεii i i i

i

i i

T R V E

T

translational rotati

e

− − −

−=








∑

βε βε βε

βε

( ) ( oonal vibrational

electro

e e
R V

) ( )

(

∑ ∑− −


















βε βεi i

i

i

×
nnic

e
E

)

∑ −








βεi

 

That is,

q q q q q= T R V E

  Factorization of the partition function  (15B.6)

This factorization means that we can investigate each contri-
bution separately. In general, exact analytical expressions for 
partition functions cannot be obtained. However, approximate 
expressions can often be found and prove to be very important 
for understanding chemical phenomena; they are derived in 
the following sections and collected at the end of the Topic.

(a) The translational contribution
The translational partition function for a particle of mass m 
free to move in a one-dimensional container of length X can 
be evaluated by making use of the fact that the separation of 
energy levels is very small and that large numbers of states are 
accessible at normal temperatures. As shown in the following 
Justification, in this case

q

q

X

m
h

XX

=

=





Λ

T 2
2

1 2π
β

/

 

It will prove convenient to anticipate once again that β = 1/kT 
and to write this expression as q X XT /= Λ , with

Λ =
( )

h

mkT2
1 2π /

 
Definition  thermal wavelength  (15B.7b)

The quantity Λ (uppercase lambda) has the dimensions of 
length and is called the thermal wavelength (sometimes the 
‘thermal de Broglie wavelength’) of the molecule. The thermal 
wavelength decreases with increasing mass and temperature. 

This expression shows that the partition function for transla-
tional motion increases with the length of the box and the mass 
of the particle, for in each case the separation of the energy lev-
els becomes smaller and more levels become thermally acces-
sible. For a given mass and length of the box, the partition 
function also increases with increasing temperature (decreas-
ing β), because more states become accessible.

The total energy of a molecule free to move in three dimen-
sions is the sum of its translational energies in all three 
directions:

ε ε ε εn n n n
X

n
Y

n
Z

1 2 3 1 2 3
= + +( ) ( ) ( )

 (15B.8)

Onedimensional 
container

translational 
partition 
function

 (15B.7a)

Justification 15B.1 The partition function for a particle in 
a one-dimensional box

The energy levels of a molecule of mass m in a container of 
length X are given by eqn 8A.6b (En = n2h2/8mL2) with L = X:

E
n h
mXn =

2 2

28

The lowest level (n = 1) has energy h2/8mX2, so the energies 
relative to that level are

ε ε εn n h mX= = 1 /82 2 2( )−

The sum to evaluate is therefore

q X
n

n

T e= − −

=

∞

∑ ( )2 1

1

βε

The translational energy levels are very close together in a con-
tainer the size of a typical laboratory vessel; therefore, the sum 
can be approximated by an integral:

q X
n nn nT e d e d= ≈− −

∞
−

∞

∫ ∫( )2 21

1 0

βε βε

The extension of the lower limit to n = 0 and the replacement 
of n2 − 1 by n2 introduces negligible error but turns the inte-
gral into standard form. We make the substitution x2 = n2βε , 
implying dn = dx/(βε)1/2, and therefore that

q X
x xT e d

 

= 





= 





−
∞

∫1 1
1 2

0

2

βε βε

/

Integral G.1
/21/2π� �� ��

11 2 1 2

2

1 2

2
2

/ / /π π= 





m
h

X
β

This relation has the form of eqn 15B.7a, q = X/Λ, provided Λ 
is identified as

Λ = 



 ( )

=
=h

m
h

mkT

2 1 2

1 22 2

β β

π π

/

/

1/kT

as in eqn 15B.7b.
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where n1, n2, and n3 are the quantum numbers for motion in 
the x-, y-, and z-directions, respectively. Therefore, because 
ea+b+c = eaebec, the partition function factorizes as follows:

q T

all all

e e e= =∑ ∑− − − − −( ) ( ) ( ) ( ) (

n n

n
X

n
Y

n
Z

n
X

n
Yβε βε βε βε βε

1 2 3 1 2
)) ( )

( ) ( ) (

e

e e e

−

− − −=


















∑ ∑ ∑

βε

βε βε βε

n
Z

n
X

n
Y

n

n n n

3

1

1

2

2

3

3
ZZ )











 

That is,

q q q qT T T T= X Y Z  (15B.9)

Equation 15B.7a gives the partition function for translational 
motion in the x-direction. The only change for the other two 
directions is to replace the length X by the lengths Y or Z. 
Hence the partition function for motion in three dimensions is

q T =





=2 2
2

3 2 3 2

3

π πm
h

XYZ
mkT
h

XYZ
β

/ /( )

 
(15B.10a)

The product of lengths XYZ is the volume, V, of the container, 
so we can write

q T = V
Λ3  

with Λ as defined in eqn 15B.7b. As in the one-dimensional 
case, the partition function increases with the mass of the 
particle (as m3/2) and the volume of the container (as V); for a 
given mass and volume, the partition function increases with 
temperature (as T 3/2). As in one dimension, qT → ∞ as T → ∞ 
because an infinite number of states becomes accessible as the 
temperature is raised. Even at room temperature, qT ≈ 2 × 1028 
for an O2 molecule in a vessel of volume 100 cm3.

The validity of the approximations that led to eqn 15B.10 can 
be expressed in terms of the average separation, d, of the parti-
cles in the container. Because q is the total number of accessible 
states, the average number of translational states per molecule 
is qT/N. For this quantity to be large, we require V/NΛ3 ≫ 1. 
However, V/N is the volume occupied by a single particle, and 
therefore the average separation of the particles is d = (V/N)1/3. 
The condition for there being many states available per mole-
cule is therefore d3/Λ3 ≫ 1, and therefore d ≫ Λ. That is, for eqn 
15B.10 to be valid, the average separation of the particles must be 
much greater than their thermal wavelength. For H2 molecules at 
1 bar and 298 K, the average separation is 3 nm, which is signifi-
cantly larger than their thermal wavelength (71.2 pm).

The validity of eqn 15B.10 can be expressed in a different 
way by noting that the approximations that led to it are valid if 
many states are occupied, which requires V/Λ3 to be large. That 
will be so if Λ is small compared with the linear dimensions of 
the container. For H2 at 25 °C, Λ = 71 pm, which is far smaller 
than any conventional container is likely to be (but comparable 
to pores in zeolites or cavities in clathrates). For O2, a heavier 
molecule, Λ = 18 pm.

(b) The rotational contribution
The energy levels of a linear rotor are ε J hcBJ J= + ( )1 , with 
J = 0, 1, 2, … (Topic 12B). The state of lowest energy has zero 
energy, so no adjustment need be made to the energies given by 
this expression. Each level consists of 2J + 1 degenerate states. 
Therefore, the partition function of a non-symmetrical (AB) 
linear rotor is

q R e= +∑ − +

J

hcBJ JJ( ) ( )2 1 1

gJ J���
�

� �� ��
β

ε

 
(15B.11)

The direct method of calculating q R is to substitute the experi-
mental values of the rotational energy levels into this expres-
sion and to sum the series numerically.

Brief illustration 15B.2 The translational partition 
function

To calculate the translational partition function of an H2 mol-
ecule confined to a 100 cm3 vessel at 25 °C we use m = 2.016mu; 
then, from Λ = h mkT/( ) /2 1 2π ,

Λ = ×

× × ×

−

−

=
−

6 626 10

2 2 016 1 6605 10

34

27

.

( . .

J s

kg

1J
1kg m s2 2

�

π )) . ( )× ×











×









− −

=
−

1 381 10 29823 1J K K
1J
1kg m s2 2

�



= × −

1 2

117 12 10

/

. m

Therefore,

q T m

m
= ×

×( )
= ×

−

−

1 00 10

7 12 10
2 77 10

4 3

11 3
26.

.
.

About 1026 quantum states are thermally accessible, even at 
room temperature and for this light molecule. Many states 
are occupied if the thermal wavelength (which in this case is 
71.2 pm) is small compared with the linear dimensions of the 
container.

Self-test 15B.2 Calculate the translational partition function 
for a D2 molecule under the same conditions.

Answer: q T = 7.8 × 1026, 23/2 times larger

Threedimensional 
container

translational 
partition 
function

 (15B.10b)
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At room temperature, kT/hc ≈ 200 cm−1. The rotational con-
stants of many molecules are close to 1 cm−1 (Table 12D.1) and 
often smaller (though the very light H2 molecule, for which 
B= −6 9cm 10. , is one exception). It follows that many rotational 
levels are populated at normal temperatures. When this is the 
case, we show in the following two Justifications that the parti-
tion function may be approximated by

q R = kT

hcB  
Linear rotor  rotational partition function  (15B.12a)

q R =











kT
hc ABC

3 2 1 2/ /π
  

 

where  A B, , and C  are the rotational constants of the mole-
cule expressed as wavenumbers. However, before using these 
expressions, read on (to eqns 15B.13 and 15B.14).

Justification 15B.2 The rotational contribution for linear 
molecules

When many rotational states are occupied and kT is much 
larger than the separation between neighbouring states, the 
sum in the partition function can be approximated by an inte-
gral, much as we did for translational motion:

q R e= + − +
∞

∫ ( ) ( )2 1 1

0
J JhcBJ Jβ  d

This integral can be evaluated without much effort by making 
the substitution x hcBJ J= +β  ( )1 , so that d /dx J hcB J= +β ( )2 1  
and therefore ( )2 1J J x hcB+ =d d /β . Then

q R e

 

= =−
∞

∫1 1

0β βhcB
x

hcB
x

�

� �� ��

�d

Integral E.1
1

 
which (because β = 1/kT) is eqn 15B.12a.

Brief illustration 15B.3 The rotational contribution

For 1H35Cl at 298.15 K we use kT/hc = 207.224 cm−1 and 
B =1 591cm 10. − . Then

q R cm
cm

= = =
−

−
kT

hcB
207 224
10 591

19 59
1

1

.
.

.

The value is in good agreement with the exact value (19.02) 
and with much less work.

Self-test 15B.4 Evaluate the rotational contribution to the par-
tition function for 1H35Cl at 0 °C.

Answer: 17.93

Justification 15B.3 The rotational contribution for 
nonlinear molecules

The energies of a symmetric rotor (Topic 12B) are

E hcBJ J hc A B KJ K M J, , ( )= + + −( )  1 2

 
with J = 0, 1, 2, …, K = J, J − 1, …,−J, and MJ = J, J − 1, …,−J. 
Instead of considering these ranges, the same values can be 

Nonlinear 
rotor 

rotational 
partition 
function

 (15B.12b)

Example 15B.1 Evaluating the rotational partition 
function explicitly

Evaluate the rotational partition function of 1H35Cl at 25 °C, 
given that B = −.1 591cm 10 .

Method We need to evaluate eqn 15B.11 term by term. We use 
kT/hc = 207.224 cm−1 at 298.15 K. The sum is readily evaluated 
by using mathematical software.

Answer To show how successive terms contribute, we draw up 
the following table by using hcB kT / 5111= 0 0.  (Fig. 15B.6):

The sum required by eqn 15B.11 (the sum of the numbers in 
the second row of the table) is 19.9, hence q R = 19.9 at this tem-
perature. Taking J up to 50 gives q R = 19.902. Notice that about 
ten J-levels are significantly populated but the number of popu-
lated states is larger on account of the (2J + 1)-fold degeneracy 
of each level.

Self-test 15B.3 Evaluate the rotational partition function for 
1H35Cl at 0 °C.

Answer: 18.26
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Quantum number, J

Figure 15B.6 The contributions to the rotational partition 
function of an HCl molecule at 25 °C. The vertical axis is 
the value of ( ) ( )2 1 1J hcBJ J+ − +e β  . Successive terms (which are 
proportional to the populations of the levels) pass through 
a maximum because the population of individual states 
decreases exponentially, but the degeneracy of the levels 
increases with J.

J 0 1 2 3 4 … 10
(2J + 1)e−0.05111J(J + 1) 1 2.71 3.68 3.79 3.24 … 0.08
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A useful way of expressing the temperature above which the 
rotational approximation is valid is to introduce the character-
istic rotational temperature, θ R /= hcB k .Then ‘high tempera-
ture’ means T ≫ θR and under these conditions the rotational 
partition function of a linear molecule is simply T/θR. Some 
typical values of θR are given in Table 15B.1. The value for 1H2 
(87.6 K) is abnormally high and we must be careful with the 
approximation for this molecule.

The general conclusion at this stage is that molecules with 
large moments of inertia (and hence small rotational constants 
and low characteristic rotational temperatures) have large rota-
tional partition functions. The large value of q R reflects the 
closeness in energy (compared with kT) of the rotational levels 
in large, heavy molecules, and the large number of rotational 
states that are accessible at normal temperatures.

We must take care, however, not to include too many rota-
tional states in the sum. For a homonuclear diatomic molecule 
or a symmetrical linear molecule (such as CO2 or HCbCH), 
a rotation through 180° results in an indistinguishable state of 
the molecule. Hence, the number of thermally accessible states 
is only half the number that can be occupied by a heteronuclear 
diatomic molecule, where rotation through 180° does result 
in a distinguishable state. Therefore, for a symmetrical linear 
molecule,

q R
R= =kT

hcB

T

2 2 θ  

The equations for symmetrical and non-symmetrical molecules 
can be combined into a single expression by introducing the 
symmetry number, σ, which is the number of indistinguish-
able orientations of the molecule. Then

q R
R= T

σθ  
Linear rotor  rotational partition function  (15B.13b)

We conclude that

q
hc AB

kT
hc AB

= 





= 











1
3 2 2

1 2 3 2

2

1 2

( ) /

/ / /

β
π π

   
 

For an asymmetric rotor, one of the B is replaced by C , to give 
eqn 15B.12b.

covered by allowing K to range from –∞ to ∞, with J confined 
to |K|, |K| + 1, …, ∞ for each value of K (Fig. 15B.7). Because the 
energy is independent of MJ, and there are 2J + 1 values of MJ 
for each value of J, each value of J is (2J + 1)-fold degenerate. It 
follows that the partition function

q =
=

∞

=−

−

=−
∑∑ ∑
J K J

J
E

M J

J

J K MJ

J0

e β , ,

can be written equivalently as

q = + = +
=

∞
−

=− =−∞

∞
−

=

∞
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K J

J
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J K
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0
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e eβ β∑∑
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∞
− +( )
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hc BJ J
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As in Justification 15B.2 we assume that the temperature is so 
high that numerous states are occupied and that the sums may 
be approximated by integrals. Then

q = +− −

−∞

∞
− +

∞

∫ ∫e e d dhc A B K hc BJ J

K
J J Kβ β( ) ( )

| |
( )

  2

2 1 1

 

As before, the integral over J can be recognized as the integral 
of the derivative of a function, which is the function itself, so, 
as you should verify,

( )
| |

2 1
11 2

J J
hc B

hc BJ J

K

hc BK+ =− +( )
∞

−∫ e d eβ β

β
 


 

We have also supposed that |K| ≫ 1 for most contributions and 
replaced |K|(|K| + 1) by K2. Now we can write

q = =− − −

−∞

∞
−

−∞

∞

∫1 12 2 2

hc B
K

hc
Khc A B K hc BK hc AK

β βΒ
β β β

� �
� � � �

e e d e d( ) ∫∫
=
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(a) (b)        

Figure 15B.7 (a) The sum over J = 0, 1, 2, … and K = J, J − 1, …, 
–J (depicted by the circles) can be covered (b) by allowing K 
to range from –∞ to ∞, with J confined to |K|, |K| + 1, …, ∞ for 
each value of K.

Table 15B.1* Rotational temperatures of diatomic molecules

θ R/K

1H2 87.6
1H35Cl 15.2
14N2 2.88
35Cl2 0.351

* More values are given in the Resource section, Table 12D.1.

Symmetrical 
linear rotor

rotational 
partition 
function

 (15B.13a)
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15B Molecular partition functions  619

For a heteronuclear diatomic molecule σ = 1; for a homonuclear 
diatomic molecule or a symmetrical linear molecule, σ = 2.

The same care must be exercised for other types of symmet-
rical molecule, and for a nonlinear molecule we write

q R = 











1
3 2 1 2

σ
kT
hc ABC

/ /π
  

 

Some typical values of the symmetry numbers are given in 
Table 15B.2. For the way that group theory is used to identify 
the value of the symmetry number, see Problem 15B.9.

Brief illustration 15B.4 The symmetry number

The value σ (H2O) = 2 ref lects the fact that a 180° rotation 
about the bisector of the HeOeH angle interchanges two 
indistinguishable atoms. In NH3, there are three indistin-
guishable orientations around the axis, as shown in 1. For 

Justification 15B.4 The origin of the symmetry number

The quantum mechanical origin of the symmetry number is 
the Pauli principle, which forbids the occupation of certain 
states. It is shown in Topic 12C, for example, that H2 may 
occupy rotational states with even J only if its nuclear spins 
are paired (para-hydrogen), and odd J states only if its nuclear 
spins are parallel (ortho-hydrogen). There are three states of 
ortho-H2 to each value of J (because there are three parallel 
spin states of the two nuclei).

To set up the rotational partition function we note that 
‘ordinary’ molecular hydrogen is a mixture of one part para-
H2 (with only its even-J rotational states occupied) and three 
parts ortho-H2 (with only its odd-J rotational states occupied). 
Therefore, the average partition function per molecule is

q R

even odd

e e= + + +∑ ∑− + − +1
4

2 1
3
4

2 11 1

J

hcBJ J

J

hcBJ JJ J( ) ( )( ) (β β  ))

The odd-J states are more heavily weighted than the even-J 
states (Fig. 15B.8). From the illustration we see that we would 
obtain approximately the same answer for the partition func-
tion (the sum of all the populations) if each J term contributed 
half its normal value to the sum. That is, the last equation can 
be approximated as

q R e= +∑ − +1
2

2 1 1

J

hcBJ JJ( ) ( )β 

 

and this approximation is very good when many terms con-
tribute (at high temperatures, T ≫ 87.6 K).

ortho-H2

para-H2

Rotational quantum number J10

Po
p

u
la

ti
o

n

Figure 15B.8 The values of the individual terms 
( ) ( )2 1 1J hcBJ J+ − +e β   contributing to the mean partition function 
of a 3:1 mixture of ortho- and para-H2. The partition function 
is the sum of all these terms. At high temperatures, the 
sum is approximately equal to the sum of the terms over all 
values of J, each with a weight of 1

2
. This is the sum of the 

contributions indicated by the curve.

The same type of argument may be used for linear symmetri-
cal molecules in which identical bosons are interchanged by 
rotation (such as CO2). As pointed out in Topic 12C, if the 
nuclear spin of the bosons is 0, then only even-J states are 
admissible. Because only half the rotational states are occu-
pied, the rotational partition function is only half the value 
of the sum obtained by allowing all values of J to contribute 
(Fig. 15B.9).

Rotational quantum number J10

Po
p

u
la

ti
o

n

Figure 15B.9 The relative populations of the rotational 
energy levels of CO2. Only states with even J values are 
occupied. The full line shows the smoothed, averaged 
population of levels.

Table 15B.2* Symmetry numbers of molecules

σ

1H2 2
1H2H 1

NH3 3

C6H6 12

* More values are given in the Resource section, Table 12D.1.

Nonlinear 
rotor

rotational 
partition 
function

 (15B.14)
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620 15 Statistical thermodynamics

(c) The vibrational contribution
The vibrational partition function of a molecule is calculated 
by substituting the measured vibrational energy levels into 
the exponentials appearing in the definition of qV, and sum-
ming them numerically. However, provided it is permissible to 
assume that the vibrations are harmonic, there is a much sim-
pler way. In that case, the vibrational energy levels form a uni-
form ladder of separation hc   (Topics 8B and 12D), which is 
exactly the problem treated in Brief illustration 15B.1 and sum-
marized in eqn 15B.2a. Therefore we can use that result with 
ε = hc  and conclude immediately that

q V

e
=

− −
1

1 βhc   

This function is plotted in Fig. 15B.11 (which is essentially the 
same as Fig. 15B.1). Similarly, the population of each state is 
given by eqn 15B.2b.

In a polyatomic molecule, each normal mode (Topic 12E) has 
its own partition function (provided the anharmonicities are so 
small that the modes are independent). The overall vibrational 
partition function is the product of the individual partition 
functions, and we can write qV = qV(1)qV(2)…, where qV(K) is 
the partition function for the Kth normal mode and is calcu-
lated by direct summation of the observed spectroscopic levels.

Brief illustration 15B.5 The vibrational partition function

To calculate the partition function of I2 molecules at 298.15 K 
we note from Table 12D.1 that their vibrational wavenumber 
is 214.6 cm−1. Then, because at 298.15 K, kT/hc = 207.224 cm−1, 
we have

βε = = = …
−

−
hc
kT

 214 6
207 244

1 035
1

1

.
.

.
cm

cm  

Then it follows from eqn 15B.15 that

q V

e
=

−
=− …

1
1

1 551 035. .
 

We can infer that only the ground and first excited states are 
significantly populated.

Self-test 15B.6 Evaluate the populations of the first three 
vibrational states.

Answer: p0 = 0.645, p1 = 0.229, p2 = 0.081

Harmonic 
approximation

Vibrational 
partition 
function

 (15B.15)

CH4, any of three 120° rotations about any of its four CeH 
bonds leaves the molecule in an indistinguishable state (2), 
so the symmetry number is 3 × 4 = 12. For benzene, any of six 
orientations around the axis perpendicular to the plane of the 
molecule leaves it apparently unchanged (Fig. 15B.10), as does 
a rotation of 180° around any of six axes in the plane of the 
molecule (three of which pass along each CeH bond and the 
remaining three pass through each CeC bond in the plane of 
the molecule).

A B
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A
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D

2

Self-test 15B.5 What is the symmetry number for a naphtha-
lene molecule?

Answer: 3
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Figure 15B.10 The 12 equivalent orientations of a benzene 
molecule that can be reached by pure rotations, and give 
rise to a symmetry number of 12. The six pale colours are the 
underside of the hexagon after that face has been rotated 
into view.
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Figure 15B.11 The vibrational partition function of a 
molecule in the harmonic approximation. Note that 
the partition function is linearly proportional to the 
temperature when the temperature is high (T ≫ θV).
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15B Molecular partition functions  621

In many molecules the vibrational wavenumbers are so great 
that βhc  >1. For example, the lowest vibrational wavenumber 
of CH4 is 1306 cm−1, so βhc  = 6 3.  at room temperature. Most 
CeH stretches normally lie in the range 2850 to 2960 cm−1, so 
for them βhc  ≈14. In these cases, e−βhc   in the denominator 
of qV is very close to zero (for example, e−6.3 = 0.002), and the 
vibrational partition function for a single mode is very close 
to 1 (qV = 1.002 when βhc  = 6 3. ), implying that only the zero-
point level is significantly occupied.

Now consider the case of bonds with such low vibrational 
frequencies that βhc � � 1. When this condition is satisfied, 

the partition function may be approximated by expanding the 
exponential (ex = 1 + x + …):

q V

e
=

−
= − − +−

1
1

1
1 1βhc hc� � � ( )β  

That is, for weak bonds at high temperatures,

q V ≈ kT
hc 

The temperatures for which eqn 15B.16 is valid can be 
expressed in terms of the characteristic vibrational tempera-
ture, θ V /= hc k  (Table 15B.3). The value for H2 (6332 K) is 
abnormally high because the atoms are so light and the vibra-
tional frequency is correspondingly high. In terms of the vibra-
tional temperature, ‘high temperature’ means T ≫ θV

, and when 
this condition is satisfied, qV = T/θV (the analogue of the rota-
tional expression).

(d) The electronic contribution
Electronic energy separations from the ground state are usu-
ally very large, so for most cases q E = 1 because only the ground 
state is occupied. An important exception arises in the case of 
atoms and molecules having electronically degenerate ground 
states, in which case q E = gE, where gE is the degeneracy of the 
electronic ground state. Alkali metal atoms, for example, have 
doubly degenerate ground states (corresponding to the two ori-
entations of their electron spin), so q E = 2.

Brief illustration 15B.6 The electronic partition function

Some atoms and molecules have low lying electronically 
excited states. An example is NO, which has a configuration 
of the form …π1 (Topic 10C). The energy of the two degenerate 
states in which the orbital and spin momenta are parallel (giv-
ing the 2Π3/2 term, Fig. 15B.12) is slightly greater than that of 
the two degenerate states in which they are antiparallel (giv-
ing the 2Π1/2 term).

Example 15B.2 Calculating a vibrational partition 
function

The wavenumbers of the three normal modes of H2O are 
3656.7 cm−1, 1594.8 cm−1, and 3755.8 cm−1. Evaluate the vibra-
tional partition function at 1500 K.

Method Use eqn 15B.15 for each mode, and then form 
the product of the three contr ibut ions. At 1500 K, 
kT/hc = 1042.6 cm−1.

Answer We draw up the following table displaying the contri-
butions of each mode:

The overall vibrational partition function is therefore

q V 1 31 1 276 1 28 1 352= × × =. . . .0 0  

The three normal modes of H2O are at such high wavenum-
bers that even at 1500 K most of the molecules are in their 
vibrational ground state. However, there may be so many nor-
mal modes in a large molecule that their overall contribution 
may be significant even though each mode is not appreciably 
excited. For example, a nonlinear molecule containing 10 
atoms has 3N – 6 = 24 normal modes (Topic 12E). If we assume 
a value of about 1.1 for the vibrational partition function of 
one normal mode, the overall vibrational partition function is 
about qV ≈ (1.1)24 = 9.8, which indicates significant vibrational 
excitation relative to a smaller molecule, such as H2O.

Self-test 15B.7 Repeat the calculation for CO2, where the 
vibrational wavenumbers are 1388 cm−1, 667.4 cm−1, and 
2349 cm−1, the second being the doubly-degenerate bending 
mode.

Answer: 6.79

Mode: 1 2 3
/cm 1− 3656.7 1594.8 3755.8

hc kT/ 3.507 1.530 3.602

qV 1.031 1.276 1.028

Hightemperature 
approximation

Vibrational 
partition 
function

 (15B.16)

Table 15B.3* Vibrational temperatures of diatomic molecules

θV/K

1H2 6332
1H35Cl 4304
14N2 3393
35Cl2 805

* More values are given in the Resource section, Table 12D.1.
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622 15 Statistical thermodynamics

Checklist of concepts

☐ 1.  The molecular partition function is an indication of 
the number of thermally accessible states at the temper-
ature of interest.

☐ 2. If the energy of a molecule is given by the sum of con-
tributions, then the molecular partition function is a 
product of contributions from the different modes.

☐ 3. The symmetry number takes into account the num-
ber of indistinguishable orientations of a symmetrical 
molecule.

☐ 4. The vibrational partition function of a molecule may 
be approximated by that of an harmonic oscillator.

☐ 5. Because electronic energy separations from the ground 
state are usually very big, in most cases the electronic 
partition function is equal to the degeneracy of the 
electronic ground state.

Checklist of equations

The separation, which arises from spin–orbit coupling, is 
only 121 cm−1. If we denote the energies of the two levels as 
E1/2 = 0 and E3/2 = ε, the partition function is

q E

levels

e e= = +∑ − −

i

ig iβε β2 2 ε

This function is plotted in Fig. 15B.13. At T = 0, q E = 2, because 
only the doubly degenerate ground state is accessible. At high 

S
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2Π1/2

2Π3/2

Figure 15B.12 The doubly-degenerate ground electronic 
level of NO (with the spin and orbital angular momentum 
around the axis in opposite directions) and the doubly-
degenerate first excited level (with the spin and orbital 
momenta parallel). The upper level is thermally accessible at 
room temperature.

temperatures, q E approaches 4 because all four states are 
accessible. At 25 °C, q E = 3.1.

Self-test 15B.8 A certain atom has a fourfold degenerate 
ground state and a sixfold degenerate excited state at 400 cm−1 
above the ground state. Calculate its electronic partition func-
tion at 25 °C.

Answer: 4.87
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Figure 15B.13 The variation with temperature of the 
electronic partition function of an NO molecule. Note 
that the curve resembles that for a two-level system 
(Fig.15B.3), but rises from 2 (the degeneracy of the lower 
level) and approaches 4 (the total number of states) at high 
temperatures.

Property Equation Comment Equation number

Molecular partition function q = −∑ e

states

βεi

i

Definition, independent molecules 15B.1a

q = ∑ −

levels

e

i

i
ig βε Definition, independent molecules 15B.1b
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Property Equation Comment Equation number

Uniform ladder q = − −1 1/( )e βε 15B.2a

Two-level system q = + −1 e βε 15B.3a

Thermal wavelength Λ = h mkT/( ) /2 1 2π 15B.7b

Translation q T /=V Λ3 15B.10b

Rotation q R /= kT hcBσ  T ≫ θR, linear rotor 15B.13

q R / /=( / )( ) ( )/ /1 3 2 1 2σ kT hc ABCπ    T ≫ θR, nonlinear rotor, θ R /= hcB k 15B.14

Vibration q V e= − −1 1/( )βhc  Harmonic approximation, θ V /= hc k 15B.15
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15C molecular energies

This Topic sets up the basic equations that show how to use 
the molecular partition function to calculate the mean energy 
of a collection of independent molecules. In Topic 15E we see 

how those mean energies are used to calculate thermodynamic 
properties. The equations for collections of interacting mole-
cules are very similar (Topic 15D), but much more difficult to 
implement.

15C.1 The basic equations

We begin by considering a collection of N molecules that do 
not interact with one another. Any member of the collection 
can exist in a state i of energy εi measured from the lowest 
energy state of the molecule. The mean energy of a molecule, 
〈ε〉, relative to its energy in its ground state is the total energy 
of the collection, E, divided by the total number of molecules:

〈 〉ε ε= = ∑E
N N

N
i

i i

1

 
(15C.1)

In Topic 15A it is shown that the overwhelmingly most probable 
population of a state in a collection at a temperature T is given 
by the Boltzmann distribution, eqn 15A.6a ( ( ) )N Ni

i/ / e= −1 q βε ,  
so we can write

〈 〉ε ε βε= ∑ −1
q

i

i
ie

 
(15C.2)

with β  = 1/kT. To manipulate this expression into a form 
involving only q  we note that

ε β
βε βε

ie
d

d
e− −=−i i

 

It follows that

〈 〉ε β β β
βε βε= − = − = −∑ ∑− −1 1 1

q q q
q

i i

i i
d

d
e

d
d

e
d
d

 
(15C.3)

Several points in relation to eqn 15C.3 need to be made. 
Because ε0 = 0, (we measure all energies from the lowest avail-
able level), 〈ε〉 should be interpreted as the value of the mean 
energy relative to its ground-state energy. If the lowest energy 
of the molecule is in fact εgs rather than 0, then the true mean 
energy is εgs + 〈ε〉. For instance, for an harmonic oscillator, we 
would set εgs equal to the zero-point energy, 1

2 hc . Secondly, 
because the partition function may depend on variables other 
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➤➤ Why do you need to know this material?
The partition function contains thermodynamic 
information, but it needs to be extracted. Here we show 
how to extract one particular property: the average energy 
of molecules, which plays a central role in thermodynamics.

➤➤ What is the key idea?
The average energy of a molecule in a collection of 
independent molecules can be calculated from the 
molecular partition function alone.

➤➤ What do you need to know already?
You need know how to calculate the molecular partition 
function from calculated or spectroscopic data (Topic 
15B) and its significance as a measure of the number of 
accessible states. The Topic also draws on expressions 
for the rotational and vibrational energies of molecules 
(Topics 12B and 12D).
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15C Molecular energies  625

than the temperature (for example, the volume), the derivative 
with respect to β in eqn 15C.3 is actually a partial derivative 
with these other variables held constant. The complete expres-
sion relating the molecular partition function to the mean 
energy of a molecule is therefore

〈 〉ε ε β= −
∂
∂





gs

1
q

q

V  
 mean molecular energy  (15C.4a)

An equivalent form is obtained by noting that dx/x = d ln x:

〈 〉ε ε β= −
∂
∂





gs

lnq

V  
 mean molecular energy  (15C.4b)

These two equations confirm that we need know only the par-
tition function (as a function of temperature) to calculate the 
mean energy.

15C.2 Contributions of the 
fundamental modes of motion

In the remainder of this Topic we establish expressions for three 
fundamental types of motion, translation (T), rotation (R), and 
vibration (V), and then see how to incorporate the electronic 
states of molecules (E) and the spin of electrons or nuclei (S).

(a) The translational contribution
For a one-dimensional container of length X, for which 
qT = X/Λ with Λ = h(β/2πm)1/2 (Topic 15B), we note that Λ is a 
constant multiplied by β1/2, and obtain

〈 〉εT
T

T

constant d

= −
∂
∂







= − ∂
∂







= − × × ×

1

1 2

q
q
β β

β
V V

X
X

X
X

Λ
Λ

/

dd constant

d
d

β β

β β β β

β

1

1 1
2

1 2

1 2
1 2

×






= − =

− −

/

/
/

1
2

3
2��� ��

 

That is,

〈 〉ε T = 1
2 kT  One dimension  mean translational energy  (15C.5a)

For a molecule free to move in three dimensions, the analogous 
calculation leads to

〈 〉ε T = 3
2 kT  Three dimensions  mean translational energy  (15C.5b)

(b) The rotational contribution
The mean rotational energy of a linear molecule is obtained 
from the rotational partition function (eqn 15B.11):

q R e= +∑ − +

J

hcBJ JJ( ) ( )2 1 1β 

 

When the temperature is low (in the sense T hcB k< =θ R / ) the 
series must be summed term by term, which for a heteronuclear 

Brief illustration 15C.1 Mean energy of a two-level 
system

If a molecule has only two available energy levels, one at 0 and 
the other at an energy ε, its partition function is

q= +1 e−βε
 

Therefore, the mean energy of a collection of these molecules 
at a temperature T is

〈 〉ε β
ε ε

βε

βε βε

βε βε= −
+

+( )
=

+
=

+−

− −

−
1

1

1

1 1e

d e

d
e
e e  

This function is plotted in Fig. 15C.1. Notice how the mean 
energy is zero at T = 0, when only the lower state (at the zero 
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Figure 15C.1 The total energy of a two-level system 
(expressed as a multiple of Nε) as a function of temperature, 
on two temperature scales. The graph on the left shows the 
slow rise away from zero energy at low temperatures; the 
slope of the graph at T = 0 is 0. The graph on the right shows 
the slow rise to 0.5 as T → ∞ as both states become equally 
populated.

of energy) is occupied, and rises to 1
2
ε as T → ∞, when the two 

levels become equally populated.

Self-test 15C.1 Deduce an expression for the mean energy 
when each molecule can exist in states with energies 0, ε , 
and 2ε.

Answer: 〈ε〉 = ε(1 + 2x)x/(1 + x + x2), x = e−βε
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diatomic molecule or other non-symmetrical linear molecule 
gives

q hcB hcBR e e= + + +− −1 3 52 6β β� � � 
Hence, because

d R

d
e 0e

q
hcB hcB

β β= − + +− −hc � �� �( )6 32 6β β

 

(q R is independent of V, so the partial derivative has been 
replaced by a complete derivative) we find

〈 〉ε β

β β

β
R

R

Rd
d

e e

e e
= − =

+ +( )
+ +

− −

− −

1 6 30

1 3 5

2 6

2q
q hcB hcB hcB

hcB

� �� �

� 66βhcB� �+  

This ungainly function is plotted in Fig. 15C.2. At high temper-
atures (T ≫ θ R), q R is given by eqn 15B.13b ( )q R R=T/σθ  in the 
form q R =1/σβhcB , where σ  = 1 for a heteronuclear diatomic 
molecule. It then follows that

〈 〉ε β σβ β σβ
β β β

β

R
R

Rd
d

d
d

d
d

= − = −






= −

−

1 1 1
q

q
hcB

hcB
�

�

�

1 2/

 
and therefore that

〈 〉ε β
R = =1

kT
 

The high-temperature result, which is valid when many rota-
tional states are occupied, is also in agreement with the equipar-
tition theorem, because the classical expression for the energy 
of a linear rotor is E I Ia bk = +⊥ ⊥

1
2

2 1
2

2ω ω  and therefore has two 
quadratic contributions. (There is no rotation around the line of 
atoms.) It follows from the equipartition theorem (Foundations 
B) that the mean rotational energy is 2× =1

2 kT kT .

(c) The vibrational contribution
The vibrational partition function in the harmonic approxi-
mation is given in eqn 15B.15 ( /( )q V e= − −1 1 βhc  . Because q V is 
independent of the volume, it follows that

d
d

d
d e

e
e

Vq
β β β=
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−
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1 1 2hc
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 β
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(15C.7)

and hence from

〈 〉ε β
β

β

β

β

V
V

Vd
d

e
e

e

e

= − = −( )
−( )

=

−
−

−

−
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1
2q

q
hc

hc

hc

hc

hc

















 hhc

hc







1− −e β  

that

〈 〉ε β
V

e
=

−
hc
hc





 1  

The zero-point energy, 1
2 hc  , can be added to the right-hand 

side if the mean energy is to be measured from 0 rather than 
the lowest attainable level (the zero-point level). The varia-
tion of the mean energy with temperature is illustrated in Fig. 
15C.3. At high temperatures, when T ≫ θV, or βhc � � 1 (recall 
from Topic 15B that θ V /=hc k ), the exponential functions can 
be expanded (ex = 1 + x + …) and all but the leading terms dis-
carded. This approximation leads to

〈 〉ε β β
V = + + − ≈ =hc

hc
kT

�
� �


( )1 1
1

  

Brief illustration 15C.2 Mean rotational energy

To estimate the mean energy of a nonlinear molecule we rec-
ognize that its rotational kinetic energy (the only contribution 
to its rotational energy) is E I I Ia a b b c ck = + +1

2
2 1

2
2 1

2
2ω ω ω . As there 

are three quadratic contributions, its mean rotational energy is 
3
2 kT . The molar contribution is 3

2 RT . At 25 °C, this contribu-
tion is 3.7 kJ mol−1, the same as the translational contribution, 
for a total of 7.4 kJ mol−1. A monatomic gas has no rotational 
contribution.

Self-test 15C.2 How much energy does it take to raise the tem-
perature of 1.0 mol H2O(g) from 100 °C to 200 °C? Consider 
only translational and rotational contributions to the heat 
capacity.

Answer: 2.5 Kj

Linear molecule, high 
temperature (T ≫ θ R) 

mean rotational 
energy  (15C.6b)

Harmonic 
approximation 

mean vibrational 
energy  (15C.8)

High 
temperature 
approxi
mation 
(T ≫ θV)

mean 
vibrational 
energy 

 (15C.9)

0
0

1 2
Temperature, T/θR

0.5

1

1.5

M
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n
 e

n
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g
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 〈ε
R
〉 ⁄h

cB
~

Figure 15C.2 The mean rotational energy of a non-
symmetrical linear rotor as a function of temperature. At high 
temperatures (T ≫ θ R), the energy is linearly proportional to the 
temperature, in accord with the equipartition theorem.

Unsymmetrical 
linear molecule 

mean rotational 
energy  (15C.6a)
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This result is in agreement with the value predicted by the 
classical equipartition theorem, because the energy of a one-
dimensional oscillator is E m k xx= +1

2
2 1

2
2v f  and the mean energy 

of each quadratic term is 1
2 kT . Bear in mind, however, that the 

condition T ≫ θV is rarely satisfied.

When there are several normal modes that can be treated as 
harmonic, the overall vibrational partition function is the prod-
uct of each individual partition function, and the total mean 
vibrational energy is the sum of the mean energy of each mode.

(d) The electronic contribution
We shall consider two types of electronic contribution: one 
arising from the electronically excited states of a molecule and 
one from the spin contribution.

In most cases of interest, the electronic states of atoms and 
molecules are so widely separated that only the electronic 
ground state is occupied. As we are adopting the convention 
that all energies are measured from the ground state of each 
mode, we can write

〈 〉ε E = 0
  mean electronic energy  (15C.10)

In certain cases, there are thermally accessible states at the 
temperature of interest. In that case, the partition function and 
hence the mean electronic energy are best calculated by direct 
summation over the available states. Care must be taken to take 
any degeneracies into account, as we illustrate in the following 
Example.

Example 15C.1 Calculating the electronic contribution 
to the energy

A certain atom has a doubly degenerate electronic ground 
state and a fourfold degenerate excited state at 600 cm−1 above 
the ground state. What is its mean electronic energy at 25 °C 
expressed as a wavenumber?

Method Write down the expression for the partition function 
at a general temperature T (in terms of β) and then derive the 
mean energy by differentiating with respect to β. Finally, sub-
stitute the data. Use ε ε= =hc hc  , E E〈 〉 〈 〉 , and (from inside 
the front cover), kT/hc = 207.226 cm−1 at 25 °C.

Answer The partition function is q E e= + −2 4 βε . The mean 
energy is therefore

〈 〉ε β β

ε

βε
βε

βε

ε βε

E
E

Ed
d e

d
d

e

e

= − = −
+

+( )

=

−
−

−

− −

1 1
2 4

2 4

4
2

q
q

4 e� ��� ���

++
=

+−4 11
2e eβε βε

ε

 

and expressed as a wavenumber

〈 〉





E

e
=

+1
2 1hc kT/

 

From the data,

〈 〉E cm
e

cm=
+

=
−

−600
1

59 7
1

1
2

600 207 226
1./ .

 

Brief illustration 15C.3 The mean vibrational energy

To calculate the mean vibrational energy of I2 molecules 
at 298.15 K we note from Table 12D.1 that their vibra-
tional wavenumber is 214.6 cm−1. Then, because at 298.15 K, 
kT/hc = 207.224 cm−1, from eqn 15C.8 with

βε = = =
−

−
hc
kT

 214 6
207 244

1 036
1

1

.
.

.
cm

cm  

it follows from eqn 15C.8 that

〈 〉ε V cm
e

cm/
.

..hc =
−

=
−

−214 6
1

118 0
1

1 036
1

 

The addition of the zero-point energy (corresponding to 
1
2

1214 6× −. cm ) increases this value to 225.3 cm−1. The equipar-
tition result is 207.224 cm−1, the discrepancy reflecting the fact 
that in this case it is not true that T ≫ θ V and only the ground 
and first excited states are significantly populated.

Self-test 15C.3 What must the temperature be before the 
energy estimated from the equipartition theorem is within 
2 per cent of the energy given by eqn 15C.8?

Answer: 625 K; use a spreadsheet
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Figure 15C.3 The mean vibrational energy of a molecule in the 
harmonic approximation as a function of temperature. At high 
temperatures (T ≫ θ V), the energy is linearly proportional to the 
temperature, in accord with the equipartition theorem.

iranchembook.ir/edu



628 15 Statistical thermodynamics

(e) The spin contribution

An electron spin in a magnetic field B has two possible energy 
states that depend on its orientation as expressed by the mag-
netic quantum number ms and which are given by

E mm ss
= 2μBB   electron spin energies  (15C.11)

where μB is the Bohr magneton (see inside the front cover). 
These energies are discussed in more detail in Topic 14A where 
we see that the integer 2 needs to be replaced by a number very 
close to 2. The lower state has ms = − 1

2 , so the two energy lev-
els available to the electron lie (according to our convention) 
at ε−1/2 = 0 and at ε+1/2 = 2μBB. The spin partition function is 
therefore

q S e e B= = +∑ − −

ms

msβε βµ1 2 B

 
 spin partition function  (15C.12)

The mean energy of the spin is therefore

〈 〉ε β ββµ
βµ

µ µ

S
S

Sd
d e

d
d

e
B

B= − = −
+

+( )−
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− −

1 1
1
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B B2 eB
2 β B� ��� ����

=
+

−

−
2

1

2

2

µ µ

µ
B e

e
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That is,

〈 〉ε µ
βµ

S B

e B
=

+
2

12

B
B  

 mean spin energy  (15C.13)

This function is essentially the same as that plotted in Fig. 
15C.1.

Check list of concepts

☐ 1. The mean molecular energy can be calculated from the 
molecular partition function.

☐ 2. The molecular partition function is calculated from 
molecular structural parameters obtained from spec-
troscopy or computation.

Checklist of equations

Self-test 15C.4 Repeat the problem for an atom that has a 
threefold degenerate ground state and a sevenfold degenerate 
excited state 400 cm−1 above.

Answer: 101 cm−1

Brief illustration 15C.4 The spin contribution to the 
energy

Suppose a collection of radicals is exposed to a magnetic field 
of 2.5 T (T denotes tesla). With μB = 9.274 × 10−24 J T−1 and a 
temperature of 25 °C,

2 2 9 274 1 JT 2 5T 4 6 1 JB
24 1 23

B

µ

βµ

B

B

= × × × = … ×

=

( . ) . .

( .

0 0

2
2 9 274

− − −

110 2 5
1 381 10 298

0 011
24 1

23 1

−

−
×

× ×
= …J T T

J K K

−

−
) ( . )

( . ) ( )
.

The mean energy is therefore

〈 〉ε S J
e

J= … ×
+

=
−

…
−4 6 10

1
2 310

23

0 011
23.

..

This energy is equivalent to 14 J mol−1 (note joules, not 
kilojoules).

Self-test 15C.5 Repeat the calculation for a species with S = 1 in 
the same magnetic field.

Answer: 0.0046 zJ, 28 J mol−1

Property Equation Comment Equation number

Mean molecular energy 〈 〉 ∂ ∂ε ε β= −gs ( / )( / )1 q q V 15C.4a

〈 〉 ∂ ∂ε ε β= −gs /( ln )q V Alternative version 15C.4b

Translation 〈 〉ε T = d kT
2

In d dimensions, d = 1, 3 15C.5
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Property Equation Comment Equation number

Rotation 〈 〉ε R = kT Linear molecule, T ≫ θ R 15C.6b

Vibration 〈 〉ε βV e= −hc hc  /( )1 Harmonic approximation 15C.8

〈 〉ε V = kT T ≫ θV 15C.9

Spin 〈 〉ε µ βµS
B e B= +2 12B B/( ) s = 1

2
15C.13
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15D the canonical ensemble

Here we consider the formalism appropriate to systems in 
which the molecules interact with one another, as in real gases 
and liquids. The crucial concept we need when treating sys-
tems of interacting particles is the ‘ensemble’. Like so many 
scientific terms, the term has basically its normal meaning of 

‘collection’, but it has been sharpened and refined into a precise 
significance.

15D.1 The concept of ensemble

To set up an ensemble, we take a closed system of specified 
 volume, composition, and temperature, and think of it as repli-
cated N  times (Fig. 15D.1). All the identical closed systems are 
regarded as being in thermal contact with one another, so they 
can exchange energy. The total energy of all the systems is E  and, 
because they are in thermal equilibrium with one another, they 
all have the same temperature, T. The volume of each member 
of the ensemble is the same, so the energy levels available to the 
molecules are the same in each system, and each member con-
tains the same number of molecules, so there is a fixed number 
of molecules to distribute within each system. This imaginary 
collection of replications of the actual system with a common 
temperature is called the canonical ensemble. The word ‘canon’ 
means ‘according to a rule’.

There are two other important ensembles. In the microca-
nonical ensemble the condition of constant temperature is 
replaced by the requirement that all the systems should have 
exactly the same energy: each system is individually isolated. 
In the grand canonical ensemble the volume and temperature 

Contents

15d.1 The concept of ensemble 630
(a) Dominating configurations 631

brief illustration 15d.1: the canonical distribution 631
(b) Fluctuations from the most probable distribution 631

brief illustration 15d.2: the role of the density of  
states 632

15d.2 The mean energy of a system 632
brief illustration 15d.3: the expression for the  
energy 633

15d.3 Independent molecules revisited 633
brief illustration 15d.4: Indistinguishability 633

15d.4 The variation of energy with volume 633
brief illustration 15d.5: a configuration integral 634

Checklist of concepts 635
Checklist of equations 635

➤➤ Why do you need to know this material?
Whereas Topics 15B and 15C deal with independent 
molecules, in practice molecules do interact. Therefore, 
this material is essential for constructing models of real 
gases, liquids, and solids and of any system in which 
intermolecular interactions cannot be neglected.

➤➤ What is the main idea?
A system composed of interacting molecules is described 
in terms of a canonical partition function, from which its 
thermodynamic properties may be deduced.

➤➤ What do you need to know already?
This material draws on the calculations in Topic 15A: the 
calculations here are analogous to those, and are not 
repeated in detail. This Topic also draws on the calculation 
of energies from partition functions (Topic 15C); here too 
the calculations are analogous to those presented there.

N,
V,
T

N,
V,
T

1 2 3 4 6 7 8 9 10

11 12 13 14 15

5

20

16 17
1918

55

Energy

Figure 15D.1 A representation of the canonical ensemble, in 
this case for N = 20. The individual replications of the actual 
system all have the same composition and volume. They 
are all in mutual thermal contact, and so all have the same 
temperature. Energy may be transferred between them as 
heat, and so they do not all have the same energy. The total 
E  of all 20 replications is a constant because the ensemble is 
isolated overall.

iranchembook.ir/edu



15D The canonical ensemble  631

of each system is the same, but they are open, which means that 
matter can be imagined as able to pass between the systems; the 
composition of each one may fluctuate, but now the property 
known as the chemical potential (Topic 5A) is the same in each 
system. In summary:

The microcanonical ensemble is the basis of the discussion in 
Topic 15A; we shall not consider the grand canonical ensemble 
explicitly.

The important point about an ensemble is that it is a collec-
tion of imaginary replications of the system, so we are free to let 
the number of members be as large as we like; when appropri-
ate, we can let N  become infinite. The number of members of 
the ensemble in a state with energy Ei is denoted Ni , and we can 
speak of the configuration of the ensemble (by analogy with the 
configuration of the system used in Topic 15A) and its weight, 
W . Note that N  is unrelated to N, the number of molecules in 

the actual system; N  is the number of imaginary replications of 
that system.

(a) Dominating configurations
Just as in Topic 15A, some of the configurations of the canoni-
cal ensemble will be very much more probable than others. For 
instance, it is very unlikely that the whole of the total energy, E ,  
will accumulate in one system. By analogy with the discussion 
in Topic 15A, we can anticipate that there will be a dominat-
ing configuration, and that we can evaluate the thermodynamic 
properties by taking the average over the ensemble using that 
single, most probable, configuration. In the thermodynamic 
limit of N →∞ , this dominating configuration is overwhelm-
ingly the most probable, and it dominates the properties of the 
system virtually completely.

The quantitative discussion follows the argument in Topic 
15A with the modification that N and Ni are replaced by N  and 
Ni . The weight W  of a configuration { , , }� � …N N0 1  is

 
 W = …

!

! !

N

N N1 2  
 weight  (15D.1)

The configuration of greatest weight, subject to the constraints 
that the total energy of the ensemble is constant at E  and that 
the total number of members is fixed at N , is given by the 
canonical distribution:




N

N
i

Ei

=
−e β

Q  
 canonical distribution  (15D.2a)

in which

Q =∑ −

i

Eie β

 
Definition  canonical partition function  (15D.2b)

where the sum is over all members of the ensemble, each one 
having an energy Ei. The quantity Q , which is a function of the 
temperature, is called the canonical partition function. Like 
the molecular partition function, the canonical partition func-
tion contains all the thermodynamic information about a sys-
tem, but in this case, allowing for the possibility of interactions 
between the constituent molecules.

(b) Fluctuations from the most probable 
distribution
The canonical distribution in eqn 15D.2a is only appar-
ently an exponentially decreasing function of the energy of 
the system. We must appreciate that the equation gives the 
probability of occurrence of members in a single state i of 
the entire system of energy Ei. There may in fact be numer-
ous states with almost identical energies. For example, in a 
gas the identities of the molecules moving slowly or quickly 
can change without necessarily affecting the total energy. 
The density of states, the number of states in an energy 
range divided by the width of the range (Fig. 15D.2), is a 
very sharply increasing function of energy. It follows that the 
probability of a member of an ensemble having a specified 
energy (as distinct from being in a specified state) is given by 

Brief illustration 15D.1 The canonical distribution

Suppose that we are considering a sample of a monatomic real gas 
that contains 1.00 mol atoms, then at 298 K its total energy is close 
to 3

2
3
2 00nRT = × × =− −( . ) ( . ) ( ) .1 mol 8 3145 JK mol 298 K 3 72kJ1 1 . 

Suppose that for an instant the molecules are present at sep-
arations where the total energy is 3.72 kJ and an instant later 
are present at separations where the total energy is lower than 
3.72 kJ by 0.00 000 001 per cent (that is, by 3.72 × 10−7 J). To pre-
dict the ratio of numbers of members of the ensemble with 
these two energies we use eqn 15D.2a in the form



N

N

( )

( )
( . )/( . ) (lower

higher
e J J K= − − × × ×− − −3 70 10 1 381 10 2987 23 1 KK

e

)

.= ×3 33 107

At first sight, the number of members that have the lower 
energy vastly outweighs the number with the higher energy. 
That that is not necessarily the case is explained below.

Self-test 15D.1 Repeat the calculation for members of the 
same ensemble with energies that differ by 1.0 × 10−20 per cent.

Answer:  N N( ) ( )lower / higher e= ≈ ×90 391 10

Ensemble Common properties

Microcanonical V, E, N

Canonical V, T, N

Grand canonical V, T, μ
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632 15 Statistical thermodynamics

eqn 15D.2a, a sharply decreasing function, multiplied by a 
sharply increasing function (Fig. 15D.3). Therefore, the over-
all distribution is a sharply peaked function. We conclude 
that most members of the ensemble have an energy very 
close to the mean value.

15D.2 The mean energy of a system

Just as the molecular partition function can be used to calcu-
late the mean value of a molecular property, so the canonical 
partition function can be used to calculate the mean energy of 
an entire system composed of molecules (that might or might 
not be interacting with one another). Thus, Q  is more general 
than q because it does not assume that the molecules are inde-
pendent. We can therefore use Q  to discuss the properties of 
condensed phases and real gases where molecular interactions 
are important.

If the total energy of the ensemble is E , and there are N   
members, the average energy of a member is 〈 〉E E N=  / . Because 
the fraction, pi, of members of the ensemble in a state i with 
energy Ei is given by the analogue of eqn 15A.6 (p qi

i= −e /βε

with /pi iN N= )  as

pi

Ei

=
−e β

Q  
(15D.3)

it follows that

〈 〉E E E
i

i i

i

i
Ei= =∑ ∑ −p 1

Q e β

 
(15D.4)

By the same argument that led to eqn 15C.4 ( /〈 〉ε β=−( ) ∂ ∂( )1 q q /
V

,  
when εgs = 0),

E
V V

= −
∂
∂







= −
∂

∂






1
Q

Q Q
β β

ln

 
 mean energy of a system  (15D.5)

Brief illustration 15D.2 The role of the density of states

A function that increases rapidly is xN, with N a large value. 
A function that decreases rapidly is e−Nx, once again, with N a 
large value. The product of these two functions, normalized so 
that the maxima for different values of N all coincide,

f x xN N Nx( )= −e e

is plotted for three values of N in Fig. 15D.4. We see that the 
width of the product does indeed decrease as N increases.

Width of
range

Number of
states

E
n

er
g

y

Figure 15D.2 The energy density of states is the number of 
states in an energy range divided by the width of the range.

Probability
of energy

Number of
states

Energy

Probability
of state

Figure 15D.3 To construct the form of the distribution of 
members of the canonical ensemble in terms of their  
energies, we multiply the probability that any one is in a 
state of given energy, eqn 15D.2a, by the number of states 
corresponding to that energy (a steeply rising function). The 
product is a sharply peaked function at the mean energy, 
which shows that almost all the members of the ensemble  
have that energy.

Self-test 15D.2 Show that the product of the functions x2N and 
e−Nx, suitably normalized, behaves similarly.

Answer: Plot f x x xN N N Nx( ) ( / )= ≤ ≤−1 2 0 42 2 2e e for

f(x)

0
0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3x

10

20

50

Figure 15D.4 The product of the two functions discussed in 
Brief illustration 15D.2, for three different values of N.
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15D The canonical ensemble  633

As in the case of the mean molecular energy, we must add to 
this expression the ground-state energy of the entire system if 
that is not zero.

15D.3 Independent molecules 
revisited

We shall now see how to recover the molecular partition func-
tion from the more general canonical partition function when 
the molecules are independent. We show in the following 
Justification that, when the molecules are independent and dis-
tinguishable (in the sense to be described), the relation between 
Q  and q is

Q =q N

 (15D.6)

If all the molecules are identical and free to move through 
space, we cannot distinguish them and the relation Q =q N is 
not valid. Suppose that molecule 1 is in some state a, molecule 2 
is in b, and molecule 3 is in c, then one member of the ensemble 
has an energy E = εa + εb + εc. This member, however, is indis-
tinguishable from one formed by putting molecule 1 in state b, 
molecule 2 in state c, and molecule 3 in state a, or some other 
permutation. There are six such permutations in all, and N! in 
general. In the case of indistinguishable molecules, it follows 
that we have counted too many states in going from the sum 
over system states to the sum over molecular states, so writing 
Q =q N overestimates the value of Q . The detailed argument is 
quite involved, but at all except very low temperatures it turns 
out that the correction factor is 1/N!. Therefore:

For distinguishable independent molecules:Q =q N

 (15D.7a)

For indistinguishable independent molecules /: !Q =q N N  
 (15D.7b)

15D.4 The variation of energy  
with volume

When there are interactions between molecules, the energy of 
a collection depends on the average distance between them, 
and therefore on the volume that a fixed number occupy. This 

Brief illustration 15D.3 The expression for the energy

If the canonical partition function is a product of the molecu-
lar partition function of each molecule (which we see below 
is the case when the N molecules of the system are independ-
ent), then we can write Q q= N, and infer that the energy of the 
system is

〈 〉 ∂
∂

∂
∂

∂
∂ 〈E

N N
NN

N

V

N

N
V V

= − 





= − 





= − 





=
−1 1

q
q q

q
q q

qβ β β εε 〉

That is, the mean energy of the system is N times the mean 
energy of a single molecule.

Self-test 15D.3 Confirm that the same expression is obtained 
if Q q= N N/ ! , which is another case described below.

Justification 15D.1 The relation between Q and q

The total energy of a collection of N independent molecules 
is the sum of the energies of the molecules. Therefore, we can 
write the total energy of a state i of the system as

E Ni i i i= + + +ε ε ε( ) ( )1  (2) …

In this expression, εi(1) is the energy of molecule 1 when the 
system is in the state i, εi(2) the energy of molecule 2 when the 
system is in the same state i, and so on. The canonical parti-
tion function is then

Q =∑ − − − −

i

Ni i ie βε βε βε( ) ( ) ( )1 2 

The sum over the states of the system can be reproduced by let-
ting each molecule enter all its own individual states (although 
we meet an important proviso shortly). Therefore, instead of 

summing over the states i of the system, we can sum over all 
the individual states j of molecule 1, all the states j of molecule 
2, and so on. This rewriting of the original expression leads to

Q =




































=∑ ∑ ∑− − −

j j j

Nj j je e eβε βε βε q

Brief illustration 15D.4 Indistinguishability

For molecules to be indistinguishable, they must be of the 
same kind: an Ar atom is never indistinguishable from a Ne 
atom. Their identity, however, is not the only criterion. Each 
identical molecule in a crystal lattice, for instance, can be 
‘named’ with a set of coordinates. Identical molecules in a lat-
tice can therefore be treated as distinguishable because their 
sites are distinguishable, and we use eqn 15D.7a. On the other 
hand, identical molecules in a gas are free to move to different 
locations, and there is no way of keeping track of the identity 
of a given molecule; we therefore use eqn 15D.7b.

Self-test 15D.4 Are ident ica l  molecu les in a l iquid 
indistinguishable?

Answer: Yes
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634 15 Statistical thermodynamics

dependence on volume is particularly important for the discus-
sion of real gases (Topic 1C).

We need to evaluate (∂〈E〉/∂V〉T, the variation in energy of 
a system with volume at constant temperature. (In Topics 2D 
and 3D, this quantity is identified with the ‘internal pressure’ 
of a gas and denoted πT.) To proceed, we substitute eqn 15D.5 
and obtain

∂
∂







= − ∂
∂

∂
∂













E
V V

T V T

lnQ
β

 
(15D.8)

We need to consider the translational contribution to Q  since 
translational energy levels depend on volume, but to develop 
eqn 15D.8, we also need to find a way to build an intermolecu-
lar potential energy into the expression for Q .

The total kinetic energy of a gas is the sum of the kinetic 
energies of the individual molecules. Therefore, even in a 
real gas the canonical partition function factorizes into a part 
arising from the kinetic energy, which for the perfect gas is 
Q =V NN N/ 3Λ !, where Λ is the thermal wavelength, eqn 15B.7b 
(Λ = h/(2πmkT)1/2), and a factor called the configuration inte-
gral, Z , which depends on the intermolecular potentials (don’t 
confuse this Z  with the compression factor Z in Topic 1C). We 
therefore write

Q = Z
Λ3N  

(15D.9)

with Z  replacing VN/N! and expect Z  to equal VN/N! for a per-
fect gas (see the next Brief illustration). It then follows that
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In the third line, to obtain and evaluate the blue term we have 
used the relation (∂2f/∂x∂y) = (∂2f/∂y∂x) and then noted that Λ 
is independent of volume, so its derivative with respect to vol-
ume is zero.

For a real gas of atoms (for which the intermolecular interac-
tions are isotropic), Z  is related to the total potential energy 

EP of interaction of all the particles, which depends on all their 
relative locations, by

Z = …∫ −1
1 2N

E
N!

e d d dpβ τ τ τ
 

 configuration integral  (15D.11)

where dτi is the volume element for atom i. The physical ori-
gin of this term is that the probability of occurrence of each 
arrangement of molecules possible in the sample is given by a 
Boltzmann distribution in which the exponent is given by the 
potential energy corresponding to that arrangement.

If the potential has the form of a central hard sphere sur-
rounded by a shallow attractive well (Fig. 15D.5), then detailed 
calculation, which is too involved to reproduce here, leads to

∂
∂







=〈 〉E
V

an
V

T

2

2

 
 attractive potential  (15D.12)

Brief illustration 15D.5 A configuration integral

Equation 15D.11 is very difficult to manipulate in practice, 
even for quite simple intermolecular potentials, except for a 
perfect gas for which EP = 0. In that case, the exponential func-
tion becomes 1 and

Z = … = ( ) =∫ ∫1 1
1 2N N

V
NN

N N

! ! !
d d d dτ τ τ τ

just as it should be for a perfect gas.

Self-test 15D.5 Go on to show that for a perfect gas,  
(∂〈E〉/∂V)T = 0.

Answer: Z in this case is independent of temperature

Po
te

n
ti

al
 e

n
er

g
y,

 V

0
Intermolecular separation

Determines b

Determines a

Figure 15D.5 The intermolecular potential energy of 
molecules in a real gas can be modelled by a central hard 
sphere of range b surrounded by a shallow attractive well with 
an area proportional to a. As discussed in the text, calculations 
based on this model yield results that are consistent with the 
van der Waals equation of state (Topic 1C).
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where n is the amount of molecules present in the volume V 
and a is a constant that is proportional to the area under the 
attractive part of the potential. In Example 3D.2 of Topic 3D 
we derive exactly the same expression (in the form πT = an2/V2) 
from the van der Waals equation of state. At this point we 
can conclude that if there are attractive interactions between 

molecules in a gas, then its energy increases as it expands iso-
thermally (because (∂〈E〉/∂V)T > 0, and the slope of 〈E〉 with 
respect to V is positive). The energy rises because, at greater 
average separations, the molecules spend less time in regions 
where they interact favourably.

Checklist of concepts

☐ 1. The canonical ensemble is an imaginary collection 
of replications of the actual system with a common 
temperature.

☐ 2. The canonical distribution gives the number of mem-
bers of the ensemble with a specified total energy.

☐ 3. The mean energy of the members of the ensemble can 
be calculated from the canonical partition function.

Checklist of equations

Property Equation Comment Equation number

Canonical distribution  N Ni
Ei/ e /= −β Q 15D.2a

Canonical partition function Q =∑ −

i

Eie β Definition 15D.2b

Mean energy 〈 〉E
V V

= −( ) ∂ ∂( ) = − ∂ ∂( )1/ / /Q Q Qβ β 15D.5

Configuration integral Q Z

Z

=

= …∫ −

/

e d d dp

Λ3

1 2
1

N

E
NN !

β τ τ τ

Isotropic interaction 15D.11

Variation of mean energy with volume ( )∂ ∂ =〈 〉E V an VT/ /2 2 van der Waals gas 15D.12

iranchembook.ir/edu



15E the internal energy and the entropy

In this Topic we see how to obtain any thermodynamic func-
tion once we know the partition function. The two fundamen-
tal properties of thermodynamics are the internal energy, U, 
and the entropy, S. Once these two properties have been calcu-
lated, it is possible to turn to the derived functions, such as the 
Gibbs energy, G (Topic 15F).

15E.1 The internal energy

We begin to unfold the importance of q by showing how to 
derive an expression for the internal energy of the system.

(a) The calculation of internal energy
It is established in Topic 15C that the mean energy of a collec-
tion of independent molecules is related to the molecular parti-
tion function by

〈 〉ε = −
∂
∂







1
q

q
β

V  
(15E.1)

with β = 1/kT. The total energy of a system composed of 
N molecules is therefore N〈ε〉 and so the internal energy, 
U(T) = U(0) + N〈ε〉 is related to the molecular partition func-
tion by

U T U N U
N

V

( ) ( ) ( )= + = −
∂
∂







0 0〈 〉ε βq
q

  
Independent molecules  Internal energy  (15E.2a)

In many cases, the expression for 〈ε〉 already established 
for  each mode of motion in Topic 15C can be used and it is 
not  necessary to go back to the expression for q except for 
some  formal manipulations. An alternative form of this rela-
tion is

U T U N
V

( ) ( )
ln

= −
∂
∂







0
q

β
 

Independent 
molecules 

Internal 
energy  (15E.2b)

➤➤ Why do you need to know this material?

The importance of the molecular partition function is that 
it contains all the information needed to calculate the 
thermodynamic properties of a system of independent 
particles. In this respect, it plays a role in statistical 
thermodynamics very similar to that played by the 
wavefunction in quantum mechanics. The importance of this 
discussion is also the insight that a molecular interpretation 
provides into thermodynamic properties.

➤➤ What is the key idea?
The partition function contains all the thermodynamic 
information about a system and thus provides a bridge 
between spectroscopy and thermodynamics.

➤➤ What do you need to know already?
You need to know how to calculate a molecular partition 
function from structural data (Topic 15B); you should also 

be familiar with the concepts of internal energy (Topic 
2A) and entropy (Topic 3A). This Topic makes use of the 
calculations of mean molecular energies in Topic 15C.
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15E The internal energy and the entropy  637

A very similar expression is used for a system of interacting 
molecules. In that case we use the canonical partition function, 
Q  , and write

U T U
V

( ) ( )
ln

= −
∂

∂






0
Q

β
 

(b) Heat capacity

The constant-volume heat capacity (Topic 2A) is defined 
as CV = (∂U/∂T)V. Thus, because the mean vibrational 
energy of a collection of harmonic oscillators (eqn 15C.8, 
〈 〉ε βV e= −hc hc  /( )1 ) can be written in terms of the vibrational 
temperature θ V /= hc k  as

〈 〉ε θ
θ

V
V

e
V=

−
k

T/ 1  

it follows that the vibrational contribution to the molar con-
stant-volume heat capacity is

C
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This expression can be rearranged into

C Rf T f T
TV

T

T,

/

/
( ) ( )m
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V e

e

V

V= =



 −







−

−

θ θ

θ

2 2
2

1   
 Vibrational contribution to CV  (15E.3)

The curve in Fig. 15E.1 shows how the vibrational heat capac-
ity depends on temperature. Note that even when the temper-
ature is only slightly above θV the heat capacity is close to its 
equipartition value. Equation 15E.3 is essentially the same as 
the Einstein formula for the heat capacity of a solid (eqn 7A.9) 
with θV the Einstein temperature, θE. The only difference is that 
vibrations can take place in three dimensions in a solid.

It is sometimes more convenient to convert the derivative 
with respect to T into a derivative with respect to β by using

d
d

d
d

d
d

d
d

d
dT

k
T kT

= = − = −β
β β β β

1
2

2

 
(15E.4)

It follows that

C k
U

Nk NkV

V V

= − ∂
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= − ∂
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∂
∂=β β β ε

β β β
2 2 2

2〈 〉 eqn 15E.1 lnq
22







V   
 heat capacity  (15E.5)

When equipartition is valid, which is the case when T ≫ θM, 
with the characteristic temperature of the mode M (θ V /= hc k  
for vibration, θ R /= hcB k  for rotation), there is a much simpler 
route. We can then estimate the heat capacity by counting the 
numbers of modes that are active. In gases, all three transla-
tional modes are always active and contribute 3

2 R to the molar 
heat capacity. If we denote the number of active rotational 
modes by R* (so for most molecules at normal temperatures 
R* = 2  for linear molecules, and 3 for nonlinear molecules), 

Interacting 
molecules

Internal 
energy  (15E.2c)

Brief illustration 15E.1 The internal energy of a 
collection of oscillators

It is established in Topic 15C (eqn 15C.8) that the mean energy 
of a collection of harmonic oscillators is 〈 〉ε βV / e= −hc hc  ( )1 . 
It follows that the molar internal energy of such a collection is

U T U
N hc

hcm
V

m
V A

e
( ) ( )= +

−
0

1





β  

For I2 molecules at 298.15 K we note from Table 12D.1 that 
their vibrational wavenumber is 214.6 cm−1. Then, because at 
298.15 K, kT/hc = 207.224 cm−1, hc  = 4 26zJ. , and

βhc
hc
kT





= = = …
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Then it follows that the vibrational contribution to the molar 
internal energy is
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Self-test 15E.1 What is the molar internal energy of a gas of 
linear molecules?

Answer: U T U RTm m( ) ( )= +0 5
2

0
0

Temperature, T/θ 
V
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1
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,m
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0.5

Figure 15E.1 The temperature dependence of the vibrational 
heat capacity of a molecule in the harmonic approximation 
calculated by using eqn 15E.3. Note that the heat capacity is 
within 10 per cent of its classical value for temperatures greater 
than θV.
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638 15 Statistical thermodynamics

then the rotational contribution is 1
2 R*R. If the temperature is 

high enough for V* vibrational modes to be active, then the 
vibrational contribution to the molar heat capacity is V*R . In 
most cases V* ≈ 0. It follows that the total molar heat capacity 
of a gas is approximately

C R TV,
* *( )m

R V 2  2= + +1
2   θ M

 

15E.2 The entropy

One of the most celebrated equations in statistical thermody-
namics is the Boltzmann formula for the entropy:

S k= lnW   boltzmann formula for the entropy  (15E.7)

In this expression, which is derived in the following Justification, 
W  is the weight of the most probable configuration of the sys-
tem (as discussed in Topic 15A).

(a) Entropy and the partition function
The statistical entropy behaves in exactly the same way as the 
thermodynamic entropy. Thus, as the temperature is lowered, 
the value of W , and hence of S, decreases because fewer con-
figurations are consistent with the total energy. In the limit T→ 
0, W =1 , so ln W = 0 , because only one configuration (every 
molecule in the lowest level) is compatible with E = 0. It follows 

Justification 15E.1 The Boltzmann formula

The interenal energy U(T) = U(0) + N〈ε〉, with 〈 〉ε ε= ∑( )1/N N
i

i i  
can be written

U T U N
i

i i( ) ( )= +∑0 ε
 

A change in U(T) may arise from either a modification of the 
energy levels of a system (when εi changes to εi + dεi) or from a 
modification of the populations (when Ni changes to Ni + dNi). 
The most general change is therefore

Brief illustration 15E.2 The constant-volume heat 
capacity

The characteristic temperatures (in round numbers) of the 
vibrations of H2O are 5300 K, 2300 K, and 5400 K; the vibra-
tions are therefore not excited at 373 K. The three rotational 
modes of H2O have characteristic temperatures 40 K, 21 K, 
and 13 K, so they are fully excited, like the three translational 
modes. The translational contribution is 3

2 R = − −12 5JK mol1 1. .  
Fully excited rotations contribute a further 12.5 J K−1 mol−1. 
Therefore, a value close to 25 J K−1 mol−1 is predicted. The 
experimental value is 26.1 J K−1 mol−1. The discrepancy is prob-
ably due to deviations from perfect gas behaviour.

Self-test 15E.2 Estimate the molar constant-volume heat 
capacity of gaseous I2 at 25 °C ( B = −0 0. 37cm 1; see Table 12D.1 
for more data).

Answer: 29 J K−1 mol−1

total heat 
capacity  (15E.6)

d d d dU T U N N
i

i i

i

i i( ) ( )= + +∑ ∑0 ε ε
 

Because the energy levels do not change when a system is 
heated at constant volume (Fig. 15E.2), in the absence of all 
changes other than heating, only the third (blue) term on the 
right survives. We know from thermodynamics, specifically 
eqn 3D.1 (dU = TdS − pdV), that under the same conditions 
dU = TdS. Therefore,

d
d

d dS
U
T T

N k N
i

i i

i

i i= = =∑ ∑1 ε β ε
 

For changes in the most probable configuration (the 
only one we need consider), we know from eqn 15A.10 
( ( ) )∂ ∂ + =ln /W Ni iα β− ε 0  t h a t  βε αi iN= ∂ ∂ +(ln )W / ; 
therefore

d d d dS k
N

N k N k
i

i
i

i

i= ∂
∂





 + =∑ ∑ln

( ln )
W

W

W

dln
0� ��� ��� ��� ��

α
 

This relation strongly suggests the definition S = k ln S k= lnW ,  
as in eqn 15E.7.

Heat
Work

(b)(a)

Figure 15E.2 (a) When a system is heated, the energy levels 
are unchanged but their populations are changed. (b) When 
work is done on a system, the energy levels themselves are 
changed. The levels in this case are the one-dimensional 
particle-in-a-box energy levels of Topic 8A: they depend 
on the size of the container and move apart as its length is 
decreased.
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that S → 0 as T → 0, which is compatible with the Third Law 
of thermodynamics, that the entropies of all perfect crystals 
approach the same value as T→ 0 (Topic 3B).

Now we relate the Boltzmann formula for the entropy to the 
partition function. As shown in the following Justification, the rela-
tion for a system of non-interacting distinguishable molecules is

S T
U T U

T
Nk( )

( ) ( )
ln= − +0 q

  
Independent, distinguishable molecules  entropy  (15E.8a)

For indistinguishable molecules (like those in a gas of identical 
molecules)

S T
U T U

T
Nk

N
( )

( ) ( )
ln= − +0 q

  
Independent, indistinguishable molecules  entropy  (15E.8b)

The corresponding expression for interacting molecules is 
based on the canonical partition function, and is

S T
U T U

T
k( )

( )
ln

( )= − +0 Q
 

Equation 15E.8a expresses the entropy of a collection of 
independent molecules in terms of the internal energy and the 
molecular partition function. However, it is shown in Topic 15C 
that, to a good approximation, the energy of a molecule is a sum 
of independent contributions, such as translational (T), rota-
tional (R), vibrational (V), and electronic (E), and therefore the 
partition function factorizes into a product of contributions. As 
a result, the entropy is also the sum of the individual contribu-
tions. For independent, distinguishable particles, each contribu-
tion is of the form of eqn 15E.8a, and for a mode M we write

S
U U

T
Nk

M

M

M

=
−{ }

+

( )

ln

0

q  

This expression applies to M = R, V, and E; the analogous ver-
sion of eqn 15E.8b should be used for M = T, for the molecules 
are then indistinguishable.

Interacting 
molecules entropy  (15E.8c)

Justification 15E.2 The statistical entropy

For a system composed of N distinguishable molecules, eqn 
15A.3 (ln lnW = ∑N N N N

i
i i– )ln with N N

i
i= ∑  is

ln ln ln

ln ln ln

W = −

= −( )= −
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∑ ∑
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i i
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N N N N

N N N N
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Equation 15E.7 ( ln )S k= W  then becomes

S k N
N
N

i

i
i= − ∑ ln

 

The value of Ni/N for the most probable distribution is given 
by the Boltzmann distribution, N Ni

i/ e= −βε /q , and so

ln ln ln ln
N
N

i
i

i= − = − −−e βε βεq q
 

Therefore,

S k N k N Nk Nk
i

i i

i

i= + = +∑ ∑β ε β ε

εN〈 〉

〈 〉
��� ��

lnq qln

 

Finally, because N〈ε〉 = U − U(0) and β = 1/kT, we obtain eqn 
15E.8a.

To treat a system composed of N indistinguishable mol-
ecules, we need to reduce the weight W  by a factor of 1/N! 
because the N! permutations of the molecules among the 
states result in the same state of the system. Then, because 

ln / ln( !) ln !,W WN N= −  the equation in the first line of this 
Justification becomes

ln ln ln ln !

ln lnln
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∑ ∑
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where we have used Stirling’s approximation to write ln N! =  
N ln N − N. As before, we replace Ni by the Boltzmann value, 
N Ni

i= −e /βε q :

i

i i

i

i iN N N N

N NN N N N
N

∑ ∑= − −( )

= − = −− −

ln ln ln

ln ln ln

βε

β ε β ε

q

q q〈 〉 〈 〉
 

The entropy in this case is therefore

S Nk Nk
N

Nk= + +β ε〈 〉 ln
q

 
Now note that Nk can be written Nk ln e and Nk ln q/N +  
Nk ln e = Nk ln qe/N, which gives eqn 15E.8b.

Independent, 
distinguishable 
particles, m ≠ t

entropy due 
to mode m  (15E.9)

Brief illustration 15E.3 The entropy of a two-level system

From Topics 15B and 15C, the partition function and mean 
energy are q = + −1 e βε  and 〈 〉 = +ε ε βεS /(e )1 . The contribution 
to the molar entropy, with 1/T = kβ, is therefore

S Rm e
e=

+
+ +( )








−βε
βε

βε
1

1ln
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(b) The translational contribution
The expressions we have derived for the entropy accord with 
what we should expect for entropy if it is a measure of the 
spread of the populations of molecules over the available states. 
For instance, we show in the following Justification that the 
Sackur–Tetrode equation for the molar entropy of a mona-
tomic perfect gas, where the only motion is translation in three 
dimensions, is

S R
V
Nm

m

A

e= 





ln
/5 2

3Λ  

where Λ is the thermal wavelength (Λ = h/(2πmkT)1/2). To cal-
culate the standard molar entropy, we note that Vm = RT/p, and 
set p p= <:

S R
RT

p N
R

kT
pm

A

e e<
< <

= 





= 





ln ln
/ /5 2

3

5 2

3Λ Λ  
(15E.10b)

We have used R/NA = k. These expressions are based on the 
high-temperature approximation of the partition functions, 
which assumes that many levels are occupied; therefore, they 
do not apply when T is equal to or very close to zero.

The physical interpretation of these equations is as 
follows:

•	 Because the molecular mass appears in the 
numerator (because it appears in the denominator of 
Λ), the molar entropy of a perfect gas of heavy 
molecules is greater than that of a perfect gas of light 
molecules under the same conditions. We can 
understand this feature in terms of the energy levels 
of a particle in a box being closer together for heavy 
particles than for light particles, so more states are 
thermally accessible.

•	 Because the molar volume appears in the numerator, 
the molar entropy increases with the molar volume 
of the gas. The reason is similar: large containers 
have more closely spaced energy levels than small 
containers, so once again more states are thermally 
accessible.

•	 Because the temperature appears in the numerator 
(because, like m, it appears in the denominator of 
Λ), the molar entropy increases with increasing 
temperature. The reason for this behaviour is 
that more energy levels become accessible as the 
temperature is raised.

Brief illustration 15E.4 The molar entropy of a gas

To calculate the standard molar entropy of gaseous argon at 
25 °C, we use eqn 15E.10b with Λ = h/(2πmkT)1/2. The mass of 
an Ar atom is m = 39.95mu. At 25 °C, its thermal wavelength is 
16.0 pm and kT = 4.12 × 10−21 J. Therefore,

S Rm
J e

Nm m
< = × ×

× ×








=

−

− −ln
( . )

( ) ( . )

/4 12 10
10 1 60 10

21 5 2

5 2 11 3

118 6 155 1 1. R = − −JK mol  
We can anticipate, on the basis of the number of accessible 
states for a lighter molecule, that the standard molar entropy 
of Ne is likely to be smaller than for Ar; its actual value is 
17.60R at 298 K.

Self-test 15E.4 Calculate the translational contribution to the 
standard molar entropy of H2 at 25 °C.

Answer: 14.2R

Justification 15E.3 The Sackur–Tetrode equation

We start with eqn 15E.8b for a collection of independent, 
indistinguishable particles and write N = nNA, where NA is 
Avogadro’s constant. The only mode of motion for a gas of 
atoms is translation and U U nRT− =( ) .0 3

2  The partition 

This awkward function is plotted in Fig. 15E.3. It should be 
noted that as T → ∞ (corresponding to β → 0), the molar 
entropy approaches R ln 2.

Self-test 15E.3 Derive an expression for the molar entropy of 
an equally spaced three-level system.

Answer: S Rm / e e e e= + + + + +− − − −βε βε βε βε βε/( ) ln( )1 12 2

0 5
Temperature, kT/εTemperature, kT/ε

10
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0 0.5 1

Figure 15E.3 The temperature variation of the molar 
entropy of a collection of two-level systems expressed as a 
multiple of R = Nk. As T → ∞ the two states become equally 
populated and Sm approaches R ln 2.
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The Sackur–Tetrode equation written in the form

S nR
V

nN
nR aV a

nN
= = =ln ln ,

/ /e e

A A

5 2

3

5 2

3Λ Λ  

implies that when a monatomic perfect gas expands isother-
mally from Vi to Vf, its entropy changes by

∆S nR aV nR aV

nR
V
V

= −

=

ln ln

ln

f i

f

i  

This expression is the same as that obtained starting from the 
thermodynamic definition of entropy (Topic 3A).

(c) The rotational contribution
The rotational contribution to the molar entropy, Sm

R , can be 
calculated once we know the molecular partition function. For 
a linear molecule, the high-temperature limit of q is kT hcB/σ   
(eqn 15B.13b, q R R/=T σθ  with θ R /= hcB k ) and the equipar-
tition theorem gives the rotational contribution to the molar 
internal energy as RT; therefore, from eqn 15E.8a:

S
U U

T
Rm

R m m= − +( )
ln

/
0

RT
kT hcB� �� ��
� �

q R

σ

 

and the contribution at high temperatures is

S R
kT

hcB
m
R = +








1 ln
σ 

 

In terms of this rotational temperature,

S R
T

m
R

R= +







1 ln
σθ  

This function is plotted in Fig. 15E.4. We see that:

•	 The rotational contribution to the entropy increases 
with temperature because more rotational states 
become accessible.

•	 The rotational contribution is large when B  is small, 
because then the rotational energy levels are close 
together.

Thus, large, heavy molecules have a large rotational contribu-
tion to their entropy. As we show in the following Brief illustra-
tion, the rotational contribution to the molar entropy of 35Cl2 is 
58.6 J K−1 mol−1 whereas that for H2 is only 12.7 J K−1 mol−1. We 
can regard Cl2 as a more rotationally disordered gas than H2, 
in the sense that at a given temperature Cl2 occupies a greater 
number of rotational states than H2 does.

function is q = V/Λ3 (eqn 15B.7a), where Λ is the thermal wave-
length. Therefore,

S
U U

T
Nk

N
nR Nk

V
nN

nR

= − + = +

=

( )
ln ln

0

3
2

3
2 3

3
2

nRT
nR

��� ��
�qe e

AΛ
lne3/2

��
+












=ln ln

/V
N

nR
V
N

m

A

m

A

e e
Λ Λ3

5 2

3

 

where Vm = V/n is the molar volume of the gas and we have 
used 3

2

3
2= lne . Division of both sides by n then results in eqn 

15E.10a.

Brief illustration 15E.5 The rotational contribution to the 
entropy

The rotational contribution for 35Cl2 at 25 °C, for instance, 
is calculated by noting that σ = 2 for this homonuclear dia-
tomic molecule and taking B = −0 2441 1. cm  (corresponding to 
24.42 m−1). The rotational temperature of the molecule is

θ R Js ms m= × × × ×
×

− − −

−
( . ) ( . ) ( . )

.
6 626 10 2 998 10 24 42

1 381 10

34 8 1 1

23 JJK

K

−

=

1

0 351.  

Therefore,

S R Rm
R K

K
JK mol= +

×( )











= = − −1

298

2 0 351
7 05 58 6 1 1ln

.
. .

 

Self-test 15E.5 Calculate the rotational contribution to the 
molar entropy of H2.

Answer: 12.7 J K−1 mol−1
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Figure 15E.4 The variation of the rotational contribution to the 
entropy of a linear molecule (σ = 1) using the high-temperature 
approximation and the exact expression (the latter evaluated 
up to J = 20).

Linear 
molecule, high 
temperature 
(T ≫ θr)

rotational 
contribution  (15E.12a)

Linear 
molecule, high 
temperature 
(T ≫ θr)

rotational 
contribution  (15E.12b)

Perfect gas, 
isothermal

change of 
entropy on 
expansion

 (15E.11)
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Equation 15E.12 is valid at high temperatures (T ≫ θR); to 
track the rotational contribution down to low temperatures it 
would be necessary to use the full form of the rotational par-
tition function (Topic 15B; see Problem 15E.10); the resulting 
curve has the form shown in Fig. 15E.4. We see, in fact, that the 
approximate curve matches the exact curve very well for T/θR 
greater than about 1.

(d) The vibrational contribution
The vibrational contribution to the molar entropy, Sm

V , is 
obtained by combining the expression for the molecular parti-
tion function (eqn 15B.15, qV = 1/(1 − e−βε)) with the expression 
for the mean energy (eqn 15C.8, 〈εV 〉 = ε /(eβε − 1)), to obtain

S
U U

R
N k

R
Tm

V m m V A

e e
= − + = − + − −

( )
ln ln

0
1

1
1

N

k

RA

/

V

1

〈 〉ε

β

βε
βε β

� �� ��

�

�

q εε

β
βεβε= − − −( )








−R
e

eε 1
1ln

 

Now we recognize that ε = hc  and obtain

S R
hc

hc
hc

m
V

e
e=

−
− −( )








−β
β

β







1
1ln

 

Once again it is convenient to express this formula in terms of a 
characteristic temperature, in this case the vibrational tempera-
ture θ V /= hc k :

S R
T

T
T

m
V

V

e
eV

V=
−

− −( )







−θ
θ

θ/
ln

/
/

1
1

 

This function is plotted in Fig. 15E.5. As usual, it is helpful to 
interpret it, with the graph in mind:

•	 Both terms multiplying R become zero as T → 0, so  
the entropy is zero at T = 0.

•	 The molar entropy rises as the temperature is increased 
as more vibrational states becoming accessible.

•	 The molar entropy is higher at a given temperature 
for molecules with heavy atoms or low force constant 
than one with light atoms or high force constant. The 
vibrational energy levels are closer together in the 
former case than in the latter, so more are thermally 
accessible

(e) Residual entropies
Entropies may be calculated from spectroscopic data; they may 
also be measured experimentally (Topic 3B). In many cases there 
is good agreement, but in some the experimental entropy is less 
than the calculated value. One possibility is that the experimen-
tal determination failed to take a phase transition into account 
and a contribution of the form ΔtrsH/Ttrs was incorrectly omitted 
from the sum. Another possibility is that some disorder is pre-
sent in the solid even at T = 0. The entropy at T = 0 is then greater 
than zero and is called the residual entropy.

The origin and magnitude of the residual entropy can be 
explained by considering a crystal composed of AB molecules, 
where A and B are similar atoms (such as CO, with its very 
small electric dipole moment). There may be so little energy 
difference between … AB AB AB AB …, … AB BA BA AB …, 
and other arrangements that the molecules adopt the orienta-
tions AB and BA at random in the solid. We can readily cal-
culate the entropy arising from residual disorder by using the 
Boltzmann formula S k= lnW . To do so, we suppose that two 
orientations are equally probable, and that the sample consists 
of N molecules. Because the same energy can be achieved in 2N 
different ways (because each molecule can take either of two 
orientations), the total number of ways of achieving the same 
energy is W = 2N. It follows that

S k Nk nRN= = =ln2 ln2 ln2  (15E.14a)

Vibrational 
contribution 
to the entropy

 (15E.13a)
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al

 in
te

rp
re

ta
tio

n

Vibrational 
contribution to 
the entropy

 (15E.13b)

Brief illustration 15E.6 The vibrational contribution to 
the entropy

The vibrational wavenumber of I2 is 214.5 cm−1, correspond-
ing to 2.145 × 104 m−1, so its vibrational temperature is 309 K. 
Therefore, at 25 °C, for instance, βε = 1.036, so

S R Rm
V /

e
e JK=

−
− −( )








= =−309 298
1

1 1 01 8 38309 298
309 298

/
/ln . . −− −1 1mol

 

Self-test 15E.6 Calculate the vibrational contribution to the 
molar entropy of 1H2 at 25 °C (θV = 6332 K).

Answer: 0.11 µJ K−1

0
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Figure 15E.5 The temperature variation of the molar entropy 
of a collection of harmonic oscillators expressed as a multiple 
of R = Nk. The molar entropy approaches zero as T → 0, and 
increases without limit as T → ∞.
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15E The internal energy and the entropy  643

We can therefore expect a residual molar entropy of R ln 2 =  
5.8 J K−1 mol−1 for solids composed of molecules that can adopt 
either of two orientations at T = 0. If s orientations are possible, 
the residual molar entropy will be

S R sm ln( )0 =   residual entropy  (15E.14b)

For CO, the measured residual entropy is 5 J K−1 mol−1, which is 
close to R ln 2, the value expected for a random structure of the 
form … CO CO OC CO OC OC ….

Checklist of concepts

☐ 1. The internal energy is proportional to the derivative of 
the partition function with respect to temperature.

☐ 2. The constant-volume heat capacity can be calculated 
from the molecular partition function.

☐ 3. The total heat capacity of a molecular substance is the 
sum of the contribution of each mode.

☐ 4. The statistical entropy is defined by the Boltzmann 
formula and may be expressed in terms of the molecu-
lar partition function

☐ 5. The residual entropy is a nonzero entropy at T = 0 aris-
ing from molecular disorder.

Brief illustration 15E.7 Residual entropy

Consider a sample of ice with N H2O molecules. Each O atom 
is surrounded tetrahedrally by four H atoms, two of which are 
attached by short σ bonds, the other two being attached by 
long hydrogen bonds (Fig. 15E.6). It follows that each of the 2N 
H atoms can be in one of two positions (either close to or far 
from an O atom as shown in Fig. 15E6), resulting in 22N pos-
sible arrangements.

Figure 15E.6 The possible locations of H atoms around 
a central O atom in an ice crystal are shown by the white 
spheres. Only one of the locations on each bond may be 
occupied by an atom, and two H atoms must be close to the 
O atom and two H atoms must be distant from it.

However, not all these arrangements are acceptable. Indeed, 
of the 24 = 16 ways of arranging four H atoms around one O 
atom, only 6 have two short and two long OH distances and 
hence are acceptable (Fig. 15E.7). Therefore, the number of 
permitted arrangements is W = =2 6 162N N N( / ) ( )3

2 . It then 
follows that the residual entropy is S k kNN( ) ( )0 3

2
3
2≈ =ln ln , 

and its molar value is S R( ) .0 3
2≈ = − −ln 3 4JK mol1 1, which is in 

good agreement with the experimental value of 3.4 J K−1 mol−1. 
The model, however, is not exact because it ignores the pos-
sibility that next-nearest neighbours and those beyond can 
influence the local arrangement of bonds.

Self-test 15E.7 Estimate the molar residual entropy of FClO3; 
each molecule can adopt four orientations with about the 
same energy.

Answer: R ln 4 = 11.5 J K−1 mol−1; experimental: 10.1 J K−1 mol−1

Figure 15E.7 The six possible arrangements of H atoms 
in the locations identified in Fig.15E.6. Occupied locations 
are denoted by grey spheres and unoccupied locations by 
white spheres.
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644 15 Statistical thermodynamics

Checklist of equations

Property Equation Comment Equation number

Internal energy U(T) = U(0) − (N/q)(∂q/∂β)V = −N(∂ ln q/∂β)V Independent molecules 15E.2b

Heat capacity C Nk qV V= ∂ ∂β β2 2 2( )ln / Independent molecules 15E.5

C RV ,
* *( )m

R V2 2= + +1
2

  T ≫ θM 15E.6

Boltzmann formula for the entropy S k= lnW Definition 15E.7

The entropy in terms of the partition function S ={U − U(0)}/T + Nk ln q Distinguishable molecules 15E.8a

S = {U − U(0)}/T + Nk ln(q/N) Indistinguishable molecules 15E.8b

Sackur–Tetrode equation S T R Nm m
5/2

Ae( ) ln( / )= V Λ3 Entropy of a monatomic perfect gas 15E.10a

Residual molar entropy Sm(0) = R ln s s is the number of equivalent sites 15E.14b
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15F derived functions

Classical thermodynamics makes extensive use of various 
derived functions. Thus, in thermochemistry it focuses on 
the enthalpy and, provided the pressure and temperature 
are constant, in discussions of spontaneity it focuses on the 
Gibbs energy. In this Topic we see how these properties can be 
related to and understood in terms of partition functions. All 
these properties are derived from the internal energy and the 

entropy, which in terms of the canonical partition function are 
given by

U T U
V

( ) ( )
ln

= −
∂

∂






0
Q

β  
 Internal energy  (15F.1a)

S T
U T U

T
k( )

( ) ( )
ln= − +0 Q

 
 entropy  (15F.1b)

These two general expressions can be adapted for collections 
of independent molecules by writing Q  = q N for distinguishable 
molecules and Q  = q N/N! for indistinguishable molecules (as in 
a gas).

15F.1 The derivations

The Helmholtz energy, A, is defined as A = U − TS. This relation 
implies that A(0) = U(0), so substitution of the expressions for 
U(T) and S(T) leads to the very simple expression

A T A kT( ) ( )= 0 − lnQ   helmholtz energy  (15F.2)

An infinitesimal change in conditions changes the Helmoltz 
energy by dA = −pdV − SdT (this is the analogue of the expres-
sion for dG derived in Topic 3D (eqn 3D.7, dG = Vdp − SdT). 
Therefore, it follows that on imposing constant temperature 
(dT = 0), the pressure and the Helmholtz energy are related by 
p = −(∂A/∂V)T. It then follows from eqn 15F.2 that

p kT
V

T

=
∂

∂






lnQ

 
 Pressure  (15F.3)

This relation is entirely general, and may be used for any type 
of substance, including perfect gases, real gases, and liquids. 
Because Q  is in general a function of the volume, temperature, 
and amount of substance, eqn 15F.3 is an equation of state of 
the kind discussed in Topic 1C.

Example 15F.1 Deriving an equation of state

Derive an expression for the pressure of a gas of independent 
particles.

Method We should suspect that the pressure is that given by 
the perfect gas law. To proceed systematically, substitute the 

Contents

15F.1 The derivations 645
example 15F.1: deriving an equation of state 645
example 15F.2: calculating a standard gibbs  
energy of formation from partition functions 646

15F.2 Equilibrium constants 647
(a) The relation between K and the partition  

function 647
(b) A dissociation equilibrium 648

example 15F.3: evaluating an equilibrium constant 648
(c) Contributions to the equilibrium constant 648

Checklist of concepts 650
Checklist of equations 650

➤➤ Why do you need to know this material?
The power of chemical thermodynamics stems from its 
deployment of a variety of derived functions, particularly 
the enthalpy and Gibbs energy. It is therefore important 
to relate these to structural features through partition 
functions. One hugely important quantity that is 
illuminated in this way is the equilibrium constant.

➤➤ What is the key idea?
The partition function provides a link between 
spectroscopic and structural data and the derived functions 
of thermodynamics, particularly the equilibrium constant.

➤➤ What do you need to know already?
This Topic develops the discussion of internal energy 
and entropy (Topic 15E). You need to know the relations 
between those properties and the enthalpy (Topic 2B) and 
the Helmholtz and Gibbs energies (Topic 3C). The final 
section makes use of the relation between standard Gibbs 
energy and the equilibrium constant (Topic 6A).
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646 15 Statistical thermodynamics

At this stage we can use the expressions for U and p in the 
definition H = U + pV to obtain an expression for the enthalpy, 
H, of any substance:

H T H kTV
V

V T

( ) ( )
ln ln

= −
∂

∂






+
∂

∂






0
Q Q

β  
 enthalpy  (15F.4)

The fact that eqn 15F.4 is rather cumbersome is a sign that the 
enthalpy is not a fundamental property: as shown in Topic 2B, 
it is more of an accounting convenience. For a gas of independ-
ent particles U − U(0) = 32nRT and pV = nRT. Therefore, for such 
a gas,

H H nRT− ( )0 5
2=  (15F.5)

One of the most important thermodynamic functions for 
chemistry is the Gibbs energy, G = H − TS = A + pV. We can now 
express this function in terms of the partition function by com-
bining the expressions for A and p:

G T G kT kTV
V

T

( ) ( ) ln
ln

= − +
∂

∂






0 Q
Q

 
 gibbs energy  (15F.6)

This expression takes a simple form for a gas of independ-
ent molecules because pV in the expression G = A + pV can be 
replaced by nRT:

G T G kT nRT( ) ( )= +0 − lnQ  (15F.7)

Furthermore, because Q = q N/N!, and therefore ln Q = N ln q −  
ln N!, it follows by using Stirling’s approximation (ln N! = N ln N  
− N) that we can write

G T G NkT kT N nRT

G nRT kT N N N nRT

G

( ) ( ) ln ln !

( ) ln ( ln )

(

= − + +
= − + − +

=

0

0

0

q
q

)) ln−nRT
N
q

 

(15F.8)

with N = nNA. Now we see another interpretation of the Gibbs 
energy: because q is the number of thermally accessible states 
and N is the number of molecules, the difference G(T) − G(0) 
is proportional to the logarithm of the average number of ther-
mally accessible states per molecule.

It will turn out to be convenient to define the molar parti-
tion function, qm = q/n (with units mol−1), for then

G T G nRT
N

( ) ( ) ln= −0
qm

A  

To use this expression, G(0) is identified with the energy of 
the system when all the molecules are in their ground state, 
E0. To calculate the standard Gibbs energy, the partition func-
tion has its standard value, qm

< ,  which is evaluated by setting 
the molar volume in the translational contribution equal 
to the standard molar volume, so q q qm m

R V/< <=( )V Λ3  with 
V RT pm /< <= .

explicit formula for Q for a gas of independent, indistinguish-
able molecules.

Answer For a gas of independent molecules, Q  = qN/N! with 
q  = V/Λ3:

p kT
V

kT
V

N kT N
V

k

T T
N

N

T

= ∂
∂







= ∂
∂







= ∂
∂







=

ln ! ( !)Q
Q

Q
q

q /

TT
V

NkT
V

NkT
V

V
V

N

N

N

T T

T

q
q

q
q∂

∂






= ∂
∂







= ∂
∂







=
/

/
Λ

Λ
3

3( ) kkT
V

nN kT
V

nRT
V

= =A

The calculation shows that the equation of state of a gas of 
independent particles is indeed the perfect gas law, pV = nRT.

Self-test 15F.1 Derive the equation of state of a sample for 
which Q = qNf/N!, with q = V/Λ 3, where f depends on the 
volume.

Answer: p = nRT/V + kT(∂ ln ƒ/∂V)T

Example 15F.2 Calculating a standard Gibbs energy  
of formation from partition functions

Calculate the standard Gibbs energy of formation of H2O(g) 
at 25 °C.

Method Write the chemical equation for the formation 
reaction, and then the expression for the standard Gibbs 
energy of formation in terms of the Gibbs energy of each 
molecule; then express those Gibbs energies in terms of the 
molecular partition function of each species. Ignore molec-
ular vibration as it is unlikely to be excited at 25 °C. Take 
numerical values from the Resource section together with the 
following rotational constants of H2O: 27.877, 14.512, and 
9.285 cm−1. Take for the atomization energy of H2O the value 
−237 kJ mol−1.

Answer The chemical reaction is H (g) O g H O(g)2 2 2+ →1
2 ( ) .  

Therefore,

∆f m 2 m 2 m 2(H O g) (H g) O gG G G G< < < <= , , ( , )− − 1
2

Now write the standard molar Gibbs energies in terms of the 
standard molar partition functions of each species J:

G E RT
N

V

m m
m

A

m m
T R m R

J J
J

J J J
J

<
<

< <
<

( ) ( )
( )

( )

ln

( ) ( )
( )

(

,= −

= =

0

3

q

q q q q
Λ

JJ)

 (15F.9)gibbs energyIndependent 
molecules

iranchembook.ir/edu



15F Derived functions  647

15F.2 Equilibrium constants

The Gibbs energy of a gas of independent molecules is given 
by eqn 15F.9 in terms of the molar partition function, qm = q/n. 
The equilibrium constant K of a reaction is related to the stand-
ard Gibbs energy of reaction by eqn 6A.14 of Topic 6A (ΔrG< =  
−RT ln K). To calculate the equilibrium constant, we need to 
combine these two equations. We shall consider gas phase reac-
tions in which the equilibrium constant is expressed in terms of 
the partial pressures of the reactants and products.

(a) The relation between K and the 
partition function
To find an expression for the standard reaction Gibbs energy 
we need expressions for the standard molar Gibbs energies, 
G</n, of each species. It then follows that, as shown in the fol-
lowing Justification, the equilibrium constant for the reaction 
aA + bB → cC + dD is given by the expression

K
N N

N N

c d

a b
E RT= −( ) ( )

( ) ( )
, ,

, ,

/
q q
q q

C m A D m A

A m A B m A

/ /

/ /
e r

< <

< <
∆ 0

 
(15F.10a)

where ΔrE0 is the difference in molar energies of the ground states 
of the products and reactants (this term is defined more precisely 
in the Justification), and is calculated from the bond dissociation 
energies of the species (Fig. 15F.1). In terms of the (signed) stoi-
chiometric numbers introduced in Topic 2B, we would write

K
N

E RT= 
















∏ −

J

J m

A

J

re
q , /

< v

∆ 0

 
 equilibrium constant  (15F.10b)

Justification 15F.1 The equilibrium constant in terms  
of the partition function 1

The standard molar reaction Gibbs energy for the reaction is

∆r m m m m

m m

(C) (D) (A) B

(C ) (D )

G cG dG aG bG

cG dG

< < < < <

< <

= + +
= +

–{ ( )}

, ,0 0 ––{ , ( , )}

ln ln ln, , ,

aG bG

RT c
N

d
N

a
N

m m

C m

A

D m

A

A m

A

(A ) B< <

< < <

0 0+

− + −q q q −−







b
N

ln ,qB m

A

<

D0(reactants)
D0(products)

ΔrE0

Figure 15F.1 The definition of ΔrE0 for the calculation of 
equilibrium constants.
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∆E E E E0 0 2 0 2
1
2 0 2, , , ,( ) ( ) ( )m m m mH O H O= − −

At this point we introduce the thermal wavelengths and the 
rotational partition functions from Topic 15B:

Λ

σ
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Now substitute the data, and find

It then follows that

∆ ∆ ∆f m m kJmolG E RT E< = − = + −
0 0

10 0291 8 77, ,ln . .

Now use ΔE0,m = −237 kJ mol−1 and obtain ΔfG< = −228 kJ mol−1. 
The value quoted in Table 2C.1 of the Resource section is 
−228.57 kJ mol−1.

Self-test 15E.2 Estimate the standard Gibbs energy of forma-
tion of NH3(g) at 25 °C. Take the atomization energy to be 
+79 kJ mol−1.

Answer: −16 kJ mol−1

Λ(H2) = 71.21 pm Λ(O2) = 17.87 pm Λ(H2O) = 23.82 pm
q R(H2) = 1.702 q R(O2) = 71.60 q R(H2O) = 42.13
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(b) A dissociation equilibrium

We illustrate the application of eqn 15F.10 to an equilibrium in 
which a diatomic molecule X2 dissociates into its atoms:

X g X(g) X

X
2

2

2
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( ) K
p

p p
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According to eqn 15F.10 (with a = 1, b = 0, c = 2, and d = 0):
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(15F.11a)

with

∆r m m 2 A2 X X X XE E E N hcD0 0 0 00 0= =, ,( , ) ( , ) ( )−  e  (15F.11b)

where N hcDA X X
0( )e  is the (molar) dissociation energy of 

the XeX bond. The standard molar partition functions of the 
atoms X are
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where gX is the degeneracy of the electronic ground state of X. 
The diatomic molecule X2 also has rotational and vibrational 
degrees of freedom, so its standard molar partition function is
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where g X2
 is the degeneracy of the electronic ground state of X2. 

It follows that
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(15F.12)

where we have used R/NA = k. All the quantities in this expres-
sion can be calculated from spectroscopic data.

(c) Contributions to the equilibrium constant

We are now in a position to appreciate the physical basis of equi-
librium constants. To see what is involved, consider a simple 
R ⇌ P gas-phase equilibrium (R for reactants, P for products).

Figure 15F.2 shows two sets of energy levels; one set of states 
belongs to R, and the other belongs to P. The populations of the 
states are given by the Boltzmann distribution, and are inde-
pendent of whether any given state happens to belong to R or 
to P. We can therefore imagine a single Boltzmann distribution 

Because G(J,0) = E0,m(J), the molar ground state energy of the 
species J, the first (blue) term on the right is
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Then, by using a ln x = ln xa and ln x + ln y = ln xy, we can write
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At this stage we can pick out an expression for K by comparing 
this equation with (ΔrG< = −RT ln K, which gives

ln ln
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This expression is easily rearranged into eqn 15F.10a by form-
ing the exponential of both sides.

Example 15F.3 Evaluating an equilibrium constant

Evaluate the equilibrium constant for the dissociation Na2(g) 
⇌ 2 Na(g) at 1000 K.

Method Assemble the data from the Resource section, not-
ing that Na has a double ground state. Use eqn 15F.12 and 
the expressions for the partition functions assembled in 
Topic 15B.

Answer Use the following data: B . ,–= 0 1547cm 1   = −159 2 1. ,cm  
N hcDA

17 4kJmol
0 0= . .−  For a homonuclear diatomic mol-

ecule, σ = 2. The partition functions and other quantities 
required are as follows:

Then, from eqn 15F.12,

K = × × × × ×
× ×

− − −2 1 381 10 1000 8 14 10
10 2246 4

2 19 1 12

5

( . ) ( ) ( . )
( )

JK K m
Pa .. ( . )

.

.

885 1 15 10

2 45

11
8 47

× ×
×

=

−
− …

m
e

 

where we have used 1 J = 1 kg m2 s−2 and 1 Pa = 1 kg m−1 s−1.

Self-test 15F.3 Evaluate K at 1500 K. Is the answer consistent 
with the dissociation being endothermic?

Answer: 52; yes

Λ(Na2) = 8.14 pm Λ(Na) = 11.5 pm
q R(Na2) = 2246 qV(Na2) = 4.885
g(Na) = 2 g(Na2) = 1
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spreading, without distinction, over the two sets of states. If 
the spacings of R and P are similar (as in Fig. 15F.2), and P lies 
above R, the diagram indicates that R will dominate in the equi-
librium mixture. However, if P has a high density of states (a 
large number of states in a given energy range, as in Fig. 15F.3), 
then, even though its zero-point energy lies above that of R, the 
species P might still dominate at equilibrium.

It is quite easy to show (see the following Justification) that the 
ratio of numbers of R and P molecules at equilibrium is given by

N
N

E RTP

R

P

R

e r= −q
q

∆ 0 /

 
(15F.13a)

and therefore that the equilibrium constant for the reaction is

K E RT= −q
q

P

R

e r∆ 0 /

 
(15F.13b)

just as would be obtained from eqn 15F.12.

The content of eqn 15F.13 can be seen most clearly by exag-
gerating the molecular features that contribute to it. We shall 
suppose that R has only a single accessible level, which implies 
that qR = 1. We also suppose that P has a large number of evenly, 
closely spaced levels (Fig. 15F.4). The partition function of 
P is then qP = kT/ε. In this model system, the equilibrium  
constant is

Justification 15F.2 The equilibrium constant in terms  
of the partition function 2

The population in a state i of the composite (R,P) system is 
Ni = Ne−βεi/q, where N is the total number of molecules. The 
total number of R molecules is the sum of these populations 
taken over the states belonging to R; these states we label r 
with energies εr. The total number of P molecules is the sum 
over the states belonging to P; these states we label p with 
energies ′εP  (the prime is explained in a moment):

N N
N

N N
N
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r

r

r
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e er p= = = =∑ ∑ ∑ ∑− − ′
q q

βε βε

The sum over the states of R is its partition function, qR, so 
NR = NqR/q. The sum over the states of P is also a partition 

function, but the energies are measured from the ground 
state of the combined system, which is the ground state of R. 
However, because εp′ = εp + Δε0, where Δε0 is the separation of 
zero-point energies (as in Fig. 15F.3),

N
N N N
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q

q
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ee r−∆ E RT0 /

The switch from Δε0/k to ΔrE0/R in the last step is the conver-
sion of molecular energies to molar energies.

The equilibrium constant of the R ⇌ P reaction is propor-
tional to the ratio of the numbers of the two types of molecule. 
Therefore,

K
N
N

E RT= = −P

R

P e r
q
q

∆ 0 /

as in eqn 15F.13b. For an R ⇌ P equilibrium, the V factors 
in the partition functions cancel, so the appearance of q in 
place of q < has no effect. In the case of a more general reac-
tion, the conversion from q to q < comes about at the stage 
of converting the pressures that occur in K to numbers of 
molecules.

P

ΔrE0

R

Figure 15F.3 It is important to take into account the 
densities of states of the molecules. Even though P might 
lie above R in energy (that is, ΔrE0 is positive), P might have 
so many states that its total population dominates in the 
mixture. In classical thermodynamic terms, we have to 
take entropies into account as well as enthalpies when 
considering equilibria.

R

P

ΔrE0

Figure 15F.2 The array of R(eactants) and P(roducts) energy 
levels. At equilibrium all are accessible (to differing extents, 
depending on the temperature), and the equilibrium 
composition of the system reflects the overall Boltzmann 
distribution of populations. As ΔrE0 increases, R becomes 
dominant.
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K
kT E RT= −
ε e r∆ 0 /

 
(15F.14)

When ΔrE0 is very large, the exponential term dominates 
and K ≪ 1, which implies that very little P is present at equi-
librium. When ΔrE0 is small but still positive, K can exceed 1 
because the factor kT/ε may be large enough to overcome 
the small size of the exponential term. The size of K then 
reflects the predominance of P at equilibrium on account of 
its high density of states. At low temperatures K ≪ 1 and the 
system consists entirely of R. At high temperatures the expo-
nential function approaches 1 and the pre-exponential fac-
tor is large. Hence P becomes dominant. We see that, in this 
endothermic reaction (endothermic because P lies above R), 
a rise in temperature favours P, because its states become 
accessible. This behaviour is what we saw, from the outside, 
in Topic 6B.

The model also shows why the Gibbs energy, G, and not just 
the enthalpy, determines the position of equilibrium. It shows 

that the density of states (and hence the entropy) of each spe-
cies as well as their relative energies controls the distribution of 
populations and hence the value of the equilibrium constant.

Checklist of concepts

☐ 1. The thermodynamic functions A, p, H, and G can be 
calculated from the canonical partition function.

☐ 2. For a perfect gas, G depends on the logarithm of the 
molecular partition function.

☐ 3. The equilibrium constant can be written in terms of 
the partition function.

☐ 4. The equilibrium constant for dissociation of a diatomic 
molecule in the gas phase may be calculated from spec-
troscopic data.

☐ 5. The physical basis of chemical equilibrium can be 
understood in terms of a competition between energy 
separations and densities of states.

Checklist of equations
Property Equation Comment Equation number

Helmholtz energy A(T) = A(0) − kT ln Q 15F.2

Pressure p = kT(∂ lnQ/∂V)T 15F.3

Enthalpy H(T) = H(0) − (∂ lnQ/∂β)V + kTV(∂ ln Q/∂V)T 15F.4

Gibbs energy G(T) = G(0) − kT lnQ + kTV(∂ ln Q/∂V)T 15F.6

G(T) = G(0) − nRT ln(qm/NA) Perfect gas 15F.9

Equilibrium constant K N E RT= 







−Π ∆
J

J m A/ eJ r( ),
/q <  0 Perfect gas 15F.10b

R

P

ΔrE0

ε

Figure 15F.4 The model used in the text for exploring the 
effects of energy separations and densities of states on 
equilibria. The products P can dominate provided ΔrE0 is not 
too large and P has an appreciable density of states.
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CHAPTER 15 statistical thermodynamics
Assume that all gases are perfect and that data refer to 298 K unless otherwise stated.

TOPIC 15A the boltzmann distribution

Discussion questions
15A.1 Discuss the relationship between ‘population’, ‘configuration’, and 
‘weight’. What is the significance of the most probable configuration?

15A.2 What is the significance and importance of the principle of equal a 
priori probabilities?

15A.3 What is temperature?

15A.4 Summarize the role of the Boltzmann distribution in chemistry.

Exercises
15A.1(a) Calculate the weight of the configuration in which 16 objects are 
distributed in the arrangement 0, 1, 2, 3, 8, 0, 0, 0, 0, 2.
15A.1(b) Calculate the weight of the configuration in which 21 objects are 
distributed in the arrangement 6, 0, 5, 0, 4, 0, 3, 0, 2, 0, 0, 1.

15A.2(a) Evaluate 8! by using (i) the exact formula, (ii) Stirling’s 
approximation, eqn 15A.2b; (iii) the more accurate version of Stirling’s 
approximation, eqn 15A.2a.
15A.2(b) Evaluate 10! by using (i) the exact formula, eqn 15A.2b; (ii) Stirling’s 
approximation, (iii) the more accurate version of Stirling’s approximation, eqn 
15A.2a.

15A.3(a) What are the relative populations of the states of a two-level system 
when the temperature is infinite?
15A.3(b) What are the relative populations of the states of a two-level system as 
the temperature approaches zero?

15A.4(a) What is the temperature of a two-level system of energy separation 
equivalent to 400 cm−1 when the population of the upper state is one-third 
that of the lower state?

15A.4(b) What is the temperature of a two-level system of energy separation 
equivalent to 300 cm−1 when the population of the upper state is one-half that 
of the lower state?

15A.5(a) Calculate the relative populations of a linear rotor in the levels with 
J = 0 and J = 5, given that B .= −2 71cm 1 and a temperature of 298 K.
15A.5(b) Calculate the relative populations of a spherical rotor in the levels 
with J = 0 and J = 5, given that B .= −2 71cm 1 and a temperature of 298 K.

15A.6(a) A certain molecule has a non-degenerate excited state lying at 
540 cm−1 above the non-degenerate ground state. At what temperature will 
10 per cent of the molecules be in the upper level?
15A.6(b) A certain molecule has a doubly degenerate excited state lying at 
360 cm−1 above the non-degenerate ground state. At what temperature will 
15 per cent of the molecules be in the upper level?

Problems
15A.1 A sample consisting of five molecules has a total energy 5ε. Each 
molecule is able to occupy states of energy jε, with j = 0, 1, 2, .... (a) Calculate 
the weight of the configuration in which the molecules are distributed 
evenly over the available states. (b) Draw up a table with columns headed by 
the energy of the states and write beneath them all configurations that are 
consistent with the total energy. Calculate the weights of each configuration 
and identify the most probable configurations.

15A.2 A sample of nine molecules is numerically tractable but on the verge of 
being thermodynamically significant. Draw up a table of configurations for 
N = 9, total energy 9ε in a system with energy levels jε (as in Problem 15A.1). 
Before evaluating the weights of the configurations, guess (by looking for the 
most ‘exponential’ distribution of populations) which of the configurations 
will turn out to be the most probable. Go on to calculate the weights and 
identify the most probable configuration.

15A.3 Use mathematical software to evaluate W  for N = 20 for a series of 
distributions over a uniform ladder of energy levels, ensuring that the total 
energy is constant. Identify the configuration of greatest weight and compare 
it to the distribution predicted by the Boltzmann expression. Explore what 
happens as the value of the total energy is changed.

15A.4 A certain atom has a doubly degenerate ground state and an upper level 
of four degenerate states at 450 cm−1 above the ground state. In an atomic 
beam study of the atoms it was observed that 30 per cent of the atoms were in 
the upper level, and the translational temperature of the beam was 300 K. Are 
the electronic states of the atoms in thermal equilibrium with the translational 
states?

15A.5 Explore the consequences of using the full version of Stirling’s 
approximation, x! ≈ (2π)1/2xx+1/2e−x, in the development of the expression 
for the configuration of greatest weight. Does the more accurate 
approximation have a significant effect on the form of the Boltzmann 
distribution?

15A.6 The most probable configuration is characterised by a parameter 
we know as the ‘temperature’. The temperatures of the system specified in 
Problems 15A.1 and 15A.2 must be such as to give a mean value of ε for 
the energy of each molecule and a total energy Nε for the system. (a) Show 
that the temperature can be obtained by plotting pj against j, where pj is the 
(most probable) fraction of molecules in the state with energy jε. Apply the 
procedure to the system in Problem 15A.2. What is the temperature of the 
system when ε corresponds to 50 cm−1? (b) Choose configurations other than 
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the most probable, and show that the same procedure gives a worse straight 
line, indicating that a temperature is not well-defined for them.

15A.7‡ The variation of the atmospheric pressure p with altitude h is predicted 
by the barometric formula to be p = p0e−h/H where p0 is the pressure at 
sea level and H = RT/Mg with M the average molar mass of air and T the 
average temperature. Obtain the barometric formula from the Boltzmann 
distribution. Recall that the potential energy of a particle at height h above the 
surface of the Earth is mgh. Convert the barometric formula from pressure to 
number density, N. Compare the relative number densities, N(h)/N(0), for O2 
and H2O at h = 8.0 km, a typical cruising altitude for commercial aircraft.

15A.8‡ Planets lose their atmospheres over time unless they are replenished. A 
complete analysis of the overall process is very complicated and depends upon 
the radius of the planet, temperature, atmospheric composition, and other 
factors. Prove that the atmosphere of planets cannot be in an equilibrium state 
by demonstrating that the Boltzmann distribution leads to a uniform finite 
number density as r → ∞. Hint: Recall that in a gravitational field the potential 
energy is V(r) = –GMm/r, where G is the gravitational constant, M is the mass 
of the planet, and m the mass of the particle.

TOPIC 15B molecular partition functions

Discussion questions
15B.1 Describe the physical significance of the partition function.

15B.2 Describe how the mean energy of a system composed of two levels 
varies with temperature.

15B.3 What is the difference between a ‘state’ and an ‘energy level’? Why is it 
important to make this distinction?

15B.4 Why and when is it necessary to include a symmetry number in the 
calculation of a partition function?

Exercises
15B.1(a) Calculate (i) the thermal wavelength, (ii) the translational partition 
function at 300 K and 3000 K of a molecule of molar mass 150 g mol−1 in a 
container of volume 1.00 cm3.
15B.1(b) Calculate (i) the thermal wavelength, (ii) the translational partition 
function of a Ne atom in a cubic box of side 1.00 cm at 300 K and 3000 K.

15B.2(a) Calculate the ratio of the translational partition functions of H2 and 
He at the same temperature and volume.
15B.2(b) Calculate the ratio of the translational partition functions of Ar and 
Ne at the same temperature and volume.

15B.3(a) The bond length of O2 is 120.75 pm. Use the high-temperature 
approximation to calculate the rotational partition function of the molecule 
at 300 K.
15B.3(b) The bond length of N2 is 109.75 pm. Use the high-temperature 
approximation to calculate the rotational partition function of the molecule 
at 300 K.

15B.4(a) The NOF molecule is an asymmetric rotor with rotational constants 
3.1752 cm−1, 0.3951 cm−1, and 0.3505 cm−1. Calculate the rotational partition 
function of the molecule at (i) 25 °C, (ii) 100 °C.
15B.4(b) The H2O molecule is an asymmetric rotor with rotational constants 
27.877 cm−1, 14.512 cm−1, and 9.285 cm−1. Calculate the rotational partition 
function of the molecule at (i) 25 °C, (ii) 100 °C.

15B.5(a) The rotational constant of CO is 1.931 cm−1. Evaluate the rotational 
partition function explicitly (without approximation) and plot its value as a 
function of temperature. At what temperature is the value within 5 per cent of 
the value calculated from the approximate formula?
15B.5(b) The rotational constant of HI is 6.511 cm−1. Evaluate the rotational 
partition function explicitly (without approximation) and plot its value as a 
function of temperature. At what temperature is the value within 5 per cent of 
the value calculated from the approximate formula?

15B.6(a) The rotational constant of CH4 is 5.241 cm−1. Evaluate the rotational 
partition function explicitly (without approximation but ignoring the role 
of nuclear statistics) and plot its value as a function of temperature. At what 

temperature is the value within 5 per cent of the value calculated from the 
approximate formula?
15B.6(b) The rotational constant of CCl4 is 0.0572 cm−1. Evaluate the rotational 
partition function explicitly (without approximation but ignoring the role 
of nuclear statistics) and plot its value as a function of temperature. At what 
temperature is the value within 5 per cent of the value calculated from the 
approximate formula?

15B.7(a) The rotational constants of CH3Cl are A .= 5 97cm 10 −  and 
B .= 0 443cm 1− . Evaluate the rotational partition function explicitly (without 
approximation but ignoring the role of nuclear statistics) and plot its value as 
a function of temperature. At what temperature is the value within 5 per cent 
of the value calculated from the approximate formula?
15B.7(b) The rotational constants of NH3 are A .= 6 196cm 1−  and  
B .= 9 444cm 1− . Evaluate the rotational partition function explicitly (without 
approximation but ignoring the role of nuclear statistics) and plot its value as 
a function of temperature. At what temperature is the value within 5 per cent 
of the value calculated from the approximate formula?

15B.8(a) Give the symmetry number for each of the following molecules: 
(i) CO, (ii) O2, (iii) H2S, (iv) SiH4, and (v) CHCl3.
15B.8(b) Give the symmetry number for each of the following molecules: 
(i) CO2, (ii) O3, (iii) SO3, (iv) SF6, and (v) Al2Cl6.

15B.9(a) Estimate the rotational partition function of ethene at 25 °C given 
that A .= −4 828cm 1, B = −1 12cm 1.00 , and .C = −0 8282cm 1. Take the symmetry 
number into account.
15B.9(b) Evaluate the rotational partition function of pyridine, C5H5N, at 
25 °C given that A .= −0 02 14 cm 1, B .= −0 1936cm 1, C .= −0 0987cm 1 . Take the 
symmetry number into account.

15B.10(a) The vibrational wavenumber of Br2 is 323.2 cm−1. Evaluate the 
vibrational partition function explicitly (without approximation) and plot its 
value as a function of temperature. At what temperature is the value within 
5 per cent of the value calculated from the approximate formula?
15B.10(b) The vibrational wavenumber of I2 is 214.5 cm−1. Evaluate the 
vibrational partition function explicitly (without approximation) and plot its 
value as a function of temperature. At what temperature is the value within 
5 per cent of the value calculated from the approximate formula?‡ These problems were supplied by Charles Trapp and Carmen Giunta.
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15B.11(a) Calculate the vibrational partition function of CS2 at 500 K given 
the wavenumbers 658 cm−1 (symmetric stretch), 397 cm−1 (bend; two modes), 
1535 cm−1 (asymmetric stretch).
15B.11(b) Calculate the vibrational partition function of HCN at 900 K 
given the wavenumbers 3311 cm−1 (symmetric stretch), 712 cm−1 (bend; two 
modes), 2097 cm−1 (asymmetric stretch).

15B.12(a) Calculate the vibrational partition function of CCl4 at 500 K given 
the wavenumbers 459 cm−1 (symmetric stretch, A), 217 cm−1 (deformation, E), 
776 cm−1 (deformation, T), 314 cm−1 (deformation, T).
15B.12(b) Calculate the vibrational partition function of CI4 at 500 K given 
the wavenumbers 178 cm−1 (symmetric stretch, A), 90 cm−1 (deformation, E), 
555 cm−1 (deformation, T), 125 cm−1 (deformation, T).

15B.13(a) A certain atom has a fourfold degenerate ground level, a non-
degenerate electronically excited level at 2500 cm−1, and a twofold degenerate 
level at 3500 cm−1. Calculate the partition function of these electronic states at 
1900 K. What is the relative population of each level at 1900 K?
15B.13(b) A certain atom has a triply degenerate ground level, a non-
degenerate electronically excited level at 850 cm−1, and a fivefold degenerate 
level at 1100 cm−1. Calculate the partition function of these electronic states at 
2000 K. What is the relative population of each level at 2000 K?

Problems
15B.1 This problem is best done using mathematical software. Equation 15B.15 
is the partition function for a harmonic oscillator. Consider a Morse oscillator 
(Topic 2D) in which the energy levels are given by eqn 2D.12:

E hc hcxv v v= +( ) − +( )1
2

1
2

2
  e  

Evaluate the partition function for this oscillator, remembering to measure 
energies from the lowest level and to note that there is only a finite number 
of bound-state levels. Plot the partition function against temperature for a 
variety of values of xe, and—on the same graph—compare your results with 
that for an harmonic oscillator.

15B.2 Explore the conditions under which the ‘integral’ approximation for the 
translational partition function is not valid by considering the translational 
partition function of an H atom in a one-dimensional box of side comparable 
to that of a typical nanoparticle, 100 nm. Estimate the temperature at which, 
according to the integral approximation, q = 10 and evaluate the exact 
partition function at that temperature.

15B.3 (a) Calculate the electronic partition function of a tellurium atom at 
(i) 298 K, (ii) 5000 K by direct summation using the following data:

(b) What proportion of the Te atoms are in the ground term and in the term 
labelled 2 at the two temperatures?

15B.4 The four lowest electronic levels of a Ti atom are 3F2, 3F3, 3F4, and 5F1, at 
0, 170, 387, and 6557 cm−1, respectively. There are many other electronic states 
at higher energies. The boiling point of titanium is 3287 °C. What are the 
relative populations of these levels at the boiling point? Hint: the degeneracies 
of the levels are 2J + 1.

15B.5‡ J. Sugar and A. Musgrove (J. Phys. Chem. Ref. Data 22, 1213 (1993)) 
have published tables of energy levels for germanium atoms and cations from 
Ge+ to Ge+31. The lowest-lying energy levels in neutral Ge are as follows:

Calculate the electronic partition function at 298 K and 1000 K by direct 
summation. Hint: the degeneracy of a level J is 2J + 1.

15B.6 The pure rotational microwave spectrum of HCl has absorption lines 
at the following wavenumbers (in cm−1): 21.19, 42.37, 63.56, 84.75, 105.93, 
127.12, 148.31, 169.49, 190.68, 211.87, 233.06, 254.24, 275.43, 296.62, 317.80, 
338.99, 360.18, 381.36, 402.55, 423.74, 444.92, 466.11, 487.30, 508.48. 
Calculate the rotational partition function at 25 °C by direct summation.

15B.7 Calculate, by explicit summation, the vibrational partition function 
and the vibrational contribution to the energy of I2 molecules at (a) 
100 K, (b) 298 K given that its vibrational energy levels lie at the following 
wavenumbers above the zero-point energy level: 0, 213.30, 425.39, 636.27, 
845.93 cm−1. What proportion of I2 molecules are in the ground and first two 
excited levels at the two temperatures?

15B.8‡ Consider the electronic partition function of a perfect atomic 
hydrogen gas at a density of 1.99 × 10−4 kg m−3 and 5780 K. These are the mean 
conditions within the Sun’s photosphere, the surface layer of the Sun that 
is about 190 km thick. (a) Show that this partition function, which involves 
a sum over an infinite number of quantum states that are solutions to the 
Schrödinger equation for an isolated atomic hydrogen atom, is infinite. 
(b) Develop a theoretical argument for truncating the sum and estimate the 
maximum number of quantum states that contribute to the sum. (c) Calculate 
the equilibrium probability that an atomic hydrogen electron is in each 
quantum state. Are there any general implications concerning electronic states 
that will be observed for other atoms and molecules? Is it wise to apply these 
calculations in the study of the Sun’s photosphere?

15B.9 A formal way of arriving at the value of the symmetry number is to 
note that σ is the order (the number of elements) of the rotational subgroup 
of the molecule, the point group of the molecule with all but the identity 
and the rotations removed. The rotational subgroup of H2O is {E,C2}, so 
σ = 2. The rotational subgroup of NH3 is {E,2C3}, so σ = 3. This recipe makes 
it easy to find the symmetry numbers for more complicated molecules. 
The rotational subgroup of CH4 is obtained from the T character table 
as {E,8C3,3C2}, so σ = 12. For benzene, the rotational subgroup of D6h is 
{ , , , , , }E C C C C2 2 3 36 3 2 2 2′ ′C  so σ = 12. (a) Estimate the rotational partition 
function of ethene at 25 °C given that A .= 4 828cm 1− , B .=1 12cm 100 − ,  
and C = 0.8282cm 1− . (b) Evaluate the rotational partition function of 
pyridine, C5H5N, at room temperature ( A .= 0 02 14cm 1− , B .= 0 1936cm 1− , 
C .= 0 0987cm 1− ).

Term Degeneracy Wavenumber/cm−1

Ground 5 0

1 1 4707

2 3 4751

3 5 10 559

3
0P 3

1P 3
2P 1

2D 1
0S

(E/hc)/cm−1 0 557.1 1410.0 7125.3 16367.3

iranchembook.ir/edu



654 15 Statistical thermodynamics

TOPIC 15C molecular energies

Discussion question
15C.1 Identify the conditions under which energies predicted from the 
equipartition theorem coincide with energies computed by using partition 
functions.

Exercises
15C.1(a) Compute the mean energy at 298 K of a two-level system of energy 
separation equivalent to 500 cm−1.
15C.1(b) Compute the mean energy at 400 K of a two-level system of energy 
separation equivalent to 600 cm−1.

15C.2(a) Evaluate, by explicit summation, the mean rotational energy of 
CO and plot its value as a function of temperature. At what temperature 
is the equipartition value within 5 per cent of the accurate value? 
B(CO 1 931cm 1) .= − .

15C.2(b) Evaluate, by explicit summation, the mean rotational energy of HI 
and plot its value as a function of temperature. At what temperature is the 
equipartition value within 5 per cent of the accurate value?  
B(HI 6 511cm 1) .= − .

15C.3(a) Evaluate, by explicit summation, the mean rotational energy of 
CH4 and plot its value as a function of temperature. At what temperature 
is the equipartition value within 5 per cent of the accurate value? 
B(CH 5 241cm 1

4) .= − .
15C.3(b) Evaluate, by explicit summation, the mean rotational energy of 
CCl4 and plot its value as a function of temperature. At what temperature 
is the equipartition value within 5 per cent of the accurate value? 
B(CCl 0 0572cm 1

4) .= − .

15C.4(a) Evaluate, by explicit summation, the mean rotational energy of CH3Cl 
and plot its value as a function of temperature. At what temperature is the 
equipartition value within 5 per cent of the accurate value? A = 5 097cm 1. −  and 
B = 0.443cm 1− .

15C.4(b) Evaluate, by explicit summation, the mean rotational energy of NH3 
and plot its value as a function of temperature. At what temperature is the 
equipartition value within 5 per cent of the accurate value? A .= 6 196cm 1−  
and B .= 9 444cm 1− .

15C.5(a) Evaluate, by explicit summation, the mean vibrational energy of Br2 
and plot its value as a function of temperature. At what temperature is the 
equipartition value within 5 per cent of the accurate value? Use  .= 323 2cm 1− .

15C.5(b) Evaluate, by explicit summation, the mean vibrational energy of I2 
and plot its value as a function of temperature. At what temperature is the 
equipartition value within 5 per cent of the accurate value? Use  .= 214 5cm 1− .

15C.6(a) Evaluate, by explicit summation, the mean vibrational energy of 
CS2 and plot its value as a function of temperature. At what temperature 
is the equipartition value within 5 per cent of the accurate value? Use the 
wavenumbers 658 cm−1 (symmetric stretch), 397 cm−1 (bend; two modes), 
1535 cm−1 (asymmetric stretch). The A modes are non-degenerate, E modes 
are doubly degenerate, and T modes are triply degenerate.
15C.6(b) Evaluate, by explicit summation, the mean vibrational energy of 
HCN and plot its value as a function of temperature. At what temperature 
is the equipartition value within 5 per cent of the accurate value? Use the 
wavenumbers 3311 cm−1 (symmetric stretch), 712 cm−1 (bend; two modes), 
2097 cm−1 (asymmetric stretch). A modes are non-degenerate, E modes are 
doubly degenerate, and T modes are triply degenerate.

15C.7(a) Evaluate, by explicit summation, the mean vibrational energy of 
CCl4 and plot its value as a function of temperature. At what temperature 
is the equipartition value within 5 per cent of the accurate value? Use the 
wavenumbers 459 cm−1 (symmetric stretch, A), 217 cm−1 (deformation, E), 
776 cm−1 (deformation, T), 314 cm−1 (deformation, T).
15C.7(b) Evaluate, by explicit summation, the mean vibrational energy of 
CI4 and plot its value as a function of temperature. At what temperature 
is the equipartition value within 5 per cent of the accurate value? Use the 
wavenumbers 178 cm−1 (symmetric stretch, A), 90 cm−1 (deformation, E), 
555 cm−1 (deformation, T), 125 cm−1 (deformation, T).

15C.8(a) Calculate the mean contribution to the electronic energy at 1900 K for 
a sample composed of the atoms specified in Exercise 15B.13(a).
15C.8(b) Calculate the mean contribution to the electronic energy at 2000 K for 
a sample composed of the atoms specified in Exercise 15B.13(b).

Problems
15C.1 An electron trapped in an infinitely deep spherical well of radius R, 
such as may be encountered in the investigation of nanoparticles, has energies 
given by the expression Enl  = ħ2Xnl

2 /2meR2, with Xnl the value obtained by 
searching for the zeroes of the spherical Bessel functions. The first six values 
(with a degeneracy of the corresponding energy level equal to 2l + 1) are as 
follows:

Evaluate the partition function and mean energy of an electron as a function 
of temperature. Choose the temperature range and radius to be so low that 
only these six energy levels need be considered. Hint: Remember to measure 
energies from the lowest level.

15C.2 The NO molecule has a doubly degenerate excited electronic level 
121.1 cm−1 above the doubly degenerate electronic ground term. Calculate 
and plot the electronic partition function of NO from T = 0 to 1000 K. 
Evaluate (a) the term populations and (b) the mean electronic energy at 300 K.

15C.3 Consider a system with energy levels εj = jε and N molecules. (a) Show 
that if the mean energy per molecule is aε, then the temperature is given by

β ε= +





1
1

1
ln

a  
Evaluate the temperature for a system in which the mean energy is ε, taking ε 
equivalent to 50 cm−1. (b) Calculate the molecular partition function q for the 
system when its mean energy is aε.

n 1 1 1 2 1 2

l 0 1 2 0 3 1

Xnl 3.142 4.493 5.763 6.283 6.988 7.725
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15C.4 Deduce an expression for the root mean square energy, 〈ε2〉1/2, in terms 
of the partition function and hence an expression for the root mean square 

deviation from the mean, Δε = (〈ε2〉 – 〈ε〉2)1/2. Evaluate the resulting expression 
for a harmonic oscillator.

TOPIC 15D the canonical ensemble

Discussion questions
15D.1 Why is the concept of a canonical ensemble required?

15D.2 Explain what is meant by an ensemble and why it is useful in statistical 
thermodynamics.

15D.3 Under what circumstances may identical particles be regarded as 
distinguishable?

15D.4 What is meant by the ‘thermodynamic limit’?

Exercises
15D.1(a) Identify the systems for which it is essential to include a factor of 
1/N! on going from Q to q : (i) a sample of helium gas, (ii) a sample of carbon 
monoxide gas, (iii) a solid sample of carbon monoxide, (iv) water vapour.

15D.1(b) Identify the systems for which it is essential to include a factor of 
1/N! on going from Q to q: (i) a sample of carbon dioxide gas, (ii) a sample of 
graphite, (iii) a sample of diamond, (iv) ice.

Problem
15D.1‡ For a perfect gas, the canonical partition function, Q, is related to the 
molecular partition function q by Q = qN/N!. In Topic 15F it is established 

that p = kT(∂ ln Q/∂V)T. Use the expression for q to derive the perfect gas law 
pV = nRT.

TOPIC 15E the internal energy and the entropy

Discussion questions
15E.1 Describe the molecular features that determine the magnitudes of the 
constant-volume molar heat capacity of a molecular substance.

15E.2 Discuss and illustrate the proposition that 1/T is a more natural 
measurement of temperature than T itself.

15E.3 Discuss the relationship between the thermodynamic and statistical 
definitions of entropy.

15E.4 Justify the differences between the partition-function expression for the 
entropy for distinguishable particles and the expression for indistinguishable 
particles.

15E.5 Account for the temperature and volume dependence of the entropy of a 
perfect gas in terms of the Boltzmann distribution.

15E.6 Explain the origin of residual entropy.

Exercises
15E.1(a) Use the equipartition theorem to estimate the constant-volume molar 
heat capacity of (i) I2, (ii) CH4, (iii) C6H6 in the gas phase at 25 °C.
15E.1(b) Use the equipartition theorem to estimate the constant-volume molar 
heat capacity of (i) O3, (ii) C2H6, (iii) CO2 in the gas phase at 25 °C.

15E.2(a) Estimate the values of γ  = Cp/CV for gaseous ammonia and methane. 
Do this calculation with and without the vibrational contribution to the 
energy. Which is closer to the expected experimental value at 25 °C?
15E.2(b) Estimate the value of γ  = Cp/CV for carbon dioxide. Do this calculation 
with and without the vibrational contribution to the energy. Which is closer 
to the expected experimental value at 25 °C?

15E.3(a) The ground level of Cl is 2P3/2 and a 2P1/2 level lies 881 cm−1 above 
it. Calculate the electronic contribution to the heat capacity of Cl atoms at 
(i) 500 K and (ii) 900 K.

15E.3(b) The first electronically excited state of O2 is 1Δg and lies 7918.1 cm−1 
above the ground state, which is 3∑g

− . Calculate the electronic contribution to 
the heat capacity of O2 at 400 K.

15E.4(a) Plot the molar heat capacity of a collection of harmonic oscillators 
as a function of T/θV, and predict the vibrational heat capacity of ethyne 
at (i) 298 K, (ii) 500 K. The normal modes (and their degeneracies in 
parentheses) occur at wavenumbers 612(2), 729(2), 1974, 3287, and 
3374 cm−1.
15E.4(b) Plot the molar entropy of a collection of harmonic oscillators as 
a function of T/θV, and predict the standard molar entropy of ethyne at 
(i) 298 K, (ii) 500 K. For data, see the preceding exercise.

15E.5(a) Calculate the standard molar entropy at 298 K of (i) gaseous helium, 
(ii) gaseous xenon.
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15E.5(b) Calculate the translational contribution to the standard molar entropy 
at 298 K of (i) H2O(g), (ii) CO2(g).

15E.6(a) At what temperature is the standard molar entropy of helium equal to 
that of xenon at 298 K?
15E.6(b) At what temperature is the translational contribution to the standard 
molar entropy of CO2(g) equal to that of H2O(g) at 298 K?

15E.7(a) Calculate the rotational partition function of H2O at 298 K from its 
rotational constants 27.878 cm−1, 14.509 cm−1, and 9.287 cm−1 and use your 
result to calculate the rotational contribution to the molar entropy of gaseous 
water at 25 °C.
15E.7(b) Calculate the rotational partition function of SO2 at 298 K from its 
rotational constants 2.027 36 cm−1, 0.344 17 cm−1, and 0.293 535 cm−1 and use 
your result to calculate the rotational contribution to the molar entropy of 
sulfur dioxide at 25 °C.

15E.8(a) The ground state of the Co2+ ion in CoSO4⋅7H2O may be regarded 
as 4T9/2. The entropy of the solid at temperatures below 1 K is derived almost 
entirely from the electron spin. Estimate the molar entropy of the solid at 
these temperatures.
15E.8(b) Estimate the contribution of the spin to the molar entropy of a solid 
sample of a d-metal complex with S = 5

2
.

15E.9(a) Predict the standard molar entropy of methanoic acid (formic acid, 
HCOOH) at (i) 298 K, (ii) 500 K. The normal modes occur at wavenumbers 
3570, 2943, 1770, 1387, 1229, 1105, 625, 1033, 638 cm−1.
15E.9(b) Predict the standard molar entropy of ethyne at (i) 298 K, (ii) 500 K.  
The normal modes (and their degeneracies in parentheses) occur at 
wavenumbers 612(2), 729(2), 1974, 3287, and 3374 cm−1.

Problems
15E.1 The NO molecule has a doubly degenerate electronic ground state and a 
doubly degenerate excited state at 121.1 cm−1. Calculate and plot the electronic 
contribution to the molar heat capacity of the molecule up to 500 K.

15E.2 Explore whether a magnetic field can influence the heat capacity of a 
paramagnetic molecule by calculating the electronic contribution to the heat 
capacity of an NO2 molecule in a magnetic field. Estimate the total constant-
volume heat capacity using equipartition, and calculate the percentage change 
in heat capacity brought about by a 5.0 T magnetic field at (a) 50 K, (b) 298 K.

15E.3 The energy levels of a CH3 group attached to a larger fragment are 
given by the expression for a particle on a ring, provided the group is rotating 
freely. What is the high-temperature contribution to the heat capacity and 
entropy of such a freely rotating group at 25 °C? The moment of inertia 
of CH3 about its three-fold rotation axis (the axis that passes through the 
C atom and the centre of the equilateral triangle formed by the H atoms) is 
5.341 × 10−47 kg m2).

15E.4 Calculate the temperature dependence of the heat capacity of p-H2 
(in which only rotational states with even values of J are populated) at low 
temperatures on the basis that its rotational levels J = 0 and J = 2 constitute 
a system that resembles a two-level system except for the degeneracy of 
the upper level. Use B .= 6 864cm 10 −  and sketch the heat capacity curve. 
The experimental heat capacity of p-H2 does in fact show a peak at low 
temperatures.

15E.5‡ In a spectroscopic study of buckminsterfullerene C60, F. Negri  
et al. (J. Phys. Chem. 100, 10849 (1996)) reviewed the wavenumbers of all 
the vibrational modes of the molecule:

How many modes have a vibrational temperature θV below 1000 K? Estimate 
the molar constant-volume heat capacity of C60 at 1000 K, counting as active 
all modes with θV below this temperature.

15E.6 Use mathematical software to evaluate the heat capacity of the bound 
states of a Morse oscillator (see Problem 15B.1). Plot the heat capacity as a 
function of temperature. Can you devise a way to include the unbound states 
that lie above the dissociation limit?

15E.7 Although expressions like 〈ε〉 = −d ln q/dβ are useful for formal 
manipulations in statistical thermodynamics, and for expressing 

thermodynamic functions in neat formulas, they are sometimes more trouble 
than they are worth in practical applications. When presented with a table of 
energy levels, it is often much more convenient to evaluate the following sums 
directly:

q q q= = =∑ ∑ ∑− − −

j j

j

j

j
j j je e eβε βε βεβε βε  ( )2

 
(a) Derive expressions for the internal energy, heat capacity, and entropy in 
terms of these three functions. (b) Apply the technique to the calculation of 
the electronic contribution to the constant-volume molar heat capacity of 
magnesium vapour at 5000 K using the following data:

15E.8 Show how the heat capacity of a linear rotor is related to the following 
sum:

ξ β ε ε β ε ε( ) ( ) ( ) ( )

,

( ) ( )= − ′{ } ′
′

− + ′{ }∑1
2

2

q
J J

J JJ J g J e

 
by

C Nk= 1
2

2β ξ β( )
 

where the ε(J) are the rotational energy levels and g(J) their degeneracies. 
Then go on to show graphically that the total contribution to the heat capacity 
of a linear rotor can be regarded as a sum of contributions due to transitions 
0 → 1, 0 → 2, 1 → 2, 1 → 3, etc. In this way, construct Fig. 15.1 for the 
rotational heat capacities of a linear molecule.

15E.9 Set up a calculation like that in Problem 15E.8 to analyse the vibrational 
contribution to the heat capacity in terms of excitations between levels and 
illustrate your results graphically in terms of a diagram like that in Fig. 15.1.

15E.10 Use the accurate expression for the rotational partition function 
calculated in Problem 15B.6 for HCl(g) to calculate the rotational 
contribution to the molar entropy over a range of temperature and plot the 
contribution as a function of temperature.

15E.11 Calculate the standard molar entropy of N2(g) at 298 K from its 
rotational constant B =1 9987cm 1. −  and its vibrational wavenumber 
 = 2358cm 1− . The thermochemical value is 192.1 J K−1 mol−1. What does this 
suggest about the solid at T = 0?

Mode Number Degeneracy Wavenumber/cm−1

Au 1 1 976

T1u 4 3 525, 578, 1180, and 1430

T2u 5 3 354, 715, 1037, 1190, 1540

Gu 6 4 345, 757, 776, 963, 1315, 1410

Hu 7 5 403, 525, 667, 738, 1215, 1342, 1566

Term 1S 3
0P 3

1P 3
2P 1

1P 3
1S

Degeneracy 1 1 3 5 3 3

/cm 1− 0 21 850 21 870 21 911 35 051 41 197
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15E.12‡ J.G. Dojahn et al. (J. Phys. Chem. 100, 9649 (1996)) characterized the 
potential energy curves of the ground and electronic states of homonuclear 
diatomic halogen anions. The ground state of F2

−  is 2 u
+Σ  with a fundamental 

vibrational wavenumber of 450.0 cm−1 and equilibrium internuclear distance 
of 190.0 pm. The first two excited states are at 1.609 and 1.702 eV above the 
ground state. Compute the standard molar entropy of F2

−  at 298 K.

15E.13‡ Treat carbon monoxide as a perfect gas and apply equilibrium 
statistical thermodynamics to the study of its properties, as specified below, in 
the temperature range 100–1000 K at 1 bar.  = 2169 8cm 1. − , B .=1 931cm 1− ,  
and hcD 0 0=11 9eV. ; neglect anharmonicity and centrifugal distortion. 
(a) Examine the probability distribution of molecules over available rotational 
and vibrational states. (b) Explore numerically the differences, if any, between 
the rotational molecular partition function as calculated with the discrete 
energy distribution with that calculated with the classical, continuous energy 
distribution. (c) Calculate the individual contributions to Um(T) − Um(100 K), 
CV,m(T), and Sm(T) − Sm(100 K) made by the translational, rotational, and 
vibrational degrees of freedom.

15E.14 The energy levels of a Morse oscillator are given in Problem 15B.1. Set 
up the expression for the molar entropy of a collection of Morse oscillators 
and plot it as a function of temperature for a series of anharmonicities. Take 
into account only the finite number of bound states. On the same graph plot 
the entropy of an harmonic oscillator and investigate how the two diverge.

15E.15 Explore how the entropy of a collection of two-level systems behaves 
when the temperature is formally allowed to become negative. You should 
also construct a graph in which the temperature is replaced by the variable 
β  = 1/kT. Account for the appearance of the graphs physically.

15E.16 Derive the Sackur–Tetrode equation for a monatomic gas confined to 
a two-dimensional surface, and hence derive an expression for the standard 
molar entropy of condensation to form a mobile surface film.

15E.17‡ For H2 at very low temperatures, only translational motion contributes 
to the heat capacity. At temperatures above θ R = hcB k / , the rotational 
contribution to the heat capacity becomes significant. At still higher 
temperatures, above θV = h/k, the vibrations contribute. But at this latter 
temperature, dissociation of the molecule into the atoms must be considered. 
(a) Explain the origin of the expressions for θR and θV, and calculate their 
values for hydrogen. (b) Obtain an expression for the molar constant-
pressure heat capacity of hydrogen at all temperatures taking into account the 
dissociation of hydrogen. (c) Make a plot of the molar constant-pressure heat 
capacity as a function of temperature in the high-temperature region where 
dissociation of the molecule is significant.

15E.18 The heat capacity ratio of a gas determines the speed of sound in it 
through the formula cs = (γRT/M)1/2, where γ  = Cp/CV and M is the molar mass 
of the gas. Deduce an expression for the speed of sound in a perfect gas of 
(a) diatomic, (b) linear triatomic, (c) nonlinear triatomic molecules at high 
temperatures (with translation and rotation active). Estimate the speed of 
sound in air at 25 °C.

15E.19 An average human DNA molecule has 5 × 108 binucleotides (rungs on 
the DNA ladder) of four different kinds. If each rung were a random choice of 
one of these four possibilities, what would be the residual entropy associated 
with this typical DNA molecule?

15E.20 It is possible to write an approximate expression for the partition 
function of a protein molecule by including contributions from only two 
states: the native and denatured forms of the polymer. Proceeding with this 
crude model gives us insight into the contribution of denaturation to the heat 
capacity of a protein. According to this model, the total energy of a system of 
N protein molecules is

E
N kT

kT
=

+ −
ε ε

ε
e

e

− /

/1  
where ε is the energy separation between the denatured and native forms. (a) 
Show that the constant-volume molar heat capacity is
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(b) Plot the variation of CV,m with temperature. (c) If the function CV,m(T) has 
a maximum or minimum, derive an expression for the temperature at which 
it occurs.

TOPIC 15F derived functions

Discussion questions
15F.1 Suggest a physical interpretation of the relation between pressure and 
the partition function.

15F.2 Suggest a physical interpretation of the relation between equilibrium 
constant and the partition functions of the reactants and products in a reaction.

15F.3 How does a statistical analysis of the equilibrium constant account for 
the latter’s temperature dependence?

Exercises
15F.1(a) A CO2 molecule is linear, and its vibrational wavenumbers are 
1388.2 cm−1, 2349.2 cm−1, and 667.4 cm−1, the last being doubly degenerate 
and the others non-degenerate. The rotational constant of the molecule is 

0.3902 cm−1. Calculate the rotational and vibrational contributions to the 
molar Gibbs energy at 298 K.
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Figure 15.1 Contributions to the rotational heat capacity of a 
linear molecule.
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15F.1(b) An O3 molecule is angular, and its vibrational wavenumbers are 
1110 cm−1, 705 cm−1, and 1042 cm−1. The rotational constants of the molecule 
are 3.553 cm−1, 0.4452 cm−1, and 0.3948 cm−1. Calculate the rotational and 
vibrational contributions to the molar Gibbs energy at 298 K.

15F.2(a) Use the information in Exercise 15E.3(a) to calculate the electronic 
contribution to the molar Gibbs energy of Cl atoms at (i) 500 K and (ii) 900 K.
15F.2(b) Use the information in Exercise 15E.3(b) to calculate the electronic 
contribution to the molar Gibbs energy of O2 at 400 K.

15F.3(a) Calculate the equilibrium constant of the reaction I 2 I g2( ) ( )g   at 
1000 K from the following data for I2,  .= 214 36cm 1− , B = 0 0. 373cm 1− ,  
hcD e 1 5422eV= . . The ground state of the I atoms is 2P3/2, implying fourfold 
degeneracy.
15F.3(b) Calculate the equilibrium constant at 298 K for the gas-phase isotopic 
exchange reaction 279Br81Br ⇌ 79Br79Br + 81Br81Br. The Br2 molecule has a 
non-degenerate ground state, with no other electronic states nearby. Base 
the calculation on the wavenumber of the vibration of 79Br81Br, which is 
323.33 cm−1.

Problems
15F.1 Calculate and plot as a function of temperature, in the range 300 K 
to 1000 K, the equilibrium constant for the reaction CD4(g) + HCl(g) ⇌ 
CHD3(g) + DCl(g) using the following data (numbers in parentheses are 
degeneracies):

15F.2 The exchange of deuterium between acid and water is an important 
type of equilibrium, and we can examine it using spectroscopic data on the 
molecules. Calculate the equilibrium constant at (a) 298 K and (b) 800 K for 
the gas-phase exchange reaction H2O + DCl ⇌ HDO + HCl from the following 
data:

15F.3 Determine whether a magnetic field can influence the value of an 
equilibrium constant. Consider the equilibrium I2(g) ⇌ 2 I(g) at 1000 K, 

and calculate the ratio of equilibrium constants K(B)/K, where K(B) is the 
equilibrium constant when a magnetic field B is present and removes the 
degeneracy of the four states of the 2P3/2 level. Data on the species are given in 
Exercise 15F.3(a). The electronic g value of the atoms is 4

3
. Calculate the field 

required to change the equilibrium constant by 1 per cent.

15F.4‡ R. Viswanathan et al. (J. Phys. Chem. 100, 10784 (1996)) studied 
thermodynamic properties of several boron–silicon gas-phase species 
experimentally and theoretically. These species can occur in the high-
temperature chemical vapour deposition (CVD) of silicon-based 
semiconductors. Among the computations they reported was computation 
of the Gibbs energy of BSi(g) at several temperatures based on a 4Σ− ground 
state with equilibrium internuclear distance of 190.5 pm and fundamental 
vibrational wavenumber of 772 cm−1 and a 2P0 first excited level 8000 cm−1 
above the ground level. Compute the standard molar Gibbs energy 
Gm

<(2000 K) − Gm
<(0).

15F.5‡ The molecule Cl2O2, which is believed to participate in the seasonal 
depletion of ozone over Antarctica, has been studied by several means. M. 
Birk et al. (J. Chem. Phys. 91, 6588 (1989)) report its rotational constants 
(B) as 13 109.4, 2409.8, and 2139.7 MHz. They also report that its rotational 
spectrum indicates a molecule with a symmetry number of 2. J. Jacobs et al. 
(J. Amer. Chem. Soc. 116, 1106 (1994)) report its vibrational wavenumbers as 
753, 542, 310, 127, 646, and 419 cm−1. Compute Gm

<(200 K) − Gm
<(0) of Cl2O2.

15F.6‡ J. Hutter et al. (J. Amer. Chem. Soc. 116, 750 (1994)) examined the 
geometric and vibrational structure of several carbon molecules of formula 
Cn. Given that the ground state of C3, a molecule found in interstellar space 
and in flames, is an angular singlet with moments of inertia 39.340, 39.032, 
and 0.3082mu Å2 (where 1 Å = 10−10 m) and with vibrational wavenumbers 
of 63.4, 1224.5, and 2040 cm−1, compute Gm

<(10.00 K) − Gm
<(0) and 

Gm
<(100.0 K) − Gm

<(0) for C3.

Integrated activity
15.1 Use mathematical software, a spreadsheet, or the Living graphs on the web 
site for this book to: (a) Consider a three-level system with levels 0, ε, and 2ε. 
Plot the partition function against kT/ε. (b) Plot the function dS/dT for a two-
level system, the temperature coefficient of its entropy, against kT/ε. Is there a 
temperature at which this coefficient passes through a maximum? If you find 

a maximum, explain its physical origins. (c) Plot the temperature dependence 
of the vibrational contribution to the molecular partition function for 
several values of the vibrational wavenumber. Estimate from your plots the 
temperature above which the harmonic oscillator is in the high-temperature 
limit.

Molecule /cm 1− B /cm 1− A/cm 1−

CHD3 2993 (1), 2142 (1), 1003 (3), 1291 (2), 
1036 (2)

3.28 2.63

CD4 2109 (1), 1092 (2), 2259 (3), 996 (3) 2.63

HCl 2991 (1) 10.59

DCl 2145 (1) 5.445

Molecule /cm 1− A/cm 1− B /cm 1− C /cm 1−

H2O 3656.7, 1594.8, 3755.8 27.88 14.51 9.29

HDO 2726.7, 1402.2, 3707.5 23.38 9.102 6.417

HCl 2991 10.59

DCl 2145 5.449
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chaPter 16

molecular interactions

In this chapter we examine molecular interactions and inter-
pret them in terms of electric properties of molecules. We see 
here, and in more detail in Chapter 17, that molecular inter-
actions govern the structures and functions of molecular 
assemblies.

16A electric properties of molecules

The chapter begins with an account of the electric properties of 
molecules, such as ‘electric dipole moments’ and ‘polarizabili-
ties’. All these properties reflect the degree to which the nuclei 
of atoms exert control over the electrons in a molecule, either 
by causing electrons to accumulate in particular regions, or by 
permitting them to respond more or less strongly to the effects 
of external electric fields.

16B Interactions between molecules

This Topic describes the basic theory of several important 
molecular interactions, with a special focus on ‘van der Waals 
interactions’ between closed-shell molecules. Also discussed 
are ‘hydrogen bonding’ and the ‘hydrophobic interaction’. All 
liquids and solids are bound together by one or more of the 
cohesive interactions we explore in this Topic. Moreover, these 
interactions are also important for the structural organization 
of macromolecules.

16C liquids

This Topic begins with the basic theory of molecular interactions 
in liquids, then turns to a description of the properties of liquid 
surfaces. We see how important effects, such as ‘surface tension’, 
‘capillary action’, the formation of ‘surface films’, and condensa-
tion, can be explained by thermodynamics arguments.

What is the impact of this material?

Molecular interactions play important roles in biochemistry 
and biomedicine. In Impact I16.1 we focus on the binding of a 
drug, a small molecule or protein, to a specific receptor site of 
a target molecule, such as a larger protein or nucleic acid. The 
chemical result of the formation of this assembly is the inhibi-
tion of the progress of disease. We also discuss (in Impact I16.2) 
an example where manipulation of molecular interactions 
could have significant technological consequences: the design 
of assemblies that can store and deliver hydrogen gas efficiently, 
thereby making it a viable fuel for commercial development of 
a host of devices.

To read more about the impact of this 
material, scan the QR code, or go to  
bcs.whfreeman.com/webpub/chemistry/
pchem10e/impact/pchem-16-1.html
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16A electric properties of molecules

The electric properties of molecules are responsible for many of 
the properties of bulk matter. The small imbalances of charge 
distributions in molecules allow them to interact with one 
another and to respond to externally applied fields.

16A.1 Electric dipole moments

An electric dipole consists of two electric charges +Q and −Q 
with a separation R. A point electric dipole is an electric dipole 
in which R is very small compared with its distance from the 
observer. The electric dipole moment is a vector μ (1) that 
points from the negative charge to the positive charge and has a 
magnitude given by

μ =QR  Definition  magnitude of the electric dipole moment  (16A.1)

R

–Q +Qµ

1 Electric dipole

Although the SI unit of dipole moment is coulomb metre (C m), it 
is still commonly reported in the non-SI unit debye, D, named 
after Peter Debye, a pioneer in the study of dipole moments of 
molecules:

1 3 335 64 10 30D C m= ×. −
 (16A.2)

The magnitude of the dipole moment formed by a pair of 
charges +e and −e separated by 100 pm 1.6 × 10−29 C m, corres-
ponding to 4.8 D. The magnitudes of the dipole moments of 
small molecules are typically about 1 D.1

A polar molecule is a molecule with a permanent electric 
dipole moment. A permanent dipole moment stems from the 
partial charges on the atoms in the molecule that arise from 
differences in electronegativity or, in more sophisticated treat-
ments, variations in electron density through the molecule 
(Topic 10E). Nonpolar molecules acquire an induced dipole 
moment in an electric field on account of the distortion the 
field causes in their electronic distributions and nuclear posi-
tions. However, this induced moment is only temporary, and 
disappears as soon as the perturbing field is removed. Polar 
molecules also have their existing dipole moments temporarily 
modified by an applied field.

All heteronuclear diatomic molecules are polar, and typical 
values of μ are 1.08 D for HCl and 0.42 D for HI (Table 16A.1). 
Molecular symmetry is of the greatest importance in deciding 
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➤➤ Why do you need to know this material?
Because the molecular interactions responsible for the 
formation of condensed phases and large molecular 
assemblies arise from the electric properties of molecules, 
you need to know how the electronic structures of 
molecules lead to these properties.

➤➤ What is the key idea?
The nuclei of atoms exert control over the electrons in 
a molecule, and can cause electrons to accumulate in 
particular regions, or permit them to respond more or less 
strongly to external fields.

➤➤ What do you need to know already?
You need to be familiar with the Coulomb law (Foundations 
B), molecular geometry, and molecular orbital theory, 
especially the relevance of the energy gap between a 
HOMO and LUMO (Topic 10E).

1 The conversion factor in eqn 16A.2 stems from the original definition of 
the debye in terms of c.g.s. units: 1 D is the dipole moment of two equal and 
opposite charges of magnitude 1 e.s.u. separated by 1 Å.
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16A Electric properties of molecules  661

whether a polyatomic molecule is polar or not (see also Topic 
11A). Indeed, molecular symmetry is more important than the 
question of whether or not the atoms in the molecule belong 
to the same element. For this reason, and as we see in the fol-
lowing Brief illustration, homonuclear polyatomic molecules 
may be polar if they have low symmetry and the atoms are in 
inequivalent positions.

The dipole moment of a polyatomic molecule can be 
resolved into contributions from various groups of atoms in 
the molecule and their relative locations (Fig. 16A.1). Thus, 
1,4-dichlorobenzene is nonpolar by symmetry on account 
of the cancellation of two equal but opposing C−Cl moments 
(exactly as in carbon dioxide). 1,2-Dichlorobenzene, however, 
has a dipole moment which is approximately the resultant of 
two chlorobenzene dipole moments arranged at 60° to each 
other. This technique of ‘vector addition’ can be applied with 
fair success to other series of related molecules, and the mag-
nitude of the resultant moment μres of μ1 and μ2 that make an 

angle θ to each other (4) is approximately (see Mathematical 
background 5 following Chapter 9)

µ µ µ µ µ θres ≈ 1 2
2 2

1 2

1 2
2+ +( )cos

/

 (16A.3a)

µµ1

µ2

θ

4  Addition of dipole moments

When the two contributing dipole moments have the same 
magnitude (as in the dichlorobenzenes), this equation simpli-
fies to

µ µ θ µ θres ≈ +{ } =
+ =

2 1 21
2 1 2

1
1
2

1
2

( cos ) cos
/

1 cos 2cos2θ θ
 

(16A.3b)

Brief illustration 16A.2 Molecular dipole moments

Consider ortho (1,2-) and meta (1,3-) disubstituted benzenes, 
for which θortho = 60° and θmeta = 120°. It follows from eqn 
16A.3b that the ratio of the magnitudes of the electric dipole 
moments is:

µ
µ

θ
θ

res

res

,

,

cos

cos

cos ( )

cos
ortho

meta

ortho

meta

= =
°1

2
1
2

1
2

1
2

60

(( )
/

/
.

/
/

120
3 2
1 2

3 1 7
1 2

1 2

°
= = ≈

Self-test 16A.2 Calculate the resultant of two dipole moments 
of magnitude 1.5 D and 0.80 D that make an angle of 109.5° to 
each other.

Answer: 1.4 D

Brief illustration 16A.1 Symmetry and the polarity  
of molecules

The angular molecule ozone (2) is homonuclear. However, 
it is polar because the central O atom is different from the 
outer two (it is bonded to two atoms, which are bonded only 
to one). Moreover, the dipole moments associated with each 
bond make an angle to each other and do not cancel. The het-
eronuclear linear triatomic molecule CO2 is nonpolar because, 
although there are partial charges on all three atoms, the 
dipole moment associated with the OC bond points in the 
opposite direction to the dipole moment associated with the 
CO bond, and the two cancel (3).

µ

δ– δ–
δ+ δ+

2 Ozone, O3      

δ– δ–δ+ δ+

3 Carbon dioxide, CO2

Self-test 16A.1 Is SO2 polar?
Answer: Yes

C2v

C2v C2v

D2h

(a) µobs = 1.57 D (b) µobs = 0,  µcalc = 0

(c) µobs = 2.25 D, µcalc = 2.7 D (d) µobs = 1.48 D, µcalc = 1.6 D

Figure 16A.1 The resultant dipole moments (purple in (c) and 
(d)) of the dichlorobenzene isomers, (b) to (d), can be obtained 
approximately by vectorial addition of two chlorobenzene 
dipole moments (shown in (a), with μobs = 1.57 D). (The point 
groups of the molecules are also indicated.)

Table 16A.1* Dipole moments (μ) and polarizability  
volumes (α ′)

μ/D α ′/(10−30 m3)

CCl4 0 10.5

H2 0 0.819

H2O 1.85 1.48

HCl 1.08 2.63

HI 0.42 5.45

* More values will be found in the Resource section.
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662 16 Molecular interactions

A more reliable approach to the calculation of dipole 
moments is to take into account the locations and magnitudes 
of the partial charges on all the atoms. These partial charges are 
included in the output of many molecular structure software 
packages. To calculate the x-component, for instance, we need 
to know the partial charge on each atom and the atom’s x-coor-
dinate relative to a point in the molecule and form the sum

μx Q x=∑
J

J J

 
(16A.4a)

Here QJ is the partial charge of atom J, xJ is the x-coordinate 
of atom J, and the sum is over all the atoms in the molecule. 
Analogous expressions are used for the y- and z-components. 
For an electrically neutral molecule, the origin of the coor-
dinates is arbitrary, so it is best chosen to simplify the meas-
urements. In common with all vectors, the magnitude of μ is 
related to the three components μx, μy, and μz by

μ μ μ μ= + +( )x y z
2 2 2

1 2/

 
(16A.4b)

Molecules may have higher multipoles, or arrays of point 
charges (Fig. 16A.2). Specifically, an n-pole is an array of point 
charges with an n-pole moment but no lower moment. Thus, a 
monopole (n = 1) is a point charge, and the monopole moment is 
what we normally call the overall charge. A dipole (n = 2), as we 
have seen, is an array of charges that has no monopole moment 
(no net charge). A quadrupole (n = 3) consists of an array of 
point charges that has neither net charge nor dipole moment (as 
for CO2 molecules, 3). An octupole (n = 4) consists of an array 
of point charges that sum to zero and which has neither a dipole 
moment nor a quadrupole moment (as for CH4 molecules, 7).

δ+

δ+

δ+

δ+

δ–

δ–

δ–

δ–

7 Methane, CH4

Example 16A.1 Calculating a molecular dipole moment

Estimate the magnitude and orientation of the electric dipole 
moment of the amide group shown in 5 by using the par-
tial charges (as multiples of e) and the locations of the atoms 
shown, with distances in picometres.

H

N C

O

(182,–87,0)

(132,0,0) (0,0,0)

(–62,107,0)

+0.18

–0.36

–0.38

+0.45

5

Method Use eqn 16A.4a to calculate each of the components 
of the dipole moment and then eqn 16A.4b to assemble the 
three components into the magnitude of the dipole moment. 
Note that the partial charges are multiples of the fundamental 
charge, e = 1.609 × 10−19 C.

Answer The expression for μx is

μx e e e= − × + × + ×
+ −
( . ) ( ) ( . ) ( ) ( . ) ( )

( .

0 36 132 0 45 0 0 18 182

0 38

pm pm pm

ee

e

) ( . )

.

. ( . ) ( ) .

× −
=
= × × × = ×− − −

62 0

8 8

8 8 1 602 10 10 1 4 1019 12

pm

pm

C m 330C m

corresponding to μx = +0.42 D. The expression for μy is:

μy e e e

e

= − × + × + × −
+ −
( . ) ( ) ( . ) ( ) ( . ) ( )

( .

0 36 0 0 45 0 0 18 87

0 38

pm pm pm

)) ( )

.

×
= −
= − × −

107

56

19 0 10 30

pm

pm

C m

e

It follows that μy = −2.7D. The amide group is planar, so μz = 0 
and

μ = + − ={( . ) ( . ) } ./0 42 2 7 2 72 2 1 2D D D

We can find the orientation of the dipole moment by arrang-
ing an arrow of length 2.7 units of length to have x, y, and z 
components of 0.42, −2.7, and 0 units; the orientation is super-
imposed on 5.

Self-test 16A.3 Calculate the magnitude of the electric dipole 
moment of formaldehyde by using the information in 6.

H
C

O

+0.18+0.18

–0.38

+0.45

6

(0,118,0)

(0,0,0)

(–94,–61,0) (94,–61,0)

Answer: 2.3 D

Monopole

Dipole

Quadrupole

Quadrupole

Octupole

Octupole

Figure 16A.2 Typical charge arrays corresponding to electric 
multipoles. The field arising from an arbitrary finite charge 
distribution can be expressed as the superposition of the fields 
arising from a superposition of multipoles.
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16A Electric properties of molecules  663

16A.2 Polarizabilities

The failure of nuclear charges to control the surrounding elec-
trons totally means that those electrons can respond to external 
fields. Therefore, an applied electric field can distort a molecule 
as well as align its permanent electric dipole moment. The mag-
nitude μ* of the induced dipole moment, μ*, is generally pro-
portional to the field strength, E, and we write

µ α* = E  Definition  Polarizability  (16A.5a)

The constant of proportionality α is the polarizability of 
the molecule. The greater the polarizability, the larger is the 
induced dipole moment for a given applied field. In a formal 
treatment, we should use vector quantities and allow for the 
possibility that the induced dipole moment might not lie paral-
lel to the applied field, in which case the scalar α is replaced by 
α, a 3 × 3 matrix. We ignore this complication.

When the applied field is very strong (as in tightly focused 
laser beams), the magnitude of the induced dipole moment is 
not strictly linear in the strength of the field, and we write

µ α β* = + +E E1
2

2 …
 Definition  hyperpolarizability  (16A.5b)

The coefficient β is the (first) hyperpolarizability of the 
molecule.

Polarizability has the units (coulomb metre)2 per joule 
(C2 m2 J−1). That collection of units is awkward, so α is often 
expressed as a polarizability volume, α ′ by using the relation

α α
ε′ =

4 0π  
Definition  Polarizability volume  (16A.6)

where ε0 is the vacuum permittivity (Foundations B). Because 
the units of 4πε0 are coulomb-squared per joule per metre 
(C2 J−1 m−1), it follows that α ′ has the dimensions of volume 
(hence its name). Polarizability volumes are similar in mag-
nitude to actual molecular volumes (of the order of 10−30 m3, 
10−3 nm3, 1 Å3).

The polarizability volumes of some molecules are given in 
Table 16A.1. As shown in the following Justification, polar-
izability volumes correlate with the HOMO–LUMO sepa-
rations in atoms and molecules (Topic 10E). The electron 
distribution can be distorted readily if the LUMO lies close 
to the HOMO in energy, so the polarizability is then large. If 
the LUMO lies high above the HOMO, an applied field cannot 
perturb the electron distribution significantly, and the polariz-
ability is low. Molecules with small HOMO–LUMO gaps are 
typically large, and have numerous electrons.

Justification 16A.1 Polarizability and molecular structure

The quantum mechanical expression for the molecular polar-
izability in the z-direction is2

α
µ

=
−

≠
∑2

0

0

2

0
0
0

n

z n

nE E
,

( ) ( )

where µ ψ µ ψ τz n n z, *0 0= ∫ d  is the z-component of the transi-
tion electric dipole moment, a measure of the extent to which 
electric charge is shifted when an electron migrates from the 
ground state to create an excited state. The sum is over the 
excited states, with energies En. The content of this equation 
can be appreciated by approximating the excitation energies 
by a mean value ΔE (an indication of the HOMO–LUMO 
separation) and supposing that the most important transition 
dipole moment is approximately equal to the charge of an elec-
tron multiplied by the molecular radius R. Then

α ≈ 2 2 2e R
E∆

This expression shows that α increases with the size of the 
molecule and with the ease with which it can be excited (the 
smaller the value of ΔE).

If the excitation energy is approximated by the energy 
needed to remove an electron to infinity from a distance R 
from a single positive charge, we can write ΔE ≈ e2/4πε0R. 
When this expression is substituted into α ≈ 2e2R2/ΔE to 
obtain α ≈ 2(4πε0)R3, then both sides are divided by 4πε0 
and the factor of 2 ignored in this approximation, we obtain 
α ′ ≈ R3, which is of the same order of magnitude as the molec-
ular volume.

Brief illustration 16A.3 The induced dipole moment

The polarizability volume of H2O is 1.48 × 10−30 m3. It follows 
from eqns 16A.4a and 16A.5 that μ* = 4πε0α ′E and the mag-
nitude of the dipole moment of the molecule (in addition to 
the permanent dipole moment) induced by an applied electric 
field of strength 1.0 × 105 V m−1 is

μ* ( . ) ( . )

( .

=4 8 854 1 J C m 1 48 1 m

1 1 JC m

12 1 2 1 3 3

5 1 1

π× × × ×
× ×

− − − −

− −

0 0

0 0

0

))

. . .= × = × =
= −

− −

1V 1JC 1


31 6 1 C m 4 9 1 D 4 9 D35 60 0 µ

Self-test 16A.4 What strength of electric field is required to 
induce an electric dipole moment of magnitude 1.0 µD in a 
molecule of polarizability volume 2.6 × 10−30 m3 (like CO2)?

Answer: 11 kV m−1

2 For a derivation of this equation see our Physical chemistry: Quanta, 
matter, and change (2014).
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664 16 Molecular interactions

For most molecules, the polarizability is anisotropic, by which 
is meant that its value depends on the orientation of the mol-
ecule relative to the field. The polarizability volume of benzene 
when the field is applied perpendicular to the ring is 0.0067 nm3 
and it is 0.0123 nm3 when the field is applied in the plane of the 
ring. The anisotropy of the polarizability determines whether a 
molecule is rotationally Raman active (Topic 12C).

16A.3 Polarization

The polarization, P, of a sample is the electric dipole moment 
density, the mean electric dipole moment of the molecules, 〈μ〉, 
multiplied by the number density, N:

P = 〈 〉μ N  Definition  Polarization  (16A.7)

In the following pages we refer to the sample as a dielectric, by 
which is meant a polarizable, non-conducting medium.

(a) The frequency dependence of the 
polarization
The polarization of an isotropic fluid sample is zero in the 
absence of an applied field because the molecules adopt cease-
lessly changing random orientations due to thermal motion, so 
〈μ〉 = 0. In the presence of a weak electric field, the orientations 
of the molecular dipoles fluctuate but we show in the following 
Justification that the mean value of the dipole moment for the 
sample at a temperature T is

〈 〉μ μ
z kT

=
2

3
E

 

where z is the direction of the applied field E. At very high elec-
tric fields the orientations of molecular dipole moments fluc-
tuate about the field direction to a lesser extent and the mean 
dipole moment approaches its maximum value of 〈μz〉 = μ.

When the applied field changes direction slowly, the perma-
nent dipole moment has time to reorient—the whole molecule 
rotates into a new direction—and follows the field. However, 
when the frequency of the field is high, a molecule cannot 
change direction fast enough to follow the change in direction 
of the applied field and the permanent dipole moment then 
makes no contribution to the polarization of the sample. We 
say that the orientation polarization, the polarization arising 
from the permanent dipole moments, is lost at such high fre-
quencies. Because a molecule takes about 1 ps to turn through 
about 1 radian in a fluid, the loss of the contribution of orienta-
tion polarization to the total polarization occurs when meas-
urements are made at frequencies greater than about 1011 Hz 
(in the microwave region).

The next contribution to the polarization to be lost as 
the frequency is raised is the distortion polarization, the 
polarization that arises from the distortion of the positions 
of the nuclei by the applied field. The molecule is bent and 
stretched by the applied field, and the molecular dipole 
moment changes accordingly. The time taken for a mol-
ecule to bend is approximately the inverse of the molecular 

Justification 16A.2 The thermally averaged dipole 
moment

The probability dp that a dipole has an orientation in the range 
θ to θ + dθ is given by the Boltzmann distribution (Topic 15A), 
which in this case is

d
e d

e d
p

E kT

E kT

=
−

−∫
( )/

( )/

sin

sin

θ

θ

θ θ

θ θ
0

π

where E(θ) is the energy of the dipole in the field: E(θ) =  
−μE cos θ, with 0 ≤ θ ≤ π. The average value of the component 
of the dipole moment parallel to the applied electric field is 
therefore

〈 〉µ µ θ µ θ
µ θ θ θθ

θ
z

x

x

p p= = =∫ ∫ ∫
∫

cos cos
cos sin

si
d d

e d

e

cos

cos

0

0

π

π
nnθ θd

with x = μE/kT. The integral takes on a simpler appearance 
when we write y = cos θ and dy = −sin θ dθ, and change the 
limits of integration to y = −1 (at θ = π) and y = 1 (at θ = 0):

〈 〉μ
μ

z

xy

xy

y y

y
= −

−

∫
∫

1

1

1

1

e d

e d

Integral E.4

Integral E.3

� �� ��

��� ��

It is then straightforward algebra to obtain

〈 〉μ μ μ
z

x x

x xL x L x
x

x
E

kT
= = +

−
− =

−

−( ) ( )
e e
e e

1

L(x) is called the Langevin function.
Under most circumstances, x is very small (for example, 

if μ = 1 D and T = 300 K, then x exceeds 0.01 only if the field 
strength exceeds 100 kV cm−1, and most measurements are done 
at much lower strengths). The exponentials in the Langevin 
function can be expanded as ex x x x= + + + +…1 1

2
2 1

6
3  when the 

field is so weak that x ≪ 1, the largest term that survives is

L x x( )= +…1
3

Therefore, the average molecular dipole moment is given by 
eqn 16A.8.

 (16A.8)
Weak 
electric field

mean value of the 
dipole moment
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16A Electric properties of molecules  665

vibrational frequency, so the distortion polarization dis-
appears when the frequency of the radiation is increased 
through the infrared.

The disappearance of polarization occurs in stages: as 
shown in the following Justification, each successive stage 
occurs as the incident frequency rises above the frequency of 
a particular mode of vibration. At even higher frequencies, 
in the visible region, only the electrons are mobile enough to 
respond to the rapidly changing direction of the applied field. 
The polarization that remains is now due entirely to the dis-
tortion of the electron distribution, and the surviving contri-
bution to the molecular polarizability is called the electronic 
polarizability.

(b) Molar polarization
When two charges Q1 and Q2 are separated by a distance r in a 
vacuum, the Coulomb potential energy of their interaction is 
(Foundations B)

V
Q Q

r
= 1 2

04πε  
(16A.9a)

When the same two charges are immersed in a medium (such 
as air or a liquid), their potential energy is reduced to

V
Q Q

r
= 1 2

4πε  
(16A.9b)

where ε is the permittivity of the medium. The permittivity is 
normally expressed in terms of the dimensionless relative per-
mittivity, εr, (formerly and still widely called the dielectric con-
stant) of the medium:

ε ε
εr =

0  
Definition  relative permittivity  (16A.10)

The relative permittivity can have a very significant effect on 
the strength of the interactions between ions in solution. For 
instance, water has a relative permittivity of 78 at 25 °C, so the 
interionic Coulombic interaction energy is reduced by nearly 
two orders of magnitude from its vacuum value. Some of the 
consequences of this reduction for electrolyte solutions are 
explored in Topic 5F.

The relative permittivity of a substance is large if its mole-
cules are polar or highly polarizable. The quantitative relation 
between the relative permittivity and the electric properties of 
the molecules is obtained by considering the polarization of a 
medium, and is expressed by the Debye equation:

ε
ε

ρr

r

m−
+ =1

2
P
M  

 debye equation  (16A.11)

where ρ is the mass density of the sample, M is the molar mass 
of the molecules, and Pm is the molar polarization, which is 
defined as

P
N

kTm
A= +



3 30

2

ε α µ

 
Definition  molar polarization  (16A.12)

(where α is the polarizability, not the polarizability volume 
α ′).The term μ2/3kT stems from the thermal averaging of the 
electric dipole moment in the presence of the applied field (eqn 
16A.8). The corresponding expression without the contribution 
from the permanent dipole moment is called the Clausius–
Mossotti equation:

ε
ε

ρ
ε
αr

r

A−
+ =1

2 3 0

N
M  

 clausius–mossotti equation  (16A.13)

The Clausius–Mossotti equation is used when there is no con-
tribution from permanent electric dipole moments to the polar-
ization, either because the molecules are non-polar or because 
the frequency of the applied field is so high that the molecules 
cannot orientate quickly enough to follow the change in direc-
tion of the field.

Justification 16A.3 The frequency dependence  
of polarizabilities

The quantum mechanical expression for the polarizability of a 
molecule in the presence of an electric field that is oscillating 
at a frequency ω in the z-direction is3

α ω
ω µ
ω ω

( )
,=

−
≠

∑2

0

0 0

2

0
2 2

n

n z n

n

The quantities in this expression (which is valid provided that 
ω is not close to ωn0) are the same as those in Justification 
16A.1, with ħωn0 = En − E0. As ω → 0, the equation reduces to the 
expression for the static polarizability in Justification 16A.1. As 
ω becomes very high (and much higher than any excitation fre-
quency of the molecule so that the ωn0

2  in the denominator can 
be ignored), the polarizability becomes

α ω
ω

ω µ ω( )= − →∞→∑2
02 0 0

2


n

n n as

That is, when the incident frequency is much higher than any 
excitation frequency, the polarizability becomes zero. The 
argument applies to each type of excitation, vibrational as 
well as electronic, and accounts for the successive decreases in 
polarizability as the frequency is increased.

3 For a derivation of this equation see our Physical chemistry: Quanta, 
matter, and change (2014).
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666 16 Molecular interactions

Example 16A.2 Determining dipole moment and 
polarizability

The relative permittivity of a substance is measured by com-
paring the capacitance of a capacitor with and without the 
sample present (C and C0, respectively) and using εr = C/C0. 
The relative permittivity of camphor (8) was measured 
at a series of temperatures with the results given below. 
Determine the dipole moment and the polarizability volume 
of the molecule.

O

8 Camphor

Method The relative permittivity depends on the molar 
polarization (eqn 16A.11), which in turn depends on the tem-
perature, polarizability, and the magnitude of the permanent 
dipole moment (eqn 16A.12). It follows that the polarizability 
and permanent electric dipole moment of the molecules in a 
sample can be determined by:
•	 Measuring εr at a series of temperatures, calculate 

(εr − 1)/(εr + 2) at each temperature, and then multiply 
by M/ρ to form Pm from eqn 16A.11;

•	 Plotting Pm against 1/T. Because eqn 16A.16 
rearranges to

P
N N

k Tm
A A= + ×α µ
ε ε

intercept slope 

3 9
1

0

2

0

The slope of the graph is NAμ2/9ε0k and its intercept at 1/T = 0 
is NAα/3ε0.

Answer For camphor, M = 152.23 g mol−1. We can therefore 
use the data to draw up the following table:

The points are plotted in Fig. 16A.3. The intercept on the ver-
tical axis lies at Pm/(cm3 mol−1) = 82.9, so NAα/3ε0 = 82.9 cm3 
mol−1 = 8.29 × 10−4 m3 mol−1; it then follows that

α

ε

= × ×
×

− − −

−
3 8 854 10

6 02 10

12 1 2 1

23 1

( . )
.

J C m
mol

0

A

� ����� �����

� �
N

��� ���

� ���� ����
× ×

= ×

− −

−

8 29 10

3 53 10

4 3 1

38 2

.

.

m mol

C

intercept

m J2 1−

From eqn 16A.6, it follows that α ′ = 3.18 × 10−28 m3 = 3.18 ×  
10−23 cm3. The slope is 10.7, so NAμ2/9ε0k = 10.7 cm3 mol−1 K  
= 1.07 × 10−4 m3 mol−1 K, so from the expression for Pm in the 
Method it follows that

µ

ε

= × × × ×− − − − −9 8 854 10 1 381 1012 1 2 1 23 1( . ) .(J C m J K

0� ����� �����
))

.

.

/
k

N

� ���� ����

� ���� ����6 022 10

1 07

23 1

1 2

×

















× ×

−mol
A

110

4 42 10 0

4 3 1

1 2

31

− −

−













= × =. .

/

m mol K

C m

slope� ���� ����

1134D

θ/°C ρ/(g cm−3) εr

0 0.99 12.5

20 0.99 11.4

40 0.99 10.8

60 0.99 10.0

80 0.99 9.50

100 0.99 8.90

120 0.97 8.10

140 0.96 7.60

160 0.95 7.11

200 0.91 6.21

θ/°C (103K)/T εr (εr − 1)/(εr + 2) Pm/(cm3 mol−1)

0 3.66 12.5 0.793 122

20 3.41 11.4 0.776 119

40 3.19 10.8 0.766 118

60 3.00 10.0 0.750 115

80 2.83 9.50 0.739 114

100 2.68 8.90 0.725 111

120 2.54 8.10 0.703 110

140 2.42 7.60 0.688 109

160 2.31 7.11 0.670 107

200 2.11 6.21 0.634 106

122

118

114

110

106
2 3 4

P
m
/(

cm
3  

m
o

l–1
)

(103 K)/T

Figure 16A.3 The plot of Pm/(cm3 mol−1) against (103 K)/T used 
in Example 16A.2 for the determination of the polarizability 
and the magnitude of the dipole moment of camphor.
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16A Electric properties of molecules  667

According to Maxwell’s theory of electromagnetic radia-
tion, the refractive index at a (visible or ultraviolet) specified 

wavelength is related to the relative permittivity at that fre-
quency by:

nr r=ε1 2/
 

where the refractive index, nr, of the medium is the ratio of the 
speed of light in a vacuum, c, to its speed c′ in the medium: 
nr = c/c′. A beam of light changes direction (‘bends’) when it 
passes from a region of one refractive index to a region with 
a different refractive index. Therefore, the molar polarization, 
Pm, and the molecular polarizability, α, can be measured at 
frequencies typical of visible light (about 1015 to 1016 Hz) by 
measuring the refractive index of the sample and using the 
Clausius–Mossotti equation.

Checklist of concepts

☐ 1. An electric dipole consists of two electric charges +Q 
and −Q separated by a vector R.

☐ 2. The electric dipole moment μ is a vector that points 
from the negative charge to the positive charge of a 
dipole; its magnitude is μ.

☐ 3. A polar molecule is a molecule with a permanent elec-
tric dipole moment.

☐ 4. Molecules may have higher electric multipoles: an 
n-pole is an array of point charges with an n-pole 
moment but no lower moment.

☐ 5. The polarizability is a measure of the ability of an elec-
tric field to induce a dipole moment in a molecule.

☐ 6. Polarizabilities (and polarizability volumes) corre-
late with the HOMO–LUMO separations in atoms and 
molecules.

☐ 7. For most molecules, the polarizability is anisotropic.
☐ 8. The polarization of a medium is the electric dipole 

moment density.
☐ 9. Orientation polarization is the polarization arising 

from the permanent dipole moments.
☐ 10. Distortion polarization is the polarization arising from 

the distortion of the positions of the nuclei by the applied 
field.

☐ 11. Electronic polarizability is the polarizability due to the 
distortion of the electron distribution.

Checklist of equations

Because the Debye equation describes molecules that are free 
to rotate, the data show that camphor, which does not melt 
until 175 °C, is rotating even in the solid. It is an approximately 
spherical molecule.

Self-test 16A.5 The relative permittivity of chlorobenzene is 
5.71 at 20 °C and 5.62 at 25 °C. Assuming a constant density 
(1.11 g cm−3), estimate its polarizability volume and the magni-
tude of its dipole moment.

Answer: 1.4 × 10−23 cm3, 1.2 D

 (16A.14)relation between refractive 
index and relative permittivity

Property Equation Comment Equation number

Magnitude of the electric dipole moment μ = QR Definition 16A.1

Magnitude of the resultant of two dipole moments µ µ µ µ µ θres ≈ + +( cos ) /
1
2

2
2

1 2
1 22 16A.3a

Magnitude of the induced dipole moment μ* = αE Linear approximation; α is the  
polarizability

16A.5a

µ α β* = +E E1
2

2 Quadratic approximation; β is the  
hyperpolarizability

16A.5b

Polarizability volume α ′ = α/4πε0 Definition 16A.6

Polarization P = 〈μ〉N Definition 16A.7

Potential energy of interaction between  
two charges in a medium

V = Q1Q2/4πεr The relative permittivity of the  
medium is εr = ε/ε0

16A.9b

Debye equation (εr − 1)/(εr + 2) = ρPm/M 16A.11

Molar polarization Pm = (NA/3ε0)(α + μ2/3kT) Definition 16A.12

Clausius–Mossotti equation (εr − 1)/(εr + 2) = ρNAα/3Mε0 16A.13
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16B Interactions between molecules

We begin by examining the interactions between the partial 
charges of polar molecules. Then we discuss van der Waals 
interactions: attractive interactions between closed-shell mol-
ecules that depend on the separation of the molecules as the 
inverse sixth power (V ∝ 1/r6), although this precise criterion is 
often relaxed to include all non-bonding interactions. Finally, 
we see that repulsive interactions arise from Coulomb forces 
and, indirectly, from the Pauli principle (Topic 9B) and the 
exclusion of electrons from regions of space where the orbitals 
of neighbouring species overlap.

16B.1 Interactions between partial 
charges

In general, atoms in molecules have partial charges arising from 
the spatial variation in electron density in the ground state. If 
these charges were separated by a medium, they would attract 
or repel each other in accord with Coulomb’s law, and we would 
write (as in Topic 16A):

V
Q Q

r
= 1 2

4πε  
 coulomb potential energy in a medium  (16B.1)

where Q1 and Q2 are the partial charges, r is their separation, 
and ε is the permittivity of the medium lying between the 
charges. The following Brief illustration examines effect of the 
permittivity of the medium on the strength of the interaction.

Brief illustration 16B.1 The interaction energy of two 
partial charges

Different values of the permittivity of the medium take into 
account the possibility that other parts of the molecule, or 

Contents

16b.1 Interactions between partial charges 668
brief illustration 16b.1: the interaction  
energy of two partial charges 668

16b.2 The interactions of dipoles 669
(a) Charge–dipole interactions 669

brief illustration 16b.2: the energy of interaction  
of a point charge and a point dipole 670

(b) Dipole–dipole interactions 670
brief illustration 16b.3: the dipolar interaction 670
brief illustration 16b.4: the keesom interaction 672

(c) Dipole–induced dipole interactions 673
brief illustration 16b.5: the dipole–induced  
dipole interaction 673

(d) Induced dipole–induced dipole interactions 673
brief illustration 16b.6: the london interaction 674

16b.3 Hydrogen bonding 674
brief illustration 16b.7: the hydrogen bond 675

16b.4 The hydrophobic interaction 675

16b.5 The total interaction 676
example 16b.1: calculating an intermolecular  
force from the lennard-Jones potential energy 678

Checklist of concepts 678
Checklist of equations 678

➤➤ Why do you need to know this material?
You need to understand the many types of molecular 
interactions responsible for the formation of condensed 
phases and large molecular assemblies. The molecular 
interactions described here are of prime importance for 
solving one of the great problems of molecular biology: 
how complex molecules, like proteins and nucleic acids, 
fold into their three-dimensional structures.

➤➤ What is the key idea?
Attractive interactions result in cohesion, but repulsive 
interactions prevent the complete collapse of matter to 
nuclear densities.

➤➤ What do you need to know already?
You need to be familiar with elementary aspects of 
electrostatics, specifically the Coulomb interaction 
(Foundations B), and the relationships between the 
structure and electric properties of a molecule, specifically 
its dipole moment and polarizability (Topic 16A).
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16B.2 The interactions of dipoles

Most of the discussion in this and the following sections is based 
on the Coulombic potential energy of interaction between two 
charges (eqn 16B.1). This expression can be adapted to find the 
potential energy of a point charge and a dipole and extend it to 
the interaction between two dipoles.

(a) Charge–dipole interactions
A point dipole is a dipole in which the separation between the 
charges is much smaller than the distance at which the dipole 
is being observed (l ≪ r). We show in the following Justification 
that the potential energy of interaction between a point dipole 
with a dipole moment of magnitude μ1 = Q1l, and the point 
charge Q2 in the arrangement shown in 1 is

V
Q

r
= − µ

ε
1 2

0
24π  

l+Q1 Q2–Q1

r

1

µ1

With μ1 in coulomb metres, Q2 in coulombs, and r in metres, V 
is obtained in joules (and in the orientation shown in 1 is nega-
tive, representing a net attraction). The potential energy rises 
towards zero (the value at infinite separation of the charge and 
the dipole) more rapidly (as 1/r2) than that between two point 
charges (which varies as 1/r) because, from the viewpoint of the 
point charge, the partial charges of the dipole seem to merge 
and cancel as the distance r increases (Fig. 16B.1).

other molecules, lie between the charges. For example, the 
energy of interaction between a partial charge of −0.36 (that is, 
Q1 = −0.36e) on the N atom of an amide group and the partial 
charge of +0.45 (Q2 = +0.45e) on the carbonyl C atom at a dis-
tance of 3.0 nm, on the assumption that the medium between 
them is a vacuum, is

V
e e= − ×
×

= − × × × −

( . ) ( . )
( . )

. . ( . )

0 36 0 45
4 3 0

0 36 0 45 1 602 10

0

19

πε nm

C 22

2 1 2 1 9

20

4 8 854 10 3 0 10

1 2 10

π× × × ×
= − ×

− − − − −

−

( . ) ( . )

.

J C m m

J

where ε0 is the vacuum permittivity. This energy (after mul-
tiplication by Avogadro’s constant) corresponds to −7.5 kJ 
mol−1. However, if the medium has a ‘typical’ relative permit-
tivity εr = ε/e0 = 3.5 (Topic 16A), then the interaction energy is 
reduced by that factor to −2.1 kJ mol−1.

Self-test 16B.1 Repeat the calculation for bulk water as the 
medium.

Answer: −0.96 kJ mol−1

 (16B.2)
energy of interaction 
between a point dipole 
and a point charge

Justification 16B.1 The interaction between a point 
charge and a point dipole

The sum of the potential energies of repulsion between like 
charges and attraction between opposite charges in the orien-
tation shown in 1 is

V
Q Q
r l

Q Q
r l

Q Q
x xr

= − − + +






= − − + +






1
4 4

1
1

1
10

1 2
1
2

1 2
1
2

1 2

0π πε ε 

where x = l/2r. Because l ≪ r for a point dipole, this expres-
sion can be simplified by expanding the terms in x by using 
(Mathematical background 1)

1
1

1
1

1
12 2

+ = − + −…
− = + + +…

x
x x

x
x x

and retaining only the leading surviving term:

V
Q Q

x x
xQ Q

r
Q Q l

rr
= − + +… + − +…{ }≈ − = −1 2

0

1 2

0

1 2

0
24

1 1
2
4 4π π πε ε ε

( ) ( )

With μ1 = Q1l, this expression becomes eqn 16B.2. The equa-
tion should be multiplied by cos θ when the point charge lies 
at an angle θ to the axis of the dipole.

Figure 16B.1 There are two contributions to the diminishing 
field of an electric dipole with distance (here seen from the 
side). The potentials of the charges decrease (shown here by a 
fading intensity) and the two charges appear to merge, so their 
combined effect approaches zero more rapidly than by the 
distance effect alone.
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670 16 Molecular interactions

(b) Dipole–dipole interactions
We show in the following Justification that the preceding dis-
cussion can be extended to the interaction of two dipoles 
arranged as in 2. The result is

V
r

= − µ µ
ε
1 2

0
32π  

l+Q1 –Q1 l+Q2 –Q2

r

2

µ1 µ2

This interaction energy approaches zero more rapidly (as 1/r3) 
than for the previous case: now both interacting entities appear 
neutral to each other at large separations.

The preceding Justification represents only one possible 
orientation of two dipoles. More generally, the potential 
energy of interaction between two polar molecules is a com-
plicated function of their relative orientation. When the two 
dipoles are parallel and arranged as in 3 , the potential energy 
is simply

V
f
r

f= = −µ µ θ
ε θ θ1 2

0
3

2

4
1 3

( )
( )π cos

 
 

3

µ2

l

+Q1 –Q1

l+Q2 –Q2

r

µ1

θ

Brief illustration 16B.2 The energy of interaction  
of a point charge and a point dipole

Consider a Li+ ion and a water molecule (μ = 1.85 D) separated 
by 1.0 nm, with the point charge on the ion and the dipole of 
the molecule arranged as in 1. The energy of interaction is 
given by eqn 16B.2 as

V = − × × × ×− −

+

( ). ( . . )1 602 10 1 85 3 336 1019 30C C m

Q
Li H2O� ��� ��� � �µ����� �����

� ����� �����4 8 854 10 101 012 1 1 1π× × × ×− − − − −( . ) ( .J C m
ε0

99 2

218 9 10

m)

.

r
� ��� ���

= − × − J

This energy corresponds to −5.4 kJ mol−1.

Self-test 16B.2 Consider the arrangement in 1 and calculate 
the molar energy required to reverse the direction of the water 
molecule when it is at 300 pm from the Li+ ion.

Answer: 119 kJ mol−1

Justification 16B.2 The interaction energy  
of two dipoles

To calculate the potential energy of interaction of two dipoles 
separated by r in the arrangement shown in 2 we proceed in 
exactly the same way as in Justification 16B.1, but now the 
total interaction energy is the sum of four pairwise terms, two 
attractions between opposite charges, which contribute nega-
tive terms to the potential energy, and two repulsions between 
like charges, which contribute positive terms.

The sum of the four contributions is

energy of interaction 
between two dipoles

Arrangement 
as in 2  (16B.3)

V
Q Q
r l

Q Q
r

Q Q
r

Q Q
r l

Q Q
r x

= − + + + − −






= − + −

1
4

4
1

1
2

0

1 2 1 2 1 2 1 2

1 2

0

π

π

ε

ε ++ −






1
1 x

with x = l/r. As before, provided l ≪ r we can expand the two 
terms in x and retain only the first surviving term, which is 
equal to 2x2. This step results in the expression

V
x Q Q

r
= − 2

4

2
1 2

0πε

Therefore, because μ1 = Q1l and μ2 = Q2l, the potential energy 
of interaction in the alignment shown in 2 is given by  
eqn 16B.3.

Brief illustration 16B.3 The dipolar interaction

We can use eqn 16B.4 to calculate the molar potential energy of 
the dipolar interaction between two amide groups. Supposing 
that the groups are separated by 3.0 nm with θ = 180° (so that 
cos θ = −1 and 1 − 3 cos2 θ = −2), we take μ1 = μ2 = 2.7 D, corre-
sponding to 9.1 × 10−30 C m, and find

V = × × −
× ×

−

−

−

( . ) ( )
( .

9 1 10 2
4 8 854 10

30 2

12

C m

µ µ θ1 2 21 3cos� ��� ��� �

π ) ( . )

( .

J C m m− − −

−

× ×

= ×

1 2 1 9 33 0 10

9 1 10

ε0
3

� ����� ����� � ��� ���
r

330 2

12 9 3

2 2

1 2 1 3

2
4 8 854 10 3 0 10

5 5

) ( )
( . ) ( . )

.

× −
× × × ×

= − ×

− − − −π
C m

J C m m

110 23− J

energy of 
interaction 
between two 
fixed parallel 
dipoles 

 (16B.4)
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16B Interactions between molecules  671

Equation 16B.4 applies to polar molecules in a fixed, paral-
lel, orientation in a solid. In a fluid of freely rotating molecules, 
the interaction between dipoles averages to zero because f(θ) 
changes sign as the orientation changes, and its average value 
is zero. Physically, the like partial charges of two freely rotating 
molecules are close together as much as the two opposite par-
tial charges, and the repulsion of the former is cancelled by the 
attraction of the latter. Mathematically, this result arises from 
the fact that, as we show in the following Justification, the aver-
age of the function 1 – 3 cos2θ is zero.

The average interaction energy of two freely rotating dipoles is 
zero. However, because their mutual potential energy depends 
on their relative orientation, the molecules do not in fact rotate 
completely freely, even in a gas. In fact, the lower energy orien-
tations are marginally favoured, so there is a nonzero average 
interaction between polar molecules. We show in the following 
Justification that the average potential energy of two rotating 
molecules that are separated by a distance r is

〈 〉
π

V
C
r

C
kT

= − =6
1
2

1
2

0
2

2
3 4

µ µ
ε( )  

This expression describes the Keesom interaction, and is the 
first of the contributions to the van der Waals interaction (when 
that is taken to be a 1/r6 interaction).

This value corresponds to −33 J mol−1. Note that this energy is 
considerably less than that between two partial charges at the 
same separation (see Brief illustration 16B.1).

Self-test 16B.3 Repeat the calculation for an amide group 
and a water molecule separated by 3.5 nm with θ = 90°, in a 
medium with relative permittivity of 3.5.

Answer: −2.1 J mol−1

Justification 16B.4 The Keesom interaction

The detailed calculation of the Keesom interaction energy 
is quite complicated, but the form of the final answer can be 
constructed quite simply. First, we note that the average inter-
action energy of two polar molecules rotating at a fixed sepa-
ration r is given by

〈 〉 〈 〉
V

f
r

= µ µ θ
ε

1 2

0
34

( )
π

where 〈f(θ)〉 now includes a weighting factor in the averaging 
that is equal to the probability that a particular orientation will 
be adopted. This probability is given by the Boltzmann distri-
bution, p ∝ e−E/kT, with E interpreted as the potential energy of 
interaction of the two dipoles in that orientation. That is,

p V
f
r

V kT∝ =−e / ( )µ µ θ
ε

1 2

0
34π

When the potential energy of interaction of the two dipoles 
is very small compared with the energy of thermal motion, 
we can use V ≪ kT, expand the exponential function in p, and 
retain only the first two terms:

average potential 
energy of two rotating 
polar molecules 

 (16B.5)

Justification 16B.3 The dipolar interaction between  
two freely rotating molecules

Consider the unit sphere shown in Fig. 16B.2. The average 
value of f(θ) = 1 − 3 cos2θ is the sum of its values in each of the 
infinitesimal regions on the surface of the sphere (that is, the 
integral of the function over the surface) divided by the sur-
face area of the sphere (which is equal to 4π).

With the area element in spherical polar coordinates as  
sin θ dθ dϕ, θ ranging from 0 to π, and ϕ ranging from 0 to 2π, 
the average value 〈f(θ)〉 of f(θ) is
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Figure 16B.2 A unit sphere showing the area element sin θ 
dθ dϕ.

The integral is calculated as follows:
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It follows that 〈f(θ)〉 = 0, and, from eqn 16B.6, that the dipo-
lar interaction between two freely rotating molecules vanishes 
when averaged over a sphere.
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The important features of eqn 16B.5 are

•	 The negative sign shows that the average interaction 
is attractive.

•	 The dependence of the average interaction energy on 
the inverse sixth power of the separation identifies it 
as a van der Waals interaction.

•	 The inverse dependence on the temperature reflects 
the way that the greater thermal motion overcomes 
the mutual orientating effects of the dipoles at higher 
temperatures.

•	 The inverse sixth power arises from the inverse third 
power of the interaction potential energy that is 
weighted by the energy in the Boltzmann term, 
which is also proportional to the inverse third power 
of the separation.

Table 16B.1 summarizes the various expressions for the 
interaction of charges and dipoles. It is quite easy to extend 
the formulas given there to obtain expressions for the energy 
of interaction of higher multipoles (electric multipoles are 
described in Topic 16A). The feature to remember is that the 
interaction energy falls off more rapidly the higher the order of 
the multipole. For the interaction of an n-pole with an m-pole, 
the potential energy varies with distance as

V
rn m∝ + −

1
1  

 energy of interaction between multipoles  (16B.6)

The reason for the even steeper decrease with distance is the 
same as before: the array of charges appears to blend together 
into neutrality more rapidly with distance the higher the num-
ber of individual charges that contribute to the multipole. Note 
that a given molecule may have a charge distribution that cor-
responds to a superposition of several different multipoles, and 

p V kT∝ − +1 / 
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where 〈…〉0 denotes an unweighted spherical average. The 
spherical average of f(θ) is zero (as in Justification 16B.3), so 
the first term in the expression for 〈f(θ)〉 vanishes. However, 
the average value of f(θ)2 is nonzero because f(θ)2 is positive at 
all orientations, so we can write

〈 〉 〈 〉0V
f

kTr
= − µ µ θ

ε
1
2

2
2 2

0
2 64
( )

( )π

The average value 〈  f(θ)2〉0 turns out to be 2
3  when the calcula-

tion is carried through in detail. The final result is that quoted 
in eqn 16B.5.
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Brief illustration 16B.4 The Keesom interaction

Suppose a water molecule (μ1 = 1.85 D) can rotate 1.0 nm from 
an amide group (μ2 = 2.7 D). The average energy of their inter-
action at 25 °C (298 K) is
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9 6
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T r

223 J

This interaction energy corresponds (after multiplication by 
Avogadro’s constant) to −24 J mol−1, and it is much smaller 
than the energies involved in the making and breaking of 
chemical bonds.

Self-test 16B.4 Calculate the average interaction energy for 
pairs of molecules in the gas phase with μ = 1 D when the sepa-
ration is 0.5 nm at 298 K. Compare this energy with the aver-
age molar kinetic energy of the molecules.

Answer: 〈V〉 = −0.07 kJ mol−1 ≪ 3
2 RT = 3.7 kJ mol−1

Table 16B.1 Interaction potential energies

Interaction type Distance 
dependence of 
potential energy

Typical 
energy/ 
(kJ mol−1)

Comment

Ion–ion 1/r 250 Only between ions

Hydrogen bond 20 Occurs in X–H…Y, 
where X, Y = N, 
O, or F

Ion–dipole 1/r2 15

Dipole–dipole 1/r3 2 Between stationary 
polar molecules

1/r6 0.3 Between rotating 
polar molecules

London 
(dispersion)

1/r6 2 Between all types 
of molecules 
and ions
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16B Interactions between molecules  673

in such cases the energy of interaction is the sum of terms given 
by eqn 16B.6.

(c) Dipole–induced dipole interactions
A polar molecule can induce a dipole in a neighbouring polar-
izable molecule (Fig. 16B.3). The induced dipole interacts with 
the permanent dipole of the first molecule, and the two are 
attracted together. The average interaction energy when the 
separation of the centres of the molecules is r is

V
C
r

C= − = ′
6

1
2

04
µ

ε
α2

π  

where ′α2 is the polarizability volume (Topic 16A) of molecule 
2 and μ1 is the magnitude of the permanent dipole moment of 
molecule 1. Note that the C in this expression is different from 
the C in eqn 16B.5 and other expressions below: we are using 
the same symbol in C/r6 to emphasize the similarity of form of 
each expression.

The dipole–induced dipole interaction energy is independ-
ent of the temperature because thermal motion has no effect 
on the averaging process. Moreover, like the dipole–dipole 
interaction, the potential energy depends on 1/r6: this dis-
tance dependence stems from the 1/r3 dependence of the field 
(and hence the magnitude of the induced dipole) and the 1/r3 
dependence of the potential energy of interaction between the 
permanent and induced dipoles.

(d) Induced dipole–induced dipole 
interactions
Nonpolar molecules (including closed-shell atoms, such as Ar) 
attract one another even though neither has a permanent dipole 
moment. The abundant evidence for the existence of interac-
tions between them is the formation of condensed phases of 
non-polar substances, such as the condensation of hydrogen or 
argon to a liquid at low temperatures and the fact that benzene 
is a liquid at normal temperatures.

The interaction between nonpolar molecules arises from the 
transient dipoles that all molecules possess as a result of fluctu-
ations in the instantaneous positions of electrons. To appreciate 
the origin of the interaction, suppose that the electrons in one 
molecule flicker into an arrangement that gives the molecule an 
instantaneous dipole moment μ1

*. This dipole generates an elec-
tric field that polarizes the other molecule, and induces in that 
molecule an instantaneous dipole moment μ2. The two dipoles 
attract each other and the potential energy of the pair is low-
ered. Although the first molecule will go on to change the size 
and direction of its instantaneous dipole, the electron distribu-
tion of the second molecule will follow; that is, the two dipoles 
are correlated in direction (Fig. 16B.4). Because of this corre-
lation, the attraction between the two instantaneous dipoles 
does not average to zero, and gives rise to an induced dipole–
induced dipole interaction. This interaction is called either the 
dispersion interaction or the London interaction (for Fritz 
London, who first described it).

The strength of the dispersion interaction depends on the 
polarizability of the first molecule because the instantan eous 
dipole moment of magnitudeμ1

*depends on the looseness of 
the control that the nuclear charge exercises over the outer 
electrons. The strength of the interaction also depends on the 
polarizability of the second molecule, for that polarizability 
determines how readily a dipole can be induced by another 

Brief illustration 16B.5 The dipole–induced dipole 
interaction

For a molecule with μ = 1.0 D (3.3 × 10−30 C m, such as HCl) 
separated by 0.30 nm from a molecule of polarizability volume 
α ′ = 10 × 10−30 m3 (such as benzene, Table 16A.1), the average 
interaction energy is

V = − × × ×
× ×

− −

− − −
( . ) ( )

( .
3 3 10 10 10

4 8 854 10

30 2 30 3

12 1 2

C m m
J C mπ 11 10 6

21

3 0 10

1 4 10

) ( . )

.

× ×
= − ×

−

−

m

J

which, upon multiplication by Avogadro’s constant, corres-
ponds to −0.83 kJ mol−1.

Self-test 16B.5 Calculate the average interaction energy, in 
units of joules per mole (J mol−1), between a water molecule 
and a benzene molecule separated by 1.0 nm.

Answer: −2.1 J mol−1

 (16B.7)
Potential energy of a 
polar molecule and a 
polarizable molecule

(a) (b)

Figure 16B.3 (a) A polar molecule (full arrow) can induce a 
dipole (outline arrow) in a nonpolar molecule, and (b) the 
orientation of the latter follows that of the former, so the 
interaction does not average to zero.

(a) (b)

Figure 16B.4 (a) In the dispersion interaction, an instantaneous 
dipole on one molecule induces a dipole on another molecule, 
and the two dipoles then interact to lower the energy. (b) 
The two instantaneous dipoles are correlated, and although 
they occur in different orientations at different instants, the 
interaction does not average to zero.
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molecule. The actual calculation of the dispersion interaction is 
quite involved, but a reasonable approximation to the interac-
tion energy is given by the London formula:

V
C
r

C
I I

I I
= − = ′ ′ +6

3
2

1 2

1 2

α α1 2

 
 london formula  (16B.8)

where I1 and I2 are the ionization energies of the two molecules 
(Table 9B.2). This interaction energy is also proportional to the 
inverse sixth power of the separation of the molecules, which 
identifies it as a third contribution to the van der Waals inter-
action. The dispersion interaction generally dominates all the 
interactions between molecules other than hydrogen bonds.

16B.3 Hydrogen bonding

The interactions described so far are universal in the sense that 
they are possessed by all molecules independent of their spe-
cific identity. However, there is a type of interaction possessed 
by molecules that have a particular constitution. A hydrogen 
bond is an attractive interaction between two species that arises 
from a link of the form A–H…B, where A and B are highly elec-
tronegative elements and B possesses a lone pair of electrons. 
Hydrogen bonding is conventionally regarded as being limited 
to N, O, and F but, if B is an anionic species (such as Cl−), it may 
also participate in hydrogen bonding. There is no strict cut-off 
for an ability to participate in hydrogen bonding, but N, O, and 
F participate most effectively.

The formation of a hydrogen bond can be regarded either 
as the approach between a partial positive charge of H and a 
partial negative charge of B or as a particular example of delo-
calized molecular orbital formation in which A, H, and B each 
supply one atomic orbital from which three molecular orbit-
als are constructed (Fig. 16B.5). Experimental evidence and 

theoretical arguments have been presented in favour of both 
views and the matter has not yet been resolved. The electro-
static interaction model can be understood readily in terms of 
the discussion in Section 16B.1. Here we develop the molecular 
orbital model.

Thus, if the A−H bond is regarded as formed from the over-
lap of an orbital on A, χA, and a hydrogen 1s orbital, χH, and 
the lone pair on B occupies an orbital on B, χB, then, when the 
two molecules are close together, we can build three molecular 
orbitals from the three basis orbitals:

ψ χ χ χ= + +c c c1 2 3A H B  

One of the molecular orbitals is bonding, one almost nonbond-
ing, and the third anti-bonding. These three orbitals need to 
accommodate four electrons (two from the original A−H bond 
and two from the lone pair of B), so two enter the bonding 
orbital and two enter the nonbonding orbital. Because the anti-
bonding orbital remains empty, the net effect—depending on 
the precise energy of the almost nonbonding orbital—may be a 
lowering of energy.

In practice, the strength of the bond is found to be about 20 kJ 
mol−1 (there are two hydrogen bonds per molecule in li quid 
water, and its standard enthalpy of vaporization, from Table 
2C.2, is 44 kJ mol−1). Because the bonding depends on orbital 
overlap, it is virtually a contact-like interaction that is turned 
on when AH touches B and is zero as soon as the contact is 
broken. If hydrogen bonding is present, it dominates the other 
intermolecular interactions. The properties of liquid and solid 
water, for example, are dominated by the hydrogen bonding 
between H2O molecules. The structure of DNA and hence the 
transmission of genetic information is crucially dependent on 
the strength of hydrogen bonds between base pairs. The struc-
tural evidence for hydrogen bonding comes from noting that 
the internuclear distance between formally non-bonded atoms 

Brief illustration 16B.6 The London interaction

For two CH4 molecules separated by 0.30 nm, we can use eqn 
16B.9 with α ′ = 2.6 × 10−30 m3 and I ≈ 700 kJ mol−1 and obtain
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A very approximate check on this figure is the enthalpy of 
vaporization of methane, which is 8.2 kJ mol−1. However, this 
comparison is questionable, partly because the enthalpy of 
vaporization is a many-body quantity and partly because the 
long-distance assumption breaks down.

Self-test 16B.6 Estimate the energy of the London interaction 
for two He atoms separated by 1.0 nm.

Answer: −0.071 J mol−1

E
n

er
g

y

A H B

Figure 16B.5 The molecular orbital interpretation of the 
formation of an A–H…B hydrogen bond. From the three A, H, 
and B orbitals, three molecular orbitals can be formed (their 
relative contributions are represented by the sizes of the 
spheres). Only the two lower energy orbitals are occupied, and 
there may therefore be a net lowering of energy compared 
with the separate AH and B species.
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is less than expected on the basis of their van der Waals radii, 
which suggests that a dominating attractive interaction is pre-
sent. For example, the O−O distance in O−H…O is expected to 
be 280 pm on the basis of van der Waals radii, but is found to be 
270 pm in typical compounds. Moreover, the H…O distance is 
expected to be 260 pm but is found to be only 170 pm.

Hydrogen bonds may be either symmetric or non-sym-
metric. In a symmetric hydrogen bond, the H atom lies mid-
way between the two other atoms. This arrangement is rare, but 
occurs in F−H…F−, where both bond lengths are 120 pm. More 
common is the non-symmetric arrangement, where the A − H 
bond is shorter than the H…B bond. Simple electrostatic argu-
ments, treating A−H…B as an array of point charges (partial 
negative charges on A and B, partial positive on H) suggest that 
the lowest energy is achieved when the bond is linear, because 
then the two partial negative charges are furthest apart. The 
experimental evidence from structural studies supports a linear 
or near-linear arrangement.

16B.4 The hydrophobic interaction

Nonpolar molecules do dissolve slightly in polar solvents, but 
strong interactions between solute and solvent are not possible 
and as a result it is found that each individual solute molecule 
is surrounded by a solvent cage (Fig. 16B.7). To understand 
the consequences of this effect, consider the thermodynam-
ics of transfer of a nonpolar hydrocarbon solute from a non-
polar solvent to water, a polar solvent. Experiments indicate 
that the process is endergonic (ΔtransferG > 0), as expected on the 
basis of the increase in polarity of the solvent, but exothermic 
(ΔtransferH < 0). Therefore, it is a large decrease in the entropy of 
the system (ΔtransferS < 0) that accounts for the positive Gibbs 
energy of transfer. For example, the process

CH in CCl CH (aq)4 44 ( )→  

has ΔtransferG = +12 kJ mol−1, ΔtransferH = −10 kJ mol−1, and ΔtransferS =  
−75 J K−1 mol−1 at 298 K. Substances characterized by a positive 
Gibbs energy of transfer from a nonpolar to a polar solvent are 
called hydrophobic.

It is possible to quantify the hydrophobicity of a small molec-
ular group R by defining the hydrophobicity constant, π, as

π = log
S
S0  

Definition  hydrophobicity constant  (16B.9)

Self-test 16B.7 Use Fig. 16B.6 to explore the dependence of the 
interaction energy on angle: at what angle does the interaction 
energy become negative?

Answer: Only ±12°, so that the energy is negative  
(and the interaction is attractive) only when the atoms  

are close to a linear arrangement

Brief illustration 16B.7 The hydrogen bond

A common hydrogen bond is that formed between O−H 
groups and O atoms, as in liquid water and ice. In Problem 
16B.6, you are invited to use the electrostatic model to cal-
culate the dependence of the potential energy of interaction 
on the OOH angle, denoted θ in 4, and the results are plotted 
in Fig. 16B.6. We see that the strength of bonding is greatest 
at θ = 0 when the OHO atoms lie in a straight line; the molar 
potential energy is then −19 kJ mol−1.

r

4

θ

R

O

O

H

–100

0

100

200

300

–180 –90 0 90 180
Angle, θ/°

Po
te

n
ti

al
 e

n
er

g
y,

 V
/(

kJ
 m

o
l–1

)

Figure 16B.6 The variation of the energy of interaction 
(according to the electrostatic model) of a hydrogen bond 
as the angle between the O–H and :O groups is changed.

Figure 16B.7 When a hydrocarbon molecule is surrounded 
by water, the H2O molecules form a cage. As a result of this 
acquisition of structure, the entropy of the water decreases, 
so the dispersal of the hydrocarbon into the water is entropy-
opposed; its coalescence is entropy-favoured.
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where S is the ratio of the molar solubility of the compound 
ReA in octanol, a nonpolar solvent, to that in water, and S0 
is the ratio of the molar solubility of the compound H−A in 
octanol to that in water. Therefore, positive values of π indicate 
hydrophobicity and negative values of π indicate hydrophil-
icity, the thermodynamic preference for water as a solvent. It 
is observed experimentally that the π values of most groups 
do not depend on the nature of A. However, measurements do 
suggest group additivity of π values, as the following data show:

Thus, acyclic saturated hydrocarbons become more hydro-
phobic as the carbon chain length increases. This trend can be 
rationalized by ΔtransferH becoming more positive and ΔtransferS 
more negative as the number of carbon atoms in the chain 
increases.

At the molecular level, formation of a solvent cage around 
a hydrophobic molecule involves the formation of new hydro-
gen bonds among solvent molecules. This process is exother-
mic and accounts for the negative values of ΔtransferH. On the 
other hand, the increase in order associated with formation of a 
very large number of small solvent cages decreases the entropy 
of the system and accounts for the negative values of ΔtransferS. 
However, when many solute molecules cluster together, fewer 
(albeit larger) cages are required and more solvent molecules 
are free to move. The net effect of formation of large clusters of 
hydrophobic molecules is then a decrease in the organization 
of the solvent and therefore a net increase in entropy of the sys-
tem. This increase in entropy of the solvent is large enough to 
render spontaneous the association of hydrophobic molecules 
in a polar solvent.

The increase in entropy that results from fewer structural 
demands on the solvent placed by the clustering of nonpolar 
molecules is the origin of the hydrophobic interaction, which 
tends to stabilize aggregation of hydrophobic groups in micelles 
and biopolymers (Topic 17C). The hydrophobic interaction is 
an example of an ordering process that is driven by a tendency 
toward greater disorder of the solvent.

16B.5 The total interaction

Here we consider molecules that are unable to participate in 
hydrogen bond formation. The total attractive interaction 
energy between rotating molecules is then the sum of the 
dipole−dipole, dipole−induced dipole, and dispersion interac-
tions. Only the dispersion interaction contributes if both mol-
ecules are nonpolar. In a fluid phase, all three contributions to 
the potential energy vary as the inverse sixth power of the sepa-
ration of the molecules, so we may write

V
C
r

= − 6
6  

(16B.10)

where C6 is a coefficient that depends on the identity of the 
molecules.

Although attractive interactions between molecules are 
often expressed as in eqn 16B.10 we must remember that this 
equation has only limited validity. First, we have taken into 
account only dipolar interactions of various kinds, for they 
have the longest range and are dominant if the average separa-
tion of the molecules is large. However, in a complete treatment 
we should also consider quadrupolar and higher-order multi-
pole interactions, particularly if the molecules do not have per-
manent dipole moments. Secondly, the expressions have been 
derived by assuming that the molecules can rotate reasonably 
freely. That is not the case in most solids, and in rigid media 
the dipole–dipole interaction is proportional to 1/r3 (as in eqn 
16B.3) because the Boltzmann averaging procedure is irrele-
vant when the molecules are trapped into a fixed orientation.

A different kind of limitation is that eqn 16B.10 relates to the 
interactions of pairs of molecules. There is no reason to sup-
pose that the energy of interaction of three (or more) molecules 
is the sum of the pairwise interaction energies alone. The total 
dispersion energy of three closed-shell atoms, for instance, is 
given approximately by the Axilrod–Teller formula:

V
C
r

C
r

C
r

C
r r r

= − − − +6
6

6
6

6
6 3

AB BC CA AB BC CA

′
( )  

where

C a′ = +( cos cos cos )3 1θ θ θA B C  (16B.11b)

The parameter a is approximately equal to 3
4 α ′C6 ; the angles θ 

are the internal angles of the triangle formed by the three atoms 
(5 ). The term in C′ (which represents the non-additivity of the 
pairwise interactions) is negative for a linear arrangement of 
atoms (so that arrangement is stabilized) and positive for an 
equilateral triangular cluster (so that arrangement is destabi-
lized). It is found that the three-body term contributes about 
10 per cent of the total interaction energy in liquid argon.

5

A

B

C

θA

θB

θC

rAB

rBC

rCA

When molecules are squeezed together, the nuclear and elec-
tronic repulsions begin to dominate the attractive forces. The 
repulsions increase steeply with decreasing separation in a 
way that can be deduced only by very extensive, complicated 

 (16B.11a)
axilrod−teller 
formula

R CH3 CH3CH2 CH3(CH2)2 CH3(CH2)3 CH3(CH2)4

π 0.5 1.0 1.5 2.0 2.5
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molecular structure calculations of the kind described in Topic 
10E (Fig. 16B.8).

In many cases, however, progress can be made by using a 
greatly simplified representation of the potential energy, where 
the details are ignored and the general features expressed by 
a few adjustable parameters. One such approximation is the 
hard-sphere potential energy, in which it is assumed that the 
potential energy rises abruptly to infinity as soon as the parti-
cles come within a separation d:

V r d V r d= ∞ ≤ = >for  for0  

This very simple expression for the potential energy is sur-
prisingly useful for assessing a number of properties. Another 
widely used approximation is the Mie potential energy:

V
C
r

C
r

n
n

m
m= −

 
 mie potential energy  (16B.13)

with n > m. The first term represents repulsions and the second 
term attractions. The Lennard-Jones potential energy is a spe-
cial case of the Mie potential energy with n = 12 and m = 6 (Fig. 
16B.9); it is often written in the form

V
r
r

r
r
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4 0

12
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6

ε
 

 lennard-Jones potential energy  (16B.14)

The two parameters are ε, the depth of the well (not to be con-
fused with the symbol of the permittivity of a medium used 
in Section 16B.1), and r0, the separation at which V = 0 (Table 
16B.2).

Although the Lennard-Jones potential energy has been used 
in many calculations, there is plenty of evidence to show that 

1/r12 is a very poor representation of the repulsive potential 
energy, and that an exponential form, e−r r/ 0, is greatly superior. 
An exponential function is more faithful to the exponential 
decay of atomic wavefunctions at large distances, and hence 
to the overlap that is responsible for repulsion. The potential 
energy with an exponential repulsive term and a 1/r6 attractive 
term is known as an exp-6 potential energy . These expressions 
for the potential energy can be used to calculate the virial coef-
ficients of gases, as explained in Topic 1C, and through them 
various properties of real gases, such as the Joule–Thomson 
coefficient (Topic 2D). They are also used to model the struc-
tures of condensed fluids.

With the advent of atomic force microscopy (AFM), in 
which the force between a molecular sized probe and a surface 
is monitored (Topic 22A), it has become possible to measure 
directly the forces acting between molecules. The force, F, is the 

 (16B.12)hard-sphere 
potential energy

Repulsion

Attraction

Total

Po
te

n
ti

al
 e

n
er

g
y,

 V
(r

)

0

Separation, r

Figure 16B.8 The general form of an intermolecular potential 
energy curve (the graph of the potential energy of two closed 
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Figure 16B.9 The Lennard-Jones potential energy is another 
approximation to the true intermolecular potential energy 
curves. It models the attractive component by a contribution 
that is proportional to 1/r6 and the repulsive component by 
a contribution that is proportional to 1/r12. Specifically, these 
choices result in the Lennard-Jones (12,6) potential energy. 
Although there are good theoretical reasons for the former, 
there is plenty of evidence to show that 1/r12 is only a very poor 
approximation to the repulsive part of the curve.

Table 16B.2* Lennard-Jones parameters for the (12,6) potential

ε/(kJ mol−1) r0/pm

Ar 128 342

Br2 536 427

C6H6 454 527

Cl2 368 412

H2 34 297

He 11 258

Xe 236 406

* More values are given in the Resource section.
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negative slope of the potential energy, so for the Lennard-Jones 
potential energy between individual molecules we write
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(16B.15)

Checklist of concepts

☐ 1. A van der Waals interaction between closed-shell mol-
ecules is inversely proportional to the sixth power of 
their separation.

☐ 2. The following molecular interactions are important: 
charge–charge, charge–dipole, dipole–dipole, dipole–
induced dipole, dispersion (London), hydrogen bond-
ing, and the hydrophobic interaction.

☐ 3. A hydrogen bond is an interaction of the form X–H…Y, 
where X and Y are typically N, O, or F.

☐ 4. The hydrophobic interaction fosters clustering of non-
polar molecules in polar solvents.

☐ 5. The Lennard-Jones potential energy function is a 
model of the total intermolecular potential energy.

Checklist of equations

Example 16B.1 Calculating an intermolecular force from 
the Lennard-Jones potential energy

Use the expression for the Lennard-Jones potential energy 
to estimate the greatest net attractive force between two N2 
molecules.

Method The magnitude of the force is greatest at the distance 
r at which dF/dr = 0. Therefore differentiate eqn 16B.15 with 
respect to r, set the resulting expression to zero, and solve for 
r. Finally, use the value of r in eqn 16B.15 to calculate the cor-
responding value of F.

Answer Because dxn/dx = nxn−1, the derivative of F with 
respect to r is
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From Table 16B.2, ε = 1.268 × 10−21 J and r0 = 3.919 × 10−10 m. It 
follows that

F = − × ×
×

= − ×
−

−
−

= −

2 396 1 268 10
3 919 10

7 752 10
21

10
1. ( . )

.
.

J
m

1N 1 Jm 1


22 N

That is, the magnitude of the force is about 8 pN.

Self-test 16B.8 At what separation re does the minimum of the 
potential energy curve occur for a Lennard-Jones potential?

Answer: re = 21/6r0

Property Equation Comment Equation number

Potential energy of interaction 
between two point charges in a 
medium

V = Q1Q2/4πεr The relative permittivity of  
the medium is εr = ε/ε0

16B.1

Energy of interaction between a 
point dipole and a point charge

V = −μ1Q2/4πε0r2 16B.2

Energy of interaction between two 
fixed dipoles

V = μ1μ2f(θ)/4πε0r3, f(θ) = 1 − 3cos2 θ Parallel dipoles 16B.4

Energy of interaction between two 
rotating dipoles

〈 〉 = −V kTr2 3 4 2 6µ µ ε1
2

2
2

0/ ( )π 16B.5
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Property Equation Comment Equation number

Energy of interaction between a 
polar molecule and a polarizable 
molecule

V r= − ′µ α ε1
2

2 0/4 6π 16B.7

London formula V I I I I r= − ′ ′ +3
2 1 2 1 2 1 2

6α α {( /( )}/ 16B.8

Hydrophobicity constant π = log(S/S0) Definition 16B.9

Axilrod–Teller formula V C r C r C r C r r r= − − − +6 AB
6

6 BC
6

6 CA
6

AB BC CA
3/ / / /( )′ Applies to closed shell atoms 16B.11a

Lennard-Jones potential energy V r r r r= −4 0
12

0
6ε{( / ) ( / ) } 16B.14
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16C liquids

At low enough temperatures the molecules of a gas have insuf-
ficient kinetic energy to escape from each other’s attraction and 
they stick together. But although molecules attract each other 
when they are a few diameters apart, as soon as they come into 
contact they repel each other. This repulsion is responsible 
for the fact that liquids and solids have a definite bulk and do 
not collapse to an infinitesimal point. The molecules are held 
together by molecular interactions, but their kinetic energies 
are comparable to their potential energies. As a result, although 
the molecules of a liquid are not free to escape completely from 
the bulk, the whole structure is very mobile and we can speak 
only of the average relative locations of molecules. In this Topic 
we build on those concepts and add thermodynamic argu-
ments to describe the surface of a liquid and the condensation 
of a gas into a liquid.

16C.1 Molecular interactions in liquids

The starting point for the discussion of solids is the well-
ordered structure of a perfect crystal, which is discussed in 
Topic 18A. The starting point for the discussion of gases is the 
completely disordered distribution of the molecules of a perfect 
gas (Topic 1A). Liquids lie between these two extremes. We see 
that the structural and thermodynamic properties of liquids 
depend on the nature of intermolecular interactions and that 
an equation of state can be built in a similar way to that just 
demonstrated for real gases.

(a) The radial distribution function
The average relative locations of the particles of a liquid are 
expressed in terms of the radial distribution function, g(r). 
This function is defined so that Ng(r)r2dr, where N is the 
number density of molecules (N = N/V), is the probability that 
a molecule will be found in the range dr at a distance r from 
another molecule. In a perfect crystal, g(r) is a periodic array 
of sharp spikes, representing the certainty (in the absence of 
defects and thermal motion) that molecules (or ions) lie at 
definite locations. This regularity continues out to the edges 
of the crystal, so we say that crystals have long-range order. 
When the crystal melts, the long-range order is lost and, 
wherever we look at long distances from a given molecule, 
there is equal probability of finding a second molecule. Close 
to the first molecule, though, the nearest neighbours might 

➤➤ Why do you need to know this material?
Many chemical reactions, including those in biological 
cells and chemical reactors, occur in liquids, so you need 
to understand the structure of liquids, how molecular 
interactions foster condensation of a gas into a liquid, 
the thermodynamic properties of liquids, and how liquid 
surfaces are formed.

➤➤ What is the key idea?
The attractions between molecules are responsible for the 
condensation of gases into liquids at low temperatures.

➤➤ What do you need to know already?
You need to understand the nature of molecular 
interactions (Topic 16B), the concepts of Helmholtz and 
Gibbs energies (Topic 3C), and the Boltzmann distribution 
(Topic 15A).

Contents
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(a) The radial distribution function 680
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(c) The thermodynamic properties of liquids 682
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still adopt approximately their original relative positions 
and, even if they are displaced by newcomers, the new parti-
cles might adopt their vacated positions. It is still possible to 
detect a sphere of nearest neighbours at a distance r1, and per-
haps beyond them a sphere of next-nearest neighbours at r2. 
The existence of this short-range order means that the radial 
distribution function can be expected to oscillate at short 
distances, with a peak at r1, a smaller peak at r2, and perhaps 
some more structure beyond that.

The radial distribution function of the oxygen atoms in liquid 
water is shown in Fig. 16C.1. Closer analysis shows that any 
given H2O molecule is surrounded by other molecules at the 
corners of a tetrahedron. The form of g(r) at 100 °C shows that 
the intermolecular interactions (in this case, principally by 
hydrogen bonds) are strong enough to affect the local structure 
right up to the boiling point. Raman spectra indicate that in 
liquid water most molecules participate in either three or four 
hydrogen bonds. Infrared spectra show that about 90 per cent 
of hydrogen bonds are intact at the melting point of ice, falling 
to about 20 per cent at the boiling point.

The formal expression for the radial distribution function 
for molecules 1 and 2 in a fluid consisting of N particles is the 
somewhat fearsome equation

g r
N N V

N

V
N

N

N

( )
( )
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τ τ τN
  

 radial distribution function  (16C.1)

where β  = 1/kT and VN is the N-particle potential energy. 
Although fearsome, this expression is nothing more than the 
Boltzmann distribution for the relative locations of two mol-
ecules in a field provided by all the other molecules in the 
system.

(b) The calculation of g(r)
Because the radial distribution function can be calculated by 
making assumptions about the intermolecular interactions, it 
can be used to test theories of liquid structure. However, even 
a fluid of hard spheres without attractive interactions (a col-
lection of ball-bearings in a container) gives a function that 
oscillates near the origin (Fig. 16C.2), and one of the factors 
influencing, and sometimes dominating, the structure of a 
liquid is the geometrical problem of stacking together reason-
ably hard spheres. Indeed, the radial distribution function of a 
liquid of hard spheres shows more pronounced oscillations at 
a given temperature than that of any other type of liquid. The 
attractive part of the potential modifies this basic structure, 
but sometimes only quite weakly. One of the reasons behind 
the difficulty of describing liquids theoretically is the similar 
importance of both the attractive and repulsive (hard core) 
components of the potential.

There are several ways of building the intermolecular poten-
tial into the calculation of g(r). Numerical methods take a box 
of about 103 particles (the number increases as computers grow 
more powerful), and the rest of the liquid is simulated by sur-
rounding the box with replications of the original box (Fig. 
16C.3). Then, whenever a particle leaves the box through one of 
its faces, its image arrives through the opposite face. When cal-
culating the interactions of a molecule in a box, it interacts with 
all the molecules in the box and all the periodic replications of 
those molecules and itself in the other boxes.

In the Monte Carlo method, the particles in the box are 
moved through small but otherwise random distances, and the 
change in total potential energy of the N particles in the box, 
ΔVN, is calculated. Whether or not this new configuration is 
accepted is then judged from the following rules:

•	 If the potential energy is not greater than before the 
change, then the configuration is accepted.

If the potential energy is greater than before the change, then it 
is necessary to check if the new configuration is reasonable and 
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Figure 16C.2 The radial distribution function for a simulation 
of a liquid using impenetrable hard spheres (ball bearings).
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Figure 16C.1 The radial distribution function of the oxygen 
atoms in liquid water at three temperatures. Note the 
expansion as the temperature is raised. (Based on A.H. Narten, 
M.D. Danford, and H.A. Levy, Discuss. Faraday. Soc. 43, 97 
(1967).)
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682 16 Molecular interactions

can exist in equilibrium with configurations of lower potential 
energy at a given temperature. To make progress, we use the 
result that, at equilibrium, the ratio of populations of two states 
with energy separation ΔVN is e−∆V kTN / . Because we are testing 
the viability of a configuration with a higher potential energy 
than the previous configuration in the calculation, ΔVN > 0 and 
the exponential factor varies between 0 and 1. In the Monte 
Carlo method, the second rule, therefore, is:

•	 The exponential factor is compared with a random 
number between 0 and 1; if the factor is larger than the 
random number, then the configuration is accepted; if 
the factor is not larger, the configuration is rejected.

The configurations generated with Monte Carlo calculations 
can be used to construct g(r) simply by counting the number 
of pairs of particles with a separation r and averaging the result 
over the whole collection of configurations.

In the molecular dynamics approach, the history of an ini-
tial arrangement is followed by calculating the trajectories of all 
the particles under the influence of the intermolecular poten-
tials and the forces they exert. The calculation gives a series of 
snapshots of the liquid, and g(r) can be calculated as before. The 
temperature of the system is inferred by computing the mean 
kinetic energy of the particles and using the equipartition result 
(Foundations B) that

〈 〉 =1
2

2 1
2m kTqv  (16C.2)

for each coordinate q.

(c) The thermodynamic properties of liquids
Once g(r) is known it can be used to calculate the thermody-
namic properties of liquids. For example, the contribution of 
the pairwise additive intermolecular potential, V2, to the inter-
nal energy is given by the integral

U T
N

V
g r V r rinteraction d( ) ( )= ∫2 2

2
2

0

π ∞

  
 contribution of pairwise interactions to the internal energy  (16C.3)

That is, Uinteraction is essentially the average two-particle potential 
energy weighted by g(r)r2dr, which is the probability that the pair 
of particles have a separation between r and r + dr. Likewise, the 
contribution that pairwise interactions make to the pressure is

pV
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kTV
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(16C.4a)

The quantity v2 is called the virial (hence the term ‘virial equa-
tion of state’). The dependence of v2 on r is shown for a simple 
form of g(r) in Fig. 16C.5. To understand the physical content 
of this expression, we rewrite it as

p
nRT

V
N
V

g r r r= − 



 ∫2
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2

2
2
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π
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Brief illustration 16C.1 The radial distribution function

A simple pair distribution function has the form

g r
r

r
r r( ) cos ( / )= + −





− −1
4

4
0

10e
 Pressure in 

terms of g(r)  (16C.4b)

Figure 16C.3 In a two-dimensional simulation of a liquid that 
uses periodic boundary conditions, when one particle leaves 
the cell its mirror image enters through the opposite face.

for r ≥ r0 and g(r) = 0 for r < r0. Here the parameter r0 is the sep-
aration at which the Lennard-Jones potential energy function 
(eqn 16B.13; V = 4ε{(r0/r)1/2 − (r0/r)6} is equal to zero. The func-
tion g(r) is plotted in Fig. 16C.4, and we see that it resembles 
the form shown in Fig. 16C.2.

Self-test 16C.1 Use mathematical software to plot the function 
v2(r) = r(dV/dr). The significance of this function will become 
apparent soon.

Answer: See Fig. 16C.5.
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Figure 16C.4 An example of a radial distribution function 
for two particles with an interaction energy given by the 
Lennard-Jones potential energy function.
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and then note that

•	 The first term on the right is the kinetic pressure, 
the contribution to the pressure from the impact  
of the molecules in free flight.

•	 The second term is essentially the internal pressure, 
πT = (∂U/∂V)T (Topic 2D), representing the 
contribution to the pressure from the 
intermolecular forces.

To see the connection to the internal pressure, we should rec-
ognize –dV2/dr (in v2) as the force required to move two mol-
ecules apart, and therefore –r(dV2/dr) as the work required to 
separate the molecules through a distance r. The second term 
is therefore the average of this work over the range of pair-
wise separations in the liquid as represented by the probability 
of finding two molecules at separations between r and r + dr, 
which is g(r)r2dr. In brief, the integral, when multiplied by the 
square of the number density, is the change in internal energy 
of the system as it expands, and therefore is equal to the inter-
nal pressure.

16C.2 The liquid–vapour interface

We turn our attention to the physical boundary between phases, 
such as the surface where solid is in contact with liquid or liquid 
is in contact with its vapour. In this Topic we concentrate on 
the liquid–vapour interface, which is interesting because it is so 
mobile. Topic 22A deals with solid surfaces.

(a) Surface tension
Liquids tend to adopt shapes that minimize their surface area, 
for then the maximum number of molecules is in the bulk 
and hence surrounded by and interacting with neighbours. 
Droplets of liquids therefore tend to be spherical, because a 

sphere is the shape with the smallest surface-to-volume ratio. 
However, there may be other forces present that compete 
against the tendency to form this ideal shape, and in particular 
gravity may flatten spheres into puddles or oceans.

Surface effects may be expressed in the language of 
Helmholtz and Gibbs energies (Topic 3C). The link between 
these quantities and the surface area is the work needed to 
change the area by a given amount, and the fact that dA and 
dG are equal (under different conditions) to the work done in 
changing the energy of a system. The work needed to change 
the surface area, σ, of a sample by an infinitesimal amount dσ is 
proportional to dσ, and we write

d dw =γ σ  Definition  surface tension  (16C.5)

The constant of proportionality, γ, is called the surface ten-
sion; its dimensions are energy/area and its units are typically 
joules per metre squared (J m−2). However, as in Table 16C.1, 
values of γ  are usually reported in newtons per metre (because 
1 J = 1 N m, it follows that 1 J m−2 = 1 N m−1). The work of surface 
formation at constant volume and temperature can be identi-
fied with the change in the Helmholtz energy, and we can write

d dA =γ σ  (16C.6)

Because the Helmholtz energy decreases (dA < 0) if the surface 
area decreases (dσ < 0), surfaces have a natural tendency to 
contract. This is a more formal way of expressing what we have 
already described.
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Example 16C.1 Using the surface tension

Calculate the work needed to raise a wire of length l and 
to stretch the surface of a liquid through a height h in the 
arrangement shown in Fig. 16C.6. Disregard gravitational 
potential energy.

Method According to eqn 16C.5, the work required to create 
a surface of area σ given that the surface tension does not vary 
as the surface is formed is w = γσ. Therefore, all we need do is 
to calculate the surface area of the two-sided rectangle formed 
as the frame is withdrawn from the liquid.

Table 16C.1* Surface tensions of liquids at 293 K, γ/(mN m−1)

γ/(mN m−1)

Benzene 28.88

Mercury 472

Methanol 22.6

Water 72.75

* More values are given in the Resource section. Note that 1 N m−1 = 1 J m−2.
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Figure 16C.5 The virial v2(r) associated with the Lennard-Jones 
potential energy function.
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684 16 Molecular interactions

(b) Curved surfaces
The minimization of the surface area of a liquid may result in 
the formation of a curved surface. A bubble is a region in which 
vapour (and possibly air too) is trapped by a thin film; a cav-
ity is a vapour-filled hole in a liquid. What are widely called 
‘bubbles’ in liquids are therefore strictly cavities. True bubbles 
have two surfaces (one on each side of the film); cavities have 
only one. The treatments of both are similar, but a factor of 2 is 
required for bubbles to take into account the doubled surface 
area. A droplet is a small volume of liquid at equilibrium sur-
rounded by its vapour (and possibly also air).

The pressure on the concave side of an interface, pin, is always 
greater than the pressure on the convex side, pout. This relation 
is expressed by the Laplace equation, which is derived in the 
following Justification:

p p
rin out= + 2γ

 
 laplace equation  (16C.7)

The Laplace equation shows that the difference in pressure 
decreases to zero as the radius of curvature becomes infinite 
(when the surface is flat, Fig. 16C.7). Small cavities have small 
radii of curvature, so the pressure difference across their sur-
face is quite large.

Justification 16C.1 The Laplace equation

The cavities in a liquid are at equilibrium when the ten-
dency for their surface area to decrease is balanced by the 

rise of internal pressure which would then result. When the 
pressure inside a cavity is pin and its radius is r, the outward 
force is

pressure area 4 2
in× = πr p  

The force inwards arises from the external pressure and the 
surface tension. The former has magnitude 4πr2pout. The latter 
is calculated as follows. The change in surface area when the 
radius of a sphere changes from r to r + dr is

d 4 ( d ) 4 8 d2 2σ = + − =π π πr r r r r  

(The second-order infinitesimal, (dr)2, is ignored.) The work 
done when the surface is stretched by this amount is therefore

d 8 dw r r= πγ  

As force × distance is work, the force opposing stretching 
through a distance dr when the radius is r is

F r=8πγ  

The total inward force is therefore 4πr2pout + 8πγr. At equilib-
rium, the outward and inward forces are balanced, so we can 
write

4 4 82
in

2
outπ π πr p r p r= + γ  

which rearranges into eqn 16C.7.
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Figure 16C.7 The dependence of the pressure inside a curved 
surface on the radius of the surface, for two different values of 
the surface tension.

Answer When the wire of length l is raised through a height 
h it increases the area of the liquid by twice the area of the 
rectangle (because there is a surface on each side). The total 
increase is therefore 2lh and the work done is 2γ lh.

The expression 2γ lh can be expressed as force × distance by 
writing it as 2γ l × h, and identifying γ l as the opposing force 
on the wire of length l. This interpretation is why γ is called a 
tension and why its units are often chosen to be newtons per 
metre (so γ l is a force in newtons).

Self-test 16C.2 Calculate the work of creating a spherical cav-
ity of radius r in a liquid of surface tension γ.

Answer: 4πr2γ

Total area
= 2hl

h

l Force

Figure 16C.6 The model used for calculating the work of 
forming a liquid film when a wire of length l is raised and 
pulls the surface with it through a height h.
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(c) Capillary action
The tendency of liquids to rise up capillary tubes (tubes of 
narrow bore; the name comes from the Latin word for ‘hair’), 
which is called capillary action, is a consequence of surface 
tension. Consider what happens when a glass capillary tube 
is first immersed in water or any liquid that has a tendency to 
adhere to the walls. The energy is lowest when a thin film covers as 
much of the glass as possible. As this film creeps up the inside 
wall it has the effect of curving the surface of the liquid inside 
the tube. This curvature implies that the pressure just beneath 
the curving meniscus is less than the atmospheric pressure by 
approximately 2γ/r, where r is the radius of the tube and we 
assume a hemispherical surface. The pressure immediately 
under the flat surface outside the tube is p, the atmospheric 
pressure; but inside the tube under the curved surface it is only 
P − 2γ/r. The excess external pressure presses the liquid up the 
tube until hydrostatic equilibrium (equal pressures at equal 
depths) has been reached (Fig. 16C.8).

To calculate the height to which the liquid rises, we note that 
the pressure exerted by a column of liquid of mass density ρ 
and height h is

p gh= ρ  (16C.8)

This hydrostatic pressure matches the pressure difference 2γ/r 
at equilibrium. Therefore, the height of the column at equilib-
rium is obtained by equating 2γ/r and ρgh, which gives

h
gr

= 2γ
ρ  

(16C.9)

This simple expression provides a reasonably accurate way 
of measuring the surface tension of liquids. Surface tension 
decreases with increasing temperature (Fig. 16C.9).

Brief illustration 16C.2 The Laplace equation

The pressure differential of water across the surface of a spher-
ical droplet of radius 200 nm at 20 °C is

p pin out
Nm− = × ×

×

− −

−
2 72 75 10

2 00 10

3 1( ).
.

γ water at 20 C°� ���� ����
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m
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r
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= × =−.  

Self-test 16C.3 Calculate the pressure differential of ethanol 
across the surface of a spherical droplet of radius 220 nm at 
20 °C. The surface tension of ethanol at that temperature is 
22.39 mN m−1.

Answer: 204 kPa

Brief illustration 16C.3 Capillary action

If water at 25 °C rises through 7.36 cm in a capillary of radius 
0.20 mm, its surface tension at that temperature is

γ ρ=
= × × × ×

× ×
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Self-test 16C.4 Calculate the surface tension of water at 
30 °C given that at that temperature water climbs to a height 
of 9.11 cm in a clean glass capillary tube of internal radius 
0.320 mm. The density of water at 30 °C is 0.9956 g cm−3.

Answer: 142 mN m−1

h
p p

p p p

p
p

p – 2γ /r

p – 2γ /r + ρgh

r

Figure 16C.8 When a capillary tube is first stood in a liquid, the 
latter climbs up the walls, so curving the surface. The pressure just 
under the meniscus is less than that arising from the atmosphere 
by 2γ/r. The pressure is equal at equal heights throughout the 
liquid provided the hydrostatic pressure (which is equal to ρgh) 
cancels the pressure difference arising from the curvature.
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Figure 16C.9 The variation of the surface tension of water with 
temperature.
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686 16 Molecular interactions

When the adhesive forces between the liquid and the material 
of the capillary wall are weaker than the cohesive forces within 
the liquid (as for mercury in glass), the liquid in the tube retracts 
from the walls. This retraction curves the surface with the con-
cave, high pressure side downwards. To equalize the pressure at 
the same depth throughout the liquid the surface must fall to 
compensate for the heightened pressure arising from its curva-
ture. This compensation results in a capillary depression.

In many cases there is a nonzero angle between the edge 
of the meniscus and the wall. If this contact angle is θc, then 
eqn 16C.9 should be modified by multiplying the right-hand 
side by cos θc. The origin of the contact angle can be traced to 
the balance of forces at the line of contact between the liquid 
and the solid (Fig. 16C.10). If the solid–gas, solid–liquid, and 
 liquid–gas surface tensions (essentially the energy needed to 
create unit area of each of the interfaces) are denoted γsg, γsl, and 
γlg, respectively, then the vertical forces are in balance if

γ γ γ θsg sl lg c= + cos  (16C.10)

This expression solves to

cos θ
γ γ

γc
sg sl

lg
=

−

 
(16C.11)

If we note that the superficial work of adhesion of the liquid to 
the solid (the work of adhesion divided by the area of contact) is

wad sg lg sl= + −γ γ γ  (16C.12)

eqn 16C.11 can be written

cosθ γc
ad

lg

= −w
1

 
 contact angle  (16C.13)

We now see that:

•	 The liquid ‘wets’ (spreads over) the surface, 
corresponding to 0 < θc < 90°, when 1 < wad/γ lg < 2 
(Fig. 16C.11).

•	 The liquid does not wet the surface, corresponding 
to 90° < θc < 180°, when 0 < wad/γ lg < 1.

For mercury in contact with glass, θc = 140°, which corresponds 
to wad/γlg = 0.23, indicating a relatively low work of adhesion of 
the mercury to glass on account of the strong cohesive forces 
within mercury.

16C.3 Surface films

The compositions of surface layers have been investigated by 
the simple but technically elegant procedure of slicing thin lay-
ers off the surfaces of solutions and analysing their composi-
tions. The physical properties of surface films have also been 
investigated. Surface films one molecule thick are called mono-
layers. When a monolayer has been transferred to a solid 
support, it is called a Langmuir–Blodgett film, after Irving 
Langmuir and Katherine Blodgett, who developed experimen-
tal techniques for studying them.

(a) Surface pressure
The principal apparatus used for the study of surface mono-
layers is a surface film balance (Fig. 16C.12). This device 
consists of a shallow trough and a barrier that can be moved 
along the surface of the liquid in the trough, and hence com-
press any monolayer on the surface. The surface pressure, π, 
the difference between the surface tension of the pure sol-
vent and the solution (π = γ * − γ ) is measured by using a tor-
sion wire attached to a strip of mica that rests on the surface 
and pressing against one edge of the monolayer. The parts 
of the apparatus that are in touch with liquids are coated 
in polytetrafluoroethene to eliminate effects arising from 
the  liquid–solid interface. In an actual experiment, a small 
amount (about 0.01 mg) of the surfactant under investigation 
is dissolved in a volatile solvent and then poured on to the 
surface of the water; the compression barrier is then moved 
across the surface and the surface pressure exerted on the 
mica bar is monitored.

θc

γsg

γlg

γsl

Figure 16C.10 The balance of forces that results in a contact 
angle, θc.
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Figure 16C.11 The variation of contact angle (shown by the 
semaphore-like object) as the ratio wad/γ lg changes.
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Some typical results are shown in Fig. 16C.13. One param-
eter obtained from the isotherms is the area occupied by the 
molecules when the monolayer is closely packed. This quan-
tity is obtained from the extrapolation of the steepest part of 
the isotherm to the horizontal axis. As can be seen from the 
illustration, even though stearic acid (1) and isostearic acid (2) 
are chemically very similar (they differ only in the location of 
a methyl group at the end of a long hydrocarbon chain), they 
occupy significantly different areas in the monolayer. Neither, 
though, occupies as much area as the tri-p-cresyl phosphate 
molecule (3), which is like a wide bush rather than a lanky tree.

HO

O

1 Stearic acid, C17H35COOH

HO

O

2 Isostearic acid, C17H35COOH

P
O

O O
O

3 Tri-p-cresylphosphate

The second feature to note from Fig. 16C.13 is that the tri-
p-cresyl phosphate isotherm is much less steep than the stearic 
acid isotherms. This difference indicates that the tri-p-cresyl 

phosphate film is more compressible than the stearic acid films, 
which is consistent with their different molecular structures.

A third feature of the isotherms is the collapse pressure, the 
highest surface pressure. When the monolayer is compressed 
beyond the point represented by the collapse pressure, the 
monolayer buckles and collapses into a film several molecules 
thick. As can be seen from the isotherms in Fig. 16C.13, stearic 
acid has a high collapse pressure, but that of tri-p-cresyl phos-
phate is significantly smaller, indicating a much weaker film.

(b) The thermodynamics of surface layers
A surfactant is a species that is active at the interface between 
two phases, such as at the interface between hydrophilic and 
hydrophobic phases. A surfactant accumulates at the inter-
face, and modifies its surface tension and hence the surface 
pressure. To establish the relation between the concentration 
of surfactant at a surface and the change in surface tension it 
brings about, we consider two phases α and β in contact and 
suppose that the system consists of several components J, each 
one present in an overall amount nJ. If the components were 
distributed uniformly through the two phases right up to the 
interface, which is taken to be a plane of surface area σ, the 
total Gibbs energy, G, would be the sum of the Gibbs energies 
of both phases, G = G(α) + G(β). However, the components are 
not uniformly distributed because one may accumulate at the 
interface. As a result, the sum of the two Gibbs energies differs 
from G by an amount called the surface Gibbs energy, G(σ):

G G G G( ) { ( ) ( )}σ = − +α β  

Similarly, if it is supposed that the concentration of a species J 
is uniform right up to the interface, then from its volume we 
would conclude that it contains an amount nJ(α) of J in phase α 
and an amount nJ(β) in phase β. However, because a species may 

Compression
barrier

Liquid + surfactant

Liquid Liquid

Mica float

Figure 16C.12 A schematic diagram of the apparatus used 
to measure the surface pressure and other characteristics of 
a surface film. The surfactant is spread on the surface of the 
liquid in the trough, and then compressed horizontally by 
moving the compression barrier towards the mica float. The 
latter is connected to a torsion wire, so the difference in force 
on either side of the float can be monitored.
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Figure 16C.13 The variation of surface pressure with the area 
occupied by each surfactant molecule. The collapse pressures 
are indicated by the horizontal lines.
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688 16 Molecular interactions

accumulate at the interface, the total amount of J differs from 
the sum of these two amounts by nJ(σ) = nJ − {nJ(α) + nJ(β)}. 
This difference is expressed in terms of the surface excess, ΓJ:

Γ
σ

σJ
J=

n ( )

 
Definition  surface excess  (16C.15)

The surface excess may be either positive (an accumulation of J 
at the interface) or negative (a deficiency there).

The relation between the change in surface tension and the 
composition of a surface (as expressed by the surface excess) 
was derived by Gibbs. In the following Justification we derive 
the Gibbs isotherm, between the changes in the chemical 
potentials of the substances present in the interface and the 
change in surface tension:

d d
J

J Jγ Γ µ= −∑
 

 gibbs isotherm  (16C.16)

Now consider a simplified model of the interface in which 
the ‘oil’ and ‘water’ phases are separated by a geometrically flat 
surface. This approximation implies that only the surfactant, 
S, accumulates at the surface, and hence that Γoil and Γwater are 
both zero. Then the Gibbs isotherm equation becomes

d dS Sγ Γ µ= −  (16C.17)

For dilute solutions,

d lnSμ = RT c  (16C.18)

where c is the molar concentration of the surfactant. It follows 
that

d
d

Sγ Γ= −RT
c

c  

at constant temperature, or

∂
∂







= −γ Γ
c

RT
c

T

S

 

If the surfactant accumulates at the interface, its surface excess 
is positive and eqn 16C.19 implies that (∂γ /∂c)T < 0. That is, 
the surface tension decreases when a solute accumulates at a 
surface. Conversely, if the concentration dependence of γ is 
known, then the surface excess may be predicted and used 
to infer the area occupied by each surfactant molecule on the 
surface.

Justification 16C.2 The Gibbs isotherm

A general change in G is brought about by changes in T, p, and 
the nJ:

d d d d d
J

J JG S T V p n= − + + +∑γ σ µ
 

When this relation is applied to G, G(α), and G(β) we find

d d d d
J

J JG S T n( ) ( ) ( )σ σ γ σ µ σ= − + +∑
 

because at equilibrium the chemical potential of each compo-
nent is the same in every phase, μJ(α) =μJ(β) = μJ(σ). Just as in 
the discussion of partial molar quantities (Chapter 5), the last 
equation integrates at constant temperature to

G n( ) ( )σ γσ µ σ= +∑
J

J J

 

We are seeking a connection between the change of surface 
tension dγ and the change of composition at the interface. 
Therefore, we use the argument that in Topic 5A led to the 
Gibbs–Duhem equation (eqn 5A.12b), but this time we com-
pare the expression

d d d
J

J JG n( ) ( )σ γ σ µ σ= +∑
 

(which is valid at constant temperature) with the expres-
sion for the same quantity but derived from the preceding 
equation:

d d d d d( )
J

J J

J

J JG n n( ) ( )σ γ σ σ γ µ σ µσ= + + +∑ ∑
 

The comparison implies that, at constant temperature,

σ γ µσd d( )
J

J J+ =∑n 0

 

Division by σ then gives eqn 16C.16.

Example 16C.2 Calculating the surface excess

Calculate the surface excess of 1-aminobutanoic acid in a 
0.10 mol dm−3 aqueous solution at 20 °C given that dγ/d(ln c)  
= −40 µN m−1. Convert the answer to the number of molecules 
per square metre.

Method Use the relation d(ln x) = (1/x)dx to convert eqn 
16C.19 into an expression for ∂γ/∂(ln c), then rearrange it to 
obtain an expression for the surface excess ΓS. Multiplying 
the surface excess by Avogadro’s constant gives the number of 
molecules per square metre.

Answer Because d(ln c) = (1/c)dc and dc = cd(ln c), eqn 16C.19 
may be written as

∂
∂







= −γ Γ
(ln )c

RT
T

S

 

dependence of the 
surface tension on 
surfactant concentration

 (16C.19)
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16C.4 Condensation

We now bring together concepts from this Topic and Topic 4B 
to explain the condensation of a gas to a liquid. We saw in Topic 
4B that the vapour pressure of a liquid depends on the pressure 
applied to the liquid. Because curving a surface gives rise to a 
pressure differential of 2γ/r, we can expect the vapour pressure 
above a curved surface to be different from that above a flat sur-
face. By substituting this value of the pressure difference into 
eqn 4B.3 ( * ,/p p V P RT= e m∆  where p* is the vapour pressure when 
the pressure difference is zero) we obtain the Kelvin equation 
for the vapour pressure of a liquid when it is dispersed as drop-
lets of radius r:

p p V rRT= *e m/2γ
  kelvin equation  (16C.20)

The analogous expression for the vapour pressure inside a cav-
ity can be written at once. The pressure of the liquid outside the 
cavity is less than the pressure inside, so the only change is in 
the sign of the exponent in the last expression. For droplets of 
water of radius 1 µm and 1 nm the ratios p/p* at 25 °C are about 
1.001 and 3, respectively. The second figure, although quite 
large, is unreliable because at that radius the droplet is less than 

about 10 molecules in diameter and the basis of the calculation 
is suspect. The first figure shows that the effect is usually small; 
nevertheless it may have important consequences.

Consider the formation of a cloud. Warm, moist air rises into 
the cooler regions higher in the atmosphere. At some altitude 
the temperature is so low that the vapour becomes thermody-
namically unstable with respect to the liquid and we expect it 
to condense into a cloud of liquid droplets. The initial step can 
be imagined as a swarm of water molecules congregating into 
a microscopic droplet. Because the initial droplet is so small, it 
has an enhanced vapour pressure. Therefore, instead of growing 
it evaporates. This effect stabilizes the vapour because an initial 
tendency to condense is overcome by a heightened tendency to 
evaporate. The vapour phase is then said to be supersaturated. 
It is thermodynamically unstable with respect to the liquid but 
not unstable with respect to the small droplets that need to 
form before the bulk liquid phase can appear, so the formation 
of the latter by a simple, direct mechanism is hindered.

Clouds do form, so there must be a mechanism. Two pro-
cesses are responsible. The first is that a sufficiently large num-
ber of molecules might congregate into a droplet so big that the 
enhanced evaporative effect is unimportant. The chance of one 
of these spontaneous nucleation centres forming is low, and 
in rain formation it is not a dominant mechanism. The more 
important process depends on the presence of minute dust 
particles or other kinds of foreign matter. These nucleate the 
condensation (that is, provide centres at which it can occur) by 
providing surfaces to which the water molecules can attach.

Liquids may be superheated above their boiling tem-
peratures and supercooled below their freezing tempera-
tures. In each case the thermodynamically stable phase is not 
achieved on account of the kinetic stabilization that occurs in 
the absence of nucleation centres. For example, superheating 
occurs because the vapour pressure inside a cavity is artifi-
cially low, so any cavity that does form tends to collapse. This 
instability is encountered when an unstirred beaker of water 
is heated, for its temperature may be raised above its boiling 
point. Violent bumping often ensues as spontaneous nuclea-
tion leads to bubbles big enough to survive. To ensure smooth 
boiling at the true boiling temperature, nucleation centres, such 
as small pieces of sharp-edged glass or bubbles (cavities) of air, 
should be introduced.

Checklist of concepts

☐ 1. The radial distribution function, g(r), is a probability 
density in the sense that g(r)dr is the probability that a 
molecule will be found in the range dr at a distance r 
from another molecule.

☐ 2. The radial distribution function may be calculated with 
Monte Carlo and molecular dynamics techniques.

☐ 3. The internal energy and pressure of a f luid may be 
expressed in terms of the radial distribution function.

☐ 4. Liquids tend to adopt shapes that minimize their sur-
face area.

☐ 5. The minimization of surface area results in the forma-
tion of bubbles, cavities, and droplets.

It follows that

Γ γ
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N

= ∂
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Self-test 16C.5 Use the result from Example 16C.2 to calculate 
the area occupied by a molecule.

Answer: 1.0 × 102 nm2
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690 16 Molecular interactions

☐ 6. Capillary action is the tendency of liquids to rise up 
narrow tubes.

☐ 7. The surface pressure is the difference between the sur-
face tension of the pure solvent and the solution.

☐ 8. The collapse pressure is the highest surface pressure 
that a surface film can sustain.

☐ 9. A surfactant modifies the surface tension and surface 
pressure.

☐ 10. Nucleation provides surfaces to which molecules can 
attach and thereby induce condensation.

Checklist of equations 

Property Equation Comment Equation number

Radial distribution function ( ) ,

( ) ,

g r A B

A

B

V
N

V

12

3 4

2

1

=

= − …

=

∫∫ ∫
∫∫ ∫

−

−

/

e d d d

e d

N

N

N N 



β

β

τ τ τ

τN 11 2d dτ τ… N

16C.1

Contribution of interactions to the internal 
energy

U T N V g r V r rinteraction / d( ) ( ) ( )= ∫2 2
2

2

0
π

∞
V2 is the intermolecular potential 

energy
16C.3

Pressure in terms of g(r) p nRT V N V g r v r r= − ∫/ / / d( )( ) ( )2 3 2
2

2

0
π

∞
16C.4b

Laplace equation pin = pout + 2γ/r γ is the surface tension 16C.7

Contact angle cos θc = (wad/γ1g) − 1 16C.13

Surface Gibbs energy G(σ) = G − {G(α) + G(β)} Definition 16C.14

Excess energy ΓJ = nJ(σ)/σ Definition 16C.15

Gibbs isotherm d d
J

J Jγ Γ µ= − ∑ 16C.16

Dependence of the surface tension on 
surfactant concentration

(∂γ/∂c)T = −RTΓS/c 16C.19

Kelvin equation p p V rRT= * /e m2γ 16C.20
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chaPter 16  Molecular interactions

TOPIC 16A electric properties of molecules

Discussion questions
16A.1 Explain how the permanent dipole moment and the polarizability of a 
molecule arise.

16A.2 Explain why the polarizability of a molecule decreases at high 
frequencies.

16A.3 Describe the experimental procedures available for determining the 
electric dipole moment of a molecule.

Exercises
16A.1(a) Which of the following molecules may be polar: CIF3, O3, H2O2?
16A.1(b) Which of the following molecules may be polar: SO3, XeF4, SF4?

16A.2(a) Calculate the resultant of two dipole moments of magnitude 1.5 D 
and 0.80 D that make an angle of 109.5° to each other.
16A.2(b) Calculate the resultant of two dipole moments of magnitude 2.5 D 
and 0.50 D that make an angle of 120° to each other.

16A.3(a) Calculate the magnitude and direction of the dipole moment of the 
following arrangement of charges in the xy-plane: 3e at (0,0), −e at (0.32 nm, 
0), and −2e at an angle of 20° from the x-axis and a distance of 0.23 nm from 
the origin.
16A.3(b) Calculate the magnitude and direction of the dipole moment of the 
following arrangement of charges in the xy-plane: 4e at (0, 0), −2e at (162 pm, 
0), and −2e at an angle of 30° from the x-axis and a distance of 143 pm from 
the origin.

16A.4(a) The molar polarization of fluorobenzene vapour varies linearly with 
T−1, and is 70.62 cm3 mol−1 at 351.0 K and 62.47 cm3 mol−1 at 423.2 K. Calculate 
the polarizability and dipole moment of the molecule.
16A.4(b) The molar polarization of the vapour of a compound was found to 
vary linearly with T−1, and is 75.74 cm3 mol−1 at 320.0 K and 71.43 cm3 mol−1 at 
421.7 K. Calculate the polarizability and dipole moment of the molecule.

16A.5(a) At 0 °C, the molar polarization of liquid chlorine trifluoride 
is 27.18 cm3 mol−1 and its density is 1.89 g cm−3. Calculate the relative 
permittivity of the liquid.

16A.5(b) At 0 °C, the molar polarization of a liquid is 32.l6 cm3 mol−1 and its 
density is 1.92 g cm−3. Calculate the relative permittivity of the liquid. Take 
M = 85.0 g mol−1.

16A.6(a) The refractive index of CH2I2 is 1.732 for 656 nm light. Its density 
at 20 °C is 3.32 g cm−3. Calculate the polarizability of the molecule at this 
wavelength.
16A.6(b) The refractive index of a compound is 1.622 for 643 nm light. Its 
density at 20 °C is 2.99 g cm−3. Calculate the polarizability of the molecule at 
this wavelength. Take M = 65.5 g mol−1.

16A.7(a) The polarizability volume of H2O at optical frequencies is 
1.5 × 10−24 cm3: estimate the refractive index of water. The experimental value 
is 1.33; what may be the origin of the discrepancy?
16A.7(b) The polarizability volume of a liquid of molar mass 72.3 g mol−1 
and density 865 kg m−3 at optical frequencies is 2.2 × 10−30 m3: estimate the 
refractive index of the liquid.

16A.8(a) The dipole moment of chlorobenzene is 1.57 D and its polarizability 
volume is 1.23 × 10−23 cm3. Estimate its relative permittivity at 25 °C, when its 
density is 1.173 g cm−3.
16A.8(b) The dipole moment of bromobenzene is 5.17 × 10−30 C m and its 
polarizability volume is approximately 1.5 × 10−19 m3. Estimate its relative 
permittivity at 25 °C, when its density is 1491 kg m−3.

Problems
16A.1 The electric dipole moment of toluene (methylbenzene) is 0.4 D. 
Estimate the dipole moments of the three xylenes (dimethylbenzene). About 
which answer can you be sure?

16A.2 Plot the magnitude of the electric dipole moment of hydrogen peroxide 
as the HeOeOeH (azimuthal) angle φ changes from 0 to 2π. Use the 
dimensions shown in 1.

149 pm

97 pm

H

O

φ

1

16A.3 Acetic acid vapour contains a proportion of planar, hydrogen bonded 
dimers (2). The apparent dipole moment of molecules in pure gaseous acetic 

acid has a magnitude that increases with increasing temperature. Suggest an 
interpretation of this observation.

HO

2

16A.4‡ D.D. Nelson et al. (Science 238, 1670 (1987)) examined several weakly 
bound gas-phase complexes of ammonia in search of examples in which the 
H atoms in NH3 formed hydrogen bonds, but found none. For example, they 
found that the complex of NH3 and CO2 has the carbon atom nearest the 
nitrogen (299 pm away): the CO2 molecule is at right angles to the CeN ‘bond’, 

‡ These problems were supplied by Charles Trapp and Carmen Giunta
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and the H atoms of NH3 are pointing away from the CO2. The magnitude of 
the permanent dipole moment of this complex is reported as 1.77 D. If the N 
and C atoms are the centres of the negative and positive charge distributions, 
respectively, what is the magnitude of those partial charges (as multiples of e)?

16A.5 The polarizability volume of NH3 is 2.22 × 10−30 m3; calculate the dipole 
moment of the molecule (in addition to the permanent dipole moment) 
induced by an applied electric field of strength 15.0 kV m−1.

16A.6 The magnitude of the electric field at a distance r from a point charge 
Q is equal to Q/4πε0r2. How close to a water molecule (of polarizability 
volume 1.48 × 10−30 m3) must a proton approach before the dipole moment it 
induces has a magnitude equal to that of the permanent dipole moment of the 
molecule (1.85 D)?

16A.7 The relative permittivity of chloroform was measured over a range of 
temperatures with the following results:

The freezing point of chloroform is −64 °C. Account for these results and 
calculate the dipole moment and polarizability volume of the molecule.

16A.8 The relative permittivities of methanol (with a melting point of −95 °C) 
corrected for density variation are given below. What molecular information 
can be deduced from these values? Take ρ = 0.791 g cm−3 at 200 °C.

16A.9 In his classic book Polar molecules, Debye reports some early 
measurements of the polarizability of ammonia. From the selection below, 
determine the dipole moment and the polarizability volume of the molecule.

The refractive index of ammonia at 273 K and 100 kPa is 1.000 379 (for 
yellow sodium light). Calculate the molar polarizability of the gas at this 
temperature and at 292.2 K. Combine the value calculated with the static 
molar polarizability at 292.2 K and deduce from this information alone the 
molecular dipole moment.

16A.10 Values of the molar polarization of gaseous water at 100 kPa as 
determined from capacitance measurements are given below as a function of 
temperature.

Calculate the dipole moment of H2O and its polarizability volume.

16A.11 From data in Table 16A.1 calculate the molar polarization, relative 
permittivity, and refractive index of methanol at 20 °C. Its density at that 
temperature is 0.7914 g cm−3.

16A.12 Show that, in a gas (for which the refractive index is close to 1), the 
refractive index depends on the pressure as nr = 1 + const × p, and find the 
constant of proportionality. Go on to show how to deduce the polarizability 
volume of a molecule from measurements of the refractive index of a gaseous 
sample.

16A.13 Acetic acid vapour contains a proportion of planar, hydrogen-bonded 
dimers. The relative permittivity of pure liquid acetic acid is 7.14 at 290 K 
and increases with increasing temperature. Suggest an interpretation of the 
latter observation. What effect should isothermal dilution have on the relative 
permittivity of solutions of acetic acid in benzene?

TOPIC 16B Interactions between molecules

Discussion questions
16B.1 Identify the terms in and limit the generality of the following 
expressions: (a) V = −Q2μ1/4πε0r2, (b) V = −Q2μ1cos θ/4πε0r2, and 
(c) V = μ2μ1(1 − 3 cos2 θ)/4πε0r3.

16B.2 Draw examples of the arrangements of electrical charges that 
correspond to monopoles, dipoles, quadrupoles, and octupoles. Suggest a 
reason for the different distance dependencies of their electric fields.

16B.3 Account for the theoretical conclusion that many attractive interactions 
between molecules vary with their separation as 1/r6.

16B.4 Describe the formation of a hydrogen bond in terms of (a) electrostatic 
interactions and (b) molecular orbitals. How would you identify the better 
model?

16B.5 Account for the hydrophobic interaction and discuss its manifestations.

16B.6 Some polymers have unusual properties. For example, Kevlar (3) is 
strong enough to be the material of choice for bulletproof vests and is stable 
at temperatures up to 600 K. What molecular interactions contribute to the 
formation and thermal stability of this polymer?

N
H

NH

O

O

O H

H

n
3 Kevlar

Exercises
16B.1(a) Calculate the molar energy required to reverse the direction of an 
H2O molecule located 100 pm from a Li+ ion. Take the magnitude of the 
dipole moment of water as 1.85 D.

16B.1(b) Calculate the molar energy required to reverse the direction of an 
HCl molecule located 300 pm from a Mg2+ ion. Take the magnitude of the 
dipole moment of HCl as 1.08 D.

θ/°C −80 −70 −60 −40 −20 0 20

ε 3.1 3.1 7.0 6.5 6.0 5.5 5.0

ρ/(g cm−3) 1.65 1.64 1.64 1.61 1.57 1.53 1.50

θ/°C −185 −170 −150 −140 −110 −80 −50 −20 0 20

εr 3.2 3.6 4.0 5.1 67 57 49 43 38 34

T/K 292.2 309.0 333.0 387.0 413.0 446.0

Pm/(cm3 mol−1) 57.57 55.01 51.22 44.99 42.51 39.59

T/K 384.3 420.1 444.7 484.1 521.0

Pm/(cm3 mol−1) 57.4 53.5 50.1 46.8 43.1
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16B.2(a) Calculate the potential energy of the interaction between two linear 
quadrupoles when they are collinear and their centres are separated by a 
distance r.
16B.2(b) Calculate the potential energy of the interaction between two linear 
quadrupoles when they are parallel and separated by a distance r.

16B.3(a) Estimate the energy of the dispersion interaction (use the London 
formula) for two He atoms separated by 1.0 nm. Relevant data can be found in 
the Resource section.

16B.3(b) Estimate the energy of the dispersion interaction (use the London 
formula) for two Ar atoms separated by 1.0 nm. Relevant data can be found in 
the Resource section.

16B.4(a) How much energy (in kJ mol−1) is required to break the hydrogen 
bond in a vacuum (εr = 1)? Use the electrostatic model of the hydrogen bond.
16B.4(b) How much energy (in kJ mol−1) is required to break the hydrogen 
bond in water (εr ≈ 80.0)? Use the electrostatic model of the hydrogen bond.

Problems
16B.1 An H2O molecule is aligned by an external electric field of strength 
1.0 kV m−1 and an Ar atom (α ′ = 1.66 × 10−30 m3) is brought up slowly from 
one side. At what separation is it energetically favourable for the H2O 
molecule to flip over and point towards the approaching Ar atom?

16B.2 Suppose an H2O molecule (μ = 1.85 D) approaches an anion. What is 
the favourable orientation of the molecule? Calculate the electric field (in 
volts per metre) experienced by the anion when the water dipole is (a) 1.0 nm, 
(b) 0.3 nm, (c) 30 nm from the ion.

16B.3 Phenylalanine (Phe, 4) is a naturally occurring amino acid. What is 
the energy of interaction between its phenyl group and the electric dipole 
moment of a neighbouring peptide group? Take the distance between the 
groups as 4.0 nm and treat the phenyl group as a benzene molecule. The 
dipole moment of the peptide group is μ = 2.7 D and the polarizability volume 
of benzene is α ′ = 1.04 × 10−29 m3.

O

OHH2N

4 Phenylalanine

16B.4 Now consider the London interaction between the phenyl groups of 
two Phe residues (see Problem 16B.3). (a) Estimate the potential energy of 
interaction between two such rings (treated as benzene molecules) separated 
by 4.0 nm. For the ionization energy, use I = 5.0 eV. (b) Given that force is the 
negative slope of the potential, calculate the distance-dependence of the force 
acting between two non-bonded groups of atoms, such as the phenyl groups of 
Phe, in a polypeptide chain that can have a London dispersion interaction with 
each other. What is the separation at which the force between the phenyl groups 
(treated as benzene molecules) of two Phe residues is zero? (Hint: Calculate the 
slope by considering the potential energy at r and r + δr, with δr ≪ r,  

and evaluating {V(r + δr) − V(r)}/δr. At the end of the calculation, let δr 
become vanishingly small.)

16B.5 Given that F = −dV/dr, calculate the distance dependence of the force 
acting between two non-bonded groups of atoms in a polymer chain that have 
a London dispersion interaction with each other.

16B.6 Consider the arrangement shown in 5 for a system consisting of an 
OeH group and an O atom, and then use the electrostatic model of the 
hydrogen bond to calculate the dependence of the molar potential energy of 
interaction on the angle θ.

H

O

5

θ
200 pm

95.7 pm

–0.83e

–0.83e
+0.45e

16B.7 Suppose you distrusted the Lennard-Jones (12,6) potential for assessing 
a particular polypeptide conformation, and replaced the repulsive term by an 
exponential function of the form e−r r/ .0  (a) Sketch the form of the potential 
energy and locate the distance at which it is a minimum. (b) Identify the 
distance at which the exponential-6 potential is a minimum.

16B.8 The cohesive energy density, U, is defined as U/V, where U is the mean 
potential energy of attraction within the sample and V its volume. Show that 
U N= ∫1

2
V R( )dτ  where N is the number density of the molecules and V(R) 

is their attractive potential energy and where the integration ranges from d to 
infinity and over all angles. Go on to show that the cohesive energy density of 
a uniform distribution of molecules that interact by a van der Waals attraction 
of the form −C6/R6 is equal to (2π/3)(NA

2 /d3M2)ρ2C6, where ρ is the mass 
density of the solid sample and M is the molar mass of the molecules.

TOPIC 16C liquids

Discussion question
16C.1 Describe the process of condensation.

Exercises
16C.1(a) Calculate the vapour pressure of a spherical droplet of water of 
radius 10 nm at 20 °C. The vapour pressure of bulk water at that temperature 
is 2.3 kPa and its density is 0.9982 g cm−3.
16C.1(b) Calculate the vapour pressure of a spherical droplet of water of radius 
20.0 nm at 35.0 °C. The vapour pressure of bulk water at that temperature is 
5.623 kPa and its density is 994.0 kg m−3.

16C.2(a) The contact angle for water on clean glass is close to zero. Calculate 
the surface tension of water at 20 °C given that at that temperature water 
climbs to a height of 4.96 cm in a clean glass capillary tube of internal radius 
0.300 mm. The density of water at 20 °C is 998.2 kg m−3.
16C.2(b) The contact angle for water on clean glass is close to zero. Calculate 
the surface tension of water at 30 °C given that at that temperature water 
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694 16 Molecular interactions

climbs to a height of 9.11 cm in a clean glass capillary tube of internal 
diameter 0.320 mm. The density of water at 30 °C is 0.9956 g cm−3.

16C.3(a) Calculate the pressure differential of water across the surface of a 
spherical droplet of radius 200 nm at 20 °C.

16C.3(b) Calculate the pressure differential of ethanol across the surface of a 
spherical droplet of radius 220 nm at 20 °C. The surface tension of ethanol at 
that temperature is 22.39 mN m−1.

Problem
16C.1 The surface tensions of a series of aqueous solutions of a surfactant A 
were measured at 20 °C, with the following results:

Calculate the surface excess concentration.

Integrated activities
16.1 Show that the mean interaction energy of N atoms of diameter 
d interacting with a potential energy of the form C6/R6 is given by 
U = −2N2C6/3Vd3, where V is the volume in which the molecules are 
confined and all effects of clustering are ignored. Hence, find a connection 
between the van der Waals parameter a and C6, from n2a/V2 = (∂U/∂V)T.

16.2‡ F. Luo et al. (J. Chem. Phys. 98, 3564 (1993)) reported experimental 
observation of the He2 complex, a species which had escaped detection 
for a long time. The fact that the observation required temperatures in the 
neighbourhood of 1 mK is consistent with computational studies which 
suggest that hcD e  for He2 is about 1.51 × 10−23 J, hcD 0  about 2 × 10−26 J, and 
R about 297 pm. (a) Determine the Lennard-Jones parameters r0, and a and 
plot the Lennard–Jones potential for HeeHe interactions. (b) Plot the Morse 
potential given that a = 5.79 × 1010 m−1.

16.3 Molecular orbital calculations may be used to predict structures of 
intermolecular complexes. Hydrogen bonds between purine and pyrimidine 
bases are responsible for the double helix structure of DNA (see Topic 17A). 
Consider methyladenine (6, with RaCH3) and methylthymine (7, with 
RaCH3) as models of two bases that can form hydrogen bonds in DNA. 
(a) Using molecular modelling software and the computational method of 
your choice, calculate the atomic charges of all atoms in methyladenine and 
methylthymine. (b) Based on your tabulation of atomic charges, identify the 
atoms in methyladenine and methylthymine that are likely to participate 
in hydrogen bonds. (c) Draw all possible adenine–thymine pairs that can 
be linked by hydrogen bonds, keeping in mind that linear arrangements of 
the AdH…B fragments are preferred in DNA. For this step, you may want 
to use your molecular modelling software to align the molecules properly. 
(d) Consult Topic 17A and determine which of the pairs that you drew in 
part (c) occur naturally in DNA molecules. (e) Repeat parts (a)–(d) for 
cytosine and guanine, which also form base pairs in DNA (see Topic 17A 
for the structures of these bases).

N

NN

N

NH2

R
6        

HN

O

O

CH3

R

7

16.4 Molecular orbital calculations may be used to predict the dipole moments 
of molecules. (a) Using molecular modelling software and the computational 
method of your choice, calculate the dipole moment of the peptide link, 
modelled as a trans-N-methylacetamide (8). Plot the energy of interaction 
between these dipoles against the angle θ for r = 3.0 nm (see eqn 16B.4). (b) 
Compare the maximum value of the dipole–dipole interaction energy from 

part (a) to 20 kJ mol−1, a typical value for the energy of a hydrogen bonding 
interaction in biological systems.

N
H

CH3

O

8 trans-N-methylacetamide

16.5 This problem gives a simple example of a quantitative structure–
activity relation (QSAR). The binding of nonpolar groups of amino acid 
to hydrophobic sites in the interior of proteins is governed largely by 
hydrophobic interactions. (a) Consider a family of hydrocarbons ReH. The 
hydrophobicity constants, π, for RaCH3, CH2CH3, (CH2)2CH3, (CH2)3CH3, 
and (CH2)4CH3 are, respectively, 0.5, 1.0, 1.5, 2.0, and 2.5. Use these data to 
predict the π value for (CH2)6CH3. (b) The equilibrium constants KI for the 
dissociation of inhibitors (9) from the enzyme chymotrypsin were measured 
for different substituents R:

Plot log KI against π. Does the plot suggest a linear relationship? If so, what 
are the slope and intercept to the log KI axis of the line that best fits the data? 
(c) Predict the value of KI for the case RaH.

NHR
CHO

9

16.6 Derivatives of the compound TIBO (10) inhibit the enzyme reverse 
transcriptase, which catalyses the conversion of retroviral RNA to DNA. A 
QSAR analysis of the activity A of a number of TIBO derivatives suggests the 
following equation:

log 1 2A b b S b W= + +0  
where S is a parameter related to the drug’s solubility in water and W is a 
parameter related to the width of the first atom in a substituent X shown in 10.  
(a) Use the following data to determine the values of b0, b1, and b2. Hint: The 
QSAR equation relates one dependent variable, log A, to two independent 
variables, S and W. To fit the data, you must use the mathematical procedure of 

[A]/(mol dm−3)  0 0.10 0.20 0.30  0.40  0.50

γ/(mN m−1) 72.8 70.2 67.7 65.1 62.8 59.8

R CH3CO CN NO2 CH3 Cl

π −0.20 −0.025  0.33  0.5  0.9

log KI −1.73 −1.90 −2.43 −2.55 −3.40
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multiple regression, which can be performed with mathematical software or an 
electronic spreadsheet.

(b) What should be the value of W for a drug with S = 4.84 and log A = 7.60?

X

N
HN

N

O

C

10

X H Cl SCH3 OCH3 CN CHO Br CH3 CCH

log A 7.36 8.37 8.3 7.47 7.25 6.73 8.52 7.87 7.53

S 3.53 4.24 4.09 3.45 2.96 2.89 4.39 4.03 3.80

W 1.00 1.80 1.70 1.35 1.60 1.60 1.95 1.60 1.60
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chaPter 17

macromolecules and  
self-assembly

Macromolecules are built from covalently linked components. 
They are everywhere, inside us and outside us. Some are natu-
ral: they include polysaccharides (such as cellulose), polypep-
tides (such as protein enzymes), and polynucleotides (such as 
deoxyribonucleic acid, DNA). Others are synthetic (such as 
nylon and polystyrene). Molecules both large and small may 
also gather together in a process called ‘self-assembly’ and give 
rise to aggregates that to some extent behave like macromol-
ecules. One example is the assembly of the protein actin into 
filaments in muscle tissue. In this chapter we examine the 
structures and properties of macromolecules and aggregates.

17A the structures of macromolecules

Macromolecules adopt shapes that are governed by the molecu-
lar interactions described in Topic 16B. The overall shape of a 
protein, for instance, is maintained by van der Waals interac-
tions, hydrogen bonding, and the hydrophobic effect. In this 
Topic we consider a range of structures, beginning with a struc-
tureless ‘random coil’, partially structured coils, and then the 
structurally precise proteins and nucleic acids.

17B Properties of macromolecules

Natural macromolecules differ in certain respects from syn-
thetic macromolecules, particularly in their composition and 
the resulting structure, but the two share a number of common 
properties. In this Topic we concentrate on mechanical, ther-
mal, and electrical properties.

17C self-assembly

Atoms, small molecules, and macromolecules can form large 
aggregates, sometimes by processes involving self-assembly, 
that are held together by one or more of the molecular interac-
tions described in Topic 16B. In this Topic we explore ‘colloids’, 
‘micelles’, and biological membranes, which are assemblies 
with some of the typical properties of molecules but also with 
their own characteristic features. We also consider examples in 
which the controlled design of new materials with enhanced 
properties is informed by understanding of the principles 
underlying self-assembly.

17D determination of size and shape

Macromolecules, whether natural or synthetic, and aggregates 
need to be characterized in terms of their molar mass, their 
size, and their shape. This Topic considers how these features 
are determined experimentally.

What is the impact of this material?

The impact of this material is immense as it underlies the dis-
cussion of biological phenomena and the properties of many 
modern materials. However, the applications are embedded 
in the development of the concepts and are not found on the 
web site.
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17A the structures of macromolecules

Macromolecules are very large molecules assembled from 
smaller molecules biosynthetically in organisms, by chemists 
in the laboratory, or in an industrial reactor. Naturally occur-
ring macromolecules include polysaccharides such as cellulose, 
poly peptides such as protein enzymes, and polynucleotides 
such as deoxyribonucleic acid (DNA). Synthetic macromol-
ecules include polymers such as nylon and polystyrene that are 
manufactured by stringing together and in some cases cross-
linking smaller units known as monomers (Fig. 17A.1).

17A.1 The different levels of structure

The concept of the ‘structure’ of a macromolecule takes on dif-
ferent meanings at the different levels at which we think about 
the arrangement of the chain or network of monomers. The 
primary structure of a macromolecule is the sequence of small 
molecular residues making up the polymer. The residues may 
form either a chain, as in polyethene, or a more complex net-
work in which cross-links connect different chains, as in cross-
linked polyacrylamide. In a synthetic polymer, virtually all the 
residues are identical and it is sufficient to name the monomer 
used in the synthesis. Thus, the repeating unit of polyethene 
and its derivatives is eCHXCH2e, and the primary structure 
of the chain is specified by denoting it as e(CHXCH2)ne.

The concept of primary structure ceases to be trivial in the 
case of synthetic copolymers and biological macromolecules, 
for in general these substances are chains formed from different 

Contents

17a.1 The different levels of structure 697

17a.2 Random coils 698
(a) Measures of size 699

brief illustration 17a.1: one-dimensional  
random coils 699
brief illustration 17a.2: three-dimensional  
random coils 700
brief illustration 17a.3: measures of size of  
a random coil 701

(b) Constrained chains 702
(c)  Partly rigid coils 702

example 17a.1: calculating the root-mean-
square separation of a partly rigid coil 703

17a.3 Biological macromolecules 703
(a) Proteins 704
(b) Nucleic acids 705

Checklist of concepts 706
Checklist of equations 706

➤➤ Why do you need to know this material?
Macromolecules give rise to special problems that include 
the investigation and description of their shapes and the 
determination of their sizes. You need to know how to 
describe the structural features of macromolecules in order 
to understand their physical and chemical properties.

➤➤ What is the key idea?
The structure of a macromolecule takes on different 
meanings at the different levels at which the arrangement 
of the chain or network of its building blocks is considered.

➤➤ What do you need to know already?
You need to be familiar with statistical arguments 
(Topic 15A). The discussion of the shapes of biological 
macromolecules depends on an understanding of the 
nonbonding interactions that act between molecules 
(Topic 16B).

Monomer
(a)

(b)

(c)

Figure 17A.1 Three varieties of polymer: (a) a simple linear 
polymer, (b) a cross-linked polymer, and (c) one variety of 
copolymer.
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698 17 Macromolecules and self-assembly

molecules. For example, proteins are polypeptides formed 
from different amino acids (about twenty occur naturally) 
strung together by the peptide link, eCONHe. The determi-
nation of the primary structure is then a highly complex prob-
lem of chemical analysis called sequencing. The degradation 
of a polymer is a disruption of its primary structure, when the 
chain breaks into shorter components.

The term conformation refers to the spatial arrangement 
of the different parts of a chain, and one conformation can be 
changed into another by rotating one part of a chain around 
a bond. The conformation of a macromolecule is relevant at 
three levels of structure. The secondary structure of a mac-
romolecule is the (often local) spatial arrangement of a chain. 
The secondary structure of a molecule of polyethene in a good 
solvent is typically a random coil in the absence of a solvent 
polyethene forms crystals consisting of stacked sheets with a 
hairpin-like bend about every 100 monomer units, presumably 
because for that number of monomers the intermolecular (in 
this case intramolecular) potential energy is sufficient to over-
come thermal disordering. The secondary structure of a pro-
tein is a highly organized arrangement determined largely by 
hydrogen bonds, and taking the form of random coils, helices 
(Fig. 17A.2a), or sheets in various segments of the molecule.

The tertiary structure is the overall three-dimensional struc-
ture of a macromolecule. For instance, the hypothetical protein 
shown in Fig. 17A.2b has helical regions connected by short 
random-coil sections. The helices interact to form a compact 
tertiary structure. Denaturation may also occur at this level, 
with tertiary structure lost but secondary structure largely 
retained.

The quaternary structure of a macromolecule is the man-
ner in which large molecules are formed by the aggregation of 
others. Figure 17A.3 shows how four molecular subunits, each 
with a specific tertiary structure, aggregate. Quaternary struc-
ture can be very important in biology. For example, the oxygen-
transport protein haemoglobin consists of four myoglobin-like 
subunits that work cooperatively to take up and release O2.

17A.2 Random coils

The most likely conformation of a chain of identical units not 
capable of forming hydrogen bonds or any other type of spe-
cific bond is a random coil. Polyethene is a simple example. The 
random coil model is a helpful starting point for estimating the 
orders of magnitude of the hydrodynamic properties of poly-
mers and denatured proteins in solution.

The simplest model of a random coil is a freely-jointed 
chain, in which any bond is free to make any angle with 
respect to the preceding one (Fig. 17A.4). We assume that the 
residues occupy zero volume, so different parts of the chain 
can occupy the same region of space. The model is obviously 
an oversimplification because a bond is actually constrained 
to a cone of angles around a direction defined by its neighbour 
(Fig. 17A.5) and real chains are self-avoiding in the sense that 
distant parts of the same chain cannot fold back and occupy 
the same space.

In a hypothetical one-dimensional freely jointed chain 
all the residues lie in a straight line, and the angle between 
neighbours is either 0° or 180°. The residues in a three-
dimensional freely jointed chain are not restricted to lie in a 
line or a plane.

(b)(a)

=

Figure 17A.2 (a) A polymer adopts a highly organized helical 
conformation, an example of a secondary structure. The 
helix is represented as a cylinder. (b) Several helical segments 
connected by short random coils pack together, providing an 
example of tertiary structure.

Figure 17A.3 Several subunits with specific tertiary structures 
pack together, providing an example of quaternary structure.

Arbitrary
angle

Arbitrary
angle

Figure 17A.4 A freely-jointed chain is like a three-dimensional 
random walk, each step being in an arbitrary direction but of 
the same length.
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(a) Measures of size

As shown in the following Justification, the probability, P, that 
the ends of a long one-dimensional freely jointed chain com-
posed of N units of length l (and therefore of total length Nl) are 
a distance nl apart is

P
N

n N=





−2
1 2

22

π

/

/e
 

This function is plotted in Fig. 17A.6.

Brief illustration 17A.1 One-dimensional random coils

Suppose that N = 1000 and l = 150 pm, then the probability that 
the ends of a one-dimensional random coil are nl = 3.00 nm 
apart is given by eqn 17A.1 by setting n = (3.00 × 103 pm)/
(150 pm) = 20.0:

P = ×






=− ×2
1000

0 0207
1 2

20 0 2 10002

π

/

. /( ) .e
 

meaning that there is a 1 in 48 chance of being found there.

Self-test 17A.1 What is the probability that the ends of a poly-
ethene chain of molar mass 85 kg mol−1 are 10 nm apart when 
the polymer is treated as a one-dimensional freely jointed 
chain?

Answer: 9.8 × 10−3

Justification 17A.1 One-dimensional random coils

Consider a one-dimensional freely jointed polymer. We can 
specify its conformation by stating the number of bonds 
pointing to the right (NR) and the number pointing to the left 
(NL). The distance between the ends of the chain is (NR – NL)l, 
where l is the length of an individual bond. We write n = NR – 
NL and the total number of bonds as N = NR + NL. Later in the 
calculation we use N N nR = +1

2 ( ) and N N nL = 1
2 ( ).−

The probability, P, that the end-to-end separation of a ran-
domly selected polymer is nl is

P
nl= number of polymers with end-to-end distance

total nummber of possible conformations  

Each of the N bonds of the polymer may in principle lie to the 
left or the right, so the total number of possible conforma-
tions is 2N. The total number of ways, W, of forming a chain 
of N bonds with the end-to-end distance nl is the number of 
ways of having NR right-pointing bonds, the rest being left-
pointing bonds. Therefore, to calculate W we need to deter-
mine the number of ways of achieving NR right-pointing 
bonds given a total of N bonds. This is the same problem as 
selecting NR objects from a collection of N objects (see Topic 
15A), and is

W
N

N N N
N

N N
N

N n N n
= − = =

+{ } −( ){ }
!

!( )!
!

! !
!

( ) ! !R R R L
1
2

1
2  

It now follows that

P
W N

N n N nN N
= =

+{ } −{ }2 21
2

1
2

!

( ) ! ( ) !
 

When the chain is compact in the sense that n≪N, it is more 
convenient to evaluate ln P: the factorials are then large and 
we can use Stirling’s approximation (Topic 15A) in the form

ln ! ln( ) ln/x x x x≈ + +( ) −2 1 2 1
2π  

The result, after quite a lot of algebra (see Problem 17A.7), is

ln ln ( )ln( ) ( )ln( )
/

P
N

N n N n≈ 





− + + + − − + −2
1 1 1 1

1 2

1
2

1
2π  

 

Arbitrary
angle

θ

θ

θ
θ θ

Figure 17A.5 A better description is obtained by fixing the 
bond angle (for example, at the tetrahedral angle) and allowing 
free rotation about a bond direction.
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Figure 17A.6 The probability distribution for the separation of 
the ends of a one-dimensional random coil. The separation of 
the ends is Nl, where l is the bond length.

Onedimensional 
random coil

Probability 
distribution  (17A.1)
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We show in the following Justification that eqn 17A.1 can be 
used to calculate the probability that the ends of a long three-
dimensional freely jointed chain lie in the range r to r + dr. We 
write this probability as f(r)dr, where

f r
a

r

a
Nl

a r( ) /

/

= 





=





−4

3
2

1 2

3

2

2

1 2

2 2π
π

e

 

For a narrow range of distances δr, the probability density can be 
treated as a constant and the probability calculated from f(r)δr.  
An alternative interpretation of this expression is to regard each 
coil in a sample as ceaselessly writhing from one conformation 
to another; then f(r)dr is the probability that at any instant the 
chain will be found with the separation of its ends between r 
and r + dr.

In some coils, the ends may be far apart whereas in others 
their separation is small. Here and elsewhere we are ignoring 
the fact that the chain cannot be longer than Nl. Although eqn 
17A.2 gives a nonzero probability for r > Nl, the values are so 
small that the errors in pretending that r can range up to infin-
ity are negligible.

where ν = n/N. For a compact coil (ν ≪ 1) we use the approxi-
mation ln 1 2( )± ≈ ± −  1

2  and so obtain

ln ln
/

P
N

N≈ 





−2
1 2

21
2π 

 
which rearranges into eqn 17A.1.

To confirm that the total probability of the chain ends 
being at any separation is 1, we integrate P over all values of 
n. However, because n can change only in steps of 2, the inte-
gration step size is 1

2 dn,  not dn itself. Then (with N allowed to 
become infinite),

n N

N

n NP P n n
N

n
=−

−

−

−∑ ∫ ∫→ = 
 ) =( )( )1

2
1
2

1 2

22 2

d d
∞

∞

∞

∞

π

/

/e

 Integral G..1
1

Three
dimensional 
random coil

Probability 
distribution  (17A.2)

If x is regarded as continuously variable, we need to replace this 
probability by a probability density f(x) such that f(x)dx is the 
probability that the ends of the chain will be found between 
x and x + dx. Because dx = 2(l/31/2)dn (for the factor 2, see the 
remark at the end of Justification 17A.1), dn = (31/2/2l)dx, so

f x
l N

x Nl( )
/

/= 





−1
2

6
1 2

3 22 2

π e
 

Because the probabilities of making steps along all three coor-
dinates are independent, the probability of finding the ends of 
the chain in a region of volume dV = dxdydz at a distance r is 
the product of these densities:

f x y z V f x f y f z x y z
l N

Vr Nl( , , ) ( ) ( ) ( )
/

/d d d d e d= = 





−1
8

6
3

3 2

3 22 2

π
 

The volume of a spherical shell at a distance r is 4πr2, so the 
total probability of finding the ends at a separation between r 
and r + dr, regardless of orientation, is

f r r
l N

r r Nl( )
/

/d d= 





−4
8

6
3

3 2

2 3 22 2π
π e r

 

from which f(r) can be identified (in blue), as in eqn 17A.2.

Justification 17A.2 Three-dimensional random coils

The formation of a three-dimensional random coil can be 
regarded as the outcome of a three-dimensional random walk, 
in which each bond of length l represents a step of length 
l taken in a random direction. The length of the step can be 
expressed in terms of its projections on each of three orthog-
onal axes as l l l lx y z

2 = + +2 2 2. The average values of lx
2 , ly

2 , and lz
2  

are all the same in a spherically symmetric environment, so 
the average length of a step in the x-direction (or any of the 
other two directions) can be obtained by writing l lx

2 3= 〈 〉2 , and 
is x l lx= 〈 〉 =2 1 2 1 2/3/ / . The probability that the random walk will 
end up at a distance x from the origin is given by eqn 17A.1 
with n = x/(l/31/2) = 31/2x/l:

P x
N

x Nl( )
/

/= 





−2
1 2

3 22 2

π e
 

Brief illustration 17A.2 Three-dimensional random coils

Consider the chain described in Brief illustration 17A.1, with 
N = 1000 and l = 150 pm. If the coil is three dimensional, we set

a =
× ×







= …× − −3
2 1000 150

2 58 102

1 2

4 1

( )
.

/

pm
pm

 
Then the probability density at r = 3.00 nm is given by eqn 
17A.2 as

f ( . )
.

( . )

/

( .

3 00 4
2 58 10

3 00 10

4 1

1 2

3

3 2 2

nm
pm

pm e

= × …×





× × ×

− −

−

π
π

558 10 3 00 10

4 1

4 1 2 3 2

1 92 10

…× ×

− −

− −

= ×

pm pm

pm

) .( )

.  
The probability that the ends will be found in a narrow range 
of width δr = 10.0 pm at 3.00 nm (regardless of direction) is 
therefore

f r v( . ) ( . ) ( . ) .3 nm 1 92 1 pm 1 pm 1 92 14 1 300 0 0 0 0δ = × × = ×− − −
 

or about 1 in 5200.
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17A The structures of macromolecules  701

There are several measures of the geometrical size of a random 
coil. The contour length, Rc , is the length of the macromolecule 
measured along its backbone from atom to atom. For a polymer 
of N monomer units each of length l, the contour length is

R Nlc =  Random coil  contour length  (17A.3)

The root-mean-square separation, Rrms, is a measure of the 
average separation of the ends of a random coil: it is the square 
root of the mean value of R2. To determine its value we note 
that the vector joining the two ends of the chain is the vector 

sum of the vectors joining neighbouring monomers: R r= ∑
=i

N

i
1

 

(Fig. 17A.7). The mean square separation of the ends of the 
chain is therefore

〈 = 〈 ⋅ 〉 = 〈 = 〈 〉+〉 ⋅ 〉 〈 ⋅ 〉∑ ∑ ∑
≠

R ri j i i j
2 2

2

R R r r r r
i j

N

i

N l

i j

N

.



 

When N is large (which we assume throughout) the second 
sum (in blue) vanishes because the individual vectors all lie 
in random directions. The remaining sum is equal to Nl2 as 
all bond lengths are the same (and equal to l); so, after taking 
square roots to obtain Rrms = 〈R2〉1/2, we conclude that

R N lrms
1 2= /

 Random coil  root-mean-square separation  (17A.4)

We see that, as the number of monomer units increases, the 
root-mean-square separation of its end increases as N1/2 (Fig. 
17A.8), and consequently its volume increases as N3/2. The 
result must be multiplied by a factor when the chain is not 
freely jointed (see next section).

Another convenient measure of size is the radius of gyra-
tion, Rg, which is the radius of a hollow sphere that has the 

same moment of inertia (and therefore rotational characteris-
tics) as the actual molecule of the same mass. We show in the 
following Justification that

R N lg = 1 2/

 

A similar calculation for a three-dimensional random coil gives

R
N

lg =



6

1 2/

 

The radius of gyration is smaller in this case because the extra 
dimensions enable the coil to be more compact. The radius 
of gyration may also be calculated for other geometries. For 
example, a solid uniform sphere of radius R has R Rg

1 2=( ) ,/3
5  and 

a long thin uniform rod of length l has Rg = l/(12)1/2 for rota-
tion about an axis perpendicular to the long axis. A solid sphere 
with the same radius and mass as a random coil has a greater 
radius of gyration as it is entirely dense throughout.

Brief illustration 17A.3 Measures of size of a random coil

With a powerful microscope it is possible to see that a long 
piece of DNA is flexible and writhes as if it were a random coil. 
However, small segments of the macromolecule resist bend-
ing, so it is more appropriate to visualize DNA as a freely 
jointed chain with N and l as the number and length, respec-
tively, of these rigid units. The length l of a rigid unit is approx-
imately 45 nm. It follows that for a piece of DNA with N = 200, 
we estimate (by using 103 nm = 1 µm)

From eqn 17A.3: Rc = 200 × 45 nm = 9.0 µm
From eqn 17A.4: Rrms = (200)1/2 × 45 nm = 0.64 µm

From eqn 17A.6: Rg nm m= 





× =200
6

45 0 26
1 2/

. µ

Onedimensional 
random coil 

radius of 
gyration  (17A.5)

Threedimensional 
random coil

radius of 
gyration  (17A.6)

Self-test 17A.2 What is the probability that the ends of a poly-
ethene chain of molar mass 85 kg mol−1 are between 15.0 nm 
and 15.1 nm apart when the polymer is treated as a three-
dimensional freely jointed chain?

Answer: 5.9 × 10−3

r1

rN–1

r2

r3

R

1

2

3

N

Figure 17A.7 A schematic illustration of the calculation of the 
root-mean-square separation of the ends of a random coil.
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Figure 17A.8 The variation of the root-mean-square 
separation of the ends of a three-dimensional random coil, Rrms, 
with the number of monomers.
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702 17 Macromolecules and self-assembly

The random coil model ignores the role of the solvent: a poor 
solvent will tend to cause the coil to tighten so that solute– 
solvent contacts are minimized; a good solvent does the oppo-
site. Therefore, calculations based on this model are better 
regarded as lower bounds to the dimensions for a polymer in 
a good solvent and as an upper bound for a polymer in a poor 
solvent. The model is most reliable for a polymer in a bulk solid 
sample, where the coil is likely to have its natural dimensions.

(b) Constrained chains
The freely jointed chain model is improved by removing the 
freedom of bond angles to take any value. For long chains, we 
can simply take groups of neighbouring bonds and consider 
the direction of their resultant. Although each successive indi-
vidual bond is constrained to a single cone of angle θ relative 
to its neighbour, the resultant of several bonds lies in a random 
direction. By concentrating on such groups rather than indi-
viduals, it turns out that for long chains the expressions for the 
root-mean-square separation and the radius of gyration given 
above should be multiplied by

F = −
+







1
1

1 2
cos
cos

/θ
θ  

(17A.7)

For tetrahedral bonds, for which cosθ = 1
3  (that is, θ = 109.5°), 

F = 21/2. Therefore:

R N l R
N

lrms g= =





( ) /

/

2
3

1 2

1 2

  
 dimensions of a tetrahedrally constrained chain  (17A.8)

The model of a randomly coiled molecule is still an approxima-
tion, even after the bond angles have been restricted, because 
it does not take into account the impossibility of two or more 
atoms occupying the same place. Such self-avoidance tends to 
swell the coil, so (in the absence of solvent effects) it is better to 
regard Rrms and Rg as lower bounds to the actual values.

(c) Partly rigid coils
An important measure of the flexibility of a chain is the persis-
tence length, lp, a measure of the length over which the direc-
tion of the first monomer–monomer direction is sustained. If 
the chain is a rigid rod, then the persistence length is the same 
as the contour length. For a freely-jointed random coil, the per-
sistence length is just the length of the monomer–monomer 
bond. Therefore, the persistence length can be regarded as a 
measure of the stiffness of the chain. In general, the persistence 
length of a chain of identical monomers of length l is defined as 
the average value of the projection of the end-to-end vector on 
the first bond of the chain (Fig. 17A.9):

l
l l

i

N

ip = ⋅ = 〈 ⋅ 〉
=

−

∑r R r r1

1

1

1

1

 
Definition  Persistence length  (17A.9)

(The sum ends at N − 1 because the last atom is atom N and the 
last bond is from atom N − 1 to atom N.) Experimental values of 
persistence lengths are as follows:

These values suggest that the stiffness of the chain increases 
from left to right along the series.

The mean square distance between the ends of a chain that 
has a persistence length greater than the monomer length can 
be expected to be greater than for a random coil because the 
partial rigidity of the coil does not let it roll up so tightly. We 
show in the following Justification that

R N lF F
l

lrms
p

where= = −






1 2

1 2
2

1/

/

 
(17A.10)

For a random coil, lp = l, so Rrms = N1/2l, as we have already 
found. For lp > l, F > 1, so the coil has swollen, as we anticipated.

Justification 17A.3 The radius of gyration

For a one-dimensional random coil with N + 1 identical mon-
omers (and therefore N bonds) each of mass m, the moment of 
inertia around the centre of the chain (which is also at the first 
monomer, because steps occur in equal numbers to left and 
right) is

I m r m r
i

N

i i

i

N

i= =
= =
∑ ∑

0

2

0

2

 
This moment of inertia is set equal to m Rtot g

2 , where mtot is 
the total mass of the polymer, mtot = (N + 1)m. Therefore, after 
averaging over all conformations,

R
N

r
i

N

ig
2

0

21
1

= + 〈 〉
=
∑

 
For a linear random chain, 〈 〉 =r Nli

2 2 , and as there are N + 1 
such terms in the sum, we find

R Nlg
2 2=  

Equation 17A.5 then follows after taking the square root of 
each side.

Self-test 17A.3 Calculate the contour and root-mean-square 
lengths of a polymer chain modelled as a random coil with 
N = 1000 and l = 150 pm.

Answer: Rc = 150 nm, Rrms = 4.74 nm

poly(glycine) poly(l-alanine) poly(l-proline)
0.6 nm 2 nm 22 nm
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17A.3 Biological macromolecules

A protein is a polypeptide composed of linked α-amino acids, 
NH2CHRCOOH, where R is one of about 20 groups. For a 
protein to function correctly, it needs to have the correct con-
formation. For example, an enzyme has its greatest catalytic 
efficiency only when it is in a specific conformation. The amino 
acid sequence of a protein contains the necessary information 
to create the active conformation of the protein as it is formed. 
However, the prediction of the observed conformation from 
the primary structure, the so-called protein folding problem, is 
extraordinarily difficult and is still the focus of much research. 
The other class of biological macromolecules we consider are 
the nucleic acids, which are key components of the mechanism 
of storage and transfer of genetic information in biological 
cells. Deoxyribonucleic acid (DNA) contains the instructions 
for protein synthesis, which is carried out by different forms of 
ribonucleic acid (RNA).

Justification 17A.4 Partly rigid coils

In each of the following steps we use N → ∞ when necessary. 
We start from

〈 = 〈 〉+ 〈〉 ⋅ 〉∑ ∑
≠

R r
i

i

i j

N

i j
2 2

l2
r r

 

The first term on the right is Nl2 regardless of the rigidity of 
the coil. The second term can be written as follows:

i j

N

i j

i

N

i

i

N

i

≠ = =
∑ ∑ ∑〈 ⋅ = 〈 ⋅ + 〈 ⋅ +…〉 〉 〉r r r r r r2 2
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There are N − 1 such terms, and provided we allow N to become 
infinite, all the sums on the right have the same value, so

i j

N

i j

i

N

i

i

N

iN N
≠ = =
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2
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1( )−
 

The final (blue) sum on the right is close to being the square of 
the persistence length. Specifically, from eqn 17A.9,

j

N

j

j

N

j r ll l
= =

∑ ∑〈 ⋅ 〉 = 〈 ⋅ −〈 = −〉 〉
2

1

1

1 1
2 2r r r r p

 
Now we bring the three pieces of the calculation together:

〈 = + − = −〉R Nl N ll l Nll Nl2 2 2 22 2( )p p  

which, on taking the square root of both sides, is eqn 17A.10.

Example 17A.1 Calculating the root-mean-square 
separation of a partly rigid coil

By what percentage does the root-mean-square separation of 
the ends of a polymer chain with N = 1000 increase or decrease 
when the persistence length changes from l (the bond length) 
to 2.5 per cent of the contour length?

Method When lp = l, the chain is a random coil. From eqn 
17A.4, write the root-mean-square separation of the ends of 
the chain in the random coil limit as Rrms,random coil = N1/2l. Then 
it follows from eqn 17A.10 that the root-mean-square separa-
tion of the ends of the chain, Rrms, of the partly rigid coil with 
persistence length lp is

R R
l
lrms rms random coil

p= −



,

/
2

1
1 2

 

From eqn 17A.3, we write Rc = Nl and we are given that 
lp = 0.025Rc, which can therefore be interpreted as 0.025Nl. From 
these expressions, calculate the fractional change in the root-
mean-square separation, ( )/ ,, ,R R Rrms rms random coil rms random coil−  
and express the result as a percentage.

Answer We write the fractional change in the root-mean-
square separation as

R R
R

R
R

rms rms random coil

rms random coil

rms

rms random coil

− =,

, ,
−−

= −





−

= × −





−

= −( )

1

2
1 1

2 0 025
1 1

0 050 1

1 2

1 2

1

l
l

Nl
l

N

p
/

/

/

.

.
22

1−  

With N = 1000, the fractional change is 6.00, so the root-mean-
square separation increases by 600 per cent.

Self-test 17A.4 Calculate the fractional change in the volume 
of the same coil.

Answer: 340

r1

R

1

N

l

lP

Figure 17A.9 The persistence length is defined as the average 
value of the projection of the end-to-end vector on the first 
bond of the chain.
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(a) Proteins

The origin of the secondary structures of proteins is found in 
the rules formulated by Linus Pauling and Robert Corey in 
1951 that seek to identify the principal contributions to the 
lowering of energy of the molecule by focusing on the role of 
hydrogen bonds and the peptide link, eCONHe. The latter 
can act both as a donor of the H atom (the NH part of the link) 
and as an acceptor (the CO part). The Corey–Pauling rules are 
as follows (Fig. 17A.10):

1. The four atoms of the peptide link lie in a relatively rigid 
plane.

The planarity of the link is due to delocalization of π electrons 
over the O, C, and N atoms and the maintenance of maximum 
overlap of their p orbitals.

2. The N, H, and O atoms of a hydrogen bond lie in a 
straight line (with displacements of H tolerated up to not 
more than 30° from the NeO direction).

3. All NH and CO groups of the peptide links are engaged 
in hydrogen bonding.

The rules are satisfied by two structures. One, in which hydro-
gen bonding between peptide links leads to a helical structure, is 
a helix, which can be arranged as either a right-or a left-handed 
screw. The other, in which hydrogen bonding between peptide 
links leads to a planar structure, is a sheet; this form is the sec-
ondary structure of the protein fibroin, the constituent of silk.

Because the planar peptide link is relatively rigid, the geom-
etry of a polypeptide chain can be specified by the two angles 
that two neighbouring planar peptide links make to each other. 
Figure 17A.11 shows the two angles ϕ and ψ commonly used to 
specify this relative orientation. The sign convention is that a 
positive angle means that the front atom must be rotated clock-
wise to bring it into an eclipsed position relative to the rear 
atom. For an all-trans form of the chain, all ϕ and ψ are 180°. 
A helix is obtained when all the ϕ are equal and when all the 

ψ are equal. For a right-handed helix, an α helix (Fig. 17A.12), 
all ϕ = 57° and all ψ = −47°. For a left-handed helix, both angles 
are positive. The torsional contribution to the total potential 
energy is

V A Btorsion 1 cos 3 1 cos 3= + + +( ) ( )φ ψ  (17A.11)

in which A and B are constants of the order of 1 kJ mol−1. 
Because only two angles are needed to specify the conformation 
of a helix, and they range from −180° to +180°, the torsional 
potential energy of the entire molecule can be represented on a 
Ramachandran plot, a contour diagram in which one axis rep-
resents ϕ and the other represents ψ.

Figure 17A.13 shows the Ramachandran plots for the heli-
cal form of polypeptide chains formed from the non-chiral 
amino acid glycine (R = H) and the chiral amino acid l-ala-
nine (R]CH3). The glycine map is symmetrical, with minima 
of equal depth at ϕ = −80°, ψ = +90° and at ϕ = +80°, ψ = −90°. 
In contrast, the map for l-alanine is unsymmetrical, and there 
are three distinct low-energy conformations (marked I, II, III). 
The minima of regions I and II lie close to the angles typical of 

R

H

C N

R

102

145.5

151 132.5

124

Rotational
freedom

Rotational
freedom

122°

116°

123.5°
O

O

H

C N

Figure 17A.10 The dimensions that characterize the peptide 
link. The CeNHeCOeC atoms define a plane (the CeN bond 
has partial double-bond character), but there is rotational 
freedom around the CeCO and NeC bonds.

φ

ψ

Figure 17A.11 The definition of the torsional angles ψ and ϕ 
between two peptide units. In this case (an α-l-polypeptide) 
the chain has been drawn in its all-trans form, with ψ = ϕ = 180°.

Figure 17A.12 The polypeptide α helix, with poly-l-glycine as 
an example. There are 3.6 residues per turn, and a translation 
along the helix of 150 pm per residue, giving a pitch of 540 pm. 
The diameter (ignoring side chains) is about 600 pm.
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right- and left-handed helices, but the former has a lower mini-
mum. This result is consistent with the observation that poly-
peptides of the naturally occurring l-amino acids tend to form 
right-handed helices.

A β-sheet (also called the β-pleated sheet) is formed by 
hydrogen bonding between two extended polypeptide chains 
(large absolute values of the torsion angles ϕ and ψ). In an anti-
parallel β-sheet (Fig. 17A.14a), ϕ  = 139°, ψ  = 113°, and the 
NeH…O atoms of the hydrogen bonds form a straight line. This 
arrangement is a consequence of the antiparallel arrangement of 
the chains: every NeH bond on one chain is aligned with a CeO 
bond from another chain. Antiparallel β-sheets are very com-
mon in proteins. In a parallel β-sheet (Fig. 17A.14b), ϕ  = 119°, 
ψ  = 113°, and the NeH…O atoms of the hydrogen bonds are 
not perfectly aligned. This arrangement is a result of the paral-
lel arrangement of the chains: each NeH bond on one chain is 
aligned with a NeH bond of another chain and, as a result, each 

CeO bond of one chain is aligned with a CeO bond of another 
chain. These structures are not common in proteins.

Covalent and non-covalent interactions may cause poly-
peptide chains with well-defined secondary structures to fold 
into tertiary structures. Although the rules that govern protein 
folding are still being elucidated, a few general conclusions 
may be drawn from X-ray diffraction studies of water-soluble 
natural proteins and synthetic polypeptides. In an aqueous 
environment, the chains fold in such a way as to place nonpolar 
R groups in the interior (which is often not very accessible to 
solvent) and charged R groups on the surface (in direct con-
tact with the polar solvent). Other factors that promote the 
folding of proteins include covalent disulfide (eSeSe) links, 
Coulombic interactions between ions (which depend on the 
degree of protonation of groups and therefore on the pH), van 
der Waals interactions, and hydrophobic interactions (Topic 
16B). The clustering of nonpolar, hydrophobic, amino acids 
into the interior of a protein is driven primarily by hydrophobic 
interactions.

(b) Nucleic acids
Both DNA and RNA are polynucleotides (1), in which base–
sugar–phosphate units are linked by phosphodiester bonds. 
In RNA the sugar is β-d-ribose and in DNA it is β-d-2-
deoxyribose (as shown in 1). The most common bases are 
adenine (A, 2), cytosine (C, 3), guanine (G, 4), thymine (T, 
found in DNA only, 5), and uracil (U, found in RNA only, 6). 
At physiological pH, each phosphate group of the chain carries 
a negative charge and the bases are deprotonated and neutral. 
This charge distribution leads to two important properties. One 
is that the polynucleotide chain is a polyelectrolyte, a macro-
molecule with many different charged sites, with a large and 
negative overall surface charge. The second is that the bases can 
interact by hydrogen bonding, as shown for AeT (7) and CeG 
base pairs (8). The secondary and tertiary structures of DNA 
and RNA arise primarily from the pattern of this hydrogen 
bonding between bases of one or more chains.
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1 D-ribose (R = OH)
and 2′-deoxy-D-ribose (R = H)
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–180°

–180°

180°

180° 180°–180°
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φ φ

Figure 17A.13 Contour plots of potential energy against the 
angles ψ and ϕ, also known as a Ramachandran diagram, for 
(a) a glycyl residue of a polypeptide chain and (b) an alanyl 
residue. The glycyl diagram is symmetrical, but that for alanyl 
is unsymmetrical and the global minimum corresponds to an 
α-helix. (T. Hovmoller et al., Acta Cryst. D58, 768 (2002).)

(a)

(b)(b)

Figure 17A.14 The two types of β-sheets: (a) antiparallel 
(ϕ = −139°, ψ = 113°), in which the NeHeO atoms of the 
hydrogen bonds form a straight-line; (b) parallel (ϕ = −119°, 
ψ = 113°) in which the NeHeO atoms of the hydrogen bonds 
are not perfectly aligned.
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In DNA, two polynucleotide chains wind around each 
other to form a double helix (Fig. 17A.15). The chains are held 
together by links involving AeT and CeG base pairs that lie 

parallel to each other and perpendicular to the axis of the helix. 
The structure is stabilized further by interactions between the 
planar π systems of the bases. In B-DNA, the most common 
form of DNA found in biological cells, the helix is right-handed 
with a diameter of 2.0 nm and a pitch of 3.4 nm.

Checklist of concepts

☐ 1. The primary structure of a macromolecule is the 
sequence of small molecular residues making up the 
polymer.

☐ 2. The secondary structure is the spatial arrangement of a 
chain of residues.

☐ 3. The tertiary structure is the overall three-dimensional 
structure of a macromolecule.

☐ 4. The quaternary structure is the manner in which large 
molecules are formed by the aggregation of others.

☐ 5. In a freely jointed chain any bond in a polymer is free 
to make any angle with respect to the preceding one.

☐ 6. The freely jointed chain model is improved by remov-
ing the freedom of bond angles to take any value.

☐ 7. The least structured conformation of a macromolecule 
is a random coil, which can be modelled as a freely 
jointed chain.

☐ 8. The secondary structure of a protein is the spatial 
arrangement of the polypeptide chain and includes 
heli ces and the β-sheet.

☐ 9. Helical and sheet-like polypeptide chains are folded 
into a tertiary structure by bonding influences between 
the residues of the chain.

☐ 10. Some proteins have a quaternary structure as aggre-
gates of two or more polypeptide chains.

☐ 11. In DNA, two polynucleotide chains held together by 
hydrogen bonded base pairs wind around each other to 
form a double helix.

☐ 12. In RNA, single chains fold into complex structures by 
formation of specific base pairs.

Checklist of equations

T

A T

A

C

C

G
G

Figure 17A.15 The DNA double helix, in which two 
polynucleotide chains are linked together by hydrogen bonds 
between adenine (A) and thymine (T) and between cytosine (C) 
and guanine (G).

Property Equation Comment Equation number

Probability distribution P N n N= −( ) / /2 1 2 22
/ eπ One-dimensional random coil 17A.1

f r a r

a Nl

a r( )

( )

/

/

=

=

−4 1 2 3 2

3
2

2 1 2

2 2π( π )/ e Three-dimensional random coil 17A.2

Contour length of a random coil Rc = Nl 17A.3
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Property Equation Comment Equation number

Root-mean-square separation of a random coil Rrms = N1/2l Unconstrained chain 17A.4

Radius of gyration of a random coil Rg = N1/2l Unconstrained one-dimensional chain 17A.5

Rg = (N/6)1/2l Unconstrained three-dimensional chain 17A.6

Root-mean-square separation of a random coil Rrms = (2N)1/2l Constrained tetrahedral chain 17A.8

Radius of gyration of a random coil Rg = (N/3)1/2l Constrained tetrahedral chain 17A.8
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17B Properties of macromolecules

Macromolecules have special physical properties that arise 
from details of their structures. In this Topic we explore the 
physical mechanical, thermal, and electrical properties of syn-
thetic and biological macromolecules.

17B.1 Mechanical properties

Significant insight into the consequences of stretching and con-
tracting a polymer can be obtained on the basis of the freely 
jointed chain as a model (Topic 17A).

(a) Conformational entropy

The random coil is the least structured conformation of a poly-
mer chain and corresponds to the state of greatest entropy. Any 
stretching of the coil introduces order and reduces the entropy. 
Conversely, the formation of a random coil from a more 
extended form is a spontaneous process (provided enthalpy 
contributions do not interfere). As shown in the following 
Justification, we can use the same model to deduce that the 
change in conformational entropy, the statistical entropy aris-
ing from the arrangement of bonds, when a one-dimensional 
chain containing N bonds of length l is stretched or compressed 
by nl is

∆S kN

n N

= − + −
=

+ −1
2

1 11 1ln{ }

/

( ) ( ) 



 

 

This function is plotted in Fig. 17B.1, and we see that minimum 
extension corresponds to maximum entropy.

Brief illustration 17B.1  Conformational entropy

Suppose that N = 1000 and l = 150 pm. The change in entropy 
when the (one-dimensional) random coil is stretched through 
1.5 nm (corresponding to n = 10 and ν = 1/100) is

∆S k= − × × +





−





+ −
1
2

1 1 100 1 1 10
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1

100
1

1
100
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( / ) ( / 00

0 050

)
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= − k

Because R = NAk, the change in molar entropy is ΔSm = −0.050R, 
or −0.42 J K−1 mol−1.

Self-test 17B.1 What is the change in conformational entropy 
when the same random coil is stretched from fully coiled by 
10 per cent?

Answer: −0.042 J K−1  mol−1

Justification 17B.1 The conformational entropy of a 
freely jointed chain

The conformational entropy of the chain is given by the 
Boltzmann formula, S = k ln W (eqn 15E.7). In the present 
case, we identify W with the number of ways of achieving a 
coil with a given extension, the W calculated in eqn 17A.2:

Random 
coil 

conformational 
entropy  (17B.1)

Contents

17b.1 Mechanical properties 708
(a) Conformational entropy 708

brief illustration 17b.1: conformational entropy 708
(b) Elastomers 709
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example 17b.1: Predicting the melting  
temperature of dna 711

17b.3 Electrical properties 712
Checklist of concepts 712
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➤➤ Why do you need to know this material?
Macromolecules are important in modern technology. They 
are also building blocks of biological cells. To understand 
why this is so, you need to explore the characteristic 
physical properties of macromolecules.

➤➤ What is the key idea?
The unique properties of macromolecules are related to 
their unique structural features.

➤➤ What do you need to know already?
You need to be familiar with the structural features of 
macromolecules (Topic 17A), particularly the properties 
of a random coil. You also need to be familiar with the 
statistical interpretation of entropy (Topic 15E) and the 
concept of internal energy (Topic 2A).
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(b) Elastomers
The fundamental concepts for the discussion of the mechani-
cal properties of solids are stress and strain. The stress on an 
object is the applied force divided by the area to which it is 
applied. The strain is the resulting distortion of the sample. The 
general field of the relations between stress and strain is called 
rheology.

The stress–strain curve in Fig. 17B.2 shows how a material 
responds to stress. The region of elastic deformation is where 
the strain is proportional to the stress and is reversible: when 
the stress is removed, the sample returns to its initial shape. As 
we see in more detail in Topic 18C, the slope of the stress–strain 
curve in this region is ‘Young’s modulus’, E, for the material. At 
the yield point, the reversible, linear deformation gives way to 
plastic deformation, where the strain is no longer linearly pro-
portional to the stress and the initial shape of the sample is not 
recovered when the stress is removed. Thermosetting plastics 
have only a very short elastic range; thermoplastics typically 
(but not universally) have a long plastic range. An elastomer is 
specifically a polymer with a long elastic range. They typically 
have numerous cross-links (such as the sulfur links in vulcan-
ized rubber) that pull them back into their original shape when 
the stress is removed.

Although practical elastomers are typically extensively cross-
linked, even a freely jointed chain behaves as an elastomer for 
small extensions. It is a model of a perfect elastomer, a polymer 
in which the internal energy is independent of the extension. In 
the following Justification we also see that the restoring force, F, 
of a one-dimensional random coil when the chain is stretched 
or compressed by nl is

F
kT

l
n N= +

− =
2

1
1

ln



 /

 

where N is the total number of bonds each of length l. This 
function is plotted in Fig. 17B.3. At low extensions, when  << 1 
we can use ln (1 ) 2+ = +…x x x– 1

2  and find (retaining only linear 
terms) that

F
kT
l

nkT
Nl

≈ =

 

That is, for small displacements the sample obeys Hooke’s law: 
the restoring force is proportional to the displacement (which 
is proportional to n). For small displacements, therefore, the 
whole coil shakes with simple harmonic motion. When this 
equation is rearranged to

W
N

N n N n
=

+{ } −{ }
!

( ) ! ( ) !1
2

1
2  

Therefore,

S k N N n N n/ = − +{ } − −{ }ln ! ln ( ) ! ln ( ) !1
2

1
2  

Because the factorials are large (except for large exten-
sions), we can use Stirling’s approximation (Topic 15A, 
ln ! ln lnx x x x≈ +( ) − +1

2
1
2 2π ) to obtain

S k N N N

N n N nN n N n

/ = + +( ) − +( ) −

+ ++ + − +

ln( ) ln ln

ln{( ) ( )

/2 1 21 2 1
2

1
2

1 1

π

}}

We have seen that the most probable conformation of a one-
dimensional chain is the one with the ends close together 
(n = 0). This conformation also corresponds to maximum 
entropy, as may be confirmed by differentiation. Therefore, the 
maximum entropy is

S k N N/ = + + +ln( ) ( )ln ln/2 1 21 2 1
2π  

The change in entropy when the chain is stretched or com-
pressed by nl is therefore the difference of these two quantities, 
and the resulting expression, after some algebraic manipula-
tion, is eqn 17B.1.

One
dimensional 
random coil

restoring 
force  (17B.2a)

Onedimensional 
random coil, small 
extensions 

restoring 
force  (17B.2b)

S
tr

es
s
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Elastic
deformation

Plastic
deformation

Yield
point

Figure 17B.2 A typical stress–strain curve.
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Figure 17B.1 The change in molar entropy of a perfect 
elastomer as its extension changes; ν = 1 corresponds to 
complete extension; ν = 0, the conformation of highest entropy, 
corresponds to a random coil.
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nl
Nl
kT

F=





2

 
(17B.2c)

we see that for small displacements, the strain, as measured 
by the extension nl, is proportional to the applied force, 
as is characteristic of the elastic deformation region of an 
elastomer.

17B.2 Thermal properties

The crystallinity of synthetic polymers can be destroyed by ther-
mal motion at sufficiently high temperatures. This change in 
crystallinity may be thought of as a kind of intramolecular melt-
ing from a crystalline solid to a more fluid random coil. Polymer 
melting also occurs at a specific melting temperature, Tm, which 
increases with the strength and number of intermolecular inter-
actions in the material. Thus, polyethene, which has chains that 
interact only weakly in the solid, has Tm = 414 K and nylon-66 
fibre, in which there are strong hydrogen bonds between chains, 
has Tm = 530 K. High melting temperatures are desirable in most 
practical applications involving fibres and plastics.

All synthetic polymers undergo a transition from a state of 
high to low chain mobility at the glass transition temperature, 
Tg. To visualize the glass transition, we consider what happens 
to an elastomer as we lower its temperature. There is sufficient 
energy available at normal temperatures for limited bond rota-
tion to occur and the flexible chains writhe. At lower tempera-
tures, the amplitudes of the writhing motion decrease until a 
specific temperature, Tg, is reached at which motion is frozen 
completely and the sample forms a glass. Glass transition tem-
peratures well below 300 K are desirable in elastomers that are 
to be used at normal temperatures. Both the glass transition 
temperature and the melting temperature of a polymer may 
be measured by calorimetric methods. Because the motion of 
the segments of a polymer chain increase at the glass transition 
temperature, Tg may also be determined from a plot of the spe-
cific volume of a polymer (the reciprocal of its mass density) 
against temperature (Fig. 17B.4).

Proteins and nucleic acids are relatively unstable towards 
chemical and thermal denaturation, the loss of structure. 
Thermal denaturation is similar to the melting of synthetic 
poly mers. Denaturation is a cooperative process in the sense 
that the biopolymer becomes increasingly more susceptible 
to denaturation once the process begins. This cooperativity is 
observed as a sharp step in a plot of fraction of unfolded poly-
mer against temperature. The melting temperature, Tm, is the 
temperature at which the fraction of denatured polymer is 0.5 

Brief illustration 17B.2 The restoring force

Consider a polymer chain with N = 5000 and l = 0.15 nm. If  
the ends of the chain are moved apart by 1.5 nm, then 
n = (1.5 nm)/(0.15 nm) = 10 and ν = n/N = 10/5000 = 2.0 × 10−3. 
Because ν ≪ 1, the restoring force at 293 K is given by eqn 
17B.2b as

F = × × ×
× ×

= ×
− −

−
10 1 381 10 293

5000 1 5 10
5 4

23 1

10

( . ) ( )
( . )

.
J K K

m

 N m

110 14− N
 

or 54 fN.

Self-test 17B.2 Repeat the calculation for N = 6.0 × 103 and a 
displacement of 2.0 nm at 298 K.

Answer: 61 fN

Justification 17B.2 Hooke’s law

The work done on an elastomer when it is extended through a 
distance dx is Fdx, where F is the restoring force. The change 
in internal energy is therefore

d d dU T S F x= +  
It follows that

∂
∂







= ∂
∂







+U
x

T
S
x

F
T T  

In a perfect elastomer, as in a perfect gas, the internal energy 
is independent of the dimensions (at constant temperature), so 
(∂U/∂x)T = 0. The restoring force is therefore

F T
S
x

T

= − ∂
∂





  

If now we substitute eqn 17B.1 into this expression, we obtain
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as in eqn 17B.2a.
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Figure 17B.3 The restoring force, F, of a one-dimensional 
perfect elastomer. For small strains, F is linearly proportional to 
the extension, corresponding to Hooke’s law.
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(Fig. 17B.5). For example, Tm = 320 K for ribonuclease T1 (an 
enzyme that cleaves RNA in the cell), which is not far above 
the temperature at which the enzyme must operate (close to 
body temperature, 310 K). More surprisingly, the Gibbs energy 
for the denaturation of ribonuclease T1 at pH = 7.0 and 298 K is 
only 19.5 kJ mol−1, which is comparable to the energy required 
to break a single hydrogen bond (about 20 kJ mol−1). The sta-
bility of a protein does not increase in a simple way with the 
number of hydrogen bonding interactions. While the reasons 
for the low stability of proteins are not known, the answer prob-
ably lies in a delicate balance of the intra- and intermolecular 
interactions that allow a protein to fold into its active confor-
mation, and the role of the aqueous environment. By contrast, 
the melting temperature of DNA can be predicted with reason-
able accuracy by examining its structure, as we see in the fol-
lowing Example.
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Figure 17B.4 The variation of specific volume with 
temperature of a synthetic polymer. The glass transition 
temperature, Tg, is at the point of intersection of extrapolations 
of the two linear parts of the curve.
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Figure 17B.5 A protein unfolds as the temperature of the 
sample increases. The sharp step in the plot of fraction of 
unfolded protein against temperature indicated that the 
transition is cooperative. The melting temperature, Tm, is the 
temperature at which the fraction of unfolded polymer is 0.5.

Example 17B.1 Predicting the melting temperature  
of DNA

The melting temperature of a DNA molecule (in the sense of 
the temperature at which it undergoes denaturation) can be 
determined by calorimetric methods. The following data were 
obtained in 0.010 m Na3PO4(aq) for a series of DNA molecules 
with varying base pair composition, with f the fraction of 
GeC base pairs:

Estimate the melting temperature of a DNA molecule contain-
ing 40.0 per cent GeC base pairs.

Method Look for a quantitative relationship between the 
melting temperature and the composition of DNA. Begin by 
plotting Tm against fraction of GeC base pairs and examining 
the shape of the curve. If visual inspection of the plot suggests 
a linear relationship, then the melting point at any composi-
tion can be predicted from the equation of the straight line 
that fits the data.

Answer Figure 17B.6 shows that Tm varies linearly with the 
fraction of GeC base pairs, at least in this range of composi-
tion. The equation of the line that fits the data is

T fm /K 325 39 7= + .  

It follows that Tm = 341 K for 40.0 per cent GeC base pairs (at 
f = 0.400). The thermal stability of DNA increases with the 
number of CeG base pairs in the sequence because each GeC 
base pair has three hydrogen bonds, whereas each TeA base 
pair has only two (Topic 17A). More energy, and therefore a 
higher temperature, is required to unravel a double helix that 

f 0.375 0.509 0.589 0.688 0.750
Tm/K 339 344 348 351 354
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Figure 17B.6 Data for Example 17B.1 showing the variation 
of the melting temperature of DNA molecules with the 
fraction of GdC base pairs. All the samples also contain 
1.0 × 10−2 mol dm−3 Na3PO4.
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712 17 Macromolecules and self-assembly

17B.3 Electrical properties

Most of the macromolecules and self-assembled structures 
considered in this chapter are insulators, or very poor electrical 
conductors. However, a variety of newly developed macromo-
lecular materials have electrical conductivities that rival those 
of silicon-based semiconductors and even metallic conductors. 
We examine one example in detail: conducting polymers, in 
which extensively conjugated double bonds permit electron 

conduction along the polymer chain. The 2000 Nobel Prize in 
chemistry was awarded to A.J. Heeger, A.G. MacDiarmid, and 
H. Shirakawa for their pioneering work in the synthesis and 
characterization of conducting polymers.

One example of a conducting polymer is polyacetylene 
(polyethyne, Fig. 17B.7). Whereas the delocalized π bonds do 
suggest that electrons can move up and down the chain, the 
electrical conductivity of polyacetylene increases significantly 
when it is partially oxidized by I2 and other strong oxidants. 
The product is a polaron, a partially localized cation radical 
that travels virtually (by exchanging its identity with a neigh-
bour) through the chain, as shown in Fig. 17B.7. Further oxida-
tion of the polymer forms either bipolarons, a di-cation that 
moves virtually (in a similar way) as a unit through the chain, 
or solitons, two separate cation radicals that move indepen-
dently. Polarons and solitons contribute to the mechanism of 
charge conduction in polyacetylene.

Conducting polymers are slightly better electrical conduc-
tors than silicon semiconductors but are far worse than metal-
lic conductors. They are currently used in a number of devices, 
such as electrodes in batteries, electrolytic capacitors, and sen-
sors. Recent studies of photon emission by conducting poly-
mers may lead to new technologies for light-emitting diodes 
and flat-panel displays. Conducting polymers also show prom-
ise as molecular wires that can be incorporated into nanome-
tre-sized electronic devices.

Checklist of concepts

☐ 1. The elastic properties of a material are summarized by 
a stress–strain curve.

☐ 2. A perfect elastomer is a polymer for which the internal 
energy is independent of the extension.

☐ 3. The disruption of long-range order in a polymer occurs 
at a melting temperature.

☐ 4. Synthetic polymers undergo a transition from a state 
of high to low chain mobility at the glass transition 
temperature.

☐ 5. The melting temperature, Tm, of a protein or nucleic 
acid is the temperature at which the fraction of dena-
tured polymer is 0.5.

☐ 6. In conducting polymers conjugated double bonds per-
mit electron conduction along the chain.

Oxidation

+

+

+

.

.

.

Figure 17B.7 The mechanism of migration of a partially 
localized cation radical, or polaron, in polyacetylene.

has a higher proportion of hydrogen bonding interactions per 
base pair.

A note on good practice In this example we do not have 
a good theory to guide us in the choice of a mathemati-
cal model to describe the behaviour of the system over 
a wide range of conditions. We are limited to finding a 
purely empirical relation—in this case a simple first-order 
polynomial equation—that fits the available data. It follows 
that we should not attempt to predict the property of a 
system that falls outside the narrow range of the data used 
to generate the fit because the mathematical model may 
have to be enhanced (for example, by using higher-order 
polynomial equations) to describe the system over a wider 
range of conditions. In the present case, we should not 
attempt to predict the Tm of DNA molecules outside the 
range 0.375 < f < 0.750.

Self-test 17B.3 The following calorimetric data were obtained 
in solutions containing 0.15 m NaCl(aq) for the same series of 
DNA molecules studied in Example 17B.1. Estimate the melt-
ing temperature of a DNA molecule containing 40.0 per cent 
GeC base pairs under these conditions.

Answer: 360 K

f 0.375 0.509 0.589 0.688 0.750
Tm/K 359 364 368 371 374
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Checklist of equations

Property Equation Comment Equation number

Conformational entropy of a random coil ∆S kN= − + −+ −1
2

1 11 1ln{ }( ) ( )  
ν = n/N 17B.1

Restoring force of a one-dimensional random coil F = (kT/2l)ln{(1 + ν)/(1 − ν)} 17B.2a

F ≈ nkT/Nl Small extensions 17B.2b

iranchembook.ir/edu



17C self-assembly

Self-assembly is the spontaneous formation of complex struc-
tures of molecules or macromolecules that are held together 
by molecular interactions, such as Coulombic, dispersion, 
hydrogen bonding, or hydrophobic interactions. Examples 

of self-assembly include the formation of liquid crystals, of 
protein quaternary structures from two or more polypeptide 
chains (Topic 17A), and (by implication) of a DNA double helix 
from two polynucleotide chains (Topic 17A). Here we concen-
trate on the specific properties of additional self-assembled 
systems, including some that are becoming important in the 
development of nanotechnology.

17C.1 Colloids

A colloid, or disperse phase, is a dispersion of small particles of 
one material in another that does not settle out under gravity. In 
this context, ‘small’ means that one dimension at least is smaller 
than about 500 nm in diameter (about the wavelength of visible 
light). Many colloids are suspensions of nanoparticles (particles 
of diameter up to about 100 nm). In general, colloidal particles 
are aggregates of numerous atoms or molecules, but are com-
monly but not universally too small to be seen with an ordinary 
optical microscope. They pass through most filter papers, but can 
be detected by light-scattering and sedimentation (Topic 17D).

(a) Classification and preparation
The name given to the colloid depends on the two phases 
involved:

•	 A sol is a dispersion of a solid in a liquid (such as clusters 
of gold atoms in water) or of a solid in a solid (such as 
ruby glass, which is a gold-in-glass sol, and achieves its 
colour by light scattering).

•	 An aerosol is a dispersion of a liquid in a gas (like fog and 
many sprays) or a solid in a gas (such as smoke): the 
particles are often large enough to be seen with a 
microscope.

•	 An emulsion is a dispersion of a liquid in a liquid (such 
as milk). A foam is a dispersion of a gas in a liquid.

A further classification of colloids is as lyophilic, or solvent 
attracting, and lyophobic, solvent repelling. If the solvent is 
water, the terms hydrophilic and hydrophobic, respectively, 
are used instead. Lyophobic colloids include the metal sols. 
Lyophilic colloids generally have some chemical similarity to 
the solvent, such as eOH groups able to form hydrogen bonds. 
A gel is a semi-rigid mass of a lyophilic sol.

Contents

17c.1 Colloids 714
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(b) Structure and stability 715
(c) The electrical double layer 715

example 17c.1: determining the isoelectric  
point of a protein 717

17c.2 Micelles and biological membranes 717
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Checklist of concepts 720
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➤➤ Why do you need to know this material?

Aggregates of small and large molecules form the 
basis of many technologies (such as detergents and 
nanotechnology) and are abundant in biological cells. 
To see why this is the case, you need to understand their 
structures and properties.

➤➤ What is the key idea?
Colloids, micelles, and biological membranes form 
spontaneously by self-assembly of molecules or 
macromolecules and are held together by molecular 
interactions.

➤➤ What do you need to know already?
You need to be familiar with molecular interactions (Topic 
16B), the formation of liquids (Topic 16C), and interactions 
between ions (Topic 5F).
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The preparation of aerosols can be as simple as sneezing 
(which produces an imperfect aerosol). Laboratory and com-
mercial methods make use of several techniques. Material (for 
example, quartz) may be ground in the presence of the disper-
sion medium. Passing a heavy electric current through a cell 
may lead to the sputtering (crumbling) of an electrode into 
colloidal particles. Arcing between electrodes immersed in the 
support medium also produces a colloid. Chemical precipita-
tion sometimes results in a colloid. A precipitate (for example, 
silver iodide) already formed may be dispersed by the addition 
of a peptizing agent (for example, potassium iodide). Clays may 
be peptized by alkalis, the OH− ion being the active agent.

Emulsions are normally prepared by shaking the two com-
ponents together vigorously, although some kind of emulsify-
ing agent usually has to be added to stabilize the product. This 
emulsifying agent may be a soap (the salt of a long-chain car-
boxylic acid) or other surfactant (surface active) species, or a 
lyophilic sol that forms a protective film around the dispersed 
phase. In milk, which is an emulsion of fats in water, the emul-
sifying agent is casein, a protein containing phosphate groups. 
It is clear from the formation of cream on the surface of milk 
that casein is not completely successful in stabilizing milk: the 
dispersed fats coalesce into oily droplets which float to the sur-
face. This coagulation may be prevented by ensuring that the 
emulsion is dispersed very finely initially: intense agitation 
with ultrasonics brings this dispersion about, the product being 
‘homogenized’ milk.

One way to form an aerosol is to tear apart a spray of liquid 
with a jet of gas. The dispersal is aided if a charge is applied 
to the liquid, for then electrostatic repulsions help to blast it 
apart into droplets. This procedure may also be used to produce 
emulsions, for the charged liquid phase may be directed into 
another liquid.

Colloids are often purified by dialysis, the process of squeez-
ing the solution though a membrane. The aim is to remove 
much (but not all, for reasons explained later) of the ionic 
material that may have accompanied their formation. A mem-
brane (for example, cellulose) is selected that is permeable to 
solvent and ions, but not to the colloid particles. Dialysis is very 
slow, and is normally accelerated by applying an electric field 
and making use of the charges carried by many colloidal parti-
cles; the technique is then called electrodialysis.

(b) Structure and stability
Colloids are thermodynamically unstable with respect to the 
bulk. This instability can be expressed thermodynamically by 
noting that because the change in Helmholtz energy, dA, when 
the surface area of the sample changes by dσ at constant tem-
perature and pressure is dA = γ dσ, where γ is the interfacial sur-
face tension (Topic 16C), it follows that dA < 0 if dσ < 0. That is, 
the contraction of the surface (dσ < 0) is spontaneous (dA < 0). 
The survival of colloids must therefore be a consequence of the 

kinetics of collapse: colloids are thermodynamically unstable 
but kinetically non-labile.

At first sight, even the kinetic argument seems to fail: colloi-
dal particles attract each other over large distances, so there is a 
long-range force that tends to condense them into a single blob. 
The reasoning behind this remark is as follows. The energy of 
attraction between two individual atoms i and j separated by 
a distance Rij, one in each colloidal particle, varies with their 
separation as 1 6/Rij  (Topic 16B). The sum of all these pairwise 
interactions, however, decreases only as approximately 1/R2 
(the precise variation depending on the shape of the particles 
and their closeness), where R is the separation of the centres of 
the particles. The change in the power from 6 to 2 stems from 
the fact that at short distances only a few molecules interact but 
at large distances many individual molecules are at about the 
same distance from one another, and contribute equally to the 
sum (Fig. 17C.1), so the total interaction does not fall off as fast 
as the single molecule–molecule interaction.

Several factors oppose the long-range dispersion attraction. 
For example, there may be a protective film at the surface of 
the colloid particles that stabilizes the interface and cannot be 
penetrated when two particles touch. Thus the surface atoms 
of a platinum sol in water react chemically and are turned into 
ePt(OH)3H3, and this layer encases the particle like a shell.  
A fat can be emulsified by a soap because the long hydrocarbon 
tails penetrate the oil droplet but the carboxylate head groups 
(or other hydrophilic groups in synthetic detergents) surround 
the surface, form hydrogen bonds with water, and give rise to 
a shell of negative charge that repels a possible approach from 
another similarly charged particle.

(c) The electrical double layer
A major source of kinetic non-lability of colloids is the exist-
ence of an electric charge on the surfaces of the particles. On 
account of this charge, ions of opposite charge tend to cluster 

R

Figure 17C.1 Although the attraction between individual 
molecules is proportional to 1/R6, more molecules are 
within range at large separations (pale region) than at small 
separation (dark region), so the total interaction energy 
declines more slowly and is proportional to a lower power of R.
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716 17 Macromolecules and self-assembly

nearby, and an ionic atmosphere is formed, just as for ions 
(Topic 5F).

We need to distinguish two regions of charge. First, there is 
a fairly immobile layer of ions that adhere tightly to the sur-
face of the colloidal particle, and which may include water mol-
ecules (if that is the support medium). The radius of the sphere 
that captures this rigid layer is called the radius of shear and is 
the major factor determining the mobility of the particles. The 
electric potential at the radius of shear relative to its value in 
the distant, bulk medium is called the zeta potential, ζ, or the 
electrokinetic potential. Second, the charged unit attracts an 
oppositely charged atmosphere of mobile ions. The inner shell 
of charge and the outer ionic atmosphere is called the electrical 
double layer.

The theory of the stability of lyophobic dispersions was 
developed by B. Derjaguin and L. Landau and independently 
by E. Verwey and J.T.G. Overbeek, and is known as the DLVO 
theory.1 It assumes that there is a balance between the repulsive 
interaction between the charges of the electric double layers 
on neighbouring particles and the attractive interactions aris-
ing from van der Waals interactions between the molecules in 
the particles. The potential energy arising from the repulsion of 
double layers on particles of radius a has the form

V
Aa

R
s r

repulsion e D= + −
2 2ζ /

 
(17C.1)

where A is a constant, ζ is the zeta potential, R is the separation 
of centres, s is the separation of the surfaces of the two parti-
cles (s = R − 2a for spherical particles of radius a), and rD is the 
thickness of the double layer. This expression is valid for small 
particles with a thick double layer (a ≪ rD). When the double 
layer is thin (rD ≪ a), the expression is replaced by

V Aa s r
repulsion e D= + + −1

2
2 2 1ζ ln( )./

 
(17C.2)

In each case, the thickness of the double layer can be estimated 
from an expression like that derived for the thickness of the 
ionic atmosphere in the Debye–Hückel theory (Topic 5F) in 
which there is a competition between the assembling influ-
ences of the attraction between opposite charges and the dis-
ruptive effect of thermal motion:

r
RT

F IbD =





ε
ρ2 2

1 2

<

/

 
 thickness of the electrical double layer  (17C.3)

where I is the ionic strength of the solution, ρ its mass den-
sity, and b< = 1 mol kg−1 (F is Faraday’s constant and ε is the 

permittivity, ε = εrε0). The potential energy arising from the 
attractive interaction has the form

V
B
sattraction = −

 
(17C.4)

where B is another constant. The variation of the total potential 
energy with separation is shown in Fig. 17C.2.

At high ionic strengths, the ionic atmosphere is dense and 
the potential shows a secondary minimum at large separations. 
Aggregation of the particles arising from the stabilizing effect 
of this secondary minimum is called flocculation. The floccu-
lated material can often be redispersed by agitation because the 
well is so shallow. Coagulation, the irreversible aggregation of 
distinct particles into large particles, occurs when the separa-
tion of the particles is so small that they enter the primary min-
imum of the potential energy curve and van der Waals forces 
are dominant.

The ionic strength is increased by the addition of ions, par-
ticularly those of high charge type, so such ions act as floc-
culating agents. This increase is the basis of the empirical 
Schulze–Hardy rule, that hydrophobic colloids are flocculated 
most efficiently by ions of opposite charge type and high charge 
number. The Al3+ ions in alum are very effective, and are used 
to induce the congealing of blood. When river water containing 
colloidal clay flows into the sea, the salt water induces floccula-
tion and coagulation, and is a major cause of silting in estuaries.

Metal oxide sols tend to be positively charged whereas sulfur 
and the noble metals tend to be negatively charged. Naturally 
occurring macromolecules also acquire a charge when dis-
persed in water, and an important feature of proteins and other 
natural macromolecules is that their overall charge depends 
on the pH of the medium. For instance, in acidic environ-
ments protons attach to basic groups, and the net charge of 
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Figure 17C.2 The potential energy of interaction as a function 
of the separation of the centres of the two particles and its 
variation with the ratio of the particle size to the thickness a of 
the electric double layer, rD. The regions labelled coagulation 
and flocculation show the dips in the potential energy curves 
where these processes occur.

1  The derivation of the expressions quoted is too complicated to include 
here. For a full description, see Volume 1 of R. J. Hunter, Foundations of col-
loid science, Oxford University Press (1987).
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the macromolecule is positive; in basic media the net charge is 
nega tive as a result of proton loss. At the isoelectric point the 
pH is such that there is no net charge on the macromolecule.

The primary role of the electric double layer is to confer 
kinetic non-lability. Colliding colloidal particles break through 
the double layer and coalesce only if the collision is sufficiently 
energetic to disrupt the layers of ions and solvating molecules, 
or if thermal motion has stirred away the surface accumulation 

of charge. This disruption may occur at high temperatures, 
which is one reason why sols precipitate when they are heated.

17C.2 Micelles and biological 
membranes

In aqueous solutions surfactant molecules or ions can cluster 
together as micelles, which are colloid-sized clusters of mol-
ecules, for their hydrophobic tails tend to congregate (through 
hydrophobic interactions: see Topic 16B), and their hydrophilic 
head groups provide protection (Fig. 17C.4).

(a) Micelle formation
Micelles form only above the critical micelle concentration 
(CMC) and above the Krafft temperature. The CMC is detected 
by noting a pronounced change in physical properties of the 
solution, particularly the molar conductivity (Fig. 17C.5). There 
is no abrupt change in properties at the CMC; rather, there is a 

Figure 17C.4 A schematic version of a spherical micelle. 
The hydrophilic groups are represented by spheres and the 
hydrophobic hydrocarbon chains are represented by the stalks; 
these stalks are mobile.

Example 17C.1 Determining the isoelectric point of a 
protein

The speed with which bovine serum albumin (BSA) moves 
through water under the inf luence of an electric field was 
monitored at several values of pH, and the data are listed 
below. What is the isoelectric point of the protein?

Method If we plot speed against pH, we can use interpolation 
to find the pH at which the speed is zero, which is the pH at 
which the molecule has zero net charge.

Answer The data are plotted in Fig. 17C.3. The velocity passes 
through zero at pH = 4.8; hence pH = 4.8 is the isoelectric 
point.

Self-test 17C.1 The following data were obtained for another 
protein:

Estimate the pH of the isoelectric point.
Answer: 4.0

pH 4.20 4.56 5.20 5.65 6.30 7.00
Velocity/(µm s−1) 0.50 0.18 −0.25 −0.65 −0.90 −1.25

pH 3.5 4.5 5.0 5.5 6.0
Velocity/(µm s−1) 0.10 −0.10 −0.20 −0.30 −0.40
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Figure 17C.3 The plot of the speed of a moving 
macromolecule against pH allows the isoelectric point to be 
detected as the pH at which the speed is zero. The data are 
from Example 17C.1.
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Figure 17C.5 The typical variation of some physical properties 
of an aqueous solution of sodium dodecylsulfate close to the 
critical micelle concentration (CMC).
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718 17 Macromolecules and self-assembly

transition region corresponding to a range of concentrations 
around the CMC where physical properties vary smoothly but 
nonlinearly with the concentration. The hydrocarbon interior 
of a micelle is like a droplet of oil. Nuclear magnetic resonance 
shows that the hydrocarbon tails are mobile, but slightly more 
restricted than in the bulk. Micelles are important in industry 
and biology on account of their solubilizing function: matter 
can be transported by water after it has been dissolved in their 
hydrocarbon interiors. For this reason, micellar systems are 
used as detergents, for organic synthesis, froth flotation, and 
petroleum recovery.

The self-assembly of a micelle has the characteristics of a 
cooperative process in which the addition of a surfactant mol-
ecule to a cluster that is forming becomes more probable the 
larger the size of the aggregate, so after a slow start there is a 
cascade of formation of micelles. If we suppose that the domi-
nant micelle MN consists of N monomers M, then the dominant 
equilibrium we have to consider is

N KN
N
NM M

M
M

 = [ ]
[ ]  

(17C.5a)

We have assumed, probably dangerously on account of the large 
sizes of monomers, that the solution is ideal and that activities 
can be replaced by molar concentrations. The total concentra-
tion of surfactant is [M]total = [M] + N[MN] because each micelle 
consists of N monomer molecules. Therefore,

K
N

N

N
N=

−( )
[ ]

[ ] [ ]

M

M Mtotal  
(17C.5b)

Non-ionic surfactant molecules may cluster together in 
clumps of 1000 or more, but ionic species tend to be disrupted 
by the electrostatic repulsions between head groups and are 
normally limited to groups of less than about 100. However, the 
disruptive effect depends more on the effective size of the head 
group than the charge. For example, ionic surfactants such 
as sodium dodecyl sulfate (SDS) and cetyltrimethylammo-
nium bromide (CTAB) form rods at moderate concentrations 
whereas sugar surfactants form small, approximately spherical 
micelles. The micelle population is often polydisperse, and the 
shapes of the individual micelles vary with shape of the con-
stituent surfactant molecules, surfactant concentration, and 
temperature. A useful predictor of the shape of the micelle the 
surfactant parameter, Ns, defined as

N
V
Als =

 
Definition  surfactant parameter  (17C.6)

where V is the volume of the hydrophobic surfactant tail, A is 
the area of the hydrophilic surfactant head group, and l is the 
maximum length of the surfactant tail. Table 17C.1 summa-
rizes the dependence of aggregate structure on the surfactant 
parameter.

In aqueous solutions spherical micelles form, as shown in Fig. 
17C.4, with the polar head groups of the surfactant molecules on 
the micellar surface and interacting favourably with solvent and 
ions in solution. Hydrophobic interactions stabilize the aggre-
gation of the hydrophobic surfactant tails in the micellar core. 
Under certain experimental conditions, a liposome may form, 
with an inward pointing inner surface of molecules surrounded 
by an outward pointing outer layer (Fig. 17C.7). Liposomes may 
be used to carry nonpolar drug molecules in blood.

that for large N, there is a reasonably sharp transition in the 
relative concentrations of surfactant molecules that are pre-
sent in micelles, which corresponds to the existence of a CMC.

Self-test 17C.2 Equation 17C.5b is surprisingly tricky to solve, 
but it is possible to make good progress with simple cases. 
With N = 2 and K = 1, find an expression for [M2].

Answer: [ ] [ { [ }] ( ]) /M M Mtotal total2
1
4

1 21 8 1= − + −

Table 17C.1 Variation of micelle shape with the surfactant 
parameter

Ns Micelle shape

<0.33 Spherical

0.33 to 0.50 Cylindrical rods

0.50 to 1.00 Vesicles

1.00 Planar bilayers

>1.00 Reverse micelles and other shapes

Brief illustration 17C.1 The fraction of surfactant 
molecules in micelles

Equation 17C.5b can be solved numerically for the micelle 
concentration as a function of the total surfactant concentra-
tion and some results for K = 1 are shown in Fig. 17C.6. We see 
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Figure 17C.6 The micelle concentration as a function of the 
total surfactant concentration for K = 1.
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Increasing the ionic strength of the aqueous solution reduces 
repulsions between surface head groups, and cylindrical 
micelles can form. These cylinders may stack together in rea-
sonably close-packed (hexagonal) arrays, forming lyotropic 
mesomorphs and, more colloquially, ‘liquid crystalline phases’.

Reverse micelles form in nonpolar solvents, with small polar 
surfactant head groups in a micellar core and more volumi-
nous hydrophobic surfactant tails extending into the organic 
bulk phase. These spherical aggregates can solubilize water in 
organic solvents by creating a pool of trapped water molecules 
in the micellar core. As aggregates arrange at high surfactant 
concentrations to yield long-range positional order, many 
other types of structures are possible including cubic and hexa-
gonal shapes.

The enthalpy of micelle formation reflects the contributions 
of interactions between micelle chains within the micelles and 
between the polar head groups and the surrounding medium. 
Consequently, enthalpies of micelle formation display no read-
ily discernible pattern and may be positive (endothermic) or 
negative (exothermic). Many non-ionic micelles form endo-
thermically, with ΔH of the order of 10 kJ per mole of surfactant 
molecules. That such micelles do form above the CMC indicates 
that the entropy change accompanying their formation must 
then be positive, and measurements suggest a value of about 
+140 J K−1 mol−1 at room temperature. The fact that the entropy 
change is positive, even though the molecules are clustering 
together, shows that hydrophobic interactions are important in 
the formation of micelles (in the sense that water molecules are 
released to become more disordered in the process and hence 
make an overwhelming contribution to the entropy change).

(b) Bilayers, vesicles, and membranes
Some micelles at concentrations well above the CMC form 
extended parallel sheets two molecules thick, called planar 
bilayers. The individual molecules lie perpendicular to the 
sheets, with hydrophilic groups on the outside in aqueous solu-
tion and on the inside in nonpolar media. When segments of 
planar bilayers fold back on themselves, unilamellar vesicles 
may form where the spherical hydrophobic bilayer shell sepa-
rates an inner aqueous compartment from the external aque-
ous environment.

Bilayers show a close resemblance to biological membranes, 
and are often a useful model on which to base investigations 
of biological structures. However, actual membranes are 
highly sophisticated structures. The basic structural element 
of a membrane is a phospholipid, such as phosphatidyl cho-
line (1), which contains long hydrocarbon chains (typically 
in the range C14–C24) and a variety of polar groups, such as 
–CH CH N(CH )2 2 3 3

+ . The hydrophobic chains stack together to 
form an extensive layer about 5 nm across. The lipid molecules 
form layers instead of micelles because the hydrocarbon chains 
are too bulky to allow packing into nearly spherical clusters.

OP

O–

O

O+(H3C)3N

1 Phosphatidyl choline

O

O

O

(CH)14

O

(CH)7 (CH2)7 CH3

CH3

cis

The bilayer is a highly mobile structure. Not only are the 
hydrocarbon chains ceaselessly twisting and turning in the 
region between the polar groups, but the phospholipid and 
cholesterol molecules migrate over the surface. It is better to 
think of the membrane as a viscous fluid rather than a perma-
nent structure, with a viscosity about 100 times that of water. 
Typically, a phospholipid molecule in a membrane migrates 
through about 1 µm in about 1 min.

All lipid bilayers undergo a transition from a state of 
high to low chain mobility at a temperature that depends 
on the structure of the lipid. To visualize the transition, we 
consider what happens to a membrane as we lower its tem-
perature (Fig. 17C.8). There is sufficient energy available at 
normal temperatures for limited bond rotation to occur and 
the flexible chains writhe. However, the membrane is still 
highly organized in the sense that the bilayer structure does 

(a) (b)

Figure 17C.8 A depiction of the variation with temperature of 
the flexibility of hydrocarbon chains in a lipid bilayer.  
(a) At physiological temperature, the bilayer exists as a liquid 
crystal, in which some order exists but the chains writhe.  
(b) At a specific temperature, the chains are largely frozen and 
the bilayer is said to exist as a gel.

Figure 17C.7 The cross-sectional structure of a spherical 
liposome.
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720 17 Macromolecules and self-assembly

not come apart and the system is best described as a liquid 
crystal. At lower temperatures, the amplitudes of the writh-
ing motion decrease until a specific temperature is reached at 
which motion is largely frozen. The membrane is then said to 
exist as a gel. Biological membranes exist as liquid crystals at 
physiological temperatures.

Phase transitions in membranes are often observed as ‘melt-
ing’ from gel to liquid crystal by calorimetric methods. The data 
show relations between the structure of the lipid and the melting 
temperature. Interspersed among the phospholipids of biological 
membranes are sterols, such as cholesterol (2), which is largely 
hydrophobic but does contain a hydrophilic −OH group. Sterols, 
which are present in different proportions in different types of 
cells, prevent the hydrophobic chains of lipids from ‘freezing’ 
into a gel and, by disrupting the packing of the chains, spread 
the melting point of the membrane over a range of temperatures.

HO

2 Cholesterol

(c) Self-assembled monolayers
Molecular self-assembly can be used as the basis for manipula-
tion of surfaces on the nanometre scale. Of current interest are 
self-assembled monolayers (SAMs), ordered molecular aggre-
gates that form a single layer of material on a surface. To under-
stand the formation of SAMs, consider exposing molecules 
such as alkyl thiols, RSH, where R represents an alkyl chain, 
to an Au(0) surface. The thiols react with the surface, forming  
RS−Au(I) adducts:

RSH Au( ) RS Au(I) Au( ) H1 2+ → +−
−0 0 1

2n n⋅  

If R is a sufficiently long chain, van der Waals interactions 
between the adsorbed RS units lead to the formation of a 
highly ordered monolayer on the surface (Fig. 17C.9). The 
Gibbs energy of formation of SAMs increases with the length 
of the alkyl chain, with each methylene group contributing 
0.4–4 kJ mol−1.

A self-assembled monolayer alters the properties of the 
surface. For example, a hydrophilic surface may be rendered 
hydrophobic once covered with a SAM. Furthermore, attaching 
functional groups to the exposed ends of the alkyl groups may 
impart specific chemical reactivity or ligand-binding proper-
ties to the surface, leading to applications in chemical (or bio-
chemical) sensors and reactors.

Checklist of concepts

☐ 1. A disperse system is a dispersion of small particles of 
one material in another.

☐ 2.  Colloids are classified as lyophilic and lyophobic.

Brief illustration 17C.2 The melting temperatures of 
membranes

To predict trends in melting temperatures we need to assess 
the strengths of the interactions between molecules. Longer 
chains can be expected to be held together more strongly by 
hydrophobic interactions than shorter chains, so we should 
expect the melting temperature to increase with the length 
of the hydrophobic chain of the lipid. On the other hand, any 
structural elements that prevent alignment of the hydropho-
bic chains in the gel phase lead to low melting temperatures. 
Indeed, lipids containing unsaturated chains, those contain-
ing some CaC bonds, form membranes with lower melting 
temperatures than those formed from lipids with fully satu-
rated chains, those consisting of CeC bonds only.

Self-Test 17C.3 Why do bacterial and plant cells grown at low 
temperatures synthesize more phospholipids with unsatu-
rated chains than do cells grown at higher temperatures?

Answer: Insertion of lipids with unsaturated chains  
lowers the plasma membrane’s melting temperature to a value  

that is close to the lower ambient temperature.

Au surface

S S S S

Figure 17C.9 Self-assembled monolayers of alkylthiols formed 
onto a gold surface by reaction of the thiol groups with the 
surface and aggregation of the alkyl chains.
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☐ 3. A surfactant is a species that accumulates at the inter-
face of two phases or substances.

☐ 4. Many colloid particles are thermodynamically unstable 
but kinetically non-labile.

☐ 5. The radius of shear is the radius of the sphere that 
captures the rigid layer of charge attached to a colloid 
particle.

☐ 6. The zeta potential is the electric potential at the radius 
of shear relative to its value in the distant, bulk medium.

☐ 7. The inner shell of charge and the outer atmosphere 
jointly constitute the electric double layer.

☐ 8. Flocculation is the reversible aggregation of colloidal 
particles.

☐ 9.  Coagulation is the irreversible aggregation of colloidal 
particles.

☐ 10. The Schultze–Hardy rule states that hydrophobic col-
loids are flocculated most efficiently by ions of opposite 
charge type and high charge number.

☐ 11. A micelle is a colloid-sized cluster of molecules that 
forms at and above the critical micelle concentration 
and the Krafft temperature.

☐ 12. Micelles can assume a number of shapes, depending on 
temperature, shape and concentration of constituent 
molecules.

☐ 13. Planar bilayers are micelles that exist as extended par-
allel sheets two molecules thick that are extended.

☐ 14. Unilamellar vesicles are micelles that exist as extended 
parallel sheets two molecules thick that fold back on 
themselves.

☐ 15. Self-assembled monolayers are ordered molecular 
aggregates that form a single layer of material on a sur-
face spontaneously.

Checklist of equations

Property Equation Comment Equation number

Thickness of the electrical double layer rD = (εRT/2ρF2Ib<)1/2 Debye–Hückel theory 17C.3

Surfactant parameter Ns = V/Al Definition 17C.6
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17D determination of size and shape

X-ray diffraction (Topic 18A) can reveal the position of 
almost every atom other than hydrogen even in very large 
molecules. However, there are several reasons why other 
techniques must also be used. In the first place, the sam-
ple might be a mixture of molecules with different chain 

lengths and extents of cross-linking, in which case sharp 
X-ray images are not obtained. Even if all the molecules in 
the sample are identical, it might prove impossible to obtain 
a single crystal, which is essential for diffraction studies 
because only then does the electron density (which is respon-
sible for the scattering) have a large-scale periodic varia-
tion. Furthermore, although work on proteins and DNA has 
shown how immensely interesting and motivating the data 
can be, the information is incomplete. For instance, what can 
be said about the shape of the molecule in its natural environ-
ment, a biological cell? What can be said about the response 
of its shape to changes in its environment?

17D.1 Mean molar masses

A pure protein is monodisperse, meaning that it has a single, 
definite molar mass. There may be small variations, such as one 
amino acid replacing another, depending on the source of the 
sample. A synthetic polymer, however, is polydisperse, in the 
sense that a sample is a mixture of molecules with various chain 
lengths and molar masses. The various techniques that are used 
to measure molar mass result in different types of mean values 
of polydisperse systems.

The mean obtained from the determination of molar mass 
by osmometry (Topic 5B) is the number-average molar mass, 
Mn , which is the value obtained by weighting each molar mass 
by the number of molecules of that mass present in the sample:

M
N

N M M
i

i in = =∑1 〈 〉
 

where Ni is the number of molecules with molar mass Mi and 
there are N molecules in all. The notation 〈X〉 denotes the usual 
(number average) of a property X, and we shall use it again 
below. For reasons related to the ways in which macromole-
cules contribute to physical properties, viscosity measurements 
give the viscosity-average molar mass, M v,  light-scattering 
experiments give the weight-average molar mass, Mw ,  and 
sedimentation experiments give the Z-average molar mass, 
MZ .  (The name is derived from the z-coordinate used to depict 
data in a procedure for determining the average.) Although 
such averages are often best left as empirical quantities, some 
may be interpreted in terms of the composition of the sample. 
Thus, the weight-average molar mass is the average calculated 
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➤➤ Why do you need to know this material?
To appreciate modern work on macromolecules in 
technology and biochemistry, you need to understand 
several experimental techniques that are used to 
determine the molar masses and shapes of synthetic and 
biological polymers.

➤➤ What is the key idea?
Mass spectrometry, laser light scattering, ultracentrifugation, 
and viscosity measurements are useful techniques for the 
determination of size and shape of macromolecules.

➤➤ What do you need to know already?
You need to be familiar with structures of macromolecules 
(Topic 17A) and aggregates (Topic 17C).

 (17D.1)Definition number-average 
molar mass

iranchembook.ir/edu



17D Determination of size and shape  723

by weighting the molar masses of the molecules by the mass of 
each one present in the sample:

M
m

m M
i

i iw = ∑1

 
Definition  weight-average molar mass  (17D.2a)

In this expression, mi is the total mass of molecules of molar 
mass Mi and m is the total mass of the sample. Because 
mi = NiMi/NA, we can also express this average as

M

N M

N M

M
M

i i

i

i i

i

w = =
∑
∑

2

2〈 〉
〈 〉

 
This expression shows that the weight-average molar mass is 
proportional to the mean square molar mass. Similarly, the 
Z-average molar mass turns out to be proportional to the mean 
cubic molar mass:

M

N M

N M

M
M

i i

i

i i

i

Z = =
∑
∑

3

2

3

2

〈 〉
〈 〉

 

The ratio M Mw n/  is called the (molar-mass) dispersity (pre-
viously the ‘polydispersity index’, PDI) and denoted Ð  (read 
‘D-stroke’). It follows from eqns 17D.1 and 17D.2 that

Ð= M
M

w

n  
Definition  dispersity  (17D.3a)

It then follows from the interpretation of the weight and num-
ber averages that

Ð= 〈
〈

〉
〉

M
M

2

2

 
Interpretation  dispersity  (17D.3b)

That is, the dispersity is proportional to the ratio of the mean 
square molar mass to the square of the mean molar mass. In the 
determination of protein molar masses we expect the various 
averages to be the same because the sample is monodisperse 
(unless there has been degradation). A synthetic polymer nor-
mally spans a range of molar masses and the different averages 
yield different values. Typical synthetic materials have Ð≈4  
but much recent research has been devoted to developing 
methods that give much lower dispersities. The term ‘monodis-
perse’ is conventionally applied to synthetic polymers in which 
the dispersity is less than 1.1; commercial polyethene samples 
might be much more heterogeneous, with a dispersity close to 
30. One consequence of a narrow molar mass distribution for 

 (17D.2b)Interpretation weight-average 
molar mass

Example 17D.1 Calculating number and mass averages

Determine the number-average and the weight-average molar 
masses of a sample of poly(vinyl chloride) from the following 
data:

Method The relevant equations are eqns 17D.2a and 17D.2b. 
Calculate the two averages by weighting the molar mass 
within each interval by the number and mass, respectively, of 
the molecules in each interval. Obtain the numbers in each 
interval by dividing the mass of the sample in each interval 
by the average molar mass for that interval. Because the num-
ber of molecules is proportional to the amount of substance 
(the number of moles), the number-weighted average can be 
obtained directly from the amounts in each interval. That is, 
on dividing the numerator and denominator by Avogadro’s 
constant NA, and writing n = N/NA, eqn 17D.1 becomes

M
N N

N N M
n

n M
i

i i

i

i in
A

A/
/= =∑ ∑1 1

( )

Molar mass 
interval/(kg mol−1)

Average molar mass within 
interval/(kg mol−1)

Mass of sample 
within interval/g

 5–9  7.5 9.6

10–14 12.5 8.7

15–19 17.5 8.9

20–24 22.5 5.6

25–29 27.5 3.1

30–35 32.5 1.7

Answer The amounts in each interval are as follows:

The number-average molar mass is therefore

Mn / kg mol( )
.

( . . . . . .

. .

− = × + × + ×

+ × +

1 1
2 92

1 3 7 5 0 70 12 5 0 51 17 5

0 25 22 5 0.. . . . )11 27 5 0 052 32 5 13× + × =

The weight-average molar mass is calculated directly from the 
data after noting that the total mass of the sample is 37.6 g:

Mw / kg mol( )
.

( . . . . . .

. . .

− = × + × + ×

+ × + ×

1 1
37 6

9 6 7 5 8 7 12 5 8 9 17 5

5 6 22 5 3 1 227 5 1 7 32 5 16. . . )+ × =

Note the different values of the two averages. In this instance, 
M Mw n/ =1 2. .

Self-test 17D.1 Evaluate the Z-average molar mass of the 
sample.

Answer: 19 kg mol−1

Interval 5–9 10–14 15–19 20–24 25–29 30–35
Molar mass/ 

(kg mol−1)
7.5 12.5 17.5 22.5 27.5 32.5

Amount/mmol 1.3  0.70  0.51  0.25  0.11  0.052
Total:  2.92

 (17D.2c)Interpretation Z-average 
molar mass
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724 17 Macromolecules and self-assembly

synthetic polymers is often a higher degree of three-dimen-
sional long-range order in the solid and therefore higher den-
sity and melting point. The spread of values is controlled by 
the choice of catalyst and reaction conditions. In practice, it is 
found that long-range order is determined more by structural 
factors (branching, for instance) than by molar mass.

17D.2 The techniques

Average molar masses may be determined by osmotic pressure 
of polymer solutions. The upper limit for the reliability of mem-
brane osmometry is about 1000 kg mol−1. A major problem for 
macromolecules of relatively low molar mass (less than about 
10 kg mol−1) is their ability to percolate through the membrane. 
One consequence of this partial permeability is that membrane 
osmometry tends to overestimate the average molar mass of a 
polydisperse mixture. Several techniques for the determination 
of molar mass and dispersity that are not so limited include 
mass spectrometry, laser light scattering, ultracentrifugation, 
and viscosity measurements.

A note on good practice The masses of macromolecules 
are often reported in daltons (Da), where 1 Da = mu (with 
mu = 1.661 × 10−27 kg). Note that 1 Da is a measure of molecular 
mass not of molar mass. We might say that the mass (not the 
molar mass) of a certain macromolecule is 100 kDa (that is, its 
mass is 100 × 103 × mu); we could also say that its molar mass 
is 100 kg mol−1; we should not say (even though it is common 
practice) that its molar mass is 100 kDa.

(a) Mass spectrometry
Mass spectrometry is among the most accurate techniques for 
the determination of molar masses. The procedure consists of 
ionizing the sample in the gas phase and then measuring the 
mass-to-charge number ratio (m/z; more precisely, the dimen-
sionless ratio m/zmu) of all ions. Macromolecules present a 
challenge because it is difficult to produce gaseous ions of large 
species without fragmentation. However, two techniques have 
emerged that circumvent this problem: matrix-assisted laser 
desorption/ionization (MALDI) and electrospray ionization. 
We shall discuss MALDI-TOF mass spectrometry, so called 
because the MALDI technique is coupled to a time-of-flight 
(TOF) ion detector.

Figure 17D.1 shows a schematic view of a MALDI-TOF 
mass spectrometer. The macromolecule is first embedded in 
a solid matrix which typically consists of an organic material 
such as trans-3-indoleacrylic acid and inorganic salts such as 
sodium chloride or silver trifluoroacetate. This sample is then 
irradiated with a pulsed laser. The laser energy ejects electroni-
cally excited matrix ions, cations, and neutral macromolecules, 
thus creating a dense gas plume above the sample surface. The 

macromolecule is ionized by collisions and complexation with 
small cations, such as H+, Na+, and Ag+.

Figure 17D.2 shows the MALDI-TOF mass spectrum of a 
polydisperse sample of poly(butylene adipate) (PBA, 1). The 
MALDI technique produces mostly singly charged molecular 
ions that are not fragmented. Therefore, the multiple peaks in 
the spectrum arise from polymers of different lengths, with the 
intensity of each peak being proportional to the abundance of 
each polymer in the sample. Values of Mn , Mw  and the disper-
sity can be calculated from the data. It is also possible to use the 
mass spectrum to verify the structure of a polymer, as shown in 
the following example.

HO O
O

OH

O

O n
1

d l

Detector

Laser
High
potential
difference

Figure 17D.1 A matrix-assisted laser desorption/ionization 
time-of-flight (MALDI-TOF) mass spectrometer. A laser beam 
ejects macromolecules and ions from the solid matrix. The 
ionized macromolecules are accelerated by an electrical 
potential difference over a distance d and then travel through 
a drift region of length l. Ions with the smallest mass to charge 
ratio (m/z) reach the detector first.
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Figure 17D.2 MALDI-TOF spectrum of a sample of 
poly(butylene adipate) (1) with Mn = 4525g mol 1−  (Adapted 
from D.C. Mudiman et al., J. Chem. Educ. 74, 1288 (1997).)
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17D Determination of size and shape  725

(b) Laser light scattering
The scattering of light by particles with diameters much smaller 
than the wavelength of the incident radiation is called Rayleigh 
scattering. The intensity of the scattered light is proportional to 
the molar mass of the particle and to λ−4, so shorter-wavelength 
radiation is scattered more intensely than longer wavelengths. 
For example, the blue of the sky arises from the more intense 
scattering of the blue component of white sunlight by the mol-
ecules of the atmosphere.

Consider the experimental arrangement shown in Fig. 17D.3 
for the measurement of light scattering from solutions of mac-
romolecules. Typically, the sample is irradiated with mono-
chromatic light from a laser. The intensity of scattered light is 
then measured as a function of the angle θ that the direction 
of the laser beam makes with the direction of the detector from 
the sample at a distance r. Under these conditions, the intensity, 
I(θ), of light scattered is written as the Rayleigh ratio:

R
I
I

r( )
( )θ θ= ×

0

2

 
Definition  rayleigh ratio  (17D.4)

where I0 is the intensity of the incident laser radiation. The 
factor r2 occurs in the definition of the Rayleigh ratio because 
the light wave spreads out over a sphere of radius r and surface 
area 4πr2, so any sample of the radiation has its intensity I(θ) 
decreased by a factor proportional to r2.

A detailed examination of the scattering shows that the 
Rayleigh ratio depends on the mass concentration, cP (units: kg 
m−3), of the macromolecule and its weight-average molar mass 
Mw  as:

R KP c M( ) ( )θ θ= P w   relation of rayleigh ratio to molar mass  (17D.5)

where the parameter K depends on the refractive index of the 
solution, the incident wavelength, and the distance between 
the detector and the sample, which is held constant during the 
experiment. The parameter P(θ) is the structure factor, which 
is related to the size of the molecule. When the radius of gyra-
tion, Rg, of the molecule (Topic 17A and Table 17D.1) is much 
smaller than the wavelength of the light,

P p p
R

( ) ( ) ( )θ θ θ
θ

≈ − =1
16

3

2 2 2

2

1
2with

singπ
λ  

 Small macromolecules  structure factor  (17D.6)

Equation 17D.5 applies only to ideal solutions. In practice, 
even relatively dilute solutions of macromolecules can devi-
ate considerably from ideality. Being so large, macromolecules 
displace a large quantity of solvent instead of replacing indi-
vidual solvent molecules with negligible disturbance. To take 

Example 17D.2 Interpreting the mass spectrum  
of a polymer

The mass spectrum in Fig. 17D.2 consists of peaks spaced by 
200 g mol−1. The peak at 4113 g mol−1 corresponds to the poly-
mer for which n = 20. From these data, verify that the sample 
consists of polymers with the general structure given by 1.

Method Because each peak corresponds to a different value 
of n, the molar mass difference, ΔM, between peaks corre-
sponds to the molar mass, M, of the repeating unit (the group 
inside the brackets in 1). Furthermore, the molar mass of the 
terminal groups (the groups outside the brackets in 1) may be 
obtained from the molar mass of any peak by using

M M n

n M M

( ) ( )

(

terminal groups polymer with repeatingunits

cat

=
− −∆ iion)

where the last term corresponds to the molar mass of the cat-
ion that attaches to the macromolecule during ionization.

Answer The value of ΔM is consistent with the molar mass of 
the repeating unit shown in 1, which is 200 g mol−1. The molar 
mass of the terminal group is calculated by recalling that Na+ 
is the cation in the matrix:

M( ) ( )terminal group 4113g mol 2 2 g mol

23g mol 9 g mol

1 1

1

= −
− =

− −

− −

0 00

0 11

The result is consistent with the molar mass of the 
dO(CH2)4OH terminal group (89 g mol−1) plus the molar 
mass of the dH terminal group (1 g mol−1).

Self-test 17D.2 What would be the molar mass of the n = 20 
polymer if silver trifluoroacetate were used instead of NaCl in 
the preparation of the matrix?

Answer: 4198 g mol−1

Scattering intensity, I

Detector

Monochromatic
source

Incident
ray

Sample

θ

Figure 17D.3 Rayleigh scattering from a sample of point-like 
particles. The intensity of scattered light depends on the angle 
θ between the incident and scattered beams.

Table 17D.1* Radius of gyration

M/(kg mol−1) Rg/nm

Serum albumin 66 2.9

Polystyrene 3.2 × 103 50†

DNA 4 × 103 117

* More values are given in the Resource section.
† In a poor solvent.
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726 17 Macromolecules and self-assembly

deviations from ideality into account, it is common to rewrite 
eqn 17D.5 as Kc R P MP w/ 1/( ) ( )θ θ=  and to extend it to

Kc
R P M

BcP

w
P( ) ( )θ θ

= +1

 
(17D.7)

where B is an empirical constant analogous to the osmotic virial 
coefficient (Topic 5B) and indicative of the effect of excluded 
volume.

The preceding discussion shows that structural properties, 
such as size and the molar mass of a macromolecule, can be 
obtained from measurements of light scattering by a sample at 
several angles θ relative to the direction of propagation on an 
incident beam. In modern instruments, lasers are used as the 
radiation sources.

(c) Sedimentation
In a gravitational field, heavy particles settle towards the foot 
of a column of solution by the process called sedimentation. 
The rate of sedimentation depends on the strength of the field 
and on the masses and shapes of the particles. Spherical mol-
ecules (and compact molecules in general) sediment faster 
than rod-like and extended molecules. When the sample is at 
equilibrium, the particles are dispersed over a range of heights 
in accord with the Boltzmann distribution (because the gravi-
tational field competes with the stirring effect of thermal 
motion). The spread of heights depends on the masses of the 
molecules, so the equilibrium distribution is another way to 
determine molar mass.

Sedimentation is normally very slow, but it can be acceler-
ated by ultracentrifugation, a technique that replaces the gravi-
tational field with a centrifugal field. The effect can be achieved 
in an ultracentrifuge, which is essentially a cylinder that can be 
rotated at high speed about its axis with a sample in a cell near 
its outer edge. Modern ultracentrifuges can produce accelera-
tions equivalent to about 105 that of gravity (‘105 g’). Initially 
the sample is uniform, but the ‘top’ (innermost) boundary of 
the solute moves outwards as sedimentation proceeds.

A solute particle of mass m has an effective mass meff = bm on 
account of the buoyancy of the medium, with

b = −1 sρv  (17D.8)

Example 17D.3 Determining the size of a polymer  
by light scattering

The following data for a sample of polystyrene in butanone 
were obtained at 20 °C with plane-polarized light at 
λ = 546 nm.

In sepa rate  ex per i ments ,  i t  wa s deter m i ned t hat 
K = 6.42 × 10−5 mol m5 kg−2. From this information, calculate Rg 
and Mw  for the sample. Assume that B is negligibly small, and 
that the polymer is small enough that eqn 17D.6 holds.

Method Substituting the result of eqn 17D.6 into eqn 17D.5 
gives, after some rearrangement

1 1 16

3
12 2

2
2 1

2R Kc M

R
R( ) ( )

sinθ θ θ= +




P w

gπ
λ

Hence, a plot of 1/R(θ) against { ( )}sin1 2 1
2/R θ θ  should be a 

straight line with slope 16 /32
g

2π R2 λ  and y-intercept 1/ p wKc M .

Answer We construct a table of values of 1/R(θ) and 
( ) ( )sin /2 1

2 θ θR  and plot the data (Fig. 17D.4).

The best straight line through the data has a slope of 0.391 
and a y-intercept of 5.06 × 10−2. From these values and the 
value of K, we calculate Rg = 4.71 × 10−8 m = 47.1 nm and 
Mw

1987kg mol= − .

Self-test 17D.3 The following data for an aqueous solution of 
a protein with cP = 2.0 kg m−3 were obtained at 20 °C with laser 
light at λ = 532 nm:

θ/° 26.0 36.9 66.4 90.0 113.6

R(θ)/m2 19.7 18.8 17.1 16.0  14.4

θ/° 26.0 36.9 66.4 90.0 113.6

{102/R(θ)}/m−2 5.06 5.32 5.83 6.25 6.96

{ (sin ) ( )}/103 2 1
2× θ θ −/ m 2R 2.56 5.33 17.5 31.3 48.7

In a separate experiment, it was determined that K = 2.40 × 102  
mol m5 kg−2. From this information, calculate the radius of 
gyration and the molar mass of the protein. Assume the pro-
tein is small enough that eqn 17D.6 holds.

Answer: Rg = 39.8 nm; Mw
1498 kg mol= −

θ/° 15.0 45.0 70.0 85.0 90.0

R(θ)/m2 23.8 22.9 21.6 20.7 20.4

4.5

5.5

6.5

7.5

{1
02 /

(R
(θ

)}
/m

–2

0 10 20 30 40 50
{103 sin2 ½θ/(R(θ)}/m–2

Figure 17D.4 Plot of the data for Example 17D.3.
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where ρ is the solution density, vs is the partial specific vol-
ume of the solute (vs = (∂V/∂mB)T, with mB the total mass of 
solute), and the dimensionless quantity ρvs takes into account 
the mass of solvent displaced by the solute. The solute particles 
at a distance r from the axis of a rotor spinning at an angular 
velocity ω experience a centrifugal force of magnitude meffrω2. 
The acceleration outwards is countered by a frictional force 
proportional to the speed, s = dr/dt, of the particles through 
the medium. This force is written fs, where f is the frictional 
co efficient. The particles therefore adopt a drift speed, a con-
stant speed through the medium, which is found by equating 
the two forces meffrω2 and fs. The forces are equal when

s
m r

f
bmr

f
= =eff ω ω2 2

 
(17D.9)

The drift speed depends on the angular velocity and the radius, 
and it is convenient to define the sedimentation constant, S, as

S
s

r
=

ω 2  
Definition  sedimentation constant  (17D.10)

Then, because the average molecular mass is related to the aver-
age molar mass Mn  through m M N= w A/

S
bM
fN

= n

A  
(17D.11)

For a spherical particle of radius a in a solvent of viscosity η, 
the frictional coefficient f is given by Stokes’ relation:

f a= 6π η   stokes‘ relation  (17D.12)

On substituting this expression into eqn 17D.12, we obtain

S
bM
a N

= n

A6π η  

and S may be used to determine either Mn  or a. Again, if 
the molecules are not spherical, we use the appropriate 
value of f given in Table 17D.2. As always when dealing with 

macromolecules, the measurements must be carried out at a 
series of concentrations and then extrapolated to zero concen-
tration to avoid the complications that arise from the interfer-
ence between bulky molecules.

Table 17D.2* Frictional coefficients and molecular geometry†

a/b Prolate Oblate

2 1.04 1.04

3 1.18 1.17

6 1.31 1.28

8 1.43 1.37

10 1.54 1.46

* More values and analytical expressions are given in the Resource section.
† Entries are the ratio f/f0, where f0 = 6πηc, where c = (ab2)1/3 for prolate ellipsoids and 
c = (a2b)1/3 for oblate ellipsoids; 2a is the major axis and 2b is the minor axis.

Example 17D.4 Determining a sedimentation constant

The sedimentation of the protein bovine serum albumin 
(BSA) was monitored at 25 °C. The initial location of the solute 
surface was at 5.50 cm from the axis of rotation, and during 
centrifugation at 56 850 r.p.m. it receded as follows:

Calculate the sedimentation coefficient.

Method Equation 17D.10 can be interpreted as a differential 
equation for s = dr/dt in terms of r; so integrate it to obtain 
a formula for r in terms of t. The integrated expression, an 
expression for r as a function of t, will suggest how to plot the 
data and obtain from it the sedimentation constant.

Answer Equation 17D.10 may be written

d
d

andhence
d

d
r
t

r S
r

r
S t= =ω ω2 2

If at t = 0 the surface is at r0 and at a later time t it is at r, this 
equation integrates to

ln
r
r

St
0

2=ω

It follows that a plot of ln(r/r0) against t should be a straight 
line of slope ω2S. Use ω = 2πν, where ν is in cycles per second, 
and draw up the following table:

The straight-line graph (Fig. 17D.5) has a slope of 1.78 × 10−5;  
so ω2S = 1.78 × 10−5 s−1. Because ω = 2π × (56 850/60) s−1 =  

t/s 0 500 1000 2000 3000 4000 5000
r/cm 5.50 5.55 5.60 5.70 5.80 5.91 6.01

t/s 0 500 1000 2000 3000 4000 5000
102 ln(r/r0) 0 0.905 1.80 3.57 5.31 7.19 8.87

0

2

4

6

8

10

10
0 

ln
(r

/r
0)

0 1 2 43 5
t/(103 s)

Figure 17D.5 A plot of the data for Example 17D.4.

 (17D.13)
Spherical 
polymer

relation between S  
and the molar mass
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The difficulty with using sedimentation rates to measure 
molar masses lies in the inaccuracies inherent in the deter-
mination of diffusion coefficients of disperse systems. This 
problem can be avoided by allowing the system to reach equi-
librium, for the transport property D is then no longer relevant. 
As we show in the following Justification, the weight-average 
molar mass can be obtained from the ratio of concentrations of 
the macromolecules at two different radii in a centrifuge oper-
ating at angular frequency ω:

M
RT

r r b
c
cw =

−
2

2
2

1
2 2

2

1( )
ln

ω  
(17D.14)

An alternative treatment of the data leads to the Z-average 
molar mass. The centrifuge is run more slowly in this technique 
than in the sedimentation rate method to avoid having all the 
solute pressed in a thin film against the bottom of the cell. At 
these slower speeds, several days may be needed for equilib-
rium to be reached.

(d) Viscosity
The formal definition of viscosity is given in Topic 19A; for 
now, we need to know that highly viscous liquids flow slowly 
and retard the motion of objects through them. The presence 
of a macromolecular solute increases the viscosity of a solution. 
The effect is large even at low concentration, because big mol-
ecules affect the fluid flow over an extensive region surround-
ing them. At low concentrations the viscosity, η, of the solution 
is related to the viscosity of the pure solvent, η0, by

η η η η= + + ′ +0( [ ] ...)1 [ ] 2c c  (17D.15)

The intrinsic viscosity, [η], is the analogue of a virial coeffi-
cient like that encountered in the description of real gases (and 
has dimensions of 1/concentration). It follows from eqn 17D.15 
that

[ ] lim limη η η
η

η η= −





= −



→ →c cc c0

0

0 0

0 1/

 

Viscosities are measured in several ways. In the Ostwald vis-
cometer shown in Fig. 17D.6, the time taken for a solution to 
flow through the capillary is noted, and compared with a stand-
ard sample. The method is well suited to the determination of 
[η] because the ratio of the viscosities of the solution and the 
pure solvent is proportional to the drainage time t and t0 after 
correcting for different densities ρ and ρ0:

η
η

ρ
ρ0 0 0

= ×t
t  

(17D.17)

This ratio can be used directly in eqn 17D.16. Viscometers in 
the form of rotating concentric cylinders are also used (Fig. 
17D.7), and the torque on the inner cylinder is monitored 
while the outer one is rotated. Such rotating rheometers (as 
in this case, some instruments for the measurement of vis-
cosity are also called rheometers, from the Greek word for 

Justification 17D.1 The weight-average molar mass 
from sedimentation experiments

The centrifugal force acting on a molecule at a radius r when it 
is rotating around the axis of the centrifuge at a frequency ω is 
mω2r. This force corresponds to a difference in potential energy 
(using F = –dV/dr) of – .1

2 m rω 2 2  The difference in potential 
energy between r1 and r2 (with r2 > r1) is therefore 1

2 1
2

2
2m r rω 2( ).−  

According to the Boltzmann distribution, the ratio of concen-
trations of molecules at these two radii should therefore be

c
c

m r r kT2

1

1
2

2
1
2

2
2= − −e effω ( )/

 
The effective mass, allowing for buoyancy effects, is m(1 – vsρ), 
and m/k can be replaced by M/R, where R = NAk is the gas con-
stant. Then, by taking logarithms of both sides, the last equa-
tion becomes

ln
( ) ( )c

c
M r r

RT
2

1

2
2
2

1
21

2
= − −vsρ ω

 

which rearranges into eqn 17D.14.

Capillary

Measuring
lines

Figure 17D.6 An Ostwald viscometer. The viscosity is 
measured by noting the time required for the liquid to drain 
between the two marks.

5.95 × 103 s−1, it follows that S = 5.02 × 10−13 s. The unit 10−13 s 
is sometimes called a ‘svedberg’ and denoted Sv; in this case 
S = 5.02 Sv.

Self-test 17D.4 Calculate the sedimentation constant given the 
following data (the other conditions being the same as above):

Answer: 3.11 Sv

t/s 0 500 1000 2000 3000 4000 5000
r/cm 5.65 5.68 5.71 5.77 5.84 5.9 5.97

 (17D.16)Definition Intrinsic 
viscosity
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‘flow’) have the advantage over the Ostwald viscometer that 
the shear gradient between the cylinders is simpler than in 
the capillary and effects of the kind discussed shortly can be 
studied more easily.

There are many complications in the interpretation of vis-
cosity measurements. Much of the work is based on empirical 
observations, and the determination of molar mass is usually 
based on comparisons with standard, nearly monodisperse 
samples. Some regularities are observed that help in the deter-
mination. For example, it is found that solutions of macro-
molecules that behave nearly ideally often fit the empirical 
Mark–Kuhn–Houwink–Sakurada equation:

[ ]η = KM a
v  Mark–Kuhn–Houwink–Sakurada equation (17D.18)

where K and a are constants that depend on the solvent and 
type of macromolecule (Table 17D.3); the viscosity-average 
molar mass, M v  appears in this expression.

In some cases, the flow is non-Newtonian in the sense 
that the viscosity of the solution changes as the rate of flow 
increases. A decrease in viscosity with increasing rate of flow 
indicates the presence of long rod-like molecules that are ori-
entated by the flow and hence slide past each other more freely. 
In some somewhat rare cases the stresses set up by the flow are 
so great that long molecules are broken up, with further conse-
quences for the viscosity.

Torsion wire
Sample

Motor

Figure 17D.7 A rotating rheometer. The torque on the inner 
drum is observed when the outer container is rotated.

Table 17D.3* Intrinsic viscosity

Solvent θ/°C K/(cm3 g−1) a

Polystyrene Benzene 25 9.5 × 10−3 0.74

Polyisobutylene Benzene 23 8.3 × 10−2 0.50

Various 
proteins

Guanidine hydrochloride +  
HSCH2CH2OH

7.2 × 10−3 0.66

* More values are given in the Resource section.

Example 17D.5 Using intrinsic viscosity to measure 
molar mass

The viscosities of a series of solutions of polystyrene in toluene 
were measured at 25 °C with the following results:

c/(g dm−3) 0 2 4 6 8 10

η/(10−4 kg m−1 s−1) 5.58 6.15 6.74 7.35 7.98 8.64

Calculate the intrinsic viscosity and estimate the molar mass 
of the polymer by using eqn 17D.19 with K = 3.80 × 105 dm3 g−1 
and a = 0.63.

Method The intrinsic viscosity is defined in eqn 17D.16; there-
fore, form this ratio at the series of data points and extrapolate 
to c = 0. Interpret M v , as M v

1/(g mol )–  in eqn 17D.18.

Answer We draw up the following table:

The points are plotted in Fig. 17D.8. The extrapolated intercept 
at c = 0 is 0.0504, so [η] = 0.0504 dm3 g−1. Therefore,

M
K

a

v g mol= 





= × −[ ]
.

/η 1

4 19 0 10

Self-test 17D.5 Show that the intrinsic viscosity may also be 
obtained as [η] = limc→0 ln(η/η0) and evaluate the viscosity-
average molar mass by using this relation.

Answer: 90 kg mol−1

{(
η/

η 0)
 –

 1
}/

{c
/(

g
 d

m
–3

)}

0.050

0.051

0.
05

2
0.

05
3

0.054

0.055

0 2 4 6 8 10
c/(g dm–3)

Figure 17D.8 The plot used for the determination of 
intrinsic viscosity, which is taken from the intercept at c = 0; 
see Example 17D.5.

c/(g dm−3) 0 2 4 6 8 10

η/η0

100[(η/η0) − 1]/(c/ 
g dm−3)

1 1.102 1.208 1.317 1.43 1.549
5.11 5.2 5.28 5.38 5.49
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730 17 Macromolecules and self-assembly

Checklist of concepts

☐ 1. Macromolecules can be monodisperse, with a sin-
gle molar mass, or polydisperse, with various molar 
masses.

☐ 2. In the MALDI-TOF technique, matrix-assisted laser 
desorption/ionization is coupled with a time-of-flight 
mass spectrometer to measure the molar masses of 
macromolecules.

☐ 3. The intensity of Rayleigh light scattering by a sample 
increases with decreasing wavelength of the incident 
radiation and increasing size of the particles in the 
sample.

☐ 4. Analysis of Rayleigh scattering leads to the determina-
tion of the molar mass of a macromolecule or aggregate.

☐ 5. Dynamic light scattering is a technique for the deter-
mination of the diffusion properties and molar masses 
of macromolecules and aggregates.

☐ 6. The rate of sedimentation in an ultracentrifuge depends 
on molar masses and shapes of the macromolecules in 
the sample.

☐ 7. The weight-average and Z-average molar mass of a 
sample of macromolecules can be determined from 
equilibrium measurements of sedimentation in an 
ultracentrifuge.

☐ 8. The viscosity-average molar mass can be determined 
from measurements of the viscosity of solutions of 
macromolecules.

Checklist of equations

Property Equation Comment Equation number

Number-average molar mass M N N M

i

i in = ∑( / )1 Definition 17D.1

Weight-average molar mass M m m M

i

i iw /= ∑( )1 Definition 17D.2a

Z-average molar mass M M MZ /= 〈 〉 〈 〉3 2 Interpretation 17D.2c

Dispersity Ð= M Mw n/ Definition 17D.3a

Ð= 〈 〉 〈 〉M M2 2/ Interpretation 17D.3b

Rayleigh ratio R(θ) = (I(θ)/I0)r2 Definition 17D.4

R KP c M( ) ( )θ θ= P w Experimental implementation;  
ideal solutions

17D.5

Structure factor P p

p R

( ) ( )

( ) ( )

θ θ

θ θ

≈ −

=

1

16 32 2 2 2 1
2

/ singπ λ

Small macromolecules 17D.6

Sedimentation constant S s r= / ω 2 Definition 17D.10

Stokes relation f = 6πaη f is the frictional coefficient 17D.12

Relation between the sedimentation constant  
and the molar mass of a polymer

S bM a N= n A/6π η Spherical polymer 17D.13

Intrinsic viscosity [ ] lim ( )/{ }η η η= −
→c

c
0

0 1/ Definition 17D.16

Mark–Kuhn–Houwink–Sakurada equation [ ]η = KM a
v Nearly ideal solutions 17D.18
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chaPter 17  Macromolecules and self-assembly

TOPIC 17A the structures of macromolecules

Discussion questions
17A.1 Distinguish between the four levels of structure of a macromolecule: 
primary, secondary, tertiary, and quaternary.

17A.2 What are the consequences of there being partial rigidity in an 
otherwise random coil?

17A.3 Define the terms in, and identify the limits of the generality of, the 
following expressions: (a) Rc = Nl, (b) Rrms = N1/2l, (c) Rrms = (2N)1/2l, (d) 
Rrms = N1/2lF, (e) Rg = N1/2l, (f) Rg = (N/6)1/2l, (g) Rg = (N/3)1/2l.

17A.4 Summarize the Core–Pauling rules and explain how they explain the 
helical and sheet-like structures of polypeptides.

Exercises
17A.1(a) A one-dimensional polymer chain consists of 700 segments, each 
0.90 nm long. If the chain were ideally flexible, what would be the r.m.s. 
separation of the ends of the chain?
17A.1(b) A one-dimensional polymer chain consists of 1200 segments, each 
1.125 nm long. If the chain were ideally flexible, what would be the r.m.s. 
separation of the ends of the chain?

17A.2(a) Calculate the contour length (the length of the extended chain)  
and the root mean square separation (the end-to-end distance) for 
polyethylene with a molar mass of 280 kg mol−1, modelled as a one-
dimensional chain.
17A.2(b) Calculate the contour length (the length of the extended  
chain) and the root mean square separation (the end-to-end distance) for 
polypropylene of molar mass 174 kg mol−1, modelled as a one-dimensional 
chain.

17A.3(a) The radius of gyration of a long one-dimensional chain molecule is 
found to be 7.3 nm. The chain consists of CeC links. Assume that the chain is 
randomly coiled and estimate the number of links in the chain.
17A.3(b) The radius of gyration of a long one-dimensional chain molecule 
is found to be 18.9 nm. The chain consists of links of length 450 pm. Assume 
that the chain is randomly coiled and estimate the number of links in the 
chain.

17A.4(a) What is the probability that the ends of a polyethene chain of molar 
mass 65 kg mol−1 are 10 nm apart when the polymer is treated as a one-
dimensional freely jointed chain?
17A.4(b) What is the probability that the ends of a polyethene chain of molar 
mass 85 kg mol−1 are 15 nm apart when the polymer is treated as a one-
dimensional freely jointed chain?

17A.5(a) What is the probability that the ends of a polyethene chain of molar 
mass 65 kg mol−1 are between 10.0 nm and 10.1 nm apart when the polymer is 
treated as a three-dimensional freely jointed chain?
17A.5(b) What is the probability that the ends of a polyethene chain of molar 
mass 75 kg mol−1 are between 14.0 nm and 14.1 nm apart when the polymer is 
treated as a three-dimensional freely jointed chain?

17A.6(a) By what percentage does the radius of gyration of a one-dimensional 
polymer chain increase (+) or decrease (−) when the bond angle between 
units is limited to 109°? What is the percentage change in volume of the coil?
17A.6(b) By what percentage does the root mean square separation of the ends 
of a one-dimensional polymer chain increase (+) or decrease (−) when the 
bond angle between units is limited to 120°? What is the percentage change in 
volume of the coil?

17A.7(a) By what percentage does the radius of gyration of a one-dimensional 
polymer chain increase (+) or decrease (−) when the persistence length 
changes from l (the bond length) to 5.0 per cent of the contour length? What 
is the percentage change in volume of the coil?
17A.7(b) By what percentage does the root mean square separation of the 
ends of a one-dimensional polymer chain increase (+) or decrease (−) when 
the persistence length changes from l (the bond length) to 2.5 per cent of the 
contour length? What is the percentage change in volume of the coil?

17A.8(a) The radius of gyration of a three-dimensional partially rigid polymer 
of 1000 units each of length 150 pm was measured as 2.1 nm. What is the 
persistence length of the polymer?
17A.8(b) The radius of gyration of a three-dimensional partially rigid polymer 
of 1500 units each of length 164 pm was measured as 3.0 nm. What is the 
persistence length of the polymer?

Problems
17A.1 Evaluate the radius of gyration, Rg, of (a) a solid sphere of radius a, 
(b) a long straight rod of radius a and length l. Show that in the case of a solid 
sphere of specific volume vs, Rg/nm ≈ 0.056902 × {(vs/cm3 g−1)(M/g mol−1)}1/3. 
Evaluate Rg for a species with M = 100 kg mol−1, vs = 0.750 cm3 g−1, and, in the 
case of the rod, of radius 0.50 nm.

17A.2 Use eqn 17A.2 to deduce expressions for (a) the root mean square 
separation of the ends of the chain, (b) the mean separation of the ends, and 
(c) their most probable separation. Evaluate these three quantities for a fully 
flexible chain with N = 4000 and l = 154 pm.

17A.3 Deduce the relation 〈 〉r Nli
2 2=  for the mean square distance of a 

monomer from the origin in a freely jointed chain of N units each of length l. 
Hint: Use the distribution in eqn 17A.2.

17A.4 Deduce an expression for the radius of gyration of a three-dimensional 
freely-jointed chain (eqn 17A.6).

17A.5 Derive expressions for the moments of inertia and hence the radii of 
gyration of (a) a uniform thin disk, (b) a long uniform rod, (c) a uniform sphere.

17A.6 Construct a two-dimensional random walk by using a random number 
generating routine with mathematical software or electronic spreadsheet. 
Construct a walk of 50 and 100 steps. If there are many people working on the 
problem, investigate the mean and most probable separations in the plots by 
direct measurement. Do they vary as N1/2?

17A.7 Confirm that for one-dimensional random coils, ln ln( ) /P N≈ 2 1 2/π
− + + + − − + −1

2
1
2

1 1 1 1( )ln( ) ( )ln( ).N n N n   Hint: See Justification 17A.1.
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17A.8 The radius of gyration is defined in Justification 17A.3. Show that an 
equivalent definition is that Rg is the average root mean square distance 
of the atoms or groups (all assumed to be of the same mass), that is, that 
R N R

j jg 1/2 2= ∑( ) ,  where Rj is the distance of atom j from the centre of mass.

17A.9 Use the following information and the expression for Rg of a solid 
sphere quoted in the text (following eqn 17A.6), to classify the given species 
as globular or rod-like.

TOPIC 17B Properties of macromolecules

Discussion questions
17B.1 Distinguish between stress and strain.

17B.2 Distinguish between elastic and plastic deformation.

17B.3 Distinguish between the melting temperature and the glass transition 
temperature of a polymer.

17B.4 Describe the mechanism of electrical conductivity in conducting 
polymers.

Exercises
17B.1(a) Calculate the change in molar entropy when the ends of a one-
dimensional polyethene chain of molar mass 65 kg mol−1 are moved apart by 
1.0 nm.
17B.1(b) Calculate the change in molar entropy when the ends of a one-
dimensional polyethene chain of molar mass 85 kg mol−1 are moved apart  
by 2.0 nm.

17B.2(a) Calculate the restoring force when the ends of a one-dimensional 
polyethene chain of molar mass 65 kg mol−1 are moved apart by 1.0 nm at 
20 °C.
17B.2(b) Calculate the restoring force when the ends of a one-dimensional 
polyethene chain of molar mass 85 kg mol−1 are moved apart by 2.0 nm  
at 25 °C.

Problems
17B.1 Develop an expression for the fundamental vibrational frequency of 
a one-dimensional random coil that has been slightly stretched and then 
released. Evaluate this frequency for a sample of polyethene of molar mass 
65 kg mol−1 at 20 °C. Account physically for the dependence of frequency on 
temperature and molar mass.

17B.2 On the assumption that the tension, t, required to keep a sample at a 
constant length is proportional to the temperature (t = aT, the analogue of 
p ∝ T), show that the tension can be ascribed to the dependence of the entropy 
on the length of the sample. Account for this result in terms of the molecular 
nature of the sample.

17B.3 The following table lists the glass transition temperatures, Tg, of several 
polymers. Discuss the reasons why the structure of the monomer unit has an 
effect on the value of Tg.

TOPIC 17C self-assembly

Discussion questions
17C.1 Distinguish between a sol, an emulsion, and a foam. Provide examples 
of each.

17C.2 It is observed that the critical micelle concentration of sodium dodecyl 
sulfate in aqueous solution decreases as the concentration of added sodium 
chloride increases. Explain this effect.

17C.3 What effect is the inclusion of cholesterol likely to have on the transition 
temperatures of a lipid bilayer?

M/(g mol−1) vs/(cm3 g−1) Rg/nm

Serum albumin 66 × 103 0.752 2.98

Bushy stunt virus 10.6 × 106 0.741 12.0

DNA 4 × 106 0.556 117.0

Polymer Poly 
(oxymethylene)

Polyethene Poly(vinyl  
chloride)

Polystyrene

Structure e(OCH2)ne e(CH2CH2)ne e(CH2 
eCHCl)ne

e(CH2 
eCH(C6H5))ne

Tg/K 198 253 354 381
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Exercises
17C.1(a) The velocity v with which a protein moves through  
water under the influence of an electric field varied with values  
of pH in the range 3.0 < pH < 7.0 according to the expression  
v/(μm s−1) = a + b(pH) + c(pH)2 + d(pH)3 with a = 0.50, b = −0.10, c = −3.0 × 10−3, 
and d = 5.0 × 10−4. Identify the isoelectric point of the protein.

17C.1(b) The velocity v with which a protein moves through water under 
the influence of an electric field varied with values of pH in the range 
3.0 < pH < 5.0 according to the expression v/(μm s−1) = a + b(pH) + c(pH)2 with 
a = 0.80, b = −4.0 × 10−3, and c = −5.0 × 10−2. Identify the isoelectric point of the 
protein.

Problem
17C.1 Use mathematical software to reproduce the features in Fig. 17C.6.

TOPIC 17D determination of size and shape

Discussion questions
17D.1 Distinguish between number-average, weight-average, and Z-average 
molar masses. Identify experimental techniques that can measure each of 
these properties.

17D.2 Suggest reasons why different techniques produce different molar mass 
averages.

Exercises
17D.1(a) Calculate the number-average molar mass and the weight-average 
molar mass of a mixture of equal amounts of two polymers, one having 
M = 62 kg mol−1 and the other M = 78 kg mol−1.
17D.1(b) Calculate the number-average molar mass and the weight-average 
molar mass of a mixture of two polymers, one having M = 62 kg mol−1 and 
the other M = 78 kg mol−1, with their amounts (numbers of moles) in the 
ratio 3:2.

17D.2(a) A solution consists of solvent, 30 per cent by mass, of a dimer 
with M = 30 kg mol−1 and its monomer. What average molar mass would be 
obtained from measurement of (i) osmotic pressure, (ii) light scattering?
17D.2(b) A solution consists of 25 per cent by mass of a trimer with M= 
22 kg mol−1 and its monomer. What average molar mass would be obtained 
from measurement of: (i) osmotic pressure, (ii) light scattering?

17D.3(a) What is the relative rate of sedimentation for two spherical particles 
of the same density, but which differ in radius by a factor of 10?
17D.3(b) What is the relative rate of sedimentation for two spherical particles 
with densities 1.10 g cm−3 and 1.18 g cm−3 and which differ in radius by a 
factor of 8.4, the former being the larger? Use ρ = 0.794 g cm−3 for the density 
of the solution.

17D.4(a) Human haemoglobin has a specific volume of 0.749 × 103 m3 kg−1, 
a sedimentation constant of 4.48 Sv, and a diffusion coefficient of 
6.9 × 10−11 m2 s−1. Determine its molar mass from this information.
17D.4(b) A synthetic polymer has a specific volume of 8.01 × 10−4 m3 kg−1, 
a sedimentation constant of 7.46 Sv, and a diffusion coefficient of 
7.72 × 10−11 m2 s−1. Determine its molar mass from this information.

17D.5(a) Find the drift speed of a particle of radius 20 µm and density 
1750 kg m3 which is settling from suspension in water (density 
1000 kg m−3) under the influence of gravity alone. The viscosity of water is 
8.9 × 10−4 kg m−1 s−1.
17D.5(b) Find the drift speed of a particle of radius 15.5 µm and density 
1250 kg m−3 which is settling from suspension in water (density 
1000 kg m−3) under the influence of gravity alone. The viscosity of water is 
8.9 × 10−4 kg m−1 s−1.

17D.6(a) At 20 °C the diffusion coefficient of a macromolecule is found to be 
8.3 × 10−11 m2 s−1. Its sedimentation constant is 3.2 Sv in a solution of density 
1.06 g cm−3. The specific volume of the macromolecule is 0.656 cm3 g−1. 
Determine the molar mass of the macromolecule.
17D.6(b) At 20 °C the diffusion coefficient of a macromolecule is found to be 
7.9 × 10−11 m2 s−1. Its sedimentation constant is 5.1 Sv in a solution of density 
997 kg m−1. The specific volume of the macromolecule is 0.721 cm3 g−1. 
Determine the molar mass of the macromolecule.

17D.7(a) The data from a sedimentation equilibrium experiment performed 
at 300 K on a macromolecular solute in aqueous solution show that a graph 
of ln c against (r/cm)2 is a straight line with a slope of 729. The rotation 
rate of the centrifuge was 50 000 r.p.m. The specific volume of the solute is 
0.61 cm3 g−1. Calculate the molar mass of the solute.
17D.7(b) The data from a sedimentation equilibrium experiment performed at 
293 K on a macromolecular solute in aqueous solution show that a graph of 
ln c against (r/cm)2 is a straight line with a slope of 821. The rotation rate of 
the centrifuge was 1080 cycles per second. The specific volume of the solute is 
7.2 × 10−4 m3 kg−1. Calculate the molar mass of the solute.

Problems
17D.1 A polymerization process produced a Gaussian distribution of polymers 
in the sense that the proportion of molecules having a molar mass in the 
range M to M + dM was proportional to e− −( ) / .M M 2 2γ  What is the number 
average molar mass when the distribution is narrow?

17D.2 Polystyrene is a synthetic polymer with the structure 
e(CH2eCH(C6H5))ne. A batch of polydisperse polystyrene was prepared 
by initiating the polymerization with t-butyl radicals. As a result, the t-butyl 
group is expected to be covalently attached to the end of the final products. 
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A sample from this batch was embedded in an organic matrix containing 
silver trifluoroacetate and the resulting MALDI-TOF spectrum consisted of 
a large number of peaks separated by 104 g mol−1, with the most intense peak 
at 25 578 g mol−1. Comment on the purity of this sample and determine the 
number of (CH2eCH(C6H5)) units in the species that gives rise to the most 
intense peak in the spectrum.

17D.3 Suppose that a rod-like DNA molecule of length 250 nm undergoes a 
conformational change to a closed-circular (cc) form. (a) Use the information 
in Problem 17A.8 and an incident wavelength λ = 488 nm to calculate the ratio 
of scattering intensities by each of these conformations, Irod/Icc, when θ = 20°, 
45°, and 90°. (b) Suppose that you wish to use light scattering as a technique 
for the study of conformational changes in DNA molecules. Based on your 
answer to part (a), at which angle would you conduct the experiments? Justify 
your choice.

17D.4 In a sedimentation experiment the position of the boundary as a 
function of time was found to be as follows:

The rotation rate of the centrifuge was 45 000 r.p.m. Calculate the 
sedimentation constant of the solute.

17D.5 Calculate the speed of operation (in r.p.m.) of an ultracentrifuge needed 
to obtain a readily measurable concentration gradient in a sedimentation 
equilibrium experiment. Take that gradient to be a concentration at the 
bottom of the cell about five times greater than at the top. Use rtop = 5.0 cm, 
rbot = 7.0 cm, M ≈ 105 g mol−1, ρυs ≈ 0.75, T = 298 K.

17D.6 In an ultracentrifugation experiment at 20 °C on bovine serum 
albumin the following data were obtained: ρ = 1.001 g cm−3, vs = 1.112 cm3 g−1, 
ω/2π = 322 Hz,

Evaluate the molar mass of the sample.

17D.7 Sedimentation studies on haemoglobin in water gave a sedimentation 
constant S = 4.5 Sv at 20 °C. The diffusion coefficient is 6.3 × 10−11 m2 s−1 at 
the same temperature. Calculate the molar mass of haemoglobin using vs= 
0.75 cm3 g−1 for its partial specific volume and ρ = 0.998 g cm−3 for the density 

of the solution. Estimate the effective radius of the haemoglobin molecule 
given that the viscosity of the solution is 1.00 × 103 kg m−1 s−1.

17D.8 The rate of sedimentation of a recently isolated protein was monitored 
at 20 °C and with a rotor speed of 50 000 r.p.m. The boundary receded as 
follows:

Calculate the sedimentation constant and the molar mass of the protein on 
the basis that its partial specific volume is 0.728 cm3 g−1 and its diffusion 
coefficient is 7.62 × 10−11 m2 s−1 at 20 °C, the density of the solution then being 
0.9981 g cm−3. Suggest a shape for the protein given that the viscosity of the 
solution is 1.00 × 103 kg m−1 s−1 at 20 °C.

17D.9 The concentration dependence of the viscosity of a polymer solution is 
found to be as follows:

The viscosity of the solvent is 0.985 g m−1 s−1. What is the intrinsic viscosity of 
the polymer?

17D.10 The times of flow of dilute solutions of polystyrene in benzene through 
a viscometer at 25 °C are given in the table below. From these data, calculate 
the molar mass of the polystyrene samples. Because the solutions are dilute, 
assume that the densities of the solutions are the same as those of pure 
benzene. η(benzene) = 0.601 × 103 kg m−1 s−1 (0.601 cP) at 25 °C.

17D.11 The viscosities of solutions of polyisobutylene in benzene were 
measured at 23 °C with the following results:

Use the information in Table 17D.3 to deduce the molar mass of the polymer.

Integrated activities
17.1 In formamide as solvent, poly(γ-benzyl-l-glutamate) is found by light 
scattering experiments to have a radius of gyration proportional to M; 
in contrast, polystyrene in butanone has Rg proportional to M1/2. Present 
arguments to show that the first polymer is a rigid rod whereas the second is 
a random coil.

17.2 Consider the thermodynamic description of stretching rubber. The 
observables are the tension, t, and length, l (the analogues of p and V for 
gases). Because dw = tdl, the basic equation is dU = TdS + tdl. If G = U – TS – tl, 
find expressions for dG and dA, and deduce the Maxwell relations
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Go on to deduce the equation of state for rubber,
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17.3 Commercial software (more specifically ‘molecular mechanics’ or 
‘conformational search’ software) automate the calculations that lead to 
Ramachandran plots, such as those in Fig. 17A.13. In this problem our model 
for the protein is the dipeptide (1) in which the terminal methyl groups 
replace the rest of the polypeptide chain. (a) Draw three initial conformers 
of the dipeptide with RaH: one with ϕ = +75°, ψ = −65°, a second with 
ϕ = ψ = +180°, and a third with ϕ = +65°, ψ = +35°. Use software of your 
instructor’s choice to optimize the geometry of each conformer and find the 
final ϕ and ψ angles in each case. Did all the initial conformers converge to 
the same final conformation? If not, what do these final conformers represent? 
(b) Use the approach in part (a) to investigate the case R = CH3, with the same 

t/min 15.5 29.1 36.4 58.2

r/cm 5.05 5.09 5.12 5.19

r/cm 5.0 5.1 5.2 5.3 5.4

c/(mg cm−3) 0.536 0.284 0.148 0.077 0.039

t/s 0 300 600 900 1200 1500 1800

r/cm 6.127 6.153 6.179 6.206 6.232 6.258 6.284

c/(g dm−3) 1.32 2.89 5.73 9.17

η/(g m−1 s−1) 1.08 1.20 1.42 1.73

c/(g dm−3) 0 2.22 5.00 8.00 10.00

t/s 208.2 248.1 303.4 371.8 421.3

c/(g/102 cm3) 0 0.2 0.4 0.6 0.8 1.0

η/(103 kg m−1 s−1) 0.647 0.690 0.733 0.777 0.821 0.865
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three initial conformers as starting points for the calculations. Rationalize any 
similarities and differences between the final conformers of the dipeptides 
with R = H and R = CH3.

NH

O HH

NH

O

1

17.4 The effective radius, a, of a random coil is related to its radius of gyration, 
Rg, by a = γ Rg, with γ  = 0.85. Deduce an expression for the osmotic virial 
coefficient, B (Topic 5B), in terms of the number of chain units for (a) a 
freely jointed chain, (b) a chain with tetrahedral bond angles. Evaluate B 
for l = 154 pm and N= 4000. Estimate B for a randomly coiled polyethylene 
chain of arbitrary molar mass, M, and evaluate it for M  = 56 kg mol−1. Use 
B N= 1

2 A Pv ,  where vP is the excluded volume due to a single molecule.

17.5 A manufacturer of polystyrene beads claims that they have an average 
molar mass of 250 kg mol−1. Solutions of these beads are studied by a physical 
chemistry student by dilute solution viscometry with an Ostwald viscometer 
in both toluene and cyclohexane. The drainage times, tD, as a function of 
concentration for the two solvents are given in the table below. (a) Fit the data 
to the virial equation for viscosity,

η η η η= + + ′ +0( [ ] [ ] ...)1 2 2c k c  

where k′ is called the Huggins constant and is typically in the range 0.35–0.40. 
From the fit, determine the intrinsic viscosity and the Huggins constant. 
(b) Use the empirical Mark–Kuhn–Houwink–Sakurada equation (eqn 17D.18) 
to determine the molar mass of polystyrene in the two solvents. For theta 
solvents, a = 0.5 and K = 8.2 × 10−5 dm−3 g−1 for cyclohexane; for the good 
solvent toluene a = 0.72 and K = 1.15 × 10−5 dm−3 g−1. (c) According to a general 
theory proposed by Kirkwood and Riseman, the root mean square end-to-end 
distance of a polymer chain in solution is related to [η] by Φ 〈r2〉3/2/M, where 
Φ is a universal constant with the value 2.84 × 1026 when [η] is expressed 
in cubic decimetres per gram and the distance is in metres. Calculate this 
quantity for each solvent. (d) From the molar masses calculate the average 
number of styrene (C6H5CHaCH2) monomer units, 〈N〉, (e) Calculate the 
length of a fully stretched, planar zigzag configuration, taking the CeC 
distance as 154 pm and the CCC bond angle to be 109°. (f) Use eqn 17A.6 to 
calculate the radius of gyration, Rg. Also calculate 〈r2〉1/2 = N1/2l. Compare this 
result with that predicted by the Kirkwood–Riseman theory: which gives the 
better fit? (g) Compare your values for M to the results of Problem 17D.2. Is 
there any reason why they should or should not agree? Is the manufacturer’s 
claim valid?

c/(g dm−3 toluene) 0 1.0 3.0 5.0

tD/s 8.37 9.11 10.72 12.52

c/(g dm−3 cyclohexane) 0 1.0 1.5 2.0

tD/s 8.32 8.67 8.85 9.03
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solids

The solid state includes most of the materials that make mod-
ern technology possible. It includes the wide varieties of steel 
that are used in architecture and engineering, the semiconduc-
tors and metallic conductors that are used in information tech-
nology and power distribution, the ceramics that increasingly 
are replacing metals, and the synthetic and natural polymers 
discussed in Chapter 17 that are used in the textile industry and 
in the fabrication of many of the common objects of the mod-
ern world. In this chapter we explore the structures and physi-
cal properties of solids.

18A crystal structure

In this Topic we see how to describe the regular arrangement of 
atoms in crystals and the symmetry of their arrangement. Then 
we consider the basic principles of ‘X-ray diffraction’ and see 
how the diffraction pattern can be interpreted in terms of the 
distribution of electron density in a ‘unit cell’.

18B bonding in solids

X-ray diffraction leads to information about the structures 
of metallic, ionic, and molecular solids, and in this Topic we 
review some typical results and their rationalization in terms of 
atomic and ionic radii.

18C mechanical, electrical and 
magnetic properties of solids

In this Topic we begin to see how the bulk properties of solids 
stem from the arrangement and properties of the constituent 

atoms. Here we focus on rigidity, electrical conductivity, and 
magnetic properties.

18D the optical properties of solids

This Topic continues the exploration of properties of solids, 
with a focus on optical properties that render materials as use-
ful building blocks of devices with important technological 
applications.

What is the impact of this material?

The deployment of X-ray diffraction techniques for the deter-
mination of the location of all the atoms in biological macro-
molecules has revolutionized the study of biochemistry. In 
Impact I18.1, the power of the techniques is demonstrated by 
exploring the most seminal X-ray images of all: the character-
istic pattern obtained from strands of DNA and used in the 
construction of the double-helix model of DNA. We also turn 
our attention to research on nanometre-sized materials, which 
is motivated by the possibility that they will form the basis for 
cheaper and smaller electronic devices. In Impact I18.2 we 
discuss the synthesis of ‘nanowires’, nanometre-sized atomic 
assemblies that conduct electricity, which is a major step in the 
fabrication of nanodevices.

To read more about the impact of this 
material, scan the QR code, or go to  
bcs.whfreeman.com/webpub/chemistry/
pchem10e/impact/pchem-18-1.html
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18A crystal structure

A crucial aspect of the link between the structure and proper-
ties of a solid is the pattern in which the atoms (and molecules) 
are stacked together, so here we examine how the structures 
of solids are described and determined. First, we see how to 
describe the regular arrangement of atoms in solids. Then we 
consider the basic principles of X-ray diffraction and see how 
the diffraction pattern can be interpreted in terms of the distri-
bution of electron density in a crystal.

18A.1 Periodic crystal lattices

A periodic crystal is built up from regularly repeating ‘struc-
tural motifs’, which may be atoms, molecules, or groups of 
atoms, molecules, or ions. A space lattice is the pattern formed 
by points representing the locations of these motifs (Fig. 18A.1). 
A space lattice is, in effect, an abstract scaffolding for the crystal 
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➤➤ Why do you need to know this material?
You need to understand the structures of metallic, ionic, 
and molecular solids if you want to be able to account 
for the mechanical, electrical, optical, and magnetic 
properties that form the basis of new materials and 
new technologies. A central part of this understanding 
is knowing how the internal structures of solids are 
determined and described.

➤➤ What is the key idea?
The details of the regular arrangement of atoms in 
periodic crystals can be expressed in terms of unit cells 
and determined by diffraction techniques.

Lattice point

Structural motif

Figure 18A.1 Each lattice point specifies the location of 
a structural motif (for example, a molecule or a group of 
molecules). The crystal lattice is the array of lattice points; the 
crystal structure is the collection of structural motifs arranged 
according to the lattice.

➤➤ What do you need to know already?
You need to be familiar with the wave description of 
electromagnetic radiation (Foundations C), and the 
significance of Fourier transforms (Mathematical 
background 7). Light use is made of the de Broglie relation 
(Topic 7A) and the equipartition theorem (Foundations B).
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738 18 Solids

structure. More formally, a space lattice is a three-dimensional, 
infinite array of points, each of which is surrounded in an 
identical way by its neighbours, and which defines the basic 
structure of the crystal. In some cases there may be a structural 
motif centred on each lattice point, but that is not necessary. 
The crystal structure itself is obtained by associating with each 
lattice point an identical structural motif. The solids known as 
quasicrystals are ‘aperiodic’, in the sense that the space lattice, 
though still filling space, does not have translational symme-
try. Our discussion will focus on periodic crystals only and, 
to simplify the language, we refer to these structures simply as 
‘crystals’.

A unit cell is an imaginary parallelepiped (parallel-sided fig-
ure) that contains one unit of the translationally repeating pat-
tern (Fig. 18A.2). It can be thought of as the fundamental region 
from which the entire crystal may be constructed by purely 
translational displacements (like bricks in a wall). A unit cell 
is commonly formed by joining neighbouring lattice points by 
straight lines (Fig. 18A.3). Such unit cells are called primitive. 
It is sometimes more convenient to draw larger non-primi tive 
unit cells that also have lattice points at their centres or on pairs 
of opposite faces. An infinite number of different unit cells can 
describe the same lattice, but the one with sides that have the 

shortest lengths and that are most nearly perpendicular to one 
another is normally chosen. The lengths of the sides of a unit 
cell are denoted a, b, and c, and the angles between them are 
denoted α, β, and γ  (Fig. 18A.4).

Unit cells are classified into seven crystal systems by noting 
the rotational symmetry elements they possess. A symmetry 
operation is an action (such as a rotation, reflection, or inver-
sion) that leaves an object looking the same after it has been 
carried out. There is a corresponding symmetry element for 
each symmetry operation, which is the point, line, or plane 
with respect to which the symmetry operation is performed. 
For instance, an n-fold rotation (the symmetry operation) 
about an n-fold axis of symmetry (the corresponding symme-
try element) is a rotation through 360°/n. (See Topics 11A–11C 
for a more detailed discussion of symmetry.)

The following are examples of unit cells:

•	 A cubic unit cell has four threefold axes in a tetrahedral 
array (Fig. 18A.5).

•	 A monoclinic unit cell has one twofold axis  
(Fig. 18A.6).

•	 A triclinic unit cell has no rotational symmetry, and 
typically all three sides and angles are different (Fig. 
18A.7).

Figure 18A.2 A unit cell is a parallel-sided (but not necessarily 
rectangular) figure from which the entire periodic crystal 
structure can be constructed by using only translations (not 
reflections, rotations, or inversions).

Figure 18A.3 A unit cell can be chosen in a variety of ways, as 
shown here. It is conventional to choose the cell that represents 
the full symmetry of the lattice. In this rectangular lattice, the 
rectangular unit cell would normally be adopted.

α
β

γ

a
b c

α
b

c γ

a
b

β

a
c

Figure 18A.4 The notation for the sides and angles of a 
unit cell. Note that the angle α lies in the plane (b,c) and 
perpendicular to the axis a.

C3

C3

C3

C3

Figure 18A.5 A unit cell belonging to the cubic system has 
four threefold axes, denoted C3, arranged tetrahedrally. The 
insert shows the threefold symmetry.
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Table 18A.1 lists the essential symmetries, the elements that 
must be present for the unit cell to belong to a particular crystal 
system.

There are only 14 distinct space lattices in three dimensions. 
These Bravais lattices are illustrated in Fig. 18A.8. It is conven-
tional to portray these lattices by primitive unit cells in some 
cases and by non-primitive unit cells in others. The following 
notation applies:

•	 A primitive unit cell (with lattice points only at the 
corners) is denoted P.

•	 A body-centred unit cell (I) also has a lattice point at its 
centre.

•	 A face-centred unit cell (F) has lattice points at its 
corners and also at the centres of its six faces.

•	 A side-centred unit cell (A, B, or C) has lattice  
points at its corners and at the centres of two 
opposite faces.

For simple structures, it is often convenient to choose an atom 
belonging to the structural motif, or the centre of a molecule, as 
the location of a lattice point or the vertex of a unit cell, but that 
is not a necessary requirement. Equivalent lattice points within 
the unit cell of a Bravais lattice have identical surroundings.

Brief illustration 18A.1 Bravais lattices

Consider a body-centred cubic unit cell of sides a and one 
of its corners with coordinates x = 0, y = 0, z = 0 (Fig. 18A.9). 

a

a a

Cubic P Cubic I Cubic F

aa

c

Tetragonal P Tetragonal I

Orthorhombic P Orthorhombic C Orthorhombic I Orthorhombic F

a b

c

Monoclinic P Monoclinic C

a
b

c
β

Triclinic

a
b

c α β
γ

a a

c
120° a

a a

120°

Hexagonal Trigonal R

Figure 18A.8 The 14 Bravais lattices. The points are lattice 
points, and are not necessarily occupied by atoms. P denotes 
a primitive unit cell (R is used for a trigonal lattice), I a body-
centred unit cell, F a face-centred unit cell, and C (or A or B) a cell 
with lattice points on two opposite faces. Trigonal lattices may 
belong to the rhombohedral or hexagonal systems (Table 18A.1).

C2

Figure 18A.6 A unit cell belonging to the monoclinic system 
has a twofold axis (denoted C2 and shown in more detail in the 
insert).

Figure 18A.7 A triclinic unit cell has no axes of rotational 
symmetry.

Table 18A.1 The seven crystal systems

System Essential symmetries

Triclinic None

Monoclinic One C2 axis

Orthorhombic Three perpendicular C2 axes

Rhombohedral One C3 axis

Tetragonal One C4 axis

Hexagonal One C6 axis

Cubic Four C3 axes in a tetrahedral arrangement
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740 18 Solids

18A.2 The identification of lattice 
planes

There are many different sets of lattice planes in a crystal 
(Fig. 18A.10), and we need to be able to identify them. Two-
dimensional lattices are easier to visualize than three-dimen-
sional lattices, so we shall introduce the concepts involved by 

referring to two dimensions initially, and then extend the con-
clusions by analogy to three dimensions.

(a) The Miller indices
Consider a two-dimensional rectangular lattice formed from a 
unit cell of sides a, b (as in Fig. 18A.10). Each plane in the illus-
tration (except the plane passing through the origin) can be 
distinguished by the distances at which it intersects the a and b 
axes. One way to label a plane would therefore be to quote the 
smallest intersection distances. For example, we could denote a 
representative plane of each type in Fig. 18A.10 as (a) (1a,1b), 
(b) ( , )1

2
1
3a b , (c) (−1a,1b), and (d) (∞a,1b), where ∞ is used to 

show that the planes intersect an axis at infinity. However, if we 
agree to quote distances along the axes as multiples of the cor-
responding lengths of the unit cell, then we can label the planes 
more simply as (1,1), ( , )1

2
1
3 , (−1,1), and (∞,1), respectively. If 

the lattice in Fig. 18A.10 is the top view of a three-dimensional 
orthorhombic lattice in which the unit cell has a length c in the 
z-direction, all four sets of planes intersect the z-axis at infin-
ity. Therefore, the full labels are (1,1,∞), ( , , )1

2
1
3 ∞ , (−1,1,∞), and 

(∞,1,∞).
The presence of fractions and infinity in the labels is 

inconvenient. They can be eliminated by taking the recipro-
cals of the labels. As we shall see, taking reciprocals turns out 
to have further advantages. The Miller indices, (hkl), are the 
reciprocals of intersection distances. To simplify the notation 
while providing a great deal of information, the following 
rules apply:

•	 Negative indices are written with a bar over the number, 
as in ( )110 .

•	 If taking the reciprocal results in a fraction, then the 
fraction can be cleared by multiplying through by an 
appropriate factor.

For example, a ( , , )1
3

1
2 ∞  plane is denoted (230) after multiplica-

tion of all three indices by 6.

•	 The notation (hkl) denotes an individual plane. 
To specify a set of parallel planes we use the 
notation {hkl}.

Thus, we speak of the (110) plane in a lattice, and the set of all 
{110} planes that lie parallel to the (110) plane.

A helpful feature to remember is that the smaller the abso-
lute value of h in {hkl}, the more nearly parallel the set of 
planes is to the a axis (the {h00} planes are an exception). 
The same is true of k and the b axis and l and the c axis. When 
h = 0, the planes intersect the a axis at infinity, so the {0kl} 
planes are parallel to the a axis. Similarly, the {h0l} planes 
are parallel to the b axis and the {hk0} planes are parallel to 
the c axis.

(a) (b)

(c) (d)

a

b

Figure 18A.10 Some of the planes that can be drawn 
through the points of a rectangular space lattice and their 
corresponding Miller indices (hkl): (a) (110), (b) (230), (c) ( )110 , 
and (d) (010).

Starting from this corner, the centre of the edge that runs 
along the y-axis has coordinates x y a z= = =0 01

2, , . It follows 
that the centres of each edge are equivalent to this point with 
coordinates x y a z= = =0 01

2, , .

Self-test 18A.1 What points within a face-centred cubic unit 
cell are equivalent to the point x a y z a= = =1

2
1
20, , ?

Answer: The centres of each face

x

y

z

a

a

a/2 a
0

Figure 18A.9 The body-centred cubic unit cell used in Brief 
illustration 18A.1. The arrows show some of the ways in which 
the initial (black) point is related by symmetry operations to 
the remaining points half-way along each edge.
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(b) The separation of planes
The Miller indices are very useful for expressing the separation 
of planes. It is shown in the following Justification that the sepa-
ration of the {hk0} planes in the square lattice in Fig. 18A.12 is 
given by

1

0
2

2 2

2 0 2 2 1 2d
h k

a
d

a
h khk

hk= + =
+

or
( ) /

 

By extension to three dimensions, the separation of the {hkl} 
planes of a cubic lattice is given by

1
2

2 2 2

2

2 2 2 1 2

d
h k l

a

d
a

h k l

hkl

hkl

= + +

=
+ +

or

( ) /
 

The corresponding expression for a general orthorhombic lat-
tice (one in which the axes are mutually perpendicular) is the 
generalization of this expression:

1
2

2

2

2

2

2

2d
h
a

k
b

l
chkl

= + +
 

Justification 18A.1 The separation of lattice planes

Consider the {hk0} planes of a square lattice built from a unit 
cell with sides of length a (Fig. 18A.12). We can write the fol-
lowing trigonometric expressions for the angle ϕ shown in the 
illustration:

sin
( / )

cos
( / )

φ φ= = = =d
a h

hd
a

d
a k

kd
a

hk hk0 0

Because the lattice planes intersect the horizontal axis h times 
and the vertical axis k times, the length of each hypotenuse is 
calculated by dividing a by h and a by k. Then, because sin2 ϕ +  
cos2 ϕ = 1, it follows that

hd
a

kd
a

hk hk0
2

0
2

1






+





=

which we can rearrange by dividing both sides by dhk0
2  into

1

0
2

2

2

2

2

2 2

2d
h
a

k
a

h k
ahk

= + = +

This expression is eqn 18A.1a.

 (18A.1a)
Square 
lattice

separation 
of planes

Example 18A.1 Using the Miller indices

Calculate the separation of (a) the {123} planes and (b) the 
{246} planes of an orthorhombic unit cell with a = 0.82 nm, 
b = 0.94 nm, and c = 0.75 nm.

Method For the first part, simply substitute the information 
into eqn 18A.1c. For the second part, instead of repeating 
the calculation, note that if all three Miller indices are mul-
tiplied by n, then their separation is reduced by that factor 
(Fig. 18A.13):

separation 
of planes  (18A.1b)Cubic lattice

 (18A.1c)Orthorhombic 
lattice

separation 
of planes

Brief illustration 18A.2 Miller indices

The {1,1,∞} planes in Fig. 18A.10a are the {110} planes in the 
Miller notation. Similarly, the { , , }1

3
1
2 ∞  planes are denoted 

{230}. Fig. 18A.10c shows the { }110  planes. The Miller indices 
for the four types of plane in Fig. 18A.10 are therefore {110}, 
{230}, { }110 , and {010}. Figure 18A.11 shows a three-dimen-
sional representation of a selection of planes, including one in 
a lattice with non-orthogonal axes.

Self-test 18A.2 Find the Miller indices of the planes that inter-
sect the crystallographic axes at the distances (3a, 2b, c) and 
(2a, ∞b, ∞c)

Answer: {236} and {100}

a

b

c

(110)

(100)

(111)

(111)

a

b

c

Figure 18A.11 Some representative planes in three 
dimensions and their Miller indices. Note that a 0 indicates 
that a plane is parallel to the corresponding axis, and that 
the indexing may also be used for unit cells with non-
orthogonal axes.

a

a

a/k

a/h

dhkl

(hkl)

φ

φ

Figure 18A.12 The dimensions of a unit cell and their relation 
to the plane passing through the lattice points.
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18A.3 X-ray crystallography

A characteristic property of waves is that when they are 
present in the same region of space they interfere with one 
another, giving a greater displacement where peaks or troughs 
coincide and a smaller displacement where peaks coincide 
with troughs (Fig. 18A.14 and Foundations C). According to 
classical electromagnetic theory, the intensity of electromag-
netic radiation is proportional to the square of the ampli-
tude of the waves. Therefore, the regions of constructive or 
destructive interference show up as regions of enhanced or 
diminished intensities. The phenomenon of diffraction is the 
interference caused by an object in the path of waves, and the 
pattern of varying intensity that results is called the diffrac-
tion pattern. Diffraction occurs when the dimensions of the 

diffracting object are comparable to the wavelength of the 
radiation.

(a) X-ray diffraction
Wilhelm Röntgen discovered X-rays in 1895. Seventeen years 
later, Max von Laue suggested that they might be diffracted 
when passed through a crystal, for by then he had realized that 
their wavelengths are comparable to the separation of lattice 
planes. This suggestion was confirmed almost immediately 
by Walter Friedrich and Paul Knipping and has grown since 
then into a technique of extraordinary power. The bulk of this 
section will deal with the determination of structures using 
X-ray diffraction. The mathematical procedures necessary for 
the determination of structure from X-ray diffraction data are 
enormously complex, but such is the degree of integration of 
computers into the experimental apparatus that the technique 
is almost fully automated, even for large molecules and com-
plex solids. The analysis is aided by molecular modelling tech-
niques, which can guide the investigation towards a plausible 
structure.

X-rays are electromagnetic radiation with wavelengths 
of the order of 10−10 m. They are typically generated by bom-
barding a metal with high-energy electrons (Fig. 18A.15). The 
electrons decelerate as they plunge into the metal and gener-
ate radiation with a continuous range of wavelengths called 
Bremsstrahlung (Bremse is German for deceleration, Strahlung 
for ray). Superimposed on the continuum are a few high-inten-
sity, sharp peaks (Fig. 18A.16). These peaks arise from colli-
sions of the incoming electrons with the electrons in the inner 
shells of the atoms. A collision expels an electron from an inner 
shell, and an electron of higher energy drops into the vacancy, 
emitting the excess energy as an X-ray photon (Fig. 18A.17). If 
the electron falls into a K shell (a shell with n = 1), the X-rays are 
classified as K-radiation, and similarly for transitions into the 
L (n = 2) and M (n = 3) shells. Strong, distinct lines are labelled 
Kα, Kβ, and so on. Increasingly, X-ray diffraction makes use of 

(a) (b)

Figure 18A.14 When two waves are in the same region of 
space they interfere. Depending on their relative phase, 
they may interfere (a) constructively, to give an enhanced 
amplitude, or (b) destructively, to give a smaller amplitude. 
The component waves are shown in green and purple and the 
resultant in black.
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Answer Substituting the indices into eqn 18A.1c gives

1 1
0 82

2
0 94

3
0 75

22
123
2

2

2

2

2

2

2
2

d
= + + = −

( . ) ( . ) ( . )nm nm nm
nm

Hence, d123 = 0.21 nm. It then follows immediately that d246 is 
one-half this value, or 0.11 nm.

A note on good practice It is always sensible to look 
for analytical relations between quantities rather than 
to evaluate expressions numerically each time, for that 
emphasizes the relations between quantities (and avoids 
unnecessary work).

Self-test 18A.3 Calculate the separation of (a) the {133} planes 
and (b) the {399} planes in the same lattice.

Answer: 0.19 nm, 0.063 nm

{220}{110}

Figure 18A.13 The separation of the {220} planes is half that 
of the {110} planes. In general, the separation of the planes 
{nh,nk,nl} is n times smaller than the separation of the {hkl} 
planes.
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the radiation available from synchrotron sources (Topic 12A), 
for its high intensity greatly enhances the sensitivity of the 
technique.

Von Laue’s original method consisted of passing a broad-
band beam of X-rays into a single crystal, and recording the 
diffraction pattern photographically. The idea behind the 
approach was that a crystal might not be suitably orientated to 
act as a diffraction grating for a single wavelength but, whatever 
its orientation, diffraction would be achieved for at least one of 
the wavelengths if a range of wavelengths were used. There is 
currently a resurgence of interest in this approach because syn-
chrotron radiation spans a range of X-ray wavelengths.

An alternative technique was developed by Peter Debye and 
Paul Scherrer and independently by Albert Hull. They used 
monochromatic radiation and a powdered sample. When the 
sample is a powder, at least some of the crystallites will be ori-
entated so as to give rise to diffraction. In modern powder dif-
fractometers the intensities of the reflections are monitored 
electronically as the detector is rotated around the sample in 
a plane containing the incident ray (Fig. 18A.18). Powder dif-
fraction techniques are used to identify the composition of a 
sample of a solid substance by comparison of the positions of 
the diffraction lines and their intensities with diffraction pat-
terns stored in a large data bank. Powder diffraction data are 
also used to help determine phase diagrams, for different crys-
talline phases result in different diffraction patterns, and to 
determine the relative amounts of each phase present in a mix-
ture. The technique is also used for the initial determination of 
the dimensions and symmetries of unit cells.

The method developed by the Braggs (William and his son 
Lawrence, who later jointly won the Nobel Prize) is the founda-
tion of almost all modern work in X-ray crystallography. They 
used a single crystal and a monochromatic beam of X-rays, 
and rotated the crystal until a reflection was detected. There 
are many different sets of planes in a crystal, so there are many 
angles at which a reflection occurs. The complete set of data 
consists of the list of angles at which reflections are observed 
and their intensities.
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(a) NaCl
(b) KCl

Figure 18A.18 X-ray powder diffraction patterns of (a) NaCl,  
(b) KCl. The smaller number of lines in (b) is a consequence of 
the similarity of the K+ and Cl− scattering factors, as discussed 
later in the Topic.

Cooling water

X-rays

X-rays
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Beryllium
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Figure 18A.15 X-rays are generated by directing an electron 
beam on to a cooled metal target. Beryllium is transparent to 
X-rays (on account of the small number of electrons in each 
atom) and is used for the windows.

Wavelength, λ

Bremsstrahlung

In
te

n
si

ty

Kα

Kβ

Figure 18A.16 The X-ray emission from a metal consists of a 
broad, featureless Bremsstrahlung background, with sharp 
transitions superimposed on it. The label K indicates that the 
radiation comes from a transition in which an electron falls into 
a vacancy in the K shell of the atom.
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Figure 18A.17 The processes that contribute to the generation 
of X-rays. An incoming electron collides with an electron (in the 
K shell), and ejects it. Another electron (from the L shell in this 
illustration) falls into the vacancy and emits its excess energy as 
an X-ray photon.
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Single-crystal diffraction patterns are measured by using a 
four-circle diffractometer (Fig. 18A.19). An integrated com-
puter identifies the angular settings of the diffractometer’s four 
circles that are needed to observe any particular intensity peak 
in the diffraction pattern. The diffraction intensity is measured 
at each setting and background intensities are assessed by mak-
ing measurements at slightly different settings. Computing 
techniques are now available that lead not only to automatic 
indexing but also to the automated determination of the shape, 
symmetry, and size of the unit cell. Moreover, several tech-
niques are now available for sampling large amounts of data, 
including area detectors and image plates, which sample whole 
regions of diffraction patterns simultaneously.

(b) Bragg’s law
An early approach to the analysis of diffraction patterns pro-
duced by crystals was to regard a lattice plane as a semi-trans-
parent mirror and to model a crystal as a stack of reflecting 
lattice planes of separation d (Fig. 18A.20). The model makes 
it easy to calculate the angle the crystal must make to the 

incoming beam of X-rays for constructive interference to 
occur. It has also given rise to the name reflection to denote an 
intense beam arising from constructive interference.

Consider the reflection of two parallel rays of the same 
wavelength by two adjacent planes of a lattice, as shown in Fig. 
18A.20. One ray strikes point D on the upper plane but the 
other ray must travel an additional distance AB before striking 
the plane immediately below. The reflected rays also differ in 
path length by an additional distance BC. The total path length 
difference of the two rays is then

AB BC 2 sin+ = d θ  

where 2θ is the glancing angle (2θ rather than θ, because the 
beam is deflected through 2θ from its initial direction). For 
many glancing angles the path-length difference is not an inte-
ger number of wavelengths, and the waves interfere largely 
destructively. However, when the path-length difference is an 
integer number of wavelengths (AB + BC = nλ), the reflected 
waves are in phase and interfere constructively. It follows that a 
reflection should be observed when the glancing angle satisfies 
Bragg’s law:

n dλ θ= 2 sin   bragg’s law  (18A.2a)

Reflections with n = 2, 3, … are called second order, third order, 
and so on; they correspond to path-length differences of 2, 3, … 
wavelengths. In modern work it is normal to absorb the n into 
d, to write Bragg’s law as

λ θ= 2 sind  Alternative form  bragg’s law  (18A.2b)

and to regard the nth-order reflection as arising from the 
{nh,nk,nl} planes (see Example 18A.1).

The primary use of Bragg’s law is in the determination of the 
spacing between the layers in the lattice, for once the angle θ 
corresponding to a reflection has been determined, d may read-
ily be calculated.

Brief illustration 18A.3 Bragg’s law 1

A first-order reflection from the {111} planes of a cubic crystal 
was observed at a glancing angle of 11.2° when X-rays of wave-
length 154 pm were used. According to eqn 18A.2b, the {111} 
planes responsible for the diffraction have separation d111 =  
λ/(2 sin θ). The separation of the {111} planes of a cubic lattice 
of side a is given by eqn 18A.1 as d111 = a/31/2. Therefore,

a = = × =3
2

3 154
2 11 2

687
1 2 1 2/ /

sin
( )

sin .
λ
θ

pm
pm

Self-test 18A.4 Calculate the angle θ at which the same crystal 
will give a reflection from the {123} planes.

Answer: 24.8°

φ

χ

Ω

2θ

Sample

X-ray
beam

To
detector

Figure 18A.19 A four-circle diffractometer. The settings of the 
orientations (ϕ, χ, θ, and Ω) of the components are controlled 
by computer; each (hkl) reflection is monitored in turn, and 
their intensities are recorded.

A

B

C
d

θ θ

θ

θ

D

Figure 18A.20 The conventional derivation of Bragg’s law 
treats each lattice plane as a plane reflecting the incident 
radiation. The path lengths differ by AB + BC, which depends 
on the angle θ. Constructive interference (a ‘reflection’) occurs 
when AB + BC is equal to an integer number of wavelengths.
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(c) Scattering factors
To prepare the way to discussing methods of structural analy-
sis we need to note that the scattering of X-rays is caused by 
the oscillations an incoming electromagnetic wave generates 
in the electrons of atoms. Heavy, electron-rich atoms give rise 
to stronger scattering than light atoms. This dependence on 
the number of electrons is expressed in terms of the scatter-
ing factor, f, of the element. If the scattering factor is large, 
then the atoms scatter X-rays strongly. An analysis that we 
do not repeat here concludes that the scattering factor of an 
atom is related to the electron density distribution in a spheri-
cally symmetrical atom, ρ(r), and the angle through which the 
beam is scattered, 2θ, by

f r
kr

kr
r r k= =

∞

∫4
42

0
π πρ λ θ( )

sin
sind

 
 scattering factor  (18A.3)

The value of f is greatest in the forward direction (θ  = 0, Fig. 
18A.21). The detailed analysis of the intensities of reflections must 
take this dependence on direction into account. We show in the 
following Justification that, in the forward direction f is equal to 
the total number of electrons in the atom. For example, the scat-
tering factors of Na+, K+, and Cl− are 8, 18, and 18, respectively.

(d) The electron density
If a unit cell contains several atoms with scattering factors fj 
and coordinates (xja, yjb, zjc), then we show in the following 
Justification that the overall amplitude of a wave diffracted by 
the {hkl} planes is given by

F f

j hx ky lz

hkl

j

j
j

hkl j j j

hkl=

= + +

∑ e

where

iφ

φ

( )

( ) )(2π  

 structure factor  (18A.4)

The sum is over all the atoms in the unit cell. The quantity Fhkl is 
called the structure factor.

Justification 18A.2 The forward scattering factor

As θ → 0, so k ∝ sin θ → 0. Because sin 3x x x= − +1
6

…,

lim
sin

lim
( )

lim ( )( )
k k k

kr
kr

kr kr
kr

kr
→ → →

=
− +

= − +… =
0 0

1
6

3

0

1
6

21 1


The factor (sin kr)/kr is therefore equal to 1 for forward scatter-
ing. It follows that in the forward direction

f r r r=
∞

∫4 2

0
π ρ( ) d

The integral over the electron density ρ (the number of elec-
trons in an infinitesimal region divided by the volume of the 
region) multiplied by the volume element 4πr2dr, the volume 
of a spherical shell of radius r and thickness dr, is the total 
number of electrons, Ne, in the atom. Hence, in the forward 
direction, f = Ne.

Brief illustration 18A.4 Bragg’s law 2

Some types of unit cell give characteristic and easily recogniz-
able patterns of lines. In a cubic lattice of unit cell dimension 
a the spacing is given by eqn 18A.2, so the angles at which the 
{hkl} planes give first-order reflections are given by

sin ( ) /θ λ= + +h k l
a

2 2 2 1 2

2

The reflections are then predicted by substituting the values of 
h, k, and l:

Notice that 7 (and 15, …) is missing because the sum of the 
squares of three integers cannot equal 7 (or 15, …). Such 
absences from the pattern are characteristic of the cubic P 
lattice.

Self-test 18A.5 Normally, experimental procedures measure 
the glancing angle 2θ rather than θ itself. A diffraction exami-
nation of the element polonium gave lines at the following 
values of 2θ (in degrees) when 71.0 pm X-rays were used: 12.1, 
17.1, 21.0, 24.3, 27.2, 29.9, 34.7, 36.9, 38.9, 40.9, 42.8. Identify 
the unit cell and determine its dimensions.

Answer: cubic P; a = 337 pm

{hkl} {100} {110} {111} {200} {210} {211} {220} {300} {221} {310}…

h2 + k2 +  
l2

1 2 3 4 5 6 8 9 9 10…
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(sin θ)/λ
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Cl–

Ca2+

Fe2+

Br–

Figure 18A.21 The variation of the scattering factor of atoms 
and ions with atomic number and angle. The scattering 
factor in the forward direction (at θ = 0, and hence at  
(sin θ)/λ = 0) is equal to the number of electrons present in 
the species.
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Justification 18A.3 The structure factor

We begin by showing that, if in the unit cell there is an A 
atom at the origin and a B atom at the coordinates (xa,yb,zc), 
where x, y, and z lie in the range 0 to 1, then the phase dif-
ference between the hkl ref lections of the A and B atoms is 
ϕhkl = 2π(hx + ky + lz).

Consider the crystal shown schematically in Fig. 18A.22. 
The ref lection corresponds to two waves from adjacent A 
planes, the phase difference of the waves being 2π. If there 
is a B atom at a fraction x of the distance between the two 
A planes, then it gives rise to a wave with a phase difference 
2πx relative to an A reflection. To see this conclusion, note 
that, if x = 0, there is no phase difference; if x = 1

2  the phase 
difference is π; if x = 1, the B atom lies where the upper A 
atom is and the phase difference is 2π. Now consider a (200) 
reflection. There is now a 2 × 2π difference between the waves 
from the two A layers, and if B were to lie at x = 0.5 it would 
give rise to a wave that differed in phase by 2π from the wave 
from the lower A layer. Thus, for a general fractional posi-
tion x, the phase difference for a (200) reflection is 2 × 2πx. 
For a general (h00) reflection, the phase difference is there-
fore h × 2πx. For three dimensions, this result generalizes to 
ϕhkl = 2π(hx + ky + lz).

If the amplitude of the waves scattered from A is fA at the 
detector, that of the waves scattered from B is f hkl

B
ie φ . The total 

amplitude at the detector is therefore

F f fhkl
hkl= +A B

ie φ

This expression generalizes to eqn 18A.4 when there are sev-
eral atoms present each with scattering factor fi.

Phase
difference = 2πx  

Phase
difference = 2 × 2πx  

Phase
difference = 2π 

Phase
difference = 2 × 2π 

xa xa
a a

A

B

A

A

B

A

(a) (b)

Figure 18A.22 Diffraction from a crystal containing two 
kinds of atoms. (a) For a (100) reflection from the A planes, 
there is a phase difference of 2π between waves reflected 
by neighbouring planes. (b) For a (200) reflection, the phase 
difference is 4π. The reflection from a B plane at a fractional 
distance xa from an A plane has a phase that is x times these 
phase differences.

Example 18A.2 Calculating a structure factor

Calculate the structure factors for the unit cell in Fig. 18A.23.

Method The structure factor is defined by eqn 18A.4. To use 
this equation, consider the ions at the locations specified in 
Fig. 18A.23. Write f + for the Na+ scattering factor and f − for 
the Cl− scattering factor. Note that ions in the body of the cell 
contribute to the scattering with a strength f. However, ions on 
faces are shared between two cells (use 1

2 f ), those on edges by 
four cells (use 1

4 f ), and those at corners by eight cells (use 1
8 f ). 

Two useful relations are (Mathematical background 3)

e 1 cos e ei i iπ = − = + −φ φ φ1
2 ( )

Answer From eqn 18A.4, and summing over the coordinates 
of all 27 atoms in the illustration:

F f

f

hkl
l h k l

h k

= + + +

+

+ + +

− + +

( )

(

1
8

1
8

1
2

1
2

1
2

1
2

1
2

1
2

e e

e

2 i 2 i( )

2 i(

π π

π

…
ll h h l) 2 i( ) 2 i( )e e+ + + +1

4
1
4

1
2

1
2π π… )

To simplify this 27-term expression, we use e2πih = e2πik =  
e2πil = 1 because h, k, and l are all integers:

F f h k h l k l

f

hkl

h k l

= + + + + + +
+ − +

+

− + +

{ }

{( )

1 cos( ) cos( ) cos( )

 1 cos

π π π
kk l hπ π π+ +cos cos }

Then, because cos hπ = (−1)h,

F f

f

hkl
h k h l l k

h k l h

= + − + − + −
+ − + − + −

+ + + +

− + +

{ ( ) ( ) ( ) }

{( ) ( ) ( )

1 1 1 1

1 1 1 kk l+ −( ) }1

Now note that:

•	 if h, k, and l are all even,  
Fhkl = f +{1 + 1 + 1 + 1} + f −{1+ 1 + 1 + 1} = 4(f + + f −)

•	 if h, k, and l are all odd, Fhkl = 4(f + − f −)
•	 if one index is odd and two are even, or vice versa, 

Fhkl = 0

Na+

Cl–

(1,0,1)

(0,0,0)
(½,0,0)

(1,1,1)

(½,½,0)
(1,1,0)(1,0,0)

Figure 18A.23 The location of the atoms for the structure 
factor calculation in Example 18A.2. The red spheres are Na+, 
the green spheres are Cl−.
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Because the intensity is proportional to the square modu-
lus of the amplitude of the wave, the intensity, Ihkl, at the 
detector is

I F F f f f fhkl hkl hkl
hkl hkl∝ = + +−* ( )( )A B

i
A B

ie eφ φ
 

This expression expands to

I f f f f f f f fhkl hkl
hkl hkl∝ + + + = + +−

A B A B
i i

A B A Be e2 2 2 2 2( ) cosφ φ φ  

The cosine term either adds to or subtracts from f fA B
2 2+  

depending on the value of ϕhkl, which in turn depends on h, k, 
and l and x, y, and z. Hence, there is a variation in the inten-
sities of the lines with different hkl. The A and B reflections 
interfere destructively when the phase difference is π, and the 
total intensity is zero if the atoms have the same scattering 
power. For example, if the unit cells are cubic I with a B atom 
at x y z= = = 1

2 , then the A,B phase difference is (h + k + l)π.  
Therefore, all reflections for odd values of h + k + l vanish (as 
we saw in Example 18A.2) because the waves are displaced in 
phase by π. Hence the diffraction pattern for a cubic I lattice 
can be constructed from that for the cubic P lattice (a cubic lat-
tice without points at the centre of its unit cells) by striking out 
all reflections with odd values of h + k + l. Recognition of these 
systematic absences in a powder spectrum immediately indi-
cates a cubic I lattice (Fig. 18A.24).

The intensity of the (hkl) reflection is proportional to |Fhkl|2, 
so in principle we can determine the structure factors experi-
mentally by taking the square root of the corresponding 
intensities (but see next section). Then, once we know all the 
structure factors Fhkl, we can calculate the electron density dis-
tribution, ρ(r), in the unit cell by using the expression

ρ( )r = ∑ − + +1 2

V
F

hkl

hkl
hx ky lze i( )π

 
 Fourier synthesis  (18A.5)

where V is the volume of the unit cell. Equation 18A.5 is called 
a Fourier synthesis of the electron density. Fourier transforms 
occur throughout chemistry in a variety of guises, and are 
described in more detail in Mathematical background 7 follow-
ing this chapter.

The hkl all-odd ref lections are less intense than the hkl all-
even. For f + = f −, which is the case for identical atoms in a cubic 
P arrangement, the hkl all-odd have zero intensity, corres-
ponding to the absences that are characteristic of cubic P unit 
cells (see Brief illustration 18A.4).

Self-test 18A.6 Which ref lections cannot be observed for a 
cubic I lattice?

Answer: for h + k + l odd, Fhkl = 0
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Figure 18A.24 The powder diffraction patterns and the 
systematic absences of three versions of a cubic cell as a 
function of angle: cubic F (fcc; h, k, l all even or all odd are 
present), cubic I (bcc; h + k + l = odd are absent), cubic P. 
Comparison of the observed pattern with patterns like these 
enables the unit cell to be identified. The locations of the lines 
give the cell dimensions.

Example 18A.3 Calculating an electron density  
by Fourier synthesis

Consider the {h00} planes of a crystal extending indefinitely in 
the x-direction. In an X-ray analysis the structure factors were 
found as follows:

(and F−h = Fh). Construct a plot of the electron density pro-
jected on to the x-axis of the unit cell.

Method Because F−h = Fh, it follows from eqn 18A.5 that

V x F F F F

F

h

h
hx

h

h
hx

h
hx

h

ρ( ) ( )= = + +

= +

=−∞

∞
−

=

∞
−

−

=

∑ ∑e e ei i i2
0

1

2 2

0

π π π

11

2 2

0 2

∞
−

+ =

∑ +

+=
−

F

F

h
hx hx( )

)

e ei iπ π

π π π1
2

2 i 2 i(e cos2ehx hx hx

hh

hF hx
=

∞

∑
1

2cos π

and we evaluate the sum (truncated at h = 15) for points 
0 ≤ x ≤ 1 by using mathematical software.

Answer The results are plotted in Fig. 18A.25 (green line). The 
positions of three atoms can be discerned very readily. The 
more terms there are included, the more accurate the density 

h: 0 1 2 3 4 5 6 7 8 9
Fh 16 −10 2 −1 7 −10 8 −3 2 −3

h: 10 11 12 13 14 15
Fh 6 −5 3 −2 2 −3
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(e) Determination of the structure
A problem with the procedure outlined above is that the 
observed intensity Ihkl is proportional to the square modulus 
|Fhkl|2, so we do not know whether to use +|Fhkl| or −|Fhkl| in the 
sum in eqn 18A.5. In fact, the difficulty is more severe for non-
centrosymmetric unit cells, because if we write Fhkl as the com-
plex number |Fhkl|eiα, where α is the phase of Fhkl and |Fhkl| is 
its magnitude, then the intensity lets us determine |Fhkl| but tells 
us nothing of its phase, which may lie anywhere from 0 to 2π. 
This ambiguity is called the phase problem; its consequences 
are illustrated by comparing the two plots in Fig. 18A.25. Some 
way must be found to assign phases to the structure factors, for 
otherwise the sum for ρ cannot be evaluated and the method 
would be useless.

The phase problem can be overcome to some extent by a 
variety of methods. One procedure that is widely used for inor-
ganic materials with a reasonably small number of atoms in 
a unit cell, and for organic molecules with a small number of 
heavy atoms, is the Patterson synthesis. Instead of the structure 
factors Fhkl, the values of |Fhkl|2, which can be obtained without 
ambiguity from the intensities, are used in an expression that 
resembles eqn 18A.5:

P
V

F
hkl

hkl
hx ky lz( )r = ∑ − + +1 2 2e i( )π

 
 Patterson synthesis  (18A.6)

where the r values correspond to the vector separations 
between the atoms in the unit cell; that is, the distances 
and directions between atoms. Whereas the electron den-
sity function ρ(r) is the probability density of the positions 
of atoms, the function P(r) is a map of the probability den-
sity of the separations between atoms: a peak in P at a vector 
separation r arises from pairs of atoms that are separated by 
the same separation r. Thus, if atom A is at the coordinates 
(xA,yA,zA) and atom B is at (xB,yB,zB), then there will be a peak 
at (xA − xB, yA− yB, zA − zB) in the Patterson map. There will 
also be a peak at the negative of these coordinates, because 
there is a separation vector from B to A as well as a separa-
tion vector from A to B. The height of the peak in the map is 
proportional to the product of the atomic numbers of the two 
atoms, ZAZB.

plot. Terms corresponding to high values of h (short wave-
length cosine terms in the sum) account for the finer details 
of the electron density; low values of h account for the broad 
features.

Self-test 18A.7 Use mathematical software to experiment with 
different structure factors (including changing signs as well as 
amplitudes). For example, use the same values of Fh as above, 
but with positive signs for h ≥ 6.

Answer: See Fig. 18A.25 (purple line).
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Figure 18A.25 The plot of the electron density calculated in 
Example 18A.3 (green) and Selftest 18A.7 (purple).

Brief illustration 18A.5 The Patterson synthesis

If the unit cell has the structure shown in Fig. 18A.26a, the 
Patterson synthesis would be the map shown in Fig. 18A.26b, 
where the location of each spot relative to the origin gives the 
separation and relative orientation of each pair of atoms in the 
original structure.

Self-test 18A.8 Consider the data in Example 18A.3. Show 
that VP x F F hx

h
h( ) cos= + ∑

=

∞

0
2

1

2
2 2π  and plot the Patterson 

synthesis.

R1

R1

R2

R2

R3

R3

(a) (b)

Figure 18A.26 The Patterson synthesis corresponding 
to the pattern in (a) is the pattern in (b). The distance and 
orientation of each spot from the origin gives the orientation 
and separation of one atom–atom separation in (a). Some of 
the typical distances and their contribution to (b) are shown 
as R1, etc.
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Heavy atoms dominate the scattering because their scatter-
ing factors are large, of the order of their atomic numbers, and 
their locations may be deduced quite readily. The sign of Fhkl 
can now be calculated from the locations of the heavy atoms 
in the unit cell, and to a high probability the phase calculated 
for them will be the same as the phase for the entire unit cell. 
To see why this is so, we have to note that a structure factor of a 
centrosymmetric cell has the form

F f f f= ± + ± + ± +( ) ( ) ( )heavy light light
…

 (18A.7)

where fheavy is the scattering factor of the heavy atom and flight 
the scattering factors of the light atoms. The flight are all much 
smaller than fheavy , and their phases are more or less random if 
the atoms are distributed throughout the unit cell. Therefore, 
the net effect of the flight is to change F only slightly from fheavy , 
and we can be reasonably confident that F will have the same 
sign as that calculated from the location of the heavy atom. This 
phase can then be combined with the observed |F| (from the 
reflection intensity) to perform a Fourier synthesis of the full 
electron density in the unit cell, and hence to locate the light 
atoms as well as the heavy atoms.

Modern structural analyses make extensive use of direct 
methods. Direct methods are based on the possibility of treating 
the atoms in a unit cell as being virtually randomly distributed 
(from the radiation’s point of view), and then to use statistical 
techniques to compute the probabilities that the phases have a 
particular value. It is possible to deduce relations between some 
structure factors and sums (and sums of squares) of others, 
which have the effect of constraining the phases to particular 
values (with high probability, so long as the structure factors are 
large). For example, the Sayre probability relation has the form

sign of is probably equal to(sign of )

sign of

F Fh h k k l l hkl+ ′ + ′ + ′

×
, ,

( FFh k l′ ′ ′)  
  sayre probability relation  (18A.8)

For example, if F122 and F232 are both large and negative, then 
it is highly likely that F354, provided it is large, will be positive.

In the final stages of the determination of a crystal structure, 
the parameters describing the structure (atom positions, for 
instance) are adjusted systematically to give the best fit between 
the observed intensities and those calculated from the model of 
the structure deduced from the diffraction pattern. This pro-
cess is called structure refinement. Not only does the proce-
dure give accurate positions for all the atoms in the unit cell, 
but it also gives an estimate of the errors in those positions and 
in the bond lengths and angles derived from them. The proce-
dure also provides information on the vibrational amplitudes 
of the atoms.

18A.4 Neutron and electron 
diffraction

According to the de Broglie relation (Topic 7A, λ = h/p), parti-
cles have wavelengths and may therefore undergo diffraction. 
Neutrons generated in a nuclear reactor and then slowed to 
thermal velocities have wavelengths similar to those of X-rays 
and may also be used for diffraction studies. For instance, a 
neutron generated in a reactor and slowed to thermal veloci-
ties by repeated collisions with a moderator (such as graphite) 
until it is travelling at about 4 km s−1 has a wavelength of about 
100 pm. In practice, a range of wavelengths occurs in a neutron 
beam, but a monochromatic beam can be selected by diffrac-
tion from a crystal, such as a single crystal of germanium.

Example 18A.4 Calculating the typical wavelength  
of thermal neutrons

Calculate the typical wavelength of neutrons after reach-
ing thermal equilibrium with their surroundings at 373 K. 
For simplicity, assume that the particles are travelling in one 
dimension.

Method We need to relate the wavelength to the tempera-
ture. There are two linking steps. First, the de Broglie relation 
expresses the wavelength in terms of the linear momentum. 
Then the linear momentum can be expressed in terms of the 
kinetic energy, the mean value of which is given in terms of the 
temperature by the equipartition theorem (Foundations B).

Answer From the equipartition principle, we know that the 
mean translational kinetic energy of a neutron at a tempera-
ture T travelling in the x-direction is E kTk = 1

2 . The kinetic 
energy is also equal to p2/2m, where p is the momentum of the 
neutron and m is its mass. Hence, p = (mkT)1/2. It follows from 
the de Broglie relation λ = h/p that the neutron’s wavelength is

λ = h
mkT( ) /1 2

V
P

(x
)

0

0 0.5 1
x

Figure 18A.27 Patterson synthesis of the data from  
Example 18A.3.

Answer: See Fig. 18A.27.
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750 18 Solids

Neutron diffraction differs from X-ray diffraction in two 
main respects. First, the scattering of neutrons is a nuclear 
phenomenon. Neutrons pass through the extranuclear elec-
trons of atoms and interact with the nuclei through the ‘strong 
force’ that is responsible for binding nucleons together. As 
a result, the intensity with which neutrons are scattered is 
independent of the number of electrons and neighbouring 
elements in the periodic table might scatter neutrons with 
markedly different intensities. Neutron diffraction can be used 
to distinguish atoms of elements such as Ni and Co that are 
present in the same compound and to study order–disorder 
phase transitions in FeCo. A second difference is that neutrons 
possess a magnetic moment due to their spin. This magnetic 
moment can couple to the magnetic fields of atoms or ions in 
a crystal (if the ions have unpaired electrons) and modify the 
diffraction pattern. One consequence is that neutron diffrac-
tion is well suited to the investigation of magnetically ordered 
lattices in which neighbouring atoms may be of the same ele-
ment but have different orientations of their electronic spin 
(Fig. 18A.28).

Electrons accelerated through a potential difference of 40 kV 
have wavelengths of about 6 pm, and so are also suitable for dif-
fraction studies of molecules. Consider the scattering of elec-
trons (or neutrons) from a pair of nuclei separated by a distance 
Rij and orientated at a definite angle θ to an incident beam of 
electrons (or neutrons). When the molecule consists of a num-
ber of atoms, the scattering intensity can be calculated by sum-
ming over the contribution from all pairs. The total intensity 
I(θ) is given by the Wierl equation:

I f f
sR

sR
s

i j

i j
ij

ij

( )
sin

sin
,

θ λ θ= =∑ 4 1
2

π

 
 wierl equation  (18A.9)

where λ is the wavelength of the electrons in the beam, and f is 
the electron scattering factor, a measure of the electron scatter-
ing power of the atom. The main application of electron diffrac-
tion techniques is to the study of surfaces (Topic 22A), and you 
are invited to explore the Wierl equation in Problem 18A.17.

Checklist of concepts

☐ 1. A space lattice is the pattern formed by points repre-
senting the locations of structural motifs (atoms, mol-
ecules, or groups of atoms, molecules, or ions).

☐ 2. The Bravais lattices are the 14 distinct space lattices in 
three dimensions (Fig. 18A.8).

☐ 3. A unit cell is an imaginary parallelepiped that contains 
one unit of a translationally repeating pattern.

☐ 4. Unit cells are classified into seven crystal systems 
according to their rotational symmetries.

☐ 5. A crystal plane is specified by a set of Miller indices 
(hkl); sets of planes are denoted {hkl}.

☐ 6. The scattering factor is a measure of the ability of an 
atom to diffract radiation.

☐ 7. The structure factor is the overall amplitude of a wave 
diffracted by the {hkl} planes.

☐ 8. Fourier synthesis is the construction of the electron 
density distribution from structure factors.

☐ 9. A Patterson synthesis is a map of interatomic  
vectors obtained by Fourier analysis of diffraction 
intensities.

☐ 10. Structure refinement is the adjustment of structural 
parameters to give the best fit between the observed 
intensities and those calculated from the model of the 
structure deduced from the diffraction pattern.

Therefore, at 373 K,

λ = ×
× × × ×
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− − −
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Self-test 18A.9 Calculate the temperature needed for the aver-
age wavelength of the neutrons to be 100 pm.

Answer: 1.90 kK

Figure 18A.28 If the spins of atoms at lattice points are 
orderly, as in this material, where the spins of one set of atoms 
are aligned antiparallel to those of the other set, neutron 
diffraction detects two interpenetrating simple cubic lattices 
on account of the magnetic interaction of the neutron with the 
atoms, but X-ray diffraction would see only a single bcc lattice.
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Checklist of equations

Property Equation Comment Equation number

Separation of planes in a  
rectangular lattice

1 2 2 2 2 2 2/ / / /d h a k b l chkl
2 = + + h, k, and l are Miller indices 18A.1c

Bragg’s law λ = 2d sin θ d is the lattice spacing, 2θ the glancing angle 18A.2b

Scattering factor f r kr kr r r k= =
∞

∫4 42

0
π π[{ ( )sin } ] , ( )sinρ λ θ/ d / Spherically symmetrical atom 18A.3

Structure factor F f j hx ky lzhkl

j

j
j

hkl j j j
hkl= = + +∑ eiφ φ( ), ( )( ) 2π Definition 18A.4

Fourier synthesis ρ( ) ( / )r = ∑ − + +1 2V F

hkl

hkl
hx ky lze i( )π V is the volume of the unit cell 18A.5

Patterson synthesis P V F

hkl

hkl
hx ky lz( ) ( / )r = ∑ − + +1

2 2e i( )π 18A.6

Wierl equation I f f sR sR s

i j

i j ij ij( ) sin ( / )sin( / ),

,

θ λ θ= =∑ 4 1
2

π 18A.9
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18B bonding in solids

The bonding within a solid may be of various kinds. Simplest of 
all (in concept, at least) are metals, where electrons are delocal-
ized over arrays of identical cations and bind the whole together 
into a rigid but ductile and malleable structure. Ionic solids 
consist of cations and anions packed together by electrostatic 

interactions in a crystal (Topic 18A). In covalent solids, cova-
lent bonds in a definite spatial orientation link the atoms in a 
network extending through a crystal. Molecular solids are 
bonded together by van der Waals interactions (Topic 16B).

18B.1 Metallic solids

The crystalline forms of metallic elements can be discussed 
in terms of a model in which their atoms are represented as 
identical hard spheres. Most metallic elements crystallize in 
one of three simple forms, two of which can be explained in 
terms of the hard spheres packing together in the closest pos-
sible arrangement. In this section we consider not only the geo-
metrical arrangement of the atoms in the crystal, but also the 
distribution of electrons over the atoms.

(a) Close packing
Figure 18B.1 shows a close-packed layer of identical spheres, 
one with maximum utilization of space. A close-packed three-
dimensional structure is obtained by stacking such close-
packed layers on top of one another. However, this stacking can 
be done in different ways, which result in close-packed poly-
types, or structures that are identical in two dimensions (the 
close-packed layers) but differ in the third dimension.

In all polytypes, the spheres of second close-packed layer 
lie in the depressions of the first layer (Fig. 18B.2). The third 
layer may be added in either of two ways. In one, the spheres 
are placed directly above the first layer to give an ABA pattern 
of layers (Fig. 18B.3a). Alternatively, the spheres may be placed 
over the gaps in the first layer, so giving an ABC pattern (Fig. 

Figure 18B.1 The first layer of close-packed spheres used to 
build a three-dimensional close-packed structure.

Contents
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brief illustration 18b.4: diamond and graphite 760

Checklist of concepts 761
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➤➤ Why do you need to know this material?
To prepare for the study of the properties of materials and 
the structures they adopt, you need to know how atoms 
and molecules interact to form metallic, covalent, ionic, 
and molecular solids.

➤➤ What is the key idea?
Four characteristic types of bonding result in metals, ionic 
solids, covalent solids, and molecular solids.

➤➤ What do you need to know already?
You need to be familiar with molecular interactions (Topic 
16B) and the general features of crystal structure (Topic 
18A). For the discussion of metallic bonding you should be 
aware of the principles of Hückel molecular orbital theory 
(Topic 10E). The discussion of ionic bonding makes use 
of the concept of enthalpy and the fact that it is a state 
function (Topic 2C).
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18B.3b). Two polytypes are formed if the two stacking patterns 
are repeated in the vertical direction:

•	 Hexagonally close-packed (hcp): the ABA pattern is 
repeated, to give the sequence of layers ABABAB....

•	 Cubic close-packed (ccp): the ABC pattern is repeated, to 
give the sequence ABCABC....

The origins of these names can be seen by referring to Fig. 
18B.4. The ccp structure gives rise to a face-centred unit cell, 
so may also be denoted cubic F (or fcc, for face-centred cubic). 
It is also possible to have random sequences of layers; however, 
the hcp and ccp polytypes are the most important. Table 18B.1 
lists some elements possessing these structures.

The compactness of close-packed structures is indicated by 
their coordination number, the number of spheres immedi-
ately surrounding any selected sphere, which is 12 in all cases. 
Another measure of their compactness is the packing fraction, 
the fraction of space occupied by the spheres, which is 0.740 
(see Example 18B.1). That is, in a close-packed solid of identical 
hard spheres, only 26.0 per cent of the volume is empty space. 
The fact that many metals are close-packed accounts for their 
high mass densities.

(a) (b)

Figure 18B.3 (a) The third layer of close-packed spheres 
might occupy the dips lying directly above the spheres in the 
first layer, resulting in an ABA structure, which corresponds 
to hexagonal close-packing. (b) Alternatively, the third layer 
might lie in the dips that are not above the spheres in the first 
layer, resulting in an ABC structure, which corresponds to cubic 
close-packing.

(a) (b)

Figure 18B.4 A fragment of the structure shown in Fig. 18B.3 
revealing the (a) hexagonal, (b) cubic symmetry. The colours of 
the spheres are the same as for the layers in Fig. 18B.3.

Table 18B.1 The crystal structures of some elements*

Structure Element

hcp‡ Be, Cd, Co, He, Mg, Sc, Ti, Zn

fcc‡ (ccp, cubic F) Ag, Al, Ar, Au, Ca, Cu, Kr, Ne, Ni, Pd, Pb, Pt, Rh, 
Rn, Sr, Xe

bcc (cubic I) Ba, Cs, Cr, Fe, K, Li, Mn, Mo, Rb, Na, Ta, W, V

cubic P Po

* The notation used to describe primitive unit cells is introduced in Topic 18A.
‡ Close-packed structures.

Figure 18B.2 The second layer of close-packed spheres 
occupies the dips of the first layer. The two layers are the AB 
component of the close-packed structure.

Example 18B.1 Calculating a packing fraction

Calculate the packing fraction of a ccp structure with spheres 
of radius R.

Method Refer to Fig. 18B.5. First calculate the volume of a 
unit cell, and then calculate the total volume of the spheres 
that occupy it fully or partially. The first part of the calculation 
is an exercise in geometry and the use of the Pythagorean the-
orem (a2 + b2 = c2 in a right-angled triangle). The second part 
involves counting the fraction of spheres that occupy the cell.

Answer We see in Fig. 18B.5 that a diagonal of any face passes 
completely through one sphere and halfway through two other 
spheres. Therefore, the length of a diagonal is 4R. The length of 

4R
81/2R

81/2R

Figure 18B.5 The calculation of the packing fraction of a 
ccp unit cell.
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As shown in Table 18B.1, a number of common metals 
adopt structures that are less than close-packed. The depar-
ture from close packing suggests that factors such as specific 
covalent bonding between neighbouring atoms are beginning 
to influence the structure and impose a specific geometrical 
arrangement. One such arrangement results in a cubic I (bcc, 
for body-centred cubic) structure, with one sphere at the centre 
of a cube formed by eight others. The coordination number of 
a bcc structure is only 8, but there are six more atoms not much 
further away than the eight nearest neighbours. The packing 
fraction of 0.68 (Self-test 18B.1) is not much smaller than the 
value for a close-packed structure (0.74), and shows that about 
two-thirds of the available space is actually occupied.

(b) Electronic structure of metals
The central aspect of solids that determines their electri-
cal properties (Topic 18C) is the distribution of their elec-
trons. There are two models of this distribution. In one, the 
nearly-free electron approximation, the valence electrons 
are assumed to be trapped in a box with a periodic potential, 
with low energy corresponding to the locations of cations. In 
the tight-binding approximation, the valence electrons are 
assumed to occupy molecular orbitals delocalized throughout 
the solid. The latter model is more in accord with our discus-
sion of electrical properties of solids (Topic 18C), so we confine 
our attention to it.

Consider a one-dimensional solid, which consists of a sin-
gle, infinitely long line of atoms. At first sight, this model may 
seem too restrictive and unrealistic. However, not only does it 
give us the concepts we need to understand the structure and 

electrical properties of three-dimensional, macroscopic sam-
ples of metals and semiconductors, it is also the starting point 
for the description of long and thin structures, such carbon 
nanotubes.

Suppose that each atom has one s orbital available for form-
ing molecular orbitals. We can construct the LCAO-MOs of the 
solid by adding N atoms in succession to a line, and then infer 
the electronic structure by using the building-up principle. One 
atom contributes one s orbital at a certain energy (Fig. 18B.6). 
When a second atom is brought up it overlaps the first and 
forms bonding and antibonding orbitals. The third atom over-
laps its nearest neighbour (and only slightly the next-nearest), 
and from these three atomic orbitals, three molecular orbitals 
are formed: one is fully bonding, one fully antibonding, and 
the intermediate orbital is nonbonding between neighbours. 
The fourth atom leads to the formation of a fourth molecular 
orbital. At this stage, we can begin to see that the general effect 
of bringing up successive atoms is to spread the range of ener-
gies covered by the molecular orbitals, and also to fill in the 
range of energies with more and more orbitals (one more for 
each atom). When N atoms have been added to the line, there 
are N molecular orbitals covering a band of energies of finite 
width, and the Hückel secular determinant (Topic 10E) is

α β
β α β

β α β
β α β

β α

−
−

−
−

−

E

E

E

E

E

0 0 0 0

0 0 0

0 0 0

0 0 0

0 0 0 0

0 0 0 0 0

…
…
…
…
…

� � � � � … �
… αα −

=

E

0

 

where α is the Coulomb integral and β is the (s,s) reso-
nance integral. The theory of determinants applied to such a 

N = 1

N = 2

N = 3

N = 4

N = ∞

(a)

(b)

(c)

(d)

(e)

Figure 18B.6 The formation of a band of N molecular orbitals 
by successive addition of N atoms to a line. Note that the band 
remains of finite width as N becomes infinite and, although it 
then looks continuous, it consists of N different orbitals.

a side l is such that l2 + l2 = (4R)2 and is therefore l = 81/2R . The 
volume of the unit cell is l3 = 83/2R3. As Fig 18B.5 shows, each 
of the eight vertices of the cube contains the equivalent of 1

8
 

of a sphere. Also, each of the six remaining spheres contrib-
utes 1

2
 of its volume to the cell. Therefore, each cell contains 

the equivalent of 6 8 4× + × =1
2

1
8  spheres. Because the volume 

of each sphere is 4
3 πR3, the total occupied volume is 16

3 πR3. 
The fraction of space occupied is therefore

16
3

3

3 2 3 3 28
16

3 8
0 740

π πR

R/ / .=
×

=

Because an hcp structure has the same coordination number, 
its packing fraction is the same.

Self-test 18B.1 The packing fractions of structures that are not 
close-packed are calculated similarly. Calculate the packing 
fraction of a structure with one sphere at the centre of a cube 
formed by eight others: this is a cubic I (bcc) structure.

Answer: 0.68
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symmetrical example as this (technically a ‘tridiagonal deter-
minant’) leads to the following expression for the roots:

E
k

N
k Nk = + + = …α β2

1
1 2cos , , ,

π
 

We show in the following Justification that when N is infinitely 
large, the separation between neighbouring levels, Ek+1 − Ek, is 
infinitely small, but the band still has finite width overall (Fig. 
18B.6):

E E NN − → − →∞1 4 asβ  

(Note that because β < 0, −4β > 0.) We can think of this band as 
consisting of N different molecular orbitals, the lowest-energy 
orbital (k = 1) being fully bonding, and the highest-energy 
orbital (k = N) being fully antibonding between adjacent atoms 
(Fig. 18B.7). The molecular orbitals of intermediate energy 
have k − 1 nodes distributed along the chain of atoms. Similar 
bands form in three-dimensional solids.

The band formed from overlap of s orbitals is called the s 
band. If the atoms have p orbitals available, the same procedure 
leads to a p band (as shown in the upper half of Fig. 18B.7). If 
the atomic p orbitals lie higher in energy than the s orbitals, 
then the p band lies higher than the s band, and there may be a 
band gap, a range of energies to which no orbital corresponds. 

Brief illustration 18B.1 Energy levels in a band

To illustrate the dependence of Ek+1 − Ek on N, we use the first 
equation in the Justification to calculate
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We see that the energy difference decreases with increasing N.

Self-test 18B.2 For N = 300, at which value of k would Ek+1− Ek 
have its maximum value? Hint: Use mathematical software.

Answer: k = 150

Justification 18B.1 The properties of a band

From eqn 18B.1 we see that the energy separation between 
neighbouring energy levels k and k +1 is

E E
k
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k
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By using the trigonometric identity cos(A + B) = cos A cos B −  
sin A sin B followed by cos 0 = 1 and sin 0 = 0 the first (blue) 
term in parentheses is

cos
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cos cos sin sin
k
N

k
N N

k
N N

+
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Therefore, as N → ∞,
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k

N
k
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=1 2
1 1

0β cos cos
π π

It follows that when N is infinitely large, the difference between 
neighbouring energy levels is infinitely small.

To assess the effect of N on the width EN − E1 of a band, we 
proceed as follows. The energy of the level with k = 1 is

E
N1 2

1
= + +α β cos

π

As N → ∞, the cosine approaches cos 0 = 1. Therefore, in this 
limit

E1 2= +α β

When k has its maximum value of N,

E
N

NN = + +α β2
1

cos
π

As N → ∞, we can ignore the 1 in the denominator, and the 
cosine term becomes cos π = −1. Therefore, in this limit 
EN = α − 2β, and EN − E1 → −4β, as in eqn 18B.2.

Highest level of p band

Lowest level of s band

Lowest level of p band

Highest level of s band

Fully bonding

Fully bonding

Fully antibonding

Fully antibonding

p Band

s Band

Band
gap

s

p

Figure 18B.7 The overlap of s orbitals gives rise to an s band 
and the overlap of p orbitals gives rise to a p band. In this case, 
the s and p orbitals of the atoms are so widely spaced in energy 
that there is a band gap. In many cases the separation is less 
and the bands overlap.

Linear 
array 
of s 
orbitals

energy 
levels  (18B.1)

Linear 
array 
of s 
orbitals

band 
width  (18B.2)
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However, the s and p bands may also be contiguous with the 
highest orbital of the s band coincident with the lowest level 
of the p band or even overlap (as is the case for the 3s and 3p 
bands in magnesium).

Now consider the electronic structure of a solid formed 
from atoms each able to contribute one electron (for example, 
the alkali metals). There are N atomic orbitals and therefore N 
molecular orbitals packed into an apparently continuous band. 
There are N electrons to accommodate. At T = 0, only the low-
est 1

2 N  molecular orbitals are occupied (Fig. 18B.8), and the 
HOMO is called the Fermi level. However, unlike in molecules, 
there are empty orbitals very close in energy to the Fermi level, 
so it requires hardly any energy to excite the uppermost elec-
trons. Some of the electrons are therefore very mobile and give 
rise to electrical conductivity (Topic 18C). Only the small num-
ber of electrons close to the Fermi level can undergo thermal 
excitation, so only these electrons contribute to the heat cap-
acity of the metal. It is for this reason that Dulong and Petit’s 
law for heat capacities (Topic 7A) gives reasonable agreement 
with experiment at normal temperatures by counting only the 
atoms in a sample, not the atoms plus the ‘free’ electrons.

18B.2 Ionic solids

Two questions arise when we consider ionic solids: the relative 
locations adopted by the ions and the energetics of the resulting 
structure.

(a) Structure
When crystals of compounds of monatomic ions (such as NaCl 
and MgO) are modelled by stacks of hard spheres it is necessary 
to allow for the different ionic radii (typically with the cations 
smaller than the anions) and different electrical charges. The 
coordination number of an ion is the number of nearest neigh-
bours of opposite charge; the structure itself is characterized 
as having (N+,N−) coordination, where N+ is the coordination 
number of the cation and N− that of the anion.

Even if, by chance, the ions have the same size, the prob-
lems of ensuring that the unit cells are electrically neutral 
make it impossible to achieve 12-coordinate close-packed 
ionic structures. As a result, ionic solids are generally less 
dense than metals. The best packing that can be achieved is 
the (8,8)-co ordinate caesium chloride structure in which each 
cation is surrounded by eight anions and each anion is sur-
rounded by eight cations (Fig. 18B.9). In this structure, an ion 
of one charge occupies the centre of a cubic unit cell with eight 
counter ions at its corners. The structure is adopted by CsCl 
itself and also by CaS.

When the radii of the ions differ more than in CsCl, even 
eight-coordinate packing cannot be achieved. One common 
structure adopted is the (6,6)-coordinate rock salt structure 
typified by rock salt itself, NaCl (Fig. 18B.10). In this structure, 
each cation is surrounded by six anions and each anion is sur-
rounded by six cations. The rock salt structure can be pictured 
as consisting of two interpenetrating slightly expanded cubic F 
(fcc) arrays, one composed of cations and the other of an ions. 
This structure is adopted by NaCl itself and also by several 
other MX compounds, including KBr, AgCl, MgO, and ScN.

The switch from the caesium chloride structure to the rock 
salt structure is related to the value of the radius ratio, γ  :

γ = r
r
smaller

larger  
Definition  radius ratio  (18B.3)

E
n

er
g

y

Occupied levels

Unoccupied levels

Fermi level

Figure 18B.8 When N electrons occupy a band of N orbitals, it 
is only half full and the electrons near the Fermi level (the top of 
the filled levels) are mobile.

Cs+

Cl–

Figure 18B.9 The caesium chloride structure consists of two 
interpenetrating simple cubic arrays of ions, one of cations and 
the other of anions, so that each cube of ions of one kind has a 
counter-ion at its centre.

Na+

Cl–

Figure 18B.10 The rock salt (NaCl) structure consists of two 
mutually interpenetrating slightly expanded face-centred 
cubic arrays of ions. The entire assembly shown here is the  
unit cell.
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The two radii are those of the larger and smaller ions in the 
crystal. The radius-ratio rule, which is derived by considering 
the geometrical problem of packing the maximum number of 
hard spheres of one radius around a hard sphere of a different 
radius, can be summarized as follows:

The deviation of a structure from that expected on the basis 
of this rule is often taken to be an indication of a shift from 
ionic towards covalent bonding. A major source of unreliabil-
ity, though, is the arbitrariness of ionic radii (as we explain in a 
moment) and their variation with coordination number.

Ionic radii are derived from the distance between centres of 
adjacent ions in a crystal. However, we need to apportion the 
total distance between the two ions by defining the radius of 
one ion and then inferring the radius of the other ion. One 
scale that is widely used is based on the value 140 pm for the 
radius of the O2− ion (Table 18B.2). Other scales are also avail-
able (such as one based on F− for discussing halides), and it 
is essential not to mix values from different scales. Because 
ionic radii are so arbitrary, predictions based on them must be 
viewed cautiously.

(b) Energetics

The lattice energy of a solid is the difference in Coulombic 
potential energy of the ions packed together in a solid and 
widely separated as a gas. The lattice energy is always positive; a 
high lattice energy indicates that the ions interact strongly with 
one another to give a tightly bonded solid. The lattice enthalpy, 
ΔHL, is the change in standard molar enthalpy for the process

MX(s) M g X g→ ++ −( ) ( )  

and its equivalent for other charge types and stoichiometries. 
At T = 0 the lattice enthalpy is equal to the lattice energy; at nor-
mal temperatures they differ by only a few kilojoules per mole, 
and the difference is normally neglected.

Each ion in a solid experiences electrostatic attractions from 
all the other oppositely charged ions and repulsions from all the 
other like-charged ions. The total Coulomb potential energy is 
the sum of all the electrostatic contributions. Each cation is sur-
rounded by anions, and there is a large negative contribution 
from the attraction of the opposite charges. Beyond those near-
est neighbours, there are cations that contribute a positive term 
to the total potential energy of the central cation. There is also 
a negative contribution from the anions beyond those cat ions, 
a positive contribution from the cations beyond them, and so 
on to the edge of the solid. These repulsions and attractions 
become progressively weaker as the distance from the central 
ion increases, but the net outcome of all these contributions is 
dominated by the interaction between nearest neighbours and 
is a lowering of energy.

First, consider a simple one-dimensional model of a solid 
consisting of a long line of uniformly spaced alternating cat-
ions and anions, with d the distance between their centres, the 
sum of the ionic radii (Fig. 18B.12). If the charge numbers of 
the ions have the same absolute value (+1 and −1, or +2 and −2, 
for instance), then z1 = +z, z2 = −z, and z1z2 = −z2. The potential 

Brief illustration 18B.2 The radius ratio

Using values of ionic radii from the Resource section, the 
radius ratio for MgO is

γ = =

+

−

72
140

0 51
pm
pm

radius of Mg2

2radiusof O

���

���
.

which is consistent with the observed rock salt structure of 
MgO crystals.

Self-test 18B.3 Predict the crystal structure of TlCl.
Answer: γ  = 0.88; caesium chloride structure

Radius ratio Structural type

γ  < 21/2 − 1 = 0.414 sphalerite (or zinc blende, Fig. 18B.11)

0.414 < γ  < 31/2 − 1 = 0.732 rock salt (Fig. 18B.10)

γ  > 0.732 caesium chloride (Fig. 18B.9)

Zn2+

S2–

Figure 18B.11 The structure of the sphalerite form of ZnS 
showing the location of the Zn atoms in the tetrahedral holes 
formed by the array of S atoms. (There is an S atom at the 
centre of the cube inside the tetrahedron of Zn atoms.)

Table 18B.2* Ionic radii, r/pm

Na+ 102 (6‡), 116 (8)

K+ 138 (6), 151 (8)

F− 128 (2), 131 (4)

Cl− 181 (close packing)

*  This scale is based on a value 140 pm for the radius of the O2− ion. More values are 
given in the Resource section.

‡ Coordination number.
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energy of the central ion is calculated by summing all the terms, 
with negative terms representing attractions to oppositely 
charged ions and positive terms representing repulsions from 
like-charged ions. For the interaction with ions extending in a 
line to the right of the central ion, the lattice energy is

E
z e

d
z e

d
z e

d
z e

d

z e
d

p = × − + − + −





= × − +

1
4 2 3 4

4
1

0

2 2 2 2 2 2 2 2

2 2

0

π

π

ε

ε



11
2

1
3

1
4

4
2

2 2

0

− + −





= − ×



z e
dπε ln

We have used the relation 1 ln2− 1
2

1
3

1
4+ − + = . Finally, we mul-

tiply Ep by 2 to obtain the total energy arising from interactions 
on each side of the ion and then multiply by Avogadro’s con-
stant, NA, to obtain an expression for the (molar) lattice energy. 
The outcome is

E
z N e

dP
A= − ×2 2

4

2 2

0

ln πε  

with d = rcation + ranion. This energy is negative, corresponding 
to a net attraction. This calculation can be extended to three-
dimensional arrays of ions with different charges:

E A
z z N e

dp
A B A= − ×

2

04πε  
(18B.4)

The factor A is a positive numerical constant called the 
Madelung constant; its value depends on how the ions are 
arranged about one another. For a rock salt structure, A = 1.748. 
Table 18B.3 lists Madelung constants for other common 
structures.

There are also repulsions arising from the overlap of the 
filled atomic orbitals of the ions and, consequently, the role of 
the Pauli principle. These repulsions are taken into account by 
supposing that, because wavefunctions decay exponentially 
with distance at large distances from the nucleus, and repulsive 
interactions depend on the overlap of orbitals, the repulsive 
contribution to the potential energy has the form

E N C d d
p A e* / *= ′ −

 (18B.5)

with C′ and d* constants; the value of C′ is not needed (it can-
cels in expressions that make use of this formula; see below) 
and that of d* is commonly taken to be 34.5 pm. The total 
potential energy is the sum of Ep and Ep

*, and passes through a 
minimum when d( ) dp pE E d+ =* / 0 (Fig. 18B.13). A short calcu-
lation leads to the following expression for the minimum total 
potential energy (see Problem 18B.9):

E
N z z e

d
d
d

Ap min
A A B

,

*
= − −







2

04
1πε  

 born–mayer equation  (18B.6)

This expression is called the Born–Mayer equation. Provided 
we ignore zero-point contributions to the energy, the negative 
of this potential energy can be identified with the lattice energy. 
The important features of this equation are:

•	 Because Ep,min ∝ |zAzB|, the potential energy 
decreases (becomes more negative) with 
increasing charge number of the ions.

•	 Because Ep,min ∝ 1/d, the potential energy decreases 
(becomes more negative) with decreasing ionic 
radius.

The second conclusion follows from the fact that the smaller 
the ionic radii, the smaller the value of d. We see that large lat-
tice energies are expected when the ions are highly charged (so 
|zAzB| is large) and small (so d is small).

Table 18B.3 Madelung constants

Structural type A

Caesium chloride 1.763

Fluorite 2.519

Rock salt 1.748

Rutile 2.408

Sphalerite (zinc blende) 1.638

Wurtzite 1.641

Po
te

n
ti
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 e

n
er

g
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 V

0

Repulsion

Attraction

Total

Lattice parameter, d

Figure 18B.13 The contributions to the total potential energy 
of an ionic crystal.

+z +z +z–z –z –z

d

Figure 18B.12 A line of alternating cations and anions used in 
the calculation of the Madelung constant in one dimension.
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Experimental values of the lattice enthalpy (the enthalpy, 
rather than the energy) are obtained by using a Born–Haber 
cycle, a closed path of transformations starting and ending at 
the same point, one step of which is the formation of the solid 
compound from a gas of widely separated ions.

Some lattice enthalpies obtained by the Born–Haber cycle are 
listed in Table 18B.4. As can be seen from the data, the trends in 
values are in general accord with the predictions of the Born–
Mayer equation. Agreement is typically taken to imply that the 
ionic model of bonding is valid for the substance; disagreement 

Brief illustration 18B.3 The Born–Mayer equation

To estimate Ep,min for MgO, which has a rock salt structure 
(A = 1.748), we use d = r(Mg2+) + r(O2−) = 72 + 140 pm = 212 pm. 
We also use

N eA mol C2
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.
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Self-test 18B.4 Which can be expected to have the greater lat-
tice energy, magnesium oxide or strontium oxide?

Answer: MgO

Example 18B.2 Using the Born–Haber cycle

Use the Born–Haber cycle to calculate the lattice enthalpy of 
KCl.

Method The Born–Haber cycle for KCl is shown in Fig 18B.14. 
It consists of the following steps (for convenience, starting at 
the elements):

ΔH/(kJ mol−1)

1. Sublimation of K(s) +89 [dissociation enthalpy of 
K(s)]

2. Dissociation of 
1
2

Cl g2( )
+122 [ 1

2
 × dissociation enthalpy of 
Cl2(g)]

3. Ionization of K(g) +418 [ionization enthalpy of K(g)]

4. Electron attachment 
to Cl(g)

−349 [electron gain enthalpy of 
Cl(g)]

5. Formation of solid 
from gaseous ions

−ΔHL/(kJ 
mol−1)

6. Decomposition of 
compound

+437 [negative of enthalpy of 
formation of KCl(s)]

Because this is a closed cycle, the sum of these enthalpy changes 
is equal to zero, and the lattice enthalpy can be inferred from 
the resulting equation.

Answer The equation associated with the cycle is

89 122 418 349 437 01+ + − − + =−∆HL / kJmol( )

It follows that ΔHL = +717 kJ mol−1.

Self-test 18B.5 Calculate the lattice enthalpy of CaO from the 
following data:

Answer: +3500 kJ mol−1

K+(g) + e–(g) + Cl(g)

K+(g) + Cl–(g) 

KCl(s)

K(s) + ½Cl2(g)

K(g) + ½Cl2(g)

K(g) + Cl(g)

+437

+89

+122

+418
–349

–ΔHL

Figure 18B.14 The Born–Haber cycle for KCl at 298 K. 
Enthalpy changes are in kilojoules per mole.

ΔH/(kJ mol−1)

Sublimation of Ca(s) +178

Ionization of Ca(g) to Ca2+(g) +1735

Dissociation of O2(g) +249

Electron attachment to O(g) −141

Electron attachment to O−(g) +844

Formation of CaO(s) from Ca(s) and O2(g) −635

Table 18B.4* Lattice enthalpies at 298 K, ΔHL/(kJ mol−1)

NaF 787

NaBr 751

MgO 3850

MgS 3406

* More values are given in the Resource section.
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implies that there is a covalent contribution to the bonding. It 
is important, though, to be cautious, because numerical agree-
ment might be coincidental.

18B.3 Covalent and molecular solids

X-ray diffraction studies of solids reveal a huge amount of 
information, including interatomic distances, bond angles, 
stereochemistry, and vibrational parameters. In this section 
we can do no more than hint at the diversity of types of solids 
found when molecules pack together or atoms link together in 
extended networks.

In covalent solids, (or covalent network solids) covalent 
bonds in a definite spatial orientation link the atoms in a net-
work extending through the crystal. The demands of direc-
tional bonding, which have only a small effect on the structures 
of many metals, now override the geometrical problem of 
packing spheres together, and elaborate and extensive struc-
tures may be formed.

Molecular solids, which are the subject of the overwhelm-
ing majority of modern structural determinations, are held 
together by van der Waals interactions between the individ-
ual molecular components (Topic 16B). The observed crystal 
structure is nature’s solution to the problem of condensing 
objects of various shapes into an aggregate of minimum energy 
(actually, for T > 0, of minimum Gibbs energy). The prediction 
of the structure is difficult, but software specifically designed to 

Figure 18B.17 A fragment of the crystal structure of ice (ice-I). 
Each O atom is at the centre of a tetrahedron of four O atoms 
at a distance of 276 pm. The central O atom is attached by two 
short OeH bonds to two H atoms and by two long hydrogen 
bonds to the H atoms of two of the neighbouring molecules. 
Both alternative H atoms locations are shown for each 
OeO separation. Overall, the structure consists of planes of 
hexagonal puckered rings of H2O molecules (like the chair form 
of cyclohexane).

Brief illustration 18B.4 Diamond and graphite

Diamond and graphite are two allotropes of carbon. In dia-
mond each sp3-hybridized carbon is bonded tetrahedrally to 
its four neighbours (Fig. 18B.15). The network of strong CeC 
bonds is repeated throughout the crystal and, as a result, dia-
mond is very hard (in fact, the hardest known substance). In 
graphite, σ bonds between sp2-hybridized carbon atoms form 
hexagonal rings which, when repeated throughout a plane, 
give rise to ‘graphene’ sheets (Fig. 18B.16). Because the sheets 
can slide against each other when impurities are present, 
impure graphite is used widely as a lubricant.

Self-test 18B.6 Identify the solids that form covalent net-
works: silicon, boron nitride, red phosphorus, and calcium 
carbonate.

Answer: Silicon, boron nitride, and red phosphorus are covalent  
networks; calcium carbonate is an ionic solid

Figure 18B.15 A fragment of the structure of diamond. Each 
C atom is tetrahedrally bonded to four neighbours. This 
framework-like structure results in a rigid crystal.

(a) (b)

Figure 18B.16 Graphite consists of flat planes of hexagons 
of carbon atoms lying above one another. (a) The 
arrangement of carbon atoms in a ‘graphene’ sheet; (b) the 
relative arrangement of neighbouring sheets. The planes 
can slide over one another easily when impurities are 
present.
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explore interaction energies can now make reasonably reliable 
predictions. The problem is made more complicated by the role 
of hydrogen bonds, which in some cases dominate the crystal 

structure, as in ice (Fig. 18B.17), but in others (for example, in 
phenol) distort a structure that is determined largely by the van 
der Waals interactions.

Checklist of concepts

☐ 1. The coordination number of an atom in a metal is the 
number of its nearest neighbours.

☐ 2. Many elemental metals have close-packed structures 
with coordination number 12.

☐ 3. Close-packed structures may be either cubic (ccp) or 
hexagonal (hcp).

☐ 4. The packing fraction is the fraction of space occupied 
by spheres in a crystal.

☐ 5. Electrons in metals occupy molecular orbitals formed 
from the overlap of atomic orbitals.

☐ 6. The Fermi level is the highest occupied molecular 
orbital at T = 0.

☐ 7. Representative ionic structures include the caesium 
chloride, rock salt, and zinc blende structures.

☐ 8. The coordination number of an ionic lattice is denoted 
(N+,N−), with N+ the number of nearest neighbour 

anions around a cation and N− the number of nearest 
neighbour cations around an anion.

☐ 9. The radius ratio (see below) is a guide to the likely lat-
tice type.

☐ 10. The lattice enthalpy is the change in enthalpy (per mole 
of formula units) accompanying the complete separa-
tion of the components of the solid.

☐ 11. A Born–Haber cycle is a closed path of transforma-
tions starting and ending at the same point, one step of 
which is the formation of the solid compound from a 
gas of widely separated ions.

☐ 12. A covalent network solid is a solid in which covalent 
bonds in a definite spatial orientation link the atoms in 
a network extending through the crystal.

☐ 13. A molecular solid is a solid consisting of discrete mol-
ecules held together by van der Waals interactions.

Checklist of equations
Property Equation Comment Equation number

Energy levels of a linear array of orbitals Ek = α + 2β cos(kπ/(N + 1)), k = 1,2,…,N Hückel approximation 18B.1

Band width EN − E1→ −4β as N → ∞ Hückel approximation 18B.2

Radius ratio γ  = rsmaller/rlarger For criteria, see Section 18B.2. 18B.3

Born–Mayer equation Ep,min = −{NA|zAzB|e2/4πε0d}(1 − d*/d)A A is the Madelung constant 18B.6
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18C mechanical, electrical, and  
magnetic properties of solids

This Topic addresses the mechanical, electrical, and magnetic 
properties of solids. Optical properties are covered in Topic 18D.

18C.1 Mechanical properties

The fundamental concepts for the discussion of the mechanical 
properties of solids are stress and strain. The stress on an object 
is the applied force divided by the area to which it is applied. 
The strain is the resulting fractional distortion of the sample. 
The general field of the relations between stress and strain is 
called rheology from the Greek word for ‘flow’.

Stress may be applied in a number of different ways (Fig. 
18C.1):

•	 Uniaxial stress is a simple compression or extension in 
one direction.

•	 Hydrostatic stress is a stress applied simultaneously in 
all directions, as in a body immersed in a fluid.

•	 Pure shear is a stress that tends to push opposite faces of 
the sample in opposite directions.

Contents

18c.1 Mechanical properties 762
brief illustration 18c.1: Young’s modulus 763

18c.2 Electrical properties 764
(a) Conductors 765

brief illustration 18c.2: the Fermi–dirac  
distribution at T = 0 766

(b) Insulators and semiconductors 766
brief illustration 18c.3: the effect of doping on 
semiconductivity 767

(c) Superconductivity 767

18c.3 Magnetic properties 768
(a) Magnetic susceptibility 768

brief illustration 18c.4: the magnetic character  
of metallic solids and molecules 769

(b) Permanent and induced magnetic moments 769
example 18c.1: calculating a molar magnetic  
susceptibility 770

(c) Magnetic properties of superconductors 771
example 18c.2: calculating the temperature  
at which a material becomes superconducting 771

Checklist of concepts 771
Checklist of equations 772

bonding arrangements in solids (Topic 18B), especially the 
formation of bands of orbitals. This Topic draws a little on 
the properties of the Boltzmann distribution (Foundations 
B and Topic 15A).

➤➤ Why do you need to know this material?
Careful consideration and manipulation of the physical 
properties of solids are needed for the development 
of modern materials and an understanding of their 
properties.

➤➤ What is the key idea?
The mechanical, electrical, and magnetic properties of 
solids stem from the properties of their constituent atoms 
and how they stack together.

➤➤ What do you need to know already?
You need to be familiar with electromagnetic fields 
(Foundations C), atomic structure (Topics 9A and 9B), and 

(a) (b)

(c)

Figure 18C.1 Types of stress applied to a body. (a) Uniaxial 
stress, (b) shear stress, (c) hydrostatic pressure.
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18C Mechanical, electrical, and magnetic properties of solids  763

A sample subjected to a small stress typically undergoes elas-
tic deformation in the sense that it recovers its original shape 
when the stress is removed. For low stresses, the strain is lin-
early proportional to the stress, and the stress–strain relation is 
a Hooke’s law of force (as depicted in Fig. 17B.2 and reproduced 
here as Fig. 18C.2). The response becomes nonlinear at high 
stresses but may remain elastic. Above a certain threshold, the 
strain becomes plastic in the sense that recovery does not occur 
when the stress is removed. Plastic deformation occurs when 
bond breaking takes place and, in pure metals, typically takes 
place through the agency of dislocations. Brittle solids, such 
as ionic solids, exhibit sudden fracture as the stress focused by 
cracks causes them to spread catastrophically.

The response of a solid to an applied stress is commonly 
summarized by a number of coefficients of proportionality 
known as moduli:

E = normal stress
normal strain  

Definition  Young’s modulus  (18C.1a)

K = pressure
fractional change in volume  

G = shear stress
shear strain  

Definition  shear modulus  (18C.1c)

‘Normal stress’ refers to stretching and compression of the 
material, as shown in Fig. 18C.3a, and ‘shear stress’ refers to 
the stress depicted in Fig. 18C.3b. The fractional change in vol-
ume is δV/V, where δV is the change in volume of a sample 
of volume V; similarly, the strains are (dimensionless) frac-
tional changes in dimensions. The bulk modulus is the inverse 
of the isothermal compressibility, κ, first encountered in Topic 

2D (eqn 2D.7, κ = −(∂V/∂p)T/V). A third ratio, called Poisson’s 
ratio, indicates how the sample changes its shape:

P

transverse strain
normal strain

=
 

Definition  Poisson’s ratio  (18C.2)

The moduli are interrelated (see Problem 18C.1):

G
E

K
E= + = −2 1 3 1 2( ) ( ) P P  

 relations between moduli  (18C.3) (18C.1b)Definition bulk 
modulus

Brief illustration 18C.1 Young’s modulus

Young’s modulus for iron at room temperature is 215 GPa. 
The normal strain produced when a mass of m = 10.0 kg is sus-
pended from an iron wire of diameter d = 0.10 mm is

normal strain
normal stress=

E

where the normal stress is the force F on the wire divided by 
the area on which the force acts. This area is π(d/2)2, the area at 
the base of the cylindrical wire. The force is mg, where g is the 
acceleration of free fall. It follows that

normal strain

kg
ms

(

=

=
×

×

−

mg d
E

F A� ��� ��
/ ( / )

( . )
.

.

π

π

2

10 0
9 81

5 0 1

2

2

00
2 15 10

0 058

5 2

11 1 2

−

− −×

=

m)
kg m s.

.
Pa

� �� ��

which corresponds to elongation of the wire by 5.8 per cent.

Self-test 18C.1 Young’s modulus for polyethene at room tem-
perature is 1.2 GPa. What strain will be produced when a mass 
of 1.0 kg is suspended from a polyethene thread of diameter 
1.0 mm?

Answer: 0.010

S
tr

es
s

Strain

Elastic
deformation

Plastic
deformation

Yield
point

Figure 18C.2 At small strains, a body obeys Hooke’s law 
(stress proportional to strain) and is elastic (recovers its shape 
when the stress is removed). At high strains, the body is no 
longer elastic, may yield and become plastic. At even higher 
strains, the solid fails (at its limiting tensile strength) and finally 
fractures.

(a) (b)

Transverse
strain

Normal
strain

Shear strain

Figure 18C.3 (a) Normal stress and the resulting strain. (b) 
Shear stress. Poisson’s ratio indicates the extent to which a 
body changes shape when subjected to a uniaxial stress.
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764 18 Solids

We can use thermodynamic arguments to discover the rela-
tion of the moduli to the molecular properties of the solid. 
Thus, in the following Justification, we show that, if neighbour-
ing molecules interact by a Lennard-Jones potential energy 
(Topic 16B), then the bulk modulus and the compressibility 
of the solid are related to the Lennard-Jones parameter ε (the 
depth of the potential well) by

K
N
V

V
N

= =8
8

A

m

m

A

ε
εκ

 
(18C.4)

We see that the bulk modulus is large (the solid stiff) if the 
potential well represented by the Lennard-Jones potential 
energy is deep and the solid is dense (its molar volume small).

The differing rheological characteristics of metals can be 
traced to the presence of slip planes, which are planes of atoms 
that under stress may slip or slide relative to one another. The 
slip planes of a ccp structure are the close-packed planes, and 
careful inspection of a unit cell shows that there are eight sets 
of slip planes in different directions. As a result, metals with 
cubic close-packed structures, like copper, are malleable: they 
can easily be bent, flattened, or pounded into shape. In con-
trast, a hexagonal close-packed structure has only one set of 
slip planes; and metals with hexagonal close packing, like zinc 
or cadmium, tend to be brittle.

18C.2 Electrical properties

We confine attention to electronic conductivity, but note that 
some ionic solids display ionic conductivity in which complete 
ions migrate through the lattice. Two types of solid are distin-
guished by the temperature dependence of their electrical con-
ductivity (Fig. 18C.4):

•	 A metallic conductor is a substance with a conductivity 
that decreases as the temperature is raised.

•	 A semiconductor is a substance with a conductivity that 
increases as the temperature is raised.

A semiconductor generally has a lower conductivity than that 
typical of metals, but the magnitude of the conductivity is not 
the criterion of the distinction. It is conventional to classify 
semiconductors with very low electrical conductivities, such as 
most synthetic polymers, as insulators. We shall use this term, 
but it should be appreciated that it is one of convenience rather 
than one of fundamental significance. A superconductor is a 
solid that conducts electricity without resistance.

Justification 18C.1 The relation between compressibility 
and molecular interactions

First, we combine the relations K = 1/κ and κ = −(∂V/∂p)T/V 
with the thermodynamic relation p = −(∂U/∂V)T (this is eqn 
3D.3 of Topic 3D), to obtain

K V
p
V

V
U

V
T T

= − ∂
∂







= ∂
∂







2

2

This expression shows that the bulk modulus (and through 
eqn 18C.3, the other two moduli) depends on the curvature 
of a plot of the internal energy against volume. To develop this 
conclusion, we note that the variation of internal energy with 
volume can be expressed in terms of its variation with a lattice 
parameter, R, such as the length of the side of a unit cell:
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To calculate K at the equilibrium volume of the sample, we set 
R = R0 and recognize that ∂U/∂R = 0 at equilibrium, so the first 
(blue) term on the right disappears and we are left with

K V
U

R
R
V

T T

= ∂
∂







∂
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2

2
0 0

2

, ,

where the 0 denotes that the derivatives are evaluated at the 
equilibrium dimensions of the unit cell by setting R = R0 after 
the derivative has been calculated. At this point we can write 
V = aR3, where a is a constant that depends on the crystal struc-
ture, which implies that ∂R/∂V = 1/3aR2. Then, if the internal 

energy is given by a pairwise Lennard-Jones (12,6)-potential 
energy, eqn 16B.14 of Topic 16B in the form U = nNAEp, with 
Ep = 4ε{(R0/R)12 − (R0/R)6}, we can write

∂
∂
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2
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72U
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where n is the amount of substance in the sample of volume 
V0. It then follows that

K
nN
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nN
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N
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= = =72
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A A A
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ε ε ε

where we have used Vm = V0/n, which is the first of eqn 
18C.4. The reciprocal of K is κ. To obtain the expression for 
(∂2U/∂R2)T,0, we have used the fact that, at equilibrium, R = R0 
and σ 6 /R0

6 1
2=  where σ is the scale parameter for the intermol-

ecular potential energy (R0 in the expression for Ep).
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(a) Conductors
To understand the origins of electronic conductivity in con-
ductors and semiconductors, we need to explore the conse-
quences of the formation of bands in different materials (Topic 
18B). Our starting point is Fig 18B.8, which is repeated here 
for convenience (Fig. 18C.5). It shows the electronic structure 
of a solid formed from atoms each able to contribute one elec-
tron (such as the alkali metals). At T = 0, only the lowest 1

2 N  
molecu lar orbitals are occupied, up to the Fermi level.

At temperatures above absolute zero, electrons are excited 
by the thermal motion of the atoms. The electrical conductivity 
of a metallic conductor decreases with increasing temperature 
even though more electrons are excited into empty orbitals. 
This apparent paradox is resolved by noting that the increase 
in temperature causes more vigorous thermal motion of the 
atoms, so collisions between the moving electrons and an atom 
are more likely. That is, the electrons are scattered out of their 
paths through the solid, and are less efficient at transporting 
charge.

A more quantitative treatment of conductivity in metals 
requires an expression for the variation with temperature of 
the distribution of electrons over the available states. We begin 
by considering the density of states, ρ(E), at the energy E: the 
number of states between E and E + dE divided by dE. Note that 
the ‘state’ of an electron includes its spin, so each spatial orbital 
counts as two states. Then it follows that ρ(E)dE is the number 
of states between E and E + dE. To obtain the number of elec-
trons dN(E) that occupy states between E and E + dE, we mul-
tiply ρ(E)dE by the probability f(E) of occupation of the state 
with energy E. That is,

d dN E E E f E( ) ( ) ( )= ×ρ

Number of
states

between
and +d

Probabi

E E E��� ��

llity of
occupation of

a state with
energy E�

 (18C.5)

The function f(E) is the Fermi–Dirac distribution, a version 
of the Boltzmann distribution that takes into account the Pauli 
exclusion principle that each orbital can be occupied by no 
more than two electrons (Fig. 18C.6):

f E E kT( ) ( )/=
+−

1
1e μ  

 Fermi–dirac distribution  (18C.6a)

where μ is a temperature-dependent parameter known as 
the ‘chemical potential’ (it has a subtle relation to the familiar 
chemical potential of thermodynamics), and provided T > 0 is 
the energy of the state for which f = 1

2 . At T = 0, only states up 
to a certain energy known as the Fermi energy, EF, are occu-
pied (Fig. 18C.5). Provided the temperature is not so high that 
many electrons are excited to states above the Fermi energy, the 
chemical potential can be identified with EF, in which case the 
Fermi–Dirac distribution becomes
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Figure 18C.6 The Fermi–Dirac distribution, which gives the 
probability of occupation of the state at a temperature T. The 
high-energy tail decays exponentially towards zero. The curves 
are labelled with the value of μ/kT. The tinted region shows the 
occupation of levels at T = 0.
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Figure 18C.4 The variation of the electrical conductivity of a 
substance with temperature is the basis of its classification as 
a metallic conductor, a semiconductor, or a superconductor. 
Conductivity is expressed in siemens per metre (S m−1 or, as 
here, S cm−1), where 1 S = 1 Ω−1 (the resistance is expressed in 
ohms, Ω).
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Figure 18C.5 When N electrons occupy a band of N orbitals, it 
is only half full and the electrons near the Fermi level (the top of 
the filled levels) are mobile.
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f E E E kT( ) ( )/=
+−

1
1e F  

 Fermi–dirac distribution  (18C.6b)

Moreover, for energies well above EF, the exponential term in 
the denominator is so large that the 1 in the denominator can 
be neglected, and then

f E E E kT( ) ( )/≈ − −e F

 

The function now resembles a Boltzmann distribution, decay-
ing exponentially with increasing energy; the higher the tem-
perature, the longer the exponential tail.

There is a distinction between the Fermi energy and the 
Fermi level. First, note that if E = EF, then from eqn 18C.6b, 
f E( )F = 1

2 . That is:

•	 The Fermi level is the uppermost occupied level at T = 0.
•	 The Fermi energy is the energy level at which f E( )= 1

2  at 
any temperature.

The Fermi energy coincides with the Fermi level as T → 0.

(b) Insulators and semiconductors
Now consider a one-dimensional solid in which each atom pro-
vides two electrons: the 2N electrons fill the N orbitals of the 
band. The Fermi level now lies at the top of the band (at T = 0), 
and there is a gap before the next band begins (Fig. 18C.7). As 
the temperature is increased, the tail of the Fermi–Dirac dis-
tribution extends across the gap, and electrons leave the lower 
band, which is called the valence band and populate the empty 
orbitals of the upper band, which is called the conduction 

band. As a consequence of electron promotion, positively 
charged ‘holes’ are left in in the valence band. The holes and 
promoted electrons are now mobile, and the material is now 
a conductor. In fact, we call it a semiconductor, because the 
electrical conductivity depends on the number of electrons that 
are promoted across the gap, and that number increases as the 
temperature is raised. If the gap is large, though, very few elec-
trons are promoted at ordinary temperatures and the conduc-
tivity remains close to zero, resulting in an insulator. Thus, the 
conventional distinction between an insulator and a semicon-
ductor is related to the size of the band gap and is not an abso-
lute distinction like that between a metal (incomplete bands at 
T = 0) and a semiconductor (full bands at T = 0).

Figure 18C.7 depicts conduction in an intrinsic semicon-
ductor, in which semiconduction is a property of the band 
structure of the pure material. Examples of intrinsic semicon-
ductors include silicon and germanium. A compound semi-
conductor is an intrinsic semiconductor that is a combination 
of different elements, such as GaN, CdS, and many d-metal 
oxides. An extrinsic semiconductor is one in which charge car-
riers are present as a result of the replacement of some atoms 
(to the extent of about 1 in 109) by dopant atoms, the atoms of 
another element. If the dopants can trap electrons, they with-
draw electrons from the filled band, leaving holes which allow 
the remaining electrons to move (Fig. 18C.8a). This procedure 
gives rise to p-type semiconductivity, the p indicating that 
the holes are positive relative to the electrons in the band. An 
example is silicon doped with indium. We can picture the semi-
conduction as arising from the transfer of an electron from a Si 
atom to a neighbouring In atom. The electrons at the top of the 
silicon valence band are now mobile, and carry current through 
the solid. Alternatively, a dopant might carry excess electrons 
(for example, phosphorus atoms introduced into germanium), 
and these additional electrons occupy otherwise empty bands, 
giving n-type semiconductivity, where n denotes the negative 
charge of the carriers (Fig. 18C.8b).

Brief illustration 18C.2 The Fermi–Dirac distribution  
at T = 0

Consider cases in which E < EF. Then, as T → 0 we write

lim{ }/
T

E E kT
→

− = −∞
0

F

because EF > 0 and E − EF < 0. It follows that

lim ( ) lim ( )/T T E E kTf E
→ → −=

+
=

→
0 0

1
1

1
e F

0
��� ��

We conclude that as T → 0, f(E) → 1, and all the energy levels 
below E = EF are populated. A similar calculation for E > EF 
(Self-test 18C.2) shows that f(E) → 0 as T → 0. The Fermi–Dirac 
distribution function confirms that only the levels below EF 
are populated as T → 0.

Self-test 18C.2 Repeat the calculation for E > EF.
Answer: f(E) → 0 as T → 0

 (18C.6c)
Approximate 
form for E > EF

Fermi–dirac 
distribution
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(a) T = 0 (b) T > 0

Figure 18C.7 (a) When 2N electrons are present, the band is 
full and the material is an insulator at T = 0. (b) At temperatures 
above T = 0, electrons populate the levels of the upper 
conduction band and the solid is a semiconductor.
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Now consider the properties of a p–n junction, the inter-
face of a p-type and an n-type semiconductor. When a 
‘reverse bias’ is applied to the junction, in the sense that a 
negative electrode is attached to the p-type semiconductor 
and a positive electrode is attached to the n-type semiconduc-
tor, the positively charged holes in the p-type semiconduc-
tor are attracted to the negative electrode and the negatively 
charged electrons in the n-type semiconductor are attracted 
to the positive electrode (Fig. 18C.9a). As a consequence, 
charge does not flow across the junction. Now consider the 
application of a ‘forward bias’ to the junction, in the sense 
that the positive electrode is attached to the p-type semicon-
ductor and the negative electrode is attached to the n-type 
semiconductor (Fig. 18C.9b). Now charge flows across the 
junction, with electrons in the n-type semiconductor moving 
towards the positive electrode and holes moving in the oppo-
site direction. It follows that a p–n junction affords a great 
deal of control over the magnitude and direction of current 
through a material. This control is essential for the operation 

of transistors and diodes, which are key components of mod-
ern electronic devices.

As electrons and holes move across a p–n junction under 
forward bias, they recombine and release energy. However, as 
long as the forward bias continues to be applied, the flow of 
charge from the electrodes to the semiconductors replenishes 
them with electrons and holes, so the junction sustains a cur-
rent. In some solids, the energy of electron–hole recombination 
is released as heat and the device becomes warm. The reason 
lies in the fact that the return of the electron to a hole involves 
a change in the electron’s linear momentum. The atoms of the 
lattice must absorb the difference, and therefore electron-hole 
recombination stimulates lattice vibrations. This is the case for 
silicon semiconductors, and is one reason why computers need 
efficient cooling systems.

(c) Superconductivity
The resistance to flow of electrical current of a normal metal-
lic conductor decreases smoothly with decreasing temperature 
but never vanishes. However, certain solids known as supercon-
ductors conduct electricity without resistance below a critical 
temperature, Tc. Following the discovery in 1911 that mercury 
is a superconductor below 4.2 K, the normal boiling point of 
liquid helium, physicists and chemists made slow but steady 
progress in the discovery of superconductors with higher val-
ues of Tc. Metals, such as tungsten, mercury, and lead, tend to 
have Tc values below about 10 K. Intermetallic compounds, 
such as Nb3X (X = Sn, Al, or Ge), and alloys, such as Nb/Ti and  
Nb/Zr, have intermediate Tc values ranging between 10 K and 
23 K. In 1986, high-temperature superconductors (HTSC) were 
discovered. Several ceramics, inorganic powders that have been 
fused and hardened by heating to a high temperature, contain-
ing oxocuprate motifs, CumOn, are now known with Tc values 
well above 77 K, the boiling point of the inexpensive refrigerant 
liquid nitrogen. For example, HgBa2Ca2Cu2O8 has Tc = 153 K.

There is a degree of periodicity in the elements that exhibit 
superconductivity. The metals iron, cobalt, nickel, copper, sil-
ver, and gold do not display superconductivity; nor do the alkali 
metals. One of the most widely studied oxocuprate supercon-
ductors YBa2Cu3O7 (informally known as ‘123’ on account of 

Brief illustration 18C.3 The effect of doping on 
semiconductivity

Consider the doping of pure silicon (a Group 14 element) by 
arsenic (a Group 15 element). Because each Si atom has four 
valence electrons and each As atom has five valence electrons, 
the addition of arsenic increases the number of electrons in 
the solid. These electrons populate the empty conduction band 
of silicon, and the doped material is an n-type semiconductor.

Self-test 18C.3 Is gallium-doped germanium a p-type or an 
n-type semiconductor?

Answer: p-type semiconductor
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band

(a) (b)

Figure 18C.8 (a) A dopant with fewer electrons than its 
host can form a narrow band that accepts electrons from 
the valence band. The holes in the band are mobile and the 
substance is a p-type semiconductor. (b) A dopant with more 
electrons than its host forms a narrow band that can supply 
electrons to the conduction band. The electrons it supplies are 
mobile and the substance is an n-type semiconductor.

+ +– –

Electron

Hole

(a) (b)

Figure 18C.9 A p–n junction under (a) reverse bias, (b) forward 
bias.
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the proportions of the metal atoms in the compound) has the 
structure shown in Fig. 18C.10. The square-pyramidal CuO5 
units arranged as two-dimensional layers and the square planar 
CuO4 units arranged in sheets are common structural features 
of oxocuprate HTSCs.

The mechanism of superconduction is well-understood 
for low-temperature materials, and is based on the properties 
of a Cooper pair, a pair of electrons that exists on account of 
the indirect electron–electron interactions mediated by the 
nuclei of the atoms in the lattice. Thus, if one electron is in a 
particu lar region of a solid, the nuclei there move toward it 
to give a distorted local structure (Fig. 18C.11). Because that 
local distortion is rich in positive charge, it is favourable for 
a second electron to join the first. Hence, there is a virtual 
attraction between the two electrons and they move together 
as a pair. The local distortion is disrupted by thermal motion 
of the ions in the solid, so the virtual attraction occurs only at 
very low temperatures. A Cooper pair undergoes less scatter-
ing than an individual electron as it travels through the solid 

because the distortion caused by one electron can attract back 
the other electron should it be scattered out of its path in a col-
lision. Because the Cooper pair is stable against scattering, it 
can carry charge freely through the solid, and hence give rise to 
superconduction.

The Cooper pairs responsible for low-temperature supercon-
ductivity are likely to be important in HTSCs, but the mecha-
nism for pairing is hotly debated. There is evidence implicating 
the arrangement of CuO5 layers and CuO4 sheets in the mecha-
nism of high-temperature superconduction. It is believed that 
movement of electrons along the linked CuO4 units accounts 
for superconductivity, whereas the linked CuO5 units act as 
‘charge reservoirs’ that maintain an appropriate number of 
electrons in the superconducting layers.

18C.3 Magnetic properties

The magnetic properties of metallic solids and semiconductors 
depend strongly on the band structures of the material. Here 
we confine our attention largely to magnetic properties that 
stem from collections of individual molecules or ions such as 
d-metal complexes. Much of the discussion applies to liquid 
and gas phase samples as well as to solids.

(a) Magnetic susceptibility
The magnetic and electric properties of molecules and solids 
are analogous. For instance, some molecules possess perma-
nent magnetic dipole moments, and an applied magnetic field 
can induce a magnetic moment, with the result that the entire 
solid sample becomes magnetized. The magnetization, M, is 
the average molecular magnetic dipole moment multiplied by 
the number density of molecules in the sample. The magnetiza-
tion induced by a field of strength H is proportional to H, and 
we write

M H= χ   magnetization  (18C.7)

where χ is the dimensionless volume magnetic susceptibility. 
A closely related quantity is the molar magnetic susceptibility, 
χm:

χ χm m= V   molar magnetic susceptibility  (18C.8)

where Vm is the molar volume of the substance.
We can think of the magnetization as contributing to the 

density of lines of force in the material (Fig. 18C.12). Materials 
for which χ > 0 are called paramagnetic; they tend to move into 
a magnetic field and the density of lines of force within them is 
greater than in a vacuum. Those for which χ < 0 are called dia-
magnetic and tend to move out of a magnetic field; the density 

Cu

Y

Ba

O

(a) (b)

Figure 18C.10 Structure of the YBa2Cu3O7 superconductor. (a) 
Metal atom positions. (b) The polyhedra show the positions of 
oxygen atoms and indicate that the metal ions are in square-
planar and square-pyramidal coordination environments.

e–

Figure 18C.11 The formation of a Cooper pair. One electron 
distorts the crystal lattice and the second electron has a 
lower energy if it goes to that region. These electron–lattice 
interactions effectively bind the two electrons into a pair.
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of lines of force within them is lower than in a vacuum. A para-
magnetic material consists of ions or molecules with unpaired 
electrons, such as radicals and many d-metal complexes; a dia-
magnetic substance (a far more common property) is one with 
no unpaired electrons.

The magnetic susceptibility is traditionally measured with a 
Gouy balance. This instrument consists of a sensitive balance 
from which the sample hangs in the form of a narrow cylinder 
and lies between the poles of a magnet. If the sample is paramag-
netic, it is drawn into the field, and its apparent weight is greater 
than when the field is off. A diamagnetic sample tends to be 
expelled from the field and appears to weigh less when the field is 
turned on. The balance is normally calibrated against a sample of 
known susceptibility. The modern version of the determination 
makes use of a superconducting quantum interference device 
(SQUID, Fig. 18C.13). A SQUID takes advantage of the quan-
tization of magnetic flux and the property of current loops in 
superconductors that, as part of the circuit, include a weakly con-
ducting link through which electrons must tunnel. The current 
that flows in the loop in a magnetic field depends on the value of 
the magnetic flux, and a SQUID can be exploited as a very sensi-
tive magnetometer. Table 18C.1 lists some experimental values.

(b) Permanent and induced magnetic 
moments

The permanent magnetic moment of a molecule arises from 
any unpaired electron spins in the molecule. The magnitude 
of the magnetic moment of an electron is proportional to the 
magnitude of the spin angular momentum, {s(s + 1)}1/2:

m g s s
e
m

= + =e
1 2

B B
e

1{ ( )} / μ μ 
2  

where ge = 2.0023 and μB, the Bohr magneton, has the value 
9.274 × 10−24 J T−1. If there are several electron spins in each 
molecule, they combine to give a total spin S, and then s(s + 1) 
should be replaced by S(S + 1).

The magnetization and consequently the magnetic suscep-
tibility depend on the temperature because the orientations 
of the electron spins fluctuate, whether the molecules are in 
fluid phases or trapped in solids: some orientations have lower 
energy than others, and the magnetization depends on the 
randomizing influence of thermal motion. Thermal averag-
ing of the permanent magnetic moments in the presence of an 
applied magnetic field contributes to the magnetic susceptibil-
ity an amount proportional to m2/3kT.1 It follows that the spin 
contribution to the molar magnetic susceptibility is

Brief illustration 18C.4 The magnetic character  
of metallic solids and molecules

Solid magnesium is a metal in which the two valence electrons 
of each Mg atom are donated to a band of orbitals constructed 
from 3s orbitals. From N atomic orbitals we can construct N 
molecular orbitals spreading through the metal. Each atom 
supplies two electrons, so there are 2N electrons to accom-
modate. These occupy and fill the N molecular orbitals. There 
are no unpaired electrons, so the metal is diamagnetic. An O2 
molecule has the electronic structure described in Topic 10C, 
where we see that two electrons occupy separate antibonding 
π orbitals with parallel spins. We conclude that O2 is a para-
magnetic gas.

Self-test 18C.4 Repeat the analysis for Zn(s) and NO(g).
Answer: Zn diamagnetic, NO paramagnetic

 (18C.9)Magnitude magnetic 
moment

SQUID

Superconducting
wire SampleCurrent

Magnetic
field

Figure 18C.13 The arrangement used to measure magnetic 
susceptibility with a SQUID. The sample is moved upwards in 
small increments and the potential difference across the SQUID 
is measured.

Table 18C.1* Magnetic susceptibilities at 298 K

χ/10−6 χm/(10−10 m3 mol−1)

H2O(l) −9.02 −1.63

NaCl(s) −16 −3.8

Cu(s) −9.7 −0.69

CuSO4⋅5H2O(s) +167 +183

* More values are given in the Resource section.

(a) (b) (c)

Figure 18C.12 (a) In a vacuum, the strength of a magnetic 
field can be represented by the density of lines of force; (b) in 
a diamagnetic material, the lines of force are reduced; (c) in a 
paramagnetic material, the lines of force are increased.

1 See our Physical chemistry: Quanta, matter, and change (2014) for the 
derivation of this contribution.
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The susceptibility is positive, so the spin magnetic moments 
contribute to the paramagnetic susceptibilities of materials. 
This expression may also be written as the Curie law:

χ µ µ
m
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2 1
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 curie law  (18C.10b)

The spin contribution to the susceptibility decreases with 
increasing temperature because the thermal motion random-
izes the spin orientations. In practice, a contribution to the 
para magnetism also arises from the orbital angular momenta 
of electrons: we have discussed the spin-only contribution.

At low temperatures, some paramagnetic solids make a 
phase transition to a state in which large domains of spins align 
with parallel orientations. This cooperative alignment gives 
rise to a very strong magnetization and is called ferromag-
netism (Fig. 18C.14). In other cases, exchange interactions 
lead to alternating spin orientations: the spins are locked into a 
low-magnetization arrangement to give an antiferromagnetic 
phase. The ferromagnetic phase has a nonzero magnetization 
in the absence of an applied field, but the antiferromagnetic 
phase has a zero magnetization because the spin magnetic 
moments cancel. The ferromagnetic transition occurs at the 
Curie temperature, and the antiferromagnetic transition 
occurs at the Néel temperature. Which type of cooperative 
behaviour occurs depends on the details of the band structure 
of the solid.

Magnetic moments can also be induced in molecules. To 
see how this effect arises, we need to note that the circulation 
of electronic currents induced by an applied field gives rise 
to a magnetic field which usually opposes the applied field, 
so the substance is diamagnetic. In these cases, the induced 
electron currents occur within the orbitals of the molecule 
that are occupied in its ground state. In the few cases in which 
molecules are paramagnetic despite having no unpaired elec-
trons, the induced electron currents flow in the opposite 
direction because they can make use of unoccupied orbitals 
that lie close to the HOMO in energy. This orbital paramag-
netism can be distinguished from spin paramagnetism by the 
fact that it is temperature independent: this is why it is called 
temperature-independent paramagnetism (TIP).

We can summarize these remarks as follows. All molecules 
have a diamagnetic component to their susceptibility, but it 
is dominated by spin paramagnetism if the molecules have 
unpaired electrons. In a few cases (where there are low-lying 
excited states) TIP is strong enough to make the molecules para-
magnetic even though their electrons are paired.

Example 18C.1 Calculating a molar magnetic 
susceptibility

Consider a complex salt with three unpaired electrons per 
complex cation at 298 K and molar volume 61.7 cm3 mol−1. 
Calculate the molar magnetic susceptibility and the volume 
magnetic susceptibility of the complex.

Method Use the data and eqn 18C.10 to calculate the molar 
magnetic susceptibility. Then use the values of χm and Vm, and 
eqn 18C.8 to calculate the volume magnetic susceptibility.

Answer First note that the constants can be collected into the 
term:

N g
k

A e B m K mol
2

0
2

6 3 1 1

3
6 3001 10

μ μ = × − − −.

Consequently eqn 18C.10 becomes

χm K
m mol= × × +− −6 3001 10

16 3 1.
( )

/
S S
T

Substitution of the data with S = 3
2  gives

χm m mol m mol= × ×
+

= ×− − − −6 3001 10
1

298
7 93 106

3
2

3
2 3 1 8 3 1.

( )
.

If follows from eqn 18C.8 that, to obtain the volume magnetic 
susceptibility, the molar susceptibility is divided by the molar 
volume Vm = 61.7 cm3 mol−1 = 6.17 × 10−5 m3 mol−1 and

χ χ= = ×
×

= ×
− −

− −
−m

m

m mol
m molV

7 93 10
6 17 10

1 29 10
8 3 1

5 3 1
3.

.
.

Self-test 18C.5 Repeat the calculation for a complex with five 
unpaired electrons, molar mass 322.4 g mol−1, and a mass den-
sity of 2.87 g cm−3 at 273 K.

Answer: χm = 2.02 × 10−7 m3 mol−1; χ = 1.79 × 10−3

 (18C.10a)Spin 
contribution

molar magnetic 
susceptibility

(a)

(b)

(c)

Figure 18C.14 (a) In a paramagnetic material, the electron 
spins are aligned at random in the absence of an applied 
magnetic field. (b) In a ferromagnetic material, the electron 
spins are locked into a parallel alignment over large  
domains. (c) In an antiferromagnetic material, the electron 
spins are locked into an antiparallel arrangement. The  
latter two arrangements survive even in the absence of an 
applied field.
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(c) Magnetic properties of superconductors

Superconductors have unique magnetic properties. Some super-
conductors, classed as Type I, show abrupt loss of supercon-
ductivity when an applied magnetic field exceeds a critical value 
Hc characteristic of the material. It is observed that the value of 
Hc depends on temperature and Tc as

H Hc c
c

( ) ( )T
T
T

= −





0 1
2

2

 
 dependence of Hc on Tc  (18C.11)

where Hc(0) is the value of Hc as T → 0.

Type I superconductors are also completely diamagnetic 
below Hc, meaning that the magnetic field does not penetrate 
into the material. This complete exclusion of a magnetic field 
from a material is known as the Meissner effect, which can 
be demonstrated by the levitation of a superconductor above 
a magnet. Type II superconductors, which include the HTSCs, 
show a gradual loss of superconductivity and diamagnetism 
with increasing magnetic field.

Checklist of concepts

☐ 1. Uniaxial stress is a simple compression or extension in 
one direction.

☐ 2. Hydrostatic stress is a stress applied simultaneously in 
all directions, as in a body immersed in a fluid.

☐ 3. A pure shear is a stress that tends to push opposite faces 
of the sample in opposite directions.

☐ 4. A sample subjected to a small stress typically undergoes 
elastic deformation.

☐ 5. The response of a solid to an applied stress is summa-
rized by the Young’s modulus, the bulk modulus, the 
shear modulus, and Poisson’s ratio.

☐ 6. The differing rheological characteristics of metals can 
be traced to the presence of slip planes.

☐ 7. Electronic conductors are classified as metallic conduc-
tors or semiconductors according to the temperature 
dependence of their conductivities.

☐ 8. Semiconductors are classified as p-type or n-type 
according to whether conduction is due to holes in the 
valence band or electrons in the conduction band.

☐ 9. An insulator is a semiconductor with a very low electri-
cal conductivity.

☐ 10. A superconductor conducts electricity without resist-
ance below a critical temperature Tc.

☐ 11. A Cooper pair is a pair of electrons that exists on 
account of the indirect electron–electron interactions 
mediated by the nuclei of the atoms in the lattice.

☐ 12. A diamagnetic material moves out of a magnetic field; 
it has a negative magnetic susceptibility.

☐ 13. A paramagnetic material moves into a magnetic field; 
it has a positive magnetic susceptibility.

☐ 14. The Curie law describes the temperature dependence of 
the magnetic susceptibility.

☐ 15. Ferromagnetism is the cooperative alignment of elec-
tron spins in a material and gives rise to strong perma-
nent magnetization.

☐ 16. Antiferromagnetism results from alternating spin ori-
entations in a material and leads to weak magnetization.

☐ 17. Temperature-independent paramagnetism arises 
from induced electron currents that make use of excited 
states of molecules.

Example 18C.2 Calculating the temperature at which a 
material becomes superconducting

Lead has Tc = 7.19 K and Hc(0) = 63.9 kA m−1. At what tempera-
ture does lead become superconducting in a magnetic field of 
strength 20 kA m−1?

Method Rearrange eqn 18C.11 and use the data to cal-
culate the temperature at which the substance becomes 
superconducting.

Answer Rearrangement of eqn 18C.11 gives

T T
T= −



c

c

c
1

0

1 2H
H

( )
( )

/

and substitution of the data gives

T = × −
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−

−7 19 1
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63 9
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1

1 2

.
.

.
/

K
kA m
kA m

K

We conclude that lead becomes superconducting at tempera-
tures below 6.0 K.

Self-test 18C.6 Tin has Tc = 3.72 K and Hc(0) = 25 kA m−1. At 
what temperature does tin become superconducting in a mag-
netic field of strength 15 kA m−1?

Answer: 2.4 K
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Checklist of equations

Property Equation Comment Equation number

Young’s modulus E = normal stress/normal strain Definition 18C.1a

Bulk modulus K = pressure/fractional change in volume Definition 18C.1b

Shear modulus G = shear stress/shear strain Definition 18C.1c

Poisson’s ratio νP = transverse strain/normal strain Definition 18C.2

Fermi–Dirac distribution f(E) = 1/{e(E−μ)/kT + 1} μ is the chemical potential 18C.6

Magnetization M = χH Definition 18C.7

Molar magnetic susceptibility χm = χVm Definition 18C.8

Magnetic moment m = ge{s(s + 1)}1/2μB μB = e/2me 18C.9

Molar magnetic susceptibility χ µ µm A e B= +{ ( )}/N g S S kT2
0

2 1 3 Spin contribution 18C.10a

Curie law χ µ µm A e B/= = +C T C N g S S k, ( )/2
0

2 1 3 Paramagnetism 18C.10b

Dependence of Hc on Tc H Hc c c/( ) ( )( )T T T= −0 1 2 2 Empirical 18C.11
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18D the optical properties of solids

In this Topic we explore the consequences of interactions 
between electromagnetic radiation and solids. Our focus is 
on the origins of phenomena that are the basis of the design 
of a variety of useful devices, such as lasers and light-emitting 
diodes.

18D.1 Light absorption by excitons  
in molecular solids

Topic 12A explains the factors that determine the energy and 
intensity of light absorbed by isolated atoms and molecules in 
the gas phase and in solution. Here we consider the effects on 
their electronic absorption spectra that result from bringing 
the atoms or molecules together to form a solid.

Consider an electronic excitation of a molecule (or an ion) 
in a crystal. If the excitation corresponds to the removal of an 
electron from one orbital of a molecule and its elevation to an 
orbital of higher energy, then the excited state of the molecule 
can be envisaged as the coexistence of an electron and a hole. 
This electron–hole pair, which behaves as a particle-like exci-
ton, migrates from molecule to molecule in the crystal (Fig. 
18D.1). A migrating excitation of this kind is called a Frenkel 
exciton. Frenkel excitons are more common in molecular sol-
ids. The electron and hole can also be on different molecules, 
but in each other’s vicinity. A migrating excitation of this kind, 
which is now spread over several molecules (more usually 
ions), is called a Wannier exciton. Exciton formation causes 
spectral lines to shift, split, and change intensity.

The migration of a Frenkel exciton (the only type we con-
sider) implies that there is an interaction between the species 
that constitute the crystal, for otherwise the excitation on one 
unit could not move to another. This interaction affects the 
energy levels of the system. The strength of the interaction also 
governs the rate at which an exciton moves through the crystal: 
a strong interaction results in fast migration and a vanishingly 
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18d.1 Light absorption by excitons in molecular  
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semiconductors 775

brief illustration 18d.1: the optical properties  
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and diode lasers 776

18d.4 Nonlinear optical phenomena 776
Checklist of concepts 776

➤➤ Why do you need to know this material?
The optical properties of solids are of ever increasing 
importance in modern technology, not only for 
the generation of light but for the propagation and 
manipulation of information. You need to be aware of 
these properties to understand and contribute to the 
development of new optical technologies.

➤➤ What is the key idea?
The optical properties of solids stem from electronic 
transitions between the available orbitals in the material 
and the interaction between the transition dipoles.

➤➤ What do you need to know already?
You need to be familiar with basic properties of 
electromagnetic fields (Foundations C) and bonding 
arrangements in solids (Topic 18B), especially the band 
structure of solids. The Topic draws on the factors 
that determine the absorption of light by atoms and 
molecules (especially Topic 12A) and the operation of 
lasers (Topic 13C).

Figure 18D.1 The electron–hole pair shown on the left can 
migrate through a solid lattice as the excitation hops from 
molecule to molecule. The mobile excitation is called an 
exciton.
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small interaction leaves the exciton localized on its original 
molecule. The specific mechanism of interaction that leads 
to exciton migration is the interaction between the transition 
dipole moments of the excitation (Topic 12A). Thus, an elec-
tric dipole transition in a molecule is accompanied by a shift 
of charge, and the transient dipole exerts a force on an adjacent 
molecule. The latter responds by shifting its charge. This pro-
cess continues and the excitation migrates through the crystal.

The energy shift arising from the interaction between transi-
tion dipoles can be understood in terms of their electrostatic 
interaction. As we see in the following Justification, an all-
parallel arrangement of the transition dipoles (Fig. 18D.2a) is 
energetically unfavourable, so the absorption occurs at a higher 
frequency than in the isolated molecule. Conversely, a head-to-
tail alignment of transition dipoles (Fig. 18D.2b) is energeti-
cally favourable, and the transition occurs at a lower frequency 
than in the isolated molecules.

It follows from this discussion that, when 0° ≤ θ < 54.7°, the 
frequency of exciton absorption is lower than the correspond-
ing absorption frequency for the isolated molecule (a red shift 
in the spectrum of the solid with respect to that of the isolated 
molecule). Conversely, when 54.7° < θ  ≤ 90°, the frequency of 
exciton absorption is higher than the corresponding absorption 
frequency for the isolated molecule (a blue shift in the spectrum 
of the solid with respect to that of the isolated molecule). In the 
special case θ  = 54.7° the solid and the isolated molecule have 
absorption lines at the same frequency.

If there are N molecules per unit cell, there are N exciton 
bands in the spectrum (if all of them are allowed). The splitting 
between the bands is the Davydov splitting. To understand the 
origin of the splitting, consider the case N = 2 with the molecules 
arranged as in Fig. 18D.3 and suppose that the transition dipoles 
are along the length of the molecules. The radiation stimulates 
the collective excitation of the transition dipoles that are in-
phase between neighbouring unit cells. Within each unit cell 
the transition dipoles may be arrayed in the two different ways 
shown in the illustration. The two orientations correspond to 
different interaction energies, with interaction being repulsive 
in one and attractive in the other, so the two transitions appear 
in the spectrum at two bands of different frequencies. The mag-
nitude of the Davydov splitting is determined by the energy of 
interaction between the transition dipoles within the unit cell.

Justification 18D.1 The energy of interaction  
of transition dipoles

The potential energy of interaction between two parallel 
electric dipole moments μ1 and μ2 separated by a distance r 
is V = μ1μ2(1 − 3 cos2θ)/4πε0r3, where the angle θ is defined in 
1 (Topic 16B). We see that θ = 0° for a head-to-tail alignment 
and θ = 90° for a parallel alignment. It follows that V < 0 (an 
attractive interaction) for 0° ≤ θ < 54.7°, V = 0 when θ = 54.7° 
(for then 1 − 3 cos2θ = 0), and V > 0 (a repulsive interaction) for 
54.7° < θ  ≤ 90°. This result is expected on the basis of qualita-
tive arguments. In a head-to-tail arrangement, the interaction 
between the region of partial positive charge in one molecule 
and the region of partial negative charge in the other mol-
ecule is attractive. By contrast, in a parallel arrangement, 
the molecu lar interaction is repulsive because of the close 
approach of regions of partial charge with the same sign.

µ1

µ2
θ

r

1

ν

ν

(a)

(b)

Figure 18D.2 (a) The alignment of transition dipoles (the 
yellow arrows) is energetically unfavourable, and the exciton 
absorption is shifted to higher energy (higher frequency). (b) 
The alignment is energetically favourable for a transition in this 
orientation, and the exciton band occurs at lower frequency 
than in the isolated molecules.

(a)

(b)
ν

(a)(b)

Davydov splitting

Figure 18D.3 When the transition moments within a unit cell 
lie in different relative directions, as depicted in (a) and (b), the 
energies of the transitions are shifted and give rise to the two 
bands labelled (a) and (b) in the spectrum. The separation of 
the bands is the Davydov splitting.
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18D.2 Light absorption by metals  
and semiconductors

Now we turn our attention to metallic conductors and semi-
conductors. Again we need to consider the consequences of 
interactions between particles, in this case atoms, which are 
now so strong that we need to abandon arguments based pri-
marily on van der Waals interactions in favour of a full molecu-
lar orbital treatment, the band model of Topic 18B.

Consider again Fig. 18C.5, reproduced here as Fig. 18D.4, 
which shows bands in an idealized metallic conductor. The 
absorption of a photon can excite electrons from the occupied 
levels to the unoccupied levels. There is a near continuum of 
unoccupied energy levels above the Fermi level, so we expect to 
observe absorption over a wide range of frequencies. In metals, 
the bands are sufficiently wide that radiation from the radio-
frequency to the middle of the ultraviolet region of the elec-
tromagnetic spectrum is absorbed. Metals are transparent to 
very high-frequency electromagnetic radiation, such as X-rays 
and γ-rays. Because this range of absorbed frequencies includes 
the entire visible spectrum, we might therefore expect all met-
als to appear black. However, we know that metals are lustrous 
(that is, they reflect light) and some are coloured (that is, they 
absorb light of only certain wavelengths), so we need to extend 
our model.

To explain the lustrous appearance of a smooth metal sur-
face, we need to realize that the absorbed energy can be re-
emitted very efficiently as light, with only a small fraction of 

the energy being released to the surroundings as heat. Because 
the atoms near the surface of the material absorb most of the 
radiation, emission also occurs primarily from the surface. In 
essence, if the sample is excited with visible light, then elec-
trons near the surface are driven into oscillation at the same 
frequency, and visible light will be emitted from the surface, so 
accounting for the lustre of the material.

The perceived colour of a metal depends on the frequency 
range of reflected light which, in turn, depends on the freq-
uency range of light that can be absorbed and, by extension, on 
the band structure. Silver reflects light with nearly equal effi-
ciency across the visible spectrum because its band structure 
has many unoccupied energy levels that can be populated by 
absorption of, and depopulated by emission of, visible light. 
On the other hand, copper has its characteristic colour because 
it has relatively fewer unoccupied energy levels that can be 
excited with violet, blue, and green light. The material reflects at 
all wavelengths, but more light is emitted at lower frequencies 
(corresponding to yellow, orange, and red). Similar arguments 
account for the colours of other metals, such as the yellow of 
gold. The colour of gold, incidentally, can be accounted for only 
by including relativistic effects in the calculation of its band 
structure.

Now consider semiconductors. We have already seen that 
promotion of electrons from the conduction to the valence 
band of a semiconductor can be the result of thermal excitation, 
if the band gap Eg is comparable to the energy that can be sup-
plied by heating. In some materials, the band gap is very large 
and electron promotion can occur only by excitation with elec-
tromagnetic radiation. However, we see from Fig. 18D.5 that 
there is a frequency νmin = Eg/h below which light absorption 
cannot occur. Above this frequency threshold, a wide range of 
frequencies can be absorbed by the material, as in a metal.

Brief illustration 18D.1 The optical properties  
of a semiconductor

The energy of the band gap in semiconductor cadmium sulfide 
(CdS) is 2.4 eV (equivalent to 3.8 × 10−19 J). It follows that the 
minimum electronic absorption frequency is

min
J

J
s= ×

×
= ×

−

−
−3 8 10

6 626 10
5 8 10

19

34
14 1.

.
.

This frequency, of 580 THz, corresponds to a wavelength of 
520 nm (green light). Lower frequencies, corresponding to yel-
low, orange, and red, are not absorbed and consequently CdS 
appears yellow-orange.

Self-test 18D.1 Predict the colours of the following materials, 
given their band-gap energies (in parentheses): GaAs (1.43 eV), 
HgS (2.1 eV), and ZnS (3.6 eV).

Answer: Black, red, and colourless

E
n
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g

y

Occupied levels

Unoccupied levels

Fermi level

Figure 18D.4 When N electrons occupy a band of N orbitals, it 
is only half full and the electrons near the Fermi level (the top of 
the filled levels) are mobile.

E
n

er
g

y

Conduction
band

Valence
band

Band
gap, Eg

Figure 18D.5 In some materials, the band gap Eg is very large 
and electron promotion can occur only by excitation with 
electromagnetic radiation.
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18D.3 Light-emitting diodes  
and diode lasers

The unique electrical properties of p–n junctions between 
semiconductors can be put to good use in optical devices. In 
some materials, most notably gallium arsenide, GaAs, energy 
from electron–hole recombination is released not as heat but 
is carried away by photons as electrons move across the junc-
tion under forward bias. Practical light-emitting diodes of this 
kind are widely used in electronic displays. The wavelength of 
emitted light depends on the band gap of the semiconductor. 
Gallium arsenide itself emits infrared light, but its band gap is 
widened by incorporating phosphorus, and a material of com-
position approximately GaAs0.6P0.4 emits light in the red region 
of the spectrum.

A light-emitting diode is not a laser, because neither a res-
onance cavity nor stimulated emission is involved. In diode 
lasers, light emission due to electron–hole recombination is 
employed as the basis of laser action. The population inversion 
can be sustained by sweeping away the electrons that fall into 
the holes of the p-type semiconductor, and a resonant cavity can 
be formed by using the high refractive index of the semicon-
ducting material and cleaving single crystals so that the light is 
trapped by the abrupt variation of refractive index. One widely 
used material is Ga1–xAlxAs, which produces infrared laser radi-
ation and is widely used in compact-disc (CD) players.

High-power diode lasers are also used to pump other lasers. 
One example is the pumping of Nd:YAG lasers (Topic 13C) by 
Ga0.91Al0.09As/Ga0.7Al0.3As diode lasers. The Nd:YAG laser is 
often used to pump yet another laser, such as a Ti:sapphire laser 
(Topic 13C). As a result, it is now possible to construct a laser 
system for steady-state or time-resolved spectroscopy entirely 
out of solid-state components.

18D.4 Nonlinear optical phenomena

Nonlinear optical phenomena arise from changes in the optical 
properties of a material in the presence of an intense electric 

field from electromagnetic radiation. In frequency doubling, 
or second harmonic generation, an intense laser beam is con-
verted to radiation with twice (and in general a multiple) of its 
initial frequency as it passes through a suitable material. It fol-
lows that frequency doubling and tripling of a Nd:YAG laser, 
which emits radiation at 1064 nm (Topic 13C), produce green 
light at 532 nm and ultraviolet radiation at 355 nm, respectively.

We can account for frequency doubling by examining how 
a substance responds nonlinearly to incident radiation of fre-
quency ω = 2πν. Radiation of a particular frequency arises from 
oscillations of an electric dipole at that frequency and the inci-
dent electric field E induces an electric dipole of magnitude μ, 
in the substance. At low light intensity, most materials respond 
linearly, in the sense that μ = αE, where α is the polarizability 
(Topic 16A). At high light intensity, the hyperpolarizability β 
of the material becomes important (Topic 16B) and we write.

µ α β= + +…E E1
2

2

 

The nonlinear term βE2 can be expanded as follows if we sup-
pose that the incident electric field is E0 cos ωt:

β β β ωωE E E2
0
2 2 1

2 0
2 1 2= = +cos t t( cos )  (18D.2)

Hence, the nonlinear term contributes an induced electric 
dipole that oscillates at the frequency 2ω and that can act as a 
source of radiation of that frequency. Common materials that 
can be used for frequency doubling in laser systems include 
crystals of potassium dihydrogenphosphate (KH2PO4), lithium 
niobate (LiNbO3), and β-barium borate (β-BaB2O4). Another 
important nonlinear optical phenomenon is the optical Kerr 
effect discussed in Topic 13C.

In addition to being useful laboratory tools, nonlinear opti-
cal materials are also finding many applications in the telecom-
munications industry, which is becoming ever more reliant on 
optical signals transmitted through optical fibres to carry voice 
and data. Judicious use of nonlinear phenomena leads to more 
ways in which the properties of optical signals, and hence the 
information they carry, can be manipulated.

Checklist of concepts

☐ 1. The optical properties of molecular solids can be 
understood in terms of the formation and migration of 
excitons.

☐ 2. The spectroscopic properties of metallic conductors 
and semiconductors can be understood in terms of the 
photon-induced promotion of electrons from valence 
bands to conduction bands.

☐ 3. The unique electronic properties of p–n junctions 
between semiconductors can be put to good use in such 
optical devices as light-emitting diodes and diode 
lasers.

☐ 4. Nonlinear optical phenomena arise from changes in 
the optical properties of a material in the presence of 
intense electromagnetic radiation.

 (18D.1)Induced dipole moment in 
terms of the hyperpolarizability
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chaPter 18  Solids

TOPIC 18A crystal structure

Discussion questions
18A.1 Describe the relationship between the space lattice and unit cell.

18A.2 Explain how planes of lattice points are labelled.

18A.3 Describe the procedure for identifying the type and size of a cubic unit 
cell.

18A.4 Discuss what is meant by ‘scattering factor’. How is it related to the 
number of electrons in the atoms scattering X-rays?

18A.5 What is meant by a systematic absence? How do they arise?

18A.6 Describe the consequences of the phase problem in determining 
structure factors and how the problem is overcome.

Exercises
18A.1(a) The orthorhombic unit cell of NiSO4 has the dimensions a = 634 pm, 
b = 784 pm, and c = 516 pm, and the density of the solid is estimated as 3.9 g cm−3. 
Determine the number of formula units per unit cell and calculate a more 
precise value of the density.
18A.1(b) An orthorhombic unit cell of a compound of molar mass 
135.01 g mol−1 has the dimensions a = 589 pm, b = 822 pm, and c = 798 pm. 
The density of the solid is estimated as 2.9 g cm−3. Determine the number of 
formula units per unit cell and calculate a more precise value of the density.

18A.2(a) Find the Miller indices of the planes that intersect the 
crystallographic axes at the distances (2a, 3b, 2c) and (2a, 2b, ∞c).
18A.2(b) Find the Miller indices of the planes that intersect the 
crystallographic axes at the distances (−a, 2b, −c) and (a, 4b, −4c).

18A.3(a) Calculate the separations of the planes {112}, {110}, and {224} in a 
crystal in which the cubic unit cell has side 562 pm.
18A.3(b) Calculate the separations of the planes {123}, {222}, and {246} in a 
crystal in which the cubic unit cell has side 712 pm.

18A.4(a) The unit cells of SbCl3 are orthorhombic with dimensions a = 812 pm, 
b = 947 pm, and c = 637 pm. Calculate the spacing, d, of the {321} planes.
18A.4(b) An orthorhombic unit cell has dimensions a = 769 pm, b = 891 pm, 
and c = 690 pm. Calculate the spacing, d, of the {312} planes.

18A.5(a) The angle of a Bragg reflection from a set of crystal planes separated 
by 99.3 pm is 20.85°. Calculate the wavelength of the X-rays.
18A.5(b) The angle of a Bragg reflection from a set of crystal planes separated 
by 128.2 pm is 19.76°. Calculate the wavelength of the X-rays.

18A.6(a) What are the values of the angle θ of the first three diffraction lines of 
bcc iron (atomic radius 126 pm) when the X-ray wavelength is 72 pm?
18A.6(b) What are the values of the angle θ of the first three diffraction lines of 
fcc gold (atomic radius 144 pm) when the X-ray wavelength is 129 pm?

18A.7(a) Potassium nitrate crystals have orthorhombic unit cells of dimensions 
a = 542 pm, b = 917 pm, and c = 645 pm. Calculate the values of θ for the (100), 
(010), and (111) reflections using radiation of wavelength 154 pm.
18A.7(b) Calcium carbonate crystals in the form of aragonite have 
orthorhombic unit cells of dimensions a = 574.1 pm, b = 796.8 pm, and 
c = 495.9 pm. Calculate the values of θ for the (100), (010), and (111) 
reflections using radiation of wavelength 83.42 pm.

18A.8(a) Radiation from an X-ray source consists of two components of 
wavelengths 154.433 pm and 154.051 pm. Calculate the difference in glancing 
angles (2θ) of the diffraction lines arising from the two components in a 
diffraction pattern from planes of separation 77.8 pm.
18A.8(b) Consider a source that emits X-radiation at a range of wavelengths, 
with two components of wavelengths 93.222 and 95.123 pm. Calculate the 

separation of the glancing angles (2θ) arising from the two components in a 
diffraction pattern from planes of separation 82.3 pm.

18A.9(a) What is the value of the scattering factor in the forward direction for 
Br−?
18A.9(b) What is the value of the scattering factor in the forward direction for 
Mg2+?

18A.10(a) The coordinates, in units of a, of the atoms in a primitive cubic unit 
cell are (0,0,0), (0,1,0), (0,0,1), (0,1,1), (1,0,0), (1,1,0), (1,0,1), and (1,1,1).
Calculate the structure factors Fhkl when all the atoms are identical.
18A.10(b) The coordinates, in units of a, of the atoms in a body-centred cubic 
unit cell are (0,0,0), (0,1,0), (0,0,1), (0,1,1), (1,0,0), (1,1,0), (1,0,1), (1,1,1), and 
( , , )1

2
1
2

1
2

. Calculate the structure factors Fhkl when all the atoms are identical.

18A.11(a) Calculate the structure factors for a face-centred cubic structure (C) 
in which the scattering factors of the ions on the two faces are twice that of the 
ions at the corners of the cube.
18A.11(b) Calculate the structure factors for a body-centred cubic structure 
in which the scattering factor of the central ion is twice that of the ions at the 
corners of the cube.

18A.12(a) In an X-ray investigation, the following structure factors were 
determined (with F−h00 = Fh00):

Construct the electron density along the corresponding direction.
18A.12(b) In an X-ray investigation, the following structure factors were 
determined (with F−h00 = Fh00):

Construct the electron density along the corresponding direction.
18A.13(a) Construct the Patterson synthesis from the information in Exercise 
18A.12(a).
18A.13(b) Construct the Patterson synthesis from the information in Exercise 
18A.12(b).

18A.14(a) In a Patterson synthesis, the spots correspond to the lengths and 
directions of the vectors joining the atoms in a unit cell. Sketch the pattern 
that would be obtained for a planar, triangular isolated BF3 molecule.
18A.14(b) In a Patterson synthesis, the spots correspond to the lengths and 
directions of the vectors joining the atoms in a unit cell. Sketch the pattern 
that would be obtained from the C atoms in an isolated benzene molecule.

h 0 1 2 3 4 5 6 7 8 9

Fh00 10 –10 8 –8 6 –6 4 –4 2 –2

h 0 1 2 3 4 5 6 7 8 9

Fh00 10 10 4 4 6 6 8 8 10 10
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18A.15(a) What speed should neutrons have if they are to have a wavelength 
of 65 pm?
18A.15(b) What speed should electrons have if they are to have a wavelength 
of 105 pm?

18A.16(a) Calculate the wavelength of neutrons that have reached thermal 
equilibrium by collision with a moderator at 350 K.
18A.16(b) Calculate the wavelength of electrons that have reached thermal 
equilibrium by collision with a moderator at 380 K.

Problems
18A.1 Although the crystallization of large biological molecules may not be as 
readily accomplished as that of small molecules, their crystal lattices are no 
different. Tobacco seed globulin forms face-centred cubic crystals with unit 
cell dimension of 12.3 nm and a mass density of 1.287 g cm−3. Determine its 
molar mass.

18A.2 Show that the volume of a monoclinic unit cell is V = abc sin β.

18A.3 Derive an expression for the volume of a hexagonal unit cell.

18A.4 Show that the volume of a triclinic unit cell of sides a, b, and c and 
angles α, β, and γ is

V abc= − − − +( ) /1 cos cos cos 2cos cos cos2 2 2α β γ α β γ 1 2
 

Use this expression to derive expressions for monoclinic and orthorhombic 
unit cells. For the derivation, it may be helpful to use the result from vector 
analysis that V = a·b × c and to calculate V2 initially. The compound Rb3TlF6 
has a tetragonal unit cell with dimensions a = 651 pm and c = 934 pm. Calculate 
the volume of the unit cell.

18A.5 The volume of a monoclinic unit cell is abc sin β (see Problem 18A.2). 
Naphthalene has a monoclinic unit cell with two molecules per cell and sides 
in the ratio 1.377:1:1.436. The angle β is 122.82° and the mass density of the 
solid is 1.152 g cm−3. Calculate the dimensions of the cell.

18A.6 Fully crystalline polyethylene has its chains aligned in an 
orthorhombic unit cell of dimensions 740 pm × 493 pm × 253 pm. There are 
two repeating CH2CH2 units per unit cell. Calculate the theoretical mass 
density of fully crystalline polyethylene. The actual density ranges from 0.92 
to 0.95 g cm−3.

18A.7‡ B.A. Bovenzi and G.A. Pearse, Jr. (J. Chem. Soc. Dalton Trans., 
2793 (1997)) synthesized coordination compounds of the tridentate 
ligand pyridine-2,6-diamidoxime (1, C7H9N5O2). The compound they 
isolated from the reaction of the ligand with CuSO4(aq) did not contain a 
[Cu(C7H9N5O2)2]2+ complex cation as expected. Instead, X-ray diffraction 
analysis revealed a linear polymer of formula [{Cu(C7H9N5O2)(SO4)}·2H2O]n, 
which features bridging sulfate groups. The unit cell was primitive monoclinic 
with a = 1.0427 nm, b = 0.8876 nm, c = 1.3777 nm, and β = 93.254°. The mass 
density of the crystals is 2.024 g cm−3. How many monomer units are there in 
the unit cell?

N
N
H

O

N
H

O
HO OH

1 Pyridine-2,6-diamidoxime

18A.8‡ D. Sellmann et al. (Inorg. Chem. 36, 1397 (1997)) describe the synthesis 
and reactivity of the ruthenium nitrido compound [N(C4H9)4][Ru(N)
(S2C6H4)2]. The ruthenium complex anion has the two 1,2-benzenedithiolate 
ligands (2) at the base of a rectangular pyramid and the nitrido ligand at the 
apex. Compute the mass density of the compound given that it crystallizes 
with an orthorhombic unit cell with a = 3.6881 nm, b = 0.9402 nm, and 
c = 1.7652 nm and eight formula units per cell. The replacement of the 
ruthenium with osmium results in a compound with the same crystal 
structure and a unit cell with a volume less than 1 per cent larger. Estimate the 
mass density of the osmium analogue.

S–

S–

2 1,2-Benzenedithiolate ion

18A.9 Show that the separation of the {hkl} planes in an orthorhombic crystal 
with sides a, b, and c is given by eqn 18A.1c.

18A.10 In the early days of X-ray crystallography there was an urgent need 
to know the wavelengths of X-rays. One technique was to measure the 
diffraction angle from a mechanically ruled grating. Another method was 
to estimate the separation of lattice planes from the measured density of a 
crystal. The mass density of NaCl is 2.17 g cm−3 and the (100) reflection using 
radiation of a certain wavelength occurred at 6.0°. Calculate the wavelength of 
the X-rays.

18A.11 The element polonium crystallizes in a cubic system. Bragg reflections, 
with X-rays of wavelength 154 pm, occur at sin θ = 0.225, 0.316, and 0.388 
from the {100}, {110}, and {111} sets of planes. The separation between the 
sixth and seventh lines observed in the diffraction pattern is larger than 
between the fifth and sixth lines. Is the unit cell primitive, body centred, or 
face centred? Calculate the unit cell dimension.

18A.12 Elemental silver reflects X-rays of wavelength 154.18 pm at angles of 
19.076°, 22.171°, and 32.256°. However, there are no other reflections at angles 
of less than 33°. Assuming a cubic unit cell, determine its type and dimension. 
Calculate the mass density of silver.

18A.13 In their book X-rays and crystal structures (which begins ‘It is now 
two years since Dr. Laue conceived the idea…’) the Braggs give a number of 
simple examples of X-ray analysis. For instance, they report that the reflection 
from {100} planes in KCl occurs at 5.38°, but for NaCl it occurs at 6.00° for 
X-rays of the same wavelength. If the side of the NaCl unit cell is 564 pm, 
what is the side of the KCl unit cell? The mass densities of KCl and NaCl are 
1.99 g cm−3 and 2.17 g cm−3, respectively. Do these values support the X-ray 
analysis?

18A.14 Use mathematical software to draw a graph of the scattering factor f 
against (sin θ)/λ for an atom of atomic number Z for which ρ(r) = 3Z/4πR3 for 
0 ≤ r ≤ R and ρ(r) = 0 for r > R, with R a parameter that represents the radius of 
the atom. Explore how f varies with Z and R.

18A.15 The coordinates of the four I atoms in the unit cell of KIO4 are 
( , , ),( , , ), , , , , , )0 0 0 0 01

2
1
2

1
2

1
2

1
2

1
2

3
4

( ) ( . By calculating the phase of the I reflection 
in the structure factor, show that the I atoms contribute no net intensity to the 
(114) reflection.

18A.16 The coordinates, as multiples of a, of the A atoms, with scattering 
factor fA, in a cubic lattice are (0,0,0), (0,1,0), (0,0,1), (0,1,1), (1,0,0), (1,1,0), 
(1,0,1), and (1,1,1). There is also a B atom, with scattering factor fB, at 
( )1

2
1
2

1
2

, , . Calculate the structure factors Fhkl and predict the form of the 
diffraction pattern when (a) fA = f, fB = 0, (b) f fB = 1

2 A, and (c) fA = fB = f.

18A.17 Here we explore electron diffraction patterns. (a) Predict from the 
Wierl equation, eqn 18A.9, the positions of the first maximum and first 
minimum in the neutron and electron diffraction patterns of a Br2 molecule 
obtained with neutrons of wavelength 78 pm and electrons of wavelength 
4.0 pm. (b) Use the Wierl equation to predict the appearance of the electron 
diffraction pattern of CCl4 with an (as yet) undetermined CeCl bond length 

‡ These problems were supplied by Charles Trapp and Carmen Giunta.
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but of known tetrahedral symmetry. Take fCl = 17f and fC = 6f and note that 
R(Cl,Cl) = (8/3)1/2R(C,Cl). Plot I/f2 against positions of the maxima occurred 

at 3.17°, 5.37°, and 7.90° and minima occurred at 1.77°, 4.10°, 6.67°, and 9.17°. 
What is the C−Cl bond length in CCl4?

TOPIC 18B bonding in solids

Discussion questions
18B.1 In what respects is the hard-sphere model of metallic solids deficient? 18B.2 Describe the caesium chloride and rock salt structures in terms of the 

occupation of holes in expanded close-packed lattices.

Exercises
18B.1(a) Calculate the packing fraction for close-packed cylinders. (For a 
generalization of this Exercise, see Problem 18B.2.)
18B.1(b) Calculate the packing fraction for equilateral triangular rods stacked 
as shown in 3.

3

18B.2(a) Calculate the packing fractions of (i) a primitive cubic unit cell, (ii) a 
bcc unit cell, (iii) an fcc unit cell composed of identical hard spheres.
18B.2(b) Calculate the atomic packing factor for a face-centred (C) cubic unit 
cell.

18B.3(a) From the data in Table 18B.2 determine the radius of the smallest 
cation that can have (i) sixfold and (ii) eightfold coordination with  
the Cl− ion.
18B.3(b) From the data in Table 18B.2 determine the radius of the smallest 
cation that can have (i) sixfold and (ii) eightfold coordination with the 
Rb+ ion.

18B.4(a) Does titanium expand or contract as it transforms from hcp to bcc? 
The atomic radius of titanium is 145.8 pm in hcp but 142.5 pm in bcc.
18B.4(b) Does iron expand or contract as it transforms from hcp to bcc? The 
atomic radius of iron is 126 in hcp but 122 pm in bcc.

18B.5(a) Calculate the lattice enthalpy of CaO from the following data:

18B.5(b) Calculate the lattice enthalpy of MgBr2 from the following data:

Problems
18B.1 Calculate the atomic packing factor for diamond.

18B.2 Rods of elliptical cross-section with semi-minor and major axes a and b 
are close-packed as shown in 4. What is the packing fraction? Draw a graph of 
the packing fraction against the eccentricity ε of the ellipse. For an ellipse with 
semi-major axis a and semi-minor axis b, ε = (1 − b2/a2)1/2.

4

a
b

18B.3 The carbon–carbon bond length in diamond is 154.45 pm. If diamond 
were considered to be a close-packed structure of hard spheres with radii 
equal to half the bond length, what would be its expected mass density?  
The diamond lattice is face-centred cubic and its actual mass density is  
3.516 g cm−3. Can you explain the discrepancy?

18B.4 When energy levels in a band form a continuum, the density of states 
ρ(E), the number of levels in an energy range divided by the width of the 
range, may be written as ρ(E) = dk/dE, where dk is the change in the quantum 
number k and dE is the energy change. (a) Use eqn 18B.1 to show that

ρ β

α
β

( )
( )/

/
E

N

E

= − +

− −

















1 2

1
2

2 1 2

π

 
where k, N, α and β have the meanings described in Topic 18B. (b) Use this 
expression to show that ρ(E) becomes infinite as E approaches α ± 2β. That is, 

ΔH/(kJ mol−1)

Sublimation of Ca(s) +178
Ionization of Ca(g) to Ca2+(g) +1735
Dissociation of O2(g) +249
Electron attachment to O(g) −141
Electron attachment to O−(g) +844
Formation of CaO(s) from Ca(s) and O2(g) –635

ΔH/(kJ mol−1)

Sublimation of Mg(s) +148
Ionization of Mg(g) to Mg2+(g) +2187
Vaporization of Br2(l) +31
Dissociation of Br2(g) +193
Electron attachment to Br(g) −331
Formation of MgBr2(s) from Mg(s) and Br2(l) −524
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show that the density of states increases towards the edges of the bands in a 
one-dimensional metallic conductor.

18B.5 The treatment in Problem 18B.4 applies only to one-dimensional solids. In 
three dimensions, the variation of density of states is more like that shown in Fig. 
18.1. Account for the fact that in a three-dimensional solid the greatest density of 
states is near the centre of the band and the lowest density is at the edges.

18B.6 The energy levels of N atoms in the tight-binding Hückel approximation 
are the roots of a tridiagonal determinant (eqn 18B.1):

E
k

N
k Nk = + + = …α β2

1
1 2cos , , ,

π
 

If the atoms are arranged in a ring, the solutions are the roots of a ‘cyclic’ 
determinant:

E
k
N

k Nk = + = ± ± … ±α β2
2

0 1 2 1
2

cos , , , ,
π

 
(for N even). Discuss the consequences, if any, of joining the ends of an 
initially straight length of material.

18B.7 Verify that the radius ratio for (a) sixfold coordination is 0.414, and 
(b) for eightfold coordination is 0.732.

18B.8 Use the Born–Mayer equation for the lattice enthalpy and a Born–
Haber cycle to show that formation of CaCl is an exothermic process (the 
sublimation enthalpy of Ca(s) is 176 kJ mol−1). Show that an explanation 
for the nonexistence of CaCl can be found in the reaction enthalpy for the 
reaction 2 CaCl(s) → Ca(s) + CaCl2.

18B.9 Derive the Born–Mayer equation (eqn 18B.6) by calculating the energy 
at which d( ) dp pE E d+ =* / 0, with Ep and Ep

*  given by eqns 18B.4 and 18B.5, 
respectively.

18B.10 Suppose that ions are arranged in a (somewhat artificial) two-
dimensional lattice like the fragment shown in Fig. 18.2. Calculate the 
Madelung constant for this array.

TOPIC 18C mechanical, electrical, and magnetic properties of solids

Discussion questions
18C.1 Describe the characteristics of the Fermi–Dirac distribution. 18C.2 To what extent are the electric and magnetic properties of molecules 

analogous? How do they differ?

Exercises
18C.1(a) Poisson’s ratio for polyethene is 0.45. What change in volume takes 
place when a cube of polyethene of volume 1.0 cm3 is subjected to a uniaxial 
stress that produces a strain of 1.0 per cent?
18C.1(b) Poisson’s ratio for lead is 0.41. What change in volume takes place 
when a cube of lead of volume 1.0 dm3 is subjected to a uniaxial stress that 
produces a strain of 2.0 per cent?

18C.2(a) Is arsenic-doped germanium a p-type or n-type semiconductor?
18C.2(b) Is gallium-doped germanium a p-type or n-type semiconductor?

18C.3(a) The magnitude of the magnetic moment of CrCl3 is 3.81μB. How 
many unpaired electrons does the Cr possess?
18C.3(b) The magnitude of the magnetic moment of Mn2+ in its  
complexes is typically 5.3μB. How many unpaired electrons does the  
ion possess?

18C.4(a) Calculate the molar susceptibility of benzene given that its volume 
susceptibility is −7.2 × 10−7 and its mass density 0.879 g cm−3 at 25 °C.
18C.4(b) Calculate the molar susceptibility of cyclohexane given that its 
volume susceptibility is −7.9 × 10−7 and its mass density 811 kg m−3 at 25 °C.

18C.5(a) Data on a single crystal of MnF2 give χm = 0.1463 cm3 mol−1 at 
294.53 K. Determine the effective number of unpaired electrons in this 
compound and compare your result with the theoretical value.
18C.5(b) Data on a single crystal of NiSO4·7H2O give χm = 6.00 × 10−8 m3 mol−1 
at 298 K. Determine the effective number of unpaired electrons in this 
compound and compare your result with the theoretical value.

18C.6(a) Estimate the spin-only molar susceptibility of CuSO4·5H2O at 25 °C.
18C.6(b) Estimate the spin-only molar susceptibility of MnSO4·4H2O  
at 298 K.

etc.

+
–

Figure 18.2 Fragment of a two-dimensional lattice used as a model  
in Problem 18B.10.
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Figure 18.1 The variation of density of states in a three-dimensional 
solid.
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Problems
18C.1 For an isotropic substance, the moduli and Poisson’s ratio may be 
expressed in terms of two parameters λ and μ called the Lamé constants:

E K G= +
+ = + = = +

µ λ µ
λ µ

λ µ µ λ
λ µ

( )
( )

3 2 3 2
3 2

P
 

Use the Lamé constants to confirm the relations between G, K, and E given in 
eqn 18C.3.

18C.2 Refer to eqn 18C.6 and express f(E) as a function of the variables 
(E − μ)/μ and μ/kT. Then, using mathematical software, display the set of 
curves shown in Fig. 18C.6 as a single surface.

18C.3 In this and the following problem we explore further some of 
the properties of the Fermi–Dirac distribution, eqn 18C.6. For a three-
dimensional solid of volume V, it turns out that ρ(E) = CE1/2, with 
C = 4πV(2me/h2)3/2. Show that at T = 0,

f E E f E E( ) ( )= < = >1 for forμ μ0  
and deduce that μ(0) = (3N/8π)2/3(h2/2me), where N = N/V, the number 
density of electrons in the solid. Evaluate μ(0) for sodium (where each atom 
contributes one electron).

18C.4 By inspection of eqn 18C.6 and the expression for dN in eqn 18C.5 (and 
without attempting to evaluate integrals explicitly), show that in order for N 
to remain constant as the temperature is raised, the chemical potential must 
decrease in value from μ(0).

18C.5 In an intrinsic semiconductor, the band gap is so small that the Fermi–
Dirac distribution results in some electrons populating the conduction 
band. It follows from the exponential form of the Fermi–Dirac distribution 
that the conductance G, the inverse of the resistance (with units of siemens, 
1 S = 1 Ω−1), of an intrinsic semiconductor should have an Arrhenius-like 
temperature dependence, shown in practice to have the form G G E kT= −

0
2e g / , 

where Eg is the band gap. The conductance of a sample of germanium varied 
with temperature as indicated below. Estimate the value of Eg.

18C.6 A transistor is a semiconducting device that is commonly used either 
as a switch or an amplifier of electrical signals. Prepare a brief report on 

the design of a nanometre-sized transistor that uses a carbon nanotube as a 
component. A useful starting point is the work summarized by Tans, et al. 
(Nature 393, 49 (1998)).

18C.7‡ J.J. Dannenberg et al. (J. Phys. Chem. 100, 9631 (1996)) carried out 
theoretical studies of organic molecules consisting of chains of unsaturated 
four-membered rings. The calculations suggest that such compounds have 
large numbers of unpaired spins, and that they should therefore have unusual 
magnetic properties. For example, the lowest-energy state of the compound 
shown as 5 is computed to have S = 3, but the energies of S = 2 and S = 4 
structures are each predicted to be 50 kJ mol−1 higher in energy. Compute the 
molar magnetic susceptibility of these three low-lying levels at 298 K. Estimate 
the molar susceptibility at 298 K if each level is present in proportion to its 
Boltzmann factor (effectively assuming that the degeneracy is the same for all 
three of these levels).

5

18C.8 An NO molecule has thermally accessible electronically excited states. 
It also has an unpaired electron, and so may be expected to be paramagnetic. 
However, its ground state is not paramagnetic because the magnetic moment 
of the orbital motion of the unpaired electron almost exactly cancels the 
spin magnetic moment. The first excited state (at 121 cm−1) is paramagnetic 
because the orbital magnetic moment adds to, rather than cancels, the spin 
magnetic moment. The upper state has a magnetic moment of magnitude 
2μB. Because the upper state is thermally accessible, the paramagnetic 
susceptibility of NO shows a pronounced temperature dependence even near 
room temperature. Calculate the molar paramagnetic susceptibility of NO and 
plot it as a function of temperature.

18C.9‡ P.G. Radaelli et al. (Science 265, 380 (1994)) reported the synthesis and 
structure of a material that becomes superconducting at temperatures below 
45 K. The compound is based on a layered compound Hg2Ba2YCu2O8-δ, which 
has a tetragonal unit cell with a = 0.38606 nm and c = 2.8915 nm; each unit 
cell contains two formula units. The compound is made superconducting 
by partially replacing Y by Ca, accompanied by a change in unit cell volume 
by less than 1 per cent. Estimate the Ca content x in superconducting 
Hg2Ba2Y1 – xCaxCu2O7.55 given that the mass density of the compound is 
7.651 g cm−3.

TOPIC 18D the optical properties of solids

Discussion questions
18D.1 Explain the origin of Davydov splitting in the exciton bands of a crystal. 18D.2 Distinguish between light-emitting diodes and diode lasers.

Exercises
18D.1(a) The promotion of an electron from the valence band into the 
conduction band in pure TIO2 by light absorption requires a wavelength 
of less than 350 nm. Calculate the energy gap in electronvolts between the 
valence and conduction bands.

18D.1(b) The band gap in silicon is 1.12 eV. Calculate the maximum 
wavelength of electromagnetic radiation that results in promotion of electrons 
from the valence to the conduction band.

T/K 312 354 420

G/S 0.0847 0.429 2.86
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Problems
18D.1 Here we investigate quantitatively the spectra of molecular solids. 
We begin by considering a dimer, with each monomer having a single 
transition with transition dipole moment μmon and wavenumber mon.  We 
assume that the ground state wavefunctions are not perturbed as a result 
of dimerization, and then write the dimer excited state wavefunctions Ψi 
as linear combinations of the excited state wavefunctions ψ1 and ψ2 of 
the monomer: Ψi = cjψ1 + ckψ2. Now we write the hamiltonian matrix with 
diagonal elements set to the energy between the excited and ground state 
of the monomer (which, expressed as a wavenumber, is simply mon), and 
off-diagonal elements correspond to the energy of interaction between the 
transition dipoles. Using the arrangement discussed in 1 of Justification 18D.1, 
we write this interaction energy (as a wavenumber) as:

β µ
ε

θ= −mon cos
2

0
3

2

4
1 3

π hcr
( )

 
It follows that the hamiltonian matrix is

Ĥ =

















mon

mon

β

β  
The eigenvalues of the matrix are the dimer transition wavenumbers 1 and 
2 . The eigenvectors are the wavefunctions for the excited states of the dimer 

and have the form 
c

c
j

k







. (a) The intensity of absorption of incident radiation 

is proportional to the square of the transition dipole moment (Topic 12A). 
The monomer transition dipole moment is  µ ψ µψ ψ µψmon d d= ∫ = ∫1 0 2 0

* *τ τ,  

where ψ0 is the wavefunction of the monomer ground state. Assume that the 
dimer ground state may also be described by ψ0 and show that the transition 
dipole moment μi of each dimer transition is given by μi = μmon(cj + ck). 
(b) Consider a dimer of monomers with μmon = 4.00 D, mon

125 cm= −000 ,  
and r = 0.5 nm. How do the transition wavenumbers 1 and 2  vary with the 
angle θ ? The relative intensities of the dimer transitions may be estimated by 
calculating the ratio μ μ2

2
1
2/ . How does this ratio vary with the angle θ ? (c) Now 

expand the treatment given above to a chain of N monomers (N = 5, 10, 15, 
and 20), with μmon = 4.00 D, mon

125 cm= −000 , and r = 0.5 nm. For simplicity, 
assume that θ = 0 and that only nearest neighbours interact with interaction 
energy V. For example the hamiltonian matrix for the case N = 4 is

�H

V

V V

V V

V

=





















�

��

��

��









mon

mon

mon

mon

0 0

0

0

0 0  
How does the wavenumber of the lowest energy transition vary with size 
of the chain? How does the transition dipole moment of the lowest energy 
transition vary with the size of the chain?

18D.2 Show that if a substance responds nonlinearly to two sources of 
radiation, one of frequency ω1 and the other of frequency ω2, then it may 
give rise to radiation of the sum and difference of the two frequencies. This 
nonlinear optical phenomenon is known as frequency mixing and is used 
to expand the wavelength range of lasers in laboratory applications, such as 
spectroscopy and photochemistry.

Integrated activities
18.1 Calculate the thermal expansion coefficient, α = (∂V/∂T)p/V, of diamond 
given that the (111) reflection shifts from 22.0403° to 21.9664° on heating a 
crystal from 100 K to 300 K and 154.0562 pm X-rays are used.

18.2 Calculate the scattering factor for a hydrogenic atom of atomic number Z 
in which the single electron occupies (a) the 1s orbital, (b) the 2s orbital. Plot 

f as a function of (sin θ)/λ. Hint: Interpret 4πρ(r)r2 as the radial distribution 
function P(r).

18.3 Explore how the scattering factor of Problem 18.2 changes when the 
actual 1s wavefunction of a hydrogenic atom is replaced by a Gaussian 
function.
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Mathematical background 7 Fourier series and Fourier transforms

Some of the most versatile mathematical functions are the 
trigonometric functions sine and cosine. As a result, it is often 
very helpful to express a general function as a linear combina-
tion of these functions and then to carry out manipulations on 
the resulting series. Because sines and cosines have the form 
of waves, the linear combinations often have a straightforward 
physical interpretation. Throughout this discussion, the func-
tion f(x) is real.

MB7.1 Fourier series
A Fourier series is a linear combination of sines and cosines that 
replicates a periodic function:

f x a a
n x

L
b

n x
L

n

n n( ) cos sin= + +





=

∞

∑1
2 0

1

π π

 
(MB7.1)

A periodic function is one that repeats periodically, such that 
f(x + 2L) = f(x) where 2L is the period. Although it is perhaps 
not surprising that sines and cosines can be used to replicate 
continuous functions, it turns out that—with certain limita-
tions—they can also be used to replicate discontinuous func-
tions too. The coefficients in eqn MB7.1 are found by making 
use of the orthogonality of the sine and cosine functions

sin cos
m x

L
m x

L
x

L

L π π
d =

−∫ 0
 

(MB7.2a)

and the integrals
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(MB7.2b)

where δmn = 1 if m = n and 0 if m ≠ n. Thus, multiplication of both 
sides of eqn MB7.1 by cos(kπx/L) and integration from –L to L 
gives an expression for the coefficient ak, and multiplication by 
sin (kπx/L) and integration likewise gives an expression for bk:
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(MB7.3)
MB7.2 Fourier transforms
The Fourier series in eqn MB7.1 can be expressed in a more 
succinct manner if we allow the coefficients to be complex 
numbers and make use of de Moivre’s relation

e isinin x L n x
L

n x
L

π π π/ cos= 





+ 



  

(MB7.4)

for then we may write

f x c c
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f x x
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(MB7.5)

Brief illustration MB7.1 A square wave

Figure MB7.1 shows a graph of a square wave of amplitude A 
that is periodic between –L and L. The mathematical form of 
the wave is

f x
A L x

A x L
( )=

− − ≤ <
+ ≤ <





0

0

The coefficients a are all zero because f(x) is antisymmetric 
( f(–x) = –f(x)) whereas all the cosine functions are symmetric 
(cos(–x) = cos(x)) and so cosine waves make no contribution to 
the sum. The coefficients b are obtained from

b
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The final expression has been formulated to acknowledge that 
the two integrals cancel when k is even but add together when 
k is odd. Therefore,

f x
A

k
k x

L
A

n
n x

L
k

N k

n

N

( )
( )

sin sin
( )= − − = −

−

= =
∑ ∑2 1 1 4 1

2 1
2 1

1 1
π

π
π

π

with N → ∞. The sum over n is the same as the sum over k; in 
the latter, terms with k even are all zero. This function is plot-
ted in Fig. MB7.1 for two values of N to show how the series 
becomes more faithful to the original function as N increases.

0

1

0 1–1

–1

f(
x)

/A

x/L

N = 100

N = 5

Figure MB7.1 A square wave and two successive 
approximations by Fourier series (N = 5 and N = 100). The 
inset shows a magnification of the N = 100 approximation.
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This complex formalism is well suited to the extension of this 
discussion to functions with periods that become infinite. If 
a period is infinite, then we are effectively dealing with a non-
periodic function, such as the decaying exponential function e−x.

We write δk = π/L and consider the limit as L → ∞ and there-
fore δk → 0: that is, eqn MB7.5 becomes
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(MB7.6)

In the last line we have anticipated that the limits of the integral 
will become infinite. At this point we should recognize that a for-
mal definition of an integral is the sum of the value of a function 
at a series of infinitely spaced points multiplied by the separation 
of each point (Fig. MB7.2; see Mathematical background 1):

F k k F n k k
a

b

k
n

( ) lim ( )d =∫ ∑→
=−∞

∞

δ
δ δ

0

 
(MB7.7)

Exactly this form appears on the right-hand side of eqn MB7.6, 
so we can write that equation as

f x f k k f k f x xkx kx( ) ( ) ( ) ( )= = ′ ′
−∞

∞
− ′
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∞

∫ ∫1
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 e d where e di i

 
(MB7.8)

At this stage we can drop the prime on x in the expression for 
f k( ). We call the function f k( ) the Fourier transform of f(x); the 
original function f(x) is the inverse Fourier transform of f k( ).

The physical interpretation of eqn MB7.8 is that f(x) is 
expressed as a superposition of harmonic (sine and cosine) 
functions of wavelength λ = 2π/k, and that the weight of each 
constituent function is given by the Fourier transform at the 
corresponding value of k. This interpretation is consistent 
with the calculation in Brief illustration MB7.2. As we see from 
Fig. MB7.3, when the exponential function falls away rapidly 
with time, the Fourier transform is extended to high values 
of k, corresponding to a significant contribution from short-
wavelength waves. When the exponential function decays only 
slowly, the most significant contributions to the superposition 
come from low-frequency components, which is reflected in 
the Fourier transform, with its predominance of small-k contri-
butions in this case. In general, a slowly varying function has a 
Fourier transform with significant contributions from small-k 
components.

Brief illustration MB7.2 A Fourier transform

The Fourier transform of the symmetrical exponential func-
tion f(x) = e−a|x| is

k

δk
f(

k)

a a 
+ 

δk
a 

+ 
2δ

k
a 

+ 
3δ

k
Figure MB7.2 The formal definition of an integral as the sum 
of the value of a function at a series of infinitely spaced points 
multiplied by the separation of each point.
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The original function and its Fourier transform are drawn in 
Fig. MB7.3.
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Figure MB7.3 (a) The symmetrical exponential function 
f(x) = e−a|x| and (b) its Fourier transform for two values of 
the decay constant a. Note how the function with the 
more rapid decay has a Fourier transform richer in short-
wavelength (high k) components.
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Fourier series and Fourier transforms  785

MB7.3 The convolution theorem

A final point concerning the properties of Fourier transforms is 
the convolution theorem, which states that if a function is the 
‘convolution’ of two other functions, that is if

F x f x f x x x( ) ( ) ( )= ′ − ′ ′
−∞

∞

∫ 1 2 d
 

(MB7.9a)

then the Fourier transform of F(x) is the product of the Fourier 
transforms of its component functions:

  F k f k f k( ) ( )( )= 1 2  (MB7.9b)

Brief illustration MB7.3 Convolutions

Suppose that F(x) is the convolution of two Gaussian 
functions:
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The Fourier transform of a Gaussian function is itself a 
Gaussian function:
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Part three

In Part 3 we consider the processes by which chemical change occurs and one form of matter is con-
verted into another. We prepare the ground for a discussion of the rates of reactions by considering 
the motion of molecules in gases and in liquids. Then we establish the precise meaning of reaction 
rate and see how the overall rate, and the complex behaviour of some reactions, may be expressed 
in terms of elementary steps and the atomic events that take place when molecules meet. Of enor-
mous importance in industry are reactions on solid surfaces, such as redox reactions at electrodes 
and various chemical transformations accelerated by solid catalysts. We discuss these processes in 
the final chapter of the text.

 19 Molecules in motion

 20 Chemical kinetics

 21 Reaction dynamics

 22 Processes on solid surfaces

Change
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chaPter 19

molecules in motion

This chapter provides techniques for discussing the motion of 
all kinds of particles in all kinds of fluids. It makes extensive use 
of the kinetic theory of gases treated in Topic 1B.

19A transport in gases

We set the scene by showing that molecular motion in fluids 
(both gases and liquids) shows a number of similarities. We 
concentrate on the ‘transport properties’ of a substance, its abil-
ity to transfer matter, energy, or some other property from one 
place to another. These properties include diffusion, thermal 
conduction, viscosity, and effusion and we see that their rates 
are expressed in terms of the kinetic theory of gases.

19B motion in liquids

Molecular motion in liquids is different from that in gases 
on account of the intermolecular forces, which now play an 
important role and govern, for instance the viscosity. One way 
to probe motion in liquids is to drag ions through a solvent by 
applying an electric field, and we see how the conductivities 
and mobilities of ions give some insight into motion in liquids.

19C diffusion

One very important type of motion in fluids is diffusion, and it 
turns out that it can be discussed in a uniform way by introduc-
ing the concept of a ‘thermodynamic force’. The spread of mol-
ecules can be explored by setting up and solving the ‘diffusion 
equation’, and that equation can be interpreted in terms of the 
molecules undergoing a random walk.

What is the impact of this material?

A great deal of chemistry, chemical engineering, and biology 
depends on the ability of molecules and ions to migrate through 
media of various kinds. In Impact I19.1 we see how conduct -
ivity measurements are used to analyse the motion of nutrients 
and other matter through biological membranes.

To read more about the impact of this 
material, scan the QR code, or go to  
bcs.whfreeman.com/webpub/chemistry/
pchem10e/impact/pchem-19-1.html
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19A transport in gases

Transport properties are commonly expressed in terms of a 
number of equations that are empirical summaries of experi-
mental observations. These equations apply to all kinds of 
properties and media. In the following sections, we introduce 

the equations for the general case and then show how to calcu-
late the parameters that appear in them on the basis of a model 
of molecular behaviour in gases. A more general approach is 
taken in Topic 19C.

19A.1 The phenomenological 
equations

By a ‘phenomenological equation’, a term encountered com-
monly in the study of fluids, we mean an equation that summa-
rizes empirical observations on phenomena without, initially at 
least, being based on an understanding of the molecular pro-
cesses responsible for the property.

The rate of migration of a property is measured by its flux, 
J, the quantity of that property passing through a given area in 
a given time interval divided by the area and the duration of 
the interval. If matter is flowing (as in diffusion), we speak of 
a matter flux of so many molecules per square metre per sec-
ond (number or amount m−2 s−1); if the property is energy (as 
in thermal conduction), then we speak of the energy flux and 
express it in joules per square metre per second (J m−2 s−1), and 
so on. To calculate the total quantity of each property trans-
ferred through a given area A in a given time interval Δt, we 
multiply the flux by the area and the time interval and form 
JAΔt.

Experimental observations on transport properties show 
that the flux of a property is usually proportional to the first 
derivative of some other related property. For example, the flux 
of matter diffusing parallel to the z-axis of a container is found 
to be proportional to the first derivative of the concentration:

J
z

( )matter
d
d

∝ N
 

 Fick’s first law of diffusion  (19A.1)

where N is the number density of particles with units number 
per metre cubed (m−3). The proportionality of the flux of mat-
ter to the concentration gradient is sometimes called Fick’s 
first law of diffusion: the law implies that diffusion will be 
faster when the concentration varies steeply with position than 
when the concentration is nearly uniform. There is no net flux 
if the concentration is uniform (dN/dz = 0). Similarly, the rate 
of thermal conduction (the flux of the energy associated with 

➤➤ Why do you need to know this material?

The transport of properties by gas molecules plays an 
important role in the atmosphere. The Topic also extends 
the approach of kinetic theory, showing how to extract 
quantitative expressions from simple models.

➤➤ What is the key idea?
A molecule carries properties through space for about the 
distance of its mean free path.

➤➤ What do you need to know already?
This Topic builds on and extends the kinetic theory of gases 
(Topic 1B) and you need to be familiar with the expressions 
from that Topic for the mean speed of molecules and with 
the significance of the mean free path and its pressure-
dependence.

Contents

19a.1 The phenomenological equations 790
brief illustration 19a.1: energy flux 791

19a.2 The transport parameters 792
brief illustration 19a.2: the collision flux 792

(a) The diffusion coefficient 793
brief illustration 19a.3: the diffusion coefficient 794

(b) Thermal conductivity 794
brief illustration 19a.4: the thermal conductivity 794

(c) Viscosity 795
brief illustration 19a.5: the viscosity 795

(d) Effusion 796
example 19a.1: calculating the vapour  
pressure from a mass loss 796

Checklist of concepts 796
Checklist of equations 797
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19A Transport in gases  791

thermal motion) is found to be proportional to the temperature 
gradient:

J
T
z

( )energy of thermal motion
d
d

∝
 

 Flux of energy  (19A.2)

A positive value of J signifies a flux towards positive z; a 
negative value of J signifies a flux towards negative z. Because 
matter flows down a concentration gradient, from high con-
centration to low concentration, J is positive if dN/dz is nega-
tive (Fig. 19A.1). Therefore, the coefficient of proportionality in 
eqn 19A.1 must be negative, and we write it −D:

J D
z

( )matter
d
d

= − N
 

The constant D is the called the diffusion coefficient; its SI 
units are metre squared per second (m2 s−1). Energy migrates 
down a temperature gradient, and the same reasoning leads to

J
T
z

( )energy of thermal motion
d
d

= −κ
 

where κ is the coefficient of thermal conductivity. The SI units 
of κ are joules per kelvin per metre per second (J K−1 m−1 s−1) 
or, because 1 J s−1 = 1 W, watts per kelvin per metre (W K−1 m−1). 
Some experimental values are given in Table 19A.1.

To see the connection between the flux of momentum and 
the viscosity, consider a fluid in a state of Newtonian flow, 
which can be imagined as occurring by a series of layers mov-
ing past one another (Fig. 19A.2). The layer next to the wall 

Fick’s first law 
in terms of the 
diffusion coefficient

 (19A.3)

Brief illustration 19A.1 Energy flux

Suppose that there is a temperature difference of 10 K between 
two metal plates that are separated by 1.0 cm in air (for which 
κ = 24.1 mW K−1 m−1). The temperature gradient is

d
d

K
m

K m
T
z

= − −
×

= − ×−
−10

1 0 10
1 0 102

3 1

.
.

 

Therefore, because for air the energy flux is

J( ) ( . )

( . )

energy of thermal motion mW K m

K m

=−
× − ×

− −

−

24 1

1 0 10

1 1

3 1 ==+ −24 2W m

As a result, in 1.0 h (3600 s) the transfer of energy through an 
area of the opposite walls of 1.0 cm2 is

Transfer 24 W m 1 1 m 36  s 8 6 J2 4 2= × × × =−( ) ( . ) ( ) .0 0 00  

Self-test 19A.1 The thermal conductivity of glass is 0.92  
W K−1 m−1. What is the rate of energy transfer through a window 
pane of thickness 0.50 cm and area 1.0 m2 when the room is at 
22 °C and the exterior is at 0 °C?

Answer: 2.8 Kw

Flux of energy in terms of the 
coefficient of thermal conductivity  (19A.4)

N

dN
dz

< 0 z

J > 0

Figure 19A.1 The flux of particles down a concentration 
gradient. Fick’s first law states that the flux of matter (the 
number of particles passing through an imaginary window 
in a given interval divided by the area of the window and the 
length of the interval) is proportional to the density gradient at 
that point.

Table 19A.1* Transport properties of gases at 1 atm

κ/(mW K−1 m−1) η/µP‡

273 K 273 K 293 K

Ar 16.3 210 223

CO2 14.5 136 147

He 144.2 187 196

N2 24.0 166 176

* More values are given in the Resource section.
‡ 1 µP = 10−7 kg m−1 s−1.

W
al

l

z

x
Brings
low
momentum

Brings
high
momentum

Figure 19A.2 The viscosity of a fluid arises from the transport 
of linear momentum. In this illustration the fluid is undergoing 
Newtonian (laminar) flow, and particles bring their initial 
momentum when they enter a new layer. If they arrive with 
high x-component of momentum they accelerate the layer; if 
with low x-component of momentum they retard the layer.
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792 19 Molecules in motion

of the vessel is stationary, and the velocity of successive layers 
varies linearly with distance, z, from the wall. Molecules cease-
lessly move between the layers and bring with them the x-com-
ponent of linear momentum they possessed in their original 
layer. A layer is retarded by molecules arriving from a more 
slowly moving layer because they have a low momentum in the 
x-direction. A layer is accelerated by molecules arriving from a 
more rapidly moving layer. We interpret the net retarding effect 
as the fluid’s viscosity.

Because the retarding effect depends on the transfer of the 
x-component of linear momentum into the layer of interest, 
the viscosity depends on the flux of this x-component in the 
z-direction. The flux of the x-component of momentum is pro-
portional to dvx/dz because there is no net flux when all the lay-
ers move at the same velocity. We can therefore write

J x
z

x( )-component of momentum
d
d

= −η v

  
 momentum flux in terms of the coefficient of viscosity  (19A.5)

The constant of proportionality, η, is the coefficient of viscosity 
(or simply ‘the viscosity’). Its units are kilograms per metre per 
second (kg m−1 s−1). Viscosities are often reported in poise (P), 
where 1 P = 10−1 kg m−1 s−1. Some experimental values are given 
in Table 19A.1.

Although it is not strictly a transport property, closely related 
to diffusion is effusion, the escape of matter through a small 
hole. The essential empirical observations on effusion are sum-
marized by Graham’s law of effusion, which states that the rate 
of effusion is inversely proportional to the square root of the 
molar mass, M.

19A.2 The transport parameters

Here we derive expressions for the diffusion characteristics of a 
perfect gas on the basis of a model, the kinetic-molecular the-
ory. All the expressions depend on knowing the collision flux, 
ZW, the rate at which molecules strike a region in the gas (which 
may be an imaginary window in the gas, a part of a wall, or a 
hole in a wall) and specifically the number of collisions divided 
by the area of the region and the time interval. We show in the 
following Justification that the collision flux of molecules of 
mass m at a pressure p and temperature T is

Z
p

mkTW =
( ) /2 1 2π  

Perfect gas  collision flux  (19A.6)

Brief illustration 19A.2 The collision flux

The collision f lux of O2 molecules, with m = M/NA and 
M = 32.00 g mol−1, at 25 °C and at 1.00 bar is
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/

This flux corresponds to 2.70 × 1023 cm−2 s−1.

Self-test 19A.2 Evaluate the collision f lux of H2 molecules 
under the same conditions.

Answer: 1.07 × 1028 m−2 s−1

Justification 19A.1 The collision flux

Consider a wall of area A perpendicular to the x-axis (Fig. 19A.3). 
If a molecule has vx > 0 (that is, it is travelling in the direction of 
positive x), then it will strike the wall within an interval Δt if it 
lies within a distance vxΔt of the wall. Therefore, all molecules in 
the volume AvxΔt, and with positive x-component of velocities, 
will strike the wall in the interval Δt. The total number of colli-
sions in this interval is therefore the volume AvxΔt multiplied by 
the number density, N, of molecules. However, to take account 
of the presence of a range of velocities in the sample, we must 
sum the result over all the positive values of vx weighted by the 
probability distribution of velocities given in Justification 1B.2:

f
m
kTx

m kTx( )
/

/v v= 





−
2

1 2

22

π e
 

That is,

Number of collisions d=
∞

∫N A t fx x x∆ v v v( )
0  

The collision flux is the number of collisions divided by A and 
Δt, so

Z fx x xW d=
∞

∫N v v v( )
0  

Will

Won’t

|vx∆t|

Volume = |vx∆t|A

Area, A

x

Figure 19A.3 A molecule will reach the wall on the right 
within an interval Δt if it is within a distance vxΔt of the wall 
and travelling to the right.

iranchembook.ir/edu



19A Transport in gases  793

According to eqn 19A.6, the collision flux increases with 
pressure, because the rate of collisions on the region of interest 
increases with pressure. The flux decreases with increasing mass 
of the molecules because heavy molecules move more slowly that 
light molecules. Caution, however, is needed with the interpreta-
tion of the role of temperature, for it is wrong to conclude that 
because T1/2 appears in the denominator that the collision flux 
decreases with increasing temperature. If the system has constant 
volume, the pressure increases with temperature (p ∝ T), so the 
collision flux is in fact proportional to T/T1/2 = T1/2, and increases 
with temperature (because the molecules are moving faster).

(a) The diffusion coefficient
Consider the arrangement depicted in Fig. 19A.4. The mol-
ecules passing through the area A at z = 0 have travelled an 
average of about one mean free path λ since their last collision. 
Therefore, the number density where they originated is N(z) 
evaluated at z = −λ. This number density is approximately

N N N
( ) ( )− = − 





λ λ0
d
d

0
z

 
(19A.7a)

where we have used a Taylor expansion of the form 
f(x) = f(0) + (df/dx)0x + … truncated after the second term (see 

Mathematical Background 1). Similarly, the number density at 
an equal distance on the other side of the area is

N N N
( ) ( )λ λ= + 





0
0

d
dz

 
(19A.7b)

The average number of impacts on the imaginary region of 
area A0 during an interval Δt is ZWA0Δt, where ZW is the colli-
sion flux. Therefore, the flux from left to right, J(L → R), arising 
from the supply of molecules on the left, is

J
A t

A t
( )

( )
( )L R mean

mean→ =
−

= −
1
4 0

0

1
4

N
N

λ
λ

v
v

ZW� ��� ���
∆

∆  
(19A.8a)

There is also a flux of molecules from right to left. On average, 
the molecules making the journey have originated from z = +λ 
where the number density is N(λ). Therefore,

J( ) ( )L R mean← = 1
4 N λ v  (19A.8b)

The net flux from left to right is

J J J
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That is,

J
zz = − 





1
2

0

vmean

d
d

λ N

 
(19A.9)

This equation shows that the flux is proportional to the first 
derivative of the concentration, in agreement with Fick’s law, 
eqn 19A.1.

At this stage it looks as though we can pick out a value of 
the diffusion coefficient by comparing eqns 19A.9 and 19A.3, 
so obtaining D = 1

2 λvmean . It must be remembered, however, 
that the calculation is quite crude, and is little more than an 
assessment of the order of magnitude of D. One aspect that has 
not been taken into account is illustrated in Fig. 19A.5, which 
shows that although a molecule may have begun its journey 
very close to the window, it could have a long flight before it 
gets there. Because the path is long, the molecule is likely to 
collide before reaching the window, so it ought to be added to 
the graveyard of other molecules that have collided. To take this 
effect into account involves a lot of work, but the end result is 
the appearance of a factor of 2

3  representing the lower flux. The 
modification results in

D = 1
3 λvmean   diffusion coefficient  (19A.10)

Then, because

v v v v vv
x x x x

m kT
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it follows that

Z
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mW = 





N
2

1 2

π

/

 

Substitution of N = p/kT then gives eqn 19A.6.
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Figure 19A.4 The calculation of the rate of diffusion of a gas 
considers the net flux of molecules through a plane of area A 
as a result of arrivals from an average distance λ away in each 
direction, where λ is the mean free path.
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794 19 Molecules in motion

There are three points to note about eqn 19A.10:

•	 The mean free path, λ , decreases as the pressure is 
increased (eqn 1B.13 of Topic 1B, λ = kT/σp), so D 
decreases with increasing pressure and, as a result, 
the gas molecules diffuse more slowly.

•	 The mean speed, vmean, increases with the 
temperature (eqn 1B.8 of Topic 1B, vmean =  
(8RT/πM)1/2), so D also increases with temperature. 
As a result, molecules in a hot sample diffuse more 
quickly than those in a cool sample (for a given 
concentration gradient).

•	 Because the mean free path increases when the 
collision cross-section σ of the molecules decreases 
(eqn 1B.13 again, λ = kT/σp), the diffusion coefficient 
is greater for small molecules than for large molecules.

(b) Thermal conductivity
According to the equipartition theorem (Foundations C), each 
molecule carries an average energy ε = νkT, where ν is a num-
ber of the order of 1. For atoms,  = 3

2 . When one molecule 
passes through the imaginary window, it transports that aver-
age energy. We suppose that the number density is uniform but 
that the temperature is not. Molecules arrive from the left after 

travelling a mean free path from their last collision in a hot-
ter region, and therefore with a higher energy. Molecules also 
arrive from the right after travelling a mean free path from a 
cooler region. The two opposing energy fluxes are therefore

J J( ) ( ) ( ) ( )L R L Rmean mean← = − ← =1
4

1
4N Nv v

Z ZW W��� �� ��� ��
ε λ ε λ  (19A.11)

and the net flux is
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(19A.12)

The energy flux is proportional to the temperature gradient, as 
we wanted to show. As before, we multiply by 2

3  to take long 
flight paths into account, and after comparison of this equation 
with eqn 19A.4 arrive at

κ λ= 1
3 vmean N k   thermal conductivity  (19A.13a)

If we now identify N = nNA/V = [J]NA, where [J] is the molar 
concentration of the carrier particles J and NA is Avogadro’s 
constant, and identify νkNA as the molar constant-vol-
ume heat capacity of a perfect gas (which follows from 
CV,m = NA(∂ε/∂T)V), this expression becomes

κ λ= 1
3 vmean mJ[ ] ,CV   thermal conductivity  (19A.13b)

Yet another form is found by recognizing that N = p/kT and the 
expression for D in eqn 19A.10, for then

κ = pD
T  

 thermal conductivity  (19A.13c)

Brief illustration 19A.4 The thermal conductivity

In Brief illustration 19A.3 we calculated D = 1.5 × 10−5 m2 s−1 
for N2 molecules at 25 °C. To use eqn 19A.13c note that for N2 
molecules  = 5

2  (there are three translational modes and two 
rotational modes). Therefore, at 1.0 bar

κ = × × × × = ×

−

− −
− −

5
2

5 5 2 1
2 11 0 10 1 5 10

298
1 3 10

( . ( . )
.

Pa ) m s
K

JK

Jm 3


mm s− −1 1

Brief illustration 19A.3 The diffusion coefficient

In Brief illustration 1B.4 of Topic 1B it is established that the 
mean free path of N2 molecules in a gas at 1.0 bar is 95 nm; in 
Example 1B.1 of the same Topic it is calculated that the mean 
speed of N2 molecules at 25 °C is 475 m s−1. Therefore, the dif-
fusion coefficient for N2 molecules under these conditions is

D = × × × = ×− − − −1
3 0 0( . ) .9 5 1 m 475ms 1 5 1 m s8 1 5 2 1

The experimental value (for N2 in O2) is 2.0 × 10−5 m2 s−1.

Self-test 19A.3 Evaluate D for H2 under the same conditions.
Answer: 9.0 × 10−5 m2 s−1

Short flight
(survives)

Long flight
(collides  in flight)

Figure 19A.5 One approximation ignored in the simple 
treatment is that some particles might make a long flight to 
the plane even though they are only a short perpendicular 
distance away, and therefore they have a higher chance of 
colliding during their journey.
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19A Transport in gases  795

To interpret eqn 19A.13, we note that:

•	 Because λ is inversely proportional to the pressure 
(eqn 1B.13 of Topic 1B, λ = kT/σp), and hence inversely 
proportional to the molar concentration of the gas, 
and N is proportional to the pressure (N = p/kT), the 
thermal conductivity, which is proportional to the 
product λp, is independent of the pressure.

•	 The thermal conductivity is greater for gases with a 
high heat capacity (eqn 19A.13b) because a given 
temperature gradient then corresponds to a greater 
energy gradient.

The physical reason for the pressure independence of the ther-
mal conductivity is that it can be expected to be large when 
many molecules are available to transport the energy, but the 
presence of so many molecules limits their mean free path 
and they cannot carry the energy over a great distance. These 
two effects balance. The thermal conductivity is indeed found 
experimentally to be independent of the pressure, except 
when the pressure is very low, when κ ∝ p. At low pressures 
λ exceeds the dimensions of the apparatus, and the distance 
over which the energy is transported is determined by the size 
of the container and not by collisions with the other molecules 
present. The flux is still proportional to the number of carri-
ers, but the length of the journey no longer depends on λ, so 
κ ∝ [A], which implies that κ ∝ p.

(c) Viscosity
Molecules travelling from the right in Fig. 19A.6 (from a fast 
layer to a slower one) transport a momentum mvx(λ) to their 
new layer at z = 0; those travelling from the left transport 
mvx(−λ) to it. If it is assumed that the density is uniform, the 
collision flux is 1

4 Nvmean. Those arriving from the right on aver-
age carry a momentum

m m m
zx x

xv v
v

( ) ( )λ λ= + 





0
0

d
d

 
(19A.14a)

Those arriving from the left bring a momentum

m m m
zx x

xv v
v

( ) ( )− = − 





λ λ0
0

d
d

 
(19A.14b)

The net flux of x-momentum in the z-direction is therefore
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(19A.15)

The flux is proportional to the velocity gradient, as we wished 
to show. Comparison of this expression with eqn 19A.5, and 
multiplication by 2

3  in the normal way, leads to

η λ= 1
3 vmean mN   Viscosity  (19A.16a)

Two alternative forms of this expression (after using mNA = M) 
are

η = MD[ ]J   Viscosity  (19A.16b)

η = pMD
RT  

 Viscosity  (19A.16c)

where [J] is the molar concentration of the gas molecules and 
M is their molar mass.

or 13 mW K−1 m−1. The experimental value is 26 mW K−1 m−1
.

Self-test 19A.4 Estimate the thermal conductivity of argon gas 
at 25 °C and 1.0 bar.

Answer: 8 mW K−1 m−1
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Brief illustration 19A.5 The viscosity

We have already calculated D = 1.5 × 10−5 m2 s−1 for N2 at 25 °C. 
Because M = 28.02 g mol−1, for the gas at 1.0 bar, eqn 19A.17c 
gives

η = × × × × ×
−

− − − −( . ( . ) ( .1 0 10 28 02 10 1 5 105 3 1 5 2 1Pa ) kg mol m s

Jm 3


))
( . ) ( )

.

8 3145 298

1 7 10

1 1

5 1 1

J K mol K

kg m s

− −

− − −

×
= ×

or 171 µP. The experimental value is 176 µP.

Slow
layer

Fast
layer

0
–λ

z

x

λ

Figure 19A.6 The calculation of the viscosity of a gas examines 
the net x-component of momentum brought to a plane from 
faster and slower layers on average a mean free path away in 
each direction.

iranchembook.ir/edu



796 19 Molecules in motion

We can interpret eqn 19A.16a as follows:

•	 Because λ ∝ 1/p (eqn 1B.13, λ = kT/σp)) and [A] ∝ p, it 
follows that η ∝ λN is independent of p. That is, the 
viscosity is independent of the pressure.

•	 Because vmean ∝ T1/2 (eqn 1B.8), η ∝ T1/2. That is, the 
viscosity of a gas increases with temperature.

The physical reason for the pressure independence of the vis-
cosity is the same as for the thermal conductivity: more mol-
ecules are available to transport the momentum, but they carry 
it less far on account of the decrease in mean free path. The 
increase of viscosity with temperature is explained when we 
remember that at high temperatures the molecules travel more 
quickly, so the flux of momentum is greater. By contrast, as 
discussed in Topic 19B, the viscosity of a liquid decreases with 
increase in temperature because intermolecular interactions 
must be overcome.

(d) Effusion
Because the mean speed of molecules is inversely proportional 
to M1/2, the rate at which they strike the area of the hole through 
which they are effusing is also inversely proportional to M1/2, in 
accord with Graham’s law. However, by using the expression for 
the collision flux, we can obtain a more detailed expression for 
the rate of effusion and hence use effusion data more effectively.

When a gas at a pressure p and temperature T is separated 
from a vacuum by a small hole, the rate of escape of its mol-
ecules is equal to the rate at which they strike the area of the 
hole, which is the product of the collision flux and the area of 
the hole, A0:

Rate of effusion W

A

=

= =

=
=

Z A

pA
mkT

pA N

0

0
1 2

0

2 2( ) (/π π

m M N
k R N

/

/
A

A

,



MMRT) /1 2
  

 rate of effusion  (19A.17)

This rate is inversely proportional to M1/2, in accord with 
Graham’s law. Do not conclude from eqn 19A.17, however, that 

effusion is slower at high temperatures than at low. Because 
p ∝ T, the rate is in fact proportional to T1/2 and increases with 
temperature.

Equation 19A.17 is the basis of the Knudsen method for 
the determination of the vapour pressures of liquids and solids,  
particularly of substances with very low vapour pressures. 
Thus, if the vapour pressure of a sample is p, and it is enclosed 
in a cavity with a small hole, then the rate of loss of mass from 
the container is proportional to p.

Checklist of concepts

☐ 1.  Flux is the quantity of a property passing through a 
given area in a given time interval divided by the area 
and the duration of the interval.

☐ 2. Diffusion is the migration of matter down a concentra-
tion gradient.

Self-test 19A.5 Evaluate the viscosity of benzene vapour at 
0.10 bar and 25 °C.

Answer: 140 µP

Example 19A.1 Calculating the vapour pressure from a 
mass loss

Caesium (m.p. 29 °C, b.p. 686 °C) was introduced into a con-
tainer and heated to 500 °C. When a hole of diameter 0.50 mm 
was opened in the container for 100 s, a mass loss of 385 mg 
was measured. Calculate the vapour pressure of liquid cae-
sium at 500 K.

Method The pressure of vapour is constant inside the con-
tainer despite the effusion of atoms because the hot liquid 
metal replenishes the vapour. The rate of effusion is therefore 
constant, and given by eqn 19A.17. To express the rate in terms 
of mass, multiply the number of atoms that escape by the mass 
of each atom.

Answer The mass loss Δm in an interval Δt is related to the 
collision flux by

∆ ∆m Z A m t= W 0

where A0 is the area of the hole and m is the mass of one atom. 
It follows that

Z
m

A m tW = ∆
∆0

Because ZW is related to the pressure by eqn 19A.17, we can 
write

p
RT

M
m

A t
= 





2
1 2

0

π / ∆
∆

Because M = 132.9 g mol−1, substitution of the data gives 
p = 8.7 kPa (using 1 Pa = 1 N m−2 = 1 J m−1), or 65 Torr.

Self-test 19A.6 How long would it take 1.0 g of Cs atoms to 
effuse out of the oven under the same conditions?

Answer: 260 s
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19A Transport in gases  797

☐ 3. Fick’s first law of diffusion states that the flux of matter 
is proportional to the concentration gradient.

☐ 4. Thermal conduction is the migration of energy down a 
temperature gradient and the flux of energy is propor-
tional to the temperature gradient.

☐ 5. Viscosity is the migration of linear momentum down a 
velocity gradient and the flux of momentum is propor-
tional to the velocity gradient.

☐ 6. Effusion is the emergence of a gas from a container 
through a small hole.

☐ 7. Graham’s law of effusion states that the rate of effusion 
is inversely proportional to the square root of the molar 
mass.

☐ 8. The coefficients of diffusion, thermal conductivity, and 
viscosity of a perfect gas are proportional to the product 
of the mean free path and mean speed.

Checklist of equations

Property Equation Comment Equation number

Fick’s first law of diffusion J = −DdN/dz 19A.3

Flux of energy of thermal motion J = −κdT/dz 19A.4

Flux of momentum J = −ηdvx/dz 19A.5

Diffusion coefficient of a perfect gas D = 1
3 meanλv KMT* 19A.10

Coefficient of thermal conductivity of a perfect gas κ λ= 1
3 mean m[J]v CV , KMT and equipartition 19A.13b

Coefficient of viscosity of a perfect gas η λ= 1
3 meanv mN KMT 19A.16a

Rate of effusion Rate ∝ 1/M1/2 Graham’s law 19A.17

* KMT indicates that the equation is based on the kinetic theory of gases.
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19B motion in liquids

In this Topic we consider two aspects of motion in liquids. 
First, we deal with pure liquids, and examine how the mobili-
ties of their molecules, as measured by their viscosity, varies 
with temperature. Then we consider the motion of solutes. 
A particularly simple and to some extent controllable type of 
motion through a liquid, is that of an ion, and we shall see that 
the information that motion provides can be used to infer the 
behaviour of uncharged species too.

19B.1 Experimental results

The motion of molecules in liquids can be studied experimen-
tally by a variety of methods. Relaxation time measurements 
in NMR (Topic 14C) and EPR can be interpreted in terms of 
the mobilities of the molecules, and have been used to show 
that big molecules in viscous fluids typically rotate in a series of 
small (about 5°) steps, whereas small molecules in non-viscous 
fluids typically jump through about 1 radian (57°) in each step. 
Another important technique is inelastic neutron scattering, 
in which the energy neutrons collect or discard as they pass 
through a sample is interpreted in terms of the motion of its 
particles. The same technique is used to examine the internal 
dynamics of macromolecules.

(a) Liquid viscosity
The coefficient of viscosity, η (eta), is introduced in Topic 19A 
as a phenomenological coefficient, the constant of proportion-
ality between the flux of linear momentum and the velocity 
gradient in a fluid:

J x
zz

x( )-component of momentum
d
d

= −η v

 
 Viscosity  (19B.1)

(This is eqn 19A.5 of Topic 19A.) Some values for liquids are 
given in Table 19B.1. The SI units of viscosity are kilograms per 
metre per second (kg m−1 s−1), but they may also be reported 
in the equivalent units of pascal seconds (Pa s). The non-SI 
unit poise (P) and centipoise (cP) are still widely encountered: 
1 P = 10−1 Pa s and so 1 cP = 1 mPa s.

Unlike in a gas, for a molecule to move in a liquid it must 
acquire at least a minimum energy (an ‘activation energy’ in 
the language of Topic 20D) to escape from its neighbours. The 
probability that a molecule has at least an energy Ea is propor-
tional to e a−E RT/ , so the mobility of the molecules in the liquid 

➤➤ Why do you need to know this material?
Liquids are central to chemical reactions, and it is important 
to know how the mobility of their molecules and solutes 
in them varies with the conditions. Ionic motion is a way 
of exploring this motion as forces to move them can be 
applied electrically. From electrical measurements the 
properties of diffusing neutral molecules may also be 
inferred.

➤➤ What is the key idea?
The viscosity of a liquid decreases with increasing 
temperature; ions reach a terminal velocity when the 
electrical force on them is balanced by the drag due to the 
viscosity of the solvent.

➤➤ What do you need to know already?
The discussion of viscosity starts with the definition 
of viscosity coefficient introduced in Topic 19A. One 
derivation uses the same argument about flux as was used 
in Topic 19A. The final section quotes the relation between 
the drift speed and a generalized force acting on a solute 
particle, which is derived in Topic 19C. You need to be 
aware of several concepts from electrostatics, which are 
introduced in Foundations B.

Contents

19b.1 Experimental results 798
(a) Liquid viscosity 798

brief illustration 19b.1: liquid viscosity 799
(b)  Electrolyte solutions 799

example 19b.1: determining the limiting molar 
conductivity 800

19b.2 The mobilities of ions 800
(a) The drift speed 800

brief illustration 19b.2: Ion mobility 801
(b) Mobility and conductivity 802

brief illustration 19b.3: Ionic conductivity 803
(c) The Einstein relations 803

brief illustration 19b.4: mobility and diffusion 803
Checklist of concepts 804
Checklist of equations 804

iranchembook.ir/edu



19B Motion in liquids  799

should follow this type of temperature dependence. Because 
the coefficient of viscosity is inversely proportional to the 
mobility of the particles, we should expect that

η η= 0e aE RT/

  temperature dependence of viscosity (liquid)  (19B.2)

(Note the positive sign of the exponent, because the viscosity 
is inversely proportion to the mobility.) This expression implies 
that the viscosity should decrease sharply with increasing tem-
perature. Such a variation is found experimentally, at least over 
reasonably small temperature ranges (Fig. 19B.1). The acti-
vation energy typical of viscosity is comparable to the mean 
potential energy of intermolecular interactions.

One problem with the interpretation of viscosity measure-
ments is that the change in density of the liquid as it is heated 
makes a pronounced contribution to the temperature variation 
of the viscosity. Thus, the temperature dependence of viscos-
ity at constant volume, when the density is constant, is much 
less than that at constant pressure. The intermolecular interac-
tions between the molecules of the liquid govern the magnitude 
of Ea, but the problem of calculating it is immensely difficult and 
still largely unsolved. At low temperatures, the viscosity of water 
decreases as the pressure is increased. This behaviour is consistent 
with the need to rupture hydrogen bonds for migration to occur.

(b) Electrolyte solutions
Further insight into the nature of molecular motion can be 
obtained by studying the net transport of charged species 
through solution, for ions can be dragged through the solvent 
by the application of a potential difference between two elec-
trodes immersed in the sample. By studying the transport of 
charge through electrolyte solutions it is possible to build up 
a picture of the events that occur in them and, in some cases, 
to extrapolate the conclusions to species that have zero charge; 
that is, to neutral molecules.

The fundamental measurement used to study the motion of 
ions is that of the electrical resistance, R, of the solution. The 
conductance, G, of a solution is the inverse of its resistance R: 
G = 1/R. As resistance is expressed in ohms, Ω, the conductance 
of a sample is expressed in Ω−1. The reciprocal ohm used to be 
called the mho, but its SI designation is now the siemens, S, 
and 1 S = 1 Ω−1 = 1 C V−1 s−1. It is found that the conductance of 
a sample decreases with its length l and increases with its cross-
sectional area A. We therefore write

G
A
l

=κ
 

Definition of κ  conductivity  (19B.3)

where κ (kappa) is the electrical conductivity. With the con-
ductance in siemens and the dimensions in metres, it follows 
that the SI units of κ are siemens per metre (S m−1).

The conductivity of a solution depends on the number of 
ions present, and it is normal to introduce the molar conduc-
tivity, Λm, which is defined as

Λ κ
m =

c  
Definition  molar conductivity  (19B.4)

Brief illustration 19B.1 Liquid viscosity

The viscosity of water at 25 °C and 50 °C is 0.890 mPa s and 
0.547 mPa s, respectively. It follows from eqn 19B.2 that the 
activation energy for molecular migration is the solution of

η
η

( )
( )

/ / /T
T

E R T T2

1

1 12 1= ( ) −( )e a

which is

E
R T T

T Ta
/

/ /
JK mol /= − =

− −ln{ ( ) ( )} ( . )ln( . .η η2 1

2 1

1 1

1 1
8 3145 0 547 0 8990

1 320 1 298
)

// K K−  

or 17.5 kJ mol−1. That value is comparable to the strength of a 
hydrogen bond.

Self-test 19B.1 The corresponding values of the viscosity of 
benzene are 0.604 mPa s and 0.436 mPa s. Evaluate the activa-
tion energy for viscosity.

Answer: 11.7 kJ mol−1
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Figure 19B.1 The experimental temperature dependence of 
the viscosity of water. As the temperature is increased, more 
molecules are able to escape from the potential wells provided 
by their neighbours, and so the liquid becomes more fluid.

Table 19B.1* Viscosities of liquids at 298 K, η/(10−3 kg m−1 s−1)

η/(10−3 kg m−1 s−1)

Benzene 0.601

Mercury 1.55

Pentane 0.224

Water‡ 0.891

* More values are given in the Resource section.
‡ The viscosity of water corresponds to 0.891 cP.
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800 19 Molecules in motion

where c is the molar concentration of the added electrolyte. 
The SI unit of molar conductivity is siemens metre-squared per 
mole (S m2 mol−1), and typical values are about 10 mS m2 mol−1 
(where 1 mS = 10−3 S).

The values of the molar conductivity as calculated by eqn 
19B.4 are found to vary with the concentration. One reason for 
this variation is that the number of ions in the solution might not 
be proportional to the nominal concentration of the electrolyte. 
For instance, the concentration of ions in a solution of a weak 
electrolyte depends on the concentration of the solute in a com-
plicated way, and doubling the concentration of the solute added 
does not double the number of ions. Secondly, because ions 
interact strongly with one another, the conductivity of a solution 
is not exactly proportional to the number of ions present.

In an extensive series of measurements during the nineteenth 
century, Friedrich Kohlrausch established the Kohlrausch 
law, that at low concentrations the molar conductivities of 
strong electrolytes vary linearly with the square root of the 
concentration:

Λ Λm m= −° Kc1 2/   kohlrausch law  (19B.5)

He also established that Λm
° ,  the limiting molar conductivity, 

the molar conductivity in the limit of zero concentration, is the 
sum of contributions from its individual ions. If the limiting 
molar conductivity of the cations is denoted λ+ and that of the 
anions λ−, then his law of the independent migration of ions 
states that

Λ λ λm
° = ++ + − −   

where ν+ and ν− are the numbers of cations and anions per for-
mula unit of electrolyte. For example, ν+ = ν− = 1 for HCl, NaCl, 
and CuSO4, but ν+ = 1, ν− = 2 for MgCl2.

19B.2 The mobilities of ions

To interpret conductivity measurements we need to know why 
ions move at different rates, why they have different molar con-
ductivities, and why the molar conductivities of strong electrolytes 
decrease with the square root of the molar concentration. The 
central idea in this section is that although the motion of an ion 
remains largely random, the presence of an electric field biases its 
motion, and the ion undergoes net migration through the solution.

(a) The drift speed
When the potential difference between two planar electrodes 
a distance l apart is Δϕ, the ions in the solution between them 
experience a uniform electric field of magnitude

E = ∆φ
l  

(19B.7)

Limiting law 
law of the 
independent 
migration of ions

 (19B.6)

With more data available, a better procedure is to perform a 
linear regression.

Answer It follows that the molar conductivity of KCl when 
c = 1.0000 mmol dm−3 (which is the same as 1.0000 mol m−3) is

Λm
mSm
mol m

mSm mol= =
−

−
−14 688

1 0000
14 688

1

3
2 1.

.
.

 

Similarly, when c = 5.0000 mol dm−3 the molar conductivity is 
14.348 mS m2 mol−1. It then follows that

K = −
−

= − −

Λ Λm m

mSm mol

( ) ( )

( . . )
( .

/ /

c c
c c

2 1

1
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2
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. (

−
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−
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mol dm

mSm mol / moldm 33 1 2) /

(It is best to keep this awkward but convenient array of units 
as they are rather than converting them to the equivalent 
10−3/2 S m7/2 mol−3/2.) Now we find the limiting value from the 
data for c = 0.0100 mol dm−3:

Λm mSm mol
mSm mol
moldm

 ° = +

×

−
−

−14 688 8 698

0 001000

2 1
2 1

3 1 2. .

( .

( ) /
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Self-test 19B.2 The conductivity of KClO4(aq) at 25 °C is 
13.780 mS m−1 when c = 1.000 mmol dm−3 and 67.045 mS m−1 
when c = 5.000 mmol dm−3. Determine the values of the limit-
ing molar conductivity Λm

°  and the Kohlrausch constant K for 
this system.

Answer: K = 9.491 mS m2 mol−1/(mol dm−3)1/2,  
Λm mSm mol° −=14 08 2 1.

Example 19B.1 Determining the limiting molar 
conductivity

The conductivity of KCl(aq) at 25 °C is 14.668 mS m−1 
when c  =  1.0000 mmol dm−3 and 71.740 mS m−1 when 
c = 5.0000 mmol dm−3. Determine the values of the limiting 
molar conductivity Λm

°  and the Kohlrausch constant K.

Method Use eqn 19B.4 to determine the molar conductivities 
at the two concentrations, then use the Kohlrausch law, eqn 
19B.5, in the form

Λ Λm 2 m 1 1
1 2

2
1 2( ) ( ) ( )c c c c– –/ /=K

to determine K. Then find Λm
°  from the law in the form

Λ Λm m
° = +Kc1 2/
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19B Motion in liquids  801

In such a field, an ion of charge ze experiences a force of 
magnitude

F E= =ze
ze

l
∆φ

 
 electric force  (19B.8)

where here and throughout this section we disregard the sign of 
the charge number and so avoid notational complications.

A cation responds to the application of the field by acceler-
ating towards the negative electrode and an anion responds by 
accelerating towards the positive electrode. However, this acceler-
ation is short lived. As the ion moves through the solvent it expe-
riences a frictional retarding force, ℱfric, proportional to its speed. 
For a spherical particle of radius a travelling at a speed s, this 
force is given by Stokes’ law, which was derived by consider-
ing the hydrodynamics of the passage of a sphere through a 
continuous fluid:

ℱfric 6= =fs f aπη   stokes’ law  (19B.9)

where η is the viscosity. In writing eqn 19B.9, we have assumed 
that it applies on a molecular scale, and independent evidence 
from magnetic resonance suggests that it often gives at least the 
right order of magnitude.

The two forces act in opposite directions, and the ions 
quickly reach a terminal speed, the drift speed, when the acceler-
ating force is balanced by the viscous drag. The net force is zero 
when fs =zeE, or

s
ze

f
= E

 
 drift speed  (19B.10)

It follows that the drift speed of an ion is proportional to the 
strength of the applied field. We write

s u= E  Definition of u  mobility  (19B.11)

where u is called the mobility of the ion (Table 19B.2). 
Comparison of the last two equations shows that

u
ze
f

ze
a

= =
6πη  

 mobility  (19B.12)

Because the drift speed governs the rate at which charged 
species are transported, we might expect the conductivity 
to decrease with increasing solution viscosity and ion size. 
Experiments confirm these predictions for bulky ions (such 
as R4N+ and RCO2

− ) but not for small ions. For example, the 
mobilities of the alkali metal ions in water increase from Li+ to 
Cs+ (Table 19B.2) even though the ionic radii increase. The para-
dox is resolved when we realize that the radius a in the Stokes 
formula is the hydrodynamic radius (or ‘Stokes radius’) of the 
ion, its effective radius in the solution taking into account all 
the H2O molecules it carries in its hydration shell. Small ions 
give rise to stronger electric fields than large ones (the electric 
field at the surface of a sphere of radius r is proportional to ze/r2 
and it follows that the smaller the radius the stronger the field), 
so small ions are more extensively solvated than big ions. Thus, 
an ion of small ionic radius may have a large hydrodynamic 
radius because it drags many solvent molecules through the 
solution as it migrates. The hydrating H2O molecules are often 
very labile, however, and NMR and isotope studies have shown 
that the exchange between the coordination sphere of the ion 
and the bulk solvent is very rapid for ions of low charge but may 
be slow for ions of high charge.

The proton, although it is very small, has a very high mobil-
ity (Table 19B.2)! Proton and 17O-NMR show that the times 
characteristic of protons hopping from one molecule to the 
next are about 1.5 ps, which is comparable to the time that 
inelastic neutron scattering shows it takes a water molecule to 

Brief illustration 19B.2 Ion mobility

For an order of magnitude estimate we can take z = 1 and a 
the radius of an ion such as Cs+ (which might be typical of a 
smaller ion plus its hydration sphere), which is 170 pm. For the 
viscosity, we use η = 1.0 cP (1.0 mPa s, Table 19B.1). Then

u = ×

× ×








 × ×( )

=

−

− −

−

−
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�

�π

..0 10 8 2 1 1× − − −m V s  
This value means that when there is a potential difference 
of 1 V across a solution of length 1 cm (so E = 100 V m−1), the 
drift speed is typically about 5 µm s−1. That speed might seem 
slow, but not when expressed on a molecular scale, for it 
corresponds to an ion passing about 104 solvent molecules per 
second.

Self-test 19B.3 The mobility of an SO4
2−  ion in water at 25 °C is 

8.29 × 10−8 m2 V−1 s−1. What is its effective radius?
Answer: 205 pm

Table 19B.2* Ionic mobilities in water at 298 K, u/(10−8 m2 s−1 V−1)

u/(10−8 m2 s−1 V−1) u/(10−8 m2 s−1 V−1)

H+ 36.23 OH− 20.64

Na+ 5.19 Cl− 7.91

K+ 7.62 Br− 8.09

Zn2+ 5.47 SO4
2− 8.29

* More values are given in the Resource section.
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802 19 Molecules in motion

reorient through about 1 radian (1 to 2 ps). According to the 
Grotthuss mechanism, there is an effective motion of a proton 
that involves the rearrangement of bonds in a group of water 
molecules (Fig. 19B.2). However, the actual mechanism is still 
highly contentious. The mobility of NH4

+  in liquid ammonia 
is also anomalous and presumably occurs by an analogous 
mechanism.

(b) Mobility and conductivity
Ionic mobilities provide a link between measurable and the-
oretical quantities. As a first step we establish in the following 
Justification the relation between an ion’s mobility and its molar 
conductivity:

λ = zuF   Ion conductivity  (19B.13)

where F is Faraday’s constant (F = NAe).

Equation 19B.13 applies to the cations and to the anions. 
Therefore, for the solution itself in the limit of zero concentra-
tion (when there are no ionic interactions),

Λm
° = ++ + + − − −( )z u z u F   (19B.14a)

For a symmetrical z:z electrolyte (for example, CuSO4 with 
z = 2), this equation simplifies to

Λm
° = ++ −z u u F( )  (19B.14b)

Justification 19B.1 The relation between ionic mobility 
and molar conductivity

To keep the calculation simple, we ignore signs in the follow-
ing, and concentrate on the magnitudes of quantities.

Consider a solution of a fully dissociated strong electrolyte 
at a molar concentration c. Let each formula unit give rise 
to ν+ cations of charge z+e and ν− anions of charge z−e. The 
molar concentration of each type of ion is therefore νc (with 
ν = ν+ or ν−), and the number density of each type is νcNA. 
The number of ions of one kind that pass through an imagi-
nary window of area A during an interval Δt is equal to the 
number within the distance sΔt (Fig. 19B.3), and therefore 
to the number in the volume sΔtA. (The same sort of argu-
ment is used in Topic 19A in the discussion of the transport 
properties of gases.) The number of ions of that kind in this 
volume is equal to sΔtAνcNA. The flux through the window 
(the number of this type of ion passing through the window 
divided by the area of the window and the duration of the 
interval) is therefore

J
s tA cN

tA
s cN( )ions A

A= =∆
∆




+

+

Figure 19B.2 A highly schematic diagram showing the 
effective motion of a proton in water.

Each ion carries a charge ze, so the flux of charge is

J zs ceN zs cF( )charge A= =   
Because s = uE, the flux is

J zu cF( )charge =  E  
The current, I, through the window due to the ions we are con-
sidering is the charge flux times the area:

I JA zu cF A= =  E  
Because the electric field is the potential gradient (eqn 19B.7, 
E = Δϕ/l), we can write

I
zu cFA

l
=  ∆φ

 
Current and potential difference are related by Ohm’s law, 
Δϕ = IR, so it follows that

I
R

G
A

l
= = =∆ ∆ ∆φ φ κ φ

 
where we have used eqn 19B.3 in the form κ  =  Gl/A . 
Comparison of the last two expressions gives κ = zuνcF. 
Division by the molar concentration of ions, νc, then results 
in eqn 19B.13.

Cations

Anions
Area, A

s+∆t
s–∆t

Figure 19B.3 In the calculation of the current, all the cations 
within a distance s+Δt (that is, those in the volume s+AΔt) will 
pass through the area A. The anions in the corresponding 
volume the other side of the window will also contribute to 
the current similarly.
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19B Motion in liquids  803

(c) The Einstein relations
An important relation between the drift speed s and a force ℱ of 
any kind acting on a particle is derived in Topic 19C:

s
D
RT

= ℱ

 
 drift speed  (19B.15)

where D is the diffusion coefficient for the species (Table 
19B.3). We have seen that an ion in solution has a drift speed 
s = uE when it experiences a force NAezE from an electric field 
of strength E. Therefore, substituting these known values into 
eqn 19B.15 and using NAe = F gives uE = DFzE/RT and hence, 
on cancelling the E, we obtain the Einstein relation:

u
zDF
RT

=
 

 einstein relation  (19B.16)

The Einstein relation provides a link between the molar con-
ductivity of an electrolyte and the diffusion coefficients of its 
ions. First, by using eqns 19B.13 and 19B.16 we write

λ = =zuF
z DF

RT

2 2

 
(19B.17)

for each type of ion. Then, from Λ λ λm
°

+ + − −= +  ,  the limiting 
molar conductivity is

Λm
°

+ + + − − −= +( ) z D z D
F
RT

2 2
2

 

which is the Nernst–Einstein equation. An application of this 
equation is to the determination of ionic diffusion coefficients 

from conductivity measurements; another is to the prediction 
of conductivities using models of ionic diffusion.

Equations 19B.12 (u = ze/f) and 19B.16 (u = zDF/RT in the 
form u = zDe/kT) relate the mobility of an ion to the frictional 
force and to the diffusion coefficient, respectively. We can 
combine the two expressions and cancel the ze and obtain the 
Stokes–Einstein equation:

D
kT
f

=
 

 stokes–einstein equation  (19B.19a)

If the frictional force is described by Stokes’ law, then we also 
obtain a relation between the diffusion coefficient and the vis-
cosity of the medium:

D
kT

a
=

6πη  
 stokes–einstein equation  (19B.19b)

An important feature of eqn 19B.19b is that it makes no refer-
ence to the charge of the diffusing species. Therefore, the equa-
tion also applies in the limit of vanishingly small charge; that is, 
it also applies to neutral molecules. This feature is taken further 
in Topic 19C. It must not be forgotten, however, that both equa-
tions depend on the assumption that the viscous drag is pro-
portional to the speed.

Brief illustration 19B.3 Ionic conductivity

Earl ier, we est imated the ty pica l ionic mobi l ity as 
5.0 × 10−8 m2 V−1 s−1; so, with z = 1 for both the cation and anion, 
we can estimate that a typical limiting molar conductivity 
should be about

l = × × ×
= ×

− − − −

− − −

( . ) ( . )

.

5 1 m V s 9 648 1 Cmol

4 8 1 m V s Cmo

8 2 1 1 4 1

3 2 1 1

0 0 0

0 ll 1–

 

But 1 V C−1 s = 1 S (see the remark preceding eqn 19B.3), so 
λ ≈ 5 mS m2 mol−1, and about twice that value for Λm

° , in accord 
with experiment. The experimental value for KCl, for instance, 
is 15 mS m2 mol−1.

Self-test 19B.4 Estimate the ionic conductivity of an SO4
2−  ion 

in water at 25 °C from its mobility (Table 19B.2).
Answer: 16 mS m2 mol−1

Brief illustration 19B.4 Mobility and diffusion

From Table 19B.2, the mobility of SO4
2−  is 8.29 × 10−8 m2 V−1 s−1. 

It follows from eqn 19B.16 in the form D = uRT/zF that the dif-
fusion coefficient for the ion in water at 25 °C is

D = × × ×

× ×

− − − − −( . ) ( . ) ( )

.

8 29 10 8 3145 298

2 9 649 10

8 2 1 1 1 1

4

m V s JK mol K

.

C mol

m s

J V 1−

−

− −











= ×

 1

9 2 11 06 10

Self-test 19B.5 Repeat the calculation for the NH4
+ ion.

Answer: 1.96 × 10−9 m2 s−1

Table 19B.3* Diffusion coefficients at 298 K, D/(10−9 m2 s−1)

Molecules in liquids Ions in water

I2 in hexane 4.05 K+ 1.96 Br− 2.08

in benzene 2.13 H+ 9.31 Cl− 2.03

Glycine in water 1.055 Na+ 1.33 I− 2.05

H2O in water 2.26 OH− 5.03

Sucrose in water 0.5216

* More values are given in the Resource section.

nernst–einstein 
equation  (19B.18)
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804 19 Molecules in motion

Checklist of concepts

☐ 1. The viscosity of a liquid decreases with increasing 
temperature.

☐ 2. The conductance, G, of a solution is the inverse of its 
resistance.

☐ 3. Kohlrausch’s law states that at low concentrations the 
molar conductivities of strong electrolytes vary linearly 
with the square root of the concentration.

☐ 4. The law of the independent migration of ions states the 
molar conductivity in the limit of zero concentration, is 
the sum of contributions from its individual ions.

☐ 5. An ion reaches a drift speed when the acceleration due 
to the electrical force is balanced by the viscous drag.

☐ 6. The hydrodynamic radius of an ion may be greater 
than its geometrical radius due to solvation.

☐ 7. The high mobility of a proton in water is explained by 
the Grotthuss mechanism.

Checklist of equations

Property Equation Comment Equation number

Viscosity of a liquid η η= 0e aE RT/ Narrow temperature range 19B.2

Conductivity κ = Gl/A, G = 1/R Definition 19B.3

Molar conductivity Λm = κ/c Definition 19B.4

Kohlrausch’s law Λ Λm m= −° Kc1 2/ Empirical observation 19B.5

Law of independent migration of ions Λ λ λm
° + + − −= +  Limiting law 19B.6

Stokes’ law ℱfric = fs  f = 6πηa Hydrodynamic radius 19B.9

Drift speed s = uE Defines u 19B.11

Ion mobility u = ze/6πηa Asumes Stokes’ law 19B.12

Conductivity and mobility λ = zuF 19B.13

Molar conductivity and mobility Λm° + + + − − −= +( )z u z u F  19B.14a

Drift speed s = DF/RT 19B.15

Einstein relation u = zDF/RT 19B.16

Nernst–Einstein relation Λm /° + + + − − −= +( )( ) z D z D F RT2 2 2 19B.18

Stokes–Einstein relation D = kT/f 19B.19a
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19C diffusion

That solutes in gases, liquids, and solids have a tendency to 
spread can be discussed from three points of view. One view-
point is from the Second Law of thermodynamics and the ten-
dency for entropy to increase or, if the temperature and pressure 
are constant, for the Gibbs energy to decrease. When this law is 
applied to solutes it appears that there is a force acting to disperse 
the solute. That force is illusory, but it provides an interesting and 
useful approach to discussing diffusion. The second approach 
is to set up a differential equation for the change in concentra-
tion in a region by considering the flux of material through its 
boundaries. The resulting ‘diffusion equation’ can then be solved 
(in principle, at least) for various configurations of the system, 
including taking into account the shape of a reaction vessel. The 
third approach is more mechanistic, and is to imagine diffusion 
as taking place in a series of random small steps.

19C.1 The thermodynamic view

It is established in Topic 3C that, at constant temperature and 
pressure, the maximum non-expansion work that can be done 
per mole when a substance moves from one location to another 
differing in molar Gibbs energy by dGm is dwe = dGm. In terms 
of the chemical potentials of the substance in the two locations 
(its partial molar Gibbs energy), dwe = dμ. In a system in which 
the chemical potential depends on the position x,

d d dw
x

x
T p

= = ∂
∂







μ μ

,  

It is also shown in Topic 2A that in general work can always be 
expressed in terms of an opposing force (which here we write ℱ ),  
and that dw = −ℱdx. By comparing these two expressions for 
dw we see that the slope of the chemical potential with respect 
to position can be interpreted as an effective force per mole of 
molecules. We write this thermodynamic force as

ℱ = −





∂
∂
μ
x

T p,  
 thermodynamic force  (19C.1)

There is not necessarily a real force pushing the particles down 
the slope of the chemical potential. As we shall see, the force 
may represent the spontaneous tendency of the molecules to 
disperse as a consequence of the Second Law and the hunt for 
maximum entropy.

Contents

19c.1 The thermodynamic view 805
brief illustration 19c.1: the thermodynamic force 806
brief illustration 19c.2: the thermodynamic force  
and the drift speed 806

19c.2 The diffusion equation 807
(a) Simple diffusion 807

brief illustration 19c.3: the diffusion equation 808
(b) Diffusion with convection 808

brief illustration 19c.4: convection 808
(c) Solutions of the diffusion equation 809

example 19c.1: calculating the average  
displacement 809

19c.3 The statistical view 810
brief illustration 19c.5: random walk 811

Checklist of concepts 811
Checklist of equations 811

➤➤ Why do you need to know this material?
Diffusion is a hugely important process both in the 
atmosphere and in solution, and it is important to be able 
to predict the spread of one material through another 
when discussing reactions in solution and the spread of 
substances into the environment. The interpretation of 
diffusion in terms of a random walk also gives insight into 
the molecular basis of the process.

➤➤ What is the key idea?
Particles tend to spread and achieve a uniform distribution.

➤➤ What do you need to know already?
This Topic draws on arguments relating to flux that are 
treated in Topic 19A, particularly the way to calculate the 
flux of particles through a window of given area. This 
Topic goes into more detail about the diffusion coefficient, 
which was introduced in Topic 19A and used in Topic 19B. 
It uses the concept of chemical potential (Topic 5A) to 
discuss the direction of spontaneous change. One of the 
Justifications develops the random walk model introduced 
in Topic 17A.
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806 19 Molecules in motion

In a solution in which the activity of the solute is a, the chem-
ical potential is μ = μ< + RT ln a. If the solution is not uniform 
the activity depends on the position and we can write

ℱ = − 





RT
a

x
T p

∂
∂
ln

,  
(19C.2a)

If the solution is ideal, a may be replaced by the molar concen-
tration c, and then

ℱ = − 





− 





=
=

RT
c

x
RT
c

c
x

T p T

∂
∂

∂
∂

ln

,

dln /d (1/ )(d /d )y x y y x

,, p  
(19C.2b)

In Topic 19A it is established that Fick’s first law of diffusion, 
which we write here in the form

J D
x

( )number
d
d

= − N
 

 Fick’s first law  (19C.3)

can be deduced from the kinetic model of gases. Here we gen-
eralize that result and show that it applies to the diffusion of 
species in condensed phases too. To do so, we suppose that the 
flux of diffusing particles is a response to a thermodynamic 
force due to a concentration gradient. The diffusing particles 
reach a steady ‘drift speed’, s, when the thermodynamic force, ℱ, 
is matched by the drag due to the viscosity of the medium. This 
drift speed is proportional to the thermodynamic force, and we 
write s ∝ ℱ. However, the particle flux, J, is proportional to the 
drift speed, and the thermodynamic force is proportional to the 
concentration gradient, dc/dx. The chain of proportionalities 

(J ∝ s, s ∝ ℱ, and ℱ ∝ dc/dx) implies that J ∝ dc/dx, which is the 
content of Fick’s law.

If we divide both sides of eqn 19C.3 by Avogadro’s constant, 
so converting numbers into amounts (numbers of moles), not-
ing that N/NA = (N/V)/NA = (nNA/V)/NA = n/V = c, the molar 
concentration, then Fick’s law becomes

J D
c
x

( )amount
d
d

= −
 

(19C.4)

In this expression, D is the diffusion coefficient and dc/dx is the 
slope of the molar concentration. The flux is related to the drift 
speed by

J sc( )amount =  (19C.5)

This relation follows from the argument used in Topic 19A. Thus, 
all particles within a distance sΔt, and therefore in a volume sΔtA, 
can pass through a window of area A in an interval Δt. Hence, the 
amount of substance that can pass through the window in that 
interval is sΔtAc. The particle flux is this quantity divided by the 
area A and the time interval Δt, and is therefore simply sc.

By combining the last two equations for J(amount) and using 
eqn 19C.2b

sc D
c
x

Dc
RT

s
D
RT

= − = =d
d

or
ℱ ℱ

 
(19C.6)

Therefore, once we know the effective force and the diffusion 
coefficient, D, we can calculate the drift speed of the particles 
(and vice versa) whatever the origin of the force. This equation 
is used in Topic 19B, where the force is applied electrically to 
an ion.

Brief illustration 19C.2 The thermodynamic force  
and the drift speed

Laser measurements showed that a molecule has a drift speed 
of 1.0 µm s−1 in water at 25 °C, with diffusion coefficient 
5.0 × 10−9 m2 s−1. The corresponding thermodynamic force 
from eqn 19C.6 in the form ℱ = sRT/D is

ℱ = × × ×
×

− − − −

− −

( . ) ( . ) ( )

.

1 0 10 8 3145 298

5 0 10

6 1 1 1

9 2 1

ms JK mol K

m s(( )

= × − −5 0 105 1 1. Jm mol
N

or about 500 kN mol−1.

Self-test 19C.2 What thermodynamic force would achieve a 
drift speed of 10 µm s−1 in water at 25 °C?

Answer: 5.0 MN mol−1

Brief illustration 19C.1 The thermodynamic force

Suppose a linear concentration gradient is set up across a 
container at 25 °C, with points separated by 1.0 cm differing 
in concentration by 0.10 mol dm−3 around a mean value of 
1.0 mol dm−3. According to eqn 19C.2b, the solute experiences 
a thermodynamic force of magnitude

ℱ = × ×
×

− −

−

−( . ) ( )
.

.
.

8 3145 298
1 0

0 10
1 0 10

1 1

3

3JK mol K
moldm

moldm
−−

− −= ×

2

4 1 12 5 10

m

Jm mol.
N

or 25 kN mol−1. Note that the thermodynamic force is a molar 
quantity.

Self-test 19C.1 Suppose that the concentration of a solute 
decreases exponentially as c x c x( ) /= −

0e λ . Derive an expression 
for the thermodynamic force.

Answer: F= RT /λ
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19C Diffusion  807

19C.2 The diffusion equation

We now turn to the discussion of time-dependent diffusion 
processes, where we are interested in the spreading of inho-
mogeneities with time. One example is the temperature of a 
metal bar that has been heated at one end: if the source of 
heat is removed, then the bar gradually settles down into a 
state of uniform temperature. When the source of heat is 
maintained and the bar can radiate, it settles down into a 
steady state of non-uniform temperature. Another exam-
ple (and one more relevant to chemistry) is the concentra-
tion distribution in a solvent to which a solute is added. We 
shall focus on the description of the diffusion of particles, but 
simi lar arguments apply to the diffusion of physical proper-
ties, such as temperature. Our aim is to obtain an equation 
for the rate of change of the concentration of particles in an 
inhomogeneous region.

(a) Simple diffusion
The central equation of this section is the diffusion equation, 
also called ‘Fick’s second law of diffusion’, which relates the rate 
of change of concentration at a point to the spatial variation of 
the concentration at that point:

∂
∂

∂
∂

c
t

D
c

x
=

2

2  
 diffusion equation  (19C.7)

We show in the following Justification that the diffusion equa-
tion follows from Fick’s first law of diffusion.

The diffusion equation shows that the rate of change of con-
centration is proportional to the curvature (more precisely, to 
the second derivative) of the concentration with respect to dis-
tance. If the concentration changes sharply from point to point 
(i.e. if the distribution is highly wrinkled), then the concentra-
tion changes rapidly with time. Where the curvature is positive 
(a dip, Fig. 19C.2), the change in concentration is positive; the 
dip tends to fill. Where the curvature is negative (a heap), the 
change in concentration is negative; the heap tends to spread. 
If the curvature is zero, then the concentration is constant in 
time. If the concentration decreases linearly with distance, then 
the concentration at any point is constant because the inflow of 
particles is exactly balanced by the outflow.

The diffusion equation can be regarded as a mathematical 
formulation of the intuitive notion that there is a natural ten-
dency for the wrinkles in a distribution to disappear. More suc-
cinctly: Nature abhors a wrinkle.

enter the slab is JA, so the rate of increase in molar concentra-
tion inside the slab (which has volume Aλ) on account of the 
flux from the left is

∂
∂

c
t

JA
A

J= =λ λ

There is also an outflow through the right-hand window. The 
flux through that window is J′, and the rate of change of con-
centration that results is

∂
∂

′c
t

J= − λ

The net rate of change of concentration is therefore

∂
∂

′c
t

J J= −
λ

Each flux is proportional to the concentration gradient at the 
respective window. So, by using Fick’s first law, we can write

J J D
c
x

D
c
x

− = − +′ ∂
∂

∂ ′
∂

The concentration at the right-hand window is related to that 
on the left by

c c
c
x

′ ∂
∂= +





λ

which implies that

J J D
c
x

D
x

c
c
x

D
c

x
− = − + +













=′ ∂
∂

∂
∂

∂
∂

∂
∂

λ λ
2

2

When this relation is substituted into the expression for the 
rate of change of concentration in the slab, we get eqn 19C.7.

Justification 19C.1 The diffusion equation

Consider a thin slab of cross-sectional area A that extends 
from x to x + λ (Fig. 19C.1). Let the concentration at x be c at 
the time t. The rate at which the amount (in moles) of particles 

x
x + λ 

J(x + λ)

J(x)
Area, A
Volume, Aλ

Figure 19C.1 The net flux in a region is the difference 
between the flux entering from the region of high 
concentration (on the left) and the flux leaving to the region 
of low concentration (on the right).
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808 19 Molecules in motion

then the flux of particles through an area A in an interval Δt 
when the fluid is flowing at a velocity v can be calculated in the 
way we have used several times elsewhere (such as in Topic 19A, 
by counting the particles within a distance vΔt), and is

J
cA t

A t
cconv = =v
v

∆
∆  

 convective flux  (19C.8)

This J is called the convective flux. The rate of change of con-
centration in a slab of thickness l and area A is, by the same 
argument as before and assuming that the velocity does not 
depend on the position,

∂
∂

∂
∂

∂
∂

′c
t

J J c
c

c
x

c
x

= − = − +













= −





conv conv

λ λ λ λ
v v

v
 

  convection  (19C.9)

When both diffusion and convection occur, the total change of 
concentration in a region is the sum of the two effects, and the 
generalized diffusion equation is

∂
∂

∂
∂

∂
∂

c
t

D
c

x
c
x

= −
2

2 v
 

 generalized diffusion equation  (19C.10)

A further refinement, which is important in chemistry, is the 
possibility that the concentrations of particles may change as a 
result of reaction. When reactions are included in eqn 19C.10 
(which we do in Topic 21B) we get a powerful differential equa-
tion for discussing the properties of reacting, diffusing, con-
vecting systems, which is the basis of reactor design in chemical 
industry and of the utilization of resources in living cells.

(b) Diffusion with convection
The transport of particles arising from the motion of a streaming 
fluid is called convection. If for the moment we ignore diffusion, 

Brief illustration 19C.4 Convection

Here we continue the discussion of the systems treated in 
Brief illustration 19C.3 and suppose that there is a convective 
flow v. If the concentration falls linearly across a small region 
of space, in the sense that c = c0 − ax then ∂c/∂x = –a and the 
change in concentration in the region is ∂c/∂t = av. There is 
now an increase in the region because the inward convective 
flow outweighs the outward flow, and there is no diffusion. If 
a = 0.010 mol dm−3 m−1 and v = +1.0 mm s−1,

∂
∂

c
t

= × ×

= ×

− − − −

− −

( . ) ( . )

.

0 010 1 0 10

1 0 10

3 1 3 1

5 3

mol dm m m s

moldm ss−1

and the concentration increases at the rate of 10 µmol dm−3 s−1.

Self-test 19C.4 What rate of f low is needed to replenish the 
concentration when the concentration varies exponentially as 
c = c0e−x/λ across the region?

Answer: v = D/λ

Brief illustration 19C.3 The diffusion equation

If a concentration falls linearly across a small region of space, 
in the sense that c = c0 − ax then ∂2c/∂x2 = 0 and consequently 
∂c/∂t = 0. The concentration in the region is constant because 
the inward flow through one window is matched by the out-
ward f low through the other window (Fig. 19C.3a). If the 
concentration varies as c c ax= −0

1
2

2  then ∂2c/∂x2 = –a and 
consequently ∂c/∂t = –Da. Now the concentration decreases, 
because there is a greater outward f low than inward f low 
(Fig. 19C.3b).

Self-test 19C.3 What is the change in concentration when 
the concentration falls exponentially across a region? Take 
c = c0e−x/λ.

Answer: ∂c/∂t = –(D/λ2)c

(a) (b)
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Figure 19C.3 The two instances treated in Brief illustration 
19C.3: (a) linear concentration gradient, (b) parabolic 
concentration gradient.
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Figure 19C.2 Nature abhors a wrinkle. The diffusion equation 
tells us that peaks in a distribution (regions of negative 
curvature) spread and troughs (regions of positive  
curvature) fill in.
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(c) Solutions of the diffusion equation

The diffusion equation is a second-order differential equation 
with respect to space and a first-order differential equation 
with respect to time. Therefore, we must specify two boundary 
conditions for the spatial dependence and a single initial condi-
tion for the time dependence (see Mathematical background 4 
following Chapter 8).

As an illustration, consider a solvent in which the solute is 
initially coated on one surface of the container (for example, 
a layer of sugar on the bottom of a deep beaker of water). The 
single initial condition is that at t = 0 all N0 particles are con-
centrated on the yz-plane (of area A) at x = 0. The two bound-
ary conditions are derived from the requirements (1) that the 
concentration must everywhere be finite and (2) that the total 
amount (number of moles) of particles present is n0 (with 
n0 = N0/NA) at all times. These requirements imply that the flux 
of particles is zero at the top and bottom surfaces of the system. 
Under these conditions it is found that

c x t
n

A Dt
x Dt( , )

( ) /
/= −0

1 2
42

π
e

 
 one-dimensional diffusion  (19C.11)

as may be verified by direct substitution. Figure 19C.4 shows 
the shape of the concentration distribution at various times, 
and it is clear that the concentration spreads and tends to 
uniformity.

Another useful result is for a localized concentration of sol-
ute in a three-dimensional solvent (a sugar lump suspended in 
a large flask of water). The concentration of diffused solute is 
spherically symmetrical, and at a radius r is

c x t
n
Dt

r Dt( , )
( ) /

/= −0
3 2

4

8
2

π
e

 
 three-dimensional diffusion  (19C.12)

Other chemically (and physically) interesting arrangements, 
such as transport of substances across biological mem-
branes can be treated. In many cases the solutions are more 
cumbersome.

The solutions of the diffusion equation are useful for experi-
mental determinations of diffusion coefficients. In the capillary 
technique, a capillary tube, open at one end and containing a 
solution, is immersed in a well-stirred larger quantity of sol-
vent, and the change of concentration in the tube is monitored. 
The solute diffuses from the open end of the capillary at a rate 
that can be calculated by solving the diffusion equation with 
the appropriate boundary conditions, so D may be determined. 
In the diaphragm technique, the diffusion occurs through the 
capillary pores of a sintered glass diaphragm separating the 
well-stirred solution and solvent. The concentrations are moni-
tored and then related to the solutions of the diffusion equation 
corresponding to this arrangement. Diffusion coefficients may 
also be measured by a number of techniques, including NMR 
spectroscopy.

The solutions of the diffusion equation can be used to predict 
the concentration of particles (or the value of some other physi-
cal quantity, such as the temperature in a non-uniform system) 
at any location. We can also use them to calculate the average 
displacement of the particles in a given time.

Example 19C.1 Calculating the average displacement

Calculate the average displacement of particles in a time t in 
a one-dimensional system if they have a diffusion constant D.

Method We need to calculate the probability that a parti-
cle will be found at a certain distance from the origin, and 
then calculate the average by weighting each distance by that 
probability.

Answer The number of particles in a slab of thickness dx and 
area A at x, where the molar concentration is c, is cANAdx. The 
probability that any of the N0 = n0NA particles is in the slab is 
therefore cANAdx/N0. If the particle is in the slab, it has trav-
elled a distance x from the origin. Therefore, the average dis-
placement of all the particles is the sum of each x weighted by 
the probability of its occurrence:

x x
c x t AN

N
x

Dt
x xx Dt= = =

∞
−

∞

∫ ∫( , )
( ) /

/A d e d
00

1 2
4

0

1 2

n N0 A

Integral G

� π

..2�
2

1 2
Dt
π







/

The average displacement varies as the square root of the 
lapsed time.

Self-test 19C.5 Derive an expression for the root-mean-square 
distance travelled by diffusing particles in a time t in a one-
dimensional system. You will need Integral G.3 from the 
Resource section.

Answer: 〈 〉 =x Dt2 1 2 2/ /( )1 2
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Figure 19C.4 The concentration profiles above a plane from 
which a solute is diffusing. The curves are plots of eqn 19C.11 
and are labelled with different values of Dt. The units of Dt and 
x are arbitrary, but are related so that Dt/x2 is dimensionless. For 
example, if x is in metres, Dt would be in metres2; so, for D = 10−9 
m2 s−1, Dt = 0.1 m2 corresponds to t = 108 s.
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810 19 Molecules in motion

As shown in Example 19C.1, the average displacement of a 
diffusing particle in a time t in a one-dimensional system is

x
Dt= 





2
1 2

π

/

 
One dimension  mean displacement  (19C.13)

and the root-mean-square displacement in the same time is

〈 〉 =x Dt2 1 2 1 2 (2 )/ /

 

The latter is a valuable measure of the spread of particles 
when they can diffuse in both directions from the origin (for 
then 〈x〉 = 0 at all times). The root-mean-square displacement 
of particles with a typical diffusion coefficient in a liquid (D = 
 5 × 10−10 m2 s−1) is illustrated in Fig. 19C.5, which shows how 
long it takes for diffusion to increase the net distance travelled 
on average to about 1 cm in an unstirred solution. The graph 
shows that diffusion is a very slow process (which is why solu-
tions are stirred, to encourage mixing by convection). The dif-
fusion of pheromones in still air is also very slow, and greatly 
accelerated by convection.

19C.3 The statistical view

An intuitive picture of diffusion is of the particles moving in a 
series of small steps and gradually migrating from their origi-
nal positions. We explore this idea by using a model in which 
the particles can jump through a distance λ in a time τ. The 
total distance travelled by a particle in a time t is therefore tλ/τ. 
However, the particle will not necessarily be found at that dis-
tance from the origin. The direction of each step may be dif-
ferent, and the net distance travelled must take the changing 
directions into account.

If we simplify the discussion by allowing the particles to 
travel only along a straight line (the x-axis), and for each step 
(to the left or the right) to be through the same distance λ, then 
we obtain the one-dimensional random walk. The same model 
can be used to discuss the random coil structures of denatured 
polymers (Topic 17B).

We show in the following Justification that the probability of 
a particle being at a distance x from the origin after a time t is

P x t
t

x t( , )
/

/=





−2
1 2

22 2τ τ λ
π e

 
One dimension  Probability  (19C.15)

Justification 19C.2 The one-dimensional random walk

The starting point for this calculation is the expression derived 
in Justification 17A.1, with steps in place of the bonds treated 
there, for the probability that the net distance nλ reached from 
the origin with n = NR − NL after N steps each of length λ, with 
NR steps to the right and NL to the left is

P n
N

N N N N( )
!

( )! !
λ =

− R R 2

As in Justification 17A.1, this expression can be developed by 
making use of Stirling’s approximation (Topic 15A) in the 
form

ln ln 2 ln1 2x x x x! ( ) /≈ + +( ) −π 1
2

but here we use the parameter

μ = −N
N

R 1
2 1<<

which is small because almost half the steps are to the right. 
The smallness of μ allows us to use the expansion

ln ln1
2

22 2 2±( )= − ± − +μ μ μ 

and retain terms through O(μ2) in the overall expression 
for ln P(nλ). The final result, after quite a lot of algebra (see 
Problem 19C.11) is

P n
N N

N N

N

N

( ) / /λ
µ µ

=
( )

=
( )

+ − −2

2 2

2

2

1 2

1 2

2
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At this point we recognize that

N
N N

N
N N

N
n
N

μ2
2 2 22

4 4 4
= − = − =( ) ( )R R L

The net distance from the origin is x = nλ and the num-
ber of steps taken in a time t is N = t/τ, so N x tµ τ λ2 2 24= / . 
Substitution of these quantities into the expression for P gives 
eqn 19C.15.

log(t/s)
–10 –6 –2 0 2 6

1 m

1 cm

1 mm

1 µm

1 nm
1 µs 1 ms 1 s 1 h 1 d 1 y

lo
g

(〈
x 2
〉1

/2
/m

)

0

–2

–4

–6

–8

–10

Figure 19C.5 The root-mean-square distance covered by 
particles with D = 5 × 10−10 m2 s−1. Note the great slowness of 
diffusion.

 (19C.14)
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Brief illustration 19C.5 Random walk

Suppose an SO4
2−  ion jumps through its own diameter each 

time it makes a move in an aqueous solution, then because 
D = 1.1 × 10−9 m2 s−1 and a = 250 pm (as deduced from mobility 
measurements, Topic 19B), it follows from λ = 2a that

τ = = = × ×
×

= ×
−

− −
−( ) ( )

.
.

2
2

2 2 250 10
1 1 10

1 1 10
2 2 12 2

9 2 1
10a

D
a
D

pm
m s

s

or τ  = 110 ps. Because τ is the time for one jump, the ion makes 
about 1 × 1010 jumps per second.

Self-test 19C.6 What would be the diffusion constant for 
a similar ion that is 50 per cent larger than SO4

2− and leaps 
through its own diameter at only 30 per cent of the rate?

Answer: 2.1 × 10−9 m2 s−1

The differences of detail between eqns 19C.11 (for one-
dimensional diffusion) and 19C.15 arises from the fact that 
in the present calculation the particles can migrate in either 
direction from the origin. Moreover, they can be found only at 
discrete points separated by λ instead of being anywhere on a 
continuous line. The fact that the two expressions are so simi-
lar suggests that diffusion can indeed be interpreted as the out-
come of a large number of steps in random directions.

We can now relate the coefficient D to the step length λ and 
the rate at which the jumps occur. Thus, by comparing the two 
exponents in eqn 19C.11 and eqn 19C.15 we can immediately 
write down the Einstein–Smoluchowski equation:

D = λ
τ
2

2  
 einstein–smoluchowski equation  (19C.16)

The Einstein–Smoluchowski equation is the central connec-
tion between the microscopic details of particle motion and the 
macroscopic parameters relating to diffusion. It also brings us 
back full circle to the properties of the perfect gas treated in 
Topic 19A. For if we interpret λ/τ as vmean, the mean speed of 
the molecules, and interpret λ as a mean free path, then we can 
recognize in the Einstein–Smoluchowski equation essentially 
the same expression as we obtained from the kinetic model of 
gases (eqn 19A.10 of Topic 19A, D = 1

3 λvmean). That is, the diffu-
sion of a perfect gas is a random walk with an average step size 
equal to the mean free path.

Checklist of concepts

☐ 1. A thermodynamic force represents the spontaneous 
tendency of the molecules to disperse as a consequence 
of the Second Law and the hunt for maximum entropy.

☐ 2. The diffusion equation (Fick’s second law; see below) 
can be regarded as a mathematical formulation of the 
notion that there is a natural tendency for concentra-
tion to become uniform.

☐ 3. Convection is the transport of particles arising from 
the motion of a streaming fluid.

☐ 4. An intuitive picture of diffusion is of the particles mov-
ing in a series of small steps, a random walk, and grad-
ually migrating from their original positions.

Checklist of equations

Property Equation Comment Equation number

Thermodynamic force ℱ = −( ) ,∂ ∂μ/ x T p Definition 19C.1

Fick’s first law J D c x( )amount d /d= − 19C.4

Convective flux J = sc 19C.5

Drift speed s D RT= ℱ / 19C.6

Diffusion equation ∂ ∂ ∂ ∂c t D c x/ /= 2 2 One dimension 19C.7

Generalized diffusion equation ∂ = ∂ ∂ −c t D c x c x/ / /∂ ∂ ∂2 2 v One dimension 19C.10
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812 19 Molecules in motion

Property Equation Comment Equation number

Mean displacement 〈 〉x Dt= 2 1 2( ) //π One-dimensional diffusion 19C.13

Root-mean-square displacement 〈x2〉1/2 = (2Dt)1/2 One-dimensional diffusion 19C.14

Probability of displacement P x t t x t( , ) ( ) / /= −2 1 2 22 2τ τλ/ eπ One-dimensional random walk 19C.15

Einstein–Smoluchowski equation D = λ τ2 2/ One-dimensional random walk 19C.16

iranchembook.ir/edu



Exercises and problems  813

chaPter 19  Molecules in motion

TOPIC 19A transport properties of a perfect gas

Discussion questions
19A.1 Explain how Fick’s first law arises from the concentration gradient of gas 
molecules.

19A.2 Provide molecular interpretations for the dependencies of the diffusion 
constant and the viscosity on the temperature, pressure, and size of gas molecules.

19A.3 What might be the effect of molecular interactions on the transport 
properties of a gas?

Exercises
19A.1(a) Calculate the thermal conductivity of argon (CV,m = 12.5 J K−1 mol−1, 
σ = 0.36 nm2) at 298 K.
19A.1(b) Calculate the thermal conductivity of nitrogen (CV,m = 20.8 J K−1 mol−1, 
σ = 0.43 nm2) at 298 K.

19A.2(a) Calculate the diffusion constant of argon at 20 °C and (i) 1.00 Pa,  
(ii) 100 kPa, (iii) 10.0 MPa. If a pressure gradient of 1.0 bar m−1 is established 
in a pipe, what is the flow of gas due to diffusion?
19A.2(b) Calculate the diffusion constant of nitrogen at 20 °C and (i) 100.0 Pa, 
(ii) 100 kPa, (iii) 20.0 MPa. If a pressure gradient of 1.20 bar m−1 is established 
in a pipe, what is the flow of gas due to diffusion?

19A.3(a) Calculate the flux of energy arising from a temperature gradient of 
10.5 K m−1 in a sample of argon in which the mean temperature is 280 K.
19A.3(b) Calculate the flux of energy arising from a temperature gradient of 
8.5 K m−1 in a sample of hydrogen in which the mean temperature is 290 K.

19A.4(a) Use the experimental value of the thermal conductivity of neon 
(Table 19A.2) to estimate the collision cross-section of Ne atoms at 273 K.
19A.4(b) Use the experimental value of the thermal conductivity of nitrogen 
(Table 19A.2) to estimate the collision cross-section of N2 molecules at 298 K.

19A.5(a) In a double-glazed window, the panes of glass are separated by 1.0 cm. 
What is the rate of transfer of heat by conduction from the warm room 
(28 °C) to the cold exterior (−15 °C) through a window of area 1.0 m2? What 
power of heater is required to make good the loss of heat?
19A.5(b) Two sheets of copper of area 2.00 m2 are separated by 5.00 cm in air. 
What is the rate of transfer of heat by conduction from the warm sheet (70 °C) 
to the cold sheet (0 °C).

19A.6(a) Use the experimental value of the coefficient of viscosity for neon 
(Table 19A.1) to estimate the collision cross-section of Ne atoms at 273 K.
19A.6(b) Use the experimental value of the coefficient of viscosity for nitrogen 
(Table 19A.1) to estimate the collision cross-section of the molecules at 273 K.

19A.7(a) Calculate the viscosity of air at (i) 273 K, (ii) 298 K, (iii) 1000 K. Take 
σ ≈ 0.40 nm2. (The experimental values are 173 µP at 273 K, 182 µP at 20 °C, 
and 394 µP at 600 °C.)
19A.7(b) Calculate the viscosity of benzene vapour at (i) 273 K, (ii) 298 K,  
(iii) 1000 K. Take σ ≈ 0.88 nm2.

19A.8(a) A solid surface with dimensions 2.5 mm × 3.0 mm is exposed to argon 
gas at 90 Pa and 500 K. How many collisions do the Ar atoms make with this 
surface in 15 s?

19A.8(b) A solid surface with dimensions 3.5 mm × 4.0 cm is exposed to helium 
gas at 111 Pa and 1500 K. How many collisions do the He atoms make with 
this surface in 10 s?

19A.9(a) An effusion cell has a circular hole of diameter 2.50 mm. If the molar 
mass of the solid in the cell is 260 g mol−1 and its vapour pressure is 0.835 Pa at 
400 K, by how much will the mass of the solid decrease in a period of 2.00 h?
19A.9(b) An effusion cell has a circular hole of diameter 3.00 mm. If the molar 
mass of the solid in the cell is 300 g mol−1 and its vapour pressure is 0.224 Pa at 
450 K, by how much will the mass of the solid decrease in a period of 24.00 h?

19A.10(a) A solid compound of molar mass 100 g mol−1 was introduced into a 
container and heated to 400 °C. When a hole of diameter 0.50 mm was opened 
in the container for 400 s, a mass loss of 285 mg was measured. Calculate the 
vapour pressure of the compound at 400 °C.
19A.10(b) A solid compound of molar mass 200 g mol−1 was introduced into a 
container and heated to 300 °C. When a hole of diameter 0.50 mm was opened 
in the container for 500 s, a mass loss of 277 mg was measured. Calculate the 
vapour pressure of the compound at 300 °C.

19A.11(a) A manometer was connected to a bulb containing carbon dioxide 
under slight pressure. The gas was allowed to escape through a small pinhole, 
and the time for the manometer reading to drop from 75 cm to 50 cm 
was 52 s. When the experiment was repeated using nitrogen (for which 
M = 28.02 g mol−1) the same fall took place in 42 s. Calculate the molar mass of 
carbon dioxide.
19A.11(b) A manometer was connected to a bulb containing nitrogen under 
slight pressure. The gas was allowed to escape through a small pinhole, and 
the time for the manometer reading to drop from 65.1 cm to 42.1 cm was 
18.5 s. When the experiment was repeated using a fluorocarbon gas, the same 
fall took place in 82.3 s. Calculate the molar mass of the fluorocarbon.

19A.12(a) A space vehicle of internal volume 3.0 m3 is struck by a meteor and 
a hole of radius 0.10 mm is formed. If the oxygen pressure within the vehicle 
is initially 80 kPa and its temperature 298 K, how long will the pressure take to 
fall to 70 kPa?
19A.12(b) A container of internal volume 22.0 m3 was punctured, and a hole of 
radius 0.050 mm was formed. If the nitrogen pressure within the container is 
initially 122 kPa and its temperature 293 K, how long will the pressure take to 
fall to 105 kPa?

Problems
19A.1‡ A. Fenghour et al. (J. Phys. Chem. Ref. Data 24, 1649 (1995)) compiled 
an extensive table of viscosity coefficients for ammonia in the liquid and 

vapour phases. Deduce the effective molecular diameter of NH3 based on each 
of the following vapour-phase viscosity coefficients: (a) η = 9.08 × 10−6 kg m−1 s−1 
at 270 K and 1.00 bar; (b) η = 1.749 × 10−5 kg m−1 s−1 at 490 K and 10.0 bar.

‡ These problems were provided by Charles Trapp and Carmen Giunta.
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814 19 Molecules in motion

19A.2 Calculate the ratio of the thermal conductivities of gaseous hydrogen 
at 300 K to gaseous hydrogen at 10 K. Be circumspect, and think about the 
modes of motion that are thermally active at the two temperatures.

19A.3 Interstellar space is quite different from the gaseous environments we 
commonly encounter on Earth. For instance, a typical density of the medium 
is about 1 atom cm−3 and that atom is typically H; the effective temperature 
due to stellar background radiation is about 10 kK. Estimate the diffusion 
coefficient and thermal conductivity of H under these conditions. Comment: 
Energy is in fact transferred much more effectively by radiation.

19A.4 A Knudsen cell was used to determine the vapour pressure of 
germanium at 1000 °C. During an interval of 7200 s the mass loss through a 
hole of radius 0.50 mm amounted to 43 µg. What is the vapour pressure of 
germanium at 1000 °C? Assume the gas to be monatomic.

19A.5 An atomic beam is designed to function with (a) cadmium, (b) 
mercury. The source is an oven maintained at 380 K, there being a small slit of 
dimensions 1.0 cm × 1.0 × 10−3 cm. The vapour pressure of cadmium is 0.13 Pa 
and that of mercury is 12 Pa at this temperature. What is the atomic current 
(the number of atoms per second) in the beams?

19A.6 Derive an expression that shows how the pressure of a gas inside an 
effusion oven (a heated chamber with a small hole in one wall) varies with 
time if the oven is not replenished as the gas escapes. Then show that t1/2, 
the time required for the pressure to decrease to half its initial value, is 
independent of the initial pressure. Hint. Begin by setting up a differential 
equation relating dp/dt to p = NkT/V, and then integrating it.

TOPIC 19B motion in liquids

Discussion questions
19B.1 Discuss the difference between the hydrodynamic radius of an ion and 
its ionic radius and explain why a small ion can have a large hydrodynamic 
radius.

19B.2 Discuss the mechanism of proton conduction in water. How could the 
model be tested?

19B.3 Why is a proton less mobile in liquid ammonia than in water?

Exercises
19B.1(a) The viscosity of water at 20 °C is 1.002 cP and 0.7975 cP at 30 °C.  
What is the energy of activation for the transport process?
19B.1(b) The viscosity of mercury at 20 °C is 1.554 cP and 1.450 cP at 40 °C. 
What is the energy of activation for the transport process?

19B.2(a) The mobility of a chloride ion in aqueous solution at 25 °C is 
7.91 × 10−8 m2 s−1 V−1. Calculate the molar ionic conductivity.
19B.2(b) The mobility of an acetate ion in aqueous solution at 25 °C is 
4.24 × 10−8 m2 s−1 V−1. Calculate the molar ionic conductivity.

19B.3(a) The mobility of a Rb+ ion in aqueous solution is 7.92 × 10−8 m2 s−1 V−1 
at 25 °C. The potential difference between two electrodes placed in the 
solution is 25.0 V. If the electrodes are 7.00 mm apart, what is the drift speed 
of the Rb+ ion?
19B.3(b) The mobility of a Li+ ion in aqueous solution is 4.01 × 10−8 m2 s−1 V−1 
at 25 °C. The potential difference between two electrodes placed in the 
solution is 24.0 V. If the electrodes are 5.0 mm apart, what is the drift speed of 
the ion?

19B.4(a) The limiting molar conductivities of NaI, NaNO3, and AgNO3 are 
12.69 mS m2 mol−1, 12.16 mS m2 mol−1 and 13.34 mS m2 mol−1, respectively (all 
at 25 °C). What is the limiting molar conductivity of AgI at this temperature?

19B.4(b) The limiting molar conductivities of KF, KCH3CO2, and 
Mg(CH3CO2)2 are 12.89 mS m2 mol−1, 11.44 mS m2 mol−1 and 
18.78 mS m2 mol−1, respectively (all at 25 °C). What is the limiting molar 
conductivity of MgF2 at this temperature?

19B.5(a) At 25 °C the molar ionic conductivities of Li+, Na+, and K+ are 
3.87 mS m2 mol−1, 5.01 mS m2 mol−1, and 7.35 mS m2 mol−1, respectively.  
What are their mobilities?
19B.5(b) At 25 °C the molar ionic conductivities of F−, Cl−, and Br− are 
5.54 mS m2 mol−1, 7.635 mS m2 mol−1, and 7.81 mS m2 mol−1, respectively.  
What are their mobilities?

19B.6(a) Estimate the effective radius of a sucrose molecule in water at 25 °C 
given that its diffusion coefficient is 5.2 × 10−10 m2 s−1 and that the viscosity of 
water is 1.00 cP.
19B.6(b) Estimate the effective radius of a glycine molecule in water at 25 °C 
given that its diffusion coefficient is 1.055 × 10−9 m2 s−1 and that the viscosity of 
water is 1.00 cP.

19B.7(a) The mobility of a NO3
− ion in aqueous solution at 25°C is 

7.40 × 10−8 m2 s−1 V−1. Calculate its diffusion coefficient in water at 25 °C.
19B.7(b) The mobility of a CH3CO2

− ion in aqueous solution at 25°C is 
4.24 × 10−8 m2 s−1 V−1. Calculate its diffusion coefficient in water at 25 °C.

Problems
19B.1 The viscosity of benzene varies with temperature as shown in the 
following table. Use the data to infer the activation energy for viscosity.

19B.2 An empirical expression that reproduces the viscosity of water in the 
range 20–100 °C is

log
. ( / ) . ( / )

/
η

η
θ θ

θ20

21 3272 20 0 001053 20
105

= − ° − − °
° +

C C
C  

where η20 is the viscosity at 20 °C. Explore (by using mathematical software) 
the possibility of fitting an exponential curve to this expression and hence 
identifying an activation energy for the viscosity.

19B.3 The conductivity of aqueous ammonium chloride at a series of 
concentrations is listed in the following table. Deduce the molar conductivity 
and determine the parameters that occur in Kohlrausch’s law.

θ/°C 10 20 30 40 50 60 70

η/cP 0.758 0.652 0.564 0.503 0.442 0.392 0.358
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19B.4 Conductivities are often measured by comparing the resistance 
of a cell filled with the sample to its resistance when filled with some 
standard solution, such as aqueous potassium chloride. The conductivity 
of water is 76 mS m−1 at 25 °C and the conductivity of 0.100 mol dm−3 
KCl(aq) is 1.1639 S m−1. A cell had a resistance of 33.21 Ω when filled 
with 0.100 mol dm−3 KCl(aq) and 300.0 Ω when filled with 0.100 mol dm−3 
CH3COOH(aq). What is the molar conductivity of acetic acid at that 
concentration and temperature?

19B.5 The resistances of a series of aqueous NaCl solutions, formed by 
successive dilution of a sample, were measured in a cell with cell constant (the 
constant C in the relation κ = C/R) equal to 0.2063 cm−1. The following values 
were found:

Verify that the molar conductivity follows Kohlrausch’s law and find  
the limiting molar conductivity. Determine the coefficient K. Use the  
value of K (which should depend only on the nature, not the identity, 
of the ions) and the information that λ(Na+) = 5.01 mS m2 mol−1 and 
λ(I−) = 7.68 mS m2 mol−1 to predict (a) the molar conductivity, (b) the 
conductivity, (c) the resistance it would show in the cell of 0.010 mol dm−3 
NaI(aq) at 25 °C.

19B.6 What are the drift speeds of Li+, Na+, and K+ in water when a potential 
difference of 100 V is applied across a 5.00 cm conductivity cell? How 

long would it take an ion to move from one electrode to the other? In 
conductivity measurements it is normal to use alternating current: what are 
the displacements of the ions in (a) centimetres, (b) solvent diameters, about 
300 pm, during a half cycle of 2.0 kHz applied potential difference?

19B.7‡ G. Bakale, et al. (J. Phys. Chem. 100, 12477 (1996)) measured the 
mobility of singly charged C60

−  ions in a variety of nonpolar solvents. In 
cyclohexane at 22 °C, the mobility is 1.1 cm2 V−1 s−1. Estimate the effective 
radius of the C60

−  ion. The viscosity of the solvent is 0.93 × 10−3 kg m−1 s−1. 
Suggest a reason why there is a substantial difference between this number 
and the van der Waals radius of neutral C60.

19B.8 Estimate the diffusion coefficients and the effective hydrodynamic radii 
of the alkali metal cations in water from their mobilities at 25 °C. Estimate the 
approximate number of water molecules that are dragged along by the cations. 
Ionic radii are given Table 18B.2.

19B.9 Nuclear magnetic resonance can be used to determine the mobility 
of molecules in liquids. A set of measurements on methane in carbon 
tetrachloride showed that its diffusion coefficient is 2.05 × 10−9 m2 s−1 at 0 °C 
and 2.89 × 10−9 m2 s−1 at 25 °C. Deduce what information you can about the 
mobility of methane in carbon tetrachloride.

19B.10‡ A dilute solution of a weak (1,1)-electrolyte contains both neutral 
ion pairs and ions in equilibrium (AB  A+ + B−). Prove that molar 
conductivities are related to the degree of ionization by the equations:

1 1 1
2 2

1 2
Λ Λ α

α Λ
α Λ α

Λ Λ αα
m m

m

m
m m= + − = −

°
°

( )
( )

( )
, ( )( ) /K c

 
where Λm

°  is the molar conductivity at infinite dilution and K is the constant 
in Kohlrausch’s law.

TOPIC 19C diffusion

Discussion questions
19C.1 Describe the origin of the thermodynamic force. To what extent can it 
be regarded as an actual force?

19C.2 Account physically for the form of the diffusion equation.

Exercises
19C.1(a) The diffusion coefficient of glucose in water at 25 °C is 
6.73 × 10−10 m2 s−1. Estimate the time required for a glucose molecule to 
undergo a root-mean-square displacement of 5.0 mm.
19C.1(b) The diffusion coefficient of H2O in water at 25 °C is 2.26 × 10−9 m2 s−1. 
Estimate the time required for an H2O molecule to undergo a root-mean-
square displacement of 1.0 cm.

19C.2(a) A layer of 20.0 g of sucrose is spread uniformly over a surface of 
area 5.0 cm2 and covered in water to a depth of 20 cm. What will be the 
molar concentration of sucrose molecules at 10 cm above the original layer 
at (i) 10 s, (ii) 24 h? Assume diffusion is the only transport process and take 
D = 5.216 × 10−9 m2 s−1.
19C.2(b) A layer of 10.0 g of iodine is spread uniformly over a surface of 
area 10.0 cm2 and covered in hexane to a depth of 10 cm. What will be the 
molar concentration of sucrose molecules at 5.0 cm above the original layer 
at (i) 10 s, (ii) 24 h? Assume diffusion is the only transport process and take 
D = 4.05 × 10−9 m2 s−1.

19C.3(a) Suppose the concentration of a solute decays linearly along the  
length of a container. Calculate the thermodynamic force on the solute at 
25 °C and 10 cm and 20 cm given that the concentration falls to half its value 
in 10 cm.

19C.3(b) Suppose the concentration of a solute increases as x2 along the length 
of a container. Calculate the thermodynamic force on the solute at 25 °C and 
8 cm and 16 cm given that the concentration falls to half its value in 8 cm.

19C.4(a) Suppose the concentration of a solute follows a Gaussian distribution 
(proportional to e−x2 ) along the length of a container. Calculate the 
thermodynamic force on the solute at 20 °C and 5.0 cm given that the 
concentration falls to half its value in 5.0 cm.
19C.4(b) Suppose the concentration of a solute follows a Gaussian distribution 
(proportional to e−x2 ) along the length of a container. Calculate the 
thermodynamic force on the solute at 18 °C and 10.0 cm given that the 
concentration falls to half its value in 10.0 cm.

19C.5(a) The diffusion coefficient of CCl4 in heptane at 25 °C is 3.17 × 10−9 m2 s−1. 
Estimate the time required for a CCl4 molecule to have a root-mean-square 
displacement of 5.0 mm.
19C.5(b) The diffusion coefficient of I2 in hexane at 25 °C is 4.05 × 10−9 m2 s−1. 
Estimate the time required for an iodine molecule to have a root-mean-square 
displacement of 1.0 cm.

19C.6(a) Estimate the effective radius of a sucrose molecule in water 25 °C 
given that its diffusion coefficient is 5.2 × 10−10 m2 s−1 and that the viscosity of 
water is 1.00 cP.

c/(mol dm−3) 1.334 1.432 1.529 1.672 1.725

κ/(mS cm−1) 131 139 147 156 164

c/(mol dm−3) 0.00050 0.0010 0.0050 0.010 0.020 0.050

R/Ω 3314 1669 342.1 174.1 89.08 37.14
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816 19 Molecules in motion

19C.6(b) Estimate the effective radius of a glycine molecule in water at 25 °C 
given that its diffusion coefficient is 1.055 × 10−9 m2 s−1 and that the viscosity of 
water is 1.00 cP.

19C.7(a) The diffusion coefficient for molecular iodine in benzene is 
2.13 × 10−9 m2 s−1. How long does a molecule take to jump through about 
one molecular diameter (approximately the fundamental jump length for 
translational motion)?

19C.7(b) The diffusion coefficient for CCl4 in heptane is 3.17 × 10−9 m2 s−1. How 
long does a molecule take to jump through about one molecular diameter 
(approximately the fundamental jump length for translational motion)?

19C.8(a) What are the root-mean-square distances travelled by an iodine 
molecule in benzene and by a sucrose molecule in water at 25 °C in 1.0 s?
19C.8(b) About how long, on average, does it take for the molecules in Exercise 
19C.8(a) to drift to a point (i) 1.0 mm, (ii) 1.0 cm from their starting points?

Problems
19C.1 A dilute solution of potassium permanganate in water at 25 °C was 
prepared. The solution was in a horizontal tube of length 10 cm, and at first 
there was a linear gradation of intensity of the purple solution from the 
left (where the concentration was 0.100 mol dm−3) to the right (where the 
concentration was 0.050 mol dm−3). What is the magnitude and sign of the 
thermodynamic force acting on the solute (a) close to the left face of the 
container, (b) in the middle, (c) close to the right face? Give the force per mole 
and force per molecule in each case.

19C.2 A dilute solution of potassium permanganate in water at 25 °C was 
prepared. The solution was in a horizontal tube of length 10 cm, and at first 
there was a Gaussian distribution of concentration around the centre of 
the tube at x = 0, c x c ax( ) ,= −

0
2

e  with c0 = 0.100 mol dm−3 and a = 0.10 cm−2. 
Determine the thermodynamic force acting on the solute as a function 
of location, x, and plot the result. Give the force per mole and force per 
molecule in each case. What do you expect to be the consequence of the 
thermodynamic force?

19C.3 Instead of a Gaussian ‘heap’ of solute, as in Problem 19C.2, suppose that 
there is a Gaussian dip, a distribution of the form ( ) .( )c x c ax= − −

0 1
2

e  Repeat 
the calculation in Problem 19C.2 and its consequences.

19C.4 A lump of sucrose of mass 10.0 g is suspended in the middle of a 
spherical flask of water of radius 10 cm at 25 °C. What is the concentration 
of sucrose at the wall of the flask after (a) 1.0 h, (b) 1.0 week? Take 
D = 5.22 × 10−10 m2 s−1.

19C.5 Confirm that eqn 19C.11 is a solution of the diffusion equation with the 
correct initial value.

19C.6 Confirm that

c x
c

Dt
x x t Dt( )

( ) /
( ) /= − − −0

1 2
4

4
0

2

π
e v

 
is a solution of the diffusion equation with convection (eqn 19C.10) with all 
the solute concentrated at x = x0 at t = 0 and plot the concentration profile at a 
series of times to show how the distribution spreads and its centroid drifts.

19C.7 Calculate the relation between 〈x2〉1/2 and 〈x4〉1/4 for diffusing particles at 
a time t if they have a diffusion constant D.

19C.8 The thermodynamic force has a direction as well as a magnitude, and in 
a three-dimensional ideal system eqn 19C.7 becomes ℱ = –RTΔ(ln c). What 
is the thermodynamic force acting to bring about the diffusion summarized 
by eqn 19C.12 (that of a solute initially suspended at the centre of a flask of 
solvent)? Hint: Use ∇ = i∂/∂x + j∂/∂y + k∂/∂z.

19C.9 The diffusion equation is valid when many elementary steps are taken 
in the time interval of interest, but the random walk calculation lets us discuss 
distributions for short times as well as for long. Use the expression P(nλ) =  
N!/(N – NR)!NR!2N to calculate the probability of being six paces from the 
origin (that is, at x = 6λ) after (a) four, (b) six, (c) twelve steps.

19C.10 Use mathematical software to calculate P(nλ) in a one-dimensional 
random walk, and evaluate the probability of being at x = nλ for n = 6, 10, 
14, …, 60. Compare the numerical value with the analytical value in the limit 
of a large number of steps. At what value of n is the discrepancy no more 
than 0.1 per cent? Use n = 6 and N = 6, 8, ..., 180.

19C.11 Supply the intermediate mathematical steps in Justification 19C.2.

19C.12 The diffusion coefficient of a particular kind of t-RNA molecule is 
D = 1.0 × 10−11 m2 s−1 in the medium of a cell interior. How long does it take 
molecules produced in the cell nucleus to reach the walls of the cell at a 
distance 1.0 µm, corresponding to the radius of the cell?

19C.13‡ In this problem, we examine a model for the transport of oxygen 
from air in the lungs to blood. First, show that, for the initial and boundary 
conditions c(x,t) = c(x,0) = co, (0 < x < ∞) and c(0,t) = cs (0 ≤ t ≤ ∞) where co and 
cs are constants, the concentration, c(x,t), of a species is given by

c x t c c co s o( , ) ( ){ }= + − −1 erf( )ξ  
where erf(ξ) is the error function (see the collection of integrals in the 
Resource section) and the concentration c(x,t) evolves by diffusion from the 
yz-plane of constant concentration, such as might occur if a condensed phase 
is absorbing a species from a gas phase. Now draw graphs of concentration 
profiles at several different times of your choice for the diffusion of oxygen 
into water at 298 K (when D = 2.10 × 10−9 m2 s−1) on a spatial scale comparable 
to passage of oxygen from lungs through alveoli into the blood. Use co = 0 
and set cs equal to the solubility of oxygen in water. Hint: Use mathematical 
software.
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Integrated activities
19.1 Use mathematical software, a spreadsheet, or the Living graphs on the 
web site of this book to generate a family of curves similar to that shown 
in Fig. 19C.4 but by using eqn 19C.14, which describes diffusion in three 
dimensions.

19.2 In Topic 20D it is shown that a general expression for the activation 
energy of a chemical reaction is Ea = RT2(d ln k/dT). Confirm that the same 

expression may be used to extract the activation energy from eqn 19B.2 
for the viscosity and then apply the expression to deduce the temperature-
dependence of the activation energy when the viscosity of water is given 
by the empirical expression in Problem 19B.2. Plot this activation energy 
as a function of temperature. Suggest an explanation of the temperature 
dependence of Ea.
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chaPter 20

chemical kinetics

This chapter introduces the principles of ‘chemical kinetics’, the 
study of reaction rates. The rate of a chemical reaction might 
depend on variables under our control, such as the pressure, 
the temperature, and the presence of a catalyst, and we may be 
able to optimize the rate by the appropriate choice of conditions. 
Here we begin to see how such manipulations are possible. In the 
remaining chapters of the text we develop this material in more 
detail and apply it to more complicated or more specialized cases.

20A the rates of chemical reactions

This Topic discusses the definition of reaction rate and outlines 
the techniques for its measurement. The results of such meas-
urements show that reaction rates depend on the concentration 
of reactants (and products) and ‘rate constants’ that are char-
acteristic of the reaction. This dependence can be expressed in 
terms of differential equations known as ‘rate laws’.

20B Integrated rate laws

‘Integrated rate laws’ are the solutions of the differential equa-
tions that describe rate laws. They are used to predict the con-
centrations of species at any time after the start of the reaction 
and to provide procedures for measuring rate constants. This 
Topic explores simple yet very useful integrated rate laws that 
appear throughout the chapter.

20C reactions approaching 
equilibrium

In this Topic we see that in general the rate laws must take into 
account both the forward and reverse reactions and that they 

give rise to expressions that describe the approach to equilib-
rium, when the forward and reverse rates are equal. A result of 
the analysis is a useful relation, which can be explored experi-
mentally, between the equilibrium constant of the overall pro-
cess and the rate constants of the forward and reverse reactions 
in the proposed mechanism.

20D the arrhenius equation

The rate constants of most reactions increase with increasing 
temperature. In this Topic we see that the ‘Arrhenius equa-
tion’ captures this temperature dependence by using only two 
parameters that can be determined experimentally.

20E reaction mechanisms

The study of reaction rates also leads to an understanding of 
the ‘mechanisms’ of reactions, their analysis into a sequence 
of elementary steps. In this Topic we see how to construct rate 
laws from a proposed mechanism. The elementary steps them-
selves have simple rate laws which can be combined together by 
invoking the concept of the ‘rate-determining step’ of a reaction 
or making either the ‘steady-state approximation’ or the exist-
ence of a ‘pre-equilibrium’.

20F examples of mechanisms

This Topic develops two examples of reaction mechanisms. The 
first describes a special class of reactions in the gas phase that 
depend on the collisions between reactants. The second gives 
insight into the formation of polymers and shows how the 
kinetics of their formation affects their properties.
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20G Photochemistry

‘Photochemistry’ is the study of reactions that are initiated by 
light. In this Topic we explore mechanisms of photochemical 
reactions, with special emphasis on electron and energy trans-
fer processes.

20H enzymes

In this Topic we discuss the general mechanism of action of 
‘enzymes’, which are biological catalysts. We show how to 
assemble expressions for their influence on the rate of reactions 
and the effect of substances that inhibit their function.

What is the impact of this material?

Plants, algae, and some species of bacteria evolved apparatus 
that perform ‘photosynthesis’, the capture of visible and near-
infrared radiation for the purpose of synthesizing complex 
molecules in the cell. In Impact I20.1 we explore plant photo-
synthesis in detail.

To read more about the impact of this 
material, scan the QR code, or go to  
bcs.whfreeman.com/webpub/chemistry/
pchem10e/impact/pchem-20-1.html

iranchembook.ir/edu



20A the rates of chemical reactions

This Topic introduces the principles of chemical kinetics, 
the study of reaction rates, by showing how the rates of reac-
tions are defined and measured. The results of such measure-
ments show that reaction rates depend on the concentration 
of reactants (and products) in characteristic ways that can be 
expressed in terms of differential equations known as rate laws.

20A.1 Monitoring the progress 
of a reaction

The first steps in the kinetic analysis of reactions are to establish 
the stoichiometry of the reaction and identify any side reac-
tions. The basic data of chemical kinetics are then the concen-
trations of the reactants and products at different times after a 
reaction has been initiated.

(a) General considerations
The rates of most chemical reactions are sensitive to the tem-
perature (as described in Topic 20D), so in conventional experi-
ments the temperature of the reaction mixture must be held 
constant throughout the course of the reaction. This require-
ment puts severe demands on the design of an experiment. Gas-
phase reactions, for instance, are often carried out in a vessel 
held in contact with a substantial block of metal. Liquid-phase 
reactions, including flow reactions, must be carried out in an 
efficient thermostat. Special efforts have to be made to study 
reactions at low temperatures, as in the study of the kinds of 
reactions that take place in interstellar clouds. Thus, supersonic 
expansion of the reaction gas can be used to attain temperatures 
as low as 10 K. For work in the liquid-phase and the solid-phase, 
very low temperatures are often reached by flowing cold liquid 
or cold gas around the reaction vessel. Alternatively, the entire 
reaction vessel is immersed in a thermally insulated container 
filled with a cryogenic liquid, such as liquid helium (for work at 
around 4 K) or liquid nitrogen (for work at around 77 K). Non-
isothermal conditions are sometimes employed. For instance, 
the shelf life of an expensive pharmaceutical may be explored by 
slowly raising the temperature of a single sample.

Spectroscopy is widely applicable to the study of reaction 
kinetics, and is especially useful when one substance in the 
reaction mixture has a strong characteristic absorption in a 

➤➤ Why do you need to know this material?
Studies of the rates of disappearance of reactants and 
appearance of products allow us to predict how quickly 
a reaction mixture approaches equilibrium. Furthermore, 
studies of reaction rates lead to detailed descriptions 
of the molecular events that transform reactants into 
products.

➤➤ What is the key idea?
Reaction rates can be expressed mathematically in terms 
of the concentrations of reactants and, in some cases, 
products.

➤➤ What do you need to know already?
This introductory Topic is the foundation of a sequence: 
all you need to be aware of initially is the significance of 
stoichiometric numbers (Topic 2C). For more background 
on the spectroscopic determination of concentration, refer 
to Topic 12A.

Contents
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brief illustration 20a.1: reaction rates from  
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(c) Reaction order 824
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of rate laws 824

(d) The determination of the rate law 824
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20A The rates of chemical reactions  821

conveniently accessible region of the electromagnetic spec-
trum. For example, the progress of the reaction

H g   Br g 2HBr g2 2( ) ( ) ( )+ →  
can be followed by measuring the absorption of visible light by 
bromine. A reaction that changes the number or type of ions 
present in a solution may be followed by monitoring the elec-
trical conductivity of the solution. The replacement of neutral 
molecules by ionic products can result in dramatic changes in 
the conductivity, as in the reaction

( ) ( ) ( ) ( ) ( ) ( ) ( )CH CCl aq H O l CH COH aq H aq Cl aq3 3 2 3 3+ → + ++ −
 

If hydrogen ions are produced or consumed, the reaction may 
be followed by monitoring the pH of the solution.

Other methods of determining composition include emis-
sion spectroscopy (Topic 13B), mass spectrometry (Topic 17D), 
gas chromatography, nuclear magnetic resonance (Topics 14B 
and 14C), and electron paramagnetic resonance (for reactions 
involving radicals or paramagnetic d-metal ions; see Topic 
14D). A reaction in which at least one component is a gas might 
result in an overall change in pressure in a system of constant 
volume, so its progress may be followed by recording the varia-
tion of pressure with time.

(b) Special techniques

The method used to monitor concentrations depends on the 
species involved and the rapidity with which their concentra-
tions change. Many reactions reach equilibrium over periods of 
minutes or hours, and several techniques may then be used to 
follow the changing concentrations. In a real-time analysis the 
composition of the system is analysed while the reaction is in 
progress. Either a small sample is withdrawn or the bulk solu-
tion is monitored. In the flow method the reactants are mixed 
as they flow together in a chamber (Fig. 20A.1). The reaction 
continues as the thoroughly mixed solutions flow through 
the outlet tube, and observation of the composition at differ-
ent positions along the tube is equivalent to the observation of 
the reaction mixture at different times after mixing. The disad-
vantage of conventional flow techniques is that a large volume 
of reactant solution is necessary. This requirement makes the 
study of fast reactions particularly difficult because to spread 
the reaction over a length of tube the flow must be rapid. This 
disadvantage is avoided by the stopped-flow technique, in 
which the reagents are mixed very quickly in a small chamber 
fitted with a syringe instead of an outlet tube (Fig. 20A.2). The 
flow ceases when the plunger of the syringe reaches a stop and 
the reaction continues in the mixed solutions. Observations, 
commonly using spectroscopic techniques such as ultraviolet–
visible absorption, circular dichroism, and fluorescence emis-
sion (all introduced in Topics 13A and 13B), are made on the 
sample as a function of time. The technique allows for the study 

Driving
pistons

Mixing
chamber

Fixed
spectrometer

Movable
spectrometer

Figure 20A.1 The arrangement used in the flow technique 
for studying reaction rates. The reactants are injected into 
the mixing chamber at a steady rate. The location of the 
spectrometer corresponds to different times after initiation.

Driving
pistons

Mixing
chamber

Fixed
spectrometer

Stopping
piston

Figure 20A.2 In the stopped-flow technique the reagents 
are driven quickly into the mixing chamber by the driving 
pistons and then the time-dependence of the concentrations is 
monitored.

Example 20A.1 Monitoring the variation in pressure

Predict how the total pressure varies during the gas-phase 
decomposition 2 N2O5(g) → 4 NO2(g) + O2(g) in a constant-
volume container.

Method The total pressure (at constant volume and tempera-
ture and assuming perfect gas behaviour) is proportional to 
the number of gas-phase molecules. Therefore, because each 
mole of N2O5 gives rise to 5

2
 mol of gas molecules, we can 

expect the pressure to rise to 5
2

 times its initial value. To con-
firm this conclusion, express the progress of the reaction in 
terms of the fraction, α, of N2O5 molecules that have reacted.

Answer Let the initial pressure be p0 and the initial amount of 
N2O5 molecules present be n. When a fraction α of the N2O5 
molecules has decomposed, the amounts of the components 
in the reaction mixture are:

When α = 0 the pressure is p0, so at any stage the total pressure is

p p= +( )1 3
2 0α  

When the reaction is complete (α = 1), the pressure will have 
risen to 5

2
 times its initial value.

Self-test 20A.1 Repeat the calculation for 2 NOBr(g) →  
2 NO(g) + Br2(g).

Answer: p p= +( )1 1
2 0α

N2O5 NO2 O2 Total
Amount: n(1 − α) 2αn 1

2 αn n( )1 3
2+ α
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822 20 Chemical kinetics

of reactions that occur on the millisecond to second timescale. 
The suitability of the stopped-flow method to the study of small 
samples means that it is appropriate for many biochemical 
reactions; it has been widely used to study the kinetics of pro-
tein folding and enzyme action.

Very fast reactions can be studied by flash photolysis, in 
which the sample is exposed to a brief flash of light that initi-
ates the reaction and then the contents of the reaction cham-
ber are monitored. The apparatus used for flash photolysis 
studies is based on the experimental design for time-resolved 
spectroscopy, in which reactions occurring on a picosecond or 
femtosecond timescale may be monitored by using electronic 
absorption or emission, infrared absorption, or Raman scatter-
ing (Topic 13C).

In contrast to real-time analysis, quenching methods are 
based on quenching, or stopping, the reaction after it has been 
allowed to proceed for a certain time. In this way the composi-
tion is analysed at leisure and reaction intermediates may be 
trapped. These methods are suitable only for reactions that 
are slow enough for there to be little reaction during the time 
it takes to quench the mixture. In the chemical quench flow 
method, the reactants are mixed in much the same way as 
in the flow method but the reaction is quenched by another 
reagent, such as solution of acid or base, after the mixture has 
travelled along a fixed length of the outlet tube. Different reac-
tion times can be selected by varying the flow rate along the 
outlet tube. An advantage of the chemical quench flow method 
over the stopped-flow method is that spectroscopic finger-
prints are not needed in order to measure the concentration of 
reactants and products. Once the reaction has been quenched, 
the solution may be examined by ‘slow’ techniques, such as 
gel electrophoresis, mass spectrometry, and chromatography. 
In the freeze quench method, the reaction is quenched by 
cooling the mixture within milliseconds and the concentra-
tions of reactants, intermediates, and products are measured 
spectroscopically.

20A.2 The rates of reactions

Reaction rates depend on the composition and the tempera-
ture of the reaction mixture. The next few sections look at these 
observations in more detail.

(a) The definition of rate
Consider a reaction of the form A + 2 B → 3 C + D, in which at 
some instant the molar concentration of a participant J is [J] 
and the volume of the system is constant. The instantaneous 
rate of consumption of one of the reactants at a given time is 
−d[R]/dt, where R is A or B. This rate is a positive quantity (Fig. 
20A.3). The rate of formation of one of the products (C or D, 

which we denote P) is d[P]/dt (note the difference in sign). This 
rate is also positive.

It follows from the stoichiometry of the reaction A + 2 B →  
3 C + D that

d D
d

d C
d

d A

d
d B
d

[ ] [ ] [ ]
t t t t

= = − [ ] = −1
3

1
2  

so there are several rates connected with the reaction. The 
undesirability of having different rates to describe the same 
reaction is avoided by using the extent of reaction, ξ (xi, the 
quantity introduced in Topic 6A):

ξ =
−n nJ J

J

,0

  
Definition  extent of reaction  (20A.1)

where νJ is the stoichiometric number of species J (Topic 2C; 
remember that νJ is negative for reactants and positive for 
products), and defining the unique rate of reaction, v, as the 
rate of change of the extent of reaction:

v = 1
V t

d
d
ξ

 
Definition  rate of reaction  (20A.2)

where V is the volume of the system. It follows that

v = ×1 1
J

Jd
dV
n
t  

(20A.3a)

For a homogeneous reaction in a constant-volume system 
the volume V can be taken inside the differential and we use 
[J] = nJ/V to write

v = 1
J

d[J]
dt  

(20A.3b)

Product

Reactant

M
o

la
r 

co
n

ce
n

tr
at

io
n

, [
J]

Time, t

(a) Tangent, rate = slope

(b) Tangent, rate = –slope

Figure 20A.3 The definition of (instantaneous) rate as the 
slope of the tangent drawn to the curve showing the variation 
of concentration of (a) products, (b) reactants with time. For 
negative slopes, the sign is changed when reporting the rate, 
so all reaction rates are positive.
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20A The rates of chemical reactions  823

For a heterogeneous reaction we use the (constant) surface 
area, A, occupied by the species in place of V and then use 
σJ = nJ/A to write

v = 1
J

Jd
d
σ
t  

(20A.3c)

In each case there is now a single rate for the entire reaction 
(for the chemical equation as written). With molar concentra-
tions in moles per cubic decimetre and time in seconds, reac-
tion rates of homogeneous reactions are reported in moles per 
cubic decimetre per second (mol dm−3 s−1) or related units. For 
gas-phase reactions, such as those taking place in the atmos-
phere, concentrations are often expressed in molecules per 
cubic centimetre (molecules cm−3) and rates in molecules per 
cubic centimetre per second (molecules cm−3 s−1). For heteroge-
neous reactions, rates are expressed in moles per square metre 
per second (mol m−2 s−1) or related units.

(b) Rate laws and rate constants
The rate of reaction is often found to be proportional to the 
concentrations of the reactants raised to a power. For example, 
the rate of a reaction may be proportional to the molar concen-
trations of two reactants A and B, so we write

v = kr A[ ][B]  (20A.4)

with each concentration raised to the first power. The coef-
ficient kr is called the rate constant for the reaction. The rate 
constant is independent of the concentrations but depends on 
the temperature. An experimentally determined equation of 
this kind is called the rate law of the reaction. More formally, 
a rate law is an equation that expresses the rate of reaction as 
a function of the concentrations of all the species present in 

the overall chemical equation for the reaction at the time of 
interest:

v = f ([A],[B], )…  

For homogeneous gas-phase reactions, it is often more conveni-
ent to express the rate law in terms of partial pressures, which 
are related to molar concentrations by pJ = RT[J]. In this case, 
we write

v = …f p p( , , )A B  

The rate law of a reaction is determined experimentally, and 
cannot in general be inferred from the chemical equation for 
the reaction. The reaction of hydrogen and bromine, for exam-
ple, has a very simple stoichiometry, H2(g) + Br2(g) → 2 HBr(g), 
but its rate law is complicated:

v = +
k

k
a

b

H Br
Br HBr

[ ]
[ ]

[ ]
[ ]

/
2 2

3 2

2  
(20A.6)

In certain cases the rate law does reflect the stoichiometry of 
the reaction; but that is either a coincidence or reflects a feature 
of the underlying reaction mechanism (see Topic 20E).

A note on good (or, at least, our) practice We denote a general 
rate constant kr to distinguish it from the Boltzmann constant 
k. In some texts k is used for the former and kB for the latter. 
When expressing the rate constants in a more complicated 
rate law, such as that in eqn 20A.6, we use ka, kb, and so on.

The units of kr are always such as to convert the product 
of concentrations into a rate expressed as a change in con-
centration divided by time. For example, if the rate law is the 
one shown in eqn 20A.4, with concentrations expressed in 
mol dm−3, then the units of kr will be dm3 mol−1 s−1 because

dm mol s moldm moldm  moldm s3 1 1 3 3 3 1− − − − − −× × =  

In gas-phase studies, including studies of the processes tak-
ing place in the atmosphere, concentrations are commonly 
expressed in molecules cm−3, so the rate constant for the reac-
tion above would be expressed in cm3 molecule−1 s−1. We can 
use the approach just developed to determine the units of the 
rate constant from rate laws of any form. For example, the rate 
constant for a reaction with rate law of the form kr[A] is com-
monly expressed in s−1.

Brief illustration 20A.1 Reaction rates from balanced 
chemical equations

If the rate of formation of NO in the reaction 2 NOBr(g) →  
2 NO(g) + Br2(g) is reported as 0.16 mmol dm−3 s−1, we use 
νNO = +2 to report that v = 0.080 mmol dm−3 s−1. Because 
νNOBr = −2 it follows that d[NOBr]/dt = −0.16 mmol dm−3 s−1. The 
rate of consumption of NOBr is therefore 0.16 mmol dm−3 s−1, 
or 9.6 × 1016 molecules cm−3 s−1.

Self-test 20A.2 The rate of change of molar concentration 
of CH3 radicals in the reaction 2 CH3(g) → CH3CH3(g) was 
reported as d[CH3]/dt = −1.2 mol dm−3 s−1 under particular 
conditions. What is (a) the rate of reaction and (b) the rate of 
formation of CH3CH3?

Answer: (a) 0.60 mol dm−3 s−1, (b) 0.60 mol dm−3 s−1

General 
form

rate law 
in terms of 
concentrations

 (20A.5a)

General 
form

rate law in 
terms of partial 
pressures

 (20A.5b)

Brief illustration 20A.2 The units of rate constants

The rate constant for the reaction O(g) + O3(g) → 2 O2(g) is 
8.0 × 10−15 cm3 molecule−1 s−1 at 298 K. To express this rate 
constant in dm3 mol−1 s−1, we make use of the two relations 
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824 20 Chemical kinetics

A practical application of a rate law is that once we know the 
law and the value of the rate constant, we can predict the rate 
of reaction from the composition of the mixture. Moreover, as 
demonstrated in Topic 20B, by knowing the rate law, we can 
go on to predict the composition of the reaction mixture at a 
later stage of the reaction. Moreover, a rate law is a guide to the 
mechanism of the reaction, for any proposed mechanism must 
be consistent with the observed rate law. This application is 
developed in Topic 20E.

(c) Reaction order
Many reactions are found to have rate laws of the form

v = kr B[A] [ ]a b  (20A.7)

The power to which the concentration of a species (a product 
or a reactant) is raised in a rate law of this kind is the order of 
the reaction with respect to that species. A reaction with the 
rate law in eqn 20A.4 is first order in A and first order in B. The 
overall order of a reaction with a rate law like that in eqn 20A.7 
is the sum of the individual orders, a + b + …. The rate law in 
eqn 20A.4 is therefore second order overall.

A reaction need not have an integral order, and many gas-
phase reactions do not. For example, a reaction having the rate 
law

v = kr[A] [B]/1 2
 (20A.8)

is half order in A, first order in B, and three-halves order overall.

Some reactions obey a zero-order rate law, and therefore 
have a rate that is independent of the concentration of the reac-
tant (so long as some is present). Thus, the catalytic decomposi-
tion of phosphine (PH3) on hot tungsten at high pressures has 
the rate law

v = kr  (20A.9)

PH3 decomposes at a constant rate until it has almost entirely 
disappeared. Zero-order reactions typically occur when there 
is a bottle-neck of some kind in the mechanism, as in heteroge-
neous reactions when the surface is saturated and the subse-
quent reaction slow and in a number of enzyme reactions when 
there is a large excess of substrate relative to the enzyme.

As we saw in Brief illustration 20A.3, when a rate law is not 
of the form in eqn 20A.7, the reaction does not have an over-
all order and may not even have definite orders with respect to 
each participant.

These remarks point to three important tasks:

•	 To identify the rate law and obtain the rate constant from 
the experimental data. We concentrate on this aspect in 
this Topic.

•	 To construct reaction mechanisms that are consistent 
with the rate law. We introduce the techniques for doing 
so in Topic 20E.

•	 To account for the values of the rate constants and 
explain their temperature dependence. This task is 
undertaken in Topic 20D.

(d) The determination of the rate law
The determination of a rate law is simplified by the isolation 
method in which the concentrations of all the reactants except 
one are in large excess. If B is in large excess in a reaction 
between A and B, for example, then to a good approximation 
its concentration is constant throughout the reaction. Although 
the true rate law might be v = kr[A][B], we can approximate [B] 
by [B]0, its initial value, and write

v = =k k kr r r
′ ′[A] [B]0  (20A.10)

which has the form of a first-order rate law. Because the true 
rate law has been forced into first-order form by assuming that 

1 cm = 10−1 dm and 1 molecule = (1 mol)/(6.022 × 1023). It fol-
lows that

kr
15 3 1 1 8 1 cm molecule s

dm
mol

= ×

= × ( ) ×

− − −

− −

.

.
.

0 0

8 0 10 10
1

6 022
15 1 3

110

0 0 0 0 0

23

1

1





= × × × ×
=

−
−

− − − −

s

 8 1 1 6 22 1 dm mol s

 4

15 3 23 3 1 1. .

.88 1 dm mol s6 3 1 1× 0 – –

 

Self-test 20A.3 A reaction has a rate law of the form kr[A]2[B]. 
What are the units of the rate constant if the reaction rate is 
measured in mol dm−3 s−1?

Answer: dm6 mol−2 s−1

Brief illustration 20A.3 The interpretation of rate laws

The experimentally determined rate law for the gas-phase 
reaction H2(g) + Br2(g) → 2 HBr(g) is given by eqn 20A.6. 
Although the reaction is first-order in H2, it has an indefinite 

order with respect to both Br2 and HBr and an indefinite order 
overall.

Self-test 20A.4 Repeat this analysis for a typical rate law for the 
action of an enzyme E on a substrate S: v = +k Kr ME S S[ ][ ]/([ ] ),  
where KM is a constant.

Answer: First order in E; no specific order with respect to S
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20A The rates of chemical reactions  825

the concentration of B is constant, eqn 20A.10 is called a pseu-
dofirst-order rate law. The dependence of the rate on the con-
centration of each of the reactants may be found by isolating 
them in turn (by having all the other substances present in large 
excess), and so constructing a picture of the overall rate law.

In the method of initial rates, which is often used in con-
junction with the isolation method, the rate is measured at the 
beginning of the reaction for several different initial concentra-
tions of reactants. We shall suppose that the rate law for a reac-
tion with A isolated is v=k a

r A′[ ] , then its initial rate, v0, is given 
by the initial values of the concentration of A, and we write 
v=k a

r A′[ ]0 . Taking logarithms gives:

log log log [A]r 0v0 = +k a′  (20A.11)

A plot of the logarithms of the initial rates against the loga-
rithms of a series of initial concentrations of A should be a 
straight line with slope a.

The method of initial rates might not reveal the full rate law, 
for once the products have been generated they might partici-
pate in the reaction and affect its rate. For example, products 
participate in the synthesis of HBr, because eqn 20A.6 shows 
that the full rate law depends on the concentration of HBr. To 
avoid this difficulty, the rate law should be fitted to the data 
throughout the reaction. The fitting may be done, in sim-
ple cases at least, by using a proposed rate law to predict the 
concentration of any component at any time, and comparing 
it with the data. A rate law should also be tested by observing 
whether the addition of products or, for gas phase reactions, a 
change in the surface-to-volume ratio in the reaction chamber 
affects the rate.

Example 20A.2 Using the method of initial rates

The recombination of iodine atoms in the gas phase in the 
presence of argon was investigated and the order of the reac-
tion was determined by the method of initial rates. The ini-
tial rates of reaction of 2 I(g) + Ar(g) → I2(g) + Ar(g) were as 
follows:

The Ar concentrations are (a) 1.0 mmol dm−3, (b) 5.0 
mmol dm−3, and (c) 10.0 mmol dm−3. Determine the orders of 
reaction with respect to the I and Ar atom concentrations and 
the rate constant.

Method Plot the logarithm of the initial rate, log v0, against 
log [I]0 for a given concentration of Ar and, separately, against 
log [Ar]0 for a given concentration of I. The slopes of the two 
lines are the orders of reaction with respect to I and Ar, respec-
tively. The intercepts with the vertical axis give log kr.

Answer The plots are shown in Fig. 20A.4. The slopes are 2 
and 1, respectively, so the (initial) rate law is v0 = kr[I] [Ar]0

2
0. 

This rate law signifies that the reaction is second order in [I], 
first order in [Ar], and third order overall. The intercept cor-
responds to kr = 9 × 109 mol−2 dm6 s−1.

[I]0/
(10−5 mol dm−3)

1.0 2.0 4.0 6.0

v0/(mol dm−3 s−1) (a) 8.70 × 10−4 3.48 × 10−3 1.39 × 10−2 3.13 × 10−2

(b) 4.35 × 10−3 1.74 × 10−2 6.96 × 10−2 1.57 × 10−1

(c) 8.69 × 10−3 3.47 × 10−2 1.38 × 10−1 3.13 × 10−1

A note on good practice The units of kr come automatically 
from the calculation, and are always such as to convert the 
product of concentrations to a rate in concentration/time 
(for example, mol dm−3 s−1).

Self-test 20A.5 The initial rate of a reaction depended on con-
centration of a substance J as follows:

Determine the order of the reaction with respect to J and cal-
culate the rate constant.

Answer: 2, 1.4 × 10−2 dm3 mol−1 s−1

lo
g

{v
0/

(m
o

l d
m

–3
 s

–1
)}

–3

–2

–1

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
log [I]0 + 5 log [Ar]0 + 3

(a) (b)

Figure 20A.4 The plot of log v0 against (a) log [I]0 for a given 
[Ar]0, and (b) log [Ar]0 for a given [I]0.

[J]0/(mmol dm−3) 5.0 8.2 17 30
v0/(10−7 mol dm−3 s−1) 3.6 9.6 41 130
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826 20 Chemical kinetics

Checklist of concepts

☐ 1. The rates of chemical reactions are measured by using 
techniques that monitor the concentrations of species 
present in the reaction mixture. Examples include real-
time and quenching procedures, f low and stopped-
flow techniques, and flash photolysis.

☐ 2. The instantaneous rate of a reaction is the slope of 
the tangent to the graph of concentration against time 
(expressed as a positive quantity).

☐ 3. A rate law is an expression for the reaction rate in terms 
of the concentrations of the species that occur in the 
overall chemical reaction.

Checklist of equations

Property Equation Comment Equation number

Extent of reaction ξ = −( )/,n nJ J J0  Definition 20A.1

Rate of a reaction v = (1/V)(dξ/dt), ξ = (nJ − nJ,0)/νJ
Definition 20A.2

Rate law (in some cases) v = kr[A]a[B]b… a, b, …: orders; a + b + …: overall order 20A.7

Method of initial rates log log log[ ]v0 0= ′ +k ar A 20A.11
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20B Integrated rate laws

Rate laws (Topic 20A) are differential equations. We must inte-
grate them if we want to find the concentrations as a function of 
time. Even the most complex rate laws may be integrated numer-
ically. However, in a number of simple cases analytical solutions, 
known as integrated rate laws, are easily obtained and prove to 
be very useful. We examine a few of these simple cases here.

20B.1 First-order reactions

As shown in the following Justification, the integrated form of 
the first-order rate law

d A
d

Ar

[ ]
[ ]

t
k= −

 
(20B.1a)

is

ln
[ ]
[ ]

[ ] [ ]
A
A

A A er
r

0
0= − = −k t k t

 

where [A]0 is the initial concentration of A (at t = 0).

Equation 20B.1b shows that if ln([A]/[A]0) is plotted against 
t, then a first-order reaction will give a straight line of slope −kr. 
Some rate constants determined in this way are given in Table 
20B.1. The second expression in eqn 20B.1b shows that in a 
first-order reaction the reactant concentration decreases expo-
nentially with time with a rate determined by kr (Fig. 20B.1).

Justification 20B.1 First-order integrated rate law

First, we rearrange eqn 20B.1a into

d A
A

dr
[ ]

[ ]2 = −k t
 

This expression can be integrated directly because kr is a con-
stant independent of t. Initially (at t = 0) the concentration of A 
is [A]0, and at a later time t it is [A], so we make these values the 
limits of the integrals and write

d A
A

d
A

A

r
[ ]

[ ][ ]

[ ]

0 0∫ ∫= −k
t

t
 

Because the integral of 1/x is ln x + constant, eqn 20B.1b is 
obtained immediately.

Integrated first-
order rate law  (20B.1b)

[A
]/

[A
] 0

1

0.8

0.6

0.4

0.2

0
0

kr,small

kr,smallt

kr,large

1 2 3

Figure 20B.1 The exponential decay of the reactant in a first-
order reaction. The larger the rate constant, the more rapid is 
the decay: here kr,large = 3kr,small.

➤➤ Why do you need to know this material?
You need the integrated rate law if you want to predict 
the composition of a reaction mixture as it approaches 
equilibrium. It is also used to determine the rate law and 
rate constants of a reaction, which is a necessary step in 
the formulation of the mechanism of the reaction.

➤➤ What is the key idea?
A comparison between experimental data and the 
integrated form of the rate law is used to verify a proposed 
rate law and determine the order and rate constant of a 
reaction.

➤➤ What do you need to know already?
You need to be familiar with the concepts of rate law, 
reaction order, and rate constant (Topic 20A). The 
manipulation of simple rate laws requires only elementary 
techniques of integration (see the Resource section for 
standard integrals).

Contents

20b.1 First-order reactions 827
example 20b.1: analysing a first-order reaction 828

20b.2 Second-order reactions 829
brief illustration 20b.1: second-order reactions 830

Checklist of concepts 831
Checklist of equations 832

iranchembook.ir/edu



828 20 Chemical kinetics

A useful indication of the rate of a first-order chemical reac-
tion is the half-life, t1/2, of a substance, the time taken for the 
concentration of a reactant to fall to half its initial value. This 
quantity is readily obtained from the integrated rate law. Thus, 
the time for [A] to decrease from [A]0 to 1

2 0[ ]A  in a first-order 
reaction is given by eqn 20B.1b as

k tr

A
A1 2

1
2 0

0

1
2 2/ ln

[ ]
[ ]

ln ln= − = − =
 

Hence

t
k1 2

2
/

ln=
r  

Firstorder reaction  half-life  (20B.2)

(Note that ln 2 = 0.693.) The main point to note about this 
result is that for a first-order reaction, the half-life of a reac-
tant is independent of its initial concentration. Therefore, if 
the concentration of A at some arbitrary stage of the reaction 
is [A], then it will have fallen to 1

2[ ]A  after a further interval of  
(ln 2)/kr. Some half-lives are given in Table 20B.1.

Another indication of the rate of a first-order reaction is the 
time constant, τ (tau), the time required for the concentration 
of a reactant to fall to 1/e of its initial value. From eqn 20B.1b it 
follows that

kr l
A

A
e

eτ = − = − =n
[ ]

[ ]
ln

1
10

0

1
 

That is, the time constant of a first-order reaction is the recipro-
cal of the rate constant:

τ = 1
kr  

Firstorder reaction  time constant  (20B.3)

Example 20B.1 Analysing a first-order reaction

The variation in the partial pressure of azomethane with time 
was followed at 600 K, with the results given below. Confirm 
that the decomposition CH3N2CH3(g) → CH3CH3(g) + N2(g) 
is first order in azomethane, and find the rate constant, half-
life, and time constant at 600 K.

Table 20B.1* Kinetic data for first-order reactions

Reaction Phase θ/°C kr/s−1 t1/2

2 N2O5→ 4 NO2 + O2 g 25 3.38 × 10−5 5.70 h

Br2(l) 25 4.27 × 10−5 4.51 h

C2H6→ 2 CH3 g 700 5.36 × 10−4 21.6 min

* More values are given in the Resource section.

Method As indicated in the text, to confirm that a reaction is 
first order, plot ln([A]/[A]0) against time and expect a straight 
line. Because the partial pressure of a gas is proportional to 
its concentration, an equivalent procedure is to plot ln(p/p0) 
against t. If a straight line is obtained, its slope can be identi-
fied with −kr. The half-life and time constant are then calcu-
lated from kr by using eqns 20B.2 and 20B.3, respectively.

Answer We draw up the following table:

Figure 20B.2 shows the plot of ln(p/p0) against t. The plot is 
straight, confirming a first-order reaction, and its slope is 
−3.6 × 10−4. Therefore, kr = 3.6 × 10−4 s−1.

A note on good practice Because the horizontal and ver-
tical axes of graphs are labelled with pure numbers, the 
slope of a graph is always dimensionless. For a graph of 
the form y = b + mx we can write y = b + (m units)(x/units), 
where ‘units’ are the units of x, and identify the (dimen-
sionless) slope with ‘m units’. Then m = slope/units. In the 
present case, because the graph shown here is a plot of 
ln(p/p0) against t/s (with ‘units’ = s) and kr is the negative 
value of the slope of ln(p/p0) against t itself, kr = −slope/s.

It follows from eqns 5.2 and 5.3 that the half-life and time con-
stant are, respectively,

t1 2 4 1
5

4 1
52

3 6 10
1 9 10

1
3 6 10

2 8 10/
ln

.
.

.
.=

×
= × =

×
= ×−

−
−

−
s

s
s

sτ
 

t/s 0 1000 2000 3000 4000
p/Pa 10.9 7.63 5.32 3.71 2.59

t/s 0 1000 2000 3000 4000
ln(p/p0) 1 −0.357 −0.717 −1.078 −1.437

0 1 2 3 4
t/(103 s)

ln
(p

/p
0)

–1.5

–1

–0.5

0

Figure 20B.2 The determination of the rate constant of a 
first-order reaction: a straight line is obtained when ln [A] (or, 
as here, ln p/p0) is plotted against t; the slope gives kr.
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20B.2 Second-order reactions

We show in the following Justification that the integrated form 
of the second-order rate law

d A
d

Ar

[ ]
[ ]

t
k= − 2

 
(20B.4a)

is either of the following two forms:

1 1

0[ ] [ ]A A r− = k t
 

[ ]
[ ]

[ ]
A

A
Ar

= +
0

01 k t  

where [A]0 is the initial concentration of A (at t = 0).

Equation 20B.4b shows that to test for a second-order reac-
tion we should plot 1/[A] against t and expect a straight line. 

The slope of the graph is kr. Some rate constants determined 
in this way are given in Table 20B.2. The rearranged form, eqn 
20B.4c, lets us predict the concentration of A at any time after 
the start of the reaction. It shows that the concentration of A 
approaches zero more slowly than in a first-order reaction with 
the same initial rate (Fig. 20B.3).

It follows from eqn 20B.4b by substituting t = t1/2 and 
[ ] [ ]A A= 1

2 0  that the half-life of a species A that is consumed in a 
second-order reaction is

t
k1 2

0

1
/ [ ]

=
r A  

Secondorder reaction  half-life  (20B.5)

Therefore, unlike a first-order reaction, the half-life of a sub-
stance in a second-order reaction varies with the initial con-
centration. A practical consequence of this dependence is that 
species that decay by second-order reactions (which includes 
some environmentally harmful substances) may persist in low 
concentrations for long periods because their half-lives are long 
when their concentrations are low. In general, for an nth-order 
reaction (with n neither 0 nor 1) of the form A → products, the 
half-life is related to the rate constant and the initial concentra-
tion of A by (see Problem 20B.16)

t
n k

n

n1 2

1

0
1

2 1
1/ ( ) [ ]

= −
−

−

−
r A  

nthorder reaction  half-life  (20B.6)

Secondorder 
reaction

Integrated 
rate law  (20B.4b)

Secondorder 
reaction; 
alternative form

Integrated 
rate law  (20B.4c)

Justification 20B.2 Second-order integrated rate law

To integrate eqn 20B.4a we rearrange it into

d A
A

dr
[ ]

[ ]2 = −k t
 

The concentration is [A]0 at t = 0 and [A] at a general time t 
later. Therefore,

− =∫ ∫d A
A

d
A

A

r
[ ]

[ ][ ]

[ ]

2
00

k t
t

 

Because the integral of 1/x2 is −1/x + constant, we obtain eqn 
20B.4b by substitution of the limits

1 1 1

0
0[ ] [ ] [ ]

[ ]

[ ]
A

constant
A A

A

A
r+ = − = k t

 

We can then rearrange this expression into eqn 20B.4c.

Table 20B.2* Kinetic data for second-order reactions

Reaction Phase θ/°C kr/(dm3 mol−1 s−1)

2 NOBr → 2 NO + Br2 g 10 0.80

2 I → I2 g 23 7 × 109

CH3Cl + CH3O− CH3OH(l) 20 2.29 × 10−6

* More values are given in the Resource section.
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Figure 20B.3 The variation with time of the concentration of 
a reactant in a second-order reaction. The dotted lines are the 
corresponding decays in a first-order reaction with the same 
initial rate. For this illustration, kr,large = 3kr,small.

Self-test 20B.1 In a particular experiment, it was found that 
the concentration of N2O5 in liquid bromine varied with time 
as follows:

Confirm that the reaction is first order in N2O5 and determine 
the rate constant.

Answer: kr = 2.1 × 10−3 s−1

t/s 0 200 400 600 1000
[N2O5]/ 
(mol dm−3)

0.110 0.073 0.048 0.032 0.014
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830 20 Chemical kinetics

Another type of second-order reaction is one that is first order 
in each of two reactants A and B:

d A
d

A Br

[ ]
[ ][ ]

t
k= −

 
(20B.7)

To integrate this rate law we need to know how the concentra-
tion of B is related to that of A. For example, if the reaction is 
A + B → P, where P denotes products, and the initial concen-
trations are [A]0 and [B]0, then it is shown in the following 
Justification that at a time t after the start of the reaction, the 
concentrations satisfy the relation

ln
[ ]/[ ]
[ ]/[ ]

([ ] [ ] )
B B
A A

B A r
0

0
0 0= − k t

 

Therefore, a plot of the expression on the left against t should be 
a straight line from which kr can be obtained. As shown in the 
following Brief illustration, the rate constant may be estimated 
quickly by using data from only two measurements.

Justification 20B.3 Overall second-order rate law

It follows from the reaction stoichiometry that when the con-
centration of A has fallen to [A]0 − x, the concentration of B 
will have fallen to [B]0− x (because each A that disappears 
entails the disappearance of one B). It follows that

d A
d

A Br
[ ]

([ ] )([ ] )
t

k x x= − − −0 0  
Because [A] = [A]0 − x, it follows that d[A]/dt = −dx/dt and the 
rate law may be written as

d
d

A Br
x
t

k x x= − −([ ] )([ ] )0 0  
The initial condition is that x = 0 when t = 0; so the integration 
required is

d
A B

dr
x

x x
k t

x t

([ ] )([ ] )0 00 0− − =∫ ∫  
The integral on the right is simply krt. The integral on the left 
is evaluated by using the method of partial fractions (see The 
chemist’s toolkit 20B.1):

d
A B B A

A
A

B
B

x
x x x x

x

([ ] )([ ] ) [ ] [ ]
ln

[ ]
[ ]

ln
[ ]

[ ]0 00 0 0

0

0

0

0

1
− − = − − − −

∫ 






The two logarithms can be combined as follows:

ln
[ ]

[ ]
ln

[ ]
[ ]

ln
[ ]
[ ]

ln
[ ]
[

A
A

B
B

A
A

B
B

0

0

0

0

0 0

− − − = −
x x

[A] [B]
��� �� ��� ]]

ln
[ ]/[ ]

ln
[ ]/[ ]

ln
[ ]/[ ]
[ ]/[ ]

= −

=

1 1

0 0

0

0

A A B B

B B
A A  

Combining all the results so far gives eqn 20B.8. Similar cal-
culations may be carried out to find the integrated rate laws for 
other orders, and some are listed in Table 20B.3.

Brief illustration 20B.1 Second-order reactions

Consider a second-order reaction of the type A + B → P car-
ried out in a solution. Initially, the concentrations of reac-
tants were [A]0 = 0.075 mol dm−3 and [B]0 = 0.050 mol dm−3. 
After 1.0 h the concentration of B fell to [B] = 0.020 mol dm−3. 
Because Δ[B] = Δ[A], it follows that during this time interval

∆
∆

[ ] ( . . ) .

[ ] .

B 2 5 moldm 3 moldm

A 3 moldm

3 3

3

= − = −
= −

− −

−

0 0 0 0 0 0 0 0 0

0 0 0  
Therefore, the concentrations of A and B after 1.0 h are

[ ] [ ] [ ] ( . . ) .

[ ] .

A A A 3 75 moldm 45moldm

B 2 m

3 3= + = − + =
=

− −∆ 0 0 0 0 0 0 0 0

0 0 0 ooldm 3−
 

It follows from rearrangement of eqn 20B.8 that

kr s
moldm

ln( )
( . . )

. / .

. / .
3600

1
0 050 0 075

0 020 0 050
0 045 0 0753=

− −
 

where we have used 1 hr = 3600 s. Solving this expression for 
the rate constant gives

kr
3 3 1 14 5 1 dm mol s= × − − −. 0  

Self-test 20B.2 Calculate the half-life of the reactants for the 
reaction.

Answer: t1/2(A) = 5.1 × 103 s, t1/2(B) = 2.1 × 103 s

Second
order 
reaction 
of the type 
A + B → P

Integrated 
rate law  (20B.8)

 The chemist’s toolkit 20B.1 Integration by the method  
of partial fractions

To solve an integral of the form

I
a x b x

x= − −∫ 1
( )( )

d
 

where a and b are constants, we use the method of partial frac-
tions in which a fraction that is the product of terms (as in the 
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20B Integrated rate laws  831

Checklist of concepts

☐ 1. An integrated rate law is an expression for the concen-
tration of a reactant or product as a function of time 
(Table 20B.3).

☐ 2. The half-life of a reactant is the time it takes for its con-
centration to fall to half its initial value.

☐ 3. Analysis of experimental data using integrated rate 
laws allow for the prediction of the composition of a 
reaction system at any stage, the verification of the rate 
law, and the determination of the rate constant.

denominator of this integrand) is written as a sum of frac-
tions. To implement this procedure we write the integrand as

1 1 1 1
( )( )a x b x b a a x b x− − = − − − −





  

Then we integrate each term on the right. It follows that

I
b a

x
a x

x
b x b a a x b x

= − − −






=
− − − −




−∫ ∫1 1 1 1d d
Integral A.2

ln ln



+

a

constant

Table 20B.3 Integrated rate laws

Order Reaction Rate law* t1/2

0 A → P v = kr [A]0/2kr

krt = x for 0 ≤ x ≤ [A]0

1 A → P v = kr[A] (ln 2)/kr

k t
xr

A
A

= −ln
[ ]

[ ]
0

0

2 A → P v = kr[A]2 1/kr[A]0

k t
x

xr A A
= −[ ] ([ ] )0 0

A + B → P v = kr[A][B]

k t
x

xr B A
A B
A B

= −
−

−
1

0 0

0 0

0 0[ ] [ ]
ln

[ ] ([ ] )
([ ] )[ ]

A + 2 B → P v = kr[A][B]

k t
x

xr B A
A B

A B
= −

−
−

1
2

2

0 0

0 0

0 0[ ] [ ]
ln

[ ] ([ ] )
([ ] )[ ]

A → P with autocatalysis v = kr[A][P]

k t
x

xr A P
A P
A P

= +
+

−
1

0 0

0 0

0 0[ ] [ ]
ln

[ ] ([ ] )
([ ] )[ ]

3 A + 2 B → P v = kr[A][B]2

k t
x

xr A B] B B

A B

A B

= − −

+
−

−

2
2 2

1

2

0 0 0 0

0 0
2

0 0

( [ ] [ )([ ] )[ ]

( [ ] [ ] )
ln

[ ] ([ ] 22

0 0

x
x

)
([ ] )[ ]A B−

n ≥ 2 A → P v = kr[A]n
2 1

1

1

1
0

n

nn k

−

−
−

−( ) [ ]r A

k t
n x n nr

A A
= − −

−











− −

1
1

1 1

0
1

0
1([ ] ) [ ]

* x = [P] and v = dx/dt

iranchembook.ir/edu



832 20 Chemical kinetics

Checklist of equations

Property Equation Comment Equation number

Integrated rate law ln([A]/[A]0) = −krt or [ ] [ ]A A e r= −
0

k t First order, A → P 20B.1b

Half-life t1/2 = (ln 2)/kr First order, A → P 20B.2

Time constant τ = 1/kr First order 20B.3

Integrated rate law 1/[A] − 1/[A]0 = krt or [A] = [A]0/(1 + krt[A]0) Second order, A → P 20B.4b,c

Half-life t1/2 = 1/kr[A]0 Second order, A → P 20B.5

t1/2 = (2n −1 − 1)/(n − 1)kr[A]0
n−1 nth order, n ≠ 0,1 20B.6

Integrated rate law ln{([B]/[B]0/([A]/[A]0)} = ([B]0 − [A]0)krt Second order, A + B → P 20B.8
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20C reactions approaching equilibrium

In practice, most kinetic studies are made on reactions that are 
far from equilibrium and if products are in low concentration 
the reverse reactions are unimportant. Close to equilibrium the 
products may be so abundant that the reverse reaction must be 
taken into account.

20C.1 First-order reactions 
approaching equilibrium

We can explore the variation of the composition with time as a 
reaction approaches equilibrium by considering a reaction in 

which A forms B and both forward and reverse reactions are 
first order (as in some isomerizations):

A B A

B A B
r

r

→ =
→ =

v

v

k

k

[ ]

[ ]′  
(20C.1)

The concentration of A is reduced by the forward reaction (at a 
rate kr[A]) but it is increased by the reverse reaction (at a rate  
kr

′[B]). The net rate of change at any stage is therefore

d A
d

A Br r

[ ]
[ ] [ ]

t
k k= − + ′

 
(20C.2)

If the initial concentration of A is [A]0, and no B is present ini-
tially, then at all times [A] + [B] = [A]0. Therefore,

d A
d

A

A

A A

A

r r

r r r

[ ]
[ ]

( )[ ]

[ ] ([ ] )

[ ]

t
k k

k k k

= − + −

= − + +

′

′ ′

0

0  
(20C.3)

The solution of this first-order differential equation (as may be 
checked by differentiation, Problem 20C.1) is

[ ] [ ]
( )

A
e

Ar r

r r

r r

= +
+

− +k k

k k

k k t′

′

′

0

 
(20C.4)

Figure 20C.1 shows the time dependence predicted by this 
equation, with [B] = [A]0 − [A].

As t → ∞, the concentrations reach their equilibrium values, 
which are given by eqn 20C.4 as:

Contents

20c.1  First-order reactions approaching equilibrium 833
brief illustration 20c.1: the equilibrium  
constant from rate constants 834

20c.2 Relaxation methods 834
example 20c.1: analysing a temperature- 
jump experiment 835

Checklist of concepts 836
Checklist of equations 836

➤➤ Why do you need to know this material?
All reactions approach equilibrium, so it is important 
to be able to describe the changing composition as 
they approach this composition. Analysis of the time 
dependence shows that there is an important relation 
between the rate constants and the equilibrium constant.

➤➤ What is the key idea?
Both forward and reverse reactions must be incorporated 
into a reaction scheme to account for the approach to 
equilibrium.

➤➤ What do you need to know already?
You need to be familiar with the concepts of rate law, 
reaction order, and rate constant (Topic 20A), integrated 
rate laws (Topic 20B), and equilibrium constants (Topic 
6A). As in Topic 20B, the manipulation of simple rate laws 
requires only elementary techniques of integration.

[J
]/

[J
] 0

0

0.2

0.4

0.6

0.8

1

(kr + kr’)t
0 1 2 3

B

A

Figure 20C.1 The approach of concentrations to their 
equilibrium values as predicted by eqn 20C.4 for a reaction 
A ⇌ B that is first order in each direction, and for which k kr r2= ′ .
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834 20 Chemical kinetics

[ ] [ ] [ ] [ ]
[ ] [ ]

A B A A
A A

eq
r r

eq eq
r

r r

r=
+

= − =
+

k

k k

k

k k

′

′ ′
0

0
0

 
(20C.5)

It follows that the equilibrium constant of the reaction is

K
k

k
= =

[ ]
[ ]
B
A

eq

eq

r

r
′

 
(20C.6)

(As explained in Topic 5E, we are justified in replacing activi-
ties with the numerical values of molar concentrations if the 
system is treated as ideal.) Exactly the same conclusion can be 
reached—more simply, in fact—by noting that, at equilibrium, 
the forward and reverse rates must be the same, so

k kr rA B[ ] [ ]= ′  (20C.7)

This relation rearranges into eqn 20C.6. The theoretical impor-
tance of eqn 20C.6 is that it relates a thermodynamic quantity, 
the equilibrium constant, to quantities relating to rates. Its 
practical importance is that if one of the rate constants can be 
measured, then the other may be obtained if the equilibrium 
constant is known.

Equation 20C.6 is valid even if the forward and reverse reac-
tions have different orders, but in that case we need to be care-
ful with units. For instance, if the reaction A + B → C is second 
order forward and first order in reverse, then the condition 
for equilibrium is kr[A]eq[B]eq = kr

′ [C]eq and the dimensionless 
equilibrium constant in full dress is

K
c

c c
c

k

k
c= =





= ×
[ ]

([ ] )([ ] )
[ ]

[ ][ ]

C /

A / B /
C

A B
eq

eq eq eq

r

r

<

< <
<

′
<<

The presence of c< = 1 mol dm−3 in the last term ensures that 
the ratio of second-order to first-order rate constants, with 
their different units, is turned into a dimensionless quantity.

For a more general reaction, the overall equilibrium constant 
can be expressed in terms of the rate constants for all the inter-
mediate stages of the reaction mechanism (see Problem 20C.4):

K
k k

kk
= × ×a b

ba
′ ′


 

where the kr are the rate constants for the individual steps and 
the kr

′ are those for the corresponding reverse steps.

20C.2 Relaxation methods

The term relaxation denotes the return of a system to equilib-
rium. It is used in chemical kinetics to indicate that an exter-
nally applied influence has shifted the equilibrium position of 
a reaction, normally suddenly, and that the reaction is adjust-
ing to the equilibrium composition characteristic of the new 
conditions (Fig. 20C.2). We shall consider the response of 
reaction rates to a temperature jump, a sudden change in tem-
perature. We know from Topic 6B that the equilibrium com-
position of a reaction depends on the temperature (provided 
ΔrH< is nonzero), so a shift in temperature acts as a perturba-
tion on the system. One way of achieving a temperature jump 
is to discharge a capacitor through a sample that has been made 
conducting by the addition of ions, but laser or microwave dis-
charges can also be used. Temperature jumps of between 5 and 
10 K can be achieved in about 1 µs with electrical discharges. 
The high energy output of pulsed lasers is sufficient to generate 
temperature jumps of between 10 and 30 K within nanoseconds 
in aqueous samples. Some equilibria are also sensitive to pres-
sure, and pressure-jump techniques may then also be used.

We show in the following Justification that when a sudden 
temperature increase is applied to a simple A ⇌ B equilibrium 
that is first order in each direction, the composition relaxes 
exponentially to the new equilibrium composition:

Brief illustration 20C.1 The equilibrium constant from 
rate constants

The rates of the forward and reverse reactions for a dimeriza-
tion reaction were found to be 8.0 × 108 dm3 mol−1 s−1 (second-
order) and 2.0 × 106 s−1 (first-order). The equilibrium constant 
for the dimerization is therefore

K = ×
×

× = ×
− −

−
−8 0 10

2 0 10
1 4 0 10

8 3 1 1

6 1
3 2.

.
.

dm mol s
s

mol dm

Self-test 20C.1 The equilibrium constant for the attachment 
of a drug molecule to a protein was measured as 2.0 × 102. In 
a separate experiment, the rate constant for the second-order 
attachment was found to be 1.5 × 108 dm3 mol−1 s−1. What is 
the rate constant for the loss of the drug molecule from the 
protein?

Answer: 7.5 × 105 s−1

C
o

n
ce

n
tr

at
io

n
, [

A
]

Time, t

T1 T2

Initial
equilibrium

Final
equilibrium

Exponential
relaxation

Figure 20C.2 The relaxation to the new equilibrium 
composition when a reaction initially at equilibrium at 
a temperature T1 is subjected to a sudden change of 
temperature, which takes it to T2.

 (20C.8)equilibrium constant in 
terms of the rate constants
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20C Reactions approaching equilibrium  835

x x
k k

t= =
+

−
0

1
e

r r

/τ τ
′  

where x0 is the departure from equilibrium immediately after 
the temperature jump, x is the departure from equilibrium at 
the new temperature after a time t, and kr and kr

′  are the forward 
and reverse rate constants, respectively, at the new temperature.

Equation 20C.9 shows that the concentrations of A and 
B relax into the new equilibrium at a rate determined by the 
sum of the two new rate constants. Because the equilibrium 
constant under the new conditions is K k k≈ ′

r r/ , its value may 
be combined with the relaxation time measurement to find the 
individual kr and kr

′.

Justification 20C.1 Relaxation to equilibrium

When the temperature of a system at equilibrium is increased 
suddenly, the rate constants change from their earlier values 
to the new values kr and kr

′ characteristic of that tempera-
ture, but the concentrations of A and B remain for an instant 
at their old equilibrium values. As the system is no longer at 
equilibrium, it readjusts to the new equilibrium concentra-
tions, which are now given by

k kr eq r eqA B[ ] [ ]= ′

and it does so at a rate that depends on the new rate constants. 
We write the deviation of [A] from its new equilibrium value 
as x, so [A] = [A]eq + x and [B] = [B]eq − x. The concentration of A 
then changes as follows:

d A
d

B

B

A

A

r r

r eq r eq

r r

[ ]
[ ]

([ ] )

( )

[ ]

([ ] )

t
k k

k x k x

k k

= − +

= − + + −

= − +

′

′

′ xx

because the two terms involving the equilibrium concentra-
tions cancel. Because d[A]/dt = dx/dt, this equation is a first-
order differential equation with the solution that resembles 
eqn 20A.1b and is given in eqn 20C.9.

Example 20C.1 Analysing a temperature-jump 
experiment

The equilibrium constant for the autoprotolysis of water, 
H2O(l) ⇌ H+(aq) + OH−(aq), is Kw = a(H+)a(OH−) = 1.008 × 10−14  
at 298 K, where we have used the exact expression in terms of 
activities. After a temperature-jump, the reaction returns to 
equilibrium with a relaxation time of 37 µs at 298 K and pH ≈ 7. 
Given that the forward reaction is first order and the reverse is 
second order overall, calculate the rate constants for the for-
ward and reverse reactions.

Method We need to derive an expression for the relaxa-
tion time, τ (the time constant for return to equilibrium), 
in terms of kr (forward, first-order reaction) and kr

′  (reverse, 
second-order reaction). We can proceed as above, but it will 
be necessary to make the assumption that the deviation from 
equilibrium (x) is so small that terms in x2 can be neglected. 
Relate kr and kr

′ through the equilibrium constant, but be care-
ful with units because Kw is dimensionless.

Answer The forward rate at the final temperature is kr[H2O] 
and the reverse rate is kr

′ −[ ][ ]H OH+ . The net rate of deprotona-
tion of H2O is

d[H O]
d

H O H OHr r
2

2t
k k= − + + −[ ] [ ][ ]′

We write [H2O] = [H2O]eq + x, [H+] = [H+]eq − x, and [OH−] =  
[OH−]eq − x, and obtain

d
d

H OH

H O H OH

r eq eqr

r eq r eq e

x
t

k xk

k k

= − + +

− +

+ −

+ −

{ [ ] }([ ] )

[ ] [ ] [ ]

′

′
2 qq r

r eq eqr H OH

+

≈ − + ++ −

k x

k xk

′

′

2

{ [ ] }([ ] )

where we have neglected the term in x2 because it is 
so sma l l and have used the equi l ibr ium condit ion 
k kr eq r eq eqH O H OH[ ] [ ] [ ]2 = + −′  to eliminate the terms (in blue) 
that are independent of x. It follows that

1
τ = + ++ −k kr eq eqr H OH[ ]([ ] )′

 

At this point we note that

K a a c c

c

w eq eq

eq eq
2

H OH H / OH /

H OH /

= ≈

=

+ + −

+ −

( ) ( ) ([ ] )([ ] )

[ ] [ ]

− < <

<

 

with c < = 1 mol dm−3. For this electrically neutral system, 
[H+] = [OH−], so the concentration of each type of ion is K cw

1 2/ <,  
and hence

1
21 2 1 2 1 2

τ = + + = +
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At this point we note that
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and therefore
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2 1

2
2 1

1 2

2

1 2 1
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= +k
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K c k K Kr
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The molar concentration of pure water is 55.6 mol dm−3, so 
[H2O]eq/c< = 55.6 and

K = ×
× = ×

−
−( .

.
.

) /1 008 10
2 55 6

9 03 10
14 1 2

10

 (20C.9)Firstorder 
reaction

relaxation after a 
temperature jump
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836 20 Chemical kinetics

Checklist of concepts

☐ 1. There is a relation between the equilibrium constant, 
a thermodynamic quantity, and the rate constants 
of the forward and reverse reactions (see Checklist of 
equations).

☐ 2. In relaxation methods of kinetic analysis, the equilib-
rium position of a reaction is first shifted suddenly and 
then allowed to readjust to the equilibrium composi-
tion characteristic of the new conditions.

Checklist of equations

Property Equation Comment Equation number

Equilibrium constant in terms of rate constants K k k k k= × ×a a b b/ /′ ′  include c< as appropriate 20C.8

Relaxation of an equilibrium A ⇌ B after a temperature jump x x

k k

t=

= +

−
0

1

e

/ r r

/

( )

τ

τ ′

First order in each direction 20C.9

which implies that 1 + K may be replaced by 1 and therefore 
that

k
K cr

w

s mol dm

′ ≈

=
× × × ×

=

− − −

1
2

1
2 3 7 10 1 008 10 1

1 2

5 14 1 2 3

τ /

/( . ) ( . ) ( )

<

11 4 1011 3 1 1. × − −dm mol s

It follows from the expression for k kr r/ ′  that

k
K c k

r
w r

eqH O

moldm dm m

=

= × × × ×− −

<2

2

14 3 2 11 31 008 10 1 1 4 10

′

[ ]

( . ) ( ) ( . ool s
moldm

s

− −

−

− −= ×

1 1

3

5 1

55 6

2 5 10

)
.

.

The reaction is faster in ice, where kr
′  = 8.6 × 1012 dm3 mol−1 s−1.

A note on good practice Notice how we keep track of units 
through the use of c< : K and Kw are dimensionless; kr

′ is 
expressed in dm3 mol−1 s−1 and kr is expressed in s−1.

Self-test 20C.2 Derive an expression for the relaxation time 
of a concentration when the reaction A + B ⇌ C + D is second 
order in both directions.

Answer: 1/τ = kr([A] + [B])eq + kr′([C] + [D])eq
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20D the arrhenius equation

In this Topic we interpret the common experimental observa-
tion that chemical reactions usually go faster as the temperature 
is raised. We also begin to see how exploration of the tempera-
ture dependence of reaction rates can reveal some details of the 
energy requirements for molecular encounters that lead to the 
formation of products.

20D.1 The temperature dependence 
of reaction rates

It is found experimentally for many reactions that a plot of ln kr 
against 1/T gives a straight line with a negative slope, indicating 
that an increase in ln kr (and therefore an increase in kr) results 
from a decrease in 1/T (that is, an increase in T). This behav-
iour is normally expressed mathematically by introducing two 
parameters, one representing the intercept and the other the 
slope of the straight line, and writing the Arrhenius equation

ln lnk A
E
RTr

a= −
 

 arrhenius equation  (20D.1)

The parameter A, which corresponds to the intercept of the line 
at 1/T = 0 (at infinite temperature, Fig. 20D.1), is called the pre-
exponential factor or the ‘frequency factor’. The parameter Ea, 
which is obtained from the slope of the line (−Ea/R), is called 
the activation energy. Collectively the two quantities are called 
the Arrhenius parameters (Table 20D.1).
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20d.1  The temperature dependence of reaction  
rates 837

example 20d.1: determining the arrhenius  
parameters 837
brief illustration 20d.1: the arrhenius equation 838
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➤➤ Why do you need to know this material?
The rates of reactions depend on the temperature. 
Exploration of this dependence leads to the formulation 
of theories that can help you understand the details of the 
processes that occur when reactant molecules meet and 
why a collection of reactants under specific conditions 
leads to certain products but not others.

➤➤ What is the key idea?
The temperature dependence of the rate of a reaction 
is summarized by the activation energy, the minimum 
energy needed for reaction to occur in an encounter 
between reactants.

➤➤ What do you need to know already?
You need to know that the rate of a chemical reaction is 
expressed by a rate constant (Topic 20A).

Example 20D.1 Determining the Arrhenius parameters

The rate of the second-order decomposition of acetaldehyde 
(ethanal, CH3CHO) was measured over the temperature range 
700–1000 K, and the rate constants are reported below. Find Ea 
and A.

1/T

ln
 k

r

ln A

Slope = –Ea/R

Figure 20D.1 A plot of ln kr against 1/T is a straight line when 
the reaction follows the behaviour described by the Arrhenius 
equation (eqn 20D.1). The slope gives −Ea/R and the intercept at 
1/T = 0 gives ln A.
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838 20 Chemical kinetics

Once the activation energy of a reaction is known, it is a sim-
ple matter to predict the value of a rate constant kr,2 at a tem-
perature T2 from its value kr,1 at another temperature T1. To do 
so, we write

ln ln,k A
E

RTr
a

2
2

= −
 

and then subtract eqn 20D.1 (with T identified as T1 and kr as 
kr,1), so obtaining

ln ln, ,k k
E

RT
E

RTr r
a a

2 1
2 1

− = − +
 

We can rearrange this expression to

ln ,

,

k
k

E
R T T

r

r

a2

1 1 2

1 1= −



  

The fact that Ea is given by the slope of the plot of ln kr against 
1/T leads to the following conclusions:

•	 The stronger the temperature dependence of the rate 
constant (that is, the steeper the slope), the higher the 
activation energy.

Brief illustration 20D.1 The Arrhenius equation

For a reaction with an activation energy of 50 kJ mol−1, an 
increase in the temperature from 25 °C to 37 °C (body temper-
ature) corresponds to

ln
.

,

,

k
k

r

r

Jmol
JK mol K K

2

1

3 1

1 1

50 10
8 3145

1
298

1
310

5

= × −





=

−

− −

00 10
8 3145

1
298

1
310

0 781
3× −





= …
.

.
 

By taking natural antilogarithms (that is, by forming ex), 
kr,2 = 2.18kr,1. This result corresponds to slightly more than a 
doubling of the rate constant as the temperature is increased 
from 298 K to 310 K.

Self-test 20D.2 The activation energy of one of the reactions in 
a biochemical process is 87 kJ mol−1. What is the change in rate 
constant when the temperature falls from 37 °C to 15 °C?

Answer: kr(15 °C) = 0.076kr(37 °C)

Table 20D.1* Arrhenius parameters

(1) First-order reactions A/s−1 Ea/(kJ mol−1)

CH3NC → CH3CN 3.98 × 1013 160

2 N2O5 → 4 NO2 + O2 4.94 × 1013 103.4

(2) Second-order reactions A/(dm3 mol−1 s−1) Ea/(kJ mol−1)

OH + H2 → H2O + H 8.0 × 1010 42

NaC2H5O + CH3I in ethanol 2.42 × 1011 81.6

* More values are given in the Resource section.

Method According to eqn 20D.1, the data can be analysed 
by plotting ln(kr/dm3 mol−1 s−1) against 1/(T/K), or more con-
veniently (103 K)/T, and getting a straight line. Obtain the 
activation energy from the dimensionless slope by writing 
−Ea/R = slope/units, where in this case ‘units’ = 1/(103 K), so Ea =  
−slope × R × 103 K. The intercept at 1/T = 0 is ln(A/dm3 mol−1 s−1). 
Use a least-squares procedure to determine the plot parameters.

Answer We draw up the following table:

Now plot ln kr against 1/T (Fig. 20D.2). The least-squares fit 
results in a line with slope −22.7 and intercept 27.7. Therefore,

E

A

a
1 1 3 1

27 7 3

 22 7 8 3145JK mol 1 K 189kJmol

e dm mol

= × × =
=

− − −

−

. ( . ) ( )
.

0
11 1 12 3 1 1s 1 1 1 dm mol s− − −= ×. 0

Note that A has the same units as kr.

Self-test 20D.1 Determine A and Ea from the following data:

Answer: 8 × 1010 dm3 mol−1 s−1, 23 kJ mol−1

T/K 300 350 400 450 500

kr/
(dm3 mol−1 s−1)

7.9 × 106 3.0 × 107 7.9 × 107 1.7 × 108 3.2 × 108

T/K 700 730 760 790 810 840 910 1000

kr/(dm3  
mol−1 
s−1)

0.011 0.035 0.105 0.343 0.789 2.17 20.0 145

(103 K)/T  1.43  1.37  1.32  1.27  1.23  1.19 1.10 1.00
ln(kr/ 

dm3 mol−1 s−1)
−4.51 −3.35 −2.25 −1.07 −0.24  0.77 3.00 4.98

ln
{k

r/(
d

m
3  

m
o

l–1
 s

–1
)}

0

5

–5
1 1.1 1.2 1.3 1.4

(103 K)/T

Figure 20D.2 The Arrhenius plot using the data in  
Example 20D.1.

 (20D.2)temperature dependence 
of the rate constant
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20D The Arrhenius equation  839

•	 A high activation energy signifies that the rate 
constant depends strongly on temperature.

•	 If a reaction has zero activation energy, its rate is 
independent of temperature.

•	 A negative activation energy indicates that the rate 
decreases as the temperature is raised.

The temperature dependence of some reactions is ‘non-
Arrhenius’ in the sense that a straight line is not obtained when 
ln kr is plotted against 1/T. However, it is still possible to define 
an activation energy at any temperature as

E RT
k

Ta
rd

d
= 





2 ln

 
Definition  activation energy  (20D.3)

This definition reduces to the earlier one (as the slope of a 
straight line) for a temperature-independent activation energy 
(see Problem 20D.1). However, the definition in eqn 20D.3 is 
more general than that in eqn 20D.1, because it allows Ea to be 
obtained from the slope (at the temperature of interest) of a plot 
of ln kr against 1/T even if the Arrhenius plot is not a straight 
line. Non-Arrhenius behaviour is sometimes a sign that quan-
tum mechanical tunnelling (Topic 8A) is playing a significant 
role in the reaction. In biological reactions it might signal that 
an enzyme has undergone a structural change and has become 
less efficient.

20D.2 The interpretation of the 
Arrhenius parameters

For the present Topic we shall regard the Arrhenius parameters 
as purely empirical quantities that enable us to summarize the 
variation of rate constants with temperature. However, it is use-
ful to have an interpretation in mind. Topics 21A–21F provide 
a more elaborate interpretation.

(a) A first look at the energy requirements 
of reactions
To interpret Ea we consider how the molecular potential energy 
changes in the course of a chemical reaction that begins with 
a collision between molecules of A and molecules of B (Fig. 
20D.3). In the gas phase that is an actual collision; in solution 
it is best regarded as a close encounter, possibly with excess 
energy, and might involve the solvent too. As the reaction event 
proceeds, A and B come into contact, distort, and begin to 
exchange or discard atoms. The reaction coordinate summa-
rizes the collection of motions, such as changes in interatomic 
distances and bond angles, that are directly involved in the for-
mation of products from reactants. (The reaction coordinate is 

essentially a geometrical concept and quite distinct from the 
extent of reaction.) The potential energy rises to a maximum 
and the cluster of atoms that corresponds to the region close to 
the maximum is called the activated complex.

After the maximum, the potential energy falls as the atoms 
rearrange in the cluster and reaches a value characteristic of the 
products. The climax of the reaction is at the peak of the poten-
tial energy, which corresponds to the activation energy Ea. Here 
two reactant molecules have come to such a degree of close-
ness and distortion that a small further distortion will send 
them in the direction of products. This crucial configuration is 
called the transition state of the reaction. Although some mol-
ecules entering the transition state might revert to reactants, if 
they pass through this configuration then it is inevitable that 
products will emerge from the encounter. (The terms ‘activated 
complex’ and ‘transition state’ are often used as synonyms; 
however, we shall preserve a distinction.)

We conclude from the preceding discussion that the activa-
tion energy is the minimum energy reactants must have in order 
to form products. For example, in a reaction mixture there are 
numerous molecular encounters each second, but only very 
few are sufficiently energetic to lead to reaction. The fraction 
of close encounters between reactants with energy in excess of 
Ea is given by the Boltzmann distribution (Foundations B and 
Topic 15A) as e a−E RT/ . This interpretation is confirmed by com-
paring this expression with the Arrhenius equation written in 
the form

k A E RT
r e a= − /

 Alternative form  arrhenius equation  (20D.4)

which is obtained by taking antilogarithms of both sides of eqn 
20D.1. We show in the following Justification that the expo-
nential factor in eqn 20D.4 can be interpreted as the fraction 
of encounters that have enough energy to lead to reaction. This 
point is explored further for gas-phase reactions in Topic 21A 
and for reactions in solution in Topic 21C.
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Figure 20D.3 A potential energy profile for an exothermic 
reaction. The height of the barrier between the reactants and 
products is the activation energy of the reaction.
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840 20 Chemical kinetics

Brief illustration 20D.2 The fraction of reactive collisions

From Justification 20D.1 the fraction of molecules with 
energy at least εmin is e min−ε /kT, By multiplying εmin and k by 
NA, Avogadro’s constant, and identifying NAεmin with Ea, 
then the fraction f of molecular collisions that occur with 
a kinetic energy Ea becomes f E RT= −e a / . With Ea = 50 kJ  
mol−1 = 5.0 × 104 J mol−1 and T = 298 K, we calculate

The pre-exponential factor is a measure of the rate at which 
collisions occur irrespective of their energy. Hence, the prod-
uct of A and the exponential factor, e a−E RT/  gives the rate of suc-
cessful collisions. We develop these remarks in Topics 21A and 
21C, and see that they have their analogues for reactions that 
take place in liquids.

(b) The effect of a catalyst on the activation 
energy
The Arrhenius equation tells us that the rate constant of a 
reaction can be increased by increasing the temperature or by 
decreasing the energy of activation. Changing the temperature 
of a reaction mixture is an easy strategy. Reducing the energy of 
activation is more challenging, but is possible if a reaction takes 
place in the presence of a suitable catalyst, a substance that 
accelerates a reaction but undergoes no net chemical change. 
The catalyst lowers the activation energy of the reaction by pro-
viding an alternative path that avoids the slow, rate-determin-
ing step of the uncatalysed reaction (Fig 20D.5).

Heterogeneous catalysts, which are discussed in Topic 22C, 
function in a different phase from the reaction mixture. For 
example, some gas-phase reactions are accelerated in the pres-
ence of a solid catalyst. Homogeneous catalysts function in the 
same phase as the reaction mixture. For example, the OH− ion 
is a catalyst for a number of organic and inorganic transforma-
tions in solution.

f = = ×− × × −− − −
e Jmol JK mol K( . )/( . ) .5 0 10 8 3145 298 94 1 1 1

1 7 10

or about 1 in a billion.

Self-test 20D.3 At what temperature would f = 0.10 if Ea =  
50 kJ mol−1?

Answer: T = 2612 K

Justification 20D.1 Interpreting the activation energy

Suppose the energy levels available to the system form a uni-
form array of separation ε (Fig. 20D.4). The Boltzmann distri-
bution is

N
N

i
i

i= = −
−

− −e
e e

εβ
εβ εβ

q ( )1
 

where β = 1/kT and we have used the result in eqn 15B.2a for 
the partition function q. The total number of molecules in 
states with energy of at least iminε is

N N N N
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Therefore, the fraction of molecules in states with energy of at 
least εmin = iminε is

1
1 1

N
Ni

i i kT

i i

= − − = =− − −

=

∞

∑ ( ) /e e emin min min

min

εβ εβ ε

 

which has the form of eqn 20D.4.
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Figure 20D.4 Equally spaced energy levels of an idealized 
system. As shown in Justification 20D.1, the fraction of 
molecules with energy of at least e min−ε / .kT
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Figure 20D.5 A catalyst provides a different path with a 
lower activation energy. The result is an increase in the rate of 
formation of products.
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20D The Arrhenius equation  841

Checklist of concepts

☐ 1. The activation energy, the parameter Ea in the 
Arrhenius equation, is the minimum energy of close 
molecular encounters able to result in reaction.

☐ 2. The larger the activation energy, the more sensitive the 
rate constant is to the temperature.

☐ 3. The pre-exponential factor is a measure of the rate at 
which encounters occur irrespective of their energy.

☐ 4. A catalyst lowers the activation energy of a reaction.

Checklist of equations

Brief illustration 20D.3 The effect of a catalyst  
on the rate constant

The enzyme catalase reduces the activation energy for the 
decomposition of hydrogen peroxide from 76 kJ mol−1 to 
8 kJ mol−1. From eqn 20D.4 and assuming that the exponential 
factor is the same in both cases, it follows that the ratio of rate 
constants is:

k
k

A

A

E RT

E
r,catalysed

r,uncatalysed

e

e

a,catalysed

a,uncatal
=

−

−

/

yysed

a,catalysed a,uncatalysede

e Jmol

/
( )/

(

RT
E E RT=

=

− −

× −68 103 1))/( . ) ( ) .8 3145 298 111 1

8 3 10JK mol K− − × = ×

Self-test 20D.4 Consider the decomposition of hydrogen per-
oxide, which can be catalysed in solution by iodide ion. By 
how much is the activation energy of the reaction reduced if 
the rate constant of reaction increases by a factor of 2000 at 
298 K upon addition of the catalyst?

Answer: 25 per cent

Property Equation Comment Equation number

Arrhenius equation ln kr = ln A − Ea/RT 20D.1

Activation energy Ea = RT 2(d ln kr/dT) Definition 20D.3
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20E reaction mechanisms

The study of reaction rates leads to an understanding of the 
mechanisms of reactions, their analysis into a sequence of 
elementary steps. Simple elementary steps have simple rate 
laws, which can be combined together by invoking one or more 
approximations. These approximations include the concept of 
the rate-determining step of a reaction, the steady-state con-
centration of a reaction intermediate, and the existence of a 
pre-equilibrium.

20E.1 Elementary reactions

Most reactions occur in a sequence of steps called elementary 
reactions, each of which involves only a small number of mol-
ecules or ions. A typical elementary reaction is

H Br HBr Br2+ → +  

Note that the phase of the species is not specified in the chemi-
cal equation for an elementary reaction and the equation rep-
resents the specific process occurring to individual molecules. 
This equation, for instance, signifies that an H atom attacks a 
Br2 molecule to produce an HBr molecule and a Br atom. The 
molecularity of an elementary reaction is the number of mol-
ecules coming together to react in an elementary reaction. In 
a unimolecular reaction, a single molecule shakes itself apart 
or its atoms into a new arrangement, as in the isomerization 
of cyclopropane to propene. In a bimolecular reaction, a pair 
of molecules collide and exchange energy, atoms, or groups of 
atoms, or undergo some other kind of change. It is most impor-
tant to distinguish molecularity from order:

•	 reaction order is an empirical quantity, and obtained 
from the experimentally determined rate law;

•	 molecularity refers to an elementary reaction proposed as 
an individual step in a mechanism.

The rate law of a unimolecular elementary reaction is first-
order in the reactant:

A P
d[A]
d

Ar→ = −
t

k [ ]
 

 unimolecular elementary reaction  (20E.1)

where P denotes products (several different species may be 
formed). A unimolecular reaction is first order because the 

➤➤ Why do you need to know this material?
You need to know how to construct the rate law for a 
reaction that takes place by a sequence of steps partly 
because that gives insight into the atomic processes 
going on when reactions take place, but also because 
it indicates how the yield of desired products can be 
optimized.

➤➤ What is the key idea?
Many chemical reactions occur as a sequence of simpler 
steps, with corresponding rate laws that can be combined 
together by applying one or more approximations.

➤➤ What do you need to know already?
You need to be familiar with the concept of rate laws (Topic 
20A) and how to integrate them (Topics 20B and 20C). You 
also need to be familiar with the Arrhenius equation for 
the effect of temperature on reaction rate (Topic 20D).

Contents
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20E Reaction mechanisms  843

number of A molecules that decay in a short interval is propor-
tional to the number available to decay. For instance, ten times 
as many decay in the same interval when there are initially 1000 
A molecules as when there are only 100 present. Therefore, the 
rate of decomposition of A is proportional to its molar concen-
tration at any moment during the reaction.

An elementary bimolecular reaction has a second-order rate 
law:

A B P
d[A]
d

A Br+ → = −
t

k [ ][ ]
 

A bimolecular reaction is second-order because its rate is pro-
portional to the rate at which the reactant species meet, which in 
turn is proportional to both their concentrations. Therefore, if we 
have evidence that a reaction is a single-step, bimolecular pro-
cess, we can write down the rate law (and then go on to test it).

We shall see in the following sections how to combine a series 
of simple steps together into a mechanism and how to arrive at 
the corresponding overall rate law. For the present we empha-
size that, if the reaction is an elementary bimolecular process, 
then it has second-order kinetics, but if the kinetics is second order, 
then the reaction might be complex. The postulated mechanism 
can be explored only by detailed detective work on the system 
and by investigating whether side products or intermediates 
appear during the course of the reaction. Detailed analysis of 
this kind was one of the ways, for example, in which the reac-
tion H2(g) + I2(g) → 2 HI(g) was shown to proceed by a complex 
mechanism. For many years the reaction had been accepted on 
good but insufficiently meticulous evidence as a fine example of 

a simple bimolecular reaction, H2+ I2 → HI + HI, in which atoms 
exchanged partners during a collision.

20E.2 Consecutive elementary 
reactions

Some reactions proceed through the formation of an interme-
diate (I), as in the consecutive unimolecular reactions

A I P
a b→ →

k k

 

Note that the intermediate occurs in the reaction steps but does 
not appear in the overall reaction, which in this case is A → P. 
We are ignoring any reverse reactions, so the reaction proceeds 
from all A to all P, not to an equilibrium mixture of the two. An 
example of this type of mechanism is the decay of a radioactive 
family, such as

239 23 5 239 2 35 239U Np Pumin days. . →  →  

(The times are half-lives.) The characteristics of this type of 
reaction are discovered by setting up the rate laws for the net 
rate of change of the concentration of each substance and then 
combining them in the appropriate manner.

The rate of unimolecular decomposition of A is

d[A]
d

Aat
k= − [ ]

 
(20E.3a)

and A is not replenished. The intermediate I is formed from A 
(at a rate ka[A]) but decays to P (at a rate kb[I]). The net rate of 
formation of I is therefore

d[I]
d

A Ia bt
k k= −[ ] [ ]

 
(20E.3b)

The product P is formed by the unimolecular decay of I:

d[P]
d

Ibt
k= [ ]

 
(20E.3c)

We suppose that initially only A is present and that its concen-
tration is then [A]0.

The first of the rate laws, eqn 20E.3a, is an ordinary first-
order decay, so we can write

[ ] [ ]A A e a= −
0

k t

 (20E.4a)

When this equation is substituted into eqn 20E.3b, we obtain 
after rearrangement

d[I]
d

I A eb a
a

t
k k k t+ = −[ ] [ ]0

 

bimolecular 
elementary reaction  (20E.2)

Brief illustration 20E.1 The rate laws of elementary steps

Bimolecular elementary reactions are believed to account for 
many homogeneous reactions, such as the dimerizations of 
alkenes and dienes and reactions such as

CH I(alc) CH CH O alc CH OCH CH alc I alc3 3 2 3 2 3+ → +− −( ) ( ) ( )  
(where ‘alc’ signifies alcohol solution). There is evidence that 
the mechanism of this reaction is a single elementary step:

CH I CH CH O CH OCH CH I3 3 2 3 2 3+ → +− −
 

This mechanism is consistent with the observed rate law

v = −kr 3 3 2CH I CH CH O[ ][ ]  

Self-test 20E.1 The following are elementary processes: (a) the 
dimerization of NO(g) to form N2O2(g), and (b) the decompo-
sition of the N2O2(g) dimer into NO(g) molecules. Write the 
rate laws for these processes.

Answer: (a) bimolecular process: kr[NO]2, (b) unimolecular process: 
kr[N2O2]

iranchembook.ir/edu



844 20 Chemical kinetics

This differential equation has a standard form (see Mathe-
matical background 4) and, after setting [I]0 = 0 (no intermedi-
ate present initially), the solution is

[ ] ( )[ ]I e e Aa

b a

a b= − −− −k
k k

k t k t
0

 
(20E.4b)

At all times [A] + [I] + [P] = [A]0, so it follows that

[ ] [ ]P
e e

Aa b

b a

b a

= + −
−









− −

1 0

k k
k k

k t k t

 
(20E.4c)

The concentration of the intermediate I rises to a maximum 
and then falls to zero (Fig. 20E.1). The concentration of the 
product P rises from zero towards [A]0, when all A has been 
converted to P.

20E.3 The steady-state approximation

One feature of the calculation so far has probably not gone 
unnoticed: there is a considerable increase in mathematical 
complexity as soon as the reaction mechanism has more than a 
couple of steps and reverse reactions are taken into account. A 
reaction scheme involving many steps is nearly always unsolv-
able analytically, and alternative methods of solution are nec-
essary. One approach is to integrate the rate laws numerically. 
An alternative approach, which continues to be widely used 
because it leads to convenient expressions and more readily 
digestible results, is to make an approximation.

The steady-state approximation (which is also widely called 
the quasi-steady-state approximation, QSSA, to distinguish it 
from a true steady state) assumes that the intermediate, I, is in 
a low, constant concentration. More specifically, after an initial 
induction period, an interval during which the concentrations 
of intermediates rise from zero, and during the major part of 
the reaction, the rates of change of concentrations of all reac-
tion intermediates are negligibly small (Fig. 20E.2):

d I
d
[ ]
t

≈ 0
 

 steady-state approximation  (20E.5)

Example 20E.1 Analysing consecutive reactions

Suppose that in an industrial batch process a substance A 
produces the desired compound I which goes on to decay to 
a worthless product C, each step of the reaction being first 
order. At what time will I be present in greatest concentration?

Method The time dependence of the concentration of I is 
given by eqn 20E.4b. We can find the time at which [I] passes 
through a maximum, tmax, by calculating d[I]/dt and setting 
the resulting rate equal to zero.

Answer It follows from eqn 20E.4b that

d[I]
d

e e Aa a b

b a

a b

t
k k k

k k

k t k t

= − −
−

− −( )[ ]0

 

This rate is equal to zero when k kk t k t
a be ea b− −= . Therefore,

t
k k

k
kmax

a b

a

b
= −

1
ln

 
For a given value of ka, as kb increases both the time at which 
[I] is a maximum and the yield of I decrease.

Self-test 20E.2 Calculate the maximum concentration of I and 
justify the last remark.

Answer: [I]max/[A]0= (ka/kb)c, c = kb/(kb− ka)
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Figure 20E.1 The concentrations of A, I, and P in the 
consecutive reaction scheme A → I → P. The curves are plots of 
eqns 20E.4a–c with ka = 10kb. If the intermediate I is in fact the 
desired product, it is important to be able to predict when its 
concentration is greatest; see Example 20E.1.
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Figure 20E.2 The basis of the steady-state approximation. It 
is supposed that the concentrations of intermediates remain 
small and hardly change during most of the course of the 
reaction.
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20E Reaction mechanisms  845

This approximation greatly simplifies the discussion of reaction 
schemes. For example, when we apply the approximation to the 
consecutive first-order mechanism, we set d[I]/dt = 0 in eqn 
20E.3b, which then becomes ka[A] − kb[I] = 0. Then

[ ] ( )[I / A]a b= k k  (20E.6)

For this expression to be consistent with eqn 20E.5, we require 
ka/kb ≪ 1 (so that, even though [A] does depend on the time, 
the dependence of [I] on the time is negligible). On substituting 
this value of [I] into eqn 20E.3c, that equation becomes

d P
d

I Ab a

[ ]
[ ] [ ]

t
k k= ≈

 
(20E.7)

and we see that P is formed by a first-order decay of A, with a rate 
constant ka, the rate-constant of the slower, rate-determining, 
step. We can write down the solution of this equation at once 
by substituting the solution for [A], eqn 20E.4a, and integrating:

[ ] ( )[ ][ ]P A e d e Aa
a a= = −− −∫k tk t k t

t

0 0
0

1
 

(20E.8)

This is the same (approximate) result as before, eqn 20E.4c 
(when kb ≫ ka), but much more quickly obtained. Figure 20E.3 
compares the approximate solutions found here with the exact 
solutions found earlier: kb does not have to be very much bigger 
than ka for the approach to be reasonably accurate.

20E.4 The rate-determining step

Equation 20E.8 shows that when kb ≫ ka the formation of the 
final product P depends on only the smaller of the two rate con-
stants. That is, the rate of formation of P depends on the rate at 

Example 20E.2 Using the steady-state approximation

Devise the rate law for the decomposit ion of N2O5,  
2 N2O5(g) → 4 NO2(g) + O2(g) on the basis of the following 
mechanism:
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Figure 20E.3 A comparison of the exact result for the 
concentrations of a consecutive reaction and the concentrations 
obtained by using the steady-state approximation (dotted lines) 
for kb = 20ka. (The curve for [A] is unchanged.)

A note on good practice Note that when writing the 
equation for an elementary reaction all the species 
are displayed individually; so we write A → B + B, for 
instance, not A → 2 B.

Method First identify the intermediates and write expressions 
for their net rates of formation. Then, all net rates of change of 
the concentrations of intermediates are set equal to zero and 
the resulting equations are solved algebraically.

Answer The intermediates are NO and NO3; the net rates of 
change of their concentrations are

d[NO]
d

d[NO ]
d

NO NO NO N O

N O N

b c

a a

t

t

k k

k k

=

=

− ≈

−

[ ][ ] [ ][ ]

[ ] [

2 3 2 5

2 5
3

0

′ OO NO NO NOb2 3 2 3 0][ ] [ ][ ]− ≈k

The solutions of these two simultaneous equations (in blue) 
are

[ ]
( )[ ]

[ ]
[ ] [ ][ ]

[ ]
NO

N O

NO
NO

NO NO
N O

a

a b

b

c

a b
3

2 5

2

2 3

2 5
=

+
= =k

k k

k
k

k k
′ (( )k k ka b c

′ +

The net rate of change of concentration of N2O5 is then

d[N O ]
d

N O NO NO NO N O

N O

a a c

a

2 5
2 5 2 3 2 5

2 5

t
k k k

k
k

= − + −

= − +

[ ] [ ][ ]

[ ]

[ ][ ]′

aa

a b

a b

b

a b

a b

a

a

N O
N O

N O

k

kk k

k k

k

k k

k k

′

′ ′

′

[ ]

[ ]

[ ]2 5
2 5

2 52

+
−

+

= −
+  

That is, N2O5 decays with a first-order rate law with a rate con-
stant that depends on ka, ka′, and kb but not on kc.

Self-test 20E.3 Derive the rate law for the decomposition of 
ozone in the reaction 2 O3(g) → 3 O2(g) on the basis of the 
(incomplete) mechanism

Answer: d[O3]/dt = –2kakb[O3]2/(ka′[O2] + kb[O3])

N2O5→ NO2 + NO3 ka

NO2 + NO3 → N2O5 ka′
NO2 + NO3 → NO2 + O2 + NO kb

NO + N2O5 → NO2 + NO2 + NO2 kc

O3→ O2 + O ka

O2 + O → O3 ka′
O + O3 → O2 + O2 kb
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846 20 Chemical kinetics

which I is formed, not on the rate at which I changes into P. For 
this reason, the step A → I is called the ‘rate-determining step’ 
of the reaction. Its existence has been likened to building a six-
lane highway up to a single-lane bridge: the traffic flow is gov-
erned by the rate of crossing the bridge. Similar remarks apply 
to more complicated reaction mechanisms. In general, the rate-
determining step (RDS) is the slowest step in a mechanism and 
controls the overall rate of the reaction. The rate-determining 
step is not just the slowest step: it must be slow and be a crucial 
gateway for the formation of products. If a faster reaction can 
also lead to products, then the slowest step is irrelevant because 
the slow reaction can then be sidestepped (Fig. 20E.4).

The rate law of a reaction that has a rate-determining step 
can often—but certainly not always—be written down almost 
by inspection. If the first step in a mechanism is rate-determin-
ing, then the rate of the overall reaction is equal to the rate of 
the first step because all subsequent steps are so fast that once 
the first intermediate is formed it results immediately in the 
formation of products. Figure 20E.5 shows the reaction profile 
for a mechanism of this kind in which the slowest step is the 
one with the highest activation energy. Once over the initial 

barrier, the intermediates cascade into products. However, a 
rate-determining step may also stem from the low concentra-
tion of a crucial reactant and need not correspond to the step 
with highest activation barrier.

20E.5 Pre-equilibria

From a simple sequence of consecutive reactions we now turn 
to a slightly more complicated mechanism in which an inter-
mediate I reaches an equilibrium with the reactants A and B:

A B I P+ →   Pre-equilibrium  (20E.9)

The rate constants are ka and ka′ for the forward and reverse 
reactions of the equilibrium and kb for the final step. This 
scheme involves a pre-equilibrium, in which an intermediate is 
in equilibrium with the reactants. A pre-equilibrium can arise 
when the rate of decay of the intermediate back into reactants 
is much faster than the rate at which it forms products; thus, 
the condition is possible when ka′ ≫ kb but not when kb ≫ ka′. 
Because we assume that A, B, and I are in equilibrium, we can 
write

K K
k

k
= =[ ]

[ ][ ]
I

A B
with a

a
′  

(20E.10)
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Figure 20E.4 In these diagrams of reaction schemes, heavy 
arrows represent fast steps and light arrows represent slow 
steps. (a) The first step is rate-determining; (b) the second step 
is rate-determining; (c) although one step is slow, it is not rate-
determining because there is a fast route that circumvents it.
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Figure 20E.5 The reaction profile for a mechanism in which 
the first step (RDS) is rate-determining.

Brief illustration 20E.2 The rate law of a mechanism with 
a rate-determining step

The oxidation of NO to NO2, 2 NO(g) + O2(g) → 2 NO2(g), 
proceeds by the following mechanism:

with rate law (see the Self-test)

d[NO ]
d

NO O

O
a b

a b

2
2

2

2

2
t

k k

k k
=

+
[ ] [

[ ]

]
′  

When the concentration of O2 in the reaction mixture is so 
large that the third step is very fast in the sense that [O2]kb ≫  
ka′ , then the rate law simplifies to

d[NO ]
d

NOa
2 22

t
k= [ ]

 
and the formation of N2O2 in the first step is rate-determining. 
We could have written the rate law by inspection of the mech-
anism, because the rate law for the overall reaction is simply 
the rate law of that rate-determining step.

Self-test 20E.4 Verify that application of the steady-state 
approximation to the intermediate N2O2 results in the rate law.

NO + NO → N2O2 ka

N2O2→ NO + NO ka′
N2O2 + O2 → NO2 + NO2 kb
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20E Reaction mechanisms  847

In writing these equations, we are presuming that the rate of 
reaction of I to form P is too slow to affect the maintenance of 
the pre-equilibrium (see the following Example). We are also 
ignoring the fact, as is commonly done, that the standard con-
centration c< should appear in the expression for K to ensure 
that it is dimensionless. The rate of formation of P may now be 
written:

d[P]
d

I A Bb bt
k k K= =[ ] [ ][ ]

 
(20E.11)

This rate law has the form of a second-order rate law with a 
composite rate constant:

d[P]
d

A B withr r b
a b

at
k k k K

k k

k
= = =[ ][ ]

′  
(20E.12)

One feature to note is that although each of the rate con-
stants in eqn 20E.12 increases with temperature, that might not 

be true of kr itself. Thus, if the rate constant ka′ increases more 
rapidly than the product kakb increases, then kr = kakb/ka′ will 
decrease with increasing temperature and the reaction will go 
more slowly as the temperature is raised. Mathematically, we 
would say that the composite reaction had a ‘negative activa-
tion energy’. For example, suppose that each rate constant in 
eqn 20E.12 exhibits an Arrhenius temperature dependence 
(Topic 20D). It follows from the Arrhenius equation (eqn 
20D.4, k A E RT

r e a= − / ) that

k
A A

A

E RT E RT

E RTr
a b

a

e e
e

a,a a,b

a,a

e e

e e

= =
− −

′
−

+

+
=

=
( )( )/ /

/′

ex y x y

x y xx y/e

a b

a

e a,a a,b a,a

 A A
A

E E E RT

′

− + −( )/′

 

The effective activation energy of the reaction is therefore

E E E Ea a a a b a a= + −, , , ′  (20E.13)

This activation energy is positive if Ea,a + Ea,b > Ea,a′ (Fig. 20E.6a) 
but negative if Ea,a′ > Ea,a + Ea,b (Fig. 20E.6b). An important con-
sequence of this discussion is that we have to be very cautious 
about making predictions about the effect of temperature on 
reactions that are the outcome of several steps.

20E.6 Kinetic and thermodynamic 
control of reactions

In some cases reactants can give rise to a variety of products, 
as in nitrations of mono-substituted benzene, when various 
proportions of the ortho-, meta-, and para-substituted products 
are obtained, depending on the directing power of the original 

Example 20E.3 Analysing a pre-equilibrium

Repeat the pre-equilibrium calculation but without ignoring 
the fact that I is slowly leaking away as it forms P.

Method Begin by writing the net rates of change of the con-
centrations of the substances and then invoke the steady-
state approximation for the intermediate I. Use the resulting 
expression to obtain the rate of change of the concentration 
of P.

Answer The net rates of change of P and I are

d[P]
d

I

d[I]
d

A B I I

b

a a b

t
k

t
k k k

=

= − − ≈

[ ]

[ ][ ] [ ][ ]′ 0
 

The second equation solves to

[ ]
[ ][ ]

I
A Ba

a b

≈
+

k

k k′  
When we substitute this result into the expression for the rate 
of formation of P, we obtain

d P
d

A B withr r
a b

a b

[ ]
[ ][ ]

t
k k

k k

k k
≈ =

+′  
This expression reduces to that in eqn 20E.12 when the rate 
constant for the decay of I into products is much smaller than 
that for its decay into reactants, kb ≪ ka′.

Self-test 20E.5 Show that the pre-equilibrium mechanism in 
which 2 A ⇌ I (K) followed by I + B → P (kb) results in an over-
all third-order reaction.

Answer: d[P]/dt = kbK[A]2[B]

Ea,a

Ea,b

Ea,a’
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(b)
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Reaction coordinate

Figure 20E.6 For a reaction with a pre-equilibrium, there are 
three activation energies to take into account: two referring 
to the reversible steps of the pre-equilibrium and one for the 
final step. The relative magnitudes of the activation energies 
determine whether the overall activation energy is (a) positive 
or (b) negative.

iranchembook.ir/edu



848 20 Chemical kinetics

substituent. Suppose two products, P1 and P2, are produced by 
the following competing reactions:

The relative proportion in which the two products have been 
produced at a given stage of the reaction (before it has reached 
equilibrium) is given by the ratio of the two rates, and therefore 
of the two rate constants:

[ ]
[ ]

,

,

P
P

r

r

2

1

2

1

=
k
k  

 kinetic control  (20E.14)

This ratio represents the kinetic control over the proportions 
of products, and is a common feature of the reactions encoun-
tered in organic chemistry where reactants are chosen that 
facilitate pathways favouring the formation of a desired prod-
uct. If a reaction is allowed to reach equilibrium, then the pro-
portion of products is determined by thermodynamic rather 
than kinetic considerations, and the ratio of concentrations is 
controlled by considerations of the standard Gibbs energies of 
all the reactants and products.

Checklist of concepts

☐ 1. The mechanism of reaction is the sequence of elemen-
tary steps that leads from reactants to products.

☐ 2. The molecularity of an elementary reaction is the num-
ber of molecules coming together to react.

☐ 3. An elementary unimolecular reaction has first-order 
kinetics; an elementary bimolecular reaction has sec-
ond-order kinetics.

☐ 4. The rate-determining step is the slowest step in a reaction 
mechanism that controls the rate of the overall reaction.

☐ 5. In the steady-state approximation, it is assumed that 
the concentrations of all reaction intermediates remain 
constant and small throughout the reaction.

☐ 6. Pre-equilibrium is a state in which an intermediate 
is in equilibrium with the reactants and which arises 
when the rates of formation of the intermediate and its 
decay back into reactants are much faster than its rate 
of formation of products.

☐ 7. Provided a reaction has not reached equilibrium, the 
products of competing reactions are controlled by 
kinetics.

Checklist of equations

Brief illustration 20E.3 The outcome of kinetic control

Consider two products formed from reactant R in reactions 
for which: (a) product P1 is thermodynamically more stable 
than product P2; and (b) the activation energy Ea for the reac-
tion leading to P2 is greater than that leading to P1. It follows 
from eqn 20E.14 and the Arrhenius equation (k A E RT

r e a= − / , 
eqn 20D.4) that the ratio of products is

[ ]
[ ]

/

/
( )/P

P
e
e

e
a,

a,

a, a,2

1

2

1

2

1

2

1

2

1

2 1= = = =
−

−
− −k

k
A
A

A
A

E RT

E RT
E E RT AA

A
E RT2

1
e a−∆ /

 
Because ΔEa = Ea,2− Ea,1 > 0, as T increases,

•	 the term ΔEa/RT decreases, and
•	 the term e a−∆E RT/  increases.

Consequently, the ratio [P2]/[P1] increases with increasing 
temperature before equilibrium is reached.

Self-test 20E.6 Consider the reactions from Brief illustration 
20E.3. Derive an expression for the ratio [P2]/[P1] when the reac-
tion is under thermodynamic control. State your assumptions.

Answer: [ ]/[ ] ( )/P P e r r
2 1

2 1= − −∆ ∆G G RT< < , assuming that activities  
can be replaced by concentrations

A + B → P1 v(P1) = kr,1[A][B]
A + B → P2 v(P2) = kr,2[A][B]

Property Equation Comment Equation number

Unimolecular reaction d[A]/dt = −kr[A] A → P 20E.1

Bimolecular reaction d[A]/dt = −kr[A][B] A + B → P 20E.2

Consecutive reactions [ ] [ ]

[ ] )

A A e

I ( ( ))(e e [A]

[P] {1 ( e

0

a b a 0

a

a

a b

=

= − −

= +

−

− −

−

k t

k t k tk k k

k

/
kk t k tk k kb a

b a 0e ( )}[A]− −− ) b/

A I P
a b→ →

k k
20E.4

Steady-state approximation d[I]/dt ≈ 0 I is an intermediate 20E.5
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20F examples of reaction mechanisms

Many reactions take place by mechanisms that involve several 
elementary steps. We focus here on the kinetic analysis of a 
special class of reactions in the gas phase and polymerization 
kinetics. Photochemical processes are treated in Topic 20G and 
the role of catalysis in Topics 20H and 22C.

20F.1 Unimolecular reactions

A number of gas-phase reactions follow first-order kinetics, as 
in the isomerization of cyclopropane:

cyclo k cyclo-C H g CH CH CH g -C H3 6 3 2 r 3 6( ) ( ) [ ]→ = =v  

The problem with the interpretation of first-order rate laws is 
that presumably a molecule acquires enough energy to react as 
a result of its collisions with other molecules. However, colli-
sions are simple bimolecular events, so how can they result in a 
first-order rate law? First-order gas-phase reactions are widely 
called ‘unimolecular reactions’ because they also involve an 
elementary unimolecular step in which the reactant molecule 
changes into the product. This term must be used with caution, 
however, because the overall mechanism has bimolecular as 
well as unimolecular steps.

The first successful explanation of unimolecular reactions 
was provided by Frederick Lindemann in 1921 and then elabo-
rated by Cyril Hinshelwood. In the Lindemann–Hinshelwood 
mechanism it is supposed that a reactant molecule A becomes 
energetically excited by collision with another A molecule in a 
bimolecular step (Fig. 20F.1):

A A A A
d A

d
Aa+ → + =*

*[ ]
[ ]

t
k 2

 
(20F.1a)

The energized molecule (A*) might lose its excess energy by 
collision with another molecule:

A A A A
d A

d
A Aa+ + = −→*

*
*

[ ]
[ ][ ]

t
k ′

 
(20F.1b)

Alternatively, the excited molecule might shake itself apart and 
form products P. That is, it might undergo the unimolecular 
decay

Contents

20F.1 Unimolecular reactions 849
example 20F.1: analysing the lindemann– 
hinshelwood mechanism 850

20F.2 Polymerization kinetics 850
(a) Stepwise polymerization 851

brief illustration 20F.1: the degree of polymerization 852
(b) Chain polymerization 852

Checklist of concepts 854
Checklist of equations 854

➤➤ Why do you need to know this material?
Some important reactions have complex mechanisms and 
need special treatment, so you need to see how to make 
and implement assumptions about the relative rates of the 
steps in a mechanism.

➤➤ What is the key idea?
The steady-state approximation can often be used to 
derive rate laws for proposed mechanisms.

➤➤ What do you need to know already?
You need to be familiar with the concept of rate laws (Topic 
20A) and the steady-state approximation (Topic 20E).

A

A

A

A*
Products

Figure 20F.1 A representation of the Lindemann–
Hinshelwood mechanism of unimolecular reactions. The 
species A is excited by collision with A, and the excited A 
molecule (A*) may either be deactivated by a collision with A or 
go on to decay by a unimolecular process to form products.
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850 20 Chemical kinetics

A P
d A

d
Ab

*
*

*→ = −[ ]
[ ]

t
k

 
(20F.1c)

If the unimolecular step is slow enough to be the rate-deter-
mining step, the overall reaction will have first-order kinetics, 
as observed. This conclusion can be demonstrated explicitly by 
applying the steady-state approximation to the net rate of for-
mation of A*:

d A
d

A A AAa a b

[ ]
[ ][ ][ ] [ ]

*
* *

t
k k k= − − ≈2 0′

 
(20F.2)

This equation solves to
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[ ]

[ ]
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A

A
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b a

* =
+

k

k k

2

′  
(20F.3)

so the rate law for the formation of P is

d P
d

A
A

Ab
a b

b a
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[ ]t
k

k k

k k
= =

+
*

2

′  
(20F.4)

At this stage the rate law is not first-order. However, if the rate of 
deactivation by (A*,A) collisions is much greater than the rate 
of unimolecular decay, in the sense that ka′[A][A*] ≫ kb[A*], or 
(after cancelling the [A*]), ka′[A] ≫ kb, then we can neglect kb in 
the denominator and obtain

d P
d

withAr r
a b

a

[ ]
[ ]

t
k k

k k

k
= =

′  

Equation 20F.5 is a first-order rate law, as we set out to show.
The Lindemann–Hinshelwood mechanism can be tested 

because it predicts that, as the concentration (and therefore the 
partial pressure) of A is reduced, the reaction should switch to 
overall second-order kinetics. Thus, when  ka′[A] ≪ kb, the rate 
law in eqn 20F.4 becomes

d P
d

Aa

[ ]
[ ]

t
k= 2

 
(20F.6)

The physical reason for the change of order is that at low pres-
sures the rate-determining step is the bimolecular formation of 
A*. If we write the full rate law in eqn 20F.4 as

d P
d

withA
A

Ar r
a b

b a

[ ]
[ ]

[ ]

[ ]t
k k

k k

k k
= =

+ ′  
(20F.7)

then the expression for the effective rate constant, kr, can be 
rearranged (by inverting each side) to

1 1
k

k
k k kr

a

a b a A
= +

′

[ ]  

Hence, a test of the theory is to plot 1/kr against 1/[A], and to 
expect a straight line. This behaviour is observed often at low 
concentrations but deviations are common at high concentra-
tions. In Topic 21A we develop the description of the mecha-
nism to take into account experimental results over a range of 
concentrations and pressures.

20F.2 Polymerization kinetics

There are two major classes of polymerization processes and 
the average molar mass of the product varies with time in dis-
tinctive ways. In stepwise polymerization any two monomers 
present in the reaction mixture can link together at any time 
and growth of the polymer is not confined to chains that are 
already forming (Fig. 20F.2). As a result, monomers are con-
sumed early in the reaction and, as we shall see, the average 
molar mass of the product grows linearly with time. In chain 
polymerization an activated monomer, M, attacks another 
monomer, links to it, then that unit attacks another monomer, 
and so on. The monomer is used up as it becomes linked to 

Example 20F.1 Analysing the Lindemann–Hinshelwood 
mechanism

At 300 K the effective rate constant for a gaseous reac-
tion A → P, which has a Lindemann–Hinshelwood mecha-
nism, is kr,1 = 2.50 × 10−4 s−1 at [A]1 = 5.21 ×10−4 mol dm−3 and 
kr,2 = 2.10 × 10−5 s−1 at [A]2 = 4.81 × 10−6 mol dm−3. Calculate the 
rate constant for the activation step in the mechanism.

Method Use eqn 20F.8 to write an expression for the differ-
ence 1/kr,2 − 1/kr,1 and then use the data to solve for ka, the rate 
constant for the activation step.

Answer It follows from eqn 20F.8 that

1 1 1 1 1

2 1 2 1k k kr r a A A, , [ ] [ ]
− = −



  

and so

k
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r r

A A
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= −
−

= × −− −

1 1
1 1

1 4 81 10 1 5 21

2 1

2 1

6 3

/[ ] /[ ]
/ /

/( . ) /( .

, ,

××
× − ×

=

− −

− − − −
10

1 2 10 10 1 2 50 10

4 72

4 3

5 1 4 1

3

moldm
s s

dm mol

)
/( . ) /( . )

. −− −1 1s  

Self-test 20F.1 The effective rate constants for a gaseous reac-
tion A → P, which has a Lindemann–Hinshelwood mechanism, 
are 1.70 × 10−3 s−1 and 2.20 × 10−4 s−1 at [A] = 4.37 ×10−4 mol dm−3 
and 1.00 × 10−5 mol dm−3, respectively. Calculate the rate con-
stant for the activation step in the mechanism.

Answer: 24.6 dm3 mol−1 s−1

 (20F.8)
Lindemann–Hinshelwood 
mechanism

effective rate 
constant

 (20F.5)lindemann–
hinshelwood rate law
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20F Examples of reaction mechanisms  851

the growing chains (Fig. 20F.3). High polymers are formed 
rapidly and only the yield, not the average molar mass, of the 
polymer is increased by allowing long reaction times.

(a) Stepwise polymerization
Stepwise polymerization commonly proceeds by a conden-
sation reaction, in which a small molecule (typically H2O) is 
eliminated in each step. Stepwise polymerization is the mech-
anism of production of polyamides, as in the formation of 
nylon-66:

H N(CH ) NH HOOC(CH ) COOH

H N(CH ) NHCO(CH ) COOH H O
2 2 6 2 2 4

2 2 6 2 4 2

con

+ →
+

ttinuing to
2 6 2 4H HN(CH ) NHCO(CH ) CO OH → − −[ ]n

Polyesters and polyurethanes are formed similarly (the latter 
without elimination). A polyester, for example, can be regarded 
as the outcome of the stepwise condensation of a hydroxyacid 
HOeReCOOH. We shall consider the formation of a polyes-
ter from such a monomer, and measure its progress in terms of 
the concentration of the eCOOH groups in the sample (which 
we denote A), for these groups gradually disappear as the con-
densation proceeds. Because the condensation reaction can 
occur between molecules containing any number of monomer 
units, chains of many different lengths can grow in the reaction 
mixture.

In the absence of a catalyst, we can expect the condensation 
to be overall second-order in the concentration of the eOH 
and eCOOH (or A) groups, and write

d A
d

OH Ar

[ ]
[ ][ ]

t
k= −

 
(20F.9a)

However, because there is one eOH group for each eCOOH 
group, this equation is the same as

d A
d

Ar

[ ]
[ ]

t
k= − 2

 
(20F.9b)

If we assume that the rate constant for the condensation is inde-
pendent of the chain length, then kr remains constant through-
out the reaction. The solution of this rate law is given by eqn 
20B.4, and is

[ ]
[ ]

[ ]
A

A
Ar

= +
0

01 k t  
(20F.10)

The fraction, p, of eCOOH groups that have condensed at time 
t is, after application of eqn 20F.10:

p
k t

k t
= − = +

[ ] [ ]
[ ]

[ ]
[ ]

A A
A

A
A

r

r

0

0

0

01  

Next, we calculate the degree of polymerization, which is 
defined as the average number of monomer residues per poly-
mer molecule. This quantity is the ratio of the initial concentra-
tion of A, [A]0, to the concentration of end groups, [A], at the 
time of interest, because there is one A group per polymer mol-
ecule. For example, if there were initially 1000 A groups and 
there are now only 10, each polymer must be 100 units long on 
average. Because we can express [A] in terms of p (the first part 
of eqn 20F.11), the average number of monomers per polymer 
molecule, 〈N〉, is

 (20F.11)Stepwise 
polymerization

Fraction of 
condensed 
groups

Figure 20F.2 In stepwise polymerization, growth can start at 
any pair of monomers (in green), and so new chains (in purple) 
begin to form throughout the reaction.

(b)

Figure 20F.3 The process of chain polymerization. Chains 
(in purple) grow as each chain acquires additional monomers 
(in green).
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〈 〉N
p

= = −
[ ]
[ ]
A
A

0 1
1  

This result is illustrated in Fig. 20F.4. When we express p in 
terms of the rate constant kr (the second part of eqn 20F.11), 
we find

〈 〉N k t= +1 0r A[ ]  

The average length grows linearly with time. Therefore, the 
longer a stepwise polymerization proceeds, the higher the aver-
age molar mass of the product.

(b) Chain polymerization

Many gas-phase reactions and liquid-phase polymerization 
reactions are chain reactions. In a chain reaction, a reaction 
intermediate produced in one step generates an intermedi-
ate in a subsequent step, then that intermediate generates 
another intermediate, and so on. The intermediates in a chain 
reaction are called chain carriers. In a radical chain reac-
tion the chain carriers are radicals (species with unpaired 
electrons).

Chain polymerization occurs by addition of monomers to a 
growing polymer, often by a radical chain process. It results in 
the rapid growth of an individual polymer chain for each acti-
vated monomer. Examples include the addition polymeriza-
tions of ethene, methyl methacrylate, and styrene, as in

− ⋅+ = → − ⋅CH CH X CH CHX CH CHXCH CHX2 2 2 2 2  

and subsequent reactions. The central feature of the kinetic 
analysis (which is summarized in the following Justification) 
is that the rate of polymerization is proportional to the square 
root of the initiator, In, concentration:

v = kr
1 2In M[ ] [ ]/

 

Brief illustration 20F.1 The degree of polymerization

Consider a polymer formed by a stepwise process with 
kr = 1.00 dm3 mol−1 s−1 and an initial monomer concentration 
of [A]0 = 4.00 × 10−3 mol dm−3. From eqn 20F.12b, the degree of 
polymerization at t = 1.5 × 104 s is

〈N 〉 = + × ×
× × =

− −

− −

1 1 dm mol s 1 5 1 s

4 1 moldm 61

3 1 1 4

3 3

( . ) ( . )

( . )

00 0

00 0  

From eqn 20F.12a, the fraction condensed, p, is

p
N

N
= 〈 〉−

〈 〉 = − =1 61 1
61

0 98.
 

Self-test 20F.2 Calculate the fraction condensed and the 
degree of polymerization at t = 1.0 h of a polymer formed by a 
stepwise process with kr = 1.80 × 10−2 dm3 mol−1 s−1 and an ini-
tial monomer concentration of 3.00 × 10−2 mol dm−3.

Answer: 〈N〉 = 2.9; p = 0.66

Justification 20F.1  The rate of chain polymerization

There are three basic types of reaction step in a chain polym-
erization process:

(a) Initiation:
 In → R⋅ + R⋅   vi = ki[In]
 M + R⋅ → ⋅M1 (fast)

where In is the initiator, R⋅ the radical that In forms, and ⋅M1 
is a monomer radical. We have shown a reaction in which a 
radical is produced, but in some polymerizations the initia-
tion step leads to the formation of an ionic chain carrier. The 
rate-determining step is the formation of the radicals R⋅ by 
homolysis of the initiator, so the rate of initiation is equal to 
the vi given above.

(b) Propagation:

M M M

M M M

M M M M M

1 2

2 3

1 p p

+⋅ →⋅
+⋅ →⋅

+⋅ →⋅ = [ ] ⋅[ ]



n n k− v

If we assume that the rate of propagation is independent of 
chain size for sufficiently large chains, then we can use only 

 (20F.12a)Stepwise 
polymerization

degree of 
polymerization

 (20F.12b)Stepwise 
polymerization

degree of polymerization 
in terms of the rate 
constant

 (20F.13)Chain 
polymerization

rate of 
polymerization
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Figure 20F.4 The average chain length of a polymer as a 
function of the fraction of reacted monomers, p. Note that p 
must be very close to 1 for the chains to be long.
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The kinetic chain length, λ, is the ratio of the number of 
monomer units consumed per activated centre produced in the 
initiation step:

λ = number of monomer units consumed
number of activated centrres produced  

 Definition  kinetic chain length  (20F.14a)

The kinetic chain length can be expressed in terms of the rate 
expressions in Justification 20F.1. To do so, we recognize that 
monomers are consumed at the rate that chains propagate. 
Then,

λ = rate of propagation of chains
rate of production of radicaals  

By making the steady-state approximation, we set the rate of 
production of radicals equal to the termination rate. Therefore, 
we can write the expression for the kinetic chain length as

λ = =
⋅

⋅ ⋅
k

k

k

k
p

t

p

t

M M

M

M

M

[ ][ ]

[ ]

[ ]

[ ]2 22
 

When we substitute the steady-state expression, [⋅M] = (fki/kt)1/2 
[In]1/2, for the radical concentration, we obtain

λ =
=

−

−

k

k k fk k

r

r p i t

M In

with

[ ][ ]

( )

/

/

1 2

1 2

 

Consider a polymer produced by a chain mechanism with 
mutual termination. In this case, the average number of 
monomers in a polymer molecule, 〈N 〉, produced by the 
reaction is the sum of the numbers in the two combining 
polymer chains. The average number of units in each chain 
is λ. Therefore,

〈 〉N k= = −2 2 1 2λ r M In[ ][ ] /

 

with kr given in eqn 20F.15. We see that, the slower the initia-
tion of the chain (the smaller the initiator concentration and 
the smaller the initiation rate constant), the greater is the 
kinetic chain length, and therefore the higher is the average 
molar mass of the polymer. Some of the consequences of molar 
mass for polymers are explored in Topic 17D: here we have 
seen how we can exercise kinetic control over them.

the equation given above to describe the propagation process. 
Consequently, for sufficiently large chains, the rate of propa-
gation is equal to the overall rate of polymerization.

Because this chain of reactions propagates quickly, the rate 
at which the total concentration of radicals grows is equal to 
the rate of the rate-determining initiation step. It follows that

d[ M]
d

In
production

i
⋅





=
t

f k2 [ ]

 

where f is the fraction of radicals R⋅ that successfully initiate 
a chain.

(c) Termination:
 mutual termination: ⋅Mn + ⋅Mm → Mn+m

 disproportionation: ⋅Mn + ⋅Mm → Mn + Mm

 chain transfer: M + ⋅Mn → ⋅M + Mn

In mutual termination two growing radical chains combine. In 
termination by disproportionation a hydrogen atom transfers 
from one chain to another, corresponding to the oxidation of 
the donor and the reduction of the acceptor. In chain transfer, a 
new chain initiates at the expense of the one currently growing.

Here we suppose that only mutual termination occurs. If 
we assume that the rate of termination is independent of the 
length of the chain, the rate law for termination is

vt t
2M= ⋅k [ ]  

and the rate of change of radical concentration by this pro-
cess is

d[ M]
d

M
depletion

t
⋅





= − ⋅
t

k2 2[ ]

 

The steady-state approximation gives:

d[ M]
d

In Mi t
⋅ = − ≈⋅
t

f k k2 2 02[ ] [ ]
 

The steady-state concentration of radical chains is therefore

[ ] [ ]
/

/⋅ = 





M Ini

t

f k
k

1 2

1 2

 

Because the rate of propagation of the chains is the negative 
of the rate at which the monomer is consumed, we can write 
vp = −d[M]/dt and

vp p p
i

t
M M In M= = 





⋅k k
f k
k

[ ][ ] [ ] [ ]
/

/

1 2

1 2

This rate is also the rate of polymerization, which has the form 
of eqn 20F.13.

 (20F.14b)
kinetic chain 
length in terms 
of reaction rates

 (20F.15)Chain 
polymerization

kinetic 
chain 
length

 (20F.16)
Chain 
polymerization

degree of 
polymerization
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854 20 Chemical kinetics

Checklist of concepts

☐ 1. The Lindemann–Hinshelwood mechanism of ‘unimo-
lecular’ reactions account for the first-order kinetics of 
some gas-phase reactions.

☐ 2. In stepwise polymerization any two monomers in the 
reaction mixture can link together at any time.

☐ 3. The longer a stepwise polymerization proceeds, the 
higher the average molar mass of the product.

☐ 4. In chain polymerization an activated monomer attacks 
another monomer and links to it.

☐ 5. The slower the initiation of the chain, the higher the 
average molar mass of the polymer.

☐ 6. The kinetic chain length is the ratio of the number of 
monomer units consumed per activated centre pro-
duced in the initiation step.

Checklist of equations

Property Equation Comment Equation number

Lindemann–Hinshelwood rate law d[P]/dt = kr[A] with kr = kakb/ka′ ′ka[A] ≫ kb 20F.5

Effective rate constant 1/kr = ka′/kakb + 1/ka[A] Lindemann–Hinshelwood mechanism 20F.8

Fraction of condensed groups p = krt[A]0/(1 + krt[A]0) Stepwise polymerization 20F.11

Degree of polymerization 〈N〉 = 1/(1 − p) = 1 + krt[A]0 Stepwise polymerization 20F.12

Rate of polymerization v = kr[In]1/2[M] Chain polymerization 20F.13

Kinetic chain length λ = kr[M][In]−1/2, kr = kp( f kikt)−1/2 Chain polymerization 20F.15

Degree of polymerization 〈N 〉 = 2kr[M][In]−1/2 Chain polymerization 20F.16
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20G Photochemistry

Photochemical processes are initiated by the absorption of 
electromagnetic radiation. Among the most important of 
these processes are those that capture the radiant energy of the 
Sun. Some of these reactions lead to the heating of the atmos-
phere during the daytime by absorption of ultraviolet radia-
tion. Others include the absorption of visible radiation during 
photosynthesis. Without photochemical processes, the Earth 
would be simply a warm, sterile, rock.

20G.1 Photochemical processes

Table 20G.1 summarizes common photochemical reactions. 
Photochemical processes are initiated by the absorption of 
radiation by at least one component of a reaction mixture. In a 
primary process, products are formed directly from the excited 
state of a reactant. Examples include fluorescence (Topic 13B) 
and the cis–trans photoisomerization of retinal. Products of 
a secondary process originate from intermediates that are 

Table 20G.1 Examples of photochemical processes

Process General form Example

Ionization A* → A+ + e− NO NO +e
nm +* 134 → −

Electron 
transfer

A* + B → A+ + B− 
or A− + B+

Ru bpy Fe

Ru bpy  Fe

+ 3

nm + 2

( )



 +

 → ( ) +

+

+

3

2

452

3

3

*

Dissociation A* → B + C O O Onm
3

1180 2*  → +

A* + B—C →  
A + B + C

Hg CH Hg CH H4
nm

3* +  → + +254

Addition 2 A* → B
2

* 230 nm

A* + B → AB

Abstraction A* + B—C →  
A—B + C

Hg H HgH+H2
n m* +  →254

Isomerization 
or 
rearrange-
ment

A* → A′

O
380 nm

O

* Excited state.

➤➤ Why do you need to know this material?
Many chemical and biological processes, including 
photosynthesis and vision, can be initiated by the 
absorption of electromagnetic radiation, so you need to 
know how to include its effect in rate laws. You also need 
to see how to obtain insight into these processes by the 
quantitative analysis of their mechanisms.

➤➤ What is the key idea?
The mechanisms of many photochemical reactions lead 
to relatively simple rate laws that yield rate constants and 
quantitative measures of the efficiency with which radiant 
energy induces reactions.

➤➤ What do you need to know already?
You need to be familiar with the concepts of singlet and 
triplet states (Topics 9B and 13B), modes of radiative decay 
(fluorescence and phosphorescence, Topic 13B), concepts 
of electronic spectroscopy (Topic 13A), and the formulation 
of a rate law from a proposed mechanism (Topic 20E).

Contents

20g.1 Photochemical processes 855
brief illustration 20g.1: the nature of the  
excited state 856

20g.2 The primary quantum yield 856
example 20g.1: calculating a primary  
quantum yield 856

20g.3 Mechanism of decay of excited singlet states 857
brief illustration 20g.2: the fluorescence  
rate constant 858

20g.4 Quenching 858
example 20g.2: determining the quenching  
rate constant 859

20g.5 Resonance energy transfer 860
brief illustration 20g.3: the Fret technique 861

Checklist of concepts 861
Checklist of equations 862
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856 20 Chemical kinetics

formed directly from the excited state of a reactant, such as oxi-
dative processes initiated by the oxygen atom formed by ozone 
photodissociation.

Competing with the formation of photochemical products 
are numerous primary photophysical processes that can deac-
tivate the excited state (Table 20G.2). Therefore, it is important 
to consider the timescales of the formation and decay of excited 
states before describing the mechanisms of photochemical 
reactions.

Electronic transitions caused by absorption of ultraviolet 
and visible radiation occur within 10−16–10−15 s. We expect, 
then, the upper limit for the rate constant of a first-order 
photochemical reaction to be about 1016 s−1. Fluorescence is 
slower than absorption, with typical lifetimes of 10−12–10−6 s. 
Therefore, the excited singlet state can initiate very fast photo-
chemical reactions in the femtosecond (10−15 s) to picosecond 
(10−12 s) range. Examples of such ultrafast reactions are the ini-
tial events of vision and of photosynthesis. Typical intersystem 
crossing (ISC, Topic 13B) and phosphorescence times for large 
organic molecules are 10−12–10−4 s and 10−6–10−1 s, respectively. 
As a consequence of their long lifetimes, excited triplet states 
are photochemically important. Indeed, because phosphores-
cence decay is several orders of magnitude slower than most 
typical reactions, species in excited triplet states can undergo a 
very large number of collisions with other reactants before they 
lose their energy radiatively.

20G.2 The primary quantum yield

The rates of deactivation of the excited state by radiative, 
non-radiative, and chemical processes determine the yield of 
product in a photochemical reaction. The primary quantum 
yield, ϕ, is defined as the number of photophysical or pho-
tochemical events that lead to primary products divided by 
the number of photons absorbed by the molecule in the same 
interval:

φ = number of events
number of photons absorbed  

When both the numerator and denominator of this expression 
are divided by the time interval over which the events occur, we 
see that the primary quantum yield is also the rate of radiation-
induced primary events divided by the rate of photon absorp-
tion, Iabs:

φ = =rate of process
rate of photon absorption abs

v
I  

Brief illustration 20G.1 The nature of the excited state

To judge whether the excited singlet or triplet state of the reac-
tant is a suitable product precursor, we compare the emission 
lifetimes with the time constant for chemical reaction of the 
reactant, τ (Topic 20B). Consider a unimolecular photochemi-
cal reaction with rate constant kr = 1.7 × 104 s−1 and therefore 
time constant τ =1/(1.7 × 104 s−1) = 59 µs that involves a reac-
tant with an observed fluorescence lifetime of 1.0 ns and an 
observed phosphorescence lifetime of 1.0 ms. The excited 
singlet state is too short-lived to be a major source of product 
in this reaction. On the other hand, the relatively long-lived 
excited triplet state is a good candidate for a precursor.

Self-test 20G.1 Consider a molecule with a fluorescence life-
time of 10.0 ns that undergoes unimolecular photoisomeri-
zation. What approximate value of the half-life would be 
consistent with the excited singlet state being the product 
precursor?

Answer: The value of t1/2 should be less than about 7 ns

Definition
Primary 
quan tum 
yield

 (20G.1a)

Example 20G.1 Calculating a primary quantum yield

In an experiment to determine the quantum yield of a pho-
tochemical reaction, the absorbing substance was exposed to 
490 nm light from a 100 W source for 2700 s, with 60 per cent 
of the incident light being absorbed. As a result of irradiation, 

Table 20G.2  Common photophysical processes

Primary absorption S + hν → S*

Excited-state absorption S* + hν → S**

T* + hν → T**

Fluorescence S* → S + hν

Stimulated emission S* + hν → S + 2 hν

Intersystem crossing (ISC) S* → T*

Phosphorescence T* → S + hν

Internal conversion (IC) S* → S

Collision-induced emission S* + M → S + M + hν

Collisional deactivation S* + M → S + M

T* + M → S + M

Electronic energy transfer:

 Singlet–singlet S* + S → S + S*

 Triplet–triplet T* + T → T + T*

Excimer formation S* + S → (SS)*

Energy pooling

 Singlet–singlet S* + S* → S** + S

 Triplet–triplet T* + T* → S** + S

* Denotes an excited state, S a singlet state, T a triplet state, and M is a third-body.

 (20G.1b)

Primary 
quantum yield 
in terms of rates 
of processes
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A molecule in an excited state must either decay to the 
ground state or form a photochemical product. Therefore, the 
total number of molecules deactivated by radiative processes, 

non-radiative processes, and photochemical reactions must be 
equal to the number of excited species produced by absorption 
of the incident radiation. We conclude that the sum of primary 
quantum yields ϕi for all photophysical and photochemical 
events i must be equal to 1, regardless of the number of reac-
tions involving the excited state:

φi

i

i

i
I

= =∑ ∑ v
abs

1

 
(20G.2)

It follows that for an excited singlet state that decays to the 
ground state only by the photophysical processes described in 
Section 20G.1 (and without reacting), we write

φ φ φF IC P 1+ + =  

where ϕF, ϕIC, and ϕP are the quantum yields of fluorescence, 
internal conversion, and phosphorescence, respectively (inter-
system crossing from the singlet to the triplet state is taken 
into account by the presence of ϕP). The quantum yield of 
photon emission by fluorescence and phosphorescence is 
ϕemission = ϕF + ϕP, which is less than 1. If the excited singlet state 
also participates in a primary photochemical reaction with 
quantum yield ϕr, we write

φ φ φ φF IC P r 1+ + + =  

We can now strengthen the link between reaction rates and 
primary quantum yield already established by eqns 20G.1 and 
20G.2. By taking the constant Iabs out of the sum in eqn 20G.2 
and rearranging, we obtain Iabs = Σivi. Substituting this result 
into eqn 20G.2 gives the general result

φi
i

i

i

=
∑

v

v
 

(20G.3)

Therefore, the primary quantum yield may be determined 
directly from the experimental rates of all photophysical and 
photochemical processes that deactivate the excited state.

20G.3 Mechanism of decay of excited 
singlet states

Consider the formation and decay of an excited singlet state in 
the absence of a chemical reaction:

0.344 mol of the absorbing substance decomposed. Determine 
the primary quantum yield.

Method We need to calculate the terms used in eqn 20G.1a. 
To calculate the number of absorbed photons Nabs, which is 
the denominator of the expression on the right-hand side of 
eqn 20G.1a, we note that:

•	 The energy absorbed by the substance is Eabs = fPt, 
where P is the incident power, t is the time of 
exposure, and the factor f (in this case f = 0.60) is the 
proportion of incident light that is absorbed.

•	 Eabs is also related to the number Nabs of absorbed 
photons through Eabs = Nabshc/λ , where hc/λ is 
the energy of a single photon of wavelength λ 
(eqn 7A.5).

By combining both expressions for the absorbed energy, the 
value of Nabs follows readily. The number of photochemi-
cal events, and hence the numerator of the expression on the 
right-hand side of eqn 20G.1a, is simply the number of decom-
posed molecules Ndecomposed. The primary quantum yield fol-
lows from ϕ = Ndecomposed/Nabs.

Answer From the expressions for the absorbed energy, it  
follows that

E fPt N
hc

abs abs= = 



λ

 

and therefore that N fPt hcabs /= λ . Now we use eqn 20G.1a to 
write

φ λ= =
N

N
N hc

fPt
decomposed

abs

decomposed

 
With Ndecomposed = (0.344 mol) × (6.022 × 1023 mol−1), P = 100 W =  
100 J s−1, t = 2700 s, λ = 490 nm = 4.90 × 10−7 m, and f = 0.60 it fol-
lows that

φ = × × × × × ×− −( . ) ( . ) ( . ) ( .0 344 6 022 10 6 626 10 2 998 1023 1 34 8mol mol J s mms

Js s m

−

− −× × × ×
=

1

1 70 60 100 2700 4 90 10

0 52

)

. ( ) ( ) ( . )

.  

Self-test 20G.2 In an experiment to measure the quantum 
yield of a photochemical reaction, the absorbing substance 
was exposed to 320 nm radiation from a 87.5 W source for 
38 min. The intensity of the transmitted light was 0.35 that of 
the incident light. As a result of irradiation, 0.324 mol of the 
absorbing substance decomposed. Determine the primary 
quantum yield.

Answer: ϕ = 0.93

Absorption: S + hνi → S* vabs = Iabs

Fluorescence: S* → S + hνf
vF = kF[S*]

Internal conversion: S* → S vIC = kIC[S*]
Intersystem crossing: S* → T* vISC = kISC[S*]
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in which S is an absorbing singlet-state species, S* an excited 
singlet state, T* an excited triplet state, and hνi and hνf are the 
energies of the incident and fluorescent photons, respectively. 
From the methods presented in Topic 20E and the rates of the 
steps that form and destroy the excited singlet state S*, we write 
the rate of formation and decay of S* as:

Rate of formation of S

Rate of disappearance of S

abs

F

*

*

=

=

I

k [[ ] [ ] [ ]* * *

*

S S S

( )[S ]

ISC IC

F ISC IC

+ +

= + +

k k

k k k  

It follows that the excited state decays by a first-order process 
so, when the light is turned off, the concentration of S* varies 
with time t as:

[ ]( ) [ ]* * /S S et t= −
0

0τ
 (20G.4)

where the observed lifetime, τ0, of the first excited singlet state 
is defined as:

τ 0

1= + +k k kF ISC IC  

We show in the following Justification that the quantum yield of 
fluorescence is

φF
F

F ISC IC
,0 = + +

k
k k k  

 Quantum yield of fluorescence  (20G.6)

The observed fluorescence lifetime can be measured by using 
a pulsed laser technique. First, the sample is excited with a short 

light pulse from a laser using a wavelength at which S absorbs 
strongly. Then, the exponential decay of the fluorescence inten-
sity after the pulse is monitored. From eqns 20G.5 and 20G.6, 
it follows that

τ
φ

0
01 1= + + = + + × =

k k k
k

k k k k kF ISC IC

F

F ISC IC F

F

F

,

 
(20G.7)

20G.4 Quenching

The shortening of the lifetime of the excited state by the pres-
ence of another species is called quenching. Quenching may be 
either a desired process, such as in energy or electron transfer, 
or an undesired side reaction that can decrease the quantum 
yield of a desired photochemical process. Quenching effects 
may be studied by monitoring the emission from the excited 
state that is involved in the photochemical reaction.

The addition of a quencher, Q, opens an additional channel 
for deactivation of S*:

Quenching S Q S Q Q SQ Q: [ ][ ]* *+ → + =v k  

The Stern–Volmer equation, which is derived in the follow-
ing Justification, relates the fluorescence quantum yields ϕF,0 
and ϕF measured in the absence and presence, respectively, of a 
quencher Q at a molar concentration [Q]:

φ
φ τF

F
Q Q, [ ]0

01= + k
 

 stern–Volmer equation  (20G.8)

This equation tells us that a plot of ϕF,0/ϕF against [Q] should 
be a straight line with slope τ0kQ. Such a plot is called a Stern–
Volmer plot (Fig. 20G.1). The method may also be applied to 
the quenching of phosphorescence.

Justification 20G.1 The quantum yield of fluorescence

Most fluorescence measurements are conducted by illuminat-
ing a relatively dilute sample with a continuous and intense 
beam of light or ultraviolet radiation. It follows that [S*] is 
small and constant, so we may invoke the steady-state approxi-
mation (Topic 20E) and write:

d[S ]
d

S S

S

Sabs F ISC IC

abs F ISC IC

*
* * *

*

[ ] [ ] [ ]

( )[

t
I k k k

I k k k

= − − −

= − + + ]]≈ 0  
Consequently,

I k k kabs F ISC IC S= + +( )[ ]*  
By using this expression and eqn 20G.1b, we write the quan-
tum yield of fluorescence as:

φF
F

abs

F

F ISC IC

S

S
,

[ ]

( )[ ]

*

*0 = =
+ +

v
I

k

k k k  

which, by cancelling the [S*], simplifies to eqn 20G.6.

Brief illustration 20G.2 The fluorescence rate constant

The f luorescence quantum yield and observed f luorescence 
lifetime of tryptophan in water are ϕF,0 = 0.20 and τ0 = 2.6 ns, 
respectively. It follows from eqn 20G.7 that the fluorescence 
rate constant kF is

kF
F

s
s= =

×
= ×−

−φ
τ

, .
.

.0

0
9

7 10 20
2 6 10

7 7 10
 

Self-test 20G.3 A substance has a fluorescence quantum yield 
of ϕF,0 = 0.35. In an experiment to measure the fluorescence 
lifetime of this substance, it was observed that the f luores-
cence emission decayed with a half-life of 5.6 ns. Determine 
the fluorescence rate constant of this substance.

Answer: kF = 4.3 × 107 s−1

Definition

observed 
lifetime of 
the excited 
singlet state

 (20G.5)
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Because the fluorescence intensity and lifetime are both pro-
portional to the fluorescence quantum yield (specifically, from 
eqn 20G.7, τ = ϕF/kF), plots of IF,0/IF and τ0/τ (where the sub-
script 0 indicates a measurement in the absence of quencher) 
against [Q] should also be linear with the same slope and inter-
cept as those shown for eqn 20G.8.

Justification 20G.2 The Stern–Volmer equation

With the addition of quenching, the steady-state approxima-
tion for [S*] now gives:

d[S ]
d

Q Sabs F ISC IC Q

*
*( )[ ][ ]

t
I k k k k= − + + + ≈ 0

 

and the f luorescence quantum yield in the presence of the 
quencher is:

φF
F

F ISC IC Q Q
= + + +

k
k k k k [ ]  

It follows that

φ
φ
F

F

F

F ISC IC

F ISC IC Q

F

F ISC IC Q

Q

Q

, [ ]

[ ]

0 = + + ×
+ + +

=
+ + +

k
k k k

k k k k
k

k k k k
kk k k

k
k k k

F ISC IC

Q

F ISC IC
Q

+ +

= + + +1 [ ]
 

By using eqn 20G.7, this expression simplifies to eqn 20G.8.

Example 20G.2 Determining the quenching rate 
constant

The molecule 2,2′-bipyridine (1, bpy) forms a complex with 
the Ru2+ ion. Tris-(2,2′-bipyridyl)ruthenium(II), Ru(bpy)3

2+ 

φ F,
0/

φ F

Quencher concentration, [Q]

Slope = τ0kQ

0

1

Figure 20G.1 The format of a Stern–Volmer plot and the 
interpretation of the slope in terms of the rate constant for 
quenching and the observed fluorescence lifetime in the 
absence of quenching.

(2), has a strong metal-to-ligand charge transfer (MLCT) tran-
sition (Topic 13A) at 450 nm.

N N

N N

1 2,2'-Bipyridine (bpy) 

Ru

N

N

N
NN

N

2 [Ru(bpy)3]2+

2+

The quenching of the *Ru(bpy)3
2+ excited state by Fe3+ (present 

as the complex ion Fe OH2( )6
3+) in acidic solution was moni-

tored by measuring emission lifetimes at 600 nm. Determine 
the quenching rate constant for this reaction from the follow-
ing data:

Method Rewrite the Stern–Volmer equation (eqn 20G.8) for 
use with lifetime data; then fit the data to a straight-line.

Answer Upon substitution of τ0/τ for ϕF,0/ϕF in eqn 20G.8 and 
after rearrangement, we obtain:

1 1

0τ τ= + kQ Q[ ]
 

Figure 20G.2 shows a plot of 1/τ against [Fe3+] and the results 
of a fit to this expression. The slope of the line is 2.8 × 109, so 
kQ = 2.8 × 109 dm3 mol−1 s−1. This example shows that measure-
ments of emission lifetimes are preferred because they yield 
the value of kQ directly. To determine the value of kQ from 
intensity or quantum yield measurements, it is necessary to 
make an independent measurement of τ0.

Self-test 20G.4 The quenching of tryptophan f luores-
cence by dissolved O2 gas was monitored by measuring 

[ ( ) ]/( )Fe OH 1 moldm2
+ 4 3

6
3 0− − 0 1.6 4.7 7 9.4

τ/(10−7 s) 6 4.05 3.37 2.96 2.17

0 0.5 1
[Fe3+]/(mmol dm–3)

1/
(τ

/µ
s)

1

2

3

4

5

Figure 20G.2 The Stern–Volmer plot of the data for 
Example 20G.2.

iranchembook.ir/edu



860 20 Chemical kinetics

Three common mechanisms for bimolecular quenching of 
an excited singlet (or triplet) state are:

The quenching rate constant itself does not give much insight 
into the mechanism of quenching. For the system of Example 
20G.2, it is known that the quenching of the excited state 
of Ru bpy( )3

2+  is a result of electron transfer to Fe3+, but the 
quenching data do not allow us to prove the mechanism.

There are, however, some criteria that govern the relative 
efficiencies of collisional quenching, resonance energy transfer, 
and electron transfer. Collisional quenching is particularly effi-
cient when Q is a species, such as iodide ion, which receives 
energy from S* and then decays to the ground state primarily 
by releasing energy as heat. As we show in detail in Topic 21E, 
according to the Marcus theory of electron transfer, which was 
proposed by R.A. Marcus in 1965, the rates of electron transfer 
(from ground or excited states) depend on:

•	 The distance between the donor and acceptor, with 
electron transfer becoming more efficient as the distance 
between donor and acceptor decreases.

•	 The reaction Gibbs energy, ΔrG, with electron transfer 
becoming more efficient as the reaction becomes more 
exergonic. For example, it follows from the thermo-
dynamic principles that lead to the electrochemical series 
(Topic 6D) that efficient photo-oxidation of S requires 
that the reduction potential of S* be lower than the 
reduction potential of Q.

•	 The reorganization energy, the energy cost incurred by 
molecular rearrangements of donor, acceptor, and 
solvent medium during electron transfer. The electron 
transfer rate is predicted to increase as this 
reorganization energy is matched closely by the reaction 
Gibbs energy.

Electron transfer can also be studied by time-resolved spec-
troscopy (Topic 13C). The oxidized and reduced products often 
have electronic absorption spectra distinct from those of their 
neutral parent compounds. Therefore, the rapid appearance of 

such known features in the absorption spectrum after excita-
tion by a laser pulse may be taken as indication of quenching by 
electron transfer. In the following section we explore resonance 
energy transfer in detail.

20G.5 Resonance energy transfer

We visualize the process S* + Q → S + Q* as follows. The oscil-
lating electric field of the incoming electromagnetic radiation 
induces an oscillating electric dipole moment in S. Energy is 
absorbed by S if the frequency of the incident radiation, ν, is 
such that ν = ΔES/h, where ΔES is the energy separation between 
the ground and excited electronic states of S and h is Planck’s 
constant. This is the ‘resonance condition’ for absorption 
of radiation (essentially the Bohr frequency condition, eqn 
7A.12). The oscillating dipole on S can now affect electrons 
bound to a nearby Q molecule by inducing an oscillating dipole 
moment in them. If the frequency of oscillation of the electric 
dipole moment in S is such that ν = ΔEQ/h then Q will absorb 
energy from S.

The efficiency, ηT, of resonance energy transfer is defined as

η
φ
φT

F

F
= −1

0,  
Definition  efficiency of resonance energy transfer  (20G.9)

According to the Förster theory of resonance energy transfer, 
energy transfer is efficient when:

•	 The energy donor and acceptor are separated by a short 
distance (of the order of nanometres).

•	 Photons emitted by the excited state of the donor can be 
absorbed directly by the acceptor.

For donor–acceptor systems held rigidly either by covalent 
bonds or by a protein ‘scaffold’, ηT increases with decreasing 
distance, R, according to

ηT = +
R

R R
0
6

0
6 6

 

where R0 is a parameter (with dimensions of distance) that is 
characteristic of each donor–acceptor pair. It can be regarded 
as the distance at which energy transfer is 50 per cent efficient 
for a given donor–acceptor pair. (You can verify this assertion 
by using R = R0 in eqn 20G.10.) Equation 20G.10 has been veri-
fied experimentally and values of R0 are available for a number 
of donor–acceptor pairs (Table 20G.3).

The emission and absorption spectra of molecules span a 
range of wavelengths, so the second requirement of the Förster 
theory is met when the emission spectrum of the donor mol-
ecule overlaps significantly with the absorption spectrum of the 

Collisional deactivation: S* + Q → S + Q
Resonance energy transfer: S* + Q → S + Q*
Electron ransfer: S* + Q → S+/– + Q−/+

emission lifetimes at 348 nm in aqueous solutions. Determine 
the quenching rate constant for this process from the follow-
ing data:

Answer: 1.3 × 1010 dm3 mol−1 s−1

[O2]/(10−2 mol dm−3) 0 2.3 5.5 8 10.8

τ/(10−9 s) 2.6 1.5 0.92 0.71 0.57

efficiency of energy transfer in terms 
of the donor–acceptor distance  (20G.10)
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acceptor. In the overlap region, photons emitted by the donor 
have the appropriate energy to be absorbed by the acceptor 
(Fig. 20G.3).

Equation 20G.10 forms the basis of fluorescence reso-
nance energy transfer (FRET), in which the dependence of 
the energy transfer efficiency, ηT, on the distance, R, between 
energy donor and acceptor is used to measure distances in 
biological systems. In a typical FRET experiment, a site on a 

biopolymer or membrane is labelled covalently with an energy 
donor and another site is labelled covalently with an energy 
acceptor. In certain cases, the donor or acceptor may be natural 
constituents of the system, such as amino acid groups, cofac-
tors, or enzyme substrates. The distance between the labels is 
then calculated from the known value of R0 and eqn 20G.10. 
Several tests have shown that the FRET technique is useful for 
measuring distances ranging from 1 to 9 nm.

If donor and acceptor molecules diffuse in solution or in the 
gas phase, Förster theory predicts that the efficiency of quench-
ing by energy transfer increases as the average distance trav-
elled between collisions of donor and acceptor decreases. That 
is, the quenching efficiency increases with concentration of 
quencher, as predicted by the Stern–Volmer equation.

Checklist of concepts

☐ 1. The primary quantum yield of a photochemical reac-
tion is the number of reactant molecules producing 
specified primary products for each photon absorbed.

☐ 2. The observed lifetime of an excited state is related to 
the quantum yield and rate constant of emission.

☐ 3. A Stern–Volmer plot is used to analyse the kinetics of 
fluorescence quenching in solution.

☐ 4. Collisional deactivation, electron transfer, and reso-
nance energy transfer are common f luorescence 
quenching processes.

Brief illustration 20G.3 The FRET technique

As an illustration of the FRET technique, consider a study of 
the protein rhodopsin. When an amino acid on the surface 
of rhodopsin was labelled covalently with the energy donor 
1.5-I AEDANS (3), the fluorescence quantum yield of the label 
decreased from 0.75 to 0.68 due to quenching by the visual 
pigment 11-cis-retinal (4). From eqn 20G.10, we calculate 
ηT = 1 − 0.68/0.75 = 0.093 and from eqn 20G.10 and the known 
value of R0 = 5.4 nm for the 1.5-I AEDANS/11-cis-retinal pair 
we calculate R = 7.9 nm. Therefore, we take 7.9 nm to be the dis-
tance between the surface of the protein and 11-cis-retinal.

SO3
–

HN
NH I

O

3 1.5-I AEDANS  
CHO

4 11-cis-Retinal

Self-test 20G.5 An amino acid on the surface of a protein 
was labelled covalently with 1.5-I AEDANS and another was 
labelled covalently with FITC. The fluorescence quantum yield 
of 1.5-I AEDANS decreased by 10 per cent due to quenching 
by FITC. What is the distance between the amino acids?

Answer: 7.1 nm

Table 20G.3 Values of R0 for some donor–acceptor pairs*

Donor‡ Acceptor ‡ R0/nm

Naphthalene Dansyl 2.2

Dansyl ODR 4.3

Pyrene Coumarin 3.9

1.5-I AEDANS FITC 4.9

Tryptophan 1.5-I AEDANS 2.2

Tryptophan Haem (heme) 2.9

*Additional values may be found in J.R. Lacowicz Principles of fluorescence 
spectroscopy, Kluwer Academic/Plenum, New York (1999).
‡Abbreviations:
Dansyl: 5-dimethylamino-1-naphthalenesulfonic acid
FITC: fluorescein 5-isothiocyanate
1.5-I AEDANS: 5-((((2-iodoacetyl)amino)ethyl)amino)naphthalene-1-sulfonic acid
ODR: octadecyl-rhodamine

Emission
spectrum
of S*

Absorption
spectrum
of Q

In
te

n
si

ty

Frequency, ν

Figure 20G.3 According to the Förster theory, the rate of 
energy transfer from a molecule S* in an excited state to a 
quencher molecule Q is optimized at radiation frequencies 
in which the emission spectrum of S* overlaps with the 
absorption spectrum of Q, as shown in the (dark green) shaded 
region.
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862 20 Chemical kinetics

☐ 5. The efficiency of resonance energy transfer decreases 
with increasing separation between donor and acceptor 
molecules.

Checklist of equations

Property Equation Comment Equation number

Primary quantum yield φ = v/ absI 20G.1b

Excited state lifetime τ0 1= + +/ F ISC IC( )k k k No quencher present 20G.5

Quantum yield of fluorescence ϕF,0 = kF/(kF + kISC + kIC) Without quencher present 20G.6

Observed excited state lifetime τ0 = ϕF,0/kF 20G.7

Stern–Volmer equation φ φ τF F Q/ Q, [ ]0 01= + k 20G.8

Efficiency of resonance energy 
transfer

η φ φT F F/= −1 0, Definition 20G.9

ηT /= +R R R0
6

0
6 6( ) Förster theory 20G.10
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A catalyst is a substance that accelerates a reaction but under-
goes no net chemical change (Topic 20D): the catalyst lowers 
the activation energy of the reaction by providing an alternative 
path that avoids the slow, rate-determining step of the uncata-
lysed reaction (Fig. 20H.1). Enzymes, which are homogeneous 
biological catalysts, are very specific and can have a dramatic 
effect on the reactions they control. The enzyme catalase 
reduces the activation energy from 76 kJ mol−1 to 8 kJ mol−1, 
corresponding to an acceleration of the reaction by a factor of 
1015 at 298 K.

20H.1 Features of enzymes

Enzymes act in the aqueous environment of cells. These bio-
logically ubiquitous compounds are special proteins or nucleic 
acids that contain an active site, which is responsible for bind-
ing the substrates, the reactants, and processing them into 
products. As is true of any catalyst, the active site returns to its 
original state after the products are released. Many enzymes 
consist primarily of proteins, some featuring organic or inor-
ganic co-factors in their active sites. However, certain RNA 
molecules can also be biological catalysts, forming ribozymes. 
A very important example of a ribozyme is the ribosome, a large 
assembly of proteins and catalytically active RNA molecules 
responsible for the synthesis of proteins in the cell.

The structure of the active site is specific to the reaction 
that it catalyses, with groups in the substrate interacting with 
groups in the active site by intermolecular interactions, such 
as hydrogen bonding, electrostatic forces, and van der Waals 
interactions. Figure 20H.2 shows two models that explain the 
binding of a substrate to the active site of an enzyme. In the 
lock-and-key model, the active site and substrate have comple-
mentary three-dimensional structures and dock without the 
need for major atomic rearrangements. Experimental evidence 
favours the induced fit model, in which binding of the sub-
strate induces a conformational change in the active site. Only 
after the change does the substrate fit snugly in the active site.

Enzyme-catalysed reactions are prone to inhibition by 
molecules that interfere with the formation of product. Many 
drugs for the treatment of disease function by inhibiting 

Contents

20h.1 Features of enzymes 863

20h.2 The Michaelis–Menten mechanism 864
example 20h.1: analysing a lineweaver– 
burk plot 865

20h.3 The catalytic efficiency of enzymes 866
brief illustration 20h.1: the catalytic efficiency  
of an enzyme 866

20h.4 Mechanisms of enzyme inhibition 866
example 20h.2: distinguishing between types  
of inhibition 868

Checklist of concepts 869
Checklist of equations 869

➤➤ Why do you need to know this material?
The role of enzymes in controlling chemical reactions is 
central to biology and the maintenance of life. It is at the 
centre of attention of much of the application of physical 
chemistry to biology.

➤➤ What is the key idea?
Enzymes are homogeneous catalysts that can have a 
dramatic effect on the rates of the reactions they control 
but are subject to inhibition.

➤➤ What do you need to know already?
You need to be familiar with the analysis of reaction 
mechanisms in terms of the steady-state approximation 
(Topic 20E).

Reactants

Products

Ea(uncatalysed)
Ea(catalysed)

Reaction coordinate

Po
te

n
ti

al
 e

n
er

g
y

Figure 20H.1 A catalyst provides a different path with a 
lower activation energy. The result is an increase in the rate of 
formation of product.
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864 20 Chemical kinetics

enzymes. For example, an important strategy in the treatment 
of acquired immune deficiency syndrome (AIDS) involves 
the steady administration of a specially designed protease 
inhibitor. The drug inhibits an enzyme that is key to the for-
mation of the protein envelope surrounding the genetic mate-
rial of the human immunodeficiency virus (HIV). Without a 
properly formed envelope, HIV cannot replicate in the host 
organism.

20H.2 The Michaelis–Menten 
mechanism

Experimental studies of enzyme kinetics are typically con-
ducted by monitoring the initial rate of product formation 
in a solution in which the enzyme is present at very low con-
centration. Indeed, enzymes are such efficient catalysts that 
significant accelerations may be observed even when their con-
centration is more than three orders of magnitude smaller than 
that of the substrate.

The principal features of many enzyme-catalysed reactions 
are as follows:

•	 For a given initial concentration of substrate, [S]0, the 
initial rate of product formation is proportional to the 
total concentration of enzyme, [E]0.

•	 For a given [E]0 and low values of [S]0, the rate of product 
formation is proportional to [S]0.

•	 For a given [E]0 and high values of [S]0, the rate of product 
formation becomes independent of [S]0, reaching a 
maximum value known as the maximum velocity, vmax.

The Michaelis–Menten mechanism accounts for these fea-
tures. According to this mechanism, an enzyme–substrate 

complex is formed in the first step and either the substrate is 
released unchanged or after modification to form products:

,E S ES

ES P E
a

b

a+
→ +

′ k

k

k

 
 michaelis–menten mechanism 

We show in the following Justification that this mechanism 
leads to the Michaelis–Menten equation for the rate of product 
formation

v= +
k
K
b

M

E
/ S

[ ]
[ ]
0

01  
 michaelis–menten equation  (20H.1)

where K k kkM b aa /= +′( )  is the Michaelis constant, characteristic 
of a given enzyme acting on a given substrate and having the 
dimensions of a molar concentration.

Justification 20H.1 The Michaelis–Menten equation

The rate of product formation according to the Michaelis–
Menten mechanism is

v=kb ES[ ]

We can obtain the concentration of the enzyme–substrate com-
plex by invoking the steady-state approximation and writing

d[ES]
d

E S ES ESa a bt
k k k= − ′ − ≈[ ][ ] [ ][ ] 0

It follows that

[ ]
[ ][ ]

ES
E Sa

a b
= ′ +

k
k k

where [E] and [S] are the concentrations of free enzyme and 
substrate, respectively. Now we define the Michaelis constant as

K
k k

kM
a b

a
= ′ +

To express the rate law in terms of the concentrations of 
enzyme and substrate added, we note that [E]0 = [E] + [ES] and

[ ]
[ ]

[ ]
[ ] [ ]{ [ ]}E

ES
S

ES ES / SM
M0 1= + = +K

K

[E]��� ��

Moreover, because the substrate is typically in large excess 
relative to the enzyme, the free substrate concentration is 
approximately equal to the initial substrate concentration and 
we can write [S] ≈ [S]0. It then follows that:

[ ]
[ ]

[ ]
ES

E
/ SM

= +
0

01 K

Equation 20H.1 is obtained when this expression for [ES] 
is substituted into that for the rate of product formation 
(v = kb[ES]).

Lock
and
key

Induced
fit

Active
site

Active
site

S S

E E

SE

Figure 20H.2 Two models that explain the binding of a 
substrate to the active site of an enzyme. In the lock-and-key 
model, the active site and substrate have complementary 
three-dimensional structures and dock without the need 
for major atomic rearrangements. In the induced fit model, 
binding of the substrate induces a conformational change in 
the active site. The substrate fits well in the active site after the 
conformational change has taken place.
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Equation 20H.1 shows that, in accord with experimental 
observations (Fig. 20H.3):

•	 When [S]0 ≪ KM, the rate is proportional to [S]0:

v= k
K

b

M

S E[ ] [ ]0 0

 
(20H.2a)

•	 When, [S]0 ≫ KM, the rate reaches its maximum value 
and is independent of [S]0:

v v= =max b Ek [ ]0  (20H.2b)

Substitution of the definition of vmax into eqn 20H.1 gives

v
v= +

max

M S1 0K /[ ]  
(20H.3a)

which can be rearranged into a form suitable for data analysis 
by linear regression by taking reciprocals of both sides:

1 1 1

0v v v
= +



max

M

max S
K

[ ]  
 lineweaver–burk plot  (20H.3b)

A Lineweaver–Burk plot is a plot of 1/v against 1/[S]0, and 
according to eqn 20H.3b it should yield a straight line with 
slope of KM/vmax, a y-intercept at 1/vmax, and an x-intercept at 
−1/KM (Fig. 20H.4). The value of kb is then calculated from the 
y-intercept and eqn 20H.2b. However, the plot cannot give the 
individual rate constants ka and ′ka  that appear in the expression 
for KM. The stopped-flow technique described in Topic 20A can 
give the additional data needed, because the rate of formation 
of the enzyme–substrate complex can be found by monitoring 
the concentration after mixing the enzyme and substrate. This 
procedure gives a value for ka, and ′ka is then found by combin-
ing this result with the values of kb and KM.
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Substrate concentration, [S]
0
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1

Figure 20H.3 The variation of the rate of an enzyme-catalysed 
reaction with substrate concentration. The approach to a 
maximum rate, vmax, for large [S] is explained by the Michaelis–
Menten mechanism.

0 1/[S]

1/
v

1/vmax–1/KM

Slope = KM/vmax

Figure 20H.4 A Lineweaver–Burk plot for the analysis of an 
enzyme-catalysed reaction that proceeds by a Michaelis–
Menten mechanism and the significance of the intercepts and 
the slope.

Example 20H.1 Analysing a Lineweaver–Burk plot

The enzyme carbonic anhydrase catalyses the hydration of 
CO2 in red blood cells to give bicarbonate (hydrogencarbon-
ate) ion: CO g H O(l) HCO aq H aq2 2( ) ( ) ( )+ → + +

3
− . The following 

data were obtained for the reaction at pH = 7.1, 273.5 K, and an 
enzyme concentration of 2.3 nmol dm−3:

Determine the maximum velocity and the Michaelis constant 
for the reaction at 273.5 K.

Method Prepare a Lineweaver–Burk plot and determine the 
values of KM and vmax by linear regression analysis.

Answer We draw up the following table:

Figure 20H.5 shows the Lineweaver–Burk plot for the data. 
The slope is 40.0 and the y-intercept is 4.00. Hence,

vmax / mmol dm s
intercept

( )
.

.− − = = =3 1 1 1
4 00

0 250

and

KM / mmoldm
slope

intercept
( )

.
.

.− = = =3 40 00
4 00

10 0

A note on good practice The slope and the intercept are 
unit-less: all graphs should be plotted as pure numbers.

[CO2]/ 
(mmol dm−3)

1.25 2.5 5 20

v/ 
(mmol dm−3 s−1)

2.78 × 10−2 5.00 × 10−2 8.33 × 10−2 1.67 × 10−1

1/([CO2]/(mmol dm−3)) 0.800 0.400 0.200 0.0500
1/(v/(mmol dm−3 s−1)) 36.0 20.0 12.0 6.0
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20H.3 The catalytic efficiency  
of enzymes

The turnover frequency, or catalytic constant, of an enzyme, 
kcat, is the number of catalytic cycles (turnovers) performed by 
the active site in a given interval divided by the duration of the 
interval. This quantity has units of a first-order rate constant 
and, in terms of the Michaelis–Menten mechanism, is numeri-
cally equivalent to kb, the rate constant for release of product 
from the enzyme–substrate complex. It follows from the identi-
fication of kcat with kb and from eqn 20H.2b that

k kcat b
max

E
= = v

[ ]0  
 turnover frequency  (20H.4)

The catalytic efficiency, η (eta), of an enzyme is the ratio 
kcat/KM. The higher the value of η, the more efficient is the 

enzyme. We can think of the catalytic efficiency as the effective 
rate constant of the enzymatic reaction. From K k k kM a b a/= ′ +( )
and eqn 20H.4, it follows that

η = = ′ +
k
K

k k
k k

cat

M

a b

a b  
 catalytic efficiency  (20H.5)

The efficiency reaches its maximum value of ka when k kb a ′ . 
Because ka is the rate constant for the formation of a complex 
from two species that are diffusing freely in solution, the maxi-
mum efficiency is related to the maximum rate of diffusion of E 
and S in solution. This limit (which is discussed further in Topic 
21B) leads to rate constants of about 108–109 dm3 mol−1 s−1 
for molecules as large as enzymes at room temperature. The 
enzyme catalase has η = 4.0 × 108 dm3 mol−1 s−1 and is said to 
have attained ‘catalytic perfection’, in the sense that the rate of 
the reaction it catalyses is controlled only by diffusion: it acts as 
soon as a substrate makes contact.

20H.4 Mechanisms of enzyme 
inhibition

An inhibitor, In, decreases the rate of product formation from 
the substrate by binding to the enzyme, to the ES complex, or to 
the enzyme and ES complex simultaneously. The most general 
kinetic scheme for enzyme inhibition is then:

,E S ES

ES P E
a a

b

+ ′
→ +

 k k

k  

Brief illustration 20H.1 The catalytic efficiency  
of an enzyme

To determine the catalytic efficiency of carbonic anhydrase 
at 273.5 K from the results from Example 20H.1, we begin by 
using eqn 20H.4 to calculate kcat:

kcat
max

E
moldm s

moldm
s= = ×

×
= ×

− − −

− −
−v

[ ]
.

.
.

0

4 3 1

9 3
5 12 5 10

2 3 10
1 1 10

The catalytic efficiency follows from eqn 20H.5:

η = = ×
×

= ×
−

− −
− −k

K
cat

M

s
moldm

dm mol s
1 1 10

2 3 10
1 1 10

5 1

9 3
7 3 1 1.

.
.

Self-test 20H.2 The enzyme-catalysed conversion of a 
substrate at 298 K has K M = 0.032 mol dm−3 and vmax =  
4.25 × 10−4 mol dm−3 s−1 when the enzyme concentration is 
3.60 × 10−9 mol dm−3. Calculate kcat and η. Is the enzyme ‘cata-
lytically perfect’?

Answer: kcat = 1.18 × 105 s−1, η = 7.9 × 106 dm3 mol−1 s−1; the enzyme  
is not ‘catalytically perfect’

Self-test 20H.1 The enzyme α-chymotrypsin is secreted in 
the pancreas of mammals and cleaves peptide bonds made 
between certain amino acids. Several solutions containing 
the small peptide N-glutaryl-l-phenylalanine-p-nitroanilide 
at different concentrations were prepared and the same small 
amount of α-chymotrypsin was added to each one. The fol-
lowing data were obtained on the initial rates of the formation 
of product:

Determine the maximum velocity and the Michaelis constant 
for the reaction.

Answer: vmax = 2.80 mmol dm−3 s−1, KM = 5.89 mmol dm−3

0 0.2 0.4 0.6 0.8 1

1/{[CO2]/(mmol dm–3)}

1/
{v

/(
m

m
o

l d
m

–3
 s

–1
)}

0

10

20

30

40

Figure 20H.5 The Lineweaver–Burk plot of the data for 
Example 20H.1.

[S]/ 
(mmol dm−3)

0.334 0.450 0.667 1.00 1.33 1.67

v/ 
(mmol dm−3 s−1)

0.152 0.201 0.269 0.417 0.505 0.667
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EIn E In
E In

EII + =K
[ ][ ]

[ ]  
(20H.6a)

ESIn ES In
ES In
ESInI + ′=K

[ ][ ]
[ ]  

(20H.6b)

The lower the values of KI and ′K I  the more efficient are the 
inhibitors. The rate of product formation is always given by 
v = kb[ES], because only ES leads to product. As shown in the 
following Justification, the rate of reaction in the presence of an 
inhibitor is

v
v= +

max

M / Sα α′ K [ ]0  
 effect of inhibition on the rate  (20H.7)

where α = 1 + [In]/KI and α ′ = 1 + [In]/ ′K I . This equation is very 
similar to the Michaelis–Menten equation for the uninhib-
ited enzyme (eqn 20H.1) and is also amenable to analysis by a 
Lineweaver–Burk plot:

1 1

0v v v
= +





α α′
max

M

max S
K

[ ]  
(20H.8)

There are three major modes of inhibition that give rise to 
distinctly different kinetic behaviour (Fig. 20H.6). In competi-
tive inhibition the inhibitor binds only to the active site of the 
enzyme and thereby inhibits the attachment of the substrate. 

This condition corresponds to α > 1 and α ′ = 1 (because ESIn 
does not form). In this limit, eqn 20H.8 becomes

1 1 1

0v v v
= +



max

M

max S
α K

[ ]  
 competitive inhibition

The y-intercept is unchanged but the slope of the Lineweaver–
Burk plot increases by a factor of α relative to the slope for data 
on the uninhibited enzyme (Fig. 20H.6a).

In uncompetitive inhibition the inhibitor binds to a site of 
the enzyme that is removed from the active site, but only if the 
substrate is already present. The inhibition occurs because ESI 
reduces the concentration of ES, the active type of complex. In 
this case α = 1 (because EI does not form) and α ′ > 1 and eqn 
20H.8 becomes

1 1

0v v v
= ′ +





α
max

M

max S
K

[ ]  
 uncompetitive inhibition 

The y-intercept of the Lineweaver–Burk plot increases by a fac-
tor of α ′ relative to the y-intercept for data on the uninhibited 
enzyme but the slope does not change (Fig. 20H.6b).

In non-competitive inhibition (also called mixed inhibi-
tion) the inhibitor binds to a site other than the active site, and 
its presence reduces the ability of the substrate to bind to the 
active site. Inhibition occurs at both the E and ES sites. This 
condition corresponds to α > 1 and α ′ > 1. Both the slope and 
y-intercept of the Lineweaver–Burk plot increase upon addi-
tion of the inhibitor. Figure 20H.6c shows the special case of 
K KI I= ′ and α = α ′, which results in intersection of the lines at 
the x-axis.

Justification 20H.2 Enzyme inhibition

By mass balance, the total concentration of enzyme is:

[ ] [ ] [ ] [ ] [ ]E E EIn ES ESIn0 = + + +  

By using eqns 20H.6a and 20H.6b and the definitions

α α= + = + ′1 1
[ ] [ ]In

and
In

I IK K
′

 

it follows that

[ ] [ ] [ ]E E ES0 = +α α ′  

By using KM = [E][S]/[ES] and replacing [S] with [S]0 we can 
write

[ ]
[ ]

[ ]
[ ] [ ]

[ ]
E

ES
S

ES ES
S

M M
0

0 0
= + = +





K Kα α α α′ ′
 

The expression for the rate of product formation is then:

v = = +k
k

Kb
b

M
ES

E
/ S

[ ]
[ ]
[ ]

0

0α α ′

which, upon replacement of kb[E]0 with vmax, gives eqn 20H.7.

1/
v

1/
v

1/
v

1/[S] 1/[S]

1/[S]

0 0

0

α > 1, α ′ = 1
α = 1, α ′ > 1

α = α ′ > 1

 α = α ′ = 1  α = α ′ = 1

 α = α ′ = 1

(a) (b)

(c)

Figure 20H.6 Lineweaver–Burk plots characteristic of the three 
major modes of enzyme inhibition: (a) competitive inhibition, 
(b) uncompetitive inhibition, and (c) non-competitive 
inhibition, showing the special case α = α ′ > 1.
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In all cases, the efficiency of the inhibitor may be obtained 
by determining KM and vmax from a control experiment with 
uninhibited enzyme and then repeating the experiment with a 
known concentration of inhibitor. From the slope and y-inter-
cept of the Lineweaver–Burk plot for the inhibited enzyme, the 
mode of inhibition, the values of α or α ′, and the values of KI 
and ′K I may be obtained.

Example 20H.2 Distinguishing between types  
of inhibition

Five solutions of a substrate, S, were prepared with the con-
centrations given in the first column below and each one was 
divided into five equal volumes. The same concentration of 
enzyme was present in each one. An inhibitor, In, was then 
added in four different concentrations to the samples, and the 
initial rate of formation of product was determined with the 
results given below. Does the inhibitor act competitively or 
noncompetitively? Determine KI and KM.

Method Draw a series of Lineweaver–Burk plots for differ-
ent inhibitor concentrations. If the plots resemble those in 
Fig. 20H.6a, then the inhibition is competitive. On the other 
hand, if the plots resemble those in Fig. 20H.6b, then the inhi-
bition is non-competitive. To find KI, we need to determine 
the slope at each value of [In], which is equal to αKM/vmax, or 
KM/vmax + KM[In]/KIvmax, then plot this slope against [In]: the 
intercept at [In] = 0 is the value of KM/vmax and the slope is 
KM/KIvmax.

Answer First we draw up a table of 1/[S]0 and 1/v for each 
value of [I]:

The five plots (one for each [In]) are given in Fig. 20H.7. We see 
that they pass through the same intercept on the vertical axis, 
so the inhibition is competitive.

The mean of the (least squares) intercepts is 5.83, so vmax =  
0.172 µmol dm−3 s−1 (note how it picks up the units for v in the 
data). The (least squares) slopes of the lines are as follows:

These values are plotted in Fig. 20H.8. The intercept at [In] = 0 
is 1.234, so KM = 0.212 mmol dm−3. The (least squares) slope of 
the line is 2.045, so

K
K

I
M

max
/ mmoldm

slope
( )

.
. .

− = × = ×
3 0 212

2 045 0 172v

Self-test 20H.3 Repeat the question using the following data:

[S]0/(mmol dm−3) [In]/(mmol dm−3)

0 0.20 0.40 0.60 0.80

0.050 0.033 0.026 0.021 0.018 0.016

v/
(µ

m
ol

 d
m

−3
 s−1

)

0.10 0.055 0.045 0.038 0.033 0.029

0.20 0.083 0.071 0.062 0.055 0.050

0.40 0.111 0.100 0.091 0.084 0.077

0.60 0.116 0.116 0.108 0.101 0.094

1/([S]0/(mmol dm−3)) [In]/(mmol dm−3)

0 0.20 0.40 0.60 0.80

20 30 38 48 56 62

1/
(v

/(µ
m

ol
 d

m
−3

 s−1
))

10 18 22 26 30 34

5.0 12 14 16 18 20

2.5 9.01 10.0 11.0 11.9 13.0

1.7 7.94 8.62 9.26 9.90 10.6

[In]/(mmol dm−3) 0 0.20 0.40 0.60 0.80
Slope 1.219 1.627 2.090 2.489 2.832

0 4 8 12 16 20
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Figure 20H.7 Lineweaver–Burk plots for the data in 
Example 20H.2. Each line corresponds to a different 
concentration of inhibitor.

1

2

3

S
lo

p
e

0 0.2 0.4 0.6 0.8
[In]/(mmol dm–3)

Figure 20H.8 Plot of the slopes of the plots in Fig. 20H.7 
against [In] based on the data in Example 20H.2.
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Checklist of concepts

☐ 1. Enzymes are homogeneous biological catalysts.
☐ 2. The Michaelis–Menten mechanism of enzyme kinetics 

accounts for the dependence of rate on the concentra-
tion of the substrate and the enzyme.

☐ 3. A Lineweaver–Burk plot is used to determine the 
parameters that occur in the Michaelis–Menten 
mechanism.

☐ 4. In competitive inhibition of an enzyme, the inhibitor 
binds only to the active site of the enzyme.

☐ 5. In uncompetitive inhibition the inhibitor binds to a 
site of the enzyme that is removed from the active site, 
but only if the substrate is already present.

☐ 6. In non-competitive inhibition, the inhibitor binds to a 
site other than the active site.

Checklist of equations

Answer: Non-competitive, KM = 0.30 mmol dm−3,  
KI = 0.57 mmol dm−3

[S]0/(mmol dm−3) [In]/(mmol dm−3)

0 0.20 0.40 0.60 0.80

0.050 0.020 0.015 0.012 0.0098 0.0084

v/
(µ

m
ol

 d
m

−3
 s−1

)

0.10 0.035 0.026 0.021 0.017 0.015

0.20 0.056 0.042 0.033 0.028 0.024

0.40 0.080 0.059 0.047 0.039 0.034

0.60 0.093 0.069 0.055 0.046 0.039

Property Equation Comment Equation number

Michaelis–Menten equation v = vmax/(1 + KM/[S]0) 20H.3a

Lineweaver–Burk plot 1/v = 1/vmax + (KM/vmax)(1/[S]0) 20H.3b

Turnover frequency kcat = vmax/[E]0 Definition 20H.4

Catalytic efficiency η = kcat/KM Definition 20H.5

Effect of inhibition v = vmax/(α ′ + αKM/[S]0) Assumes Michaelis–Menten mechanism 20H.7
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chaPter 20  Chemical kinetics

TOPIC 20A the rates of chemical reactions

Discussion question
20A.1 Summarize the characteristic of zeroth-order, first-order, second-
order, and pseudofirst-order reactions.

20A.2 When can a reaction order not be ascribed?

20A.3 What are the advantages of ascribing an order to a reaction?

20A.4 Summarize the experimental procedures that can be used to monitor 
the composition of a reaction system.

Exercises
20A.1(a) Predict how the total pressure varies during the gas-phase reaction 
2 ICl(g) + H2(g) → I2(g) + 2 HCl(g) in a constant-volume container.
20A.1(b) Predict how the total pressure varies during the gas-phase reaction 
N2(g) + 3 H2(g) → 2 NH3(g) in a constant-volume container.

20A.2(a) The rate of the reaction A + 2 B → 3 C + D was reported as 
2.7 mol dm−3 s−1. State the rates of formation and consumption of the 
participants.
20A.2(b) The rate of the reaction A + 3 B → C + 2 D was reported as 
2.7 mol dm−3 s−1. State the rates of formation and consumption of the 
participants.

20A.3(a) The rate of formation of C in the reaction 2 A + B → 2 C + 3 D 
is 2.7 mol dm−3 s−1. State the reaction rate, and the rates of formation or 
consumption of A, B, and D.
20A.3(b) The rate of consumption of B in the reaction A + 3 B → C + 2 D 
is 2.7 mol dm−3 s−1. State the reaction rate, and the rates of formation or 
consumption of A, C, and D.

20A.4(a) The rate law for the reaction in Exercise 20A.2(a) was found to be 
v = kr[A][B]. What are the units of kr when the concentrations are in moles per 

cubic decimetre? Express the rate law in terms of the rates of formation and 
consumption of (i) A, (ii) C.
20A.4(b) The rate law for the reaction in Exercise 20A.2(b) was found to be 
v = kr[A][B]2. What are the units of kr when the concentrations are in moles 
per cubic decimetre? Express the rate law in terms of the rates of formation 
and consumption of (i) A, (ii) C.

20A.5(a) The rate law for the reaction in Exercise 20A.3(a) was reported as 
d[C]/dt = kr[A][B][C]. Express the rate law in terms of the reaction rate v; 
what are the units for kr in each case when the concentrations are in moles per 
cubic decimetre?
20A.5(b) The rate law for the reaction in Exercise 20A.3(b) was reported as 
d[C]/dt = kr[A][B][C]−1. Express the rate law in terms of the reaction rate v; 
what are the units for kr in each case when the concentrations are in moles per 
cubic decimetre?

20A.6(a) If the rate laws are expressed with (i) concentrations in moles per 
cubic decimetre, (ii) pressures in kilopascals, what are the units of the second-
order and third-order rate constants?
20A.6(b) If the rate laws are expressed with (i) concentrations in molecules per 
cubic metre, (ii) pressures in pascals, what are the units of the second-order 
and third-order rate constants? 

Problems
20A.1 At 400 K, the rate of decomposition of a gaseous compound initially 
at a pressure of 12.6 kPa, was 9.71 Pa s−1 when 10.0 per cent had reacted 
and 7.67 Pa s−1 when 20.0 per cent had reacted. Determine the order of the 
reaction.

20A.2 The following initial-rate data were obtained on the rate of binding 
of glucose with the enzyme hexokinase present at a concentration of 
1.34 mmol dm−3. What is (a) the order of reaction with respect to glucose,  
(b) the rate constant?

20A.3 The following data were obtained on the initial rates of a reaction of a 
d-metal complex with a reactant Y in aqueous solution. What is (a) the order 
of reaction with respect to the complex and Y, (b) the rate constant? For the 
experiments (i), [Y] = 2.7 mmol dm−3 and for experiments (ii) [Y] =  
6.1 mmol dm−3.

20A.4 The following kinetic data (v0 is the initial rate) were obtained for the 
reaction 2 ICl(g) + H2(g) → I2(g) + 2 HCl(g):

(a) Write the rate law for the reaction. (b) From the data, determine the value of 
the rate constant. (c) Use the data to predict the reaction rate for experiment 4.

[C6H12O6]/(mmol dm−3) 1.00 1.54 3.12 4.02

v0/(mol dm−3 s−1) 5.0 7.6 15.5 20.0

[complex]/(mmol dm−3) 8.01 9.22 12.11

v0/(mol dm−3 s−1) (i) 125 144 190

(ii) 640 730 960

Experiment [ICl]0/(mmol dm−3) [H2]0/(mmol dm−3) v0/(mol dm−3 s−1)

1 1.5 1.5 3.7 × 10−7

2 3.0 1.5 7.4 × 10−7

3 3.0 4.5 22 × 10−7

4 4.7 2.7 ?
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TOPIC 20B Integrated rate laws

Discussion questions
20B.1 Describe the main features, including advantages and disadvantages, 
of the following experimental methods for determining the rate law of a 
reaction: the isolation method, the method of initial rates, and fitting data 
to integrated rate law expressions.

20B.2 Write the rate law that corresponds to each of the following expressions: 
(a) [A] = [A]0 − krt, (b) ln([A]/[A]0) = −krt, and (c) [A] = [A]0/(1 + krt[A]0).

Exercises
20B.1(a) At 518 °C, the half-life for the decomposition of a sample  
of gaseous acetaldehyde (ethanal) initially at 363 Torr was 410 s. When the 
pressure was 169 Torr, the half-life was 880 s. Determine the order of the 
reaction.
20B.1(b) At 400 K, the half-life for the decomposition of a sample of a gaseous 
compound initially at 55.5 kPa was 340 s. When the pressure was 28.9 kPa, the 
half-life was 178 s. Determine the order of the reaction.

20B.2(a) The rate constant for the first-order decomposition of N2O5 in the 
reaction 2 N2O5(g) → 4 NO2(g) + O2(g) is kr = 3.38 × 10−5 s−1 at 25 °C. What is 
the half-life of N2O5? What will be the pressure, initially 500 Torr, after (i) 50 s, 
(ii) 20 min after initiation of the reaction?
20B.2(b) The rate constant for the first-order decomposition of a compound A 
in the reaction 2 A → P is kr = 3.56 × 10−7 s−1 at 25 °C. What is the half-life of 
A? What will be the pressure, initially 33.0 kPa after (i) 50 s, (ii) 20 min after 
initiation of the reaction?

20B.3(a) The second-order rate constant for the reaction CH3COOC2H5(aq) + 
 OH−(aq) → CH3CO2

−(aq) + CH3CH2OH(aq) is 0.11 dm3 mol−1 s−1. What is the 
concentration of ester (CH3COOC2H5) after (i) 20 s, (ii) 15 min when ethyl 
acetate is added to sodium hydroxide so that the initial concentrations are 
[NaOH] = 0.060 mol dm−3 and [CH3COOC2H5] = 0.110 mol dm−3?
20B.3(b) The second-order rate constant for the reaction A +2 B → C + D 
is 0.34 dm3 mol−1 s−1. What is the concentration of C after (i) 20 s, (ii) 
15 min when the reactants are mixed with initial concentrations of 
[A] = 0.027 mol dm−1 and [B] = 0.130 mol dm−3?

20B.4(a) A reaction 2 A → P has a second-order rate law with kr = 4.30 × 10−4  
dm3 mol−1 s−1. Calculate the time required for the concentration of A to 
change from 0.210 mol dm−3 to 0.010 mol dm−3.
20B.4(b) A reaction 2 A → P has a third-order rate law with kr = 6.50 × 10−4  
dm6 mol−2 s−1. Calculate the time required for the concentration of A to 
change from 0.067 mol dm−3 to 0.015 mol dm−3.

Problems
20B.1 For a first-order reaction of the form A → n B (with n possibly 
fractional), the concentration of the product varies with time as 
[B] [B] ( )= − −n k t

0 1 e r . Plot the time dependence of [A] and [B] for the cases 
n = 1

2 , 1, and 2.

20B.2 For a second-order reaction of the form A → n B (with n possibly 
fractional), the concentration of the product varies with time as 
[B] A 1 Ar r= +nk t k t[ ] /( [ ] )0

2
0 . Plot the time dependence of [A] and [B] for the 

cases n = 1
2 , 1, and 2.

20B.3 The data below apply to the formation of urea from ammonium cyanate, 
NH4CNO → NH2CONH2. Initially 22.9 g of ammonium cyanate was dissolved 
in enough water to prepare 1.00 dm3 of solution. Determine the order of the 
reaction, the rate constant, and the mass of ammonium cyanate left after 
300 min.

20B.4 The data below apply to the reaction, (CH3)3CBr + H2O → (CH3)3COH +  
HBr. Determine the order of the reaction, the rate constant, and the molar 
concentration of (CH3)3CBr after 43.8 h.

20B.5 The thermal decomposition of an organic nitrile produced the following 
data:

Determine the order of the reaction and the rate constant.

20B.6 A second-order reaction of the type A + 2 B → P was carried out in a 
solution that was initially 0.050 mol dm−3 in A and 0.030 mol dm−3 in B. After 
1.0 h the concentration of A had fallen to 0.010 mol dm−3. (a) Calculate the 
rate constant. (b) What is the half-life of the reactants?

20B.7‡ The oxidation of HSO3
− by O2 in aqueous solution is a reaction 

of importance to the processes of acid rain formation and flue gas 
desulfurization. R.E. Connick et al. (Inorg. Chem. 34, 4543 (1995)) report 
that the reaction 2 HSO3

−(aq) + O2(g) → 2 SO4
2−(aq) + 2 H+(aq) follows the rate 

law v = kr[HSO4
2−] [H+]2. Given pH = 5.6 and an oxygen molar concentration 

of 0.24 mmol dm−3 (both presumed constant), an initial HSO3
− molar 

concentration of 50 µmol dm−3, and a rate constant of 3.6 × 106 dm9 mol−3 s−1, 
what is the initial rate of reaction? How long would it take for HSO3

− to reach 
half its initial concentration?

20B.8 Pharmacokinetics is the study of the rates of absorption and elimination 
of drugs by organisms. In most cases, elimination is slower than absorption 
and is a more important determinant of availability of a drug for binding to its 
target. A drug can be eliminated by many mechanisms, such as metabolism 
in the liver, intestine, or kidney followed by excretion of breakdown products 
through urine or faeces. As an example of pharmacokinetic analysis, consider 
the elimination of beta adrenergic blocking agents (beta blockers), drugs used 
in the treatment of hypertension. After intravenous administration of a beta 
blocker, the blood plasma of a patient was analysed for remaining drug and 
the data are shown below, where c is the drug concentration measured at a 
time t after the injection.

(a) Is removal of the drug a first- or second-order process? (b) Calculate  
the rate constant and half-life of the process. Comment: An essential  

‡ These problems were supplied by Charles Trapp and Carmen Giunta.

t/min 0 20.0 50.0 65.0 150

m(urea)/g 0 7.0 12.1 13.8 17.7

t/h  0 3.15 6.20 10.00 18.30 30.80

[(CH3)3CBr]/(10−2 mol dm−3) 10.39 8.96 7.76  6.39  3.53  2.07

t/(103 s) 0 2.00 4.00 6.00 8.00 10.00 12.00 ∞

[nitrile]/
(mol dm−3)

1.50 1.26 1.07 0.92 0.81  0.72  0.65 0.40

t/min 30 60 120 150 240 360 480

c/(ng cm−3) 699 622 413 292 152 60 24
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aspect of drug development is the optimization of the half-life of 
elimination, which needs to be long enough to allow the drug to find and 
act on its target organ but not so long that harmful side effects become 
important.

20B.9 The following data have been obtained for the decomposition of 
N2O5(g) at 67 °C according to the reaction 2 N2O5(g) → 4 NO2(g) + O2(g). 
Determine the order of the reaction, the rate constant, and the half-life. It is 
not necessary to obtain the result graphically; you may do a calculation using 
estimates of the rates of change of concentration.

20B.10 The gas phase decomposition of acetic acid at 1189 K proceeds by way 
of two parallel reactions:

What is the maximum percentage yield of the ketene CH2CO obtainable at 
this temperature?

20B.11 Sucrose is readily hydrolysed to glucose and fructose in acidic solution. 
The hydrolysis is often monitored by measuring the angle of rotation of plane-
polarized light passing through the solution. From the angle of rotation the 
concentration of sucrose can be determined. An experiment on the hydrolysis 
of sucrose in 0.50 m HCl(aq) produced the following data:

Determine the rate constant of the reaction and the half-life of a sucrose 
molecule.

20B.12 The composition of a liquid phase reaction 2 A → B was followed by a 
spectrophotometric method with the following results:

Determine the order of the reaction and its rate constant.

20B.13 The ClO radical decays rapidly by way of the reaction, 2 ClO → Cl2 + O2.  
The following data have been obtained:

Determine the rate constant of the reaction and the half-life of a ClO radical.

20B.14 Cyclopropane isomerizes into propene when heated to 500 °C in the 
gas phase. The extent of conversion for various initial pressures has been 
followed by gas chromatography by allowing the reaction to proceed for a 
time with various initial pressures:

where p0 is the initial pressure and p is the final pressure of cyclopropane. 
What is the order and rate constant for the reaction under these conditions?

20B.15 The addition of hydrogen halides to alkenes has played a fundamental 
role in the investigation of organic reaction mechanisms. In one study 
(M.J. Haugh and D.R. Dalton, J. Amer. Chem. Soc. 97, 5674 (1975)), high 
pressures of hydrogen chloride (up to 25 atm) and propene (up to 5 atm) were 
examined over a range of temperatures and the amount of 2-chloropropane 
formed was determined by NMR. Show that if the reaction A + B → P 
proceeds for a short time δt, the concentration of product follows [P]/[A] =  
kr[A]m −1[B]nδt if the reaction is mth-order in A and nth-order in B. In a 
series of runs the ratio of [chloropropane] to [propene] was independent of 
[propene] but the ratio of [chloropropane] to [HCl] for constant amounts 
of propene depended on [HCl]. For δt ≈ 100 h (which is short on the time 
scale of the reaction) the latter ratio rose from zero to 0.05, 0.03, 0.01 for 
p(HCl) = 10 atm, 7.5 atm, 5.0 atm. What are the orders of the reaction with 
respect to each reactant?

20B.16 Show that t1/2 is given by eqn 20B.6 for a reaction that is nth order in A.  
Then deduce an expression for the time it takes for the concentration of a 
substance to fall to one-third the initial value in an nth-order reaction.

20B.17 Derive an integrated expression for a second-order rate law v = kr[A]
[B] for a reaction of stoichiometry 2 A + 3 B → P.

20B.18 Derive the integrated form of a third-order rate law v = kr[A]2[B] in which 
the stoichiometry is 2 A + B → P and the reactants are initially present in (a) their 
stoichiometric proportions, (b) with B present initially in twice the amount.

20B.19 Show that the ratio t1/2/t3/4, where t1/2 is the half-life and t3/4 is the time 
for the concentration of A to decrease to 3/4 of its initial value (implying that 
t3/4 < t1/2), can be written as a function of n alone, and can therefore be used as 
a rapid assessment of the order of a reaction.

TOPIC 20C reactions approaching equilibrium

Discussion questions
20C.1 Describe the strategy of a temperature-jump experiment. What 
parameters of a reaction are accessible from this technique?

20C.2 What feature of a reaction would ensure that its rate would respond to a 
pressure jump?

Exercises
20C.1(a) The equilibrium NH3(aq) + H2O(l) ⇌ NH4

+(aq) + OH−(aq) at 25 °C is 
subjected to a temperature jump which slightly increased the concentration 
of NH4

+(aq) and OH−(aq). The measured relaxation time is 7.61 ns. 
The equilibrium constant for the system is 1.78 × 10−5 at 25 °C, and the 

equilibrium concentration of NH3(aq) is 0.15 mol dm−3. Calculate the rate 
constants for the forward and reverse steps.
20C.1(b) The equilibrium A  B + C at 25 °C is subjected to a temperature 
jump which slightly increases the concentrations of B and C. The measured 

t/min 0 1 2 3 4 5

[N2O5]/(mol dm−3) 1.000 0.705 0.497 0.349 0.246 0.173

(1) CH3COOH → CH4 + CO2 k1 = 3.74 s−1

(2) CH3COOH → CH2CO + H2O k2 = 4.65 s−1

t/min 0 14 39 60 80 110 140 170 210

[sucrose]/
(mol dm−3)

0.316 0.300 0.274 0.256 0.238 0.211 0.190 0.170 0.146

t/min 0 10 20 30 40 ∞

[B]/(mol dm−3) 0 0.089 0.153 0.200 0.230 0.312

t/ms 0.12 0.62 0.96 1.60 3.20 4.00 5.75

[ClO]/(µmol dm−3) 8.49 8.09 7.10 5.79 5.20 4.77 3.95

p0/Torr 200 200 400 400 600 600

t/s 100 200 100 200 100 200

p/Torr 186 173 373 347 559 520
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relaxation time is 3.0 µs. The equilibrium constant for the system is 2.0 × 10−16 
at 25 °C, and the equilibrium concentrations of B and C at 25 °C are both 

0.20 mmol dm−3. Calculate the rate constants for the forward and reverse 
steps.

Problems
20C.1 Show by differentiation that eqn 20C.4 is a solution of eqn 20C.3.

20C.2 Set up the rate equations and plot the corresponding graphs for the 
approach to an equilibrium of the form A  2 B.

20C.3 The reaction A 2 B  is first-order in both directions. Derive an 
expression for the concentration of A as a function of time when the 
initial molar concentrations of A and B are [A]0 and [B]0. What is the final 
composition of the system?

20C.4 Show that eqn 20C.8 is an expression for the overall equilibrium 
constant in terms of the rate constants for the intermediate steps of a reaction 
mechanism. To facilitate the task, begin with a mechanism containing three 
steps, and then argue that your expression may be generalized for any number 
of steps.

20C.5 Consider the dimerization 2 A A2 , with forward rate constant 
ka and backward rate constant ′ka . (a) Derive the following expression 
for the relaxation time in terms of the total concentration of protein, 
[A]tot = [A] + 2[A2]:

1
8

2
2

τ
= ′ + ′k k ka a a totA[ ]

(b) Describe the computational procedures that lead to the determination 
of the rate constants ka and ka′ from measurements of τ for different values of 
[A]tot. (c) Use the data provided below and the procedure you outlined in part 
(b) to calculate the rate constants ka and ka′, and the equilibrium constant K for 
formation of hydrogen-bonded dimers of 2-pyridone:

20C.6 Consider the dimerization 2 A A2  with forward rate constant kr  
and backward rate constant ′ka . Show that the relaxation time is  
τ = ′ +1 4/( [ ] )k kr r eqA .

TOPIC 20D the arrhenius equation

Discussion question
20D.1 Define the terms in and discuss the validity of the expression  
ln kr = ln A − Ea/RT.

20D.2 What might account for the failure of the Arrhenius equation at low 
temperatures?

Exercises
20D.1(a) The rate constant for the decomposition of a certain substance 
is 3.80 × 10−3 dm3 mol−1 s−1 at 35 °C and 2.67 × 10−2 dm3 mol−1 s−1 at 50 °C. 
Evaluate the Arrhenius parameters of the reaction.
20D.1(b) The rate constant for the decomposition of a certain substance 
is 2.25 × 10−2 dm3 mol−1 s−1 at 29 °C and 4.01 × 10−2 dm3 mol−1 s−1 at 37 °C. 
Evaluate the Arrhenius parameters of the reaction.

20D.2(a) The rate of a chemical reaction is found to triple when the 
temperature is raised from 24 °C to 49 °C. Determine the activation energy.
20D.2(b) The rate of a chemical reaction is found to double when the 
temperature is raised from 25 °C to 35 °C. Determine the activation energy.

Problems
20D.1 Show that the definition of Ea given in eqn 20D.3 reduces to eqn 20D.1 
for a temperature-independent activation energy.

20D.2 A first-order decomposition reaction is observed to have the following 
rate constants at the indicated temperatures. Estimate the activation energy.

20D.3 The second-order rate constants for the reaction of oxygen atoms with 
aromatic hydrocarbons have been measured (R. Atkinson and J.N. Pitts,  
J. Phys. Chem. 79, 295 (1975)). In the reaction with benzene the rate constants 
are 1.44 × 107 dm3 mol−1 s−1 at 300.3 K, 3.03 × 107 dm3 mol−1 s−1 at 341.2 K, 
and 6.9 × 107 dm3 mol−1 s−1 at 392.2 K. Find the pre-exponential factor and 
activation energy of the reaction.

20D.4‡ Methane is a by-product of a number of natural processes (such as 
digestion of cellulose in ruminant animals, anaerobic decomposition of 

organic waste matter), and industrial processes (such as food production and 
fossil fuel use). Reaction with the hydroxyl radical OH is the main path by 
which CH4 is removed from the lower atmosphere. T. Gierczak et al. (J. Phys. 
Chem. A 101, 3125 (1997)) measured the rate constants for the elementary 
bimolecular gas-phase reaction of methane with the hydroxyl radical over a 
range of temperatures of importance to atmospheric chemistry. Deduce the 
Arrhenius parameters A and Ea from the following measurements:

20D.5‡ As we saw in Problem 20D.4, reaction with the hydroxyl radical  
OH is the main path by which CH4, a by-product of many natural and  
industrial processes, is removed from the lower atmosphere. T. Gierczak  
et al. (J. Phys. Chem. A 101, 3125 (1997)) measured the rate constants for 
the bimolecular gas-phase reaction CH4(g) + OH(g) → CH3(g) + H2O(g) and 

[P]/(mol dm−3) 0.500 0.352 0.251 0.151 0.101

τ/ns 2.3 2.7 3.3 4.0 5.3

kr/(10−3 s−1) 2.46 45.1 576

θ/°C 0 20.0  40.0

T/K 295 223 218 213 206 200 195

kr/(106 dm3  
mol−1 s−1)

3.55 0.494 0.452 0.379 0.295 0.241 0.217
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found A = 1.13 × 109 dm3 mol−1 s−1 and Ea = 14.1 kJ mol−1 for the Arrhenius 
parameters. (a) Estimate the rate of consumption of CH4. Take the average 
OH concentration to be 1.5 × 10−21 mol dm−3, that of CH4 to be 40 nmol dm−3, 
and the temperature to be −10 °C. (b) Estimate the global annual mass of CH4 

consumed by this reaction (which is slightly less than the amount introduced 
to the atmosphere) given an effective volume for the Earth’s lower atmosphere 
of 4 × 1021 dm3.

TOPIC 20E reaction mechanisms

Discussion questions
20E.1 Distinguish between reaction order and molecularity.

20E.2 Assess the validity of the statement that the rate-determining step is the 
slowest step in a reaction mechanism.

20E.3 Distinguish between a pre-equilibrium approximation and a steady-state 
approximation. Why might they lead to different conclusions?

20E.4 Explain and illustrate how reaction orders may change under different 
circumstances.

20E.5 Distinguish between kinetic and thermodynamic control of a reaction. 
Suggest criteria for expecting one rather than the other.

20E.6 Explain how it is possible for the activation energy of a reaction to be 
negative.

Exercises
20E.1(a) The reaction mechanism for the decomposition of A2

A A  A fast

A  B  P slow

2  + ( )
+ → ( )

involves an intermediate A. Deduce the rate law for the reaction in two ways by 
(i) assuming a pre-equilibrium and (ii) making a steady-state approximation.
20E.1(b) The reaction mechanism for renaturation of a double helix from its 
strands A and B:

A  B unstable helix fast

Unstable helix  stable double 

+ ( )
→



hhelix slow( )

involves an intermediate. Deduce the rate law for the reaction in two 
ways by (i) assuming a pre-equilibrium and (ii) making a steady-state 
approximation.

20E.2(a) The mechanism of a composite reaction consists of a fast pre-
equilibrium step with forward and reverse activation energies of 25 kJ mol−1 
and 38 kJ mol−1, respectively, followed by an elementary step of activation 
energy 10 kJ mol−1. What is the activation energy of the composite reaction?
20E.2(b) The mechanism of a composite reaction consists of a fast pre-
equilibrium step with forward and reverse activation energies of 27 kJ mol−1 
and 35 kJ mol−1, respectively, followed by an elementary step of activation 
energy 15 kJ mol−1. What is the activation energy of the composite reaction?

Problems
20E.1 Use mathematical software or a spreadsheet to examine the time 
dependence of [I] in the reaction mechanism A I Pa bk k →  → . In all of 
the following calculations, use [A]0 = 1 mol dm−3 and a time range of 0 to 5 s. 
(a) Plot [In] against t for ka = 10 s−1 and kb = 1 s−1. (b) Increase the ratio kb/ka 
steadily by decreasing the value of ka and examine the plot of [I] against t at 
each turn. What approximation about d[I]/dt becomes increasingly valid?

20E.2 Use mathematical software or a spreadsheet to investigate the effects on 
[A], [I], [P], and tmax of decreasing the ratio ka/kb from 10 (as in Fig. 20E.1) to 
0.01. Compare your results with those shown in Fig. 20E.3.

20E.3 Set up the rate equations for the reaction mechanism:

A B C
a

a

b

b

k

k

k

k′ ′
 →←   →← 

 
Show that, under specific circumstances, the mechanism is equivalent to

A C
r

r

k

k′
 →← 

 
20E.4 Derive an equation for the steady state rate of the sequence of reactions 
A B C D   , with [A] maintained at a fixed value and the product D 

removed as soon as it is formed.

20E.5 Show that the following mechanism can account for the rate law of the 
reaction in Problem 20B.15:

What further tests could you apply to verify this mechanism?

20E.6 Polypeptides are polymers of amino acids. Suppose that a long 
polypeptide chain can undergo a transition from a helical conformation to a 
random coil. Consider a mechanism for a helix–coil transition that begins in 
the middle of the chain:

hhhh hchh

hchh cccc

... ...

... ...




in which h and c label, respectively, an amino acid in a helical or coil part of 
the chain. The first conversion from h to c, also called a nucleation step, is 
relatively slow, so neither step may be rate determining. (a) Set up the rate 
equations for this mechanism. (b) Apply the steady-state approximation 
and show that, under these circumstances, the mechanism is equivalent to 
hhhh cccc... ...

HCl + HCl  (HCl)2 K1

HCl + CH3CHaCH2  complex K2

(HCl)2 + complex → CH3CHClCH3 + HCl + HCl kr (slow)
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TOPIC 20F examples of reaction mechanisms

Discussion questions
20F.1 Discuss the range of validity of the expression kr = kakb[A]/(kb + ka′[A]) 
for the effective rate constant of a unimolecular reaction according to the 
Lindemann–Hinshelwood mechanism.

20F.2 Bearing in mind distinctions between the mechanisms of stepwise 
and chain polymerization, describe ways in which it is possible to control 
the molar mass of a polymer by manipulating the kinetic parameters of 
polymerization.

Exercises
20F.1(a) The effective rate constant for a gaseous reaction which has a 
Lindemann–Hinshelwood mechanism is 2.50 × 10−4 s−1 at 1.30 kPa and 
2.10 × 10−5 s−1 at 12 Pa. Calculate the rate constant for the activation step in 
the mechanism.
20F.1(b) The effective rate constant for a gaseous reaction which has a 
Lindemann–Hinshelwood mechanism is 1.7 × 10−3 s−1 at 1.09 kPa and 
2.2 × 10−4 s−1 at 25 Pa. Calculate the rate constant for the activation step in the 
mechanism.

20F.2(a) Calculate the fraction condensed and the degree of polymerization at 
t = 5.00 h of a polymer formed by a stepwise process with kr = 1.39 dm3 mol−1 
s−1 and an initial monomer concentration of 10.0 mmol dm−3.

20F.2(b) Calculate the fraction condensed and the degree of polymerization 
at t = 10.00 h of a polymer formed by a stepwise process with 
kr = 2.80 × 10−2 dm3 mol−1 s−1 and an initial monomer concentration of 
50.0 mmol dm−3.

20F.3(a) Consider a polymer formed by a chain process. By how much does 
the kinetic chain length change if the concentration of initiator increases by a 
factor of 3.6 and the concentration of monomer decreases by a factor of 4.2?
20F.3(b) Consider a polymer formed by a chain process. By how much does 
the kinetic chain length change if the concentration of initiator decreases by a 
factor of 10.0 and the concentration of increases by a factor of 5.0?

Problems
20F.1 The isomerization of cyclopropane over a limited pressure range was 
examined in Problem 20B.14. If the Lindemann mechanism of unimolecular 
reactions is to be tested we also need data at low pressures. These have been 
obtained (H.O. Pritchard et al., Proc. R. Soc. A 217, 563 (1953)):

Test the Lindemann–Hinshelwood theory with these data.

20F.2 Calculate the average polymer length in a polymer produced by a chain 
mechanism in which termination occurs by a disproportionation reaction of 
the form M⋅ + ⋅M → M + :M.

20F.3 Derive an expression for the time dependence of the degree of 
polymerization for a stepwise polymerization in which the reaction is acid-
catalysed by the −COOH acid functional group. The rate law is  
d[A]/dt = −kr[A]2[OH].

TOPIC 20G Photochemistry

Discussion questions
20G.1 Consult literature sources and list the observed ranges of timescales 
during which the following processes occur: radiative decay of excited 
electronic states, molecular rotational motion, molecular vibrational 
motion, proton transfer reactions, energy transfer between fluorescent 

molecules used in FRET analysis, electron transfer events between complex 
ions in solution, and collisions in liquids.

20G.2 Discuss experimental procedures that make it possible to differentiate 
between quenching by energy transfer, collisions, and electron transfer.

Exercises
20G.1(a) In a photochemical reaction A → 2 B + C, the quantum yield 
with 500 nm light is 210 mol einstein−1 (1 einstein = 1 mol photons). After 
exposure of 300 mmol of A to the light, 2.28 mmol of B is formed. How 
many photons were absorbed by A?
20G.1(b) In a photochemical reaction A → B + C, the quantum yield with 
500 nm light is 120 mol einstein−1 (1 einstein = 1 mol photons). After exposure 

of 200 mmol A to the light, 1.77 mmol B is formed. How many photons were 
absorbed by A?

20G.2(a) Consider the quenching of an organic fluorescent species with 
τ0 = 6.0 ns by a d-metal ion with kQ = 3.0 × 108 dm3 mol−1 s−1. Predict the 
concentration of quencher required to decrease the fluorescence intensity of 
the organic species to 50 per cent of the unquenched value.

p/Torr 84.1 11.0 2.89 0.569 0.120 0.067

104 kr/s−1  2.98  2.23 1.54 0.857 0.392 0.303
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20G.2(b) Consider the quenching of an organic fluorescent species with 
τ0 = 3.5 ns by a d-metal ion with kQ = 2.5 × 109 dm3 mol−1 s−1. Predict the 

concentration of quencher required to decrease the fluorescence intensity of 
the organic species to 75 per cent of the unquenched value.

Problems
20G.1 In an experiment to measure the quantum yield of a photochemical 
reaction, the absorbing substance was exposed to 320 nm radiation from a 
87.5 W source for 28.0 min. The intensity of the transmitted radiation was 
0.257 that of the incident radiation. As a result of irradiation, 0.324 mol of 
the absorbing substance decomposed. Determine the quantum yield.

20G.2‡ Ultraviolet radiation photolyses O3 to O2 and O. Determine the rate at 
which ozone is consumed by 305 nm radiation in a layer of the stratosphere 
of thickness 1.0 km. The quantum yield is 0.94 at 220 K, the concentration 
about 8 nmol dm−3, the molar absorption coefficient 260 dm3 mol−1 cm−1, 
and the flux of 305 nm radiation about 1 × 1014 photons cm−2 s−1. Data from 
W.B. DeMore et al., Chemical kinetics and photochemical data for use in 
stratospheric modeling: Evaluation Number 11, JPL Publication 94–26 (1994).

20G.3 Dansyl chloride, which absorbs maximally at 330 nm and fluoresces 
maximally at 510 nm, can be used to label amino acids in fluorescence 
microscopy and FRET studies. Tabulated below is the variation of the 
fluorescence intensity of an aqueous solution of dansyl chloride with time after 
excitation by a short laser pulse (with I0 the initial fluorescence intensity). The 
ratio of intensities is equal to the ratio of the rates of photon emission.

(a) Calculate the observed fluorescence lifetime of dansyl chloride in water. 
(b) The fluorescence quantum yield of dansyl chloride in water is 0.70. What 
is the fluorescence rate constant?

20G.4 When benzophenone is exposed to ultraviolet radiation it is excited into 
a singlet state. This singlet changes rapidly into a triplet, which phosphoresces. 
Triethylamine acts as a quencher for the triplet. In an experiment in 
the solvent methanol, the phosphorescence intensity varied with amine 
concentration as shown below. A time-resolved laser spectroscopy experiment 
had also shown that the half-life of the fluorescence in the absence of 
quencher is 29 µs. What is the value of kQ?

20G.5 An electronically excited state of Hg can be quenched by N2 according 
to Hg*(g) + N2(g, v = 0) → Hg(g) + N2(g, v = 1) in which energy transfer from 
Hg* excites N2 vibrationally. Fluorescence lifetime measurements of samples 
of Hg with and without N2 present are summarized below (for T = 300 K):

You may assume that all gases are perfect. Determine the rate constant for the 
energy transfer process.

20G.6 An amino acid on the surface of an enzyme was labelled covalently 
with 1.5-I AEDANS and it is known that the active site contains a tryptophan 
residue. The fluorescence quantum yield of tryptophan decreased by 15 per 
cent due to quenching by 1.5-I AEDANS. What is the distance between the 
active site and the surface of the enzyme?

20G.7 The Förster theory of resonance energy transfer and the basis for the 
FRET technique can be tested by performing fluorescence measurements on 
a series of compounds in which an energy donor and an energy acceptor are 
covalently linked by a rigid molecular linker of variable and known length. L. 
Stryer and R.P. Haugland (Proc. Natl. Acad. Sci. USA 58, 719 (1967)) collected 
the following data on a family of compounds with the general composition 
dansyl-(l-prolyl)n-naphthyl, in which the distance R between the naphthyl 
donor and the dansyl acceptor was varied from 1.2 nm to 4.6 nm by increasing 
the number of prolyl units in the linker:

Are the data described adequately by eqn 20G.10? If so, what is the value of R0 
for the naphthyl–dansyl pair?

20G.8 The first step in plant photosynthesis is absorption of light by 
chlorophyll molecules bound to proteins known as ‘light-harvesting 
complexes’, where the fluorescence of a chlorophyll molecule is quenched by 
nearby chlorophyll molecules. Given that for a pair of chlorophyll a molecules 
R0 = 5.6 nm, by what distance should two chlorophyll a molecules be separated 
to shorten the fluorescence lifetime from 1 ns (a typical value for monomeric 
chlorophyll a in organic solvents) to 10 ps?

TOPIC 20H enzymes

Discussion questions
20H.1 Discuss the features, advantages, and limitations of the Michaelis–
Menten mechanism of enzyme action.

20H.2 A plot of the rate of an enzyme-catalysed reaction against  
temperature has a maximum, in an apparent deviation from the 
behaviour predicted by the Arrhenius equation (Topic 20D). Suggest  
an interpretation.

20H.3 Distinguish between competitive, non-competitive, and uncompetitive 
inhibition of enzymes. Discuss how these modes of inhibition may be 
detected experimentally.

20H.4 Some enzymes are inhibited by high concentrations of their own 
products. Sketch a plot of reaction rate against concentration of substrate for 
an enzyme that is prone to product inhibition.

t/ns 5.0 10.0 15.0 20.0

If/I0 0.45  0.21  0.11  0.05

[Q]/(mmol dm−3) 1.0 5.0 10.0

If/(arbitrary units) 0.41 0.25  0.16

pN atm
2

0 0= .

Relative fluorescence intensity 1.000 0.606  0.360  0.22  0.135

t/µs 0.0 5.0 10.0 15.0 20.0

pN atm
2

9 74 10 4= × −.

Relative fluorescence intensity 1.000 0.585 0.342 0.200  0.117

t/µs 0.0 3.0 6.0 9.0 12.0

R/nm 1.2 1.5 1.8 2.8 3.1 3.4 3.7 4.0 4.3 4.6

ηT 0.99 0.94 0.97 0.82 0.74 0.65 0.40 0.28 0.24 0.16
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Exercises
20H.1(a) Consider the base-catalysed reaction

( ) ( )

( ) (

1

2

AH BH both fast

A  AH product

a

a

b

+  →←  +

+  →

′
+ −

−

B A
k

k

k sslow)  
Deduce the rate law.
20H.1(b) Consider the acid-catalysed reaction

( ) ( )

( ) (

1

2

HA H HAH bothfast

HAH B BH AH sl

a

a

b

+  →← 

+  → +

+
′

+

+ +

k

k

k oow)  
Deduce the rate law.

20H.2(a) The enzyme-catalysed conversion of a substrate at 25 °C has 
a Michaelis constant of 0.046 mol dm−3. The rate of the reaction is 

1.04 mmol dm−3 s−1 when the substrate concentration is 0.105 mol dm−3. What 
is the maximum velocity of this reaction?
20H.2(b) The enzyme-catalysed conversion of a substrate at 25 °C has 
a Michaelis constant of 0.032 mol dm−3. The rate of the reaction is 
0.205 mmol dm−3 s−1 when the substrate concentration is 0.875 mol dm−3. 
What is the maximum velocity of this reaction?

20H.3(a) Consider an enzyme-catalysed reaction that follows Michaelis–
Menten kinetics with KM = 3.0 mmol dm−3. What concentration of a 
competitive inhibitor characterized by KI = 20 µmol dm−3 will reduce the rate 
of formation of product by 50 per cent when the substrate concentration is 
held at 0.10 mmol dm−3?
20H.3(b) Consider an enzyme-catalysed reaction that follows Michaelis–
Menten kinetics with KM = 0.75 mmol dm−3. What concentration of a 
competitive inhibitor characterized by KI = 0.56 mmol dm−3 will reduce the 
rate of formation of product by 75 per cent when the substrate concentration 
is held at 0.10 mmol dm−3?

Problems
20H.1 Michaelis and Menten derived their rate law by assuming a rapid 
pre-equilibrium of E, S, and ES. Derive the rate law in this manner, and 
identify the conditions under which it becomes the same as that based on 
the steady-state approximation (eqn 20H.1).

20H.2 (a) Use the Michaelis–Menten equation (eqn 20H.1) to generate two 
families of curves showing the dependence of v on [S]: one in which KM varies 
but vmax is constant, and another in which vmax varies but KM is constant. (b) 
Use eqn 20H.7 to explore the effect of competitive, uncompetitive, and non-
competitive inhibition on the shapes of the plots of v against [S] for constant 
KM and vmax. Use mathematical software, a spreadsheet, or the Living graphs 
on the web site of this book.

20H.3 For many enzymes, the mechanism of action involves the formation of 
two intermediates:

Show that the rate of formation of product has the same form as that shown in 
eqn 20H.1, but with vmax and KM given by

vmax
b c

b c
M

c a b

a b c

E
and= + = ′ +

+
k k
k k

K
k k k
k k k

[ ] ( )
( )

0

20H.4 The enzyme-catalysed conversion of a substrate at 25 °C has a Michaelis 
constant of 90 µmol dm−3 and a maximum velocity of 22.4 µmol dm−3 s−1 when 
the enzyme concentration is 1.60 nmol dm−3. (a) Calculate kcat and η. (b) Is 
the enzyme ‘catalytically perfect’?

20H.5 The following results were obtained for the action of an ATPase on ATP 
at 20 °C, when the concentration of the ATPase was 20 nmol dm−3:

Determine the Michaelis constant, the maximum velocity of the reaction, the 
turnover number, and the catalytic efficiency of the enzyme.

20H.6 Some enzymes are inhibited by high concentrations of their own 
substrates. (a) Show that when substrate inhibition is important the reaction 
rate v is given by

v
v= + +

max

M I/[S] S /1 0 0K K[ ]

where KI is the equilibrium constant for dissociation of the inhibited enzyme–
substrate complex. (b) What effect does substrate inhibition have on a plot of 
1/v against 1/[S]0?

Integrated activities
20.1 Autocatalysis is the catalysis of a reaction by the products. For example, 
for a reaction A → P it may be found that the rate law is v = kr[A][P] and the 
reaction rate is proportional to the concentration of P. The reaction gets 
started because there are usually other reaction routes for the formation of 
some P initially, which then takes part in the autocatalytic reaction proper. 
(a) Integrate the rate equation for an autocatalytic reaction of the form 
A → P, with rate law v = kr[A][P], and show that

[ ]
[ ]

( )P
P

e

e0

1

1
= +

+
b

b

at

at

where a = ([A]0 + [P]0)kr and b = [P]0/[A]0. Hint: Starting with the expression 
v = −d[A]/dt = kr[A][P], write [A] = [A]0 − x, [P] = [P]0 + x and then write the 
expression for the rate of change of either species in terms of x. To integrate 
the resulting expression, use integration by the method of partial fractions 

E + S → ES v = ka[E][S]

ES → E + S v = ka′ [ES]

ES → ES′ v = kb[ES]

ES′ → E + P v = kc[ES′]

[ATP]/(µmol dm−3) 0.60 0.80 1.4 2.0 3.0

v/(µmol dm−3 s−1) 0.81 0.97 1.30 1.47 1.69
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878 20 Chemical kinetics

(The chemist’s toolbox 20B.1). (b) Plot [P]/[P]0 against at for several values of 
b. Discuss the effect of autocatalysis on the shape of a plot of [P]/[P]0 against 
t by comparing your results with those for a first-order process, in which 
[ ] [ ]P / P e r

0 1= − −k t. (c) Show that for the autocatalytic process discussed  
in parts (a) and (b), the reaction rate reaches a maximum at tmax = 
 −(1/a) ln b. (d) An autocatalytic reaction A → P is observed to have the rate 
law d[P]/dt = kr[A]2[P]. Solve the rate law for initial concentrations [A]0 and 
[P]0. Calculate the time at which the rate reaches a maximum. (e) Another 
reaction with the stoichiometry A → P has the rate law d[P]/dt = kr[A][P]2; 
integrate the rate law for initial concentrations [A]0 and [P]0. Calculate the 
time at which the rate reaches a maximum.

20.2 Many biological and biochemical processes involve autocatalytic steps 
(Problem 20.1). In the SIR model of the spread and decline of infectious 
diseases the population is divided into three classes; the ‘susceptibles’, S, who 
can catch the disease, the ‘infectives’, I, who have the disease and can transmit 
it, and the ‘removed class’, R, who have either had the disease and recovered, 
are dead, are immune, or isolated. The model mechanism for this process 
implies the following rate laws:

d
d

SI
d
d

SI I
d
d

I
S
t

r
I
t

r a
R
t

a= − = − =
 

Which are the autocatalytic steps of this mechanism? Find the conditions on 
the ratio a/r that decide whether the disease will spread (an epidemic) or die 
out. Show that a constant population is built into this system, namely that 
S + I + R = N, meaning that the time scales of births, deaths by other causes, 
and migration are assumed large compared to that of the spread of the disease.

20.3‡ J. Czarnowski and H.J. Schuhmacher (Chem. Phys. Lett. 17, 235 (1972)) 
suggested the following mechanism for the thermal decomposition of F2O in 
the reaction 2 F2O(g) → 2 F2(g) + O2(g):

(a) Using the steady-state approximation, show that this mechanism is 
consistent with the experimental rate law −d[F2O]/dt = kr[F2O]2 + kr′[F2O]3/2. 
(b) The experimentally determined Arrhenius parameters in the range  
501–583 K are A = 7.8 × 1013 dm3 mol−1 s−1, Ea/R = 1.935 × 104 K for kr and A =  
2.3 × 1010 dm3 mol−1 s−1, Ea/R = 1.691 × 104 K for kr′. At 540 K, ΔfH<(F2O) =  
+24.41 kJ mol−1, D(F–F) = 160.6 kJ mol−1, and D(O–O) = 498.2 kJ mol−1. 
Estimate the bond dissociation energies of the first and second F–O bonds in 
F2O and the Arrhenius activation energy of reaction 2.

20.4 Express the root mean square deviation {〈M2〉 − 〈M〉2}1/2 of the molar mass 
of a condensation polymer in terms of the fraction p, and deduce its time-
dependence.

20.5 Calculate the ratio of the mean cube molar mass to the mean square 
molar mass in terms of (a) the fraction p, (b) the chain length.

20.6 Conventional equilibrium considerations do not apply when a reaction 
is being driven by light absorption. Thus the steady-state concentration of 
products and reactants might differ significantly from equilibrium values. For 
instance, suppose the reaction A → B is driven by light absorption, and that its 
rate is Ia, but that the reverse reaction B → A is bimolecular and second order 
with a rate kr[B]2. What is the stationary state concentration of B? Why does 
this ‘photostationary state’ differ from the equilibrium state?

20.7 The photochemical chlorination of chloroform in the gas phase has been 
found to follow the rate law d[CCl4]/dt = kr[Cl2]1/2Ia

1/2. Devise a mechanism 
that leads to this rate law when the chlorine pressure is high.

(1) F2O + F2O → F + OF + F2O ka

(2) F + F2O → F2 + OF kb

(3) OF + OF → O2 + F + F kc

(4) F + F + F2O → F2 + F2O kd
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chaPter 21

reaction dynamics

Now we are at the heart of chemistry. In this chapter we exam-
ine the details of what happens to molecules at the climax of 
reactions. Extensive changes of structure are taking place and 
energies the size of dissociation energies are being redistrib-
uted among bonds: old bonds are being ripped apart and new 
bonds are being formed.

As may be imagined, the calculation of the rates of such pro-
cesses from first principles is very difficult. Nevertheless, like 
so many intricate problems, the broad features can be estab-
lished quite simply. Only when we enquire more deeply do the 
complications emerge. Here we look at several approaches to 
the calculation of a rate constant for elementary bimolecular 
processes, ranging from electron transfer to chemical reactions 
involving bond breakage and formation. Although a great deal 
of information can be obtained from gas-phase reactions, many 
reactions of interest take place in condensed phases, and we 
also see to what extent their rates can be predicted.

21A collision theory

This Topic explores ‘collision theory’, the simplest quantitative 
account of reaction rates. The treatment can be used only for the 
discussion of reactions between simple species in the gas phase.

21B diffusion-controlled reactions

In this Topic we see that reactions in solution are classified into two 
types: ‘diffusion-controlled’ and ‘activation-controlled’. The former 
can be expressed quantitatively in terms of the diffusion equation.

21C transition-state theory

This Topic discusses ‘transition-state theory’, in which it is 
assumed that the reactant molecules form a complex that can 
be discussed in terms of the population of its energy levels. The 

theory inspires a thermodynamic approach to reaction rates, 
in which the rate constant is expressed in terms of thermody-
namic parameters. This approach is useful for parameterizing 
the rates of reactions in solution.

21D the dynamics of molecular 
collisions

The highest level of sophistication in the theoretical study of 
chemical reactions is in terms of potential energy surfaces and the 
motion of molecules on these surfaces. As we see in this Topic, 
such an approach gives an intimate picture of the events that 
occur when reactions occur and is open to experimental study.

21E electron transfer in homogeneous 
systems

In this Topic we use transition-state theory to examine the 
transfer of electrons in homogeneous systems, including those 
involving proteins.

21F Processes at electrodes

Electron transfer processes on the surface of electrodes are dif-
ficult to describe theoretically, but in this Topic we develop a 
useful phenomenological approach that lends insight into use-
ful experimental techniques and technological applications of 
electrochemistry.

What is the impact of this material?

The economic consequences of electron transfer reactions are 
almost incalculable. Most of the modern methods of generating 
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electricity are inefficient, and in Impact I21.1 we see how the 
development of special electrochemical cells known as ‘fuel 
cells’ could revolutionize our production and deployment of 
energy.

To read more about the impact of this 
material, scan the QR code, or go to  
bcs.whfreeman.com/webpub/chemistry/
pchem10e/impact/pchem-21-1.html
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21A collision theory

In this Topic we consider the bimolecular elementary reaction

A B P A Br+ → =v k [ ][ ]  (21A.1a)

where P denotes products. Our aim is to calculate the second-
order rate constant kr and to justify the form of the Arrhenius 
expression (Topic 20D):

k A E RT
r e a= − /

  arrhenius expression  (21A.1b)

where A is the ‘pre-exponential factor’ and Ea is the ‘activa-
tion energy’. The model is then improved by examining how 
the energy of a collision is distributed over all the bonds in the 
reactant molecule. This improvement helps to account for the 
value of the rate constant kb that appears in the Lindemann the-
ory of unimolecular reactions (Topic 20F).

21A.1 Reactive encounters

We can anticipate the general form of the expression for kr in 
eqn 21A.1a by considering the physical requirements for reac-
tion. We can expect the rate v to be proportional to the rate of 
collisions, and therefore to the mean speed of the molecules, 
vmean ∝ (T/M)1/2 where M is some combination of the molar 
masses of A and B; we also expect the rate to be proportional to 
their collision cross-section, σ, (Topic 1B) and to the number 
densities NA and NB of A and B:

v ∝ ∝σ σ( / ) ( / ) [ ][ ]/ /T M T M1 2
A B

1 2 A BN N  

However, a collision will be successful only if the kinetic energy 
exceeds a minimum value which we denote E′. This require-
ment suggests that the rate should also be proportional to a 
Boltzmann factor of the form e−E′/RT representing the fraction 
of collisions with at least the minimum required energy E′. 
Therefore,

v ∝ ′σ ( / ) [ ][ ]/ /T M E RT1 2 e A B−
 

and we can anticipate, by writing the reaction rate in the form 
given in eqn 21A.1, that

k T M E RT
r

1 2 e∝ ′σ ( / ) / /−
 

At this point, we begin to recognize the form of the Arrhenius 
equation, eqn 21A.1b, and identify the minimum kinetic energy 
E′ with the activation energy Ea of the reaction. This identifica-
tion, however, should not be regarded as precise, since collision 
theory is only a rudimentary model of chemical reactivity.

Contents

21a.1  Reactive encounters 881
(a) Collision rates in gases 882

brief illustration 21a.1: collision density 882
(b) The energy requirement 883

brief illustration 21a.2: the rate constant 884
(c)  The steric requirement 885

brief illustration 21a.3: the steric factor 885
example 21a.1: estimating a steric factor 885

21a.2 The RRK model 886
brief illustration 21a.4: the rrk model 887

Checklist of concepts 888
Checklist of equations 888

➤➤ Why do you need to know this material?

A major component of chemistry is the study of the 
mechanisms of chemical reactions. One of the earliest 
approaches, which continues to give insight into the 
details of mechanisms, is collision theory.

➤➤ What is the key idea?
According to collision theory, in a bimolecular gas-phase 
reaction, a reaction takes place on the collision of reactants 
provided their relative kinetic energy exceeds a threshold 
value and certain steric requirements are fulfilled.

➤➤ What do you need to know already?
This Topic draws on the kinetic theory of gases (Topic 1B) 
and extends the account of unimolecular reactions (Topic 
20F). The latter uses combinatorial arguments like those 
described in Topic 15A.
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882 21 Reaction dynamics

Not every collision will lead to reaction even if the energy 
requirement is satisfied, because the reactants may need to col-
lide in a certain relative orientation. This ‘steric requirement’ 
suggests that a further factor, P, should be introduced, and that

k P T M E RT
r

1 2 e∝ ′σ ( / ) / /−
 (21A.2)

As we shall see in detail below, this expression has the form pre-
dicted by collision theory. It reflects three aspects of a success-
ful collision:

k P T M E RT
r e∝ ′

Steric
requirement

Encounter
rate

Mi

� � �� ��
σ ( / ) / /1 2 −

nnimum
energy

requirement���

 

(a) Collision rates in gases

We have anticipated that the reaction rate, and hence kr, 
depends on the frequency with which molecules collide. The 
collision density, ZAB, is the number of (A,B) collisions in a 
region of the sample in an interval of time divided by the vol-
ume of the region and the duration of the interval. The fre-
quency of collisions of a single molecule in a gas was calculated 
in Topic 1B (eqn 1B.11a, z = σvNA). As shown in the following 
Justification, that result can be adapted to deduce that

Z
kT

NAB A A B= 





σ µ
8

1 2

2

π

/

[ ][ ]
 

KMT  collision density  (21A.3a)

where σ is the collision cross-section (Fig. 21A.1)

σ = = +πd d d d2
A B

1
2 ( )   collision cross-section  (21A.3b)

dA and dB are the diameters of A and B, respectively, and μ is the 
reduced mass,

μ = +
m m

m m
A B

A B  
 reduced mass  (21A.3c)

For like molecules μ = 1
2 mA  and at a molar concentration [A]

Z
kT

m
N

kT
m

NAA
A

A
A

AA A= 





= 





1
2

1 2

2 2

1 2

2 216 4σ σπ π

/ /

[ ] [ ]
 

(21A.3d)

The (blue) factor of 1
2  is included to avoid double counting of 

collisions in this instance. If the collision density is required in 
terms of the pressure of each gas J, then we use [J] = nJ/V = pJ/RT.

Justification 21A.1 The collision density

It follows from Topic 1B that the collision frequency, z, for a 
single A molecule of mass mA in a gas of other A molecules 
is z = σvrelNA, where NA is the number density of A molecules 
and vrel is their relative mean speed. As indicated in Topic 1B, 
vrel = 21/2vmean with vmean = (8kT/πm)1/2. For future convenience, 
it is sensible to introduce μ = 1

2 m  (for like molecules of mass 
m), and then to write vrel = (8kT/πμ)1/2. This expression also 
applies to the mean relative speed of dissimilar molecules pro-
vided that μ is interpreted as their reduced mass.

The total collision density is the collision frequency multi-
plied by the number density of A molecules:

Z zAA A rel A= =1
2

1
2

2N Nσ v  
The factor of 1

2
 has been introduced to avoid double counting 

of the collisions (so one A molecule colliding with another A 
molecule is counted as one collision regardless of their actual 
identities). For collisions of A and B molecules present at num-
ber densities NA and NB, the collision density is

ZAB A Brel=σ v N N  
The factor of 1

2
 has been discarded because now we are consid-

ering an A molecule colliding with any of the B molecules as a 
collision. The number density of a species J is NJ = NA[J], where 
[J] is their molar concentration and NA is Avogadro’s constant. 
Equation 21A.3 then follows.

Brief illustration 21A.1  Collision density

Collision densities may be very large. For example, in nitrogen 
at 25 °C and 1.0 bar, when [N2] ≈ 40 mol m−3, with σ = 0.43 nm2 
and m mN u28 2

2
0= .  the collision density is

ZN N m
JK K

1.62 2
4 3 10

4 1 381 10 298
28 02

19 2
23 1

= × × × × ×
× ×

−
− −

( . )
( . ) ( )

. (π 661 10 kg

mol mol m

27×






× × × = ×

−

− −

)

( . ) ( ) .

/1 2

23 1 2 3 26 022 10 40 8 4 10034 3 1m s− −

Even in 1 cm3, there are over 8 × 1016 collisions in each 
picosecond.

Self-test 21A.1 Calculate the collision density in molecular 
hydrogen under the same conditions.

Answer: ZH H2 2
 = 2.0 × 1035 m−3 s−1

A

B

Area σ

dA

dB

d

Figure 21A.1 The collision cross-section for two molecules 
can be regarded to be the area within which the projectile 
molecule (A) must enter around the target molecule (B) in order 
for a collision to occur. If the diameters of the two molecules 
are dA and dB, the radius of the target area is d d d= +1

2 ( )A B  and 
the cross-section is πd2.
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21A Collision theory  883

(b) The energy requirement
According to collision theory, the rate of change in the 
number density, NA, of A molecules is the product of the 
collision density and the probability that a collision occurs 
with sufficient energy. The latter condition can be incorpo-
rated by writing the collision cross-section σ as a function 
of the kinetic energy ε of approach of the two colliding spe-
cies, and setting the cross-section, σ (ε), equal to zero if the 
kinetic energy of approach is below a certain threshold value, 
εa. Later, we shall identify NAεa as Ea, the (molar) activation 
energy of the reaction. Then, for a collision between A and 
B with a specific relative speed of approach vrel (not, at this 
stage, a mean value),

d
d

A
rel A B

N N N
t

= −σ ε( )v
 

(21A.4a)

or, in terms of molar concentrations,

d[A]
d

A Brel At
N= −σ ε( ) [ ][ ]v

 
(21A.4b)

The kinetic energy associated with the relative motion of the 
two particles takes the form ε µ= 1

2
2vrel  when the centre-of-mass 

coordinates are separated from the internal coordinates of each 
particle. Therefore the relative speed is given by v ( / ) /

rel
1 22= ε µ .  

At this point we recognize that a wide range of approach ener-
gies ε is present in a sample, so we should average the expres-
sion just derived over a Boltzmann distribution of energies f(ε), 
and write

d[A]
d

d A Brel At
f N= −








∞

∫ σ ε ε ε( ) ( ) [ ][ ]v
0  

(21A.5)

and hence recognize the rate constant as

k N fr A rel d=
∞

∫ σ ε ε ε( ) ( )v
0  

 rate constant  (21A.6)

Now suppose that the reactive collision cross-section is zero 
below εa. We show in the following Justification that, above εa, 
σ(ε) varies as

σ ε ε
ε σ( )= −





1 a

 
 energy dependence of σ  (21A.7)

with the energy-independent σ given by eqn 21A.3b. This form 
of the energy-dependence for σ (ε) is broadly consistent with 
experimental determinations of the reaction between H and D2 
as determined by molecular beam measurements of the kind 
described in Topic 21D (Fig. 21A.2).

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

σ(
ε)

/σ

ε/εa

1.7 × 104 pm2, 1.95 eV

1.0 × 104 pm2, 0.90 eV

Figure 21A.2 The variation of the reactive cross-section with 
energy as expressed by eqn 21A.7. The data points are from 
experiments on the reaction H + D2 → HD + D (K. Tsukiyama 
et al., J. Chem. Phys. 84, 1934 (1986)).

Justification 21A.2 The collision cross-section

Consider two colliding molecules A and B with relative 
speed vrel and relative kinetic energy ε µ= 1

2
2vrel  (Fig. 21A.3). 

Intuitively, we expect that a head-on collision between A and 
B will be most effective in bringing about a chemical reaction. 
Therefore, vrel,A−B, the magnitude of the relative velocity com-
ponent parallel to an axis that contains the vector connecting 
the centres of A and B, must be large. From trigonometry and 
the definitions of the distances a and d and the angle θ given 
in Fig. 21A.3, it follows that

v v vrel A B rel rel,

/

cos− = = −





θ d a
d

2 2

2

1 2

We assume that only the kinetic energy associated with the 
head-on component of the collision, εA–B, can lead to a chemi-
cal reaction. After squaring both sides of this equation and 
multiplying by 1

2 μ, it follows that

ε εA B− = × −d a
d

2 2

2  

d

A

B
a

θ

vrel

vrel, A–B

(d 2 – a2)1/2

Figure 21A.3 The parameters used in the calculation of the 
dependence of the collision cross-section on the relative 
kinetic energy of two molecules A and B.
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With the energy dependence of the collision cross-section 
established, we can evaluate the integral in eqn 21A.6. In the 
following Justification we show that

k N E RT
r A rele a= −σ v /

 Collision theory  rate constant  (21A.8)

Equation 21A.8 has the Arrhenius form k A E RT
r e a= − /  pro-

vided the exponential temperature dependence dominates the 
weak square-root temperature dependence of the pre-exponen-
tial factor. It follows that we can identify (within the constraints 
of collision theory) the activation energy, Ea, with the mini-
mum kinetic energy along the line of approach that is needed 
for reaction, and that the pre-exponential factor is a measure of 
the rate at which collisions occur in the gas.

The simplest procedure for calculating kr is to use for σ the 
values obtained for non-reactive collisions (for example, typi-
cally those obtained from viscosity measurements) or from 
tables of molecular radii. If the collision cross-sections of A 
and B are σ A A= πd2  and σ B B= πd2, then an approximate value 
of the AB cross-section can be estimated from σ  = π d2, with 
d d d= +1

2 ( )A B . That is,

σ σ σ≈ +1
4

1 2 1 2 2( )/ /
A B  

Justification 21A.3 The rate constant

The Maxwell–Boltzmann distribution of molecular speeds is 
eqn 1B.4 of Topic 1B:

f
kT

kT( )
/

/v v v vvd e d= 





−4
2

3 2

2 22π π
μ μ

 
(We have replaced M/R by μ/k.) This expression may be writ-
ten in terms of the kinetic energy, ε, by writing ε µ= 1

2 v2; then 
dv= dε/(2με)1/2, when it becomes

f
kT

kT

kT( )
/

/
/v vd e

d= 









 ( )
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−4
2

2

2

2
1

3 2

1 2π π

π π

µ ε
µ

ε
µε

ε




=−
3 2

1 2

/

/ / ( )ε ε ε εεe d dkT f
 

The integral we need to evaluate is therefore

σ ε ε ε σ ε ε
µ

ε µ

( ) ( ) ( )
/

0

3 2

0
2

1 2∞ ∞

∫ ∫= 











vrel d

(2 / )1/2


f
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π π 
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−
∞

∫
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1 2

0

8 1

/
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/

/( )

ε ε
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ε

ε

e d

e d
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To proceed, we introduce the approximation for σ(ε) in eqn 
21A.7 and evaluate

εσ ε ε σ ε ε
ε ε

σ

ε ε

ε

σ ε ε
( )e d e d

  

a

a

−
∞

−
∞

∫ ∫= −





=

= <
/ /kT kT

0
1

0 for a

εε ε ε ε

σ

ε

ε

ε

ε

ε

e d e d

e

a a
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−
∞

−
∞

−
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=

∫ ∫/ /

( )

kT kT

kT
Integral E.1

2 aa /kT

 

It follows that

σ ε ε ε σ µ
ε( ) ( )

/

/vrel d e af
kT kT= 





∞
−∫0

1 2
8
π

 

as in eqn 21A.8 (with εa/kT = Ea/RT).

Brief illustration 21A.2 The rate constant

To estimate the rate constant for the reaction H2 + C2H4 → C2H6 
at 628 K we f irst ca lculate the reduced mass using 
m(H2) = 2.016mu and m(C2H4) = 28.05mu. A straightforward cal-
culation gives μ = 3.123 × 10−27 kg. It then follows that

8 8 1 381 10 628
3 123 10

1 2 23 1

27

kT
π πμ







= × × ×
× ×

− −

−

/
( . ) ( )

( .
JK K

kg))
.

/






= −
1 2

12 65…kms
 

From Table 1B.1, σ(H2) = 0.27 nm2 and σ(C2H4) = 0.64 nm2, 
giving σ(H2,C2H4) ≈ 0.44 nm2. The activation energy, Table 
20D.1, is large: 180 kJ mol−1. Therefore,

kr m ms mol

e

= × × …× × ×

×

− − −

−

( . ) ( . ) ( . )
( .

4 4 10 2 65 10 6 022 1019 2 3 1 23 1

1 800 10 8 3145 628

8 3 1 1

5 1 1 1

7 04 10

× ×

− −

− − −

= …×

J mol J K mol K

m mol s

)/( . ) ( )

.

AA� ����� �����
× = ×− … − − −e m mol s34 4 7 3 1 17 5 10. .

or 7.5 × 10−4 dm3 mol−1 s−1.

Self-test 21A.2 Evaluate the rate constant for the reaction 
NO + Cl2 → NOCl + Cl at 298 K from σ (NO) = 0.42 nm2 and 
σ(Cl2) = 0.93 nm2 and data in Table 1B.1.

Answer: 2.7 × 10−4 dm3 mol−1 s−1

The existence of an energy threshold, εa, for the formation of 
products implies that there is a maximum value of a, amax, 
above which reaction does not occur. Setting a = amax and 
εA–B = εa gives

a dmax
a2 21= −





ε
ε

Substitution of σ(ε) for πamax
2  and σ for πd2 in the equation 

above gives eqn 21A.7. Note that the equation can be used only 
when ε > εa.
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(c) The steric requirement
Table 21A.1 compares some values of the pre-exponential fac-
tor calculated from the collisional data in Table 1B.1 with val-
ues obtained from Arrhenius plots. One of the reactions shows 
fair agreement between theory and experiment, but for others 
there are major discrepancies. In some cases the experimental 
values are orders of magnitude smaller than those calculated, 
which suggests that the collision energy is not the only crite-
rion for reaction and that some other feature, such as the rela-
tive orientation of the colliding species, is important. Moreover, 
one reaction in the table has a pre-exponential factor larger 
than theory, which seems to indicate that the reaction occurs 
more quickly than the particles collide!

The disagreement between experiment and theory can be 
eliminated by introducing a steric factor, P, and expressing 
the reactive cross-section, σ *, as a multiple of the collision 
cross-section, σ * = Pσ (Fig. 21A.4). Then the rate constant 
becomes

k P N
kT E RT

r A e a= 





−σ µ
8

1 2

π

/

/

 
(21A.9)

This expression has the form we anticipated in eqn 21A.2. The 
steric factor is normally found to be several orders of magni-
tude smaller than 1.

An example of a reaction for which it is possible to estimate 
the steric factor is K + Br2 → KBr + Br, with the experimental 
value P = 4.8. In this reaction, the distance of approach at which 
reaction occurs appears to be considerably larger than the 
distance needed for deflection of the path of the approaching 
molecules in a non-reactive collision. It has been proposed that 
the reaction proceeds by a harpoon mechanism. This brilliant 
name is based on a model of the reaction which pictures the 
K atom as approaching a Br2 molecule, and when the two are 
close enough an electron (the harpoon) flips across from K to 
Br2. In place of two neutral particles there are now two ions, so 
there is a Coulombic attraction between them: this attraction 
is the line on the harpoon. Under its influence the ions move 
together (the line is wound in), the reaction takes place, and 
KBr + Br emerge. The harpoon extends the cross-section for the 
reactive encounter, and the reaction rate is significantly under-
estimated by taking for the collision cross-section the value for 
simple mechanical contact between K and Br2.

Example 21A.1 Estimating a steric factor

Estimate the value of P for the harpoon mechanism by calcu-
lating the distance at which it becomes energetically favour-
able for the electron to leap from K to Br2. Take the sum of the 
radii of the reactants (treating them as spherical) to be 400 pm.

Method Begin by identifying al l the contributions to 
the energy of interaction between the colliding species. 
There are three contributions to the energy of the process 
K Br K  Br2+ ++ −→ 2 . The first is the ionization energy, I, of K. 
The second is the electron affinity, Eea, of Br2. The third is the 

Brief illustration 21A.3 The steric factor

It is found experimentally that the pre-exponential factor for the 
reaction H2 + C2H4 → C2H6 at 628 K is 1.24 × 106 dm3 mol−3 s−1. 
In Brief illustration 21A.2 we calculated the result that can be 
expressed as A = 7.04… × 1011 dm3 mol−1 s−1. It follows that the 
steric factor for this reaction is

P
A
A

= = ×
…×

− −
experimental

calculated

dm mol s
dm

1 24 10
7 04 10

6 3 1 1

11

.
. 33 1 1

61 8 10
mol s− −

−≈ ×.

The very small value of P is one reason why catalysts are 
needed to bring this reaction about at a reasonable rate. As a 
general guide, the more complex the reactant molecules, the 
smaller the value of P.

Self-test 21A.3 It is found for the reaction NO + Cl2 → NOCl + Cl 
that A = 4.0 × 109 dm3 mol−1 s−1 at 298 K. Estimate the P factor for 
the reaction (see Self–test 21A.2).

Answer: 0.019

Table 21A.1* Arrhenius parameters for gas-phase reactions

A/(dm3 mol−1 s−1) Ea/(kJ mol−1) P

Experiment Theory

2 NOCl →  
2 NO + 2 Cl

9.4 × 109 5.9 × 1010 102 0.16

2 ClO → Cl2 + O2 6.3 × 107 2.5 × 1010 0 2.5 × 10−3

H2 + C2H4 → C2H6 1.24 × 106 7.4 × 1011 180 1.7 × 10−6

K + Br2 → KBr + Br 1.0 × 1012 2.1 × 1011 0 4.8

* More values are given in the Resource section.

Area σ*

Area σ

Products

Deflected reactant
molecule

Figure 21A.4 The collision cross-section is the target area 
that results in simple deflection of the projectile molecule; the 
reactive cross-section is the corresponding area for chemical 
change to occur on collision.
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Example 21A.1 illustrates two points about steric factors. 
First, the concept of a steric factor is not wholly useless because 
in some cases its numerical value can be estimated. Second, and 
more pessimistically, most reactions are much more complex 
than K + Br2, and we cannot expect to obtain P so easily.

21A.2 The RRK model

The steric factor P can also be estimated for unimolecular 
gas-phase reactions (Topic 20F), by a calculation based on 
the Rice–Ramsperger–Kassel model (RRK model), which 
was proposed in 1926 by O.K. Rice and H.C. Ramsperger and 
almost simultaneously by L.S. Kassel. The model has been elab-
orated, largely by R.A. Marcus, into the ‘RRKM model’. Here we 
outline Kassel’s original approach to the RRK model; the details 
are set out in the following Justification. The essential feature 

of the model is that although a molecule might have enough 
energy to react, that energy is distributed over all the modes 
of motion of the molecule, and reaction will occur only when 
enough of that energy has migrated into a particular location 
(such as a particular bond) in the molecule. This distribution 
effect leads to a P factor of the form

P
E
E

s

= −






−

1

1
*

 
 rrk theory  (21A.10a)

where s is the number of modes of motion over which the 
energy E may be dissipated and E* is the energy required for 
the bond of interest to break. The resulting Kassel form of the 
unimolecular rate constant for the decay of A* to products is

k E
E
E

k E E

s

b b

*
*for ( )= −







≥
−

1

1

 
 kassel form  (21A.10b)

where kb is the rate constant used in the original Lindemann 
theory for the decomposition of the activated intermediate 
(eqn 20F.8 of Topic 20F).

Justification 21A.4 The RRK model of unimolecular 
reactions

To set up the RRK model, we suppose that a molecule con-
sists of s identical harmonic oscillators, each of which has 
frequency ν. In practice, of course, the vibrational modes of 
a molecule have different frequencies, but assuming that they 
are all the same is a reasonable first approximation. Next, we 
suppose that the vibrations are excited to a total energy E = nhν 
and then set out to calculate the number of ways N in which 
the energy can be distributed over the oscillators.

We can represent the n quanta as follows:

,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,, ,,,…

These quanta must be put in s containers (the s oscillators), 
which can be represented by inserting s − 1 walls, denoted by  . 
One such distribution is

,,,,,,,, ,,,,,,,,,,,,,,,

,,,,,,,,, ,,,

| | || | | |||

| |…

The total number of arrangements of each quantum and wall 
(of which there are n + s −1 in all) is (n + s − 1)! where, as usual, 
x! = x(x − 1)…1. However, the n! arrangements of the n quanta 
are indistinguishable, as are the (s − 1)! arrangements of the 
s − 1 walls. Therefore, to find N we must divide (n + s − 1)! by 
these two factorials. It follows that

N
n s
n s

= + −
−

( )!
!( )!

1
1  

Coulombic interaction energy between the ions when they 
have been formed: when their separation is R, this energy is 
−e2/4πε0R. The electron f lips across when the sum of these 
three contributions changes from positive to negative (that is, 
when the sum is zero) and becomes energetically favourable.

Answer The net change in energy when the transfer occurs at 
a separation R is

E I E
e

R
= − −ea

2

04πε  
The ionization energy I is larger than Eea, so E becomes nega-
tive only when R has decreased to less than some critical value 
R* given by

R
e
I E

= −
2

04πε ( )ea  
When the particles are at this separation, the harpoon shoots 
across from K to Br2, so we can identify the reactive cross-sec-
tion as σ* = πR*2. This value of σ* implies that the steric factor 
is

P
R
d

e
d I E

= = = −






σ
σ ε

* *

ea

2

2

2

0

2

4π ( )
 

where d = R(K) + R(Br2), the sum of the radii of the spherical 
reactants. With I = 420 kJ mol−1 (corresponding to 0.70 aJ), 
Eea ≈ 250 kJ mol−1 (corresponding to 0.42 aJ), and d = 400 pm, 
we find P = 4.2, in good agreement with the experimental 
value (4.8).

Self-test 21A.4 Estimate the value of P for the harpoon reac-
tion between Na and Cl2 for which d ≈ 350 pm; take Eea ≈ 230 kJ 
mol−1.

Answer: 2.2
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The energy dependence of the rate constant given by eqn 
21A.10b is shown in Fig. 21A.5 for various values of s. We see 
that the rate constant is smaller at a given excitation energy if 
s is large, as it takes longer for the excitation energy to migrate 
through all the oscillators of a large molecule and accumulate in 
the critical mode. As E becomes very large, however, the term 
in parentheses approaches 1, and kb(E) becomes independent 
of the energy and the number of oscillators in the molecule, as 
there is now enough energy to accumulate immediately in the 
critical mode regardless of the size of the molecule.

Brief illustration 21A.4 The RRK model

In Brief illustration 21A.3 we calculated a value of P = 1.8 × 10−6 
for the reaction H2 + C2H4 → C2H6. Although this is not a uni-
molecular process, it is interesting to analyse it on the basis 
of the RRK theory because in some sense the collision energy 
must accumulate in a region where bonds are broken and 

The distribution of the energy throughout the molecule 
means that it is too sparsely spread over all the modes for any 
particular bond to be sufficiently highly excited to undergo 
dissociation. We suppose that a bond will break only if it is 
excited to at least an energy E* = n*hν. Therefore, we isolate one 
critical oscillator as the one that undergoes dissociation if it 
has at least n* of the quanta, leaving up to n − n* quanta to be 
accommodated in the remaining s − 1 oscillators (and there-
fore with s − 2 walls in the partition in place of the s −1 walls we 
used above). For example, consider 28 quanta distributed over 
six oscillators, with excitation by at least six quanta required 
for dissociation. Then all the following partitions will result in 
dissociation:

,,,,,,,,,,,,,,,,,,,,,,, ,,,,,

,,,,,,,,,,,,,,,,,,,,,,

| | | ||

| | | ,, ,,,,,

,,,,,,,,,,,,,,, ,,,,,,,,,,,,,

||

| | | ||

    

(The leftmost partition is the critical oscillator.) However, 
these partitions are equivalent to

,,,,,,

,,,,,, ,

,,,,,,,,,,,,,,,,, ,,,,,

,,,,,,,,,,,,,,,

| | | ||

| | | ,, ,,,,,

,,,,,,,,,,,,,,, ,,,,,,,,,,, ,,

||

| | | ||

    

and we see that we have the problem of permuting 28 − 6 = 22 
(in general, n − n*) quanta and five (in general, s − 1) walls, 
and therefore a total of 27 (in general, n − n* + s − 1 objects). 
Therefore, the calculation is exactly like the one above for N, 
except that we have to find the number of distinguishable per-
mutations of n − n* quanta in s containers (and therefore s − 1 
walls). The number N* is therefore obtained from the expres-
sion for N by replacing n by n − n* and is

N
n n s
n n s

* *

*

( )!
( )!( )!

= − + −
− −

1
1

From the preceding discussion we conclude that the probabil-
ity that one specific oscillator will have undergone sufficient 
excitation to dissociate is the ratio N*/N, which is

P
N
N

n n n s
n n n s

= = − + −
− + −

* *

*

!( )!
( )!( )!

1
1  

This equation is still awkward to use, even when written out in 
terms of its factors:

P
n n n

n n n n
n n s n n s

n s
= − − …

− − − … × − + − − + − …
+

( )( )
( )( )

( )( )
(* *

* *1 2 1
1 1

1 2 1
−− + − …

= − + − − + − … − +
+ − + − …

1 2 1

1 2 1
1 2

)( )

( )( ) ( )
( )( )

* * *

n s

n n s n n s n n
n s n s (( )( )n n+ +2 1

However, because s − 1 is small (in the sense s − 1 ≪ n − n*), we 
can approximate this expression by

P
n n n n n n

n n n
= − − … −

…

−

−

( )( ) ( )
( )( ) ( )

* * *

s

s

1 factors

1 f

 

 

� ����� �����

aactors
� �� ��

= −





−
n n

n

s
*

1

An alternative derivation of this expression for P is developed 
in Problem 21A.7. Because the energy of the excited molecule 
is E = nhν and the critical energy is E* = n*hν, this expression 
may be written

P
E
E

s

= −





−

1
1

*

as in eqn 21A.10.
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Figure 21A.5 The energy dependence of the rate constant 
given by eqn 21A.10b for three values of s.
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Checklist of concepts

☐ 1. In collision theory, it is supposed that the rate is pro-
portional to the collision frequency, a steric factor, and 
the fraction of collisions that occur with at least the 
kinetic energy Ea along their lines of centres.

☐ 2. The collision density is the number of collisions in 
a region of the sample in an interval of time divided 
by the volume of the region and the duration of the 
interval.

☐ 3. The activation energy is the minimum kinetic energy 
along the line of approach of reactant molecules that is 
required for reaction.

☐ 4. The steric factor is an adjustment that takes into 
account the orientational requirements for a successful 
collision.

☐ 5. For unimolecular reactions, the steric factor can be 
computed by using the RRK model.

Checklist of equations

formed. Thus, C2H4 has six atoms and therefore s = 12 vibra-
tional modes. We can estimate the ratio E*/E by solving

1 1 8 10 1 1 8 10 0 70
11

6 6 1 11−





= × = − × =− −E
E

E
E

* *
. ( . ) ./or

This result suggests in one interpretation that the energy 
needed to proceed in the reaction (identified here with the 
energy to break the carbon-carbon bond in C2H4) is typically 

70 per cent of the energy of a typical collision. If all eight atoms 
are taken to be involved in sharing the energy of the collision, 
the ratio works out as 0.54.

Self-test 21A.5 Apply the same analysis to the reaction in 
Self-test 21A.3, where it is found that P = 0.019 for NO + Cl2 → 
NOCl + Cl. Take the number of atoms in the complex to be 4, 
so s = 6.

Answer: 0.55

Property Equation Comment Equation number

Collision density Z kT NAB A A B=σ µ( / ) [ ][ ]/8 1 2 2π Unlike molecules, KMT (kinetic molecular theory) 21A.3a

Z kT m NAA A A A=σ ( / ) [ ]/4 1 2 2 2π Like molecules, KMT 21A.3d

Energy-dependence of σ σ (ε) = (1 − εa/ε)σ ε  ≥ εa, 0 otherwise 21A.7

Rate constant k P N kT E RT
r A e a= −σ µ( )/ / /8 1 2π KMT, collision theory 21A.9

Steric factor P = (1 − E*/E)s−1 RRK theory 21A.10a
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21B diffusion-controlled reactions

To consider reactions in solution we have to imagine processes 
that are entirely different from those in gases. No longer are 
there collisions of molecules hurtling through space; now there 
is the jostling of one molecule through a dense but mobile col-
lection of molecules making up the fluid environment.

21B.1 Reactions in solution

Encounters between reactants in solution occur in a very dif-
ferent manner from encounters in gases. The encounters 
of reactant molecules dissolved in solvent are considerably 

less frequent than in a gas. However, because a molecule also 
migrates only slowly away from a location, two reactant mol-
ecules that encounter each other stay near each other for much 
longer than in a gas. This lingering of one molecule near another 
on account of the hindering presence of solvent molecules is 
called the cage effect. Such an encounter pair may accumulate 
enough energy to react even though it does not have enough 
energy to do so when it first forms. The activation energy of a 
reaction is a much more complicated quantity in solution than 
in a gas because the encounter pair is surrounded by solvent 
and we need to consider the energy of the entire local assembly 
of reactant and solvent molecules.

(a) Classes of reaction
The complicated overall process can be divided into simpler 
parts by setting up a simple kinetic scheme. We suppose that 
the rate of formation of an encounter pair AB is first order in 
each of the reactants A and B:

A B AB A Bd+ → =v k [ ][ ]  

As we shall see, kd (where the d signifies diffusion) is deter-
mined by the diffusional characteristics of A and B. The 
encounter pair can break up without reaction or it can go on to 
form products P. If we suppose that both processes are pseudo-
first-order reactions (with the solvent perhaps playing a role), 
then we can write

AB A B AB

AB P AB
d

a

→ + = ′
→ =

v

v

k

k

[ ]

[ ]  

The concentration of AB can now be found from the equation 
for the net rate of change of concentration of AB:

d AB
d

A B AB ABd ad

[ ]
[ ][ ][ ] [ ]

t
k kk= − − =′ 0

 
where we have applied the steady-state approximation (Topic 
20E). This expression solves to

[ ]
[ ][ ]

AB
A Bd

a d

= + ′
k
k k  

The rate of formation of products is therefore

d P
d

AB A Ba r r
a d

a

[ ]
[ ] [ ][ ]

t
k k k

k k
k k

= = = + ′d  
(21B.1)

➤➤ Why do you need to know this material?
Most chemical reactions take place in solution and for a 
thorough grasp of chemistry it is important to understand 
what controls their rates and how those rates can be modified.

➤➤ What is the key idea?
There are two limiting types of chemical reaction mechanism 
in solution: diffusion control and activation control.

➤➤ What do you need to know already?
This Topic makes use of the steady-state approximation 
(Topic 20E) and draws on the formulation and solution of 
the diffusion equation (Topic 19C). At one point it uses the 
Stokes–Einstein relation (Topic 19B).
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890 21 Reaction dynamics

Two limits can now be distinguished. If the rate of separation 
of the unreacted encounter pair is much slower than the rate 
at which it forms products, then ′k kd  a  and the effective rate 
constant is

k
k k
k

kr
a d

a
d≈ =

 
 diffusion-controlled limit  (21B.2a)

In this diffusion-controlled limit, the rate of reaction is gov-
erned by the rate at which the reactant molecules diffuse 
through the solvent. Because the combination of radicals 
involves very little activation energy, radical and atom recombi-
nation reactions are often diffusion-controlled. An activation-
controlled reaction arises when a substantial activation energy 
is involved in the reaction AB → P. Then k ka  ′d and

k
k k

k K
kr
a d

a
d

≈ =′  
 activation-controlled limit  (21B.2b)

where K is the equilibrium constant for A + B ⇌ AB. In this 
limit, the reaction proceeds at the rate at which energy accu-
mulates in the encounter pair from the surrounding solvent. 
Some experimental data are given in Table 21B.1.

(b) Diffusion and reaction
The rate of a diffusion-controlled reaction is calculated by con-
sidering the rate at which the reactants diffuse together. As 
shown in the following Justification, the rate constant for a reac-
tion in which the two molecules react if they come within a dis-
tance R* of one another is

k R DNd A4= π *  (21B.3)

where D is the sum of the diffusion coefficients of the two reac-
tant species in the solution.

Justification 21B.1 Solution of the radial diffusion 
equation

The general form of the diffusion equation (Topic 19A) corres-
ponding to motion in three dimensions is DB∇2[B](r,t) =  
∂[B](r,t)/∂t; therefore, the concentration of B when the sys-
tem has reached a steady state (∂[B](r,t)]/∂t = 0) satisfies ∇2[B]
(r) = 0, with the concentration of B now depending only on 
location not time. For a spherically symmetrical system, ∇2 
can be replaced by radial derivatives alone (see Table 7B.1), so 
the equation satisfied by [B](r), as [B](r) can now be written, is

d B
d

d B
d

2

2

2
0

[ ]( ) [ ]( )r
r r

r
r

+ =

The general solution of this equation is

[ ]( )B r a
b
r

= +
 

as may be verified by substitution. We need two boundary 
conditions to pin down the values of the two constants (a and 
b). One condition is that [B](r) has its bulk value [B] as r → ∞. 
The second condition is that the concentration of B is zero at 
r = R*, the distance at which reaction occurs. It follows that 
a = [B] and b = −R*[B], and hence that (for r ≥ R*)

[ ]( ) [ ]
*

B Br
R
r

= −






1

Figure 21B.1 il lustrates the variation of concentration 
expressed by this equation.

The rate of reaction is the (molar) flux, J, of the reactant B 
towards A multiplied by the area of the spherical surface of 
radius R* through which B must pass:

Rate of reaction 4 2= πR J*  

From Fick’s first law (eqn 19C.3 of Topic 19C, J = −D∂[J]/∂x), 
the flux of B towards A is proportional to the concentration 
gradient, so at a radius R*:

J D
r

r
D R

r
D

R
r R r R

= 





=− −





=
= =

B B
Bd[B]( )

d
B

B

* *

[ ] *
[ ]
*

1
2

Brief illustration 21B.1 Diffusion control 1

The order of magnitude of R* is 10−7 m (100 nm) and that of D 
for a species in water is 10−9 m2 s−1. It follows from eqn 21B.3 
that

kd m m s m mol s≈ × × × × ≈− − − − −4 10 10 6 022 10 107 9 2 1 23 9 3 1 1π ( ) ( ) ( . )

which corresponds to 1012 dm3 mol−1 s−1. An indication that a 
reaction is diffusion-controlled is therefore that its rate con-
stant is of the order of 1012 dm3 mol−1 s−1.

Self-test 21B.1 Estimate the rate constant for a diffusion-
controlled reaction in benzene (D ≈ 2 × 10−9 m2 s−1), taking 
R* ≈ 100 nm.

Answer: 1.5 × 1012 dm3 mol−1 s−1

Table 21B.1* Arrhenius parameters for solvolysis reactions in 
solution

Solvent A/(dm3 mol−1 s−1) Ea/(kJ mol−1)

(CH3)3CCl Water 7.1 × 1016 100

Ethanol 3.0 × 1013 112

Chloroform 1.4 × 104 45

CH3CH2Br Ethanol 4.3 × 1011 90

* More values are given in the Resource section.
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We can take eqn 21B.3 further by incorporating the Stokes–
Einstein equation (eqn 19B.19 of Topic 19B, DJ = kT/6πηRJ) 
relating the diffusion constant and the hydrodynamic radius RA 
and RB of each molecule in a medium of viscosity η. As this 
relation is approximate, little extra error is introduced if we 
write R R RA B= = 1

2
*, which leads to

k
RT

d = 8
3η  

 diffusion-controlled rate constant  (21B.4)

(The R in this equation is the gas constant.) The radii have can-
celled because, although the diffusion constants are smaller 
when the radii are large, the reactive collision radius is larger 
and the particles need travel a shorter distance to meet. In this 
approximation, the rate constant is independent of the identi-
ties of the reactants, and depends only on the temperature and 
the viscosity of the solvent.

21B.2 The material-balance equation

The diffusion of reactants plays an important role in many 
chemical processes, such as the diffusion of O2 molecules 
into red blood corpuscles and the diffusion of a gas towards 
a catalyst. We can catch a glimpse of the kinds of calculations 
involved by considering the diffusion equation (Topic 19C) 
generalized to take into account the possibility that the diffus-
ing, convecting molecules are also reacting.

(a) The formulation of the equation
Consider a small volume element in a chemical reactor (or 
a biological cell). The net rate at which J molecules enter the 
region by diffusion and convection is given by eqn 19C.10 of 
Topic 19C, which we repeat here:

∂
∂ = ∂

∂ − ∂
∂

[ ] [ ] [ ]J J J
t

D
x x

2

2 v
 

 diffusion equation  (21B.5)

where v is the velocity of the convective flow of J and [J] in gen-
eral depends on both position and time. The net rate of change 
of molar concentration due to chemical reaction is

∂
∂ =−[ ]

[ ]
J

Jrt
k

 

if we suppose that J disappears by a pseudofirst-order reaction. 
Therefore, the overall rate of change of the concentration of J is

∂
∂ = ∂

∂
− ∂[ ] [ ] [ ]J J J

 

t
D

x

2

2

Spread
due to

non-uniform
distribution

v ∂∂ −
x

k

Change
due to

convection
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due to

reaction

 
 

r J




[ ]
 

Brief illustration 21B.2 Diffusion control 2

The rate constant for the recombination of I atoms in hexane 
at 298 K, when the viscosity of the solvent is 0.326 cP (with 
1 P = 10−1 kg m−1 s−1) is

kd
J K mol K

kg m s
= × ×

× ×
=

− −

− − −
8 8 3145 298

3 3 26 10

1 1

4 1 1

( . ) ( )
( . )

22 0 107 3 1 1. × − −m mol s

where we have used 1 J = 1 kg m2 s−2. Because 1 m3 = 103 dm3, 
this result corresponds to 2.0 × 1010 dm3 mol−1 s−1. The experi-
mental value is 1.3 × 1010 dm3 mol−1 s−1, so the agreement is 
very good considering the approximations involved.

Self-test 21B.2 Evaluate a typical rate constant for a reaction 
taking place in ethanol at 20 °C, for which the viscosity is 
1.06 cP.

Answer: 6.1 × 109 dm3 mol−1 s−1

(A sign change has been introduced because we are interested 
in the flux towards decreasing values of r.) It follows that

Rate of reaction 4 BB= πR D* [ ]  
The rate of the diffusion-controlled reaction is equal to the 
average f low of B molecules to all the A molecules in the 
sample. If the bulk concentration of A is [A], the number of 
A molecules in the sample of volume V is NA[A]V; the global 
flow of all B to all A is therefore 4πR*DBNA[A][B]V. Because it 
is unrealistic to suppose that all A molecules are stationary; 
we replace DB by the sum of the diffusion coefficients of the 
two species and write D = DA + DB. Then the rate of change of 
concentration of AB is

d AB
d

A BA
[ ]

[ ][ ]*
t

R DN= 4π
 

Hence, the diffusion-controlled rate constant is as given in 
eqn 21B.3.
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Figure 21B.1 The concentration profile for reaction in 
solution when a molecule B diffuses towards another 
reactant molecule and reacts if it reaches R*.

material- 
balance 
equation

 (21B.6)
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892 21 Reaction dynamics

Equation 21B.6 is called the material-balance equation. If the 
rate constant is large, then [J] will decline rapidly. However, if 
the diffusion constant is large, then the decline can be replen-
ished as J diffuses rapidly into the region. The convection term, 
which may represent the effects of stirring, can sweep material 
either into or out of the region according to the signs of v and 
the concentration gradient ∂[J]/∂x.

(b) Solutions of the equation
The material-balance equation is a second-order partial differ-
ential equation and is far from easy to solve in general. Some 
idea of how it is solved can be obtained by considering the 
special case in which there is no convective motion (as in an 
unstirred reaction vessel):

∂
∂ = ∂

∂ −[ ] [ ]
[ ]

J J
Jrt

D
x

k
2

2  
(21B.7)

As may be verified by substitution (Problem 21B.1), if the solu-
tion of this equation in the absence of reaction (that is, for 
kr = 0) is [J], then the solution [J]* in the presence of reaction 
(kr > 0) is

[ ] [ ]*J J e r= −k t   diffusion with reaction  (21B.8)

An example of a solution of the diffusion equation in the 
absence of reaction is that given in Topic 19C for a system in 
which initially a layer of n0NA molecules is spread over a plane 
of area A:

[ ]
( )

/

/J
e=

−n
A Dt

x Dt
0

4

1 2

2

π  
(21B.9)

When this expression is substituted into eqn 21B.8, we obtain the 
concentration of J as it diffuses away from its initial surface layer 
and undergoes reaction in the overlying solution (Fig. 21B.2).

Even this relatively simple example has led to an equation 
that is difficult to solve, and only in some special cases can 
the full material balance equation be solved analytically. Most 
modern work on reactor design and cell kinetics uses numeri-
cal methods to solve the equation, and detailed solutions for 
realistic environments, such as vessels of different shapes 
(which influence the boundary conditions on the solutions) 
and with a variety of inhomogeneously distributed reactants, 
can be obtained reasonably easily.

Checklist of concepts

☐ 1. A reaction in solution may be diffusion-controlled if 
its rate is controlled by the rate at which reactant mol-
ecules encounter each other in solution.

☐ 2. The rate of an activation-controlled reaction is con-
trolled by the rate at which the encounter pair accumu-
lates sufficient energy.
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Dt = 0.05

Dt = 0.10

Figure 21B.2 The concentration profiles for a diffusing, 
reacting system (for example, a column of solution) in which 
one reactant is initially in a layer at x = 0. In the absence of 
reaction (grey lines), the concentration profiles are the same as 
in Fig. 19C.3.

Brief illustration 21B.3 Reaction with diffusion

Suppose 1.0 g of iodine (3.9 mmol I2) is spread over a surface of 
area 5.0 cm2 under a column of hexane (D = 4.1 × 10−9 m2 s−1). 
As it diffuses upwards it reacts with a pseudofirst-order rate 
constant kr = 4.0 × 10−5 s−1. By substituting these values into

[ ]
( )

*
/

/J
e r

=
− −n

A Dt

x Dt k t
0

4

1 2

2

π

we can construct the following table:

Self-test 21B.3 What is the value of [J] at 15 000 s at the same 
three locations?

Answer: 0.31, 0.28, 0.21 mmol dm−3

[J]*/(mmol dm−3) x

T 1 mm 5 mm 1 cm

100 s 3.72 0 0

1000 s 1.96 0.45 0.005

10 000 s 0.46 0.40 0.25
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☐ 3. The material-balance equation relates the overall rate 
of change of the concentration of a species to its rates of 
diffusion, convection and reaction.

☐ 4. The cage effect, the lingering of one reactant molecule 
near another due to the hindering presence of solvent 
molecules, results in the formation of an encounter 
pair of reactant molecules.

Checklist of equations

Property Equation Comment Equation number

Diffusion-controlled limit kr = kd v = kd[A][B] for the encounter rate 21B.2a

Activation-controlled limit kr = kdK K for A + B ⇌ AB, ka for the decomposition of AB 21B.2b

Diffusion-controlled rate constant kd = 4πR*DNA D = DA + DB 21B.3

kd = 8RT/3η Assumes Stokes–Einstein relation 21B.4

Material-balance equation ∂ ∂

= ∂ ∂
− ∂ ∂ −

[ ]/

[ ]/

[ ]/ [ ]

J

J

J Jr

t

D x

x k

2 2

v

First-order reaction 21B.6
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21C transition-state theory

In transition-state theory (which is also widely referred to as 
activated complex theory), the notion of the transition state 
is used in conjunction with concepts of statistical thermo-
dynamics to provide a more detailed calculation of rate con-
stants than that presented by collision theory (Topic 21A). 
Transition-state theory has the advantage that a quantity 
corresponding to the steric factor appears automatically, and 
P does not need to be grafted on to an equation as an after-
thought; it is an attempt to identify the principal features gov-
erning the size of a rate constant in terms of a model of the 
events that take place during the reaction. There are several 
approaches to the formulation of transition-state theory; here 
we present the simplest.

21C.1 The Eyring equation

In the course of a chemical reaction that begins with a colli-
sion between molecules of A and molecules of B, the potential 
energy of the system typically changes in a manner shown in 
Fig. 21C.1. Although the illustration displays an exothermic 
reaction, a potential barrier is also common for endothermic 
reactions. As the reaction event proceeds, A and B come into 
contact, distort, and begin to exchange or discard atoms.

(a) The formulation of the equation
The reaction coordinate is a representation of the atomic dis-
placements, such as changes in interatomic distances and bond 
angles, that are directly involved in the formation of products 
from reactants. The potential energy rises to a maximum and 
the cluster of atoms that corresponds to the region close to the 
maximum is called the activated complex. After the maxi-
mum, the potential energy falls as the atoms rearrange in the 
cluster and reaches a value characteristic of the products. The 
climax of the reaction is at the peak of the potential energy, 
which can be identified with the activation energy Ea; however, 
as in collision theory, this identification should be regarded 
as approximate and we clarify it later. Here two reactant mol-
ecules have come to such a degree of closeness and distortion 
that a small further distortion will send them in the direction 
of products. This crucial configuration is called the transition 
state of the reaction. Although some molecules entering the 
transition state might revert to reactants, if they pass through 
this configuration then it is inevitable that products will 
emerge from the encounter.

Contents

21c.1 The Eyring equation 894
(a) The formulation of the equation 984
(b) The rate of decay of the activated complex 895

brief illustration 21c.1: the transmission coefficient 895
(c)  The concentration of the activated complex 896

brief illustration 21c.2: the discarded mode 896
(d) The rate constant 896

example 21c.1: analysing the collision of  
structureless particles 897

(e) Observation and manipulation of the activated 
complex 897
brief illustration 21c.3: Femtosecond analysis 898

21c.2 Thermodynamic aspects 899
(a) Activation parameters 899

brief illustration 21c.4: activation parameters 899
(b) Reactions between ions 900

example 21c.2: analysing the kinetic salt effect 901

21c.3 The kinetic isotope effect 901
brief illustration 21c.5: the primary kinetic  
isotope effect 902

Checklist of concepts 903
Checklist of equations 903

➤➤ Why do you need to know this material?
Transition-state theory provides a way to relate the rate 
constant of reactions to models of the cluster of atoms that 
is proposed to be formed when reactants come together. It 
provides a link between information about the structures 
of reactants and the rate constant for their reaction.

➤➤ What is the key idea?
Reactants come together to form an activated complex 
that decays into products.

➤➤ What do you need to know already?
This Topic makes use of two strands: one is the relation 
between equilibrium constants and partition functions 
(Topic 15F); the other is the relation between equilibrium 
constants and thermodynamic functions, such as the 
Gibbs energy, enthalpy, and entropy of reaction (Topic 6A). 
You need to be aware of the Arrhenius equation for the 
temperature dependence of the rate constant (Topic 20D).
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A note on good practice The terms activated complex and 
transition state are often used as synonyms; however, it is best 
to preserve the distinction, with the former referring to the 
cluster of atoms and the latter to their critical configuration.

Transition state theory pictures a reaction between A and B 
as proceeding through the formation of an activated complex, 
C‡, in a rapid pre-equilibrium (Fig. 21C.2):

A B C C

A B

+ = ‡ ‡ ‡

K
p p
p p

<

 
(21C.1)

where we have replaced the activity of each species by p/p<. 
When we express the partial pressures, pJ, in terms of the molar 
concentrations, [J], by using pJ = RT[J], the concentration of 
activated complex is related to the (dimensionless) equilibrium 
constant by

[ ] [ ][ ]C A B‡ ‡= RT
p

K<

 
(21C.2)

The activated complex falls apart by unimolecular decay into 
products, P, with a rate constant k‡:

C P C‡ ‡ ‡[ ]→ =v k  (21C.3)

It follows that

v= =k k
RT
p

k Kr rA B[ ][ ] <
‡ ‡

 
(21C.4)

Our task is to calculate the unimolecular rate constant k‡ and 
the equilibrium constant K‡.

(b) The rate of decay of the activated 
complex
An activated complex can form products if it passes through 
the transition state. As the reactant molecules approach the 

activated complex region, some bonds are forming and shorten-
ing while others are lengthening and breaking; therefore, along 
the reaction coordinate, there is a vibration-like motion of the 
atoms in the activated complex. If this motion occurs with a fre-
quency ν‡, then the frequency with which the cluster of atoms 
forming the complex approaches the transition state is also ν‡. 
However, it is possible that not every oscillation along the reac-
tion coordinate takes the complex through the transition state. 
For instance, the centrifugal effect of rotations might also be an 
important contribution to the break-up of the complex, and in 
some cases the complex might be rotating too slowly or rotat-
ing rapidly but about the wrong axis. Therefore, we suppose that 
the rate of passage of the complex through the transition state 
is proportional to the vibrational frequency along the reaction 
coordinate, and write

k‡ ‡=κ  (21C.5)

where κ (kappa) is the transmission coefficient. In the absence 
of information to the contrary, κ is assumed to be about 1.

Brief illustration 21C.1 The transmission coefficient

Typical molecular vibration wavenumbers of small molecules 
occur at wavenumbers of the order of 103 cm−1 (C–H bends, for 
example, occur in the range 1340–1465 cm−1) and therefore 
occur at frequencies of the order of 1013 Hz. If we suppose that 
the loosely bound cluster vibrates at one or two orders of mag-
nitude lower frequency, then ν‡ ≈ 1011–1012 Hz. These figures 
suggest that ν‡ ≈ 1011–1012 s−1, with κ perhaps reducing that 
value further.

Self-test 21C.1 Estimate the change in ν‡ that would occur if 
1H is replaced by 2H in a C–H group at the site of reaction. 
Assume that the C atom is immobile.

Answer:  ‡ ‡ //→ 21 2
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Figure 21C.1 A potential energy profile for an exothermic 
reaction. The height of the barrier between the reactants and 
products is the activation energy of the reaction.
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Figure 21C.2 A reaction profile (for an exothermic reaction). 
The horizontal axis is the reaction coordinate, and the 
vertical axis is potential energy. The activated complex is the 
region near the potential maximum, and the transition state 
corresponds to the maximum itself.

iranchembook.ir/edu



896 21 Reaction dynamics

(c) The concentration of the activated 
complex
Topic 15F explains how to calculate equilibrium constants from 
structural data. Equation 15F.10 of that Topic (K in terms of the 
standard molar partition functions qJ

<) can be used directly, 
which in this case gives

K
N

E RT‡ /‡= −A C

A B

e
q

q q

<

< <
∆ 0

 
(21C.6)

with

∆E E E E0 0 0 0= ( ) ( ) ( )C A B‡ − −  (21C.7)

Note that the units of NA and the qJ
< are mol−1, so K‡ is dimen-

sionless (as is appropriate for an equilibrium constant).
In the final step of this part of the calculation, we focus atten-

tion on the partition function of the activated complex. We 
have already assumed that a vibration of the activated complex 
C‡ tips it through the transition state. The partition function for 
this vibration is (see eqn 15B.15 of Topic 15B, which is essen-
tially the following):

q =
− −

1

1 e h kT‡ /  

where ν‡ is its frequency (the same frequency that determines 
k‡). This frequency is much lower than for an ordinary molecu-
lar vibration because the oscillation corresponds to the com-
plex falling apart (Fig. 21C.3), so the force constant is very low. 

Therefore, provided that hν‡/kT ≪ 1, the exponential may be 
expanded and the partition function reduces to

q = − − + ≈1
1 1( / )h kT

kT
h ‡ ‡  

We can therefore write

q qC C‡ ‡‡
< = kT

h  
(21C.8)

where qC‡ denotes the partition function for all the other modes 
of the complex. The constant K‡ is therefore

K
kT
h

K K
N

E RT‡
‡

‡ ‡ /‡= = −


A C

A B

e
q

q q

<

< <
∆ 0

 
(21C.9)

with K ‡  a kind of equilibrium constant, but with one vibra-
tional mode of C‡ discarded.

(d) The rate constant
We can now combine all the parts of the calculation into

k
RT
p

k K
kT
h

RT
p

Kr = =< <
‡ ‡ ‡‡

‡κ
  

At this stage the unknown frequencies ν‡ (in blue) cancel, and 
after writing K KRT pc

‡ ‡( / )= < , we obtain the Eyring equation:

k
kT
h

Kr =κ c
‡

 
 eyring equation  (21C.10)

The factor Kc
‡  is given by eqn 21C.9 and the definition 

K KRT pc
‡ ‡( / )= <  in terms of the partition functions of A, B, and 

C‡, so in principle we now have an explicit expression for calcu-
lating the second-order rate constant for a bimolecular reaction 

Brief illustration 21C.2 The discarded mode

Consider the case of two structureless particles A and B col-
liding to give an activated complex that resembles a diatomic 
molecule. The activated complex is a diatomic cluster. It has 
one vibrational mode, but that mode corresponds to motion 
along the reaction coordinate and therefore does not appear 
in qC‡

<. It follows that the standard molar partition function 
of the activated complex has only rotational and translational 
contributions.

Self-test 21C.2 Which mode would be discarded for a reaction 
in which the activated complex is modelled as a linear tria-
tomic cluster?

Answer: Antisymmetric stretch
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Figure 21C.3 In an elementary depiction of the activated 
complex close to the transition state, there is a broad, shallow dip 
in the potential energy surface along the reaction coordinate. 
The complex vibrates harmonically and almost classically in this 
well. However, this depiction is an oversimplification, for in many 
cases there is no dip at the top of the barrier, and the curvature 
of the potential energy, and therefore the force constant, is 
negative. Formally, the vibrational frequency is then imaginary. 
We ignore this problem here.
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in terms of the molecular parameters for the reactants and the 
activated complex and the quantity κ.

The partition functions for the reactants can normally be 
calculated quite readily by using either spectroscopic informa-
tion about their energy levels or the approximate expressions 
set out in Table 15C.1. The difficulty with the Eyring equation, 
however, lies in the calculation of the partition function of the 
activated complex: C‡ is difficult to investigate spectroscopi-
cally (but see the following section), and in general we need to 
make assumptions about its size, shape, and structure. We shall 
illustrate what is involved in one simple but significant case.

(e) Observation and manipulation of the 
activated complex

The development of femtosecond pulsed lasers has made it pos-
sible to make observations on species that have such short life-
times that in a number of respects they resemble an activated 
complex, which often survive for only a few picoseconds. In a 
typical experiment designed to detect an activated complex, a 
femtosecond laser pulse is used to excite a molecule to a disso-
ciative state, and then the system is exposed to a second fem-
tosecond pulse at an interval after the dissociating pulse. The 
frequency of the second pulse is set at an absorption of one of the 
free fragmentation products, so the intensity of its absorption 
is a measure of the abundance of the dissociation product. For 
example, when ICN is dissociated by the first pulse, the emer-
gence of CN from the photoactivated state can be monitored by 
watching the growth of the free CN absorption (or, more com-
monly, its laser-induced fluorescence). In this way it has been 
found that the CN signal remains zero until the fragments have 
separated by about 600 pm, which takes about 205 fs.

Some sense of the progress that has been made in the study of 
the intimate mechanism of chemical reactions can be obtained 
by considering the decay of the ion pair Na+I−. As shown in 
Fig. 21C.4, excitation of the ionic species with a femtosecond 
laser pulse forms an excited state that corresponds to a cova-
lently bonded NaI molecule. The system can be described with 
two potential energy surfaces, one largely ‘ionic’ and another 
‘covalent’, which cross at an internuclear separation of 693 pm. 
A short laser pulse is composed of a wide range of frequen-
cies, which excite many vibrational states of NaI simultane-
ously. Consequently, the electronically excited complex exists 
as a superposition of states, or a localized wavepacket, which 
oscillates between the ‘covalent’ and ‘ionic’ potential energy 

Example 21C.1 Analysing the collision of structureless 
particles

Consider the case of two structureless (and different) particles 
A and B colliding to give an activated complex that resembles 
a diatomic molecule and deduce an expression for the rate 
constant of the reaction A + B → Products.

Method Because the reactants J = A, B are structureless 
‘atoms’, the only contributions to their partition functions are 
the translational terms. The activated complex is a diatomic 
cluster of mass m m mC A B‡ = +  and moment of inertia I. It has 
one vibrational mode but, as explained in Brief illustration 
21C.2, that mode corresponds to motion along the reaction 
coordinate. It follows that the standard molar partition func-
tion of the activated complex has only rotational and trans-
lational contributions. Expressions for the relevant partition 
functions are given in Topic 15B.

Answer The translational partition functions are

q J
m

J
J

J
m

<
<

<
<= = =V h

m kT
V

RT
pΛ

Λ3 1 22( ) /π  
with J = A, B, and C‡ and with m m mC A B‡ = + . The expression 
for the partition function of the activated complex is

q
C

m

C

‡

‡

<
<

= 2
2 3

IkT V
 Λ  

where we have used the high-temperature form of the rota-
tional partition function (Topic 15B). By substituting these 
expressions into the Eyring equation, we find that the rate 
constant is

k
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∆

 
The moment of inertia of a diatomic molecule of bond length 
r is μr2, where μ = mAmB/(mA + mB), so after introducing the 

expressions for the thermal wavelengths and cancelling com-
mon terms, we find (Problem 21C.3)

k N
kT

r E RT
r A e= 





−κ µ
8

1 2

2 0

π π ∆
/

/

 
Finally, by identifying κπr2 as the reactive cross-section σ*, we 
arrive at precisely the same expression as that obtained from 
simple collision theory (eqn 21A.9):

k N
kT E RT

r A *e= 





−8
1 2

0

πµ σ
/

/∆

 

Self-test 21C.3 What additional factors would be present if the 
reaction were AB + C → Products through a linear activated 
complex?

Answer: Rotation and vibration of AB, bends and symmetric stretch of 
the activated complex
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surfaces, as shown in Fig. 21C.4. The complex can also dissoci-
ate, shown as movement of the wavepacket towards very long 
internuclear separation along the dissociative surface. However, 
not every outward-going swing leads to dissociation because 
there is a chance that the I atom can be harpooned again, in 
which case it fails to make good its escape. The dynamics of the 
system is probed by a second laser pulse with a frequency that 
corresponds to the absorption frequency of the free Na product 
or to the frequency at which Na absorbs when it is a part of the 
complex. The latter frequency depends on the Na…I distance, 
so an absorption (in practice, a laser-induced fluorescence) is 
obtained each time the wavepacket returns to that separation.

Femtosecond spectroscopy has also been used to examine 
analogues of the activated complex involved in bimolecular 
reactions. Thus, a molecular beam can be used to produce a 
complex held together by van der Waals interactions (a ‘van 
der Waals molecule’), such as IH…OCO. The HI bond can be 
dissociated by a femtosecond pulse, and the H atom is ejected 
towards the O atom of the neighbouring CO2 molecule to form 
HOCO. Hence, the van der Waals molecule is a source of a spe-
cies that resembles the activated complex of the reaction

H CO HOCO HO CO2+ → → +[ ]‡

 

The probe pulse is tuned to the OH radical, which enables the 
evolution of [HOCO]‡ to be studied in real time.

The techniques used for the spectroscopic detection of 
transition states can also be used to control the outcome of a 
chemical reaction by direct manipulation of the activated com-
plex. Consider the reaction I2 + Xe → XeI* + I, which occurs by 
a harpoon mechanism with an activated complex denoted as 
[Xe+ … I− … I]. The reaction can be initiated by exciting I2 to an 
electronic state at least 52 460 cm−1 above the ground state and 
then followed by measuring the time dependence of the chemi-
luminescence of XeI*. To exert control over the yield of the 
product, a pair of femtosecond pulses can be used to induce the 
reaction. The first pulse excites the I2 molecule to a low energy 
and unreactive electronic state. We already know that excita-
tion by a femtosecond pulse generates a wavepacket that can be 
treated as a particle travelling across the potential energy sur-
face. In this case, the wavepacket does not have enough energy 
to react, but excitation by another laser pulse with the appropri-
ate wavelength can provide the necessary additional energy. It 
follows that activated complexes with different geometries can 
be prepared by varying the time delay between the two pulses, 
as the partially localized wavepacket will be at different loca-
tions on the potential energy surface as it evolves after being 
formed by the first pulse. Because the reaction occurs by the 
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Figure 21C.4 Excitation of the ion pair Na+I− forms an excited 
state with covalent character. Also shown is migration between 
a ‘covalent’ surface (upper curve) and an ‘ionic’ surface (lower 
curve) of the wavepacket formed by laser excitation.

Brief illustration 21C.3 Femtosecond analysis

A typical set of results is shown in Fig. 21C.5. The bound Na 
absorption intensity shows up as a series of pulses that recur in 
about 1 ps, showing that the wavepacket oscillates with about 
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Figure 21C.5 Femtosecond spectroscopic results for the 
reaction in which sodium iodide separates into Na and I. The 
lower curve is the absorption of the electronically excited 
complex and the upper curve is the absorption of free Na 
atoms. (Adapted from A.H. Zewail, Science 242, 1645 (1988).)

that period. The decline in intensity shows the rate at which 
the complex can dissociate as the two atoms swing away from 
each other. The free Na absorption also grows in an oscillat-
ing manner, showing the periodicity of wavepacket oscilla-
tion, each swing of which gives it a chance to dissociate. The 
precise period of the oscillation in NaI is 1.25 ps. The complex 
survives for about ten oscillations. In contrast, although the 
oscillation frequency of NaBr is similar, it barely survives one 
oscillation.

Self-test 21C.4 Confirm the assumption in transition-state 
theory that the vibrational frequency of the dissociative mode 
of the activated complex is very low by calculating the vibra-
tional wavenumber corresponding to the 1.25 ps period of 
oscillation in NaI.

Answer: 27 cm−1
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harpoon mechanism, the product yield is expected to be opti-
mal if the second pulse is applied when the wavepacket is at a 
point where the Xe…I2 distance is just right for electron transfer 
from Xe to I2 to occur. This type of control of the I2 + Xe reac-
tion has been demonstrated.

21C.2 Thermodynamic aspects

The statistical thermodynamic version of transition state the-
ory rapidly runs into difficulties because only in some cases is 
anything known about the structure of the activated complex. 
However, the concepts that it introduces, principally that of an 
equilibrium between the reactants and the activated complex, 
have motivated a more general, empirical approach in which 
the activation process is expressed in terms of thermodynamic 
functions.

(a) Activation parameters
If we accept that K ‡  is an equilibrium constant (despite one 
mode of C‡ having been discarded), we can express it in terms 
of a Gibbs energy of activation, Δ‡G, through the definition

∆‡ ‡lnG RT K=−  Definition  gibbs energy of activation  (21C.11)

All the Δ‡X in this section are standard thermodynamic quan-
tities, Δ‡X<, but we shall omit the standard state sign to avoid 
overburdening the notation. Then the rate constant becomes

k
kT
h

RT
p

G RT
r e= −κ

<
∆‡ /

 
(21C.12)

Because G = H − TS, the Gibbs energy of activation can be 
divided into an entropy of activation, Δ‡S, and an enthalpy of 
activation, Δ‡H, by writing

∆ ∆ ∆‡ ‡ ‡G H T S= −  

When eqn 21C.13 is used in eqn 21C.12 and κ is absorbed into 
the entropy term, we obtain

k B B
kT
h

RT
p

S R H RT
r e e= =−∆ ∆‡ ‡/ /

<

 
(21C.14)

The formal definition of activation energy (eqn 20D.2 of Topic 
20D, Ea = RT2(∂ ln kr/∂T)), then gives Ea = Δ‡H + 2RT, so1

k B S R E RT
r e e e a= −2 ∆‡ / /

 (21C.15a)

from which it follows that the Arrhenius factor A can be identi-
fied as

A B S R=e e2 ∆‡ /

 Transitionstate theory  A-factor  (21C.15b)

The entropy of activation is negative because throughout the 
system reactant species are combining to form reactive pairs. 
However, if there is a reduction in entropy below what would 
be expected for the simple encounter of A and B, then the 
Arrhenius factor A will be smaller than that expected on the 
basis of simple collision theory. Indeed, we can identify that 
additional reduction in entropy, Δ‡Ssteric, as the origin of the 
steric factor of collision theory, and write

P S R=e steric∆‡ /

 Transitionstate theory  P-factor  (21C.15c)

Thus, the more complex the steric requirements of the encoun-
ter, the more negative the value of Δ‡Ssteric, and the smaller the 
value of P.

Gibbs energies, enthalpies, and entropies of activation (and 
volumes and heat capacities of activation) are widely used 
to report experimental reaction rates, especially for organic 
reactions in solution. They are encountered when relation-
ships between equilibrium constants and rates of reaction are 
explored using correlation analysis, in which ln K (which is 
equal to –ΔrG</RT) is plotted against ln kr (which is propor-
tional to –Δ‡G/RT). In many cases the correlation is linear, sig-
nifying that as the reaction becomes thermodynamically more 

Definition
entropy and 
enthalpy of 
activation

 (21C.13)

Brief illustration 21C.4 Activation parameters

The reaction of propylxanthate ion in acetic acid buffer solu-
tions can be represented by the equation A− + H+ → P. Near 
30 °C, A = 2.05 × 1013 dm3 mol−1 s−1. To evaluate the entropy of 
activation at 30 °C we first note that because the reaction is in 
solution the e2 of eqn 21C.15 should be replaced by e (see foot-
note 1), and then use eqn 21C.15b in the form

∆‡ ln .S R
A
B

B
kT
h

RT
p

= = = × − −
e

with dm mol s< 1 592 1014 3 1 1

Therefore,

∆‡ ln
.

( . )
S R= ×

× ×

− −

− −
2 05 10
1 592 10

13 3 1 1

14 3 1 1

dm mol s
e dm mol s

ln .

.

= …

= − − −

R 0 047

25 4 1 1JK mol

Self-test 21C.5 The reaction A− + H+ → P in solution has 
A = 6.92 × 1012 dm3 mol−1 s−1. Evaluate the entropy of activation 
at 25 °C.

Answer: −34.1  J K−1 mol−1

1 For reactions of the type A + B → P in the gas phase, Ea = Δ‡H + 2RT. For 
such reactions in solution, Ea = Δ‡H + RT.
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favourable, its rate constant increases (Fig. 21C.6). This linear 
correlation is the origin of the alternative name linear free 
energy relation (LFER).

(b) Reactions between ions
The full statistical thermodynamic theory is very complicated 
to apply because the solvent plays a role in the activated com-
plex. The thermodynamic version of transition-state theory 
simplifies the discussion of reactions in solution and is appli-
cable to non-ideal systems. In the thermodynamic approach we 
combine the rate law

d P
d

C
[ ]

[ ]
t

k= ‡ ‡

 

with the thermodynamic equilibrium constant (Topic 6A)

K
a

a a
K

c
K= = =C

A B

C

A B

C
A B

‡ ‡[ ]
[ ][ ]

‡

γ γ
γ

γ γ
<

 

Then

d P
d

A Br r

[ ]
[ ][ ]

t
k k

k K
K c

= =
‡

γ
<

 
(21C.16a)

If kr
° is the rate constant when the activity coefficients are 1 (that 

is, kr
° = k‡K/c<),we can write

k
k
K

k k Kr
r

r rlog= = −
°

°log log
γ

γ

 
(21C.16b)

At low concentrations the activity coefficients can be expressed 
in terms of the ionic strength, I, of the solution by using the 

Debye–Hückel limiting law (Topic 5F, particularly eqn 5F.8, 
log γ± = −A|z+z−|I1/2). However, we need the expressions for the 
individual ions rather than the mean value, and so write log 
γJ  = −AzJ

2I1/2 and

log logA A
1 2

B B
1 2γ γ= =– –/ /Az I Az I2 2

 (21C.17a)

with A = 0.509 in aqueous solution at 298 K and zA and zB the 
(signed) charge numbers of A and B, respectively. Because the 
activated complex forms from reaction of one of the ions of A 
with one of the ions of B, the charge number of the activated 
complex is zA + zB where zJ is positive for cations and negative 
for anions. Therefore

log
C A B

2 1 2γ ‡ = +– ( ) /A z z I  (21C.17b)

Inserting these relations into eqn 21C.16b results in

log log

log 2

r r A B A B
2 1 2

r A B
1 2

k k A z z z z I

k Az z I

= + +
= +

°

°

– { –( ) } /

/

2 2

 
(21C.18)

Equation 21C.18 expresses the kinetic salt effect, the vari-
ation of the rate constant of a reaction between ions with the 
ionic strength of the solution (Fig. 21C.7). If the reactant ions 
have the same sign (as in a reaction between cations or between 
anions), then increasing the ionic strength by the addition of 
inert ions increases the rate constant. The formation of a single, 
highly charged ionic complex from two less highly charged ions 
is favoured by a high ionic strength because the new ion has 
a denser ionic atmosphere and interacts with that atmosphere 
more strongly. Conversely, ions of opposite charge react more 
slowly in solutions of high ionic strength. Now the charges can-
cel and the complex has a less favourable interaction with its 
atmosphere than the separated ions.

Δ‡G(A)

Δ‡G(B)

ΔrG
<(B)

ΔrG
<(A)

G
ib

b
s 

en
er

g
y,

 G

Reaction coordinate

Figure 21C.6 For a related series of reactions, as the 
magnitude of the standard reaction Gibbs energy increases, 
so the activation barrier decreases and the rate constant 
increases. The approximate linear correlation between Δ‡G and 
ΔrG< is the origin of linear free energy relations.
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Figure 21C.7 Experimental tests of the kinetic salt effect for 
reactions in water at 298 K. The ion types are shown as spheres, 
and the slopes of the lines are those given by the Debye–
Hückel limiting law and eqn 21C.18.
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21C.3 The kinetic isotope effect

The postulation of a plausible reaction mechanism requires 
careful analysis of many experiments designed to determine the 
fate of atoms during the formation of products. Observation of 
the kinetic isotope effect, a decrease in the rate of a chemical 
reaction upon replacement of one atom in a reactant by a heav-
ier isotope, facilitates the identification of bond-breaking events 
in the rate-determining step. A primary kinetic isotope effect is 
observed when the rate-determining step requires the scission 
of a bond involving the isotope. A secondary kinetic isotope 
effect is the reduction in reaction rate even though the bond 
involving the isotope is not broken to form product. In both 
cases, the effect arises from the change in activation energy that 
accompanies the replacement of an atom by a heavier isotope 
on account of changes in the zero-point vibrational energies. We 
now explore the primary kinetic isotope effect in some detail.

Consider a reaction in which a C–H bond is cleaved. If scis-
sion of this bond is the rate-determining step (Topic 20E), 
then the reaction coordinate corresponds to the stretching of 
the C–H bond and the potential energy profile is shown in Fig. 
21C.9. On deuteration, the dominant change is the reduction of 
the zero-point energy of the bond (because the deuterium atom 
is heavier). The whole reaction profile is not lowered, however, 
because the relevant vibration in the activated complex has a 
very low force constant, so there is little zero-point energy asso-
ciated with the reaction coordinate in either form of the acti-
vated complex. We show in the following Justification, that, as 
a consequence of this reduction, the activation energy change 
upon deuteration is

E E Na a( ) ( ) ( )
/

C D C H C H CH

CD

e e e− = −
















1
2

1 2

1Aω µ
µ

 
(21C.19)

where ω is the relevant vibrational frequency (in radians per 
second), μ is the relevant effective mass, and

k
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C D
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(21C.20)

Example 21C.2 Analysing the kinetic salt effect

The rate constant for the base (OH−) hydrolysis of 
[CoBr(NH3)5]2+ varies with ionic strength as tabulated below. 
What can be deduced about the charge of the activated com-
plex in the rate-determining stage? We cannot assume with-
out more evidence that it is a bimolecular process with an 
activated complex of charge +1.

Method According to eqn 21C.18, a plot of log r r( / )k k° against 
I1/2 will have a slope of 1.02zAzB, from which we can infer the 
charges of the ions involved in the formation of the activated 
complex.

Answer Form the following table:

These points are plotted in Fig. 21C.8. The slope of the (least 
squares) straight line is −2.04, indicating that zAzB = −2. 
Because zA = −1 for the OH− ion, if that ion is involved in the 
formation of the activated complex, then the charge num-
ber of the second ion is +2. This analysis suggests that the 
pentaamminebromidocobalt(III) cation [CoBr(NH3)5]2+ par-
ticipates in the formation of the activated complex and that 
the charge of the activated complex is −1 + 2 = +1. Although we 
do not pursue the point here, you should be aware that the rate 
constant is also influenced by the relative permittivity of the 
medium.

I 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300
k kr r/ ° 0.718 0.631 0.562 0.515 0.475 0.447

I 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300

I1/2 0.071 0.100 0.122 0.141 0.158 0.173

log r r( / )k k° −0.14 −0.20 −0.25 −0.29 −0.32 −0.35

0 0.1 0.2
I1/2

0

–0.1

–0.2

–0.3

lo
g

(k
r/k

r°
)

Figure 21C.8 The experimental ionic strength dependence 
of the rate constant of a hydrolysis reaction: the slope 
gives information about the charge types involved in 
the activated complex of the rate determining step. See 
Example 21C.2.

Self-test 21C.6 An ion of charge number +1 is known to be 
involved in the activated complex of a reaction. Deduce the 
charge number of the other ion from the following data:

Answer: −1

I 0.0050 0.0100 0.0150 0.0200 0.0250 0.0300
k kr r/ ° 0.930 0.902 0.884 0.867 0.853 0.841
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Note that ζ > 0 (ζ is zeta) because μCD > μCH and that  
kr(C–D)/kr(C–H) < 1, meaning that, as expected from Fig. 
21C.9, the rate constant decreases upon deuteration. We also 
conclude that kr(C–D)/kr(C–H) decreases with decreasing 
temperature.
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Now we can use eqn 21C.20, to calculate
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We conclude that at room temperature C–H cleavage should 
be about seven times faster than C–D cleavage, other con-
ditions being equal. However, experimental values of  
kr(C–D)/kr(C–H) can differ significantly from those predicted 
by eqn 21C.20 on account of the severity of the assumptions in 
the model.

Self-test 21C.7 The bromination of a deuterated hydrocarbon 
at 298 K proceeds 6.4 times more slowly than the bromination 
of the undeuterated material. What value of the force constant 
for the cleaved bond can account for this difference?

kf = 450 N m−1, which is consistent with kf(C–H)

Justification 21C.1 The primary kinetic isotope effect

We assume that, to a good approximation, a change in the 
activation energy arises only from the change in zero-point 
energy of the stretching vibration, so, from Fig. 21C.9,
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where ω is the relevant vibrational frequency. From Topic 
12D, we know that ω (C–D) = (μCH/μCD)1/2ω (C–H), where μ 
is the relevant effective mass. Making this substitution in the 
equation above gives eqn 21C.19.

If we assume further that the pre-exponential factor does 
not change upon deuteration, then the rate constants for the 
two species should be in the ratio

k
k

E E RT E Ear

r

C D C H C D C HC D
C H

e e
( )
( )

{ ( ) ( )}/ { ( ) ( )}−
− = =− − − − − − − −a a a //N kTA

where we used R = NAk. Equation 21C.20 follows after using 
eqn 21C.19 for Ea(C–D) − Ea(C–H) in this expression.

Brief illustration 21C.5 The primary kinetic isotope effect

From infrared spectra, the fundamental vibrational wave-
number  for stretching of a C–H bond is about 3000 cm−1. To 
convert this wavenumber to an angular frequency, ω = 2πν, we 
use ω =2πc  and it follows that

C–H
C–D

Ea(C–D)
Ea(C–H)

Reaction coordinate
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n
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Figure 21C.9 Changes in the reaction profile when a C − H bond 
undergoing cleavage is deuterated. In this figure the C − H and 
C − D bonds are modelled as harmonic oscillators. The only 
significant change is in the zero-point energy of the reactants, 
which is lower for C − D than for C − H. As a result, the activation 
energy is greater for C − D cleavage than for C − H cleavage.

Po
te

n
ti

al
 e

n
er

g
y 

an
d

 w
av

ef
u

n
ct

io
n

Reaction coordinate

Wavefunction

Figure 21C.10 A proton can tunnel through the activation 
energy barrier that separates reactants from products, so the 
effective height of the barrier is reduced and the rate of the 
proton transfer reaction increases. The effect is represented 
by drawing the wavefunction of the proton near the barrier. 
Proton tunnelling is important only at low temperatures, when 
most of the reactants are trapped on the left of the barrier.
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In some cases, substitution of deuterium for hydrogen results 
in values of kr(C–D)/kr(C–H) that are too low to be accounted 
for by eqn 21C.20, even when more complete models are used 
to predict ratios of rate constants. Such abnormal kinetic iso-
tope effects are evidence for a path in which quantum mechani-
cal tunnelling of hydrogen atoms takes place through the 
activation barrier (Fig 21C.10). The probability of tunnelling 
through a barrier decreases as the mass of the particle increases 

(Topic 8A), so deuterium tunnels less efficiently through a bar-
rier than hydrogen and its reactions are correspondingly slower. 
Quantum mechanical tunnelling can be the dominant process 
in reactions involving hydrogen atom or proton transfer when 
the temperature is so low that very few reactant molecules can 
overcome the activation energy barrier. We see in Topic 21E 
that because me is so small, tunnelling is also a very important 
contributor to the rates of electron transfer reactions.

Checklist of concepts

☐ 1. In transition-state theory, it is supposed that an acti-
vated complex is in equilibrium with the reactants.

☐ 2. The rate at which the activated complex forms products 
depends on the rate at which it passes through a transi-
tion state.

☐ 3. The rate constant may be parameterized in terms of the 
Gibbs energy, entropy, and enthalpy of activation.

☐ 4. The kinetic salt effect is the effect of an added inert salt 
on the rate of a reaction between ions.

☐ 5. The kinetic isotope effect is the decrease in the rate 
constant of a chemical reaction upon replacement of 
one atom in a reactant by a heavier isotope.

Checklist of equations

Property Equation Comment Equation number

‘Equilibrium constant’ for activated 
complex formation

K N q E RT‡ /
‡ /=( ) −

A C A B eq q< < < ∆ 0 Assume equilibrium; one vibrational mode of 
C‡ discarded

21C.9

Eyring equation k kT h Kr c=κ ( / )
‡ Transition-state theory 21C.10

Gibbs energy of activation ∆‡ ‡lnG RT K= − Definition 21C.11

Enthalpy and entropy of activation Δ‡G = Δ‡H − TΔ‡S Definition 21C.13

Parameterization k Bn S R E RT
r e e e a= −∆‡ / / n = 2 for gas-phase reactions; 

n = 1 for solution
21C.15a

A-factor A Bn S R= e e∆‡ / 21C.15b

P-factor P S R= e steric∆‡ / 21C.15c

Kinetic salt effect log log 2r r A B
1 2k k Az z I= +° / Assumes Debye–Hückel limiting law valid 21C.18

Primary kinetic isotope effect k k

kT

r r

CH CD

C D C H e

C H

( )/ ( ) ,

( ( )/ ) { ( / ) }/

− − =

= − × −

−ζ

ζ ω µ µ 2 1 1 2

Cleavage of a C–H/D bond in the rate-
determining step

21C.20
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21D the dynamics of molecular collisions

The investigation of the dynamics of the collisions between 
reactant molecules is the most detailed level of the examina-
tion of the factors that govern the rates of reactions. There 
are two approaches: an experimental one that uses molecular 
beams and a theoretical one that uses the results of computa-
tions. In this Topic we describe both approaches and the link 
between them.

21D.1 Molecular beams

Molecular beams, which consist of collimated, narrow streams 
of molecules travelling through an evacuated vessel, allow col-
lisions between molecules in preselected states (for example, 
specific rotational and vibrational states) to be studied, and can 
be used to identify the states of the products of a reactive colli-
sion. Information of this kind is essential if a full picture of the 
reaction is to be built, because the rate constant is an average 
over events in which reactants in different initial states evolve 
into products in their final states.

(a) Techniques
The basic arrangement of a molecular beam experiment is 
shown in Fig. 21D.1. If the pressure of vapour in the source is 
increased so that the mean free path of the molecules in the 
emerging beam is much shorter than the diameter of the pin-
hole, many collisions take place even outside the source. The 
net effect of these collisions, which give rise to hydrodynamic 

Contents

21d.1 Molecular beams 904
(a) Techniques 904
(b) Experimental results 905

21d.2 Reactive collisions 907
(a) Probes of reactive collisions 907
(b) State-to-state reaction dynamics 907

brief illustration 21d.1: the state-to-state rate  
constant 908

21d.3 Potential energy surfaces 908
brief illustration 21d.2: a potential energy surface 909

21d.4 Some results from experiments and  
calculations 910
(a) The direction of attack and separation 910
(b) Attractive and repulsive surfaces 911

brief illustration 21d.3: attractive and repulsive 
surfaces 912

(c) Classical trajectories 912
(d) Quantum mechanical scattering theory 912

Checklist of concepts 913
Checklist of equations 913

➤➤ Why do you need to know this material?
Chemists need to be interested in the details of chemical 
reactions, and there is no more detailed approach than 
that involved in the study of the dynamics of reactive 
encounters, when one molecule collides with another and 
atoms exchange partners.

➤➤ What is the key idea?
The rates of reactions in the gas phase can be investigated 
by exploring the trajectories of molecules on potential 
energy surfaces.

➤➤ What do you need to know already?
This Topic builds on the concept of rate constant (Topic 
20A) and in one part of the discussion uses the concept 
of partition function (Topic 15B). The discussion of 
potential energy surfaces is qualitative, but the underlying 
calculations are those of self-consistent field theory 
(Topic 10E).

Source
Selector

Detector

Figure 21D.1 The basic arrangement of a molecular beam 
apparatus. The atoms or molecules emerge from a heated 
source, and pass through the velocity selector, a rotating 
series of slotted discs, such as that discussed in Topic 1B. 
The scattering occurs from the target gas (which might take 
the form of another beam), and the flux of particles entering 
the detector set at some angle is recorded.
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flow, is to transfer momentum into the direction of the beam. 
The molecules in the beam then travel with very similar speeds, 
so further downstream few collisions take place between them. 
This condition is called molecular flow. Because the spread in 
speeds is so small, the molecules are effectively in a state of very 
low translational temperature (Fig. 21D.2). The translational 
temperature may reach as low as 1 K. Such jets are called super-
sonic because the average speed of the molecules in the jet is 
much greater than the speed of sound in the jet.

A supersonic jet can be converted into a more parallel super-
sonic beam if it is ‘skimmed’ in the region of hydrodynamic 
flow and the excess gas pumped away. A skimmer consists of 
a conical nozzle shaped to avoid any supersonic shock waves 
spreading back into the gas and so increasing the translational 
temperature (Fig. 21D.3). A jet or beam may also be formed by 
using helium or neon as the principal gas, and injecting mol-
ecules of interest into it in the hydrodynamic region of flow.

The low translational temperature of the molecules is 
reflected in their low rotational and vibrational temperatures. 
In this context, a rotational or vibrational temperature means 
the temperature that should be used in the Boltzmann distri-
bution to reproduce the observed populations of the states. 
However, as rotational states equilibrate more slowly than 
translational states, and vibrational states equilibrate even more 
slowly, the rotational and vibrational populations of the species 
correspond to somewhat higher temperatures, of the order of 
10 K for rotation and 100 K for vibrations.

The target gas may be either a bulk sample or another molecu-
lar beam. The detectors may consist of a chamber fitted with a 
sensitive pressure gauge, a bolometer (a detector that responds 
to the incident energy by making use of the temperature-
dependence of resistance), or an ionization detector, in which 
the incoming molecule is first ionized and then detected elec-
tronically. The rotational and vibrational state of the scattered 
molecules may also be determined spectroscopically.

(b) Experimental results
The primary experimental information from a molecular beam 
experiment is the fraction of the molecules in the incident 

beam that are scattered into a particular direction. The fraction 
is normally expressed in terms of dI, the rate at which mole-
cules are scattered into a cone (described by a solid angle dΩ ) 
that represents the area covered by the ‘eye’ of the detector (Fig. 
21D.4). This rate is reported as the differential scattering cross-
section, σ, the constant of proportionality between the value of 
dI and the intensity, I, of the incident beam, the number den-
sity of target molecules, N, and the infinitesimal path length dx 
through the sample:

d dI I x=σ N  Definition  differential scattering cross-section  (21D.1)

The value of σ (which has the dimensions of area) depends on 
the impact parameter, b, the initial perpendicular separation 
of the paths of the colliding molecules (Fig. 21D.5), and the 
details of the intermolecular potential.

The role of the impact parameter is most easily seen by con-
sidering the impact of two hard spheres (Fig. 21D.6). If b = 0, 

dΩ

θ

Figure 21D.4 The definition of the solid angle, dΩ, for 
scattering.

b

Figure 21D.5 The definition of the impact parameter, b, as the 
perpendicular separation of the initial paths of the particles.

Molecular speed

In
te

n
si

ty

Maxwell–Boltzmann
distribution Supersonic

nozzle

Figure 21D.2 The shift in the mean speed and the width of the 
distribution brought about by use of a supersonic nozzle.

Gas flow

Pinhole

Oven Skimmer

Collimator

Figure 21D.3 A supersonic nozzle skims off some of the 
molecules of the beam and leads to a beam with well-defined 
velocity.
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the projectile is on a trajectory that leads to a head-on colli-
sion, so the only scattering intensity is detected when the detec-
tor is at θ = π. When the impact parameter is so great that the 
spheres do not make contact (b > RA + RB), there is no scattering 
and the scattering cross-section is zero at all angles except θ = 0. 
Glancing blows, with 0 < b ≤ RA + RB, lead to scattering intensity 
in cones around the forward direction

The scattering pattern of real molecules, which are not hard 
spheres, depends on the details of the intermolecular potential, 
including the anisotropy that is present when the molecules 
are non-spherical. The scattering also depends on the relative 
speed of approach of the two particles: a very fast particle might 
pass through the interaction region without much deflection, 
whereas a slower one on the same path might be temporarily 
captured and undergo considerable deflection (Fig. 21D.7). 
The variation of the scattering cross-section with the relative 
speed of approach should therefore give information about the 
strength and range of the intermolecular potential.

A further point is that the outcome of collisions is deter-
mined by quantum, not classical, mechanics. The wave nature 
of the particles can be taken into account, at least to some 
extent, by drawing all classical trajectories that take the projec-
tile particle from source to detector, and then considering the 
effects of interference between them.

Two quantum mechanical effects are of great importance. 
A particle with a certain impact parameter might approach the 
attractive region of the potential in such a way that the parti-
cle is deflected towards the repulsive core (Fig. 21D.8), which 
then repels it out through the attractive region to continue 
its flight in the forward direction. Some molecules, however, 
also travel in the forward direction because they have impact 
parameters so large that they are undeflected. The wavefunc-
tions of the particles that take the two types of path interfere, 
and the intensity in the forward direction is modified. The 
effect is called quantum oscillation. The same phenomenon 
accounts for the optical ‘glory effect’, in which a bright halo can 
sometimes be seen surrounding an illuminated object. (The 
coloured rings around the shadow of an aircraft cast on clouds 
by the Sun, and often seen in flight, are an example of an opti-
cal glory.)

The second quantum effect we need consider is the observa-
tion of a strongly enhanced scattering in a non-forward direc-
tion. This effect is called rainbow scattering because the same 
mechanism accounts for the appearance of an optical rainbow. 
The origin of the phenomenon is illustrated in Fig. 21D.9. 
As  the impact parameter decreases, there comes a stage at 
which the scattering angle passes through a maximum and the 
interference between the paths results in a strongly scattered 
beam. The rainbow angle, θr, is the angle for which dθ/db = 0 
and the scattering is strong.

Another phenomenon that can occur in certain beams is the 
capturing of one species by another. The vibrational tempera-
ture in supersonic beams is so low that van der Waals mole-
cules may be formed, which are complexes of the form AB in 
which A and B are held together by van der Waals forces or 
hydrogen bonds. Large numbers of such molecules have been 
studied spectroscopically, including ArHCl, (HCl)2, ArCO2, 
and (H2O)2. More recently, van der Waals clusters of water mol-
ecules have been pursued as far as (H2O)6. The study of their 

RA RB

b > RA + RB

b = 0

0 < b < RA + RB

(a) (b)

(c)

Figure 21D.6 Three typical cases for the collisions of two hard 
spheres: (a) b = 0, giving backward scattering; (b) b > RA + RB, 
giving forward scattering; (c) 0 < b < RA + RB, leading to scattering 
into one direction on a ring of possibilities. (The target molecule 
is taken to be so heavy that it remains virtually stationary.)

Slow
molecule

Fast
molecule

Figure 21D.7 The extent of scattering may depend on the 
relative speed of approach as well as the impact parameter. The 
dark central zone represents the repulsive core; the fuzzy outer 
zone represents the long-range attractive potential.

Interfering
paths

Figure 21D.8 Two paths leading to the same destination will 
interfere quantum mechanically; in this case they give rise to 
quantum oscillations in the forward direction.
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spectroscopic properties gives detailed information about the 
intermolecular potentials involved.

21D.2 Reactive collisions

Detailed experimental information about the intimate pro-
cesses that occur during reactive encounters comes from 
molecular beams, especially crossed molecular beams (Fig. 
21D.10). The detector for the products of the collision of mol-
ecules in the two beams can be moved to different angles to 
observe so the angular distribution of the products. Because 
the molecules in the incoming beams can be prepared with dif-
ferent energies (for example, with different translational ener-
gies by using rotating sectors and supersonic nozzles, with 
different vibrational energies by using selective excitation with 
lasers, and with different orientations by using electric fields), it 
is possible to study the dependence of the success of collisions 
on these variables and to study how they affect the properties of 
the product molecules.

(a) Probes of reactive collisions
One method for examining the energy distribution in the 
products is infrared chemiluminescence, in which vibration-
ally excited molecules emit infrared radiation as they return to 
their ground states. By studying the intensities of the infrared 
emission spectrum, the populations of the vibrational states 
of the products may be determined (Fig. 21D.11). Another 
method makes use of laser-induced fluorescence. In this tech-
nique, a laser is used to excite a product molecule from a spe-
cific vibration–rotation level; the intensity of the fluorescence 
from the upper state is monitored and interpreted in terms of 
the population of the initial vibration–rotation state. When the 
molecules being studied do not fluoresce efficiently, versions 
of Raman spectroscopy (Topic 12A) can be used to monitor 
the progress of reaction. Multiphoton ionization (MPI) tech-
niques are also good alternatives for the study of weakly flu-
orescing molecules. In MPI, the absorption by a molecule of 
several photons from one or more pulsed lasers results in ioni-
zation if the total photon energy is greater than the ionization 
energy of the molecule.

The angular distribution of products can be determined by 
reaction product imaging. In this technique, product ions are 
accelerated by an electric field towards a phosphorescent screen 
and the light emitted from specific spots where the ions struck 
the screen is imaged by a charge-coupled device (CCD). An 
important variant of MPI is resonant multiphoton ionization 
(REMPI), in which one or more photons promote a molecule 
to an electronically excited state and then additional photons 
are used to generate ions from the excited state. The power of 
REMPI lies in the fact that the experimenter can choose which 
reactant or product to study by tuning the laser frequency to 
the electronic absorption band of a specific molecule.

(b) State-to-state reaction dynamics
The concept of collision cross-section is introduced in con-
nection with collision theory in Topic 21A, where it is shown 

Source 1

Source 2

Detector

Figure 21D.10 In a crossed-beam experiment, state-selected 
molecules are generated in two separate sources, and are 
directed perpendicular to one another. The detector responds 
to molecules (which may be product molecules if a chemical 
reaction occurs) scattered into a chosen direction.

0

1

2

3

4
5
6
7v

Figure 21D.11 Infrared chemiluminescence from CO produced 
in the reaction O + CS → CO + S arises from the non-equilibrium 
populations of the vibrational states of CO and the radiative 
relaxation to equilibrium.

Decreasing b

Maximum deflection angle, θr

Figure 21D.9 The interference of paths leading to rainbow 
scattering. The rainbow angle, θr, is the maximum scattering 
angle reached as b is decreased. Interference between the 
numerous paths at that angle modifies the scattering intensity 
markedly.
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that the second-order rate constant, kr , can be expressed 
as a Boltzmann-weighted average of the reactive cross-
section and the relative speed of approach of the colliding 
reactant molecules. We shall write eqn 21A.6 of that Topic 
( ( ) ( ) )k N fr A rel d= ∫

∞

0 σ ε ε εv  as

k Nr rel A= 〈 〉σ v  (21D.2)

where the angle brackets denote a Boltzmann average. 
Molecular beam studies provide a more sophisticated version 
of this quantity, for they provide the state-to-state cross-sec-
tion, σnn′, and hence the state-to-state rate constant, knn′ for the 
reactive transition from initial state n of the reactants to final 
state n′ of the products:

k Nnn nn′ ′= 〈 〉σ vrel A   state-to-state rate constant  (21D.3)

The rate constant kr is the sum of the state-to-state rate con-
stants over all final states (because a reaction is successful 
whatever the final state of the products) and over a Boltzmann-
weighted sum of initial states (because the reactants are initially 
present with a characteristic distribution of populations at a 
temperature T):

k k T f T
n n

nn nr =
′

′∑
,

( ) ( )

 
(21D.4)

where fn(T) is the Boltzmann factor at a temperature T. It fol-
lows that if we can determine or calculate the state-to-state 
cross-sections for a wide range of approach speeds and initial 
and final states, then we have a route to the calculation of the 
rate constant for the reaction.

21D.3 Potential energy surfaces

One of the most important concepts for discussing beam results 
and calculating the state-to-state collision cross-section is the 
potential energy surface of a reaction, the potential energy as 
a function of the relative positions of all the atoms taking part 
in the reaction. Potential energy surfaces may be constructed 
from experimental data and from results of quantum chemical 
calculations (Topic 10E). The theoretical method requires the 
systematic calculation of the energies of the system in a large 
number of geometrical arrangements. Special computational 
techniques, such as those described in Topic 10E, are used to 
take into account electron correlation, which arises from inter-
actions between electrons as they move closer to and farther 
from each other in a molecule or molecular cluster. Techniques 
that incorporate electron correlation accurately are very time 
consuming and, consequently, only reactions between rela-
tively simple particles, such as the reactions H + H2 → H2 + H 
and H + H2O → OH + H2, currently are amenable to this type of 
theoretical treatment. An alternative is to use semi-empirical 
methods, in which results of calculations and experimental 
parameters are used to construct the potential energy surface.

To illustrate the features of a potential energy surface, consider 
the collision between an H atom and an H2 molecule. Detailed 
calculations show that the approach of an atom HA along the  
HB–HC axis requires less energy for reaction than any other 
approach, so initially we confine our attention to that collinear 
approach. Two parameters are required to define the nuclear sepa-
rations: the HA–HB separation RAB and the HB–HC separation RBC.

At the start of the encounter RAB is effectively infinite and RBC 
is the H2 equilibrium bond length. At the end of a successful 
reactive encounter RAB is equal to the equilibrium bond length 
and RBC is infinite. The total energy of the three-atom system 
depends on their relative separations, and can be found by 
doing an electronic structure calculation. The plot of the total 
energy of the system against RAB and RBC gives the potential 
energy surface of this collinear reaction (Fig. 21D.12). This sur-
face is normally depicted as a contour diagram (Fig. 21D.13).

Brief illustration 21D.1 The state-to-state rate constant

Suppose a harmonic oscillator collides with another oscillator 
of the same effective mass and force constant. If the state-to-
state rate constant for the excitation of the latter’s vibration is 
k kvv vv′ ′= r

°δ  for all the states v and v′, implying that an excita-
tion can flow only from any level to the same level of the sec-
ond oscillator, then at a temperature T, when fv(T) = e−vhν/kT/q, 
where q is the molecular vibrational partition function (Topic 
15B, q = 1/(1 − e−hν/kT)), the overall rate constant is

k
k
q

k
q kh kT h kT

r
r r

re e= = =
°

′
′

−
°

− ′ °

′
∑ ∑
v v

vv
v v

v,

/ /δ  

q� �� ��

Self-test 21D.1 Now suppose that k kvv vv
v

′
°

′
−= r eδ λ , implying 

that the transfer becomes less efficient as the vibrational quan-
tum number increases. Evaluate kr.

Answer: kr = kr
°(1 − e−hν/kT)/(1 − e−(λ+hν/kT))

Potential energy

  RBC
  RAB

Figure 21D.12 The potential energy surface for the H + H2 →  
H2 + H reaction when the atoms are constrained to be collinear.
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When RAB is very large, the variation in potential energy rep-
resented by the surface as RBC changes is that of an isolated H2 
molecule as its bond length is altered. A section through the 
surface at RAB = ∞, for example, is the same as the H2 bonding 
potential energy curve. At the edge of the diagram where RBC is 
very large, a section through the surface is the molecular poten-
tial energy curve of an isolated HAHB molecule.

The actual path of the atoms in the course of the encoun-
ter depends on their total energy, the sum of their kinetic and 
potential energies. However, we can obtain an initial idea of 
the paths available to the system by identifying paths that 
 correspond to least potential energy. For example, consider 
the changes in potential energy as HA approaches HBHC. If the 
HB–HC bond length is constant during the initial approach of 
HA, then the potential energy of the H3 cluster rises along the 
path marked A in Fig. 21D.14. We see that the potential energy 
reaches a high value as HA is pushed into the molecule and 
then decreases sharply as HC breaks off and separates to a great 
distance. An alternative reaction path can be imagined (B) in 

which the HB–HC bond length increases while HA is still far 
away. Both paths, although feasible if the molecules have suf-
ficient initial kinetic energy, take the three atoms to regions of 
high potential energy in the course of the encounter.

The path of least potential energy is the one marked C, cor-
responding to RBC lengthening as HA approaches and begins to 
form a bond with HB. The HB–HC bond relaxes at the demand 
of the incoming atom, and the potential energy climbs only as 
far as the saddle-shaped region of the surface, to the saddle 
point marked C‡. The encounter of least potential energy is 
one in which the atoms take route C up the floor of the valley, 
through the saddle point, and down the floor of the other valley 
as HC recedes and the new HA–HB bond achieves its equilib-
rium length. This path is the reaction coordinate.

We can now make contact with the transition-state theory of 
reaction rates (Topic 21C). In terms of trajectories on potential 
surfaces with a total energy close to the saddle point energy, 
the transition state can be identified with a critical geometry 
such that every trajectory that goes through this geometry goes 
on to react (Fig. 21D.15). Most trajectories on potential energy 

Brief illustration 21D.2 A potential energy surface

The bimolecular reaction H + O2 → OH + O plays an important 
role in combustion processes. The reaction can be character-
ized in terms of the HO2 potential energy surface and the two 
distances for collinear approach RHOA

 and RO OA B
. When RHOA

 
is very large, the variation of the HO2 potential energy with 
RO OA B

 is that of an isolated dioxygen molecule as its bond 
length is changed. Similarly, when RO OA B

 is very large, a section 
through the potential energy surface is the molecular poten-
tial energy curve of an isolated OH radical.

Self-test 21D.2 Repeat the analysis for H + OD → OH + D.
Answer: RHO at infinity: OD potential energy curve;  

ROD at infinity: OH potential energy curve

Re

Re

RBC

RAB

Figure 21D.13 The contour diagram (with contours of equal 
potential energy) corresponding to the surface in Fig. 21D.12.  
Re marks the equilibrium bond length of an H2 molecule (strictly, 
it relates to the arrangement when the third atom is at infinity).

RBC

RAB

0

A

B
C

C‡

Figure 21D.14 Various trajectories through the potential 
energy surface shown in Fig. 21D.13. Path A corresponds to a 
route in which RBC is held constant as HA approaches; path B 
corresponds to a route in which RBC lengthens at an early stage 
during the approach of HA; path C is the route along the floor of 
the potential valley.

Potential energy

  RBCRAB

Figure 21D.15 The transition state is a set of configurations 
(here, marked by the purple line across the saddle point) 
through which successful reactive trajectories must pass.
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surfaces do not go directly over the saddle point and therefore, 
to result in a reaction, they require a total energy significantly 
higher than the saddle point energy. As a result, the experimen-
tally determined activation energy is often significantly higher 
than the calculated saddle-point energy.

21D.4 Some results from experiments 
and calculations

Although quantum mechanical tunnelling can play an impor-
tant role in reactivity, particularly in hydrogen atom and elec-
tron transfer reactions, initially we can consider the classical 
trajectories of particles over surfaces. From this viewpoint, 
to travel successfully from reactants to products, the incom-
ing molecules must possess enough kinetic energy to be able 
to climb to the saddle point of the potential surface. Therefore, 
the shape of the surface can be explored experimentally by 
changing the relative speed of approach (by selecting the beam 
velocity) and the degree of vibrational excitation and observ-
ing whether reaction occurs and whether the products emerge 
in a vibrationally excited state (Fig. 21D.16). For example, one 
question that can be answered is whether it is better to smash 

the reactants together with a lot of translational kinetic energy 
or to ensure instead that they approach in highly excited vibra-
tional states. Thus, is trajectory C2*, where the HBHC molecule 
is initially vibrationally excited, more efficient at leading to 
reaction than the trajectory C1*, in which the total energy is the 
same but reactants have a high translational kinetic energy?

(a) The direction of attack and separation
Figure 21D.17 shows the results of a calculation of the potential 
energy as an H atom approaches an H2 molecule from differ-
ent angles, the H2 bond being allowed to relax to the optimum 
length in each case. The potential barrier is least for collinear 
attack, as we assumed earlier. (But we must be aware that other 
lines of attack are feasible and contribute to the overall rate.) 
In contrast, Fig. 21D.18 shows the potential energy changes 
that occur as a Cl atom approaches an HI molecule. The low-
est barrier occurs for approaches within a cone of half-angle 
30° surrounding the H atom. The relevance of this result to 
the calculation of the steric factor of collision theory should be 
noted: not every collision is successful, because they do not all 
lie within the reactive cone.

C1
*

C2
*

C3

C4

RBC

RAB

(a) (b)

(c) (d)

Figure 21D.16 Some successful (*) and unsuccessful 
encounters. (a) C1* corresponds to the path along the foot 
of the valley; (b) C2* corresponds to an approach of A to a 
vibrating BC molecule, and the formation of a vibrating AB 
molecule as C departs. (c) C3 corresponds to A approaching a 
non-vibrating BC molecule, but with insufficient translational 
kinetic energy; (d) C4 corresponds to A approaching a vibrating 
BC molecule, but still the energy, and the phase of the 
vibration, is insufficient for reaction.

H

H

H

Figure 21D.17 An indication of how the anisotropy of the 
potential energy changes as H approaches H2 with different 
angles of attack. The collinear attack has the lowest potential 
barrier to reaction. The surface indicates the potential energy 
profile along the reaction coordinate for each configuration.

I H
Cl

Unsuccessful
attack

Successful
attack

Figure 21D.18 The potential energy barrier for the approach of 
Cl to HI. In this case, successful encounters occur only when Cl 
approaches within a cone surrounding the H atom.
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If the collision is sticky, so that when the reactants collide 
they orbit around each other, the products can be expected 
to emerge in random directions because all memory of the 
approach direction has been lost. A rotation takes about 1 ps, 
so if the collision is over in less than that time the complex 
will not have had time to rotate and the products will be 
thrown off in a specific direction. In the collision of K and 
I2, for example, most of the products are thrown off in the 
forward direction (forward and backward directions refer 
to directions in a centre-of-mass coordinate system with the 
origin at the centre of mass of the colliding reactants and col-
lision occurring when molecules are at the origin.) This prod-
uct distribution is consistent with the harpoon mechanism 
(Topic 20A) because the transition takes place at long range. 
In contrast, the collision of K with CH3I leads to reaction 
only if the molecules approach each other very closely. In this 
mechanism, K effectively bumps into a brick wall, and the KI 
product bounces out in the backward direction. The detection 
of this aniso tropy in the angular distribution of products gives 
an indication of the distance and orientation of approach 
needed for reaction, as well as showing that the event is com-
plete in less than about 1 ps.

(b) Attractive and repulsive surfaces
Some reactions are very sensitive to whether the energy has 
been pre-digested into a vibrational mode or left as the rela-
tive translational kinetic energy of the colliding molecules. 
For example, if two HI molecules are hurled together with 
more than twice the activation energy of the reaction, then 
no reaction occurs if all the energy is solely translational. For 
F + HCl → Cl + HF, for example, the reaction is about five times 
more efficient when the HCl is in its first vibrational excited 
state than when, although HCl has the same total energy, it is in 
its vibrational ground state.

The origin of these requirements can be found by examining 
the potential energy surface. Figure 21D.19 shows an attractive 

surface in which the saddle point occurs early in the reaction 
coordinate. Figure 21D.20 shows a repulsive surface in which 
the saddle point occurs late. A surface that is attractive in one 
direction is repulsive in the reverse direction.

Consider first the attractive surface. If the original molecule 
is vibrationally excited, then a collision with an incoming mol-
ecule takes the system along C. This path is bottled up in the 
region of the reactants, and does not take the system to the sad-
dle point. If, however, the same amount of energy is present 
solely as translational kinetic energy, then the system moves 
along C* and travels smoothly over the saddle point into prod-
ucts. We can therefore conclude that reactions with attractive 
potential energy surfaces proceed more efficiently if the energy 
is in relative translational motion. Moreover, the potential sur-
face shows that once past the saddle point the trajectory runs 
up the steep wall of the product valley, and then rolls from 
side to side as it falls to the foot of the valley as the products 
separate. In other words, the products emerge in a vibrationally 
excited state.

Now consider the repulsive surface. On trajectory C the 
collisional energy is largely in translation. As the reactants 
approach, the potential energy rises. Their path takes them up 
the opposing face of the valley, and they are reflected back into 
the reactant region. This path corresponds to an unsuccessful 
encounter, even though the energy is sufficient for reaction. 
On C* some of the energy is in the vibration of the reactant 
molecule and the motion causes the trajectory to weave from 
side to side up the valley as it approaches the saddle point. This 
motion may be sufficient to tip the system round the corner to 
the saddle point and then on to products. In this case, the prod-
uct molecule is expected to be in an unexcited vibrational state. 
Reactions with repulsive potential surfaces can therefore be 
expected to proceed more efficiently if the excess energy is pre-
sent as vibrations. This is the case with the H + Cl2 → HCl + Cl 
reaction, for instance.

C

C* ‡

Figure 21D.19 An attractive potential energy surface. A 
successful encounter (C*) involves high translational kinetic 
energy and results in a vibrationally excited product.

C

C*
‡

Figure 21D.20 A repulsive potential energy surface. 
A successful encounter (C*) involves initial vibrational 
excitation and the products have high translational kinetic 
energy. A reaction that is attractive in one direction is repulsive 
in the reverse direction.
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(c) Classical trajectories
A clear picture of the reaction event can be obtained by using 
classical mechanics to calculate the trajectories of the atoms 
taking place in a reaction from a set of initial conditions, such 
as velocities, relative orientations, and internal energies of the 
reacting particles. The initial values used for the internal energy 
reflect the quantization of electronic, vibrational, and rotational 
energies in molecules but the features of quantum mechanics 
are not used explicitly in the calculation of the trajectory.

Figure 21D.21 shows the result of such a calculation of the 
positions of the three atoms in the reaction H + H2 → H2 + H, 
the horizontal coordinate now being time and the vertical 
coordinate the separations. This illustration shows clearly 
the vibration of the original molecule and the approach of 
the attacking atom. The reaction itself, the switch of partners, 
takes place very rapidly and is an example of a direct mode 
process. The newly formed molecule shakes, but quickly set-
tles down to steady, harmonic vibration as the expelled atom 

departs. In contrast, Fig. 21D.22 shows an example of a com-
plex mode process, in which the activated complex survives 
for an extended period. The reaction in the figure is the 
exchange reaction KCl + NaBr → KBr + NaCl. The tetratomic 
activated complex survives for about 5 ps, during which time 
the atoms make about 15 oscillations before dissociating into 
products.

(d) Quantum mechanical scattering theory
Classical trajectory calculations do not recognize the fact that 
the motion of atoms, electrons, and nuclei is governed by quan-
tum mechanics. The concept of trajectory then fades and is 
replaced by the unfolding of a wavefunction that represents ini-
tially the reactants and finally products.

Complete quantum mechanical calculations of trajectories 
and rate constants are very onerous because it is necessary 
to take into account all the allowed electronic, vibrational, 
and rotational states populated by each atom and molecule 
in the system at a given temperature. It is common to define 
a ‘channel’ as a group of molecules in well-defined quantum 
mechanically allowed states. Then, at a given temperature, 
there are many channels that represent the reactants and many 
channels that represent possible products, with some transi-
tions between channels being allowed but others not allowed. 
Furthermore, not every transition leads to a chemical reaction. 
For example, the process H2* + OH → H2 + OH*, where the 
asterisk denotes an excited state, amounts to energy transfer 
between H2 and OH, whereas the process H2* + OH → H2O + H 
represents a chemical reaction. What complicates a quantum 
mechanical calculation of rate constants even in this simple 
four-atom system is that many reacting channels present at a 
given temperature can lead to the desired products H2O + H, 
which themselves may be formed as many distinct channels. 

Brief illustration 21D.3 Attractive and repulsive surfaces

The reaction H + Cl2 → HCl + Cl has a repulsive poten-
tial surface. Of the following four reactive processes, 
H + Cl2(v) → HCl(v′) + Cl, which we denote (v,v′), all at the 
same total energy, (a) (0,0), (b) (2,0), (c) (0,2), (d) (2,2), reaction 
(b) is most probable with reactants vibrationally excited and 
products vibrationally unexcited.

Self-test 21D.3 Which of the four reactive processes of the 
reaction HCl(v) + Cl → H + Cl2(v′), all at the same total energy, 
(a) (0,0), (b) (2,0), (c) (0,2), (d) (2,2), is most probable?

Answer: (0,2); attractive surface
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Figure 21D.21 The calculated trajectories for a reactive 
encounter between A and a vibrating BC molecule leading to 
the formation of a vibrating AB molecule. This direct-mode 
reaction is between H and H2 (M. Karplus et al., J. Chem. Phys. 
43, 3258 (1965)).
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Figure 21D.22 An example of the trajectories calculated for a 
complex-mode reaction, KCl + NaBr → KBr + NaCl, in which the 
collision cluster has a long lifetime (P. Brumer and M. Karplus, 
Faraday Disc. Chem. Soc. 55, 80 (1973)).
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The cumulative reaction probability, P E( ), at a fixed total 
energy E is then written as

P E P E
i j

ij( ) ( )
,

=∑
 

 cumulative reaction probability  (21D.5)

where Pi,j(E) is the probability for a transition between a react-
ing channel i and a product channel j and the summation is 
over all possible transitions that lead to product. It is then pos-
sible to show that the rate constant is given by

k T
P E E

h T

E kT

r
R

e d
( )

( )

( )

/

=

∞
−∫ 0

Q  
 rate constant  (21D.6)

where Q  R(T) is the partition function density (the partition 
function divided by the volume) of the reactants at the tem-
perature T. The significance of eqn 21D.6 is that it provides a 
direct connection between an experimental quantity, the rate 
constant, and a theoretical quantity, P E( ).

Checklist of concepts

☐ 1. A molecular beam is a collimated, narrow stream of 
molecules travelling through an evacuated vessel.

☐ 2. In a molecular beam, the scattering pattern of real mol-
ecules depends on quantum mechanical effects and the 
details of the intermolecular potential.

☐ 3. A van der Waals molecule is a complex of the form AB 
in which A and B are held together by van der Waals 
forces or hydrogen bonds.

☐ 4. Techniques for the study of reactive col lisions 
include infrared chemiluminescence, laser-induced 

fluorescence, multiphoton ionization (MPI), reaction 
product imaging, and resonant multiphoton ioniza-
tion (REMPI).

☐ 5. A potential energy surface maps the potential energy 
as a function of the relative positions of all the atoms 
taking part in a reaction.

☐ 6. In an attractive surface, the saddle point (the highest 
point) occurs early on the reaction coordinate.

☐ 7. In a repulsive surface, the saddle point occurs late on 
the reaction coordinate.

Checklist of equations

Property Equation Comment Equation number

Rate of molecular scattering dI = σINdx σ is the differential scattering cross section 21D.1

Rate constant kr = 〈σvrel〉NA 21D.2

State-to-state rate constant knn′ = 〈σnn′vrel〉NA 21D.3

Overall rate constant k k T f T

n n

nn nr =
′

′∑
,

( ) ( ) 21D.4

Cumulative reaction probability P E P E

i j

ij( ) ( )

,

=∑ 21D.5

Rate constant k T P E E h TE kT
r Re d( ) ( ) / ( )/= −

∞

∫ Q
0

Q   R(T) is the partition function density 21D.6
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21E electron transfer in 
homogeneous systems

Here we apply the concepts of transition state theory and quan-
tum theory to the study of a deceptively simple process, elec-
tron transfer between molecules in homogeneous systems. We 

describe a theoretical approach to the calculation of rate con-
stants and discuss the theory in the light of experimental results 
on a variety of systems, including protein complexes. We shall 
see that relatively simple expressions can be used to predict the 
rates of electron transfer with reasonable accuracy.

21E.1 The electron transfer rate law

Consider electron transfer from a donor species D to an accep-
tor species A in solution. The overall reaction is

D A D A D Ar+ → + =+ − v k [ ][ ]  (21E.1)

In the first step of the mechanism, D and A must diffuse 
through the solution and on meeting form a complex DA:

D A DA
a

a

+
′

k

k


 

(21E.2a)

We suppose that in the complex D and A are separated by d, the 
distance between their outer surfaces. Next, electron transfer 
occurs within the DA complex to yield D+A−:

DA D A
et

et

k

k


′
+ −

 

(21E.2b)

The complex D+A− can also break apart and the ions diffuse 
through the solution:

D A D A
d+ − + −→ +

k
 (21E.2c)

We show in the following Justification that on the basis of this 
model

1 1
1

k k k k
k
k

k

r a a et

et

d

a= + + ′





′

 
 electron transfer rate constant  (21E.3)
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➤➤ Why do you need to know this material?
Electron transfer reactions between protein-bound 
cofactors or between proteins play an important role 
in a variety of biological processes. Electron transfer is 
also important in homogeneous, non-biological catalysis 
(especially biomimetic systems).

➤➤ What is the key idea?
The rate constant of electron transfer in a donor–acceptor 
complex depends on the distance between electron 
donor and acceptor, the standard reaction Gibbs energy, 
and the energy needed to reach a particular arrangement 
of atoms.

➤➤ What do you need to know already?
This Topic makes use of transition-state theory (Topic 
21C). It also uses the concept of tunnelling (Topic 8A), the 
steady-state approximation (Topic 20E), and the Franck–
Condon principle (Topic 13A).
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21E Electron transfer in homogeneous systems  915

To gain insight into eqn 21E.3 and the factors that deter-
mine the rate of electron transfer reactions in solution, we 
assume that the main decay route for D+A− is dissociation of 
the complex into separated ions, and therefore that k kd et ′ . It 
follows that

1 1
1

k k k
k

r a et

a≈ +





′

 

•	 When k k k ket a r a  ′ ≈,  and the rate of product 
formation is controlled by diffusion of D and A in 
solution, which favours formation of the DA 
complex.

•	 When k k k k k k Kket a r a a et et / ′ ≈ ′ =, ( ) , where K is the 
equilibrium constant for the diffusive encounter. The 
process is controlled by ket and therefore the activation 
energy of electron transfer in the DA complex.

21E.2 The rate constant

This analysis can be taken further by introducing the implica-
tion from transition-state theory (Topic 21C) that, at a given 
temperature, k G RT

et e∝ −∆‡ / , where Δ‡G is the Gibbs energy of 
activation. Our remaining task, therefore, is to find expressions 
for the proportionality constant and Δ‡G.

Our discussion concentrates on the following two key 
aspects of the theory of electron transfer processes, which was 
developed independently by R.A. Marcus, N.S. Hush, V.G. 
Levich, and R.R. Dogonadze:

•	 Electrons are transferred by tunnelling through a 
potential energy barrier, the height of which is partly 
determined by the ionization energies of the DA and 
D+A− complexes. Electron tunnelling influences the 
magnitude of the proportionality constant in the 
expression for ket.

•	 The complex DA and the solvent molecules surrounding 
it undergo structural rearrangements prior to electron 
transfer. The energy associated with these 
rearrangements and the standard reaction Gibbs energy 
determine Δ‡G .

According to the Franck–Condon principle (Topic 13A), 
electronic transitions are so fast that they can be regarded as 
taking place in a stationary nuclear framework. This principle 
also applies to an electron transfer process in which an electron 
migrates from one energy surface, representing the depend-
ence of the energy of DA on its geometry, to another repre-
senting the energy of D+A−. We can represent the potential 
energy (and the Gibbs energy) surfaces of the two complexes 
(the reactant complex, DA, and the product complex, D+A−) by 
the parabolas characteristic of harmonic oscillators, with the 
displacement coordinate corresponding to the changing geom-
etries (Fig. 21E.1). This coordinate represents a collective mode 
of the donor, acceptor, and solvent.

Justification 21E.1 The rate constant for electron 
transfer in solution

We begin by identifying the rate of the overall reaction (eqn 
21E.1) with the rate of formation of separated ions:

v = = + −k kr dD A D A[ ][ ] [ ]  

There are two reaction intermediates, DA and D+A−, and we 
apply the steady-state approximation (Topic 20E) to both. 
From

d[D A ]
d

DA D A D Aet et d

+ −
+ − + −= − ′ − =

t
k k k[ ] [ ][ ] 0

 

it follows that

[ ] [ ]DA D Aet d

et
= ′ + + −k k

k  

and from

d[DA]
d

D A DA DA D Aa a et ett
k k k k= − ′ − + ′ =+ −[ ][ ] [ ][ ] [ ] 0

 

it follows that

k k ka a etD A DA DA[ ][ ] [ ][ ]− ′ −
− +

′

( ) [DA]a et

(( et d)/ et)[D A ]

k k

k k k+ + −
��

� ���� ����
+ ′

= −
′ +( ) ′ +( ) − ′

+ −k

k
k k k k

k
k

et

a
a et et d

et
et

D A

D A

[ ]

[ ][ ]








= − ′ ′ + ′ +( ) =

+ −

+ −

[ ]

[ ][ ][ ]

D A

D A D Aa
et

a et a d d etk
k

k k k k k k
1

0
 

therefore

[ ] [ ][ ]D A D Aa et

a et a d d et

+ − = ′ ′ + ′ +
k k

k k k k k k  

When this expression is multiplied by kd, the resulting equa-
tion has the form of the rate of electron transfer, v = kr[D][A], 
with kr given by

k
k k k

k k k k k kr
a et d

a et a d d et
= ′ ′ + ′ +  

To obtain eqn 21E.3, divide the numerator and denominator 
on the right-hand side of this expression by kdket and solve for 
the reciprocal of kr.
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916 21 Reaction dynamics

According to the Franck–Condon principle, the nuclei do 
not have time to move when the system passes from the reac-
tant to the product surface as a result of the transfer of an elec-
tron. Therefore, electron transfer can occur only after thermal 
fluctuations bring the geometry of DA to q‡ in Fig 21E.1, the 
value of the nuclear coordinate at which the two parabolas 
intersect.

(a) The role of electron tunnelling
The proportionality constant in the expression for ket is a meas-
ure of the rate at which the system will convert from reactants 
(DA) to products (D+A−) at q‡ by electron transfer within the 
thermally excited DA complex. To understand the process, we 
must turn our attention to the effect that the re arrangement 
of nuclear coordinates has on electronic energy levels of DA 
and D+A− for a given distance d between D and A (Fig. 21E.2). 
Initially, the overall energy of DA is lower than that of D+A− 
(Fig 21E.2a). As the nuclei rearrange to a configuration repre-
sented by q‡ in Fig. 21E.2b, the HOMO of DA and the LUMO 
of D+A− become degenerate and electron transfer becomes 
energetically feasible. Over reasonably short distances d, the 
main mechanism of electron transfer is tunnelling through 
the potential energy barrier depicted in Fig 21E.2b. After an 
electron moves between the two frontier orbitals, the system 
relaxes to the configuration represented by q0

P in Fig 21E.2c. 
As shown in the illustration, now the energy of D+A− is lower 
than that of DA, reflecting the thermodynamic tendency for 
A to remain reduced (as A−) and for D to remain oxidized  
(as D+).

The tunnelling event responsible for electron transfer is 
similar to that described in Topic 8A, except that in this case 
the electron tunnels from an electronic level of DA, with 

wavefunction ψDA, to an electronic level of D+A−, with wave-
function ψD+A− . The rate of an electronic transition from a level 
described by the wavefunction ψDA to a level described by ψD+A− 
is proportional to the square of the integral

H het DA D A d= + −∫ψ ψ τˆ
 

where ĥ  is a hamiltonian that describes the coupling of the elec-
tronic wavefunctions. The probability of tunnelling through a 
potential barrier typically has an exponential dependence on 
the width of the barrier (Topic 8A), which suggests that we 
should write

H d H d
et

2
et

2e( ) = ° −β
 (21E.4)

where d is the edge-to-edge distance between D and A, β is a 
parameter that measures the sensitivity of the electronic cou-
pling matrix element to distance, and Het° is the value of the 
electronic coupling matrix element when DA and D+A− are in 
contact (d = 0).

Displacement, q
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ΔrG
<

q0
R q0

Pq‡

Figure 21E.1 The Gibbs energy surfaces of the complexes 
DA and D+A− involved in an electron transfer process are 
represented by parabolas characteristic of harmonic oscillators, 
with the displacement coordinate q corresponding to the 
changing geometries of the system.
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V

Electron
transfer

Nuclear
displacement

Electron
displacement

(a) (b)

(c)
d

Figure 21E.2 (a) At the nuclear configuration denoted by 
q0

R, the electron to be transferred in DA is in an occupied 
electronic energy level and the lowest unoccupied energy 
level of D+A−is of too high an energy to be a good electron 
acceptor. (b) As the nuclei rearrange to a configuration 
represented by q‡, DA and D+A− become degenerate and 
electron transfer occurs by tunnelling. (c) The system relaxes 
to the equilibrium nuclear configuration of D+A− denoted by 
q0

P, in which the lowest unoccupied electronic level of DA is 
higher in energy than the highest occupied electronic level 
of D+A−. Adapted from R.A. Marcus and N. Sutin, Biochim. 
Biophys. Acta 811, 265 (1985).
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21E Electron transfer in homogeneous systems  917

(b) The reorganization energy
The proportionality constant in k G RT

et e∝ −∆‡ /  is proportional to 
Het(d)2, as expressed by eqn 21E.4. Therefore, we can expect the 
full expression for ket to have the form

k CH d G RT
et et e= −( ) /2 ∆‡

 (21E.5)

with C a constant of proportionality and Het(d)2 given by eqn 
21E.5. We show in the following Justification that the Gibbs 
energy of activation Δ‡G is

∆ ∆
∆

‡ ( )
G

G E
E

= +∆r R

R

< 2

4  
 gibbs energy of activation  (21E.6)

where ΔrG< is the standard reaction Gibbs energy for the 
electron transfer process DA → D+A−, and ΔER is the reor-
ganization energy, the energy change associated with molec-
ular rearrangements that must take place so that DA can 
take on the equilibrium geometry of D+A−. These molecular 
re arrangements include the relative reorientation of the D and 
A molecules in DA and the relative reorientation of the solvent 
molecules surrounding DA. Equation 21E.6 shows that Δ‡G = 0, 
with the implication that the reaction is not slowed down by 
an activation barrier, when ΔrG< = –ΔER, corresponding to the 
cancellation of the reorganization energy term by the standard 
reaction Gibbs energy.

Brief illustration 21E.1 The distance dependence  
of the coupling

The value of β depends on the medium through which the 
electron must travel from donor to acceptor. In a vacuum, 
28 nm−1 < β < 35 nm−1, whereas β ≈ 9 nm−1 when the interven-
ing medium is a molecular link between donor and accep-
tor. Electron transfer between protein-bound cofactors can 
occur at distances of up to about 2.0 nm, a long distance on 
a molecu lar scale, corresponding to about 20 carbon atoms, 
with the protein providing an intervening medium between 
donor and acceptor.

Self-test 21E.1 By how much does Het
2  change when d is 

increased from 1.0 nm to 2.0 nm, with β ≈ 9 nm−1?
Answer: Decrease by a factor of 8100

Justification 21E.2 The Gibbs energy of activation  
of electron transfer

The simplest way to derive an expression for the Gibbs energy 
of activation of electron transfer processes is to construct a 
model in which the surfaces for DA (the ‘reactant complex’, 
denoted R) and for D+A− (the ‘product complex’, denoted P) 
are described by classical harmonic oscillators with identical 

reduced masses μ and angular frequencies ω , but displaced 
minima, as shown in Fig. 21E.3. The molar Gibbs energies 
Gm,R(q) and Gm,P(q) of the reactant and product complexes, 
respectively, may then be written

G q N q q G q

G q N q q G

m R A
2 R 2

m R
R

m P A
2 p 2

, ,

,

( ) ( ) ( )

( ) ( )

= +

= +

1
2 0 0

1
2 0

µω

µω

−

− mm P
p

, ( )q0  

where q0
R and q0

P are the values of q at which the minima of the 
reactant and product parabolas occur, respectively. The stand-
ard reaction Gibbs energy for the electron transfer process 
R → P is ∆r m P

P
m R

R( )G G q G q< = , , ( )0 0− , the difference in stand-
ard molar Gibbs energy between the minima of the parabolas. 
In Fig. 21E.3, ΔrG< < 0.

The value of q corresponding to the transition state of the 
complex, q‡, may be written in terms of the parameter α , the 
fractional change in q:

q q q q‡ ( – )= +0 0 0
R P Rα  

We see from Fig. 21E.3 that ∆‡
,

‡
,– ( )G G q G q= m R m R

R( ) 0 . It then 
follows that

∆‡ ‡( ) { ( ) }G N q q N q q= − = −1
2

2 2 1
2

2 2
0 0 0A A
R P Rµω µω α  

We now define the reorganization energy, ΔER, as

∆E N q qR A
2 P R 2= 1

2 0 0µω ( )−  
which can be interpreted as G q G qm R

P
m R

R
, ,( ) ( )0 0−  and, conse-

quently, as the (Gibbs) energy required to deform the equi-
librium configuration of R to the equilibrium configuration 
of P (as shown in Fig. 21E.3). Then Δ‡G = α2ΔER. Because 
Gm,R(q‡) = Gm,P(q‡), it follows that

α µω α

α

2
R A

2 P R 2
r

R r

1

1 +

∆ ∆

∆ ∆

E N q q G

E G

= − − +

= −

1
2 0 0{( )( )}

( )

<

<

 
which implies that

α = +





1
2

1
∆r

R

G
E

<

∆
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Figure 21E.3 The model system used in Justification 21E.2.
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918 21 Reaction dynamics

By inserting this equation into Δ‡G = α2ΔER, we obtain eqn 
21E.6. We can obtain an identical relation if we allow the har-
monic oscillators to have different angular frequencies and 
hence different curvatures.

The only missing piece of the expression for ket is the value of 
the constant of proportionality C. Detailed calculation, which 
we do not repeat here, gives

C
h RT E

= 





1 3 1 2
π
∆ R

/

 
(21E.7)

Equation 21E.6 has some limitations as might be expected 
because perturbation theory arguments have been used. For 
instance, it describes processes with weak electronic coupling 
between donor and acceptor. Weak coupling is observed when 
the electroactive species are sufficiently far apart that the tun-
nelling is an exponential function of distance. An example of 
a weakly coupled system is the complex of the proteins cyto-
chrome c and cytochrome b5, in which the electroactive haem-
bound iron ions shuttle between oxidation states Fe(II) and 
Fe(III) during electron transfer and are about 1.7 nm apart. 
Strong coupling is observed when the wavefunctions ψA and 
ψD overlap very extensively and, as well as other complications, 
the tunnelling rate is no longer a simple exponential function 
of distance. Examples of strongly coupled systems are mixed-
valence, binuclear d-metal complexes with the general structure 
LmMn+–B–Mp+Lm, in which the electroactive metal ions are sep-
arated by a bridging ligand B. In these systems, d < 1.0 nm. The 
weak coupling limit applies to a large number of electron transfer 
reactions, including those between proteins during metabolism.

The most meaningful experimental tests of the dependence 
of ket on d are those in which the same donor and acceptor are 
positioned at a variety of distances, perhaps by covalent attach-
ment to molecular linkers (see 1 in Brief illustration 21E.2 for an 
example). Under these conditions, the term e−∆‡ /G RT  becomes a 
constant and, after taking the natural logarithm of eqn 21E.5 
and using eqn 21E.4, we obtain

ln constantetk d= +–β  (21E.8)

which implies that a plot of ln ket against d should be a straight 
line of slope –β.

The dependence of ket on the standard reaction Gibbs 
energy has been investigated in systems where the edge-to-
edge distance and the reorganization energy are constant for 
a series of reactions. Then, by using eqn 21E.6 for Δ‡G, eqn 
21E.5 becomes

lnk
RT

E
G

RT
G

RTet
R

r r constant= − 





− 





+
4

1
2

2

∆
∆ ∆< <

 
(21E.9)

and a plot of ln ket (or log ket = ln ket/ln 10) against ΔrG< (or 
–ΔrG<) is predicted to be shaped like a downward parabola 
(Fig. 21E.4). Equation 21E.9 implies that the rate constant 
increases as ΔrG< decreases but only up to –ΔrG< = ΔER. 
Beyond that, the reaction enters the inverted region, in which 
the rate constant decreases as the reaction becomes more exer-
gonic (ΔrG< becomes more negative). The inverted region has 
been observed in a series of special compounds in which the 
electron donor and acceptor are linked covalently to a molecu-
lar spacer of known and fixed size (Fig. 21E.5).

ln
 k

et

0

constant

–ΔrG
<

constant + ΔER/4RT

ΔER

Figure 21E.4 The parabolic dependence of ln ket on –ΔrG< 
predicted by eqn 21E.9.
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Figure 21E.5 Variation of log ket with –ΔrG< for a series of 
compounds with the structures given in 1 and as described in 
Brief illustration 21E.2. Based on J.R. Miller, et al., J. Am. Chem. 
Soc. 106, 3047 (1984).
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21E Electron transfer in homogeneous systems  919

Checklist of concepts

☐ 1. Electron transfer can occur only after thermal fluctua-
tions bring the nuclear coordinate to the point at which 
the donor and acceptor have the same configuration.

☐ 2. The tunnelling rate is supposed to depend exponen-
tially on the separation of the donor and acceptor.

☐ 3. The reorganization energy is the energy change asso-
ciated with molecular rearrangements that must take 

place so that DA can acquire the equilibrium geometry 
of D+A−.

☐ 4. In the inverted region, the rate constant ket decreases 
as the reaction becomes more exergonic (ΔrG< becomes 
more negative).

Checklist of equations

Property Equation Comment Equation number

Electron transfer rate constant 1 1 1/ / / /r a a a et et dk k k k k k k= + ′ + ′( )( ) Steady-state assumption 21E.3

Tunnelling probability H d H d
et et e( )2 2= ° −β Assumed 21E.4

Rate constant k CH d G RT
et et e= −( ) /2 ∆‡ Transition-state theory 21E.5

Gibbs energy of activation ∆ ∆ ∆ ∆‡ ( )G G E E= +r R R/< 2 4 Assumes parabolic potential energy 21E.6

Dependence on separation ln ket = –βd + constant 21E.8

Dependence on ∆rG
< ln k a G b G cet r r= + +∆ ∆< <2 a = −1/4ΔERRT, b = −1/2RT, c = constant 21E.9

Brief illustration 21E.2 The determination  
of the reorganization energy

Kinetic measurements were conducted in 2-methyltetrahydro-
furan and at 296 K for a series of compounds with the struc-
tures given in 1. The distance between donor (the reduced 
biphenyl group) and the acceptor is constant for all compounds 
in the series because the molecular linker remains the same. 
Each acceptor has a characteristic standard potential, so it fol-
lows that the standard Gibbs energy for the electron transfer 
process is different for each compound in the series. The line in 
Fig. 21E.5 is a fit to a version of eqn 21E.9 and the maximum of 
the parabola occurs at –ΔrG< = ΔER = 1.4 eV = 1.4 × 102 kJ mol−1.

A

1 An electron donor–acceptor system

O

O

O

O

R2

R1

O

O

A = (a) (b) (c)

(d) (e)

(f) R 1 = H, R 2 = H

(g) R1 = H, R 2 = Cl

(h) R1 = Cl, R2 = Cl

Self-test 21E.2 Some (invented) data on a series of complexes 
are as follows:

Determine the reorganization energy.
Answer: 1.05 eV

−ΔrG</eV 0.20 0.60  1.0  1.3 1.6 2.0 2.4

log ket 8.2 9.7 10.2 10.1 9.4 7.7 5.1
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21F Processes at electrodes

As for homogeneous systems (Topic 21E), electron trans-
fer at the surface of an electrode involves electron tunnelling. 
However, the electrode possesses a nearly infinite number of 
closely spaced electronic energy levels rather than the small 
number of discrete levels of a typical complex. Furthermore, 
specific interactions with the electrode surface give the solute 

and solvent special properties that can be very different from 
those observed in the bulk of the solution. For this reason, we 
begin with a description of the electrode–solution interface. 
Then we describe the kinetics of electrode processes that draws 
on the thermodynamic language inspired by transition-state 
theory.

21F.1 The electrode–solution interface

The most primitive model of the boundary between the solid 
and liquid phases is as an electrical double layer, which con-
sists of a sheet of positive charge at the surface of the electrode 
and a sheet of negative charge next to it in the solution (or vice 
versa). We shall see that this arrangement creates an electrical 
potential difference, called the Galvani potential difference, 
between the bulk of the metal electrode and the bulk of the 
solution.

More sophisticated models for the electrode–solution inter-
face attempt to describe the gradual changes in the structure of 
the solution between two extremes, one the charged electrode 
surface and the other the bulk solution. In the Helmholtz layer 
model of the interface the solvated ions arrange themselves 
along the surface of the electrode but are held away from it by 
their hydration spheres (Fig. 21F.1). The location of the sheet 
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➤➤ Why do you need to know this material?
A knowledge of the factors that determine the rate 
of electron transfer at electrodes leads to a better 
understanding of power production in batteries, and 
of electron conduction in metals, semiconductors, and 
nanometre-sized electronic devices, all of which are highly 
important in modern technology.

➤➤ What is the key idea?
Transition-state theory can be applied to the description 
of electron transfer processes at the surface of electrodes.

➤➤ What do you need to know already?
You need to be familiar with electrochemical cells (Topic 6C), 
electrode potentials (Topic 6D), and the thermodynamic 
version of transition-state theory (Topic 21C), particularly 
the activation Gibbs energy.

– – – –

+ + + +

–
+

φM

φS

OHP

Electric
potential

Figure 21F.1 A simple model of the electrode–solution 
interface treats it as two rigid planes of charge. One plane, 
the outer Helmholtz plane (OHP), is due to the ions with 
their solvating molecules and the other plane is that of the 
electrode itself. The plot shows the dependence of the electric 
potential with distance from the electrode surface according 
to this model. Between the electrode surface and the OHP, the 
potential varies linearly from ϕM, the value in the metal, to ϕS, 
the value in the bulk of the solution.
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21F Processes at electrodes  921

of ionic charge, which is called the outer Helmholtz plane 
(OHP), is identified as the plane running through the solvated 
ions. In this simple model, the electrical potential changes lin-
early within the layer bounded by the electrode surface on one 
side and the OHP on the other. In a refinement of this model, 
ions that have discarded their solvating molecules and have 
become attached to the electrode surface by chemical bonds 
are regarded as forming the inner Helmholtz plane (IHP). The 
Helmholtz layer model ignores the disrupting effect of thermal 
motion, which tends to break up and disperse the rigid outer 
plane of charge. In the Gouy–Chapman model of the diffuse 
double layer, the disordering effect of thermal motion is taken 
into account in much the same way as the Debye–Hückel model 
describes the ionic atmosphere of an ion (Topic 5F) with the lat-
ter’s single central ion replaced by an infinite, plane electrode.

Figure 21F.2 shows how the local concentrations of cations 
and anions differ in the Gouy–Chapman model from their 
bulk concentrations. Ions of opposite charge cluster close to 
the electrode and ions of the same charge are repelled from 
it. The modification of the local concentrations near an elec-
trode implies that it might be misleading to use activity coef-
ficients characteristic of the bulk to discuss the thermodynamic 
properties of ions near the interface. This is one of the reasons 
why measurements of the dynamics of electrode processes are 
almost always done using a large excess of supporting electro-
lyte (for example, a 1 m solution of a salt, an acid, or a base). 
Under such conditions, the activity coefficients are almost 
constant because the inert ions dominate the effects of local 
changes caused by any reactions taking place. The use of a con-
centrated solution also minimizes ion migration effects.

Neither the Helmholtz nor the Gouy–Chapman model is a 
very good representation of the structure of the double layer. The 
former overemphasizes the rigidity of the local solution; the lat-
ter underemphasizes its structure. The two are combined in the 

Stern model, in which the ions closest to the electrode are con-
strained into a rigid Helmholtz plane while outside that plane the 
ions are dispersed as in the Gouy–Chapman model (Fig. 21F.3). 
Yet another level of sophistication is found in the Grahame 
model, which adds an inner Helmholtz plane to the Stern model.

The potential difference between points in the bulk metal 
and the bulk solution is the Galvani potential difference, Δϕ. 
Apart from a constant, this Galvani potential difference is the 
electrode potential that was discussed in Topic 6D. We shall 
ignore the constant, which cannot be measured anyway, and 
identify changes in Δϕ with changes in electrode potential.

21F.2 The rate of electron transfer

We shall consider a reaction at the electrode in which an ion 
is reduced by the transfer of a single electron in the rate-deter-
mining step. We focus on the current density, j, the electric 
current flowing through a region of an electrode divided by the 
area of the region.

(a) The Butler–Volmer equation
We show in the following Justification that an analysis of the 
effect of the Galvani potential difference at the electrode on the 
current density leads to the Butler–Volmer equation:

j j f f= −− −
0

1{ }( )e eα η α η
  butler–Volmer equation  (21F.1)

where we have written f = F/RT, with F as Faraday’s constant. 
The equation contains the following parameters:

•	 η (eta), the overpotential:

η = −E E′  Definition  overpotential  (21F.2)
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Figure 21F.3 A representation of the Stern model of the 
electrode–solution interface. The model incorporates the idea 
of an outer Helmholtz plane near the electrode surface and of a 
diffuse double layer further away from the surface.
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Figure 21F.2 The Gouy–Chapman model of the electrical 
double layer treats the outer region as an atmosphere of 
counter-charge, similar to the Debye–Hückel theory of ion 
atmospheres. The plot of electrical potential against distance 
from the electrode surface shows the meaning of the diffuse 
double layer (see text for details).

iranchembook.ir/edu



922 21 Reaction dynamics

Justification 21F.1 The Butler–Volmer equation

Because an electrode reaction is heterogeneous, we express the 
rate of charge transfer as the flux of products, the amount of 
material produced over a region of the electrode surface in an 
interval of time divided by the area of the region and the dura-
tion of the interval.

A first-order heterogeneous rate law has the form

Product flux speciesr= k [ ]  

where [species] is the molar concentration of the relevant elec-
troactive species in solution close to the electrode, just outside 
the double layer. The rate constant has dimensions of length/
time (with units, for example, of centimetres per second,  
cm s−1). If the molar concentrations of the oxidized and reduced 
materials outside the double layer are [Ox] and [Red], respec-
tively, then the rate of reduction of Ox, vOx, is vOx = kc[Ox] and 
the rate of oxidation of Red, vRed, is vRed = ka[Red]. (The nota-
tion kc and ka is justified below.)

Now consider a reaction at the electrode in which an ion 
is reduced by the transfer of a single electron in the rate-
determining step. The net current density at the electrode is 
the difference between the current densities arising from the 
reduction of Ox and the oxidation of Red. Because the redox 
processes at the electrode involve the transfer of one elec-
tron per reaction event, the current densities, j, arising from 
the redox processes are the rates vOx and vRed multiplied by 
the charge transferred per mole of reaction, which is given by 
Faraday’s constant. Therefore, there is a cathodic current den-
sity of magnitude

j Fkc c Ox for Ox e Red= + →−[ ]  

arising from the reduction (because, as defined in Topic 6C, 
the cathode is the site of reduction). There is also an opposing 
anodic current density of magnitude

j Fka a Red for Red Ox e= → + −[ ]  

arising from the oxidation (because the anode is the site 
of oxidation). The net current density at the electrode is the 
difference

j j j Fk Fk= − = −a c a cRed Ox[ ] [ ]  

Note that, when ja > jc, so that j > 0, the current is anodic (Fig. 
21F.4a); when jc > ja, so that j > 0, the current is cathodic (Fig. 
21F.4b).

If a species is to participate in reduction or oxidation at an 
electrode, it must discard any solvating molecules, migrate 
through the electrode–solution interface, and adjust its hydra-
tion sphere as it receives or discards electrons. Likewise, a spe-
cies already at the inner plane must be detached and migrate 
into the bulk. Because both processes are activated, we can 
expect to write their rate constants in the form suggested by 
transition-state theory (Topic 21C) as

k B G RT
r e= −∆‡ /

 

where Δ‡G is the activation Gibbs energy and B is a constant 
with the same dimensions as kr.

When the expressions for k r, specifically kc and ka, are 
inserted, we obtain

j FB FBG RT G RT= −− −
a cRed e Ox ea c[ ] [ ]/ /∆ ∆‡ ‡

 

This expression allows the activation Gibbs energies to be dif-
ferent for the cathodic and anodic processes. That they are dif-
ferent is the central feature of the remaining discussion.

Next, we relate j to the Galvani potential difference, which 
varies across the electrode–solution interface as shown sche-
matically in Fig. 21F.5. Consider the reduction reaction, 
Ox + e− → Red, and the corresponding reaction profile. If the 
transition state of the activated complex is product-like (as rep-
resented by the peak of the reaction profile being close to the 
electrode in Fig. 21F.6), the activation Gibbs energy is changed 
from Δ‡Gc(0), the value it has in the absence of a potential dif-
ference across the double layer, to Δ‡Gc = Δ‡Gc(0) + FΔϕ. Thus, 
if the electrode is more positive than the solution, Δϕ > 0, then 
more work has to be done to form an activated complex from 
Ox; in this case the activation Gibbs energy is increased.

where E is the electrode potential at equilibrium (when there is 
no net flow of current), and E′ is the electrode potential when a 
current is being drawn from the cell.
•	 α, the transfer coefficient, an indication of where the 

transition state between the reduced and oxidized forms 
of the electroactive species in solution is reactant-like 
(α = 0) or product-like (α = 1).

•	 j0, the exchange-current density, the magnitude of the 
equal but opposite current densities when the electrode is 
at equilibrium.

Anodic
current

Cathodic
current

(a) (b)

ja ja

jc jc

Figure 21F.4 The net current density is defined as the 
difference between the cathodic and anodic contributions. 
(a) When ja > jc, the net current is anodic, and there is a net 
oxidation of the species in solution. (b) When jc > ja, the net 
current is cathodic, and the net process is reduction.
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21F Processes at electrodes  923

If the transition state is reactant-like (represented by the 
peak of the reaction profile being close to the outer plane of the 
double-layer in Fig. 21F.7), then Δ‡Gc is independent of Δϕ. In 
a real system, the transition state has an intermediate resem-
blance to these extremes (Fig. 21F.8) and the activation Gibbs 
energy for reduction may be written as

φM

φS

OHP

Electric
potential

Figure 21F.5 The potential, ϕ, varies linearly between two 
plane parallel sheets of charge, and its effect on the Gibbs 
energy of the transition state depends on the extent to which 
the latter resembles the species at the inner or outer planes.
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Figure 21F.6 When the transition state resembles a species 
that has undergone reduction, the activation Gibbs energy 
for the anodic current is almost unchanged, but the full 
effect applies to the cathodic current. (a) Zero potential 
difference; (b) nonzero potential difference.
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Figure 21F.7 When the transition state resembles a species 
that has undergone oxidation, the activation Gibbs energy 
for the cathodic current is almost unchanged but the 
activation Gibbs energy for the anodic current is strongly 
affected. (a) Zero potential difference; (b) nonzero potential 
difference.

∆ ∆ ∆‡ ‡ ( )G G Fc c= +0 α φ  

The parameter α lies in the range 0 to 1. Experimentally, α is 
often found to be about 0.5.

Now consider the oxidation reaction, Red + e− → Ox and its 
reaction profile. Similar remarks apply. In this case, Red discards 
an electron to the electrode, so the extra work is zero if the transi-
tion state is reactant-like (represented by a peak close to the elec-
trode). The extra work is the full −FΔϕ if it resembles the product 
(the peak close to the outer plane). In general, the activation Gibbs 
energy for this anodic process is

∆ ∆ ∆‡ ‡ ( ) ( )G G Fa a 1= − −0 α φ  

The two activation Gibbs energies can now be inserted in the 
expression for j, with the result that

j FB

FB

G RT F RT

G RT F

=

−

− −

− −

a

c

Red e e

Ox e e

a

c

[ ]

[ ]

( )

( )

/ ( ) /

/

∆ ∆

∆

‡

‡

0 1

0

α φ

α ∆∆φ/RT

 

This is an explicit, if complicated, expression for the net current 
density in terms of the potential difference.

The appearance of the new expression for j can be simplified. 
First, in a purely cosmetic step we write f = F/RT. Next, we identify 
the individual cathodic and anodic current densities:

j FB

FB

G RT f=

−

− −

−

a

c

Red e e

Ox e

a[ ]

[ ]

( )/ ( )∆ ∆

∆

‡

‡

0 1 α φ

ja� ������ ������

GG RT fc e( )/0 −α φ∆

jc� ����� �����

 

If the cell is balanced against an external source, the Galvani 
potential difference, Δϕ, can be identified as the (zero-current) 
electrode potential, E, and we can write

j FB

j FB

G RT f E

G RT f E

a a

c c

Red e e

Ox e e

a

c

=

=

−

−

[ ]

[ ]

( )

( )

/ ( )

/

−

−

∆

∆

‡

‡

0 1

0

α

α
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Figure 21F.8 When the transition state is intermediate 
in its resemblance to reduced and oxidized species, as 
represented here by a peak located at an intermediate 
position as measured by α (with 0 < α <1), both  
activation Gibbs energies are affected; here, α ≈ 0.5.  
(a) Zero potential difference; (b) nonzero potential 
difference.
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924 21 Reaction dynamics

Figure 21F.9 shows how eqn 21F.1 predicts the current den-
sity to depend on the overpotential for different values of the 
transfer coefficient. When the overpotential is so small that 
fη ≪ 1 (in practice, η less than about 10 mV) the exponentials 
in eqn 21F.1 can be expanded by using ex = 1 + x + … to give

j j f f j f= + − + − − + ≈
− −

0 01 1 1{ ( ) ( )}α η α η η
α αη η

�
� ��� ���

�
� �� ��e e(1 ) f f

 
(21F.3)

This equation shows that the current density is proportional to 
the overpotential, so at low overpotentials the interface behaves 
like a conductor that obeys Ohm’s law. When there is a small 
positive overpotential the current is anodic (j > 0 when η > 0), 
and when the overpotential is small and negative the current 
is cathodic (j < 0 when η < 0). The relation can also be reversed 
to calculate the potential difference that must exist if a current 
density j has been established by some external circuit:

η = RTj
Fj0  

(21F.4)

The importance of this interpretation will become clear shortly.

Some experimental values for the Butler–Volmer parameters 
are given in Table 21F.1. From them we can see that exchange 
current densities vary over a very wide range. Exchange cur-
rents are generally large when the redox process involves no 
bond breaking (as in the [Fe(CN)6]3−, [Fe(CN)6]4− couple) or if 
only weak bonds are broken (as in Cl2,Cl−). They are generally 
small when more than one electron needs to be transferred, or 
when multiple or strong bonds are broken, as in the N2,N3

− cou-
ple and in redox reactions of organic compounds.

(b) Tafel plots
When the overpotential is large and positive (in practice, 
η ≥ 0.12 V), corresponding to the electrode being the anode 
in electrolysis, the second exponential in eqn 21F.1 is much 
smaller than the first, and may be neglected. Then

j j f= −
0e 1( )α η

 (21F.5a)

so

ln ln 1j j f= + −0 ( )α η  (21F.5b)

The plot of the logarithm of the current density against the 
overpotential is called a Tafel plot. The slope, which is equal to 

When these equations apply, there is no net current at the 
electrode (as the cell is balanced), so the two current densities 
must be equal. From now on we denote them both as j0.

When the cell is producing current (that is, when a load is 
connected between the electrode being studied and a second 
counter electrode) the electrode potential changes from its 
zero-current value, E, to a new value, E′, and the difference 
is the electrode’s overpotential, η = E′ − E. Hence, Δϕ changes 
from E to E + η and the two current densities become

j j j jf f
a ce e= =− −

0
1

0
( )α η α η

 
Then from j = ja − jc we obtain the Butler–Volmer equation, eqn 
21F.1.

Brief illustration 21F.1 The current density

The exchange current density of a Pt(s)|H2(g)|H+(aq) electrode 
at 298 K is 0.79 mA cm−2. Therefore, the current density when 
the overpotential is +5.0 mV is obtained by using eqn 21F.4 
and f = F/RT = 1/(25.69 mV):

j j f= = × =
−

−
0

2
20 79 5 0

25 69
0 15η ( . ) ( . )

.
.

mAcm mV
mV

mAcm

The current through an electrode of total area 5.0 cm2 is there-
fore 0.75 mA.

Self-test 21F.1 What would be the current at pH = 2.0, the 
other conditions being the same?

Answer: −18 mA (cathodic)
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Figure 21F.9 The dependence of the current density on the 
overpotential for different values of the transfer coefficient.

Table 21F.1* Exchange current densities and transfer 
coefficients at 298 K

Reaction Electrode j0/(A cm−2) α

2 H+ + 2 e− → H2 Pt 7.9 × 10−4

Ni 6.3 × 10−6 0.58

Pb 5.0 × 10−12

Fe3+ + e− → Fe2+ Pt 2.5 × 10−3 0.58

* More values are given in the Resource section.
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(1 − α)f, gives the value of α and the intercept at η = 0 gives the 
exchange-current density. If instead the overpotential is large 
but negative (in practice, η ≤ −0.12 V), the first exponential in 
eqn 21F.1 may be neglected. Then

j j f= −
0e α η

 (21F.6a)

so

ln lnj j f= −0 α η (21F.6b)

In this case the slope of the Tafel plot is −α f.

21F.3 Voltammetry

One of the assumptions in the derivation of the Butler–Volmer 
equation is the negligible conversion of the electroactive species 
at low current densities, resulting in uniformity of concentration 
near the electrode. This assumption fails at high current densi-
ties because the consumption of electroactive species close to the 
electrode results in a concentration gradient. The diffusion of 
the species towards the electrode from the bulk is slow and may 
become rate determining; a larger overpotential is then needed 
to produce a given current. This effect is called concentration 
polarization. Concentration polarization is important in the 
interpretation of voltammetry, the study of the current through 
an electrode as a function of the applied potential difference.

The kind of output from linear-sweep voltammetry is illus-
trated in Fig. 21F.11. Initially, the absolute value of the potential 
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Figure 21F.10 A Tafel plot is used to measure the exchange 
current density (given by the extrapolated intercept at η = 0) 
and the transfer coefficient (from the slope). The data are 
from Example 21F.1.
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Figure 21F.11 (a) The change of potential with time and (b) the 
resulting current/potential curve in a voltammetry experiment. 
The peak value of the current density is proportional to the 
concentration of electroactive species (for instance, [Ox]) in 
solution.

Example 21F.1 Interpreting a Tafel plot

The data below refer to the anodic current through a platinum 
electrode of area 2.0 cm2 in contact with an Fe3+, Fe2+ aqueous 
solution at 298 K. Calculate the exchange-current density and 
the transfer coefficient for the electrode process.

Method The anodic process is the oxidation Fe2+(aq) →  
Fe3+(aq) + e−. To analyse the data, we make a Tafel plot (of ln j 
against η) using the anodic form (eqn 21F.5b). The intercept at 
η = 0 is ln j0 and the slope is (1 − α)f.

Answer Draw up the following table:

The points are plotted in Fig. 21F.10. The high overpotential 
region gives a straight line of intercept 0.88 and slope 0.0165. 
From the former it follows that ln( j0/(mA cm−2)) = 0.88, so 
j0 = 2.4 mA cm−2. From the latter,

( ) .1 0 0165 1− = −α
η

f

Slope Units of ln j
1 mV

��� �
� �

mV  

so

α = − = − …=
−

−

−

1
0 0165

1 0 42 0 58
1.

. .
mV

16.5V

38.9 V

1

1

� ��� ���

�f

 

Note that the Tafel plot is nonlinear for η < 100 mV; in this 
region α fη = 2.3 and the approximation that α fη ≫ 1 fails.

Self-test 21F.2 Repeat the analysis using the following 
cathodic current data:

Answer: α = 0.75, j0 = 0.041 mA cm−2

η/mV 50 100 150 200 250
I/mA 8.8 25.0 58.0 131 298

η/mV 50 100 150 200 250

j/(mA cm−2) 4.4 12.5 29.0 65.5 149
ln(j/(mA cm−2)) 1.48 2.53 3.37 4.18 5.00

η/mV −50 −100 −150 −200 −250 −300
I/mA 0.3 1.5 6.4 27.6 118.6 510
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926 21 Reaction dynamics

is low, and the current is due to the migration of ions in the 
solution. However, as the potential approaches the reduction 
potential of the reducible solute, the current grows. Soon after 
the potential exceeds the reduction potential the current rises 
and reaches a maximum value. This maximum current is pro-
portional to the molar concentration of the species, so that 
concentration can be determined from the peak height after 
subtraction of an extrapolated baseline.

In cyclic voltammetry the potential is applied with a trian-
gular waveform (linearly up, then linearly down) and the cur-
rent is monitored. A typical cyclic voltammogram is shown 
in Fig. 21F.12. The shape of the curve is initially like that of a 
linear-sweep experiment, but after reversal of the sweep there 
is a rapid change in current on account of the high concentra-
tion of oxidizable species close to the electrode that was gener-
ated on the reductive sweep. When the potential is close to the 
value required to oxidize the reduced species, there is a sub-
stantial current until all the oxidation is complete, and the cur-
rent returns to zero. Cyclic voltammetry data are obtained at 
scan rates of about 50 mV s−1, so a scan over a range of 2 V takes 
about 80 s.

When the reduction reaction at the electrode can be 
reversed, as in the case of the [Fe(CN)6]3−/[Fe(CN)6]4− cou-
ple, the cyclic voltammogram is broadly symmetric about the 
standard potential of the couple (as in Fig. 21F.12). The scan is 
initiated with [Fe(CN)6]3− present in solution, and as the poten-
tial approaches E< for the couple, the [Fe(CN)6]3− near the 
electrode is reduced and current begins to flow. As the poten-
tial continues to change, the current begins to decline again 
because all the [Fe(CN)6]3− near the electrode has been reduced 
and the current reaches its limiting value. The potential is now 
returned linearly to its initial value, and the reverse series of 
events occurs with the [Fe(CN)6]4− produced during the for-
ward scan now undergoing oxidation. The peak of current lies 
on the other side of E<, so the species present and its standard 
potential can be identified, as indicated in the illustration, by 
noting the locations of the two peaks.

The overall shape of the curve gives details of the kinetics 
of the electrode process and the change in shape as the rate of 
change of potential is altered gives information on the rates 
of the processes involved. For example, the matching peak on 
the return phase of the potential sweep may be missing, which 
indicates that the oxidation (or reduction) is irreversible. The 
appearance of the curve may also depend on the timescale of 
the sweep, for if the sweep is too fast some processes might not 
have time to occur. This style of analysis is illustrated in the fol-
lowing example.
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Figure 21F.12 (a) The change of potential with time and  
(b) the resulting current/potential curve in a cyclic voltammetry 
experiment.

Example 21F.2 Analysing a cyclic voltammetry 
experiment

The electroreduction of p-bromonitrobenzene in liquid 
ammonia is believed to occur by the following mechanism:

BrC H NO  e BrC H NO

BrC H NO C H NO Br

C H NO e

6 4 2 6 4

6 4 6 4 2

6 4 2

+ →
→⋅ +

⋅ +

− −

− −

−

2

2

→→
+ →

−

− +

C H NO

C H NO H C H NO

6 4

6 4 6 5 2

2

2

Suggest the likely form of the cyclic voltammogram expected 
on the basis of this mechanism.

Method Decide which steps are likely to be reversible on the 
timescale of the potential sweep: such processes will give sym-
metrical voltammograms. Irreversible processes will give 
unsymmetrical shapes as reduction (or oxidation) might not 
occur. However, at fast sweep rates, an intermediate might not 
have time to react, and a reversible shape will be observed.

Answer At slow sweep rates, the second reaction has time to 
occur, and a curve typical of a two-electron reduction will be 
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Figure 21F.13 (a) When a non-reversible step in a reaction 
mechanism has time to occur, the cyclic voltammogram 
may not show the reverse oxidation or reduction peak.  
(b) However, if the rate of sweep is increased, the return step 
may be caused to occur before the irreversible step has had 
time to intervene, and a typical ‘reversible’ voltammogram 
is obtained.
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21F.4 Electrolysis

To induce current to flow through an electrolytic cell and bring 
about a nonspontaneous cell reaction, the applied potential dif-
ference must exceed the zero-current potential by at least the 
cell overpotential, the sum of the overpotentials at the two 
electrodes and the ohmic drop (IRs, where Rs is the internal 
resistance of the cell) due to the current through the electrolyte. 
The additional potential needed to achieve a detectable rate of 
reaction may need to be large when the exchange current den-
sity at the electrodes is small. For similar reasons, a working 
galvanic cell generates a smaller potential than under zero-cur-
rent conditions. In this section we see how to cope with both 
aspects of the overpotential.

The relative rates of gas evolution or metal deposition during 
electrolysis can be estimated from the Butler–Volmer equation 
and tables of exchange current densities. From eqn 21F.6a and 
assuming equal transfer coefficients, we write the ratio of the 
cathodic currents as

′ = ′ − ′j
j

j
j

f0

0

e( )η η α

 
(21F.7)

where j′ is the current density for electrodeposition and j is that 
for gas evolution, and ′j0  and j0 are the corresponding exchange 
current densities. This equation shows that metal deposition is 
favoured by a large exchange current density and relatively high 
gas evolution overpotential (so η – η′ is positive and large). 
Note that η < 0 for a cathodic process, so −η′ > 0. The exchange 
current density depends strongly on the nature of the electrode 
surface, and changes in the course of the electrodeposition of 
one metal on another. A very crude criterion is that significant 
evolution or deposition occurs only if the overpotential exceeds 
about 0.6 V.

A glance at Table 21F.1 shows the wide range of exchange 
current densities for a metal/hydrogen electrode. The most 
sluggish exchange currents occur for lead and mercury: 
1 pA cm−2 corresponds to a monolayer of atoms being replaced 
in about 5 years. For such systems, a high overpotential is 
needed to induce significant hydrogen evolution. In contrast, 
the value for platinum (1 mA cm−2) corresponds to a monolayer 
being replaced in 0.1 s, so significant gas evolution occurs for a 
much lower overpotential.

The exchange current density also depends on the crys-
tal face exposed. For the deposition of copper on copper, the 
(100) face has j0 = 1 mA cm−2, so for the same overpotential the 
(100) face grows at 2.5 times the rate of the (111) face, for which 
j0 = 0.4 mA cm−2.

21F.5 Working galvanic cells

In working galvanic cells (those not balanced against an exter-
nal potential), the overpotential leads to a smaller potential 
than under zero-current conditions. Furthermore, we expect 
the cell potential to decrease as current is generated because it 
is then no longer working reversibly and can therefore do less 
than maximum work.

We shall consider the cell M|M+(aq)||M′+(aq)|M′ and ignore 
all the complications arising from liquid junctions. The poten-
tial of the cell is E′ = ΔϕR − ΔϕL. Because the cell potential differ-
ences differ from their zero-current values by overpotentials, 
we can write ΔϕX = EX + ηX where X is L or R for the left or right 
electrode, respectively. The cell potential is therefore

′ = + −E E η ηR L  (21F.8a)

To avoid confusion about signs (ηR is negative, ηL is positive) 
and to emphasize that a working cell has a lower potential than 
a zero-current cell, we shall write this expression as

observed, but there will be no oxidation peak on the second 
half of the cycle because the product, C6H5NO2, cannot be 
oxidized (Fig. 21F.13a). At fast sweep rates, the second reac-
tion does not have time to take place before oxidation of the 
BrC H NO6 4 2

−  intermediate starts to occur during the reverse 
scan, so the voltammogram will be typical of a reversible one-
electron reduction (Fig. 21F.13b).

Self-test 21F.3 Suggest an interpretation of the cyclic voltam-
mogram shown in Fig. 21F.14.The electroactive material is 
ClC6H4CN in acid solution; after reduction to ClC6H4CN− the 
radical anion may form C6H5CN irreversibly.

Answer: ClC6H4CN + e− ⇌ ClC6H4CN−, ClC6H4CN− +  
H+ + e− → C6H5CN + Cl−, C6H5CN + e− ⇌ C6H5CN−

Potential

C
u

rr
en

t

Figure 21F.14 The cyclic voltammogram referred to in Self
test 21F.3.
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′ = − −E E | | | |η ηR L  (21F.8b)

with E the cell potential. We should also subtract the ohmic 
potential difference IRs, where Rs is the cell’s internal resistance:

′ = − − −E E h IR| | | |ηR L s  (21F.8c)

The ohmic term is a contribution to the cell’s irreversibility—it 
is a thermal dissipation term—so the sign of IRs is always such 
as to reduce the potential in the direction of zero.

The overpotentials in eqn 21F.8 can be calculated from the 
Butler–Volmer equation for a given current, I, being drawn. 
We shall simplify the equations by supposing that the areas, A, 
of the electrodes are the same, that only one electron is trans-
ferred in the rate-determining steps at the electrodes, that the 
transfer coefficients are both 1

2 , and that the high-overpotential 
limit of the Butler–Volmer equation may be used. Then from 
eqns 21F.6a and 21F.8c we find

′ = − −






=E E IR
RT
F

I

Aj
j j js L R

4
0 0

1 2ln ( ) /

 
(21F.9)

where j0L and j0R are the exchange current densities for the two 
electrodes.

Brief illustration 21F.2 The working potential

Suppose that a cell consists of two electrodes each of area 
10 cm2 with exchange current densities 5 µA cm−2 and has 
internal resistance 10 Ω. At 298 K RT/F = 25.7 mV. The zero-
current cell potential is 1.5 V. If the cell is producing a current 
of 10 mA, its working potential will be

Electric storage cells operate as galvanic cells while they are 
producing electricity but as electrolytic cells while they are 
being charged by an external supply. The lead–acid battery is 
an old device, but one well suited to the job of starting cars (and 
the only one available). During charging the cathode reaction is 
the reduction of Pb2+ and its deposition as lead on the lead elec-
trode. Deposition occurs instead of the reduction of the acid to 
hydrogen because the latter has a low exchange current density 
on lead. The anode reaction during charging is the oxidation 
of Pb(II) to Pb(IV), which is deposited as the oxide PbO2. On 
discharge, the two reactions run in reverse. Because they have 
such high exchange current densities the discharge can occur 
rapidly, which is why the lead battery can produce large cur-
rents on demand.

′ = − ×

−
×

E 1 5 10 10

4 25 7
10

10 2

. ( ) ( )

( . )ln
( )

V mA

mV
mA

cm

Ω
0.10V� ��� ���

(( )

.

5

0 9

2µAcm

V

−






=

…0.54V� �������� ��������

 

We have used 1 A Ω = 1 V. Note that we have ignored various 
other factors that reduce the cell potential, such as the inabil-
ity of reactants to diffuse rapidly enough to the electrodes.

Self-test 21F.4 What is the effective resistance at 25 °C of an 
electrode interface when the overpotential is small? Evaluate it 
for a Pt,H2|H+ electrode with a surface area of 1.0 cm2.

Answer: 33 Ω

Checklist of concepts

☐ 1. An electrical double layer consists of sheets of opposite 
charge at the surface of the electrode and next to it in the 
solution.

☐ 2. Models of the double layer include the Helmholtz layer 
model and the Gouy-Chapman model.

☐ 3. The Galvani potential difference is the potential differ-
ence between the bulk of the metal electrode and the 
bulk of the solution.

☐ 4. The current density at an electrode is expressed by the 
Butler–Volmer equation.

☐ 5. A Tafel plot is the plot of the logarithm of the current 
density against the overpotential (see below).

☐ 6. Voltammetry is the study of the current through 
an electrode as a function of the applied potential 
difference.

☐ 7. To induce current to flow through an electrolytic cell 
and bring about a nonspontaneous cell reaction, the 
applied potential difference must exceed the cell poten-
tial by at least the cell overpotential.

☐ 8. In working galvanic cells the overpotential leads to a 
smaller potential than under zero-current condi-
tions and the cell potential decreases as current is 
generated.
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Checklist of equations

Property Equation Comment Equation number

Butler–Volmer equation j j f f= −− −
0

1{ }( )e eα η α η 21F.1

Tafel plots ln j = ln j0 + (1 − α)fη Anodic current density 21F.5b

ln j = ln j0 − αfη Cathodic current density 21F.6b

Potential of a working galvanic cell ′ = − −E E IR RT F I Ajs (4 )ln( / )/ j =( )0L 0R
1/2j j 21F.9
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chaPter 21  Reaction dynamics

TOPIC 21A collision theory

Discussion questions
21A.1 Discuss how the collision theory of gases builds on the kinetic–
molecular theory.

21A.2 How might collision theory change for real gases?

21A.3 Describe the essential features of the harpoon mechanism.

21A.4 Discuss the significance of the steric P-factor in the RRK model.

Exercises
21A.1(a) Calculate the collision frequency, z, and the collision density, Z, in 
ammonia, R = 190 pm, at 30 °C and 120 kPa. What is the percentage increase 
when the temperature is raised by 10 K at constant volume?
21A.1(b) Calculate the collision frequency, z, and the collision density, Z, in 
carbon monoxide, R = 180 pm at 30 °C and 120 kPa. What is the percentage 
increase when the temperature is raised by 10 K at constant volume?

21A.2(a) Collision theory depends on knowing the fraction of molecular 
collisions having at least the kinetic energy Ea along the line of flight. What is 
this fraction when (i) Ea = 20 kJ mol−1, (ii) Ea = 100 kJ mol−1 at (1) 350 K and  
(2) 900 K?
21A.2(b) Collision theory depends on knowing the fraction of molecular 
collisions having at least the kinetic energy Ea along the line of flight. What is 
this fraction when (i) Ea = 15 kJ mol−1, (ii) Ea = 150 kJ mol−1 at (1) 300 K and  
(2) 800 K?

21A.3(a) Calculate the percentage increase in the fractions in Exercise 21A.2(a) 
when the temperature is raised by 10 K.
21A.3(b) Calculate the percentage increase in the fractions in Exercise 21A.2(b)  
when the temperature is raised by 10 K.

21A.4(a) Use the collision theory of gas-phase reactions to calculate 
the theoretical value of the second-order rate constant for the reaction 
H2(g) + I2(g)→ 2 HI(g) at 650 K, assuming that it is elementary and 
bimolecular. The collision cross section is 0.36 nm2, the reduced mass is 
3.32 × 10−27 kg, and the activation energy is 171 kJ mol−1. (Assume a steric 
factor of 1.)
21A.4(b) Use the collision theory of gas-phase reactions to calculate 
the theoretical value of the second-order rate constant for the reaction 

D2(g) + Br2(g)→ 2 HI(g) at 450 K, assuming that it is elementary and 
bimolecular. Take the collision cross section as 0.30 nm2, the reduced  
mass as 3.930mu, and the activation energy as 200 kJ mol−1. (Assume a steric 
factor of 1.)

21A.5(a) For the gaseous reaction A + B→ P, the reactive cross-section obtained 
from the experimental value of the pre-exponential factor is 9.2 × 10−22 m2.  
The collision cross-sections of A and B estimated from the transport 
properties are 0.95 and 0.65 nm2 respectively. Calculate the P-factor for the 
reaction.
21A.5(b) For the gaseous reaction A + B→ P, the reactive cross-section 
obtained from the experimental value of the pre-exponential factor is 
8.7 × 10−22 m2. The collision cross-sections of A and B estimated from the 
transport properties are 0.88 and 0.40 nm2, respectively. Calculate the P-factor 
for the reaction.

21A.6(a) Consider the unimolecular decomposition of a nonlinear molecule 
containing five atoms according to RRK theory. If P = 3.0 × 10−5, what is the 
value of E*/E?
21A.6(b) Consider the unimolecular decomposition of a linear molecule 
containing four atoms according to RRK theory. If P = 0.025, what is the value 
of E*/E?

21A.7(a) Suppose that an energy of 250 kJ mol−1 is available in a collision but 
200 kJ mol−1 is needed to break a particular bond in a molecule with s = 10. Use 
the RRK model to calculate the steric P-factor.
21.A7(b) Suppose that an energy of 500 kJ mol−1 is available in a collision but 
300 kJ mol−1 is needed to break a particular bond in a molecule with s = 12. Use 
the RRK model to calculate the steric P-factor.

Problems
21A.1 In the dimerization of methyl radicals at 25 °C, the experimental pre-
exponential factor is 2.4 × 1010 dm3 mol−1 s−1. What are (a) the reactive cross-
section, (b) the P-factor for the reaction if the C–H bond length is 154 pm?

21A.2 Nitrogen dioxide reacts bimolecularly in the gas phase: 
NO2 + NO2→ NO + NO + O2. The temperature dependence of the second-
order rate constant for the rate law d[P]/dt = kr[NO2]2 is given in the following 
table. What are the P-factor and the reactive cross-section for the reaction?

Take σ = 0.60 nm2.

21A.3 The diameter of the methyl radical is about 308 pm. What is the 
maximum rate constant in the expression d[C2H6]/dt = kr[CH3]2 for second-
order recombination of radicals at room temperature? 10 per cent of a sample 

of ethane of volume 1.0 dm3 at 298 K and 100 kPa is dissociated into methyl 
radicals. What is the minimum time for 90 per cent recombination?

21A.4 The total cross-sections for reactions between alkali metal atoms and 
halogen molecules are given in the following table (R.D. Levine and R.B. 
Bernstein, Molecular reaction dynamics, Clarendon Press, Oxford, 72 (1974)). 
Assess the data in terms of the harpoon mechanism.

Electron affinities are approximately 1.3 eV ( Cl2), 1.2 eV (Br2), and 1.7 eV ( I2), 
and ionization energies are 5.1 eV (Na), 4.3 eV (K), 4.2 eV (Rb), and 3.9 eV (Cs).

T/K 600 700 800 1000

kr/(cm3 mol−1 s−1) 4.6 × 102 9.7 × 103 1.3 × 105 3.1 × 106

σ*/nm2 Cl2 Br2 I2

Na 1.24 1.16 0.97
K 1.54 1.51 1.27
Rb 1.90 1.97 1.67
Cs 1.96 2.04 1.95
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21A.5‡ One of the most historically significant studies of chemical reaction 
rates was that by M. Bodenstein (Z. physik. Chem. 29, 295 (1899)) of the gas-
phase reaction 2 HI(g)→ H2(g) + I2(g) and its reverse, with rate constants kr 
and kr′, respectively. The measured rate constants as a function of temperature 
are

Demonstrate that these data are consistent with the collision theory of 
bimolecular gas-phase reactions.

21A.6‡ R. Atkinson (J. Phys. Chem. Ref. Data 26, 215 (1997)) has reviewed a 
large set of rate constants relevant to the atmospheric chemistry of volatile 

organic compounds. The recommended rate constant for the bimolecular 
association of O2 with an alkyl radical R at 298 K is 4.7 × 109 dm3 mol−1 s−1 for 
R = C2H5 and 8.4 × 109 dm3 mol−1 s−1 for R = cyclohexyl. Assuming no energy 
barrier, compute the steric factor, P, for each reaction. Hint: Obtain collision 
diameters from collision cross-sections of similar molecules in the Resource 
section.

21A.7 According to the RRK model (see Justification 21A.1)

P
n n n s
n n n s

= − + −
− + −
!( * )!

( *)!( )!
1
1

Use Stirling’s approximation of the form ln x! ≈ x ln x − x to deduce that 
P ≈ (n − n*/n)s − 1 when s − 1 ≪ n − n*. Hint: replace terms of the form 
n − n* + s − 1 by n − n* inside logarithms but retain n − n* + s − 1 when it is a 
factor of a logarithm.

TOPIC 21B diffusion-controlled reactions

Discussion questions
21B.1 Distinguish between a diffusion-controlled reaction and an activation-
controlled reaction. Do both have activation energies?

21B.2 Describe the role of the encounter pair in the cage effect.

Exercises
21B.1(a) A typical diffusion coefficient for small molecules in aqueous solution 
at 25 °C is 6 × 10−9 m2 s−1. If the critical reaction distance is 0.5 nm, what value 
is expected for the second-order rate constant for a diffusion-controlled 
reaction?
21B.1(b) Suppose that the typical diffusion coefficient for a reactant in aqueous 
solution at 25 °C is 5.2 × 10−9 m2 s−1. If the critical reaction distance is 0.4 nm, 
what value is expected for the second-order rate constant for the diffusion-
controlled reaction?

21B.2(a) Calculate the magnitude of the diffusion-controlled rate constant at 
298 K for a species in (i) water, (ii) pentane. The viscosities are 1.00 × 10−3  
kg m−1 s−1, and 2.2 × 10−4 kg m−1 s−1, respectively.
21B.2(b) Calculate the magnitude of the diffusion-controlled rate constant at 
298 K for a species in (i) decylbenzene, (ii) concentrated sulfuric acid. The 
viscosities are 3.36 cP and 27 cP, respectively.

21B.3(a) Calculate the magnitude of the diffusion-controlled rate constant 
at 320 K for the recombination of two atoms in water, for which η = 0.89 cP. 
Assuming the concentration of the reacting species is 1.5 mmol dm−3 initially, 

how long does it take for the concentration of the atoms to fall to half that 
value? Assume the reaction is elementary.
21B.3(b) Calculate the magnitude of the diffusion-controlled rate constant at 
320 K for the recombination of two atoms in benzene, for which η = 0.601 cP. 
Assuming the concentration of the reacting species is 2.0 mmol dm−3 initially, 
how long does it take for the concentration of the atoms to fall to half that 
value? Assume the reaction is elementary.

21B.4(a) Two neutral species, A and B, with diameters 655 pm and 1820 pm, 
respectively, undergo the diffusion-controlled reaction A + B→ P in a solvent 
of viscosity 2.93 × 10−3 kg m−1 s−1 at 40 °C. Calculate the initial rate d[P]/dt if 
the initial concentrations of A and B are 0.170 mol dm−3 and 0.350 mol dm−3, 
respectively.
21B.4(b) Two neutral species, A and B, with diameters 421 pm and 945 pm, 
respectively, undergo the diffusion-controlled reaction A + B→ P in a 
solvent of viscosity 1.35 cP at 20 °C. Calculate the initial rate d[P]/dt if the 
initial concentrations of A and B are 0.155 mol dm−3 and 0.195 mol dm−3, 
respectively.

Problems
21B.1 Confirm that eqn 21B.8 is a solution of eqn 21B.7, where [J] is a solution 
of the same equation but with kr = 0 and for the same initial conditions.

21B.2 Use mathematical software, a spreadsheet, or the Living graphs on the 
web site of this book to explore the effect of varying the value of the rate 
constant kr on the spatial variation of [J]* (see eqn 21B.8 with [J] given in eqn 
21B.9) for a constant value of the diffusion constant D.

21B.3 Confirm that if the initial condition is [J] = 0 at t = 0 everywhere, and 
the boundary condition is [J] = [J]0 at t > 0 at all points on a surface, then 

the solutions [J]* in the presence of a first-order reaction that removed J are 
related to those in the absence of reaction, [J], by

[ ] [ ] [ ]J * J e d J er
r r= +− −∫k tk t k t

t

0  
Base your answer on eqn 21B.5.

21B.4‡ The compound α-tocopherol, a form of vitamin E, is a powerful 
antioxidant that may help to maintain the integrity of biological membranes. 
R.H. Bisby and A.W. Parker (J. Amer. Chem. Soc. 117, 5664 (1995)) studied 

T/K 647 666 683 700 716 781

kr/(22.4 dm3 mol−1 
min−1)

0.230 0.588 1.37 3.10 6.70 105.9

′
− −

kr
3

1 1
22 4 dm

mol min
/( .

)

0.0140 0.0379 0.0659 0.172 0.375 3.58

‡ These problems were supplied by Charles Trapp and Carmen Giunta.
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the reaction of photochemically excited duroquinone with the antioxidant in 
ethanol. Once the duroquinone was photochemically excited, a bimolecular 
reaction took place at a rate described as diffusion limited. (a) Estimate the 

rate constant for a diffusion-limited reaction in ethanol. (b) The reported rate 
constant was 2.77 × 109 dm3 mol−1 s−1; estimate the critical reaction distance if 
the sum of diffusion constants is 1 × 10−9 m2 s−1.

TOPIC 21C transition-state theory

Discussion questions
21C.1 Describe in outline the formulation of the Eyring equation.

21C.2 How is femtosecond spectroscopy used to examine the structures of 
activated complexes?

21C.3 Explain the physical origin of the kinetic salt effect. What might be the 
effect of the relative permittivity of the medium?

21C.4 How do kinetic isotope effects provide insight into the mechanism of a 
reaction?

Exercises
21C.1(a) The reaction of propylxanthate ion in acetic acid buffer solutions 
has the mechanism A− + H+→ P. Near 30 °C the rate constant is given by the 
empirical expression kr = (2.05 × 1013) e−(8681 K)/T dm3 mol−1 s−1. Evaluate the 
energy and entropy of activation at 30 °C.
21C.1(b) The reaction A− + H+→ P has a rate constant given by the empirical 
expression kr = (6.92 × 1012)e−(5925 K)/T dm3 mol−1 s−1. Evaluate the energy and 
entropy of activation at 25 °C.

21C.2(a) When the reaction in Exercise 21C.1(a) occurs in a dioxane/
water mixture which is 30 per cent dioxane by mass, the rate constant fits 
kr = (7.78 × 1014)e−(9134 K)/T dm3 mol−1 s−1 near 30 °C. Calculate Δ‡G for the 
reaction at 30 °C.
21C.2(b) A rate constant is found to fit the expression kr =  
(4.98 × 1013)e−(4972 K)/T dm3 mol−1 s−1 near 25 °C. Calculate Δ‡G for  
the reaction at 25 °C.

21C.3(a) The gas phase association reaction between F2 and IF5 is first order in 
each of the reactants. The energy of activation for the reaction is 58.6 kJ mol−1. 
At 65 °C the rate constant is 7.84 × 10−3 kPa−1 s−1. Calculate the entropy of 
activation at 65 °C.
21C.3(b) A gas-phase recombination reaction is first order in each of 
the reactants. The energy of activation for the reaction is 39.7 kJ mol−1. At 65 °C 
the rate constant is 0.35 m3 s−1. Calculate the entropy of activation at 65 °C.

21C.4(a) Calculate the entropy of activation for a collision between two 
structureless particles at 300 K, taking M = 65 g mol−1 and σ = 0.35 nm2.
21C.4(b) Calculate the entropy of activation for a collision between two 
structureless particles at 450 K, taking M = 92 g mol−1 and σ = 0.45 nm2.

21C.5(a) The pre-exponential factor for the gas-phase decomposition of 
ozone at low pressures is 4.6 × 1012 dm3 mol−1 s−1 and its activation energy 
is 10.0 kJ mol−1. What are (i) the entropy of activation, (ii) the enthalpy of 
activation, (iii) the Gibbs energy of activation at 298 K?
21C.5(b) The pre-exponential factor for a gas-phase decomposition of a 
gas at low pressures is 2.3 × 1013 dm3 mol−1 s−1 and its activation energy is 
30.0 kJ mol−1. What are (i) the entropy of activation, (ii) the enthalpy of 
activation, (iii) the Gibbs energy of activation at 298 K?

21C.6(a) The rate constant of the reaction H2O2(aq) + I−(aq) + H+(aq)→  
H2O(l) + HIO(aq) is sensitive to the ionic strength of the aqueous solution 
in which the reaction occurs. At 25 °C, kr = 12.2 dm6 mol−2 min−1 at an ionic 
strength of 0.0525. Use the Debye–Hückel limiting law to estimate the rate 
constant at zero ionic strength.
21C.6(b) At 25 °C, kr = 1.55 dm6 mol−2 min−1 at an ionic strength of 0.0241 for 
a reaction in which the rate-determining step involves the encounter of two 
singly charged cations. Use the Debye–Hückel limiting law to estimate the rate 
constant at zero ionic strength.

Problems
21C.1 The rates of thermolysis of a variety of cis- and trans-azoalkanes have 
been measured over a range of temperatures in order to settle a controversy 
concerning the mechanism of the reaction. In ethanol an unstable cis-
azoalkane decomposed at a rate that was followed by observing the N2 
evolution, and this led to the rate constants given in the following table  
(P.S. Engel and D.J. Bishop, J. Amer. Chem. Soc. 97, 6754 (1975)). Calculate  
the enthalpy, entropy, energy, and Gibbs energy of activation at –20 °C.

21C.2 In an experimental study of a bimolecular reaction in aqueous solution, 
the second-order rate constant was measured at 25 °C and at a variety of ionic 
strengths and the results are tabulated in the following table. It is known that a 
singly charged ion is involved in the rate-determining step. What is the charge 
on the other ion involved?

21C.3 Derive the expression for kr given in Example 21C.1 by introducing the 
equations for the thermal wavelengths.

21C.4 The rate constant of the reaction I−(aq) + H2O2(aq)→ H2O(l) + IO−(aq) 
varies slowly with ionic strength, even though the Debye–Hückel limiting law 
predicts no effect. Use the following data from 25 °C to find the dependence of 
log kr on the ionic strength:

Evaluate the limiting value of kr at zero ionic strength. What does the result 
suggest for the dependence of log γ on ionic strength for a neutral molecule in 
an electrolyte solution?

θ/°C −24.82 −20.73 −17.02 −13.00 −8.95

104 × kr/s−1 1.22 2.31 4.39 8.50 14.3

I/(mol kg−1) 0.0025 0.0037 0.0045 0.0065 0.0085

kr/(dm3 mol−1 s−1) 1.05 1.12 1.16 1.18 1.26

I/(mol kg−1) 0.0207 0.0525 0.0925 0.1575

kr/(dm3 mol−1 min−1) 0.663 0.670 0.679 0.694
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21C.5‡ For the gas phase reaction A + A→ A2, the experimental rate constant, 
kr, has been fitted to the Arrhenius equation with the pre-exponential factor 
A = 4.07 × 105 dm3 mol−1 s−1 at 300 K and an activation energy of 65.43 kJ mol−1. 
Calculate Δ‡S, Δ‡H, Δ‡U, and Δ‡G for the reaction.

21C.6 Use the Debye–Hückel limiting law to show that changes in ionic 
strength can affect the rate of reaction catalysed by H+ from the deprotonation 
of a weak acid. Consider the mechanism: H+ + B→ P, where H+ comes 
from the deprotonation of the weak acid, HA. The weak acid has a fixed 
concentration. First show that log [H+], derived from the ionization of HA, 
depends on the activity coefficients of ions and thus depends on the ionic 
strength. Then find the relationship between log(rate) and log [H+] to show 
that the rate also depends on the ionic strength.

21C.7‡ Show that bimolecular reactions between nonlinear molecules are 
much slower than between atoms even when the activation energies of both 
reactions are equal. Use transition-state theory and make the following 
assumptions. (1) All vibrational partition functions are close to unity; (2) all 
rotational partition functions are approximately 1 × 101.5, which is a reasonable 
order of magnitude number; (3) the translational partition function for each 
species is 1 × 1026.

21C.8 This exercise gives some familiarity with the difficulties involved in 
predicting the structure of activated complexes. It also demonstrates the 
importance of femtosecond spectroscopy to our understanding of chemical 
dynamics because direct experimental observation of the activated complex 
removes much of the ambiguity of theoretical predictions. Consider the attack 
of H on D2, which is one step in the H2 + D2 reaction. (a) Suppose that the H 
approaches D2 from the side and forms a complex in the form of an isosceles 
triangle. Take the H–D distance as 30 per cent greater than in H2 (74 pm) and 
the D–D distance as 20 per cent greater than in H2. Let the critical coordinate 
be the antisymmetric stretching vibration in which one H–D bond stretches 
as the other shortens. Let all the vibrations be at about 1000 cm−1. Estimate kr 
for this reaction at 400 K using the experimental activation energy of about 
35 kJ mol−1. (b) Now change the model of the activated complex in part (a) 
and make it linear. Use the same estimated molecular bond lengths and 
vibrational frequencies to calculate kr for this choice of model. (c) Clearly, 

there is much scope for modifying the parameters of the models of the 
activated complex. Use mathematical software or write and run a program 
that allows you to vary the structure of the complex and the parameters in 
a plausible way, and look for a model (or more than one model) that gives a 
value of kr close to the experimental value, 4 × 105 dm3 mol−1 s−1.

21C.9‡ M. Cyfert et al. (Int. J. Chem. Kinet. 28, 103 (1996)) examined the 
oxidation of tris(1,10-phenanthroline)iron(II) by periodate in aqueous 
solution, a reaction which shows autocatalytic behaviour. To assess the kinetic 
salt effect, they measured rate constants at a variety of concentrations of 
Na2SO4 far in excess of reactant concentrations and reported the following 
data:

What can be inferred about the charge of the activated complex of the rate-
determining step?

21C.10 The study of conditions that optimize the association of proteins in 
solution guides the design of protocols for formation of large crystals that 
are amenable to analysis by X-ray diffraction techniques. It is important to 
characterize protein dimerization because the process is considered to be the 
rate-determining step in the growth of crystals of many proteins. Consider the 
variation with ionic strength of the rate constant of dimerization in aqueous 
solution of a cationic protein P:

What can be deduced about the charge of P?

21C.11 Predict the order of magnitude of the primary isotope effect on the 
relative rates of displacement of (a) 1H and 3H in a C–H bond, (b) 16O and 
18O in a C–O bond. Will raising the temperature enhance the difference? Take 
kf(C–H) = 450 N m−1, kf(C–O) = 1750 N m−1.

TOPIC 21D the dynamics of molecular collisions

Discussion questions
21D.1 Describe how the following techniques are used in the study of 
chemical dynamics: infrared chemiluminescence, laser-induced fluorescence, 
multiphoton ionization, resonant multiphoton ionization, and reaction 
product imaging.

21D.2 Discuss the relationship between the saddle-point energy and the 
activation energy of a reaction.

21D.3 A method for directing the outcome of a chemical reaction consists of 
using molecular beams to control the relative orientations of reactants during 

a collision. Consider the reaction Rb + CH3I→ RbI + CH3. How should CH3I 
molecules and Rb atoms be oriented to maximize the production of RbI?

21D.4 Consider a reaction with an attractive potential energy surface. Discuss 
how the initial distribution of reactant energy affects how efficiently the 
reaction proceeds. Repeat for a repulsive potential energy surface.

21D.5 Describe how molecular beams are used to investigate intermolecular 
potentials.

Exercises
21D.1(a) The interaction between two diatomic molecules is described by 
an attractive potential energy surface. What distribution of vibrational and 
translational energies among reactants and products is most likely to lead to a 
successful reaction?
21D.1(b) The interaction between two diatomic molecules has a repulsive 
potential energy surface. What distribution of vibrational and translational 
energies among reactants and products is most likely to lead to a successful 
reaction?

21D.2(a) If the cumulative reaction probability were independent of energy, 
what is the temperature dependence of the rate constant predicted by the 
numerator of eqn 21D.6?
21D.2(b) If the cumulative reaction probability equalled 1 for energies  
less than a barrier height V and vanished for higher energies, what is the 
temperature dependence of the rate constant predicted by the numerator of 
eqn 21D.6?

[Na2SO4]/(mol kg−1) 0.2 0.15 0.1 0.05 0.025 0.0125 0.005

kr/(dm3/2 mol−1/2 s−1) 0.462 0.430 0.390 0.321 0.283 0.252 0.224

I/(mol kg−1) 0.0100 0.0150 0.0200 0.0250 0.0300 0.0350
k kr r/ ′ 8.10 13.30 20.50 27.80 38.10 52.00
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934 21 Reaction dynamics

Problems
21D.1 Show that the intensities of a molecular beam before and after passing 
through a chamber of length L containing inert scattering atoms are related by 
I = I0e−NσL, where σ is the collision cross-section and N the number density of 
scattering atoms.

21D.2 In a molecular beam experiment to measure collision cross-sections it 
was found that the intensity of a CsCl beam was reduced to 60 per cent of its 
intensity on passage through CH2F2 at 10 µTorr, but that when the target was 
Ar at the same pressure the intensity was reduced only by 10 per cent. What 
are the relative cross-sections of the two types of collision? Why is one much 
larger than the other?

21D.3 Consider the collision between a hard-sphere molecule of radius R1 
and mass m, and an infinitely massive impenetrable sphere of radius R2. Plot 

the scattering angle θ as a function of the impact parameter b. Carry out the 
calculation using simple geometrical considerations.

21D.4 The dependence of the scattering characteristics of atoms on the energy 
of the collision can be modelled as follows. We suppose that the two colliding 
atoms behave as impenetrable spheres, as in Problem 21D.3, but that the 
effective radius of the heavy atoms depends on the speed v of the light atom. 
Suppose its effective radius depends on v as R2e−v v/ *, where v* is a constant. 
Take R R1 2= 1

2
 for simplicity and an impact parameter b R= 1

2 2 , and plot the 
scattering angle as a function of (a) speed, (b) kinetic energy of approach.

TOPIC 21E electron transfer in homogeneous systems

Discussion questions
21E.1 Discuss how the following factors determine the rate of electron transfer 
in homogeneous systems: the distance between electron donor and acceptor, 
the standard Gibbs energy of the process, and the reorganization energy of the 
redox active species and the surrounding medium.

21E.2 What role does tunnelling play in electron transfer?

21E.3 Explain why the rate constant decreases as the reaction becomes more 
exergonic in the inverted region.

Exercises
21E.1(a) For a pair of electron donor and acceptor at 298 K, Het(d) = 0.04 cm−1, 
ΔrG< = −0.185 eV and ket = 37.5 s−1. Estimate the value of the reorganization 
energy.
21E.1(b) For a pair of electron donor and acceptor at 298 K, ket = 2.02 × 105 s−1  
for ΔrG< = −0.665 eV. The standard reaction Gibbs energy changes to 
ΔrG< = −0.975 eV when a substituent is added to the electron acceptor and the 
rate constant for electron transfer changes to ket = 3.33 × 106 s−1. Assuming that 

the distance between donor and acceptor is the same in both experiments, 
estimate the values of Het(d) and ΔER.

21E.2(a) For a pair of electron donor and acceptor, ket = 2.02 × 105 s−1 when 
d = 1.11 nm and ket = 4.51 × 104 s−1 when r = 1.23 nm. Assuming that ΔrG< and 
ΔER are the same in both experiments, estimate the value of β.
21E.2(b) Refer to Exercise 21E.2(a). Estimate the value of ket when d = 1.59 nm.

Problems
21E.1 Consider the reaction D + A→ D+ + A−. The rate constant kr may 
be determined experimentally or may be predicted by the Marcus cross-
relation kr= (kDDkAAK)1/2 f, where kDD and kAA are the experimental rate 
constants for the electron self-exchange processes *D + D+→ *D+ + D and 
*A + A+→ *A+ + A, respectively, and f is a function of K = [D+][A−]/[D][A], 
kDD, kAA, and the collision frequencies. Derive the approximate form of the 
Marcus cross-relation by following these steps. (a) Use eqn 21E.7 to write 
expressions for Δ‡G, Δ‡GDD, and Δ‡GAA, keeping in mind that ∆rG

< = 0  for 
the electron self-exchange reactions. (b) Assume that the reorganization 
energy ΔER,DA for the reaction D + A→ D+ + A− is the average of the 
reorganization energies ΔER,DD and ΔER,AA of the electron self-exchange 
reactions. Then show that in the limit of small magnitude of ∆rG

< , or 
∆ ∆ ∆ ∆ ∆ ∆r R DA DD AAG E G G G G< < , , ( )‡ ‡ ‡

r= + +1
2

, where ∆rG
<  is the 

standard Gibbs energy for the reaction D + A→ D+ + A−. (c) Use an equation 
of the form of eqn 21E.4 to write expressions for kDD and kAA. (d) Use eqn 
21E.4 and the result above to write an expression for kr. (e) Complete the 
derivation by using the results from part (c), the relation K G RT= − /e r∆ < ,  
and assuming that all κν† terms, which may be interpreted as collision 
frequencies, are identical.

21E.2 Consider the reaction D + A→ D+ + A−. The rate constant kr may be 
determined experimentally or may be predicted by the Marcus cross-relation 

(see Problem 21E.1). It is common to make the assumption that f ≈ 1. Use the 
approximate form of the Marcus relation to estimate the rate constant for the 
reaction Ru(bpy) Fe(H O) Ru(bpy) Fe(H O)2 23

3
6
2

3
2

6
2+ + + ++ → + , where bpy stands 

for 4,4′-bipyridine. The following data will be useful:

21E.3 A useful strategy for the study of electron transfer in proteins consists of 
attaching an electroactive species to the protein’s surface and then measuring 
ket between the attached species and an electroactive protein cofactor. J.W. 
Winkler and H.B. Gray (Chem. Rev. 92, 369 (1992)) summarize data for 
cytochrome c modified by replacement of the haem iron by a zinc ion, 
resulting in a zinc–porphyrin (ZnP) group in the interior of the protein, 
and by attachment of a ruthenium ion complex to a surface histidine amino 
acid. The edge-to-edge distance between the electroactive species was 
thus fixed at 1.23 nm. A variety of ruthenium ion complexes with different 

Ru(bpy)  e Ru(bpy)2
3
3

3
+ − ++ → E< = 1.26 V

Fe(H O) e Fe(H O)2 26
3

6
2+ − ++ → E< = 0.77 V

* *Ru(bpy) Ru(bpy) Ru(bpy) Ru(bpy)3
3

3
2

3
2

3
3+ + + ++ → + kRu = 4.0 × 108 dm3  

mol−1 s−1

* *Fe(H O) Fe(H O) Fe(H O) Fe(H O)2 2 2 26
3

6
2

6
2

6
3+ + + ++ → + kFe = 4.2 dm3 mol−1 s−1
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standard potentials was used. For each ruthenium-modified protein, either 
the Ru2+→ ZnP+ or the ZnP*→ Ru3+, in which the electron donor is an 
electronically excited state of the zinc–porphyrin group formed by laser 
excitation, was monitored. This arrangement leads to different standard 
reaction Gibbs energies because the redox couples ZnP+/ZnP and ZnP+/ZnP* 
have different standard potentials, with the electronically excited porphyrin 
being a more powerful reductant. Use the following data to estimate the 
reorganization energy for this system:

21E.4 The photosynthetic reaction centre of the purple photosynthetic 
bacterium Rhodopseudomonas viridis contains a number of bound co-factors 
that participate in electron transfer reactions. The following table shows data 
compiled by Moser et al. (Nature 355, 796 (1992)) on the rate constants for 
electron transfer between different co-factors and their edge-to-edge distances:

(BChl, bacteriochlorophyll; BChl2, bacteriochlorophyll dimer, functionally 
distinct from BChl; BPh, bacteriophaeophytin; QA and QB, quinone molecules 
bound to two distinct sites; cyt c559, a cytochrome bound to the reaction 
centre complex). Are these data in agreement with the behaviour predicted by 
eqn 21E.9? If so, evaluate the value of β.

21E.5 The rate constant for electron transfer between a cytochrome c and the 
bacteriochlorophyll dimer of the reaction centre of the purple bacterium 
Rhodobacter sphaeroides (Problem 21E.4) decreases with decreasing 
temperature in the range 300 K to 130 K. Below 130 K, the rate constant 
becomes independent of temperature. Account for these results.

TOPIC 21F Processes at electrodes

Discussion questions
21F.1 Describe the various models of the electrode–electrolyte interface.

21F.2 In what sense is electron transfer at an electrode an activated process?

21F.3 Discuss the technique of cyclic voltammetry and account for the 
characteristic shape of a cyclic voltammogram, such as those shown in Figs. 
21F.13 and 21F.14.

Exercises
21F.1(a) The transfer coefficient of a certain electrode in contact with M3+ and 
M4+ in aqueous solution at 25 °C is 0.39. The current density is found to be 
55.0 mA cm−2 when the overpotential is 125 mV. What is the overpotential 
required for a current density of 75 mA cm−2?
21F.1(b) The transfer coefficient of a certain electrode in contact with M2+ and 
M3+ in aqueous solution at 25°C is 0.42. The current density is found to be 
17.0 mA cm−2 when the overpotential is 105 mV. What is the overpotential 
required for a current density of 72 mA cm−2?

21F.2(a) Determine the exchange current density from the information given 
in Exercise 21F.1(a).
21F.2(b) Determine the exchange current density from the information given 
in Exercise 21F.1(b).

21F.3(a) To a first approximation, significant evolution or deposition occurs 
in electrolysis only if the overpotential exceeds about 0.6 V. To illustrate this 
criterion determine the effect that increasing the overpotential from 0.40 V to 
0.60 V has on the current density in the electrolysis of 1.0 m NaOH(aq), which 
is 1.0 mA cm−2 at 0.4 V and 25 °C. Take α = 0.5.
21F.3(b) Determine the effect that increasing the overpotential from 0.50 V to 
0.60 V has on the current density in the electrolysis of 1.0 m NaOH(aq), which 
is 1.22 mA cm−2 at 0.50 V and 25 °C. Take α = 0.50.

21F.4(a) Use the data in Table 21F.1 for the exchange current density and 
transfer coefficient for the reaction 2 H+ + 2 e−→ H2 on nickel at 25 °C to 
determine what current density would be needed to obtain an overpotential 
of 0.20 V as calculated from (i) the Butler–Volmer equation, and (ii) the 
Tafel equation. Is the validity of the Tafel approximation affected at higher 
overpotentials (of 0.4 V and more)?

21F.4(b) Use the data in Table 21F.1 for the exchange current density and 
transfer coefficient for the reaction Fe3+ + e−→ Fe2+ on platinum at 25 °C to 
determine what current density would be needed to obtain an overpotential 
of 0.30 V as calculated from (i) the Butler–Volmer equation, and (ii) the 
Tafel equation. Is the validity of the Tafel approximation affected at higher 
overpotentials (of 0.4 V and more)?

21F.5(a) A typical exchange current density, that for H+ discharge at platinum, 
is 0.79 mA cm−2 at 25 °C. What is the current density at an electrode when its 
overpotential is (i) 10 mV, (ii) 100 mV, (iii) –5.0 V? Take α = 0.5.
21F.5(b) The exchange current density for a Pt|Fe3+,Fe2+ electrode is 
2.5 mA cm−2. The standard potential of the electrode is +0.77 V. Calculate the 
current flowing through an electrode of surface area 1.0 cm2 as a function of 
the potential of the electrode. Take unit activity for both ions.

21F.6(a) How many electrons or protons are transported through the double 
layer in each second when the Pt,H2|H+, Pt|Fe3+,Fe2+, and Pb,H2|H+ electrodes 
are at equilibrium at 25 °C? Take the area as 1.0 cm2 in each case. Estimate the 
number of times each second a single atom on the surface takes part in an 
electron transfer event, assuming an electrode atom occupies about (280 pm)2 
of the surface.
21F.6(b) How many electrons or protons are transported through the double 
layer in each second when the Cu,H2|H+ and Pt|Ce4+,Ce3+ electrodes are 
at equilibrium at 25 °C? Take the area as 1.0 cm2 in each case. Estimate the 
number of times each second a single atom on the surface takes part in an 
electron transfer event, assuming an electrode atom occupies about (260 pm)2 
of the surface.

ΔrG</eV 0.665 0.705 0.745 0.975 1.015 1.055

ket/(106 s−1) 0.657 1.52 1.12 8.99 5.76 10.1

Reaction BChl−→ BPh BPh BChl− +→ 2 BPh−→ QA cyt c559 2→ BChl

d/nm 0.48 0.95 0.96 1.23

ket/s−1 1.58 × 1012 3.98 × 109 1.00 × 109 1.58 × 108

Reaction Q QA B
− → Q BChlA

− +→ 2

d/nm 1.35 2.24

ket/s−1 3.98 × 107 63.1
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936 21 Reaction dynamics

21F.7(a) What is the effective resistance at 25 °C of an electrode interface when 
the overpotential is small? Evaluate it for 1.0 cm2 (i) Pt,H2|H+, (ii) Hg,H2|H+ 
electrodes.
21F.7(b) Evaluate the effective resistance at 25 °C of an electrode interface for 
1.0 cm2 (i) Pb,H2|H+, (ii) Pt|Fe2+,Fe3+ electrodes.

21F.8(a) The exchange current density for H+ discharge at zinc is about  
50 pA cm−2. Can zinc be deposited from a unit activity aqueous solution  
of a zinc salt?
21F.8(b) The standard potential of the Zn2+|Zn electrode is –0.76 V at 25 °C. 
The exchange current density for H+ discharge at platinum is 0.79 mA cm−2. 
Can zinc be plated on to platinum at that temperature? (Take unit activities.)

Problems
21F.1 In an experiment on the Pt|H2|H+ electrode in dilute H2SO4 the following 
current densities were observed at 25 °C. Evaluate α and j0 for the electrode.

How would the current density at this electrode depend on the overpotential 
of the same set of magnitudes but of opposite sign?

21F.2 The standard potentials of lead and tin are –126 mV and –136 mV, 
respectively, at 25 °C, and the overpotential for their deposition are close to 
zero. What should their relative activities be in order to ensure simultaneous 
deposition from a mixture?

21F.3‡ The rate of deposition of iron, v, on the surface of an iron electrode 
from an aqueous solution of Fe2+ has been studied as a function of potential, 
E, relative to the standard hydrogen electrode, by J. Kanya (J. Electroanal. 
Chem. 84, 83 (1977)). The values in the table below are based on the 
data obtained with an electrode of surface area 9.1 cm2 in contact with a 
solution of concentration 1.70 µmol dm−3 in Fe2+. (a) Assuming unit activity 
coefficients, calculate the zero current potential of the Fe2+/Fe cathode and 
the overpotential at each value of the working potential. (b) Calculate the 
cathodic current density, jc, from the rate of deposition of Fe2+ for each value 
of E. (c) Examine the extent to which the data fit the Tafel equation and 
calculate the exchange current density.

21F.4‡ V.V. Losev and A.P. Pchel’nikov (Soviet Electrochem. 6, 34 (1970)) 
obtained the following current–voltage data for an indium anode relative to a 
standard hydrogen electrode at 293 K:

Use these data to calculate the transfer coefficient and the exchange current 
density. What is the cathodic current density when the potential is 0.365 V?

21F.5‡ An early study of the hydrogen overpotential is that of H. Bowden and 
T. Rideal (Proc. Roy. Soc. A120, 59 (1928)), who measured the overpotential 
for H2 evolution with a mercury electrode in dilute aqueous solutions 
of H2SO4 at 25 °C. Determine the exchange current density and transfer 
coefficient, α, from their data:

Explain any deviations from the result expected from the Tafel equation.

21F.6 If α = 1
2

, an electrode interface is unable to rectify alternating current 
because the current density curve is symmetrical about η = 0. When α ≠ 1

2
, 

the magnitude of the current density depends on the sign of the overpotential, 
and so some degree of ‘faradaic rectification’ may be obtained. Suppose that 
the overpotential varies as η = η0 cos ωt. Derive an expression for the mean 
flow of current (averaged over a cycle) for general α, and confirm that the 
mean current is zero when α = 1

2 . In each case work in the limit of small η0 
but to second order in η0F/RT. Calculate the mean direct current at 25 °C for 
a 1.0 cm2 hydrogen–platinum electrode with α = 0.38 when the overpotential 
varies between ±10 mV at 50 Hz.

21F.7 Now suppose that the overpotential is in the high overpotential region 
at all times even though it is oscillating. What waveform will the current 
across the interface show if it varies linearly and periodically (as a sawtooth 
waveform) between η− and η+ around η0? Take α = 1

2
.

21F.8 Figure 21.1 shows four different examples of voltammograms. Identify 
the processes occurring in each system. In each case the vertical axis is the 
current and the horizontal axis is the (negative) electrode potential.

Integrated activities
21.1 Estimate the orders of magnitude of the partition functions involved in a 
rate expression. State the order of magnitude of q Nm

T
A/ , qR, qV, qE for typical 

molecules. Check that in the collision of two structureless molecules the 
order of magnitude of the pre-exponential factor is of the same order as that 
predicted by collision theory. Go on to estimate the P-factor for a reaction in 
which A + B→ P, and A and B are nonlinear triatomic molecules.

21.2 Discuss the factors that govern the rates of photo-induced electron 
transfer according to Marcus theory and that govern the rates of resonance 

energy transfer according to Förster theory (Topic 20G). Can you find 
similarities between the two theories?

21.3 Calculate the thermodynamic limit to the zero-current potential of fuel 
cells operating on (a) hydrogen and oxygen, (b) methane and air, and (c) 
propane and air. Use the Gibbs energy information in the Resource section, 
and take the species to be in their standard states at 25 °C.

η/mV 50 100 150 200 250

j/(mA cm−2) 2.66 8.91 29.9 100 335

v/(pmol s−1) 1.47 2.18 3.11 7.26

–E/mV 702 727 752 812

–E/V 0.388 0.365 0.350 0.335

j/(A m−2) 0 0.590 1.438 3.507

j/(mA m−2) 2.9 6.3 28 100 250 630 1650 3300

η/V 0.60 0.65 0.73 0.79 0.84 0.89 0.93 0.96

(a) (b)

(c) (d)

C
u

rr
en

t

Potential

Figure 21.1 The voltammograms used in Problem 21F.8.
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chaPter 22

Processes on solid surfaces

Processes at solid surfaces govern the viability of industry con-
structively, as in catalysis, and the permanence of its products 
destructively, as in corrosion. Chemical reactions at solid sur-
faces may differ sharply from reactions in the bulk, for reaction 
pathways of much lower activation energy may be provided by 
the surface, and hence result in catalysis. This chapter extends 
the material introduced in Chapters 20 and 21 by showing how 
to deal with processes on solid surfaces.

22A an introduction to solid surfaces

We begin by exploring the structure of solid surfaces. This 
Topic also describes a number of experimental techniques 
commonly used in surface science.

22B adsorption and desorption

Although we began with a discussion of clean surfaces, for 
chemists the important aspects of a surface are the attachment 
of substances to it and the reactions that take place there. In this 
Topic we discuss the extent to which a solid surface is covered 
and the variation of the extent of coverage with pressure and 
temperature.

22C heterogeneous catalysis

This Topic discusses chemical reactions on solid surfaces. We 
focus on how surfaces affect the rate and course of chemical 
change by acting as the site of catalysis.

What is the impact of this material?

Almost the whole of modern chemical industry depends on 
the development, selection, and application of catalysts, with 
heterogeneous catalysts being particularly important. All we 
can hope to do in Impact I22.1 is to give a brief indication of 
some of the problems involved. Other than the ones we con-
sider, these problems include the danger of the catalyst being 
poisoned by by-products or impurities, and economic consid-
erations relating to cost and lifetime.

 To read more about the impact of this 
material, scan the QR code, or go to  
bcs.whfreeman.com/webpub/chemistry/
pchem10e/impact/pchem-22-1.html
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22A an introduction to solid surfaces

A great deal of chemistry occurs at solid surfaces. Hetero-
geneous catalysis (Topic 22C) is just one example, with the sur-
face providing reactive sites where reactants can attach, be torn 
apart, and react with other reactants. Even as simple an act as 
dissolving is intrinsically a surface phenomenon, with the solid 
gradually escaping into the solvent from sites on the surface. 
Surface deposition, in which atoms are laid down on a surface 

to create layers, is crucial to the semiconductor industry, as it is 
the way in which integrated circuits are created. Electrodes are 
essentially surfaces at which electron transfer occurs, and their 
efficiency depends crucially on an understanding of the events 
there (Topic 21F).

22A.1 Surface growth

Adsorption is the attachment of particles to a solid surface; 
desorption is the reverse process. The substance that adsorbs is 
the adsorbate and the material to which it adsorbs is the adsor-
bent or substrate.

A simple picture of a perfect crystal surface is as a tray of 
oranges in a grocery store (Fig. 22A.1). A gas molecule that 
collides with the surface can be imagined as a ping-pong ball 
bouncing erratically over the oranges. The molecule loses 
energy as it bounces, but it is likely to escape from the surface 
before it has lost enough kinetic energy to be trapped. The same 
is true, to some extent, of an ionic crystal in contact with a solu-
tion. There is little energy advantage for an ion in solution to 
discard some of its solvating molecules and stick at an exposed 
position on the surface.

The picture changes when the surface has defects, for then 
there are ridges of incomplete layers of atoms or ions. A com-
mon type of surface defect is a step between two otherwise flat 
layers of atoms called terraces (Fig. 22A.2). A step defect might 
itself have defects, for it might have kinks. When an atom set-
tles on a terrace it bounces across it under the influence of the 
intermolecular potential, and might come to a step or a corner 
formed by a kink. Instead of interacting with a single terrace 

Figure 22A.1 A schematic diagram of the flat surface of a 
solid. This primitive model is largely supported by scanning 
tunnelling microscope images.

➤➤ Why do you need to know this material?
To understand the thermodynamics and kinetics of 
chemical reactions occurring on solid surfaces, which 
underlie much of catalysis and therefore the chemical 
industry, you need to understand surface structure, 
composition, and growth.

➤➤ What is the key idea?
Structural features, including defects, play important roles 
in physical and chemical processes occurring on solid 
surfaces.

➤➤ What do you need to know already?
You need to be aware of the structure of solids (Topic 
18A), but not in detail. This Topic draws on results from the 
kinetic theory of gases (Topic 1B).

Contents
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brief illustration 22a.1: the collision flux 939
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atom, the molecule now interacts with several, and the inter-
action may be strong enough to trap it. Likewise, when ions 
deposit from solution, the loss of the solvation interaction is 
offset by a strong Coulombic interaction between the arriving 
ions and several ions at the surface defect.

The rapidity of growth depends on the crystal plane con-
cerned, and the slowest growing faces dominate the appearance 
of the crystal. This feature is explained in Fig. 22A.3, where 
we see that, although the horizontal face grows forward most 
rapidly, it grows itself out of existence, and the slower-growing 
faces survive.

Under normal conditions, a surface exposed to a gas is con-
stantly bombarded with molecules and a freshly prepared sur-
face is covered very quickly. Just how quickly can be estimated 
using the kinetic model of gases and the following expression 
for the collision flux (eqn 19A.6):

Z
p

mkTW =
( ) /2 1 2π  

 collision flux  (22A.1)

22A.2 Physisorption and 
chemisorption

Molecules and atoms can attach to surfaces in two ways. In 
physisorption (a contraction of ‘physical adsorption’), there 
is a van der Waals interaction (for example, a dispersion or a 
dipolar interaction, Topic 16B) between the adsorbate and the 
substrate; van der Waals interactions have a long range but are 
weak, and the energy released when a particle is physisorbed 
is of the same order of magnitude as the enthalpy of conden-
sation. Such small energies can be absorbed as vibrations of 
the lattice and dissipated as thermal motion, and a molecule 
bouncing across the surface will gradually lose its energy and 
finally adsorb to it in the process called accommodation.

The enthalpy of physisorption can be measured by moni-
toring the rise in temperature of a sample of known heat cap-
acity, and typical values are in the region of −20 kJ mol−1 (Table 
22A.1). This small enthalpy change is insufficient to lead to 
bond breaking, so a physisorbed molecule retains its identity, 
although it might be distorted by the presence of the surface.

In chemisorption (a contraction of ‘chemical adsorption’), 
the molecules (or atoms) stick to the surface by forming a 
chemical (usually covalent) bond, and tend to find sites that 
maximize their coordination number with the substrate. The 

Brief illustration 22A.1 The collision flux

If we write m = M/NA, where M is the molar mass of the gas, 
eqn 22A.1 becomes

Z
N k p

TMW
A /= ( )
( )

/

/

2 1 2

1 2

π
Z0� �� ��

After inserting numerical values for the constants and select-
ing units for the variables, the practical form of this expres-
sion is:

Z
Z p

T M
ZW

/Pa
/K / g mol

with m s= = ×−
− −0

1 1 2 0
24 2 12 63 10

( )
{( )( ( )}

./

For air, with M ≈ 29 g mol−1, at p = 1 atm = 1.013 25 × 105 Pa and 
T = 298 K, we obtain ZW = 2.9 × 1027 m−2 s−1. Because 1 m2 of 
metal surface consists of about 1019 atoms, each atom is struck 
about 108 times each second. Even if only a few collisions 
leave a molecule adsorbed to the surface, the time for which a 
freshly prepared surface remains clean is very short.

Self-test 22A.1 Calculate the collision flux with a surface of a 
vessel containing propane at 25 °C when the pressure is 100 Pa.

Answer: ZW = 2.30 × 1020 cm−2 s−1

Terrace

Terrace

Step
Adatom

Kink

ace

Figure 22A.2 Some of the kinds of defects that may occur on 
otherwise perfect terraces. Defects play an important role in 
surface growth and catalysis.

Fast

Slow

Figure 22A.3 The slower-growing faces of a crystal dominate 
its final external appearance. Three successive stages of the 
growth are shown.

Table 22A.1* Maximum observed standard enthalpies of 
physisorption, ΔadH</(kJ mol−1), at 298 K

Adsorbate ΔadH</(kJ mol−1)

CH4 −21

H2 −84

H2O −59

N2 −21

* More values are given in the Resource section.
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enthalpy of chemisorption is very much greater than that for 
physisorption, and typical values are in the region of −200 kJ 
mol−1 (Table 22A.2). The distance between the surface and the 
closest adsorbate atom is also typically shorter for chemisorp-
tion than for physisorption. A chemisorbed molecule may be 
torn apart at the demand of the unsatisfied valencies of the sur-
face atoms, and the existence of molecular fragments on the 
surface as a result of chemisorption is one reason why solid sur-
faces catalyse reactions (Topic 22C).

Except in special cases, chemisorption must be exothermic. 
A spontaneous process requires ΔG < 0 at constant pressure and 
temperature. Because the translational freedom of the adsorb-
ate is reduced when it is adsorbed, ΔS is negative. Therefore, 
in order for ΔG = ΔH − TΔS to be negative, ΔH must be nega-
tive (that is, the process must be exothermic). Exceptions may 
occur if the adsorbate dissociates and has high translational 
mobility on the surface. For example, H2 adsorbs endothermi-
cally on glass because there is a large increase of translational 
entropy accompanying the dissociation of the molecules into 
atoms that move quite freely over the surface. In this case, the 
entropy change in the process H2(g) → 2 H(glass) is sufficiently 
positive to overcome the small positive enthalpy change.

The enthalpy of adsorption depends on the extent of surface 
coverage, mainly because the adsorbate particles interact with 
each other. If the particles repel each other (as for CO on palla-
dium) the adsorption becomes less exothermic (the enthalpy of 
adsorption less negative) as coverage increases. Moreover, studies 
show that such species settle on the surface in a disordered way 
until packing requirements demand order. If the adsorbate par-
ticles attract one another (as for O2 on tungsten), then they tend 
to cluster together in islands, and growth occurs at the borders. 
These adsorbates also show order–disorder transitions when they 
are heated enough for thermal motion to overcome the particle–
particle interactions, but not so much that they are desorbed.

Whether a result of physisorption or chemisorption, the 
extent of surface coverage is normally expressed as the frac-
tional coverage, θ:

θ = number of adsorption sites occupied
number of adsorption sites avvailable   

Definition  Fractional coverage  (22A.2)

The fractional coverage is often expressed in terms of the vol-
ume of adsorbate adsorbed by θ = V/V∞, where V∞ is the volume 
of adsorbate corresponding to complete monolayer coverage. 
In each case, the volumes in the definition of θ are those of the 
free gas measured under the same conditions of temperature 
and pressure, not the volume the adsorbed gas occupies when 
attached to the surface.

22A.3 Experimental techniques

A vast array of experimental techniques are used to study 
the composition and structure of solid surfaces at the atomic 
level. Many of the arrangements allow for direct visualization 
of changes in the surface as adsorption and chemical reactions 
take place there.

Experimental procedures must begin with a clean surface. 
The obvious way to retain cleanliness of a surface is to reduce 
the pressure and reduce the number of impacts on the surface. 
When the pressure is reduced to 0.1 mPa (as in a simple vacuum 
system) the collision flux falls to about 1018 m−2 s−1, correspond-
ing to one hit per surface atom in each 0.1 s. Even that is too fre-
quent in most experiments, and in ultrahigh vacuum (UHV) 
techniques pressures as low as 0.1 µPa (when ZW = 1015 m−2 
s−1) are reached on a routine basis and as low as 1 nPa (when 
ZW = 1013 m−2 s−1) are reached with special care. These collision 
fluxes correspond to each surface atom being hit once every 105 
to 106 s, or about once a day.

(a) Microscopy
The basic approach of illuminating a small area of a sample and 
collecting light with a microscope has been used for many years 
to image small specimens. However, the resolution of a micro-
scope, the minimum distance between two objects that leads 
to two distinct images, is on the order of the wavelength of the 
light being used. Therefore, conventional microscopes employ-
ing visible light have resolutions in the micrometre range and 
are blind to features on a scale of nanometres.

Brief illustration 22A.2 Fractional coverage

For the adsorption of CO on charcoal at 273 K, V∞ = 111 cm3, a 
value corrected to 1 atm. When the partial pressure of CO is 
80.0 kPa, the value of V (also corrected to 1 atm) is 41.6 cm3, so 
it follows that θ = (41.6 cm3)/(111 cm3) = 0.375.

Self-test 22A.2 It is commonly observed that θ increases 
sharply with the partial pressure of adsorbate at low pressures, 
but becomes increasingly less dependent on partial pressure at 
high pressures. Explain this behaviour.

Answer: See Topic 22B

Table 22A.2* Standard enthalpies of chemisorption, ΔadH</ 
(kJ mol−1), at 298 K

Adsorbate Adsorbent (substrate)

Cr Fe Ni

C2H4 −427 −285 −243

CO −192

H2 −188 −134

NH3 −188 −155

* More values are given in the Resource section.
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One technique that is often used to image nanometre-sized 
objects is electron microscopy, in which a beam of electrons 
with a well-defined de Broglie wavelength (Topic 7A) replaces 
the lamp found in traditional light microscopes. Instead of glass 
or quartz lenses, magnetic fields are used to focus the beam. In 
transmission electron microscopy (TEM), the electron beam 
passes through the specimen and the image is collected on a 
screen. In scanning electron microscopy (SEM), electrons 
scattered back from a small irradiated area of the sample are 
detected and the electrical signal is sent to a video screen. An 
image of the surface is then obtained by scanning the electron 
beam across the sample.

As in traditional light microscopy, the wavelength of and 
the ability to focus the incident beam—in this case a beam of 
electrons focused by magnetic fields—govern the resolution. It 
is now possible to achieve atomic resolution with TEM instru-
ments. Resolution on the order of a few nanometres is possible 
with SEM instruments.

Scanning probe microscopy (SPM) is a collection of tech-
niques that can be used to make visible and manipulate objects 
as small as atoms on surfaces. One version is scanning tunnel-
ling microscopy (STM), in which a platinum–rhodium or tung-
sten needle is scanned across the surface of a conducting solid. 
When the tip of the needle is brought very close to the surface, 
electrons tunnel across the intervening space (Fig. 22A.4). In 
the ‘constant-current mode’ of operation, the stylus moves up 
and down according to the form of the surface, and the topogra-
phy of the surface, including any adsorbates, can be mapped on 
an atomic scale. The vertical motion of the stylus is achieved by 
fixing it to a piezoelectric cylinder, which contracts or expands 
according to the potential difference it experiences. In the ‘con-
stant-z mode’, the vertical position of the stylus is held constant 
and the current is monitored. Because the tunnelling probability 
is very sensitive to the size of the gap, the microscope can detect 
tiny, atom-scale variations in the height of the surface.

Figure 22A.5 shows an example of the kind of image 
obtained with a surface, in this case of gallium arsenide that has 
been modified by addition of caesium atoms. Each ‘bump’ on 

the surface corresponds to an atom. In a further variation of 
the STM technique, the tip may be used to nudge single atoms 
around on the surface, making possible the fabrication of com-
plex and yet very tiny nanometre-sized materials and devices.

Diffusion characteristics of an adsorbate can be examined by 
using STM to follow the change in surface characteristics. An 
adsorbed atom makes a random walk across the surface, and 
the diffusion coefficient, D, can be inferred from the mean dis-
tance, d, travelled in an interval τ by using the two-dimensional 
random walk expression d = (Dτ)1/2. The value of D for differ-
ent crystal planes at different temperatures can be determined 
directly in this way, and the activation energy for migration 
over each plane obtained from the Arrhenius-like expression

D D E RT= −
0e a diff, /

 

where Ea,diff is the activation energy for diffusion and D0 is the 
diffusion coefficient in the limit of infinite temperature.

Brief illustration 22A.3 Diffusion coefficients

Typical values for W atoms on tungsten have Ea,diff in the range 
57–87 kJ mol−1 and D0 ≈ 3.8 × 10−11 m2 s−1. It follows from eqn 
22A.3 that at 800 K the diffusion coefficient varies approxi-
mately from

D = × ×− − − × ×− − − −
( . ) . /( . )3 8 10 11 2 1 5 7 10 8 3145 8002 1 1 1

m s e Jmol JK mol K

== × − −7 2 10 15 2 1. m s

to

D = × ×− − − × ×− − − −
( . ) . /( . )3 8 10 11 2 1 8 7 10 8 3145 8002 1 1 1

m s e Jmol JK mol K

== × − −7 9 10 17 2 1. m s

Self-test 22A.3 For CO on tungsten, the activation energy falls 
from 144 kJ mol−1 at low surface coverage to 88 kJ mol−1 when 
the coverage is high. Calculate the ratio Dhigh/Dlow of diffusion 
coefficients at 800 K.

Answer: 4.5 × 103

Scan

Tunnelling
current

Figure 22A.4 A scanning tunnelling microscope makes use of 
the current of electrons that tunnel between the surface and 
the tip. That current is very sensitive to the distance of the tip 
above the surface.

Figure 22A.5 An STM image of caesium atoms on a gallium 
arsenide surface.

temperature dependence 
of the diffusion coefficient  (22A.3)
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942 22 Processes on solid surfaces

In atomic force microscopy (AFM), a sharpened tip 
attached to a cantilever is scanned across the surface. The force 
exerted by the surface and any molecules attached to it pushes 
or pulls on the tip and deflects the cantilever (Fig. 22A.6). The 
deflection is monitored by using a laser beam. Because no cur-
rent needs to pass between the sample and the probe, the tech-
nique can be applied to non-conducting surfaces and to liquid 
samples.

Two modes of operation of AFM are common. In ‘contact 
mode’, or ‘constant-force mode’, the force between the tip and 
surface is held constant and the tip makes contact with the 
surface. This mode of operation can damage fragile samples 
on the surface. In ‘non-contact’, or ‘tapping mode’, the tip 
bounces up and down with a specified frequency and never 
quite touches the surface. The amplitude of the tip’s oscilla-
tion changes when it passes over a species adsorbed on the 
surface.

(b) Ionization techniques
The chemical composition of a surface can be determined by 
a variety of ionization techniques. The same techniques can 
be used to detect any remaining contamination after clean-
ing and to detect layers of material adsorbed later in the 
experiment.

One technique is photoemission spectroscopy, a  derivative 
of the photoelectric effect (Topic 7A), in which X-rays (for 
XPS) or hard (short wavelength) ultraviolet (for UPS) ion-
izing radiation is used, giving rise to ejected electrons from 
adsorbed species. The kinetic energies of the electrons ejected 
from their orbitals are measured and the pattern of ener-
gies is a  fingerprint of the material present (Fig. 22A.7). UPS, 
which  examines  electrons ejected from valence shells, is also 
used to establish the bonding characteristics and the details of 
valence shell  electronic structures of substances on the surface. 
Its usefulness is its ability to reveal which orbitals of the adsorb-
ate are involved in the bond to the substrate.

A very important technique, which is widely used in the 
microelectronics industry, is Auger electron spectroscopy 
(AES). The Auger effect (pronounced oh-zhey) is the emission 
of a second electron after high energy radiation has expelled 
another. The first electron to depart leaves a hole in a low-lying 
orbital, and an upper electron falls into it. The energy this tran-
sition releases may result either in the generation of radiation, 
which is called X-ray fluorescence (Fig. 22A.8a) or in the ejec-
tion of another electron (Fig. 22A.8b). The latter is the ‘second-
ary electron’ of the Auger effect. The energies of the secondary 
electrons are characteristic of the material present, so the Auger 
effect effectively takes a fingerprint of the sample. In prac-
tice, the Auger spectrum is normally obtained by irradiating 
the sample with an electron beam of energy in the range 1–5 
keV rather than electromagnetic radiation. In scanning Auger 
electron microscopy (SAM), the finely focused electron beam 
is scanned over the surface and a map of composition is com-
piled; the resolution can reach below about 50 nm.

(c) Diffraction techniques
A useful technique for determining the arrangement of the 
atoms close to the surface is low energy electron diffraction 

Brief illustration 22A.4 A UPS spectrum

The principal difference between the photoemission results 
on free benzene and benzene adsorbed on palladium is in 
the energies of the π electrons. This difference is interpreted 
as meaning that the C6H6 molecules lie parallel to the surface 
and are attached to it by their π orbitals.

Self-test 22A.4 When adsorbed to palladium, pyridine (C6H5N) 
stands almost perpendicular to the surface. Suggest a mode of 
attachment of the molecule to palladium atoms on the surface.

Answer: Data are consistent with a σ bond formed  
by the nitrogen lone pair.

Probe

CantileverLaser
beam

Surface

Figure 22A.6 In atomic force microscopy, a laser beam is 
used to monitor the tiny changes in position of a probe as it is 
attracted to or repelled by atoms on a surface.

Binding energy/eV
80 100 120

Au

Hg

Figure 22A.7 The X-ray photoelectron emission spectrum of a 
sample of gold contaminated with a surface layer of mercury. 
(M.W. Roberts and C.S. McKee, Chemistry of the metal–gas 
interface, Oxford (1978).)
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(LEED). This technique is like X-ray diffraction (Topic 18A) 
but uses the wave character of electrons, and the sample is now 
the surface of a solid. The use of low energy electrons (with 
energies in the range 10–200 eV, corresponding to wavelengths 
in the range 100–400 pm) ensures that the diffraction is caused 
only by atoms on and close to the surface. The experimental 
arrangement is shown in Fig. 22A.9, and typical LEED patterns, 
obtained by photographing the fluorescent screen through the 
viewing port, are shown in Fig. 22A.10.

Observations using LEED show that the surface of a crys-
tal rarely has exactly the same form as a slice through the bulk 
because surface and bulk atoms experience different forces. 
Reconstruction refers to processes by which atoms on the sur-
face achieve their equilibrium structures. As a general rule, it 
is found that metal surfaces are simply truncations of the bulk 
lattice, but the distance between the top layer of atoms and the 
one below is contracted by around 5 per cent. Semiconductors 
generally have surfaces reconstructed to a depth of several 
layers. Reconstruction occurs in ionic solids. For example, in 

lithium fluoride the Li+ and F− ions close to the surface appar-
ently lie on slightly different planes. An actual example of the 
detail that can now be obtained from refined LEED techniques 
is shown in Fig. 22A.11 for CH3C– adsorbed on a (111) plane 
of rhodium.

Primary
electron

Photon

Secondary
electron

(a) (b)

Figure 22A.8 When an electron is expelled from a solid (a) 
an electron of higher energy may fall into the vacated orbital 
and emit an X-ray photon to produce X-ray fluorescence. 
Alternatively (b) the electron falling into the orbital may give 
up its energy to another electron, which is ejected in the Auger 
effect.

Viewing
port

Grids

Phosphor
screen

Electron
gun

Insulator

Sample

Figure 22A.9 A schematic diagram of the apparatus used for a 
LEED experiment. The electrons diffracted by the surface layers 
are detected by the fluorescence they cause on the phosphor 
screen.

(a) (b)

Figure 22A.10 LEED photographs of (a) a clean platinum 
surface and (b) after its exposure to propyne, CH3CbCH. 
(Photographs provided by Professor G.A. Somorjai.)

148 pm

12 pm

130 pm

Figure 22A.11 The structure of a surface close to the point 
of attachment of CH3C– to the (110) surface of rhodium at 
300 K and the changes in positions of the metal atoms that 
accompany chemisorption.

Example 22A.1 Interpreting a LEED pattern

The LEED pattern from a clean (110) face of palladium is 
shown in (a) below. The reconstructed surface gives a LEED 
pattern shown as (b). What can be inferred about the structure 
of the reconstructed surface?

Method Recall from Bragg’s law (Topic 18A), λ = 2d sin θ, 
that for a given wavelength, the greater the separation d of 
the layers, the smaller is the scattering angle (so that 2d sin θ 

(a) (b)
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944 22 Processes on solid surfaces

The presence of terraces, steps, and kinks in a surface shows 
up in LEED patterns, and their surface density (the number 
of defects in a region divided by the area of the region) can 
be estimated. The importance of this type of measurement 
will emerge later. Three examples of how steps and kinks affect 
the pattern are shown in Fig. 22A.12. The samples used were 
obtained by cleaving a crystal at different angles to a plane of 
atoms. Only terraces are produced when the cut is parallel to 

the plane, and the density of steps increases as the angle of the 
cut increases. The observation of additional structure in the 
LEED patterns, rather than blurring, shows that the steps are 
arrayed regularly.

(d) Determination of the extent and rates of 
adsorption and desorption
A common technique for measuring rates of processes on sur-
faces is to monitor the rates of flow of gas into and out of the 
system: the difference is the rate of gas uptake by the sample. 
Integration of this rate then gives the fractional coverage at any 
stage.

•	 Gravimetry, in which the sample is weighed on a 
microbalance during the experiment, is used to 
determine the extent and kinetics of adsorption and 
desorption.

The technique commonly uses a quartz crystal microbalance 
(QCM), in which the mass of a sample adsorbed on the sur-
face of a quartz crystal is related to changes in the characteristic 
vibrational frequency of the crystal. In this way, masses as small 
as a few nanograms can be measured reliably.

•	 Second harmonic generation (SHG), the conversion of 
an intense, pulsed laser beam to radiation with twice its 
initial frequency is very important for the study of all 
types of surfaces, including thin films and liquid–gas 
interfaces.

For example, adsorption of gas molecules on to a surface alters 
the intensity of the SHG signal, allowing for determination 
of the rates of surface processes and the fractional coverage. 
Because pulsed lasers are the excitation sources, time-resolved 
measurements of the kinetics and dynamics of surface pro-
cesses are possible on timescales as short as femtoseconds.

•	 Surface plasmon resonance (SPR), the absorption of 
energy from an incident beam of electromagnetic 
radiation by surface ‘plasmons’, is a very sensitive 
technique now used routinely in the study of adsorption 
and desorption.

To understand the technique we need to examine the terms 
‘surface plasmon’ and ‘resonance’ in its name.

The mobile delocalized valence electrons of metals form a 
plasma, a dense gas of charged particles. Bombardment of this 
plasma by light or an electron beam can cause transient changes 
in the distribution of electrons, with some regions becoming 
slightly denser than others. Coulomb repulsion in the regions 
of high density causes electrons to move away from each other, 
so lowering their density. The resulting oscillations in electron 
density, the plasmons, can be excited both in the bulk and on 
the surface of a metal. A surface plasmon propagates away 
from the surface, but the amplitude of the wave, also called an 

remains constant). It follows that, in terms of the LEED pat-
tern, the farther apart the atoms responsible for the pattern, 
the closer the spots appear in the pattern. Twice the separa-
tion between the atoms corresponds to half the separation 
between the spots, and vice versa. Therefore, inspect the two 
patterns and identify how the new pattern relates to the old.

Answer The horizontal separation between spots is 
unchanged, which indicates that the atoms remain in the 
same position in that dimension when reconstruction 
occurs. However, the vertical spacing is halved, which sug-
gests that the atoms are twice as far apart in that direction as 
they are in the unreconstructed surface.

Self-test 22A.5 Sketch the LEED pattern for a surface that 
differs from that shown in (a) above by tripling the vertical 
separation.

Answer: 

(a)

(b)

(c)

Figure 22A.12 LEED patterns may be used to assess the 
defect density of a surface. The photographs correspond to a 
platinum surface with (a) low defect density, (b) regular steps 
separated by about six atoms, and (c) regular steps with kinks. 
(Photographs provided by Professor G.A. Samorjai.)
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evanescent wave, decreases sharply with distance from the sur-
face. The ‘resonance’ in the name refers to the absorption that 
can be observed with appropriate choice of the wavelength and 
angle of incidence of the excitation beam.

It is common practice to use a monochromatic beam and to 
vary the angle of incidence (the ϕ in Fig. 22A.13). The beam 
passes through a prism that strikes one side of a thin film of 
gold or silver. Because the evanescent wave interacts with mate-
rial a short distance away from the surface, the angle at which 
resonant absorption occurs depends on the refractive index 
of the medium on the opposite side of the metallic film. Thus, 
changing the identity and quantity of material on the surface 
changes the resonance angle.

The SPR technique can be used in the study of the binding 
of molecules to a surface or binding of ligands to a biopoly-
mer attached to the surface; this interaction mimics the bio-
logical recognition processes that occur in cells. Examples of 
complexes amenable to analysis include antibody–antigen and 
protein–DNA interactions. The most important advantage of 
SPR is its sensitivity: it is possible to measure the deposition 
of nanograms of material on to a surface. The main disadvan-
tage of the technique is its requirement for immobilization of at 
least one of the components of the system under study.

Checklist of concepts

☐ 1. Adsorption is the attachment of molecules to a sur-
face; the substance that adsorbs is the adsorbate and the 
underlying material is the adsorbent or substrate. The 
reverse of adsorption is desorption.

☐ 2. Surface defects play an important role in surface growth 
and catalysis.

☐ 3. Reconstruction refers to processes by which atoms on 
the surface achieve their equilibrium structures.

☐ 4. Techniques for studying surfaces include scanning 
electron microscopy (SEM), transmission electron 
microscopy (TEM), scanning probe microscopy 
(SPM), photoemission spectroscopy, Auger electron 
spectroscopy (AES), low energy electron diffraction 
(LEED), gravimetry, second harmonic generation 
(SHG), and surface plasmon resonance (SPR).

Checklist of equations

Flow direction

Au or Ag film

Prism

To detectorFrom source

In
te

n
si

ty

Angle, φ

φ

Figure 22A.13 The experimental arrangement for the 
observation of surface plasmon resonance, as explained  
in the text.

Property Equation Comment Equation number

Collision flux ZW = p/(2πmkT)1/2 KMT 22A.1

Fractional coverage θ = (number of adsorption sites occupied)/(number of adsorption sites available) Definition 22A.2
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22B adsorption and desorption

Here we consider the extent to which a solid surface is covered 
and the variation of the extent of coverage with pressure and 
temperature. For simplicity, we consider only gas/solid sys-
tems. We use this material in Topic 22C to discuss how surfaces 
affect the rate and course of chemical change by acting as the 
site of catalysis.

22B.1 Adsorption isotherms

In adsorption (Topic 22A) the free gas and the adsorbed gas are 
in dynamic equilibrium, and the fractional coverage, θ, of the 
surface (eqn 22A.2) depends on the pressure of the overlying 
gas. The variation of θ with pressure at a chosen temperature is 
called the adsorption isotherm.

Many of the techniques discussed in Topic 22A can be used 
to measure θ. Another is flash desorption, in which the sample 
is suddenly heated (electrically) and the resulting rise of pres-
sure is interpreted in terms of the amount of adsorbate origi-
nally on the sample.

(a) The Langmuir isotherm
The simplest physically plausible isotherm is based on three 
assumptions:

•	 Adsorption cannot proceed beyond monolayer coverage.
•	 All sites are equivalent.
•	 The ability of a molecule to adsorb at a given site is 

independent of the occupation of neighbouring sites 
(that is, there are no interactions between adsorbed 
molecules).

The dynamic equilibrium is

A(g) M(surface) AM(surface)+   
with rate constants ka for adsorption and kd for desorption. The 
rate of change of the surface coverage, dθ/dt, due to adsorption 
is proportional to the partial pressure p of A and the number of 
vacant sites N(1 − θ), where N is the total number of sites:

d
d a

θ θ
t

k pN= −( )1
 

 rate of adsorption  (22B.1a)

Contents

22b.1 Adsorption isotherms 946
(a) The Langmuir isotherm 946

example 22b.1: using the langmuir isotherm 947
(b) The isosteric enthalpy of adsorption 948

example 22b.2: measuring the isosteric enthalpy 
of adsorption 948

(c)  The BET isotherm 949
example 22b.3: using the bet isotherm 950

(d) The Temkin and Freundlich isotherms 951

22b.2 The rates of adsorption and desorption 951
(a) The precursor state 951

brief illustration 22b.1: the rate of activated  
adsorption 952

(b) Adsorption and desorption at the  
molecular level 952
brief illustration 22b.2: residence half-lives 953

(c)  Mobility on surfaces 953
Checklist of concepts 954
Checklist of equations 954

➤➤ Why do you need to know this material?

To understand how surfaces can affect the rates of chemi-
cal reactions, you need to know how to assess the extent 
of surface coverage and the factors that determine the 
rates at which molecules attach to and detach from solid 
surfaces.

➤➤ What is the key idea?
The extent of surface coverage can be expressed in terms 
of isotherms derived on the basis of dynamic equilibria 
between adsorbed and free material.

➤➤ What do you need to know already?
This Topic extends the discussion of adsorption in Topic 
22A. You need to be familiar with the basic ideas of chem-
ical kinetics (Topics 20A–20C), the Arrhenius equation 
(Topic 20D), and the expression of reaction mechanisms 
as rate laws (Topic 20E).
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22B Adsorption and desorption  947

The rate of change of θ due to desorption is proportional to the 
number of adsorbed species, Nθ:

d
d d

θ θ
t

k N=−
 

 rate of desorption  (22B.1b)

At equilibrium there is no net change (that is, the sum of these 
two rates is zero), and solving kapN(1 − θ) − kdNθ = 0 for θ gives 
the Langmuir isotherm:

θ α
α α= + =p

p
k
k1

a

d  
 langmuir isotherm  (22B.2)

The dimensions of α are 1/pressure.
For adsorption with dissociation, when A2 adsorbs as 2 A, 

the rate of adsorption is proportional to the pressure and to the 
probability that both fragments A will find sites. The latter is 
now proportional to the square of the number of vacant sites:

d
d a

θ θ
t

k p N= −{ ( )}1 2

 
(22B.3a)

The rate of desorption is proportional to the frequency of 
encounters of the fragments on the surface, and is therefore 
second order in the number of fragments present:

d
d d

θ θ
t

k N=− ( )2

 
(22B.3b)

The condition for no net change leads to the isotherm

θ α
α= +

( )
( )

/

/

p
p

1 2

1 21   

The surface coverage now depends more weakly on pressure 
than for non-dissociative adsorption.

The shapes of the Langmuir isotherms with and without dis-
sociation are shown in Figs. 22B.2 and 22B.3. The fractional 

langmuir isotherm 
for adsorption with 
dissociation

 (22B.4)

Example 22B.1 Using the Langmuir isotherm

The data given below are for the adsorption of CO on char-
coal at 273 K. Confirm that they fit the Langmuir isotherm, 
and find the constant α and the volume corresponding to 
complete coverage. In each case V has been corrected to 1 atm 
(101.325 kPa).

Method From eqn 22B.2, αpθ + θ = αp. With θ = V/V∞ (eqn 
22A.2), where V∞ is the volume corresponding to complete 
coverage, this expression can be rearranged into

p
V

p
V V

= +
∞ ∞

1
α

Hence, a plot of p/V against p should give a straight line of 
slope 1/V∞ and intercept 1/αV∞.

Answer The data for the plot are as follows:

p/kPa 13.3 26.7 40.0 53.3 66.7 80.0 93.3
(p/kPa)/(V/cm3)  1.30  1.44  1.57  1.69  1.81  1.92  2.02

p/kPa 13.3 26.7 40.0 53.3 66.7 80.0 93.3
V/cm3 10.2 18.6 25.5 31.5 36.9 41.6 46.1

2.2

1.8

1.4

1.0
0 20 40 60 80 100

p/kPa

(p
/k

Pa
)/

(V
/c

m
3 )

Figure 22B.1 The plot of the data in Example 22B.1. As 
illustrated here, the Langmuir isotherm predicts that a straight 
line should be obtained when p/V is plotted against p.

The points are plotted in Fig. 22B.1.The (least squares) slope is 
0.009 00, so V∞ = 111 cm3. The intercept at p = 0 is 1.20, so

α =
×

= × − −1
111 1 20

7 51 103 3
3 1

( ) ( . )
.

cm kPacm
kPa

Self-test 22B.1 Repeat the calculation for the following data:

Answer: 128 cm3, 6.69 × 10−3 kPa−1

p/kPa 13.3 26.7 40.0 53.3 66.7 80.0 93.3
V/cm3 10.3 19.3 27.3 34.1 40.0 45.5 48.0
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Figure 22B.2 The Langmuir isotherm for dissociative 
adsorption, A2(g) → 2 A(surface), for different values of α.
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948 22 Processes on solid surfaces

coverage increases with increasing pressure, and approaches 1 
only at very high pressure, when the gas is forced on to every 
available site of the surface.

(b) The isosteric enthalpy of adsorption
The Langmuir isotherm depends on the value of α = ka/kd, 
which depends on the temperature. As we show in the follow-
ing Justification, the temperature dependence of α can be used 
to determine the isosteric enthalpy of adsorption, ΔadH<, the 
standard enthalpy of adsorption at a fixed surface coverage, by 
using the relation

∂
∂







=ln ad( )α

θ

p
T

H
RT

< <∆
2

 
 Isosteric enthalpy of adsorption  (22B.5)

Justification 22B.1 The isosteric enthalpy of adsorption

It follows from the treatment in Topic 20C that the quantity 
αp < = (ka/kd) × p < is an equilibrium constant for the process  
A(g) + M(surface) ⇌ AM(surface), and can therefore be 
expressed in terms of the standard Gibbs energy of adsorp-
tion, ΔadG< through eqn 6A.14 (ΔG< = −RT ln K) as

ln( )αp
G

RT
<

<

=− ∆ad

We can then infer from the Gibbs–Helmholtz equation (eqn 
6B.2, d((ΔG/T)/dT = −ΔH/RT 2) that

d ln( )
d

adαp
T

H
RT

< <

= ∆
2

There is the possibility that the enthalpy of adsorption 
depends on the fractional coverage, so this expression is con-
fined to constant θ, which implies the partial derivative form 
in eqn 22B.5.
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Figure 22B.3 The Langmuir isotherm for non-dissociative 
adsorption for different values of α.

Example 22B.2 Measuring the isosteric enthalpy of 
adsorption

The data below show the pressures of CO needed for the vol-
ume of adsorption (corrected to 1 atm and 0 °C) to be 10.0 cm3 
using the same sample as in Example 22B.1. In this case, there 
is no dissociation. Calculate the adsorption enthalpy at this 
surface coverage.

Method The Langmuir isotherm for adsorption without dis-
sociation (eqn 22B.2), can be rearranged to αp = θ/(1 − θ), a 
constant when θ is constant. We need to guard against prob-
lems with units as we manipulate expressions, and in this 
case it will prove useful to write αp = constant as (αp <) × 
(p/p <) = constant. It then follows that

ln ln ln constant{( )( / )} ( ) ( / )ap p p ap p p< < < <= + =

and from eqn 22B.5 that

∂
∂







=− ∂
∂







=−ln ad( / ) ln( )p p
T

p
T

H
RT

< < <

θ θ

α ∆
2

With d(1/T)/dT = −1/T2, and therefore dT = −T2d(1/T), this 
expression becomes

∂
∂







=ln ad( / )
( / )

p p
T

H
R

< <

1
θ

∆

Therefore, a plot of ln(p/p <) against 1/T should be a straight 
line of slope ΔadH</R.

T/K 200 210 220 230 240 250
p/kPa 4.00 4.95 6.03 7.20 8.47 9.85

ln
(p

/p
<

)

4.0 4.2 4.4 4.6 4.8 5.0
103/(T/K)

–3.5

–2.5

–2.0

–3.0

Figure 22B.4 The isosteric enthalpy of adsorption can be 
obtained from the slope of the plot of ln(p/p <) against 1/T, 
where p is the pressure needed to achieve the specified 
surface coverage. The data used are from Example 22B.2.
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22B Adsorption and desorption  949

Two assumptions of the Langmuir isotherm are the inde-
pendence and equivalence of the adsorption sites. Deviations 
from the isotherm can often be traced to the failure of these 
assumptions. For example, the enthalpy of adsorption often 
becomes less negative as θ increases, which suggests that the 
energetically most favourable sites are occupied first. Also, sub-
strate–substrate interactions on the surface can be important. 
A number of isotherms have been developed to deal with cases 
where deviations from the Langmuir isotherm are important.

(c) The BET isotherm
If the initial adsorbed layer can act as a substrate for further (for 
example, physical) adsorption, then, instead of the isotherm 
levelling off to some saturated value at high pressures, it can be 
expected to rise indefinitely. The most widely used isotherm 
dealing with multilayer adsorption was derived by Stephen 
Brunauer, Paul Emmett, and Edward Teller and is called the 
BET isotherm:

V
V

cz
z c z

z
p
pmon

with= − − − =
( ){ ( ) } *1 1 1  

 bet isotherm  (22B.6)

In this expression, which is obtained in the following 
Justification, p* is the vapour pressure above a layer of adsorb-
ate that is more than one molecule thick and which resembles 
a pure bulk liquid, Vmon is the volume corresponding to mono-
layer coverage, and c is a constant which is large when the 
enthalpy of desorption from a monolayer is large compared 
with the enthalpy of vaporization of the liquid adsorbate:

c H H RT= −e des vap( )/∆ ∆< <

 (22B.7)

Figure 22B.5 illustrates the shapes of BET isotherms. They rise 
indefinitely as the pressure is increased because there is no limit 
to the amount of material that may condense when multilayer 
coverage is possible. A BET isotherm is not accurate at all pres-
sures, but it is widely used in industry to determine the surface 
areas of solids.

Answer With p < = 1 bar = 102 kPa, we draw up the following 
table:

The points are plotted in Fig. 22B.4. The slope (of the least 
squares fitted line) is –0.904, so

∆ad
3 19 4 1 K 7 52kJmolH R< =− × × =− −( . ) .0 0 0

Self-test 22B.2 Repeat the calculation using the following 
data:

Answer: −9.0 kJ mol−1

T/K 200 210 220 230 240 250
103/(T/K) 5.00 4.76 4.55 4.35 4.17 4.00

(p/p <) × 102 4.00 4.95 6.03 7.20 8.47 9.85

ln(p/p <) −3.22 −3.01 −2.81 −2.63 −2.47 −2.32

T/K 200 210 220 230 240 250
p/kPa 4.32 5.59 7.07 8.80 10.67 12.80
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1000

Figure 22B.5 Plots of the BET isotherm for different values of 
c. The value of V/Vmon rises indefinitely because the adsorbate 
may condense on the covered substrate surface.

Justification 22B.2 The BET isotherm

We suppose that at equilibrium a fraction θ0 of the surface 
sites are unoccupied, a fraction θ1 is covered by a monolayer, 
a fraction θ2 is covered by a bilayer, and so on. The number of 
adsorbed molecules is therefore

N N= + + +sites 1 2 32 3( )θ θ θ …

where Nsites is the total number of sites. We now follow the 
derivation that led to the Langmuir isotherm (eqn 22B.2) but 
allow for different rates of desorption from the substrate and 
the various layers:

and so on. We now suppose that once a monolayer has been 
formed, all the rate constants involving adsorption and 

First layer: Rate of adsorption = Nka,0pθ0

Rate of desorption = Nkd,0θ1

At equilibrium, ka,0pθ0 = kd,0θ1

Second layer: Rate of adsorption = Nka,1pθ1

Rate of desorption = Nkd,1θ2

At equilibrium, ka,1pθ1 = kd,1θ2

Third layer: Rate of adsorption = Nka,2pθ2

Rate of desorption = Nkd,2θ3

At equilibrium, ka,2pθ2 = kd,2θ3
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950 22 Processes on solid surfaces

desorption from the physisorbed layers are the same, and 
write these equations as

k p k

k k p p

k p k

a d 1

1 a d

a 1 1 d 1 2

 so

 s

, ,

, ,

, ,

,

( / )

,

0 0 0

0 0 0 0 0

θ θ
θ θ α θ
θ θ

=
= =
= oo

2 a 1 d 1 1 a d a 1 d 1
2

1
2

a

θ θ θ α α θ= = =( / ) ( / )( / ), , , , , ,

,

k k p k k k k p p

k

0 0 0 0 0

11 2 d 1 3

3 a 1 d 1 2 a d a 1 d 1
2

 sop k

k k p k k k k p

θ θ
θ θ

=
= =

,

, , , , , ,

,

( / ) ( / )( / )0 0
33 3θ α α θ0 0 1

2
0= p

and so on, with α0 = ka,0/kd,0 and α1 = ka,1/kd,1 the ratios of rate 
constants for adsorption to the substrate and an overlayer, 
respectively. Now, because θ0 + θ1 + θ2 + … = 1, it follows that

θ α θ α α θ α α θ
θ α θ α α

0 0 0 0 1
2

0 0 1
2 3

0

0 0 0 1 1
2 21

+ + + +
= + + + +

=
+ +

p p p

p p p

�

�{ }

1 x xx x2 1/(1 )+ = −
+ −









= − +
−









��
1

1
1

1
0

1
0

1 0

1
0

α
α θ α α

α θp
p

p p
p

Then, because this expression is equal to 1,

θ α
α α0

1

1 0

1
1

= −
− −

p
p( )  

In a similar way, we can write the number of adsorbed species as

N N p N p

N p p p

= + +
= + + +

sites sites

sites

α θ α α θ
α θ α α

0 0 0 1
2

0

0 0 1 1
2 2

2

1 2 3

�

( ��

��

)

( )
=

−

+ + + =1 2 3 1/(1 )2 2x x x
sitesN p

p
α θ
α

0 0

1
21

By combining the last two expressions, we obtain

N
N p

p
p

p
N p

p
=

−
× −

− − = − −
sites sitesα
α

α
α α

α
α α

0

1
2

1

1 0

0

1 11
1

1 1 1( ) ( ) ( ){ ( −−α0) }p

The ratio N/Nsites is equal to the ratio V/Vmon, where V is the 
total volume adsorbed and Vmon the volume adsorbed had 
there been complete monolayer coverage. The equilibrium of 
the adsorption and desorption from the overlayers is equiva-
lent to the vaporization A(l)  A(g) of the pure adsorbate, 
with matching forward and reverse rates: kd = kap*, where 
p* is the vapour pressure of the liquid adsorbate. Therefore, 
α1 = ka,1/kd,1 = 1/p*. Then, with z = p/p* and c = α0/α1, the last 
equation becomes

V
V

p
p p p p

cz
z c zmon

= − − − = − − −
α

α α
0

0 11 1 1 1 1 1( / ){ ( / ) / } ( ){ ( ) }* *

as in eqn 22B.6.
As in Justification 22B.1, α0 and α1 are related to the Gibbs 

energy changes accompanying adsorption to the substrate 
and condensation on the adsorbed layers, ΔadG< and ΔconG< , 
which in turn can be related to the Gibbs energies for the 

opposite processes, desorption from the substrate and vapori-
zation from the overlayer, by ΔdesG< = −ΔadG< and ΔvapG< =  
−ΔconG< . Therefore, from ln(αp <) = −ΔG</RT in each case,

α α0 1p pG RT G RT G RT G RT< << < < <= = = =− −e e e eandad des con vap∆ ∆ ∆ ∆/ / / /

The ratio c then becomes (after cancelling the p < and writing 
ΔG< = ΔH< − TΔS< in each case)

c
G RT

G RT

H RT S R

H RT
= = =

−α
α

0

1

e

e

e e

e e

des

vap

des des

vap

∆

∆

∆ ∆

∆

<

<

< </

/

/ /

/ −−∆vapS R</

If the entropies of desorption and vaporization are assumed to 
be the same because they correspond to very similar processes 
in terms of the escape of the condensed adsorbate to the gas 
phase, this ratio becomes

c
H RT

H RT
H H RT= = −e

e
e

des

vap

des vap

∆

∆
∆ ∆

<

<

< <
/

/
( )/

as in eqn 21B.7.

Example 22B.3 Using the BET isotherm

The data below relate to the adsorption of N2 on rutile (TiO2) 
at 75 K. Confirm that they fit a BET isotherm in the range of 
pressures reported, and determine Vmon and c.

At 75 K, p* = 76.0 kPa. The volumes have been corrected to 1.00 
atm and 273 K and refer to 1.00 g of substrate.

Method Equation 22B.6 can be reorganized into

z
z V cV

c z
cV( )
( )

1
1 1

− = + −
mon mon  

It follows that (c − 1)/cVmon can be obtained from the slope of 
a plot of the expression on the left against z, and cVmon can be 
found from the intercept at z = 0. The results can then be com-
bined to give c and Vmon.

Answer We draw up the following table:

These points are plotted in Fig. 22B.6. The least squares best 
line has an intercept at 0.0398, so

1
3 98 10 6 3

cVmon
mm= × − −.

p/kPa 0.160 1.87 6.11 11.67 17.02 21.92 27.29
V/ 
mm3

601 720 822 935 1046 1146 1254

p/kPa 0.160 1.87 6.11 11.67 17.02 21.92 27.29
103z 2.11 24.6 80.4 154 224 288 359

104z/(1 − z)
(V/mm3)

0.035 0.350 1.06 1.95 2.76 3.53 4.47
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22B Adsorption and desorption  951

When c ≫ 1, the BET isotherm takes the simpler form

V
V zmon

= −
1

1  
 bet isotherm when c ≫ 1  (22B.8)

This expression is applicable to unreactive gases on polar sur-
faces, for which c ≈ 102 because ΔdesH< is then significantly 
greater than ΔvapH< (eqn 22B.7). The BET isotherm fits experi-
mental observations moderately well over restricted pressure 
ranges, but it errs by underestimating the extent of adsorption 
at low pressures and by overestimating it at high pressures.

(d) The Temkin and Freundlich isotherms
An assumption of the Langmuir isotherm is the independence 
and equivalence of the adsorption sites. Deviations from the 
isotherm can often be traced to the failure of these assump-
tions. For example, the enthalpy of adsorption often becomes 
less negative as θ increases, which suggests that the energeti-
cally most favourable sites are occupied first. Various attempts 

have been made to take these variations into account. The 
Temkin isotherm,

θ =c c p1 2ln( )   temkin isotherm  (22B.9)

where c1 and c2 are constants, corresponds to supposing that 
the adsorption enthalpy changes linearly with pressure. The 
Freundlich isotherm

θ =c p c
1

1 2/

  Freundlich isotherm  (22B.10)

corresponds to a logarithmic change. This isotherm attempts to 
incorporate the role of substrate–substrate interactions on the 
surface.

Different isotherms agree with experiment more or less well 
over restricted ranges of pressure, but they remain largely empir-
ical. Empirical, however, does not mean useless for, if the param-
eters of a reasonably reliable isotherm are known, reasonably 
reliable results can be obtained for the extent of surface coverage 
under various conditions. This kind of information is essential 
for any discussion of heterogeneous catalysis (Topic 22C).

22B.2 The rates of adsorption and 
desorption

We have noted that adsorption and desorption are activated 
processes, in the sense that they have an activation energy and 
follow Arrhenius behaviour. Now we are ready to look more 
closely at the origin of the activation energy in these processes, 
with a special focus on chemisorption.

(a) The precursor state
Figure 22B.7 shows how the potential energy of a molecule 
varies with its distance from the substrate surface. As the 
molecule approaches the surface its energy falls as it becomes 
physisorbed into the precursor state for chemisorption (see 
Topic 22A). Dissociation into fragments often takes place as a 
molecule moves into its chemisorbed state, and after an initial 
increase of energy as the bonds stretch there is a sharp decrease 
as the adsorbate–substrate bonds reach their full strength. Even 
if the molecule does not fragment, there is likely to be an ini-
tial increase of potential energy as the molecule approaches the 
surface and the bonds adjust.

In most cases, therefore, we can expect there to be a poten-
tial energy barrier separating the precursor and chemisorbed 
states. This barrier, though, might be low, and might not rise 
above the energy of a distant, stationary particle (as in Fig. 
22B.7a). In this case, chemisorption is not an activated process 
and can be expected to be rapid. Many gas adsorptions on clean 
metals appear to be non-activated. In some cases, however, the 

The slope of the line is 1.23 × 10−2, so

c
cV

− = × × × = ×− − − − −1
1 23 10 10 10 1 23 102 3 4 3 3 3

mon
mm mm( . ) .

 
The solutions of these equations are c = 310 and Vmon = 811 mm3. 
At 1.00 atm and 273 K, 811 mm3 corresponds to 3.6 × 10−5 mol, 
or 2.2 × 1019 atoms. Because each atom occupies an area of 
about 0.16 nm2, the surface area of the sample is about 3.5 m2.

Self-test 22B.3 Repeat the calculation for the following data:

Answer: 370, 615 cm3
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Figure 22B.6 The BET isotherm can be tested, and the 
parameters determined, by plotting z/(1 − z)V against 
z = p/p*. The data are from Example 22B.3.

p/kPa 0.160 1.87 6.11 11.67 17.02 21.92 27.29
V/cm3 235 559 649 719 790 860 950
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952 22 Processes on solid surfaces

barrier rises above the zero axis (as in Fig. 22B.7b); such chemi-
s orptions are activated and slower than the non-activated kind. 
An example is H2 on copper, which has an activation energy in 
the region of 20–40 kJ mol−1.

One point that emerges from this discussion is that rates 
are not good criteria for distinguishing between physisorption 
and chemisorption. Chemisorption can be fast if the activa-
tion energy is small or zero, but it may be slow if the activation 
energy is large. Physisorption is usually fast, but it can appear to 
be slow if adsorption is taking place on a porous medium.

(b) Adsorption and desorption at the 
molecular level
The rate at which a surface is covered by adsorbate depends on 
the ability of the substrate to dissipate the energy of the incom-
ing particle as thermal motion as it crashes on to the surface. If 

the energy is not dissipated quickly, the particle migrates over 
the surface until a vibration expels it into the overlying gas or it 
reaches an edge. The proportion of collisions with the surface 
that successfully lead to adsorption is called the sticking prob-
ability, s:

s = rate of adsorption of particles by the surface
rate of collision off particles with the surface   

Definition  sticking probability  (22B.11)

The denominator can be calculated from the kinetic model 
(from ZW, Topic 22A), and the numerator can be measured by 
observing the rate of change of pressure.

Values of s vary widely. For example, at room temperature 
CO has s in the range 0.1–1.0 for several d-metal surfaces, but 
for N2 on rhenium s < 10−2, indicating that more than a hundred 
collisions are needed before one molecule sticks successfully. 
Beam studies on specific crystal planes show a pronounced 
specificity: for N2 on tungsten, s ranges from 0.74 on the (320) 
faces down to less than 0.01 on the (110) faces at room temper-
ature. The sticking probability decreases as the surface cover age 
increases (Fig. 22B.8). A simple assumption is that s is propor-
tional to 1 − θ, the fraction uncovered, and it is common to 
write

s s= −( )1 θ 0  

where s0 is the sticking probability on a perfectly clean surface. 
The results in the illustration do not fit this expression because 
they show that s remains close to s0 until the coverage has risen 
to about 6 × 1013 molecules cm−2, and then falls steeply. The 
explanation is probably that the colliding molecule does not 
enter the chemisorbed state at once, but moves over the surface 
until it encounters an empty site.

Brief illustration 22B.1 The rate of activated adsorption

Consider two adsorption experiments for hydrogen on dif-
ferent faces of a copper crystal. In one, Face 1, the activation 
energy is 28 kJ mol−1 and on the other, Face 2, the activation 
energy is 33 kJ mol−1. The ratio of the rates of chemisorption on 
equal areas of the two faces at 250 K is

Rate( )
Rate( )

e
e
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a ads

a ads

a ads
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We have assumed that the A factor is the same for each face.

Self-test 22B.4 What are the relative rates when the tempera-
ture is increased to 300 K?

Answer: 7

commonly used form of 
the sticking probability  (22B.12)
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Figure 22B.7 The potential energy profiles for the dissociative 
chemisorption of an A2 molecule. In each case, P is the 
enthalpy of (non-dissociative) physisorption and C that for 
chemisorption (at T = 0). The relative locations of the curves 
determine whether the chemisorption is (a) not activated or 
(b) activated.
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Figure 22B.8 The sticking probability of N2 on various faces 
of a tungsten crystal and its dependence on surface coverage. 
Note the very low sticking probability for the (110) and (111) 
faces. (Data provided by Professor D.A. King.)
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22B Adsorption and desorption  953

Desorption is always activated because the particles have to 
be lifted from the foot of a potential well. A physisorbed parti-
cle vibrates in its shallow potential well, and might shake itself 
off the surface after a short time. If the temperature dependence 
of the first-order rate of departure follows Arrhenius behaviour, 
then k A E RT

d
/e a,des= − , with Ea,des the activation energy for desorp-

tion. Therefore, the half-life for remaining on the surface has a 
temperature dependence

t
k A

E RT
1 2 0 0

2 2
/

/ln ln
,= = =

d

e a desτ τ
 

 residence half-life  (22B.13)

Note the positive sign in the exponent: the greater the activa-
tion energy for desorption, the larger the residence half-life.

The desorption activation energy can be measured in sev-
eral ways. However, we must be guarded in its interpretation 
because it often depends on the fractional coverage, and so 
might change as desorption proceeds. Moreover, the transfer of 
concepts such as ‘reaction order’ and ‘rate constant’ from bulk 
studies to surfaces is hazardous, and there are few examples of 
strictly first-order or second-order desorption kinetics (just as 
there are few integral-order reactions in the gas phase too).

If we disregard these complications, one way of measur-
ing the desorption activation energy is to monitor the rate of 
increase in pressure when the sample is maintained at a series 
of temperatures, and to attempt to make an Arrhenius plot. A 
more sophisticated technique is temperature programmed 
desorption (TPD) or thermal desorption spectroscopy (TDS). 
The basic observation is a surge in desorption rate (as moni-
tored by a mass spectrometer) when the temperature is raised 
linearly to the temperature at which desorption occurs rapidly, 
but once the desorption has occurred there is no more adsorb-
ate to escape from the surface, so the desorption flux falls again 

as the temperature continues to rise. The TPD spectrum, the 
plot of desorption flux against temperature, therefore shows a 
peak, the location of which depends on the desorption activa-
tion energy. There are three maxima in the example shown in 
Fig. 22B.9, indicating the presence of three sites with different 
activation energies.

In many cases only a single activation energy (and a single 
peak in the TPD spectrum) is observed. When several peaks 
are observed they might correspond to adsorption on differ-
ent crystal planes or to multilayer adsorption. For instance, Cd 
atoms on tungsten show two activation energies, one of 18 kJ 
mol−1 and the other of 90 kJ mol−1. The explanation is that 
the more tightly bound Cd atoms are attached directly to the 
substrate, and the less strongly bound are in a layer (or lay-
ers) above the primary overlayer. Another example of a system 
showing two desorption activation energies is CO on tungsten, 
the values being 120 kJ mol−1 and 300 kJ mol−1. The explanation 
is believed to be the existence of two types of metal–adsorb-
ate binding site, one involving a simple M-CO bond, the other 
adsorption with dissociation into individually adsorbed C and 
O atoms.

(c) Mobility on surfaces
A further aspect of the strength of the interactions between 
adsorbate and substrate is the mobility of the adsorbate. 
Mobility is often a vital feature of a catalyst’s activity, because a 
catalyst might be impotent if the reactant molecules adsorb so 
strongly that they cannot migrate.

The activation energy for diffusion over a surface need not 
be the same as for desorption because the particles may be able 
to move through valleys between potential peaks without leav-
ing the surface completely. In general, the activation energy for 
migration is about 10–20 per cent of the energy of the surface–
adsorbate bond, but the actual value depends on the extent of 

Brief illustration 22B.2 Residence half-lives

If we suppose that 1/τ0 is approximately the same as the vibra-
tional frequency of the weak particle–surface bond (about 
1012 Hz) and Ed ≈ 25 kJ mol−1, then residence half-lives of 
around 10 ns are predicted at room temperature. Lifetimes 
close to 1 s are obtained only by lowering the temperature to 
about 100 K. For chemisorption, with Ed = 100 kJ mol−1 and 
guessing that τ0 = 10−14 s (because the adsorbate–substrate 
bond is quite stiff), we expect a residence half-life of about 
3 × 103 s (about an hour) at room temperature, decreasing to 1 s 
at about 350 K.

Self-test 22B.5 For how long on average would an atom 
remain on a surface at 800 K if its desorption activation energy 
is 200 kJ mol−1? Take τ0 = 0.10 ps.

Answer: t1/2 = 1.3 s

300 500 700 900
Temperature. T/K

D
es

o
rp

ti
o

n
 r

at
e

Figure 22B.9 The TPD spectrum of H2 on the (100) face of 
tungsten. The three peaks indicate the presence of three sites 
with different adsorption enthalpies and therefore different 
desorption activation energies (P.W. Tamm and L.D. Schmidt,  
J. Chem. Phys. 51, 5352 (1969)).
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954 22 Processes on solid surfaces

coverage. The defect structure of the sample (which depends 
on the temperature) may also play a dominant role because the 
adsorbed molecules might find it easier to skip across a ter-
race than to roll along the foot of a step, and these molecules 

might become trapped in vacancies in an otherwise flat ter-
race. Diffusion may also be easier across one crystal face than 
another, and so the surface mobility depends on which lattice 
planes are exposed.

Checklist of concepts

☐ 1. An adsorption isotherm is the variation of the surface 
coverage θ with pressure at a chosen temperature.

☐ 2. Flash desorption is a technique in which the sample 
is suddenly heated (electrically) and the resulting rise 
of pressure is interpreted in terms of the amount of 
adsorbate originally on the substrate.

☐ 3. Examples of adsorption isotherms include the 
Langmuir, BET, Temkin, and Freundlich isotherms.

☐ 4. The sticking probability is the proportion of collisions 
with the surface that successfully lead to adsorption.

☐ 5. Desorption is an activated process; the desorp-
tion activation energy is measured by temperature-
programmed desorption or thermal desorption 
spectroscopy.

☐ 6. The mobility of adsorbates on a surface is dominated by 
diffusion.

Checklist of equations
Property Equation Comment Equation number

Langmuir isotherm: Independent and equivalent sites, monolayer coverage

(a) without dissociation θ = αp/(1 + αp) 22B.2

(b) with dissociation θ = (αp)1/2/{1 + (αp)1/2} 22B.4

Isosteric enthalpy of adsorption (∂ln(αp<)/∂T)θ = ΔadH</RT 2 22B.5

BET isotherm V V cz z

z p p c H H

/

 e

mon

( )/des vap

= − − −

= =∗ −

/( ){ ( ) },

/ ,

1 1 1 c z

RT∆ ∆2 2

Multilayer adsorption 22B.6–7

Temkin isotherm θ = c1ln(c2p) Enthalpy of adsorption varies with θ 22B.9

Freundlich isotherm θ = c1
1/ 2p c Substrate–substrate interactions 22B.10

Sticking probability s = (1 − θ)s0 Approximate form 22B.12

iranchembook.ir/edu



22C heterogeneous catalysis

A heterogeneous catalyst is a catalyst in a different phase from 
the reaction mixture. For example, the hydrogenation of ethene 
to ethane, a gas-phase reaction, is accelerated in the presence of 
a solid catalyst such as palladium, platinum, or nickel. The metal 
provides a surface to which the reactants bind; this binding 
facilitates encounters between reactants and increases the rate of 
the reaction. This Topic is an exploration of catalytic activity on 
surfaces, building on the concepts developed in Topic 22B.

22C.1 Mechanisms of heterogeneous 
catalysis

Many catalysts depend on co-adsorption, the adsorption of 
two or more species. One consequence of the presence of a 
second species may be the modification of the electronic struc-
ture at the surface of a metal. For instance, partial coverage of 
d-metal surfaces by alkali metals has a pronounced effect on the 
electron distribution at the surface and reduces the work func-
tion of the metal (the energy needed to remove an electron; see 
Topic 7A). Such modifiers can act as promoters (to enhance the 
action of catalysts) or as poisons (to inhibit catalytic action).

Figure 22C.1 shows the potential energy curve for a reac-
tion influenced by the action of a heterogeneous catalyst. 
Differences between Fig. 22C.1 and 20H.1 arise from the fact 
that heterogeneous catalysis normally depends on at least one 
reactant being adsorbed (usually chemisorbed) and modi-
fied to an active phase in which it readily undergoes reaction, 
and desorption of products. Modification of the reactant often 
takes the form of a fragmentation of the reactant molecules. In 
practice, the active phase is dispersed as very small particles 
of linear dimension less than 2 nm on a porous oxide support. 
Shape-selective catalysts, such as the zeolites, which have a 
pore size that can distinguish shapes and sizes at a molecular 
scale, have high internal specific surface areas, in the range of 
100–500 m2 g−1.

Mechanisms of reactions catalysed by surfaces can be treated 
quantitatively by using the techniques of Topic 20E (on the 

Contents

22c.1 Mechanisms of heterogeneous catalysis 955
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brief illustration 22c.1: surface-catalysed 
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langmuir–hinshelwood mechanism 956
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➤➤ Why do we need to know this material?

Catalysis is at the heart of the chemical industry, and an 
understanding of the concepts is essential for developing 
new catalysts.

➤➤ What is the key idea?
In heterogeneous catalysis, the pathway for lowering 
the activation energy of a reaction commonly involves 
chemisorption of one or more reactants.

➤➤ What do we need to know already?
Catalysis is introduced in Topic 20H. This Topic builds on 
the discussion of reaction mechanisms (Topic 20E), the 
Arrhenius equation (Topic 20D), and adsorption isotherms 
(Topic 22B).
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Figure 22C.1 The reaction profile for catalysed and 
uncatalysed reactions. The catalysed reaction path includes 
activation energies for adsorption and desorption as well as an 
overall lower activation energy for the process.
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956 22 Processes on solid surfaces

development of rate laws based on proposed reaction mecha-
nisms) and the adsorption isotherms developed in Topic 22B. 
Here we explore some simple mechanisms that can give signifi-
cant insight into surface-catalysed reactions.

(a) Unimolecular reactions
The rate law of a surface-catalysed unimolecular reaction, such 
as the decomposition of a substance on a surface, can be writ-
ten in terms of an adsorption isotherm if the rate is supposed to 
be proportional to the extent of surface coverage. For example, 
if the fractional coverage θ is given by the Langmuir isotherm 
(eqn 22B.2, θ = αp/(1 + αp)), we would write

v = = +k
k p

pr
rθ α
α1  

(22C.1)

where p is the pressure of the adsorbing substance.

(b) The Langmuir–Hinshelwood mechanism
In the Langmuir–Hinshelwood mechanism (LH mechanism) 
of surface-catalysed reactions, the reaction takes place by 
encounters between molecular fragments and atoms adsorbed 
on the surface. We therefore expect the rate law to be second 
order in the extent of surface coverage:

A B P r A B+ → =v k θ θ   langmuir–hinshelwood rate law  (22C.2)

Insertion of the appropriate isotherms for A and B then 
gives the reaction rate in terms of the partial pressures of the 
reactants.

(c) The Eley–Rideal mechanism

In the Eley–Rideal mechanism (ER mechanism) of a surface-
catalysed reaction, a gas-phase molecule collides with another 
molecule already adsorbed on the surface. The rate of forma-
tion of product is expected to be proportional to the partial 
pressure, pB, of the non-adsorbed gas B and the extent of sur-
face coverage, θA, of the adsorbed gas A. It follows that the rate 
law should be

A B P r B A+ → =v k p θ   eley–rideal rate law  (22C.3)

Brief illustration 22C.1 Surface-catalysed unimolecular 
decomposition

Consider the decomposition of phosphine (PH3) on tungsten, 
which is first order at low pressures. We can use eqn 22C.1 to 
account for this observation. When the pressure is so low that 
αp ≪ 1, we can neglect αp in the denominator of eqn 22C.1 
and obtain v = krαp. The decomposition is predicted to be first 
order, as observed experimentally.

Self-test 22C.1 Write a rate law for the decomposition of PH3 
on tungsten at high pressures

Answer: v = kr; the reaction is zeroth order at high pressures

Example 22C.1 Writing a rate law based on the 
Langmuir–Hinshelwood mechanism

Consider a reaction A + B → P in which A and B follow 
Langmuir isotherms and adsorb without dissociation. Devise 
a rate law that is consistent with the Langmuir–Hinshelwood 
mechanism.

Method Begin by following the procedures outlined in Topic 
22B for the derivation of the Langmuir isotherm to write 
expressions for θA and θB, the fractional coverages of A and B, 
respectively. However, note that, unlike the simple situation in 
Topic 22B, two species compete for the same sites on the sur-
face. Then, use eqn 22C.2 to express the rate law.

Answer Because two species compete for sites on the surface, 
the number of vacant sites is equal to N(1 − θA − θB), where N 
is the total number of sites. It follows from eqns 22B.1a and 
22B.1b that the rates of adsorption and desorption are given by

At equilibrium, the rates of adsorption and desorption for each 
species are equal, and, with αA = ka,A/kd,A and αB = ka,B/kd,B, it 
follows that

α θ θ θ
α θ θ θ

A A A B A

B B A B B

1

1

p

p

( )

( )

− − =
− − =

The solutions of this pair of simultaneous equations (see Self-
test 22C.2) are

θ α
α α θ α

α αA
A A

A A B B
B

B B

A A B B
= + + = + +

p
p p

p
p p1 1

It follows from eqn 22C.2 that the rate law is

v =
+ +
k p p

p p
r A B A B

A A B B

α α
α α( )1 2

The parameters α in the isotherms and the rate constant kr are 
all temperature-dependent, so the overall temperature depend-
ence of the rate may be strongly non-Arrhenius (in the sense that 
the reaction rate is unlikely to be proportional to e a−E RT/ ). The LH 
mechanism is dominant for the catalytic oxidation of CO to CO2.

Self-test 22C.2 Provide the missing steps in the derivation of 
the expression for v.

Rate of adsorption of A  
= ka,ApAN(1 − θA − θB)

Rate of desorption of A  
= kd,ANθA

Rate of adsorption of B  
= ka,BpBN(1 − θA − θB)

Rate of desorption of B  
= kd,BNθB
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22C Heterogeneous catalysis  957

The rate constant, kr, might be much larger than for the uncata-
lysed gas-phase reaction because the reaction on the surface 
has a low activation energy and the adsorption itself is often not 
activated.

If we know the adsorption isotherm for A, we can express 
the rate law in terms of its partial pressure, pA. For example, the 
adsorption of A follows a Langmuir isotherm in the pressure 
range of interest, then the rate law would be

v = +
k p p

p
r A B

A

α
α1  

(22C.4)

Almost all thermal surface-catalysed reactions are thought 
to take place by the LH mechanism but a number of reactions 
with an ER mechanism have also been identified from molecu-
lar beam investigations. For example, the reaction between 
H(g) and D(ad) to form HD(g) is thought to be by an ER 
mechanism involving the direct collision and pick-up of the 
adsorbed D atom by the incident H atom. However, the two 
mechanisms should really be thought of as ideal limits with all 
reactions lying somewhere between the two and showing fea-
tures of each one.

22C.2 Catalytic activity at surfaces

It has become possible to investigate how the catalytic activity 
of a surface depends on its structure as well as its composition. 
For instance, the cleavage of C–H and H–H bonds appears to 
depend on the presence of steps and kinks, and a terrace often 
has only minimal catalytic activity.

The reaction H2 + D2 → 2 HD has been studied in detail. 
For this reaction, terrace sites are inactive but one molecule 
in ten reacts when it strikes a step. Although the step itself 
might be the important feature, it may be that the presence of 
the step merely exposes a more reactive crystal face (the step 
face itself). Likewise, the dehydrogenation of hexane to hexene 

depends strongly on the kink density, and it appears that kinks 
are needed to cleave C–C bonds. These observations suggest 
a reason why even small amounts of impurities may poison a 
catalyst: they are likely to attach to step and kink sites, and so 
impair the activity of the catalyst entirely. A constructive out-
come is that the extent of dehydrogenation may be controlled 
relative to other types of reactions by seeking impurities that 
adsorb at kinks and act as specific poisons.

The activity of a catalyst depends on the strength of chemi-
sorption as indicated by the ‘volcano’ curve in Fig. 22C.2 
(which is so-called on account of its general shape). To be 
active, the catalyst should be extensively covered by adsorb-
ate, which is the case if chemisorption is strong. On the other 
hand, if the strength of the substrate–adsorbate bond becomes 
too great, the activity declines either because the other reac-
tant molecules cannot react with the adsorbate or because the 
adsorbate molecules are immobilized on the surface. This pat-
tern of behaviour suggests that the activity of a catalyst should 
initially increase with strength of adsorption (as measured, 
for instance, by the enthalpy of adsorption) and then decline, 
and that the most active catalysts should be those lying near 
the summit of the volcano. Most active metals are those that 
lie close to the middle of the d block. Many metals are suit-
able for adsorbing gases, and some trends are summarized in 
Table 22C.1.

Brief illustration 22C.2 The Eley–Rideal mechanism

According to eqn 22C.4, when the partial pressure of A is high 
(in the sense αpA ≫ 1) there is almost complete surface cover-
age, and the rate is equal to krpB. Now the rate-determining 
step is the collision of B with the adsorbed fragments. When 
the pressure of A is low (αpA ≪ 1), perhaps because of its reac-
tion, the rate is equal to krαpApB; now the extent of surface cov-
erage is important in the determination of the rate.

Self-test 22C.3 Rewrite eqn 22C.4 for cases where A is a dia-
tomic molecule that adsorbs as atoms.

Answer: v = +kr B A Ap p p( ) /( ( ) )/ /α α1 2 1 21

Brief illustration 22C.3 Trends in chemisorption abilities

We see from Table 22C.1 that for a number of metals the gen-
eral order of adsorption strengths decreases along the series 
O2, C2H2, C2H4, CO, H2, CO2, N2. Some of these molecules 
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Figure 22C.2 A volcano curve of catalytic activity arises 
because although the reactants must adsorb reasonably 
strongly, they must not adsorb so strongly that they are 
immobilized. The lower curve refers to the first series of d-block 
metals, the upper curve to the second and third series of 
d-block metals. The group numbers relate to the periodic table 
inside the back cover.
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958 22 Processes on solid surfaces

adsorb dissociatively (for example, H2). Elements from the d 
block, such as iron, titanium, and chromium, show a strong 
activity towards all these gases, but manganese and copper are 
unable to adsorb N2 and CO2. Metals towards the left of the 
periodic table (for example, magnesium) can adsorb (and, in 
fact, react with) only the most active gas (O2).

Self-test 22C.4 Why is iron a good catalyst for the formation of 
ammonia from N2(g) and H2(g)?

Answer: See Fig. 22C.2 and Table 22C.1

Checklist of concepts

☐ 1. A catalyst is a substance that accelerates a reaction but 
undergoes no net chemical change.

☐ 2. A heterogeneous catalyst is a catalyst in a different 
phase from the reaction mixture.

☐ 3. In the Langmuir–Hinshelwood mechanism of sur-
face-catalysed reactions, the reaction takes place by 

encounters between molecular fragments and atoms 
adsorbed on the surface.

☐ 4. In the Eley–Rideal mechanism of a surface-catalysed 
reaction, a gas-phase molecule collides with another 
molecule already adsorbed on the surface.

☐ 5. The activity of a catalyst depends on the strength of 
chemisorption.

Checklist of equations

Property Equation Comment Equation number

Langmuir–Hinshelwood mechanism v = krθAθB Competitive adsorption 22C.2

Eley–Rideal mechanism v = krpBθA Adsorption of A 22C.3

Table 22C.1 Chemisorption abilities*

O2 C2H2 C2H4 CO H2 CO2 N2

Ti, Cr, Mo, Fe + + + + + + +

Ni, Co + + + + + + −

Pd, Pt + + + + + − −

Mn, Cu + + + + ± − −

Al, Au + + + − − − −

Li, Na, K + + − − − − −

Mg, Ag, Zn, Pb + − − − − − −

* +, Strong chemisorption; ±, chemisorption; −, no chemisorption.
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Exercises and problems  959

chaPter 22  Processes on solid surfaces

TOPIC 22A an introduction to solid surfaces

Discussion questions
22A.1 (a) What topographical features are found on clean surfaces? 
(b) Describe how steps and terraces can be formed by dislocations.

22A.2 Drawing from knowledge you have acquired through the text, describe 
the advantages and limitations of each of the microscopy, diffraction, and 
ionizations techniques designated by the acronyms AFM, LEED, SAM, SEM, 
STM, and TEM.

Exercises
22A.1(a) Calculate the frequency of molecular collisions per square centimetre 
of surface in a vessel containing (i) hydrogen, (ii) propane at 25 °C when the 
pressure is 0.10 µTorr.
22A.1(b) Calculate the frequency of molecular collisions per square centimetre 
of surface in a vessel containing (i) nitrogen, (ii) methane at 25 °C when the 
pressure is 10.0 Pa. Repeat the calculations for a pressure of 0.150 µTorr.

22A.2(a) What pressure of argon gas is required to produce a collision rate of 
4.5 × 1020 s−1 at 425 K on a circular patch of surface of diameter 1.5 mm?
22A.2(b) What pressure of nitrogen gas is required to produce a collision rate 
of 5.00 × 1019 s−1 at 525 K on a circular patch of surface of diameter 2.0 mm?

Problems
22A.1 The movement of atoms and ions on a surface depends on their ability 
to leave one position and stick to another, and therefore on the energy 
changes that occur. As an illustration, consider a two-dimensional square 
lattice of singly charged positive and negative ions separated by 200 pm, 
and consider a cation on the upper terrace of this array. Calculate, by direct 
summation, its Coulombic interaction when it is in an empty lattice point 
directly above an anion. Now consider a high step in the same lattice, and let 
the cation move into the corner formed by the step and the terrace. Calculate 
the Coulombic energy for this position, and decide on the likely settling point 
for the cation.

22A.2 In a study of the catalytic properties of a titanium surface it was 
necessary to maintain the surface free from contamination. Calculate the 
collision frequency per square centimetre of surface made by O2 molecules 
at (a) 100 kPa, (b) 1.00 Pa and 300 K. Estimate the number of collisions made 
with a single surface atom in each second. The conclusions underline the 
importance of working at very low pressures (much lower than 1 Pa, in fact) 

in order to study the properties of uncontaminated surfaces. Take the nearest 
neighbour distance as 291 pm.

22A.3 Nickel is face-centred cubic with a unit cell of side 352 pm. What is 
the number of atoms per square centimetre exposed on a surface formed by 
(a) (100), (b) (110), (c) (111) planes? Calculate the frequency of molecular 
collisions with a single atom in a vessel containing (i) hydrogen, (ii) propane 
at 25 °C when the pressure is 100 Pa and 0.10 µTorr.

22A.4 The LEED pattern from a clean unreconstructed (110) face of a metal is 
shown below. Sketch the LEED pattern for a surface that was reconstructed by 
tripling the horizontal separation between the atoms.

TOPIC 22B adsorption and desorption

Discussion questions
22B.1 Distinguish between the following adsorption isotherms: Langmuir, 
BET, Temkin, and Freundlich. Indicate when and why each is likely to be 
appropriate.

22B.2 What approximations underlie the formulation of the Langmuir and 
BET isotherms?

Exercises
22B.1(a) The volume of oxygen gas at 0 °C and 104 kPa adsorbed on the surface 
of 1.00 g of a sample of silica at 0 °C was 0.286 cm3 at 145.4 Torr and 1.443 cm3 
at 760 Torr. What is the value of Vmon?
22B.1(b) The volume of gas at 20 °C and 1.00 bar adsorbed on the surface of 
1.50 g of a sample of silica at 0 °C was 1.52 cm3 at 56.4 kPa and 2.77 cm3 at 
108 kPa. What is the value of Vmon?

22B.2(a) The enthalpy of adsorption of CO on a surface is found to be 
−120 kJ mol−1. Estimate the mean lifetime of a CO molecule on the surface 
at 400 K.
22B.2(b) The enthalpy of adsorption of ammonia on a nickel surface is found 
to be −155 kJ mol−1. Estimate the mean lifetime of an NH3 molecule on the 
surface at 500 K.
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960 22 Processes on solid surfaces

22B.3(a) A certain solid sample adsorbs 0.44 mg of CO when the pressure of 
the gas is 26.0 kPa and the temperature is 300 K. The mass of gas adsorbed 
when the pressure is 3.0 kPa and the temperature is 300 K is 0.19 mg. The 
Langmuir isotherm is known to describe the adsorption. Find the fractional 
coverage of the surface at the two pressures.
22B.3(b) A certain solid sample adsorbs 0.63 mg of CO when the pressure of 
the gas is 36.0 kPa and the temperature is 300 K. The mass of gas adsorbed 
when the pressure is 4.0 kPa and the temperature is 300 K is 0.21 mg. The 
Langmuir isotherm is known to describe the adsorption. Find the fractional 
coverage of the surface at the two pressures.

22B.4(a) The adsorption of a gas is described by the Langmuir isotherm with 
α = 0.75 kPa−1 at 25 °C. Calculate the pressure at which the fractional surface 
coverage is (i) 0.15, (ii) 0.95.
22B.4(b) The adsorption of a gas is described by the Langmuir isotherm with 
α = 0.548 kPa−1 at 25 °C. Calculate the pressure at which the fractional surface 
coverage is (i) 0.20, (ii) 0.75.

22B.5(a) A solid in contact with a gas at 12 kPa and 25 °C adsorbs 2.5 mg of the 
gas and obeys the Langmuir isotherm. The enthalpy change when 1.00 mmol 
of the adsorbed gas is desorbed is +10.2 J. What is the equilibrium pressure for 
the adsorption of 2.5 mg of gas at 40 °C?
22B.5(b) A solid in contact with a gas at 8.86 kPa and 25 °C adsorbs 4.67 mg 
of the gas and obeys the Langmuir isotherm. The enthalpy change when 
1.00 mmol of the adsorbed gas is desorbed is +12.2 J. What is the equilibrium 
pressure for the adsorption of the same mass of gas at 45 °C?

22B.6(a) Nitrogen gas adsorbed on charcoal to the extent of 0.921 cm3 g−1 at 
490 kPa and 190 K, but at 250 K the same amount of adsorption was achieved 
only when the pressure was increased to 3.2 MPa. What is the enthalpy of 
adsorption of nitrogen on charcoal?
22B.6(b) Nitrogen gas adsorbed on a surface to the extent of 1.242 cm3 g−1 at 
350 kPa and 180 K, but at 240 K the same amount of adsorption was achieved 
only when the pressure was increased to 1.02 MPa. What is the enthalpy of 
adsorption of nitrogen on the surface?

22B.7(a) In an experiment on the adsorption of oxygen on tungsten it was 
found that the same volume of oxygen was desorbed in 27 min at 1856 K and 
2.0 min at 1978 K. What is the activation energy of desorption? How long 
would it take for the same amount to desorb at (i) 298 K, (ii) 3000 K?
22B.7(b) In an experiment on the adsorption of ethene on iron it was found 
that the same volume of the gas was desorbed in 1856 s at 873 K and 8.44 s at 
1012 K. What is the activation energy of desorption? How long would it take 
for the same amount of ethene to desorb at (i) 298 K, (ii) 1500 K?

22B.8(a) The average time for which an oxygen atom remains adsorbed to a 
tungsten surface is 0.36 s at 2548 K and 3.49 s at 2362 K. What is the activation 
energy for chemisorption?
22B.8(b) The average time for which a hydrogen atom remains adsorbed on a 
manganese surface is 35 per cent shorter at 1000 K than at 600 K. What is the 
activation energy for chemisorption?

22B.9(a) For how long on average would an H atom remain on a surface at 
400 K if its desorption activation energy is (i) 15 kJ mol−1, (ii) 150 kJ mol−1? 
Take τ0 = 0.10 ps. For how long on average would the same atoms remain at 
1000 K?
22B.9(b) For how long on average would an atom remain on a surface at 298 K 
if its desorption activation energy is (i) 20 kJ mol−1, (ii) 200 kJ mol−1? Take 
τ0 = 0.12 ps. For how long on average would the same atoms remain at 800 K?

22B.10(a) Hydrogen iodide is very strongly adsorbed on gold but only slightly 
adsorbed on platinum. Assume the adsorption follows the Langmuir isotherm 
and predict the order of the HI decomposition reaction on each of the two 
metal surfaces.
22B.10(b) Suppose it is known that ozone adsorbs on a particular surface 
in accord with a Langmuir isotherm. How could you use the pressure 
dependence of the fractional coverage to distinguish between adsorption 
(i) without dissociation, (ii) with dissociation into O + O2, (iii) with 
dissociation into O + O + O?

Problems
22B.1 Use mathematical software, a spreadsheet, or the Living graphs on the 
web site of this book to perform the following calculations: (a) Use eqn 22B.2 
to generate a family of curves showing the dependence of 1/θ on 1/p for 
several values of α. (b) Use eqn 22B.4 to generate a family of curves showing 
the dependence of 1/θ on 1/p for several values of α. On the basis of your 
results from parts (a) and (b), discuss how plots of 1/θ against 1/p can be used 
to distinguish between adsorption with and without dissociation. (c) Use eqn 
22B.6 to generate a family of curves showing the dependence of zVmon/(1 − z)V 
on z for different values of c.

22B.2 The following data are for the chemisorption of hydrogen on copper 
powder at 25 °C. Confirm that they fit the Langmuir isotherm at low 
coverages. Then find the value of α for the adsorption equilibrium and the 
adsorption volume corresponding to complete coverage.

22B.3 The data for the adsorption of ammonia on barium fluoride are 
reported in the following tables. Confirm that they fit a BET isotherm and 
find values of c and Vmon.

(a) θ = 0 °C, p* = 429.6 kPa:

(b) θ = 18.6 °C , p* = 819.7 kPa:

22B.4 The following data have been obtained for the adsorption of H2 on the 
surface of 1.00 g of copper at 0 °C. The volume of H2 below is the volume that 
the gas would occupy at STP (0 °C and 1 atm).

Determine the volume of H2 necessary to form a monolayer and estimate the 
surface area of the copper sample. The density of liquid hydrogen is 0.708 g cm−3.

22B.5‡ M.-G. Olivier and R. Jadot (J. Chem. Eng. Data 42, 230 (1997)) studied 
the adsorption of butane on silica gel. They report the following amounts of 
absorption (in moles per kilogram of silica gel) at 303 K:

Fit these data to a Langmuir isotherm, and determine the value of n that 
corresponds to complete coverage and the constant K.

p/Pa 25 129 253 540 1000 1593

V/cm3 0.042 0.163 0.221 0.321 0.411 0.471

p/kPa 14.0 37.6 65.6 79.2 82.7 100.7 106.4

V/cm3 11.1 13.5 14.9 16.0 15.5 17.3 16.5

p/kPa 5.3 8.4 14.4 29.2 62.1 74.0 80.1 102.0

V/cm3 9.2 9.8 10.3 11.3 12.9 13.1 13.4 14.1

‡ These problems were supplied by Charles Trapp and Carmen Giunta.

p/atm 0.050 0.100 0.150 0.200 0.250

V/cm3 23.8 13.3 8.70 6.80 5.71

p/kPa 31.00 38.22 53.03 76.38 101.97
n/(mol kg−1) 1.00 1.17 1.54 2.04 2.49

p/kPa 130.47 165.06 182.41 205.75 219.91
n/(mol kg−1) 2.90 3.22 3.30 3.35 3.36
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Exercises and problems  961

22B.6 The designers of a new industrial plant wanted to use a catalyst code-
named CR-1 in a step involving the fluorination of butadiene. As a first step 
in the investigation they determined the form of the adsorption isotherm. The 
volume of butadiene adsorbed per gram of CR-1 at 15 °C varied with pressure 
as given below. Is the Langmuir isotherm suitable at this pressure?

Investigate whether the BET isotherm gives a better description of the 
adsorption of butadiene on CR-1. At 15 °C, p*( butadiene) = 200 kPa. Find 
Vmon and c.

22B.7‡ C. Huang and W.P. Cheng (J. Colloid Interface Sci. 188, 270 (1997)) 
examined the adsorption of the hexacyanoferrate(III) ion, [Fe(CN)6]3−, 
on γ-Al2O3 from aqueous solution. They modelled the adsorption with a 
modified Langmuir isotherm, obtaining the following values of α at pH = 6.5:

Determine the isosteric enthalpy of adsorption, ΔadsH<, at this pH. The 
researchers also reported ΔadsS< = +146 J mol−1 K−1 under these conditions. 
Determine ΔadsG<.

22B.8‡ In a study relevant to automobile catalytic converters, C.E. Wartnaby 
et al. (J. Phys. Chem. 100, 12483 (1996)) measured the enthalpy of adsorption 
of CO, NO, and O2 on initially clean platinum (110) surfaces. They report 
ΔadsH< for NO to be −160 kJ mol−1. How much more strongly adsorbed is NO 
at 500 °C than at 400 °C?

22B.9‡ The removal or recovery of volatile organic compounds (VOCs) from 
exhaust gas streams is an important process in environmental engineering. 
Activated carbon has long been used as an adsorbent in this process, but the 
presence of moisture in the stream reduces its effectiveness. M.-S. Chou and J.-H. 
Chiou (J. Envir. Engrg. ASCE 123, 437(1997)) have studied the effect of moisture 
content on the adsorption capacities of granular activated carbon (GAC) for 
normal hexane and cyclohexane in air streams. From their data for dry streams 
containing cyclohexane, shown in the following table, they conclude that GAC 
obeys a Langmuir type model in which qVOC,RH=0 = abcVOC/(1+ bcVOC), where 
q = mVOC/mGAC, RH denotes relative humidity, a the maximum adsorption 
capacity, b is an affinity parameter, and p is the abundance in parts per million 
(ppm). The following table gives values of qVOC,RH=0 for cyclohexane:

(a) By linear regression of 1/qVOC,RH=0 against 1/cVOC, test the goodness of fit 
and determine values of a and b. (b) The parameters a and b can be related to 
ΔadsH, the enthalpy of adsorption, and ΔbH, the difference in activation energy 
for adsorption and desorption of the VOC molecules, through Arrhenius type 
equations of the form a k H RT= −

a
/e ads∆  and b k H RT= −

be b∆ / . Test the goodness 
of fit of the data to these equations and obtain values for ka, kb, ΔadsH, and 
ΔbH. (c) What interpretation might you give to ka and kb?

22B.10 The adsorption of solutes on solids from liquids often follows a 
Freundlich isotherm. Check the applicability of this isotherm to the following 
data for the adsorption of acetic acid on charcoal at 25 °C and find the values 
of the parameters c1 and c2.

where wa is the mass adsorbed per gram of charcoal.

22B.11‡ A. Akgerman and M. Zardkoohi (J. Chem. Eng. Data 41, 185 (1996)) 
examined the adsorption of phenol from aqueous solution on to fly ash at 
20 °C. They fitted their observations to a Freundlich isotherm of the form 
c Kc n

ads sol= 1/ , where cads is the concentration of adsorbed phenol and csol is the 
concentration of aqueous phenol. Among the data reported are the following:

Determine the constants K and n. What further information would be 
necessary in order to express the data in terms of fractional coverage, θ?

22B.12‡ The following data were obtained for the extent of adsorption, s, of 
acetone on charcoal from an aqueous solution of molar concentration, c, at 18 °C:

Which isotherm fits this data best, Langmuir, Freundlich, or Temkin?

22B.13‡ M.-S. Chou and J.-H. Chiou (J. Envir. Engrg. ASCE 123, 437(1997)) 
have studied the effect of moisture content on the adsorption capacities 
of granular activated carbon (GAC, Norit PK 1-3) for the volatile organic 
compounds (VOCs) normal hexane and cyclohexane in air streams. The 
following table shows the adsorption capacities (qwater = mwater/mGAC) of GAC 
for pure water from moist air streams as a function of relative humidity (RH) 
in the absence of VOCs at 41.5 °C:

The authors conclude that the data at this and other temperatures obey a 
Freundlich type isotherm, qwater = k(RH)1/n. (a) Test this hypothesis for their 
data at 41.5 °C and determine the constants k and n. (b) Why might VOCs 
obey the Langmuir model, but water the Freundlich model? (c) When both 
water vapour and cyclohexane were present in the stream the values given in 
the table below were determined for the ratio rVOC = qVOC/qVOC,RH=0 at 41.5 °C:

The authors propose that these data fit the equation rVOC = 1 − qwater. Test their 

proposal and determine values for k and n and compare to those obtained in 
part (b) for pure water. Suggest reasons for any differences.

22B.14‡ The release of petroleum products by leaky underground storage tanks 
is a serious threat to clean ground water. BTEX compounds (benzene, toluene, 
ethylbenzene, and xylenes) are of primary concern due to their ability to 
cause health problems at low concentrations. D.S. Kershaw et al. (J. Geotech. 
Geoenvir. Engrg. 123, 324 (1997)) have studied the ability of ground tyre 
rubber to sorb (adsorb and absorb) benzene and o-xylene. Though sorption 
involves more than surface interactions, sorption data is usually found to fit 
one of the adsorption isotherms. In this study, the authors have tested how 
well their data fit the linear (q = Kceq), Freundlich ( ),/q K c n= F eq

1  and Langmuir 
(q = KLMceq/(1 + KLceq)) type isotherms, where q is the mass of solvent sorbed 
per gram of ground rubber (in milligrams per gram), the Ks and M are 
empirical constants, and ceq the equilibrium concentration of contaminant 
in solution (in milligrams per litre). (a) Determine the units of the empirical 
constants. (b) Determine which of the isotherms best fits the data in the 
following table for the sorption of benzene on ground rubber:

(c) Compare the sorption efficiency of ground rubber to that of granulated 
activated charcoal which for benzene has been shown to obey the Freundlich 
isotherm in the form q c=1 eq. .0 1 6  with coefficient of determination R2 = 0.94.

p/kPa 13.3 26.7 40.0 53.3 66.7 80.0

V/cm3 17.9 33.0 47.0 60.8 75.3 91.3

T/K 283 298 308 318

10−11α 2.642 2.078 1.286 1.085

c/ppm 33.6 °C 41.5 °C 57.4 °C 76.4 °C 99 °C

200 0.080 0.069 0.052 0.042 0.027

500 0.093 0.083 0.072 0.056 0.042

1000 0.101 0.088 0.076 0.063 0.045

2000 0.105 0.092 0.083 0.068 0.052

3000 0.112 0.102 0.087 0.072 0.058

[acid]/(mol dm−3) 0.05 0.10 0.50 1.0 1.5

wa/g 0.04 0.06 0.12 0.16 0.19

csol/(mg g−1) 8.26 15.65 25.43 31.74 40.00

cads/(mg g−1) 4.41  9.2 35.2 52.0 67.2

c/(mmol dm−3) 15.0 23.0 42.0 84.0 165 390 800

s/(mmol acetone/g 
charcoal)

 0.60  0.75  1.05  1.50 2.15 3.50 5.10

RH 0.00 0.26 0.49 0.57 0.80 1.00

qwater 0.00 0.026 0.072 0.091 0.161 0.229

RH 0.00 0.10 0.25 0.40 0.53 0.76 0.81

rVOC 1.00 0.98 0.91 0.84 0.79 0.67 0.61

ceq/(mg dm−3) 97.10 36.10 10.40 6.51 6.21 2.48

q/(mg g−1)  7.13  4.60  1.80 1.10 0.55 0.31
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962 22 Processes on solid surfaces

TOPIC 22C heterogeneous catalysis

Discussion questions
22C.1 Describe the essential features of the Langmuir–Hinshelwood and Eley–
Rideal mechanisms for surface-catalysed reactions.

22C.2 Account for the dependence of catalytic activity of a surface on the 
strength of chemisorption, as shown in Fig. 22B.8.

Exercises
22C.1(a) A monolayer of N2 molecules is adsorbed on the surface of 1.00 g 
of an Fe/Al2O3 catalyst at 77 K, the boiling point of liquid nitrogen. Upon 
warming, the nitrogen occupies 3.86 cm3 at 0 °C and 760 Torr. What is the 
surface area of the catalyst?

22C.1(b) A monolayer of CO molecules is adsorbed on the surface of 1.00 g 
of an Fe/Al2O3 catalyst at 77 K, the boiling point of liquid nitrogen. Upon 
warming, the carbon monoxide occupies 3.75 cm3 at 0 °C and 1.00 bar. What is 
the surface area of the catalyst?

Problem
22C.1 In some catalytic reactions the products adsorb more strongly than the 
reacting gas. This is the case, for instance, in the catalytic decomposition of 
ammonia on platinum at 1000 °C. As a first step in examining the kinetics of 
this type of process, show that the rate of ammonia decomposition should 
follow

d

d
NH

c
NH

H

p

t
k

p

p
3 3

2

= −
 

in the limit of very strong adsorption of hydrogen. Start by showing that 
when a gas J adsorbs very strongly, and its pressure is pJ, that the fraction of 
uncovered sites is approximately 1/KpJ. Solve the rate equation for the catalytic 
decomposition of NH3 on platinum and show that a plot of F(t) = (1/t) × 
ln(p/p0) against G(t) = (p − p0)/t, where p is the pressure of ammonia, should 
give a straight line from which kc can be determined. Check the rate law on 
the basis of the following data, and find kc for the reaction.

Integrated activities
22.1 Although the attractive van der Waals interaction between individual 
molecules varies as R−6 the interaction of a molecule with a nearby solid (a 
homogeneous collection of molecules) varies as R−3, where R is its vertical 
distance above the surface. Confirm this assertion. Calculate the interaction 
energy between an Ar atom and the surface of solid argon on the basis of a 
Lennard-Jones (6,12)-potential. Estimate the equilibrium distance of an atom 
above the surface.

22.2 Electron microscopes can obtain images with much higher resolution 
than optical microscopes because of the short wavelength obtainable from a 
beam of electrons. For electrons moving at speeds close to c, the speed of light, 
the expression for the de Broglie wavelength (eqn 7A.14, λ = h/p) needs to be 
corrected for relativistic effects:
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where c is the speed of light in vacuum and Δϕ is the potential difference 
through which the electrons are accelerated. (a) Use this expression to 
calculate the de Broglie wavelength of electrons accelerated through 50 kV. 
(b) Is the relativistic correction important?

22.3 The forces measured by AFM arise primarily from interactions between 
electrons of the stylus and on the surface. To get an idea of the magnitudes 
of these forces, calculate the force acting between two electrons separated by 
2.0 nm. To calculate the force between the electrons, use F = −dV/dr where V 
is their mutual Coulombic potential energy and r is their separation.

22.4 To appreciate the distance dependence of the tunnelling current in 
scanning tunnelling microscopy, suppose that the electron in the gap between 
sample and needle has an energy 2.0 eV smaller than the barrier height. By 
what factor would the current drop if the needle is moved from L1 = 0.50 nm 
to L2 = 0.60 nm from the surface?

t/s  0 30 60 100 160 200 250

p/kPa 13.3 11.7 11.2  10.7  10.3   9.9   9.6
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Part 1 common integrals
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Part 2 units

Table A.1 Some common units

Physical quantity Name of unit Symbol for unit Value*

Time minute min 60 s
hour h 3600 s
day d 86 400 s
year a 31 556 952 s

Length ångström Å 10−10 m
Volume litre L, l 1 dm3

Mass tonne t 103 kg
Pressure bar bar 105 Pa

atmosphere atm 101.325 kPa
Energy electronvolt eV 1.602 177 33 × 10−19 J

96.485 31 kJ mol−1

* All values are exact, except for the definition of 1 eV, which depends on the measured value of e, and the year, which is not 
a constant and depends on a variety of astronomical assumptions.

Table A.2 Common SI prefixes

Prefix y z a f p n μ m c d
Name yocto zepto atto femto pico nano micro milli centi deci
Factor 10−24 10−21 10−18 10−15 10−12 10−9 10−6 10−3 10−2 10−1

Prefix da h k M G T P E Z Y
Name deca hecto kilo mega giga tera peta exa zeta yotta
Factor 10 102 103 106 109 1012 1015 1018 1021 1024

Table A.3 The SI base units

Physical quantity Symbol for quantity Base unit

Length l metre, m
Mass m kilogram, kg
Time t second, s
Electric current I ampere, A
Thermodynamic temperature T kelvin, K
Amount of substance n mole, mol
Luminous intensity Iv candela, cd

Table A.4 A selection of derived units

Physical quantity Derived unit* Name of derived unit

Force 1 kg m s−2 newton, N
Pressure 1 kg m−1 s−2

1 N m−2
pascal, Pa

Energy 1 kg m2 s−2

1 N m
1 Pa m3

joule, J

Power 1 kg m2 s−3

1 J s−1
watt, W

* Equivalent definitions in terms of derived units are given following the definition in terms of base units.
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Part 3 data

The following is a directory of all tables in the text; those 
included in this Resource section are marked with an asterisk. 
The remainder will be found on the pages indicated. These 
tables reproduce and expand the data given in the short tables 
in the text, and follow their numbering. Standard states refer to 
a pressure of p< = 1 bar. The general references are as follows:

AIP: D.E. Gray (ed.), American Institute of Physics 
handbook. McGraw-Hill, New York (1972).

E: J. Emsley, The elements. Oxford University Press, Oxford 
(1991).

HCP: D.R. Lide (ed.), Handbook of chemistry and physics. 
CRC Press, Boca Raton (2000).

JL: A.M. James and M.P. Lord, Macmillan’s chemical and 
physical data. Macmillan, London (1992).

KL: G.W.C. Kaye and T.H. Laby (ed.), Tables of physical and 
chemical constants. Longman, London (1973).

LR: G.N. Lewis and M. Randall, revised by K.S. Pitzer and L. 
Brewer, Thermodynamics. McGraw-Hill, New York (1961).

NBS: NBS tables of chemical thermodynamic properties, 
published as J. Phys. Chem. Reference Data, 11, 
Supplement 2 (1982).

RS: R.A. Robinson and R.H. Stokes, Electrolyte solutions, 
Butterworth, London (1959).

TDOC: J.B. Pedley, J.D. Naylor, and S.P. Kirby, 
Thermochemical data of organic compounds. Chapman & 
Hall, London (1986).

Table A.1* Some common units
Table A.2* Common SI prefixes
Table A.3* The SI base units
Table A.4* A selection of derived units

Table 0.1* Physical properties of selected materials
Table 0.2* Masses and natural abundances of selected nuclides

Table B.1 Analogies between translation and rotation (11)

Table 1A.1 Pressure units (30)
Table 1A.2 The gas constant (R = NAk) (34)

Table 1B.1* Collision cross-sections, σ/nm2

Table 1C.1* Second virial coefficients, B/(cm3 mol−1)
Table 1C.2* Critical constants of gases
Table 1C.3* van der Waals coefficients
Table 1C.4 Selected equations of state (50)

Table 2A.1 Varieties of work (69)
Table 2B.1* Temperature variation of molar heat capacities, 

Cp,m/(J K−1 mol−1) = a + bT + c/T2

Table 2C.1* Standard enthalpies of fusion and vaporization 
at the transition temperature, ΔtrsH</(kJ mol−1)

Table 2C.2 Enthalpies of transition (81)
Table 2C.3* Lattice enthalpies at 298 K, ΔHL/(kJ mol−1). See 

Table 18B.4.
Table 2C.4* Thermodynamic data for organic compounds at 

298 K
Table 2C.5* Thermodynamic data for elements and inor-

ganic compounds at 298 K
Table 2C.6* Standard enthalpies of formation of organic 

compounds at 298 K, ΔfH</(kJ mol−1). See Table 2C.4.
Table 2D.1* Expansion coefficients (α) and isothermal com-

pressibilities (κT) at 298 K
Table 2D.2* Inversion temperatures (TI), normal freezing 

(Tf) and boiling (Tb) points, and Joule–Thomson coeffi-
cient (μ) at 1 atm and 298 K

Table 3A.1* Standard entropies (and temperatures) of phase 
transitions, ΔtrsS</(J K−1 mol−1)

Table 3A.2* The standard enthalpies and entropies of vapori-
zation of liquids at their normal boiling points

Table 3B.1* Standard Third-Law entropies at 298 K, 
Sm

1 1/(JK mol )< – – . See Tables 2C.4 and 2C.4.
Table 3C.1* Standard Gibbs energies of formation at 298 K, 

ΔfG</(kJ mol−1). See Tables 2C.4 and 2C.5.
Table 3D.1 The Maxwell relations (141)
Table 3D.2* The fugacity coefficients of nitrogen at 273 K, φ  

Table 5A.1* Henry’s law constants for gases at 298 K, K/(kPa 
kg mol−1)

Table 5B.1* Freezing-point (Kf) and boiling-point (Kb) 
constants

Table 5E.1 Activities and standard states: a summary (224)
Table 5F.1 Ionic strength and molality, I = kb/b< (228)
Table 5F.2* Mean activity coefficients in water at 298 K

Table 6C.1 Varieties of electrode (259)
Table 6D.1* Standard potentials at 298 K, E</V
Table 6D.2 The electrochemical series of the metals (270)

Table 7B.1 The Schrödinger equation (293)
Table 7C.1 Constraints of the uncertainty principle (307)

Table 8B.1 The Hermite polynomials, Hv(y) (331)
Table 8B.2 The error function, erf(z) (336)
Table 8C.1 The spherical harmonics,  (343)
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Table 9A.1 Hydrogenic radial wavefunctions, Rn,l(r) (361)
Table 9B.1* Effective nuclear charge, Zeff = Z – σ
Table 9B.2* First and subsequent ionization energies,  

I/(kJ mol−1)
Table 9B.3* Electron affinities, Ea/(kJ mol−1)

Table 10A.1 Some hybridization schemes (405)
Table 10C.1* Bond lengths, Re/pm
Table 10C.2a* Bond dissociation enthalpies,  

ΔH<(A−B)/(kJ mol−1) at 298 K
Table 10C.2b Mean bond enthalpies, ΔH<(A−B)/(kJ mol−1) 
Table 10D.1* Pauling and Mulliken electronegativities

Table 11A.1 The notations for point groups (450)
Table 11B.1* The C3v character table; see Part 4
Table 11B.2* The C2v character table; see Part 4

Table 12B.1 Moments of inertia (489)
Table 12D.1* Properties of diatomic molecules
Table 12E.1* Typical vibrational wavenumbers, /cm 1−

Table 13A.1* Colour, wavelength, frequency, and energy of 
light

Table 13A.2* Absorption characteristics of some groups and 
molecules

Table 13C.1 Characteristics of laser radiation and their 
chemical applications (547)

Table 14A.1 Nuclear constitution and the nuclear spin quan-
tum number (562)

Table 14A.2* Nuclear spin properties
Table 14D.1* Hyperfine coupling constants for atoms, a/mT

Table 15B.1 Rotational temperatures of diatomic molecules; 
see Table 12D.1*

Table 15B.2 Symmetry numbers of molecules; see Table 12D.1*
Table 15B.3 Vibrational temperatures of diatomic molecules; 

see Table 12D.1*

Table 16A.1* Magnitudes of dipole moments (μ), polariz-
abilities α, and polarizability volumes (α ′)

Table 16B.1 Interaction potential energies (672)

Table 16B.2* Lennard-Jones parameters for the (12,6) potential
Table 16C.1* Surface tensions of liquids at 293 K, γ/(mN m−1)

Table 17C.1 Variation of micelle shape with the surfactant 
parameter (718)

Table 17D.1* Radius of gyration
Table 17D.2* Frictional coefficients and molecular geometry
Table 17D.3* Intrinsic viscosity

Table 18A.1 The seven crystal systems (739)
Table 18B.1 The crystal structures of some elements (753)
Table 18B.2* Ionic radii, r/pm
Table 18B.3 Madelung constants (758)
Table 18B.4* Lattice enthalpies at 298 K, ΔHL/(kJ mol−1)
Table 18C.1* Magnetic susceptibilities at 298 K

Table 19A.1* Transport properties of gases at 1 atm
Table 19B.1* Viscosities of liquids at 298 K, η/(10−3 kg m−1 s−1)
Table 19B.2* Ionic mobilities in water at 298 K,  

u/(10−8 m2 s−1 V−1)
Table 19B.3* Diffusion coefficients in liquids at 298 K,  

D/(10−9 m2 s−1)

Table 20B.1* Kinetic data for first-order reactions
Table 20B.2* Kinetic data for second-order reactions
Table 20B.3 Integrated rate laws (831)
Table 20D.1* Arrhenius parameters
Table 20G.1 Examples of photochemical processes (855)
Table 20G.2 Common photophysical processes (856)
Table 20G.3 Values of R0 for some donor–acceptor pairs (861)

Table 21A.1* Arrhenius parameters for gas-phase reactions
Table 21B.1* Arrhenius parameters for solvolysis reactions 

in solution. See Table 20D.1.
Table 21F.1* Exchange current densities and transfer coeffi-

cients at 298 K

Table 22A.1* Maximum observed standard enthalpies of 
physisorption, ΔadH</(kJ mol−1) at 298 K

Table 22A.2* Standard enthalpies of chemisorption,  
ΔadH</(kJ mol−1) at 298 K

Table 22C.1 Chemisorption abilities (958)

Table 0.1 Physical properties of selected materials

ρ/(g cm−3) 
at 293 K†

Tf/K Tb/K ρ/(g cm−3) 
at 293 K†

Tf/K Tb/K

Elements Inorganic compounds

Aluminium(s) 2.698 933.5 2740 CaCO3(s, calcite) 2.71 1612 1171d

Argon(g) 1.381 83.8 87.3 CuSO4
.5H2O(s) 2.284 383(–H2O) 423(–5H2O)

Boron(s) 2.340 2573 3931 HBr(g) 2.77 184.3 206.4

Bromine(l) 3.123 265.9 331.9 HCl(g) 1.187 159.0 191.1

Carbon(s, gr) 2.260 3700s HI(g) 2.85 222.4 237.8

Carbon(s, d) 3.513 H2O(l) 0.997 273.2 373.2

(Continued)
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Table 0.1 (Continued)

ρ/(g cm−3) 
at 293 K†

Tf/K Tb/K ρ/(g cm−3) 
at 293 K†

Tf/K Tb/K

Elements (Continued) Inorganic compounds (continued)
Chlorine(g) 1.507 172.2 239.2 D2O(l) 1.104 277.0 374.6
Copper(s) 8.960 1357 2840 NH3(g) 0.817 195.4 238.8
Fluorine(g) 1.108 53.5 85.0 KBr(s) 2.750 1003 1708
Gold(s) 19.320 1338 3080 KCl(s) 1.984 1049 1773s

Helium(g) 0.125 4.22 NaCl(s) 2.165 1074 1686
Hydrogen(g) 0.071 14.0 20.3 H2SO4(l) 1.841 283.5 611.2
Iodine(s) 4.930 386.7 457.5
Iron(s) 7.874 1808 3023 Organic compounds
Krypton(g) 2.413 116.6 120.8 Acetaldehyde, CH3CHO(l) 0.788 152 293
Lead(s) 11.350 600.6 2013 Acetic acid, CH3COOH(l) 1.049 289.8 391
Lithium(s) 0.534 453.7 1620 Acetone, (CH3)2CO(l) 0.787 178 329
Magnesium(s) 1.738 922.0 1363 Aniline, C6H5NH2(l) 1.026 267 457
Mercury(l) 13.546 234.3 629.7 Anthracene, C14H10(s) 1.243 490 615
Neon(g) 1.207 24.5 27.1 Benzene, C6H6(l) 0.879 278.6 353.2
Nitrogen(g) 0.880 63.3 77.4 Carbon tetrachloride, CCl4(l) 1.63 250 349.9
Oxygen(g) 1.140 54.8 90.2 Chloroform, CHCl3(l) 1.499 209.6 334
Phosphorus(s, wh) 1.820 317.3 553 Ethanol, C2H5OH(l) 0.789 156 351.4
Potassium(s) 0.862 336.8 1047 Formaldehyde, HCHO(g) 181 254.0
Silver(s) 10.500 1235 2485 Glucose, C6H12O6(s) 1.544 415
Sodium(s) 0.971 371.0 1156 Methane, CH4(g) 90.6 111.6

Sulfur(s, α) 2.070 386.0 717.8 Methanol, CH3OH(l) 0.791 179.2 337.6

Uranium(s) 18.950 1406 4018 Naphthalene, C10H8(s) 1.145 353.4 491
Xenon(g) 2.939 161.3 166.1 Octane, C8H18(l) 0.703 216.4 398.8
Zinc(s) 7.133 692.7 1180 Phenol, C6H5OH(s) 1.073 314.1 455.0

Sucrose, C12H22O11(s) 1.588 457d

d: decomposes; s: sublimes; Data: AIP, E, HCP, KL. † For gases, at their boiling points.

Table 0.2 Masses and natural abundances of selected nuclides

Nuclide m/mu Abundance/%

H 1H 1.0078 99.985
2H 2.0140 0.015

He 3He 3.0160 0.000 13
4He 4.0026 100

Li 6Li 6.0151 7.42
7Li 7.0160 92.58

B 10B 10.0129 19.78
11B 11.0093 80.22

C 12C 12* 98.89
13C 13.0034 1.11

N 14N 14.0031 99.63
15N 15.0001 0.37

O 16O 15.9949 99.76
17O 16.9991 0.037
18O 17.9992 0.204

F 19F 18.9984 100
P 31P 30.9738 100
S 32S 31.9721 95.0
 33S 32.9715 0.76
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Table 0.2 (Continued)

Nuclide m/mu Abundance/%
34S 33.9679 4.22

Cl 35Cl 34.9688 75.53
37Cl 36.9651 24.4

Br 79Br 78.9183 50.54
81Br 80.9163 49.46

I 127I 126.9045 100

* Exact value.

Table 1B.1 Collision cross-
sections, σ/nm2

Ar 0.36

C2H4 0.64

C6H6 0.88

CH4 0.46

Cl2 0.93

CO2 0.52

H2 0.27

He 0.21

N2 0.43

Ne 0.24

O2 0.40

SO2 0.58

Data: KL.

Table 1C.1 Second virial coefficients, B/(cm3 mol−1)

100 K 273 K 373 K 600 K

Air −167.3 −13.5 3.4 19.0

Ar −187.0 −21.7 −4.2 11.9

CH4 −53.6 −21.2 8.1

CO2 −142 −72.2 −12.4

H2   −2.0 13.7 15.6

He   11.4 12.0 11.3 10.4

Kr −62.9 −28.7 1.7

N2 −160.0 −10.5 6.2 21.7

Ne   −6.0 10.4 12.3 13.8

O2 −197.5 −22.0 −3.7 12.9

Xe −153.7 −81.7 −19.6

Data: AIP, JL. The values relate to the expansion in eqn 1C.3 of Topic 1C; convert to 
eqn 1C.3 using B′ = B/RT.
For Ar at 273 K, C =1200 cm6 mol−1.

Table 1C.2 Critical constants of gases

pc/atm Vc/(cm3 mol−1) Tc/K Zc TB/K

Ar 48.0 75.3 150.7 0.292 411.5

Br2 102 135 584 0.287

C2H4 50.50 124 283.1 0.270

C2H6 48.20 148 305.4 0.285

C6H6 48.6 260 562.7 0.274

CH4 45.6 98.7 190.6 0.288 510.0

Cl2 76.1 124 417.2 0.276

CO2 72.9 94.0 304.2 0.274 714.8

F2 55 144

H2 12.8 34.99 33.23 0.305 110.0

H2O 218.3 55.3 647.4 0.227

HBr 84.0 363.0

HCl 81.5 81.0 324.7 0.248

He 2.26 57.8 5.2 0.305 22.64

HI 80.8 423.2

Kr 54.27 92.24 209.39 0.291 575.0

N2 33.54 90.10 126.3 0.292 327.2

Ne 26.86 41.74 44.44 0.307 122.1

(Continued)
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Table 1C.2 (Continued)

pc/atm Vc/(cm3 mol−1) Tc/K Zc TB/K

NH3 111.3 72.5 405.5 0.242

O2 50.14 78.0 154.8 0.308 405.9

Xe 58.0 118.8 289.75 0.290 768.0

Data: AIP, KL.

Table 1C.3 van der Waals coefficients

a/(atm dm6 mol−2) b/(10−2 dm3 mol−1) a/(atm dm6 mol−2) b/(10−2 dm3 mol−1)

Ar 1.337 3.20 H2S 4.484 4.34

C2H4 4.552 5.82 He 0.0341 2.38

C2H6 5.507 6.51 Kr 5.125 1.06

C6H6 18.57 11.93 N2 1.352 3.87

CH4 14.61 4.31 Ne 0.205 1.67

Cl2 6.260 5.42 NH3 4.169 3.71

CO 1.453 3.95 O2 1.364 3.19

CO2 3.610 4.29 SO2 6.775 5.68

H2 0.2420 2.65 Xe 4.137 5.16

H2O 5.464 3.05

Data: HCP.

Table 2B.1 Temperature variation of molar heat capacities, Cp,m/(J K−1 mol−1) = a + bT + c/T2 

a b/(10−3 K−1) c/(105 K2)

Monatomic gases

20.78 0 0

Other gases

Br2 37.32 0.50 −1.26

Cl2 37.03 0.67 −2.85

CO2 44.22 8.79 −8.62

F2 34.56 2.51 −3.51

H2 27.28 3.26 0.50

I2 37.40 0.59 −0.71

N2 28.58 3.77 −0.50

NH3 29.75 25.1 −1.55

O2 29.96 4.18 −1.67

Liquids (from melting to boiling)

C10H8, naphthalene 79.5 0.4075 0

I2 80.33 0 0

H2O 75.29 0 0

Solids

Al 20.67 12.38 0

C (graphite) 16.86 4.77 −8.54

C10H8, naphthalene −110 936 0

Cu 22.64 6.28 0

I2 40.12 49.79 0

NaCl 45.94 16.32 0

Pb 22.13 11.72 0.96

Source: Mostly LR.
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Table 2C.1 Standard enthalpies of fusion and vaporization at the transition temperature, Δtrs H</(kJ mol−1)

Tf/K Fusion Tb/K Vaporization Tf/K Fusion Tb/K Vaporization

Elements Inorganic compounds

Ag 1234 11.30 2436 250.6 CO2 217.0 8.33 194.6 25.23s

Ar 83.81 1.188 87.29 6.506 CS2 161.2 4.39 319.4 26.74

Br2 265.9 10.57 332.4 29.45 H2O 273.15 6.008 373.15 40.656

Cl2 172.1 6.41 239.1 20.41 44.016 at 298 K

F2 53.6 0.26 85.0 3.16 H2S 187.6 2.377 212.8 18.67

H2 13.96 0.117 20.38 0.916 H2SO4 283.5 2.56

He 3.5 0.021 4.22 0.084 NH3 195.4 5.652 239.7 23.35

Hg 234.3 2.292 629.7 59.30 Organic compounds

I2 386.8 15.52 458.4 41.80 CH4 90.68 0.941 111.7 8.18

N2 63.15 0.719 77.35 5.586 CCl4 250.3 2.47 349.9 30.00

Na 371.0 2.601 1156 98.01 C2H6 89.85 2.86 184.6 14.7

O2 54.36 0.444 90.18 6.820 C6H6 278.61 10.59 353.2 30.8

Xe 161 2.30 165 12.6 C6H14 178 13.08 342.1 28.85

K 336.4 2.35 1031 80.23 C10H8 354 18.80 490.9 51.51

CH3OH 175.2 3.16 337.2 35.27

37.99 at 298 K

C2H5OH 158.7 4.60 352 43.5

Data: AIP; s denotes sublimation.

Table 2C.3 Lattice enthalpies at 298 K, ΔHL/(kJ mol−1). See Table 18B.4.

Table 2C.4 Thermodynamic data for organic compounds at 298 K

M/(g mol−1) ΔfH</(kJ mol−1) ΔfG</(kJ mol−1) Sm
1 1/(JK mol )< − − Cp,m

1 1/(JK mol )< − − ΔcH</(kJ mol−1)

C(s) (graphite) 12.011 0 0 5.740 8.527 −393.51

C(s) (diamond) 12.011 +1.895 +2.900 2.377 6.113 −395.40

CO2(g) 44.040 −393.51 −394.36 213.74 37.11

Hydrocarbons

CH4(g), methane 16.04 −74.81 −50.72 186.26 35.31 −890

CH3(g), methyl 15.04 +145.69 +147.92 194.2 38.70  

C2H2(g), ethyne 26.04 +226.73 +209.20 200.94 43.93 −1300

C2H4(g), ethene 28.05 +52.26 +68.15 219.56 43.56 −1411

C2H6(g), ethane 30.07 −84.68 −32.82 229.60 52.63 −1560

C3H6(g), propene 42.08 +20.42 +62.78 267.05 63.89 −2058

C3H6(g), cyclopropane 42.08 +53.30 +104.45 237.55 55.94 −2091

C3H8(g), propane 44.10 −103.85 −23.49 269.91 73.5 −2220

C4H8(g), 1-butene 56.11 −0.13 +71.39 305.71 85.65 −2717

C4H8(g), cis-2-butene 56.11 −6.99 +65.95 300.94 78.91 −2710

C4H8(g), trans-2-butene 56.11 −11.17 +63.06 296.59 87.82 −2707

C4H10(g), butane 58.13 −126.15 −17.03 310.23 97.45 −2878

(Continued)
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Table 2C.4 (Continued)

M/(g mol−1) ΔfH</(kJ mol−1) ΔfG</(kJ mol−1) Sm
1 1/(JK mol )< − − † Cp,m

1 1/(JK mol )< − − ΔcH</(kJ mol−1)

C5H12(g), pentane 72.15 −146.44 −8.20 348.40 120.2 −3537

C5H12(l) 72.15 −173.1        

C6H6(l), benzene 78.12 +49.0 +124.3 173.3 136.1 −3268

C6H6(g) 78.12 +82.93 +129.72 269.31 81.67 −3302

C6H12(l), cyclohexane 84.16 −156 +26.8 204.4 156.5 −3920

C6H14(l), hexane 86.18 −198.7   204.3   −4163

C6H5CH3(g), methylbenzene 
(toluene)

92.14 +50.0 +122.0 320.7 103.6 −3953

C7H16(l), heptane 100.21 −224.4 +1.0 328.6 224.3  

C8H18(l), octane 114.23 −249.9 +6.4 361.1   −5471

C8H18(l), iso-octane 114.23 −255.1       −5461

C10H8(s), naphthalene 128.18 +78.53       −5157

Alcohols and phenols

CH3OH(l), methanol 32.04 −238.66 −166.27 126.8 81.6 −726

CH3OH(g) 32.04 −200.66 −161.96 239.81 43.89 −764

C2H5OH(l), ethanol 46.07 −277.69 −174.78 160.7 111.46 −1368

C2H5OH(g) 46.07 −235.10 −168.49 282.70 65.44 −1409

C6H5OH(s), phenol 94.12 −165.0 −50.9 146.0 −3054

Carboxylic acids, hydroxy acids, and esters

HCOOH(l), formic 46.03 −424.72 −361.35 128.95 99.04 −255

CH3COOH(l), acetic 60.05 −484.5 −389.9 159.8 124.3 −875

CH3COOH(aq) 60.05 −485.76 −396.46 178.7

CH CO aq3 2
−( ) 59.05 −486.01 −369.31 +86.6 −6.3

(COOH)2(s), oxalic 90.04 −827.2 117 −254

C6H5COOH(s), benzoic 122.13 −385.1 −245.3 167.6 146.8 −3227

CH3CH(OH)COOH(s), lactic 90.08 −694.0 −1344

CH3COOC2H5(l), ethyl acetate 88.11 −479.0 −332.7 259.4 170.1 −2231

Alkanals and alkanones

HCHO(g), methanal 30.03 −108.57 −102.53 218.77 35.40 −571

CH3CHO(l), ethanal 44.05 −192.30 −128.12 160.2 −1166

CH3CHO(g) 44.05 −166.19 −128.86 250.3 57.3 −1192

CH3COCH3(l), propanone 58.08 −248.1 −155.4 200.4 124.7 −1790

Sugars

C6H12O6(s), α-d-glucose 180.16 −1274 −2808

C6H12O6(s), β-d-glucose 180.16 −1268 −910 212

C6H12O6(s), β-d-fructose 180.16 −1266 −2810

C12H22O11(s), sucrose 342.30 −2222 −1543 360.2 −5645

Nitrogen compounds

CO(NH2)2(s), urea 60.06 −333.51 −197.33 104.60 93.14 −632

CH3NH2(g), methylamine 31.06 −22.97 +32.16 243.41 53.1 −1085

C6H5NH2(l), aniline 93.13 +31.1 −3393

CH2(NH2)COOH(s), glycine 75.07 −532.9 −373.4 103.5 99.2 −969

Data: NBS, TDOC. † Standard entropies of ions may be either positive or negative because the values are relative to the entropy of the hydrogen ion.
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Table 2C.5 Thermodynamic data for elements and inorganic compounds at 298 K

M/(g mol−1) ΔfH</(kJ mol−1) ΔfG</(kJ mol−1) Sm
1 1/(JK mol )< − − † Cp,m

1 1/(JK mol )< − −

Aluminium (aluminum)

Al(s) 26.98 0 0 28.33 24.35

Al(l) 26.98 +10.56 +7.20 39.55 24.21

Al(g) 26.98 +326.4 +285.7 164.54 21.38

Al3+(g) 26.98 +5483.17

Al3+(aq) 26.98 −531 −485 −321.7

Al2O3(s, α) 101.96 −1675.7 −1582.3 50.92 79.04

AlCl3(s) 133.24 −704.2 −628.8 110.67 91.84

Argon

Ar(g) 39.95 0 0 154.84 20.786

Antimony

Sb(s) 121.75 0 0 45.69 25.23

SbH3(g) 124.77 +145.11 +147.75 232.78 41.05

Arsenic

As(s, α) 74.92 0 0 35.1 24.64

As(g) 74.92 +302.5 +261.0 174.21 20.79

As4(g) 299.69 +143.9 +92.4 314

AsH3(g) 77.95 +66.44 +68.93 222.78 38.07

Barium

Ba(s) 137.34 0 0 62.8 28.07

Ba(g) 137.34 +180 +146 170.24 20.79

Ba2+(aq) 137.34 −537.64 −560.77 +9.6

BaO(s) 153.34 −553.5 −525.1 70.43 47.78

BaCl2(s) 208.25 −858.6 −810.4 123.68 75.14

Beryllium

Be(s) 9.01 0 0 9.50 16.44

Be(g) 9.01 +324.3 +286.6 136.27 20.79

Bismuth

Bi(s) 208.98 0 0 56.74 25.52

Bi(g) 208.98 +207.1 +168.2 187.00 20.79

Bromine

Br2(l) 159.82 0 0 152.23 75.689

Br2(g) 159.82 +30.907 +3.110 245.46 36.02

Br(g) 79.91 +111.88 +82.396 175.02 20.786

Br−(g) 79.91 −219.07

Br−(aq) 79.91 −121.55 −103.96 +82.4 −141.8

HBr(g) 90.92 −36.40 −53.45 198.70 29.142

Cadmium

Cd(s, γ) 112.40 0 0 51.76 25.98

Cd(g) 112.40 +112.01 +77.41 167.75 20.79

Cd2+(aq) 112.40 −75.90 −77.612 −73.2

CdO(s) 128.40 −258.2 −228.4 54.8 43.43

CdCO3(s) 172.41 −750.6 −669.4 92.5

(Continued)
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Table 2C.5 (Continued)

M/(g mol−1) ΔfH</(kJ mol−1) ΔfG</(kJ mol−1) Sm
1 1/(JK mol )< − − † Cp,m

1 1/(JK mol )< − −

Caesium (cesium)

Cs(s) 132.91 0 0 85.23 32.17

Cs(g) 132.91 +76.06 +49.12 175.60 20.79

Cs+(aq) 132.91 −258.28 −292.02 +133.05 −10.5

Calcium

Ca(s) 40.08 0 0 41.42 25.31

Ca(g) 40.08 +178.2 +144.3 154.88 20.786

Ca2+(aq) 40.08 −542.83 −553.58 −53.1

CaO(s) 56.08 −635.09 −604.03 39.75 42.80

CaCO3(s) (calcite) 100.09 −1206.9 −1128.8 92.9 81.88

CaCO3(s) (aragonite) 100.09 −1207.1 −1127.8 88.7 81.25

CaF2(s) 78.08 −1219.6 −1167.3 68.87 67.03

CaCl2(s) 110.99 −795.8 −748.1 104.6 72.59

CaBr2(s) 199.90 −682.8 −663.6 130

Carbon (for ‘organic’ compounds of carbon, see Table 2C.4)

C(s) (graphite) 12.011 0 0 5.740 8.527

C(s) (diamond) 12.011 +1.895 +2.900 2.377 6.113

C(g) 12.011 +716.68 +671.26 158.10 20.838

C2(g) 24.022 +831.90 +775.89 199.42 43.21

CO(g) 28.011 −110.53 −137.17 197.67 29.14

CO2(g) 44.010 −393.51 −394.36 213.74 37.11

CO2(aq) 44.010 −413.80 −385.98 117.6

H2CO3(aq) 62.03 −699.65 −623.08 187.4

HCO aq3
−( ) 61.02 −691.99 −586.77 +91.2

CO aq3
2−( ) 60.01 −677.14 −527.81 −56.9

CCl4(l) 153.82 −135.44 −65.21 216.40 131.75

CS2(l) 76.14 +89.70 +65.27 151.34 75.7

HCN(g) 27.03 +135.1 +124.7 201.78 35.86

HCN(l) 27.03 +108.87 +124.97 112.84 70.63

CN−(aq) 26.02 +150.6 +172.4 +94.1

Chlorine

Cl2(g) 70.91 0 0 223.07 33.91

Cl(g) 35.45 +121.68 +105.68 165.20 21.840

Cl−(g) 34.45 −233.13

Cl−(aq) 35.45 −167.16 −131.23 +56.5 −136.4

HCl(g) 36.46 −92.31 −95.30 186.91 29.12

HCl(aq) 36.46 −167.16 −131.23 56.5 −136.4

Chromium

Cr(s) 52.00 0 0 23.77 23.35

Cr(g) 52.00 +396.6 +351.8 174.50 20.79

CrO aq4
2−( ) 115.99 −881.15 −727.75 +50.21

Cr O aq2 7
2−( ) 215.99 −1490.3 −1301.1 +261.9
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Table 2C.5 (Continued)

M/(g mol−1) ΔfH</(kJ mol−1) ΔfG</(kJ mol−1) Sm
1 1/(JK mol )< − − † Cp,m

1 1/(JK mol )< − −

Copper

Cu(s) 63.54 0 0 33.150 24.44

Cu(g) 63.54 +338.32 +298.58 166.38 20.79

Cu+(aq) 63.54 +71.67 +49.98 +40.6

Cu2+(aq) 63.54 +64.77 +65.49 −99.6

Cu2O(s) 143.08 −168.6 −146.0 93.14 63.64

CuO(s) 79.54 −157.3 −129.7 42.63 42.30

CuSO4(s) 159.60 −771.36 −661.8 109 100.0

CuSO4·H2O(s) 177.62 −1085.8 −918.11 146.0 134

CuSO4·5H2O(s) 249.68 −2279.7 −1879.7 300.4 280

Deuterium

D2(g) 4.028 0 0 144.96 29.20

HD(g) 3.022 +0.318 −1.464 143.80 29.196

D2O(g) 20.028 −249.20 −234.54 198.34 34.27

D2O(l) 20.028 −294.60 −243.44 75.94 84.35

HDO(g) 19.022 −245.30 −233.11 199.51 33.81

HDO(l) 19.022 −289.89 −241.86 79.29

Fluorine

F2(g) 38.00 0 0 202.78 31.30

F(g) 19.00 +78.99 +61.91 158.75 22.74

F−(aq) 19.00 −332.63 −278.79 −13.8 −106.7

HF(g) 20.01 −271.1 −273.2 173.78 29.13

Gold

Au(s) 196.97 0 0 47.40 25.42

Au(g) 196.97 +366.1 +326.3 180.50 20.79

Helium

He(g) 4.003 0 0 126.15 20.786

Hydrogen (see also deuterium)

H2(g) 2.016 0 0 130.684 28.824

H(g) 1.008 +217.97 +203.25 114.71 20.784

H+(aq) 1.008 0 0 0 0

H+(g) 1.008 +1536.20

H2O(s) 18.015 37.99

H2O(l) 18.015 −285.83 −237.13 69.91 75.291

H2O(g) 18.015 −241.82 −228.57 188.83 33.58

H2O2(l) 34.015 −187.78 −120.35 109.6 89.1

Iodine

I2(s) 253.81 0 0 116.135 54.44

I2(g) 253.81 +62.44 +19.33 260.69 36.90

I(g) 126.90 +106.84 +70.25 180.79 20.786

I−(aq) 126.90 −55.19 −51.57 +111.3 −142.3

HI(g) 127.91 +26.48 +1.70 206.59 29.158

(Continued)
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Table 2C.5 (Continued)

M/(g mol−1) ΔfH</(kJ mol−1) ΔfG</(kJ mol−1) Sm
1 1/(JK mol )< − − † Cp,m

1 1/(JK mol )< − −

Iron

Fe(s) 55.85 0 0 27.28 25.10

Fe(g) 55.85 +416.3 +370.7 180.49 25.68

Fe2+(aq) 55.85 −89.1 −78.90 −137.7

Fe3+(aq) 55.85 −48.5 −4.7 −315.9

Fe3O4(s) (magnetite) 231.54 −1118.4 −1015.4 146.4 143.43

Fe2O3(s) (haematite) 159.69 −824.2 −742.2 87.40 103.85

FeS(s, α) 87.91 −100.0 −100.4 60.29 50.54

FeS2(s) 119.98 −178.2 −166.9 52.93 62.17

Krypton

Kr(g) 83.80 0 0 164.08 20.786

Lead

Pb(s) 207.19 0 0 64.81 26.44

Pb(g) 207.19 +195.0 +161.9 175.37 20.79

Pb2+(aq) 207.19 −1.7 −24.43 +10.5

PbO(s, yellow) 223.19 −217.32 −187.89 68.70 45.77

PbO(s, red) 223.19 −218.99 −188.93 66.5 45.81

PbO2(s) 239.19 −277.4 −217.33 68.6 64.64

Lithium

Li(s) 6.94 0 0 29.12 24.77

Li(g) 6.94 +159.37 +126.66 138.77 20.79

Li+(aq) 6.94 −278.49 −293.31 +13.4 68.6

Magnesium

Mg(s) 24.31 0 0 32.68 24.89

Mg(g) 24.31 +147.70 +113.10 148.65 20.786

Mg2+(aq) 24.31 −466.85 −454.8 −138.1

MgO(s) 40.31 −601.70 −569.43 26.94 37.15

MgCO3(s) 84.32 −1095.8 −1012.1 65.7 75.52

MgCl2(s) 95.22 −641.32 −591.79 89.62 71.38

Mercury

Hg(l) 200.59 0 0 76.02 27.983

Hg(g) 200.59 +61.32 +31.82 174.96 20.786

Hg2+(aq) 200.59 +171.1 +164.40 −32.2

Hg aq2
2+ ( ) 401.18 +172.4 +153.52 +84.5

HgO(s) 216.59 −90.83 −58.54 70.29 44.06

Hg2Cl2(s) 472.09 −265.22 −210.75 192.5 102

HgCl2(s) 271.50 −224.3 −178.6 146.0

HgS(s, black) 232.65 −53.6 −47.7 88.3

Neon

Ne(g) 20.18 0 0 146.33 20.786

Nitrogen

N2(g) 28.013 0 0 191.61 29.125

N(g) 14.007 +472.70 +455.56 153.30 20.786
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Table 2C.5 (Continued)

M/(g mol−1) ΔfH</(kJ mol−1) ΔfG</(kJ mol−1) Sm
1 1/(JK mol )< − − † Cp,m

1 1/(JK mol )< − −

NO(g) 30.01 +90.25 +86.55 210.76 29.844

N2O(g) 44.01 +82.05 +104.20 219.85 38.45

NO2(g) 46.01 +33.18 +51.31 240.06 37.20

N2O4(g) 92.1 +9.16 +97.89 304.29 77.28

N2O5(s) 108.01 −43.1 +113.9 178.2 143.1

N2O5(g) 108.01 +11.3 +115.1 355.7 84.5

HNO3(l) 63.01 −174.10 −80.71 155.60 109.87

HNO3(aq) 63.01 −207.36 −111.25 146.4 −86.6

NO aq3
−( ) 62.01 −205.0 −108.74 +146.4 −86.6

NH3(g) 17.03 −46.11 −16.45 192.45 35.06

NH3(aq) 17.03 −80.29 −26.50 111.3

NH aq4
+ ( ) 18.04 −132.51 −79.31 +113.4 79.9

NH2OH(s) 33.03 −114.2

HN3(l) 43.03 +264.0 +327.3 140.6 43.68

HN3(g) 43.03 +294.1 +328.1 238.97 98.87

N2H4(l) 32.05 +50.63 +149.43 121.21 139.3

NH4NO3(s) 80.04 −365.56 −183.87 151.08 84.1

NH4Cl(s) 53.49 −314.43 −202.87 94.6

Oxygen

O2(g) 31.999 0 0 205.138 29.355

O(g) 15.999 +249.17 +231.73 161.06 21.912

O3(g) 47.998 +142.7 +163.2 238.93 39.20

OH−(aq) 17.007 −229.99 −157.24 −10.75 −148.5

Phosphorus

P(s, wh) 30.97 0 0 41.09 23.840

P(g) 30.97 +314.64 +278.25 163.19 20.786

P2(g) 61.95 +144.3 +103.7 218.13 32.05

P4(g) 123.90 +58.91 +24.44 279.98 67.15

PH3(g) 34.00 +5.4 +13.4 210.23 37.11

PCl3(g) 137.33 −287.0 −267.8 311.78 71.84

PCl3(l) 137.33 −319.7 −272.3 217.1

PCl5(g) 208.24 −374.9 −305.0 364.6 112.8

PCl5(s) 208.24 −443.5

H3PO3(s) 82.00 −964.4

H3PO3(aq) 82.00 −964.8

H3PO4(s) 94.97 −1279.0 −1119.1 110.50 106.06

H3PO4(l) 94.97 −1266.9

H3PO4(aq) 94.97 −1277.4 −1018.7 −222

PO ( )4
3− aq 94.97 −1277.4 −1018.7 −221.8

P4O10(s) 283.89 −2984.0 −2697.0 228.86 211.71

P4O6(s) 219.89 −1640.1

(Continued)
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Table 2C.5 (Continued)

M/(g mol−1) ΔfH</(kJ mol−1) ΔfG</(kJ mol−1) Sm
1 1/(JK mol )< − − † Cp,m

1 1/(JK mol )< − −

Potassium

K(s) 39.10 0 0 64.18 29.58

K(g) 39.10 +89.24 +60.59 160.336 20.786

K+(g) 39.10 +514.26

K+(aq) 39.10 −252.38 −283.27 +102.5 21.8

KOH(s) 56.11 −424.76 −379.08 78.9 64.9

KF(s) 58.10 −576.27 −537.75 66.57 49.04

KCl(s) 74.56 −436.75 −409.14 82.59 51.30

KBr(s) 119.01 −393.80 −380.66 95.90 52.30

Kl(s) 166.01 −327.90 −324.89 106.32 52.93

Silicon

Si(s) 28.09 0 0 18.83 20.00

Si(g) 28.09 +455.6 +411.3 167.97 22.25

SiO2(s, α) 60.09 −910.94 −856.64 41.84 44.43

Silver

Ag(s) 107.87 0 0 42.55 25.351

Ag(g) 107.87 +284.55 +245.65 173.00 20.79

Ag+(aq) 107.87 +105.58 +77.11 +72.68 21.8

AgBr(s) 187.78 −100.37 −96.90 107.1 52.38

AgCl(s) 143.32 −127.07 −109.79 96.2 50.79

Ag2O(s) 231.74 −31.05 −11.20 121.3 65.86

AgNO3(s) 169.88 −129.39 −33.41 140.92 93.05

Sodium

Na(s) 22.99 0 0 51.21 28.24

Na(g) 22.99 +107.32 +76.76 153.71 20.79

Na+(aq) 22.99 −240.12 −261.91 +59.0 46.4

NaOH(s) 40.00 −425.61 −379.49 64.46 59.54

NaCl(s) 58.44 −411.15 −384.14 72.13 50.50

NaBr(s) 102.90 −361.06 −348.98 86.82 51.38

NaI(s) 149.89 −287.78 −286.06 98.53 52.09

Sulfur

S(s, α) (rhombic) 32.06 0 0 31.80 22.64

S(s, β) (monoclinic) 32.06 +0.33 +0.1 32.6 23.6

S(g) 32.06 +278.81 +238.25 167.82 23.673

S2(g) 64.13 +128.37 +79.30 228.18 32.47

S2−(aq) 32.06 +33.1 +85.8 −14.6

SO2(g) 64.06 −296.83 −300.19 248.22 39.87

SO3(g) 80.06 −395.72 −371.06 256.76 50.67

H2SO4(l) 98.08 −813.99 −690.00 156.90 138.9

H2SO4(aq) 98.08 −909.27 −744.53 20.1 −293

SO4
2−(aq) 96.06 −909.27 −744.53 +20.1 −293

HSO aq4
−( ) 97.07 −887.34 −755.91 +131.8 −84

H2S(g) 34.08 −20.63 −33.56 205.79 34.23
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Table 2C.5 (Continued)

M/(g mol−1) ΔfH</(kJ mol−1) ΔfG</(kJ mol−1) Sm
1 1/(JK mol )< − − † Cp,m

1 1/(JK mol )< − −

H2S(aq) 34.08 −39.7 −27.83 121

HS−(aq) 33.072 −17.6 +12.08 +62.08

SF6(g) 146.05 −1209 −1105.3 291.82 97.28

Tin

Sn(s, β) 118.69 0 0 51.55 26.99

Sn(g) 118.69 +302.1 +267.3 168.49 20.26

Sn2+(aq) 118.69 −8.8 −27.2 −17

SnO(s) 134.69 −285.8 −256.9 56.5 44.31

SnO2(s) 150.69 −580.7 −519.6 52.3 52.59

Xenon

Xe(g) 131.30 0 0 169.68 20.786

Zinc

Zn(s) 65.37 0 0 41.63 25.40

Zn(g) 65.37 +130.73 +95.14 160.98 20.79

Zn2+(aq) 65.37 −153.89 −147.06 −112.1 46

ZnO(s) 81.37 −348.28 −318.30 43.64 40.25

Source: NBS. † Standard entropies of ions may be either positive or negative because the values are relative to the entropy of the hydrogen ion.

Table 2C.6 Standard enthalpies of formation of organic compounds at 298 K, ΔfH</(kJ mol−1). See Table 2C.4.

Table 2D.1 Expansion coefficients (α) and 
isothermal compressibilities (κT) at 298 K

α/(10−4 K−1) κT /(10−6 atm−1)

Liquids

Benzene 12.4 92.1

Carbon tetrachloride 12.4 90.5

Ethanol 11.2 76.8

Mercury 1.82 38.7

Water 2.1 49.6

Solids

Copper 0.501 0.735

Diamond 0.030 0.187

Iron 0.354 0.589

Lead 0.861 2.21

The values refer to 20 °C.
Data: AIP(α), KL(κT).

Table 2D.2 Inversion temperatures (TI), normal freezing (Tf) and boiling 
points (Tb), and Joule–Thomson coefficients (μ) at 1 atm and 298 K

TI/K Tf/K Tb/K μ/(K atm−1)

Air 603     0.189 at 50 °C

Argon 723 83.8 87.3  

Carbon dioxide 1500 194.7s   1.11 at 300 K

Helium 40   4.22 −0.062

Hydrogen 202 14.0 20.3 −0.03

Krypton 1090 116.6 120.8  

Methane 968 90.6 111.6  

Neon 231 24.5 27.1  

Nitrogen 621 63.3 77.4 0.27

Oxygen 764 54.8 90.2 0.31

s: sublimes.
Data: AIP, JL, and M.W. Zemansky, Heat and thermodynamics. McGraw-Hill, New York (1957).
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Table 3A.1 Standard entropies (and temperatures) of 
phase transitions, ΔtrsS</(J K−1 mol−1)

Fusion (at Tf) Vaporization (at Tb)

Ar 14.17 (at 83.8 K) 74.53 (at 87.3 K)

Br2 39.76 (at 265.9 K) 88.61 (at 332.4 K)

C6H6 38.00 (at 278.6 K) 87.19 (at 353.2 K)

CH3COOH 40.4 (at 289.8 K) 61.9 (at 391.4 K)

CH3OH 18.03 (at 175.2 K) 104.6 (at 337.2 K)

Cl2 37.22 (at 172.1 K) 85.38 (at 239.0 K)

H2 8.38 (at 14.0 K) 44.96 (at 20.38 K)

H2O 22.00 (at 273.2 K) 109.1 (at 373.2 K)

H2S 12.67 (at 187.6 K) 87.75 (at 212.0 K)

He 4.8 (at 1.8 K and 30 bar) 19.9 (at 4.22 K)

N2 11.39 (at 63.2 K) 75.22 (at 77.4 K)

NH3 28.93 (at 195.4 K) 97.41 (at 239.73 K)

O2 8.17 (at 54.4 K) 75.63 (at 90.2 K)

Data: AIP.

Table 3A.2 The standard enthalpies and entropies of 
vaporization of liquids at their normal boiling point

ΔvapH</(kJ mol−1) θb/°C ΔvapS</(J K−1 mol−1)

Benzene 30.8 80.1 +87.2

Carbon disulfide 26.74 46.25 +83.7

Carbon tetrachloride 30.00 76.7 +85.8

Cyclohexane 30.1 80.7 +85.1

Decane 38.75 174 +86.7

Dimethyl ether 21.51 −23 +86

Ethanol 38.6 78.3 +110.0

Hydrogen sulfide 18.7 −60.4 +87.9

Mercury 59.3 356.6 +94.2

Methane 8.18 −161.5 +73.2

Methanol 35.21 65.0 +104.1

Water 40.7 100.0 +109.1

Data: JL.

Table 5F.2 Mean activity coefficients in water at 298 K

b/b< HCl KCl CaCl2 H2SO4 LaCl3 In2(SO4)3

0.001 0.966 0.966 0.888 0.830 0.790

0.005 0.929 0.927 0.789 0.639 0.636 0.16

0.01 0.905 0.902 0.732 0.544 0.560 0.11

0.05 0.830 0.816 0.584 0.340 0.388 0.035

0.10 0.798 0.770 0.524 0.266 0.356 0.025

0.50 0.769 0.652 0.510 0.155 0.303 0.014

1.00 0.811 0.607 0.725 0.131 0.387

2.00 1.011 0.577 1.554 0.125 0.954

Data: RS, HCP, and S. Glasstone, Introduction to electrochemistry. Van Nostrand 
(1942).

Table 3B.1 Standard Third-Law entropies at 298 K, 
Sm

1 1/(JK mol )< − − . See Tables 2C.4 and 2C.5
Table 3C.1 Standard Gibbs energies of formation at 298 K, 
∆ f

1/ kJmolG< ( )− . See Tables 2C.4 and 2C.5

Table 3D.2 The fugacity coefficients of nitrogen at 273 K, ϕ

p/atm ϕ p/atm ϕ

1 0.999 55 300 1.0055

10 0.9956 400 1.062

50 0.9912 600 1.239

100 0.9703 800 1.495

150 0.9672 1000 1.839

200 0.9721

To convert to fugacities, use f = ϕp
Data: LR.

Table 5A.1 Henry’s law constants for 
gases at 298 K, K/(kPa kg mol−1)

Water Benzene

CH4 7.55 × 104 44.4 × 103

CO2 3.01 × 103 8.90 × 102

H2 1.28 × 105 2.79 × 104

N2 1.56 × 105 1.87 × 104

O2 7.92 × 104

Data: converted from R.J. Silbey and R.A. Alberty, 
Physical chemistry. Wiley, New York (2001).

Table 5B.1 Freezing-point (Kf) and boiling-point (Kb) constants

Kf/(K kg mol−1) Kb/(K kg mol−1)

Acetic acid 3.90 3.07

Benzene 5.12 2.53

Camphor 40

Carbon disulfide 3.8 2.37

Carbon tetrachloride 30 4.95

Naphthalene 6.94 5.8

Phenol 7.27 3.04

Water 1.86 0.51

Data: KL.
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Table 6D.1 Standard potentials at 298 K, E</V. (a) In electrochemical order

Reduction half-reaction E</V Reduction half-reaction E</V

Strongly oxidizing Cu+ + e− → Cu +0.52

H4XeO6+ 2 H+ + 2 e− → XeO3 + 3 H2O +3.0 NiOOH + H2O + e− → Ni(OH)2 + OH− +0.49

F2 + 2 e− → 2 F− +2.87 Ag CrO 2e 2 Ag CrO2 4 + +− −→ 4
2 +0.45

O3 + 2 H+ + 2 e− → O2+ H2O +2.07 O2 + 2 H2O + 4 e− → 4 OH− +0.40

S O 2e 2 SO2 8
2

4
2− − −+ → +2.05 ClO H O 2e ClO 2OH24 3

− − − −+ + +→ +0.36

Ag2+ + e− → Ag+ +1.98 [Fe(CN)6]3− + e− → [Fe(CN)6]4− +0.36

Co3+ + e− → Co2+ +1.81 Cu2+ + 2 e− → Cu +0.34

H2O2+ 2 H+ + 2 e− → 2 H2O +1.78 Hg2Cl2+ 2 e− → 2 Hg + 2 Cl− +0.27

Au+ + e− → Au +1.69 AgCl + e− → Ag + Cl− +0.22

Pb4+ + 2 e− → Pb2+ +1.67 Bi3+ + 3 e− → Bi +0.20

2 HClO + 2 H+ + 2 e− → Cl2+ 2 H2O +1.63 Cu2+ + e− → Cu+ +0.16

Ce4+ + e− → Ce3+ +1.61 Sn4+ + 2 e− → Sn2+ +0.15

2 HBrO + 2 H+ + 2 e− → Br2+ 2 H2O +1.60 NO H O 2e NO 2OH23 2
− − − −+ + +→ +0.10

MnO 8H 5 e Mn 4 H O2
24

− + − ++ ++ → +1.51 AgBr + e− → Ag + Br− +0.0713

Mn3+ + e− → Mn2+ +1.51 Ti4+ + e− → Ti3+ 0.00

Au3+ + 3 e− → Au +1.40 2 H+ + 2 e− → H2 0, by definition

Cl2+ 2 e− → 2 Cl− +1.36 Fe3+ + 3 e− → Fe −0.04

Cr O 14H 6e 2Cr 7H O2
3

27
2− + − ++ + +→ +1.33 O H O 2 e HO OH2 2+ + +− − −→ 2 −0.08

O3 + H2O + 2 e− → O2 + 2 OH− +1.24 Pb2+ + 2 e− → Pb −0.13

O2 + 4 H+ + 4 e− → 2 H2O +1.23 In+ + e− → In −0.14

ClO 2H 2e ClO H O24 3
− + − −+ + +→ +1.23 Sn2+ + 2 e− → Sn −0.14

MnO2+ 4 H+ + 2 e− → Mn2+ + 2 H2O +1.23 AgI + e− → Ag + I− −0.15

Pt2+ + 2 e− → Pt +1.20 Ni2+ + 2 e− → Ni −0.23

Br2+ 2 e− → 2Br− +1.09 V3+ + e− → V2+ −0.26

Pu4+ + e− → Pu3+ +0.97 Co2+ + 2 e− → Co −0.28

NO 4H 3e NO 2H O23
− + −+ + +→ +0.96 In3+ + 3 e− → In −0.34

2Hg 2e Hg2+ − ++ → 2
2 +0.92 Tl+ + e− → Tl −0.34

ClO− + H2O + 2 e− → Cl− + 2 OH− +0.89 PbSO 2 e Pb SO4 + − −→ + 4
2 −0.36

Hg2+ + 2 e− → Hg +0.86 Ti3+ + e− → Ti2+ −0.37

NO 2H e NO H O2 23
− + −+ + +→ +0.80 Cd2+ + 2 e− → Cd −0.40

Ag+ + e− → Ag +0.80 In2+ + e− → In+ −0.40

Hg 2e 2Hg2
2+ −+ → +0.79 Cr3+ + e− → Cr2+ −0.41

AgF + e− → Ag + F− +0.78 Fe2+ + 2 e− → Fe −0.44

Fe3+ + e− → Fe2+ +0.77 In3+ + 2 e− → In+ −0.44

BrO− + H2O + 2 e− → Br− + 2 OH− +0.76 S + 2 e− → S2− −0.48

Hg SO 2e 2Hg SO2 4 + +− −→ 4
2 +0.62 In3+ + e− → In2+ −0.49

MnO 2H O 2e MnO 4OH2 24
2− − −+ + +→ +0.60 O e O2 + − −→ 2 −0.56

MnO e MnO4 4
2− − −+ → +0.56 U4+ + e− → U3+ −0.61

I2 + 2 e− → 2 I− +0.54 Cr3+ + 3 e− → Cr −0.74

I 2e 3I3
− − −+ → +0.53 Zn2+ + 2 e− → Zn −0.76

(Continued)
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Table 6D.1 (Continued)

Reduction half-reaction E</V Reduction half-reaction E</V

Cd(OH)2+ 2 e− → Cd + 2 OH− −0.81 Ce3+ + 3 e− → Ce −2.48

2 H2O + 2 e− → H2 + 2 OH− −0.83 La3+ + 3 e− → La −2.52

Cr2+ + 2e− → Cr −0.91 Na+ + e− → Na −2.71

Mn2+ + 2 e− → Mn −1.18 Ca2+ + 2 e− → Ca −2.87

V2+ + 2 e− → V −1.19 Sr2+ + 2 e− → Sr −2.89

Ti2+ + 2 e− → Ti −1.63 Ba2+ + 2 e− → Ba −2.91

Al3+ + 3 e− → Al −1.66 Ra2+ + 2 e− → Ra −2.92

U3+ + 3 e− → U −1.79 Cs+ + e− → Cs −2.92

Be2+ + 2 e− → Be −1.85 Rb+ + e− → Rb −2.93

Sc3+ + 3 e− → Sc −2.09 K+ + e− → K −2.93

Mg2+ + 2 e− → Mg −2.36 Li+ + e− → Li −3.05

Table 6D.1 Standard potentials at 298 K, E</V. (b) In alphabetical order

Reduction half-reaction E</V Reduction half-reaction E</V

Ag+ + e− → Ag +0.80 Cr2+ + 2 e− → Cr −0.91

Ag2+ + e− → Ag+ +1.98 Cr O 14H 6e 2Cr 7H O2
3

27
2− + − ++ + +→ +1.33

AgBr + e− → Ag + Br− +0.0713 Cr3+ + 3 e− → Cr −0.74

AgCl + e− → Ag + Cl− +0.22 Cr3+ + e− → Cr2+ −0.41

Ag CrO 2e 2 Ag CrO2 4 + +− −→ 4
2 +0.45 Cs+ + e− → Cs −2.92

AgF + e− → Ag + F− +0.78 Cu+ + e− → Cu +0.52

AgI + e− → Ag + I− −0.15 Cu2+ + 2 e− → Cu +0.34

Al3+ + 3 e− → Al −1.66 Cu2+ + e− → Cu+ +0.16

Au+ + e− → Au +1.69 F2 + 2 e− → 2 F− +2.87

Au3+ + 3 e− → Au +1.40 Fe2+ + 2 e− → Fe −0.44

Ba2+ + 2 e− → Ba −2.91 Fe3+ + 3 e− → Fe −0.04

Be2+ + 2 e− → Be −1.85 Fe3+ + e− → Fe2+ +0.77

Bi3+ + 3 e− → Bi +0.20 [Fe(CN)6]3− + e− → [Fe(CN)6]4− +0.36

Br2+ 2 e− → 2Br− +1.09 2 H+ + 2 e− → H2 0, by definition

BrO− + H2O + 2 e− → Br− + 2 OH− +0.76 2 H2O + 2 e− → H2 + 2 OH− −0.83

Ca2+ + 2 e− → Ca −2.87 2 HBrO + 2 H+ + 2 e− → Br2+ 2 H2O +1.60

Cd(OH)2+ 2 e− → Cd + 2 OH− −0.81 2 HClO + 2 H+ + 2 e− → Cl2+ 2 H2O +1.63

Cd2+ + 2 e− → Cd −0.40 H2O2+ 2 H+ + 2 e− → 2 H2O +1.78

Ce3+ + 3 e− → Ce −2.48 H4XeO6+ 2 H+ + 2 e− → XeO3 + 3 H2O +3.0

Ce4+ + e− → Ce3+ +1.61 Hg 2e 2Hg2
2+ −+ → +0.79

Cl2+ 2 e− → 2 Cl− +1.36 Hg2Cl2+ 2 e− → 2 Hg + 2 Cl− +0.27

ClO− + H2O + 2 e− → Cl− + 2 OH− +0.89 Hg2+ + 2 e− → Hg +0.86

ClO 2H 2e ClO H O24 3
− + − −+ + +→ +1.23 2Hg 2e Hg2+ − ++ → 2

2 +0.92

ClO H O 2e ClO 2OH24 3
− − − −+ + +→ +0.36 Hg SO 2e 2Hg SO2 4 + +− −→ 4

2 +0.62

Co2+ + 2 e− → Co −0.28 I2 + 2 e− → 2 I− +0.54

Co3+ + e− → Co2+ +1.81 I 2e 3I3
− − −+ → +0.53
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Table 6D.1a (Continued)

Reduction half-reaction E</V Reduction half-reaction E</V

In+ + e− → In −0.14 O3 + 2 H+ + 2 e− → O2+ H2O +2.07

In2+ + e− → In+ −0.40 O3 + H2O + 2 e− → O2 + 2 OH− +1.24

In3+ + 2 e− → In+ −0.44 Pb2+ + 2 e− → Pb −0.13

In3+ + 3 e− → In −0.34 Pb4+ + 2 e− → Pb2+ +1.67

In3+ + e− → In2+ −0.49 PbSO 2e Pb SO4 + +− −→ 4
2 −0.36

K+ + e− → K −2.93 Pt2+ + 2 e− → Pt +1.20

La3+ + 3 e− → La −2.52 Pu4+ + e− → Pu3+ +0.97

Li+ + e− → Li −3.05 Ra2+ + 2 e− → Ra −2.92

Mg2+ + 2 e− → Mg −2.36 Rb+ + e− → Rb −2.93

Mn2+ + 2 e− → Mn −1.18 S + 2 e− → S2− −0.48

Mn3+ + e− → Mn2+ +1.51 S O 2e 2SO2 8
2

4
2− − −+ → +2.05

MnO2+ 4 H+ + 2 e− → Mn2+ + 2 H2O +1.23 Sc3+ + 3 e− → Sc −2.09

MnO 8H 5e Mn 4H O2
24

2− + − ++ + +→ +1.51 Sn2+ + 2 e− → Sn −0.14

MnO e MnO4 4
2− − −+ → +0.56 Sn4+ + 2 e− → Sn2+ +0.15

MnO 2H O 2 e MnO 4OH2 24
2− − −+ + +→ +0.60 Sr2+ + 2 e− → Sr −2.89

Na+ + e− → Na −2.71 Ti2+ + 2 e− → Ti −1.63

Ni2+ + 2 e− → Ni −0.23 Ti3+ + e− → Ti2+ −0.37

NiOOH + H2O + e− → Ni(OH)2 + OH− +0.49 Ti4+ + e− → Ti3+ 0.00

NO 2H e NO H O2 23
− + −+ ++ → +0.80 Tl+ + e− → Tl −0.34

NO 4H 3e NO 2H O23
− + −+ + +→ +0.96 U3+ + 3 e− → U −1.79

NO H O 2e NO 2OH23 2
− − − −+ + + +→ +0.10 U4+ + e− → U3+ −0.61

O2 + 2 H2O + 4 e− → 4 OH− +0.40 V2+ + 2 e− → V −1.19

O2 + 4 H+ + 4 e− → 2 H2O +1.23 V3+ + e− → V2+ −0.26

O e O2 + − −→ 2 −0.56 Zn2+ + 2 e− → Zn −0.76

O H O 2e HO OH2 2+ + +− − −→ 2 −0.08

Table 9B.1 Effective nuclear charge, Zeff = Z − σ *

H He
1s 1 1.6875

Li Be B C N O F Ne
1s 2.6906 3.6848 4.6795 5.6727 6.6651 7.6579 8.6501 9.6421
2s 1.2792 1.9120 2.5762 3.2166 3.8474 4.4916 5.1276 5.7584
2p 2.4214 3.1358 3.8340 4.4532 5.1000 5.7584

Na Mg Al Si P S Cl Ar
1s 10.6259 11.6089 12.5910 13.5745 14.5578 15.5409 16.5239 17.5075
2s  6.5714  7.3920  8.3736  9.0200  9.8250 10.6288 11.4304 12.2304
2p  6.8018  7.8258  8.9634  9.9450 10.9612 11.9770 12.9932 14.0082
3s  2.5074  3.3075  4.1172  4.9032  5.6418  6.3669  7.0683  7.7568
3p  4.0656  4.2852  4.8864  5.4819  6.1161  6.7641

* The actual charge is Zeffe.
Data: E. Clementi and D.L. Raimondi, Atomic screening constants from SCF functions.
IBM Res. Note NJ-27 (1963). J. Chem. Phys. 38, 2686 (1963).

iranchembook.ir/edu



984 Resource section

Table 9B.2 First and subsequent ionization energies, I/(kJ mol−1)

H He
1312.0 2372.3

5250.4
Li Be B C N O F Ne
513.3 899.4 800.6 1086.2 1402.3 1313.9 1681 2080.6

7298.0 1757.1 2427 2352 2856.1 3388.2 3374 3952.2
Na Mg Al Si P S Cl Ar
495.8 737.7 577.4 786.5 1011.7 999.6 1251.1 1520.4

4562.4 1450.7 1816.6 1577.1 1903.2 2251 2297 2665.2
2744.6 2912

K Ca Ga Ge As Se Br Kr
418.8 589.7 578.8 762.1 947.0 940.9 1139.9 1350.7

3051.4 1145 1979 1537 1798 2044 2104 2350
2963 2735

Rb Sr In Sn Sb Te I Xe
403.0 549.5 558.3 708.6 833.7 869.2 1008.4 1170.4

2632 1064.2 1820.6 1411.8 1794 1795 1845.9 2046
2704 2943.0 2443

Cs Ba Tl Pb Bi Po At Rn
375.5 502.8 589.3 715.5 703.2 812 930 1037

2420 965.1 1971.0 1450.4 1610
2878 3081.5 2466

Data: E.

Table 9B.3 Electron affinities, Eea/(kJ mol−1)

H He

72.8 −21

Li Be B C N O F Ne

59.8 ≤0 23 122.5 −7  141 322 −29

−844

Na Mg Al Si P S Cl Ar

52.9 ≤0 44 133.6 71.7  200.4 348.7 −35

−532

K Ca Ga Ge As Se Br Kr

48.3 2.37 36 116 77 195.0 324.5 −39

Rb Sr In Sn Sb Te I Xe

46.9 5.03 34 121 101 190.2 295.3 −41

Cs Ba Tl Pb Bi Po At Rn

45.5 13.95 30 35.2 101 186 270 −41

Data: E.
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Table 10C.1 Bond lengths, Re/pm

(a) Bond lengths in specific molecules

Br2 228.3

Cl2 198.75

CO 112.81

F2 141.78
H2

+ 106

H2 74.138

HBr 141.44

HCl 127.45

HF 91.680

HI 160.92

N2 109.76

O2 120.75

(b) Mean bond lengths from covalent radii*

H 37

C 77(1) N  74(1) O  66(1) F  64

67(2)  65(2)  57(2)

60(3)

Si 118 P 110 S 104(1) Cl  99

 95(2)

Ge 122 As 121 Se 104 Br 114

Sb 141 Te 137 I 133

* Values are for single bonds except where indicated otherwise (values in parentheses). The length 
of an A − B covalent bond (of given order) is the sum of the corresponding covalent radii.

Table 10C.2a Bond dissociation enthalpies, ΔH<(A–B)/(kJ mol−1) at 298 K*

Diatomic molecules

H–H 436 F–F  155 Cl–Cl 242 Br–Br 193 I–I 151

O = O 497 C = O 1076 N ≡ N 945

H–O 428 H–F  565 H–Cl 431 H–Br 366 H–I 299

Polyatomic molecules

H–CH3 435 H–NH2 460 H–OH 492 H–C6H5 469

H3C–CH3 368 H2C = CH2 720 HC ≡ CH 962

HO–CH3 377 Cl–CH3 352 Br–CH3 293 I–CH3 237

O = CO 531 HO–OH 213 O2N–NO2  54

* To a good approximation bond dissociation enthalpies and dissociation energies are related by ∆H D RT< = +e
3
2  with D De = +0

1
2 ω . 

For precise values of D0 for diatomic molecules, see Table 12D.1.
Data: HCP, KL.
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Table 10C.2b Mean bond enthalpies, ΔH<(A–B)/(kJ mol−1)*

H C N O F Cl Br I S P Si

H 436

C 412 348(i)

612(ii)

838(iii)

518(a)

N 388 305(i) 163(i)

613(ii) 409(ii)

890(iii) 946(iii)

O 463 360(i) 157 146(i)

743(ii) 497(ii)

F 565 484 270 185 155

Cl 431 338 200 203 254 242

Br 366 276 219 193

I 299 238 210 178 151

S 338 259 496 250 212 264

P 322 201

Si 318 374 466 226

* Mean bond enthalpies are such a crude measure of bond strength that they need not be distinguished from dissociation energies.
(i) Single bond, (ii) double bond, (iii) triple bond, (a) aromatic.
Data: HCP and L. Pauling, The nature of the chemical bond. Cornell University Press (1960).

Table 10D.1 Pauling (italics) and Mulliken electronegativities

H He

2.20

3.06

Li Be B C N O F Ne

0.98 1.57 2.04 2.55 3.04 3.44 3.98

1.28 1.99 1.83 2.67 3.08 3.22 4.43 4.60

Na Mg Al Si P S Cl Ar

0.93 1.31 1.61 1.90 2.19 2.58 3.16

1.21 1.63 1.37 2.03 2.39 2.65 3.54 3.36

K Ca Ga Ge As Se Br Kr

0.82 1.00 1.81 2.01 2.18 2.55 2.96 3.0

1.03 1.30 1.34 1.95 2.26 2.51 3.24 2.98

Rb Sr In Sn Sb Te I Xe

0.82 0.95 1.78 1.96 2.05 2.10 2.66 2.6

0.99 1.21 1.30 1.83 2.06 2.34 2.88 2.59

Cs Ba Tl Pb Bi

0.79 0.89 2.04 2.33 2.02

Data: Pauling values: A.L. Allred, J. Inorg. Nucl. Chem. 17, 215 (1961); L.C. Allen and J.E. Huheey, ibid., 42, 
1523 (1980). Mulliken values: L.C. Allen, J. Am. Chem. Soc. 111, 9003 (1989). The Mulliken values have been 
scaled to the range of the Pauling values.
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Table 11B.1 The C3v character table; see Part 4 Table 11B.2 The C2v character table; see Part 4

Table 12D.1 Properties of diatomic molecules

 / cm−1 θ V/K B/ cm 1− θ R/K Re/pm kf/(N m−1) hcD o /(kJ mol )1− σ
1

2H+ 2321.8 3341 29.8 42.9 106 160 255.8 2
1H2 4400.39 6332 60.864 87.6 74.138 574.9 432.1 2
2H2 3118.46 4487 30.442 43.8 74.154 577.0 439.6 2
1H19F 4138.32 5955 20.956 30.2 91.680 965.7 564.4 1
1H35Cl 2990.95 4304 10.593 15.2 127.45 516.3 427.7 1
1H81Br 2648.98 3812 8.465 12.2 141.44 411.5 362.7 1
1H127I 2308.09 3321 6.511 9.37 160.92 313.8 294.9 1
14N2 2358.07 3393 1.9987 2.88 109.76 2293.8 941.7 2
16O2 1580.36 2274 1.4457 2.08 120.75 1176.8 493.5 2
19F2 891.8 1283 0.8828 1.27 141.78 445.1 154.4 2
35Cl2 559.71 805 0.2441 0.351 198.75 322.7 239.3 2
12C16O 2170.21 3122 1.9313 2.78 112.81 1903.17 1071.8 1
79Br81Br 323.2 465 0.0809 10.116 283.3 245.9 190.2 1

Data: AIP.

Table 12E.1 Typical vibrational 
wavenumbers, /cm 1−

C–H stretch 2850–2960

C–H bend 1340–1465

C–C stretch, bend  700–1250

C = C stretch 1620–1680

C ̂  C stretch 2100–2260

O–H stretch 3590–3650

H-bonds 3200–3570

C = O stretch 1640–1780

C ≡ N stretch 2215–2275

N–H stretch 3200–3500

C–F stretch 1000–1400

C–Cl stretch  600–800

C–Br stretch  500–600

C–I stretch  500

CO3
2− 1410–1450

NO3
− 1350–1420

NO2
− 1230–1250

SO4
2− 1080–1130

Silicates  900–1100

Data: L.J. Bellamy, The infrared spectra of complex 
molecules and Advances in infrared group frequencies. 
Chapman and Hall.

Table 13A.1 Colour, wavelength, frequency, and energy of light

Colour λ/nm /(1014 Hz)  /(104 cm−1) E/eV E/(kJ mol−1)

Infrared >1000 <3.00 <1.00 <1.24 <120

Red  700 4.28 1.43 1.77 171

Orange  620 4.84 1.61 2.00 193

Yellow  580 5.17 1.72 2.14 206

Green  530 5.66 1.89 2.34 226

Blue  470 6.38 2.13 2.64 254

Violet  420 7.14 2.38 2.95 285

Ultraviolet <400 >7.5 >2.5 >3.10 >300

Data: J.G. Calvert and J.N. Pitts, Photochemistry. Wiley, New York (1966).
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Table 13A.2 Absorption characteristics of some groups and molecules

Group �max/(104 cm−1) λmax/nm εmax/(dm3 mol−1 cm−1)

C = C (π* ← π) 6.10 163 1.5 × 104

  5.73 174 5.5 × 103

C = O (π* ← n) 3.7–3.5 270–290 10–20

–N = N– 2.9 350 15

  >3.9 <260 Strong

–NO2 3.6 280 10

  4.8 210 1.0 × 104

C6H5– 3.9 255 200

  5.0 200 6.3 × 103

  5.5 180 1.0 × 105

[Cu(OH2)6]2+(aq) 1.2 810 10

[Cu(NH3)4]2+(aq) 1.7 600 50

H2O (π* ← n) 6.0 167 7.0 × 103

Table 14A.2 Nuclear spin properties

Nuclide Natural  
abundance, %

Spin, I Magnetic  
Moment, μ/μN

g-value γ /(107 T−1s−1) NMR frequency 
at 1 T, /MHz

1n*   1
2

−1.9130 −3.8260 −18.324 29.164

1H 99.9844 1
2

2.792 85 5.5857 26.752 42.576

2H 0.0156 1 0.857 44 0.857 44 4.1067 6.536

3H*   1
2

2.978 96 −4.2553 −20.380 45.414

10B 19.6 3 1.8006 0.6002 2.875 4.575

11B 80.4 3
2

2.6886 1.7923 8.5841 13.663

13C 1.108 1
2

0.7024 1.4046 6.7272 10.708

14N 99.635 1 0.403 56 0.403 56 1.9328 3.078

17O 0.037 5
2

−1.893 79 −0.7572 −3.627 5.774

19F 100 1
2

2.628 87 5.2567 25.177 40.077

31P 100 1
2

1.1316 2.2634 10.840 17.251

33S 0.74 3
2

0.6438 0.4289 2.054 3.272

35Cl 75.4 3
2

0.8219 0.5479 2.624 4.176

37Cl 24.6 3
2

0.6841 0.4561 2.184 3.476

* Radioactive.
μ is the magnetic moment of the spin state with the largest value of mI: μ = gIμNI and μN is the nuclear magneton (see inside front cover).
Data: KL and HCP.

iranchembook.ir/edu



Part 3 Data  989

Table 14D.1 Hyperfine coupling constants for 
atoms, a/mT

Nuclide Spin Isotropic  
coupling

Anisotropic  
coupling

1H 1
2

  50.8(1s)  

2H 1    7.8(1s)  

13C 1
2

 113.0(2s)   6.6(2p)

14N 1   55.2(2s)   4.8(2p)

19F 1
2 1720(2s) 108.4(2p)

31P 1
2  364(3s)  20.6(3p)

35Cl 3
2  168(3s)  10.0(3p)

37Cl 3
2  140(3s)   8.4(3p)

Data: P.W. Atkins and M.C.R. Symons, The structure of inorganic 
radicals. Elsevier, Amsterdam (1967).

Table 16A.1 Magnitudes of dipole moments (μ), polarizabilities (α), and 
polarizability volumes (α′)

μ/(10−30 C m) μ/D α′/(10−30 m3) α/(10−40 J−1 C2 m2)

Ar 0 0 1.66 1.85

C2H5OH 5.64 1.69

C6H5CH3 1.20 0.36

C6H6 0 0 10.4 11.6

CCl4 0 0 10.3 11.7

CH2Cl2 5.24 1.57 6.80 7.57

CH3Cl 6.24 1.87 4.53 5.04

CH3OH 5.70 1.71 3.23 3.59

CH4 0 0 2.60 2.89

CHCl3 3.37 1.01 8.50 9.46

CO 0.390 0.117 1.98 2.20

CO2 0 0 2.63 2.93

H2 0 0 0.819 0.911

H2O 6.17 1.85 1.48 1.65

HBr 2.67 0.80 3.61 4.01

HCl 3.60 1.08 2.63 2.93

He 0 0 0.20 0.22

HF 6.37 1.91 0.51 0.57

HI 1.40 0.42 5.45 6.06

N2 0 0 1.77 1.97

NH3 4.90 1.47 2.22 2.47

1,2-C6H4(CH3)2 2.07 0.62

Data: HCP and C.J.F. Böttcher and P. Bordewijk, Theory of electric polarization. Elsevier, Amsterdam 
(1978).
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Table 16B.2 Lennard-Jones parameters for the (12,6) 
potential

(ε/k)/K r0/pm

Ar 111.84 362.3

C2H2 209.11 463.5

C2H4 200.78 458.9

C2H6 216.12 478.2

C6H6 377.46 617.4

CCl4 378.86 624.1

Cl2 296.27 448.5

CO2 201.71 444.4

F2 104.29 357.1

Kr 154.87 389.5

N2  91.85 391.9

O2 113.27 365.4

Xe 213.96 426.0

Source: F. Cuadros, I. Cachadiña, and W. Ahamuda, Molec. Engineering 6, 
319 (1996).

Table 16C.1 Surface tensions of liquids at 293 K, 
γ/(mN m−1)

γ/(mN m−)

Benzene 28.88

Carbon tetrachloride 27.0

Ethanol 22.8

Hexane 18.4

Mercury 472

Methanol 22.6

Water 72.75

72.0 at 25 °C

58.0 at 100 °C

Data: KL.

Table 17D.1 Radius of gyration

M/(kg mol−1) Rg/nm

Serum albumin 66 2.98

Myosin 493 46.8

Polystyrene 3.2 × 103 50†

DNA 4 × 103 117

Tobacco mosaic virus 3.9 × 104 92.4

† In a poor solvent.

Table 17D.2 Frictional coefficients and 
molecular geometry

a/b Prolate Oblate

2 1.04 1.04

3 1.18 1.17

4 1.18 1.17

5 1.25 1.22

6 1.31 1.28

7 1.38 1.33

8 1.43 1.37

9 149 1.42

10 1.54 1.46

50 2.95 2.38

100 4.07 2.97

Data: K.E. Van Holde, Physical biochemistry. Prentice-
Hall, Englewood Cliffs (1971)
Sphere; radius a, c = af0
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Table 17D.3 Intrinsic viscosity

Macromolecule Solvent θ/°C K/(10−3 cm3 g−1) a

Polystyrene Benzene 25 9.5 0.74

Cyclobutane 34† 81 0.50

Polyisobutylene Benzene 23† 83 0.50

Cyclohexane 30 26 0.70

Amylose 0.33 m KCl(aq) 25† 113 0.50

Various proteins‡ Guanidine hydrochloride + HSCH2CH2OH 7.16 0.66

† The θ temperature.
‡ Use [η] = KNa; N is the number of amino acid residues.
Data: K.E. Van Holde, Physical biochemistry. Prentice-Hall, Englewood Cliffs (1971).

Table 18B.2 Ionic radii, r/pm*

Li+(4) Be2+(4) B3+(4) N3− O2−(6) F−(6)

59 27 12 171 140 133

Na+(6) Mg2+(6) Al3+(6) P3− S2−(6) Cl−(6)

102 72 53 212 184 181

K+(6) Ca2+(6) Ga3+(6) As3−(6) Se2−(6) Br−(6)

138 100 62 222 198 196

Rb+(6) Sr2+(6) In3+(6) Te2−(6) I−(6)

149 116 79 221 220

Cs+(6) Ba2+(6) Tl3+(6)

167 136 88

d-block elements (high-spin ions)

Sc3+(6) Ti4+(6) Cr3+(6) Mn3+(6) Fe2+(6) Co3+(6) Cu2+(6) Zn2+(6)

73 60 61 65 63 61 73 75

* Numbers in parentheses are the coordination numbers of the ions. Values for ions without a coordination number stated are 
estimates.
Data: R.D. Shannon and C.T. Prewitt, Acta Cryst. B25, 925 (1969).

Table 18B.4 Lattice enthalpies at 298 K, ΔHL/(kJ mol−1)

F Cl Br I

Halides

Li 1037 852 815 761

Na 926 787 752 705

K 821 717 689 649

Rb 789 695 668 632

Cs 750 676 654 620

Ag 969 912 900 886

Be 3017

Mg 2524

Ca 2255

Sr 2153

Oxides

MgO 3850 CaO 3461 SrO 3283 BaO 3114

Sulfides

MgS 3406 CaS 3119 SrS 2974 BaS 2832

Entries refer to MX(s) → M+(g) + X−(g).
Data: Principally D. Cubicciotti et al., J. Chem. Phys. 31, 1646 (1959).
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Table 18C.1 Magnetic susceptibilities at 298 K

χ/10−6 χm/(10−10 m3 mol−1)

H2O(l) −9.02 −1.63

C6H6(l) −8.8 −7.8

C6H12(l) −10.2 −11.1

CCl4(l) −5.4 −5.2

NaCl(s) −16 −3.8

Cu(s) −9.7 −0.69

S(rhombic) −12.6 −1.95

Hg(l) −28.4 −4.21

Al(s) +20.7 +2.07

Pt(s) +267.3 +24.25

Na(s) +8.48 +2.01

K(s) +5.94 +2.61

CuSO4 . 5H2O(s) +167 +183

MnSO4 . 4H2O(s) +1859 +1835

NiSO4 . 7H2O(s) +355 +503

FeSO4(s) +3743 +1558

Source: Principally HCP, with χm = χVm= χρ/M.

Table 19A.1 Transport properties of gases at 1 atm

κ/(mW K−1 m−1) η/μP

273 K 273 K 293 K

Air 24.1 173 182

Ar 16.3 210 223

C2H4 16.4 97 103

CH4 30.2 103 110

Cl2 7.9 123 132

CO2 14.5 136 147

H2 168.2 84 88

He 144.2 187 196

Kr 8.7 234 250

N2 24.0 166 176

Ne 46.5 298 313

O2 24.5 195 204

Xe 5.2 212 228

Data: KL.

Table 19B.1 Viscosities of liquids at 298 K, η/(10−3 kg m−1 s−1)

Benzene 0.601
Carbon tetrachloride 0.880
Ethanol 1.06
Mercury 1.55
Methanol 0.553
Pentane 0.224
Sulfuric acid 27
Water† 0.891

† The viscosity of water over its entire liquid range is represented with less than 1 per 
cent error by the expression log(η20/η) = A/B,
A = 1.370 23(t − 20) + 8.36 × 10−4(t − 20)2 
B = 109 + t t = θ/°C
Convert kg m−1 s−1 to centipoise (cP) by multiplying by 103 (so η ≈ 1 cP for water).
Data: AIP, KL.

Table 19B.2 Ionic mobilities in water at 298 K, u/(10−8 m2 s−1 V−1)

Cations Anions

Ag+ 6.24 Br− 8.09

Ca2+ 6.17 CH CO3 2
− 4.24

Cu2+ 5.56 Cl− 7.91

H+ 36.23 CO3
2− 7.46

K+ 7.62 F− 5.70

Li+ 4.01 [Fe(CN)6]3− 10.5

Na+ 5.19 [Fe(CN)6]4− 11.4

NH4
+ 7.63 I− 7.96

[N(CH3)4]+ 4.65 NO3
− 7.40

Rb+ 7.92 OH− 20.64

Zn2+ 5.47 SO4
2− 8.29

Data: Principally Table 19B.2 and u = λ/zF.

Table 19B.3 Diffusion coefficients at 298 K, D/(10−9 m2 s−1)

Molecules in liquids Ions in water

I2 in hexane 4.05 H2 in CCl4(l) 9.75 K+ 1.96 Br− 2.08

 in benzene 2.13 N2 in CCl4(l) 3.42 H+ 9.31 Cl− 2.03

CCl4 in heptane 3.17 O2 in CCl4(l) 3.82 Li+ 1.03 F− 1.46

Glycine in water 1.055 Ar in CCl4(l) 3.63 Na+ 1.33 I− 2.05

Dextrose in water 0.673 CH4 in CCl4(l) 2.89 OH− 5.03

Sucrose in water 0.5216 H2O in water 2.26

CH3OH in water 1.58

C2H5OH in water 1.24

Data: AIP.
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Table 20B.1 Kinetic data for first-order reactions

Phase θ/°C kr/s−1 t1/2

2 N2O5→ 4 NO2 + O2 g 25 3.38 × 10−5 5.70 h

HNO3(l) 25 1.47 × 10−6 131 h

Br2(l) 25 4.27 × 10−5 4.51 h

C2H6 → 2 CH3 g 700 5.36 × 10−4 21.6 min

Cyclopropane → propene g 500 6.71 × 10−4 17.2 min

CH3N2CH3→ C2H6 + N2 g 327 3.4 × 10−4 34 min

Sucrose → glucose + fructose aq(H+) 25 6.0 × 10−5 3.2 h

g: High pressure gas-phase limit.
Data: Principally K.J. Laidler, Chemical kinetics. Harper & Row, New York (1987); M.J. Pilling and P.W. Seakins, Reaction kinetics. Oxford University Press (1995); J. Nicholas, 
Chemical kinetics. Harper & Row, New York (1976). See also JL.

Table 20B.2 Kinetic data for second-order reactions

Phase θ/°C kr/(dm3 mol−1 s−1)

2 NOBr → 2 NO + Br2 g 10 0.80

2 NO2 → 2 NO + O2 g 300 0.54

H2 + I2 → 2 HI g 400 2.42 × 10−2

D2 + HCl → DH + DCl g 600 0.141

2 I → I2 g 23 7 × 109

hexane 50 1.8 × 1010

CH3Cl + CH3O− methanol 20 2.29 × 10−6

CH3Br + CH3O− methanol 20 9.23 × 10−6

H+ + OH− → H2O water 25 1.35 × 1011

ice −10 8.6 × 1012

Data: Principally K.J. Laidler, Chemical kinetics. Harper & Row, New York (1987); M.J. Pilling and P.W. Seakins, 
Reaction kinetics. Oxford University Press, (1995); J. Nicholas, Chemical kinetics. Harper & Row, New York (1976).

Table 20D.1 Arrhenius parameters

First-order reactions A/s−1 Ea/(kJ mol−1)

Cyclopropane → propene 1.58 × 1015 272

CH3NC → CH3CN 3.98 × 1013 160

cis-CHD = CHD → trans-CHD = CHD 3.16 × 1012 256

Cyclobutane → 2 C2H4 3.98 × 1013 261

C2H5I → C2H4 + HI 2.51 × 1017 209

C2H6 → 2 CH3 2.51 × 107 384

2 N2O5 → 4 NO2 + O2 4.94 × 1013 103.4

N2O → N2 + O 7.94 × 1011 250

C2H5 → C2H4 + H 1.0 × 1013 167

(Continued)
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Table 20D.1 (Continued)

Second-order, gas-phase A/(dm3 mol−1 s−1) Ea/(kJ mol−1)

O + N2 → NO + N 1 × 1011 315

OH + H2 → H2O + H 8 × 1010 42

Cl + H2 → HCl + H 8 × 1010 23

2 CH3 → C2H6 2 × 1010 ca.0

NO + Cl2 → NOCl + Cl 4.0 × 109 85

SO + O2 → SO2 + O 3 × 108 27

CH3 + C2H6 → CH4 + C2H5 2 × 108 44

C6H5 + H2 → C6H6 + H 1 × 108 ca.25

Second-order, solution A/(dm3 mol−1 s−1) Ea/(kJ mol−1)

C2H5ONa + CH3I in ethanol 2.42 × 1011 81.6

C2H5Br + OH− in water 4.30 × 1011 89.5

C2H5I + C2H5O− in ethanol 1.49 × 1011 86.6

C2H5Br + OH− in ethanol 4.30 × 1011 89.5

CO2 + OH− in water 1.5 × 1010 38

CH I S O in water3 2+ −
3
2 2.19 × 1012 78.7

Sucrose + H2O in acidic water

(CH3)3CCl solvolysis

1.50 × 1015 107.9

 in water 7.1 × 1016 100

 in methanol 2.3 × 1013 107

 in ethanol 3.0 × 1013 112

 in acetic acid 4.3 × 1013 111

 in chloroform 1.4 × 104 45

C6H5NH2 + C6H5COCH2Br in benzene 91 34

Data: Principally J. Nicholas, Chemical kinetics. Harper & Row, New York (1976) and A.A. Frost and R.G. Pearson, Kinetics 
and mechanism. Wiley, New York (1961).

Table 21A.1 Arrhenius parameters for gas-phase reactions

A/(dm3 mol−1 s−1)

Experiment Theory Ea/(kJ mol−1) P

2 NOCl → 2 NO + Cl2 9.4 × 109 5.9 × 1010 102.0 0.16

2 NO2 → 2 NO + O2 2.0 × 109 4.0 × 1010 111.0 5.0 × 10−2

2 ClO → Cl2 + O2 6.3 × 107 2.5 × 1010 0.0 2.5 × 10−3

H2 + C2H4 → C2H6 1.24 × 106 7.4 × 1011 180 1.7 × 10−6

K + Br2 → KBr + Br 1.0 × 1012 2.1 × 1011 0.0 4.8

Data: Principally M.J. Pilling and P.W. Seakins, Reaction kinetics. Oxford University Press (1995).

Table 21B.1 Arrhenius parameters for reactions in solution. See Table 20D.1.
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Table 21F.1 Exchange current densities ( j0) and transfer 
coefficients (α) at 298 K

Reaction Electrode j0/(A cm−2) α

2 H+ + 2 e− → H2 Pt 7.9 × 10−4

Cu 1 × 10−6

Ni 6.3 × 10−6 0.58

Hg 7.9 × 10−13 0.50

Pb 5.0 × 10−12

Fe3+ + e− → Fe2+ Pt 2.5 × 10−3 0.58

Ce4+ + e− → Ce3+ Pt 4.0 × 10−5 0.75

Data: Principally J.O’M. Bockris and A.K.N. Reddy, Modern electrochemistry. 
Pleanum, New York (1970).

Table 22A.2 Standard enthalpies of chemisorption, ΔadH</(kJ mol−1) at 298 K

Adsorbate Adsorbent (substrate)

Ti Ta Nb W Cr Mo Mn Fe Co Ni Rh Pt

H2 −188 −188 −167 −71 −134 −117

N2 −586 −293

O2 −720 −494 −293

CO −640 −192 −176

CO2 −682 −703 −552 −456 −339 −372 −222 −225 −146 −184

NH3 −301 −188 −155

C2H4 −577 −427 −427 −285 −243 −209

Data: D.O. Haywood and B.M.W. Trapnell, Chemisorption. Butterworth (1964).

Table 22A.1 Maximum observed standard enthalpies of 
physisorption, ΔadH</(kJ mol−1) at 298 K

C2H2 −38 H2 −84

C2H4 −34 H2O −59

CH4 −21 N2 −21

Cl2 −36 NH3 −38

CO −25 O2 −21

CO2 −25

Data: D.O. Haywood and B.M.W. Trapnell, Chemisorption. Butterworth (1964).

iranchembook.ir/edu



Part 4 character tables

The groups C1, Cs, Ci

The groups Cnv

The groups Dn

C1 (1) E h = 1

A 1

Cs= Ch m E σ h h = 2

A′ 1 1 x, y, Rz x2, y2, z2, xy

A″ 1 −1 z, Rx, Ry yz, zx

Ci = S2 1 E i h = 2

Ag 1 1 Rx, Ry, Rz x2, y2, z2, xy, yz, zx,

Au 1 −1 x, y, z

C2v, 2mm E C2 σv ′σ v h = 4

A1 1 1 1 1 z, z2, x2, y2

A2 1 1 −1 −1 xy Rz

B1 1 −1 1 −1 x, zx Ry

B2 1 −1 −1 1 y, yz Rx

C3v, 3m E 2C3 3σv h = 6

A1 1 1 1 z, z2, x2 + y2

A2 1 1 −1 Rz

E 2 −1 0 (x, y), (xy, x2 − y2) (yz, zx) (Rx, Ry)

C4v, 4mm E C2 2C4 2σv 2σd h = 8

A1 1 1 1 1 1 z, z2, x2 + y2

A2 1 1 1 −1 −1 Rz

B1 1 1 −1 1 −1 x2 − y2

B2 1 1 −1 −1 1 xy

E 2 −2 0 0 0 (x, y), (yz, zx) (Rx, Ry)

C5v E 2C5 2 5
2C 5σv h = 10, α = 72°

A1 1 1 1 1 z, z2, x2 + y2

A2 1 1 1 −1 Rz

E1 2 2 cos α 2 cos 2α 0 (x, y), (yz, zx) (Rx, Ry)

E2 2 2 cos 2α 2 cos α 0 (xy, x2 − y2)

C6v, 6mm E C2 2C3 2C6 3σd 3σv h = 12

A1 1 1 1 1 1 1 z, z2, x2 + y2

A2 1 1 1 1 −1 −1 Rz

B1 1 −1 1 −1 −1 1

B2 1 −1 1 −1 1 −1

E1 2 −2 −1 1 0 0 (x, y), (yz, zx) (Rx, Ry)

E2 2 2 −1 −1 0 0 (xy, x2 − y2)

C∞v E 2Cφ† ∞σv h = ∞

A1(Σ+) 1 1 1 z, z2, x2 + y2

A2(Σ−) 1 1 −1 Rz

E1(Π) 2 2 cos φ 0 (x, y), (yz, zx) (Rx, Ry)

E2(Δ) 2 2 cos 2φ 0 (xy, x2 − y2)

† There is only one member of this class if φ = π.

D2, 222 E Cz
2 Cy

2 Cx
2 h = 4

A1 1 1 1 1 x2, y2, z2

B1 1 1 −1 −1 z, xy Rz

B2 1 −1 1 −1 y, zx Ry

B3 1 −1 −1 1 x, yz Rx

D3, 32 E 2C3 3 2C ′ h = 6

A1 1 1 1 z2, x2 + y2

A2 1 1 −1 z Rz

E 2 −1 0 (x, y), (yz, zx), (xy, x2 − y2) (Rx, Ry)

D4, 422 E C2 2C4 2 2C ′ 2 2C″ h = 8

A1 1 1 1 1 1 z2, x2 + y2

A2 1 1 1 −1 −1 z Rz

B1 1 1 −1 1 −1 x2 − y2

B2 1 1 −1 −1 1 xy

E 2 −2 0 0 0 (x, y), (yz, zx) (Rx, Ry)
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The groups Dnh

D3 h, 62m E σh 2C3 2S3 3 2C ′ 3σv h = 12

′A1 1 1 1 1 1 1 z2, x2 + y2

′A2 1 1 1 1 −1 −1 Rz

′′A1 1 −1 1 −1 1 −1

′′A2 1 −1 1 −1 −1 1 z

E′ 2 2 −1 −1 0 0 (x, y), (xy, x2 − y2)

E″ 2 −2 −1 1 0 0 (yz, zx) (Rx, Ry)

D4 h, 
4/mmm

E 2C4 C2 2 2′C 2 2′′C i 2S4 σh 2σv 2σd h = 16

A1 g 1 1 1 1 1 1 1 1 1 1 x2+ y2, z2

A2 g 1 1 1 −1 −1 1 1 1 −1 −1 Rz

B1 g 1 −1 1 1 −1 1 −1 1 1 −1 x2 − y2

B2 g 1 −1 1 −1 1 1 −1 1 −1 1 xy

Eg 2 0 −2 0 0 2 0 −2 0 0 (yz, zx) (Rx, Ry)

A1u 1 1 1 1 1 −1 −1 −1 −1 −1

A2u 1 1 1 −1 −1 −1 −1 −1 1 1 z

B1u 1 −1 1 1 −1 −1 1 −1 −1 1

B2u 1 −1 1 −1 1 −1 1 −1 1 −1

Eu 2 0 −2 0 0 −2 0 2 0 0 (x, y)

D5 h E 2C5 2 5
2C 5C2 σh 2S5 2 5

3S 5σv h = 20 α = 72°

′A1 1 1 1 1 1 1 1 1 x2+ y2, z2

′A2 1 1 1 −1 1 1 1 −1 Rz

′E1 2 2 cos α 2 cos 2α 0 2 2 cos α 2 cos 2α 0 (x, y)

′E2 2 2 cos 2α 2 cos α 0 2 2 cos 2α 2 cos α 0 (x2 − y2, xy)

′′A1 1 1 1 1 −1 −1 −1 −1

′′A22 1 1 1 −1 −1 −1 −1 1 z

′′E1 2 2 cos α 2 cos 2α 0 −2 −2 cos α −2 cos 2α 0 (yz, zx) (Rx, Ry)

′′E2 2 2 cos 2α 2 cos α 0 −2 −2 cos 2α −2 cos α 0

D∞h E 2Cφ … ∞σv i 2S∞ … ∞ ′C2 h = ∞

A1 g ( )Σg
+ 1 1 … 1 1 1 … 1 z2, x2 + y2

A1u u( )Σ+ 1 1 … 1 −1 −1 … −1 z

A2g g( )Σ− 1 1 … −1 1 1 … −1 Rz

A2u u( )Σ− 1 1 … −1 −1 −1 … 1

E1 g(Πg) 2 2 cos φ … 0 2 −2 cos φ … 0 (yz, zx) (Rx, Ry)

E1u(Πu) 2 2 cos φ … 0 −2 2 cos φ … 0 (x, y)

E2 g(Δg) 2 2 cos 2φ … 0 2 2 cos 2φ … 0 (xy, x2 − y2)

E2u(Δu) 2 2 cos 2φ … 0 −2 −2 cos 2φ … 0

⋮ ⋮ ⋮ … ⋮ ⋮ ⋮ … ⋮
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The cubic groups

The icosahedral group

Td, 43m E 8C3 3C2 6σd 6S4 h = 24

A1 1 1 1 1 1 x2+ y2 + z2

A2 1 1 1 −1 −1

E 2 −1 2 0 0 (3z2 − r2, x2− y2)

T1 3 0 −1 −1 1 (Rx, Ry, Rz)

T2 3 0 −1 1 −1 (x, y, z), (xy, yz, zx)

Oh, m3m E 8C3 6C2 6C4 3 ( )2 4
2C C= i 6S4 8S6 3σh 6σd h = 48

A1 g 1 1 1 1 1 1 1 1 1 1 x2+ y2 + z2

A2 g 1 1 −1 −1 1 1 −1 1 1 −1

Eg 2 −1 0 0 2 2 0 −1 2 0 (2z2 − x2 − y2, x2 − y2)

T1 g 3 0 −1 1 −1 3 1 0 −1 −1 (Rx, Ry, Rz)

T2 g 3 0 1 −1 −1 3 −1 0 −1 1 (xy, yz, zx)

A1u 1 1 1 1 1 −1 −1 −1 −1 −1

A2u 1 1 −1 −1 1 −1 1 −1 −1 1

Eu 2 −1 0 0 2 −2 0 1 −2 0

T1u 3 0 −1 1 −1 −3 −1 0 1 1 (x, y, z)

T2u 3 0 1 −1 −1 −3 1 0 1 −1

I E 12C5 12 5
2C 20C3 15C2 h = 60

A 1 1 1 1 1 x2+ y2 + z2

T1 3 1
2

1 21 5( )/+ 1
2

1 21 5( )/− 0 −1 (x, y, z) (Rx, Ry, Rz)

T2 3 1
2

1 21 5( )/− 1
2

1 21 5( )/+ 0 −1

G 4 −1 −1 1 0

H 5 0 0 −1 1 (2z2 − x2 − y2, x2 − y2, xy, yz, zx)

Further information: P.W. Atkins, M.S. Child, and C.S.G. Phillips, Tables for group theory. Oxford University Press, (1970). In this source, which is available on the web (see p. x 
for more details), other character tables such as D2, D4, D2d, D3d, and D5d can be found.
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A
A2 system, 578
ab initio method, 433
absolute value, 314
absorbance, 480
absorption coefficient, 479
absorption rate, 477
absorption spectroscopy, 476
abstraction, 855
abundant-spin species, 588
acceleration, 10
acceleration of free fall, 12
accommodation, 939
acenaphthalene, 439
actinide see actinoid
actinoid, 3
activated complex, 839, 894
activated complex theory, 894
activation energy, 837, 883

negative, 847
activation, enthalpy of, 81
activation-controlled reaction, 890
active phase, 955
active site, 863
activity, 220

regular solution, 223
activity coefficient, 221

determination of, 270
addition, 855
additional work, 68
adenine, 705
adiabatic bomb calorimeter, 71
adiabatic change, 100
adiabatic container, 65
adiabatic flame calorimeter, 76
adsorbate, 938
adsorption, 938
adsorption isotherm, 946
AEDANS, 861
aerosol, 714
AES, Auger electron spectroscopy, 942
AFM, atomic force microscopy, 942
alanine, 456
alkali metal, 3
alkali metal spectra, 385
alkaline earth metal, 3
allotrope, 155
allowed transition, 381
alpha helix, 704
amount, 5
amount of substance, 5
ampere, 14
amplitude, 19
anaesthesia, 49
angular (bent) molecule, 4
angular momentum, 9, 337

addition, 386
commutators, 346
operators, 346

quantization, 340
vector representation, 341

angular velocity, 10
angular wavefunction, 359
anharmonicity, 506
anharmonicity constant, 507
anion, 3
anode, 260
anodic current density, 922
anthracene, 439
anthracene radical anion, 597
antibonding orbital, 411
antiferromagnetic, 770
anti-parallel beta sheet, 705
anti-Stokes lines, 511
anti-Stokes radiation, 476
antisymmetric stretch, 515
antisymmetric wavefunction, 373
argon-ion laser, 553
argument, 314
aromatic stability, 432
Arrhenius equation, 837
Arrhenius parameters, 837, 885
associated Laguerre polynomial, 360
asymmetric rotor, 490
atmosphere (unit), 5
atmosphere composition, 35
atom, 2
atomic force microscopy, 942
atomic number, 2
atomic orbital, 2, 361
atomic weight, 5
atomization, enthalpy of, 81
attractive force, 45
Aufbau principle, 375
Auger effect, 942
Auger electron spectroscopy, 942
average speed, 15
Avogadro’s constant, 5
Avogadro’s principle, 6, 32
AX spectrum, 573
AX2 system, 574
AX3 system, 575
Axilrod–Teller formula, 676
axis of symmetry, 448, 738
azeotrope, 207
azimuth, 295
azulene, 439

B
Balmer series, 357
band gap, 755
band spectra, 509
band structure, 755
bar (unit), 5
barometer, 31
barometric formula, 176, 652
base pair, 706

basis, 468
basis (of representation), 459
Bayard–Alpert pressure gauge, 31
Beer–Lambert law, 479
benzene

Hückel method, 431
resonance, 402

benzene radical anion, 566, 596
Berthelot equation, 50
BET isotherm, Brunauer–Emmett–

Teller isotherm, 949
beta sheet, 705
bilayer, 719
bimolecular reaction, 842
binary mixture, 180
binding energy, 430
bioenergetics, 63
biological macromolecule, 703
biological standard state, 222
bipolaron, 712
Birge–Sponer plot, 508
black body, 282
block (of periodic table), 3
block-diagonal matrix, 459
body-centred unit cell, 739
Bohr frequency condition, 286, 476
Bohr magneton, 565, 769
Bohr model, 391
Bohr radius, 360
boiling, 158
boiling point, 158
boiling point elevation, 196
boiling-point constant, 197
Boltzmann distribution, 15, 607

equilibrium and temperature, 256
equilibrium constant, 251

Boltzmann formula (entropy), 116, 
638

Boltzmann’s constant, 15
bond, 3
bond dissociation energy, 399
bond order, 416
bonding orbital, 409
Born equation, 137
Born interpretation, 293
Born–Haber cycle, 82, 759
Born–Mayer equation, 758
Born–Oppenheimer 

approximation, 399
boson, 372
bouncing ball, 113
bound state, 362
boundary condition, 318, 354
boundary surface, 364
Boyle temperature, 48
Boyle’s law, 6, 32
Brackett series, 357
Bragg method, 743
Bragg’s law, 744

branch, 509
Bravais lattice, 739
Bremsstrahlung, 742
Brunauer–Emmett–Teller 

isotherm, 949
buckminsterfullerene, 453
building-up principle, 375

molecules, 413
bulk matter, 5
bulk modulus, 763
butadiene, 430
Butler–Volmer equation, 921

C
caesium chloride structure, 756
cage effect, 889
calorie, 12
calorimeter, 76
calorimeter constant, 72
calorimetry, 71, 76
camphor, 666
canonical distribution, 631
canonical ensemble, 630
canonical partition function, 632
capillary action, 685
capillary technique, 809
carbon dioxide

isotherms, 46
phase diagram, 160

carbon dioxide laser, 553
carbon monoxide

Raman specrum, 512
residual entropy, 643

carbonyl chromophore, 541
Carnot cycle, 118
carotene, 321, 350
CARS, coherent anti-Stokes Raman 

spectroscopy, 519
catalyst, 840, 955
catalytic constant, 866
catalytic efficiency, 866
cathode, 260
cathodic current density, 922
cation, 3
cavity mode, 549
CCD, charge-coupled device,  

485, 907
ccp, cubic close-packed, 753
CD spectra, circular dichroism 

spectra, 541
cell notation, 261
cell potential, 262

temperature coefficient, 264
cell reaction, 261
Celsius scale, 6, 31
centre of symmetry, 448
centrifugal distortion, 493
centrifugal distortion constant, 493
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cesium see caesium
chain carrier, 852
chain polymerization, 850
chain reaction, 852
chain relation, 109
chain transfer, 853
character, 460
character table, 461
charge, 13
charge number, 13
charge-coupled device, 485, 907
charge-transfer transition, 540
Charles’s law, 6, 32
chemical amount, 5
chemical bond, 3
chemical equilibrium, 247
chemical exchange, 580
chemical kinetics, 820
chemical potential, 157, 182

colligative property, 195
ideal solution, 188
solvent, 221

chemical quench flow method, 822
chemical shift, 569

electronegativity dependence, 571
chemically equivalent nuclei, 577
chemiluminescence, 907
chemisorption, 939
chemisorption ability, 958
chemistry, 1
chiral molecule, 456
cholesterol, 720
chorophyll absorption spectrum, 532
chromophore, 539
circular dichroism, 541
circularly polarized, 21
Clapeyron equation, 168
class, 458
classical mechanics, 9
classical trajectory, 912
Clausius inequality, 121
Clausius statement, 114
Clausius–Clapeyron equation, 169
Clausius–Mossotti equation, 665
Clebsch–Gordan series, 386
closed shell, 374
closed system, 64
close-packed structure, 752
cloud formation, 689
CMC, critical micelle 

concentration, 717
CNDO, complete neglect of 

differential overlap, 433
co-adsorption, 955
coagulation, 716
coefficient of performance, 150
coefficient of thermal 

conductivity, 791
coefficient of viscosity, 792
coherence length, 549
coherent anti-Stokes Raman 

spectroscopy, 519
coherent light, 549
colatitude, 295
collapse pressure, 687
colligative property, 195
collision cross-section, 42, 882
collision density, 882
collision flux, 792, 939
collision frequency, 42
collision theory, 881

collisional deactivation, 482, 856
collisional lifetime, 482
collision-induced emission, 856
colloid, 714
colloid stability, 715
colour, 533
combination band, 517
combination difference, 510
combination principle, 357
combined gas law, 34
combustion, 65
combustion, enthalpy of, 81
commutation relation, 307
commutator, 307
compensator, 483
competitive inhibition, 867
complementary observables, 307
complete set, 304
complex conjugate, 314
complex number, 314
complex plane, 314
complex-mode process, 912
component, 159
component of vector, 395
compound semiconductor, 766
compress, 30
compression factor, 46, 146
concentration polarization, 925
condensation, 689
condensation reaction, 851
conductance, 799
conducting polymer, 712
conduction band, 766
conductivity, 799
conductivity and mobility, 802
conductor, 765
configuration, 371
configuration (statistical), 605
configuration integral, 634
conformation, 698
conformational entropy, 708
congruent melting, 214
conjugated hydrocarbon, 440
consecutive reactions, 843
consolute temperature, 209, 211
constant, 15, 33, 262, 357

Avogadro’s, 5
boiling-point, 197
Boltzmann, 15
catalytic, 866
centrifugal distortion, 493
effective rate, 850
equilibirum, 249
Faraday’s, 262
force, 329, 503
freezing-point, 197
gas, 6, 15, 33
Henry’s law, 190
Huggins, 735
Madelung, 758
Michaelis, 864
molar gas, 33
normalization, 295
Planck’s, 284
rate, 884
rotational, 491
Rydberg, 357, 362
shielding, 374
spin–orbit coupling, 384
thermodynamic equilibrium, 249

constant-force mode, 942

constituent, 159
constrained chain, 702
constructive interference, 20
contact angle, 686
contact interaction, 576, 597
contour length, 701
convection, 808
convective flux, 808
converge (series), 60
convolution theorem, 785
cooling curve, 156, 213
Cooper pair, 768
cooperative process, 710
cooperative transition, 172
coordination number, 753
coordination number (ionic 

lattice), 756
Corey–Pauling rules, 704
coronene, 340, 473
correlation analysis, 899
correlation diagram, 388
correlation spectroscopy, 590
correspondence principle, 320
corresponding states, 52
cosine law, 396
cosmic ray, 21
COSY, correlation spectroscopy, 590
Coulomb integral, 423
Coulomb potential, 13
Coulomb potential energy, 12
couple, 260
covalent network solid, 760
covalent solid, 752, 760
critical compression factor, 51
critical constants, 48, 50
critical micelle concentration, 717
critical molar volume, 48
critical pressure, 48, 158
critical solution temperature, 209, 211
critical temperature, 48, 158
cross peak, 590
cross product, 395
crossed beams, 905
crossed molecular beams, 907
cross-section, 905
cryoscopy, 197
crystal structure, 737
crystal system, 738
cubic close-packed, 753
cubic F, 753
cubic group, 453
cubic system, 739
cubic unit cell, 738
cumulative reaction probability, 913
Curie law, 770
current, 14
current density, 922
curvature and kinetic energy, 301
curved surface, 684
cyclic boundary condition, 339
cyclic voltammetry, 926
cyclooctatetraene, 440
cylindrical coordinates, 339
cytosine, 705

D
dalton, 724
Dalton’s law, 7, 35
Daniell cell, 261
Davies equation, 228

Davisson–Germer experiment, 289
Davydov splitting, 774
de Broglie relation, 290
de Broglie wavelength, 962
debye, 660
Debye equation, 665
Debye formula, 286
Debye length, 229
Debye temperature, 286
Debye–Hückel law, 900
Debye–Hückel limiting law, 227
Debye–Hückel theory, 227, 229
Debye–Scherrer method, 743
decay of excited state, 857
decomposition of direct product, 467
defect surface, 938
definite integral, 61
degeneracy, 324, 461

rotational, 492
degradation, 698
degree of dissociation, 250, 255
degree of freedom, 159
degree of polymerization, 851
delocalization energy, 431
delta scale, 569
denaturation, 710
density, 5
density functional theory, 434
density of states, 283, 631, 765
depolarization, 518
depolarized line, 518
derivative, 59
deshielded nucleus, 569
desorption, 938
destructive interference, 19
detector, 485
determinant, 374, 443
deuterium lamp, 483
DFT, density functional theory, 434
diagonal matrix, 443
diagonal peak, 590
dialysis, 715
diamagnetic, 768
diamagnetic contribution, 570
diamond structure, 760
diaphragm technique, 809
diathermic container, 65
dielectric constant, 665
dielectric constant see relative 

permittivity
dietary calorie, 12
Dieterici equation, 50
differential, 354
differential equation, 354
differential overlap, 433
differential scanning calorimeter, 87
differential scanning calorimetry, 156
differential scattering cross-

section, 905
differentiation, 59
diffraction, 289, 742
diffraction grating, 483
diffractometer, 744
diffuse double layer, 921
diffusion, 806, 890

Fick’s first law, 790, 806
Fick’s second law, 807
statistical view, 810
surface, 941

diffusion coefficient, 791, 803
diffusion-controlled limit, 890
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diffusion equation, 807
dihedral plane, 448
dihelium, 414
dilute-spin species, 588
dinitrogen, 416
diode laser, 776
dioxygen, 416
dipolar field, 571
dipole–dipole interaction, 597, 670
dipole–induced dipole 

interaction, 673
dipole moment, 4, 660

addition, 661
direct method, 748
direct-mode process, 912
direct product, 467
disperse phase, 714
dispersion, 156
dispersity, 723
disproportionation, 853
dissociation, 545, 855
dissociation equilibrium, 648
dissociation limit, 545
distillation, 206, 211
distortion polarization, 664
diverge (series), 60
D lines, 385
d-metal complex, 539
DNA, 705
donor–acceptor complex, 860
dopant, 766
Doppler broadening, 481
Doppler effect, 481
d orbital, 368
dot product, 395
double bond, 3, 405
double helix, 706
double integral, 62
double layer, 716, 920
drift speed, 727, 801
DSC, differential scanning 

calorimeter, 87
Dulong and Petit’s law, 285
duplet, 3
DVLO theory, Derjaguin, Landau, 

Verway, and Overbeek 
theory, 716

dye laser, 554
dynamic equilibrium, 15

E
effective mass, 330, 504, 516
effective nuclear charge, 374
effective potential energy, 360
effective rate constant, 850
effective transverse relaxation 

time, 586
efficiency

catalytic, 866
energy transfer, 860

efficiency, heat engine, 119
effusion, 792, 796
Ehrenfest classification, 171
Ehrenfest equations, 176
eigenfunction, 300
eigenvalue, 300
eigenvalue equation, 299, 444
eigenvector, 444
Einstein coefficients, 477

Einstein formula, 285
Einstein relation (ion mobility), 803
Einstein temperature, 285
Einstein–Smoluchowski equation, 811
elastic collision, 37
elastic deformation, 709, 763
elastomer, 709
electric current, 14
electric dipole moment, 4, 660
electric field, 20
electric field strength, 13
electrical conduction, 765
electrical double layer, 716, 920
electrical heating, 72
electrical work, 69, 262
electrochemical cell, 259
electrochemical series, 270
electrode, 259
electrode compartment, 259
electrode concentration cell, 260
electrokinetic potential, 716
electrolysis, 927
electrolyte, 259
electrolyte concentration cell, 260
electrolytic cell, 259
electromagnetic radiation, 20
electromagnetic spectrum, 21
electron affinity, 378
electron configuration, 371

molecules, 413
electron density, 434
electron density (X-ray), 746
electron diffraction, 289, 749
electron gain, enthalpy of, 81
electron microscopy, 941
electron pairing, 400
electron paramagnetic resonance,  

564, 594
electron spin, 371
electron spin resonance see electron 

paramagnetic resonance
electron transfer, 855, 860, 914
electronegativity, 421

chemical shift, 571
electron–electron interaction, 374
electronic configuration, 2
electronic mean energy, 627
electronic partition function, 621
electronic polarizability, 665
electronic transition, 532
electronvolt, 13
electrospray ionization, 724
electrostatic potential surface, 434
element (of matrix), 443
Eley–Rideal mechanism, 956
elpot surface, 434
emission spectroscopy, 476
emulsion, 714
encounter pair, 889
endergonic reaction, 247
endothermic process, 65, 80
energy, 11, 65
energy, distribution of, 113
energy density, 477
energy density of radiation, 283
energy flux, 790
energy pooling, 856
energy quantization, 284
energy transfer, 856
enhancement parameter (NOE), 589

ensemble, 630
enthalpy, 14, 75

partition function, 646
enthalpy, variation with 

temperature, 77
enthalpy and internal energy 

changes, 77
enthalpy of activation, 899
enthalpy of adsorption, 939, 948
enthalpy of chemisorption, 940
enthalpy of combustion, 83
enthalpy of formation, 84
enthalpy of mixing

ideal solution, 193
perfect gas, 187

enthalpy of physisorption, 939
enthalpy of reaction, 83
enthalpy of transition, 81
entropy, 14

Boltzmann formula, 638
conformational, 708
partition function, 639
rotational contribution, 641
statistical definition, 638
translational contribution, 640
vibrational contribution, 642

entropy, convention for ions, 129
entropy, measurement of, 126

entropy, molecular 
interpretation, 117

perfect gas expansion, 121
phase transition, 121
state function, 117
statistical definition, 116
thermodynamic definition, 115
variation with temperature, 122

entropy of activation, 899
entropy of mixing, 186

ideal solution, 192
entropy of surroundings, 116
enzyme, 863
e orbital, 539
EPR, electron paramagnetic 

resonance, 564, 594
EPR spectrometer, 566
equal a priori probability, 605
equation

Arrhenius, 837
Berthelot, 50
Born, 137
Born–Mayer, 758
Butler–Volmer, 921
Clapeyron, 168
Clausius–Clapeyron, 169
Clausius–Mossotti, 665
Davies, 228
Debye, 665
Dieterici, 50
diffusion, 807
eigenvalue, 299
Einstein–Smoluchowski, 811
Eyring, 896
fundamental, 140
generalized diffusion, 808
Gibbs–Duhem, 183
Gibbs–Duhem–Margules, 242
Gibbs–Helmholtz, 144, 256
Karplus, 575, 600
Kelvin, 689
Laplace, 684

Margules, 223
Mark–Kuhn–Houwink–

Sakurada, 729
material-balance, 892
McConnell, 597
Michaelis, 864
Nernst, 263
Nernst–Einstein, 803
perfect gas, 6
phenomenological, 790
radial diffusion, 890
Sackur–Tetrode, 640
Scatchard, 243
Schrödinger (time-

dependent), 292, 293
Schrödinger (time-independent), 292

Stern–Volmer, 858
Stokes–Einstein, 803
thermochemical, 83
Truesdell–Jones, 228
van’t Hoff (equilibrium), 256
van’t Hoff equation (osmosis), 199
van der Waals, 48, 50
Wierl, 749

equation of state, 32, 142, 645
perfect gas, 33
thermodynamic, 142
virial, 47, 50

equilibrium, 15
approach to, 833
chemical potential criterion, 157
effect of catalyst, 254
response to pressure, 254
response to temperature, 255

equilibrium, mechanical, 30
equilibrium bond length, 399
equilibrium constant, 249

determination of, 270
molecular interpretation, 251
partition function, 647
rate constant relation, 834
relation between, 251
response to temperature, 257
standard cell potential, 264

equilibrium table, 250
equipartition theorem, 16, 67
ER mechanism, Eley–Rideal 

mechanism, 956
error function, 335
escape velocity, 56
ESR, electron spin resonance,  

564, 594
essential symmetry, 739
ethanol

electron density representation, 434
partial molar volume, 181

Euler chain relation, 109
Euler’s formula, 314
eutectic, 213
eutectic halt, 213
evanescent wave, 944
exact differential, 91, 109
excess enthalpy, 194
excess entropy, 193
excess function, 193
exchange correction, 379
exchange-current density, 922, 927
excimer formation, 856
excimer laser, 554
exciplex, 554
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exciplex laser, 554
excited state absorption, 856
exciton, 773
exergonic reaction, 246
exothermic process, 65, 80
expanded octet, 3
expansion coefficient, 93
expansion work, 68
expectation value, 304
extended Debye–Hückel law, 228
extension work, 69
extensive property, 5
extent of dissociation, 250
extent of reaction, 245, 822
extinction coefficient, 479
extrinsic semiconductor, 766
Eyring equation, 896

F
face-centred unit cell, 739
factorial, 60
far infrared, 21
faradaic rectification, 936
Faraday’s constant, 262
FEMO, free-electron molecular 

orbital, 441
femtochemistry, 897
femtosecond spectroscopy, 898
Fermi contact interaction, 576, 597
Fermi energy, 765
Fermi level, 756, 765
Fermi–Dirac distribution, 765
fermion, 372
ferromagnetic, 770
Fick’s first law, 790, 806
Fick’s second law, 807
FID, free-induction decay, 584
fine structure, 573
finite well, 327
first ionization energy, 377
First Law of thermodynamics, 14, 67
first-order phase transition, 171
first-order reaction, 827
flash desorption, 946
flash photolysis, 822
flocculation, 716
flow method, 821
fluorescence, 485, 543, 856, 857
fluorescence resonance energy 

transfer, 861
fluorine (MO theory), 416
flux, 790
foam, 714
food, 63
forbidden transition, 381
force, 10
force constant, 329, 503
force field, 517
formation, enthalpy of, 81, 84
formation, standard Gibbs energy 

of, 136
formula unit, 3
Förster theory, 860
forward bias, 767
four-circle diffractometer, 744
Fourier series, 783
Fourier synthesis (X-ray), 746
Fourier transform, 784
Fourier-transform NMR, 582

Fourier transform technique, 483
four-level laser, 548
fractional coverage, 940
fractional distillation, 206
Franck–Condon factor, 537
Franck–Condon principle, 536, 915
free-electron molecular orbital 

method, 441
free energy, 15, 135
free expansion, 69
free-induction decay, 584
free motion, 317
freely jointed chain, 698
freeze quench method, 822
freezing-point constant, 197
freezing point depression, 197
freezing temperature, 158
Frenkel exciton, 773
frequency, 19
frequency doubling, 776
FRET, fluorescence resonance energy 

transfer, 861
Freundlich isotherm, 951
frictional coefficient, 727
FT-NMR, Fourier-transform 

NMR, 582
fugacity, 146
fugacity coefficient, 146
functional, 434
fundamental equation, 140
fundamental equation of chemical 

thermodynamics, 143, 183
fundamental transition, 506
furan, 471
fusion, enthalpy of, 81

G
g,u symmetry, 412
gain, 551
Galvani potential difference, 920, 921
galvanic cell, 259, 927
gamma-ray, 21
gas, 5, 30
gas constant, 6, 15, 33
gas electrode, 259
gas imperfection, 45
gas liquefaction, 97
gas saturation method, 176
gas solubility, 190
gas solvation, 166
Gaussian function, 331
Gaussian-type orbital, 433
gel, 714
general solution, 354
generalized diffusion equation, 808
generalized displacement, 69
generalized force, 69
gerade, 412
g-factor, nuclear, 562
Gibbs energy, 15, 132, 142, 143

partition function, 646
variation with pressure, 143, 144
variation with temperature, 143, 144

Gibbs energy of activation, 899, 917
Gibbs energy of mixing, 185

ideal solution, 192
regular solution, 194, 209

Gibbs energy of reaction, 246
Gibbs isotherm, 688

Gibbs–Duhem equation, 183
Gibbs–Duhem–Margules 

equation, 242
Gibbs–Helmholtz equation, 144, 256
glass, 710
glass transition temperature, 710
globar, 482
glycine, 456
Gouy balance, 769
Gouy–Chapman model, 921
gradient, 397
Graham’s law, 792, 796
Grahame model, 921
grand canonical ensemble, 630
gravimetry, 944
gravitational potential energy, 12
gross selection rule, 478
Grotrian diagram, 382
Grotthuss mechanism, 802
group, 2, 457
group theory, 457
GTO, Gaussian-type orbital, 433
guanine, 705
g-value, electron, 565, 594
gyromagnetic ratio see magnetogyric 

ratio

H
haemerythrin, 530
half-life, 828, 829
half-reaction, 260
halogen, 3
hamiltonian

helium atom, 371
hydrogen atom, 358
hydrogen molecule-ion, 407
nuclear magnetic, 562

hamiltonian operator, 299
hard sphere fluid, 681
hard-sphere potential energy, 677
harmonic motion, 329
harmonic oscillator, 10, 329, 504

energy levels, 330
mean energy, 626
partition function, 620
wavefunctions, 331
zero-point energy, 330

harmonic wave, 19
Harned cell, 268
harpoon mechanism, 885
Hartree–Fock procedure, 379
hcp, hexagonally close-packed, 753
heat, 65
heat, molecular interpretation, 66
heat and work, equivalence of, 67
heat capacity, 14

Debye formula, 151
Dulong and Petit’s law, 285
Einstein’s formula, 151, 285
partition function, 637
rotational contribution, 657

heat capacity, relation between, 79, 94
heat capacity, variation with 

temperature, 78
heat capacity at constant volume,  

72, 77
heat engine efficiency, 119
heat pump, 150
heat theorem, 127

heat transfer at constant pressure, 75
heat transfer at constant volume, 71
Heisenberg uncertainty principle, 305
helium

excited states, 383
lambda transition, 172
phase diagram, 162
spectra, 383

helium atom, 371
helium–neon laser, 553
helix–coil transition, 604
Helmholtz energy, 132

partition function, 645
Helmholtz layer, 920
Helmholtz plane, 921
hen white lysozyme, 106
Henry’s law, 188
Henry’s law constant, 190
Hermann–Mauguin system, 449
Hermite polynomial, 331
hermitian operator, 302
hermiticity, 302
Hess’s law, 83
heterogeneous catalyst, 840, 955
heteronuclear spin system, 579
hexagonal system, 739
hexagonally close-packed, 753
HF–SCF, Hartree–Fock self-consistent 

field, 379
high-temperature 

superconductor, 767
homogeneous catalyst, 840
homonuclear spin system, 580
horizontal plane, 448
HTSC, high-temperature 

superconductor, 767
Hückel approximation (metals), 754
Hückel approximations, 428
Huggins constant, 735
Humphreys series, 393
Hund’s rules, 376, 389
hybridization, 403
hydration, enthalpy of, 81
hydrodynamic flow, 904
hydrodynamic radius, 801
hydrogen atom

degeneracy, 363
energy levels, 362
ground state, 364
spectrum, 357
wavefunctions, 361

hydrogen bonding, 674
hydrogen bromide (PES), 557
hydrogen fluoride

electron density surface, 420
MO description, 424

hydrogen ion, Gibbs energy 
convention, 136

hydrogen ion, standard entropy, 129
hydrogen molecule

MO theory, 414
VB theory, 401

hydrogen molecule-ion, 407
hydrogenic atom (spectra), 381
hydrophilic, 714
hydrophobic, 714
hydrophobic interaction, 675
hydrophobicity constant, 675
hydrostatic pressure, 31
hydrostatic stress, 762
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hyperfine coupling constant, 595
hyperfine structure, 595
hyperpolarizability, 663, 776
hypervalent, 3

I
IC, internal conversion, 856
ice

phase diagram, 161
residual entropy, 128, 643
structure, 161, 760

icosahedral group, 453
ideal gas see perfect gas
ideal gas versus perfect gas, 193
ideal solubility, 198
ideal solution, 188, 192
ideal–dilute solution, 189, 221
ideality, deviation from, 188
identity operation, 449
imaginary part, 314
immiscible liquids, 208
impact parameter, 905
improper rotation, 448
improper rotation axis, 448
incongruent melting, 215
indefinite integral, 61
independent migration of ions, 800
independent molecules, 633
indistinguishable molecules, 633
induced dipole moment, 663
induced dipole–induced dipole 

interaction, 673
induced-fit model, 863
inelastic neutron scattering, 798
inexact differential, 91
infrared active, 505
infrared chemiluminescence, 907
infrared spectra, 516
infrared spectroscopy, 505
inhibition, 866
inhomogeneous broadening, 586
initial condition, 354
initial rate method, 825
inner transition metal, 3
instantaneous rate, 822
insulator, 764
integrand, 61
integrated absorption coefficient, 

 480
integrated rate law, 827
integrating factor, 111
integration, 60
integration (differential equation), 354
integration by parts, 61
intensity (NMR), 564
intensive property, 5
interference, 19, 742
interferogram, 484
internal conversion, 546, 856
internal energy, 14, 66, 140

dependence on volume, 92, 634
dependence on temperature, 93
effect of temperature, 73
general change, 91
liquid, 682
molecular interpretation, 67
partition function, 636

internal pressure, 92, 141, 634

International system, 449
intersystem crossing, 544, 856
intrinsic semiconductor, 766
intrinsic viscosity, 728
inverse Fourier transform, 784
inverse of matrix, 444
inversion operation, 448
inversion recovery technique, 586
inversion symmetry, 412
inversion temperature, 97
inverted region, 918
ion, 3
ion, Gibbs energy of formation, 136
ion mobility, 801
ionic atmosphere, 227
ionic compound, 3
ionic radii, 757
ionic solid, 756
ionic strength, 227, 900
ionic–covalent resonance, 402
ionization, 855
ionization, enthalpy of, 81
ionization energy, 362, 377
ionization potential, 363
irreducible representation, 460
irrep see irreducible representation
ISC, intersystem crossing, 856
ISC, isothermal titration 

calorimetry, 88
isenthalpic process, 95
isobar, 33
isobaric heat capacity, 78
isochore, 33
isodensity surface, 434
isoelectric point, 717
isolated system, 64
isolation method, 824
isoleucine, 591
isomerization, 855
isopleth, 203
isosteric enthalpy of adsorption, 948
isotherm, 33
isotherm, real gas, 46
isothermal compressibility, 93
isothermal Joule–Thomson 

coefficient, 96
isothermal reversible expansion, 70
isothermal titration calorimetry, 88

J
Jablonski diagram, 545
jj-coupling, 388
joule, 11
Joule’s experiment, 92
Joule–Thomson coefficient, 95
Joule–Thomson effect, 95

K
Karplus equation, 575, 600
Keesom interaction, 671
Kekulé structure, 402
kelvin, 6, 31
Kelvin equation, 689
Kelvin scale, 6, 120
Kelvin statement, 114
Kerr effect, 551
Kerr lens, 551

Kerr medium, 551
Kevlar, 243, 692
kinetic chain length, 853
kinetic control, 848
kinetic energy, 12

curvature of wavefunction, 301
kinetic isotope effect, 901
kinetic–molecular theory, 15, 37

transport properties, 793
kinetic salt effect, 900
kinetic theory of gases, 37
kinked surface, 938
Kirchhoff ’s law, 86
Kirkwood–Reisman theory, 735
KMT, kinetic–molecular theory,  

15, 37
Knudsen method, 796
Kohlrausch’s law, 800
Kohn–Sham equations, 434
K-radiation, 742
Krafft temperature, 717
Kronecker delta, 443
krypton-ion laser, 553

L
Lagrange method, 609
Laguerre polynomial, 360
Lamb formula, 570
lambda line, 162
lambda transition, 171
Langevin function, 664
Langmuir isotherm, 947
Langmuir–Blodgett film, 686
Langmuir–Hinshelwood 

mechanism, 956
lanthanide see lanthanoid
lanthanoid, 3
Laplace equation, 684
Laplacian, 397
Laplacian operator, 293
Larmor precession, 583
Larmor precession frequency, 563
laser, 547, 776
laser characteristics, 547
laser-induced fluorescence, 907
lattice energy, 757
lattice enthalpy, 82, 757, 759
law, 6, 7, 10, 32, 33, 83

Boyle’s, 6, 32
Bragg’s, 744
Charles’s, 6, 32
combined gas, 34
Curie, 770
Dalton’s, 7, 35
Debye–Hückel, 900
Debye–Hückel limiting, 227
Dulong and Petit’s, 285
extended Debye–Hückel, 228
Fick’s first, 790, 806
Fick’s second, 807
Graham’s, 792, 796
Henry’s, 188
Hess’s, 83
integrated rate, 827
Kirchhoff ’s, 86
Kohlrausch’s, 800
Newton’s (of cooling), 150
Newton’s second, 10

perfect gas, 33
Raoult’s, 187, 202
rate, 823
Rayleigh–Jeans, 283
Stokes’, 801

law of cosines, 396
law of the independent migration of 

ions, 800
LCAO, linear combination of atomic 

orbitals, 408
Le Chatelier’s principle, 255
LEED, low energy electron 

diffraction, 942
Legendrian operator, 293
Lennard-Jones potential energy, 677
lever rule, 205
Lewis structure, 3
LFER, linear free energy relation, 900
LH mechanism, Langmuir–

Hinshelwood mechanism, 956
lifetime broadening, 482
ligand-field splitting parameter, 539
ligand-to-metal charge-transfer 

transition, 540
light, 20

colour, 533
light scattering, 725
light-emitting diode, 776
limiting law, 7, 32, 188, 227
limiting molar conductivity, 800
Linde refrigerator, 97
Lindemann–Hinshelwood 

mechanism, 849
line broadening (NMR), 580
linear combination, 304
linear combination of atomic 

orbitals, 408
linear differential equation, 354
linear free energy relation, 900
linear molecule, 4
linear momentum, 9
linear momentum and 

wavelength, 290
linear rotor, 490, 493
linear-sweep voltammetry, 925
Lineweaver–Burke plot, 865
linewidth, 480
liposome, 718
liquid, 5, 680
liquid junction potential, 261
liquid–liquid phase diagram, 208
liquid–solid phase diagram, 212
liquid–vapour boundary, 169
liquid–vapour phase diagram, 203
LMCT, ligand-to-metal charge-

transfer transition, 540
local contribution, 570
lock-and-key model, 863
London formula, 674
London interaction, 673
lone pair, 3
longitudinal relaxation time, 585
Lorentzian shape, 600
low energy electron diffraction, 942
lower consolute temperature, 211
lower critical solution 

temperature, 211
lustre, 775
Lyman series, 357
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lyophilic, 714
lyophobic, 714
lyotropic mesomorph, 719
lysozyme, 106

M
Maclaurin series, 60
McConnell equation, 597
macromolecule, 697
Madelung constant, 758
magic-angle spinning, 592
magnetic field, 20
magnetic quantum number, 342
magnetic resonance, 561
magnetic resonance imaging, 599
magnetic susceptibility, 768, 769
magnetically equivalent nuclei, 577
magnetization, 768
magnetization vector, 583
magnetogyric ratio

electron, 565
nuclear, 562

magnitude of vector, 395
MALDI, matrix-assisted laser 

desorption/ionization, 724
MALDI-TOF, 724
manometer, 31
many-electron atom, 370
Marcus inverted region, 918
Marcus theory, 860, 915
Margules equations, 223
Mark–Kuhn–Houwink–Sakurada 

equation, 729
MAS, magic-angle spinning, 592
mass, 5
mass density, 5
mass number, 2
mass spectrometry, 724
material-balance equation, 892
matrix, 443
matrix-assisted laser desorption/

ionization, 724
matrix diagonalization (Hückel), 429
matrix representative, 459
matter flux, 790, 806
maximum multiplicity rule, 376
maximum non-expansion work, 135
maximum work, 71, 133
Maxwell construction, 51
Maxwell relation, 141
Maxwell–Boltzmann distribution,  

15, 38
mean activity coefficient, 227
mean bond enthalpy, 85
mean dipole moment, 664
mean displacement, 334, 810
mean energy, 624, 632
mean free path, 43
mean relative speed, 41
mean speed, 15, 38, 41
mean square displacement, 334
mechanical equilibrium, 30
mechanism of reaction, 842
Meissner effect, 771
melting temperature, 158
melting temperature (polymer), 710
membrane, 719
meniscus, 686
mesh surface, 434

metabolism, 63
metal, 752
metal/insoluble salt electrode, 259
metal/metal ion electrode, 259
metallic conductor, 764
metallic lustre, 775
metal-to-ligand charge-transfer 

transition, 540
metastable excited state, 547
metastable phase, 156
meteorological phenomena, 29
methane, 449

VB theory, 404
mho see siemens
micelle, 717
Michaelis constant, 864
Michaelis equation, 864
Michaelis–Menten mechanism, 864
Michelson interferometer, 483
microcanonical ensemble, 630
microscopy, 940
microstate, 116
microwave, 21
microwave spectroscopy, 495
Mie potential energy, 677
Miller indices, 740
mirror plane, 448
mixing

effect on equilibrium, 247
enthalpy of, 81
Gibbs energy, 185
perfect gas, 185

mixture, 180
MLCT, metal-to-ligand charge-

transfer transition, 540
MO theory, molecular orbital 

theory, 407
mobility, 801
mobility and conductivity, 802
mode locking, 550
moduli, 763
modulus, 314
molality, 180
molar absorption coefficient, 479
molar concentration, 180
molar conductivity, 799
molar gas constant, 33
molar heat capacity, 73, 78
molar magnetic susceptibility, 768
molar mass, 5
molar partition function, 646
molar polarization, 665
molarity, 180
mole fraction, 35
molecular beam, 904
molecular dynamics, 682
molecular interaction, 45
molecular modelling, 86
molecular orbital, 407
molecular orbital energy level 

diagram, 413
molecular orbital theory, 407
molecular partition function, 612
molecular potential energy curve, 399
molecular solid, 752, 760
molecular speed, 38
molecular vibration, 503
molecular weight, 5
molecularity, 842
molecule, 3

moment of inertia, 10, 337, 488
momentum flux, 791, 798
momentum operator, 300
monoclinic system, 739
monoclinic unit cell, 738
monodisperse, 722
monolayer, 686
monomer, 697
Monte Carlo method, 681
Morse oscillator, 507
Morse potential energy, 507
most probable speed, 38, 41
MPI, multiphoton ionization, 907
MRI, magnetic resonance 

imaging, 599
Mulliken electronegativity, 422
multiphoton ionization, 907
multiphoton process, 535
multiple integral, 62
multiplicity, 387
multipole, 662
multipole interaction energy, 672
mutual termination, 853

N
nanoscience, 316
nanotechnology, 316
naphthalene, 449
naphthalene radical anion, 597
natural linewidth, 482
Nd:YAG laser, 548
near infrared, 21
nearly-free electron 

approximation, 754
negative activation energy, 847
neighbouring group contribution, 570
neodymium laser, 548
Nernst equation, 263
Nernst filament, 482
Nernst heat theorem, 127
Nernst–Einstein equation, 803
network solid, 760
neutron diffraction, 748
neutron scattering, 798
newton, 10
Newton’s law of cooling, 150
Newton’s second law, 10
Newtonian flow, 791
n-fold improper rotation, 448
n-fold rotation, 448, 738
nicotine, 211
nitric oxide, 534
nitrogen

MO theory, 416
VB theory, 401

nitrogen laser, 554
nitrogen oxide, 534, 621
NMR, nuclear magnetic 

resonance, 561
NMR spectrometer, 563
noble gas, 3
node, 298
NOE, nuclear Overhauser effect, 589
NOESY, nuclear Overhauser effect 

spectroscopy, 591
non-competitive inhibition, 867
non-expansion work, 68
nonlinear optical phenomena, 776
non-primitive unit cell, 738

non-radiative decay, 543
normal boiling point, 158
normal freezing point, 158
normal mode, 515

infrared activity, 520
Raman activity, 521
symmetry, 520

normalization, 295
normalization constant, 295
n-to-pi* transition, 541
n-type semiconductor, 766
nuclear g-factor, 562
nuclear magnetic moment, 562
nuclear magnetic resonance, 561
nuclear magnetogyric ratio, 562
nuclear magneton, 562
nuclear model, 2
nuclear Overhauser effect, 589
nuclear Overhauser effect 

spectroscopy, 591
nuclear quadrupole, 592
nuclear spin quantum number, 561
nuclear statistics, 501
nucleation, 689
nucleic acid, 705
nucleon, 2
nucleon number, 2
nucleus, 2
number-average molar mass, 722

O
O branch, 511
oblate, 491
observable, 300
octahedral group, 453
octahedral molecule, 4
octet, 3
octupole, 662
one-dimensional random walk, 810
open system, 64
operator, 299
optical activity, 456
optical Kerr effect, 551
orbital angular momentum, 345
orbital angular momentum quantum 

number, 342
orbital approximation, 370
orbital notation, 412
order of group, 461
order of reaction, 824
order–disorder transition, 172
ordinary differential equation, 354
orientation polarization, 664
ortho- and para-hydrogen, 502
orthogonal polynomial, 331
orthogonality, 303
orthorhombic system, 739
osmometry, 199
osmosis, 199
osmotic pressure, 199
osmotic virial coefficient, 200
osmotic virial expansion, 200
Ostwald viscometer, 728
Otto cycle, 150
overall order, 824
overlap density, 409
overlap integral, 415, 468
overpotential, 921, 927
oxidation, 259
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oxidizing agent, 260
oxygen (MO theory), 416

P
p band, 755
P branch, 509
p orbital, 367
packing fraction, 753
paired electrons, 383
parabolic potential energy, 329, 504
parallel band, 516
parallel beta sheet, 705
parallel electron spins, 383
paramagnetic, 768
paramagnetic contribution, 570
parity, 533
partial charge, 4, 420
partial derivative, 59, 109
partial differential equation, 354
partial molar entropy, 129
partial molar Gibbs energy, 182
partial molar volume, 181
partial pressure, 35
partially miscible liquids, 193,  

208, 217
distillation, 211

particle in a box, 318
energy levels, 319
partition function, 615
wavefunctions, 319

particle in a finite well, 327
particle in a spherical cavity, 352
particle on a ring

energy levels, 339
wavefunctions, 339

particle on a sphere
energy levels, 344
wavefunctions, 343

partition function, 607, 612
electronic, 621
enthalpy, 646
entropy, 639
equilibrium constant, 647
factorization, 615
heat capacity, 637
Gibbs energy, 646
Helmholtz energy, 645
internal energy, 636
mean energy, 624
molar, 646
pressure, 645
rotational, 617
spin, 628
translational, 615
two-level system, 613
uniform ladder, 613
vibrational, 620

partition function density, 913
pascal, 5
Pascal’s triangle, 575, 596
Paschen series, 357
path function, 90
Patterson synthesis, 747
Pauli exclusion principle, 372
Pauli matrices, 472
Pauli principle, 373

nuclear statistics, 501
Pauling electronegativity, 421
PDI, polydispersity index, 723

penetration, 375
peptide group, 441
peptide link, 698
perfect elastomer, 709
perfect gas, 6, 33

enthalpy of mixing, 187
entropy of expansion, 115
entropy of mixing, 186
equilibria, 247
expansion work, 70
Gibbs energy, 145
Gibbs energy of mixing, 185
heat capacities, 79
internal energy, 67
internal pressure, 92
reversible adiabatic expansion, 100

perfect gas equation, 6
perfect gas equation of state, 33
perfect gas law, 33
perfect gas versus ideal gas, 193
perfect-gas temperature scale, 31
period, 2
periodic crystal, 737
periodic table, 2
periodicity, 378
peritectic line, 215
permanent dipole moment, 660
permittivity, 13
perpendicular band, 516
persistence length, 702
PES, photoelectron spectroscopy, 418
pharmacokinetics, 871
phase, 19, 155
phase boundary, 157, 167
phase diagram, 157

carbon dioxide, 160
helium, 162
incongruent melting, 215
liquid–liquid, 208
liquid–solid, 212
liquid–vapour, 203
sodium/potassium, 214
water, 161

phase problem, 747
phase rule, 159
phase separation, 208, 210
phase stability, 165
phase transition, 156, 164

entropy of, 121
phase-sensitive detection, 566
phenanthrene, 439
phenomenological equation, 790
phosphatidyl choline, 719
phospholipid, 719
phosphorescence, 485, 543, 856
photodiode, 485
photoelectric effect, 288
photoelectron spectroscopy, 418
photoemission spectroscopy, 942
photomultiplier tube, 485
photon, 287, 372, 381
photosynthesis, 819
photovoltaic device, 485
physical chemistry, 1
physical quantity, 6
physical state, 30
physisorption, 939
pi bond, 401
pi/2 pulse, 583
pi-bond formation energy, 431

pi-electron binding energy, 430
pi-to-pi* transition, 540
plait point, 218
planar bilayer, 719
Planck distribution, 284, 477
Planck’s constant, 284
plane polarized, 21
plasma, 944
plasmon, 944
plastic deformation, 709
PMT, photomultiplier tube, 485
p–n junction, 767
point dipole, 669
point group, 449
point group determination, 450
point group notation, 450
Poisson’s ratio, 763
polar bond, 4, 420
polar form (complex number), 314
polar molecule, 455, 660
polarity, 455
polarizability, 496, 663
polarizability volume, 663
polarization, 664
polarization mechanism, 576, 598
polarized light, 541
polarized line, 518
polarized wave, 21
polaron, 712
polyacetylene, 712
polyatomic molecule (MO 

description), 427
polychromator, 483
polydisperse, 722
polydispersity index, 723
polyelectrolyte, 705
polyelectron atom, see many-electron 

atom
polymer, 697
polymerization, 850
polymorph, 155
polypeptide, 698
polytype, 752
population, 608
population difference

EPR, 566
NMR, 564

population inversion, 548
population of states, 15
porphin, 352
porphine, 352, 473
position operator, 300
positronium, 393
postulates of quantum theory, 308
potential, 13
potential energy, 12
potential energy surface, 908
powder diffraction, 743
power (electrical), 14
precession, 563
precursor state, 951
predissociation, 545
pre-equilibrium, 846
pre-exponential factor, 837
pressure, 5, 30

KMT, 37
partition function, 645

pressure gauge, 31
pressure-jump technique, 834
primary absorption, 856

primary kinetic isotope effect, 901
primary photochemical process, 855
primary quantum yield, 856
primary structure, 697
primitive unit cell, 739
principal axis, 491
principal quantum number, 2, 361
principle

Aufbau, 375
Avogadro’s, 6, 32
building-up, 375
combination, 357
correspondence, 320
equal a priori probability, 605
Franck–Condon, 536, 915
Heisenberg uncertainty, 305
Le Chatelier’s, 255
Pauli, 373
Pauli exclusion, 372
Ritz combination, 357
uncertainty, 305
variation, 402, 422

principle of corresponding states, 52
probability amplitude, 293
probability density, 293, 297
probability distribution (random 

coil), 699
progression, 536
projection operator, 468
prolate, 491
promotion, 403
protein, 704
proton decoupling, 588
proton mobility, 801
p-type semiconductor, 766
pump, 548
pure shear, 762
purity assessment, 112
pyran, 471
pyroelectric device, 485

Q
Q branch, 509, 511
QCM, quartz crystal 

microbalance, 944
QSSA, quasi-steady-state 

approximation, 844
Q-switching, 550
quadratic contribution, 16
quadratic equation, 423
quadruple point, 160
quadrupole, 662
quantization, 297
quantization of angular 

momentum, 340
quantization of energy, 15, 284
quantum computing, 281
quantum mechanics, 282
quantum number, 319

magnetic, 342
nuclear spin, 561
orbital, 342
principal, 2, 361
spin, 371
spin magnetic, 371
total angular momentum, 387
total orbital angular 

momentum, 386
total spin, 386
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quantum oscillation, 906
quantum yield, 856
quartz crystal microbalance, 944
quartz–tungsten–halogen lamp, 482
quasicrystal, 738
quasi-steady-state approximation, 844
quaternary structure, 698
quenching, 858
quenching method, 822
quinone, 441

R
R branch, 510
radial diffusion equation, 890
radial distribution function, 366, 

379, 680
radial wave equation, 359
radial wavefunction, 359, 361
radiative decay, 543
radical chain reaction, 852
radio wave, 21
radius of gyration, 701, 725
radius of shear, 716
radius ratio, 756
radius-ratio rule, 757
rainbow scattering, 906
Ramachandran plot, 704
Raman activity, 497, 518
Raman spectrometer, 486
Raman spectroscopy, 476
random coil, 698
random walk, 810
Raoult’s law, 187, 202
rate constant, 823, 884

diffusion controlled, 891
equilibrium constant relation, 834

rate law, 823
integrated, 827

rate of absorption, 477
NMR, 564

rate of adsorption, 952
rate of consumption, 822
rate of desorption, 953
rate of formation, 822
rate of reaction, 822
rate-determining step, 846
Rayleigh radiation, 476
Rayleigh ratio, 725
Rayleigh scattering, 725
Rayleigh–Jeans law, 283
RDS, rate-determining step, 846
reaction, enthalpy of, 81
reaction coordinate, 839, 894
reaction enthalpy, 83

temperature dependence, 86
reaction Gibbs energy, 246

dependence on composition, 248
reaction mechanism, 842
reaction order, 824
reaction product imaging, 907
reaction quotient, 248

half-reaction, 260
reaction rate, 822
reactive collision, 907
reactive cross-section, 883, 885
real gas, 45
real part, 314
rearrangement, 855
reconstruction, 943

rectangular barrier, 325
rectification, 936
recursion relation, 331
redox couple, 260
redox electrode, 259
redox reaction, 259
reduced mass, 358
reduced variable, 52
reducing agent, 260
reduction, 259
reduction of representation, 460
reference state, 84
refinement, 748
reflection (X-ray), 744
reflection operation, 448
refractive index, 20, 667
refrigeration, 112, 150
regular solution, 194

activity, 223
Gibbs energy of mixing, 209
vapour pressure, 223

relative atomic mass, 5
relative molecular mass, 5
relative permittivity, 13, 665
relative speed, 41
relaxation, 834
REMPI, resonant multiphoton 

ionization, 907
reorganization energy, 917
representative, 459
repulsive force, 45
residence half-life, 953
residual entropy, 128, 642
resistance, 799
resonance, 3, 402
resonance condition

EPR, 565
NMR, 564

resonance energy transfer, 860
resonance hybrid, 402
resonance integral, 423
resonance Raman spectroscopy, 518
resonant mode, 550
resonant multiphoton ionization, 907
resultant vector, 396
retinal, 861
reverse bias, 767
reverse micelle, 719
reversible change, 70
rheology, 709, 762
rheometer, 728
rhodamine, 554
rhombohedral system, 739
ribosome, 863
ribozyme, 863
Rice–Ramsperger–Kassel model, 886
right-hand rule, 396
rigid rotor, 490
ring current, 572
Ritz combination principle, 357
RMS speed, root-mean-square 

speed, 38
RNA, 705
rock salt structure, 756
root-mean-square speed, 38
root-mean-square displacement, 810
root-mean-square separation, 701
rotating frame, 583
rotating rheometer, 728, 729
rotation, 448

rotational constant, 491
rotational energy levels, 490
rotational mean energy, 626
rotational partition function, 617
rotational Raman spectroscopy, 496
rotational spectroscopy, 495
rotational structure, 538
rotational subgroup, 653
rotational temperature, 618
rotational term, 491
rotor, 490
RRK model, Rice–Ramsperger–Kassel 

model, 886
RRKM model, Rice–Ramsperger–

Kassel–Marcus model, 886
ruby laser, 548
Russell–Saunders coupling, 387
Rydberg constant, 357, 362

S
s band, 755
S branch, 511
Sackur–Tetrode equation, 640
SALC, symmetry-adapted linear 

combination, 468
salt bridge, 259, 261
SAM, scanning Auger electron 

spectroscopy, 942
SAM, self-assembled monolayer, 720
Sayre probabilty relation, 748
scalar coupling constant, 573
scalar physical quantity, 395
scalar product, 11, 395
scanning Auger electron 

spectroscopy, 942
scanning electron microscopy, 941
scanning probe microscopy, 941
scanning tunnelling microscopy, 941
Scatchard equation, 243
scattering cross-section, 905
scattering factor, 745
SCF, self-consistent field, 379, 433
Schoenflies system, 449
Schrödinger equation

free motion, 317
harmonic oscillator, 330
molecular vibration, 504
particle on a ring, 339
particle on a sphere, 342
time-dependent, 293
time-independent, 292

Schultze–Hardy rule, 716
Schumann–Runge band, 557
second derivative, 59
second harmonic generation, 776, 944
second ionization energy, 377
Second Law of thermodynamics, 14
Second Law

Clausius statement, 114
Kelvin statement, 114

secondary kinetic isotope effect, 901
secondary photochemical 

process, 855
secondary structure, 698
second-order phase transition, 171
second-order reaction, 829
secular determinant, 423
secular equation, 423, 444
sedimentation, 726

sedimentation constant, 727
sedimentation equilibrium, 728
selection rule, 469, 478

electronic transition, 535
hydrogenic atom, 381
many-electron atom, 389
molecular vibration, 505
rotational, 495
rotational Raman, 497

self-assembly, 714
self-assembled monolayer, 720
self-consistent field, 379, 433
SEM, scanning electron 

microscopy, 941
semiconductor, 764
semi-empirical method, 433
semipermeable membrane, 199
separation of variables, 322, 355, 358
sequencing, 698
shape-selective catalyst, 955
SHE, standard hydrogen 

electrode, 267
shear modulus, 763
shell, 2, 363
SHG, second harmonic 

generation, 944
shielded Coulomb potential, 229
shielding, 374
shielding constant, 374
shielding constant (NMR), 568, 570
SI, 6
side-centred unit cell, 739
siemens, 799
sigma bond, 400
sigma orbital, 408
similarity transformation, 445
simple distillation, 206
single bond, 3
singlet, 383
Slater determinant, 373
slip plane, 764
sodium D lines, 385
sol, 714
solder, 213
solid, 5
solid angle, 905
solid–liquid boundary, 168
solid-state NMR, 591
solid–vapour boundary, 170
soliton, 712
solubility, 198
solute activity, 221
solution, enthalpy of, 81
solvent chemical potential, 221
solvent activity, 220
solvent contribution, 570, 573
s orbital, 364
space group, 449
space lattice, 737
space quantization, 346
span, 463
spatial coherence, 549
specific heat capacity, 73
specific selection rule, 479
spectral branch, 509
spectral linewidth, 480
spectrometer, 482
spectroscopic transition, 286
spectroscopy, 286, 476
spectrum, 286
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speed, 9
speed, distribution of, 38
speed, molecular, 38
speed of light, 20
speed of sound, 107, 657
spherical harmonic, 343
spherical polar coordinates, 295
spherical rotor, 490
sp hybrid orbital, 405
sp2 hybrid orbital, 404
sp3 hybrid orbital, 403
spin, 371
spin correlation, 376
spin-coupling constant, 573
spin density, 597
spin echo, 586
spin functions, 383
spin–lattice relaxation time, 585
spin magnetic quantum number, 371
spin mean energy, 628
spin-½ nucleus, 563
spin–orbit coupling, 384
spin–orbit coupling constant, 384
spin packet, 586
spin partition function, 628
spin quantum number, 371
spin relaxation, 585
spin–spin relaxation time, 586
SPM, scanning probe microscopy, 941
spontaneity, criteria of, 131
spontaneous change, 113
spontaneous emission, 478
spontaneous process, 131
SPR, surface plasmon resonance, 944
square modulus, 314
square planar molecule, 4
SQUID, superconducting quantum 

interference device, 769
stainless steel, 218
standard boiling point, 158
standard cell potential, 263
standard cell potential equilibrium 

constant, 264
standard enthalpy of electron 

gain, 378
standard enthalpy of formation, 84
standard enthalpy of ionization, 377
standard entropy, 126
standard freezing point, 158
standard Gibbs energy of 

formation, 136
standard Gibbs energy of 

reaction, 136
standard hydrogen electrode, 267
standard molar entropy, 126
standard potential, 267

combining values, 269
determination, 268

standard pressure, 5, 30
standard reaction enthalpy, 83, 129

cell potential, 264, 265
determination from K, 257

standard reaction Gibbs energy, 136
star structure, 29
Stark modulation, 485
state function, 66, 90
state, equation of, 32
state, physical, 30
state-to-state dynamics, 907
steady-state approximation, 844

steam distillation, 208
stellar media, 29
stellar spectra, 356
stepwise polymerization, 850
steric requirement, 882, 885
Stern–Gerlach experiment, 346, 371
Stern–Volmer equation, 858
Stern–Volmer plot, 858
sticking probability, 952
stimulated absorption, 477
stimulated emission, 477, 856
Stirling’s approximation, 607
STM, scanning tunnelling 

microscopy, 941
stoichiometric coefficient, 85
stoichiometric number, 85
Stokes line, 511
Stokes radiation, 476
Stokes’ law, 801
Stokes’ radius, 801
Stokes’ relation, 727
Stokes–Einstein equation, 803
stopped-flow technique, 821
strain, 762
stress, 762
stress–strain curve, 709
strongly coupled spectra, 579
strongly coupled system, 918
structure factor, 745
structure refinement, 748
sublimation, enthalpy of, 81
sublimation vapour pressure, 157
subshell, 2, 363
substitution (integration), 61
substrate, 863, 938
superconducting quantum 

interference device, 769
superconductor, 764, 767
supercooled, 689
supercritical fluid, 48, 158
superfluid, 162
superheated, 689
superposition, 304
superradiant, 554
supersonic beam, 905
supersonic nozzle, 905
surface diffusion, 941
surface excess, 688
surface expansion work, 69
surface Gibbs energy, 687
surface growth, 939
surface migration, 953
surface model, 938
surface plasmon resonance, 944
surface pressure, 686
surface reconstruction, 943
surface tension, 683
surfactant, 687, 715
surfactant parameter, 718
surroundings, 64
symmetric rotor, 490
symmetric stretch, 515
symmetry element, 448
symmetry number, 618, 653
symmetry operation, 448, 738
symmetry polarity, 661
symmetry species, 461
symmetry-adapted linear 

combination, 468
synchrotron radiation, 483

synchrotron storage ring, 483
system, 64
systematic absence, 746

T
t2g orbital, 539
Tafel plot, 924
tapping mode, 942
Taylor series, 60
TDP, temperature-programmed 

desorption, 953
TDS, thermal desorption 

spectroscopy, 953
TEM, transmission electron 

microscopy, 941
Temkin isotherm, 951
temperature, 6, 31
temperature conversion, 32
temperature jump, 834
temperature–composition 

diagram, 206, 212
temperature-independent 

paramagnetism, 770
temperature-programmed 

desorption, 953
temporal coherence, 549
term (spectroscopic), 357
term symbol

atomic, 386
linear molecule, 533

termination, 853
ternary solid, 218
ternary system, 217
terrace, 938
tertiary structure, 698
tetragonal system, 739
tetrahedral group, 453
tetrahedral hybrid, 403
tetrahedral molecule, 4
theorem

convolution, 785
equipartition, 16, 67
Nernst heat, 127
virial, 334

theoretical plate, 207
thermal analysis, 156
thermal conductivity, 791, 794
thermal de Broglie wavelength, 615
thermal desorption spectroscopy, 953
thermal efficiency, 119
thermal wavelength, 615
thermochemical calorie, 12
thermochemical equation, 83
thermochemistry, 80
thermodynamic control, 848
thermodynamic equation of state, 142
thermodynamic equilibrium 

constant, 249
thermodynamic force, 806
thermodynamic temperature, 6, 120
thermodynamic temperature scale, 31
thermodynamics, 14
thermogram, 87
thermometer, 31
Third Law of thermodynamics, 128
Third-Law entropy, 129
Thomson diffraction experiment, 289
three-body interaction, 676
three-dimensional box, 324

three-level laser, 548
thymine, 705
tight-binding approximation, 754
time constant (of reaction), 828
time-dependent Schrödinger 

equation, 293
time-independent Schrödinger 

equation, 292
time-resolved spectroscopy, 552
TIP, temperature-independent 

paramagnetism, 770
titanium–sapphire laser, 554
torque, 11
total angular momentum quantum 

number, 387
total energy, 12
total orbital angular momentum 

quantum number, 386
total spin, 387
total spin quantum number, 386
total vapour pressure, 202
trajectory, 12
transcendental equation, 210
transfer coefficient, 922
transition (spectral), 381
transition dipole moment, 469,  

478, 505
transition metal, 3
transition state, 839, 894
transition temperature, 156
transition, enthalpy of, 81
transition-state theory, 894, 922
translation, 9
translational mean energy, 625
translational partition function, 616
transmission coefficient, 895
transmission electron microscopy, 941
transmission probability, 325
transmittance, 480
transpose, 443
transverse relaxation time, 586
trial wavefunction, 422
triangular phase diagram, 216
triclinic system, 739
triclinic unit cell, 738
tridiagonal determinant, 755
trigonal bipyramidal molecule, 4
trigonal planar molecule, 4
triple bond, 3, 405
triple point, 158
triplet, 383
Trouton’s rule, 122
Truesdell–Jones equation, 228
tumbling, 517
tunnelling, 325, 335, 902
turnover frequency, 866
two-dimensional box, 322

energy levels, 323
wavefunctions, 323

two-dimensional NMR, 590

U
u,g symmetry, 412
ubiquitin (thermogram), 88
UHV, ultrahigh vacuum, 940
ultracentrifugation, 726
ultrahigh vacuum, 940
ultraviolet, 21
ultraviolet catastrophe, 283
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ultraviolet photoelectron 
spectroscopy, 418

unbound state, 362
uncertainty principle, 305
uncompetitive inhibition, 867
undetermined multiplier, 609
ungerade, 412
uniaxial stress, 762
unilamellar vesicle, 719
unimolecular reaction, 842, 849, 

886, 956
unit cell, 738
unit manipulation, 6
unit matrix, 443
unit vector, 395
upper consolute temperature, 209
upper critical solution 

temperature, 209
UPS, ultraviolet photoelectron 

spectroscopy, 418
UPS, ultraviolet photoemission 

spectroscopy, 942
uracil, 706

V
vacuum permittivity, 13
vacuum system, 940
vacuum ultraviolet, 21
valence band, 766
valence-bond theory, 400
valence shell, 3
valence state, 422
valence-shell electron pair repulsion 

theory, 4
van’ t Hoff equation (equilibrium), 256
van’ t Hoff equation (osmosis), 199
van der Waals coefficients, 49
van der Waals equation, 48, 50, 634
van der Waals interaction, 668
van der Waals isotherms, 51

van der Waals molecule, 906
van der Waals, J., 48
vanishing integral, 465
vaporization, enthalpy of, 81
vapour composition, 202
vapour pressure, 157

curved surface, 689
Knudsen method, 796
pressurized liquid, 166
regular solution, 223

vapour pressure diagram, 204
vapour pressure lowering, 195
vapour pressure, total, 202
variance, 159
variation principle, 402, 422
VB, valence-bond theory, 400
vector, 395
vector differentiation, 397
vector model, 346
vector operation, 395
vector physical quantity, 395
vector product, 395
velocity, 9
velocity selector, 40, 904
vertical plane, 448
vertical transition, 536
vesicle, 719
vibrational fine structure, 419
vibrational mean energy, 626
vibrational mode, 514
vibrational partition function, 620
vibrational progression, 536
vibrational Raman spectra, 511, 518
vibrational structure, 532
vibrational temperature, 621
vibrational term, 504
vibration–rotation spectra, 509
vibronic laser, 554
vibronic transition, 535
virial, 682
virial coefficient, 47

virial equation of state, 47, 50
virial theorem, 334
viscosity, 728, 795, 798
viscosity-average molar mass, 722
visible radiation, 21
VOC, volatile organic compound, 961
volatile organic compound, 961
volcano curve, 957
volt, 13
voltaic cell see galvanic cell
voltammetry, 925
volume, 5
volume element (spherical polar),  

295
volume magnetic susceptibility, 768
von Laue method, 743
VSEPR theory, 4

W
Wannier exciton, 773
water

partial molar volume, 181
phase diagram, 161
residual entropy, 128, 643
VB description, 402
viscosity, 799, 814

watt, 12
wave, 19
wavefunction, 293

constraints, 296
factorization, 359
polar bond, 420
trial, 422
valence-bond, 400

wavelength, 19
wavelength and linear 

momentum, 290
wavenumber, 20
wavepacket, 306
wave–particle duality, 290

weakly-coupled system, 918
weather, 29
weight (statistical), 606
weight-average molar mass, 722
wetting, 686
Wierl equation, 749
work, 11, 65

adiabatic expansion, 100
expansion, 68
molecular interpretation, 66
sign convention, 68

work function, 288
working cell, 927
wrinkle, Nature’s abhorrence of, 807

X
xenon discharge lamp, 483
XPS, X-ray photoelectron 

spectroscopy, 418
XPS, X-ray photoemission 

spectroscopy, 942
X-ray, 21
X-ray fluorescence, 942
X-ray photoelectron 

spectroscopy, 418
X-rays, 742
yield point, 709

Y
Young’s modulus, 763

Z
Z-average molar mass, 722
Zeeman effect, 393
zeolite, 955
zero-point energy, 321, 330
zeta potential, 716
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