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xv

Preface to the First Edition

Computational chemistry is rapidly emerging as a subfield of theoretical chemistry, where the
primary focus is on solving chemically related problems by calculations. For the newcomer to the
field, there are three main problems:

(1) Deciphering the code. The language of computational chemistry is littered with acronyms, what
do these abbreviations stand for in terms of underlying assumptions and approximations?

(2) Technical problems. How does one actually run the program and what to look for in the output?
(3) Quality assessment. How good is the number that has been calculated?

Point (1) is part of every new field: there is not much to do about it. If you want to live in another
country, you have to learn the language. If you want to use computational chemistry methods, you
need to learn the acronyms. I have tried in the present book to include a good fraction of the most
commonly used abbreviations and standard procedures.

Point (2) is both hardware and software specific. It is not well suited for a textbook, as the informa-
tion rapidly becomes out of date. The average lifetime of computer hardware is a few years, the time
between new versions of software is even less. Problems of type (2) need to be solved “on location”. I
have made one exception, however, and have included a short discussion of how to make Z-matrices.
A Z-matrix is a convenient way of specifying a molecular geometry in terms of internal coordinates,
and it is used by many electronic structure programs. Furthermore, geometry optimizations are often
performed in Z-matrix variables, and since optimizations in a good set of internal coordinates are sig-
nificantly faster than in Cartesian coordinates, it is important to have a reasonable understanding of
Z-matrix construction.

As computer programs evolve they become easier to use. Modern programs often communicate
with the user in terms of a graphical interface, and many methods have become essential “black
box” procedures: if you can draw the molecule, you can also do the calculation. This effectively
means that you no longer have to be a highly trained theoretician to run even quite sophisticated
calculations.

The ease with which calculations can be performed means that point (3) has become the central
theme in computational chemistry. It is quite easy to run a series of calculations that produce results
that are absolutely meaningless. The program will not tell you whether the chosen method is valid
for the problem you are studying. Quality assessment is thus an absolute requirement. This, however,
requires much more experience and insight than just running the program. A basic understanding
of the theory behind the method is needed, and a knowledge of the performance of the method for
other systems. If you are breaking new ground, where there is no previous experience, you need a
way of calibrating the results.
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xvi Preface to the First Edition

The lack of quality assessment is probably one of the reasons why computational chemistry has
(had) a somewhat bleak reputation. “If five different computational methods give five widely dif-
ferent results, what has computational chemistry contributed? You just pick the number closest to
experiments and claim that you can reproduce experimental data accurately.” One commonly sees
statements of the type “The theoretical results for property X are in disagreement. Calculation at
the CCSD(T)/6-31G(d,p) level predicts that…, while the MINDO/3 method gives opposing results.
There is thus no clear consent from theory.” This is clearly a lack of understanding of the quality of the
calculations. If the results disagree, there is a very high probability that the CCSD(T) results are basi-
cally correct, and the MINDO/3 results are wrong. If you want to make predictions, and not merely
reproduce known results, you need to be able to judge the quality of your results. This is by far the
most difficult task in computational chemistry. I hope the present book will give some idea of the
limitations of different methods.

Computers don’t solve problems, people do. Computers just generate numbers. Although compu-
tational chemistry has evolved to the stage where it often can be competitive with experimental meth-
ods for generating a value for a given property of a given molecule, the number of possible molecules
(there are an estimated 10200 molecules with a molecular weight less than 850) and their associated
properties is so huge that only a very tiny fraction will ever be amenable to calculations (or exper-
iments). Furthermore, with the constant increase in computational power, a calculation that barely
can be done today will be possible on medium-sized machines in 5–10 years. Prediction of properties
with methods that do not provide converged results (with respect to theoretical level) will typically
only have a lifetime of a few years before being surpassed by more accurate calculations.

The real strength of computational chemistry is the ability to generate data (e.g. by analyzing the
wave function) from which a human may gain insight, and thereby rationalize the behavior of a large
class of molecules. Such insights and rationalizations are much more likely to be useful over a longer
period of time than the raw results themselves. A good example is the concept used by organic
chemists with molecules composed of functional groups, and representing reactions by “pushing
electrons”. This may not be particularly accurate from a quantum mechanical point of view, but it is
very effective in rationalizing a large body of experimental results, and has good predictive power.

Just as computers do not solve problems, mathematics by itself does not provide insight. It merely
provides formulas, a framework for organizing thoughts. It is in this spirit that I have tried to write
this book. Only the necessary (obviously a subjective criterion) mathematical background has been
provided, the aim being that the reader should be able to understand the premises and limitations
of different methods, and follow the main steps in running a calculation. This means that in many
cases I have omitted to tell the reader of some of the finer details, which may annoy the purists. How-
ever, I believe the large overview is necessary before embarking on a more stringent and detailed
derivation of the mathematics. The goal of this book is to provide an overview of commonly used
methods, giving enough theoretical background to understand why, for example, the AMBER force
field is used for modeling proteins but MM2 is used for small organic molecules, or why coupled
cluster inherently is an iterative method, while perturbation theory and configuration interaction
inherently are non-iterative methods, although the CI problem in practice is solved by iterative
techniques.

The prime focus of this book is on calculating molecular structures and (relative) energies, and
less on molecular properties or dynamical aspects. In my experience, predicting structures and ener-
getics are the main uses of computational chemistry today, although this may well change in the
coming years. I have tried to include most methods that are already extensively used, together with
some that I expect to become generally available in the near future. How detailed the methods are
described depends partly on how practical and commonly used the methods are (both in terms of
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Preface to the First Edition xvii

computational resources and software), and partly reflects my own limitations in terms of under-
standing. Although simulations (e.g. molecular dynamics) are becoming increasingly powerful tools,
only a very rudimentary introduction is provided in Chapter 16. The area is outside my expertise, and
several excellent textbooks are already available.

Computational chemistry contains a strong practical element. Theoretical methods must be trans-
lated into working computer programs in order to produce results. Different algorithms, however,
may have different behaviors in practice, and it becomes necessary to be able to evaluate whether
a certain type of calculation can be carried out with the available computers. The book thus con-
tains some guidelines for evaluating what type of resources are necessary for carrying out a given
calculation.

The present book grew out of a series of lecture notes that I have used for teaching a course in
computational chemistry at Odense University, and the style of the book reflects its origin. It is dif-
ficult to master all disciplines in the vast field of computational chemistry. A special thanks to H. J.
Aa. Jensen, K. V. Mikkelsen, T. Saue, S. P. A. Sauer, M. Schmidt, P. M. W. Gill, P.-O. Norrby, D. L.
Cooper, T. U. Helgaker and H. G. Petersen for having read various parts of the book and providing
input. Remaining errors are of course my sole responsibility. A good part of the final transformation
from a set of lecture notes to the present book was done during a sabbatical leave spent with Prof. L.
Radom at the Research School of Chemistry, Australia National University, Canberra, Australia. A
special thanks to him for his hospitality during the stay.

A few comments on the layout of the book. Definitions, acronyms or common phrases are marked
in italic; these can be found in the index. Underline is used for emphasizing important points. Oper-
ators, vectors and matrices are denoted in bold, scalars in normal text. Although I have tried to keep
the notation as consistent as possible, different branches in computational chemistry often use differ-
ent symbols for the same quantity. In order to comply with common usage, I have elected sometimes
to switch notation between chapters. The second derivative of the energy, for example, is called the
force constant k in force field theory; the corresponding matrix is denoted F when discussing vibra-
tions, and called the Hessian H for optimization purposes.

I have assumed that the reader has no prior knowledge of concepts specific to computational chem-
istry, but has a working understanding of introductory quantum mechanics and elementary math-
ematics, especially linear algebra, vector, differential and integral calculus. The following features
specific to chemistry are used in the present book without further introduction. Adequate descrip-
tions may be found in a number of quantum chemistry textbooks (J. P. Lowe, Quantum Chemistry,
Academic Press, 1993; I. N. Levine, Quantum Chemistry, Prentice Hall, 1992; P. W. Atkins, Molecular
Quantum Mechanics, Oxford University Press, 1983).

(1) The Schrödinger equation, with the consequences of quantized solutions and quantum numbers.
(2) The interpretation of the square of the wave function as a probability distribution, the Heisenberg

uncertainty principle and the possibility of tunneling.
(3) The solutions for the hydrogen atom, atomic orbitals.
(4) The solutions for the harmonic oscillator and rigid rotor.
(5) The molecular orbitals for the H2 molecule generated as a linear combination of two s-functions,

one on each nuclear centre.
(6) Point group symmetry, notation and representations, and the group theoretical condition for

when an integral is zero.

I have elected to include a discussion of the variational principle and perturbational methods,
although these are often covered in courses in elementary quantum mechanics. The properties of
angular momentum coupling are used at the level of knowing the difference between a singlet and
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xviii Preface to the First Edition

triplet state. I do not believe that it is necessary to understand the details of vector coupling to under-
stand the implications.

Although I have tried to keep each chapter as self-contained as possible, there are unavoidable
dependencies. The part in Chapter 3 describing HF methods is a prerequisite for understanding
Chapter 4. Both these chapters use terms and concepts for basis sets which are treated in Chapter 5.
Chapter 5, in turn, relies on concepts in Chapters 3 and 4, that is these three chapters form the core
for understanding modern electronic structure calculations. Many of the concepts in Chapters 3 and
4 are also used in Chapters 6, 7, 9, 11 and 15 without further introduction, although these five chap-
ters probably can be read with some benefits without a detailed understanding of Chapters 3 and 4.
Chapter 8, and to a certain extent also Chapter 10, are fairly advanced for an introductory textbook,
such as the present, and can be skipped. They do, however, represent areas that are probably going to
be more and more important in the coming years. Function optimization, which is described sepa-
rately in Chapter 14, is part of many areas, but a detailed understanding is not required for following
the arguments in the other chapters. Chapters 12 and 13 are fairly self-contained, and form some of
the background for the methods in the other chapters. In my own course I normally take Chapters 12,
13 and 14 fairly early in the course, as they provide background for Chapters 3, 4 and 5.

If you would like to make comments, advise me of possible errors, make clarifications, add ref-
erences, etc., or view the current list of misprints and corrections, please visit the author’s website
(URL: http://bogense.chem.ou.dk/∼icc).
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Preface to the Second Edition

The changes relative to the first edition are as follows:
� Numerous misprints and inaccuracies in the first edition have been corrected. Most likely some

new ones have been introduced in the process; please check the book website for the most recent
correction list and feel free to report possible problems. Since web addresses have a tendency to
change regularly, please use your favourite search engine to locate the current URL.

� The methodologies and references in each chapter have been updated with new developments
published between 1998 and 2005.

� More extensive referencing. Complete referencing is impossible, given the large breadth of sub-
jects. I have tried to include references that preferably are recent, have a broad scope and include
key references. From these the reader can get an entry into the field.

� Many figures and illustrations have been redone. The use of color illustrations has been deferred
in favor of keeping the price of the book down.

� Each chapter or section now starts with a short overview of the methods, described without
mathematics. This may be useful for getting a feel for the methods, without embarking on all
the mathematical details. The overview is followed by a more detailed mathematical descrip-
tion of the method, including some key references that may be consulted for more details. At
the end of the chapter or section, some of the pitfalls and the directions of current research are
outlined.

� Energy units have been converted from kcal/mol to kJ/mol, based on the general opinion that the
scientific world should move towards SI units.

� Furthermore, some chapters have undergone major restructuring:
◦ Chapter 16 (Chapter 13 in the first edition) has been greatly expanded to include a summary of

the most important mathematical techniques used in the book. The goal is to make the book
more self-contained, that is relevant mathematical techniques used in the book are at least rudi-
mentarily discussed in Chapter 16.

◦ All the statistical mechanics formalism has been collected in Chapter 13.
◦ Chapter 14 has been expanded to cover more of the methodologies used in molecular dynamics.
◦ Chapter 12 on optimization techniques has been restructured.
◦ Chapter 6 on density functional methods has been rewritten.
◦ A new Chapter 1 has been introduced to illustrate the similarities and differences between clas-

sical and quantum mechanics, and to provide some fundamental background.
◦ A rudimentary treatment of periodic systems has been incorporated in Chapters 3 and 14.
◦ A new Chapter 17 has been introduced to describe statistics and QSAR methods.
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◦ I have tried to make the book more modular, that is each chapter is more self-contained. This
makes it possible to use only selected chapters, for example for a course, but has the drawback
of repeating the same things in several chapters, rather than simply cross-referencing.

Although the modularity has been improved, there are unavoidable interdependencies. Chapters 3,
4 and 5 contain the essentials of electronic structure theory, and most would include Chapter 6
describing density functional methods. Chapter 2 contains a description of empirical force field meth-
ods, and this is tightly coupled to the simulation methods in Chapter 14, which of course leans on
the statistical mechanics in Chapter 13. Chapter 1 on fundamental issues is of a more philosophical
nature, and can be skipped. Chapter 16 on mathematical techniques is mainly for those not already
familiar with this, and Chapter 17 on statistical methods may be skipped as well.

Definitions, acronyms and common phrases are marked in italic. In a change from the first edition,
where underlining was used, italic text has also been used for emphasizing important points.

A number of people have offered valuable help and criticisms during the updating process. I would
especially like to thank S. P. A. Sauer, H. J. Aa. Jensen, E. J. Baerends and P. L. A. Popelier for hav-
ing read various parts of the book and provided input. Remaining errors are of course my sole
responsibility.

Specific Comments on the Preface to the First Edition

Bohacek et al.1 have estimated the number of possible compounds composed of H, C, N, O and S
atoms with 30 non-hydrogen atoms or fewer to be 1060. Although this number is so large that only
a very tiny fraction will ever be amenable to investigation, the concept of functional groups means
that one does not need to evaluate all compounds in a given class to determine their properties. The
number of alkanes meeting the above criteria is ∼1010: clearly these will all have very similar and
well-understood properties, and there is no need to investigate all 1010 compounds.

Reference

 R. S. Bohacek, C. McMartin and W. C. Guida, Medicinal Research Reviews 16 (1), 3–50 (1996).

iranchembook.ir/edu



xxi

Preface to the Third Edition

The changes relative to the second edition are as follows:

Numerous misprints and inaccuracies in the second edition have been corrected. Most likely some
new ones have been introduced in the process, please check the book website for the most recent
correction list and feel free to report possible problems.

http://www.wiley.com/go/jensen/computationalchemistry3

� Methodologies and references in each chapter have been updated with new developments pub-
lished between 2005 and 2015.

� Semi-empirical methods have been moved from Chapter 3 to a separate Chapter 7.
� Some specific new topics that have been included:

1. Polarizable force fields
2. Tight-binding DFT
3. More extensive DFT functionals, including range-separated and dispersion corrected

functionals
4. More extensive covering of excited states
5. More extensive time-dependent molecular properties
6. Accelerated molecular dynamics methods
7. Tensor decomposition methods
8. Cluster analysis
9. Reduced scaling and reduced prefactor methods.

A reoccuring request over the years for a third edition has been: “It would be very useful to have
recommendations on which method to use for a given type of problem.” I agree that this would be
useful, but I have refrained from it for two main reasons:

1. Problems range from very narrow ones for a small set of systems, to very broad ones for a wide set
of systems, and covering these and all intermediate cases even rudementary is virtually impossible.

2. Making recommendations like “do not use method XXX because it gives poor results” will imme-
diately invoke harsh responses from the developers of method XXX, showing that it gives good
results for a selected subset of problems and systems.

A vivid example of the above is the pletora of density functional methods where a particular func-
tional often gives good results for a selected subset of systems and properties, but may fail for other
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subsets of systems and properties, and no current functional provides good results for all systems
and properties. I have limited the recommendations to point out well-known deficiencies.

A similar problem is present when selecting references. I have selected references based on three
overriding principles:

1. References to work containing reference data, such as experimental structural results, or ground-
breaking work, such as the Hohenberg–Koch theorem, are to the original work.

2. Early in each chapter or subsection, I have included review-type papers, where these are available.
3. Lacking review-type papers, I have selected one or a few papers that preferably are recent, but

must at the same time also be written in a scholarly style, and should contain a good selection of
references.

The process of literature searching has improved tremendously over the years, and having a few
entry points usually allows searching both backwards and forwards to find other references within
the selected topic.

In relation to the quoted number of compounds possible for a given number of atoms, Ruddigkeit
et al. have estimated the number of plausible compounds composed of H, C, N, O, S and a halogen
with up to 17 non-hydrogen atoms to be 166 × 109.1

Reference

 L. Ruddigkeit, R. van Deursen, L. C. Blum and J.-L. Reymond, Journal of Chemical Information and
Modeling 52 (11), 2864–2875 (2012).
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Introduction

Chemistry is the science dealing with construction, transformation and properties of molecules. The-
oretical chemistry is the subfield where mathematical methods are combined with fundamental laws
of physics to study processes of chemical relevance.1–7

Molecules are traditionally considered as “composed” of atoms or, in a more general sense, as a col-
lection of charged particles, positive nuclei and negative electrons. The only important physical force
for chemical phenomena is the Coulomb interaction between these charged particles. Molecules dif-
fer because they contain different nuclei and numbers of electrons, or because the nuclear centers are
at different geometrical positions. The latter may be “chemically different” molecules such as ethanol
and dimethyl ether or different “conformations” of, for example, butane.

Given a set of nuclei and electrons, theoretical chemistry can attempt to calculate things such as:
� Which geometrical arrangements of the nuclei correspond to stable molecules?
� What are their relative energies?
� What are their properties (dipole moment, polarizability, NMR coupling constants, etc.)?
� What is the rate at which one stable molecule can transform into another?
� What is the time dependence of molecular structures and properties?
� How do different molecules interact?

The only systems that can be solved exactly are those composed of only one or two particles, where
the latter can be separated into two pseudo one-particle problems by introducing a “center of mass”
coordinate system. Numerical solutions to a given accuracy (which may be so high that the solutions
are essentially “exact”) can be generated for many-body systems, by performing a very large number
of mathematical operations. Prior to the advent of electronic computers (i.e. before 1950), the num-
ber of systems that could be treated with a high accuracy was thus very limited. During the 1960s and
1970s, electronic computers evolved from a few very expensive, difficult to use, machines to become
generally available for researchers all over the world. The performance for a given price has been
steadily increasing since and the use of computers is now widespread in many branches of science.
This has spawned a new field in chemistry, computational chemistry, where the computer is used as
an “experimental” tool, much like, for example, an NMR (nuclear magnetic resonance) spectrometer.

Computational chemistry is focused on obtaining results relevant to chemical problems, not
directly at developing new theoretical methods. There is of course a strong interplay between tradi-
tional theoretical chemistry and computational chemistry. Developing new theoretical models may

Introduction to Computational Chemistry, Third Edition. Frank Jensen.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion Website: http://www.wiley.com/go/jensen/computationalchemistry3
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enable new problems to be studied, and results from calculations may reveal limitations and suggest
improvements in the underlying theory. Depending on the accuracy wanted, and the nature of the
system at hand, one can today obtain useful information for systems containing up to several thou-
sand particles. One of the main problems in computational chemistry is selecting a suitable level of
theory for a given problem and to be able to evaluate the quality of the obtained results. The present
book will try to put the variety of modern computational methods into perspective, hopefully giving
the reader a chance of estimating which types of problems can benefit from calculations.

. Fundamental Issues

Before embarking on a detailed description of the theoretical methods in computational chemistry,
it may be useful to take a wider look at the background for the theoretical models and how they relate
to methods in other parts of science, such as physics and astronomy.

A very large fraction of the computational resources in chemistry and physics is used in solving
the so-called many-body problem. The essence of the problem is that two-particle systems can in
many cases be solved exactly by mathematical methods, producing solutions in terms of analytical
functions. Systems composed of more than two particles cannot be solved by analytical methods.
Computational methods can, however, produce approximate solutions, which in principle may be
refined to any desired degree of accuracy.

Computers are not smart – at the core level they are in fact very primitive. Smart programmers,
however, can make sophisticated computer programs, which may make the computer appear smart,
or even intelligent. However, the basics of any computer program consist of doing a few simple tasks
such as:

� Performing a mathematical operation (adding, multiplying, square root, cosine, etc.) on one or two
numbers.

� Determining the relationship (equal to, greater than, less than or equal to, etc.) between two
numbers.

� Branching depending on a decision (add two numbers if N > 10, else subtract one number from
the other).

� Looping (performing the same operation a number of times, perhaps on a set of data).
� Reading and writing data from and to external files.

These tasks are the essence of any programming language, although the syntax, data handling and
efficiency depend on the language. The main reason why computers are so useful is the sheer speed
with which they can perform these operations. Even a cheap off-the-shelf personal computer can
perform billions (109) of operations per second.

Within the scientific world, computers are used for two main tasks: performing numerically inten-
sive calculations and analyzing large amounts of data. The latter can, for example, be pictures
generated by astronomical telescopes or gene sequences in the bioinformatics area that need to be
compared. The numerically intensive tasks are typically related to simulating the behavior of the real
world, by a more or less sophisticated computational model. The main problem in simulations is
the multiscale nature of real-world problems, often spanning from subnanometers to millimeters
(10−10−10−3) in spatial dimensions and from femtoseconds to milliseconds (10−15−10−3) in the time
domain.
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Quarks

Electrons

Atoms Molecules Macro molecules

NucleiProtons 
Neutrons

Figure . Hierarchy of building blocks for describing a chemical system.

. Describing the System

In order to describe a system we need four fundamental features:
� System description. What are the fundamental units or “particles” and how many are there?
� Starting condition. Where are the particles and what are their velocities?
� Interaction. What is the mathematical form for the forces acting between the particles?
� Dynamical equation. What is the mathematical form for evolving the system in time?

The choice of “particles” puts limitations on what we are ultimately able to describe. If we
choose atomic nuclei and electrons as our building blocks, we can describe atoms and molecules,
but not the internal structure of the atomic nucleus. If we choose atoms as the building blocks, we
can describe molecular structures, but not the details of the electron distribution. If we choose amino
acids as the building blocks, we may be able to describe the overall structure of a protein, but not the
details of atomic movements (see Figure 1.1).

The choice of starting conditions effectively determines what we are trying to describe. The com-
plete phase space (i.e. all possible values of positions and velocities for all particles) is huge and we will
only be able to describe a small part of it. Our choice of starting conditions determines which part
of the phase space we sample, for example which (structural or conformational) isomer or chemical
reaction we can describe. There are many structural isomers with the molecular formula C6H6, but
if we want to study benzene, we should place the nuclei in a hexagonal pattern and start them with
relatively low velocities.

The interaction between particles in combination with the dynamical equation determines how
the system evolves in time. At the fundamental level, the only important force at the atomic level is
the electromagnetic interaction. Depending on the choice of system description (particles), however,
this may result in different effective forces. In force field methods, for example, the interactions are
parameterized as stretch, bend, torsional, van der Waals, etc., interactions.

The dynamical equation describes the time evolution of the system. It is given as a differential
equation involving both time and space derivatives, with the exact form depending on the particle
masses and velocities. By solving the dynamical equation the particles’ position and velocity can be
predicted at later (or earlier) times relative to the starting conditions, that is how the system evolves
in the phase space.

. Fundamental Forces

The interaction between particles can be described in terms of either a force (F) or a potential (V).
These are equivalent, as the force is the derivative of the potential with respect to the position r:

F(r) = −𝜕V
𝜕 r

(1.1)
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Table . Fundamental interactions.

Name Particles Range (m) Relative strength

Strong interaction Quarks <10−15 100
Weak interaction Quarks, leptons <10−15 0.001
Electromagnetic Charged particles ∞ 1
Gravitational Mass particles ∞ 10−40

Current knowledge indicates that there are four fundamental interactions, at least under normal con-
ditions, as listed in Table 1.1.

Quarks are the building blocks of protons and neutrons, and lepton is a common name for a
group of particles including the electron and the neutrino. The strong interaction is the force hold-
ing the atomic nucleus together, despite the repulsion between the positively charged protons. The
weak interaction is responsible for radioactive decay of nuclei by conversion of neutrons to protons
(β decay). The strong and weak interactions are short-ranged and are only important within the
atomic nucleus.

Both the electromagnetic and gravitational interactions depend on the inverse distance between
the particles and are therefore of infinite range. The electromagnetic interaction occurs between all
charged particles, while the gravitational interaction occurs between all particles with a mass, and
they have the same overall functional form:

Velec(rij) = Celec
qiqj

rij

Vgrav(rij) = −Cgrav
mimj

rij

(1.2)

In SI units Celec = 9.0 × 109 N m2/C2 and Cgrav = 6.7 × 10−11 N m2/kg2, while in atomic units
Celec = 1 and Cgrav = 2.4 × 10−43. On an atomic scale, the gravitational interaction is completely
negligible compared with the electromagnetic interaction. For the interaction between a proton and
an electron, for example, the ratio between Velec and Vgrav is 1039. On a large macroscopic scale, such
as planets, the situation is reversed. Here the gravitational interaction completely dominates and the
electromagnetic interaction is absent.

On a more fundamental level, it is believed that the four forces are really just different manifes-
tations of a single common interaction, because of the relatively low energy regime we are living in.
It has been shown that the weak and electromagnetic forces can be combined into a single unified
theory, called quantum electrodynamics (QED). Similarly, the strong interaction can be coupled with
QED into what is known as the standard model. Much effort is being devoted to also include the
gravitational interaction into a grand unified theory, and string theory is currently believed to hold
the greatest promise for such a unification.

Only the electromagnetic interaction is important at the atomic and molecular level, and in the
large majority of cases, the simple Coulomb form (in atomic units) is sufficient:

VCoulomb(rij) =
qiqj

rij
(1.3)

Within QED, the Coulomb interaction is only the zeroth-order term and the complete interaction can
be written as an expansion in terms of the (inverse) velocity of light, c. For systems where relativistic
effects are important (i.e. containing elements from the lower part of the periodic table) or when
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high accuracy is required, the first-order correction (corresponding to an expansion up to 1/c2) for
the electron–electron interaction may be included:

Velec(r12) = 1
r12

[

1 − 1
2

(

α1 ⋅ α2 +
(α1 ⋅ r12)(α2 ⋅ r12)

r2
12

)]

(1.4)

The first-order correction is known as the Breit term, and α1 and α2 represent velocity operators.
The first term in Equation (1.4) can be considered as a magnetic interaction between two electrons,
but the whole Breit correction describes a “retardation” effect, since the interaction between distant
particles is “delayed” relative to interactions between close particles, owing to the finite value of c (in
atomic units, c ∼ 137).

. The Dynamical Equation

The mathematical form for the dynamical equation depends on the mass and velocity of the particles
and can be divided into four regimes (see Figure 1.2).

Newtonian mechanics, exemplified by Newton’s second law (F = ma), applies for “heavy”, “slow-
moving” particles. Relativistic effects become important when the velocity is comparable to the speed
of light, causing an increase in the particle mass m relative to the rest mass m0. A pragmatic border-
line between Newtonian and relativistic (Einstein) mechanics is ∼1/3c, corresponding to a relativistic
correction of a few percent.

Light particles display both wave and particle characteristics and must be described by quantum
mechanics, with the borderline being approximately the mass of a proton. Electrons are much lighter
and can only be described by quantum mechanics, while atoms and molecules, with a few exceptions,
behave essentially as classical particles. Hydrogen (protons), being the lightest nucleus, represents a
borderline case, which means that quantum corrections in some cases are essential. A prime example
is the tunnelling of hydrogen through barriers, allowing reactions involving hydrogen to occur faster
than expected from transition state theory.

Velocity

Mass

Relativistic

Non-relativistic

Quantum Classical

~ 1/3 c
~ 108 m/s

~ 10-27 kg 
~ 1 amu

Dirac
HΨ = idΨ/dt

Schrödinger 
HΨ = idΨ/dt

Einstein 
F = ma

Newton
F = ma

Figure . Domains of dynamical equations.
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A major difference between quantum and classical mechanics is that classical mechanics is
deterministic while quantum mechanics is probabilistic (more correctly, quantum mechanics is also
deterministic, but the interpretation is probabilistic). Deterministic means that Newton’s equation
can be integrated over time (forward or backward) and can predict where the particles are at a
certain time. This, for example, allows prediction of where and when solar eclipses will occur many
thousands of years in advance, with an accuracy of meters and seconds. Quantum mechanics, on the
other hand, only allows calculation of the probability of a particle being at a certain place at a certain
time. The probability function is given as the square of a wave function, P(r,t) = Ψ2(r,t), where the
wave function Ψ is obtained by solving either the Schrödinger (non-relativistic) or Dirac (relativistic)
equation. Although they appear to be the same in Figure 1.2, they differ considerably in the form of
the operator H.

For classical mechanics at low velocities compared with the speed of light, Newton’s second law
applies:

F =
dp
dt

(1.5)

If the particle mass is constant, the derivative of the momentum p is the mass times the acceleration:

p = mv

F =
dp
dt

= m dv
dt

= ma (1.6)

Since the force is the derivative of the potential (Equation (1.1)) and the acceleration is the second
derivative of the position r with respect to time, it may also be written in a differential form:

− 𝜕V
𝜕 r

= m 𝜕2r
𝜕 t2 (1.7)

Solving this equation gives the position of each particle as a function of time, that is r(t).
At velocities comparable to the speed of light, Newton’s equation is formally unchanged, but the

particle mass becomes a function of the velocity, and the force is therefore not simply a constant
(mass) times the acceleration:

m =
m0

√
1 − v2∕c2

(1.8)

For particles with small masses, primarily electrons, quantum mechanics must be employed. At low
velocities, the relevant equation is the time-dependent Schrödinger equation:

HΨ = i𝜕Ψ
𝜕 t

(1.9)

The Hamiltonian operator is given as a sum of kinetic and potential energy operators:

HSchrödinger = T + V

T =
p2

2m
= − 1

2m
∇2

(1.10)

Solving the Schrödinger equation gives the wave function as a function of time, and the probability
of observing a particle at a position r and time t is given as the square of the wave function:

P(r, t) = Ψ2(r, t) (1.11)
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For light particles moving at a significant fraction of the speed of light, the Schrödinger equation is
replaced by the Dirac equation:

HΨ = i𝜕Ψ
𝜕 t

(1.12)

Although it is formally identical to the Schrödinger equation, the Hamiltonian operator is signifi-
cantly more complicated:

HDirac = (cα ⋅ p + βmc2) + V (1.13)

The α and β are 4 × 4 matrices and the relativistic wave function consequently has four components.
Traditionally, these are labelled the large and small components, each having an 𝛼 and 𝛽 spin function
(note the difference between the α and β matrices and 𝛼 and 𝛽 spin functions). The large component
describes the electronic part of the wave function, while the small component describes the positronic
(electron antiparticle) part of the wave function, and the α and β matrices couple these components.
In the limit of c → ∞, the Dirac equation reduces to the Schrödinger equation, and the two large
components of the wave function reduce to the 𝛼 and 𝛽 spin-orbitals in the Schrödinger picture.

. Solving the Dynamical Equation

Both the Newton/Einstein and Schrödinger/Dirac dynamical equations are differential equations
involving the derivative of either the position vector or wave function with respect to time. For two-
particle systems with simple interaction potentials V, these can be solved analytically, giving r(t) or
Ψ(r,t) in terms of mathematical functions. For systems with more than two particles, the differential
equation must be solved by numerical techniques involving a sequence of small finite time steps.

Consider a set of particles described by a position vector ri at a given time ti. A small time step
Δt later, the positions can be calculated from the velocities, acceleration, hyperaccelerations, etc.,
corresponding to a Taylor expansion with time as the variable

ri+1 = ri + vi(Δt) + 1
2 ai(Δt)2 + 1

6 bi(Δt)3 + ⋅ ⋅ ⋅ (1.14)

The positions a small time step Δt earlier were (replacing Δt with −Δt)

ri−1 = ri − vi(Δt) + 1
2 ai(Δt)2 − 1

6 bi(Δt)3 + ⋅ ⋅ ⋅ (1.15)

Addition of these two equations gives a recipe for predicting the positions a time stepΔt later from the
current and previous positions, and the current acceleration, a method known as the Verlet algorithm:

ri+1 = (2ri − ri−1) + ai(Δt)2 + ⋅ ⋅ ⋅ (1.16)

Note that all odd terms in the Verlet algorithm disappear, that is the algorithm is correct to third order
in the time step. The acceleration can be calculated from the force or, equivalently, the potential:

a = F
m

= − 1
m
𝜕V
𝜕 r

(1.17)

The time step Δt is an important control parameter for a simulation. The largest value of Δt is deter-
mined by the fastest process occurring in the system, typically being an order of magnitude smaller
than the fastest process. For simulating nuclear motions, the fastest process is the motion of hydro-
gens, being the lightest particles. Hydrogen vibrations occur with a typical frequency of 3000 cm−1,
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corresponding to ∼1014 s−1, and therefore necessitating time steps of the order of one femtosecond
(10−15 s).

. Separation of Variables

As discussed in the previous section, the central problem is solving a differential equation with respect
to either the position (classical) or wave function (quantum) for the particles in the system. The stan-
dard method of solving differential equations is to find a set of coordinates where the differential
equation can be separated into less complicated equations. The first step is to introduce a center of
mass coordinate system, defined as the mass-weighted sum of the coordinates of all particles, which
allows the translation of the combined system with respect to a fixed coordinate system to be sepa-
rated from the internal motion. For a two-particle system, the internal motion is then described in
terms of a reduced mass moving relative to the center of mass, and this can be further transformed
by introducing a coordinate system that reflects the symmetry of the interaction between the two
particles. If the interaction only depends on the interparticle distance (e.g. Coulomb or gravitational
interaction), the coordinate system of choice is normally a polar (two-dimensional) or spherical polar
(three-dimensional) system. In these coordinate systems, the dynamical equation can be transformed
into solving one-dimensional differential equations.

For more than two particles, it is still possible to make the transformation to the center of mass
system. However, it is no longer possible to find a set of coordinates that allows a separation of the
degrees of freedom for the internal motion, thus preventing an analytical solution. For many-body
(N > 2) systems, the dynamical equation must therefore be solved by computational (numerical)
methods. Nevertheless, it is often possible to achieve an approximate separation of variables based
on physical properties, for example particles differing considerably in mass (such as nuclei and elec-
trons). A two-particle system consisting of one nucleus and one electron can be solved exactly by
introducing a center of mass system, thereby transforming the problem into a pseudo-particle with a
reduced mass (𝜇 = m1m2/(m1 + m2)) moving relative to the center of mass. In the limit of the nucleus
being infinitely heavier than the electron, the center of mass system becomes identical to that of the
nucleus. In this limit, the reduced mass becomes equal to that of the electron, which moves relative
to the (stationary) nucleus. For large, but finite, mass ratios, the approximation 𝜇 ≈ me is unnecessary
but may be convenient for interpretative purposes. For many-particle systems, an exact separation
is not possible, and the Born–Oppenheimer approximation corresponds to assuming that the nuclei
are infinitely heavier than the electrons. This allows the electronic problem to be solved for a given
set of stationary nuclei. Assuming that the electronic problem can be solved for a large set of nuclear
coordinates, the electronic energy forms a parametric hypersurface as a function of the nuclear coor-
dinates, and the motion of the nuclei on this surface can then be solved subsequently.

If an approximate separation is not possible, the many-body problem can often be transformed into
a pseudo one-particle system by taking the average interaction into account. For quantum mechanics,
this corresponds to the Hartree–Fock approximation, where the average electron–electron repulsion
is incorporated. Such pseudo one-particle solutions often form the conceptual understanding of the
system and provide the basis for more refined computational methods.

Molecules are sufficiently heavy that their motions can be described quite accurately by classical
mechanics. In condensed phases (solution or solid state), there is a strong interaction between
molecules, and a reasonable description can only be attained by having a large number of individual
molecules moving under the influence of each other’s repulsive and attractive forces. The forces in
this case are complex and cannot be written in a simple form such as the Coulomb or gravitational
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interaction. No analytical solutions can be found in this case, even for a two-particle (molecular) sys-
tem. Similarly, no approximate solution corresponding to a Hartree–Fock model can be constructed.
The only method in this case is direct simulation of the full dynamical equation.

1.6.1 Separating Space and Time Variables

The time-dependent Schrödinger equation involves differentiation with respect to both time and
position, the latter contained in the kinetic energy of the Hamiltonian operator:

H(r, t)Ψ(r, t) = i𝜕Ψ(r, t)
𝜕 t

H(r, t) = T(r) + V(r, t)
(1.18)

For (bound) systems where the potential energy operator is time-independent (V(r,t) = V(r)), the
Hamiltonian operator becomes time-independent and yields the total energy when acting on the
wave function. The energy is a constant, independent of time, but depends on the space variables.

H(r, t) = H(r) = T(r) + V(r)

H(r)Ψ(r, t) = E(r)Ψ(r, t)
(1.19)

Inserting this in the time-dependent Schrödinger equation shows that the time and space variables
of the wave function can be separated:

H(r)Ψ(r, t) = E(r)Ψ(r, t) = i𝜕Ψ(r, t)
𝜕 t

Ψ(r, t) = Ψ(r)e−iEt
(1.20)

The latter follows from solving the first-order differential equation with respect to time, and shows
that the time dependence can be written as a simple phase factor multiplied by the spatial wave func-
tion. For time-independent problems, this phase factor is normally neglected, and the starting point
is taken as the time-independent Schrödinger equation:

H(r)Ψ(r) = E(r)Ψ(r) (1.21)

1.6.2 Separating Nuclear and Electronic Variables

Electrons are very light particles and cannot be described by classical mechanics, while nuclei are
sufficiently heavy that they display only small quantum effects. The large mass difference indicates
that the nuclear velocities are much smaller than the electron velocities, and the electrons therefore
adjust very fast to a change in the nuclear geometry.

For a general N-particle system, the Hamiltonian operator contains kinetic (T) and potential (V)
energy for all particles:

H = T + V

T =
N∑

i=1
Ti ; V =

N∑

i>j
Vij

(1.22)
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The potential energy operator is the Coulomb potential (Equation (1.3)). Denoting nuclear coordi-
nates with R and subscript n, and electron coordinates with r and subscript e, this can be expressed
as follows:

HtotΨtot(R, r) = EtotΨtot(R, r)
Htot = He + Tn ; He = Te + Vne + Vee + Vnn

Ψtot(R, r) = Ψn(R)Ψe(R, r)
HeΨe(R, r) = Ee(R)Ψe(R, r)

(Tn + Ee(R))Ψn(R) = EtotΨn(R)

(1.23)

The above approximation corresponds to neglecting the coupling between the nuclear and electronic
velocities, that is the nuclei are stationary from the electronic point of view. The electronic wave func-
tion thus depends parametrically on the nuclear coordinates, since it only depends on the position
of the nuclei, not on their momentum. To a good approximation, the electronic wave function thus
provides a potential energy surface upon which the nuclei move, and this separation is known as the
Born–Oppenheimer approximation.

The Born–Oppenheimer approximation is usually very good. For the hydrogen molecule (H2) the
error is of the order of 10−4 au, and for systems with heavier nuclei the approximation becomes better.
As we shall see later, it is possible only in a few cases to solve the electronic part of the Schrödinger
equation to an accuracy of 10−4 au, that is neglect of the nuclear–electron coupling is usually only a
minor approximation compared with other errors.

1.6.3 Separating Variables in General

Assume that a set of variables can be found where the Hamiltonian operator H for two parti-
cles/variables can be separated into two independent terms, with each only depending on one parti-
cle/variable:

H = h1 + h2 (1.24)

Assume furthermore that the Schrödinger equation for one particle/variable can be solved (exactly
or approximately):

hi𝜙i = 𝜀i𝜙i (1.25)

The solution to the two-particle problem can then be composed of solutions of one-variable
Schrödinger equations:

Ψ = 𝜙1𝜙2 ; E = 𝜀1 + 𝜀2 (1.26)

This can be generalized to the case of N particles/variables:

H =
∑

i
hi

Ψ =
∏

i
𝜙i ; E =

∑

i
𝜀i

(1.27)

The properties in Equation (1.27) may be verified by inserting the entities in the Schrödinger Equa-
tion (1.21).
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. Classical Mechanics

1.7.1 The Sun–Earth System

The motion of the Earth around the Sun is an example of a two-body system that can be treated by
classical mechanics. The interaction between the two “particles” is the gravitational force:

V (r12) = −Cgrav
m1m2

r12
(1.28)

The dynamical equation is Newton’s second law, which in differential form can be written as

− 𝜕V
𝜕 r

= m 𝜕2r
𝜕 t2 (1.29)

The first step is to introduce a center of mass system, and the internal motion becomes motion of a
“particle” with a reduced mass given by

𝜇 =
MSunmEarth

MSun + mEarth
=

mEarth
(1 + mEarth∕MSun)

≅ mEarth (1.30)

Since the mass of the Sun is 3 × 105 times larger than that of the Earth, the reduced mass is essentially
identical to the Earth’s mass (𝜇 = 0.999997mEarth). To a very good approximation, the system can
therefore be described as the Earth moving around the Sun, which remains stationary.

The motion of the Earth around the Sun occurs in a plane, and a suitable coordinate system is a
polar coordinate system (two-dimensional) consisting of r and 𝜃 (Figure 1.3).

The interaction depends only on the distance r, and the differential equation (Newton’s equation)
can be solved analytically. The bound solutions are elliptical orbits with the Sun (more precisely, the
center of mass) at one of the foci, but for most of the planets, the actual orbits are close to circular.
Unbound solutions corresponding to hyperbolas also exist and could, for example, describe the path
of a (non-returning) comet (see Figure 1.4).

Each bound orbit can be classified in terms of the dimensions (largest and smallest distance to the
Sun), with an associated total energy. In classical mechanics, there are no constraints on the energy
and all sizes of orbits are allowed. If the zero point for the energy is taken as the two particles at rest
infinitely far apart, positive values of the total energy correspond to unbound solutions (hyperbolas,
with the kinetic energy being larger than the potential energy) while negative values correspond to
bound orbits (ellipsoids, with the kinetic energy being less than the potential energy). Bound solutions
are also called stationary orbits, as the particle position returns to the same value with well-defined
time intervals.

θ 

r
x = rcosθ 
y = rsinθ 

y

x

Figure . A polar coordinate system.
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Figure . Bound and unbound solutions to the classical two-body problem.

1.7.2 The Solar System

Once we introduce additional planets in the Sun–Earth system, an analytical solution for the motions
of all the planets can no longer be obtained. Since the mass of the Sun is so much larger than the
remaining planets (the Sun is 1000 times heavier than Jupiter, the largest planet), the interactions
between the planets can to a good approximation be neglected. For the Earth, for example, the second
most important force is from the Moon, with a contribution that is 180 times smaller than that from
the Sun. The next largest contribution is from Jupiter, being approximately 30 000 times smaller (on
average) than the gravitational force from the Sun. In this central field model, the orbit of each planet
is determined as if it was the only planet in the solar system, and the resulting computational task is a
two-particle problem, that is elliptical orbits with the Sun at one of the foci. The complete solar system
is the unification of eight such orbits and the total energy is the sum of all eight individual energies.

A formal refinement can be done by taking the average interaction between the planets into
account, that is a Hartree–Fock type approximation. In this model, the orbit of one planet (e.g. the
Earth) is determined by taking the average interaction with all the other planets into account. The
average effect corresponds to spreading the mass of the other planets evenly along their orbits.

The Hartree–Fock model (Figure 1.5) represents only a very minute improvement over the inde-
pendent orbit model for the solar system, since the planetary orbits do not cross. The effect of a planet
inside the Earth’s orbit corresponds to adding its mass to the Sun, while the effect of the spread-out
mass of a planet outside the Earth’s orbit is zero. The Hartree–Fock model for the Earth thus con-
sists of increasing the Sun’s effective mass with that of Mercury and Venus, that is a change of only
0.0003%. For the solar system there is thus very little difference between totally neglecting the plan-
etary interactions and taking the average effect into account.

Figure . A Hartree–Fock model for the solar system.
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Figure . Modeling the solar system with actual interactions.

The real system, of course, includes all interactions, where each pair interaction depends on the
actual distance between the planets (Figure 1.6). The resulting planetary motions cannot be solved
analytically, but can be simulated numerically. From a given starting condition, the system is allowed
to evolve for many small time steps, and all interactions are considered constant within each time step.
By sufficiently small time steps, this yields a very accurate model of the real many-particle dynamics,
and will display small wiggles of the planetary motion around the elliptical orbits calculated by either
of the two independent-particle models.

Since the perturbations due to the other planets are significantly smaller than the interaction with
the Sun, the “wiggles” are small compared with the overall orbital motion, and a description of the
solar system as planets orbiting the Sun in elliptical orbits is a very good approximation to the true
dynamics of the system.

. Quantum Mechanics

1.8.1 A Hydrogen-Like Atom

A quantum analog of the Sun–Earth system is a nucleus and one electron, that is a hydrogen-like
atom. The force holding the nucleus and electron together is the Coulomb interaction:

V(r12) =
q1q2
r12

(1.31)

The interaction again only depends on the distance, but owing to the small mass of the elec-
tron, Newton’s equation must be replaced with the Schrödinger equation. For bound states, the
time-dependence can be separated out, as shown in Section 1.6.1, giving the time-independent
Schrödinger equation:

HΨ = EΨ (1.32)

The Hamiltonian operator for a hydrogen-like atom (nuclear charge of Z) can in Cartesian coordinates
and atomic units be written as follows, with M being the nuclear and m the electron mass (m = 1 in
atomic units):

H = − 1
2M

∇2
1 − 1

2m
∇2

2 − Z
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2
(1.33)
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The Laplace operator is given by

∇2
i = 𝜕2

𝜕x2
i
+ 𝜕2

𝜕y2
i
+ 𝜕2

𝜕z2
i

(1.34)

The two kinetic energy operators are already separated, since each only depends on the three coordi-
nates for one particle. The potential energy operator, however, involves all six coordinates. The center
of mass system is introduced by the following six coordinates:

X =
(Mx1 + mx2)

(M + m)
; x = x1 − x2

Y =
(My1 + my2)

(M + m)
; y = y1 − y2

Z =
(Mz1 + mz2)

(M + m)
; z = z1 − z2

(1.35)

Here the X, Y, Z coordinates define the center of mass system and the x, y, z coordinates specify the
relative position of the two particles. In these coordinates the Hamiltonian operator can be rewritten
as

H = − 1
2∇

2
XYZ − 1

2𝜇
∇2

xyz − Z
√

x2 + y2 + z2
(1.36)

The first term only involves the X, Y and Z coordinates, and the ∇2
XYZ operator is obviously sepa-

rable in terms of X, Y and Z. Solution of the XYZ part gives translation of the whole system in three
dimensions relative to the laboratory-fixed coordinate system. The xyz coordinates describe the rel-
ative motion of the two particles in terms of a pseudo-particle with a reduced mass 𝜇 relative to the
center of mass:

𝜇 =
Mnucmelec

Mnuc + melec
=

melec
(

1 + melec∕Mnuc

) ≅ melec (1.37)

For the hydrogen atom, the nucleus is approximately 1800 times heavier than the electron, giving
a reduced mass of 0.9995melec. Similar to the Sun–Earth system, the hydrogen atom can therefore
to a good approximation be considered as an electron moving around a stationary nucleus, and
for heavier elements the approximation becomes better (with a uranium nucleus, for example, the
nucleus/electron mass ratio is ∼430 000). Setting the reduced mass equal to the electron mass corre-
sponds to making the assumption that the nucleus is infinitely heavy and therefore stationary.

The potential energy again only depends on the distance between the two particles, but in contrast
to the Sun–Earth system, the motion occurs in three dimensions, and it is therefore advantageous to
transform the Schrödinger equation into a spherical polar set of coordinates (Figure 1.7).

r

φ

θ 

x

y

z

x = rsinθ cosφ
y = rsinθ sinφ 
z = rcosθ  

Figure . A spherical polar coordinate system.
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The potential energy becomes very simple, but the kinetic energy operator becomes complicated:

H = − 1
2𝜇

∇2
r𝜃𝜑 − Z

r

∇2
r𝜃𝜑 = 1

r2
𝜕

𝜕 r
r2 𝜕
𝜕 r

+ 1
r2 sin 𝜃

𝜕

𝜕𝜃
sin 𝜃 𝜕

𝜕𝜃
+ 1

r2 sin2 𝜃

𝜕2

𝜕𝜑2

(1.38)

The kinetic energy operator, however, is almost separable in spherical polar coordinates, and the
actual method of solving the differential equation can be found in a number of textbooks. The bound
solutions (negative total energy) are called orbitals and can be classified in terms of three quantum
numbers, n, l and m, corresponding to the three spatial variables r, 𝜃 and 𝜑. The quantum numbers
arise from the boundary conditions on the wave function, that is it must be periodic in the 𝜃 and 𝜑
variables and must decay to zero as r → ∞. Since the Schrödinger equation is not completely sepa-
rable in spherical polar coordinates, there exist the restrictions n > l ≥ |m|. The n quantum number
describes the size of the orbital, the l quantum number describes the shape of the orbital, while the
m quantum number describes the orientation of the orbital relative to a fixed coordinate system. The
l quantum number translates into names for the orbitals:
� l = 0 : s-orbital
� l = 1 : p-orbital
� l = 2 : d-orbital
� l = 3 : f-orbital, etc.

The orbitals can be written as a product of a radial function, describing the behavior in terms of the
distance r between the nucleus and electron, and spherical harmonic functions Ylm, representing
the angular part in terms of the angles 𝜃 and 𝜑. The orbitals can be visualized by plotting three-
dimensional objects corresponding to the wave function having a specific value (e.g. Ψ2 = 0.10) (see
Table 1.2).

The orbitals for different quantum numbers are orthogonal and can be chosen to be normalized:
⟨
Ψn,l,m |

|Ψn′,l′,m′
⟩
= 𝛿n,n′𝛿l,l′𝛿m,m′ (1.39)

Table . Hydrogenic orbitals obtained from solving the Schrödinger equation.

n l m Ψn,l,m(r,𝜃,𝜑) Shape and size

1 0 0 Y0,0(𝜃,𝜑)e−Zr

2 0 0 Y0,0(𝜃,𝜑)(2 − Zr)e−Zr/2

1 ±1, 0 Y1,m(𝜃,𝜑)Zre−Zr/2

3 0 0 Y0,0(𝜃,𝜑)(27 − 18Zr + 2Z2r2)e−Zr/3

1 ±1, 0 Y1,m(𝜃,𝜑)Zr(6 − Zr)e−Zr/3

2 ±2, ±1, 0 Y2,m(𝜃,𝜑)Z2r2e−Zr/3
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The orthogonality of the orbitals in the angular part (l and m quantum numbers) follows from the
shape of the spherical harmonic functions, as these have l nodal planes (points where the wave func-
tion is zero). The orthogonality in the radial part (n quantum number) is due to the presence of (n–l–1)
radial nodes in the wave function.

In contrast to classical mechanics, where all energies are allowed, wave functions and associated
energies are quantized, that is only certain values are allowed. The energy only depends on n for a
given nuclear charge Z and is given by

E = − Z2

2n2 (1.40)

Unbound solutions have a positive total energy and correspond to scattering of an electron by the
nucleus.

1.8.2 The Helium Atom

Like the solar system, it is not possible to find a set of coordinates where the Schrödinger equation
can be solved analytically for more than two particles (i.e. for many-electron atoms). Owing to the
dominance of the Sun’s gravitational field, a central field approximation provides a good description
of the actual solar system, but this is not the case for an atomic system. The main differences between
the solar system and an atom such as helium are:

1. The interaction between the electrons is only a factor of two smaller than between the nucleus and
electrons, compared with a ratio of at least 1000 for the solar system.

2. The electron–electron interaction is repulsive, compared with the attraction between planets.
3. The motion of the electrons must be described by quantum mechanics owing to the small electron

mass, and the particle position is determined by an orbital, the square of which gives the probability
of finding the electron at a given position.

4. Electrons are indistinguishable particles having a spin of 1/2. This fermion character requires the
total wave function to be antisymmetric, that is it must change sign when interchanging two elec-
trons. The antisymmetry results in the so-called exchange energy, which is a non-classical correc-
tion to the Coulomb interaction.

The simplest atomic model would be to neglect the electron–electron interaction and only take the
nucleus–electron attraction into account. In this model each orbital for the helium atom is deter-
mined by solving a hydrogen-like system with a nucleus and one electron, yielding hydrogen-like
orbitals, 1s, 2s, 2p, 3s, 3p, 3d, etc., with Z = 2. The total wave function is obtained from the resulting
orbitals subject to the aufbau and Pauli principles. These principles say that the lowest energy orbitals
should be filled first and only two electrons (with different spin) can occupy each orbital, that is the
electron configuration becomes 1s2. The antisymmetry condition is conveniently fulfilled by writing
the total wave function as a Slater determinant, since interchanging any two rows or columns changes
the sign of the determinant. For a helium atom, this would give the following (unnormalized) wave
function, with the orbitals given in Table 1.2 with Z = 2:

Φ =
|
|
|
|
|

𝜙1s𝛼(1)
𝜙1s𝛼(2)

𝜙1s𝛽 (1)
𝜙1s𝛽 (2)

|
|
|
|
|

= 𝜙1s𝛼(1)𝜙1s𝛽 (2) − 𝜙1s𝛽 (1)𝜙1s𝛼(2) (1.41)

The total energy calculated by this wave function is simply twice the orbital energy, −4.000 au, which
is in error by 38% compared with the experimental value of −2.904 au. Alternatively, we can use the
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wave function given by Equation (1.41), but include the electron–electron interaction in the energy
calculation, giving a value of −2.750 au.

A better approximation can be obtained by taking the average repulsion between the electrons into
account when determining the orbitals, a procedure known as the Hartree–Fock approximation. If
the orbital for one of the electrons was somehow known, the orbital for the second electron could
be calculated in the electric field of the nucleus and the first electron, described by its orbital. This
argument could just as well be used for the second electron with respect to the first electron. The goal
is therefore to calculate a set of self-consistent orbitals, and this can be done by iterative methods.

For the solar system, the non-crossing of the planetary orbitals makes the Hartree–Fock approxi-
mation only a very minor improvement over a central field model. For a many-electron atom, how-
ever, the situation is different since the position of the electrons is described by three-dimensional
probability functions (square of the orbitals), that is the electron “orbits” “cross”. The average nucleus–
electron distance for an electron in a 2s-orbital is larger than for one in a 1s-orbital, but there is a finite
probability that a 2s-electron is closer to the nucleus than a 1s-electron. If the 1s-electrons in lithium
were completely inside the 2s-orbital, the latter would experience an effective nuclear charge of 1.00,
but owing to the 2s-electron penetrating the 1s-orbital, the effective nuclear charge for an electron
in a 2s-orbital is 1.26. The 2s-electron in return screens the nuclear charge felt by the 1s-electrons,
making the effective nuclear charge felt by the 1s-electrons less than 3.00. The mutual screening of
the two 1s-electrons in helium produces an effective nuclear charge of 1.69, yielding a total energy of
−2.848 au, which is a significant improvement relative to the model with orbitals employing a fixed
nuclear charge of 2.00.

Although the effective nuclear charge of 1.69 represents the lowest possible energy with the func-
tional form of the orbitals in Table 1.2, it is possible to further refine the model by relaxing the
functional form of the orbitals from a strict exponential. Although the exponential form is the exact
solution for a hydrogen-like system, this is not the case for a many-electron atom. Allowing the
orbitals to adopt best possible form, and simultaneously optimizing the exponents (“effective nuclear
charge”), gives an energy of −2.862 au. This represents the best possible independent-particle model
for the helium atom, and any further refinement must include the instantaneous correlation between
the electrons. By using the electron correlation methods described in Chapter 4, it is possible to
reproduce the experimental energy of −2.904 au (see Table 1.3).

The equal mass of all the electrons and the strong interaction between them makes the Hartree–
Fock model less accurate than desirable, but it is still a big improvement over an independent orbital
model. The Hartree–Fock model typically accounts for ∼99% of the total energy, but the remain-
ing correlation energy is usually very important for chemical purposes. The correlation between the
electrons describes the “wiggles” relative to the Hartree–Fock orbitals due to the instantaneous inter-
action between the electrons, rather than just the average repulsion. The goal of correlated methods

Table . Helium atomic energies in various approximations.

Wave function Zeff Energy (au)

He+ exponential orbital, no electron–electron repulsion 2.00 −4.000
He+ exponential orbital, including electron–electron repulsion 2.00 −2.750
Optimum single exponential orbital 1.69 −2.848
Best orbital, Hartree–Fock limit −2.862
Experimental −2.904
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for solving the Schrödinger equation is to calculate the remaining correction due to the electron–
electron interaction.

. Chemistry

The Born–Oppenheimer separation of the electronic and nuclear motions is a cornerstone in
computational chemistry. Once the electronic Schrödinger equation has been solved for a large
number of nuclear geometries (and possibly also for several electronic states), the potential energy
surface (PES) is known. The motion of the nuclei on the PES can then be solved either classically
(Newton) or by quantum (Schrödinger) methods. If there are N nuclei, the dimensionality of the
PES is 3N, that is there are 3N nuclear coordinates that define the geometry. Of these coordinates,
three describe the overall translation of the molecule and three describe the overall rotation of the
molecule with respect to three axes. For a linear molecule, only two coordinates are necessary for
describing the rotation. This leaves 3N − 6(5) coordinates to describe the internal movement of the
nuclei, which for small displacements may be chosen as “vibrational normal coordinates”.

It should be stressed that nuclei are heavy enough that quantum effects are almost negligible, that
is they behave to a good approximation as classical particles. Indeed, if nuclei showed significant
quantum aspects, the concept of molecular structure (i.e. different configurations and conforma-
tions) would not have any meaning, since the nuclei would simply tunnel through barriers and end
up in the global minimum. Dimethyl ether, for example, would spontaneously transform into ethanol.
Furthermore, it would not be possible to speak of a molecular geometry, since the Heisenberg uncer-
tainty principle would not permit a measure of nuclear positions with an accuracy smaller than the
molecular dimension.

Methods aimed at solving the electronic Schrödinger equation are broadly referred to as “electronic
structure calculations”. An accurate determination of the electronic wave function is very demand-
ing. Constructing a complete PES for molecules containing more than three or four atoms is virtually
impossible. Consider, for example, mapping the PES by calculating the electronic energy for every
0.1 Å over, say, a 1 Å range (a very coarse mapping). With three atoms, there are three internal coor-
dinates, giving 103 points to be calculated. Four atoms already produce six internal coordinates, giving
106 points, which is possible to calculate, but only with a determined effort. Larger systems are out
of reach. Constructing global PESs for all but the smallest molecules is thus impossible. By restrict-
ing the calculations to the “chemically interesting” part of the PES, however, it is possible to obtain
useful information. The interesting parts of a PES are usually nuclear arrangements that have low
energies. For example, nuclear movements near a minimum on the PES, which corresponds to a sta-
ble molecule, are molecular vibrations. Chemical reactions correspond to larger movements, and
may in the simplest approximation be described by locating the lowest energy path leading from one
minimum on the PES to another.

These considerations lead to the following definition:

Chemistry is knowing the energy as a function of the nuclear coordinates.

The large majority of what are commonly referred to as molecular properties may similarly be
defined as:

Properties are knowing how the energy changes upon adding a perturbation.

In the following chapters we will look at some aspects of solving the electronic Schrödinger equa-
tion or otherwise construct a PES, how to deal with the movement of nuclei on the PES and various
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technical points of commonly used methods. A word of caution here: although it is the nuclei that
move, and the electrons follow “instantly” (according to the Born–Oppenheimer approximation), it
is common also to speak of “atoms” moving. An isolated atom consists of a nucleus and some elec-
trons, but in a molecule the concept of an atom is not well defined. Analogously to the isolated atom,
an atom in a molecule should consist of a nucleus and some electrons. But how does one partition
the total electron distribution in a molecule such that a given portion belongs to a given nucleus?
Nevertheless, the words nucleus and atom are often used interchangeably.

Much of the following will concentrate on describing individual molecules. Experiments are rarely
done on a single molecule; rather they are performed on macroscopic samples with perhaps 1020

molecules. The link between the properties of a single molecule, or a small collection of molecules,
and the macroscopic observable is statistical mechanics. Briefly, macroscopic properties, such as tem-
perature, heat capacity, entropy, etc., are the net effect of a very large number of molecules having a
certain distribution of energies. If all the possible energy states can be determined for an individual
molecule or a small collection of molecules, statistical mechanics can be used for calculating macro-
scopic properties.
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Force Field Methods

. Introduction

As mentioned in Chapter 1, one of the major problems is calculating the electronic energy for a
given nuclear configuration to give a potential energy surface. In force field (FF) methods, this step
is bypassed by writing the electronic energy as a parametric function of the nuclear coordinates and
fitting the parameters to experimental or higher level computational data. The “building blocks” in
force field methods are atoms, that is electrons are not considered as individual particles. This means
that bonding information must be provided explicitly, rather than being the result of solving the elec-
tronic Schrödinger equation.

In addition to bypassing the solution of the electronic Schrödinger equation, the quantum aspects
of the nuclear motion are also neglected. This means that the dynamics of the atoms is treated by
classical mechanics, that is Newton’s second law. For time-independent phenomena, the problem
reduces to calculating the energy at a given geometry. Often the interest is in finding geometries of
stable molecules and/or different conformations, and possibly also interconversion between confor-
mations. The problem is then reduced to finding energy minima (and possibly also some first-order
saddle points) on the potential energy surface.

Molecules are described by a “ball and spring” model in force field methods, with atoms having
different sizes and “softness” and bonds having different lengths and “stiffness”.1–5 Force field methods
are also referred to as molecular mechanics (MM) methods. Many different force fields exist, and
in this chapter we will use Allinger’s MM2 and MM3 (Molecular Mechanics versions 2 and 3) to
illustrate specific details.6, 7

The foundation of force field methods is the observation that molecules tend to be composed of
units that are structurally similar in different molecules. All C H bond lengths, for example, are
roughly constant in all molecules, being between 1.06 and 1.10 Å. The C H stretch vibrations are
also similar, between 2900 and 3300 cm−1, implying that the C H force constants are also compara-
ble. If the C H bonds are further divided into groups, for example those attached to single-, double-
or triple-bonded carbon, the variation within each of these groups becomes even smaller. The same
grouping holds for other features as well, for example all C O bonds are approximately 1.22 Å long
and have vibrational frequencies of approximately 1700 cm−1, all double-bonded carbons are essen-
tially planar, etc. The transferability also holds for energetic features. A plot of the heat of formation
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for linear alkanes, that is CH3(CH2)nCH3, against the chain length n produces a straight line, showing
that each CH2 group contributes essentially the same amount of energy. (For a general discussion of
estimating heat of formation from group additivities, see Benson.8)

The picture of molecules being composed of structural units (“functional groups”) that behave sim-
ilarly in different molecules forms the very basis of organic chemistry. Molecular structure drawings,
where alphabetic letters represent atoms and lines represent bonds, are used universally. Organic
chemists often build ball and stick, or CPK space-filling, models of their molecules to examine
their shapes. Force field methods are in a sense a generalization of these models, with the added
feature that the atoms and bonds are not fixed at one size and length. Furthermore, force field
calculations enable predictions of relative energies and barriers for interconversion of different
conformations.

The idea of molecules being composed of atoms, which are structurally similar in different
molecules, is implemented in force field models as atom types. The atom type depends on the atomic
number and the type of chemical bonding it is involved in. The type may be denoted with either a
number or a letter code. In MM2, for example, there are 71 different atom types (type 44 is missing).
Type 1 is an sp3-hybridized carbon, and an sp2-hybridized carbon may be type 2, 3 or 50, depending
on the neighbor atom(s). Type 2 is used if the bonding is to another sp2-carbon (simple double bond),
type 3 is used if the carbon is bonded to an oxygen (carbonyl group) and type 50 is used if the carbon
is part of an aromatic ring with delocalized bonds. Table 2.1 gives a complete list of the MM2(91)
atom types, where (91) indicates the year when the parameter set was released. The atom type num-
bers roughly reflect the order in which the corresponding functional groups were parameterized. The
number of atom types represents a choice for how different two atoms in different bonding situations
can be and still be considered identical, that is described by the same set of parameters. Results from
electronic structure methods can be used for comparing similarities and thus deciding how many
atoms types that should be used,9 but most force fields rely on chemical intuition and calibration
studies for the decision.

. The Force Field Energy

The force field energy is written as a sum of terms (Figure 2.1), each describing the energy required
for distorting a molecule in a specific fashion:

EFF = Estr + Ebend + Etors + Evdw + Eel + Ecross (2.1)

where Estr is the energy function for stretching a bond between two atoms, Ebend represents the energy
required for bending an angle, Etors is the torsional energy for rotation around a bond, Evdw and Eel
describe the non-bonded atom–atom interactions and finally Ecross describes coupling between the
first three terms.

Given an energy function of the nuclear coordinates as in Equation (2.1), geometries and rel-
ative energies can be calculated by optimization. Stable molecules correspond to minima on the
potential energy surface, and can be located by minimizing EFF as a function of the nuclear coordi-
nates. Conformational transitions can be described by locating transition structures on the EFF sur-
face. Exactly how such a multidimensional function optimization may be carried out is described in
Chapter 13.
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Table . MM2(91) atom types.

Type Symbol Description Type Symbol Description

1 C sp3-carbon 28 H Enol or amide
2 C sp2-carbon, alkene 48 H Ammonium
3 C sp2-carbon, carbonyl, imine 36 D Deuterium
4 C sp-carbon 20 lp Lone pair
22 C sp3-carbon, cyclopropane 15 S Sulfide (R2S)
29 C⋅ Radical 16 S+ Sulfonium (R3S+)
30 C+ Carbocation 17 S Sulfoxide (R2SO)
38 C sp2-carbon, cyclopropene 18 S Sulfone (R2SO2)
50 C sp2-carbon, aromatic 42 S sp2-sulfur, thiophene
56 C sp3-carbon, cyclobutane 11 F Fluoride
57 C sp2-carbon, cyclobutene 12 Cl Chloride
58 C Carbonyl, cyclobutanone 13 Br Bromide
67 C Carbonyl, cyclopropanone 14 I Iodide
68 C Carbonyl, ketene 26 B Boron, trigonal
71 C Ketonium carbon 27 B Boron, tetrahedral
8 N sp3-nitrogen 19 Si Silane
9 N sp2-nitrogen, amide 25 P Phosphine
10 N sp-nitrogen 60 P Phosphor, pentavalent
37 N Azo or pyridine ( N ) 51 He Helium
39 N+ sp3-nitrogen, ammonium 52 Ne Neon
40 N sp2-nitrogen, pyrrole 53 Ar Argon
43 N Azoxy ( N N O) 54 Kr Krypton
45 N Azide, central atom 55 Xe Xenon
46 N Nitro (–NO2) 31 Ge Germanium
72 N Imine, oxime ( N ) 32 Sn Tin
6 O sp3-oxygen 33 Pb Lead
7 O sp2-oxygen, carbonyl 34 Se Selenium
41 O sp2-oxygen, furan 35 Te Tellurium
47 O− Carboxylate 59 Mg Magnesium
49 O Epoxy 61 Fe Iron (II)
69 O Amine oxide 62 Fe Iron (III)
70 O Ketonium oxygen 63 Ni Nickel (II)
5 H Hydrogen, except on N or O 64 Ni Nickel (III)
21 H Alcohol (OH) 65 Co Cobalt (II)
23 H Amine (NH) 66 Co Cobalt (III)
24 H Carboxyl (COOH)

Note that special atom types are defined for carbon atoms involved in small rings, such as cyclo-
propane and cyclobutane. The reason for this will be discussed in Section 2.2.2.

torsional
stre

tch bend

non-bond

Figure . Illustration of the fundamental force field energy terms.
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2.2.1 The Stretch Energy

Estr is the energy function for stretching a bond between two atom types A and B. In its simplest form,
it is written as a Taylor expansion around a “natural”, or “equilibrium”, bond length, R0. Terminating
the expansion at second order gives

Estr
(
RAB − RAB

0
)
= E(0) + dE

dR
(
RAB − RAB

0
)
+ 1

2
d2E
dR2

(
RAB − RAB

0
)2 (2.2)

The derivatives are evaluated at R = R0 and the E(0) term is normally set to zero, since this is just the
zero point for the energy scale. The second term is zero as the expansion is around the equilibrium
value. In its simplest form the stretch energy can thus be written as

Estr
(
RAB − RAB

0
)
= kAB (

RAB − RAB
0

)2 = kAB (
ΔRAB)2 (2.3)

Here kAB is the “force constant” for the A B bond. This is the form of a harmonic oscillator, with the
potential being quadratic in the displacement from the minimum.

The harmonic form is the simplest possible, and sufficient for determining most equilibrium
geometries. There are certain strained and crowded systems where the results from a harmonic
approximation are significantly different from experimental values, and if the force field should be able
to reproduce features such as vibrational frequencies, the functional form for Estr must be improved.
The straightforward approach is to include more terms in the Taylor expansion:

Estr(ΔRAB) = kAB
2 (ΔRAB)2 + kAB

3 (ΔRAB)3 + kAB
4 (ΔRAB)4 +⋯ (2.4)

This of course has a price: more parameters have to be assigned.
Polynomial expansions of the stretch energy do not have the correct limiting behavior. The cubic

anharmonicity constant k3 is normally negative, and if the Taylor expansion is terminated at third
order, the energy will go toward −∞ for long bond lengths. Minimization of the energy with such
an expression can cause the molecule to fly apart if a poor starting geometry is chosen. The quartic
constant k4 is normally positive and the energy will go toward +∞ for long bond lengths if the Taylor
series is terminated at fourth order. The correct limiting behavior for a bond stretched to infinity is
that the energy should converge towards the dissociation energy. A simple function that satisfies this
criterion is the Morse potential:10

EMorse(ΔR) = D(1 − e−𝛼ΔR)2

𝛼 =
√

k
2D

(2.5)

Here D is the dissociation energy and 𝛼 is related to the force constant. The Morse function repro-
duces the actual behavior quite accurately over a wide range of distances, as seen in Figure 2.2. There
are, however, some difficulties with the Morse potential in actual applications, for example the restor-
ing force is quite small for long bond lengths. Distorted structures, which may either be a poor starting
geometry or one that develops during a simulation, will therefore display a slow convergence toward
the equilibrium bond length. For minimization purposes and simulations at ambient temperatures
(e.g. 300 K) it is sufficient that the potential is reasonably accurate up to ∼40 kJ/mol above the mini-
mum (the average kinetic energy is 3.7 kJ/mol at 300 K). In this energy range there is little difference
between a Morse potential and a Taylor expansion, and most force fields therefore employ a simple
polynomial for the stretch energy. The number of parameters is often reduced by taking the cubic,
quartic, etc., constants as a predetermined fraction of the harmonic force constant. A popular method
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Figure . The stretch energy for CH4.

is to require that the nth-order derivative at R0 matches the corresponding derivative of the Morse
potential. For a fourth-order expansion this leads to the following expression:

Estr(ΔRAB) = kAB
2 (ΔRAB)2

[

1 − 𝛼(ΔRAB) + 7
12𝛼

2(ΔRAB)2
]

(2.6)

The 𝛼 constant is the same as that appearing in the Morse function, but may be taken as a fitting
parameter. An alternative method for introducing anharmonicity is to use the harmonic form in
Equation (2.3) but allow the force constant to depend on the bond distance.11

Figure 2.2 compares the performance of various functional forms for the stretch energy in CH4.
The “exact” form is taken from electronic structure calculations ([8,8]-CASMP2/aug-cc-pVTZ). The
simple harmonic approximation (P2) is seen to be accurate to about ±0.1 Å from the equilibrium
geometry and the quartic approximation (P4) up to ±0.3 Å. The Morse potential reproduces the real
curve quite accurately up to an elongation of 0.8 Å, and becomes exact again in the dissociation limit.

For the large majority of systems, including simulations, the only important chemical region is
within ∼40 kJ/mol of the bottom of the curve. In this region, a fourth-order polynomial is essentially
indistinguishable from either a Morse or the exact curve, as shown in Figure 2.3, and even a simple
harmonic approximation does a quite good job.

Until now, we have used two different words for the R0 parameter, the “natural” or the “equilib-
rium” bond length. The latter is slightly misleading. The R0 parameter is not the equilibrium bond
length for any molecule! Instead, it is the parameter which, when used to calculate the minimum
energy structure of a molecule, will produce a geometry having the experimental equilibrium bond
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Figure . The stretch energy for CH4.

length. If there were only one stretch energy in the whole force field energy expression (i.e. a diatomic
molecule), R0 would be the equilibrium bond length. However, in a polyatomic molecule the other
terms in the force field energy will usually produce a minimum energy structure with bond lengths
slightly longer than R0. R0 is the hypothetical bond length if no other terms are included, and the word
“natural” bond length is a better description of this parameter than “equilibrium” bond length. Essen-
tially all molecules have bond lengths that deviate very little from their “natural” values, typically by
less than 0.03 Å. For this reason a simple harmonic is usually sufficient for reproducing experimental
geometries.

For each bond type, that is a bond between two atom types A and B, there are at least two parameters
to be determined, kAB and RAB

0 . The higher-order expansions, and the Morse potential, have one
additional parameter (𝛼 or D) that needs to be determined.

2.2.2 The Bending Energy

Ebend is the energy required for bending an angle formed by three atoms A B C, where there is
a bond between A and B, and between B and C. Similarly to Estr, Ebend is usually expanded as a
Taylor series around a “natural” bond angle and terminated at second order, giving the harmonic
approximation:

Ebend
(
𝜃ABC − 𝜃ABC

0
)
= kABC (

𝜃ABC − 𝜃ABC
0

)2 (2.7)
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Figure . The bending energy for CH4.

While the simple harmonic expansion is adequate for most applications, there may be cases where
higher accuracy is required. The next improvement is to include a third-order term, analogous to
Estr. This can give a very good description over a large range of angles, as illustrated in Figure 2.4
for CH4. The “exact” form is again taken from electronic structure calculations (MP2/aug-cc-pVTZ).
The simple harmonic approximation (P2) is seen to be accurate to about ±30◦ from the equilibrium
geometry and the cubic approximation (P3) up to ±70◦. Higher-order terms can be included in order
to also reproduce vibrational frequencies. Analogous to Estr, the higher-order force constants are
often taken as a fixed fraction of the harmonic constant. The constants beyond third order can rarely
be assigned values with high confidence owing to insufficient experimental information. Fixing the
higher-order constant in terms of the harmonic constant of course reduces the quality of the fit.
While a third-order polynomial is capable of reproducing the actual curve very accurately if the cubic
constant is fitted independently, the assumption that it is a fixed fraction (independent of the atom
type) of the harmonic constant deteriorates the fit, but it still represents an improvement relative to
a simple harmonic approximation. A second-order expansion is normally sufficient in the chemically
important region below ∼40 kJ/mol above the bottom of the energy curve.

Angles where the central atom is di- or trivalent (ethers, alcohols, sulfides, amines and enamines)
present a special problem. In these cases, an angle of 180◦ corresponds to an energy maximum, that
is the derivative of the energy with respect to the angle should be zero and the second derivative
should be negative. This may be enforced by suitable boundary conditions on Taylor expansions of
at least order three. A third-order polynomial fixes the barrier for linearity in terms of the harmonic
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Figure . The bending energy for H2O.

force constant and the equilibrium angle (ΔE≠ = k(𝜃 − 𝜃0)2/6). A fourth-order polynomial enables an
independent fit of the barrier to linearity, but such constrained polynomial fittings are rarely done.
Instead, the bending function is taken to be identical for all atom types, for example a fourth-order
polynomial with cubic and quartic constants as a fixed fraction of the harmonic constant.

These features are illustrated for H2O in Figure 2.5, where the “exact” form is taken from a paramet-
ric fit to a large amount of spectroscopic data.12 The simple harmonic approximation (P2) is seen to be
accurate to about ±20◦ from the equilibrium geometry and the cubic approximation (P3) up to ±40◦.
Enforcing the cubic polynomial to have a zero derivative at 180◦ (P3′) gives a qualitatively correct
behavior, but reduces the overall fit, although it is still better than a simple harmonic approximation.

Although such refinements over a simple harmonic potential clearly improve the overall perfor-
mance, they have little advantage in the chemically important region up to ∼40 kJ/mol above the
minimum. As for the stretch energy term, the energy cost for bending is so large that most molecules
only deviate a few degrees from their natural bond angles. This again indicates that including only
the harmonic term is adequate for most applications.

As noted above, special atom types are often defined for small rings, owing to the very dif-
ferent equilibrium angles for such rings. In cyclopropane, for example, the carbons are formally
sp3-hybridized, but have equilibrium CCC angles of 60◦, in contrast to 110◦ in an acyclic system.
With a low-order polynomial for the bend energy, the energy cost for such a deformation is large.
For cyclobutane, for example, Ebend will dominate the total energy and cause the calculated structure
to be planar, in contrast to the puckered geometry found experimentally. Introducing a special atom
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Figure . Out-of-plane variable definitions.

type for carbon atoms in a cyclobutane ring allows a natural bond angle parameter close to 90◦, which
in turn allows a description of low-energy ring puckering.

For each combination of three atom types, A, B and C, there are at least two bending parameters
to be determined, kABC and 𝜃ABC

0 .

2.2.3 The Out-of-Plane Bending Energy

If the central B atom in the angle ABC is sp2-hybridized, there is a significant energy penalty associ-
ated with making the center pyramidal, since the four atoms prefer to be located in a plane. If the four
atoms are exactly in a plane, the sum of the three angles with B as the central atom should be exactly
360◦, but a quite large pyramidalization may be achieved without seriously distorting any of these
three angles. Taking the bond distances to 1.5 Å, and moving the central atom 0.2 Å out of the plane,
only reduces the angle sum to 354.8◦ (i.e. only a 1.7◦ decrease per angle). The corresponding out-of-
plane angle, 𝜒 , is 7.7◦ for this case. Very large force constants must be used if the ABC, ABD and CBD
angle distortions are to reflect the energy cost associated with the pyramidalization. This would have
the consequence that the in-plane angle deformations for a planar structure would become unreal-
istically stiff. Thus a special out-of-plane energy bend term (Eoop) is usually added, while the in-plane
angles (ABC, ABD and CBD) are treated as in the general case above. Eoop may be written as a har-
monic term in the angle 𝜒 (the equilibrium angle for a planar structure is zero) or as a quadratic
function in the distance d, as given below and shown in Figure 2.6:

Eoop(𝜒) = kB𝜒2 or Eoop(d) = kBd2 (2.8)

Such energy terms may also be used for increasing the inversion barrier in sp3-hybridized atoms
(i.e. an extra energy penalty for being planar), and Eoop is also sometimes called Einv. Inversion barriers
are in most cases (e.g. in amines, NR3) adequately modeled without an explicit Einv term, the barrier
arising naturally from the increase in bond angles upon inversion. The energy cost for non-planarity
of sp2-hybridized atoms may also be accounted for by an “improper” torsional energy, as described
in Section 2.2.4, but the forms shown in Equation (2.8) have been found to produce better results.13

For each sp2-hybridized atom there is one additional out-of-plane force constant to be
determined, kB.

2.2.4 The Torsional Energy

Etors describes part of the energy change associated with rotation around a B C bond in a four-atom
sequence A B C D, where A B, B C and C D are bonded. Looking down the B C bond, the
torsional angle is defined as the angle formed by the A B and C D bonds, as shown in Figure 2.7.
The angle 𝜔 may be taken to be in the range [0◦, 360◦] or [−180◦, 180◦].
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Figure . Torsional angle definition.

The torsional energy is fundamentally different from Estr and Ebend in three aspects:

1. A rotational barrier has contributions from both the non-bonded (van der Waals and electrostatic)
terms, as well as the torsional energy, and the torsional parameters are therefore intimately coupled
to the non-bonded parameters.

2. The torsional energy function must be periodic in the angle𝜔: if the bond is rotated 360◦ the energy
should return to the same value.

3. The cost in energy for distorting a molecule by rotation around a bond is often low, that is large
deviations from the minimum energy structure may occur and a Taylor expansion in𝜔 is therefore
not a good idea.

To encompass the periodicity, Etors is written as a Fourier series:

Etors(𝜔) =
∑

n=1
Vn cos (n𝜔) (2.9)

The n = 1 term describes a rotation that is periodic by 360◦, the n = 2 term is periodic by 180◦, the
n= 3 term is periodic by 120◦ and so on. The Vn constants determine the size of the barrier for rotation
around the B C bond. Depending on the situation, some of these Vn constants may be zero. In ethane,
for example, the most stable conformation is one where the hydrogens are staggered relative to each
other, while the eclipsed conformation represents an energy maximum. As the three hydrogens at
each end are identical, it is clear that there are three energetically equivalent staggered, and three
equivalent eclipsed, conformations. The rotational energy profile must therefore have three minima
and three maxima. In the Fourier series only those terms that have n = 3, 6, 9, etc., can therefore have
Vn constants different from zero.

For rotation around single bonds in substituted systems, other terms may be necessary. In the
butane molecule, for example, there are still three minima, but the two gauche (torsional angle∼±60◦)
and anti (torsional angle =180◦) conformations now have different energies. The barriers separating
the two gauche, and the gauche and anti, conformations are also of different heights. This may be
introduced by adding a term in Equation (2.9) corresponding to n = 1.

For the ethylene molecule, the rotation around the C C bond must be periodic by 180◦, and thus
only n = 2, 4, etc., terms can enter. The energy cost for rotation around a double bond is much higher
than that for rotation around a single bond in ethane, and this results in a larger value of the V2
constant. For rotation around the C C bond in a molecule such as 2-butene, there would again be
a large V2 constant, analogous to ethylene, but in addition there are now two different orientations
of the two methyl groups relative to each other, cis and trans. The full rotation is periodic with a
period of 360◦, with deep energy minima at 0◦ and 180◦, but slightly different energies of these two
minima. This energy difference would show up as a V1 constant, that is the V2 constant essentially
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determines the barrier and location of the minima for rotation around the C C bond, and the V1
constant determines the energy difference between the cis and trans isomers.

Molecules that are composed of atoms having a maximum valence of four (essentially all organic
molecules) are with a few exceptions found to have rotational profiles showing at most three minima.
The first three terms in the Fourier series in Equation (2.9) are sufficient for qualitatively reproduc-
ing such profiles. Force fields that are aimed at large systems often limit the Fourier series to only
one term, depending on the bond type (e.g. single bonds only have cos(3𝜔) and double bonds only
cos(2𝜔)).

Systems with bulky substituents on sp3-hybridized atoms are often found to have four minima,
the anti conformation being split into two minima with torsional angles of approximately ±170◦.
Other systems, notably polyfluoroalkanes, also split the gauche minima into two, often called gauche
(angle of approximately ±50◦) and ortho (angle of approximately ±90◦) conformations, creating a
rotational profile with six minima.14 Rotations around a bond connecting sp3- and sp2-hybridized
atoms (such as CH3NO2) also display profiles with six minima.15 These exceptions from the regular
three minima rotational profile around single bonds are caused by repulsive and attractive van der
Waals interactions, and can still be modeled by having only terms up to cos(3𝜔) in the torsional
energy expression. Higher-order terms may be included to modify the detailed shape of the profile,
and a few force fields employ terms with n = 4 and 6. Cases where higher-order terms are probably
necessary are rotation around bonds to octahedral coordinated metals, such as Ru(pyridine)6 or a
dinuclear complex such as Cl4Mo–MoCl4. Here the rotation is periodic by 90◦ and thus requires a
cos (4𝜔) term.

It is customary to shift the zero point of the potential by adding a factor of one to each term. Most
rotational profiles resemble either the ethane or ethylene examples above, and a popular expression
for the torsional energy is given by

Etors(𝜔ABCD) = 1
2 V ABCD

1 [1 + cos(𝜔ABCD)] + 1
2 V ABCD

2 [1 − cos(2𝜔ABCD)]

+ 1
2 V ABCD

3 [1 + cos(3𝜔ABCD)]
(2.10)

The + and − signs are chosen such that the onefold rotational term has a minimum for an angle of
180◦, the twofold rotational term has minima for angles of 0◦ and 180◦, and the threefold rotational
term has minima for angles of 60◦, 180◦ and 300◦ (−60◦). The factor 1∕2 is included such that the Vi
parameters directly give the height of the barrier if only one term is present. A more general form for
Equation (2.10) includes a phase factor, that is cos(n𝜔 − 𝜏), but for the most common cases of 𝜏 = 0◦
or 180◦, this is completely equivalent to Equation (2.10). Figure 2.8 illustrates the functional behavior
of the three individual terms in Equation (2.10).

The Vi parameters may also be negative, which corresponds to changing the minima on the rota-
tional energy profile to maxima, and vice versa. Most commonly encountered rotational profiles can
be obtained by combining the three Vi parameters. Figure 2.9 shows an example with one anti and
two less stable gauche minima and with a significant cis barrier, corresponding to the combination
V1 = 0.5, V2 = −0.2, V3 = 0.5 in Equation (2.10).

As mentioned in Section 2.2.3, the out-of-plane energy may also be described by an “improper”
torsional angle. For the example shown in Figure 2.6, a torsional angle ABCD may be defined, even
though there is no bond between C and D. The out-of-plane Eoop may then be described by an angle
𝜔ABCD, for example as a harmonic function (𝜔 − 𝜔0)2 or Equation (2.10) with a large V2 constant.
Note that the definition of such improper torsional angles is not unique, the angle𝜔ABDC, for example,
is equally good. The main reason for using an improper torsional angle for describing Eoop is that no
new functional forms need to be implemented, but the forms in Equation (2.8) have been shown to
produce better results.13
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Figure . Torsional energy functions.

iranchembook.ir/edu



 Introduction to Computational Chemistry

360300240180120600
0

0.25

0.50

0.75

1.00

ω (°)

Figure . Rotational profile corresponding to Equation (2.10) with V1 = 0.5, V2 = −0.2, V3 = 0.5.

For each combination of four atom types, A, B, C and D, there are generally three torsional param-
eters to be determined, V ABCD

1 , V ABCD
2 and V ABCD

3 .

2.2.5 The van der Waals energy

Evdw is the van der Waals energy describing the repulsion or attraction between atoms that are not
directly bonded. Together with the electrostatic term Eel (Sections 2.2.6 to 2.2.8), it describes the
non-bonded energy. Evdw may be interpreted as the non-polar part of the interaction not related to
electrostatic energy due to (atomic) charges. This may, for example, be the interaction between two
methane molecules or two methyl groups at different ends of the same molecule.

Evdw is zero at large interatomic distances and becomes very repulsive for short distances. In quan-
tum mechanical terms, the latter is due to the overlap of the electron clouds of the two atoms,
which causes repulsion between electrons due to Coulomb and exchange interactions. At interme-
diate distances, however, there is a slight attraction between two such electron clouds from induced
dipole–dipole interactions, physically due to electron correlation (discussed in Chapter 4). Even if
the molecule (or part of a molecule) has no permanent dipole moment, the motion of the electrons
will create a slightly uneven distribution at a given time. This dipole moment will induce a charge
polarization in the neighbor molecule (or another part of the same molecule), creating an attraction,
and it can be derived theoretically that this attraction varies as the inverse sixth power of the distance
between the two fragments.

The induced dipole–dipole interaction is the leading term of such induced multipole interactions,
but there are also contributions from induced dipole–quadrupole, quadrupole–quadrupole, etc.,
interactions. These vary as R−8, R−10, etc., and the R−6 dependence is only the asymptotic behav-
ior at long distances. The force associated with this potential is often referred to as a “dispersion” or
“London” force.16 The van der Waals term is the only interaction between rare gas atoms (and thus
the reason why, for example, argon can become a liquid and a solid) and it is the main interaction
between non-polar molecules such as alkanes.
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Evdw is very positive at small distances, has a minimum that is slightly negative at a distance corre-
sponding to the two atoms just “touching” each other and approaches zero as the distance becomes
large. A general functional form that fits these conditions is given by

Evdw(RAB) = Erepulsion(RAB) − CAB

(RAB)6 (2.11)

It is not possible to derive theoretically the functional form of the repulsive interaction; it is only
required that it goes toward zero as R goes to infinity and it should approach zero faster than the R−6

term, as the energy should go towards zero from below.
A popular function that obeys these general requirements is the Lennard-Jones (LJ) potential,17

where the repulsive part is given by an R−12 dependence (C1 and C2 are suitable constants):

ELJ(R) =
C1
R12 −

C2
R6 (2.12)

The Lennard-Jones potential can also be written as

ELJ(R) = 𝜀

[(R0
R

)12
− 2

(R0
R

)6
]

(2.13)

Here R0 is the minimum energy distance and 𝜀 the depth of the minimum, and the connection to the
form shown in Equation (2.12) is C1 = 𝜀R0

12 and C2 = 2𝜀R0
6. It may alternatively be written in terms

of a collision parameter 𝜎, with the connection R0 = 21/6𝜎, as

ELJ(R) = 4𝜀
[(
𝜎

R

)12
−

(
𝜎

R

)6
]

(2.14)

There are no theoretical arguments for choosing the exponent in the repulsive part to be 12; this is
purely a computational convenience and there is evidence that an exponent of 9 or 10 gives better
results.

The Merck Molecular Force Field (MMFF) uses a generalized Lennard-Jones potential where the
exponents and two empirical constants are derived from experimental data for rare gas atoms.18 The
resulting buffered 14-7 potential is

Ebuf14-7(R) = 𝜀

( 1.07R0
R + 0.07R0

)7
(

1.12R7
0

R7 + 0.12R7
0
− 2

)

(2.15)

From electronic structure theory it is known that the repulsion is due to overlap of the electronic wave
functions, and furthermore that the electron density falls off exponentially with the distance from the
nucleus (the exact wave function for the hydrogen atom is an exponential function). There is therefore
some justification for choosing the repulsive part as an exponential function. The general form of
the “exponential – R−6” Evdw function, also known as a “Buckingham” or “Hill” type potential,19 is
given by

EHill(R) = Ae−BR − C
R6 (2.16)

where A, B and C are here suitable constants. It is sometimes written in a slightly more convoluted
form as

EHill(R) = 𝜀

[

6
𝛼 − 6

e𝛼(1−R∕R0) − 𝛼

𝛼 − 6

(R0
R

)6
]

(2.17)
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Figure . Comparison of Evdw functionals for the H2 He potential.

Here R0 and 𝜀 have been defined in Equation (2.13) and 𝛼 is a free parameter. Choosing an 𝛼 value
of 12 gives a long-range behavior identical to the Lennard-Jones potential, while a value of 13.772
reproduces the Lennard-Jones force constant at the equilibrium distance. The 𝛼 parameter may also
be taken as a fitting constant. The Buckingham potential has a problem for short interatomic distances
where it “turns over”. As R goes toward zero, the exponential becomes a constant while the R−6 term
goes toward −∞. Minimizing the energy of a structure that accidentally has a very short distance
between two atoms will thus result in nuclear fusion! Special precautions therefore have to be taken
for avoiding this when using Buckingham-type potentials.

A third functional form, which has an exponential dependence and the correct general shape, is
the Morse potential (Equation (2.5)). It does not have the R−6 dependence at long range, but, as men-
tioned above, in reality there are also R−8, R−10, etc., terms. The D and 𝛼 parameters of a Morse
function describing Evdw will of course be much smaller than for Estr, and R0 will be longer.

For small systems, where accurate interaction energy profiles are available, it has been shown that
the Morse function actually gives a slightly better description than a Buckingham potential, which
again performs significantly better than a Lennard-Jones 12-6 potential.20, 21 This is illustrated for the
H2 He interaction in Figure 2.10, where the Buckingham and Morse parameters have been derived
from the minimum energy and corresponding distance (𝜀 and R0) and by matching the force constant
at the minimum.

The main difference between the three functions is in the repulsive part at short distances; the
Lennard-Jones potential is much too hard and the Buckingham also tends to overestimate the repul-
sion. Furthermore, it has the problem of “inverting” at short distances. For chemical purposes, how-
ever, these “problems” are irrelevant, since energies in excess of 400 kJ/mol are sufficient to break most
bonds and will never be encountered in actual calculations. The behavior in the attractive part of the
potential, which is essential for intermolecular interactions, is very similar for the three functions, as
shown in Figure 2.11.
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Figure . Comparison of Evdw functionals for the attractive part of the H2 He potential.

Part of the better description for the Morse and Buckingham potentials is due to the fact that they
have three parameters, while the Lennard-Jones only employs two. Since the equilibrium distance
and the well depth fix two constants, there is no additional flexibility in the Lennard-Jones function
to fit the form of the repulsive interaction.

Most force fields employ the Lennard-Jones potential, despite the known inferiority to an
exponential-type function. Let us examine the reason for this in a little more detail.

Essentially all force field calculations use atomic Cartesian coordinates as the variables in the energy
expression. To obtain the distance between two atoms one needs to calculate the quantity shown by

RAB =
√

(xA − xB)2 + (yA − yB)2 + (zA − zB)2 (2.18)

In the exponential-type potentials, the distance is multiplied by a constant and used as the argument
for the exponential. Computationally, it takes significantly more time (typical factor of ∼5) to per-
form mathematical operations such as taking the square root and calculating exponential functions
than to do simple multiplication and addition. The Lennard-Jones potential has the advantage that
the distance itself is not needed, only R raised to even powers, and using square roots and exponential
functions is thus avoided. The power of 12 in the repulsive part is chosen as it is simply the square of
the power of 6 in the attractive part. Calculating Evdw for an exponential-type potential is computa-
tionally more demanding than for the Lennard-Jones potential. For large molecules, the calculation
of the non-bonded energy in the force field energy expression is by far the most time-consuming, as
discussed in Section 2.7. The difference between the above functional forms is in the repulsive part
of Evdw, which is usually not very important. In actual calculations, the Lennard-Jones potential gives
results comparable with the more accurate functions, and it is computationally more efficient.

The van der Waals distance, RAB
0 , and softness parameters, 𝜀AB, depend on both atom types A and

B. These parameters are in essentially all force fields written in terms of parameters for the individual
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Figure . Illustration of the distance reduction that can be used for Evdw involving hydrogens.

atom types (for an exception, see reference 22). There are several ways of combining atomic parame-
ters to diatomic parameters, some of them being quite complicated.18 A commonly used method is to
take the van der Waals minimum distance as the sum of two van der Waals radii and the interaction
parameter as the geometrical mean of the atomic “softness” constants (employed, for example, by the
CHARMM and AMBER force fields):

RAB
0 = RA

0 + RB
0 ; 𝜀AB =

√
𝜀A𝜀B (2.19)

In some force fields, especially those using the Lennard-Jones form in Equation (2.12), the RAB
0 param-

eter is defined as the geometrical mean of atomic radii, implicitly via the geometrical mean rule used
for the C1 and C2 constants (employed, for example, by the OPLS and GROMOS force fields).

For each atom type there are two parameters to be determined, the van der Waals radius and atomic
softness, RA

0 and 𝜀A. It should be noted that since the van der Waals energy is calculated between pairs
of atoms, but parameterized against experimental data, the derived parameters represent an effective
pair potential, which at least partly includes many-body contributions.

The van der Waals energy is the interaction between the electron clouds surrounding the nuclei. In
the above treatment, the atoms are assumed to be spherical, but there are two instances where this
may not be a good approximation. The first is when one (or both) of the atoms is hydrogen. Hydrogen
has only one electron, which always is involved in bonding to the neighbor atom. For this reason the
electron distribution around the hydrogen nucleus is not spherical but displaced toward the other
atom. One way of modeling this anisotropy is to displace the position, which is used in calculating
Evdw, inwards along the bond. MM2 and MM3 use this approach with a scale factor of ∼0.92, that is
the distance used in calculating Evdw is between points located 0.92 times the X H bond distance, as
shown in Figure 2.12.

The electron density around the hydrogen will also depend significantly on the nature of the X
atom. Electronegative atoms such as oxygen or nitrogen will, for example, lead to a smaller effective
van der Waals radius for the hydrogen than when it is bonded to carbon. Many force fields therefore
have several different types of hydrogen, depending on whether they are bonded to carbon, nitrogen,
oxygen, etc., and this may depend further on the type of the neighbor (e.g. alcohol or acid oxygen)
(see Table 2.1).

The other case where the spherical approximation may be less than optimal is for atoms having
lone pairs, such as oxygen and nitrogen. The lone pair electrons are more diffuse than the electrons
involved in bonding, and the atom is thus “larger” in the lone pair direction. Some force fields choose
to model lone pairs by assigning pseudo-atoms at the lone pair positions. Pseudo-atoms (type 20 in
Table 2.1) behave as any other atom type with bond distances and angles, and have their own van
der Waals parameters. They are significantly smaller than normal hydrogen atoms and thus make the
oxygen or nitrogen atom “bulge” in the lone pair direction. In some cases, sulfur is also assigned lone
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pairs, although it has been argued that the third row atoms are more spherical owing to the increased
number of electrons, and therefore should not need lone pairs.

It is unclear whether it is necessary to include these effects to achieve good models. The effects
are small, and it may be that the error introduced by assuming spherical atoms can be absorbed in
the other parameters. Introducing lone pair pseudo-atoms, and making special treatment for hydro-
gens, again make the time-consuming part of the calculation, the non-bonded energy, even more
demanding. Most force fields thus neglect these effects.

Hydrogen bonds require special attention. Such bonds are formed between hydrogens attached to
electronegative atoms such as oxygen and nitrogen, and lone pairs, especially on oxygen and nitrogen.
They have bond strengths of typically 10–20 kJ/mol, where normal single bonds are 250–450 kJ/mol
and van der Waals interactions are 0.5–1.0 kJ/mol. The main part of the hydrogen bond energy comes
from electrostatic attraction between the positively charged hydrogen and negatively charged het-
eroatom (see Section 2.2.6). Additional stabilization may be modeled by assigning special deep and
short van der Waals interactions (via large 𝜀 and small R0 parameters). This does not mean that the
van der Waals radius for a hydrogen bonded to an oxygen is especially short, since this would affect
all van der Waals interactions involving this atom type. Only those pairs of interactions that are capa-
ble of forming hydrogen bonds are identified (by their atoms types) and the normal Evdw parameters
are replaced by special “hydrogen bonding” parameters. The functional form of Evdw may also be
different. One commonly used function is a modified Lennard-Jones potential of the form shown by

EH−bond(R) = 𝜀

[

5
(R0

R

)12
− 6

(R0
R

)10
]

(2.20)

In some cases EH-bond also includes a directional term such as (1 − cos 𝜔XHY) or (cos 𝜔XHY)4 multi-
plied with the distance-dependent part in Equation (2.20). The current trend seems to be that force
fields are moving away from such specialized parameters and/or functional forms, and instead are
accounting for hydrogen bonding purely by electrostatic interactions. The fixed partial atomic charge
model described in the next section, however, is in general incapable of modeling the directionality,
but it can be done using non-nuclear-centered charges or atomic multipoles.

2.2.6 The Electrostatic Energy: Atomic Charges

The other part of the non-bonded interaction is due to internal (re)distribution of the electrons, cre-
ating positive and negative parts of the molecule.23 A carbonyl group, for example, has a negatively
charged oxygen and a positively charged carbon. At the lowest approximation, this can be modeled
by assigning (partial) charges to each atom. Alternatively, the bond may be assigned a bond dipole
moment. These two descriptions give similar (but not identical) results. Only in the long-distance
limit of interaction between such molecules do the two descriptions give identical results.

The interaction between point charges is given by the Coulomb potential, with 𝜀 being a dielectric
constant:

Eel(RAB) = QAQB

𝜀RAB (2.21)

The atomic charges can be assigned by empirical rules,24 but are more commonly assigned by fitting
to the electrostatic potential calculated by electronic structure methods, as discussed in the next
section. Since hydrogen bonding to a large extent is due to attraction between the electron-deficient

iranchembook.ir/edu



 Introduction to Computational Chemistry

RAB

μA

αB

αA

χ

μ B

Figure . Definition of variables for a dipole–dipole interaction.

hydrogen and an electronegative atom such as oxygen or nitrogen, a proper choice of partial charges
may adequately model this interaction.

The MM2 and MM3 force fields use a bond dipole description for Eel. The interaction between two
dipoles is given by

Eel(RAB) = 𝜇A𝜇B

𝜀(RAB)3 (cos𝜒 − 3 cos 𝛼A cos 𝛼B) (2.22)

The angles 𝜒 , 𝛼A and 𝛼B are defined as shown in Figure 2.13.
When properly parameterized, there is little difference in the performance of the two ways of rep-

resenting Eel. There are exceptions where two strong bond dipoles are immediate neighbors (e.g.
𝛼-halogen ketones). The dipole model will here lead to a stabilizing electrostatic interaction for a
transoid configuration (torsional angle of 180◦), while the atomic charge model will be purely repul-
sive for all torsional angles (since all 1, 3-interactions are neglected). In either case, however, a proper
rotational profile may be obtained by suitable choices of the constants in Etors to compensate for
incorrect behaviors in the electrostatic energy. The atomic charge model is easier to parameterize by
fitting to an electronic wave function, and is preferred by almost all force fields.

The “effective” dielectric constant 𝜀 can be included to model the effect of surrounding molecules
(solvent) and the fact that interactions between distant sites may be “through” part of the same
molecule, that is a polarization effect. A value of 1 for 𝜀 corresponds to a vacuum, while a large 𝜀
reduces the importance of long-range charge–charge interactions. Often a value between 2 and 5 is
used, although there is little theoretical justification for any specific value.25 In some applications the
dielectric constant is made distance-dependent (e.g. 𝜀 = 𝜀0RAB, changing the Coulomb interaction
to QAQB/𝜀0(RAB)2) to model the “screening” by solvent molecules. There is little theoretical justifi-
cation for this, but it increases the efficiency of the calculation as a square root operation is avoided
(discussed in Section 2.2.5), and it seems to provide reasonable results.

How far apart (in terms of number of bonds between them) should two atoms be before a non-
bonded energy term contributes to EFF? It is clear that two atoms directly bonded should not have an
Evdw or Eel term – their interaction is described by Estr. It is also clear that the interaction between
two hydrogens at each end of, say, CH3(CH2)50CH3 is identical to the interaction between two hydro-
gens belonging to two different molecules, and they therefore should have an Evdw and an Eel term.
But where should the dividing line be? Most force fields included Evdw and Eel for atom pairs that
are separated by three bonds or more, although 1,4-interactions in many cases are scaled down by a
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factor between 1 and 2. This means that the rotational profile for an A B C D sequence is deter-
mined both by Etors and Evdw and Eel terms for the A D pair. In a sense, Etors may be considered as a
correction necessary for obtaining the correct rotational profile once the non-bonded contribution
has been accounted for. Some force fields have chosen also to include a non-bonded energy term
for atoms that are 1,3 with respect to each other, and these are called Urey–Bradley terms. In this
case, the energy required to bend a three-atom sequence is a mixture of Ebend and the Urey–Bradley
energy, where the latter serves to describe the stretch-bend coupling discussed in Section 2.2.9. Most
modern force fields calculate Estr between all atoms pairs that are 1,2 with respect to each other in
terms of bonding, Ebend for all pairs that are 1,3, Etors between all pairs that are 1,4, and Evdw and Eel
between all pairs that are 1,4 or higher.

The electrostatic energy dominates the force field energy function for polar molecules, and an accu-
rate representation is therefore important for obtaining good results. Within the partial charge model,
the atomic charges are normally assigned by fitting to the molecular ElectroStatic Potential (ESP) cal-
culated by an electronic structure method. The electrostatic potential 𝜙esp at a point r is given by the
nuclear charges and electron density as shown in

𝜙esp(r) =
Nnuc∑

A

ZA
|RA − r|

−
∫

𝜌(r′)
|r′ − r|

dr′ (2.23)

The fitting is done by minimizing an error function of the form shown in

ErrF(Q) = 1
Npoints

Npoints∑

r

(

𝜙esp(r) −
Natoms∑

A

QA(RA)
|RA − r|

)2

(2.24)

under the constraint that the sum of the partial charges QA is equal to the total molecular charge.
The electrostatic potential is typically sampled at a few thousand points in the near vicinity of the
molecule, which is discussed in more detail in Section 10.2. The set of linear equations arising from
minimizing the error function is often poorly conditioned, that is the calculated partial charges are
sensitive to small details in the fitting data.26 The physical reason for this is that the electrostatic
potential is primarily determined by the atoms near the surface of the molecule, while the atoms
buried within the molecule have very little influence on the external electrostatic potential. A straight-
forward fitting therefore often results in unrealistically large charges for the non-surface atoms. The
problem can to some extent be avoided by adding a hyperbolic penalty term for having non-zero par-
tial charges, since this ensures that only those charges that are important for the electrostatic poten-
tial have values significantly different from zero.27 This Restrained ElectroStatic Potential (RESP) fit-
ting scheme has been used in. for example, the AMBER force field. Other constraints are also often
imposed, such as constraining the charges on the three hydrogens in a methyl group to be equal or
the sum of all charges in a subgroup (such as a methyl group or an amino acid) to be zero.

Several papers have discussed how the sampling points should be selected, including surface-
based,28 grid-based,29 randomly selected30 and Boltzmann weighted by their van der Waals energy.31

Tsiper and Burke have shown that the ESP on an isodensity surface that includes essentially all the
electron density uniquely determines the ESP at all points outside the surface.32 This implies that
the exact procedure for selecting sampling points is largely irrelevant as long as a sufficiently dense
set of points is selected, and different fitting schemes thus primarily differ in terms of an incomplete
sampling and associated numerical instabilities.

One might anticipate that atomic charges based on fitting to the electrostatic potential would lead
to well-defined values. This, however, is not the case. Besides the already mentioned dependence
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on the (incomplete) sampling points, another problem is that a straightforward fitting tends to give
conformationally dependent charges.26 The three hydrogens in a freely rotating methyl group, for
example, may end up having significantly different charges, or two conformations may give two sig-
nificantly different sets of fitted parameters. This is a problem in connection with force field methods
that rely on the fundamental assumption that parameters are transferable between similar fragments,
and atoms that are easily interchanged (e.g. by bond rotation) should have identical parameters. Con-
formationally dependent charges can be modeled in force field methods by fluctuating charge or
polarization models (Section 2.2.8), but this leads to significantly more complicated force fields, and
consequently loss of computational efficiency.

One way of eliminating the problem with conformationally dependent charges is to add additional
constraints, for example forcing the three hydrogens in a methyl group to have identical charges27 or
averaging over different conformations.33 A more fundamental problem is that the fitting procedure
becomes statistically underdetermined for large systems, although the severity of this depends on how
the fitting is done.34, 35 The difference between the true electrostatic potential and that generated by a
set of atomic charges on, say, 3∕4 of the atoms is not significantly reduced by having fitting parameters
on all atoms.36 The electrostatic potential experienced outside the molecule is mainly determined by
the atoms near the surface, and consequently the charges on atoms buried within a molecule cannot
be assigned with any great confidence. Even for a medium-sized molecule, it may only be statistically
valid to assign charges to perhaps half the nuclei. Having a full set of atomic charges thus forms a
redundant set: many different sets of charges may be chosen, all of which are capable of reproducing
the true electrostatic potential to almost the same accuracy. Although a very large number of sampling
points (several thousand) may be chosen to be fitted by relatively few (perhaps 20–30) parameters, the
fact that the sampling points are highly correlated makes the problem underdetermined. In practical
applications, additional penalty terms are therefore often added, to ensure that only those atoms that
contribute significantly in a statistical sense acquire non-zero charges.27

Another problem with atomic charges determined by fitting is related to the absolute accuracy.
Although inclusion of charges on all atoms does not significantly improve the results over that deter-
mined from a reduced set of parameters, the absolute deviation between the true and fitted electro-
static potentials can be quite large. Interaction energies as calculated by an atom-centered charge
model in a force field may be off by several kJ/mol per atom in certain regions of space just outside
the molecular surface, an error of one or two orders of magnitude larger than the van der Waals inter-
action. In order to improve the description of the electrostatic interaction, additional non-nuclear-
centered charges may be added,37 or dipole, quadrupole, etc., moments may be added at nuclear
or bond positions.38 These descriptions are essentially equivalent since a dipole may be generated as
two oppositely charged monopoles, a quadrupole as four monopoles, etc. The parameter redundancy
problem increases significantly when adding atomic dipole and quadrupole moments, and ∼1∕2 of the
parameters can be removed without affecting the ability to reproduce the electrostatic potential.36

The non-bonded energies are modeled by pair-interactions, but if the parameters are obtained by
fitting to experimental data, they will include the average part of many-body effects. The most impor-
tant is the two-body polarization, as discussed in the next section. Partial charges obtained by fitting
to ESP do not include this effect, and will therefore lead to a systematic underestimation of the elec-
trostatic energy. The three-body effect in the electrostatic energy may be considered as the interaction
between two atomic charges being modified because a third atom or molecule polarizes the charges.
The dipole moment of water, for example, increases from 1.8 Debye in the gas phase to an effective
value of 2.5 Debye in the solid state.39 The average polarization effect in condensed phases can be
partly modeled by artificially increasing the partial charges by 10–20%, or by fitting to data that are
known to overestimate the polarity (e.g. Hartree–Fock results, Section 4.3).

iranchembook.ir/edu



Force Field Methods 

2.2.7 The Electrostatic Energy: Atomic Multipoles

Obtaining a good description of the electrostatic interaction between molecules (or between differ-
ent parts of the same molecule) is one of the big challenges in force field developments.23 Many com-
mercial applications of force field methods are aimed at designing molecules that interact in a specific
fashion. Such interactions are usually pure non-bonded, and for polar molecules such as proteins, the
electrostatic interaction is very important.

Modeling the electrostatic energy by (fixed) partial atomic charges has five main deficiencies:

1. The fitting of atomic charges to electrostatic potentials focuses on reproducing intermolecular
interactions, but the electrostatic energy also plays a strong role in the intramolecular energy,
which determines conformational energies. For polar molecules the (relative) conformational
energies are therefore often of significantly lower accuracy than for non-polar systems.

2. The partial charge model gives a rather crude representation of the electrostatic potential sur-
rounding a molecule, with errors often being in the 10–20 kJ/mol range. For a given (fixed) geom-
etry, the molecular electrostatic potential can be improved either by adding non-nuclear-centered
partial charges or by including higher-order (dipole, quadrupole, etc.) atomic electric moments.

3. Charge penetration effects are neglected. This effect arises because two atoms at a typical van der
Waals distance apart penetrate each others electron clouds and this leads to an attractive interac-
tion. This cannot be described by a fixed partial charge model and the effect is instead included
implicitly in the van der Waals energy term. An explicit description requires a screened partial
charge model.40

4. The coupling of atomic charges and higher-order moments with the geometry is neglected. Anal-
ysis has shown that both partial atomic charges and higher-order electric moments depend signif-
icantly on the geometry, that is these quantities do not fulfill the requirement of “transferability”.

5. Only two-body interactions are included, but for polar species the three-body contribution is quite
significant, perhaps 10–20% of the two-body term.41 A rigorous modeling of these effects requires
inclusion of polarizability, but can be partly included in the two-body interaction by empirically
increasing the interaction by 10–20%, although this leads to a systematic bias, as illustrated below.

The non-bonded terms together with the torsional energy determine the internal (conformational)
degrees of freedom, and the torsional parameters are usually assigned as a residual correction to
reproduce rotational barriers and energetic preferences after the assignment of the non-bonded
parameters. The electrostatic energy is unimportant for non-polar systems such as hydrocarbons
and is in these cases often completely neglected. The conformational space in such cases is conse-
quently determined by Evdw and Etors. Since the van der Waals interaction is short-ranged, this means
that the transferability assumption inherent in force field methods is valid, and torsional parameters
determined for small model systems can also be used for predicting conformations for large systems.

For polar systems, however, the long-range electrostatic interaction is often the dominating energy
term, and the transferability of torsional parameters determined for small model systems becomes
more problematic. Clearly the variation of the electrostatic energy with the geometry must be accu-
rately modeled in order for the torsional parameters to be sufficiently transferable, and this is difficult
to achieve without including polarization.42

The representation of the electrostatic potential for a fixed geometry can be systematically
improved by including non-atom-centered charges43 or by including higher-order moments.44

The Distributed Multipole Analysis (DMA) developed by A. Stone provides an exact method for
expanding the electrostatic potential in terms of multipole moments distributed at a number of
positions within the molecule, and these moments can be derived directly from the wave function
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without a fitting procedure (see Section 10.2).45 By restricting the positions to only atoms, a quite
accurate representation of the electrostatic potential can be obtained by including up to quadrupole
moments at each site. The DMA-derived multipoles are sensitive to the reference data (i.e. wave
function quality and basis set), and a better stability can be obtained by fitting a set of multipoles to
the electrostatic potential32 or by fitting atomic charges to match the atomic multipole moments.46

Such fitted multipole methods typically reduce the required moments by one or two, that is fitted
charges and dipoles can reproduce DMA results including up to quadrupoles or octupoles. The
underdetermined nature of the fitting process (Equation (2.24)), however, becomes even more
pronounced when atomic dipole, quadrupole, etc., moments are included as fitting parameters.
Typically only ∼1∕2 of the atomic charges can be assigned statistically valid values for a medium-sized
molecule, and even less of the higher-order moments can be considered non-redundant.

The interaction energy between atomic multipoles at positions RA and RB can conveniently be
written in a polytensor form:47

EAB
el = Mt

ATABMB (2.25)

where MA and MB are vectors containing all the components of the electric moments and TAB is a
matrix describing the interaction between them, which only depends on the distance RBA = |RB –
RA|:

MA =
(

QA,𝜇A
x ,𝜇A

y ,𝜇A
z ,ΘA

xx,ΘA
xy,ΘA

xz,ΘA
yy,ΘA

yz,ΘA
zz, ...

)t
(2.26)

TAB =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 𝜕

𝜕xB

𝜕

𝜕yB

𝜕

𝜕zB
⋯

𝜕

𝜕xA

𝜕2

𝜕xA𝜕xB

𝜕2

𝜕xA𝜕yB

𝜕2

𝜕xA𝜕zB
⋯

𝜕

𝜕yA

𝜕2

𝜕yA𝜕xB

𝜕2

𝜕yA𝜕yB

𝜕2

𝜕yA𝜕zB
⋯

𝜕

𝜕zA

𝜕2

𝜕zA𝜕xB

𝜕2

𝜕zA𝜕yB

𝜕2

𝜕zA𝜕zB
⋯

⋮ ⋮ ⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

1
RBA (2.27)

Inclusion of higher-order electric moments will improve the representation of the electrostatic
potential of a given molecule, but it does not taken the geometry dependence into account, which is
the topic of the next section.

2.2.8 The Electrostatic Energy: Polarizability and Charge Penetration Effects

The interaction between two polar molecules (or parts of the same molecule) can lead to either stabi-
lization or destabilization depending on the orientation, as illustrated in Figure 2.14 for two dipolar
molecules.

Inclusion of polarization will always lead to stabilization relative to the unpolarized situation, by
increasing the dipole moments in the energetically favored orientation and by reducing the dipole
moments in the energetically disfavored orientation. The stabilization of the energetically favored
orientation can be modeled by enhancing the static dipole moments, but this leads to an incorrect
destabilization of the energetically disfavored orientation. The common practice in fixed charge
force fields of increasing partial atomic charges by 10–20% relative to the values obtained by fitting
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Figure . Interactions between static and polarizable dipolar molecules.

to gas-phase values (or fitting to data that overestimates the gas-phase polarity) corresponds to
the “enhanced static dipole” part of Figure 2.14. The claim, that empirically increasing the partial
atomic charges models the average polarization, is thus only correct for the energetically favorable
orientations, and leads to a systematic bias against energetically disfavored orientations. The
polarization energy is furthermore non-linear (quadratic in the lowest order) in the field strength,
while the energy due to static enhanced dipoles is linear in the field strength, and the partial atomic
charges model therefore also implicitly includes an average over field strengths.

The coupling of the electrostatic energy with the geometry requires explicit inclusion of electronic
polarization, which can be modeled in several different ways, of which the fluctuating charge (FQ),
the Drude Oscillator (DO) or Charge-On-Spring (COS), and induced Point Dipole (PD) models are
the most popular approaches.48 To differentiate between force fields that incorporate polarization
and those that do not, the latter are sometimes denoted additive force fields.

In the fluctuating charge (FQ) model, the atomic charges are allowed to adjust to changes in
the geometry based on electronegativity equalization.49–51 Consider the following expansion of the
energy as a function of the number of electrons N:

E = E0 +
𝜕E
𝜕N

ΔN + 1
2
𝜕2E
𝜕N2 (ΔN)2 +… (2.28)

The first derivative is the electronegativity 𝜒 , except for a change in sign (𝜕E/𝜕N = −𝜒), while the
second derivative is the hardness 𝜂. Although these have well-defined finite-value approximations
in terms of ionization potentials and electron affinities (Section 16.2), they are usually treated as
empirical parameters within a force field environment. For an atom in a molecule, the change in the
number of electrons is equal to minus the change in the atomic charge (−ΔN = ΔQ). Taking the
expansion point as the one with no atomic charges gives

E = 𝜒Q + 1
2𝜂Q2 +⋯ (2.29)

Terminating the expansion at second order, adding a term corresponding to the interaction of the
charges with an external potential 𝜙 and summing over all sites gives an expression for the electro-
static energy:

Eel =
∑

A
𝜙AQA+

∑

A
𝜒AQA+ 1

2

∑

AB
𝜂ABQAQB (2.30)
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Switching to a vector–matrix notation and requiring that the energy is stationary with and without
an external potential gives

𝜕Eel
𝜕Q

|
|
|
|𝜙≠0

= 𝜙 + χ + 𝛈Q = 0

𝜕Eel
𝜕Q

|
|
|
|𝜙=0

= χ + 𝛈Q0 = 0
(2.31)

Subtraction of these two equations leads to a recipe for the charge transfer due to the external
potential

ΔQ = −𝛈−1𝜙 (2.32)

In practice the situation is slightly more complicated, since the sum of all transferred atomic charges
must be constrained to be zero, but this can be handled by the Lagrange technique described in
Section 13.5. Since the potential depends on the charges at all sites (Equation (2.33)), this must be
solved self-consistently by iterative methods (see Equation (2.36) below):

𝜙(r) =
∑

A

QA

|r − RA|
(2.33)

Once the iterations have converged, the electrostatic energy is given by the simple Coulomb form
in Equation (2.21). The diagonal elements of the hardness matrix can be associated with the atomic
hardness parameters, while the off-diagonal elements introduce coupling between all pairs of atoms.
In the original model these couplings where taken as simple Coulomb interactions, but this leads to an
unphysical situation where atoms can transfer a fractional number of electrons at infinite distance. In
more modern versions the coupling elements are replaced by screened Coulomb-type interactions to
ensure that bond dissociation leads to uncharged fragments. Note that the FQ model treats through-
bond and through-space polarization equivalently and is thus able to describe intermolecular charge
transfer.

In the Drude Oscillator (DO) or Charge-On-Spring (COS) model, the atomic polarizability is mod-
eled by transferring part of the atomic charge to a virtual site (Drude particle) connected to the atom
by a harmonic spring,52 similar to the use of pseudo-atoms for modeling lone pairs (Section 2.2.5).
The polarizability 𝛼 is related to the Drude particle charge QD and force constant kD by

𝛼 =
Q2

D
kD

(2.34)

The force constant must be chosen large enough that the Drude particle always is much closer to the
center of the atom (“nucleus”) than the atomic dimension, thus representing an atomic dipole polar-
izability.53 This in turn necessitates a large Drude charge, often several units of atomic charge. The
Drude particles may be taken as massless, in which case their positions must be completely relaxed
before calculating the atomic forces in an optimization or simulation. Alternatively, they can be
assigned a small finite mass taken from the atom and their positions updated by extended Lagrangian
methods (Section 15.2.5) for simulation purposes. This, as usual, requires two thermostats in order
to keep the temperature of the Drude particles much smaller than the temperature of the atom. Nor-
mally only non-hydrogen atoms are assigned a Drude particle.

The induced Point Dipole (PD) model describes polarization by an atomic polarization tensor (α),
which leads to an induced dipole moment (μind) arising from the electric field (F = –𝜕𝜙/𝜕r) created
by the electric moments at other sites.54 The stabilization energy due to the polarization is half the
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induced dipole moment times the field, where the sign is chosen such that an energy lowering corre-
sponds to a negative polarization energy:

μind = αF

Epol
el = − 1

2μindF = − 1
2αF2

(2.35)

Since the (atomic) hardness is inversely related to the average polarizability,54 the charge transfer in
Equation (2.32) is essentially the average polarizability times the potential. The FQ model can thus be
considered as a polarizable monopole equivalent of the polarizable dipole model in Equation (2.35).

The induced dipole moment in Equation (2.35) depends on the total electric field F, which has
static and induced components. The static field contains contributions from permanent multipole
moments on all (other) atoms, while the induced field arises from the induced dipole moments on all
other atoms:

μind = αFtot = α(Fstatic + Find) = α(Fstatic+TDipoleμind) (2.36)

The dipole TDipole matrix elements are defined in Equation (2.27), and Equation (2.36) can be solved
by combining the TDipole matrix with the atomic polarizabilities to form a relay matrix R:

μind = (α−1 − TDipole)−1Fstatic = RFstatic (2.37)

The induced atomic dipoles can thus be calculated directly by matrix inversion, but since the R
matrix has dimension of the order of the number of atoms in the system, this is computationally
expensive even for medium-sized systems. Alternatively, the induced dipole moment can be calcu-
lated by iterating Equation (2.36) until self-consistency with a suitable initial guess. The self-consistent
determination of atomic charges in the FQ model (Equations (2.32) and (2.33)) can be done com-
pletely analogously. For molecular dynamics simulations, the change in the induced dipoles or charges
between each time step can be done by solving Equation (2.36) before the calculation of the new
atomic forces, but can alternatively be treated by an extended Lagrange method (Section 15.2.5),
where fictive masses are assigned to the dipoles or charges, and evolved along with the other vari-
ables in a simulation.24 The self-consistent determination of the induced dipole moments in Equa-
tion (2.36) must be converged tightly when used for calculating forces for simulations, and this can be
computationally expensive. Alternative versions where the relay matrix is approximated as simply the
polarizability (denoted “direct” since this neglects the couplings between induced moments and thus
avoids iterations) or estimated by perturbation theory from two iterations have also been proposed.55

The induced PD model in Equation (2.36) leads to infinite polarization for a distance of (4𝛼A𝛼B)1/6

between two atoms with polarizabilities 𝛼A and 𝛼B, and this distance is often comparable to the sum
of the two van der Waals radii. Thole suggested56 that this unphysical situation could be avoided by
introducing a short-range damping function, which corresponds to multiplying the dipole T matrix
elements in Equation (2.27) by a damping function. Several choices are possible for the damping
function with one example shown in Equation (2.38), which implies similar derived damping factors
for monopole and higher-order multipoles:57

TDamp−Dipole
AB = (1 − e−au3 )TDipole

AB

u = RAB

(𝛼A𝛼B)1∕6
(2.38)

The a parameter is a free variable controlling the damping.
It may be illustrative to put the above three approaches for introducing electronic polarization into

force fields by the quantum mechanical treatment for polarization at the molecular level, discussed in
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Section 11.1.1. The total energy of a (continuous) charge distribution subjected to an external electric
potential 𝜙 can be written as a Taylor expansion:

E = Q𝜙 − μF − 1
2 ΘF′ −⋯ (2.39)

Here Q is the total (molecular) charge, μ is the dipole moment, 𝚯 is the quadrupole moment, etc., F
is the electric field (–𝜕𝜙/𝜕r) and F′ is the field gradient (𝜕F/𝜕r), etc. The dipole moment consists of
a permanent term μ0 (value in the absence of an external field) and induced components depending
linearly, quadratically, etc., on the field strength, where α and β are the polarizability and hyperpo-
larizability tensors, respectively:

μ = μ0 + αF + 1
2βF2 +⋯ (2.40)

The quadrupole (and higher-order moments) can similarly be written as a Taylor expansion in terms
of a static and field gradient induced moments. The FQ method can be considered as a polarization
model where only monopole moments are considered and only including terms up to quadratic in the
potential. Taking also mixed dipole–quadrupole polarization terms into account allows the energy to
be written as in the following equation in terms of atomic distributed electric moments:

E = Q0𝜙 − μ0F − 1
2 Θ0F′ −⋯ − 𝛈−1𝜙2 −⋯ − 1

2αF2 −⋯ − AFF′ − BF2F′ − C(F′)2 −⋯

(2.41)

Here A is the mixed dipole–quadrupole polarizability tensor, B is the mixed dipole–quadrupole
hyperpolarizability tensor and C is the quadrupole polarizability tensor, with implied tensor contrac-
tion of all terms. Equation (2.41) represents a systematic way of improving the electrostatic energy
in a force field description by adding a sequence of higher-order static multipole moments and a
sequence of multipole polarizabilities and hyperpolarizabilities at (all) atomic sites. The FQ method
corresponds to including the first and fourth terms on the right-hand side of Equation (2.41). The PD
method includes a polarization of the dipole moments and is usually combined with static multipoles
up to quadrupole moments, which corresponds to the first three and the fifth terms on the right-hand
side of Equation (2.41). The DO method can be considered as an approximate model for describing
dipole polarization, and where only static monopole moments are included, that is the first term on
the right-hand side of Equation (2.41) and an approximation of the fifth term.

The FQ method is the simplest way of introducing a coupling between the electrostatic energy and
geometry, but it is, for example, unable to account for the charge polarization of a planar molecule
when the external field is perpendicular to the molecule plane. This can be described by the DO
method, but it is limited to describing polarization effects, which occur in the same direction as the
external field. The same limitation is present in the PD method if the polarizability tensor is taken to
be isotropic (i.e. only diagonal elements of equal magnitudes), but a full (anisotropic) tensor can also
describe induced dipoles that are not along the external field direction.

A decision has to be made on which interactions to include and which to neglect when adding
multipole and/or polarizability terms, as indicted by the expansion in Equation (2.41). The distance
dependence on the interactions between multipoles is given in Table 2.2.

A model including up to quadrupole moments accounts for all interactions having up to R−3

distance dependencies, and in addition includes some of those having R−4 and R−5 distance depen-
dencies. The charge-induced dipole interaction has a distance dependence of R−4, while the dipole-
induced dipole interaction is R−6, suggesting that the former should be included when quadrupole
moments are incorporated. Current wisdom suggests that the contributions from dipole hyperpolar-
izability and quadrupole polarizabilities (and mixed dipole–quadrupole terms) are at least an order of
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Table . Distance dependence of multipole
interactions.

Q 𝜇 Θ Ξ

Q R−1 R−2 R−3 R−4

𝜇 R−2 R−3 R−4 R−5

Θ R−3 R−4 R−5 R−6

Ξ R−4 R−5 R−6 R−7

magnitude smaller than the dipole polarization for electric field strengths generated by the interaction
of molecules. The most advanced general-purpose force fields thus employ up to (static) quadrupole
moments on all atomic sites in addition to an atomic point dipole polarizability. Combinations of FQ
and PD have also been proposed.58

Incorporation of electric multipole moments, fluctuating charges and atomic polarizabilities sig-
nificantly increases the number of fitting parameters for each atom type or functional unit, and only
electronic structure methods are capable of providing a sufficient number of reference data. Elec-
tronic structure calculations, however, automatically include all of the above effects, and also have
higher-order terms. The data must therefore be “deconvoluted” in order to extract suitable multipole
and polarization parameters for use in force fields.59 A calculated set of distributed dipole moments,
for example, must be decomposed into permanent and induced contributions, based on an assigned
polarizability tensor. Furthermore, only the lowest non-vanishing multipole moment is independent
of the origin of the coordinate system; that is for a non-centrosymmetric neutral molecule the dipole
moment is unique, but the quadrupole moment depends on where the origin is placed.

Atomic charges and multipole moments are classical representations of the electrostatic potential
generated by the electron distribution in a molecule, which can be calculated by quantum mechanical
methods. The electron distribution is a continuous function that decays exponentially as a function
of the distance to the nucleus. The van der Waals surface of a molecule is closely associated with
an electronic isodensity surface with a value typically taken to be ∼4 × 10-4. The closest approach
between molecules during a simulation may correspond to a distance where the electron density has a
value of∼10-3. Although these are small values, it should be recognized that molecules at or below the
van der Waals distance penetrate their mutual electron densities to a significant extent, and this leads
to a net attraction. This charge penetration effect is a major component of so-called 𝜋–𝜋 stacking
effects and the interaction between cations and aromatic systems. Piquemal et al. have suggested
that the charge penetration effect can be modeled by an exponential screening factor for a fraction of
the charge corresponding to the effective number of valence electrons Neff. The electrostatic potential
for an atom with a net charge of Q and Neff =Nval – Q can thus be written as in the following equation,
where the screening parameter 𝛼 has a typical value of ∼3:40

𝜙ESP(r) = 1
|R − r|

[
Q + Neff e−𝛼|R−r|] (2.42)

Other screening functions have also been proposed, as well as screening of higher-order moments.60

It should be noted that standard force fields attempt to account for the charge penetration effect
implicitly by the van der Waals energy term.

The addition of multipole moments increases the computational time for the electrostatic energy,23

since there now are several components for each pair of sites, and for multipoles up to quadrupoles the
evaluation time increases by almost an order of magnitude. It should be noted that addition of atomic
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multipoles is computationally more efficient than addition of (many) non-nuclear-centered charges,
since the former has short-ranged interactions while the latter is long-ranged (Table 2.2). Inclusion
of polarization further increases the computational complexity by adding an iterative procedure for
evaluating the induced charges or dipole moments, although algorithmic advances have significantly
reduced the computational overhead relative to a fixed charge model.55 The DO model has the com-
putational advantage that only existing methodologies for calculating charge–charge interactions are
required, and the computational overhead is therefore limited to the increased number of particles,
typically ∼50% extra since only non-hydrogen atoms carry Drude particles, and the requirement of
slightly smaller time step in simulations due to the low-mass Drude particles. These factors typically
increase the computational time by a factor of ∼four compared to a fixed charge force field.61

Advanced force fields with a description beyond fixed partial charges of the electrostatic energy are
still at the experimental stage, with extensive testing and parameterization. It is clear that many physi-
cal important interactions require explicit consideration of higher-order multipoles, and polarization
and charge penetration effects, as, for example, the description of halogen bonds and interactions
between cations and 𝜋-systems of aromatic compounds. Several studies comparing the performance
of polarized and fixed charge force fields have in many cases shown disappointing small improve-
ments or even deterioration of the results.61 These results are often related to the distribution of
a macromolecule in the conformational phase space, and it should be realized that the energetics
of the conformations space is a delicate balance of the electrostatic, van der Waals and torsional
energy terms. Fixed charge force fields have been extensively reparameterized over several decades,
and errors in one term, like electrostatic, can to some extent be absorbed in other terms, like van der
Waals and torsional. Selectively improving the electrostatic term partly destroys the error cancella-
tion, and thus is likely to require a complete reparameterization of the entire force field in order to
achieve a systematic improvement.

2.2.9 Cross Terms

The first five terms in the general energy expression, Equation (2.1), are common to all force fields.
The last term, Ecross, covers coupling between these fundamental, or diagonal, terms. Consider,
for example, a molecule such as H2O. It has an equilibrium angle of 104.5◦ and an O H distance
of 0.958 Å. If the angle is compressed to, say, 90◦, and the optimal bond length is determined by
electronic structure calculations, the equilibrium distance becomes 0.968 Å, that is slightly longer.
Similarly, if the angle is widened, the lowest energy bond length becomes shorter than 0.958 Å. This
may qualitatively be understood by noting that the hydrogens come closer together if the angle is
reduced. This leads to an increased repulsion between the hydrogens, which can be partly alleviated
by making the bonds longer. If only the first five terms in the force field energy are included, this
coupling between bond distance and angle cannot be modeled. It may be taken into account by
including a term that depends on both bond length and angle, or by including a Urey–Bradley
non-bonded energy term between pairs of atoms that are bonded to a common atom. Ecross may in
general include a whole series of terms that couple two (or more) of the bonded terms.

The components in Ecross are usually written as products of first-order Taylor expansions in the
individual coordinates. The most important of these is the stretch/bend term, which for an A B C
sequence may be written as

Estr∕bend = kABC (
𝜃ABC − 𝜃ABC

0
) [(

RAB − RAB
0

)
−

(
RBC − RBC

0
)]

(2.43)
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Other examples of such cross terms are given by13

Estr∕str = kABC (
RAB − RAB

0
) (

RBC − RBC
0

)

Ebend∕bend = kABCD (
𝜃ABC − 𝜃ABC

0
) (
𝜃BCD − 𝜃BCD

0
)

Estr∕tors = kABCD (
RAB − RAB

0
)
cos(n𝜔ABCD)

Ebend∕tors = kABCD (
𝜃ABC − 𝜃ABC

0
)
cos(n𝜔ABCD)

Ebend∕tors∕bend = kABCD (
𝜃ABC − 𝜃ABC

0
) (
𝜃BCD − 𝜃BCD

0
)
cos(n𝜔ABCD)

(2.44)

The constants involved in these cross terms are usually not taken to depend on all the atom types
involved in the sequence. The stretch/bend constant, for example, in principle depends on all three
atoms, A, B and C. However, it is usually taken to depend only on the central atom, that is kABC = kB,
or chosen as a universal constant independent of atom type. It should be noted that cross terms of
the above type are inherently unstable if the geometry is far from equilibrium. Stretching a bond to
infinity, for example, will make Estr/bend go toward −∞ if 𝜃 is less than 𝜃0. If the bond stretch energy
itself is harmonic (or quartic) this is not a problem as it approaches +∞ faster. However, if a Morse-
type potential is used, special precautions will have to be made to avoid long bonds in geometry
optimizations and simulations.

Another type of correction, which is related to cross terms, is modification of parameters based
on atoms not directly involved in the interaction described by the parameter. Carbon–carbon bond
lengths, for example, become shorter if there are electronegative atoms present at either end. Such
electronegativity effects may be modeled by adding a correction to the natural bond length RAB

0 based
on the atom C attached to the A B bond:62

RAB−C
0 = RAB

0 + ΔRC
0 (2.45)

Other effects, such as hyperconjugation, can be modeled by allowing the natural bond length to
depend on the adjacent torsional angle.63 The hyperconjugation effect can be thought of as weak-
ening of a 𝜎-bond by donation of electron density into an adjacent empty 𝜋∗-bond, as illustrated in
Figure 2.15.

Since the conjugation can only take place when the 𝜎-orbital is aligned with the 𝜋-system, the
resulting bond elongation will depend on the torsional angle, which can be modeled by an energy
term such as in

RAB
0 = RAB

0 + ΔR𝜔0
ΔR𝜔0 = k(1 − cos 2𝜔ABCD)

(2.46)

2.2.10 Small Rings and Conjugated Systems

It has already been mentioned that small rings present a problem as their equilibrium angles are very
different from their acyclic cousins. One way of alleviating this problem is to assign new atom types.
If a sufficient number of cross terms is included, however, the necessary number of atom types can

C

O
C

H

Figure . Illustrating the elongation of the C H bond by hyperconjugation.
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actually be reduced. Some force fields have only one sp3-carbon atom type, covering bonding situa-
tions from cyclopropane to linear alkanes with the same set of parameters. The necessary flexibility
in the parameter space is here transferred from the atom types to the parameters in the cross terms,
that is the cross terms modify the diagonal terms such that a more realistic behavior is obtained for
large deviations from the natural value.

One additional class of bonding that requires special consideration in force fields is conjugated
systems. Consider, for example, 1,3-butadiene. According to the MM2 type convention (Table 2.1),
all carbon atoms are of type 2. This means that the same set of parameters is used for the terminal
and central C C bonds. Experimentally, the bond lengths are 1.35 and 1.47 Å, that is very different,
which is due to the partial delocalization of the 𝜋-electrons in the conjugated system.64 The outer
C C bond is slightly reduced in double-bond character (and thus has a slightly longer bond length
than in ethylene) while the central bond is roughly halfway between a single and a double bond. Simi-
larly, without special precautions, the barriers for rotation around the terminal and central bonds are
calculated to be the same, and assume a value characteristic of a localized double bond, ∼230 kJ/mol.
Experimentally, however, the rotational barrier for the central bond is only ∼25 kJ/mol.65

There are two main approaches for dealing with conjugated systems. One is to identify certain
bonding combinations and use special parameters for these cases, analogously to the treatment of
hydrogen bonds in Evdw. If four type 2 carbons are located in a linear sequence, for example, they
constitute a butadiene unit and special stretch and torsional parameters should be used for the cen-
tral and terminal bonds. Similarly, if six type 2 carbons are in a ring, they constitute an aromatic
ring and a set of special aromatic parameters are used, or the atom type 2 may be changed to a type
50, identifying from the start that these carbons should be treated with a different parameter set.
The main problem with this approach is that there are many such “special” cases requiring separate
parameters. Three conjugated double bonds, for example, may either be linearly or cross-conjugated
(1,3,5-hexatriene and 2-vinyl-1,3-butadiene), each requiring a set of special parameters different from
those used for 1,3-butadiene. The central bond in biphenyl will be different from the central bond in
1,3-butadiene. Modeling the bond alterations in fused aromatics such as naphthalene or phenan-
threne requires complicated bookkeeping to keep track of all the different bond lengths, etc.

The other approach, which is somewhat more general, is to perform a simple electronic structure
calculation to determine the degree of delocalization within the 𝜋-system. This approach is used
in the MM2 and MM3 force fields, often denoted MMP2 and MMP3.66 The electronic structure
calculation is of the Pariser–Pople–Parr (PPP) type (Section 7.3), which is only slightly more
advanced than a simple Hückel calculation. From the calculated 𝜋-molecular orbitals, the 𝜋-bond
order 𝜌 (Section 10.1) for each bond can be calculated as given in the following equation, where ni
and ci are the number of electrons and coefficient for the ith MO, respectively:

𝜌AB =
Nocc∑

i
nicAicBi (2.47)

Since the bond length, force constant and rotational energy depend on the 𝜋-bond order, these
constants can be parameterized based on the calculated 𝜌. The connections used in MMP2 are as
follows, with 𝛽BC being a resonance parameter:

RAB
0 = 1.503 − 0.166𝜌AB

kAB = 5.0 + 4.6𝜌AB

V ABCD
2 = 62.5𝜌BC𝛽BC

(2.48)
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Initial geometry Assign constantsPPP calculation Optimize geometry

Figure . Illustration of the two-level optimization involved in an MMP2 calculation.

The natural bond length varies between 1.503 Å and 1.337 Å for bond orders between 0 and 1 –
these are the values for pure single and double bonds between two sp2-carbons. Similarly, the force
constant varies between the values used for isolated single and double bonds. The rotational barrier
for an isolated double bond is 250 kJ/mol, since there are four torsional contributions for a double
bond.

This approach allows a general treatment of all conjugated systems, but requires the addition of a
second level of iterations in a geometry optimization, as illustrated in Figure 2.16. At the initial geom-
etry, a PPP calculation is performed, the 𝜋-bond orders are calculated and suitable bond parameters
(RAB

0 , kAB and V ABCD
2 ) are assigned. These parameters are then used for optimizing the geometry. The

optimized geometry will usually differ from the initial geometry; thus the parameters used in the opti-
mization are no longer valid. At the “optimized” geometry, a new PPP calculation is performed and
a new set of parameters derived. The structure is re-optimized and a new PPP calculation is carried
out, etc. This is continued until the geometry change between two macro iterations is negligible.

For commonly encountered conjugated systems such as butadiene and benzene, the ad hoc assign-
ment of new parameters is usually preferred as it is simpler than the computationally more demand-
ing PPP method. For less common conjugated systems, the PPP approach is more elegant and has the
definite advantage that the common user does not need to worry about assigning new parameters.
If the system of interest contains conjugation and a force field that uses the parameter replacement
method is chosen, the user should check that proper bond lengths and reasonable rotational barriers
are calculated (i.e. that the force field has identified the conjugated moiety and contains suitable sub-
stitution parameters). Otherwise, very misleading results may be obtained without any indication of
problems from the force field.

2.2.11 Comparing Energies of Structurally Different Molecules

The force field energy function has a zero point defined implicitly by the zero points chosen for each
of the terms. For the three bonding terms, stretch, bend and torsion, this is at the bottom of the
energy curve (natural bond lengths and angles), while for the two non-bonded terms, it is at infinite
separation. The zero point for the total force field energy is therefore a hypothetical system, where all
the bond distances, angles and torsional angles are at their equilibrium values, and at the same time
all the non-bonded atoms are infinitely removed from each other. Except for small systems such as
CH4, where there are no non-bonded terms, this is a physically unattainable situation. The force
field energy, EFF, is often called the steric energy, as it is in some sense the excess energy relative to
a hypothetical molecule with non-interacting fragments, but the numerical value of the force field
function has no physical meaning!

Relative values, however, should ideally reflect conformational energies. If all atom and bond types
are the same, as in cyclohexane and methyl-cyclopentane, the energy functions have the same zero
point and relative stabilities can be directly compared. This is a rather special situation, however, and
stabilities of different molecules can normally not be calculated by force field techniques. For com-
paring relative stabilities of chemically different molecules such as dimethyl ether and ethyl alcohol,
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or for comparing with experimental heat of formations, the zero point of the energy scale must be
the same.

In electronic structure calculations, the zero point for the energy function has all particles (elec-
trons and nuclei) infinitely removed from each other, and this common reference state allows ener-
gies for systems with different numbers of particles to be directly compared. If the same reference is
used in force field methods, the energy function becomes an absolute measure of molecular stability.
The difference relative to the normal reference state for force field functions is the sum of all bond
dissociation energies, at least for a simple diagonal force field. If correction terms are added to the
normal force field energy function based on average bond dissociation energies for each bond type,
the energy scale become absolute, and can be directly compared with, for example, ΔHf. Such bond
dissociation energies again rest on the assumption of transferability, for example that all C H bonds
have dissociation energies close to 400 kJ/mol. In reality, the bond dissociation energy for a C H
bond depends on the environment: the value for the aldehyde C H bond in CH3CHO is 366 kJ/mol
while it is 410 kJ/mol for C2H6.67 This can be accounted for approximately by assigning an average
bond dissociation energy to a C H bond and a smaller correction based on larger structural units,
such as CH3 and CHO groups. The MM2 and MM3 force fields use an approach where such bond
dissociation energies and structural factors are assigned based on fitting to experimental data, and
this approach is quite successful for reproducing experimental ΔHf values:

ΔHf = EFF +
bonds∑

AB
ΔHAB +

groups∑

G
ΔHG (2.49)

The heat of formation parameters may be considered as shifting the zero point of EFF to a common
origin. Since corrections from larger moieties are small, it follows that energy differences between
systems having the same groups (e.g. methyl-cyclohexane and ethyl-cyclopentane) can be calculated
directly from differences in steric energy.

If the heat of formation parameters are derived based on fitting to a large variety of compounds,
a specific set of parameters is obtained. A slightly different set of parameters may be obtained if
only certain “strainless” molecules are included in the parameterization. Typically molecules such as
straight-chain alkanes and cyclohexane are defined to be strainless. By using these strainless heat of
formation parameters, a strain energy may be calculated as illustrated in Figure 2.17.

Deriving such heat of formation parameters requires a large body of experimental ΔHf values,
and for many classes of compounds there are not sufficient data available. Only a few force fields,
notably MM2 and MM3, also attempt to parameterize heats of formation. Most force fields are only
concerned with reproducing geometries and possibly conformational relative energies, for which the
steric energy is sufficient.

steric energy

Estrain

heat of 
formation
parameters

strainless heat 
of formation 
parameters

EFF

E = 0

strain energy

Figure . Illustrating the difference between steric energy and heat of formation.
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. Force Field Parameterization

Having settled on the functional description and a suitable number of cross terms, the problem of
assigning numerical values to the parameters arises. This is by no means trivial.68 Consider, for exam-
ple, MM2(91) with 71 atom types. Not all of these can form stable bonds with each other; hydrogens
and halogens can only have one bond, etc. For the sake of argument, however, assume that the effec-
tive number of atom types capable of forming bonds between each other is 30.

� Each of the 71 atom types has two van der Waals parameters, RA
0 and 𝜀A, giving 142 parameters.

� There are approximately 1∕2 × 30 × 30 = 450 possible different Estr terms, each requiring at least
two parameters, kAB and RAB

0 , for a total of at least 900 parameters.
� There are approximately 1∕2 × 30 × 30 × 30 = 13 500 possible different Ebend terms, each requiring

at least two parameters, kABC and 𝜃ABC
0 , for a total of at least 27 000 parameters.

� There are approximately 1∕2 × 30 × 30 × 30 × 30 = 405 000 possible different Etors terms, each
requiring at least three parameters, V ABCD

1 , V ABCD
2 and V ABCD

3 , for a total of at least 1 215 000
parameters.

� Cross terms may add another million possible parameters.

To achieve just a rudimentary assignment of the value of one parameter, at least 3–4 independent data
should be available. To parameterize MM2 for all molecules described by the 71 atom types would
thus require of the order of 107 independent experimental data, not counting cross terms, which
clearly is impossible. Furthermore, the parameters that are the most numerous, the torsional con-
stants, are also the ones that are the hardest to obtain experimental data for. Experimental techniques
normally probe a molecule near its equilibrium geometry. Getting energetic information about the
whole rotational profile is very demanding and has only been done for a handful of small molecules.
It has therefore become common to rely on data from electronic structure calculations to derive
force field parameters. Calculating, for example, rotational energy profiles is computationally fairly
easy. The so-called “Class II” and “Class III” force fields rely heavily on data from electronic structure
calculations to derive force field parameters, especially the bonded parameters (stretch, bend and
torsional).

While the non-bonded terms are relatively unimportant for the “local” structure, they are the only
contributors to intermolecular interactions and the major factor in determining the global structure
of a large molecule, such as protein folding. The electrostatic part of the interaction may be assigned
based on fitting parameters to the electrostatic potential derived from an electronic wave function,
as discussed in Sections 2.2.6 to 2.2.8. The van der Waals interaction, however, is difficult to calculate
reliably by electronic structure methods, requiring a combination of electron correlation and very
large basis sets, and these parameters are therefore usually assigned based on fitting to experimental
data for either the solid or liquid state.69

For a system containing only a single atom type (e.g. liquid argon), the R0 (atomic size) and 𝜀 (inter-
action strength) parameters can be determined, for example, by requiring that the experimental den-
sity and heat of evaporation are reproduced, respectively. Since the parameterization implicitly takes
many-body effects into account, a (slightly) different set of van der Waals parameters will be obtained
if the parameterization instead focuses on reproducing the properties of the crystal phase. For sys-
tems where several atom types are involved (e.g. water), there are two van der Waals parameters for
each atom type, and the experimental density and heat of evaporation alone therefore give insufficient
data for a unique assignment of all parameters. Although one may include additional experimental
data, for example the variation of the density with temperature, this still provides insufficient data for
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a general system containing many atom types. Furthermore, it is possible that several combinations
of van der Waals parameters for different atoms may be able to reproduce properties of a liquid, that
is even if there are sufficient experimental data, the derived parameter set may not be unique. One
approach for solving this problem is to use electronic structure methods to determine relative val-
ues for van der Waals parameters, for example using a neon atom as the probe, and determine the
absolute values by fitting to experimental values.70

An alternative procedure is to derive the van der Waals parameters from other physical (atomic)
properties. The interaction strength 𝜀AB between two atoms is related to the polarizabilities 𝛼A and
𝛼B, that is the ease with which the electron densities can be distorted by an electric field. The Slater–
Kirkwood equation71 provides an explicit relationship between these quantities, which has been
found to give good results for the interaction of rare gas atoms:

𝜀AB = C
𝛼A𝛼B

√
𝛼A

Neff
A

+
√

𝛼B
Neff

B

(2.50)

Here C is a constant for converting between the units of 𝜀 and 𝛼, and Neff
A is the effective number

of electrons, which may be taken either as the number of valence electrons or treated as a fitting
parameter. The R0 parameter may similarly be taken from atomic quantities. One problem with this
procedure is that the atomic polarizability will of course be modified by the bonding situation (i.e.
the atom type), which is not taken into account by the Slater–Kirkwood equation.

The molecular (or atomic) van der Waals dispersion coefficients can also be obtained theoretically
from an integration of the polarizability corresponding to imaginary frequencies (Section 11.10):72

Edispersion(RAB) = −
CAB

6
(RAB)6 −

CAB
8

(RAB)8 −⋯

CAB
6 = 3

𝜋

∞

∫

0

αA(i𝜔)αB(i𝜔)d𝜔
(2.51)

The above considerations illustrate the inherent contradiction in designing highly accurate force
fields. To get a high accuracy for a wide variety of molecules and a range of properties, many func-
tional complex terms must be included in the force field expression. For each additional parameter
introduced in an energy term, the potential number of new parameters to be derived grows with
the number of atom types to a power between 1 and 4. The higher the accuracy that is needed, the
more finely the fundamental units must be separated, that is the more atom types must be used. In
the extreme limit, each atom that is not symmetry related or conformationally easy to convert to
another, in each new molecule is a new atom type. In this limit, each molecule will have its own set of
parameters to be used just for this one molecule. To derive these parameters, the molecule must be
subjected to many different experiments, or a large number of electronic structure calculations. This
is the approach used in “inverting” spectroscopic data to produce a potential energy surface, and the
resulting force field may be considered as a sophisticated interpolating function for reproducing the
reference data. While this may be useful for parameterizing a small number of widely used systems
(e.g. all natural nucleic acids or amino acids), it is unsuitable for the parameterization of, for example,
a virtual screening data base containing millions of molecules. The latter case demands a parameteri-
zation strategy in terms of a limited number of atom types with transferable parameters. The number
of atom types in each force field to a large extent represents a subjective choice based on chemical
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Table . Comparison of possible and actual number of MM2(91) parameters.

Term Estimated number of parameters Actual number of parameters

Evdw 142 142
Estr 900 290
Ebend 27 000 824
Etors 1 215 000 2466

intuition and subsequent calibrations and these do not always agree with similarity measures based
on results from electronic structure methods.9

The fundamental assumption of force fields is that structural units are transferable between dif-
ferent molecules. A compromise between accuracy and generality must thus be made. In MM2(91)
the actual number of parameters compared with the theoretical estimated possible (based on the 30
effective atom types above) is shown in Table 2.3.

As seen from Table 2.3, there are a large number of possible compounds for which there are no
parameters, and on which it is then impossible to perform force field calculations. Actually, the situa-
tion is not as bad as it would appear from Table 2.3. Although only∼0.2% of the possible combinations
for the torsional constants has been parameterized, these encompass the majority of the chemically
interesting compounds. It has been estimated that ∼20% of all known compounds can be modeled by
the parameters in MM2, the majority with a good accuracy. However, the problem of lacking param-
eters is very real, and anyone who has used a force field for all but the most rudimentary problems has
encountered the problem. How does one progress if there are insufficient parameters for the molecule
of interest?

There are two possible routes. The first is to estimate the missing parameters by comparison with
force field parameters for similar systems. If, for example, there are missing torsional parameters for
rotation around a H X Y O bond in your molecule, but parameters exist for H X Y C, then it
is probably a good approximation to use the same values. In other cases, it may be less obvious what
to choose. What if your system has an O X Y O torsion, and parameters exist for O X Y C and
C X Y O, but they are very different? What do you choose then, one or the other, or the average?
After a choice has been made, the results should ideally be evaluated to determine how sensitive
they are to the exact value of the guessed parameters. If the guessed parameters can be varied by
±50% without seriously affecting the final results, the property of interest is insensitive to the guessed
parameters and can be trusted to the usual degree of the force field. If, on the other hand, the final
results vary by a factor of two when the guessed parameters are changed by 10%, a better estimate
of the critical parameters should be sought from external sources. If many parameters are missing
from the force field, such an evaluation of the sensitivity to parameter changes becomes impractical,
and one should consider either the second route described below or abandon force field methods
altogether.

The second route to missing parameters is to use external information, experimental data or elec-
tronic structure calculations. If the missing parameters are bond length and force constant for a spe-
cific bond type, it is possible that an experimental bond distance may be obtained from an X-ray
structure and the force constant estimated from measured vibrational frequencies, or missing tor-
sional parameters may be obtained from a rotational energy profile calculated by electronic structure
calculations. If many parameters are missing, this approach rapidly becomes very time-consuming,
and may not give as good final results as you may have expected from the “rigorous” way of deriving
the parameters. The reason for this is discussed below.
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Assume now that the functional form of the force field has been settled. The next task is to select a
set of reference data – for the sake of argument let us assume that they are derived from experiments,
but they could also be taken from electronic structure calculations. The problem is then to assign
numerical values to all the parameters such that the results from force field calculations match the
reference data set as close as possible. The reference data may be of very different types and accuracy,
containing bond distances, bond angles, relative energies, vibrational frequencies, dipole moments,
etc. These data of course have different units, and a decision must be made as to how they should be
weighted. How much weight should be put on reproducing a bond length of 1.532 Å relative to an
energy difference of 10 kJ/mol? Should the same weight be used for all bond distances if, for example,
one distance is determined to 1.532 ± 0.001 Å while another is known only to 1.73 ± 0.07 Å? The
selection is further complicated by the fact that different experimental methods may give slightly dif-
ferent answers for, say, the bond distance, even in the limit of no experimental uncertainty. The reason
for this is that different experimental methods do not measure the same property. X-ray diffraction,
for example, determines the electron distribution, while microwave spectroscopy primarily depends
on the nuclear position. The maximum in the electronic distribution may not be exactly identical to
the nuclear position, and these two techniques will therefore give slightly different bond lengths.

Once the question of assigning weights for each reference data has been decided, the fitting process
can begin. It may be formulated in terms of an error function:73

ErrF(parameters) =
data∑

i
weighti × (reference value − calculated value)2

i (2.52)

The problem is to find the minimum of ErrF with the parameters as variables. From an initial set of
guess parameters, force field calculations are performed for the whole set of reference molecules and
the results compared with the reference data. The deviation is calculated and a new improved set of
parameters can be derived. This is continued until a minimum has been found for the ErrF function.
To find the best set of force field parameters corresponds to finding the global minimum for the mul-
tidimensional ErrF function. The simplest optimization procedure performs a cyclic minimization,
reducing the ErrF value by varying one parameter at a time. More advanced methods rely on the
ability to calculate the gradient (and possibly also the second derivative) of the ErrF with respect to
the parameters. Such information may be used in connection with the optimization procedure, as
described in Chapter 13.

The parameterization process may be done sequentially or in a combined fashion. In the sequential
method, a certain class of compounds, such as hydrocarbons, is parameterized first. These parameters
are held fixed and a new class of compounds, for example alcohols and ethers, are then parameterized.
This method is in line with the basic assumption of a force field – that parameters are transferable. The
advantage is that only a fairly small number of parameters are fitted at a time. The ErrF is therefore
a relatively low-dimensional function, and one can be reasonably certain that a “good” minimum has
been found (although it may not be the global minimum). The disadvantage is that the final set of
parameters necessarily provides a poorer fit (as defined from the value of the ErrF) than if all the
parameters are fitted simultaneously.

The combined approach tries to fit all the constants in a single parameterization step. Considering
that the number of force field parameters may be many thousands, it is clear that the ErrF function
will have a very large number of local minima. To find the global minimum of such a multivariable
function is very difficult. It is thus likely that the final set of force field parameters derived by this pro-
cedure will in some sense be less than optimal, although it may still be “better” than that derived by the
sequential procedure. Furthermore, many of the parameter sets that give low ErrF values (including
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Figure . The structure of acetaldehyde.

the global minimum) may be “non-physical”, for example force constants for similar bonds being very
different. Due to the large dimensionality of the problem, such combined optimizations require the
ability to calculate the gradient of the ErrF with respect to the parameters, and writing such pro-
grams is not trivial. There is also a more fundamental problem when new classes of compounds
are introduced at a later time than the original parameterization. To be consistent, the whole set
of parameters should be re-optimized. This has the consequence that (all) parameters change when a
new class of compounds is introduced or whenever more data are included in the reference set. Such
“time-dependent” force fields are clearly not desirable. Most parameterization procedures therefore
employ a sequential technique, although the number of compound types parameterized in each step
varies.

There is one additional point to be mentioned in the parameterization process that is also important
for understanding why the addition of missing parameters by comparison with existing data or from
external sources is somewhat problematic. This is the question of redundant variables, as can be
exemplified by considering acetaldehyde (Figure 2.18).

In the energy bend expression there will be four angle terms describing the geometry around the
carbonyl carbon, an HCC, an HCO, a CCO and an out-of-plane bend. Assuming the latter to be zero
for the moment, it is clear that the other three angles are not independent. If the 𝜃HCO and 𝜃CCO angles
are given, the 𝜃HCC angle must be 360◦ − 𝜃HCO − 𝜃CCO. Nevertheless, there will be three natural angle
parameters and three force constants associated with these angles. For the whole molecule there are
six stretch terms, nine bending terms and six torsional terms (count them!) in addition to at least one
out-of-plane term. This means that the force field energy expression has 22 degrees of freedom, in
contrast to the 15 (3Natom − 6) independent coordinates necessary to completely specify the system.
The force field parameters, as defined by the EFF expression, are therefore not independent.

The implicit assumption in force field parameterization is that, given sufficient amounts of data, this
redundancy will cancel out. In the above case, additional data for other aldehydes and ketones may be
used (at least partly) for removing this ambiguity in assigning angle bend parameters, but in general
there are more force field parameters than required for describing the system. This clearly illustrates
that force field parameters are just that – parameters. They do not necessarily have any direct con-
nection with experimental force constants. Experimental vibrational frequencies can be related to a
unique set of force constants, but only in the context of a non-redundant set of coordinates.

It is also clear that errors in the force field due to inadequacies in the functional forms used for
each of the energy terms will to some extent be absorbed by the parameter redundancy. Adding new
parameters from external sources, or estimating missing parameters by comparison with those for
“similar” fragments, may partly destroy this cancellation of errors. This is also the reason why param-
eters are not transferable between different force fields, as the parameter values are dependent on
the functional form of the energy terms and are mutually correlated. The energy profile for rotating
around a bond, for example, contains contributions from the electrostatic, the van der Waals and the
torsional energy terms. The torsional parameters are therefore intimately related to the atomic partial
charges and cannot be transferred to another force field.
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The parameter redundancy is also the reason that care should be exercised when trying to decom-
pose energy differences into individual terms. Although it may be possible to rationalize the prefer-
ence of one conformation over another by, for example, increased steric repulsion between certain
atom pairs, this is intimately related to the chosen functional form for the non-bonded energy, and
the balance between this and the angle bend/torsional terms. The rotational barrier in ethane, for
example, may be reproduced solely by an HCCH torsional energy term, solely by an H H van der
Waals repulsion or solely by an H H electrostatic repulsion. Different force fields will have (slightly)
different balances of these terms, and while one force field may contribute a conformational difference
primarily to steric interactions, another may have the major determining factor to be the torsional
energy, and a third may “reveal” that it is all due to electrostatic interactions.

2.3.1 Parameter Reductions in Force Fields

The overwhelming problem in developing force fields is the lack of enough high-quality reference
data. As illustrated above, there are literally millions of possible parameters in even quite simple force
fields. The most numerous of these are the torsional parameters, followed by the bending constants.
As force fields often are used for predicting properties of unknown molecules, it is inevitable that
the problem of lacking parameters will be encountered frequently. Furthermore, many of the existing
parameters may be based on very few reference data, and therefore be associated with substantial
uncertainty.

Many modern force field programs are commercial. Having the program tell the user that his or
her favorite molecule cannot be calculated owing to lack of parameters is not good for business.
Making the user derive new parameters, and getting the program to accept them, may require more
knowledge than the average user, who is just interested in the answer, has. Many force fields thus have
“generic” parameters. This is just a fancy word for the program making more or less educated guesses
for the missing parameters.

One way of reducing the number of parameters is to reduce the dependence on atom types. Tor-
sional parameters, for example, can be taken to depend only on the types of the two central atoms.
All C C single bonds would then have the same set of torsional parameters. This does not mean that
the rotational barrier for all C C bonds is identical, since van der Waals and/or electrostatic terms
also contribute. Such a reduction replaces all tetra-atomic parameters with diatomic constants, that
is VABCD → VBC. Similarly, the triatomic bending parameters may be reduced to atomic constants by
assuming that the bending parameters only depend on the central atom type (kABC → kB, 𝜃ABC

0 → 𝜃B
0).

Generic constants are often taken from such reduced parameter sets. In the case of missing torsional
parameters, they may also simply be omitted, that is setting the constants to zero. A good force field
program informs the user of the quality of the parameters used in the calculation, especially if such
generic parameters are used, and this is useful for evaluating the quality of the results. Some programs
unfortunately use the necessary number of generic parameters to carry out the calculations without
notifying the user. In extreme cases, one may perform calculations on molecules for which essentially
no “good” parameters exist, and get totally useless results. The ability to perform a calculation is no
guarantee that the results can be trusted!

The quality of force field parameters is essential for judging how much faith can be put in the
results. If the molecule at hand only uses parameters that are based on many good-quality experi-
mental results, then the computational results can be trusted to be almost of experimental quality. If,
however, the employed parameters are based only on a few experimental data and/or many generic
parameters have been used, the results should be treated with care. Using low-quality parameters for
describing an “uninteresting” part of the molecule, such as a substituted aromatic ring in a distant

iranchembook.ir/edu



Force Field Methods 

side chain, is not problematic. In some cases, such uninteresting parts may simply be substituted by
other simpler groups (e.g. a methyl group). However, if the low-quality parameters directly influence
the property of interest, the results may potentially be misleading.

2.3.2 Force Fields for Metal Coordination Compounds

Coordination chemistry is an area that is especially plagued with the problems of assigning suitable
functions for describing the individual energy terms and deriving good parameters.74, 75 The bonding
around metals is much more varied than for organic molecules, where atoms form only two, three or
four bonds. Furthermore, for a given number of ligands, more than one geometrical arrangement is
usually possible. A four-coordinated metal, for example, may either be tetrahedral or square planar,
and a five-coordinated metal may either have a square pyramidal or trigonal bipyramidal structure.
This is in contrast to four-coordinated atoms such as carbon or sulfur that are always very close to
tetrahedral. The increased number of ligands combined with the multitude of possible geometries
significantly increases the problem of assigning suitable functional forms for each of the energy
terms. Consider, for example, a “simple” compound such as Fe(CO)5, which has a trigonal bipyramid
structure (Figure 2.19).

It is immediately clear that a C Fe C angle bend must have three energy minima corresponding
to 90◦, 120◦ and 180◦, indicating that a simple Taylor expansion around a (single) natural value is not
suitable. Furthermore, the energy cost for a geometrical distortion (bond stretching and bending) is
usually much smaller around a metal atom than for a carbon atom. This has the consequence that
coordination compounds are much more dynamic, displaying phenomena such as pseudo-rotations,
ligand exchange and large geometrical variations for changes in the ligands. In iron pentacarbonyl
there exists a whole series of equivalent trigonal bipyramid structures that readily interconvert, that
is the energy cost for changing the C Fe C angle from 90◦ to 120◦ and to 180◦ is small. Deviations up
to 30◦ from the “natural” angle by introducing bulky substituents on the ligands are not uncommon.
Furthermore, the bond distance for a given metal–ligand is often sensitive to the nature of the other
ligands. An example there is the trans effect, where a metal–ligand bond distance can vary by perhaps
0.2 Å depending on the nature of the ligand on the opposite side.

Another problem encountered in metal systems is the lack of well-defined bonds. Consider, for
example, an olefin coordinated to a metal. Should this be considered as a single bond between the
metal and the center of the C C bond or as a metallocyclopropane with two M C bonds? A cyclopen-
tadiene ligand may similarly be modeled either with a single bond to the center of the ring or with
five M C bonds. In reality, these represent limiting behaviors, and the structures on the left in Fig-
ure 2.20 correspond to a weak interaction while those on the right involve strong electron dona-
tion from the ligand to the metal (and vice versa). A whole range of intermediate cases is found in
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Figure . The structure of iron pentacarbonyl.
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Figure . The ambiguity of modeling metal coordination.

coordination chemistry. The description with bonds between the metal and all the ligand atoms suf-
fers from the lack of (free) rotation of the ligand. The coordination to the “center” of the ligand may
be modeled by placing a pseudo-atom at that position and relating the ligand atoms to the pseudo-
atom (a pseudo-atom is just a point in space, also sometimes called a dummy atom; see Appendix D).
Alternatively, the coordination may be described entirely by non-bonded interactions (van der Waals
and electrostatic).

One possible, although not very elegant, solution to these problems is to assign different atom types
for each bonding situation. In the Fe(CO)5 example, this would mean distinguishing between equa-
torial and axial CO units. There would then be three different C Fe C bending terms, Ceq Fe Ceq,
Ceq Fe Cax and Cax Fe Cax, with natural angles of 120◦, 90◦ and 180◦, respectively. This approach
sacrifices the dynamics of the problem: interchanging an equatorial and axial CO no longer produces
energetically equivalent structures. Similarly, the same metal atom in two different geometries (such
as tetrahedral and square planar) would be assigned two different types, or in general a new type for
each metal in a specific oxidation and spin state, and with a specific number of ligands. This approach
encounters the parameter “explosion”, as discussed above. It also biases the results in the direction of
the user’s expectations – if a metal atom is assigned a square planar atom type, the structure will end
up close to square planar, even though the real geometry may be tetrahedral. The object of a compu-
tational study, however, is often a series of compounds that have similar bonding around the metal
atom. In such cases, the specific parameterization may be quite useful, but the limitations should of
course be kept in mind. Most force field modeling of coordination compounds to date have employed
this approach, tailoring an existing method to also reproduce properties (most notably geometries)
of a small set of reference systems.

Part of the problems may be solved by using more flexible functional forms for the individual energy
terms, most notably the stretching and bending energies. The stretch energy may be chosen as a
Morse potential (Equation (2.5)), allowing for quite large distortions away from the natural distance,
and also being able to account for dissociation. However, phenomena such as the trans effect are
inherently electronic in nature (similar to the delocalization in conjugated systems) and are not easily
accounted for in a force field description.

The multiple minima nature of the bending energy, combined with the low barriers for interconver-
sion, resembles the torsional energy for organic molecules. An expansion of Ebend in terms of cosine
or sine functions to the angle is therefore more natural than a simple Taylor expansion in the angle.
Furthermore, bending around a metal atom often has an energy maximum for an angle of 180◦, with
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a low barrier. The following examples have a zero derivative for a linear angle and are reasonable for
describing bond bending such as that encountered in the H2O example (Figure 2.5):

Ebend(𝜃) = k
(

sin2 𝜃
2
− sin2 𝜃0

2

)2
(2.53)

Ebend(𝜃) = k(1 + cos(n𝜃 + 𝜏)) (2.54)

The latter functional form contains a constant n that determines the periodicity of the potential (𝜏 is a
phase factor) and allows bending energies with multiple minima, analogously to the torsional energy.
It does, however, have problems of unwanted oscillations if an energy minimum with a natural angle
close to 180◦ is desired (this requires n to be large, creating many additional minima). It is also unable
to describe situations where the minima are not regularly spaced, such as the Fe(CO)5 system (minima
for angles of 90◦, 120◦ and 180◦). The performance of Equations (2.53) and (2.54) for the H2O case is
given in Figure 2.21, which can be compared with Figure 2.5.

The barrier towards linearity is given implicitly by the force constant in both the potentials in Equa-
tions (2.53) and (2.54). A more general expression, which allows even quite complicated energy func-
tionals to be fitted, is a Fourier expansion:

Ebend(𝜃) =
∑

n
kn cos(n𝜃) (2.55)

An alternative approach consists of neglecting the L M L bending terms, and instead includes non-
bonded 1,3-interactions. The geometry around the metal is then defined exclusively by the van der
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Waals and electrostatic contributions (i.e. placing the ligands as far apart as possible), and this model
is known as Points-On-a-Sphere (POS).76 It is basically equivalent to the Valence Shell Electron-Pair
Repulsion (VSEPR) model, with VSEPR focusing on the electron pairs that make up a bond and POS
focusing on the atoms and their size.77 For alkali, alkaline earth and rare earth metals, where the
bonding is mainly electrostatic, POS gives quite reasonable results, but it is unable to model sys-
tems where the d-orbitals have a preferred bonding arrangement. Tetracoordinated metal atoms,
for example, will in such models always end up being tetrahedral, although d8-metals are normally
square planar. An explicit coupling between the geometry and the occupancy of the d-orbitals can be
achieved by adding a ligand field energy term to the force field energy function.78, 79

The final problem encountered in designing force fields for metal complexes is the lack of sufficient
numbers of experimental data. Geometrical data for metal compounds are much scarcer than for
organic structures, and the soft deformation potentials mean that vibrational frequencies are often
difficult to assign to specific modes. Deriving parameters from electron structure calculations is trou-
blesome because the presence of multiple ligands means that the number of atoms is quite large and
the metal atom itself contains many electrons. Furthermore, there are often many different low-lying
electronic states owing to partly occupied d-orbitals, indicating that single reference methods (i.e.
Hartree–Fock-type calculations) are insufficient for even a qualitative correct wave function. Finally,
relativistic effects become important for some of the metals in the lower part of the periodic system.
These effects have the consequence that electronic structure calculations of a sufficient quality are
computationally expensive to carry out.

2.3.3 Universal Force Fields

The combination of many atom types and the lack of a sufficient number of reference data have
prompted the development of force fields with reduced parameters sets, such as the Universal Force
Field (UFF).80 The idea is to derive di-, tri- and tetra-atomic parameters (Estr, Ebend, Etors) from atomic
constants (such as atom radii, ionization potentials, electronegativities, polarizabilities, etc.). Such
force fields are in principle capable of describing molecules composed of elements from the whole
periodic table, and these have been labeled as “all elements” in Table 2.4. They give less accurate results
compared with conventional force fields, but geometries are often calculated qualitatively correctly.
Relative energies, however, are much more difficult to obtain accurately, and conformational energies
for organic molecules are generally quite poor. Another approach is to use simple valence bonding
arguments (e.g. hybridization) to derive the functional form for the force field, as employed in the
VALBOND approach.81

. Differences in Atomistic Force Fields

There are many different force fields employing atoms as the fundamental particle in use. They differ
in three main aspects:

1. What is the functional form of each energy term?
2. How many cross terms are included?
3. What types of information are used for fitting the parameters?

There are two general trends. If the force field is designed primarily to treat large systems, such as
proteins or DNA, the functional forms are kept as simple as possible. This means that only harmonic
functions are used for Estr and Ebend (or these term are omitted, forcing all bond lengths and angles
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to be constant), no cross terms are included and the Lennard-Jones potential is used for Evdw. Such
force fields are often called “harmonic”, “diagonal” or “Class I”. The other branch concentrates on
reproducing small- to medium-size molecules to a high(er) degree of accuracy. These force fields will
include a number of cross terms, use at least cubic or quartic expansions of Estr and Ebend, and possibly
an exponential-type potential for Evdw. The small-molecule force fields strive to not only reproduce
geometries and relative energies but also vibrational frequencies, and these are often called “Class
II” force fields. Further refinements by allowing parameters to depend on neighboring atom types,
for example for modeling hyperconjugation, and including electronic polarization effects have been
denoted “Class III” force fields.

Table 2.4 gives a description of the functional forms used in some of the common force fields.
The torsional energy is in all cases written as a Fourier series, typically of order 3. Many of the force
fields undergo continuous developments, and Table 2.4 may thus be considered as a “snapshot” of the
situation when the data were collected. The “universal”-type force fields, described in Section 2.3.3,
are in principle capable of covering molecules composed of elements from the whole periodic table,
and these have been labeled as “all elements”.

Even for force fields employing the same mathematical form for an energy term there may be signif-
icant differences in the parameters. Table 2.5 shows the variability of the parameters for the stretch
energy between different force fields. It should be noted that the stretching parameters are among
those that vary the least between force fields.

It is perhaps surprising that force constants may differ by almost a factor of two, but this is of
course related to the stiffness of the stretch and bending energies. Very few molecules have bond
lengths deviating more than a few hundredths of an angstrom from the reference value, and the asso-
ciated energy contribution will be small regardless of the force constant value. Stated another way,
the minimum energy geometry is insensitive to the exact value of the force constant.

The torsional parameters are most important for determining geometries and relative energies of
conformational structures, as well as activation energies for conformational transitions. When studies
reveal that a given force field provides inaccurate or biased results for a given system, this often results
in determining a new set of torsional parameters for a subset of atom types in the force field. These
updated parameters are often denoted with a serial number or a year-label when they were released,
as, for example, CHARMM-38 or OPLS-05. Torsional energy modifications have in some cases been
applied by adding a look-up table value depending on two torsional angles, rather than modifying
the torsional parameters of functional form, as has been done in the CMAP approach for protein
backbone angles.109

Table . Comparison of stretch energy parameters for different force fields.

Force field R (Å) k (mdyn/Å)

C C C O C F C O C C C O C F C O

MM2 1.523 1.402 1.392 1.208 4.40 5.36 5.10 10.80
MM3 1.525 1.413 1.380 1.208 4.49 5.70 5.10 10.10
MMFF 1.508 1.418 1.360 1.222 4.26 5.05 6.01 12.95
AMBER 1.526 1.410 1.380 1.220 4.31 4.45 3.48 8.76
OPLS 1.529 1.410 1.332 1.229 3.73 4.45 5.10 7.92
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. Water Models

Water is arguably one of the most difficult molecules to model by classical force field potentials, but, as
an essential solvent for biomolecular simulations, is also one that must be given special attention. The
difficulties arise because water has unique hydrogen bonding capabilities, has large multibody con-
tributions (polarization) as well as important quantum effects, since it contains two low-mass hydro-
gen nuclei (zero-point energies and hydrogen tunneling, leading to, for example, different melting
points for H2O and D2O). The strong hydrogen bonding between water molecules has contributions
of charge transfer and charge penetration effects, both of which are difficult to describe within a force
field environment. These molecular properties lead to a number of unusual macroscopic properties
for water, such as the non-monotonic density–temperature profile (maximum density at 4 ◦C), the
volume expansion upon freezing, several different crystal phases, a large and temperature-dependent
dielectric constant, the auto-dissociation into ions, and a large heat of evaporation. Parameterization
for reproducing some of these properties are often quite successful for the properties included in the
parameterization, but fails for properties not included. Since water often accounts for more than half
of the total system size in a simulation, computational efficiency is of outmost importance. These
conflicting requirements have led to a large number of proposed water models of varying degrees of
accuracy and computational efficiencies, some of which will be described in this section.110

The water models can be classified by three criteria:

� Rigid or flexible geometry
� Number of interaction sites
� Static or polarizable electrostatic interactions.

The number of interaction sites refers to how many expansion points are used for representing the
non-bonded interaction. These often coincide with the nuclear positions, but not necessarily, and
additional off-nucleus sites are often included when fixed point charges are used for representing the
electrostatic interaction. The non-bonded interactions must be calculated between all pairs of inter-
action sites for all water molecules, and the computational cost therefore increases quadratically with
the number of interaction sites. The lower accuracy of models with few interaction sites can partly
be compensated for by employing different parameters for the same underlying model for different
situations, as, for example, different water parameters depending on the specific force field used for
a protein or different water parameters depending on how the long-range electrostatic interaction is
calculated. Alternatively, solute parameters can be tuned to a specific water model, as, for example,
for metals ions.111

Some of the commonly used water models and selected properties are collected in Table 2.6.
The SPC (Simple Point Charge) and TIP3P (Transferable Intermolecular Potential 3 Point) model

are three-site models where the nuclear positions are used as sites for partial charges. The TIP4P
model moves the negative charge from the position of the oxygen atom to an off-center position
along the HOH bisector, while the TIP5P model places partial negative charges at the oxygen lone
pair positions. All of these models account for the non-polar van der Waals type interaction by a
single interaction site located at the oxygen position. TIP3P thus have 9 interactions to be calculated
for each pair of water molecules, while TIP5P has 17 interactions (16 charge–charge and 1 van der
Waals), which makes the latter roughly a factor of two more expensive computationally. Six site mod-
els where the three nucleus positions are augmented with both a bisector and lone pair sites have also
been proposed in order to accurately reproduce the molecular quadrupole moments within a fixed
charge model.

iranchembook.ir/edu
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Table . A selection of water models and associated properties.112, 113

Model property SPC/E TIPP TIPP TIPP/ TIPP BK AMOEBA Exp.

Tm 215 146 232 252 274 250 261 273
𝜌 0.994 0.98 0.988 0.993 0.979 0.997 1.000 0.997
ΔHvap 49.3 42.0 44.6 50.2 43.8 45.8 43.5 44.0
Cp 88 79 84 88 121 92 88 75
𝜀 68 94 50 58 91 79 81 78

Tm: melting temperature (K), 𝜌: density at 298 ◦C (g/ml), ΔHvap:
heat of vaporization (kJ/mol), Cp: heat capacity (J/mol K), 𝜀: dielectric constant.

The difference between SPC and SPC/E (E for “extended”) is only that the latter has slightly larger
partial charges on the oxygen/hydrogens to account for self-polarization. The original SPC model
employed fixed bond lengths and angles, but a flexible SPC model has also been proposed. The TIP3P
model in the CHARMM version has additional van der Waals interaction sites for the hydrogens.
The TIP4P model similarly comes in several flavors. The TIP4P/Ew is a reparameterization for use
in connection with Ewald summation techniques for calculating electrostatic interaction in periodic
systems, in contrast to the original simple truncation scheme, while the TIP4P/2005 represent a repa-
rameterization to better account for the whole phase diagram of water, including ice. They differ in
the exact position of the off-nucleus site, the partial charges and the van der Waals parameters. In
analogy with the SPC model, TIP4P also exist in a version with flexible geometry, but the difference
in properties between these two models is very minor (e.g. a 2 ◦C higher melting temperature).

An isolated water molecule has a dipole moment of 1.85 Debye, but the solution value is ∼2.85
Debye, which represents a ∼50% increase due to polarization. Fixed charge force fields attempt to
model this by increasing the atomic charges, but as noted in Section 2.2.8, this only accounts for the
physical effect in an average fashion. The TIP4P-FQ model accounts for the electronic polarization by
the fluctuation charge model within the TIP4P framework, while the BK3 (Baranyai and Kiss) model
employs a charge-on-a-spring model using the three nuclei as sites. The AMOEBA water model
employs up to quadrupole permanent electric moments and a dipole polarization at each nuclear site.

. Coarse Grained Force Fields

Atomistic force fields employ a spherical atom as the fundamental particle which has a clear physical
analogy. Coarse Grained (CG) force fields group several atoms together into a single particle, usually
called a bead, in order to improve on the computational efficiency and thereby allow simulation of
larger systems and longer simulation times. United atom force fields, where an atom with attached
hydrogens is modeled as a single particle, can be considered as an intermediate model between an
all-atom (AA) and a CG force field model.114

A typical CG force field employs a 4-to-1 mapping, meaning that four atoms with associated hydro-
gens are modeled as a single bead, and we will use the MARTINI protein force field as a representative
example.115, 116 The beads are divided into four main groups: charged (Q), polar (P), nonpolar (N)
and apolar (C), and each of these bead types are subdivided into 4–5 types depending on their (rela-
tive) polarity or hydrogen bond donor/acceptor capabilities for a total of 18 bead types. The bonded
energy terms are parameterized by harmonic and Fourier potentials analogous to atomistic force
fields. The non-bonded interactions are parameterized by pair-wise Lennard-Jones potentials and
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charge–charge interactions for the charge-type beads, where the electrostatic interaction employs
the Coulomb form in Equation (2.20) with a dielectric constant of 15 to model implicit screening.
All non-bonded terms furthermore employ a 12 Å cutoff distance (Section 2.7), beyond which the
potentials are shifted to zero in order to improve the computational efficiency. The lower resolution
has as a consequence that (slightly) different molecules are described as being identical; for exam-
ple glycine and alanine and also cysteine and methionine are described identically in the MARTINI
force field.

CG FFs sacrifice some molecular details in order to improve the computational efficiency, with the
hope that a careful parameterization can absorb some of the deficiencies in the underlying model.
Perhaps one of the most severe limitations is the inability to describe hydrogen bonds, which is an
essential element in determining secondary protein structure and the interaction with water. CG FFs
have so far been unable to solve the secondary protein structure problem by parameterization and rely
on additional constraints for fixing specific parts of a protein to have, for example, an alpha-helixal
or a beta-sheet structure. The MARTINI force field employs an environmental-dependent bead type,
that is a given amino acid will be described by different bead types depending on the local secondary
structure, but also employs constraints to keep the secondary structure.117 The inability to model a
protein secondary structure means that CG FFs are unable to simulate protein folding or dynamics
that require secondary structure transformations, and the secondary structure must be defined by
the user.

Water represents a special problem in a CG description. Simulations of biomolecular systems usu-
ally need to solvate the molecule of interest in a large box of water, and water molecules consequently
often account for the majority of particles in a given simulation. Coarse graining of the water is there-
fore an essential requirement for achieving a significant computational improvement. The 4-to-1
mapping defines a water bead as a representation for four water molecules. Since the beads have
no internal structure, this means that the water beads become non-polar, and the polar screening
effect must instead be modeled by a large (𝜀 = 15) dielectric constant in the Coulomb term. The non-
polar nature of water beads has been addressed by introducing polarizable water beads, where the
polarization is described by associating two Drude particles (Section 2.2.8) having charges of ±0.46
within each bead,118 in which case the dielectric constant is reduced to 2.5.

The 4-to-1 mapping of water molecules obviously leads to problems describing single water
molecules within a protein, but also means that the model lacks part of the internal water dynam-
ics. The reduced dynamics (entropy) implies that CG water beads have a too high freezing point
(∼290 K), which may cause problem in simulations. The freezing point can be lowered by adding
a small amount (mole fraction ∼0.1) of artificially larger (∼20%) water beads, which disrupt the
ordering and act as antifreeze particles. The use of the Drude particle polarizable water model
has a slightly lower freezing point (∼285 K). An implicit water model has also been proposed and
implemented as a reparameterization of the non-bonded interaction between CG beads (nicknamed
Dry MARTINI).119

The reduced number of particles and (internal) degrees of freedom in CG models means that
the entropy described within the model is reduced. When parameterized against experimental free
energies, the missing entropy leads to a decrease in the enthalpy terms defined by the parameters.
This in turn leads to a poor description of the temperature dependence of the free energy, and one
should therefore be careful of employing CG methods at temperatures different from that used in the
parameterization. The same reservation holds to some extent also for AA models, but the problem is
expected to be more severe for CG methods.

The simulation time with an AA force field is closely related to the actual time, such that sim-
ulations can be used to probe directly the time scale of various processes. This, however, is also a
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severe limitation, as computational resources rarely allow simulations of realistic sized systems for
longer than a few microseconds (at best), while many interesting phenomena like protein folding and
substrate binding/unbinding occur on millisecond time scales. A CG FF description of a given sys-
tem contains significantly fewer particles than an AA description, and the lack of low-mass particles
(hydrogens) allows for using larger time steps (typically an order of magnitude larger than for AA
methods), resulting in significantly longer simulation times for a given computational cost. The less
detailed description furthermore means that the CG FF energy surface is smoother and therefore
intrinsically leads to faster dynamics. The connection between simulation time and “real” time is dif-
ficult to quantify, and depends both on the system and the property of interest, but a factor of four is
often used as an estimate, that is one ns of simulations time equals four ns of “real” time.

The development of CG FF is still at the exploratory stages, where limitations are discovered and
alternative parameterizations and functional forms are being explored. In analogy with the mixing
of QM and MM methods, multiscale models consisting of mixing AA and CG FF have also been
proposed, but such methods are in their infancy.120

. Computational Considerations

Evaluation of the non-bonded energy is by far the most time-consuming step, which can be exem-
plified by the number of individual energy terms for the linear alkanes CH3(CH2)n−2CH3 shown in
Table 2.7.

The number of bonded contributions, Estr, Ebend and Etors, grow linearly with the system size, while
the non-bonded contributions, Evdw and Eel, grow as the square of the system size. This is fairly obvi-
ous as, for a large molecule, most of the atom pairs are not bonded, or are not bonded to a common
atom, and thus contribute with Evdw/Eel terms. For CH3(CH2)98CH3, which contains a mere 302
atoms, the non-bonded terms already account for ∼96% of the computational effort. For a 1000 atom
system, the percentage is 98.8%, and for 10 000 atoms it is 99.88%. In the limit of large molecules,
the computational time for calculating the force field energy grows approximately as the square of
the number of atoms. The majority of these non-bonded energy contributions are numerically very
small, as the distance between the atom pairs is large. A considerable saving in computational time
can be achieved by truncating the van der Waals potential at some distance, say 10 Å. If the distance
is larger than this cutoff, the contribution is neglected. This is not quite as clean as it may sound at
first. Although it is true that the contribution from a pair of atoms is very small if they are separated
by 10 Å, there may be a large number of such atom pairs. The individual contribution falls off quickly,
but the number of contributions also increases. Many force fields use cutoff distances around 10 Å,
but it has been shown that the total van der Waals energy only converges if the cutoff distance is of
the order of 20 Å. However, using a cutoff of 20 Å may significantly increase the computational time

Table . Number of terms for each energy contribution in CH3(CH2)n−2CH3.

n Natoms Estr Ebend Etors Enon-bonded

10 32 31 (5%) 30 (10%) 81 (14%) 405 (70%)
20 62 61 (3%) 60 (6%) 171 (8%) 1710 (83%)
50 152 151 (1%) 300 (3%) 441 (4%) 11 025 (93%)

100 302 301 (1%) 600 (1%) 891 (2%) 44 550 (96%)
N (N − 1) 2(N − 2) 3(N − 5) 1

2
N(N − 1) − 3N + 5
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(by a factor of perhaps 5–10) relative to a cutoff of 10 Å. Alternatively, the exact van der Waals energy
for a periodic system may be calculated by a variation of the particle mesh Ewald technique.121

The introduction of a cutoff distance does not by itself lead to a significant computational saving,
since all the distances must be computed prior to the decision on whether to include the contribution
or not. A substantial increase in computational efficiency can be obtained by keeping a non-bonded or
neighbor list over atom pairs. From a given starting geometry, a list is prepared over the atom pairs that
are within the cutoff distance plus a smaller buffer zone. During a minimization or simulation, only the
contributions from the atom pairs on the list are evaluated, which avoids the calculation of distances
between all pairs of atoms. Since the geometry changes during the minimization or simulation, the
non-bonded list must be updated once an atom has moved more than the buffer zone or simply at
(fixed) suitable intervals, for example every 10 or 20 steps.

The use of a cutoff distance reduces the scaling in the large system limit from N2
atom to Natom since

the non-bonded contributions are then only evaluated within the local “sphere” determined by the
cutoff radius. A cutoff distance of∼10 Å, however, is so large that the large system limit is not achieved
in practical calculations. Furthermore, the updating of the neighbor list still involves calculating dis-
tances between all atom pairs. The actual scaling is thus Nn

atom, where n is between 1 and 2, depending
on the details of the system. In most applications, however, it is not the energy of a single geometry
that is of interest, but that of an optimized geometry. The larger the molecule, the more degrees of
freedom, and the more complicated the geometry optimization is. The gain by introducing a non-
bonded cutoff is partly offset by the increase in computational effort in the geometry optimization.
Thus, as a rough guideline, the increase in computational time upon changing the size of the molecule
can be taken as N2

atom.
The introduction of a cutoff distance, beyond which Evdw is set to zero, is quite reasonable as the

neglected contributions rapidly become small for any reasonable cutoff distance. This is not true for
the other part of the non-bonded energy, the Coulomb interaction. Contrary to the van der Waals
energy, which falls off as R−6, the charge–charge interaction varies as R−1. This is actually only true
for the interaction between molecules (or fragments) carrying a net charge. The charge distribution
in neutral molecules or fragments makes the long-range interaction behave as a dipole–dipole inter-
action. Consider, for example, the interaction between two carbonyl groups. The carbons carry a
positive and the oxygens a negative charge. Seen from a distance it looks like a bond dipole moment,
not two net charges. The interaction between two dipoles behaves like R−3, not R−1, but an R−3 inter-
action still requires a significantly larger cutoff than the van der Waals R−6 interaction.

Table 2.8 shows the interaction energy between two carbonyl groups in terms of the MM3 Evdw
and Eel, the latter described either by an atomic point charge or a bond dipole model. The bond

Table . Comparing the distance behavior of non-bonded energy contributions (kJ/mol).

Distance (Å) Evdw Edipole–dipole Epoint charges Enet charges

5 −0.92 1.665 1.598 28.5
10 −0.0060 0.208 0.206 14.2
15 −0.00054 0.0617 0.0614 9.5
20 −9.5 × 10−5 0.0260 0.0259 7.1
30 −8.4 × 10−6 0.00770 0.00770 4.7
50 −3.9 × 10−7 0.00167 0.00167 2.8
100 −6.1 × 10−9 0.000208 0.000208 1.4
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dipole moment is 1.86 Debye, corresponding to atomic charges of ±0.32 separated by a bond length
of 1.208 Å. For comparison, the interaction between two net charges of 0.32 is also given.

From Table 2.8 it is clearly seen that Evdw becomes small (less than ∼0.01 kJ/mol) beyond a distance
of ∼10 Å. The electrostatic interaction reaches the same level of importance at a distance of ∼30 Å.
The table also shows that the interaction between point charges behaves as a dipole–dipole interac-
tion, that is an R−3 dependence. The interaction between net charges is very long-range – even at
100 Å separation there is a 1.4 kJ/mol energy contribution. The “cutoff” distance corresponding to a
contribution of ∼0.01 kJ/mol is of the order of 14 000 Å!

There are different ways of implementing a non-bonded cutoff. The simplest is to neglect all con-
tributions if the distance is larger than the cutoff. This is in general not a very good method as the
energy function becomes discontinuous. Derivatives of the energy function also become discontinu-
ous, which causes problems in optimization procedures and when performing simulations. A better
method is to use two cutoff distances between which a switching function connects the correct Evdw
or Eel, or the corresponding forces, smoothly with zero. Such interpolations solve the mathematical
problems associated with optimization and simulation, but the chemical significance of the cutoff
of course still remains. This is especially troublesome in simulation studies where the distribution of
solvent molecules can be very dependent on the use of cutoffs. The modern approaches for evaluating
the electrostatic contribution is the use of fast multipole or Ewald sum methods (see Section 15.3),
both of which are able to calculate the electrostatic energy exactly (to within a specified numerical
precision) with an effort that scales less than quadratic with the number of particles (linear for fast
multipole, N3/2 for Ewald and N ln N for particle mesh Ewald methods). These methods require only
slightly more computer time than using a cutoff-based method, and give much better results in a
mathematical sense. A caveat is that force field parameters often are optimized with a specific proto-
col for handling the non-bonded interactions and using, for example, particle mesh Ewald methods
with a force field optimized with a cutoff-based protocol and a specific cutoff value may produce
worse results, as compared with experimental results.

. Validation of Force Fields

The quality of a force field calculation depends on two quantities: the appropriateness of the math-
ematical form of the energy expression and the accuracy of the parameters. If elaborate forms for
the individual interaction terms have been chosen and a large number of experimental data is avail-
able for assigning the parameters, the results of a calculation may be as good as those obtained from
experiments, but at a fraction of the cost. This is the case for simple systems such as hydrocarbons.
Even a force field with complicated functional forms for each of the energy contributions contains
only relatively few parameters when carbon and hydrogen are the only atom types, and experimental
data exist for hundreds of such compounds. The parameters can therefore be assigned with a high
degree of confidence. Other well-known compound types, such as ethers and alcohol, can achieve
almost as good results. For less common species, such as sulfones or polyfunctional molecules, much
less experimental information is available and the parameters are less well defined.

Force field methods are primarily geared to predicting two properties: geometries and relative
energies. Structural features are in general much easier to predict than relative energies. Each
geometrical feature depends only on a few parameters. For example, bond distances are essentially
determined by R0 and the corresponding force constant, bond angles by 𝜃0 and conformational
minima by V1, V2 and V3. It is therefore relatively easy to assign parameters that reproduce a
given geometry. Relative energies of different conformations, however, are much more troublesome
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Table . Average errors in heat of formation (kJ/mol) by MM2.123–127

Compound type Average error in ΔHf

Hydrocarbons 1.8
Ethers and alcohols 2.1
Carbonyl compounds 3.4
Aliphatic amines 1.9
Aromatic amines 12.1
Silanes 4.5

since they are a consequence of many small contributions, that is the exact functional form of the
individual energy terms and the balance between them. The largest contributions to conformational
energy differences are the non-bonded and torsional terms, and it is therefore important to have
good representations of the whole torsional energy profile. Even though a given force field may
be parameterized to reproduce rotational energy profiles for ethane and ethanol, and contains
a good description of hydrogen bonding between two ethanol molecules, there is no guarantee
that it will be successful in reproducing the relative energies of different conformations of, say,
1,2-dihydroxyethane. For large systems, it is inevitable that small inaccuracies in the functional
forms for the energy terms and parameters will influence the shape of the whole energy surface
to the point where minima may disappear or become saddle points. Essentially all force fields, no
matter how elaborate the functional forms and parameterization, will have artificial minima and
fail to predict real minima, even for quite small systems. The MM2 force field for cyclododecane
predicts 122 different conformations, but the MM3 surface contains only 98 minima.122 Given that
cyclododecane belongs to a class of well-parameterized molecules, the saturated hydrocarbons, and
that MM2 and MM3 are among the most accurate force fields, this clearly illustrates the point.

Validation of a force field is typically done by showing how accurately it reproduces a set of
reference data, which may or may not have been used in the actual parameterization. Since different
force fields employ different sets of reference data, it is difficult to compare their accuracies directly.
Indeed, there is no single “best” force field; each has its advantages and disadvantages. They perform
best for the type of compounds that have been used in the parameterization, but may give question-
able results for other systems. Table 2.9 gives typical accuracies for ΔHf that can be obtained with
the MM2 force field.

The average error is the difference between the calculated and experimentalΔHf. In this connection
is should be noted that the average error in the experimental data for the hydrocarbons is 1.7 kJ/mol,
that is MM2 essentially reproduce the experiments to within the experimental uncertainty.

There is one final thing that needs to be mentioned in connection with the validation of a force field,
namely the reproducibility. The results of a calculation are determined completely by the mathemat-
ical expressions for the energy terms and the parameter set (assuming that the computer program
is working correctly). A new force field is usually parameterized for a fairly small set of functional
groups initially and may then evolve by addition of parameters for a larger diversity later. This some-
times has the consequence that some of the initial parameters must be modified to give an acceptable
fit. Furthermore, new experimental data may warrant changes in existing parameters. In some cases,
different sets of parameters are derived by different research groups for the same types of functional
group. The result is that the parameter set for a given force field is not constant in time, and some-
times not in geographical location either. There may also be differences in the implementation details
of the energy terms. The Eoop in MM2, for example, is defined as a harmonic term in the bending angle
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(Figure 2.6), but may be substituted by an improper torsional angle in some computer programs. The
consequence is that there often are several different “flavors” of a given force field, depending on the
exact implementation, the original parameter set (which may not be the most recent) and any local
additions to the parameters. A vivid example is the MM2 force field, which exists in several differ-
ent implementations that do not give the exact same results but are nevertheless denoted as “MM2”
results. Mainstream force fields such as CHARMM and AMBER have a fixed underlying mathemat-
ical form, which is used with periodically updated parameter lists containing a version number or
release year to ensure reproducibility.

. Practical Considerations

It should be clear that force field methods are models of the real quantum mechanical systems. The
neglect of electrons as individual particles forces the user to define explicitly the bonding in the
molecule prior to any calculations. The user must decide how to describe a given molecule in terms
of the selected force field. The input to a calculation consists of three sets of information:

1. Which atom types are present?
2. How are they connected, that is which atoms are bonded to each other?
3. Make a start guess of the geometry.

The first two sets of information determine the functional form of EFF, that is enable the calcula-
tion of the potential energy surface for the molecule. Normally the molecule will then be optimized
by minimizing EFF, which requires a starting guess of the geometry, and perhaps used as a start-
ing point for a simulation. All the above three sets of information can be uniquely defined from a
(three-dimensional) drawing of a molecule. Modern programs therefore have a graphical interface
that allows the molecule simply to be drawn on the screen, constructed from preoptimized fragments
or read from an external source, as, for example, an X-ray structure. The interface then automatically
assigns suitable atom types based on the selected atomic symbols and the connectivity, and converts
to Cartesian coordinates.

. Advantages and Limitations of Force Field Methods

The main advantage of force field methods is the speed with which calculations can be performed,
enabling large systems to be treated. Even with a desktop personal computer, molecules with several
thousand atoms can be handled. This puts the applications in the region of modeling biomolecular
macromolecules, such as proteins and DNA, and molecular modeling is used by most pharmaceutical
companies. The ability to treat a large number of particles also makes force field models the only
realistic method for performing simulations where solvent effects or crystal packing can be studied
(Chapter 15).

For systems where good parameters are available, it is possible to make very good predictions of
geometries and relative energies of a large number of molecules in a short time. It is also possible to
determine barriers for interconversion between different conformations, although this is much less
automated. One of the main problems is of course the lack of good parameters. If the molecule is
slightly out of the ordinary, it is very likely that only poor-quality parameters exist, or none at all.
Obtaining suitable values for these missing parameters can be a frustrating experience. Force field
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methods are good for predicting properties for classes of molecules where a lot of information already
exists. For unusual molecules, their use is limited, as they often must rely on generic parameters.

Finally, force field methods are “zero-dimensional”. It is not possible to assess the probable error
of a given result within the method. The quality of the result can only be judged by comparing with
other calculations on similar types of molecules for which relevant experimental data exist.

. Transition Structure Modeling

Structural changes can be divided into two general types: those of a conformational nature and those
involving bond breaking/forming. There are intermediate cases, such as bonds involving metal coor-
dination, but since metal coordination is difficult to model anyway, we will neglect such systems at
present. The bottleneck for structural changes is the highest energy point along the reaction path,
called the Transition State or Transition Structure (TS) (Chapter 14). Conformational TSs have the
same atom types and bonding for both the reactant and product, and can be located on the force
field energy surface by standard optimization algorithms. Since conformational changes are often
localized to rotation around a single bond, simply locating the maximum energy structure for rota-
tion (so-called “torsional angle driving”, see Section 13.4.1) around this bond often represents a good
approximation of the real TS.

Modeling TSs for reactions involving bond breaking/forming within a force field methodology is
much more difficult.128 In this case, the reactant and product are not described by the same set of
atom types and/or bonding. There may even be a different number of atoms at each end of the reaction
(e.g. lone pairs disappearing). This means that there are two different force field energy functions for
the reactant and product, that is the energy as a function of the reactant coordinate is not continuous.
Nevertheless, methods have been developed for modeling differences in activation energies between
similar reactions by means of force field techniques, and four approaches are described below.

2.11.1 Modeling the TS as a Minimum Energy Structure

One of the early applications of TS modeling was the work on steric effects in SN2 reactions by DeTar
and coworkers, and it has been further developed by Houk and coworkers.129 The approach con-
sists of first locating the TS for a typical example of the reaction with electronic structure methods,
often at the Hartree–Fock or density functional theory level. The force field function is then modi-
fied such that an energy minimum is created with a geometry that matches the TS geometry found
by the electronic structure method. The modification defines new parameters for all the energy terms
involving the partly formed/broken bonds. The stretch energy terms have natural bond lengths taken
from the electronic structure calculation, and force constants that are typically half the strength of
normal bonds. Bond angle terms are similarly modified with respect to equilibrium values and force
constants, the former taken from the electronic structure data and the latter usually estimated. These
modifications often necessitate the definition of new “transition state” atom types. Once the force
field parameters have been defined, the structure is minimized as usual. Sometimes a few cycles of
parameter adjustments and re-optimizations are necessary for obtaining a set of parameters capa-
ble of reproducing the desired TS geometry. Norrby and coworkers have described a partly auto-
mated method for optimizing the parameters to reproduce the reference structure, with the acronym
Q2MM.130, 131 When the modified force field is capable of reproducing the reference TS geometry,
it can be used for predicting TS geometries and relative energies of reactions related to the model
system. As long as the differences between the systems are purely “steric”, it can be hoped that rela-
tive energy differences (between the reactant and the TS model) will correlate with relative activation
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energies. Purely electronic effects, such as Hammett-type effects due to para-substitution in aromatic
systems, can of course not be modeled by force field techniques.

2.11.2 Modeling the TS as a Minimum Energy Structure on the Reactant/Product Energy Seam

There are two principal problems with the above modeling technique. First, the TS is modeled as
a minimum on the energy surface, while it should be a first-order saddle point. This has the conse-
quence that changes in the TS position along the reaction coordinate due to differences in the reaction
energy will be in the wrong direction (Section 16.7). In many cases, this is probably not important.
For reactions having a reasonable barrier, the TS geometry appears to be relatively constant, which
may be rationalized in terms of the Marcus equation (Section 16.6). Comparing reactions that differ
in terms of the steric hindrance at the TS, however, may be problematic, as the TS changes along the
reaction coordinate will be in the wrong direction. The second problem is the more or less ad hoc
assignment of parameters. Even for quite simple reactions, many new parameters must be added.
Inventing perhaps 40 new parameters for reproducing maybe five relative activation energies raises
the nagging question as to whether TS modeling is just a fancy way of describing five data points by
40 variables.132

Both of these problems are eliminated in the intersecting potential energy surface modeling tech-
nique called SEAM.133 The force field TS is here modeled as the lowest point on the seam of the reac-
tant and product energy functions, as shown in Figure 2.22. Locating the minimum energy structure
on the seam is an example of a constrained optimization; the energy should be minimized subject to
the constraint that the reactant and product energies are identical. Although this is computationally
somewhat more complicated than the simple minimization required in the Houk approach, it can be
handled in a quite efficient manner.

In the SEAM approach only the force field parameters for describing the reactant and products are
necessary, alleviating the problem of assigning parameters specific for the TS. Furthermore, differ-
ences in reactivity due to differences in reaction energy or steric hindrance at the TS are automatically
included. The question is how accurately the lowest energy point on the seam resembles the actual TS.
This is difficult to evaluate rigorously as it is intimately connected with the accuracy of the force field
used for describing the reactant and product structures. It is clear that the TS will have bond distances
and angles significantly different from equilibrium structures. This method of TS modeling therefore

Figure . Modeling a transition structure as a minimum on the intersection of two potential energy surfaces.
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requires a force field that is accurate over a much wider range of geometries than normal. Especially
important is the stretch energy, which must be able to describe bond breaking. A polynomial expan-
sion is therefore not suitable, and for example a Morse function is necessary. Similarly, the repulsive
part of the van der Waals energy must be fairly accurate, which means that Lennard-Jones potentials
are not suitable and should be replaced by, for example, Buckingham-type potentials. Furthermore,
many of the commonly employed cross terms (Section 2.2.9) become unstable at long bonds lengths
and must be modified. When such modifications are incorporated, however, the intersecting energy
surface model appears to give surprisingly good results.

There are, of course, also disadvantages in this approach: these are essentially the same as the
advantages! The SEAM method automatically includes the effect of different reaction energies, since
a more exothermic reaction will move the TS toward the reactant and lower the activation energy
(Section 16.6). This, however, requires that the force field be able to calculate relative energies of the
reactant and product, that is the ability to convert steric energies to heat of formation. As mentioned
in Section 2.2.11, there are only a few force fields that have been parameterized for this. In practice,
this is not a major problem since the reaction energy for a prototypical example of the reaction of
interest can be obtained from experimental data or estimated. Using the normal force field assump-
tion of transferability of heat of formation parameters, the difference in reaction energy is thus equal
to the difference in steric energy. Only the reaction energy for a single reaction of the given type there-
fore needs to be estimated and relative activation energies are not sensitive to the exact value used.

If the minimum energy seam structure does not accurately represent the actual TS (compared,
for example, with that obtained from an electronic structure calculation) the lack of specific TS
parameters becomes a disadvantage. In the Houk approach, it is fairly easy to adjust the relevant
TS parameters to reproduce the desired TS geometry. In the intersecting energy surface method,
the TS geometry is a complicated result of the force field parameters for the reactant and product,
and the force field energy functions. Modifying the force field parameters, or the functional form
of some of the energy terms, in order to achieve the desired TS geometry without destroying the
description of the reactant/product, is far from trivial. A final disadvantage, which is inherent to
the SEAM method, is the implicit assumption that all the geometrical changes between the reactant
and product occur in a “synchronous” fashion, albeit weighted by the energy costs for each type of
distortion. “Asynchronous” or “two-stage” reactions (as opposed to two-step reactions that involve
an intermediate), where some geometrical changes occur mainly before the TS and others mainly
after the TS, are difficult to model by this method.

Since the TS is given in terms of the diabatic energy surfaces for the reactant and product, it is also
clear that activation energies will be too high. For evaluating relative activation energies of similar
reactions this is not a major problem since the important aspect is the relative energies. The overes-
timation of the activation energy can be improved by adding a “resonance” term to the force field, as
discussed in the next section.

2.11.3 Modeling the Reactive Energy Surface by Interacting Force Field Functions

Within a valence bond approach (Chapter 8), the reaction energy surface can be considered as arising
from the interaction of two diabatic surfaces. The adiabatic surface can be generated by solving a
2 × 2 secular equation involving the reactant and product energy surfaces, Er and Ep:

|
|
|
|
|

Er − E V
V Ep − E

|
|
|
|
|

= 0

E = 1
2

[

(Er + Ep) −
√

(Er + Ep)2 + 4V 2
]

(2.56)
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Warshel has pioneered the Extended Valence Bond (EVB) method,134, 135 where the reactant and
product surfaces are described by force field energy functions, and Truhlar has generalized the
approach by the MultiConfigurations Molecular Mechanics (MCMM) method.136 In either case,
the introduction of the interaction term V generates a continuous energy surface for transforming
the reactant into the product configuration, and the TS can be located analogously to energy sur-
faces generated by electronic structure methods. The main drawback of this method is the somewhat
arbitrary interaction element, and the fact that the TS must be located as a first-order saddle point,
which is significantly more difficult than locating minima or minima on seams. It can be noted that
the SEAM method corresponds to the limiting case where V → 0 in the EVB method.

2.11.4 Reactive Force Fields

Reactive force fields denote methods that are capable of breaking and forming bonds within a param-
eterized energy function model. A fundamental difference relative to standard force fields is that
reactive force fields contain no explicit bonding information, and all energy terms must be defined
entirely in terms of interatomic distances. Within the field of modeling reactions on surfaces, the
energy function is often written in terms of two- and three-body potentials that are parameterized for
a few atoms for specific purposes. The corresponding potentials are often associated with the names
of Stillinger-Weber, Brenner and Tersoff. Reactive force fields for organic compounds are somewhat
more involved, as the atoms (primarily C, N, O, S) can participate in several different types of bonding.

Reactive force fields for organic systems can be designed by modifying the energy terms such that
the energy function can describe both end-points and all intermediate structures, and thus create
a continuous surface connecting the reactant and product energy functions, which is the approach
used in the ReaxFF method.137 The necessary requirement for a reactive force field is that bonds
should be able to break and form, that is the stretch energy should approach the dissociation energy
as the bond distance goes towards infinity. This can, for example, be achieved by a Morse potential as
shown in Equation (2.5), but this in addition requires that all the other energy terms are also modified.
Breaking a bond A–B implies that bending and torsional terms involving this bond should disappear,
while the bonded stretch interaction is gradually replaced by non-bonded electrostatic and van der
Waals interactions. In order to create a smooth and realistic variation of the energy with geometry,
these changes must be introduced by suitable interpolation functions and be properly parameterized.

The central feature in the ReaxFF method is the use of a bond order (Equation (10.10)) parameter
to perform the interpolation of the various energy terms. The bond order 𝜌′AB between two atoms A
and B is parameterized as a sum of three terms accounting for a 𝜎 and up to two 𝜋 bonds, where the
p/q parameters model the distance behavior of each term:

𝜌′AB =
3∑

i=1
exp

(

−pi

(

RAB

RAB
0

)qi)

(2.57)

Application of Equation (2.57) to a given atom will in general lead to overcoordination, that is the
sum of the 𝜌′ will exceed the valence. The directly “bonded” atoms (1–2 interactions in standard force
fields) provide the main contribution, but longer-range contributions (primarily 1–3 interactions in
standard force fields) increase the value, such that a carbon atom may end up having a total bond
order significantly larger than its valence of 4. A number of multiplicative terms depending on the
deviation of the sum of bond orders from the valence of the given atom are applied to the 𝜌′ defined
in Equation (2.57) to produce an (unprimed) bond order 𝜌AB. Additional energy terms accounting for
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over- and undercoordination are also added. The stretch energy is modeled as shown below, where
De is a dissociation energy parameter and p is a suitable parameter for a given bond:

Estr(𝜌) = −De𝜌 exp(p(1 − 𝜌p)) (2.58)

Multiplicative interpolation functions of the type shown below are used to reduce bending and
torsional terms to zero as a bond dissociates:

f (𝜌) = 1 − exp(−p𝜌q) (2.59)

Since explicit bonding information is not present, non-bonded interactions are calculated between
all pairs of atoms, in contrast to non-reactive force fields where 1–2 and 1–3 interactions are
neglected. In order to avoid excessive repulsive van der Waals interactions and potentially infinite
electrostatic attraction energies between atoms with opposite charges at short distances, the energy
expressions in Equations (2.11) and (2.21) must be modified. The electrostatic energy is modeled by
a screening Coulomb expression shown below, where 𝜁AB is a suitable screening parameter:

Eel(RAB) = QAQB

((RAB)3 + (𝜁AB)3)1∕3 (2.60)

An additional complication is that the atomic charge Q must be allowed to change as a function of
bond distance, and this can be accomplished by a variation of the fluctuation charge method (Equa-
tion (2.31)).

. Hybrid Force Field Electronic Structure Methods

Force field methods are inherently unable to describe the details of bond breaking/forming or elec-
tron transfer reactions, since there is an extensive rearrangement of the electrons. If the system of
interest is too large to treat entirely by electronic structure methods, there are two possible approxi-
mate methods that can be used. In some cases, the system can be “pruned” to a size that can be treated
by replacing “unimportant” parts of the molecule with smaller model groups, for example substitu-
tion of a hydrogen or methyl group for a phenyl ring. For studying enzymes, however, it is usually
assumed that the whole system is important for holding the active size in the proper arrangement,
and the “backbone” conformation may change during the reaction. Similarly, for studying solvation,
it is not possible to “prune” the number of solvent molecules without severely affecting the accuracy
of the model. Hybrid methods have been designed for modeling such cases, where the active size
is calculated by electronic structure methods (usually semi-empirical, low-level ab initio or density
functional methods), while the backbone is calculated by a force field method.138 Such methods are
often denoted Quantum Mechanics–Molecular Mechanics (QM/MM). The partition can formally be
done by dividing the Hamiltonian and resulting energy into three parts:

Htotal = HQM + HMM + HQM∕MM

Etotal = EQM + EMM + EQM∕MM
(2.61)

The QM and MM regions are described completely analogously to the corresponding isolated sys-
tem, using the techniques discussed in Chapters 2 to 6. The main problem with QM/MM schemes
is deciding how the two parts should interact (i.e. HQM/MM). The easiest situation is when the two
regions are not connected by covalent bonds, as, for example, when using an MM description for
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modeling the effect of solvation on a QM system. If the two regions are connected by covalent bond-
ing, as, for example, when using a QM model for the active site in an enzyme and describing the
backbone by an MM model, the partitioning is somewhat more difficult.

The description of the QM/MM interaction can be divided into three levels of increasing
accuracy:138

1. Mechanical embedding. Only the direct bonded and steric effects of the MM atom on the QM part
are taken into account.

2. Electrostatic embedding. In addition, the electric field generated by the MM atoms, typically rep-
resented by partial atomic charges, is allowed to influence the QM region.

3. Polarizable embedding. The MM atoms are described by both static electric moments and polar-
izabilities, and the MM and QM regions are allowed to mutually polarize each other.

In the mechanical embedding approach only the bonded and steric energies of the two regions
are included in the interaction term, that is QM atoms have additional forces generated by the MM
framework, and vice versa, but there is no interaction between the electronic parts of the two regions.
The QM atoms are assigned van der Waals parameters and included in an MM non-bonded energy
expression, as illustrated by a Lennard-Jones potential:

HQM∕MM =
NMM−Atoms∑

A

NQM−Atoms∑

B
𝜀AB

⎡
⎢
⎢
⎣

(
RAB

0
RAB

)12

− 2

(
RAB

0
RAB

)6⎤
⎥
⎥
⎦

(2.62)

The QM atoms may also be assigned partial charges, for example from a population analysis, and
charge–charge interactions between the QM and MM atoms included by a classical expression such
as Equation (2.21). If the two regions are bonded there are additional terms corresponding to stretch-
ing and bending interactions. The mechanical embedding model is rarely a useful level of approxima-
tion, as the wave function of the QM region does not respond to changes in the MM region except
for pure geometrical changes.

The next level of improvement is called electrostatic embedding, where the atoms in the MM
regions are allowed to polarize the QM region. Partial charges on the MM atoms can be incorpo-
rated into the QM Hamiltonian analogously to nuclear charges (i.e. adding Vne-like terms to the one-
electron matrix elements in Equation (3.59)), and the QM atoms thus feel the electric potential due
to all the MM atoms:

VQM∕MM =
NMM−Atoms∑

A

QA

|RA − ri|
(2.63)

The non-bonded mechanical term in Equation (2.62) is still needed in order to prevent the MM atoms
from drifting into the QM region. The electrostatic embedding allows the geometry of MM atoms to
influence the QM region, that is the wave function in the QM region becomes coupled to the MM
geometry. An interesting computational issue arises when the number of MM atoms is large and the
QM region is small, since the calculation of the one-electron integrals associated with VQM/MM may
become a dominating factor, rather than the two-electron integrals associated with the QM region
itself, but in most cases the inclusion of the VQ M/MM term only marginally increases the computa-
tional effort over a mechanical embedding.

The third level, often called polarizable embedding, is made by allowing the QM atoms also to
polarize the MM region, that is the electric field generated by the QM region influences the MM
electric moments. This of course requires that a polarizable force field is employed (Section 2.2.8) and
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necessitates an iterative procedure for allowing the electric fields in both the QM and MM regions
to be determined in a self-consistent fashion.

While electrostatic embedding typically accounts for the electric field generated by the MM atom
by assigning a set of partial atomic charges to each atom, polarizable embedding usually assigns both
partial charges, dipoles and quadrupole moments, as well as a dipole polarizability to each atom.
This substantially increases the computational cost, and since polarizable force fields are not yet com-
monly used anyway, most QM/MM methods employ the electrostatic embedding approximation. An
exception is the Effective Fragment Potential (EFP) method where the EFP energy is parameterized
as a sum of five terms:139

EEFP = Eel + Epol + Edisp + Eex−rep + ECT (2.64)

The electrostatic energy is described by distributed electric moments up to octupoles based on a
DMA partitioning, while the polarization energy is taken into account by distributed dipole polariz-
abilities. The dispersion energy is parameterized as a two-term expansion with R-6 and R-8 distance
dependence, where the latter is taken as a fixed fraction of the first term. The exchange-repulsion
energy is parameterized in terms of overlap integrals between the fragments and the charge-transfer
term is parameterized in terms of interactions between occupied and virtual orbitals on the two
fragments.

The QM and MM regions in many cases belong to the same molecule, and the division between
the two parts must be done by cutting one or more covalent bonds. This leaves one or more unpaired
electrons in the QM part, which must be properly terminated. The dangling bonds are in most cases
terminated by adding “link” atoms, typically a hydrogen. For semi-empirical methods, it can also be
a pseudo-halogen atom with parameters adjusted to provide a special link atom.140 Alternatively, the
termination can be in the form of a localized molecular or generalized hybrid orbital.141, 142 Both
approaches provide results of similar quality when care is taken in the selection of the two regions,
but the link atom method is somewhat simpler to implement.143 When the link atom procedure is
used, the link atom(s) is only present in the QM calculation and is not seen by the MM framework.
A number of choices must also be made for which and how many of the MM bend and torsional
terms that involve one or more QM atoms are included. Bending terms involving two MM and one
QM atoms are usually included, but those involving one MM and two QM atoms may be neglected.
Similarly, the torsional terms involving only one QM atom are usually included, but those involving
two or three QM atoms may or may not be neglected.

A general problem is that the QM wave function extends beyond the formal QM region. The
presence of nearby positively/negatively charged MM atoms will thus attract/repel the electrons,
which can lead to artificial distortions of the wave function. This is especially problematic with
positively charged MM atoms in connection with QM wave functions expanded in a basis set with
diffuse functions, where the MM atoms may attract significant electron density. If these MM atoms
were described in a QM framework, there would be exchange–repulsion forces that would prevent
the accumulation of electron density from the real QM region, but this is missing in the QM/MM
description. For covalently bonded QM/MM systems, this dictates that the partitioning should be
made through non-polar bonds. A heuristic fix is to limit the basis set in the QM region to typically
of DZP quality, where the basis functions are sufficiently compact that the delocalization into the
MM region is prevented. The concept of mixing methods of different accuracy has been generalized
in the ONIOM (Our own N-layered Integrated molecular Orbital Molecular mechanics) method
to include several (usually two or three) layers, for example using relatively high-level theory in
the central part, a lower-level electronic structure theory in an intermediate layer and force field
to treat the outer layer.144 The original ONIOM method only employed mechanical embedding
for the QM/MM interface, but more recent extensions have also included electronic embedding.
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Figure . Illustration of the ONIOM extrapolation method.

The ONIOM method employs an extrapolation scheme based on assumed additivity, in analogy
to the CBS, Gn and Wn methods discussed in Section 5.10. For a two-layer scheme, the small
(model) system is calculated at both the low and high levels of theory, while the large (real) system
is calculated at the low level of theory. The result for the real system at the high theoretical level is
estimated by adding the change between the high and low levels of theory for the model system to
the low-level results for the real system, as illustrated in Figure 2.23 and the following equation:

EONIOM(real system, high level) = Ehigh level(model system)

−Elow level(model system) + Elow level(real system)
(2.65)

A similar extrapolation can be done for multilevel ONIOM models, although it requires several
intermediate calculations. It should be noted that derivatives of the ONIOM model can be con-
structed straightforwardly from the corresponding derivative of the underlying methods, and it is
thus possible to perform geometry optimizations and vibrational analysis using the ONIOM energy
function.

QM/MM methods are often used for modeling solvent effects, with the solvent treated by MM
methods, but in some cases the first solvation shell is included in the QM region. If such methods
are used in connection with dynamical sampling of the configurational space, it is possible that MM
solvent molecules can enter the QM regions, or QM solvent molecules can drift into the MM region.
In order to handle such situations, there must be a procedure for allowing solvent molecules to switch
between a QM and MM description. In order to ensure a smooth transition, a transition region can
be defined between the two parts, where a switching function is employed to make a continuous
transition between the two descriptions.145

The main problem with QM/MM methods is that there is no unique way of deciding which part
should be treated by force field and which by quantum mechanics, and QM/MM methods are there-
fore not “black box” methods. The “stitching” together of the two regions is not unique and the
many possible combinations of force field and QM methods make QM/MM methods very diverse.
QM/MM methods for describing large systems, like a chemical reaction occurring within an enzyme,
typically employ a fixed charge force field and a DFT method using a medium-sized basis set, while
QM/MM methods aimed at, for example, investigating environment effects on spectra often employ
a fairly small number of solvent molecules with an elaborate MM description including high-order
static electric moments and polarizability and a high-level QM method, like CCSD, and a large basis
set. Ideally a given choice of QM and MM partitioning should be calibrated by systematically enlarg-
ing the QM region and monitoring how the property of interest (hopefully) converges. When using
a fixed charge force field, Sumowski and Ochsenfeld have shown that the energetic results converge
when a QM region extends ∼10 Å away from the reactive center, which means that the QM region
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should include ∼1000 atoms, but this is prohibitively large for many applications.146 Siegbahn and
Himo, however, have argued that significantly smaller QM regions with ∼100 atoms are sufficient for
achieving results converged to chemical accuracy.147 It is likely that the quality of the force field in
the MM region influences the size of the QM region necessary for achieving a given accuracy; that is
by the use of a polarizable force field instead of a simple fixed charge one may reduce the size of the
required QM region, but no definitive investigations have been reported.

Another troublesome aspect of the QM/MM method is the sampling problem. The total QM/MM
energy of a system with, say, 100 QM atoms and 10 000 MM atoms will be very sensitive to the exact
configuration of the MM atoms. When constructing, for example, an energy profile for an enzymatic
chemical reaction, where the position of the QM atoms are optimized in the presence of the full set
of geometry relaxed MM atoms, it is essential to ensure that the MM atoms have the same configu-
ration along the whole energy profile. If, for example, hydrogen bonds are broken or formed in the
MM region as the QM region is changed, this will leads to discontinuous energy jumps and possible
hysteresis (energy profiles in the forward and reverse directions are not identical). Since active sam-
pling of the MM region rarely is possible due to the high computational cost of the QM region, the
results may depend on the specific chosen MM configuration.
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Hartree–Fock Theory

If we are interested in describing the electron distribution in detail, there is no substitute for
quantum mechanics. Electrons are very light particles and they cannot be described correctly, even
qualitatively, by classical mechanics. We will in this chapter and in Chapter 4 concentrate on solving
the time-independent Schrödinger equation, which in shorthand operator form is given by

HΨ = EΨ (3.1)

If solutions are generated without reference to experimental data, the methods are usually called
ab initio (Latin: “from the beginning”), in contrast to semi-empirical models, which are described in
Chapter 7.

An essential part of solving the Schrödinger equation is the Born–Oppenheimer approximation,
where the coupling between the nuclei and electronic motion is neglected. This allows the electronic
part to be solved with the nuclear positions as parameters, and the resulting potential energy surface
(PES) forms the basis for solving the nuclear motion. The major computational effort is in solving the
electronic Schrödinger equation for a given set of nuclear coordinates.

The dynamics of a many-electron system is very complex and consequently requires elaborate
computational methods. A significant simplification, both conceptually and computationally, can be
obtained by introducing independent-particle models, where the motion of one electron is considered
to be independent of the dynamics of all other electrons. An independent-particle model means that
the interactions between the particles is approximated, either by neglecting all but the most impor-
tant one or by taking all interactions into account in an average fashion. Within electronic structure
theory, only the latter has an acceptable accuracy, and is called Hartree–Fock (HF) theory. In the HF
model, each electron is described by an orbital and the total wave function is given as a product of
orbitals. Since electrons are indistinguishable fermions (particles with a spin of 1∕2), however, the over-
all wave function must be antisymmetric (change sign upon interchanging any two electrons), which
is conveniently achieved by arranging the orbitals in a Slater determinant. The best set of orbitals
is determined by the variational principle, that is the HF orbitals give the lowest energy within the
restriction of the wave function being a single Slater determinant. The shape of a given molecular
orbital describes the probability of finding an electron, where the attraction to all the nuclei and the
average repulsion to all the other electrons are included. Since the other electrons are described by
their respective orbitals, the HF equations depend on their own solutions, and must therefore be
solved iteratively. When the molecular orbitals are expanded in a basis set, the resulting equations
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Figure . The HF model as a starting point for more approximate or more accurate treatments.

can be written as a matrix eigenvalue problem. The elements in the Fock matrix correspond to inte-
grals of one- and two-electron operators over basis functions, multiplied by density matrix elements.
The HF equations in a basis set can thus be obtained by repeated diagonalizations of a Fock matrix.

The HF model can be considered a branching point, where either additional approximations can
be invoked, leading to semi-empirical methods, or it can be improved by adding additional deter-
minants, thereby generating models that can be made to converge towards the exact solution of the
electronic Schrödinger equation (Figure 3.1).1–6

Semi-empirical methods are derived from the HF model by neglecting all integrals involving more
than two nuclei in the construction of the Fock matrix. Since the HF model by itself is only capable
of limited accuracy, such approximations will by themselves lead to a poor model. The success of
semi-empirical methods relies on turning the remaining integrals into parameters and fitting these to
experimental data, especially molecular energies and geometries. Such methods are computationally
much more efficient than the ab initio HF method, but are limited to systems for which parameters
exist. These methods are described in Chapter 7.

HF theory only accounts for the average electron–electron interactions, and consequently neglects
the correlation between electrons. Methods that include electron correlation require a multidetermi-
nant wave function, since HF is the best single-determinant wave function. Multideterminant meth-
ods are computationally much more involved than the HF model, but can generate results that sys-
tematically approach the exact solution of the Schrödinger equation. These methods are described in
Chapter 4.

Density Functional Theory (DFT) in the Kohn–Sham version can be considered as an improvement
on HF theory, where the many-body effect of electron correlation is modeled by a function of the
electron density. DFT is, analogously to HF, an independent-particle model and is comparable to HF
computationally, but provides significantly better results. The main disadvantage of DFT is that there
is no systematic approach to improving the results towards the exact solution. These methods are
described in Chapter 6.

We will also neglect relativistic effects in this chapter, which is justifiable for the first four rows in the
periodic table (i.e. Z< 36) unless high accuracy is required, but the effects become important beyond
the fourth row in the periodic table. A more detailed discussion can be found in Chapter 9. Spin-
dependent effects are relativistic in origin (e.g. spin–orbit interaction), but can be introduced in an
ad hoc fashion in non-relativistic theory, and calculated as corrections (e.g. by means of perturbation
theory) after the electronic Schrödinger equation has been solved. This will be discussed in more
detail in Chapter 11.

A word of caution before we start. A rigorous approach to many of the derivations requires keep-
ing track of several different indices and validating why certain transformations are possible. The
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derivations will be performed less rigorously here, with the emphasis on illustrating the flow of the
argument, rather than focusing on the mathematical details.

It is conventional to use the bra-ket notation for wave functions and multidimensional integrals in
electronic structure theory in order to simplify the notation. The equivalences are defined as follows:

|Ψ⟩ ≡ Ψ; ⟨Ψ| ≡ Ψ∗

∫
Ψ∗Ψdr = ⟨Ψ|Ψ⟩ (3.2)

∫
Ψ∗HΨdr = ⟨Ψ|H|Ψ⟩

The bra ⟨n| denotes a complex conjugate wave function with quantum number n standing to the left of
the operator, while the ket |m⟩ denotes a wave function with quantum number m standing to the right
of the operator, and the combined bracket denotes that the whole expression should be integrated over
all coordinates. Such a bracket is often referred to as a matrix element, or as an overlap element when
there is no operator involved.

. The Adiabatic and Born–Oppenheimer Approximations

We will start by reviewing the Born–Oppenheimer approximation in more detail.7–10 The total (non-
relativistic) Hamiltonian operator can be written as kinetic and potential energies of the nuclei and
electrons:

Htot = Tn + Te + Vne + Vee + Vnn (3.3)

The Hamiltonian operator is first transformed to the center of mass system, where it may be written
as (using atomic units, see Appendix C)

Htot = Tn + He + Hmp
He = Te + Vne + Vee + Vnn (3.4)

Hmp = − 1
2Mtot

(Nelec∑

i
∇i

)2

Here He is the electronic Hamiltonian operator and Hmp is called the mass-polarization (Mtot is the
total mass of all the nuclei). The mass-polarization term arises because it is not possible to rigorously
separate the center of mass motion from the internal motion for a system with more than two parti-
cles. We note that He only depends on the nuclear positions (via Vne and Vnn, see Equation (3.24)),
but not on their momenta.

Assume for the moment that the full set of solutions to the electronic Schrödinger equation is
available, where R denotes nuclear positions and r electronic coordinates:

He(R)Ψi(R, r) = Ei(R)Ψi(R, r); i = 1, 2, . . . , ∞ (3.5)

The Hamiltonian operator is Hermitian:

∫
Ψ∗

i HΨjdr =
∫

ΨjH∗Ψ∗
i dr ↔ ⟨Ψi|H|Ψj⟩ = ⟨Ψj|H|Ψi⟩

∗ (3.6)
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The Hermitian property means that the solutions can be chosen to be orthogonal and normalized
(orthonormal):

∫
Ψ∗

i (R, r)Ψj(R, r)dr = 𝛿ij ↔ ⟨Ψi|Ψj⟩ = 𝛿ij

𝛿ij = 1, i = j (3.7)
𝛿ij = 0, i ≠ j

Without introducing any approximations, the total (exact) wave function can be written as an expan-
sion in the complete set of electronic functions, with the expansion coefficients being functions of
the nuclear coordinates:

Ψtot(R, r) =
∞∑

i=1
Ψni(R)Ψi(R, r) (3.8)

Inserting Equation (3.8) into the Schrödinger Equation (3.1) gives
∞∑

i=1
(Tn + He + Hmp)Ψni(R)Ψi(R, r) = Etot

∞∑

i=1
Ψni(R)Ψi(R, r) (3.9)

The nuclear kinetic energy is a sum of differential operators:

Tn = −
∑

A

1
2MA

∇2
A = ∇2

n

∇A =
(

𝜕

𝜕XA
, 𝜕

𝜕YA
, 𝜕

𝜕ZA

)

(3.10)

∇2
A =

(

𝜕2

𝜕X2
A
+ 𝜕2

𝜕Y 2
A
+ 𝜕2

𝜕Z2
A

)

We have here introduced the ∇2
n symbol, which implicitly includes the mass dependence, sign and

summation. Expanding out (3.8) gives
∞∑

i=1

(
∇2

n + He + Hmp
)
ΨniΨi = Etot

∞∑

i=1
ΨniΨi

∞∑

i=1

{
∇2

nΨniΨi + HeΨniΨi + HmpΨniΨi
}
= Etot

∞∑

i=1
ΨniΨi

∞∑

i=1

{
∇n(Ψi∇nΨni + Ψni∇nΨi) + ΨniHeΨi + ΨniHmpΨi

}
= Etot

∞∑

i=1
ΨniΨi (3.11)

∞∑

i=1

{
Ψi

(
∇2

nΨni
)
+ 2(∇nΨi)(∇nΨni)+

Ψni
(
∇2

nΨi
)
+ ΨniEiΨi + ΨniHmpΨi

}

= Etot

∞∑

i=1
ΨniΨi

Here we have used the fact that He and Hmp only act on the electronic wave function and the fact that
Ψi is an exact solution to the electronic Schrödinger Equation (3.5). We will now use the orthonor-
mality of the Ψi by multiplying from the left by a specific electronic wave function Ψj

∗ and integrate
over the electron coordinates:

∇2
nΨnj + EjΨnj +

∞∑

i=1

{
2⟨Ψj|∇n|Ψi⟩(∇nΨni) +

⟨
Ψj ||∇2

n
|
|Ψi

⟩
Ψni +

⟨Ψj|Hmp|Ψi⟩Ψni

}

= EtotΨnj (3.12)
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The electronic wave function has now been removed from the first two terms while the curly bracket
contains terms that couple different electronic states. The first two of these are the first- and second-
order non-adiabatic coupling elements, respectively, while the last is the mass polarization. The non-
adiabatic coupling elements are important for systems involving more than one electronic surface,
such as photochemical reactions.

In the adiabatic approximation the form of the total wave function is restricted to one electronic
surface, that is all coupling elements in Equation (3.12) are neglected (only the terms with i = j sur-
vive). Except for spatially degenerate wave functions, the diagonal first-order non-adiabatic coupling
elements are zero:

(

∇2
n + Ej +

⟨

Ψj
|
|
|
∇2

n
|
|
|
Ψj

⟩

+ ⟨Ψj|Hmp|Ψj⟩
)

Ψnj = EtotΨnj (3.13)

Neglecting the mass-polarization and reintroducing the kinetic energy operator gives
(

Tn + Ej +
⟨

Ψj
|
|
|
∇2

n
|
|
|
Ψj

⟩)

Ψnj = EtotΨnj (3.14)

This can also be written as

(Tn + Ej(R) + U(R))Ψnj(R) = EtotΨnj(R) (3.15)

The U(R) term is known as the diagonal correction and is smaller than Ej(R) by a factor roughly equal
to the ratio of the electronic and nuclear masses. It is usually a slowly varying function of R, and
the shape of the energy surface is therefore determined almost exclusively by Ej(R).11 In the Born–
Oppenheimer approximation, the diagonal correction is neglected and the resulting equation takes
on the usual Schrödinger form, where the electronic energy plays the role of a potential energy:

(Tn + Ej(R))Ψnj(R) = EtotΨnj(R) (3.16)

In the Born–Oppenheimer picture, the nuclei move on a potential energy surface (PES), which is a
solution to the electronic Schrödinger equation. The PES is independent of the nuclear masses (i.e. it is
the same for isotopic molecules), but this is not the case when working in the adiabatic approximation
since the diagonal correction (and mass-polarization) depends on the nuclear masses. Solving Equa-
tion (3.16) for the nuclear wave function leads to energy levels for molecular vibrations and rotations
(Section 14.5), which in turn are the fundamentals for many forms of spectroscopy, such as infrared
(IR), Raman, microwave, etc.

The Born–Oppenheimer (and adiabatic) approximation is usually a good approximation but breaks
down when two (or more) solutions to the electronic Schrödinger equation come close together
energetically.12 Consider, for example, stretching the bond in the LiF molecule. Near the equilib-
rium distance the molecule is very polarized, that is described essentially by an ionic wave function,
Li+F−. The molecule, however, dissociates into neutral atoms (all bonds break homolytically in the
gas phase), that is the wave function at long distance is of a covalent type, Li ⋅ F⋅. At the equilibrium
distance, the covalent wave function is higher in energy than the ionic, but the situation reverses as
the bond distance increases. At some point they must “cross”. However, as they have the same sym-
metry, they do not actually cross, but make an avoided crossing. In the region of the avoided crossing,
the wave function changes from being mainly ionic to covalent over a short distance, and the adia-
batic, and therefore also the Born–Oppenheimer, approximation, breaks down. This is illustrated in
Figure 3.2, where the two states have been calculated by a state average MCSCF procedure using the
aug-cc-pVTZ basis set. The energy of the ionic state is given by the solid line, while the energy of
the covalent state is shown by the dashed line. For bond distances near 6 Å, the lowest energy wave
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function suddenly switches from being almost ionic to being covalent, and the two states come within
∼15 kJ mol-1 of each other. In this region the Born–Oppenheimer approximation becomes poor.

For the majority of systems the Born–Oppenheimer approximation introduces only very small
errors. The diagonal Born–Oppenheimer correction (DBOC) can be evaluated relatively easy, as it is
just the second derivative of the electronic wave function with respect to the nuclear coordinates and
is therefore closely related to the nuclear gradient and second derivative of the energy (Section 11.9):

ΔEDBOC =
Nnuc∑

A=1
− 1

2MA

⟨

Ψe
|
|
|
∇2

A
|
|
|
Ψe

⟩

(3.17)

The largest effect is expected for hydrogen-containing molecules, since hydrogen has the lightest
nucleus. The absolute magnitude of the DBOC for H2O is ∼7 kJ mol-1, but the effect for the barrier
towards linearity is only ∼0.17 kJ/mol.13 For the BH molecule, the equilibrium bond length elon-
gates by ∼0.0007 Å when the DBOC is included and the harmonic vibrational frequency changes by
∼2 cm−1. For systems with heavier nuclei, the effects are expected to be substantially smaller.14

When the Born–Oppenheimer approximation is expected to be poor, the non-adiabatic correc-
tions will be large, and a better strategy in such cases may be to take the quantum nature of the
nuclei into account directly. Starting from Equation (3.8), both the nuclear and electronic parts may
be described by determinantal-based wave functions expanded in Gaussian basis sets. Each of the
two wave functions (electronic and nuclear) can be described at different levels of approximations,
with mean-field methods (i.e. Hartree–Fock) being the first step. Such methods are often denoted
Nuclear Orbital plus Molecular Orbital (NOMO) and the energy spectrum arising from such meth-
ods directly gives both nuclear (e.g. vibrations) and electronic states.10, 15, 16

It should be noted that once methods beyond the Born–Oppenheimer approximation are
employed, concepts such as molecular geometries become blurred and energy surfaces no longer
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exist. Nuclei are delocalized in a quantum description and a “bond length” is no longer a unique
quantity, but must be defined according to the experiment that it is compared with. An X-ray struc-
ture, for example, measures the scattering of electromagnetic radiation by the electron density, neu-
tron diffraction measures the scattering by the nuclei, while a microwave experiment measures the
moments of inertia. With nuclei as delocalized wave packages, these quantities must be obtained as
averages over the electronic and nuclear wave function components.

. Hartree–Fock Theory

Having stated the limitations (non-relativistic Hamiltonian operator and the Born–Oppenheimer
approximation), we are ready to consider the electronic Schrödinger equation. It can only be solved
exactly for the H2

+ molecule and similar one-electron systems. In the general case, we have to rely
on approximate (numerical) methods. By neglecting relativistic effects, we also have to introduce
electron spin as an ad hoc quantum effect. Each electron has a spin quantum number of 1∕2, and
in the presence of a magnetic field there are two possible states, corresponding to alignment along
or opposite to the field. The corresponding spin functions are denoted 𝛼 and 𝛽, and obey the
orthonormality conditions

⟨𝛼|𝛼⟩ = ⟨𝛽|𝛽⟩ = 1
⟨𝛼|𝛽⟩ = ⟨𝛽|𝛼⟩ = 0 (3.18)

To generate approximate solutions we will employ the variational principle, which states that any
approximate wave function has an energy above or equal to the exact energy (see Appendix B for a
proof). The equality holds only if the wave function is the exact function. By constructing a trial wave
function containing a number of parameters, we can generate the “best” trial function of the given
form by minimizing the energy as a function of these parameters.

The energy of an approximate wave function can be calculated as the expectation value of the
Hamiltonian operator, divided by the norm of the wave function:

Ee =
⟨Ψ|He|Ψ⟩
⟨Ψ|Ψ⟩

(3.19)

For a normalized wave function the denominator is 1, and therefore Ee = ⟨Ψ|He|Ψ⟩. The total elec-
tronic wave function must be antisymmetric (change sign) with respect to interchange of any two
electron coordinates (since electrons are fermions, having a spin of 1∕2). The Pauli principle, which
states that two electrons cannot have all quantum numbers equal, is a direct consequence of this anti-
symmetry requirement. The antisymmetry of the wave function can be achieved by building it from
Slater Determinants (SDs). The columns in a Slater determinant are single-electron wave functions,
orbitals, while the electron coordinates are along the rows. Let us in the following assume that we are
interested in solving the electronic Schrödinger equation for a molecule. The one-electron functions
are thus molecular orbitals (MOs), which are given as the product of a spatial orbital and a spin func-
tion (𝛼 or 𝛽), also known as spin-orbitals, which may be taken as orthonormal. For the general case
of N electrons and N spin-orbitals, the Slater determinant is given in

ΦSD = 1
√

N!

|
|
|
|
|
|
|
|

𝜙1(1) 𝜙2(1) ⋯ 𝜙N (1)
𝜙1(2) 𝜙2(2) ⋯ 𝜙N (2)
⋮ ⋮ ⋱ ⋮

𝜙1(N) 𝜙2(N) ⋯ 𝜙N (N)

|
|
|
|
|
|
|
|

; ⟨𝜙i|𝜙j⟩ = 𝛿ij (3.20)
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We now make one further approximation, by taking the trial wave function to consist of a single
Slater determinant. As will be seen later, this implies that electron correlation is neglected or, equiva-
lently, the electron–electron repulsion is only included as an average effect. Having selected a single-
determinant trial wave function the variational principle can be used to derive the Hartree–Fock (HF)
equations, by minimizing the energy.

. The Energy of a Slater Determinant

In order to derive the HF equations, we need an expression for the energy of a single Slater determi-
nant. For this purpose, it is convenient to write it as an antisymmetrizing operator A working on the
“diagonal” of the determinant, and expand A as a sum of permutations. We will denote the diagonal
product by Π and use the symbol Φ to represent the determinant wave function:

Φ = A[𝜙1(1)𝜙2(2)⋯𝜙N (N)] = AΠ (3.21)

A = 1
√

N!

N−1∑

p=0
(−1)pP = 1

√
N!

[

1 −
∑

ij
Pij +

∑

ijk
Pijk −⋯

]

(3.22)

The 1 operator is the identity, while the sum over Pij generates all possible permutations of two elec-
tron coordinates, the sum over Pijk all possible permutations of three electron coordinates, etc. It
may be shown that A commutes with H and that A acting twice gives the same as A acting once,
multiplied with the square root of N factorial:

AH = HA
AA =

√
N!A

(3.23)

Consider now the Hamiltonian operator. The nuclear–nuclear repulsion does not depend on electron
coordinates and is a constant for a given nuclear geometry. The nuclear–electron attraction is a sum
of terms, each depending only on one electron coordinate. The same holds for the electron kinetic
energy. The electron–electron repulsion, however, depends on two electron coordinates:

He = Te + Vne + Vee + Vnn

Te = −
Nelec∑

i

1
2∇

2
i

Vne = −
Nnuclei∑

A

Nelec∑

i

ZA
|RA − ri|

(3.24)

Vee =
Nelec∑

i

Nelec∑

j>i

1
|ri − rj|

Vnn =
Nnuclei∑

A

Nnuclei∑

B>A

ZAZB
|RA − RB|

We note that the zero point of the energy corresponds to the particles being at rest (Te = 0) and
infinitely removed from each other (Vne = Vee = Vnn = 0).
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The operators may be collected according to the number of electron indices:

hi = − 1
2∇

2
i −

Nnuclei∑

A

ZA
|RA − ri|

gij =
1

|ri − rj|
(3.25)

He =
Nelec∑

i
hi +

Nelec∑

j>i
gij + Vnn

The one-electron operator hi describes the motion of electron i in the field of all the nuclei, and gij is
a two-electron operator giving the electron–electron repulsion.

The energy may be written in terms of the permutation operator as (using Equations (3.21)
to (3.23))

E = ⟨Φ|H|Φ⟩

= ⟨AΠ|H|AΠ⟩

=
√

N!⟨Π|H|AΠ⟩ (3.26)
=
∑

p
(−1)p⟨Π|H|PΠ⟩

The nuclear repulsion operator is independent of electron coordinates and can immediately be inte-
grated to yield a constant:

⟨Φ|Vnn|Φ⟩ = Vnn⟨Φ|Φ⟩ = Vnn (3.27)

For the one-electron operator only the identity operator can give a non-zero contribution. For coor-
dinate 1 this yields a matrix element over orbital 1:

⟨Π|h1|Π⟩ = ⟨𝜙1(1)𝜙2(2)⋯ 𝜙N (N)|h1|𝜙1(1)𝜙2(2)⋯ 𝜙N (N)⟩
= ⟨𝜙1(1)|h1|𝜙1(1)⟩⟨𝜙2(2)|𝜙2(2)⟩⋯ ⟨𝜙N (N)|𝜙N (N)⟩ (3.28)
= ⟨𝜙1(1)|h1|𝜙1(1)⟩ = h1

This follows since all the MOs 𝜙i are normalized. All matrix elements involving a permutation oper-
ator gives zero. Consider, for example, the permutation of electrons 1 and 2:

⟨Π|h1|P12Π⟩ = ⟨𝜙1(1)𝜙2(2)⋯ 𝜙N (N)|h1|𝜙2(1)𝜙1(2)⋯ 𝜙N (N)⟩
= ⟨𝜙1(1)|h1|𝜙2(1)⟩⟨𝜙2(2)|𝜙1(2)⟩⋯ ⟨𝜙N (N)|𝜙N (N)⟩ (3.29)

This is zero as the integral over electron 2 is an overlap of two different MOs, which are orthogonal
(Equation (3.20)).

For the two-electron operator, only the identity and Pij operators can give non-zero contributions.
A three-electron permutation will again give at least one overlap integral between two different MOs,
which will be zero. The term arising from the identity operator is given by

⟨Π|g12|Π⟩ = ⟨𝜙1(1)𝜙2(2)⋯ 𝜙N (N)|g12|𝜙1(1)𝜙2(2)⋯ 𝜙N (N)⟩
= ⟨𝜙1(1)𝜙2(2)|g12|𝜙1(1)𝜙2(2)⟩⋯ ⟨𝜙N (N)|𝜙N (N)⟩ (3.30)
= ⟨𝜙1(1)𝜙2(2)|g12|𝜙1(1)𝜙2(2)⟩ = J12
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The J12 matrix element is called a Coulomb integral. It represents the classical repulsion between two
charge distributions described by 𝜙2

1(1) and 𝜙2
2(2). The term arising from the Pij operator is given in

⟨Π|g12|P12Π⟩ = ⟨𝜙1(1)𝜙2(2)⋯ 𝜙N (N)|g12|𝜙2(1)𝜙1(2)⋯ 𝜙N (N)⟩
= ⟨𝜙1(1)𝜙2(2)|g12|𝜙2(1)𝜙1(2)⟩⋯ ⟨𝜙N (N)|𝜙N (N)⟩ (3.31)
= ⟨𝜙1(1)𝜙2(2)|g12|𝜙2(1)𝜙1(2)⟩ = K12

The K12 matrix element is called an exchange integral and has no classical analogy. Note that the order
of the MOs in the J and K matrix elements is according to the electron indices. The Coulomb integral
is non-zero for all electron pairs, regardless of spin, while the exchange integral is only non-zero
when the two spin-orbitals 𝜙1 and 𝜙2 have the same spin. This follows from the spin orthogonality in
Equation (3.18) by separating the spin dependence out in Equations (3.30 and (3.31). The energy can
thus be written as

E =
Nelec∑

i=1
⟨𝜙i(1)|h1|𝜙i(1)⟩

+
Nelec∑

i=1

Nelec∑

j>i
(⟨𝜙i(1)𝜙j(2)|g12|𝜙i(1)𝜙j(2)⟩ − ⟨𝜙i(1)𝜙j(2)|g12|𝜙j(1)𝜙i(2)⟩) + Vnn (3.32)

E =
Nelec∑

i=1
hi +

Nelec∑

i=1

Nelec∑

j>i
(Jij − Kij) + Vnn

The minus sign for the exchange term comes from the factor of (−1)p in the antisymmetrizing oper-
ator, Equation (3.22). The energy may also be written in a more symmetrical form as

E =
Nelec∑

i=1
hi +

1
2

Nelec∑

i=1

Nelec∑

j=1
(Jij − Kij) + Vnn (3.33)

The factor of 1∕2 allows the double sum to run over all electrons since Equations (3.30) and (3.31)
show that the Coulomb “self-interaction” Jii is exactly cancelled by the corresponding “exchange”
element Kii. When the energy is written as in Equation (3.32), the exchange energy only includes
contributions from pairs of electrons in different orbitals having the same spin (Equation (3.31)), but
when the energy is written as in Equation (3.33), the exchange energy also includes the self-interaction
correction from an electron in an orbital interacting with itself.

For the purpose of deriving the variation of the energy, it is convenient to express the energy in
terms of Coulomb (J) and exchange (K) operators:

E =
Nelec∑

i
⟨𝜙i|hi|𝜙i⟩ +

1
2

Nelec∑

ij
(⟨𝜙j|Ji|𝜙j⟩ − ⟨𝜙j|Ki|𝜙j⟩) + Vnn

Ji|𝜙j(2)⟩ = ⟨𝜙i(1)|g12|𝜙i(1)⟩|𝜙j(2)⟩ (3.34)
Ki|𝜙j(2)⟩ = ⟨𝜙i(1)|g12|𝜙j(1)⟩|𝜙i(2)⟩
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Note that the J operator involves “multiplication” with a matrix element with the same orbital on both
sides, while the K operator “exchanges” the two functions on the right-hand side of the g12 operator.

The objective is now to determine a set of MOs that makes the energy a minimum or at least sta-
tionary with respect to a change in the orbitals. The variation, however, must be carried out in such
a way that the MOs remain orthogonal and normalized. This is a constrained optimization and can
be handled by means of Lagrange multipliers (see Section 13.5). The condition is that a small change
in the orbitals should not change the Lagrange function, that is the Lagrange function is stationary
with respect to an orbital variation:

L = E −
Nelec∑

ij
𝜆ij(⟨𝜙i|𝜙j⟩ − 𝛿ij)

δL = δE −
Nelec∑

ij
λij(⟨δ𝜙i|𝜙j⟩ − ⟨𝜙i|𝛿𝜙j⟩) = 0

(3.35)

The variation of the energy is given by

δE =
Nelec∑

i
(⟨δ𝜙i|hi|𝜙i⟩ + ⟨𝜙i|hi|δ𝜙i⟩)

+ 1
2

Nelec∑

ij

(
⟨δ𝜙i|Jj − Kj|𝜙i⟩ + ⟨𝜙i|Jj − Kj|δ𝜙i⟩
+⟨δ𝜙j|Ji − Ki|𝜙j⟩ + ⟨𝜙j|Ji − Ki|δ𝜙j⟩

) (3.36)

The third and fifth terms are identical (since the summation is over all i and j), as are the fourth and
sixth terms. They may be collected to cancel the factor of 1∕2 and the variation can be written in terms
of a Fock operator, Fi:

δE =
Nelec∑

i
(⟨δ𝜙i|hi|𝜙i⟩ + ⟨𝜙i|hi|δ𝜙i⟩)+

Nelec∑

ij
(⟨δ𝜙i|Jj − Kj|𝜙i⟩ + ⟨𝜙i|Jj − Kj|δ𝜙i⟩)

δE =
Nelec∑

i
(⟨δ𝜙i|Fi|𝜙i⟩ + ⟨𝜙i|Fi|δ𝜙i⟩) (3.37)

Fi = hi +
Nelec∑

j
(Jj − Kj)

The Fock operator is an effective one-electron energy operator, describing the kinetic energy of an
electron and the attraction to all the nuclei (hi), as well as the repulsion to all the other electrons (via
the J and K operators). Note that the Fock operator is associated with the variation of the total energy,
not the energy itself. The Hamiltonian operator (3.24) is not a sum of Fock operators.

The variation of the Lagrange function (Equation (3.35)) now becomes

δL =
Nelec∑

i
(⟨δ𝜙i|Fi|𝜙i⟩ + ⟨𝜙i|Fi|δ𝜙i⟩)−

Nelec∑

ij
𝜆ij(⟨δ𝜙i|𝜙j⟩ + ⟨𝜙i|𝛿𝜙j⟩) (3.38)
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The variational principle states that the desired orbitals are those that make 𝛿L = 0. Making use of
the complex conjugate properties in Equation (3.39) gives Equation (3.40):

⟨𝜙|δ𝜙⟩ = ⟨δ𝜙|𝜙⟩∗

⟨𝜙|F|δ𝜙⟩ = ⟨δ𝜙|F|𝜙⟩∗ (3.39)

δL =
Nelec∑

i
⟨δ𝜙i|Fi|𝜙i⟩−

Nelec∑

ij
𝜆ij⟨δ𝜙i|𝜙j⟩ +

Nelec∑

i
⟨δ𝜙i|Fi|𝜙i⟩

∗−
Nelec∑

ij
𝜆ij⟨δ𝜙j|𝜙i⟩

∗ = 0 (3.40)

The variation of either ⟨δ𝜙| or ⟨δ𝜙|∗ should make δL = 0, that is the first two terms in Equation (3.40)
must cancel and the last two terms must cancel. Taking the complex conjugate of the last two terms
and subtracting them from the first two gives

Nelec∑

ij

(

𝜆ij − 𝜆∗ji
)

⟨𝛿𝜙i|𝜙j⟩ = 0 (3.41)

This means that the Lagrange multipliers are elements of a Hermitian matrix (𝜆ij = 𝜆ji
∗ ). The final set

of Hartree–Fock equations may be written as

Fi𝜙i =
Nelec∑

j
𝜆ij𝜙j (3.42)

The equations may be simplified by choosing a unitary transformation (Section 16.2) that makes the
matrix of Lagrange multipliers diagonal, that is 𝜆ij = 0 and 𝜆ii = 𝜀i. This special set of molecular
orbitals (𝜙′) is called canonical MOs, and transforms Equation (3.42) into a set of pseudo-eigenvalue
equations:

Fi𝜙
′
i = 𝜀i𝜙

′
i (3.43)

The Lagrange multipliers are seen to have the physical interpretation of MO energies, that is they are
the expectation value of the Fock operator in the MO basis (multiply Equation (3.43) by 𝜙′

i
∗ from the

left and integrate):
⟨
𝜙′

i
|
|Fi||𝜙

′
i
⟩
= 𝜀i

⟨
𝜙′

i
|
|𝜙

′
i
⟩
= 𝜀i (3.44)

The Hartree–Fock equations form a set of pseudo-eigenvalue equations as the Fock operator depends
on all the occupied MOs (via the Coulomb and exchange operators, Equations (3.37) and (3.34)). A
specific Fock orbital can only be determined if all the other occupied orbitals are known, and iterative
methods must therefore be employed for solving the problem. A set of functions that is a solution to
Equation (3.43) is called Self-Consistent Field (SCF) orbitals.

The canonical MOs may be considered as a convenient set of orbitals for carrying out the vari-
ational calculation. The total energy, however, depends only on the total wave function, which is a
Slater determinant written in terms of the occupied MOs, Equation (3.20). The total wave function is
unchanged by a unitary transformation of the occupied MOs among themselves (rows and columns
in a determinant can be added and subtracted without affecting the determinant itself ). After having
determined the canonical MOs, other sets of MOs may be generated by forming linear combina-
tions, such as localized MOs, or MOs displaying hybridization, which is discussed in more detail in
Section 10.4.
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The orbital energies can be considered as matrix elements of the Fock operator with the MOs (drop-
ping the prime notation and letting𝜙 be the canonical orbitals). The total energy can be written either
as Equation (3.33) or in terms of MO energies (using the definition of F in Equations (3.37) and (3.44)):

E =
Nelec∑

i
𝜀i −

1
2

Nelec∑

ij
(Jij − Kij) + Vnn (3.45)

𝜀i = ⟨𝜙i|Fi|𝜙i⟩ = hi +
Nelec∑

j
(Jij − Kij) (3.46)

The total energy is not simply a sum of MO orbital energies. The Fock operator contains terms describ-
ing the repulsion to all other electrons (J and K operators), and the sum over MO energies therefore
counts the electron–electron repulsion twice, which must be corrected for. It is also clear that the
total energy cannot be exact, as it describes the repulsion between an electron and all the other elec-
trons, assuming that their spatial distribution is described by a set of orbitals. The electron–electron
repulsion is only accounted for in an average fashion and the HF method is therefore also referred to
as a mean-field approximation. As mentioned previously, this is due to the approximation of a single
Slater determinant as the trial wave function.

. Koopmans’ Theorem

The canonical MOs are convenient for the physical interpretation of the Lagrange multipliers. Con-
sider the energy of an N-electron system and the corresponding system with one electron removed
from orbital number k, and assume that the MOs are identical for the two systems (Equation (3.33)):

EN =
Nelec∑

i=1
hi +

1
2

Nelec∑

i=1

Nelec∑

j=1
(Jij − Kij) + Vnn (3.47)

EN−1 =
Nelec −1∑

i=1
hi +

1
2

Nelec −1∑

i=1

Nelec −1∑

j=1
(Jij − Kij) + Vnn (3.48)

Subtracting the two total energies gives

EN − EN−1 = hk + 1
2

Neleci∑

i=1
(Jik − Kik) + 1

2

Neleci∑

j=1
(Jkj − Kkj) (3.49)

The last two sums are identical and the energy difference becomes

EN − EN−1 = hk +
Neleci∑

i=1
(Jik − Kik) = 𝜀k (3.50)

As seen from Equation (3.46), this is exactly the orbital energy 𝜀k. The ionization energy within the
“frozen MO” approximation is given simply as the orbital energy, a result known as Koopmans’ the-
orem.17 Similarly, the electron affinity of a neutral molecule is given as the orbital energy of the
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corresponding anion or, since the MOs are assumed constant, as the energy of the kth unoccupied
orbital energy in the neutral species:

Ek
N+1 − EN = 𝜀k (3.51)

Computationally, however, there is a significant difference between the eigenvalue of an occupied
orbital for the anion and the eigenvalue corresponding to an unoccupied orbital in the neutral
species when the orbitals are expanded in a set of basis functions (Section 3.5). Eigenvalues cor-
responding to occupied orbitals are well defined and they converge to a specific value as the size of
the basis set is increased. In contrast, unoccupied orbitals in a sense are only the “left-over” func-
tions in a given basis set and their number increases as the basis set is made larger. The lowest
unoccupied eigenvalue usually converges to zero, corresponding to a solution for a free electron,
described by a linear combination of the most diffuse basis functions. Equating ionization potentials
to occupied orbital energies is therefore justified based on the frozen MO approximation, but tak-
ing unoccupied orbital energies as electron affinities is questionable, since continuum solutions are
mixed in.

. The Basis Set Approximation

For small highly symmetric systems, such as atoms and diatomic molecules, the Hartree–Fock equa-
tions can be solved by mapping the orbitals on a set of grid points, which are referred to as numerical
Hartree–Fock methods.18 However, essentially all calculations use a basis set expansion to express
the unknown MOs in terms of a set of known functions. Any type of basis functions may in princi-
ple be used: exponential, Gaussian, polynomial, cube functions, wavelets, plane waves, etc. There are
two guidelines for choosing the basis functions. One is that they should have a behavior that agrees
with the physics of the problem, since this ensures that the convergence as more basis functions are
added is reasonably rapid. For bound atomic and molecular systems, this means that the functions
should go toward zero as the distance between the nucleus and the electron becomes large. The sec-
ond guideline is a practical one: the chosen functions should make it easy to calculate all the required
integrals.

The first criterion suggests the use of exponential functions located on the nuclei, since such
functions are known to be exact solutions for the hydrogen atom. Unfortunately, exponential func-
tions turn out to be computationally difficult. Gaussian functions are computationally much eas-
ier to handle, and although they are poorer at describing the electronic structure on a one-to-one
basis, the computational advantages more than make up for this. For periodic systems, the infi-
nite nature of the problem suggests the use of plane waves as basis functions, since these are the
exact solutions for a free electron. We will return to the precise description of basis sets in Chap-
ter 5, but for now simply assume that a set of Mbasis basis functions located on the nuclei has been
chosen.

Each MO 𝜙 is expanded in terms of the basis functions 𝜒 , conventionally called atomic orbitals
(MO = LCAO, Linear Combination of Atomic Orbitals), although they are generally not solutions to
the atomic HF problem:

𝜙i =
Mbasis∑

𝛼

c𝛼i𝜒𝛼 (3.52)
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The Hartree–Fock Equations (3.43) may be written as

Fi

Mbasis∑

𝛼

c𝛼i𝜒𝛼 = 𝜀i

Mbasis∑

𝛼

c𝛼i𝜒𝛼 (3.53)

Multiplying from the left by a specific basis function and integrating yields the Roothaan–Hall equa-
tions (for a closed shell system).19, 20 These are the Hartree–Fock equations in the atomic orbital basis,
and all the Mbasis equations may be collected in a matrix notation:

FC = SCε

F𝛼𝛽 = ⟨𝜒𝛼|F|𝜒𝛽⟩ ; S𝛼𝛽 = ⟨𝜒𝛼|𝜒𝛽⟩
(3.54)

The S matrix contains the overlap elements between basis functions and the F matrix contains the
Fock matrix elements. Each F𝛼𝛽 element contains two parts from the Fock operator (Equation (3.37)),
integrals involving the one-electron operators and a sum over occupied MOs of coefficients multi-
plied with two-electron integrals involving the electron–electron repulsion. The latter is often written
as a product of a density matrix and two-electron integrals:

⟨𝜒𝛼|F|𝜒𝛽⟩ = ⟨𝜒𝛼|h|𝜒𝛽⟩ +
occ.MO∑

j
⟨𝜒𝛼|Jj − Kj|𝜒𝛽⟩

= ⟨𝜒𝛼|h|𝜒𝛽⟩ +
occ.MO∑

j
(⟨𝜒𝛼𝜙j|g|𝜒𝛽𝜙j⟩ − ⟨𝜒𝛼𝜙j|g|𝜙j𝜒𝛽⟩)

= ⟨𝜒𝛼|h|𝜒𝛽⟩ +
occ.MO∑

j

Mbasis∑

𝛾𝛿

c𝛾 jc𝛿j
(⟨𝜒𝛼𝜒𝛾 |g|𝜒𝛽𝜒𝛿⟩ − ⟨𝜒𝛼𝜒𝛾 |g|𝜒𝛿𝜒𝛽⟩) (3.55)

= ⟨𝜒𝛼|h|𝜒𝛽⟩ +
Mbasis∑

𝛾𝛿

D𝛾𝛿(⟨𝜒𝛼𝜒𝛾 |g|𝜒𝛽𝜒𝛿⟩ − ⟨𝜒𝛼𝜒𝛾 |g|𝜒𝛿𝜒𝛽⟩)

D𝛾𝛿 =
occ.MO∑

j
c𝛾 jc𝛿j

For use in Section 3.8, it can also be written in a more compact notation:
F𝛼𝛽 = h𝛼𝛽 +

∑

𝛾𝛿

G𝛼𝛽𝛾𝛿D𝛾𝛿

F = h + G ⋅ D
(3.56)

Here G ⋅ D denotes the contraction of the D matrix with the four-dimensional G tensor.
The total energy (Equation (3.33)) in terms of integrals over basis functions is given as

E =
Nelec∑

i
⟨𝜙i|hi|𝜙i⟩ +

1
2

Nelec∑

ij
(⟨𝜙i𝜙j|g|𝜙i𝜙j⟩ − ⟨𝜙i𝜙j|g|𝜙j𝜙i⟩) + Vnn

=
Nelec∑

i

Mbasis∑

𝛼𝛽

c𝛼ic𝛽i⟨𝜒𝛼|h|𝜒𝛽⟩ +
1
2

Nelec∑

ij

Mbasis∑

𝛼𝛽𝛾𝛿

c𝛼ic𝛾 jc𝛽ic𝛿j

(
⟨𝜒𝛼𝜒𝛾 |g|𝜒𝛽𝜒𝛿⟩−
⟨𝜒𝛼𝜒𝛾 |g|𝜒𝛿𝜒𝛽⟩

)

+ Vnn (3.57)

=
Mbasis∑

𝛼𝛽

D𝛼𝛽
h𝛼𝛽 + 1

2

Mbasis∑

𝛼𝛽𝛾𝛿

D𝛼𝛽
D𝛾𝛿(⟨𝜒𝛼𝜒𝛾 |g|𝜒𝛽𝜒𝛿⟩ − ⟨𝜒𝛼𝜒𝛾 |g|𝜒𝛿𝜒𝛽⟩) + Vnn

iranchembook.ir/edu



Hartree–Fock Theory 

The latter expression may also be written as

E =
Mbasis∑

𝛼𝛽

D𝛼𝛽
h𝛼𝛽 + 1

2

Mbasis∑

𝛼𝛽𝛾𝛿

(D𝛼𝛽
D𝛾𝛿 − D𝛼𝛿D𝛾𝛽 )⟨𝜒𝛼𝜒𝛾 |g|𝜒𝛽𝜒𝛿⟩ + Vnn (3.58)

The one- and two-electron integrals in the atomic basis are given in Equations (3.59) and (3.60) using
the operators in Equation (3.25):

⟨𝜒𝛼|h|𝜒𝛽⟩ =
∫
𝜒𝛼(1)

(

− 1
2∇

2
)

𝜒𝛽 (1)dr1 +
Nnuclei∑

a ∫
𝜒𝛼(1)

( Za
|Ra − r1|

)

𝜒𝛽 (1)dr1 (3.59)

⟨𝜒𝛼𝜒𝛾 |g|𝜒𝛽𝜒𝛿⟩ =
∫
𝜒𝛼(1)𝜒𝛾 (2)

(
1

|r1 − r2|

)

𝜒𝛽 (1)𝜒𝛿(2)dr1dr2 (3.60)

The two-electron integrals are often written in a notation without electron coordinates or the g oper-
ator present:

∫
𝜒𝛼(1)𝜒𝛾 (2)

(
1

|r1 − r2|

)

𝜒𝛽 (1)𝜒𝛿(2)dr1dr2 = ⟨𝜒𝛼𝜒𝛾 |𝜒𝛽𝜒𝛿⟩ (3.61)

This is known as the physicist’s notation, where the ordering of the functions is given by the electron
indices. They may also be written in an alternative order with both functions depending on electron
1 on the left and the functions depending on electron 2 on the right; this is known as the Mulliken or
chemist’s notation:

∫
𝜒𝛼(1)𝜒𝛽 (1)

(
1

|r1 − r2|

)

𝜒𝛾 (2)𝜒𝛿(2)dr1dr2 = (𝜒𝛼𝜒𝛽 |𝜒𝛾𝜒𝛿) (3.62)

The bra-ket notation has the electron indices ⟨12|12⟩, while the parenthesis notation has the order
(11|22). In many cases the integrals are written with only the indices given, that is ⟨𝜒𝛼𝜒𝛽 |𝜒𝛾𝜒𝛿⟩ =
⟨𝛼𝛽|𝛾𝛿⟩. Since Coulomb and exchange integrals often are used as their difference, the following
double-bar notations are also frequently used:

⟨𝜒𝛼𝜒𝛽‖𝜒𝛾𝜒𝛿⟩ = ⟨𝜒𝛼𝜒𝛽 |𝜒𝛾𝜒𝛿⟩ − ⟨𝜒𝛼𝜒𝛽 |𝜒𝛿𝜒𝛾⟩

(𝜒𝛼𝜒𝛽‖𝜒𝛾𝜒𝛿) = (𝜒𝛼𝜒𝛽 |𝜒𝛾𝜒𝛿) − (𝜒𝛼𝜒𝛾 |𝜒𝛽𝜒𝛿) (3.63)

The Roothaan–Hall Equation (3.54) is a determination of the eigenvalues of the Fock matrix (see
Section 17.2.3 for details). To determine the unknown MO coefficients c𝛼i, the Fock matrix must be
diagonalized. However, the Fock matrix is only known if all the MO coefficients are known (Equa-
tion (3.55)). The procedure therefore starts off by some guess of the coefficients, forms the F matrix
and diagonalizes it. The new set of coefficients is then used for calculating a new Fock matrix, etc.
This is continued until the set of coefficients used for constructing the Fock matrix is equal to those
resulting from the diagonalization (to within a certain threshold), as illustrated in Figure 3.3. This set
of coefficients determines a self-consistent field solution.
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The potential (or field) generated by the SCF electron density is identical to that produced by solving
for the electron distribution. The Fock matrix, and therefore the total energy, only depends on the
occupied MOs. Solving the Roothaan–Hall equations produces a total of Mbasis MOs, that is there are
Nelec occupied and Mbasis − Nelec unoccupied, or virtual, MOs. The virtual orbitals are orthogonal to
all the occupied orbitals, but have no direct physical interpretation, except as electron affinities (via
Koopmans’ theorem).

In order to construct the Fock matrix in Equation (3.54), integrals between all pairs of basis func-
tions and the one-electron operator h are needed. For Mbasis functions there are of the order of M2

basis
such one-electron integrals. These one-electron integrals are also known as core integrals, as they
describe the interaction of an electron with the whole frame of bare nuclei. The second part of the
Fock matrix involves integrals over four basis functions and the g two-electron operator. There are
of the order of M4

basis of these two-electron integrals. In conventional HF methods, the two-electron
integrals are calculated and saved before the SCF procedure is begun, and is then used in each SCF
iteration. Formally, in the large basis set limit the SCF procedure involves a computational effort that
increases as the number of basis functions to the fourth power. It will be shown below that the scaling
may be substantially smaller in actual calculations.

For the two-electron integrals, the four basis functions may be located on one, two, three or four
different atomic centers. It has already been mentioned that exponential-type basis functions (𝜒 ∝
exp(−𝛼r)) are fundamentally better suited for electronic structure calculations. However, it turns out
that the calculation of especially three- and four-center two-electron integrals is very time-consuming
for exponential functions. Gaussian functions (𝜒 ∝ exp(−𝛼r2)) are much easier for calculating two-
electron integrals. This is due to the fact that the product of two Gaussians located at two different
positions (RA and RB) with different exponents (𝛼 and 𝛽) can be written as a single Gaussian located
at an intermediate position RC between the two original integrals. This allows compact formulas for
all types of one- and two-electron integrals to be derived:

GA(r)GB(r) = Ke−𝛾(r+RC)2

GA(r) =
(2𝛼
𝜋

)3∕.4
e−𝛼(r+RA)2 ; GB(r) =

(
2𝛽
𝜋

)3∕.4
e−𝛽(r+RB)2 (3.64)

𝛾 = 𝛼 + 𝛽 ; RC =
𝛼RA + 𝛽RB
𝛼 + 𝛽

; K =
( 2
𝜋

)2
(𝛼𝛽)3∕.4e−

𝛼𝛽

𝛼+𝛽 (RA −RB)2
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As the number of basis functions increases, the accuracy of the MOs improves. In the limit of a
complete basis set (infinite number of basis functions), the results are identical to those obtained by
a numerical HF method, and this is known as the Hartree–Fock limit. This is not the exact solution
to the Schrödinger equation, only the best single-determinant wave function that can be obtained. In
practical calculations, the HF limit is never reached, and the term Hartree–Fock is normally used also
to cover SCF solutions with an incomplete basis set. Ab initio HF methods, where all the necessary
integrals are calculated from a given basis set, are one-dimensional. As the size of the basis set is
increased, the variational principle ensures that the results become better (at least in an energetic
sense). The quality of a result can therefore be assessed by running calculations with an increasingly
larger basis set.

. An Alternative Formulation of the Variational Problem

The objective is to minimize the total energy as a function of the molecular orbitals, subject to the
orthogonality constraint. In the above formulation, this is handled by means of Lagrange multipli-
ers. The final Fock matrix in the MO basis is diagonal, with the diagonal elements being the orbital
energies. During the iterative sequence, that is before the orbitals have converged to an SCF solution,
the Fock matrix is not diagonal. Starting from an initial set of molecular orbitals, the problem may
also be formulated as a rotation of the orbitals (unitary transformation) in order to make the operator
diagonal.21 Since the operator depends on the orbitals, the procedure again becomes iterative. The
orbital rotation is given by a unitary matrix U, which can be written as an exponential transformation
of the orbitals in the determinant wave function (Section 17.2):

φ′ = φU = φeX (3.65)

The X matrix contains the parameters describing the unitary transformation of the Mbasis orbitals,
being of the size of Mbasis × Mbasis, and the orbital orthogonality is incorporated by requiring that X
is anti-Hermitian.

It should be noted that the unoccupied orbitals do not enter the energy expression (Equation (3.33)),
and a rotation between the virtual orbitals can therefore not change the energy. A rotation between
the occupied orbitals corresponds to making linear combinations of these, but this does not change
the total wave function or the total energy. The occupied–occupied and virtual–virtual blocks of the
X matrix can therefore be chosen as zero. The variational parameters are the elements in the X matrix
that describe the mixing of the occupied and virtual orbitals, that is there are a total of Nocc × (Mbasis −
Nocc) parameters. The goal of the iterations is to make the off-diagonal elements in the occupied–
virtual block of the Fock matrix zero. Alternatively stated, the off-diagonal elements are the gradients
of the energy with respect to the orbitals and the stationary condition is that the gradient vanishes.

The exponential operator in Equation (3.65) can be written as a Taylor expansion, and the energy
expanded in terms of the X-variables describing the occupied–virtual mixing of the orbitals:21

eX = 1 + X + 1
2 XX +⋯ (3.66)

E(X) = E(0) + E′(0)X + 1
2 XtE′′(0)X +⋯ (3.67)

The mixing of a specific occupied orbital i and a specific virtual orbital a can to first order be consid-
ered as making a linear combination of the reference and a singly excited Slater determinant, where
orbital i is replaced with orbital a:

Φ0 → Φ0 + xa
i Φ

a
i (3.68)
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The xa
i notation here indicates an element xai in the X matrix, which implicitly defines xia as –xai.

The first derivative of the energy with respect to the coefficient for mixing orbitals i and a can thus
be calculated as the matrix elements of the reference and a singly excited Slater determinant:

𝜕E
𝜕xa

i
= 2

⟨
Φ0||H|

|Φ
a
i
⟩

(3.69)

The second derivative can similarly be calculated as a sum of matrix elements between the reference
and a doubly excited Slater determinant and between two singly excited Slater determinants:

1
2

𝜕2E
𝜕xa

i 𝜕xb
j
=
⟨

Φ0
|
|
|
H|
|
|
Φab

ij

⟩

+
⟨

Φa
i
|
|
|
H|
|
|
Φb

j

⟩

− 𝛿ij𝛿abE0 (3.70)

The explicit expressions for the first and second derivatives of the energy with respect to the
non-redundant X-variables can be written in terms of Fock matrix elements and two-electron
integrals in the MO basis.22 For an RHF-type wave function these are given in the following
equations:

𝜕E
𝜕xa

i
= 4⟨𝜙i|F|𝜙a⟩ (3.71)

1
2

𝜕2E
𝜕xa

i 𝜕xb
j
= 2

[
𝛿ij⟨𝜙a|F|𝜙b⟩ − 𝛿ab⟨𝜙i|F|𝜙j⟩
+ 4⟨𝜙i𝜙j|𝜙a𝜙b⟩ − ⟨𝜙i𝜙j|𝜙b𝜙a⟩ − ⟨𝜙i𝜙a|𝜙j𝜙b⟩

]

(3.72)

The gradient of the energy is an off-diagonal element of the molecular Fock matrix, which is eas-
ily calculated from the atomic Fock matrix. The second derivative, however, involves two-electron
integrals that require an AO to MO transformation (see Section 4.2.1) and is therefore computa-
tionally expensive. Using the concepts from Chapter 17, the variational problem can be considered
as a rotation of the coordinate system. In the original function space, the basis functions, the Fock
operator depends on all the Mbasis functions and the corresponding Fock matrix is non-diagonal.
By performing a rotation of the coordinate system to the molecular orbitals, however, the matrix
can be made diagonal, that is in this coordinate system the Fock operator only depends on Nocc
functions.

. Restricted and Unrestricted Hartree–Fock

So far there has not been any restriction on the MOs used to build the determinantal trial wave
function. The Slater determinant has been written in terms of spin-orbitals, Equation (3.20), being
products of a spatial orbital and a spin function (𝛼 or 𝛽). If there are no restrictions on the form of the
spatial orbitals, the trial function is an Unrestricted Hartree–Fock (UHF) wave function.23 The term
Different Orbitals for Different Spins (DODS) is also sometimes used. If the interest is in systems with
an even number of electrons and a singlet type of wave function (a closed shell system), the restriction
that each spatial orbital should have two electrons, one with 𝛼 and one with 𝛽 spin, is normally made.
Such wave functions are known as Restricted Hartree–Fock (RHF). Open-shell systems may also be
described by restricted-type wave functions, where the spatial part of the doubly occupied orbitals
is forced to be the same; this is known as Restricted Open-shell Hartree–Fock (ROHF). For open-
shell species, a UHF treatment leads to well-defined orbital energies, which may be interpreted as
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Figure . Illustrating an RHF singlet, and ROHF and UHF doublet states.

ionization potentials (Section 3.4). For an ROHF wave function, it is not possible to choose a unitary
transformation that makes the matrix of Lagrange multipliers in Equation (3.42) diagonal, and orbital
energies from an ROHF wave function are consequently not uniquely defined and cannot be equated
to ionization potentials by a Koopmans-type argument.24 The differences between these types of
wave functions are illustrated in Figure 3.4.

The UHF wave function allows different spatial orbitals for the two electrons in an orbital. As
restricted-type wave functions put constraints on the variation parameters, the energy of a UHF
wave function is always lower than or equal to a corresponding R(O)HF-type wave function. For
singlet states near the equilibrium geometry, it is usually not possible to lower the energy by allowing
the 𝛼 and 𝛽 MOs to be different. For an open-shell system such as a doublet, however, it is clear that
forcing the 𝛼 and 𝛽 MOs to be identical is a restriction. If the unpaired electron has 𝛼 spin, it will
interact differently with the other 𝛼 electrons than with the 𝛽 electrons due to the exchange operator,
and consequently the optimum 𝛼 and 𝛽 orbitals will be different. The UHF description, however, has
the disadvantage that the wave function is not an eigenfunction of the S2 operator (unless it is equal to
the RHF solution), where the S2 operator evaluates the value of the total electron spin squared. This
means that a “singlet” UHF wave function may also contain contributions from higher-lying triplet,
quintet, etc., states. Similarly, a “doublet” UHF wave function will contain spurious (non-physical)
contributions from higher-lying quartet, sextet, etc., states. This will be discussed in more detail in
Section 4.4.

Semi-empirical methods (Chapter 7) sometimes employ the so-called half-electron method for
describing open-shell systems, such as doublets and triplets. In this model a doublet state is described
by putting two “half” electrons in the same orbitals with opposite spins, that is constructing an
RHF-type wave function where all electron spins are paired. A triplet state may similarly be modeled
as having two orbitals, each occupied by two half electrons with opposite spin. The main motivation
behind this artificial construct is that open- and closed-shell systems (such as a triplet and singlet
state) will have different amounts of electron correlation. Since semi-empirical methods perform
the parameterization based on single-determinant wave functions, the half-electron method cancels
the difference in electron correlations, and allows open- and closed-shell systems to be treated on
an equal footing in terms of energy. It has the disadvantage that the open-shell nature is no longer
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present in the wave function; it is, for example, not possible to calculate spin densities (i.e. where the
unpaired electron(s) is(are) most likely to be).

. SCF Techniques

As discussed in Section 3.6, the Roothaan–Hall (or Pople–Nesbet for the UHF case) equations must
be solved iteratively since the Fock matrix depends on its own solutions. The procedure illustrated in
Figure 3.3 involves the following steps:

1. Calculate all one- and two-electron integrals.
2. Generate a suitable start guess for the MO coefficients.
3. Form the initial density matrix.
4. Form the Fock matrix as the core (one-electron) integrals + the density matrix times the

two-electron integrals.
5. Diagonalize the Fock matrix. The eigenvectors contain the new MO coefficients.
6. Form the new density matrix. If it is sufficiently close to the previous density matrix, we are done;

otherwise go to step 4.

There are several points hidden in this scheme. Will the procedure actually converge at all? Will the
SCF solution correspond to the desired energy minimum (and not a maximum or saddle point)?
Can the number of iterations necessary for convergence be reduced? Does the most efficient method
depend on the type of computer and/or the size of the problem?

Let us look at some of the SCF techniques used in practice.

3.8.1 SCF Convergence

There is no guarantee that the above iterative scheme will converge. For geometries near equilib-
rium and using small basis sets, the straightforward SCF procedure often converges without prob-
lems. Distorted geometries (such as transition structures) and large basis sets containing diffuse
functions, however, rarely converge, and metal complexes, where several states with similar ener-
gies are possible, are even more troublesome. There are various tricks that can be tried to help
convergence:25

1. Extrapolation. This is a method for trying to make the convergence faster by extrapolating
previous Fock matrices to generate a (hopefully) better Fock matrix than the one calculated
directly from the current density matrix. Typically, the last three matrices are used in the
extrapolation.

2. Damping. The reason for divergence, or very slow convergence, is often due to oscillations. A given
density matrix Dn gives a Fock matrix Fn, which, upon diagonalization, gives a density matrix
Dn+1. The Fock matrix Fn+1 from Dn+1 gives a density matrix Dn+2 that is close to Dn, but Dn
and Dn+1 are very different, as illustrated in Figure 3.5. The damping procedure tries to solve this
by replacing the current density matrix with a weighted average, D′

n+1 = 𝜔Dn + (1 − 𝜔)Dn+1. The
weighting factor𝜔may be chosen as a constant or changed dynamically during the SCF procedure.

3. Level shifting. This technique26 is perhaps best understood in the formulation of a rotation of the
MOs that form the basis for the Fock operator (Section 3.6). At convergence, the Fock matrix
elements in the MO basis between occupied and virtual orbitals are zero. The iterative procedure
involves mixing (making linear combinations of ) occupied and virtual MOs. During the iterative
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procedure, these mixings may be large, causing oscillations or making the total energy increase.
The degree of mixing may be reduced by artificially increasing the energy of the virtual orbitals. If
a sufficiently large constant is added to the virtual orbital energies, it can be shown that the total
energy is guaranteed to decrease, thereby forcing convergence. The more the virtual orbitals are
raised in energy, the more stable is the convergence, but the rate of convergence also decreases
with level shifting. For large enough shifts, convergence is guaranteed, but it is likely to occur very
slowly, and may in some cases converge to a state that is not the ground state.

4. Direct Inversion in the Iterative Subspace (DIIS). This procedure was developed by P. Pulay and can
be considered an extrapolation procedure (see Section 13.2.7 for more details).27 It has proved to
be very efficient in forcing convergence and in reducing the number of iterations at the same time,
and it is one of the most commonly used methods for helping SCF convergence. The essence of
DIIS is to replace the actual Fock matrix F in iteration n by a linear combination of all previous
Fock matrices:

F∗
n =

n∑

i=0
ciFi (3.73)

The coefficients in the linear combination are determined by minimizing a corresponding linear
combination of “error” matrices, subject to a normalization condition for the sum of coefficients:

E∗
n =

n∑

i=0
ciEi (3.74)

ErrF(c) = trace(E∗
n ⋅ E∗

n) ;
n∑

i=0
ci = 1 (3.75)

In the function space generated by the previous iterations we try to find an interpolation point with
a lower error than any of the points actually calculated. Pulay suggested that the error estimate is
taken as the FDS − SDF difference (D and S are the density and overlap matrices, respectively),
which is related to the gradient of the SCF energy with respect to the MO coefficients; this has
been found to work well in practice.

5. “Direct minimization” techniques. The variational principle indicates that we want to minimize the
energy as a function of the MO coefficients or the corresponding density matrix elements, as given
by Equation (3.57). In this formulation, the problem is no different from other types of non-linear
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optimizations, and the same types of technique, such as steepest descent, conjugated gradient or
Newton–Raphson methods can be used (see Chapter 17 for details).28

As mentioned in Section 3.6, the variational procedure can be formulated in terms of an expo-
nential transformation of the MOs, with the (independent) variational parameters contained in an
X matrix. Note that the X-variables are preferred over the MO coefficients in Equation (3.54) for
optimization, since the latter are not independent (the MOs must be orthonormal). The first and
second derivatives with respect to the non-redundant x-variables are given in Equations (3.71) and
(3.72).

In a density matrix formulation, the energy depends on the density matrix elements as variables, and
can formally be written as the trace of the contraction of the density matrix with the one-electron
matrix h and the two-electron matrix G, with the latter depending implicitly on D:

E(D) = trace(Dh) + trace(DG(D)) (3.76)

The density matrix elements cannot be varied freely, however, as the orbitals must remain orthonor-
mal, and this constraint can be formulated as the density matrix having to be idempotent, DSD = D.
This is difficult to ensure during an optimization step, but the non-idempotent density matrix derived
from taking an optimization step can be “purified” by the McWeeny procedure:29

Dpurified = 3D2 − 2D3 (3.77)

The idempotency condition ensures that each orbital is occupied by exactly one electron. E. Cancès
has shown that relaxing this condition to allow fractional occupancy during the optimization
improves the convergence, a procedure named relaxed constraint algorithm (RCA)30 and which was
subsequently improved using ideas from the DIIS algorithm, leading to the EDIIS (Energy DIIS)
method.31 The optimization in terms of density matrix elements has the potential advantage that
the matrix becomes sparse for large systems and can therefore be solved by techniques that scale
linearly with the system’s size.28, 32

The Newton–Raphson method has the advantage of being quadratical convergent, that is suffi-
ciently near the minimum that it converges very fast. The main problem in using Newton–Raphson
methods for wave function optimization is computational efficiency. The exact calculation of the sec-
ond derivative matrix is somewhat demanding, and each iteration in a Newton–Raphson optimiza-
tion therefore takes longer than the simple Roothaan–Hall iterative scheme. Owing to the fast con-
vergence near the minimum, a Newton–Raphson approach normally takes fewer iterations than, for
example, DIIS, but the overall computational time is still a factor of∼two longer. Alternative schemes,
where an approximation to the second derivative matrix is used (pseudo-Newton–Raphson), have
also been developed, and they are often competitive with DIIS.33 It should be kept in mind that the
simple Newton–Raphson method is unstable and requires some form of stabilization, for example by
using the augmented Hessian techniques discussed in Section 13.2.4.34 Alternatively, for a large sys-
tem (thousands of basis functions) the optimization may be carried out by conjugate gradient meth-
ods, but the convergence characteristic of these methods is significantly poorer.28 Direct minimiza-
tion methods have the advantage of a more stable convergence for difficult systems, where DIIS may
display problematic behavior or converge to solutions that are not the global minimum.

3.8.2 Use of Symmetry

From group theory it may be shown that an integral can only be non-zero if the integrand belongs to
the totally symmetric representation. Furthermore, the product of two functions can only be totally
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symmetric if they belong to the same irreducible representation. As both the Hamiltonian and Fock
operators are totally symmetric (otherwise the energy would change by a rotation of the coordinate
system), integrals of the following type can only be non-zero if the basis functions involving the same
electron coordinate belong to the same representation:

∫
𝜒𝛼(1)𝜒𝛽 (1)dr1 ;

∫
𝜒𝛼(1)F𝜒𝛽 (1)dr1 ;

∫
𝜒𝛼(1)H𝜒𝛽(1)dr1 (3.78)

Similar considerations hold for the two-electron integrals.
By forming suitable linear combinations of basis functions (symmetry-adapted functions), many

one- and two-electron integrals need not be calculated as they are known to be exactly zero owing to
symmetry. Furthermore, the Fock (in an HF calculation) or Hamiltonian matrix (in a configuration
interaction (CI) calculation) will become block-diagonal, as only matrix elements between functions
having the same symmetry can be non-zero. The saving depends on the specific system, but as a
guideline the computational time is reduced by roughly a factor corresponding to the order of the
point group (number of symmetry operations). Although the large majority of molecules do not have
any symmetry, a sizeable proportion of the small molecules for which ab initio electronic structure
calculations are possible are symmetric. Almost all ab initio programs employ symmetry as a tool for
reducing the computational effort.

3.8.3 Ensuring that the HF Energy Is a Minimum, and the Correct Minimum

The standard iterative procedure produces a solution where the variation of the HF energy is sta-
tionary with respect to all orbital variations, that is the first derivatives of the energy with respect to
the MO coefficients are zero. In order to ensure that this corresponds to an energy minimum, the
second derivatives should also be calculated.35, 36 This is a matrix the size of the number of occupied
MOs multiplied by the number of virtual MOs (identical to that arising in quadratic convergent SCF
methods (Section 3.8.1)), and the eigenvalues of this matrix should all be positive in order to be an
energy minimum (see also Section 6.9.1). Of course only the lowest eigenvalue is required to probe
whether the solution is a minimum. A negative eigenvalue means that it is possible to get to a lower
energy state by “exciting” an electron from an occupied to an unoccupied orbital, that is the solution
is unstable. In practice, the stability is rarely checked – it is assumed that the iterative procedure has
converged to a minimum. It should be noted that a positive definite second-order matrix only ensures
that the solution is a local minimum; there may be other minima with lower energies.

The problem of convergence to saddle points in the wave function parameter space and the exis-
tence of multiple minima is rarely a problem for systems composed of elements from the first three
rows in the periodic table. For systems having more than one metal atom with several partially filled
d-orbitals, however, care must be taken to ensure that the iterative procedure converges to the desired
solution. Consider, for example, the Fe2S2 system in Figure 3.6, where the d-electrons of two Fe atoms
are coupled through the sulfur bridge atoms.

Each of the two Fe atoms is formally in the+III oxidation state, and therefore has a d5 configuration.
A high-spin state corresponding to all the 10 d-electrons being aligned can readily be described by a
single determinant wave function, but the situation is more complicated for a low-spin singlet state.
A singlet HF wave function must have an equal number of orbitals with 𝛼 and 𝛽 electron spin, but
this can be obtained in several different ways. If each metal atom is in a high-spin state, an overall
singlet state must have all the d-orbitals on one Fe atom occupied by electrons with 𝛼 spin, while all
the d-orbitals on the other Fe atom must be occupied by electrons with 𝛽 spin. An alternative singlet
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state, however, can be generated by coupling the single unpaired electron from the two Fe centers
in a low-spin configuration. Each of these two wave functions will be valid minima in the orbital
parameter space, but clearly describe complexes with different properties. Note also that neither of
these two singlet wave functions can be described by an RHF-type wave function. UHF-type wave
functions with the above two types of spin coupling can be generated, but will often be severely spin
contaminated. One can consider other spin coupling schemes to generate an overall singlet wave
function, and the situation becomes more complicated if intermediate (triplet, pentet, etc.) spin states
are desired, and for mixed valence states (Fe2+/Fe3+). The complications further increase when larger
clusters are considered, as, for example, with the Fe4S4 moiety involved in electron transfer in the
photosystem I and nitrogenase enzymes.

The question as to whether the energy is a minimum is closely related to the concept of wave func-
tion stability (see also Section 6.9.1). If a lower energy RHF solution can be found, the wave function
is said to possess a singlet instability. It is also possible that an RHF-type wave function is a minimum
in the coefficient space, but is a saddle point if the constraint of double occupancy of each MO is
relaxed. This indicates that a lower energy wave function of the UHF type can be constructed, and
this is called a triplet instability. It should be noted that in order to generate such UHF wave functions
for a singlet state, an initial guess of the SCF coefficients must be specified that has the spatial parts of
at least one set of 𝛼 and 𝛽 MOs different. There are other types of such instabilities, such as relaxing
the constraint that the MOs should be real (allowing complex orbitals) or the constraint that an MO
should only have a single spin function. Relaxing the latter produces the “general ” HF method, where
each MO is written as a spatial part having 𝛼 spin plus another spatial part having 𝛽 spin.37 Such wave
functions are no longer eigenfunctions of the Sz operator and are rarely used.

Another aspect of wave function instability concerns symmetry breaking, that is the wave function
has a lower symmetry than the nuclear framework.38 It occurs, for example, for the allyl radical with
an ROHF-type wave function. The nuclear geometry has C2v symmetry, but the C2v symmetric wave
function corresponds to a (first-order) saddle point. The lowest energy ROHF solution has only Cs
symmetry and corresponds to a localized double bond and a localized electron (radical). Relaxing
the double occupancy constraint and allowing the wave function to become UHF re-establishes the
correct C2v symmetry. Such symmetry breaking phenomena usually indicate that the type of wave
function used is not flexible enough for even a qualitatively correct description.
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3.8.4 Initial Guess Orbitals

The quality of the initial guess orbitals influences the number of iterations necessary for achieving
convergence. As each iteration involves a computational effort proportional to M4

basis, it is of course
desirable to generate as good a guess as possible. Different start orbitals may in some cases result in
convergence to different SCF solutions or make the difference between convergence and divergence.
One possible way of generating a set of start orbitals is to diagonalize the Fock matrix consisting
only of the one-electron contributions, the “core” matrix. This corresponds to initializing the density
matrix as a zero matrix, totally neglecting the electron–electron repulsion in the first step. This is
generally a poor guess, but it is available for all types of basis set and is easily implemented. Essentially
all programs therefore have it as an option.

More sophisticated procedures involve taking the start MO coefficients from a semi-empirical cal-
culation, such as Extended Hückel Theory (EHT) or Intermediate Neglect of Differential Overlap
(INDO) (Chapter 7). The EHT method has the advantage that it is readily parameterized for all ele-
ments and it can provide start orbitals for systems involving elements from essentially the whole
periodic table. An INDO calculation normally provides better start orbitals, but at a price. The INDO
calculation itself is iterative and may suffer from convergence problems, just as the ab initio SCF itself.

Many systems of interest are symmetric. The MOs will transform as one of the irreducible repre-
sentations in the point group, and most programs use this to speed up calculations. The initial guess
for the start orbitals involves selecting how many MOs of each symmetry should be occupied, that is
the electron configuration. Different start configurations produce different final SCF solutions. Many
programs automatically select the start configuration based on the orbital energies of the starting
MOs, which may be “wrong” in the sense that it does not produce the desired solution. Of course, a
given solution may be checked to see if it actually corresponds to an energy minimum, but, as stated
above, this is rarely done. Furthermore, there may be several (local) minima; thus the verification that
the found solution is an energy minimum is no guarantee that it is the global minimum. A particular
case is open-shell systems having at least one element of symmetry, as the open-shell orbital(s) deter-
mine the overall wave function symmetry. An example is the N+

2 radical cation, where two states of
Σg and Πu symmetry exist with a difference of only ∼ 70 kJ/mol in energy.

The reason different initial electron configurations may generate different final solutions is because
matrix elements between orbitals belonging to different representations are exactly zero; thus only
orbitals belonging to the same representation can mix. Forcing the program to run the calculation
without symmetry usually does not help. Although turning the symmetry off will make the program
actually calculate all matrix elements, those between MOs of different symmetry will still be zero
(except for numerical inaccuracies). It is therefore often necessary to specify manually which orbitals
should be occupied initially to generate the desired solution.

3.8.5 Direct SCF

The number of two-electron integrals formally grows as the fourth power of the size of the
basis set. Owing to permutation symmetry (the following integrals are identical: ⟨𝜒1𝜒2|𝜒3𝜒4⟩ =
⟨𝜒3𝜒2|𝜒1𝜒4⟩ = ⟨𝜒1𝜒4|𝜒3𝜒2⟩ = ⟨𝜒3𝜒4|𝜒1𝜒2⟩ = ⟨𝜒2𝜒1|𝜒4𝜒3⟩ = ⟨𝜒4𝜒1|𝜒2𝜒3⟩ = ⟨𝜒2𝜒3|𝜒4𝜒1⟩ =
⟨𝜒4𝜒3|𝜒2𝜒1⟩) the total number is approximately 1/8M4

basis. Each integral is a floating point number
associated with four indices indicating which basis functions are involved in the integral. Storing a
floating point number in double precision (which is necessary for calculating the energy with an accu-
racy of ∼14 digits) requires 64 bits = 8 bytes. A basis set with 100 functions thus generates ∼12 × 106

integrals, requiring ∼100 Mbytes of disk space or memory. The disk space required for storing the
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integrals rises rapidly; thus a basis set with 1000 functions requires ∼1000 Gbytes of disk space (or
memory). In practice, the storage requirement is somewhat less, since many of the integrals are small
and can be ignored. Typically, a cutoff around ∼10−10 is employed; if the integral is less than this value
it is not stored, and consequently makes a zero contribution to the construction of the Fock matrix
in the iterative procedure. However, the disk space requirement effectively limits conventional HF
methods to basis sets smaller than ∼1000 functions.

Older computers had only very limited amounts of memory and disk storage of the integrals was
the only option. Modern machines often have quite significant amounts of memory – a few hundred
Gbytes is not uncommon. For small- and medium-sized systems, it may be possible to store all the
integrals in memory instead of on disk. Such “in-core” methods are very efficient for performing an
HF calculation. The integrals are only calculated once, and each SCF iteration is just a contraction
of the integral tensor with a density matrix to form the Fock matrix (Equation (3.56)). Essentially all
machines have optimized routines for doing matrix contraction efficiently. The only limitation is the
quartic (M4

basis) growth of the memory requirement with basis set size, which in practice restricts
such in-core methods to basis sets with less than a few hundred functions.

The disk space (or memory) requirement can be reduced dramatically by performing the SCF in a
direct fashion.39 In the direct SCF method, the integrals are calculated from scratch in each iteration.
At first this would appear to involve a computational effort that is larger than a conventional HF cal-
culation by a factor close to the number of iterations. There are, however, a number of considerations
that often makes direct SCF methods computationally quite competitive or even advantageous.

In disk-based methods, all the integrals are first calculated and written to disk. To reduce the disk
space requirement, the four indices associated with each integral are “packed” into a single num-
ber and written to disk. The whole set of integrals must be read in each iteration, and the indices
“unpacked” before the integrals are multiplied with the proper density matrix elements and added
to the Fock matrix. Typically, half the time in an SCF procedure is spent calculating the integrals
and writing them to disk; the other half is spent reading, unpacking and forming the Fock matrix
maybe 20 times. In a direct approach, there is no overhead due to packing/unpacking of indices or
writing/reading of integrals.

In disk-based methods, only integrals larger than a certain cutoff are saved. In direct methods,
it is possible to ignore additional integrals. The contribution to a Fock matrix element is a product
of density matrix elements and two-electron integrals. In disk-based methods, the density matrix
is not known when the integrals are calculated and all integrals above the cutoff must be saved and
processed in each iteration. In direct methods, however, the density matrix is known at the time when
the integrals are calculated. Thus if the product of the density matrix elements and the integral is less
than the cutoff, the integral can be ignored. Of course, this is only a saving if an estimate of the size of
the integral is available before it is actually calculated. One such estimate is the Schwarz inequality:

|⟨𝜒𝛼𝜒𝛽 |𝜒𝛾𝜒𝛿⟩| ≤

√

⟨𝜒𝛼𝜒𝛼|𝜒𝛽𝜒𝛽⟩

√

⟨𝜒𝛾𝜒𝛾 |𝜒𝛿𝜒𝛿⟩ (3.79)

but more advanced screening methods have also been developed.40 The number of two-center inte-
grals on the right-hand side is quite small (of the order of M2

basis) and can easily be calculated
beforehand. Thus if the product of the density matrix elements and the upper limit of the integral
is less than the cutoff, the integral does not need to be calculated. In practice, integrals are calculated
in batches, where a batch is a collection of integrals having the same exponent. For a ⟨pp|pp⟩-type
batch there are thus 81 individual integrals, a ⟨dd|dd⟩-type batch has 625 individual integrals, etc.
The integral screening is normally done at the batch level, that is if the largest term is smaller than a
given cutoff, the whole batch can be neglected.
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The above integral screening is even more advantageous if the Fock matrix is formed incrementally.
Consider two sequential density and Fock matrices in the iterative procedure (Equation (3.56)):

Fn = h + G ⋅ Dn
Fn+1 = h + G ⋅ Dn+1

Fn+1 − Fn = G ⋅ (Dn+1 − Dn) (3.80)
ΔFn+1 = G ⋅ ΔDn+1

The change in the Fock matrix depends only on the change in the density matrix. Combined with the
above screening procedure, it is thus only necessary to calculate those integrals to be multiplied with
density matrix elements that have changed significantly since the last iteration. As the SCF converges,
there are fewer and fewer integrals that need to be calculated.

The formal scaling of HF methods is M4
basis, since the total number of two-electron integrals

increases as M4
basis. As just seen, however, we do not need to calculate all the two-electron integrals –

many can be neglected without affecting the final results. The observed scaling is therefore less than
the quartic dependence, but the exact power depends on how the size of the problem is increased. If
the number of atoms is increased for a fixed basis set per atom, the scaling depends on the dimension-
ality of the atomic arrangement and the size of the atomic basis. The most favorable case is a small
compact basis set (such as a minimum basis) and an essential one-dimensional system, such as poly-
acetylene, H—(C C)n H, or linear alkanes. In this case, the scaling is close to M2

basis once the number
of functions exceeds ∼100. A two-dimensional arrangement of atoms (such as a slab of graphite) has
a slightly larger exponent dependence, while a three-dimensional system (such as a diamond struc-
ture) has a power dependence close to M2.3

basis.41 It should be noted that most molecular systems have
a dimensionality between two and three – the presence of “holes” in the structure reduces the effec-
tive dimensionality to below three. With a larger basis set, especially if diffuse functions are present,
the screening of integrals becomes much less efficient or, equivalently, the molecular system must
be significantly larger to achieve the limiting scaling. In practice, however, the increase in the total
number of basis functions is often not due to an enlargement of the molecular system, but rather
to the use of an increasingly larger basis set per atom for a fixed sized molecule. For such cases, the
observed scaling is often worse than the theoretical M4

basis dependence, since the integral screening
becomes less and less efficient.

The combination of these effects means that the increase in computational time for a direct SCF
calculation compared with a disk-based method is less than initially expected. For a medium-sized
SCF calculation that requires, say, 20 iterations, the increase in CPU time may only be a factor of 2 or
3. Due to the more efficient screening, however, the direct method actually becomes more and more
advantageous relative to disk-based methods as the size of the system increases. At some point, direct
methods will therefore require less CPU time than a conventional method. Exactly where the cross-
over point occurs depends on the way the number of basis functions is increased, the machine type
and the efficiency of the integral code. Small compact basis sets in general experience the cross-over
point quite early (perhaps around 100 functions) while it occurs later for large extended basis sets.
Since conventional disk-based methods are limited to a few hundred basis functions, direct methods
are normally the only choice for large calculations. Direct methods are essentially only limited by
the available CPU time, and calculations involving up to several thousand basis functions have been
reported.

Although direct methods for small- and medium-size systems require more CPU time than disk-
based methods, this is in many cases irrelevant. For the user the determining factor is the time
from submitting the calculation to the results being available. Over the years the speed of CPUs has
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increased much more rapidly than the speed of data transfer to and from disk. Most modern machines
have very slow data transfer to disk compared with CPU speed. Measured by the elapsed wall clock
time, disk-based HF methods are often the slowest in delivering the results, despite the fact that they
require the least CPU time. Simply speaking, the CPU may be spending most of its time waiting for
data to be transferred from disk. Direct methods, on the other hand, use the CPU with a near 100%
efficiency. For machines without fast disk transfer the cross-over point for direct versus conventional
methods in terms of wall clock time is often so low that direct methods are always preferred.

Modern computers are designed to run calculations in parallel on many (sometimes very many)
individual computing units (“cores”). Making direct SCF calculations run efficiently in a parallel fash-
ion is fairly easy: each core is given the task of calculating a certain batch of integrals and the total
Fock matrix is simply the sum of contributions from each individual core.

3.8.6 Reduced Scaling Techniques

The computational bottleneck in HF methods is the calculation of the two-electron Coulomb and
exchange terms arising from the electron–electron repulsion. In non-metallic systems, the exchange
term is quite short-ranged, while the Coulomb interaction is long-ranged. In the large system limit,
the Coulomb integrals thus dominate the computational cost. By using the screening techniques
described in the previous section, the scaling in the large system limit will eventually be reduced
from M4

basis to M2
basis. Similar considerations hold for DFT methods (Chapter 6). Although an M2

basis
scaling is quite modest, it is clear that a reduction down to linear scaling will be advantageous in order
to move the calculations into the thousand atoms regime.42

The Fast Multipole Moment (FMM) method (Section 15.3) was originally developed for calculating
interactions between point charges. A direct calculation involves a summation over all pairs, that is
a computational effort that increases with M2

basis. The idea in FMM is to split the total interaction
into a near- and a far-field. The near-field is evaluated directly, while the far-field is calculated by
dividing the physical space into boxes, and the interaction between all the charges in one box and all
the charges in another is approximated as interactions between multipoles located at the center of
the boxes. The further away from each other two boxes are, the larger the boxes can be for a given
accuracy, thereby reducing the formal M2

basis behavior to linear scaling, that is proportional to Mbasis.
The original FMM has been refined by also adjusting the accuracy of the multipole expansion

as a function of the distance between boxes, producing the very Fast Multipole Moment (vFMM)
method.43 Both of these have been generalized to continuous charge distributions, as is required
for calculating the Coulomb interaction between electrons in a quantum description.44, 45 The use of
FMM methods in electronic structure calculations enables the Coulomb part of the electron–electron
interaction to be calculated with a computational effort that depends linearly on the number of basis
functions, once the system becomes sufficiently large.

Instead of dividing the physical space into a near- and far-field, the Coulomb operator itself may
be partitioned into a short- and long-ranged part.46 The short-ranged operator is evaluated exactly,
while the long-ranged part is evaluated, for example, by means of a Fourier transformation. The net
effect is again that the total Coulomb interaction can be calculated with a computational effort that
only scales linearly with system size.

Although the exchange term in principle is short-ranged, and thus should benefit significantly from
integral screening, this is normally not observed in practical calculations. This has been attributed
to basis set incompleteness,47 and this insight allowed a formulation of a more aggressive screening
technique that enables the exchange part of the electron–electron interaction also to be reduced to
an order Mbasis method.
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An approach called the Auxiliary Density Matrix Method (ADMM) approximates the HF exchange
in a large basis set by its value in a small auxiliary basis set and a correction term calculated as the
exchange energy difference between the large and small basis sets calculated by a DFT exchange
functional.48

Another approach for achieving linear scaling is to break the system into smaller parts, per-
form a calculation on each subsection and subsequently piece these results together, as discussed in
Section 4.12.3.49

3.8.7 Reduced Prefactor Methods

The use of methods with a reduced scaling does not necessarily lead to a reduced computational
cost for systems that can be studied by the available resources, as the computational prefactor may
be larger for reduced scaling methods. The cross-over point for when the linear scaling methods
becomes competitive with traditional methods may be so high that is it of little practical use. An
alternative approach is to accept a relatively large formal scaling and focus on reducing the prefactor
in the computationally expensive step. These methods use information compression to reduce the
computational expensive step.

The large number of two-electron integrals over basis functions can be considered as elements in a
four-dimensional tensor, and since the basis functions are non-orthogonal, this tensor contains many
near-redundancies, and these increase as the size of the basis set is increased. Tensor decomposition
methods (Section 17.6.3) can be used to extract the non-redundant information (to within a suitable
threshold), and only use this information in an HF calculation. This will significantly decrease the
prefactor, often by one or two orders of magnitude, and the improvement increases as the basis set
becomes larger. Several (slightly) different approaches are in common use for extracting the essential
information, but they all share the tensor decomposition feature of replacing four-index integrals by
lower-index (three and two) quantities.

Perhaps the easiest to understand of these methods is “Resolution of the Identity ” (RI) techniques,
where the product of two basis functions is expanded in an auxiliary basis set:

|𝜒𝛼𝜒𝛽⟩ ≈
Maux∑

k
ck𝜒k (3.81)

When the two basis functions depend on the same electron coordinate, the product on the left-hand
side corresponds to an electron density and the procedure is then often referred to as density fitting.
This allows replacing four-index two-electron integrals by products of three-index integrals:50

⟨𝜒𝛼𝜒𝛽 |𝜒𝛾𝜒𝛿⟩ ≈
Maux∑

kl
ckcl⟨𝜒𝛼𝜒𝛽 |𝜒k⟩⟨𝜒k|𝜒l⟩

−1⟨𝜒l|𝜒𝛾𝜒𝛿⟩ (3.82)

The expansion coefficients are determined by minimizing the fitting error, which can be done using
either an overlap or a Coulomb metric, where the latter has been shown to give better results.51 RI
methods reduce the formal scaling from M4

basis to (only) M3
basis, but actual timings show that the

total computational cost is reduced by roughly an order of magnitude, without compromising the
accuracy.52 Versions where plane waves are used as the auxiliary basis have also been proposed and,
properly implemented, these achieve linear scaling even for small systems and for large basis sets.53
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Pseudospectral methods are very similar to RI techniques, except that the product of func-
tions is approximated by a set of delta-functions (grid) rather than an auxiliary set of continuous
functions.54

Cholesky decomposition methods are based on the fact that a positive definite matrix can be writ-
ten as a sum of outer products of vectors (the same as (17.122), except that the u vectors are not
normalized):55

A =
N∑

k=1
ukut

k (3.83)

The u vectors can be extracted by an iterative algorithm until their magnitudes fall below a suit-
able threshold, in which case the original matrix is represented with an accuracy comparable to this
threshold. The four-dimensional tensor containing the two-electron integrals can be converted into a
two-dimensional matrix by combining the indices two-by-two, and this super-matrix can be decom-
posed into vectors of length M2:

⟨𝜒𝛼𝜒𝛽 |𝜒𝛾𝜒𝛿⟩ ≈
MCholesky∑

k
⟨𝜒𝛼𝜒𝛽 |uk⟩⟨uk|𝜒𝛾𝜒𝛿⟩ (3.84)

Cholesky decomposition methods can thus be viewed as an RI method where the auxiliary basis set
is generated from the data, rather than predetermined.56

The non-redundant information contained in the two-electron integrals increases slower than the
size of the basis set raised to the fourth power, and the efficiency gain by employing RI or the Cholesky
method therefore increases with the basis set size, that is these methods become favorable even for
small systems when large basis sets are used for achieving high accuracy.

Since the HF method may be formulated and implemented in several different ways, a practical
question is which of these methods will be the fastest computationally for a given problem. The scaling
only determines which method will be the fastest for large systems, that is for N → ∞, while the
prefactor determines the computational time for a given sized system. Figure 3.7 illustrates a quartic,
quadratic and linear scaling algorithm with different prefactors.

For systems smaller than N1, the most efficient method is the quartic one, the quadratic algorithm
is the most efficient for systems sizes between N1 and N2, while the linear scaling method becomes
the most efficient beyond N2. Note that N2 may be so large that the total computational resources
may be exhausted before the cross-over point is reached.

With the advent of methods that enable the construction of the Fock matrix to be done with a
computational effort that scales linearly with system size, the diagonalization step for solving the HF
equations eventually becomes the computational bottleneck, since matrix diagonalization depends
on the third power of the problem size, and this cross-over occurs for a few thousand basis func-
tions. As discussed in Section 3.8.1, however, it is possible to reformulate the SCF problem in terms
of a minimization of an energy functional that depends directly on the density matrix elements or
orbital rotation parameters. This functional can then be minimized, for example, by conjugate gradi-
ent methods (Section 13.2.2), taking advantage of the fact that the density matrix becomes sparse for
large systems.
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Figure . Method scaling with system size.

. Periodic Systems

Periodic systems can be described as a fundamental unit cell being repeated to form an infinite system.
The periodicity can be in one dimension (e.g. a polymer), two dimensions (e.g. a surface) or three
dimensions (e.g. a crystal), with the latter being the most common. The unit cell in three dimensions
can be characterized by three vectors a1, a2 and a3 spanning the physical space, with the length and the
angles between them defining the shape (Figure 3.8).57 There are seven possible shapes, the simplest
of which is cubic, where all vector lengths are equal and all angles are 90◦.

A unit cell can have atoms (or molecules) occupying various positions within the cell (corners, sides,
center), and the combination of a unit cell and its occupancy is called a Bravais lattice, of which there
are fourteen possible forms. The periodic (infinite) system can then be generated by translation of
the unit cell (Bravais lattice) by lattice vectors t.

a1

a2

a3

Figure . A cubic unit cell defined by three vectors.
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The reciprocal cell is defined by three vectors b1, b2 and b3 derived from the a1, a2 and a3 vectors
of the direct cell, and obeying the orthonormality condition aibj = 2𝜋𝛿ij:

b1 = 2π
a2 × a3

L3 , b2 = 2π
a3 × a1

L3 , b3 = 2π
a1 × a2

L3 (3.85)

The reciprocal cell of a cubic cell with side length L is also a cube, with the side length 2π/L. The
equivalent of a unit cell in reciprocal space is called the (first) Brillouin zone. Just as a point in real
space may be described by a vector r, a “point” in reciprocal space may be described by a vector k.
Since k has units of inverse length, it is often called a wave vector. It is also closely related to the
momentum and energy, for example the momentum and kinetic energy of a (free) particle described
by a plane wave of the form eik ⋅ r is k and 1∕2k2, respectively.

The periodicity of the nuclei in the system means that the square of the wave function must display
the same periodicity. This is inherent in the Bloch theorem, which states that the wave function value
at equivalent positions in different cells are related by a complex phase factor involving the lattice
vector t and a vector in the reciprocal space:

𝜙(r + t) = eik ⋅ t𝜙(r) (3.86)

Alternatively stated, the Bloch theorem indicates that a crystalline orbital (𝜙) for the nth band in the
unit cell can be written as a wave-like part and a cell-periodic part (𝜑), called a Bloch orbital:

𝜙n,k(r) = eik ⋅ r𝜑n(r) (3.87)

The Bloch orbital can be expanded into a basis set of plane wave functions (𝜒PW):

𝜑n(r) =
Mbasis∑

𝛼

cn𝛼𝜒
PW
𝛼

(r)

𝜑n,k(r) = eik ⋅ r
Mbasis∑

𝛼

cn𝛼𝜒
PW
𝛼

(r)
(3.88)

Alternatively, the basis set can be chosen as a set of nuclear-centered (Gaussian) basis functions, from
which a set of Bloch orbitals can be constructed:

𝜑k𝛼(r) =
∑

t
eik ⋅ t𝜒GTO

𝛼
(r + t)

𝜑n,k(r) =
Mbasis∑

𝛼

cn𝛼𝜑k𝛼(r) =
Mbasis∑

𝛼

∑

t
cn𝛼eik ⋅ t𝜒GTO

𝛼
(r + t)

(3.89)

The problem has now been transformed from treating an infinite number of orbitals (electrons) to
only treating those within the unit cell. The price is that the solutions become a function of the recip-
rocal space vector k within the first Brillouin zone. For a system with Mbasis functions, the variation
problem can be formulated as a matrix equation analogous to Equation (3.54):

FkCk = SkCkεk (3.90)

The k appears as a parameter in the equation similarly to the nuclear positions in molecular Hartree–
Fock theory. The solutions are continuous as a function of k and provide a range of energies called a
band, with the total energy per unit cell being calculated by integrating over k space. Fortunately, the
variation with k is rather slow for non-metallic systems, and the integration can be done numerically
by including relatively few points.58 Note that the presence of the phase factors in Equation (3.87)
means that the matrices in Equation (3.90) are complex quantities.
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For a given value of k, the solution of Equation (3.90) provides Mbasis orbitals. In molecular systems,
the molecular orbitals are filled with electrons according to the aufbau principle, that is according to
energy. The same principle is used for periodic systems, and the equivalent of the molecular HOMO
(highest occupied molecular orbital) is the Fermi energy level. Depending on the system, two situa-
tions can occur:
� The number of electrons is such that a certain number of (non-overlapping) bands are completely

filled, while the rest are empty.
� The number of electrons is such that one (or more) band(s) are only partly filled.

The first situation is analogous to that for molecular systems having a closed-shell singlet state. The
energy difference between the “top” of the highest filled band and the “bottom” of the lowest empty
band is called the band gap, and is equivalent to the HOMO–LUMO gap in molecular systems. The
second situation is analogous to an open-shell electronic structure for a molecular system and corre-
sponds to a band gap of zero. Systems with a band gap of zero are metallic, while those with a finite
band gap are either insulators or semiconductors, depending on whether the band gap is large or
small compared with the thermal energy kT.

As mentioned above, the basis functions within a unit cell can be either localized (e.g. Gaussian)
or delocalized (plane wave) functions. For a Gaussian basis set, the computational problem of con-
structing the Fk matrix is closely related to the molecular cases, involving multidimensional integrals
over kinetic and potential energy operators. The periodic boundary condition means that the terms
involving the potential energy operators in Equation (3.90) become infinite sums over t vectors. Since
the operators involve both positive and negative quantities and only decay as r−1, they require spe-
cial care to ensure convergence to a definite quantity, as, for example, Ewald sum59 or fast multipole
methods.60 For a plane wave basis, the construction of the energy matrix can be done efficiently by
using fast Fourier transform (FFT) methods for switching between the real and reciprocal space. All
local potential operators are easily evaluated in real space, while the kinetic energy is just the square
operator in reciprocal space. FFT methods have the big advantage that the computational cost only
increases as N ln N, with N being the number of grid points in the Fourier transform.

The solution of Equation (3.90) can be done by repeated diagonalization of the Fk matrix, analo-
gously to the situation for non-periodic systems. A plane wave basis, however, often involves several
thousand functions, which means that alternative methods are used for solving the equation.
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Electron Correlation Methods

The Hartree–Fock method generates solutions to the Schrödinger equation where the real electron–
electron interaction is replaced by an average interaction (Chapter 3). In a sufficiently large basis
set, the HF wave function is able to account for ∼99% of the total energy, but the remaining ∼1% is
often very important for describing chemical phenomena. The difference in energy between the HF
and the lowest possible energy in the given basis set is called the electron correlation (EC) energy.1–6

Physically, it corresponds to the motion of the electrons being correlated, that is on average they are
further apart than described by the HF wave function. As shown below, an unrestricted Hartree–Fock
(UHF) type of wave function is, to a certain extent, able to include electron correlation. The proper
reference for discussing electron correlation is therefore a restricted (RHF) or restricted open-shell
(ROHF) wave function, although many authors use a UHF wave function for open-shell species. In
the RHF case, all the electrons are paired in molecular orbitals. The two electrons in an MO occupy
the same physical space and differ only in the spin function. The spatial overlap between the orbitals
of two such “pair”-electrons is (exactly) one, while the overlap between two electrons belonging to
different pairs is (exactly) zero, owing to the orthonormality of the MOs. The latter is not the same
as saying that there is no repulsion between electrons in different MOs, since the electron–electron
repulsion integrals involve products of MOs (⟨𝜙i|𝜙j⟩= 0 for i ≠ j, but ⟨𝜙i𝜙j|g|𝜙i𝜙j⟩ and ⟨𝜙i𝜙j|g|𝜙j𝜙i⟩
are not necessarily zero).

Naively it may be expected that the correlation between pairs of electrons belonging to the same
spatial MO would be the major part of the electron correlation. However, as the size of the molecule
increases, the number of electron pairs belonging to different spatial MOs grows faster than those
belonging to the same MO. Consider, for example, the valence orbitals for CH4. There are four intra-
orbital electron pairs of opposite spins, but there are twelve inter-orbital pairs of opposite spins, and
twelve inter-orbital pairs of same spin. A typical value for the intra-orbital pair correlation of a sin-
gle bond is ∼80 kJ/mol, while that of an inter-orbital pair (where the two MOs are spatially close,
as in CH4) is ∼8 kJ/mol. The interpair correlation is therefore often comparable to the intrapair
contribution.

Since the correlation between opposite spins has both intra- and inter-orbital contributions, it will
be larger than the correlation between electrons having the same spin. The Pauli principle (or, equiv-
alently, the antisymmetry of the wave function) has the consequence that there is no intra-orbital
correlation from electron pairs with the same spin. The opposite spin correlation is sometimes called
the Coulomb correlation, while the same spin correlation is called the Fermi correlation, that is the
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Electron Correlation Methods 

Coulomb correlation is the largest contribution. Another way of looking at electron correlation is in
terms of the electron density. In the immediate vicinity of an electron, there is a reduced probability of
finding another electron. For electrons of opposite spin, this is often referred to as the Coulomb hole
and the corresponding phenomenon for electrons of same spin is the Fermi hole. This hole picture is
discussed in more detail in connection with density functional theory in Chapter 6.

Another distinction is between dynamic and non-dynamical, often also called static, electron cor-
relation. The dynamic contribution is associated with the “instant” correlation between electrons,
such as between those occupying the same spatial orbital. The non-dynamical part is associated with
electrons avoiding each other on a more “permanent” basis, such as those occupying different spa-
tial orbitals. The latter is also sometimes called a near-degeneracy effect, as it becomes important
for systems where different orbitals (configurations) have similar energies. The electron correlation
in a helium atom is almost purely dynamic, while the correlation in the H2 molecule at the dissocia-
tion limit is purely non-dynamical (here the bonding and antibonding MOs become degenerate). At
the equilibrium distance for H2 the correlation is mainly dynamic (resembles the He atom), but this
gradually changes to non-dynamical correlation as the bond distance is increased. Similarly, the Be
atom contains both non-dynamical (near degeneracy of the 1s22s2 and 1s22p2 configurations) and
dynamical correlation. There is therefore no clear-cut way of separating the two types of correlation,
although they form a conceptually useful way of thinking about correlation effects. A UHF-type wave
function can, compared to RHF, to a certain extent account for non-dynamical, but not dynamical,
correlation, as discussed in Section 4.4.

The HF method determines the energetically best one-determinant trial wave function (within the
given basis set). It is therefore clear that, in order to improve on HF results, the starting point must
be a trial wave function that contains more than one Slater determinant (SD) Φ. This also means that
the mental picture of electrons residing in orbitals has to be abandoned and the more fundamental
property, the electron density, should be considered. As the HF solution usually gives ∼99% of the
correct answer, electron correlation methods normally use the HF wave function as a starting point
for improvements.

A generic multideterminant trial wave function can be written as in Equation (4.1), where a0 is
usually close to one:

Ψ = a0ΦHF +
∑

i=1
aiΦi (4.1)

Electron correlation methods differ in how they calculate the coefficients in front of the other deter-
minants, with a0 being determined by the normalization condition.

As discussed in Chapter 5, one can think of the expansion of an unknown MO in terms of basis
functions as describing the MO “function” in the “coordinate system” of the basis functions. The
multideterminant wave function (Equation (4.1)) can similarly be considered as describing the total
wave function in a “coordinate” system of Slater determinants. The basis set determines the size of the
one-electron basis (and thus limits the description of the one-electron functions, the MOs), while the
number of determinants included determines the size of the many-electron basis (and thus limits
the description of electron correlation), as illustrated in Figure 4.1.

. Excited Slater Determinants

The starting point is usually an RHF calculation, where a solution of the Roothaan–Hall equations
for a system with N electrons and M basis functions will yield 1∕2 Nelec occupied MOs and Mbasis −
1∕2 Nelec unoccupied (virtual) MOs. Except for a minimum basis, there will always be more virtual
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Figure . Progression from atomic orbitals (AO) (basis functions), to molecular orbitals (MO), to Slater determinants
(SD) and to a many-electron (ME) wave function.

than occupied MOs. A Slater determinant is constructed from 1∕2 Nelec spatial MOs multiplied by
the two spin functions to yield Nelec spin-orbitals. A whole series of determinants may be generated
by replacing MOs that are occupied in the HF determinant by MOs that are unoccupied. These can
be denoted according to how many occupied HF MOs have been replaced by unoccupied MOs, that
is Slater determinants that are singly, doubly, triply, quadruply, etc., excited relative to the HF deter-
minant, up to a maximum of Nelec excited electrons (see Figure 4.2). These determinants are often
referred to as Singles (S), Doubles (D), Triples (T), Quadruples (Q), etc.

The total number of determinants that can be generated depends on the size of the basis set: the
larger the basis, the more virtual MOs, and the more excited determinants can be constructed. If
all possible determinants in a given basis set are included, all the electron correlation (in the given
basis) is (or can be) recovered. For an infinite basis, the Schrödinger equation is then solved exactly.
Note that “exact” is this context is not the same as the experimental value, as the nuclei are assumed to
have infinite masses (Born–Oppenheimer approximation) and relativistic effects are neglected. Meth-
ods that include electron correlation are thus two-dimensional, the larger the one-electron expansion
(basis set size) and the larger the many-electron expansion (number of determinants), the better the
results. This is illustrated in Figure 4.3.

In order to calculate total energies with a “chemical accuracy” of ∼4 kJ/mol (∼1 kcal/mol), it is nec-
essary to use sophisticated methods for including electron correlation and large basis sets, which is
only computationally feasible for small systems. The focus is therefore on calculating relative energies,
where error cancellation can improve the accuracy of the calculated results. The important chemical
changes take place in the valence orbitals, with the core orbitals being almost independent of the
molecular environment. In many cases, the interest is therefore only in calculating the correlation
energy associated with the valence electrons. Limiting the number of determinants to only those that
can be generated by exciting the valence electrons is known as the frozen-core approximation. In some

D-type D-typeS-type S-typeHF Q-typeT-type

Figure . Excited Slater determinants generated from an HF reference.
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cases, the highest virtual orbitals corresponding to the antibonding combinations of the core orbitals
are also removed from the correlation treatment (frozen virtuals). The frozen-core approximation is
not justified in terms of total energy; the correlation of the core electrons gives a substantial energy
contribution. However, it is a near-constant factor, which drops out when calculating relative ener-
gies. Furthermore, if we really want to calculate the core electron correlation, the standard basis sets
are insufficient. In order to represent the angular correlation, higher angular momentum functions
with the same radial size as the filled orbitals are needed, for example p- and d-functions with large
exponents for correlating the 1s-electrons, as discussed in Section 5.4.6. Just allowing excitations of
the core electrons in a standard basis set does not “correlate” the core electrons.

There are three main methods for calculating electron correlation: Configuration Interaction (CI),
Many-Body Perturbation Theory (MBPT) and Coupled Cluster (CC). A word of caution before we
describe these methods in more detail. The Slater determinants are composed of spin-MOs, but since
the Hamiltonian operator is independent of spin, the spin dependence can be factored out. Further-
more, to facilitate notation, it is often assumed that the HF determinant is of the RHF type, rather
than the more general UHF type. Finally, many of the expressions below involve double summations
over identical sets of functions. To ensure only the unique terms are included, one of the summation
indices must be restricted. Alternatively, both indices can be allowed to run over all values and the
overcounting corrected by a factor of 1∕2 . Various combinations of these assumptions result in final
expressions that differ by factors of 1∕2, 1/4, etc., from those given here. In the present chapter, the
MOs are always spin-MOs and conversion of a restricted summation to unrestricted is always noted
explicitly.

Finally, a comment on notation. The quality of a calculation is given by the level of theory (i.e.
how much electron correlation is included) and the size of the basis set. In a commonly used “/”
notation, introduced by J. A. Pople, this is denoted as “level/basis”. If nothing further is specified,
this implies that the geometry is optimized at this level of theory. As discussed in Section 5.7, the
geometry is usually much less sensitive to the theoretical level than relative energies and high-level
calculations are therefore often carried out using geometries optimized at a lower level. This is
denoted as “level2/basis2//level1/basis1”, where the notation after the “//” indicates the level at which
the geometry is optimized.
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. Configuration Interaction

This is the oldest and perhaps the easiest method to understand and is based on the variational princi-
ple (Appendix B), analogous to the HF method. The trial wave function is written as a linear combina-
tion of determinants with the expansion coefficients determined by requiring that the energy should
be a minimum (or at least stationary), a procedure known as Configuration Interaction (CI).7, 8 The
MOs used for building the excited Slater determinants are taken from a Hartree–Fock calculation and
held fixed. Subscripts S, D, T, etc., indicate determinants that are Singly, Doubly, Triply, etc., excited
relative to the HF configuration:

ΨCI = a0ΦHF +
∑

S
aSΦS +

∑

D
aDΦD +

∑

T
aTΦT +⋯ =

∑

i=0
aiΦi (4.2)

This is an example of a constrained optimization, where the energy should be minimized under the
constraint that the total CI wave function is normalized. Introducing a Lagrange multiplier (Sec-
tion 13.5), this can be written as

L = ⟨ΨCI|H|ΨCI⟩ − 𝜆(⟨ΨCI|ΨCI⟩ − 1) (4.3)

The first bracket is the energy of the CI wave function and the second bracket is the norm of the
wave function. In terms of determinants (Equation (4.2)), these can be written as in the following
equations:

⟨ΨCI|H|ΨCI⟩ =
∑

i=0

∑

j=0
aiaj⟨Φi|H|Φj⟩ =

∑

i=0
a2

i Ei+
∑

i=0

∑

j≠i
aiaj⟨Φi|H|Φj⟩ (4.4)

⟨ΨCI|ΨCI⟩ =
∑

i=0

∑

j=0
aiaj⟨Φi|Φj⟩ =

∑

i=0
a2

i ⟨Φi|Φi⟩ =
∑

i=0
a2

i (4.5)

The diagonal elements in the sum involving the Hamiltonian operator (Equation (4.4)) are energies
of the corresponding determinants. The overlap elements between different determinants (Equa-
tion (4.5)) are zero as they are built from orthogonal MOs (Equation (3.20)). The variational procedure
corresponds to setting all the derivatives of the Lagrange function (Equation (4.3)) with respect to the
ai expansion coefficients equal to zero:

𝜕L
𝜕ai

= 2
∑

j
aj⟨Φi|H|Φj⟩ − 2𝜆ai = 0

ai(Ei − 𝜆) +
∑

j≠i
aj⟨Φi|H|Φj⟩ = 0

(4.6)

If there is only one determinant in the expansion (a0 = 1, ai≠0 = 0), the latter equation shows that the
Lagrange multiplier 𝜆 is the (CI) energy.

As there is one Equation (4.6) for each i, the variational problem is transformed into solving a
set of CI secular equations. Introducing the notation Hij = ⟨Φi|H|Φj⟩, the stationary conditions in
Equation (4.6) can be written as

⎛
⎜
⎜
⎜
⎜
⎜
⎝

H00 − E H01 ⋯ H0j ⋯
H10 H11 − E ⋯ H1j ⋯
⋮ ⋮ ⋱ ⋮ ⋯

Hj 0 ⋮ ⋯ Hjj − E ⋯
⋮ ⋮ ⋯ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

a0
a1
⋮
aj
⋮

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

0
0
⋮
0
⋮

⎞
⎟
⎟
⎟
⎟
⎠

(4.7)
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This can also be written as matrix equations:

(H − EI)a = 0

Ha = Ea
(4.8)

Solving the secular equations is equivalent to diagonalizing the CI matrix (see Section 17.2.4). The CI
energy is obtained as the lowest eigenvalue of the CI matrix, and the corresponding eigenvector con-
tains the ai coefficients in front of the determinants in Equation (4.2). The second lowest eigenvalue
corresponds to the first excited state, etc.

4.2.1 CI Matrix Elements

The CI matrix elements Hij can be evaluated by the same strategy employed for calculating the energy
of a single determinant used for deriving the Hartree–Fock equations (Section 3.3). This involves
expanding the determinants in a sum of products of MOs, thereby making it possible to express the
CI matrix elements in terms of MO integrals. There are, however, some general features that make
many of the CI matrix elements equal to zero.

The Hamiltonian operator (Equation (3.24)) does not contain spin; thus if two determinants have
different total spins the corresponding matrix element is zero. This situation occurs if an electron is
excited from an 𝛼 spin-MO to a 𝛽 spin-MO, such as the second S-type determinant in Figure 4.2.
When the HF wave function is a singlet, this excited determinant is (part of ) a triplet. The corre-
sponding CI matrix element can be written in terms of integrals over MOs, and the spin dependence
can be separated out. If there is a different number of 𝛼 and 𝛽 spin-MOs, there will always be at least
one integral ⟨𝛼|𝛽⟩= 0. That matrix elements between different spin states are zero may be fairly obvi-
ous. If we are interested in a singlet wave function, only singlet determinants can enter the expansion
with non-zero coefficients. However, if the Hamiltonian operator includes, for example, the spin-orbit
operator, matrix elements between singlet and triplet determinants are not necessarily zero, and the
resulting CI wave function will be a mixture of singlet and triplet determinants.

Consider now the case where an electron with 𝛼 spin is moved from orbital i to orbital a. The first
S-type determinant in Figure 4.2 is of this type. Alternatively, the electron with 𝛽 spin could be moved
from orbital i to orbital a. Both of these excited determinants will have an Sz value of 0, but neither
are eigenfunctions of the S2 operator. The difference and sum of these two determinants describe a
singlet state and the Sz = 0 component of a triplet, as illustrated in Figure 4.4.

Such linear combinations of determinants, which are proper spin eigenfunctions, are called Spin-
Adapted Configurations (SACs) or Configurational State Functions (CSFs). The construction of

_ +

Triplet CSFSinglet CSF

Figure . Forming configurational state functions from Slater determinants.
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proper CSFs may involve several determinants for higher excited states. The first D-type determi-
nant in Figure 4.2 is already a proper CSF, but the second D-type excitation must be combined
with five other determinants corresponding to rearrangement of the electron spins to make a sin-
glet CSF (actually there are two linearly independent CSFs that can be made). By making suitable
linear combinations of determinants the number of non-zero CI matrix elements can therefore be
reduced.

If the system contains symmetry, there are additional CI matrix elements that become zero. The
symmetry of a determinant is given as the direct product of the symmetries of the MOs. The Hamilto-
nian operator always belongs to the totally symmetric representation; thus if two determinants belong
to different irreducible representations, the CI matrix element is zero. This is again fairly obvious: if
the interest is in a state of a specific symmetry, only those determinants that have the correct sym-
metry can contribute.

The Hamiltonian operator consists of a sum of one-electron and two-electron operators (Equa-
tion (3.25)). If two determinants differ by more than two (spatial) MOs there will always be an overlap
integral between two different MOs that is zero (the same argument as in Equation (3.29)). CI matrix
elements can therefore only be non-zero if the two determinants differ by 0, 1 or 2 MOs, and they
may be expressed in terms of integrals of one- and two-electron operators over MOs. These connec-
tions are known as the Slater–Condon rules. If the two determinants are identical, the matrix element
is simply the energy of a single-determinant wave function, as given by Equation (3.33). For matrix
elements between determinants differing by 1 (exciting an electron from orbital i to a) or 2 (exciting
two electrons from orbitals i and j to orbitals a and b) MOs, the results are given in the Equations
(4.9) and (4.10) (compare with Equation (3.34), where the g operator is implicit in the notation for
the two-electron integrals (Equation (3.61)):

⟨Φ0|H|Φa
i ⟩ = ⟨𝜙i|h|𝜙a⟩ +

∑

j
(⟨𝜙i𝜙j|𝜙a𝜙j⟩ − ⟨𝜙i𝜙j|𝜙j𝜙a⟩) (4.9)

⟨Φ0|H|Φab
ij ⟩ = ⟨𝜙i𝜙j|𝜙a𝜙b⟩ − ⟨𝜙i𝜙j|𝜙b𝜙a⟩ (4.10)

The matrix element between the HF and a singly excited determinant is a matrix element of the Fock
operator (Equation (3.37)) between two different MOs:

⟨𝜙i|h|𝜙a⟩ +
∑

j
(⟨𝜙i𝜙j|𝜙a𝜙j⟩ − ⟨𝜙i𝜙j|𝜙j𝜙a⟩) =⟨𝜙i|F|𝜙a⟩ (4.11)

This is an occupied–virtual off-diagonal element of the Fock matrix in the MO basis, and is identical
to the gradient of the energy with respect to an occupied–virtual mixing parameter (except for a
factor of 4) (see Equation (3.71)). If the determinants are constructed from optimized canonical HF
MOs, the gradient is zero, and the matrix element is zero. This may also be realized by noting that
the MOs are eigenfunctions of the Fock operator in Equation (3.43):

F𝜙a = 𝜀a𝜙a

⟨𝜙i|F|𝜙a⟩ = 𝜀a⟨𝜙i|𝜙a⟩ = 𝜀a𝛿ia (4.12)

The disappearance of matrix elements between the HF reference and singly excited states is known as
Brillouin’s theorem. The HF reference state therefore only has non-zero matrix elements with doubly
excited determinants, and the full CI matrix acquires a block diagonal structure (Figure 4.5).
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Figure . Structure of the CI matrix.

In order to evaluate the CI matrix elements we need one- and two-electron integrals over MOs.
These can be expressed in terms of the corresponding AO integrals and the MO coefficients:

⟨𝜙i|h|𝜙a⟩ =
Mbasis∑

𝛼

Mbasis∑

𝛽

c𝛼ic𝛽j⟨𝜒𝛼|h|𝜒𝛽⟩ (4.13)

⟨𝜙i𝜙j|𝜙k𝜙l⟩ =
Mbasis∑

𝛼

Mbasis∑

𝛽

Mbasis∑

𝛾

Mbasis∑

𝛿

c𝛼ic𝛽jc𝛾 kc𝛿l⟨𝜒𝛼𝜒𝛽 |𝜒𝛾𝜒𝛿⟩ (4.14)

Such MO integrals are required for all electron correlation methods. The two-electron AO integrals
are the most numerous and the above equation appears to involve a computational effect proportional
to M8

basis (M4
basis AO integrals each multiplied by four sets of Mbasis MO coefficients). However, by per-

forming the transformation one index at a time, the computational effort can be reduced to M5
basis:

⟨𝜙i𝜙j|𝜙k𝜙l⟩ =
Mbasis∑

𝛼

c𝛼i

(Mbasis∑

𝛽

c𝛽j

(Mbasis∑

𝛾

c𝛾 k

(Mbasis∑

𝛿

c𝛿l⟨𝜒𝛼𝜒𝛽 |𝜒𝛾𝜒𝛿⟩

)))

(4.15)

Each step now only involves multiplication of M4
basis integrals with Mbasis coefficients, that is the

M8
basis dependence is reduced to four M5

basis operations. In the large basis set limit, all electron cor-
relation methods formally scale as at least M5

basis, since this is the scaling for the AO to MO integral
transformation. The transformation is an example of a “rotation” of the “coordinate” system consist-
ing of the AOs, to one where the Fock operator is diagonal, the MOs (see Section 17.2). The diagonal
system allows a much more compact representation of the matrix elements needed for the electron
correlation treatment. The coordinate change is also known as a four-index transformation, since it
involves four indices associated with the basis functions.

4.2.2 Size of the CI Matrix

The excited Slater determinants are generated by removing electrons from occupied orbitals and
placing them in virtual orbitals. The number of possible excited SDs is thus a combinatorial problem,
and therefore increases factorially with the number of electrons and basis functions. Consider, for
example, a system such as H2O with a 6-31G(d) basis. For the purpose of illustration, let us for a
moment return to the spin-orbital description. There are 10 electrons and 38 spin-MOs, of which 10
are occupied and 28 are empty. There are K10,n possible ways of selecting n electrons out of the 10
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Table . Number of singlet CSFs as a function of excitation level for
H2O with a 6-31G(d) basis.

Excitation level n Number of nth excited CSFs Total number of CSFs

1 71 71
2 2 485 2 556
3 40 040 42 596
4 348 530 391 126
5 1 723 540 2 114 666
6 5 033 210 7 147 876
7 8 688 680 15 836 556
8 8 653 645 24 490 201
9 4 554 550 29 044 751

10 1 002 001 30 046 752

occupied orbitals and K28,n ways of distributing them in the 28 empty orbitals. The number of excited
states for a given excitation level is thus K10,n ⋅ K28,n and the total number of excited determinants will
be a sum over 10 such terms. This is also equivalent to K38,10, the total number of ways 10 electrons
can be distributed in 38 orbitals:

Number of SDs =
10∑

n=0
K10,n ⋅ K28,n = K38,10 = 38!

10!(38 − 10)!
(4.16)

Many of these excited determinants will of course have different spin multiplicity (triplet, pentet, etc.,
states for a singlet HF determinant) and can therefore be left out of the calculation. Generating only
the singlet CSFs, the number of configurations at each excitation level is shown in Table 4.1.

The number of determinants (or CSFs) that can be generated grows wildly with the excitation level!
Even if the C2v symmetry of H2O is employed, there is still a total of 7 536 400 singlet CSFs with
A1 symmetry. If all possible determinants are included, we have a full CI wave function and there
is no truncation in the many-electron expansion besides that generated by the finite one-electron
expansion (size of the basis set). This is the best possible wave function within the limitations of the
basis set, that is it recovers 100% of the electron correlation in the given basis. For the water case with
a medium basis set, this corresponds to diagonalizing a matrix of size 30 046 752 × 30 046 752, which
is impossible. However, normally the interest is only in the lowest (or a few of the lowest) eigenvalue(s)
and eigenvector(s), and there are special iterative methods (Sections 4.2.4 and 17.2.5) for determining
one (or a few) eigenvector(s) of a large matrix.

In the general case of N electrons and M basis functions the total number of singlet CSFs that can
be generated is given by

Number of CSFs = M!(M + 1)!
(

N
2

)

!
(

N
2 + 1

)

!
(

M − N
2

)

!
(

M − N
2 + 1

)

!
(4.17)

For H2O with the above 6-31G(d) basis there are ∼30 × 106 CSFs (N = 10, M = 19), and with the
larger 6-311G(2d,2p) basis there are ∼106 × 109 CSFs (N = 10, M = 41). For H2C CH2 with the
6-31G(d) basis there are ∼334 × 1012 CSFs (N = 16, M = 38).

One of the large-scale full CI calculations considered H2O in a DZP type basis with 24 func-
tions. Allowing all possible excitations of the 10 electrons generates 451 681 246 determinants.9 The
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variational wave function thus contains roughly half a billion parameters, that is the formal size of
the CI matrix is of the order of half a billion squared. Although a determination of the lowest eigen-
value of such a problem can be done in a matter of hours on a modern computer, the result is a single
number, the ground state energy of the H2O molecule. Due to basis set limitations, however, it is still
some 0.2 au (∼500 kJ/mol) larger than the experimental value. The computational effort for extract-
ing a single eigenvalue and eigenvector scales essentially linearly with the number of CSFs, and it is
possible to handle systems with up to a few billion determinants. The factorial growth of the number
of determinants with the size of the basis set, however, makes the full CI method infeasible for all but
the very smallest systems. Full CI calculations are thus not a routine computational procedure for
including electron correlation, but they are a very useful reference for developing more approximate
methods, as the full CI gives the best results that can be obtained in the given basis.

4.2.3 Truncated CI Methods

In order to develop a computationally tractable model, the number of excited determinants in the
CI expansion (Equation (4.2)) must be reduced. Truncating the excitation level at one (CI with sin-
gles (CIS)) does not give any improvement over the HF result as all matrix elements between the
HF wave function and singly excited determinants are zero. CIS is equal to HF for the ground state
energy, although higher roots from the secular equations may be used as approximations to excited
states. It has already been mentioned that only doubly excited determinants have matrix elements
with the HF wave function different from zero; thus the lowest CI level that gives an improvement
over the HF result is to include only doubly excited states, yielding the CI with doubles (CID) model.
Compared with the number of doubly excited determinants, there are relatively few singly excited
determinants (see, e.g., Table 4.1), and including these gives the CISD method. Computationally, this
is only a marginal increase in effort over CID. Although the singly excited determinants have zero
matrix elements with the HF reference, they enter the wave function indirectly as they have non-zero
matrix elements with the doubly excited determinants. In the large basis set limit the CISD method
scales as M6

basis.
The next level in improvement is inclusion of the triply excited determinants, giving the CISDT

method, which is an M8
basis method. Taking into account also quadruply excited determinants yields

the CISDTQ method, which is an M10
basis method. As shown below, the CISDTQ model in general

gives results close to the full CI limit, but even truncating the excitation level at four produces so
many configurations that it can only be applied to small molecules and small basis sets. The only CI
method that is generally applicable for a large variety of systems is CISD. For computationally feasible
systems (i.e. medium-size molecules and basis sets), it typically recovers 80–90% of the available
correlation energy. The percentage is highest for small molecules; as the molecule gets larger the
CISD method recovers less and less of the correlation energy, which is discussed in more detail in
Section 4.5.

Since only doubly excited determinants have non-zero matrix elements with the HF state, these are
the most important. This may be illustrated by considering a full CI calculation for the Ne atom in a
[5s4p3d] basis, where the 1s-electrons are omitted from the correlation treatment.10 The contribution
to the full CI wave function from each level of excitation is given in Table 4.2.

The weight is the sum of a2
i coefficients at the given excitation level (Equation (4.2)). The CI method

determines the coefficients from the variational principle; thus Table 4.2 shows that the doubly excited
determinants are by far the most important in terms of energy. The singly excited determinants are
the second most important, followed by the quadruples and triples. Excitations higher than four make
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Table . Weights of excited configurations
for the neon atom.

Excitation level Weight

0 9.6 × 10−1

1 9.8 × 10−4

2 3.4 × 10−2

3 3.7 × 10−4

4 4.5 × 10−4

5 1.9 × 10−5

6 1.7 × 10−6

7 1.4 × 10−7

8 1.1 × 10−9

only very small contributions, although there are actually many more of these highly excited deter-
minants than the triples and quadruples, as illustrated in Table 4.1.

The relative importance of the different excitations may qualitatively be understood by noting
that the doubles provide electron correlation for electron pairs. Quadruply excited determinants are
important as they primarily correspond to products of double excitations. The singly excited determi-
nants allow inclusion of multireference character in the wave function, that is they allow the orbitals
to “relax” (they correspond to gradients of the HF energy with respect to orbital coefficients, Equa-
tion (4.11)). Although the HF orbitals are optimum for the single-determinant wave function, that is
no longer the case when many determinants are included. The triply excited determinants are doubly
excited relative to the singles and can then be viewed as providing correlation for the “multireference”
part of the CI wave function.

While singly excited states make relatively small contributions to the correlation energy of a CI wave
function, they are very important when calculating properties (Chapter 11). Molecular properties
measure how the wave function changes when a perturbation, such as an external electric field, is
added. The change in the wave function introduced by the perturbation makes the MOs no longer
optimal in the variational sense. The first-order change in the MOs is described by the off-diagonal
elements in the Fock matrix, as these are essentially the gradient of the HF energy with respect to
the MOs. In the absence of a perturbation, these are zero, as the HF energy is stationary with respect
to an orbital variation (Equation (3.40)). As shown in Equations (4.9) to (4.11), the Fock matrix off-
diagonal elements are CI matrix elements between the HF and singly excited states. For molecular
properties, the singly excited states thus allow the CI wave function to “relax” the MOs, that is letting
the wave function respond to the perturbation.

4.2.4 Direct CI Methods

As illustrated above, even quite small systems at the CISD level result in millions of CSFs. The varia-
tional problem is to extract one or possibly a few of the lowest eigenvalues and eigenvectors of a matrix
the size of millions squared. This cannot be done by standard diagonalization methods where all the
eigenvalues are found. There are, however, iterative methods for extracting one, or a few, eigenvalues
and eigenvectors of a large matrix. The CI problem of Equation (4.8) may be written as:

(H − EI)a = 0 (4.18)
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The H matrix contains the matrix element between the CSFs in the CI expansion and the a vector of
the expansion coefficients. The idea in iterative methods is to generate a suitable guess for the coeffi-
cient vector and calculate (H − EI)a. This will in general not be zero, and the deviation may be used
for adding a correction to a, forming an iterative algorithm. If the interest is in the lowest eigenvalue,
a suitable start eigenvector may be one that only contains the HF configuration, that is {1,0,0,0,…}.
Since the H matrix elements are essentially two-electron integrals in the MO basis (Equation (4.8)),
the iterative procedure may be formulated as integral driven, that is a batch of integrals are read in (or
generated otherwise) and used directly in the multiplication with the corresponding a-coefficients.
The CI matrix is therefore not needed explicitly, only the effect of its multiplication with a vector
containing the variational parameters, and storage of the entire matrix is avoided. This is the basis
for being able to handle CI problems of almost any size, and is known as direct CI. Note that it is not
“direct” in the sense used to describe the direct SCF method, where all the AO integrals are calcu-
lated as needed. The direct CI approach just assumes that the CI matrix elements (e.g. two-electron
integrals in the MO basis) are available as required, traditionally stored in a file on a disk. There are
several variations on how the a-vector is adjusted in each iteration, and the most commonly used
versions are based on the Davidson algorithm discussed in Section 17.2.5.11

. Illustrating how CI Accounts for Electron Correlation, and the RHF
Dissociation Problem

Consider the H2 molecule in a minimum basis consisting of one s-function on each center, 𝜒A and
𝜒B. An RHF calculation will produce two MOs, 𝜙1 and 𝜙2, being the sum and difference of the two
AOs. The sum of the two AOs is a bonding MO, with increased probability of finding the electrons
between the two nuclei, while the difference is an antibonding MO, with decreased probability of
finding the electrons between the two nuclei, as illustrated in Figure 4.6:

𝜙1 = (𝜒A + 𝜒B)
𝜙2 = (𝜒A − 𝜒B) (4.19)

The HF wave function will have two electrons in the lowest energy (bonding) MO:

Φ0 =
|
|
|
|
|

𝜙1(1) 𝜙1(1)
𝜙1(2) 𝜙1(2)

|
|
|
|
|

(4.20)

We have here neglected the normalization constants for both the MOs and the determinantal wave
function. The bar above the MO indicates that the electron has a 𝛽 spin function, while no bar

Bonding MO

Antibonding MOϕ2

ϕ1

Figure . Molecular orbitals for H2.
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indicates an 𝛼 spin function. In this basis, there are one doubly (Φ1) and four singly excited Slater
determinants (Φ2–5):

Φ1 =
|
|
|
|
|
|

𝜙2(1) 𝜙2(1)

𝜙2(2) 𝜙2(2)

|
|
|
|
|
|

Φ2 =
|
|
|
|
|
|

𝜙1(1) 𝜙2(1)

𝜙1(2) 𝜙2(2)

|
|
|
|
|
|

Φ3 =
|
|
|
|
|
|

𝜙1(1) 𝜙1(1)

𝜙1(2) 𝜙1(2)

|
|
|
|
|
|

Φ4 =
|
|
|
|
|

𝜙1(1) 𝜙2(1)
𝜙1(2) 𝜙2(2)

|
|
|
|
|

Φ5 =
|
|
|
|
|
|

𝜙1(1) 𝜙2(1)

𝜙1(2) 𝜙2(2)

|
|
|
|
|
|

(4.21)

Configurations Φ4 and Φ5 are clearly the Sz = 1 and Sz = −1 components of a triplet state. The plus
combination of Φ2 and Φ3 is the Sz = 0 component of the triplet and the minus combination is a
singlet configuration (see Figure 4.4). The H2 molecule belongs to the D∞h point group and the two
MOs transform as the 𝜎g (𝜙1) and 𝜎u (𝜙2) representations. The singly excited CSF (Φ2 − Φ3) has
overall Σu symmetry, while the HF (Φ0) and doubly excited determinant (Φ1) have Σg. The full 6 × 6
CI problem therefore blocks into a 2 × 2 block of singlet Σg states, a 1 × 1 block of singlet Σu and a 3 ×
3 block of triplet Σu states, as shown in Figure 4.7. Owing to the orthogonality of the spin functions,
the triplet block is already diagonal.

The full CI for the 1Σg states involves only two configurations, the reference HF and the doubly
excited determinant:

Φ0 = 𝜙1(1)𝜙1(2) − 𝜙1(1)𝜙1(2) = 𝜙1𝜙1(𝛼𝛽 − 𝛽𝛼) (4.22)
Φ1 = 𝜙2(1)𝜙2(2) − 𝜙2(1)𝜙2(2) = 𝜙2𝜙2(𝛼𝛽 − 𝛽𝛼) (4.23)

The electron coordinate in Equations (4.22) and (4.23) is given implicitly by the order in which the
orbitals are written, that is 𝜙1𝜙1[𝛼𝛽 − 𝛽𝛼] = 𝜙1(1)𝜙1(2)[𝛼(1)𝛽(2) − 𝛽(1)𝛼(2)]. Ignoring the spin
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Figure . Structure of the full CI matrix for the H2 system in a minimum basis.
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functions (which may be integrated out since H is spin-independent), the determinants can be
expanded in AOs:

Φ0 = (𝜒A(1) + 𝜒B(1))(𝜒A(2) + 𝜒B(2)) = 𝜒A𝜒A + 𝜒B𝜒B + 𝜒A𝜒B + 𝜒B𝜒A (4.24)
Φ1 = (𝜒A(1) − 𝜒B(1))(𝜒A(2) − 𝜒B(2)) = 𝜒A𝜒A + 𝜒B𝜒B − 𝜒A𝜒B − 𝜒B𝜒A (4.25)

The first two terms on the right-hand side in Equations (4.24) and (4.25) have both electrons on the
same nuclear center, and they describe ionic contributions to the wave function, H+H−. The latter
two terms describe covalent contributions to the wave function, H⋅H⋅. The HF wave function thus
contains equal amounts of ionic and covalent contributions.

The full CI wave function may be written in terms of AOs, with the optimum values of the a0 and
a1 coefficients determined by the variational procedure:

ΨCI = a0Φ0 + a1Φ1
ΨCI = (a0 + a1)(𝜒A𝜒A + 𝜒B𝜒B) + (a0 − a1)(𝜒A𝜒B + 𝜒B𝜒A) (4.26)

The HF wave function constrains both electrons to move in the same bonding orbital. By allowing
the doubly excited state to enter the wave function, the electrons can better avoid each other, as the
antibonding MO is now also available. The antibonding MO has a nodal plane (where 𝜙2 = 0) per-
pendicular to the molecular axis (Figure 4.6), and the electrons are able to correlate their movements
by being on opposite sides of this plane. This left–right correlation is a molecular equivalent of the
atomic radial correlation discussed in Section 5.2.

Consider now the behavior of the HF wave function Φ0 (Equation (4.24)) as the distance between
the two nuclei is increased toward infinity. Since the HF wave function is an equal mixture of ionic and
covalent terms, the dissociation limit is 50% H+H− and 50% H⋅H⋅. In the gas phase, all bonds disso-
ciate homolytically and the ionic contribution should be 0%. The HF dissociation energy is therefore
much too high. This is a general problem with RHF-type wave functions: the constraint of doubly
occupied MOs is inconsistent with breaking bonds to produce radicals. In order for an RHF wave
function to dissociate correctly, an even-electron molecule must break into two even-electron frag-
ments, each being in the lowest electronic state. Furthermore, the orbital symmetries must match.
There are only a few covalently bonded systems that obey these requirements (the simplest example
is HHe+). The wrong dissociation limit for RHF wave functions has several consequences:

1. The energy for stretched bonds is too high. Most transition structures have partly formed/broken
bonds; thus activation energies are too high at the RHF level.

2. The too-steep increase in energy as a function of the bond length causes the minimum on a poten-
tial energy curve to occur too “early” for covalently bonded systems, and equilibrium bond lengths
are too short at the RHF level.

3. The too-steep increase in energy as a function of the bond length causes the curvature of the
potential energy surface near the equilibrium to be too large, and vibrational frequencies, espe-
cially those describing bond stretching, are in general too high.

4. The wave function contains too much “ionic” character, and RHF dipole moments (and also atomic
charges) are in general too large.

It should be noted that dative bonds, such as in metal complexes and charge transfer species, in gen-
eral have RHF wave functions that dissociate correctly, and the equilibrium bond lengths in these
cases are normally too long.

The dissociation problem is solved in the case of a full CI wave function in this minimum basis. As
seen from Equation (4.26), the ionic term can be made to disappear by setting a1 = −a0. The full CI
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wave function generates the lowest possible energy (within the limitations of the chosen basis set)
at all distances, with the optimum weights of the HF and doubly excited determinant determined
by the variational principle. In the general case of a polyatomic molecule and large basis set, correct
dissociation of all bonds can be achieved if the CI wave function contains all determinants generated
by a full CI in the valence orbital space. The latter corresponds to a full CI if a minimum basis is
employed, but is much smaller than a full CI if an extended basis is used.

. The UHF Dissociation and the Spin Contamination Problem

The dissociation problem can also be “solved” by using a wave function of the UHF type. Here the 𝛼
and 𝛽 bonding Mos are allowed to “localize”, thereby reducing the MO symmetries to C∞v:

𝜙1 = (𝜒A + c𝜒B)𝛼 ; 𝜙1 = (c𝜒A + 𝜒B)𝛽 (4.27)

ΦUHF
0 =

|
|
|
|
|

𝜙1(1) 𝜙1(1)
𝜙1(2) 𝜙1(2)

|
|
|
|
|

(4.28)

The optimum value of c is determined by the variational principle. If c = 1, the UHF wave func-
tion is identical to RHF. This will normally be the case near the equilibrium distance. As the bond is
stretched, the UHF wave function allows each of the electrons to localize on a nucleus, causing c to
go towards 0. The point where the RHF and UHF descriptions start to differ is often referred to as the
RHF/UHF instability point.12 This is an example of symmetry breaking, as discussed in Section 3.8.3.
The UHF wave function correctly dissociates into two hydrogen atoms, but the symmetry breaking
of the MOs has two other, closely connected, consequences: introduction of electron correlation and
spin contamination. To illustrate these concepts, we need to look at the Φ0 UHF determinant, and
the six RHF determinants in Equations (4.20) and (4.21) in more detail. We will again ignore all nor-
malization constants. The six RHF determinants can be expanded in terms of the AOs as in

Φ0 = [𝜒A𝜒A + 𝜒B𝜒B + 𝜒A𝜒B + 𝜒B𝜒A](𝛼𝛽 − 𝛽𝛼)
Φ1 = [𝜒A𝜒A + 𝜒B𝜒B − 𝜒A𝜒B − 𝜒B𝜒A](𝛼𝛽 − 𝛽𝛼)
Φ2 = [𝜒A𝜒A − 𝜒B𝜒B](𝛼𝛽 − 𝛽𝛼) − [𝜒A𝜒B](𝛼𝛽 + 𝛽𝛼) (4.29)
Φ3 = [𝜒A𝜒A − 𝜒B𝜒B](𝛼𝛽 − 𝛽𝛼) + [𝜒A𝜒B − 𝜒B𝜒A](𝛼𝛽 + 𝛽𝛼)
Φ4 = [𝜒A𝜒B − 𝜒B𝜒A](𝛼𝛼)
Φ5 = [𝜒A𝜒B − 𝜒B𝜒A](𝛽𝛽)

Subtracting and adding Φ2 and Φ3 produces a pure singlet (1Φ−) and the Sz = 0 component of the
triplet (3Φ+) wave function:

1Φ− = Φ2 − Φ3 = [𝜒A𝜒A − 𝜒B𝜒B](𝛼𝛽 − 𝛽𝛼) (4.30)
3Φ+ = Φ2 + Φ3 = [𝜒A𝜒B − 𝜒B𝜒A](𝛼𝛽 + 𝛽𝛼) (4.31)

Performing the expansion of the ΦUHF
0 determinant (Equation (4.28)) gives

ΦUHF
0 = c[𝜒A𝜒A + 𝜒B𝜒B](𝛼𝛽 − 𝛽𝛼)

+ [𝜒A𝜒B𝛼𝛽 − c2𝜒B𝜒A𝛽𝛼] (4.32)
+ [c2𝜒B𝜒A𝛼𝛽 − 𝜒A𝜒B𝛽𝛼]
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Adding and subtracting factors of 𝜒A𝜒B𝛼𝛽 and 𝜒B𝜒A𝛽𝛼 allow this to be written as

ΦUHF
0 = [c(𝜒A𝜒A + 𝜒B𝜒B) + (𝜒A𝜒B + 𝜒B𝜒A)](𝛼𝛽 − 𝛽𝛼)

+ (1 − c2)[𝜒A𝜒B𝛽𝛼 − 𝜒B𝜒A𝛼𝛽] (4.33)

Since 0 ≤ c ≤ 1, the first term shows that UHF orbitals reduce the ionic contribution relative to the
covalent structures, compared with the RHF case (Equation (4.24)). This is the same effect as for
the CI procedure (Equation (4.26)), that is the first term shows that the UHF wave function partly
includes electron correlation.

The first term in Equation (4.33) can be written as a linear combination of the Φ0 and Φ1 determi-
nants, and describes a pure singlet state. The last part of the UHF determinant, however, has terms
identical to two of those in the triplet 3Φ+ combination of Equation (4.31). If we had chosen the alter-
native set of UHF orbital with the 𝛼 spin being primarily on center B in Equation (4.27), we would have
obtained the other two terms in 3Φ+, that is the last term in Equation (4.33) breaks the symmetry.
The UHF determinant is therefore not a pure spin state; it contains both singlet and triplet spin states.
This feature is known as spin contamination. For c = 1, the UHF wave function is identical to RHF
and ΦUHF

0 is a pure singlet. For c = 0, the UHF wave function only contains the covalent terms, which
is the correct dissociation behavior, but also contains equal amounts of singlet and triplet character.
When the bond distance is very large, the singlet and triplet states have identical energies, and the
spin contamination has no consequence for the energy. In the intermediate region where the bond is
not completely broken, however, spin contamination is important.

Compared with full CI, the UHF energy is too high as the higher lying triplet state is mixed into
the wave function. The variational principle guarantees that the UHF energy is lower than or equal to
the RHF energy since there are more variational parameters. The full CI energy is the lowest possible
(for the given basis set) as it recovers 100% of the correlation energy. The UHF wave function thus
lowers the energy by introducing some electron correlation, but at the same time raises the energy by
including higher energy spin states. At the single-determinant level, the variational principle guar-
antees that the first effect dominates. If the second effect dominated, the UHF would collapse to the
RHF solution. The correlation energy in general increases as a bond is stretched, and the instability
point can thus be viewed as the geometry where the correlation effect becomes larger than the spin
contamination. Pictorially, the dissociation curves appear as shown in Figure 4.8.

Another way of viewing spin contamination is to write the UHF wave function as a linear combi-
nation of pure R(O)HF determinants; for example for a singlet state,

1ΦUHF = a1
1ΦRHF + a3

3ΦROHF + a5
5ΦROHF +⋯ (4.34)

Since the UHF wave function is multideterminantal in terms of R(O)HF determinants, it follows that
it to some extent includes electron correlation (relative to the RHF reference).

The amount of spin contamination is given by the expectation value of the S2 operator, ⟨S2⟩. The
theoretical value for a pure spin state is S(S + 1), where S is the maximum value for Sz, that is ⟨S2⟩ =
0 for a singlet (S = 0), ⟨S2⟩ = 0.75 for a doublet (S = 1∕2), ⟨S2⟩ = 2.00 for a triplet (S = 1), etc. A
UHF “singlet” wave function will contain some amounts of triplet, quintet, etc., states, increasing the
⟨S2⟩ value from its theoretical value of zero for a pure spin state. Similarly, a UHF “doublet” wave
function will contain some amounts of quartet, sextet, etc., states. Usually the contribution from the
next higher spin state than the desired is the most important. The ⟨S2⟩ value for a UHF wave function
is operationally calculated from the spatial overlap between all pairs of 𝛼 and 𝛽 spin-orbitals:

⟨S2⟩ = S(S + 1) + N𝛽 −
NMO∑

ij

⟨

𝜙𝛼i
|
|
|
𝜙
𝛽

j

⟩2
(4.35)
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Figure . Bond dissociation curves for H2.

If the 𝛼 and 𝛽 orbitals are identical, there is no spin contamination, and the UHF wave function is
identical to RHF.

By including electron correlation in the wave function, the UHF method introduces more biradi-
cal character into the wave function than RHF. The spin contamination part is also purely biradical
in nature, that is a UHF treatment in general will overestimate the biradical character of the wave
function. Most singlet states are well described by a closed-shell wave function near the equilibrium
geometry and, in those cases, it is not possible to generate a UHF solution that has a lower energy
than the RHF. There are systems, however, for which this does not hold. An example is the ozone
molecule, where two types of resonance structures can be drawn, as shown in Figure 4.9.

The biradical resonance structure for ozone requires two singly occupied MOs, and it is clear that
an RHF-type wave function, which requires all orbitals to be doubly occupied, cannot describe this.
A UHF-type wave function, however, allows the 𝛼 and 𝛽 orbitals to be spatially different, and can to a
certain extent incorporate both resonance structures. Systems with biradical character will in general
have a (singlet) UHF wave function different from an RHF wave function.

O

O+

O– –O

O+

OO

O

O

Figure . Resonance structures for ozone.
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Figure . Mixing of pure singlet and triplet states may generate artificial minima on the UHF energy surface.

As mentioned above, spin contamination in general increases as a bond is stretched. This has
important consequences for transition structures, which contain elongated bonds. While most sin-
glet systems have identical RHF and UHF descriptions near the equilibrium geometry, it will often be
possible to find a lower energy UHF solution in the TS region. However, since the spin contamination
is not constant along the reaction coordinate, and since the UHF overestimates the biradical charac-
ter, it is possible that the TS actually becomes a minimum on the UHF energy surface. In other words,
the spin contamination may severely distort the shape of the potential energy surface. This may qual-
itatively be understood by considering the “singlet” UHF wave function as a linear combination of a
singlet and a triplet states, as shown in Figure 4.10.

The degree of mixing is determined by the energy difference between the pure singlet and triplet
states (as shown, for example, by second-order perturbation theory, see Section 4.8), which in general
decreases along the reaction coordinate. Even if the mixing is not large enough to actually transform
a TS to a minimum, it is clear that the UHF energy surface will be much too flat in the TS region.
Activation energies calculated at the UHF level will always be lower than the RHF value, but may
be either higher or lower than the “correct” value, depending on the amount of spin contamination,
since RHF normally overestimates activation energies.

From the above it should be clear that UHF wave functions that are spin contaminated (more than
a few percent deviation of ⟨S2⟩ from the theoretical value of S(S + 1)) have disadvantages. For closed-
shell systems, an RHF procedure is therefore normally preferred. For open-shell systems, however,
the UHF method has been widely used. It is possible to use an ROHF-type wave function for open-
shell systems, but this leads to computational procedures that are somewhat more complicated than
for the UHF case when electron correlation is introduced.

The main problem with the UHF method is the spin contamination, and there have been several
proposals on how to remove these unwanted states. There are three strategies that can be considered
for removing the contamination:

� During the SCF procedure.
� After the SCF has converged.
� After electron correlation has been added to the UHF solution.
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A popular method of removing unwanted states is to project them out with a suitable projection
operator (in the picture of the wave function being described in the coordinate system consisting
of determinants, the components of the wave function along the higher spin states is removed). As
mentioned above, the next higher spin state is usually the most important, and in many cases it is
a quite good approximation to only remove this state. After projection, the wave function is then
renormalized. If only the first contaminant is removed, this may in extreme cases actually increase
the ⟨S2⟩ value.

Performing the projection during the SCF procedure produces a wave function for which it is diffi-
cult to formulate a satisfactory theory for including electron correlation by means of perturbation or
coupled cluster methods (Sections 4.8 and 4.9). Projections of the converged UHF wave function will
lower the energy (although the projected UHF (PUHF) energy is no longer variational), since the con-
tributions of the higher lying states are removed, and only the correlation effect remains. However,
the problem of artificial distortion of the energy surface is even more pronounced at the PUHF level
than with the UHF method itself. For example, it is often found that a false minimum is generated
just after the RHF/UHF instability point on a bond dissociation curve. Furthermore, the derivatives
of the PUHF energy are not continuous at the RHF/UHF instability point (Section 12.5). Projection
of the wave function after electron correlation has been added, however, turns out to be a viable
pathway. This has mainly been used in connection with perturbation methods, to be described in
Section 4.8.2.

An approximate spin correction procedure has been proposed by K. Yamaguchi where the energy
of the pure spin state is estimated by subtracting a fraction of the energy of the higher spin state, where
the fraction is estimated from the ⟨S2⟩ values.13 For the typical case of a singlet state contaminated
by a triplet state, the energy of the pure singlet state is estimated as shown by

1Epure = 1Eimpure + f
(1Eimpure − 3Epure

)

f =
1⟨S2⟩impure

3⟨S2⟩pure − 1⟨S2⟩impure
(4.36)

The Yamaguchi correction procedure assumes that only one higher spin state contributes to the spin
contamination and that the spin contamination of the higher spin state is negligible. The procedure
can be extended to also include systems with spin contamination from several different spin states
and has the advantage that it can be applied for highly correlated wave functions and only requires
one (or a few) additional energy calculations.

. Size Consistency and Size Extensivity

As mentioned in Section 4.2.2, full CI is impossible except for very small systems. The only generally
applicable method is CISD. Consider now a series of CISD calculations in order to construct the
interaction potential between two H2 molecules as a function of the distance between them. Relative
to the HF wave function, there will be determinants that correspond to single excitations on only one
of the H2 fragments (S-type determinants), single excitations on both (D-type determinants) and
double excitations only on one of the H2 fragments (also D-type determinants). This will be the case at
all intermolecular distances, even when the separation is very large. In that case, however, the system
is just two H2 molecules, and we could consider calculating the energy instead as twice the energy of
one H2 molecule. A CISD calculation on one H2 molecule would generate singly and doubly excited
determinants, and multiplying this by two would generate determinants that are triply and quadruply
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excited for the combined H4 system. A CISD calculation of two H2 molecules separated by, say,
100 Å will therefore not give the same energy as twice the results from a CISD calculation on one H2
molecule (the latter will be lower). This problem is referred to as a Size Inconsistency. A very similar,
but not identical concept, is Size Extensivity. Size consistency is only defined if the two fragments are
non-interacting (separated by, say, 100 Å), while size extensivity implies that the method scales prop-
erly with the number of particles, that is the fragments can be interacting (separated by, say, 5 Å). Full
CI is size consistent (and extensive), but all forms of truncated CI are not. The lack of size extensivity
is the reason why CISD recovers less and less electron correlation as the systems grow larger.

. Multiconfiguration Self-Consistent Field

The MultiConfiguration Self-Consistent Field (MCSCF) method can be considered as a CI where not
only the coefficients in front of the determinants (Equation (4.2)) are optimized by the variational
principle but the MOs used for constructing the determinants are also optimized.14 The MCSCF
optimization is iterative like the SCF procedure (if the “multiconfiguration” is only one, it is simply
HF). Since the number of MCSCF iterations required for achieving convergence tends to increase
with the number of configurations included, the size of MCSCF wave functions that can be treated
is somewhat smaller than for CI methods.

When deriving the HF equations only the variation of the energy with respect to an orbital variation
was required to be zero, which is equivalent to the first derivatives of the energy with respect to the
MO expansion coefficients being equal to zero. The HF equations can be solved by an iterative SCF
method, and there are many techniques for helping the iterative procedure to converge (Section 3.8).
There is, however, no guarantee that the solution found by the SCF procedure is a minimum of the
energy as a function of the MO coefficients. In order to ensure that a minimum has been found, the
matrix of second derivatives of the energy with respect to the MO coefficients can be calculated and
diagonalized, with a minimum having only positive eigenvalues (Section 6.9.1). This is rarely checked
for SCF wave functions; in the large majority of cases the SCF procedure converges to a minimum
without problems. MCSCF wave functions, on the other hand, are much harder to converge and much
more prone to converge on solutions that are not minima. MCSCF wave function optimizations are
therefore normally carried out by expanding the energy to second order in the variational parameters
(orbital and configurational coefficients), analogously to the second-order SCF procedure described
in Section 3.8.1, and using the Newton–Raphson-based methods described in Section 13.2.3 to force
convergence to a minimum.

MCSCF methods are rarely used for calculating large fractions of the correlation energy. The orbital
relaxation usually does not recover much electron correlation, and it is more efficient to include addi-
tional determinants and keep the MOs fixed (CI) if the interest is just in obtaining a large fraction of
the correlation energy. Single-determinant HF wave functions normally give a qualitatively correct
description of the electron structure, but there are many examples where this is not the case. MCSCF
methods can be considered as an extension of single-determinant methods to give a qualitatively
correct description.

Consider again the ozone molecule with the two resonance structures shown in Figure 4.9. Each
type of resonance structure essentially translates into a different determinant. If more than one non-
equivalent resonance structure is important, this means that the wave function cannot be described
even qualitatively correctly at the RHF single-determinant level (benzene, for example, has two equiv-
alent cyclohexatriene resonance structures and is adequately described by an RHF wave function). A
UHF wave function allows some biradical character, with the disadvantages discussed in Section 4.4.
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Alternatively, a second restricted type of CSF (consisting of two determinants) with two singly occu-
pied MOs may be included in the wave function. The simplest MCSCF for ozone contains two config-
urations (often denoted TCSCF), with the optimum MOs and configurational weights determined by
the variational principle. The CSFs entering an MCSCF expansion are pure spin states, and MCSCF
wave functions therefore do not suffer from the problem of spin contamination.

Our definition of electron correlation uses the RHF energy as the reference. For ozone, both the
UHF and the TCSCF wave functions have lower energies and include some electron correlation. This
type of “electron correlation” is somewhat different from the picture presented at the start of this
chapter. In a sense it is a consequence of our chosen zero point for the correlation energy, the RHF
energy. The energy lowering introduced by adding enough flexibility in the wave function to be able to
qualitatively describe the system is sometimes called the static electron correlation. This is essentially
the effect of allowing orbitals to become (partly) singly occupied instead of forcing double occupa-
tion, that is describing near-degeneracy effects (two or more configurations having almost the same
energy). The remaining energy lowering by correlating the motion of the electrons is called dynami-
cal correlation. The problem is that there is no rigorous way of separating these effects. In the ozone
example the energy lowering by going from RHF to UHF, or to a TCSCF, is almost pure static cor-
relation. Increasing the number of configurations in an MCSCF will recover more and more of the
dynamical correlation, until, at the full CI limit, the correlation treatment is exact. As mentioned
above, MCSCF methods are mainly used for generating a qualitatively correct wave function, that is
recovering the “static” part of the correlation.

An RHF wave function cannot describe systems with partial orbital occupancy, as, for exam-
ple, a singlet biradical where two (or more) orbitals are near-degenerate. A UHF wave function
can formally describe this situation, but it is often severely spin contaminated by the triplet state.
An MCSCF-type wave function with a proper chosen set of configurations is sufficient, but is also
computationally demanding. An interesting idea is to instead describe such systems as a spin-flip
excitation from a higher spin-multiplicity state, where an electron with α spin in an orbital is trans-
ferred to another orbital with β spin. The trick is that the higher multiplicity state often can be
adequately described by a single determinant wave function, and by using the linear response for-
malism in Sections 6.9.1 and 11.10, this allows a description of multiconfigurational states by single
reference methods, such as EOM-CC15 or TDDFT.16 The singlet states of o-, m-, p-benzyne, for exam-
ple, are strongly multiconfigurational, but the corresponding triplet states are adequately described
by a single configuration. Note that the reference higher multiplicity state can be either higher or
lower in energy than the desired low-multiplicity states. The major problem with MCSCF methods
is selecting which configurations are necessary to include for the property of interest. One of the
most popular approaches is the Complete Active Space Self-Consistent Field (CASSCF) method (also
called Full Optimized Reaction Space (FORS)). Here the selection of configurations is done by parti-
tioning the MOs into active and inactive spaces. The active MOs will typically be some of the highest
occupied and some of the lowest unoccupied MOs from an RHF calculation. The inactive MOs have
either 2 or 0 electrons, that is always either doubly occupied or empty. Within the active MOs a full
CI is performed and all the proper symmetry-adapted configurations are included in the MCSCF
optimization. Which MOs to include in the active space must be decided manually, by considering
the problem at hand and the computational expense. If several points on the potential energy surface
are desired, the MCSCF active space should include all those orbitals that change significantly, or for
which the electron correlation is expected to change. A common notation is [n,m]-CASSCF, which
indicates that n electrons are distributed in all possible ways in m orbitals.

As for any full CI expansion, the CASSCF becomes unmanageably large even for quite small active
spaces. A variation of the CASSCF procedure is the Restricted Active Space Self-Consistent Field
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Figure . Illustrating the CAS and RAS orbital partitions.

(RASSCF) method.17 Here the active MOs are divided into three sections, RAS1, RAS2 and RAS3,
each having restrictions on the occupation numbers (excitations) allowed. A typical model consists
of the configurations in the RAS2 space being generated by a full CI (analogously to CASSCF), or
perhaps limited to SDTQ excitations. The RAS1 space consists of MOs that are doubly occupied in
the HF reference determinant and the RAS3 space consists of MOs that are empty in the HF. Config-
urations additional to those from the RAS2 space are generated by allowing, for example, a maximum
of two electrons to be excited from the RAS1 and a maximum of two electrons to be excited to the
RAS3 space. In essence, a typical RASSCF procedure thus generates configurations by a combination
of a full CI in a small number of MOs (RAS2) and a CISD in a somewhat larger MO space (RAS1 and
RAS3), as illustrated in Figure 4.11. The RASSCF concept can be generalized to multiple active spaces
with different restrictions of electron excitations to and from each space, an approach denoted Gen-
eralized Active Space Self-Consistent Field (GASSCF).18 A similar idea is employed in the Occupation
Restricted Maximum Orbital Spaces (ORMAS) method, where the active orbitals are subdivided into
smaller active spaces with restrictions on the number of excitations within each subspace.19

The full CI expansion within the active space severely restricts the number of orbitals and electrons
that can be treated by CASSCF methods. Table 4.3 shows how many singlet CSFs are generated for
an [n,n]-CASSCF wave function (Equation (4.16)), without reductions arising from symmetry.

Table . Number of configurations generated
in an [n,n]-CASSCF wave function.

n Number of CSFs

2 3
4 20
6 175
8 1 764

10 19 404
12 226 512
14 2 760 615
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The factorial increase in the number of CSFs effectively limits the active space for CASSCF wave
functions to fewer than 12–14 electrons/orbitals. Selecting the “important” orbitals to correlate there-
fore becomes very important. The goal of MCSCF methods is usually not to recover a large fraction of
the total correlation energy, but rather to recover all the changes that occur in the correlation energy
for the given process. Selecting the active space for an MCSCF calculation requires some insight into
the problem. There are a few rules of thumb that may be of help in selecting a proper set of orbitals
for the active space:

1. For each occupied orbital, there will typically be one corresponding virtual orbital. This leads nat-
urally to [n,m]-CASSCF wave functions where n and m are identical or nearly so.

2. Including all the valence orbitals, that is the space spanned by a minimum basis set, leads to a
wave function that can correctly describe all dissociation pathways. Unfortunately, a full valence
CASSCF wave function rapidly becomes unmanageably large for realistic-sized systems.

3. The orbital energies from an RHF calculation may be used for selecting the important orbitals.
The highest occupied and lowest unoccupied are usually the most important orbitals to include
in the active space. This can be partly justified by the formula for the second-order perturbation
energy correction (Section 4.8.1, Equation (4.58)): the smaller the orbital energy difference, the
larger contribution to the correlation energy. The numerator in Equation (4.58) should also be siz-
able and this implies that the occupied and virtual orbitals should occupy the same spatial region.
Using RHF orbital energies for selecting the active space may be problematic in two situations.
The first is when extended basis sets are used, where there will be many virtual orbitals with low
energies and the exact order is more or less accidental. Furthermore, RHF virtual orbitals basically
describe electron attachment (via Koopmans’ theorem, Section 3.4), and are therefore not par-
ticularly well suited for describing electron correlation. An inspection of the form of the orbitals
may reveal which to choose; they should be the ones that resemble the occupied orbitals in terms
of basis function contribution. A commonly used trick is to generate improved virtual orbitals by
running a calculation for the system of interest with a few electrons removed, since the lowest
virtual orbitals then become much more valence-like. The second problem is more fundamental.
If the real wave function has significant multiconfigurational character, then RHF may be qual-
itatively wrong, and selecting the active orbitals based on a qualitatively wrong wave function
may lead to erroneous results. The problem is that we wish to include the important orbitals for
describing the multideterminant nature, but these are not known until the final wave function
is known.

4. An attempt to overcome this self-referencing problem is to use the concept of natural orbitals. The
natural orbitals are those that diagonalize the density matrix (Section 10.5) and the eigenvalues are
the occupation numbers. Orbitals with occupation numbers significantly different from 0 or 2 (for
a closed-shell system) are usually those that are the most important to include in the active space.
An RHF wave function will have occupation numbers of exactly 0 or 2, and some electron cor-
relation must be included to obtain orbitals with non-integer occupation numbers. This may, for
example, be done by running a preliminary MP2 or CISD calculation prior to the MCSCF. Alter-
natively, a UHF (when different from RHF)-type wave function may also be used. The total UHF
density, which is the sum of the 𝛼 and 𝛽 density matrices, will also provide fractional occupation
numbers since UHF includes some electron correlation. The procedure may still fail. If the under-
lying RHF wave function is poor, the MP2 correction may also give poor results, and selecting the
active MCSCF orbitals based on the MP2 occupation number may again lead to erroneous results.
In practice, however, selecting active orbitals based on, for example, MP2 occupation numbers
appears to be quite efficient, and better than using RHF orbital energies.

iranchembook.ir/edu



Electron Correlation Methods 

Figure . Important configurations for a bend acetylene model.

In a CASSCF-type wave function the CI coefficients do not have the same significance as for a single-
reference CI based on HF orbitals. In a full CI (as in the active space of the CASSCF), the orbitals
may be rotated among themselves without affecting the total wave function. A rotation of the orbitals,
however, influences the magnitude of the coefficients in front of each CSF. While the HF coefficient
in a single-reference CISD gives some indication of the “multireference” nature of the wave function,
this is not the case for a CASSCF wave function, where the corresponding CI coefficient is arbitrary.

It should be noted that CASSCF methods inherently tend to give an unbalanced description, since
all the electron correlation recovered is in the active space, with none in the inactive space, or between
the active and inactive electrons.20 This is not a problem if all the valence electrons are included in
the active space, but this is only possible for small systems. If only some of the valence electrons are
included in the active space, the CASSCF method tends to overestimate the importance of “biradi-
cal” structures. Consider, for example, acetylene where the hydrogens have been bent 60◦ away from
linearity (this may be considered a model for orthobenzyne). The in-plane “π-orbital” now acquires
significant biradical character. The true structure may be described as a linear combination of the
following three configurations.

The structure on the left is biradical, while the two others are ionic, corresponding to both electrons
being at the same carbon. The simplest CASSCF wave function that can qualitatively describe this
system has two electrons in two orbitals, giving the three configurations shown above. The dynamical
correlation between the two active electrons will tend to keep them as far apart as possible, that is
favoring the biradical structure. Consider now a full valence CASSCF wave function with ten elec-
trons in ten orbitals. This will analogously tend to separate the two electrons in each bond with one
being at each end. The correlation of the electrons in the C—H bonds, for example, will place more
electron density on the carbon atoms. This in turn favors the ionic structures in Figure 4.12 and dis-
favors the biradical, that is the dynamical correlation of the other electrons may take advantage of the
empty orbital in the ionic structures but not in the biradical structure. These general considerations
may be quantified by considering the natural orbital occupancies for increasingly large CASSCF wave
functions, as shown in Table 4.4 with the 6-31G(d,p) basis.

The [4,4]-CASSCF also includes the two out-of-plane π-orbitals in the active space, while the
[10,10]-CASSCF generates a full-valence CI wave function. The unbalanced description for the

Table . Natural orbital occupation numbers for the distorted acetylene model in Figure 4.12;
only the occupation numbers for the six “central” orbitals are shown.

n n n n n n

RHF 2.00 2.00 2.00 0.00 0.00 0.00
UHF 2.00 1.72 1.30 0.70 0.28 0.01
[2,2]-CASSCF 2.00 2.00 1.62 0.38 0.00 0.00
[4,4]-CASSCF 2.00 1.85 1.67 0.33 0.14 0.00
[10,10]-CASSCF 1.97 1.87 1.71 0.30 0.13 0.02
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[2,2]-CASSCF is reminiscent of the spin contamination problem for UHF wave functions, although
the effect is much less pronounced. Nevertheless, the overestimation may be severe enough to alter
the qualitative shape of energy surfaces, for example turning transition structures into minima, as
illustrated in Figure 4.10. MCSCF methods are therefore not “black box” methods such as, for exam-
ple, HF and MP (Section 4.8.1); selecting a proper number of configurations, and the correct orbitals,
to give a balanced description of the problem at hand requires some experimentation and insight.

. Multireference Configuration Interaction

The CI methods described so far consider only CSFs generated by exciting electrons from a single
determinant. This corresponds to having an HF-type wave function as the reference. However, an
MCSCF wave function may also be chosen as the reference. In that case, a CISD involves excitations
of one or two electrons out of all the determinants that enter the MCSCF, defining the MultiReference
Configuration Interaction (MRCI) method.14 Compared with the single-reference CISD, the number
of configurations is increased by a factor roughly equal to the number of configurations included
in the MCSCF. Large-scale MRCI wave functions (many configurations in the MCSCF) can gener-
ate very accurate wave functions, but are also computationally very intensive. Since MRCI methods
truncate the CI expansion, they are not size extensive.

Even truncating the (MR) CI expansion at the singles and doubles level frequently generates more
configurations than can be handled readily. A further truncation is sometimes performed by select-
ing only those configurations that have an “interaction” with the reference configuration(s) above a
selected threshold, where the “interaction” is evaluated by second-order perturbation theory (Sec-
tion 4.8). Such state-selected CI (or MCSCF) methods all involve a preset cutoff below which con-
figurations are neglected. This may cause problems for comparing energies of different geometries,
since the potential energy surface may become discontinuous; that is at some point the importance
of a given configuration drops below the threshold and the contribution suddenly disappears.

. Many-Body Perturbation Theory

The idea in perturbation methods is that the problem at hand only differs slightly from a problem
that has already been solved (exactly or approximately). The solution to the given problem should
therefore in some sense be close to the solution to the already known system. This is described math-
ematically by defining a Hamiltonian operator that consists of two parts, a reference (H0) and a per-
turbation (H′). The premise of perturbation methods is that the H′ operator in some sense is “small”
compared with H0. Perturbation methods can be used in quantum mechanics for adding corrections
to solutions that employ an independent-particle approximation, and the theoretical framework is
then called Many-Body Perturbation Theory (MBPT).

Let us assume that the Schrödinger equation for the reference Hamiltonian operator is solved:

H = H0 + 𝜆H′

H0Φi = EiΦi, i = 0, 1, 2,… ,∞ (4.37)

The solutions for the unperturbed Hamiltonian operator form a complete set (since H0 is Hermitian),
which can be chosen to be orthonormal, and 𝜆 is a (variable) parameter determining the strength of
the perturbation. At present, we will only consider cases where the perturbation is time-independent
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and the reference wave function is non-degenerate. To keep the notation simple, we will furthermore
only consider the lowest energy state. The perturbed Schrödinger equation is given by

HΨ = W Ψ (4.38)

As the perturbation is increased from zero to a finite value, the energy and wave function must
change continuously, and they can be written as an expansion in powers of the perturbation
parameter 𝜆:

W = 𝜆0W0 + 𝜆1W1 + 𝜆2W2 + 𝜆3W3 +⋯

Ψ = 𝜆0Ψ0 + 𝜆1Ψ1 + 𝜆2Ψ2 + 𝜆3Ψ3 +⋯ (4.39)

For 𝜆= 0, H = H0 and it is seen that Ψ0 =Φ0 and W0 = E0, and this is the unperturbed or zeroth-order
wave function and energy. The Ψ1, Ψ2,… and W1, W2,… are the first-order, second-order, etc., cor-
rections. The 𝜆 parameter will eventually be set equal to 1 and the nth-order energy or wave function
becomes a sum of all terms up to order n.

It is convenient to choose the perturbed wave function to be intermediately normalized, that is the
overlap with the unperturbed wave function should be 1. This has the consequence that all correction
terms are orthogonal to the reference wave function:

⟨Ψ|Φ0⟩ = 1
⟨Ψ0 + 𝜆Ψ1 + 𝜆2Ψ2 +⋯ |Φ0⟩ = 1

⟨Φ0|Φ0⟩ + 𝜆⟨Ψ1|Φ0⟩ + 𝜆2⟨Ψ2|Φ0⟩ +⋯ = 1 (4.40)
⟨Ψi≠0|Φ0⟩ = 0

Once all the correction terms have been calculated, it is trivial to normalize the total wave function.
With the expansions in Equation (4.39), the Schrödinger Equation (4.38) becomes

(H0 + 𝜆H′)(𝜆0Ψ0 + 𝜆1Ψ1 + 𝜆2Ψ2 +⋯)
= (𝜆0W0 + 𝜆1W1 + 𝜆2W2 +⋯)(𝜆0Ψ0 + 𝜆1Ψ1 + 𝜆2Ψ2 +⋯) (4.41)

Since this holds for any value of 𝜆, we can collect terms with the same power of 𝜆 to give

𝜆0 : H0Ψ0 = W0Ψ0
𝜆1 : H0Ψ1 + H′Ψ0 = W0Ψ1 + W1Ψ0
𝜆2 : H0Ψ2 + H′Ψ1 = W0Ψ2 + W1Ψ1 + W2Ψ0 (4.42)

𝜆n : H0Ψn + H′Ψn−1 =
n∑

i=0
WiΨn−i

These are the zero-, first-, second-, nth-order perturbation equations. The zeroth-order equation is
just the Schrödinger equation for the unperturbed problem. The first-order equation contains two
unknowns, the first-order correction to the energy, W1, and the first-order correction to the wave
function, Ψ1. The nth-order energy correction can be calculated by multiplying from the left by Φ0
and integrating, and using the “turnover rule ” ⟨Φ0|H0|Ψi⟩ = ⟨Ψi|H0|Φ0⟩

∗:

⟨Φ0|H0|Ψn⟩ + ⟨Φ0|H′|Ψn−1⟩ =
n−1∑

i=0
Wi⟨Φ0|Ψn−i⟩ + Wn⟨Φ0|Ψ0⟩

E0⟨Ψn|Φ0⟩ + ⟨Φ0|H′|Ψn−1⟩ = Wn⟨Φ0|Ψ0⟩ (4.43)
Wn = ⟨Φ0|H′|Ψn−1⟩
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From this it would appear that the (n − 1)th-order wave function is required for calculating the
nth-order energy. However, by using the turnover rule and the nth- and lower-order perturbation
Equations (4.42), it can be shown that knowledge of the nth-order wave function actually allows a
calculation of the (2n + 1)th-order energy:

W2n+1 = ⟨Ψn|H′|Ψn⟩ −
n∑

k,l=0
W2n+1−k−l⟨Ψk|Ψl⟩ (4.44)

Up to this point, we are still dealing with undetermined quantities, energy and wave function cor-
rections at each order. The first-order equation is one equation with two unknowns. Since the solu-
tions to the unperturbed Schrödinger equation generate a complete set of functions, the unknown
first-order correction to the wave function can be expanded in these functions. This is known as
Rayleigh–Schrödinger perturbation theory, and the 𝜆1 equation in Equation (4.42) becomes

Ψ1 =
∑

i
aiΦi

(H0 − W0)
(
∑

i
aiΦi

)

+ (H′ − W1)Φ0 = 0
(4.45)

Multiplying from the left by Φ0
∗ and integrating yields the following equation, where the orthonor-

mality of the Φi is used (this also follows directly from Equation (4.44)):
∑

i
ai⟨Φ0|H0|Φi⟩ − W0

∑

i
ai⟨Φ0|Φi⟩ + ⟨Φ0|H′|Φ0⟩ − W1⟨Φ0|Φ0⟩ = 0

∑

i
aiEi⟨Φ0|Φi⟩−a0E0 + ⟨Φ0|H′|Φ0⟩ − W1 = 0 (4.46)

a0E0 − a0E0 + ⟨Φ0|H′|Φ0⟩ − W1 = 0

W1 = ⟨Φ0|H′|Φ0⟩

The last equation shows that the first-order correction to the energy is an average of the perturbation
operator over the unperturbed wave function.

The first-order correction to the wave function can be obtained by multiplying Equation (4.42) from
the left by a function other than Φ0 (Φj) and integrating to give

∑

i
ai⟨Φj|H0|Φi⟩ − W0

∑

i
ai⟨Φj|Φi⟩ + ⟨Φj|H′|Φ0⟩ − W1⟨Φj|Φ0⟩ = 0
∑

i
aiEi⟨Φj|Φi⟩−ajE0 + ⟨Φ0|H′|Φ0⟩ = 0 (4.47)

ajEj − ajE0 + ⟨Φj|H′|Φ0⟩ = 0

aj =
⟨Φj|H′|Φ0⟩

E0 − Ej

The expansion coefficients determine the first-order correction to the perturbed wave function
(Equation (4.36)), and they can be calculated from the known unperturbed wave functions and ener-
gies. The coefficient in front of Φ0 for Ψ1 cannot be determined from the above formula, but the
assumption of intermediate normalization (Equation (4.40)) makes a0 = 0. Starting from the second-
order perturbation Equation (4.42), analogous formulas can be generated for the second-order
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corrections. Using intermediate normalization (a0 = b0 = 0), the second-order energy correction
is given by Equation (4.49):

Ψ2 =
∑

i
biΦi (4.48)

(H0 − W0)
(
∑

i
biΦi

)

+ (H′ − W1)
(
∑

i
aiΦi

)

− W2Φ0 = 0
∑

i
bi⟨Φ0|H0|Φi⟩ − W0

∑

i
bi⟨Φ0|Φi⟩+

∑

i
ai⟨Φ0|H′|Φi⟩ − W1

∑

i
ai⟨Φ0|Φi⟩ − W2⟨Φ0|Φ0⟩ = 0

∑

i
biEi⟨Φ0|Φi⟩ − b0E0 +

∑

i
ai⟨Φ0|H′|Φi⟩ − a0W1 − W2 = 0

b0E0 − b0E0 +
∑

i
ai⟨Φ0|H′|Φi⟩ − W2 = 0

W2 =
∑

i
ai⟨Φ0|H′|Φi⟩ =

∑

i≠0

⟨Φ0|H′|Φi⟩⟨Φi|H′|Φ0⟩

E0 − Ei

(4.49)

The last equation shows that the second-order energy correction may be written in terms of the
first-order wave function (ci) and matrix elements over unperturbed states. The second-order wave
function correction is given by

∑

i
bi⟨Φj|H0|Φi⟩ − W0

∑

i
bi⟨Φj|Φi⟩

+
∑

i
ai⟨Φj|H′|Φi⟩ − W1

∑

i
ai⟨Φj|Φi⟩ − W2⟨Φj|Φ0⟩ = 0

∑

i
biEi⟨Φj|Φi⟩ − bjE0 +

∑

i
ai⟨Φj|H′|Φi⟩ − ajW1 = 0

bjEj − bjE0 +
∑

i
ai⟨Φj|H′|Φi⟩ − aj⟨Φ0|H′|Φ0⟩ = 0

bj =
∑

i≠0

⟨Φj|H′|Φi⟩⟨Φi|H′|Φ0⟩

(E0 − Ej)(E0 − Ei)
−

⟨Φj|H′|Φ0⟩⟨Φ0|H′|Φ0⟩

(E0 − Ej)2

(4.50)

The formulas for higher-order corrections become increasingly complex; the third-order energy cor-
rection, for example, is given by

W3 =
∑

i,j≠0

⟨Φ0|H′|Φi⟩[⟨Φi|H′|Φj⟩⟨Φj|H′|Φ0⟩ − 𝛿ij⟨Φ0|H′|Φ0⟩⟨Φj|H′|Φ0⟩]
(E0 − Ei)(E0 − Ej)

(4.51)

The main point, however, is that all corrections can be expressed in terms of matrix elements of the
perturbation operator over unperturbed wave functions and the unperturbed energies.

4.8.1 Møller–Plesset Perturbation Theory

So far, the theory has been completely general. In order to apply perturbation theory to the calcula-
tion of correlation energy, the unperturbed Hamiltonian operator must be selected. The most com-
mon choice is to take this as a sum over Fock operators, leading to Møller–Plesset (MP) perturbation
theory.21, 22 The sum of Fock operators counts the (average) electron–electron repulsion twice (Equa-
tion (3.44)), and the perturbation becomes the exact Vee operator minus twice the ⟨Vee⟩ operator. The
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operator associated with this difference is often referred to as the fluctuation potential. This choice is
not really consistent with the basic assumption that the perturbation should be small compared with
H0. However, it does fulfill the other requirement that solutions to the unperturbed Schrödinger
equation should be known. Furthermore, this is the only choice that leads to a size extensive method,
which is a desirable feature:

H0 =
Nelec∑

i=1
Fi =

Nelec∑

i=1

(

hi +
Nelec∑

j=1
(Jj − Kj)

)

=
Nelec∑

i=1
hi +

Nelec∑

i=1

Nelec∑

j=1
⟨gij⟩ =

Nelec∑

i=1
hi + 2⟨Vee⟩ (4.52)

H′ = H − H0 =
Nelec∑

i=1

Nelec∑

j>i
gij −

Nelec∑

i=1

Nelec∑

j=1
⟨gij⟩ = Vee − 2⟨Vee⟩

The zeroth-order wave function is the HF determinant and the zeroth-order energy is just a sum of
MO energies:

W0 = ⟨Φ0|H0|Φ0⟩ =

⟨

Φ0

|
|
|
|
|
|

Nelec∑

i=1
Fi

|
|
|
|
|
|

Φ0

⟩

=
Nelec∑

i=1
𝜀i (4.53)

Recall that the orbital energy is the energy of an electron in the field of all the nuclei and includes the
repulsion to all other electrons (Equation (3.46)), and therefore counts the electron–electron repul-
sion twice. The first-order energy correction is the average of the perturbation operator over the
zeroth-order wave function (Equation (4.46)):

W1 = ⟨Φ0|H′|Φ0⟩ = ⟨Vee⟩ − 2⟨Vee⟩ = −⟨Vee⟩ (4.54)

This yields a correction for the overcounting of the electron–electron repulsion at zeroth order. Com-
paring Equation (4.54) with the expression for the total energy in Equation (3.33), it is seen that the
first-order energy (sum of W0 and W1) is exactly the HF energy. Using the notation E(MPn) to indicate
the correction at order n and MPn to indicate the total energy up to order n, we have

MP0 = E(MP0) =
Nelec∑

i=1
𝜀i

MP1 = E(MP0) + E(MP1) = E(HF)
(4.55)

Electron correlation energy thus starts at order two with this choice of H0.
In developing the perturbation theory, it was assumed that the solutions to the unperturbed prob-

lem formed a complete set. This in general means that there must be an infinite number of functions,
which is impossible in actual calculations. The lowest energy solution to the unperturbed problem is
the HF wave function and additional higher energy solutions are excited Slater determinants, analo-
gous to the CI method. When a finite basis set is employed, it is only possible to generate a finite
number of excited determinants. The expansion of the many-electron wave function is therefore
truncated.

Let us look at the expression for the second-order energy correction, Equation (4.49). This involves
matrix elements of the perturbation operator between the HF reference and all possible excited states.
Since the perturbation is a two-electron operator, all matrix elements involving triple, quadruple, etc.,
excitations are zero. When canonical HF orbitals are used, matrix elements with singly excited states
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are also zero, as indicated in

⟨
Φ0 ||H

′|
|Φ

a
i
⟩
=

⟨

Φ0

|
|
|
|
|

H −
Nelec∑

j
Fj

|
|
|
|
|

Φa
i

⟩

=
⟨
Φ0||H|

|Φ
a
i
⟩
−

⟨

Φ0

|
|
|
|
|

Nelec∑

j
Fj

|
|
|
|
|

Φa
i

⟩

(4.56)

=
⟨
Φ0||H|

|Φ
a
i
⟩
−

(Nelec∑

j
𝜀j

)
⟨
Φ0||Φ

a
i
⟩
= 0

The first bracket is zero owing to Brillouin’s theorem (Section 4.2.1) and the second set of brackets is
zero owing to the orbitals being eigenfunctions of the Fock operators and orthogonal to each other.
The second-order correction to the energy, which is the first contribution to the correlation energy,
thus only involves a sum over doubly excited determinants. These can be generated by promoting two
electrons from occupied orbitals i and j to virtual orbitals a and b. The summation must be restricted
such that each excited state is only counted once:

W2 =
occ∑

i<j

vir∑

a<b

⟨

Φ0
|
|
|
H′||

|
Φab

ij

⟩⟨

Φab
ij
|
|
|
H′||

|
Φ0

⟩

E0 − Eab
ij

(4.57)

The matrix elements between the HF and a doubly excited state are given by two-electron integrals
over MOs (Equation (4.10)). The difference in total energy between two Slater determinants becomes
a difference in MO energies (essentially Koopmans’ theorem), and the explicit formula for the second-
order Møller–Plesset correction is given by

E(MP2) =
occ∑

i<j

vir∑

a<b

(⟨𝜙i𝜙j|𝜙a𝜙b⟩ − ⟨𝜙i𝜙j|𝜙b𝜙a⟩)2

𝜀i + 𝜀j − 𝜀a − 𝜀b
(4.58)

Once the two-electron integrals over MOs are available, the second-order energy correction can be
calculated as a sum over such integrals. There are of the order of M4

basis integrals; thus the calculation
of the energy (only) increases as M4

basis with the system size. However, the transformation of the
integrals from the AO to the MO basis grows as M5

basis (Section 4.2.1). MP2 is an M5
basis method, but

fairly inexpensive as not all two-electron integrals over MOs are required. Only those corresponding
to the combination of two occupied and two virtual MOs are needed. In practical calculations, this
means that the MP2 energy for systems with a few hundred basis functions can be calculated at a
cost similar to or less than what is required for calculating the HF energy. MP2 typically accounts
for 80–90% of the correlation energy and it is the most economical method for including electron
correlation.

The HF wave function includes Fermi correlation (between electrons having the same spin) due
to the antisymmetry of the wave function, and it is thus expected that MP2 will describe the same-
spin (SS) and opposite-spin (OS) correlation with different accuracy. This forms the basis for the Spin
Component Scaled MP2 (SCS-MP2) methods where the SS and SO components of the MP2 correla-
tion energy are scaled separately by empirical constants.23 If the constant for the SO contribution is
set to zero, the method is denoted Spin Opposite Scaled MP2 (SOS-MP2) which has the advantage
that it can be evaluated with a computational effort that only scales as M4

basis. The optimum scaling
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constants depend on the application, but the results are usually significantly better than the regular
MP2 methods.

The formula for the first-order correction to the wave function (Equation (4.47)) similarly only con-
tains contributions from doubly excited determinants. Since knowledge of the first-order wave func-
tion allows calculation of the energy up to third order (2n + 1 = 3, Equation (4.44)), it is immediately
clear that the third-order energy also only contains contributions from doubly excited determinants.
Qualitative speaking, the MP2 contribution describes the correlation between pairs of electrons while
MP3 describes the interaction between pairs. The formula for calculating this contribution is given in
Equation (4.51) and involves a computational effort that formally increases as M6

basis. The third-order
energy typically accounts for 90–95% of the correlation energy.

The formula for the second-order correction to the wave function (Equation (4.50)) contains prod-
ucts of the type ⟨Φj|H′|Φi⟩⟨Φi|H′|Φ0⟩. The Φ0 is the HF determinant and the last bracket can only be
non-zero if Φi is a doubly excited determinant. This means that the first bracket only can be non-zero
if Φj is either a singly, doubly, triply or quadruply excited determinant (since H′ is a two-electron
operator). The second-order wave function allows calculation of the fourth- and fifth-order ener-
gies, and these terms therefore have contributions from determinants that are singly, doubly, triply
or quadruply excited. The computational cost of the fourth-order energy without the contribution
from the triply excited determinants, MP4(SDQ), increases as M6

basis, while the triples contribution
increases as M7

basis. MP4 is still a computationally feasible model for many molecular systems, requir-
ing a time similar to CISD. In typical calculations, the T contribution to MP4 will take roughly the
same amount of time as the SDQ contributions, but the triples are often the most important at fourth
order. The full fourth-order energy typically accounts for 95–98% of the correlation energy.

The fifth-order correction to the energy also involves S, D, T and Q contributions, and the sixth-
order term introduces quintuple and sextuple excitations.22 The working formulas for the MP5 and
MP6 contributions are so complex that actual calculations are only possible for small systems. The
computational effort for MP5 increases as M8

basis and for MP6 as M9
basis. There is little experience with

the performance of MPn beyond MP4.
As shown in Table 4.2, the most important contribution to the energy in a CI procedure comes from

doubly excited determinants. This is also shown by the perturbation expansion; the second- and third-
order energy corrections only involve doubles. At fourth order the singles, triples and quadruples
enter the expansion for the first time. This is again consistent with Table 4.2, which shows that these
types of excitations are of similar importance.

CI methods determine the energy by a variational procedure and the energy is consequently an
upper bound to the exact energy. There is no such guarantee for perturbation methods and it is pos-
sible that the energy will be lower than the exact energy. This is rarely a problem and may in fact
be advantageous. Limitations in the basis set often mean that the error in total energy is several au
(thousands of kJ/mol) anyway. In the large majority of cases, the interest is not in total energies but
in energy differences. Having a variational upper bound for two energies does not give any bound
for the difference between these two numbers. The main interest is therefore that the error remains
relatively constant for different systems, and the absence of a variational bound can allow for error
cancellations. The lack of size extensivity of CI methods, on the other hand, is disadvantageous in
this respect. The MP perturbation method is size extensive, but other forms of MBPT are not. It is
now generally recognized that size extensivity is an important property and the MP form of MBPT
is used almost exclusively.

The main limitation of perturbation methods is the assumption that the zeroth-order wave func-
tion is a reasonable approximation to the real wave function, that is the perturbation operator is
sufficiently “small”. The more poorly the HF wave function describes the system, the larger are the
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correction terms and the more terms must be included to achieve a given level of accuracy. If the ref-
erence state is a poor description of the system, the convergence may be so slow or erratic that pertur-
bation methods cannot be used. Actually, it is difficult to assess whether the perturbation expansion
is convergent or not, although the first few terms for many systems show a behavior that suggests
that it is the case. This may to some extent be deceptive, as it has been demonstrated that the con-
vergence properties depend on the size of the basis set24 and the majority of studies have employed
small- or medium-sized basis sets. A convergent series in, for example, a DZP-type basis may become
divergent or oscillating in a larger basis, especially if diffuse functions are present.

The convergence properties for the perturbation series can be analyzed by considering the parti-
tioned Hamiltonian in Equation (4.37), with 𝜆 being a parameter connecting the reference system
(𝜆 = 0) with the real physical system (𝜆 = 1).25, 26 For analyzing the convergence behavior, we must
allow 𝜆 also to have complex values:

H(𝜆) = H0 + 𝜆H′ (4.59)

For a given 𝜆 value, the (exact) energy of the ground state can be written as an infinite summation of
all perturbation terms:

E(𝜆) =
∞∑

i=0
Wi𝜆

i (4.60)

The mathematical theory of infinite series states that this summation is only convergent within a given
radius R, that is the infinite series in Equation (4.60) only has a well-defined value if |𝜆| < R. Since we
are interested in the situation where 𝜆 = 1, this translates into the condition R > 1. The convergence
radius is determined by the smallest value of 𝜆 where another state becomes degenerate with the
ground state; that is the MP perturbation series is only convergent if there are no excited states that
become degenerate with the ground state within the circle in the complex plane corresponding to
|𝜆| = 1. This includes non-physical situations where 𝜆 is negative, that is where the perturbation cor-
responds to the electron–electron interaction being attractive. In MP theory the zeroth-order energy
is the sum of orbital energies, which includes the average electron–electron interaction twice, and the
first-order energy correction W1 is the negative of the average electron–electron interaction (Equa-
tion (4.54)). Since W1 is smaller for excited states than for the ground state (more diffuse orbitals),
this means that a negative 𝜆 value will raise the ground state more in energy than an excited state, and
this may be sufficient to overcome the energy separation at 𝜆 = 0. This is especially true when diffuse
basis functions are included, since they preferentially improve the description of excited states and
such intruder states are the reason for the non-convergent behavior of the MP perturbation series.
A complete search for intruder states within the complex plane corresponding to |𝜆| = 1 is difficult
even for simple systems and a less rigorous search for avoided crossings along the real axis is also
demanding. Establishing the convergence or divergence of the MP expansion on a case-by-case basis
is unmanageable and one is therefore limited to observing the behavior for the first few terms.

In the ideal case, the HF, MP2, MP3 and MP4 results show a monotonic convergence toward a
limiting value, with the corrections being of the same sign and numerically smaller as the order of
perturbation increases. Unfortunately, this is not the typical behavior. Even in systems where the
reference is well described by a single determinant, oscillations in a given property as a function of
perturbation order are often observed. An analysis by Cremer indicates that a smooth convergence
(of the total energy) is only expected for systems containing well-separated electron pairs and that
oscillations occur when this is not that case.22 The latter encompass systems containing lone pairs
and/or multiple bonds, covering the large majority of molecules. It should be noted that one cannot
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Figure . Typical oscillating behavior of results obtained with the MP method.

conclude anything about the convergence properties of the whole perturbation series from either the
monotonic or oscillating behavior of the first few terms.

In practice, only low orders of perturbation theory can be carried out, and it is often observed that
the HF and MP2 results differ considerably, the MP3 result moves back towards the HF and the MP4
away again (Figure 4.13). For “well-behaved” systems the correct answer is often somewhere between
the MP3 and MP4 results. MP2 typically overshoots the correlation effect, but often gives a better
answer than MP3, at least if medium-sized basis sets are used. Just as the first term involving doubles
(MP2) tends to overestimate the correlation effect, it is often observed that MP4 overestimates the
effect of the singles and triples contributions, since they enter the series for the first time at fourth
order.

When the reference wave function contains substantial multireference character, a perturbation
expansion based on a single determinant will display poor convergence. If the reference wave function
suffers from symmetry breaking (Section 3.8.3), the MP method is almost guaranteed to give absurd
results. The questionable convergence of the MP method has caused it to be significantly less popular,
although MP2 continues to be a computationally inexpensive way of including the majority of the
electron correlation effect.

4.8.2 Unrestricted and Projected Møller–Plesset Methods

When the reference is an RHF-type wave function the dissociation limit will normally be incorrect.
As a bond is stretched, RHF gives an increasingly poorer description of the wave function, and conse-
quently causes the perturbation series to break down. The use of a UHF wave function allows a correct
dissociation limit in terms of energy but at the cost of introducing spin contamination (Sections 4.3
and 4.4). It is straightforward to derive an MP method based on a UHF reference wave function
(UMP): in this case the unperturbed Hamiltonian operator is a sum of the 𝛼 and 𝛽 Fock operators.
The addition of electron correlation decreases the spin contamination of the wave function (in the full
CI limit the spin contamination is zero) but the improvement is usually small at low orders (2–4) of
perturbation theory. As illustrated in Section 4.4, the UHF energy is lower than that of RHF owing to
the inclusion of some electron correlation (mainly static), but it also contains some amounts of higher
energy spin states. Since MP methods recover a large part of the electron correlation (both static and
dynamical), the net effect at the UMP level is an increase in energy due to spin contamination. In
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the dissociation limit, this has no consequence, as the different spin states have equal energies. In the
intermediate region, where the bond is not completely broken, it is usually observed that the RMPn
energy is lower than the UMPn energy, although the RHF energy is higher than the UHF energy (see
also Section 12.5). The spin contamination in UHF wave functions causes an UMPn expansion to
converge more slowly than RMPn.27 For open-shell systems, where RHF cannot be used, this would
suggest that the reference wave function should be of the ROHF type, instead of UHF. Formulation
of ROHF-based perturbation methods, however, is somewhat more difficult than for the UHF case.
The reason is that for an ROHF wave function it is not possible to choose a set of MOs that makes the
matrix of Lagrange multipliers diagonal (Equations (3.41) and (3.42)). There is thus not a unique set
of canonical MOs to be used in the perturbation expansion, which again has the consequence that
several choices of the unperturbed Hamiltonian operator are possible.28 Different ROMP methods
therefore give different energies, and there are no firm theoretical grounds for choosing one over the
other.29, 30 In practice, however, different choices of the unperturbed Hamiltonian operator lead to
similar results.

While projection methods for removing spin contamination are not recommended at the HF level,
they work quite well at the UMP level. Formulas have been derived for removing all contaminants
at the UMP2 level and also the first few states at the UMP3 and UMP4 levels.31, 32 The associated
acronyms are PUMP and PMP, denoting slightly different methods, although in practice they give
similar results. For singlet wave functions with bond lengths only slightly longer than the RHF/UHF
instability point, such PUMP methods tend to give results very similar to those based on an RHF
wave function. At longer bond lengths the RMP perturbation series eventually breaks down, while
the PUMP methods approach the correct dissociation limit. It would therefore appear that PUMP
methods should always be preferred. There are, however, also some computational factors to consider.
First, UMP methods are by nature a factor of ∼two more expensive since there are twice as many MO
coefficients. Second, the projection itself also requires CPU time. This is especially true if many of
the higher spin states need to be removed, or for projection at the MP4 level. Third, it is difficult to
formulate derivatives of projected wave functions, which limits PUMP methods to the calculation of
energies. A rule of thumb says that for uncomplicated systems the RMP4 treatment gives acceptable
accuracy (relative errors of the order of a ∼10 kJ/mol) up to bond lengths ∼1.5 times the equilibrium
length. Longer bonds are better treated by PUMP methods (see also Section 12.5). Most transition
structures have bond lengths shorter than ∼1.5 times the equilibrium length and RMP4 often gives
quite accurate activation energies.

Just as single-reference CI can be extended to MRCI, it is also possible to use perturbation methods
with a multideterminant reference wave function. A formulation of MR-MBPT methods, however, is
not straightforward. The main problem here is similar to that with ROMP methods: the choice of the
unperturbed Hamiltonian operator. Several different choices are possible, which will give different
answers when the theory is carried out only to low order. Nevertheless, there are several different
implementations of MP2-type expansions based on a MCSCF reference, often denoted CASMP2,
CASPT2 or MRPT2.33, 34 An extension to third order has also been reported, with the acronym
CASPT3.35

. Coupled Cluster

Perturbation methods add all types of corrections (S, D, T, Q, etc.) to the reference wave function to
a given order (2, 3, 4, etc.). The idea in Coupled Cluster (CC) methods is to include all corrections of
a given type to infinite order.36 Let us start by defining an excitation operator T as in

T = T1 + T2 + T3 +⋯ + TNelec
(4.61)
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The Ti operator acting on an HF reference wave function Φ0 generates all ith excited Slater determi-
nants:

T1Φ0 =
occ∑

i

vir∑

a
ta
i Φ

a
i (4.62)

T2Φ0 =
occ∑

i<j

vir∑

a<b
tab
ij Φ

ab
ij (4.63)

It is customary in coupled cluster theory to use the term amplitudes for the expansion coefficients t,
which are equivalent to the a coefficients in Equation (4.1).

Using intermediate normalization, a CI wave function can be generated by allowing the excitation
operator to work on an HF wave function:

ΨCI = (1 + T)Φ0 = (1 + T1 + T2 + T3 + T4 +⋯)Φ0 (4.64)

The corresponding coupled cluster wave function, on the other hand, is defined in

ΨCC = eTΦ0 (4.65)

The exponential operator can be written as a Taylor expansion:

eT = 1 + T + 1
2 T2 + 1

6 T3 +⋯ =
∞∑

k=0

1
k!

Tk (4.66)

From Equations (4.61) and (4.65) the exponential operator may be written as

eT = 1 + T1 +
(

T2 +
1
2 T2

1

)

+
(

T3 + T2T1 +
1
6 T3

1

)

+
(

T4 + T3T1 +
1
2 T2

2 +
1
2 T2T2

1 +
1

24 T4
1

)

+⋯ (4.67)

The first term generates the reference HF and the second all singly excited states. The first parenthesis
generates all doubly excited states, which may be considered as connected (T2) or disconnected (T2

1).
The second parenthesis generates all triply excited states, which again may be either “true” (T3) or
“product” triples (T2T1, T3

1). The quadruply excited states can similarly be viewed as composed of five
terms, a true quadruple and four product terms. Physically, a connected type such as T4 corresponds
to four electrons interacting simultaneously, while a disconnected term such as T2

2 corresponds to two
non-interacting pairs of interacting electrons. By comparison with the CI wave function in Equa-
tion (4.64), it is seen that the CC wave function at each excitation level contains additional terms
arising from products of excitations.

With the coupled cluster wave function in Equation (4.65) the Schrödinger equation becomes

HeTΦ0 = ECCeTΦ0 (4.68)

At this point, one could proceed analogously to CI and evaluate the energy as an expectation value
of the CC wave function and use the variational principle to determine the amplitudes:

Evar
CC =

⟨ΨCC|H|ΨCC⟩

⟨ΨCC|ΨCC⟩
=

⟨eTΦ0|H|eTΦ0⟩

⟨eTΦ0|eTΦ0⟩
(4.69)
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Expansion of the numerator and denominator according to Equation (4.66) unfortunately leads to a
series of non-vanishing terms all the way up to order Nelec, which makes a variational coupled cluster
approach unmanageable for all but the smallest systems:37

Evar
CC =

⟨(

1 + T + 1
2 T2 ⋯ 1

N!T
N
)

Φ0
|
|
|
H|
|
|

(

1 + T + 1
2 T2 ⋯ 1

N!T
N
)

Φ0

⟩

⟨(

1 + T + 1
2 T2 ⋯ 1

N!T
N
)

Φ0
|
|
|

(

1 + T + 1
2 T2 ⋯ 1

N!T
N
)

Φ0

⟩ (4.70)

The standard formulation of coupled cluster theory instead proceeds by projecting the coupled
cluster Schrödinger Equation (4.68) on to the reference wave function. Multiplying from the left by
Φ0

∗ and integrating gives

⟨Φ0|HeT|Φ0⟩ = ECC⟨Φ0|eTΦ0⟩

⟨Φ0|HeT|Φ0⟩ = ECC⟨Φ0|(1 + T1 + T2 +⋯)Φ0⟩ (4.71)
ECC = ⟨Φ0|HeT|Φ0⟩

Expanding out the exponential in Equation (4.66) and using the fact that the Hamiltonian operator
contains only one- and two-electron operators (Equation (3.25)) we get

ECC =
⟨

Φ0
|
|
|
H
(

1 + T1 + T2 +
1
2 T2

1

)
|
|
|
Φ0

⟩

ECC = ⟨Φ0|H|Φ0⟩ + ⟨Φ0|H|T1Φ0⟩ + ⟨Φ0|H|T2Φ0⟩ +
1
2
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|T2
1Φ0

⟩
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|Φa
i
⟩
+
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ij + ta

i tb
j − tb

i ta
j

)⟨

Φ0
|
|
|
H|
|
|
Φab

ij

⟩
(4.72)

Note that the infinite expansion of the exponential operator in Equations (4.71) and (4.72) terminates
at the 1 and T2 levels, in contrast to TN in Equation (4.70). Furthermore, when using HF orbitals
for constructing the Slater determinants, the matrix elements in Equation (4.72) involving the singly
excited Slater determinant are zero (Brillouin’s theorem) and the second matrix elements are just
two-electron integrals over MOs (Equation (4.10)):

ECC = E0 +
occ∑

i<j

vir∑

a<b

(

tab
ij + ta

i tb
j − tb

i ta
j

)⟨

Φ0
|
|
|
H|
|
|
Φab

ij

⟩

ECC = E0 +
occ∑

i<j

vir∑

a<b
(tab

ij + ta
i tb

j − tb
i ta

j )(⟨𝜙i𝜙j|𝜙a𝜙b⟩ − ⟨𝜙i𝜙j|𝜙b𝜙a⟩)
(4.73)

The coupled cluster correlation energy is therefore determined completely by the singles and doubles
amplitudes and the two-electron MO integrals.

Equations for the amplitudes can be obtained by projecting the Schrödinger Equation (4.68) on to
the space of singly, doubly, triply, etc., excited determinants:

⟨
Φe

m
|
|HeT|

|Φ0
⟩
= ECC

⟨
Φe

m
|
|e

TΦ0
⟩

⟨

Φef
mn

|
|
|
HeT||

|
Φ0

⟩

= ECC

⟨

Φef
mn

|
|
|
eTΦ0

⟩

(4.74)
⟨

Φefg
mnl

|
|
|
HeT||

|
Φ0

⟩

= ECC

⟨

Φefg
mnl

|
|
|
eTΦ0

⟩

An alternative formulation is in terms of a similarity transformation of the Hamiltonian operator
(Section 17.3). Consider Equation (4.56) where we multiply from the left by e−T:

e−THeTΦ0 = ECCΦ0 (4.75)
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Multiplying with Φ0
∗ from the left and integrating leads directly to the energy equation

ECC = ⟨Φ0|e−THeT|Φ0⟩ (4.76)

The coupled cluster energy can thus be considered as the expectation value of a similarity transformed
(non-Hermitian) Hamiltonian. Equations for the amplitudes can be obtained by multiplying with an
excited state, analogous to Equation (4.74):

⟨
Φe

m
|
|e

−THeT|
|Φ0

⟩
= 0

⟨

Φef
mn||e

−THeT|
|Φ0

⟩

= 0 (4.77)
⟨

Φefg
mnl

|
|e

−THeT|
|Φ0

⟩

= 0

The similarity transformed Hamiltonian can be written as a series of nested commutators (Baker–
Campbell–Hausdorff expansion):

e−THeT = H + [H, T] + 1
2 [[H, T], T] + 1

6 [[[H, T], T], T]
+ 1

24 [[[[H, T], T], T], T]
(4.78)

Since the Hamilton operator only contains one- and two-electron operators, the above expansion
is exact, and shows that the coupled cluster equations at most contain terms that are quartic in the
unknown amplitudes. The similarity transform formulation and its commutation expansion is espe-
cially advantageous for deriving equations within the second quantization formalism (Appendix E).

4.9.1 Truncated coupled cluster methods

So far, everything has been exact. If all cluster operators up to TN are included in T, all possible
excited determinants are generated and the coupled cluster wave function is equivalent to full CI. This
is, as already stated, impossible for all but the smallest systems. The cluster operator must therefore
be truncated at some excitation level. When the T operator is truncated, some of the terms in the
amplitude equations will become zero and the amplitudes derived from these approximate equations
will no longer be exact. The energy calculated from these approximate singles and doubles amplitudes
(Equation (4.73)) will therefore also be approximate. How severe the approximation is depends on
how many terms are included in T. Including only the T1 operator does not give any improvement
over HF, as matrix elements between the HF and singly excited states are zero. The lowest level of
approximation is therefore T = T2, referred to as Coupled Cluster Doubles (CCD). Compared with
the number of doubles, there are relatively few singly excited states. Using T=T1 +T2 gives the CCSD
model, which is only slightly more demanding than CCD and yields a more complete model. Both
CCD and CCSD involve a computational effort that scales as M6

basis in the limit of a large basis set.
The next higher level has T = T1 + T2 + T3, giving the CCSDT model. This involves a computational
effort that scales as M8

basis and is more demanding than CISDT. It (and higher-order methods such as
CCSDTQ) can consequently only be used for small systems, and CCSD is the only generally applicable
coupled cluster method.

Let us look in a bit more detail at the CCSD method. In this case, we have, from Equation (4.67),

eT1+T2 = 1 + T1 +
(

T2 +
1
2 T2

1

)

+
(

T2T1 +
1
6 T3

1

)

+
(

1
2 T2

2 +
1
2 T2T2

1 +
1

24 T4
1

)

+⋯ (4.79)
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The CCSD energy is given by the general CC Equation (4.73), and amplitude equations can be derived
by projecting against a singly excited Slater determinant (Equation (4.74)):
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(4.80)

Here the Brillouin theorem and the orthonormality of the Slater determinants have been employed
and the notation (ta

i tb
j tc

k +⋯) indicates that the terms involving permutations of the indices are omit-
ted. Summation over indices has been omitted. Projecting against a doubly excited Slater determinant
yields
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(4.81)

Note that the coupled cluster energy from Equation (4.73) must be inserted and also contains
amplitudes.

Equations (4.80) and (4.81) involve matrix elements between singles and triples, and between dou-
bles and quadruples. However, since the Hamiltonian operator only contains one- and two-electron
operators, these are actually identical to matrix elements between the reference and a doubly excited
state. Consider, for example, ⟨Φe

m |H|Φabc
ijk ⟩. Unless m equals either i, j or k, and e equals either a, b or

c, there will be one overlap integral between different MOs that makes the matrix element zero. If, for
example, m = k and e = c, then the MO integral over these indices factor out as 1, and the rest is equal
to a matrix element ⟨Φ0 |H|Φab

ij ⟩. Similarly, the matrix element ⟨Φef
mn |H|Φabcd

ijkl ⟩ between a doubly
and a quadruply excited determinant is only non-zero if mn matches up with two of the ijkl indices
and ef matches up with abcd. Again, such non-zero matrix elements are equal to matrix elements
between the reference and a doubly excited determinant (Equation (4.10)).

All the matrix elements can be evaluated in terms of MO integrals, and the expressions in Equa-
tions (4.80) and (4.81) form coupled non-linear equations for the singles and doubles amplitudes.
The equations contain terms up to quartic in the amplitudes, for example (ta

i )4, and must be solved
by iterative techniques. Once the amplitudes are known, the energy and wave function can be calcu-
lated. The important aspect in coupled cluster methods is that excitations of higher order than the
truncation of the T operator enter the amplitude equation. Quadruply excited states, for example, are
generated by the T2

2 operator in CCSD, and they enter the amplitude equations with a weight given
as a product of doubles amplitudes. Quadruply excited states influence the doubles amplitudes, and
thereby also the CCSD energy. It is the inclusion of these products of excitations that makes coupled
cluster theory size extensive. For the case of a single H2 molecule, a CISD calculation is equivalent
to CCSD, and is also equivalent to a full CI calculation. For two H2 molecules separated by 100 Å,
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however, a CISD is not equivalent to a full CI (it is missing the T and Q excitations), but a CCSD
calculation is still equivalent to a full CI.

The above single reference coupled cluster methods can, analogous to CI and MP, be extended
to the multireference case with the acronym MRCC, but there are several variations on the exact
formalism.38

. Connections between Coupled Cluster, Configuration Interaction and
Perturbation Theory

The general cluster operator is given by the following equation, where terms have been collected
according to the excitation they generate:

eT = 1 + T1 +
(

T2 +
1
2 T2

1

)

+
(

T3 + T2T1 +
1
6 T3

1

)

+
(

T4 + T3T1 +
1
2 T2

2 +
1
2 T2T2

1 +
1

24 T4
1

)

+⋯ (4.82)

Each of the operators in a given parentheses generates all the excited determinants of the given type
and the terms in Equation (4.82) generate all determinants that are included in a CISDTQ calculation.
In terms of parameterization, the following connections can be made between CI and CC:

AS ⇔ T1

AD ⇔ T2 +
1
2 T2

1

AT ⇔ T3 + T2T1 +
1
6 T3

1 (4.83)

AQ ⇔ T4 + T3T1 +
1
2 T2

2 +
1
2 T2T2

1 +
1

24 T4
1

The cluster expansion can be viewed as a method of partitioning the contributions from each exci-
tation type. The total contribution from double excitations is the sum of two terms, one that is the
square of the singles contributions T2

1 and the remaining is (by definition) the connected doubles
T2. Similarly, the total contribution from triple excitations is a sum of three terms, the cube of the
singles contributions, the product of the singles and doubles contribution, and the remaining is the
connected triples. In the CI parameterization these are treated equivalently as triply excited deter-
minants by AT.

The T1 effect is small when canonical HF orbitals are used, although not zero since singles enter
indirectly via the doubly excited states (note that if non-canonical orbitals are used, the T1 term can
be large). From CI we know that the effect of doubles is the most important (Section 4.2.3), and this
contribution is in coupled cluster theory divided into T2

1 and T2. If T1 is small, then T2
1 must also be

small, and the most important term is therefore T2. For the triple excitations, T3
1 must be negligible

and T1T2 is small owing to T1. The most important contribution is therefore from connected triples
T3. For the quadruple excitations, all the terms involving T1 must again be small, and since T2 is
large, we expect the disconnected quadruples T2

2 to be the dominant term. This again suggests that
the connected quadruples term T4 is small, which is reasonable since it corresponds to a simultaneous
correlation of four electrons. Higher-order excitations will always contain terms appearing as powers
and/or products of T2 and T3, which will normally dominate. Higher-order connected terms, Tn with
n > 4, are therefore expected to have small effects. This is consistent with the physical picture that
connected Tn operators correspond to n electrons interacting simultaneously. As n becomes large,
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this is increasingly improbable. It should be noted, however, that the higher-order cluster operators
(T4, T5,…) are expected to become more and more important as the number of electrons increases.

The principal deficiency of CISD is the lack of the T2
2 term which in the CI parameterization only

enters at the CISDTQ level, and this is the main reason for CISD not being size extensive. Fur-
thermore, this term becomes more and more important as the number of electrons increases, and
CISD therefore recovers a smaller and smaller percentage of the correlation energy as the system
increases. There are various approximate corrections for this lack of size extensivity that can be added
to standard CISD. The most widely known of these is the Davidson correction, sometimes denoted
CISD+Q(Davidson), where the quadruples contribution is approximated as in Equation (4.84), with
a0 being the coefficient for the HF reference wave function:

ΔEQ =
(
1 − a2

0
)
ΔECISD (4.84)

If the renormalization of the wave function is also taken into account, the (1 − a2
0) quantity is divided

by a2
0 and the corresponding correction is called the renormalized Davidson correction. The effect

of higher-order excitations is thus estimated from the correlation energy obtained at the CISD level
times a factor that measures how important the single-determinant reference is at the CISD level. The
Davidson correction does not yield zero for two-electron systems, where CISD is equivalent to a full
CI, and it is likely that it overestimates the higher-order corrections for systems with few electrons.
More complicated correction schemes have also been proposed,39 but are rarely used.

Coupled cluster is closely connected with Møller–Plesset perturbation theory, as mentioned at
the start of this section. The infinite Taylor expansion of the exponential operator (Equation (4.66))
ensures that the contributions from a given excitation level are included to infinite order. Perturba-
tion theory indicates that doubles are the most important, since they are the only contributors to
MP2 and MP3. At fourth order, there are contributions from singles, doubles, triples and quadru-
ples. The MP4 quadruples contribution is actually the disconnected T2

2 term in the coupled cluster
language, and the triples contribution corresponds to T3. This is consistent with the above analysis,
the most important being T2 (and products thereof ) followed by T3. The CCD energy is equivalent
to MP∞(D) where all disconnected contributions of products of doubles are included. If the per-
turbation series is reasonably converged at fourth order, we expect that CCD will be comparable to
MP4(DQ) and CCSD will be comparable to MP4(SDQ). The MP2, MP3 and MP4(SDQ) results may
be obtained in the first iteration for the CCSD amplitudes, allowing a direct test of the convergence
of the MP series. This also points out the principal limitation of the CCSD method: the neglect of the
connected triples. Including T3 in the T operator leads to the CCSDT method, which, as mentioned
above, is too demanding computationally for all but the smallest systems. Alternatively, the triples
contribution may be evaluated by perturbation theory and added to the CCSD results. Several such
hybrid methods have been proposed, but only the method with the acronym CCSD(T) is commonly
used.40 In this case, the triples contribution is calculated from the formula given by MP4, but using
the CCSD amplitudes instead of the perturbation coefficients for the wave function corrections and
adding a term arising from fifth-order perturbation theory, describing the coupling between singles
and triples. Higher-order hybrid methods such as CCSD(TQ) and CCSDT(Q), where the connected
quadruples contribution is estimated by fifth-order perturbation theory, are also possible, but they
are again so demanding that they can only be used for small systems.41

The singles make, as mentioned, a fairly small contribution to the correlation energy when canon-
ical HF orbitals are used. Brueckner theory is a variation of coupled cluster where the orbitals used
for constructing the Slater determinants are optimized such that the contribution from singles is
exactly zero, that is ta

i = 0.42, 43 The lowest level of Brueckner theory includes only doubles, giving
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the acronym BD. Although BD in theory should be slightly better than CCSD, since it includes orbital
relaxation, they give in practice essentially identical results (differences between BD and CCSD are of
fifth order or higher in terms of perturbation theory). This is presumably rooted in the fact that the
singles in CCSD introduce orbital relaxation.44 The computational cost for BD is slightly higher than
for CCSD, since the orbital relaxation necessitates additional iterations for solving the amplitudes.45

Similarly, BD(T) is essentially equivalent to CCSD(T)46 and BD(TQ) to CCSD(TQ).
Since the singly excited determinants effectively relax the orbitals in a CCSD calculation, non-

canonical HF orbitals can also be used in coupled cluster methods. This allows, for example, the use
of open-shell singlet states (which require two Slater determinants) as reference for a coupled cluster
calculation.47

Another commonly used method is Quadratic CISD (QCISD). It was originally derived from CISD
by including enough higher-order terms to make it size extensive.48 It has since been shown that
the resulting equations are identical to CCSD where some of the terms have been omitted.8,49 The
omitted terms are computationally inexpensive, and there appears to be no reason for using the less
complete QCISD over CCSD (or QCISD(T) in place of CCSD(T)). In practice they normally give very
similar results,50 but exceptions have been reported.51 There are a few other methods that may be
considered either as CISD with the addition of extra terms to make them approximately size extensive
or as approximate versions of CCSD. Some of the methods falling into this category are Averaged
Coupled-Pair Functional (ACPF) and Coupled Electron Pair Approximation (CEPA). The simplest
form of CEPA, CEPA-0, is also known as Linear Coupled Cluster Doubles (LCCD).

In connection with the calculation of molecular properties, it is useful to define some intermediate
coupled cluster levels (see also Section 4.14). As already mentioned, the single excitations allow the
MOs to relax from their HF form but do not give any direct contribution to the energy due to Bril-
louin’s theorem. For studying properties that measure the response of the energy to a perturbation,
the HF orbitals are no longer optimum, and the singles are at least as important as the doubles. The
CC2 method is derived from CCSD by only including the doubles contribution arising from the low-
est (non-zero) order in perturbation theory, where the perturbation is defined as in MP theory (i.e. as
the true electron–electron potential minus the average repulsion).52 The amplitude equations corre-
sponding to multiplication of a doubly excited determinant in the CCSD equations (Equation (4.81))
thereby reduce to an MP2-like expression, and the t2 amplitudes can be expressed directly in terms
of the t1 amplitudes and MO integrals. The iterative procedure therefore only involves the t1 ampli-
tudes. CC2 may loosely be defined as MP2 with the added feature of orbital relaxation arising from the
singles. Similarly, CC3 is an approximation to the full CCSDT model, where the triples contribution
is approximated by the expression arising from the lowest non-vanishing order in perturbation the-
ory.53 The triples amplitudes can then be expressed directly in terms of the singles and doubles ampli-
tudes, and MO integrals. Both in terms of computational cost and accuracy, the following progression
is expected:

HF ≪ CC2 < CCSD < CC3 < CCSDT (4.85)

Analogously to MP methods, coupled cluster theory can also be based on a UHF reference wave func-
tion. The resulting UCC methods again suffer from spin contamination of the underlying UHF, but
the infinite nature of coupled cluster methods is substantially better at reducing spin contamination
relative to UMP.54 Projection methods analogous to the PUMP case have been considered but are
not commonly used. ROHF-based coupled cluster methods have also been proposed but appear to
give results very similar to UCC, especially at the CCSD(T) level.40

Standard coupled cluster theory is based on a single-determinant reference wave function. It suffers
from the same problem as MP, in that it works best if the zeroth-order wave function is sufficiently
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“good”. Owing to the summation of contributions to infinite order, however, coupled cluster is some-
what more tolerant to a poor reference wave function than MP methods. Since the singly excited
determinants allow the MOs to relax in order to describe the multireference character in the wave
function, the magnitude of the singles amplitude can be taken as an indication of how good the HF
single determinant is as the reference. The T1-diagnostic defined as the norm of the singles ampli-
tude vector divided by the square root of the number of electrons has been suggested as an internal
evaluation of the quality of a CCSD wave function:55

T1 = 1
√

Nelec
|t1| (4.86)

Specifically, if T1 < 0.02, the CCSD(T) method is expected to give results close to the full CI limit for
the given basis set. If T1 is larger than 0.02, it indicates that the reference wave function has significant
multideterminant character, and multireference coupled cluster should preferentially be employed.
Such methods are being developed,56 but have not yet seen any extensive use. The T1-diagnostic in
Equation (4.86) is not independent of the system size and assumes that the orbitals are obtained from
an HF calculation (the BD method, for example, has T1 = 0 for all systems), and other diagnostics
have also been proposed.57

4.10.1 Illustrating Correlation Methods for the Beryllium Atom

The beryllium atom has four electrons (1s22s2 electron configuration) and the ground-state wave
function contains significant multireference character owing to the presence of the low-lying 2p-
orbital. The correlation energies calculated with MP, CI and CC methods in a 4s2p basis set (cc-pVDZ
basis augmented with one set of tight s- and p-functions for correlating the 1s-electrons) are given in
Table 4.5.

Since beryllium only has four electrons, CISDTQ is a full CI treatment and completely equivalent to
a CCSDTQ calculation. The multireference character displays itself as a relatively slow convergence
of the perturbation series, with millihartree accuracy being attained at the MP6 level, and inclusion
of terms up to MP20 is required in order to converge the energy to within 10−6 au of the exact answer.
Note also that the correlation energy is overestimated at order seven, that is the perturbation series
oscillates at higher orders. The contribution from triply excited states is minute, as expected for a
system with two well-separated electron pairs, that is CISDT is only a marginal improvement over
CISD.

Table . Correlation energies for the beryllium atom in a 4s2p basis set.

Level ΔEcorr (au) % Level ΔEcorr (au) % Level ΔEcorr (au) %

MP2 0.05317 67.85
MP3 0.06795 86.70 CISD 0.07528 96.05 CCSD 0.07818 99.75
MP4 0.07412 94.58 CCSD(T) 0.07836 99.99
MP5 0.07692 98.15 CISDT 0.07547 96.29 CCSDT 0.07836 99.99
MP6 0.07809 99.64
MP7 0.07849 100.15 CISDTQ 0.07837 100 CCSDTQ 0.07837 100

Results are courtesy of Professor Jeppe Olsen.
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Table . Coefficients for dominating excited states.

Excitation Type aCISDTQ tCCSDTQ tCCSDTQ ⋅ tCCSDTQ

2s2 → 2p2 D −0.18612 −0.18523
2s2 → 2s′2 D −0.04341 −0.04376
1s2 → 1s′2 D −0.02171 −0.02170
1s22s2 → 1s′22p2 Q 0.00407 4.10−7 0.00402
1s22s2 → 1s′22s′2 Q 0.00092 0.00095

The coefficients in the CISDTQ and CCSDTQ wave functions (using intermediate normalization)
for the dominating excitations are given in Table 4.6.

There is little difference between the full CI and CCSD coefficients for the three most important
doubly excited states. The quadruply excited states enter the CI wave function with non-negligible
weights, contributing ∼4% of the correlation energy (Table 4.5), but as shown in the last column of
Table 4.6, these contributions are estimated very well by the product terms in the CC wave function.
The CCSD energy in Table 4.5 and the t4 amplitude in Table 4.6 show that the quadruply excited
states in the CI wave function are mainly of the product type and not a true quadruply excited state.
It is this feature that makes CC superior to CI-based methods.

. Methods Involving the Interelectronic Distance

The necessity of going beyond the HF approximation is due to the fact that electrons are further apart
than described by the product of their orbital densities, that is their motions are correlated. This arises
from the electron–electron repulsion operator, which is a sum of terms of the type shown by

1
|r1 − r2|

= 1
r12

(4.87)

Without these terms, the Schrödinger equation can be solved exactly, with the solution being a Slater
determinant composed of orbitals.

The electron–electron repulsion operator has a singularity for r12 = 0, which results in the exact
wave function having a cusp (discontinuous derivative),58 since an infinite kinetic energy must cancel
the infinity of the potential energy to give a finite result:

(
𝜕Ψ
𝜕r12

)

r 12=0
= 1

2Ψ(r12) (4.88)

The cusp condition in Equation (4.88) implies that the exact wave function must be linear in the
interelectronic distance for small values of r12:

Ψexact(r12) = constant + 1
2 r12 +⋯ (4.89)

It would therefore seem logical that the interelectronic distance should be a necessary variable for
describing electron correlation. For two-electron systems, extremely accurate wave functions may
be generated by taking a trial wave function consisting of an orbital product times an expansion in
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electron coordinates, as given in the following equation, and variationally optimizing the 𝛼i and Cklm
parameters:

Ψ(r1, r2) = e−𝛼1r1 e−𝛼2r2
∑

klm
Cklm(r1 + r2)k(r1 − r2)lrm

12 (4.90)

Expansions such as Equation (4.90) are known as Hylleraas -type wave functions.59, 60 For the hydro-
gen molecule, it is possible with a wave function containing ∼1000 terms to converge the total energy
to ∼10−9 au, which is more accurate than what can be determined experimentally. In fact, the pre-
diction that the experimental dissociation energy for H2 was wrong, based on calculations, was one
of the first hallmarks of quantum chemistry.61 The total energy of the helium atom has been con-
verged to more than 40 digits by Hylleraas-type wave functions containing ∼10 000 terms. Such wave
functions unfortunately become impractical for more than 3–4 electrons due to the large number of
many-electron integrals and the non-linear optimization parameters.

All electron correlation methods based on expanding the N-electron wave function in terms of
Slater determinants built from orbitals (one-electron functions) suffer from an agonizingly slow con-
vergence. Literally millions or billions of determinants are required for obtaining results that in an
absolute sense are close to the exact results. This is due to the fact that products of one-electron
functions are poor at describing the cusp behavior of the wave function when two electrons are close
together. At the second-order perturbation level (i.e. MP2) it may be shown that the error in the
correlation energy for a singlet-coupled electron pair behaves asymptotically as (l + 1∕2)−4, where
l is the highest angular momentum in the basis set. For a general wave function the convergence is
(l + 1∕2)−4 + (l + 1∕2)−5 + (l + 1∕2)−6 + ⋅⋅⋅ . This means that the total energy will converge as (L + 1)−3 +
(L + 1)−4 + (L + 1)−5 + ⋅⋅⋅ , if the basis set is saturated up to angular momentum L.62 For sufficiently
large values of L the convergence is thus ∼(L + 1)−3, which is quite slow. The corresponding con-
vergence for a triplet-coupled electron pair is (l + 1∕2)−6 + (l + 1∕2)−7 + (l + 1∕2)−8 + ⋅⋅⋅, leading to a
(L + 1)−5 + (L + 1)−6 + (L + 1)−7 + ⋅⋅⋅ convergence for a basis set saturated up to angular momentum
L. In order to achieve a high accuracy, it would seem desirable to explicitly include terms in the wave
functions that are linear in the interelectronic distance. This is the idea in the R12 methods proposed
by Kutzelnigg and Klopper.63 The first-order correction to the HF wave function only involves dou-
bly excited determinants (Equation (4.47)). In R12 methods additional terms are included, which are
essentially the HF determinant multiplied with rij factors:

ΨR12 = ΦHF +
∑

ijab
aijabΦab

ij +
∑

ij
bijrijΦHF (4.91)

The exact definition is slightly more complicated, since the wave function has to be properly antisym-
metrized and projected on to the actual basis but, for illustration, the above form is sufficient. Such
R12 wave functions may then be used in connection with the CI, MBPT or CC methods described in
the previous sections. Consider, for example, a CI calculation with an R12-type wave function. The
energy is given by the following equation, where the aijab and bij parameters in Equation (4.91) are
optimized variationally:

ECI−R12 = ⟨ΨR12|H|ΨR12⟩ (4.92)

The overwhelming problem is that matrix elements from Equation (4.92) now involve integrals
depending on three and four electron coordinates. Consider, for example, the following terms arising
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from the rij operator written out in terms of the one- and two-electron operators (h and g, Equa-
tion (3.25)):

⟨ΦHF|H|rijΦHF⟩ = ⟨ΦHF|h|rijΦHF⟩ + ⟨ΦHF|g|rijΦHF⟩

⟨rijΦHF|H|rijΦHF⟩ = ⟨rijΦHF|h|rijΦHF⟩ + ⟨rijΦHF|g|rijΦHF⟩ (4.93)

The g operator leads to integrals over molecular orbitals of the type shown below:
⟨

𝜙i(1)𝜙j(2)𝜙k(3)
|
|
|
|

r12
r13

|
|
|
|
𝜙i(1)𝜙j(2)𝜙k(3)

⟩

⟨

𝜙i(1)𝜙j(2)𝜙k(3)
|
|
|
|

r12r23
r13

|
|
|
|
𝜙i(1)𝜙j(2)𝜙k(3)

⟩

(4.94)
⟨

𝜙i(1)𝜙j(2)𝜙k(3)𝜙l(4)
|
|
|
|

r12r34
r23

|
|
|
|
𝜙i(1)𝜙j(2)𝜙k(3)𝜙l(4)

⟩

Not only are such integrals difficult to calculate but, when the MOs are expanded in a basis set con-
sisting of Mbasis AOs, there will be of the order of M6

basis three-electron integrals and of the order
of M8

basis four-electron integrals.64 Such methods are therefore inherently more expensive than, for
example, the full CCSDT model.

The trick for turning the R12 method into a viable computational tool is to avoid calculating the
three- and four-electron integrals without jeopardizing the accuracy. In a complete basis, a three-
electron integral may be written in terms of products of two-electron integrals by inserting a “reso-
lution of the identity ” between the two operators (see Section 17.4):

1 =
∞∑

p
|𝜙p⟩⟨𝜙p| =

∞∑

pqr
|𝜙p𝜙q𝜙r⟩⟨𝜙p𝜙q𝜙r|

⟨

𝜙i𝜙j𝜙k
|
|
|
|

r12
r13

|
|
|
|
𝜙i𝜙j𝜙k

⟩

=
∞∑

pqr
⟨𝜙i𝜙j𝜙k|r12|𝜙p𝜙q𝜙r⟩

⟨

𝜙p𝜙q𝜙r
|
|
|
|

1
r13

|
|
|
|
𝜙i𝜙j𝜙k

⟩

=
∞∑

pqr
(𝛿kr⟨𝜙i𝜙j|r12|𝜙p𝜙q⟩)

(

𝛿qj

⟨

𝜙p𝜙r
|
|
|
|

1
r13

|
|
|
|
𝜙i𝜙k

⟩)

(4.95)

=
∞∑

p
⟨𝜙i𝜙j|r12|𝜙p𝜙j⟩

⟨

𝜙p𝜙k
|
|
|
|

1
r13

|
|
|
|
𝜙i𝜙k

⟩

The first reduction occurs since the r12 and r−1
13 operators only involve two electron coordinates; the

second reduction is due to the two delta functions. Three- and four-electron integrals can therefore
be written as a sum over products of integrals involving only two electron coordinates. In a finite
basis set, the resolution is not exact and the identities in Equation (4.95) become approximations.
The beauty of the R12 methods is that this error can be controlled, albeit at the price of calculating
and handling a significantly larger number (and different types) of two-electron integrals. The original
R12 method included a linear r12 term, which is the correct behavior in the limit of a vanishing small
r12, but physically incorrect in the large r12 limit, since the Coulomb hole must integrate to zero. A
better representation of the Coulomb hole can be obtained by replacing r12 with a function of r12
such as in the equation below, and these methods are denoted F12.65 Note that the lowest-order
Taylor expansion of f(r12) is r12:

f (r12) = 𝛾−1(1 − e−𝛾r12 ) (4.96)
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The 𝛾 factor can be considered as a length scale parameter for the electron correlation, and depends
on the actual system and electron pairs being correlated, but only weakly. A value of 1 Bohr-1 has been
found to be close to optimum for a variety of systems and is often used in actual calculations. For
practical applications the exponential function in Equation (4.96) is often replaced by a fixed finite
expansion in Gaussian functions, analogous to the fitting of Slater-type orbitals by Gaussian-type
orbitals (Section 5.4.1), since this facilitates the evaluation of the required integrals:

e−𝛾r12 ≃
n∑

i
cie

−𝛼ir2
12 (4.97)

Typically 3–6 Gaussian functions are employed in the expansion.
The above provides the gist of F12 methods, but the actual working equations are quite technical

with a number of variations related to the projection on to occupied and virtual spaces.65

The significance of F12/R12 methods is that the energy error in terms of angular momentum of the
basis set now behaves approximately as (L + 1)−7, which is a significant improvement over standard
methods. It should be noted that in the limit of a complete basis set the MP2-F12, for example, will
give the same result as a traditional MP2 calculation, that is the F12 approach speeds up the basis set
convergence, but does not change the fundamental characteristics of the MP2 method. The drawback
is that F12 methods require a number of additional types of electron integrals as well as basis sets
capable of controlling the errors due to the resolution of identity approximation. The explicit inclusion
of the short-range electron correlation cusp condition also changes the orbital basis set requirement
since the faster convergence means that fewer high angular momentum functions are required and
construction of modified cc-pVXZ basis sets, denoted cc-pVXZ-F12, have been developed to provide
a faster basis set convergence (Section 5.4.7). The auxiliary basis set required for the resolution of
identity requires saturation with basis functions having angular momentum up to max(Lorb,3Locc)+1,
where Lorb is the maximum angular momentum functions in the orbital basis set and Locc is the
maximum angular momentum function occupied in the atom(s). In the original method, the basis
set for the resolution of the identity was the same as for expanding the orbitals and therefore needed
to be large for the resolution of identity to be reasonably fulfilled.66 Subsequently, an auxiliary basis set
was used for the resolution of identity,67 and the most recent improvement is to employ an auxiliary
basis set composed of the orbital basis set and a Complementary Auxiliary Basis Set (CABS), where
only the latter is used for the projection operators involved in the method.68

. Techniques for Improving the Computational Efficiency

Performing an HF calculation can be divided into the following fundamental steps:

1. Calculate the one-electron integrals in a set of basis functions (atomic orbitals).
2. Calculate the two-electron integrals in a set of basis functions.
3. Contract the two-electron integrals with the density matrix and add the one-electron integrals to

form the Fock matrix.
4. Form a new density matrix, either by diagonalization of the Fock matrix or by minimizing an

energy function.

In a straightforward implementation of this scheme, each of the above four steps scales with the
system size as N2, N4, N4 and N3. The calculation of the electron correlation energy can be formulated
as involving a transformation of the two-electron integrals from atomic to molecular orbitals, which
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scales with the system size as N5. Calculating the electron correlation energy using these integrals
may involve an effort that scales with the system size as N5-8 or higher. The scaling behavior, however,
only indicates how the computational time increases with system size, not how much computational
time each step requires. The latter depends on the prefactor, that is an N5 step with a small prefactor
may require less time than an N4 step with a large prefactor for calculations that are actually feasible
within a given computational time. Calculating the MP2 energy (an N5 process), for example, often
requires less computational time than calculating the HF energy (an N4 process) for systems that can
be calculated within a reasonable computational time. A number of technical techniques have been
developed over the years that seek to reduce the computational time for a given type of calculation
by reducing either the prefactor or the scaling, or both. The following sections give an overview of
some of these techniques.

4.12.1 Direct Methods

Conventional HF methods rely on storing the two-electron integrals over atomic orbitals on disk and
reading them in each SCF iteration, while direct methods generate the integrals as they are needed
(Section 3.8.5) and then discarded. Since CPU speeds are much higher than data transfer to/from
disk, and with the implementation of massive parallel algorithms for calculating integrals, modern
electronic structure calculations are normally performed by integral direct algorithms. This is an easy
change in algorithm since the HF energy is expressed directly in terms of AO integrals. Although this
formally requires generating all two-electron integrals in each SCF iteration, rather than only once in
conventional methods, the use of integral screening methods69 means that only the fraction of inte-
grals that makes a significant contribution in a given iteration is required, and this fraction decreases
as the density matrix converges (Section 3.8.5). A direct SCF calculation usually requires more CPU
time than a conventional one, but this is irrelevant, because a direct calculation will (usually) require
less wall time than a conventional one. In a conventional disk-based calculation, the CPU will be idle
a large percentage of the time while waiting for data transfer to/from the disk.

Methods involving electron correlation require matrix elements between Slater determinants,
which can be expressed in terms of integrals over MOs (Equations (4.9) and (4.10)). Conventional
methods for the integral transformation (Section 4.2.1) read the AOs, perform the multiplications
with the MO coefficients (Equation (4.15)) and write the MO integrals to disk. These can then be
read and used in the correlation treatment. Although the number of MO integrals typically is some-
what smaller than the number of AO integrals (e.g. MO integrals involving four virtual orbitals may
not be needed), the disk space requirements are still significant if more than a few hundred basis
functions are used. To eliminate the disk space requirements and remove the inefficient data transfer
step for reading/writing to disk, it is desirable also to have direct algorithms for electron correlation
methods. The need for integrals over MOs instead of AOs, however, makes the development of direct
methods in electron correlation somewhat more complicated than at the HF level.

Consider, for example, the MP2 energy expression given in70

E(MP2) =
occ∑

i<j

vir∑

a<b

(⟨𝜙i𝜙j|𝜙a𝜙b⟩ − ⟨𝜙i𝜙j|𝜙b𝜙a⟩)2

𝜀i + 𝜀j − 𝜀a − 𝜀b
(4.98)

The MO integrals are given in

⟨𝜙i𝜙j|𝜙k𝜙l⟩ =
Mbasis∑

𝛼

Mbasis∑

𝛽

Mbasis∑

𝛾

Mbasis∑

𝛿

c𝛼ic𝛽jc𝛾kc𝛿l⟨𝜒𝛼𝜒𝛽 |𝜒𝛾𝜒𝛿⟩ (4.99)
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Since each MO integral in principle contains contributions from all the AO integrals, a straightfor-
ward calculation of an MO integral each time it is needed will involve a generation of all the AO
integrals. In other words, it would be necessary to recalculate the AO integrals ∼O2V2 times (O and
V being the number of occupied and virtual orbitals, respectively), compared with the 15–20 times
in an SCF calculation. The MP2 method would therefore change from being an M5

basis to an M8
basis

method, which clearly is an unacceptably large penalty for a direct method.
The M8

basis dependence is a consequence of performing the four index transformation with all four
indices at once. As shown in Section 4.2.1, it is advantageous to perform the transformation one index
at a time:

⟨𝜙i𝜙j|𝜙a𝜙b⟩ =
Mbasis∑

𝛿

c𝛿b⟨𝜙i𝜙j|𝜙a𝜒𝛿⟩

⟨𝜙i𝜙j|𝜙a𝜒𝛿⟩ =
Mbasis∑

𝛾

c𝛾 a⟨𝜙i𝜙j|𝜒𝛾𝜒𝛿⟩

⟨𝜙i𝜙j|𝜒𝛾𝜒𝛿⟩ =
Mbasis∑

𝛽

c𝛽j⟨𝜙i𝜒𝛽 |𝜒𝛾𝜒𝛿⟩ (4.100)

⟨𝜙i𝜒𝛽 |𝜒𝛾𝜒𝛿⟩ =
Mbasis∑

𝛼

c𝛼i⟨𝜒𝛼𝜒𝛽 |𝜒𝛾𝜒𝛿⟩

By choosing the correct order of the transformation the scaling can be reduced considerably. In Equa-
tion (4.100) the indices corresponding to the occupied orbitals may be transformed before the virtu-
als. There are of the order of M4

basis of the AO integrals, ⟨𝜒𝛼𝜒𝛽 |𝜒𝛾𝜒𝛿⟩, but only OM3
basis of the quarter

transformed integrals, ⟨𝜙i𝜒𝛽 |𝜒𝛾𝜒𝛿⟩. Instead of storing and reading the AO integrals from the SCF
step, they can be recalculated in the transformation step, reducing the storage from M4

basis to OM3
basis.

The subsequent quarter transformations require less storage; that is the next transformation with an
occupied index reduces the number of integrals to O2M2

basis, the third to O2VMbasis and the last to
O2V2. Since the MP2 energy can be written as a sum of contributions from each occupied orbital,
the occupied orbitals can be treated one at a time, that is first sum all contributions of ⟨𝜙1𝜒𝛽 |𝜒𝛾𝜒𝛿⟩,
then ⟨𝜙2𝜒𝛽 |𝜒𝛾𝜒𝛿⟩, etc. This reduces the necessary storage to only order M3

basis. It may be further
reduced to OVMbasis by proper scheduling of the evaluation order of the remaining three indices.
The OVMbasis number of integrals is much less than the original M4

basis, and will in many cases fit into
memory. The net result is that disk storage is effectively eliminated, or at least greatly reduced. If only
one occupied orbital is treated at a time, O integral evaluations are required, but the more memory
that is available, the more occupied orbitals can be treated in a single sweep, decreasing the number
of integral evaluations.

The whole MP2 expression in Equation (4.98) can be formulated directly in the AO basis by rewrit-
ing the inverse orbital difference by means of a Laplace transformation and evaluating the integral as
a finite sum with suitable weighting factors:71

1
𝜀i + 𝜀j − 𝜀a − 𝜀b

= 1
Δijab

=

∞

∫

0

e−Δijabtdt ≃
𝜏∑

𝛼=1
w𝛼e−Δijabt𝛼 (4.101)

The exponential orbital energy differences can be split into components and incorporated directly
into the two-electron integrals. The MP2 energy expression can thus be written as a sum of
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exponentially energy weighted two-electron integrals in the AO basis, and 5–10 points in the numer-
ical integration are usually sufficient for attaining a useful accuracy. The key point is that this formu-
lation in localized basis functions, rather than delocalized canonical molecular orbitals, allows the
use of integral screening techniques that leads to a linear scaling in the large-system limit.72

These are examples of how direct algorithms may be formulated for methods involving electron
correlation. They illustrate that it is not as straightforward to apply direct methods at the correlated
level as at the SCF level. However, the steady increase in CPU performance, and especially the evolu-
tion of multiprocessor machines, favors direct (and semidirect where some intermediate results are
stored on disk) algorithms.73

4.12.2 Localized Orbital Methods

Ab initio calculations involving electron correlation traditionally employ a set of canonical HF orbitals
and this leads to a computational effort that increases as a rather high power of the system size, that
is N5–N8. Considering that the fundamental physical force is only between pairs of particles, this
scaling is “non-physical”. One of the reasons for the high scaling is the fact that canonical orbitals
are delocalized over the whole molecule, that is essentially all orbitals make a (small) contribution
to the wave function for a specific part of the molecule. This suggests that a set of localized orbitals
(Section 10.4) may be a better starting point, since only a few orbitals would then contribute the large
majority at a given point and the remaining contributions could simply be neglected. Alternatively, the
problem may be formulated directly in the atomic orbital basis, since the basis functions are naturally
localized on a single atom. Such local MP2 and local CC methods are major focus areas and they hold
the promise of linear scaling, that is the computational effort only increases as N1.74 These methods
are somewhat more complicated to formulate as the Fock matrix is only diagonal in the canonical
orbitals. Methods based on localized orbitals will display a near-linear scaling with problem size in
the large-scale limit, and the cross-over point in terms of computational resources for entering the
large-scale regime depends on the specific formulation, but will typically be in the few tenths to a few
hundred atoms region.

The use of localized orbitals will only lead to a computational saving if it is combined with criteria
for neglecting a (large) fraction of the terms. Many localized orbital schemes employ one or more pre-
determined cutoff distances, or equivalent orbital or energy thresholds, which imply the risk of pro-
ducing non-continuous energy surfaces, for example during a geometry optimization a given atomic
distance or orbital contribution may cross one of the threshold values, and some of the correlation
contributions suddenly change between zero and a finite value. The energy will thus experience a
discontinuity upon increasing an interatomic distance by an infinitesimal amount, leading to corre-
sponding discontinuities in the gradient and second derivatives. This in turn may lead to problems in
the geometry optimization and/or vibrational frequencies. These errors can of course be controlled by
choosing threshold values such that the discontinuities are well below chemical significance, but tight
threshold values are counterproductive from a computational efficiency point of view and a compro-
mise is necessary.75 Another aspect is that the total energy is often only accurate to a few millihartrees
(∼1 kJ/mol) and different implementations may thus give slightly different results. Finally, it should be
noted that there are certain systems, typically having stretched bonds (TS) or being aromatic, where it
may be difficult to obtain localized orbitals or where more than one set of localized orbitals are possi-
ble, and a small geometry change may in such cases suddenly switch from one localization to another.

The Divide–Expand–Consolidate (DEC) approach employs a dynamical cutoff parameter based
on an absolute energy criterion.76 The total correlation energy can be written as a sum of terms for
each (localized) occupied orbital correlated in a set of (localized) virtual orbitals. The size of the
virtual space is gradually enlarged until the orbital correlation energy is converged to the chosen
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threshold. The error in the total correlation energy is thus completely determined by a single accuracy
parameter, and this can be chosen as required by the application. A small threshold value necessarily
implies more virtual orbitals for each occupied orbital, and thus an increased computational time.
The DEC method can be employed for both MP2 and coupled cluster methods, and it is trivially
parallel for each occupied orbital and thus well suited for massive parallelization. The DEC approach
is independent (to within the specified energy threshold) on the specific form of the localized orbitals,
but the computational efficiency depends strongly on having molecular orbitals that are as spatially
localized as possible, and this was the main incitement for developing the modifying Forster–Boys
localization methods discussed in Section 9.4.

4.12.3 Fragment-Based Methods

Localized orbital methods can be considered as a method for dividing the whole system into frag-
ments that can be treated separately, where the fragmentation is determined by the orbital local-
ization criterion. Alternatively, the fragmentation can be done a priori by a rule-based method.77, 78

Several such methods are available with slightly different techniques, such as Fragment Molecular
Orbital (FMO)79 and Divide-and-Conquer methods.80 In contrast to localized orbital approaches,
these methods rely on breaking the system into molecular fragments that can be treated indepen-
dently and properties of the whole system are written as a sum of terms for each fragment.

A typical example is a protein, where the FMO approach defines fragments as individual amino
acids. The bonds being broken are replaced by frozen localized orbitals, and the wave function for
each fragment is optimized in the presence of the electrostatic potential for all the other fragments.
This necessitates an iterative procedure over fragments, as changes in the wave function for one frag-
ment changes the electrostatic potential for all other fragments, which then needs to be re-optimized,
etc. When this procedure has converged, the interfragment polarization is accounted for. When prop-
erties for the whole system are taken as the sum of fragment terms, this is denoted as the FMO1
approximation. A limitation of FMO1 is that each fragment must necessarily have an integer number
of electrons, which implies that charge transfer between fragments is not accounted for. This can be
partly remedied by performing explicit calculations for all pairs of fragments, again in a self-consistent
way, leading to the FMO2 approximation, where correction terms based on the dimer calculations
are added to the estimated property for the whole system. This procedure can continue to the FMO3
approximation, where explicit calculations are performed for all timer fragment combinations, etc.,
but the number of dimers and trimers rises rapidly, and the size of each combined fragment also
increases. The total computational time is thus a balance between defining small fragments requiring
perhaps up to FMO4 and large(r) fragments requiring perhaps only FMO2. If care is taken to divide
the system into fragments where the charge transfer between fragments is small, the FMO2 approxi-
mation often gives acceptable accuracy. For proteins, for example, the fragmentation should be done
between the carbonyl carbon and C𝛼 atoms in the backbone.

The advantage of the FMO approach is that each fragment calculation is trivially parallel, and thus
scalable to a large number of processors. It can furthermore readily be extended to, for example, DFT
or MP2 methods, as well as calculating molecular properties, like molecular gradients, excitation
energies or nuclear magnetic shielding constants.

4.12.4 Tensor Decomposition Methods

The tensor decomposition ideas used for basis function integrals (Section 3.8.7) can similarly be used
for decomposing the molecular orbital integrals used in the calculation of electron correlation, as well
as the coefficients (e.g. coupled cluster amplitudes).81 The general idea is to compress the information
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contained in the large number of two-electron integrals and the large number of coefficients for the
Slater determinants into more compact representations. Two-electron integrals are four-index quan-
tities and can thus be considered as elements in a four-dimensional tensor. Coupled cluster double
amplitudes can similarly be considered as elements in a four-dimensional tensor, while, for exam-
ple, triple amplitudes can be considered as elements in a six-dimensional tensor. Tensor decompo-
sition methods attempt to approximate these multidimensional tensors into linear combinations of
products of lower-order tensors, which in the limiting case are just one-dimensional vectors (Sec-
tion 17.6.3). Resolution of identity and Cholesky decomposition methods can be viewed as special
cases of such tensor decompositions.82 Since electron correlation methods have a tensor contraction
of expansion coefficients with two-electron integrals at the core, this can potentially lead to a large
reduction in computational cost, but it must be balanced by the cost of performing the actual tensor
decompositions. Methods such as Pair Natural Orbital (PNO), Orbital Specific Virtual (OSV) and
Optimized Virtual Orbital Space (OVOS) can be considered as belonging to this family of methods,
where the actual tensor decomposition is bypassed by constructing reduced orbital spaces motivated
by physical arguments.

. Summary of Electron Correlation Methods

The only generally applicable methods are CISD, MP2, MP3, MP4, CCSD and CCSD(T). CISD is
variational, but not size extensive, while MP and CC methods are non-variational but size extensive.
CISD and MP are in principle non-iterative methods, although the matrix diagonalization involved
in CISD is usually so large that it has to be done iteratively. Solution of the coupled cluster equations
must be done by an iterative technique since the parameters enter in a non-linear fashion. In terms of
the most expensive step in each of the methods, they may be classified according to how they formally
scale in the large system limit, as shown in Table 4.7.

We have so far been careful to use the wording “formal scaling”. As already discussed, HF is formally
an M4 method but in practice the scaling may be reduced all the way down to M1. Similarly, MP2 is
formally an M5 method. However, an MP2 calculation consists of three main parts: the HF calcula-
tion, the AO to MO integral transformation and the MP2 energy calculation. Only the second part
has a formal scaling of M5; the others are (formal) M4 steps. In the large-system limit, the transfor-
mation required for the MP2 procedure will become the most expensive step, but in practice, where
calculations may be restricted to a few hundred or thousand basis functions, it is often observed that
the MP2 step takes less time than the HF step. The formal scaling only indicates what the rate-limiting

Table . Limiting scaling in terms of basis set size M for
various methods.

Scaling CI methods MP methods CC methods (iterative)

M5 CIS MP2 CC2
M6 CISD MP3 CCSD
M7 MP4 CC3, CCSD(T)
M8 CISDT MP5 CCSDT
M9 MP6
M10 CISDTQ MP7 CCSDTQ
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step will be in the large-system limit. Whether this limit actually is reached in practical calculations
is another matter.

The lower value of M5 scaling for methods involving electron correlation arises from the transfor-
mation of the two-electron integrals from the AO to MO basis, but if the transformation is carried
out with one of the indices belonging to an occupied MO first, the scaling is actually the number of
occupied orbitals (O) times M4. If we consider making the system larger by doubling the fundamen-
tal unit (e.g. calculations on a series of increasingly larger water clusters), keeping the basis set per
atom constant, O scales linearly with M, and we arrive at the M5 scaling. This assumption (increasing
system size) is the basis for Table 4.7. More often, however, a series of calculations is performed on
the same system with increasingly larger basis sets. In this case, the number of electrons (occupied
orbitals) is constant and the scaling is M4. Many of the commonly employed methods for electron
correlation (including, for example, MP2, MP3, MP4, CISD, CCSD and CCSD(T)) scale in fact as M4

when the number of occupied orbitals is constant.
In terms of accuracy with a medium-sized basis set the following order is often observed:

HF ≪ MP2 < CISD < MP4 (SDQ) ∼ CCSD < MP4 < CCSD(T) (4.102)

All of these are single-determinant-based methods. Multireference methods cannot easily be classi-
fied as the quality of the results depends heavily on the size of the reference. A two-configurational
reference is only a slight improvement over HF, but including all configurations generates a full CI.
The ordering above is only valid when the HF reference is a “good” zeroth-order description of the
system. The more multireference character in the wave function, the better the “infinite”-order cou-
pled cluster performs relative to perturbation methods.

MP3 has not been included in the above comparison. As already mentioned, MP3 results are often
inferior to those at MP2. In fact, MP2 often gives surprisingly good results, especially if large basis sets
are used.83 Furthermore, it should be kept in mind that the MP perturbation series in many cases may
actually be divergent, although corrections carried out to low order (i.e. 2–4) rarely display excessive
oscillations.

HF results should by modern standards be considered as model calculations, like semi-empirical
methods such as PM6/7 (Chapter 7). Minimal basis HF calculations often give results that are worse
than PM6/7, but at a computational cost several orders of magnitude larger. Medium and large basis
set HF calculations usually do not give absolute results that are particularly close to experimental
values, but since the errors to a certain degree are systematic (such as all vibrational frequencies being
overestimated by ∼10%), they can be used with more or less “empirical” corrections to treat systems
for which correlated calculations are not possible. The distinct advantage of ab initio methods is
the ability to treat all systems at an equal level of accuracy, independent of whether experimental
data exist or not. A detailed assessment of the level of accuracy that can be expected at a given level
of theory is difficult to establish as it is heavily dependent on the quality of the basis set. Given a
sufficiently large basis set, however, the CCSD(T) method is able to meet the goal of an accuracy
of ∼4 kJ/mol (∼1 kcal/mol) for most systems. Even with less complete methods (such as MP4) and
medium-size basis sets such as DZP or TZP, it is often possible to get accuracies of the order of a few
tens of kJ/mol.

The uses of CI methods has been declining at the expense of MP and especially CC methods. It is
now recognized that size extensivity is important for obtaining accurate results. Excited states, how-
ever, are somewhat difficult to treat by perturbation or coupled cluster methods, and CI- or MCSCF-
based methods have been the preferred methods here. Linear response methods (Section 11.10)
have been developed for coupled cluster wave functions, and this allows calculation of excited state
properties.
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Finally, a few words on the size of systems that can be treated. The limiting parameters will again
be taken as the number of basis functions although, as noted above, a more detailed breakdown in
terms of occupied and virtual MOs can be done. Note also that a given limit in terms of basis functions
may translate either into a large molecular system with a small basis per atom or a small molecular
system with a very large basis set on each atom. The ordering in Equation (4.102) suggests three
levels of electron correlation: none (HF), MP2 or extended (CCSD(T)). HF methods are in general
possible with up to ∼several thousand basis functions and MP2 is often less expensive than the HF
calculation, even for thousands of functions. Advanced correlation methods are usually limited to
∼thousand basis functions. With a DZP basis set these values translate into roughly 300 and 50 CH2
fragments, respectively, while the values drop to ∼100 and ∼20 with a TZP basis set. These limits
hold for just calculating the energy at a single geometry. If more advanced features are desired, such
as optimizing the geometry or calculating frequencies, the limits drop to roughly half of the above.

With the continuing advances of computer hardware and more efficient algorithms, these limits are
gradually being shifted upwards. Owing to the rather steep scaling with system size, however, they
will (barring a fundamental breakthrough) give a rough idea of the size of systems that can be handled
also in the future. The performance of computer hardware continues to improve by a factor of two in
a timespan of about 18 months. In other words, a factor of 10 in terms of performance for the same
price is gained roughly every 5 years. Owing to the scaling between 4 and 7 of the various methods,
however, a factor of 10 increase in performance only translates into an increase of system size of 1.7
(M4 scaling) or 1.4 (M7 scaling). Linear scaling methods will of course benefit fully from increased
computational performance, but these methods often come with a significantly larger prefactor in
terms of computational effort.

. Excited States

The description of HF and correlated methods in the previous chapter/sections has focused on the
electronic ground state. In some cases it is also of interest to consider electronically excited states. It
is useful to distinguish between two cases, depending on whether the excited state has the same or
a different symmetry than the lower state(s), where symmetry includes both the spatial (irreducible
representation in the point group) and spin (multiplicity) part of the wave function. The different
symmetry case is easy to handle, as the lowest energy state of a given symmetry can be handled
completely analogously to the ground state. An HF wave function may be obtained by a proper speci-
fication of the occupied orbitals, and the resulting wave function can be improved by adding electron
correlation by, for example, CI, MP or CC methods. The only caveat may be that the state is an open
shell, which often requires a (small) MCSCF wave function for an adequate zeroth-order description.

Excited states having lower energy solutions of the same symmetry are somewhat more difficult to
treat. It is difficult to generate an HF-type wave function for such states, as the variational optimiza-
tion tends to collapse to the lowest energy solution of the given symmetry. Special techniques where
the orbital occupancy in each SCF iteration is chosen by a maximum orbital overlap criterion, rather
than the aufbau principle, can be used to converge a single determinant wave function to excited
state solutions.84 It should be noted that excited state wave functions obtained in this fashion are
not orthogonal to the ground state. The same technique can be employed for DFT methods, where
electron correlation is included implicitly by the exchange-correlation functional. Excitation energies
calculated by subtraction of two total energies are often referred to as ΔSCF methods.

The lack of a proper HF reference wave function means that perturbation and coupled cluster meth-
ods are not well suited for calculating excited state wave functions, although excited state properties
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(e.g. excitation energies) may be calculated directly with response methods (Section 11.10). It is rel-
atively easy to generate higher-energy states by CI methods as this simply corresponds to using the
(n + 1)th eigenvalue from the diagonalization of the CI matrix as a description of the nth excited
state (the second root is the first excited state, etc.). Such a CI procedure will normally employ a set
of HF orbitals from a calculation on the lowest energy state, and the CI procedure is therefore biased
against the excited states.

The language for discussing excited states is complicated by the convention of also using the word
excited for Slater determinants having different orbital occupancy than the reference HF determi-
nant. An excited state (a wave function corresponding to a higher energy solution of the Schrödinger
equation) can be written as a linear combination of excited (relative to the HF reference) Slater deter-
minants. An excited state with large coefficients for S-type Slater determinants, corresponding to
“exciting” a single electron from the HF reference, is denoted as a single-electron excitation, or singly
excited state for short. Similarly, an excited state with large coefficients for D-type Slater determi-
nants is denoted as a double-electron excitation, or doubly excited state for short. Note the wording
“large coefficients” as both singly and doubly excited states may contain Slater determinants of S-, D-,
T-, Q-, etc., types for describing orbital relaxation and electron correlation. A singly excited state may
thus contain contributions from singly, doubly, triply, etc., excited Slater determinants. The excited
state may in some cases have large contributions from both S- and D-type Slater determinants, which
makes it ambiguous to classify it as either singly or doubly excited. The next section describes meth-
ods for quantifying the number of electrons involved in a given excitation, but for providing the basic
understanding, we will in the following assume that excitations are pure single- or double-electron
excitations.

The simplest description of an excited state is the orbital picture where one electron has been
moved from an occupied to an unoccupied orbital, that is an S-type Slater determinant as illustrated
in Figure 4.2. The lowest level of theory for a qualitative description of excited states is therefore CI
including only the singly excited determinants, denoted CIS. CIS gives wave functions of roughly HF
quality for singly excited states, since no orbital optimization is involved and no electron correlation
is included. Time-dependent HF or DFT methods within the adiabatic approximation (Section 6.9.1)
provide a similar quality description for such singly excited states. Doubly excited states are signif-
icantly more difficult to describe, and methods like CIS or standard TD-HF/DFT completely miss
these states.

The ability of different methods for describing excited states can be illustrated for singlet methy-
lene (CH2) with a cc-pVDZ basis set. The valence orbitals and orbital occupancy of the dominating
Slater determinant for the six lowest singlet excited states are shown in Figure 4.14, while the exci-
tation energies calculated by a sequence of increasingly sophisticated CI wave functions are shown
in Figure 4.15. The HOMO in the reference wave function has two electrons in a σ-type lone pair,
while the LUMO is a π-type orbital. The lowest excited state S1 corresponds to a single-electron
HOMO-LUMO excitation, but with a sufficient flexible CI wave function (CISDTQ) the excited state
D1 corresponding to transferring both HOMO electrons to the LUMO is the second lowest in terms
of energy. Such doubly excited states only appear when a method including doubly excited Slater
determinants, like CISD, is employed, but a balanced description of the various states requires quite
sophisticated methods. Remembering that doubly excited Slater determinants account for the major-
ity of electron correlations, it is clear that CIS is equally poor (no electron correlation) for both the
ground and (singly) excited states. CISD provides electron correlation for the ground state, but essen-
tially none for the excited states, and thus leads to a large systematic overestimation of the excitation
energies. CISDT has T-type Slater determinants that are doubly excited relative to the singly excited
states and thus provide a balanced description of the ground and excited states that are dominated by
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Figure . HF orbital energies and occupancies for the first six excited states in methylene (CH2) with a cc-pVDZ
basis set.
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single-electron transfer (S1–S4). CISDTQ is required for including electron correlation for states
dominated by double-electron transfer (D1, D2), since Q-type Slater determinants are necessary for
correlating the electrons in doubly excited states. The results at the CISDTQ56 (full CI with the car-
bon 1s core-orbital frozen) level show that the description of the six lowest excited states is converged
at the CISDTQ level.

Figure 4.15 shows that CISDTQ is required to give a balanced description of singly and doubly
excited states, but this level of theory is feasible only for small systems. Singly excited states are rel-
atively easy to describe and many single-determinant-based methods like CIS and TDHF methods
often provide good results; however, it should be recognized that they fail to describe electron cor-
relation effects. This usually leads to a systematic overestimation of the excitation energy in the 0.5–
2 eV range for excited states of the same spin-multiplicity as the ground state (usually a singlet state),
but a systematic underestimation of the excitation energy for states of higher spin-multiplicity (e.g.
triplet states for a singlet ground state). The CIS(D) method85 includes electron correlation for the
CIS excited states by an MP2 like expression, which normally improves the excitation energies but,
in analogy with MP2 for ground states, often overestimates the electron correlation effect. TDDFT
includes electron correlation effects in the exchange-correlation term and often improves the per-
formance to deviations in the ∼0.4 eV range, but the performance depends on the exact exchange-
correlation functional employed.

Coupled cluster methods are more effective than CI for including electrons and can also be used for
calculating excited states by response methods (Section 11.10). The CCS model includes only S-type
determinants and is identical to CIS. CC2 is an approximation to CCSD where the D-type excita-
tions are included only to lowest order in the perturbation series. Including them non-iteratively
leads to the CC(2) model, which is identical to CIS(D). CC3 is an approximation to CCSDT where
the T-type excitations are included only to lowest order in the perturbation series. CC(3) (also
denoted CCSDR(3)) is in analogy with CC(2), a model where the T-type excitations are included
non-iteratively, and thus is similar to CCSD(T) for ground state energies. The sequence CCS, CC(2),
CC2, CCSD, CC(3), CC3, CCSDT is thus expected to provide increasingly better results, but it should
be recognized that they are all based on a single determinant HF reference wave function. In anal-
ogy with the CI methods described above, this means that the convergence with respect to increas-
ing amounts of electron correlation is significantly slower for doubly excited states than for a singly
excited state, and doubly excited states are missing in the CCS, CC(2) and CC2 models. This is illus-
trated in Figure 4.16 for the same excited states for CH2 as in Figure 4.15.

A common caveat of CI and CC methods is the use of HF optimized orbitals. Excited states fur-
thermore often require a linear combination of a (small) number of configurations for a qualitative
description, and this implies the use of MCSCF methods. MCSCF employs an orbital optimization,
which can be either state-specific, where the orbitals are optimized for each particular state, or state-
averaged, where they are optimized for a suitable average of the desired states. The latter has the
advantage that the different states are mutually orthogonal, which is important if, for example, tran-
sition moments are desired. The weight factors for the state averaging, however, are free variables
that must be decided by the user. It should be noted that excited state MCSCF wave functions often
are difficult to converge numerically, and second-order optimization techniques are therefore almost
mandatory. A typical MCSCF wave function is of the CASSCF type, where all excitations are allowed
within a restricted orbital space, and if the latter is chosen properly, it may provide a balanced zeroth-
order description of both singly and doubly excited states. In order to obtain accurate excitation ener-
gies it is normally necessary also to include dynamical correlation, for example by a multireference
second-order perturbation method approach. Figure 4.16 shows the results from CASSCF and CAS-
MR2 calculations using a 4-electron-5-orbital active space, corresponding to the set of orbitals shown
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Figure . Energies for the first six singlet excited states in methylene (CH2) with the cc-pVDZ basis set and
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states dominated by single (S)- and double (D)-electron transfer.

in Figure 4.14. The [4,5]-CASSCF wave function provides a good balance of the various excited states
and is capable of predicting the correct order; including dynamical correlation by second-order per-
turbation theory in the full orbital space gives (not surprisingly) essentially complete agreement with
the reference CISDTQ56 results.

The six lowest singlet excited states in the CH2 example can quite clearly be characterized as four
singly and two doubly excited states. Excited states for larger systems, however, often have char-
acteristics intermediate between single- and double-electron excitation.86 The use of methods that
only account for singly excited states (TD-HF/DFT, CIS, CIS(D), CC2) will lead to a systematic over-
estimation of the excitation energies, with the error increasing with the amount of doubly excited
character. Truly doubly excited states will simply be missing. As illustrated in Figures 4.15 and 4.16,
it is necessary to include up to Q-type Slater determinants in CI methods and up to T-type Slater
determinants in CC response methods, in order to provide a balanced description of states with dif-
ferent degrees of singly and doubly excitation character, but this is often computationally infeasible.
A CASSCF combined with inclusion of dynamical correlation is often the only computational viable
approach, but selecting the active orbital space may be challenging for large systems.

Excited states involve electrons that are more loosely bound than in the ground state, and they
therefore usually require basis sets with diffuse functions for a proper description. This is especially
true for so-called Rydberg states, which may be considered as an electron orbiting a positively charged
molecule. Such states resemble a hydrogenic atomic system, with the molecular cation playing the
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rule of the proton, and can be characterized as having s-, p-, d-, etc., character. Rather than using
a regular basis set with diffuse functions on each nucleus, such Rydberg states can be modeled by
having a single set of diffuse functions located at the molecular center of mass.87

A general feature is that a few of the lowest excited states typically are dominated by single exci-
tations within the valence orbitals and can be reasonably described by simple approaches such as
CIS or TDDFT, but it becomes progressively more difficult to describe higher-lying states. Doubly
excited and Rydberg states require sophisticated wave functions and/or extended basis sets for an
adequate description, and are often surprisingly low in energy. In the case of polyenes, for example,
even the lowest excited state has a very large doubly excited character. Unfortunately it is not possible
to detect these states by a computationally inexpensive screening method, like CIS or TDDFT, since
they cannot provide even a rudimentary description. Calculating ten or more excited states by, for
example, CIS and a medium-sized basis set is just a waste of computational resources, as only the few
lowest states may reflect the real excited state spectrum.

4.14.1 Excited State Analysis

Excited states are often conceptually visualized as moving a single electron from an occupied to a
virtual (HF or DFT) orbital, but this may be an inadequate description. Excited states correspond to
higher-energy solutions of the full Hamiltonian and involve orbital relaxation relative to the ground
state orbitals, and usually also need a description in terms of a linear combination of several (many)
excited Slater determinants, which may be singly, doubly, triply, etc., excited relative to the ground
state. The degree of singly and doubly excited character can be evaluated based on the weights of the
S- and D-type Slater determinants in a CI approach or by the t1 and t2 amplitudes in CC methods.
Even in the cases where the excited state can be described by only a few excited Slater determinants,
it may be difficult to analyze since the canonical orbitals used in the construction of the Slater deter-
minants are delocalized over the whole system. The orbital excitation picture, however, can be rein-
troduced by describing the change between the ground and excited states by a set of natural orbitals.
The change can be defined either by a difference in the total electron density or from the transition
matrix elements.88

The change in the total electron density matrix between the excited and reference states can be
obtained by a simple subtraction to produce a density difference matrix 𝚫:89

𝜹 = Dex − D0 (4.103)

Diagonalization of the𝚫matrix yields a diagonal matrix δ containing the eigenvalues with the unitary
transformation matrix U containing the eigenvectors:

𝜹 = UΔU−1 (4.104)

The sum of all eigenvalues must be zero for an electronic transition since the number of electrons
is conserved (an ionization or electron attachment process would have eigenvalue sums of –1 and
+1, respectively). The sum of the positive (or negative) eigenvalues directly provides the number
of electrons involved in the transition, that is if it can be described as a single electron transition
or if it contains a substantial double excitation nature. The eigenvectors corresponding to negative
eigenvalues (δ-) can be back-transformed using the absolute δ- values to yield a detachment density
matrix D- and the eigenvectors corresponding to positive eigenvalues (δ+) can be back-transformed
to yield an attachment density matrix D+:

D− = U−1|δ−|U
D+ = U−1δ+U (4.105)
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The D-/+ matrices correspond to hole and particle density matrices and can be diagonalized to yield
natural orbitals and occupation numbers, which in a compact form describe the change in the excited
state electron density relative to the ground state reference.

Instead of the density difference matrix, the one-electron transition density matrix T can be used
for analysis.90 The T matrix is defined as the outer product of the excited and reference states inte-
grated over N – 1 electron coordinates:

T = Nelec
∫

|Ψex⟩⟨Ψ0|dr2 ⋯ drN (4.106)

For the simplest case of a single determinant reference wave function and an excited state described by
a linear combination of singly excited Slater determinants (CISs), the Tia matrix element (i denoting
an occupied and a denoting a virtual orbital) is given as a product of the 𝜙i and 𝜙a orbitals multiplied
by the coefficient cia in the Slater determinant expansion. The T matrix is rectangular with dimension
Nocc × Nvirt and can be analyzed by singular value decomposition (Section 17.6.3):

T = UΛVt (4.107)

The U and V matrices contain the eigenvectors of the TTt and TtT matrices, respectively, and 𝚲 con-
tains the square root of the corresponding eigenvalues. The sum of diagonal elements in 𝚲 provides
a measure of how many electrons are involved in the transition. Transformation of the occupied and
virtual orbitals by the U and V matrices, respectively, produces a set of Natural Transition Orbitals
(NTOs):

𝜙NTO
i = 𝜙iU

𝜙NTO
a = 𝜙aV

(4.108)

The set of 𝜙i
NTO describes the hole orbitals in the occupied space (removal of electrons) while the

set of 𝜙a
NTO describes the particle orbitals in the virtual space (addition of electrons). These form

particle–hole pairs of orbitals associated with a singular value in the 𝚲 matrix, which measures the
fraction of electrons transferred. The 𝚲 matrix often has one value close to one, while the others
are close to zero, and the 𝜙i

NTO and 𝜙a
NTO hole and particle natural transition orbitals associated

with the dominating singular value in such cases form a compact description of the excited state
corresponding to a single-electron excitation.

Excited states can also be characterized in terms of their charge-transfer (CT) character, that is to
what extent the ground and excited states have differences in the spatial electron distribution over
the molecular structure. In the simple picture of exciting an electron from the HOMO to the LUMO,
a CT excitation corresponds to the situation where the HOMO and LUMO are localized on different
parts of the molecule. A quantitative measure of the CT character can be defined in terms of an index
varying between 0 and 1, where a value of 0 indicates a pure CT excitation. In the simple HOMO–
LUMO picture, the index can be defined as the spatial overlap of the absolute values of the HOMO and
LUMO. In the more general case the CT index can be defined as the (normalized) overlap between the
attachment and detachment density matrices (Equation (4.105)), or in terms of the overlap between
absolute values of the NTO orbitals in the dominating pair, as defined by91

CT index =
⟨
|
|
|
𝜙NTO

i
|
|
|

|
|
|

|
|
|
𝜙NTO

a
|
|
|

⟩

(4.109)

Peach et al. have defined a very similarΛ index as a weighted sum of overlaps between absolute values
of occupied (𝜙i) and virtual (𝜙a) orbitals, where the 𝜅ia weighting factor is the contribution of the
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particular orbital pair to the particular excitation.92 The Λ index is essentially just the CT index in
Equation (4.109) formulated in terms of canonical orbitals instead of natural transition orbitals:

Λ =

∑

ia
𝜅2

ia⟨|𝜙i| | |𝜙a|⟩

∑

ia
𝜅2

ia
(4.110)

The various CT indices are in practice very similar, and values less than ∼0.5 are often taken as an
indicator of a CT excitation. The difference in the dipole moments of the ground and excited states,
which can be considered as the integrated charge of the attatchment/detatchment matrices times the
distance between the two center-of-charge points for these two matrices, have also been suggested
as an indicator for CT character, but this is not constrained to the interval from 0 to 1.93

. Quantum Monte Carlo Methods

Monte Carlo methods refer to techniques for obtaining the value of a multidimensional integral of a
function by randomly probing its value within the whole variable space and estimating the integral
by statistical averaging. In the limit of an infinite number of sampling points, the result is identical to
that obtained from an analytical integration, but for a finite number of points, the calculated value is
given as an average with an associated standard deviation. The standard deviation, the uncertainty,
depends inversely on the square root of the number of sampling points (Section 18.2).

Since the square of the wave function represent a probability function, the associated energy can
be calculated by Quantum Monte Carlo (QMC) methods.94, 95 For a (approximate) variational wave
function, the energy can be rewritten as

E =
⟨Φ|H|Φ⟩

⟨Φ|Φ⟩
=

∫ Φ∗HΦdr
∫ Φ∗Φdr

E =
∫ Φ∗Φ(Φ−1HΦ)dr

∫ Φ∗Φdr
=

∫ |Φ(r)|2(Φ−1HΦ)dr
∫ |Φ(r)|2dr

E = ∫ Elocal(r)P(r)dr ; P(r) = |Φ(r)|2

∫ |Φ(r)|2dr
; Elocal(r) = Φ−1HΦ

(4.111)

The last equation shows that the energy can be calculated as an integral of the local energy func-
tion Φ−1HΦ weighted with the probability density P. In principle, this integral could be calculated by
numerical quadrature methods, such as the Simpson trapezoidal rule, but this becomes very ineffi-
cient when the number of variables is large. For a system with N electrons, the dimensionality of the
problem is 3Nelec, and the integral can be estimated much more efficiently by sampling the function
point-wise within the whole function space. Estimating the functional value by a random sampling of
points within the integration limits, weighted by the probability factors, is called variational QMC.
The generation of points is done using a Metropolis algorithm, as discussed in more detail in Sec-
tion 15.1, and the calculated energy is simply the average of the local energies over the sampling
points:

E = 1
Mpoint

Mpoint∑

i=1
Elocal(ri) (4.112)
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An improvement of the variational QMC can be obtained by the diffusion QMC approach. Con-
sider the time-dependent Schrödinger equation, where the time is replaced with an imaginary time
variable 𝜏 = it:

i𝜕Φ(r, t)
𝜕t

= HΦ(r, t)

−𝜕Φ(r, 𝜏)
𝜕𝜏

= HΦ(r, 𝜏) (4.113)

For a free electron, the Hamiltonian is only kinetic energy, and the resulting equation is identical to
that describing a diffusion process:

𝜕Φ(r, 𝜏)
𝜕𝜏

= 1
2∇

2Φ(r, 𝜏) (4.114)

Addition of a potential energy results in a generalized diffusion equation:

𝜕Φ(r, 𝜏)
𝜕𝜏

= 1
2∇

2Φ(r, 𝜏) − V(r)Φ(r, 𝜏) (4.115)

The generalized diffusion equation can be solved by a random walk procedure and, in the long time
limit, the resulting distribution converges to the ground state wave function. This can be seen by
expanding an approximate wave function in terms of the exact wave functions (Equation (1.20)):

Φ(r, 𝜏) =
∑

k
ckΨk(r, 𝜏) =

∑

k
ckΨk(r)e−Ek𝜏 (4.116)

The exponential dependence on the energy means that the high-energy states decay faster than the
low-energy ones and, in the long (imaginary) time limit, only the ground state wave function survives.

The main problem with QMC methods is the requirement of an antisymmetric wave function,
since the electrons are fermions. The antisymmetry means that the wave function has both positive
and negative regions, and consequently 3Nelec − 1-dimensional surfaces where the wave function is
zero. These surfaces are called nodes and correspond to zero-probability regions of space. Clearly, a
procedure that indiscriminately samples the nodal regions will yield inaccurate answers. QMC meth-
ods thus require a guiding function, a trial wave function, for determining how to sample the huge
phase space most efficiently and in agreement with the fermion nature of the electrons.

A suitable trial wave function can be constructed from a Hartree–Fock wave function multiplied
with a suitable correlation function, often taken as a Jastrow factor J(r):

J(r) =
Nelec∑

i
𝜒(ri) −

Nelec∑

i>j
u(ri, rj) (4.117)

The functional forms of the one- and two-electron terms 𝜒 and u are chosen such that they model the
nuclear–electron and electron–electron cusp conditions, respectively, and the parameters inherent
in these functions are variationally optimized by the QMC procedure.

In order to maintain the wave function antisymmetry, the diffusion QMC is normally used within
the fixed node approximation, that is the nodes are fixed by the initial trial wave function. Unfortu-
nately, the location of nodes for the exact wave function is far from trivial to determine, although sim-
ple approximations such as HF can give quite reasonable estimates.96 The fixed node diffusion QMC
thus determines the best wave function with the nodal structure of the initial trial wave function. If
the trial wave function has the correct nodal structure, the QMC will provide the exact solution to the
Schrödinger equation, including the electron correlation energy. It should be noted that the region
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near the nuclei contributes most to the statistical error in QMC methods, and in many applications
the core electrons are therefore replaced by a pseudo-potential (Section 5.12).

The scaling of QMC methods is N2
occNbasis, but the prefactor makes these methods roughly two

orders of magnitude more expensive than independent-particle models such as HF and DFT. The
relatively low-order scaling, however, makes QMC competitive with, for example, coupled cluster
methods, even for relatively small systems. The main disadvantage of QMC is the statistical error in
the calculated results, which only decays as the inverse square root of the number of sampling points.
Generating highly accurate results is thus computationally expensive, although the calculations are
well suited for running on large parallel computers. The statistical uncertainty furthermore makes it
difficult to calculate nuclear forces and second derivatives, which are essential for optimizing struc-
tures and calculating vibrational frequencies. Finally, the accuracy of the results is tightly coupled to
the form of the trial wave function, and a poor trial wave function can generate poor-quality results.
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Ab initio methods try to derive information by solving the Schrödinger equation without fitting
parameters to experimental data. Actually, ab initio methods also make use of experimental data,
but in a somewhat more subtle fashion. Many different approximate methods exist for solving
the Schrödinger equation; which one to use for a specific problem is usually chosen by compar-
ing the performance against known experimental data. Experimental data thus guides the selection
of the computational model, rather than directly entering into the computational procedure.

One of the approximations inherent in essentially all ab initio methods is the introduction of a basis
set. Expanding an unknown function, such as a molecular orbital (MO), in a set of known functions
is not an approximation if the basis set is complete. However, a complete basis set means that an
infinite number of functions must be used, which is impossible in actual calculations. An unknown
MO can be thought of as a function in the infinite coordinate system spanned by the complete basis
set. When a finite basis set is used, only the components of the MO along those coordinate axes
corresponding to the selected basis functions can be represented. The smaller the basis set, the poorer
the representation. The type of basis functions used also influence the accuracy. The better a single
basis function is able to reproduce the unknown function, the fewer basis functions are necessary
for achieving a given level of accuracy. Knowing that the computational effort of ab initio methods
scales formally as at least M4

basis, it is of course of prime importance to make the basis set as small
as possible, without compromising the accuracy.1, 2 The expansion of the molecular orbitals leads to
integrals of quantum mechanical operators over basis functions, and the ease by which these integrals
can be calculated also depends on the type of basis function. In some cases the accuracy-per-function
criterion produces a different optimum function type than the efficiency-per-function criterion. We
will in the following use the terms basis function and basis set, where a basis function is a specific
type of mathematical function, while a basis set is a collection of basis functions containing a specific
set of parameters.

The basis set desiderate can be listed as follows:

1. The basis functions should reflect the nature of the problem, such that a good accuracy can be
obtained by a relatively small number of functions.

2. The basis functions should be able to generate a complete basis set, such that a well-defined basis
set limit can be obtained.
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3. Basis sets should be available in several hierachical levels, where each level provides a well-defined
accuracy and the hierachy systematically converges the result towards the basis set limit. Ideally
the basis set convergence should be monotomic and fast.

4. For a given accuracy, the basis set should be as computationally efficient as possible, that
is delivering the target accuracy for as low a computational cost as possible. The computa-
tional cost is often related to the number of basis functions, but other factors may also be
important.

5. Basis sets should ideally be universal, that is suitable for different methods (HF, DFT, electron
correlation methods, relativistic methods) and different properties (energy, molecular structure,
vibrational frequences, polarizabilities, NMR spin–spin coupling constants, etc.).

6. Be available for all atoms, or at least for a large fraction of the periodic table.

Unfortunately points 4 and 5 are mutually incompatible, because different methods and different
properties have different basis set demands. A universal basis set would need to include basis func-
tions meeting all the requirements for each method/property and thus become very large, and there-
fore is not computationally efficient. The wealth of different basis sets proposed can thus be seen as
various compromises between universability and efficiency. Older basis sets were designed as being of
general purpose, but modern basis sets are usually optimized for specific tasks. HF and DFT methods
(Chapters 3 and 6), for example, have different basis set requirements than electron correlation meth-
ods (Chapter 4), and explicitly correlated methods (Section 4.11) have requirements intermediate
between these. Relativistic methods (Chapter 9) are sufficiently different from non-relativistic meth-
ods that they require different basis sets. Molecular properties (Chapter 11) likewise often require
specialized basis sets in order to achive a smooth and fast convergence towards the basis set limiting
value.

. Slater- and Gaussian-Type Orbitals

There are two types of basis functions (also called Atomic Orbitals (AO), although they in general
are not solutions to an atomic Schrödinger equation) commonly used in electronic structure calcu-
lations: Slater-Type Orbitals (STOs) and Gaussian-Type Orbitals (GTOs). Slater-type orbitals3 have
the functional form shown in

𝜒𝜁 ,n,l,m(r, 𝜃,𝜑) = NYl,m(𝜃,𝜑)rn−1e−𝜁r (5.1)

Here N is a normalization constant and Yl,m are spherical harmonic functions. The exponen-
tial dependence on the distance between the nucleus and electron mirrors the exact orbitals for
hydrogen-like atoms. The STOs, however, do not have radial nodes; nodes in the radial part are
introduced by making linear combinations of STOs. The exponential dependence ensures a fairly
rapid convergence with an increasing numbers of functions, but, as noted in Section 3.5, the calcu-
lation of three- and four-center two-electron integrals cannot be performed analytically. STOs are
therefore primarily used for atomic and diatomic systems, where high accuracy is required, and in
semi-empirical methods (Chapter 7), where all three- and four-center integrals are neglected. They
can also be used with density functional methods (Chapter 6) that do not include exact exchange
and where the Coulomb energy is calculated by fitting the density to a set of auxiliary functions
(Section 3.8.7).
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Gaussian type orbitals4 can be written in terms of polar (Equation (5.2)) or Cartesian (Equa-
tion (5.3)) coordinates:

𝜒𝜁 ,n,l,m(r, 𝜃,𝜑) = NYl,m(𝜃,𝜑)r2n−2−le−𝜁r2 (5.2)

𝜒𝜁 ,lx,ly,lz (x, y, z) = Nxlx yly zlz e−𝜁r2 (5.3)

The sum of lx, ly and lz in Equation (5.3) determines the type of orbital (e.g. lx + ly + lz = 1 is a p-
orbital). Although a GTO appears similar in the two set of coordinates, there is a subtle difference
for angular momentum of 2 or higher. A d-type GTO written in the spherical form has five compo-
nents (Y2,2, Y2,1, Y2,0, Y2,−1, Y2,−2), but there appear to be six components in the Cartesian coordinates
(x2, y2, z2, xy, xz, yz). The latter six functions, however, may be transformed to the five spherical d-
functions and one additional s-function (x2 + y2 + z2). Similarly, there are ten Cartesian “f-functions”
that may be transformed into seven spherical f-functions and one set of spherical p-functions. Mod-
ern programs for evaluating two-electron integrals are geared to Cartesian coordinates and they gen-
erate pure spherical d-functions by transforming the six Cartesian components into the five spherical
functions. When only one d-function is present per atom the saving by removing the extra s-function
is small, but if many d-functions and/or higher angular momentum functions ( f-, g-, h-, etc., func-
tions) are present, the savings can be substantial. Furthermore, the use of only the spherical compo-
nents reduces the problems of linear dependence for large basis sets, as discussed in Section 5.8.

The r2 dependence in the exponential makes the GTOs inferior to the STOs in two respects. At the
nucleus a GTO has a zero slope, in contrast to a STO which has a “cusp” (discontinuous derivative),
and GTOs consequently have problems representing the proper behavior near the nucleus. The other
problem is that the GTO falls off too rapidly far from the nucleus compared with an STO, and the
“tail” of the wave function is consequently represented poorly. Both STOs and GTOs can be chosen
to form a complete basis, but the above considerations indicate that more GTOs are necessary for
achieving a certain accuracy compared with STOs. A rough guideline says that three times as many
GTOs as STOs are required for reaching a given level of accuracy. Figure 5.1 shows how a 1s-STO
can be modeled by a linear combination of three GTOs.

The increase in the number of GTO basis functions, however, is more than compensated for by the
ease with which the required integrals can be calculated. In terms of computational efficiency, GTOs
are therefore preferred and are used almost universally as basis functions in molecular electronic
structure calculations. Furthermore, essentially all applications take the GTOs to be centered at the
nuclei. For certain types of calculations the center of a basis function may be taken not to coincide
with a nucleus, for example being placed at the center of a bond or between non-bonded atoms for
improving the calculation of van der Waals interactions.

. Classification of Basis Sets

Having decided on the type of basis function (STO/GTO) and the location (nuclei), the most impor-
tant factor is the number of functions to be used. The smallest basis set employs only enough functions
for a minimum description of the occupied orbitals of the neutral atom(s) and is called a minimum
or Single Zeta (SZ) basis set. The term zeta stems from the fact that the exponent of STO basis func-
tions is often denoted by the Greek letter 𝜁 . For hydrogen (and helium), a SZ basis set has only a single
s-function. For the second row in the periodic system it means two s-functions (1s and 2s) and one
set of p-functions (2px, 2py and 2pz). Lithium and beryllium formally only require two s-functions,
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Figure . A 1s-STO modeled by a linear combination of three GTOs (STO-3G).

but a set of p-functions is usually also added. For the third row elements, three s-functions (1s, 2s and
3s) and two sets of p-functions (2p and 3p) are used.

The next improvement of the basis set is a doubling of all basis functions, producing a Double
Zeta (DZ)-type basis. A DZ basis set thus employs two s-functions for hydrogen (1s and 1s′), four
s-functions (1s, 1s′, 2s and 2s′) and two sets of p-functions (2p and 2p′) for second row elements and
six s-functions and four sets of p-functions for third row elements. The importance of a DZ over a
minimum basis set can be illustrated by considering the bonding in the HCN molecule, shown in
Figure 5.2. The H C bond will primarily consist of the hydrogen s-orbital and the pz-orbital on C.

C NH

Figure . A double zeta basis set allows for different bonding in different directions.
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The π-bond between C and N will consist of the px (and py) orbitals of C and N, and will have a
more diffuse electron distribution than the H C 𝜎-bond. The optimum exponent for the carbon p-
orbital will thus be smaller for the x-direction than for the z-direction. If only a single set of p-orbitals
is available (SZ basis set), a compromise will be necessary. A DZ basis set, however, has two sets of
p-orbitals with different exponents. The tighter function (larger exponent) can enter the H C σ-bond
with a large coefficient, while the more diffuse function (small exponent) can be used primarily for
describing the C N π-bond. Doubling the number of basis functions thus allows for a much better
description of the fact that the electron distribution is different in different directions.

The chemical bonding occurs between valence orbitals. Doubling the 1s-functions in, for example,
carbon allows for a better description of the 1s-electrons. However, the 1s-orbital is essentially inde-
pendent of the chemical environment, being very close to the atomic case. A variation of the DZ-type
basis set only doubles the number of valence orbitals, producing a split valence basis. In actual calcu-
lations, a doubling of the core orbitals would rarely be considered, and the term DZ basis set is used
also for split valence basis sets (or sometimes denoted VDZ, for valence double zeta).

The next step up in basis set size is a Triple Zeta (TZ). Such a basis set contains three times as many
functions as the SZ basis, that is six s-functions and three p-functions for the second row elements.
Some of the core orbitals may again be saved by only splitting the valence, producing a triple split
valence basis set. Again the term TZ is used to cover both cases. The series continues with the names
and acronyms Quadruple Zeta (QZ), Quintuple Zeta (5Z), Hextuble Zeta (6Z) and Heptuble Zeta
(7Z) for the next levels of basis sets that are also used, but large basis sets are often given explicitly in
terms of the number of basis functions of each type.

So far, only the number of s- and p-functions for each atom (second or third row in the periodic
table) has been discussed. In most cases, higher angular momentum functions are also important,
and these are denoted polarization functions. Consider again the bonding in HCN in Figure 5.2. The
H C bond is primarily described by the hydrogen s-orbital(s) and the carbon s- and pz-orbitals. It
is clear that the electron distribution along the bond near the hydrogen atom will be different than
perpendicular to the bond. If only s-functions are present on hydrogen, this cannot be described.
However, if a set of p-orbitals is added to hydrogen, the pz component can be used for improving the
description of the H C bond. The p-orbital introduces a polarization of the s-orbital(s). Similarly,
d-orbitals can be used for polarizing p-orbitals, f-orbitals for polarizing d-orbitals, etc. Once a
p-orbital has been added to polarize a hydrogen s-orbital, it may be argued that the p-orbital should
be polarized by adding a d-orbital, which should be polarized by an f-orbital, etc. For independent-
particle wave functions (Chapters 3 and 6), where electron correlation is not considered, the first set
of polarization functions (i.e. p-functions for hydrogen and d-functions for non-hydrogen p-block
atoms) is by far the most important, and will in general describe most of the important charge polar-
ization effects.

If methods including electron correlation (Chapter 4) are used, higher angular momentum func-
tions are essential. Electron correlation describes the energy lowering by the electrons “avoiding” each
other, beyond the average effect taken into account by Hartree–Fock methods. Two types of atomic
correlation can be defined, an “in–out” and an “angular” correlation. The in–out or radial correlation
refers to the situation where one electron is close to, and the other far from, the nucleus. To describe
this, the basis set needs functions of the same type, but with different exponents. The angular cor-
relation refers to the situation where two electrons are on opposite sides of the nucleus. To describe
this, the basis set needs functions with the same magnitude exponents, but different angular momen-
tum. For example, to describe angular correlation of an s-orbital, p-functions (and d-, f-, g-functions,
etc.) are needed. The angular correlation is of similar importance to the radial correlation, and higher
angular momentum functions are consequently essential for correlated calculations. Although these
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should properly be labeled correlation functions, they also serve as polarization functions for HF
wave functions, and it is common to denote them as polarization functions.

In most cases only the correlation of the valence electrons is considered, and the exponents of the
polarization functions should be of the same magnitude as the valence s- and p-functions (actually
slightly larger in order to have the same maximum in the radial distribution function). In contrast to
HF methods, the higher angular momentum functions (beyond the first set of polarization functions)
are quite important, or, alternatively formulated, the convergence in terms of angular momentum is
slower for correlated wave functions than at the HF level. For a basis set that is complete up to angular
momentum L, both numerical5, 6 and theoretical7 analyses suggest that the asymptotic convergence
at the HF level is exponential (i.e. ∼exp(−

√
L)), while it is ∼L−3 at correlated levels (Section 5.9).

Polarization functions are added to the chosen sp-basis set. Adding a single set of polarization
functions (p-functions on hydrogens and d-functions on non-hydrogen p-block atoms) to a DZ basis
set forms a Double Zeta plus Polarization (DZP)-type basis set. There is a variation where polarization
functions are only added to non-hydrogen atoms. This does not mean that polarization functions
are not important on hydrogen. Hydrogen, however, often has a “passive” role, sitting at the end
of bonds that do not take an active part in the property of interest. The error introduced by not
including hydrogen polarization functions is often rather constant and, as the interest usually is in
energy differences, tends to cancel out. Hydrogen often accounts for a large number of atoms in
the system and a saving of three basis functions for each hydrogen is significant. If hydrogen plays
an important role in the property of interest, it is of course not a good idea to neglect polarization
functions on hydrogen.

Similarly to the sp-basis sets, multiple sets of polarization functions with different exponents may
be added. If two sets of polarization functions are added to a TZ sp-basis, a Triple Zeta plus Polariza-
tion (TZP)-type basis is obtained. For larger basis sets with many polarization functions the explicit
composition in terms of number and types of functions is usually given. At the HF level there is usu-
ally little gained by expanding the basis set beyond TZP, and even a DZP-type basis set usually gives
“good” results (compared with the HF limit). Correlated methods, however, require more, and higher
angular momentum, polarization functions to achieve the same level of convergence.

Before moving on we need to introduce the concept of basis set balance. In principle, many sets of
polarization functions may be added to a small sp-basis set, but this is a poor idea. If an insufficient
number of sp-functions has been chosen for describing the fundamental electron distribution, the
optimization procedure used in obtaining the wave function (and possibly also the geometry) may
try to compensate for inadequacies in the sp-basis set by using higher angular momentum functions,
thereby producing artefacts. A rule of thumb says that the number of functions of a given type should
at most be one less than the type with one lower angular momentum. A 3s2p1d basis is balanced, but
a 3s2p2d2f1g is too heavily polarized. It may not be necessary to polarize the basis all the way up; thus
a 5s4p3d2f1g basis is balanced, but if it is known (e.g. by comparison with experimental data) that
f- and g-functions are unimportant, they may be left out.

The hierachy levels mentioned in the introduction as a basis set desiderate is usually associated
with the n-Zeta (nZ) notation. Since modern basis sets implicitly define the polarization functions
that should be added at each zeta level, the nZ (DZP, TZP, QZP, …) notation also indicates the
highest angular momentum function included in the basis set, where it is implicitly assumed that the
number of lower angular momentum functions has been chosen to ensure a balanced description.
It should be noted that the highest angular momentum function included in the basis set for a given
nZ depends on the atom, where a DZP basis set for hydrogen implies Lmax = 1 (p-functions), but
Lmax = 2 (d-functions) for carbon and silicium, for example, and Lmax = 3 ( f-functions) for iron, for
example.
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Another aspect of basis set balance is the occasional use of mixed basis sets, for example a DZP
quality on the atoms in the “interesting” part of the molecule and an SZ basis for the “spectator” atoms.
Another example would be the addition of polarization functions for only a few hydrogens that are
located “near” the reactive part of the system. For a large molecule, this may lead to a substantial
saving in the number of basis functions, but it may also bias the results and can create artefacts. For
example, a calculation on the H2 molecule with an SZ basis on one of the nuclei and a DZ basis on
the other will predict that H2 has a dipole moment, since the variational principle will preferentially
place the electrons near the nucleus with the most basis functions. The majority of calculations are
therefore performed with basis sets of the same quality (SZ, DZP, TZ2P, etc.) on all atoms, possibly
removing polarization and/or diffuse (small exponent) functions on hydrogen. Even so, it may be
argued that small basis sets inherently tend to be unbalanced. Consider, for example, the LiF molecule
in a minimum or DZ-type basis. This will have a very ionic structure, Li+F−, with nearly all the valence
electrons being located at the fluorine. In terms of number of basis functions per electron, the Li basis
set is thus of a much higher quality than the F basis set, and thereby unbalanced. This effect of course
diminishes as the size of the atomic basis set increases.

Except for very small systems, it is impractical to saturate the basis set such that the absolute error
in the energy is reduced below chemical accuracy, say a few kJ/mol. The important point in choosing
a balanced basis set is to keep the error as constant as possible. The use of mixed basis sets should
therefore only be done after careful consideration. Furthermore, the use of small basis sets for sys-
tems containing elements with substantially different numbers of valence electrons (such as LiF) may
produce artefacts.

. Construction of Basis Sets

The n-Zeta notation introduced in the previous section is closely connected to the idea of one basis
function being able to represent one (atomic) orbital. While this is a reasonable approximation for
STO basis functions, this is not the case for GTO functions. A basis function is often composed as a
linear combination of several GTOs, as indicated in Figure 5.1. Each individual GTO is called a primi-
tive function, while the fixed linear combination is called a contracted function. A given basis set thus
contains a specific number of (contracted) basis functions, each of which contains basis set parame-
ters in terms of the number of primitive GTOs, and their exponents and contraction coefficients. We
will in this section discuss how the basis set parameters can be obtained.

5.3.1 Exponents of Primitive Functions

The exponents of the primitive GTOs determine the radial extent of the functions, with large values
providing “tight” functions capable of describing the shape of the orbitals near the nucleus, while
small exponents provide “diffuse” functions that can be used for describing the long-range “tail”
behavior of the orbitals far from the nucleus. It is clear that a basis set must contain a series of GTOs
covering a range of exponents, but the number of functions and the exact values of the exponents
clearly will affect the attainable accuracy.

A few basis sets employ a fitting strategy for determining the optimum GTO exponents, for exam-
ple by fitting to an STO function (Section 5.4.1). A more common procedure, however, is to determine
the best set of exponents by minimizing the energy of isolated atoms using the exponents as varia-
tional parameters. The variational principle suggests that the exponent values that give the lowest
energy are the “best”, at least for the atom. The exponents for functions describing occupied orbitals
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(s- and p-functions for second and third row elements and also d-functions for fourth and fifth row
elements) can thus be determined by minimizing the HF or DFT energy. The exponents of polar-
ization functions cannot be optimized at the HF or DFT level for atoms, since these functions are
unoccupied and therefore make no contribution to the energy. Suitable polarization exponents may
be chosen by performing variational calculations on molecular systems (where the HF or DFT energy
does depend on polarization functions) or on atoms with a correlated wave function, such as CISD.
Basis sets designed for HF or DFT typically employ the former, while basis sets designed for electron
correlation typically employ the latter. Polarization exponents can alternatively be assigned based on
a maximum overlap criterion with the occupied orbitals they are designed to polarize and/or cor-
relate. In some cases, only the optimum exponent is determined for a single polarization function
and multiple polarization functions are generated by splitting the exponents symmetrically around
the optimum value for a single function. The splitting factor is typically taken in the range 2–4. For
example, if a single d-function for carbon has an exponent value of 0.8, two polarization functions
may be assigned with exponents of 0.4 and 1.6 (splitting factor of 4). The details of how the exponents
are determined for various basis sets are discussed in the following sections.

5.3.2 Parameterized Exponent Basis Sets

The optimization of basis function exponents is an example of a highly non-linear optimization prob-
lem (Chapter 13). While the exponent optimization for atoms is relatively straightforward, espe-
cially if analytical gradients of the energy with respect to the basis function exponents is available, it
becomes progressively more difficult as the size of the basis set increases. The basis functions start
to become linearly dependent (the basis set approaches completeness) and the energy becomes a
very flat function of the exponents. As an alternative to performing a full optimization of all the
exponents in a basis set, the exponents may be generated by a parameterized formula, and only the
(fewer) parameters in the generating formula need to be optimized.

Analyses of basis sets that have been fully optimized by variational methods reveal that the ratio
between two successive exponents is approximately constant. Taking this ratio to be constant reduces
the optimization problem to only two parameters for each type of basis function, independent of the
size of the basis. Such basis sets have been labeled even-tempered basis sets, with the ith exponent
given as 𝜁 i = 𝛼𝛽 i, where 𝛼 and 𝛽 are fixed constants for a given type of function and nuclear charge.
It was later discovered that the optimum 𝛼 and 𝛽 constants to a good approximation can be written
as functions of the size of the basis set, M:8

𝜁i = 𝛼𝛽 i; i = 1, 2,… , M
ln(ln 𝛽) = b lnM + b′ (5.4)
ln 𝛼 = a ln(𝛽 − 1) + a′

The constants a, a′, b and b′ depend only on the atom and the type of function (s or p). Even-tempered
basis sets have the advantage that it is easy to generate a sequence of basis sets that converge towards
a complete basis. This is useful if the attempt is to extrapolate a given property to the basis set limit.
The disadvantage is that the convergence is somewhat slow, and an explicitly optimized basis set of a
given size will usually give a better answer than an even-tempered basis of the same size.

Even-tempered basis sets have the same ratio between exponents over the whole range. From chem-
ical considerations it is usually preferable to cover the valence region better than the core region. This
may be achieved by well-tempered basis sets.9 The idea is similar to the even-tempered basis sets,
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with the exponents being generated by a suitable formula containing only a few parameters to be
optimized. The exponents in a well-tempered basis of size M are generated according to

𝜁i = 𝛼𝛽 i−1
(

1 + 𝛾
( i

M

)𝛿
)

; i = 1, 2,… , M (5.5)

The 𝛼, 𝛽, 𝛾 and 𝛿 parameters are optimized for each atom. The exponents are the same for all types
of angular momentum functions, and s-, p- and d-functions (and higher angular momentum) conse-
quently have the same radial part.

A well-tempered basis set has four parameters, compared with two for an even-tempered one, and
is consequently capable of giving a better result for the same number of functions. Petersson et al.10

have proposed a more general parameterization based on expanding the logarithmic exponents in
Legendre polynomials as shown in the equation below. The use of Legendre polynomials is advanta-
geous since they are orthogonal, which significantly improves the optimization of the Ak parameters:

ln 𝜁i =
Kmax∑

k=0
AkPk

( 2i − 2
M − 1

− 1
)

; i = 1, 2,… , M

P0(x) = 1 ; P1(x) = x ; P2(x) = 1∕2(3x2 − 1) ; P3(x) = 1∕2(5x3 − 3x)

(5.6)

Setting Kmax = 1 is equivalent to generating an even-tempered basis set and a fourth-order polyno-
mial (Kmax = 3) expansion produces much better results than the well-tempered formula, despite
having the same number of variables. The difference in energy between a fully optimized basis set
and one determined from a fourth-order Legendre parameterization corresponds typically to only a
few functions, that is the penalty for reducing the number of optimization variables from M to four is
only a few functions. The Legendre parameterization also solves the potential problem of variational
collapse, that is two neighboring exponents collapsing to the same value during optimization, and
Equation (5.6) provides an efficient way of systematically approaching the basis set limit.

A disadvantage that all parameterized exponent methods share is that the exponents for a fully
optimized basis set with relatively few functions display a clear orbital node structure. Orbital radial
nodes correspond to distances from the nucleus where there is a reduced probability of finding an
electron, and these regions are therefore less important in an energetic sense. A set of basis functions
with energy-optimized exponents will therefore display “gaps” in the exponent sequence correspond-
ing to values near orbital nodes. Such irregular exponent sequences are very difficult to obtain by
parameterized formulas.

5.3.3 Basis Set Contraction

Optimizing the exponents for a set of primitive functions by minimizing the total energy will dis-
tribute the functions in exponent space according to their energetic importance. Since the inner-shell
orbitals account for a large fraction of the total energy, this means that many functions will be used
for obtaining a good description of the core orbitals, while relatively few will have sufficiently low
exponents to be suitable for describing the energetically less important valence orbitals. Chemistry,
however, is mainly dependent on the valence orbitals. The fact that many basis functions focus on
describing the energetically important, but chemically unimportant, core electrons is the foundation
for contracted basis sets. Consider, for example, a basis set consisting of ten s-functions (and some
p-functions) for carbon. Having optimized these ten exponents by a variational calculation on a car-
bon atom, maybe six of the ten functions are found primarily to be used for describing the 1s-orbital
and two of the four remaining describe the “inner” part of the 2s-orbital. The important chemical
region is the outer valence. Out of the ten functions, only two are actually used for describing the
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chemically interesting phenomena. Considering that the computational cost increases as the fourth
power (or higher) of the number of basis functions, this is inefficient. As the core orbitals change
very little depending on the chemical bonding situation, the MO expansion coefficients in front of
these inner basis functions also change very little. The majority of the computational effort is there-
fore spent describing the chemically uninteresting part of the wave function, which is furthermore
almost constant.

Consider now making the variational coefficients in front of the inner basis functions constant, that
is they are no longer parameters to be determined by the variational principle. The 1s-orbital is thus
described by a fixed linear combination of, say, six basis functions. Similarly, the remaining four basis
functions may be contracted into only two functions, for example by fixing the coefficient in front of
the inner three functions. In doing this the number of basis functions to be handled by the variational
procedure has been reduced from ten to three.

Combining the full set of primitive GTOs (PGTOs) into a smaller set of functions by forming fixed
linear combinations is known as basis set contraction, and the resulting functions are called con-
tracted GTOs (CGTOs):

𝜒(CGTO) =
k∑

i
ai𝜒i(PGTO) (5.7)

The nZ notation introduced in Section 5.2 refers to the number of contracted basis functions. Con-
traction is especially useful for orbitals describing the inner (core) electrons, since they require a
relatively large number of functions for representing the wave function cusp near the nucleus, and
furthermore are largely independent of the environment. Contracting a basis set will always increase
the energy, since it is a restriction of the number of variational parameters and makes the basis set less
flexible, but it will also reduce the computational cost significantly. The decision is thus how much
loss in accuracy is acceptable compared with the gain in computational efficiency.

The degree of contraction is the number of PGTOs entering the CGTO, typically varying between
one and ten. The specification of a basis set in terms of primitive and contracted functions is done by
the notation (10s4p1d/4s1p) → [3s2p1d/2s1p]. The basis set in parentheses is the number of primi-
tives functions with non-hydrogen atoms (second row elements) before the slash and hydrogen after.
The basis set in the square brackets is the number of contracted functions. Note that this does not
indicate how the contraction is done; it only indicates the size of the final basis (and thereby the size
of the variational problem in HF calculations).

There are two different ways of contracting a set of primitive GTOs to a set of contracted GTOs:
segmented and general contraction. Segmented contraction is the older method and the one used in
the above example. A given set of PGTOs is partitioned into smaller sets of functions that are made
into CGTOs by determining suitable contraction coefficients. A 10s basis set may be contracted to
3s by taking the inner six functions as one CGTO, the next three as the second CGTO and the one
remaining PGTO as the third “contracted” GTO:

𝜒1(CGTO) =
6∑

i=1
ai𝜒i(PGTO)

𝜒2(CGTO) =
9∑

i=7
ai𝜒i(PGTO)

𝜒3(CGTO) = 𝜒10(PGTO)

(5.8)

In a segmented contraction each primitive function as a rule is used only in one contracted function,
that is the primitive set of functions is partitioned into disjoint sets. This often requires that some
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PGTOs in two adjacent CGTOs need to be duplicated, since a PGTO may be important for both
describing the outer part of a core orbital and the inner part of a valence orbital. The contraction
coefficients in a segmented contraction are usually determined by a variational optimization of the
atomic energy, where both the exponents and contraction coefficients are optimized simultaneously.
It should be noted that this optimization often contains multiple minima, and selecting a suitable
“optimum” solution may be non-trivial.11

In a general contraction all primitive functions (on a given atom) enter all the contracted functions,
but with different contraction coefficients:

𝜒1(CGTO) =
8∑

i=1
ai𝜒i(PGTO)

𝜒2(CGTO) =
8∑

i=1
bi𝜒i(PGTO)

𝜒3(CGTO) =
8∑

i=1
ci𝜒i(PGTO)

(5.9)

The contraction coefficient can be taken as the HF or DFT MO coefficients for different orbitals
(e.g. 1s, 2s, 3s, …) or, more generally, as coefficients from Atomic Natural Orbitals (ANOs) from
a correlated calculation, as discussed in Section 5.4.4. The difference between segmented and gen-
eral contraction may be illustrated as shown in Figure 5.3. The requirement of duplicating primitive
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Figure . Illustrating segmented and general contraction.
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functions in a segmented contraction usually means that more primitive functions are required to
obtain the same accuracy as a general contraction of a smaller primitive set of functions.

In reality, there are only few truly segmented or general contracted basis sets. General contracted
basis sets normally leave the outermost primitive function(s) uncontracted, and the disjoint nature
of the primitive set of functions in a segmented contraction often necessitates a duplication of one or
more functions, that is effectively a general contraction. The segmented–general classification should
thus be seen as limiting cases, with actual basis sets having varying characteristics of both types. In
practise it is usually easy to classify a basis set as either segmented and general contracted, based on
whether only a few or the majority of primitive functions are shared between many (all) contracted
functions.

A general contracted basis set is normally constructed from a set of energy-optimized primitive
functions that in a separate step is contracted by a set of MO or ANO coefficients. The outermost
primitive functions are then sequentially uncontracted until the contraction error becomes accept-
ably small. Different sized contracted basis sets can thus be constructed from the same set of primitive
functions, which makes it easy to define and control the contraction error. A segmented contracted
basis set, on the other hand, requires a decision on how to partition the primitive functions into
disjoint sets of contracted functions and whether to duplicate one or more primitive functions. The
exponents and contraction coefficients are then optimized simultaneously. This means that different
primitive functions are used for each different contraction schemes of the same number of primi-
tive functions, which makes it difficult to define and control the contraction error. The combined
exponent and coefficient optimization is furthermore a complicated non-linear multiminima prob-
lem, which often makes it difficult to decide whether the “correct” minimum has been located by the
optimization procedure.

Segmented and general contraction was originally seen as two unrelated contraction methods, but
it has been shown that a general contracted basis set can be converted into a segmented contracted
one in a unique fashion, which effectively corresponds to removal of the redundancy between the
general contracted functions.12 Segmented contracted basis sets are computationally more efficient
than general contracted ones, since integral screening (Section 3.8.5) works more efficiently for the
former. The integral screening is perfomed using contracted functions, and a general contraction
implies that if a single contracted function is important beyond a given threshold, then integrals
over all primitive functions must be calculated. In a segmented contraction, on the other hand, only
integrals over those primitive functions that contribute to a given contracted function need to be
calculated. This is especially important for methods like HF and DFT where the computational time
for calculating integrals over basis functions dominates the total computational effort. For highly cor-
related methods, like CCSD(T), the time for calculating integrals over basis functions is only a small
fraction of the total computational time and general contracted basis sets are often used in such cases.

5.3.4 Basis Set Augmentation

Molecular properties (Chapter 11) often have basis set requirements different from those obtained
by energy minimization of the exponents and perhaps also the contraction coefficients. The easiest
way of improving the basis set performance is usually to augment a standard energy-optimized basis
set with specific basis functions for the particular property. The basis function optimization in these
cases is in terms of the property of interest, and not in terms of energy, that is basis functions are
added until the change upon addition of one extra function is less than a given threshold.

Many properties depend mainly on the wave function “tail” (far from the nucleus), which energet-
ically is unimportant. An energy-optimized basis set that gives a good description of the outer part
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of the wave function therefore needs to be very large, with the majority of the functions being used
to describe the 1s-electrons with an accuracy comparable with the outer electrons in an energetic
sense. This is not the most efficient way of designing basis sets for describing the outer part of the
wave function. Instead energy-optimized basis sets are augmented explicitly with diffuse functions
(basis functions with small exponents). Diffuse functions are needed whenever loosely bound elec-
trons are present (e.g. anions or excited states) or when the property of interest primarily depends
on the most loosely bound electrons (e.g. polarizability). The exponents of the diffuse functions can
be determined by energy minimization of atomic anions, where only the exponents of the additional
diffuse functions are optimized. For basis sets designed for molecular properties, the exponents of the
diffuse function can be determined, for example, by maximizing the atomic polarizability.13 Alterna-
tively, the exponents of diffuse functions can be assigned by simply dividing the smallest exponent in
an energy-optimized basis set by a suitable scale factor, typically with a value close to 3. The scaling
approach is particularly useful for generating multiple sets of diffuse function, which is required for
calculating molecular properties such as hyperpolarizabilites.

Some properties are sensitive to an accurate representation of the wave function in the core region,
and in some cases depend on the electron density at the nucleus position (e.g. the Fermi contact
contribution to spin–spin coupling constants (Section 11.8.7)). In such cases a standard basis set
can be augmented with tight basis functions, that is functions with (very) large exponents. For core
properties, it is usually also necessary to reduce the contraction level of an energy-optimized basis
set, since additional freedom is required to calculate the (small) variations in the core orbitals due to
the molecular environment.

. Examples of Standard Basis Sets

Optimization of basis function exponents, deciding a suitable contraction scheme and how to define
augmenting functions are not things the average user needs to consider. Optimized basis sets of many
different sizes and qualities are available either from websites14 or stored internally in the computer
programs. The user “merely” has to select a suitable quality basis for the calculation. Below is a short
description of some basis sets that often are used in routine calculations, and reviews are available for
more information.15, 16 The contractions are given for a second row element (such as carbon), while
the corresponding ones for other elements can be found in the references.

5.4.1 Pople Style Basis Sets

STO-nG basis sets These are Slater-type orbitals consisting of n PGTOs.17 This is an SZ-type basis set
where the exponents of the PGTO are determined by fitting to the STO, rather than optimizing them
by a variational procedure. Although basis sets with n = 2–6 have been derived, it has been found that
using more than three PGTOs for representing the STO gives little improvement and the STO-3G
basis is a widely used SZ basis set. This type of basis set has been determined for many elements of
the periodic table. The designation of the carbon STO-3G basis is (6s3p) → [2s1p].

k-nlmG basis sets These basis sets, designed by Pople and coworkers, are of the split valence type,
with the k in front of the dash indicating how many PGTOs are used for representing the core orbitals.
The nlm after the dash indicate both how many functions the valence orbitals are split into and how
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many PGTOs are used for their representation. Two values (nl) indicate a split valence, while three
values (nlm) indicate a triple split valence. The values before the G (for Gaussian) indicate the s- and
p-functions in the basis; the polarization functions are placed after the G. These types of basis sets
have the further restriction that the same exponent is used for both the s- and p-functions in the
valence. This increases the computational efficiency, but of course decreases the flexibility of the basis
set. The exponents and contraction coefficients for the s- and p-functions have been optimized by
variational procedures at the HF level for atoms, while polarization functions have been assigned
based on molecular calculations for a few small systems.

3-21G This is a split valence basis set, where the core orbitals are a contraction of three PGTOs, the
inner part of the valence orbitals is a contraction of two PGTOs and the outer part of the valence is
represented by one PGTO.18 The designation of the carbon 3-21G basis is (6s3p) → [3s2p]. Note that
the 3-21G basis set contains the same number of primitive GTOs as the STO-3G, but it is much more
flexible as there are twice as many valence functions that can combine freely to make MOs.

6-31G This is also a split valence basis set, where the core orbitals are a contraction of six PGTOs,
the inner part of the valence orbitals is a contraction of three PGTOs and the outer part of the valence
is represented by one PGTO.19 The designation of the carbon 6-31G basis set is (10s4p) → [3s2p]. In
terms of contracted basis functions it contains the same number as 3-21G, but the representation of
each function is better since more PGTOs are used.

6-311G This is a triple split valence basis set, where the core orbitals are a contraction of six PGTOs
and the valence split into three functions, represented by three, one and one PGTOs, respectively,
that is (11s5p) → [4s3p].20

To each of these basis sets can be added diffuse21 and/or polarization functions.22 Diffuse functions
are s- and p-functions (only) and consequently go before the G. They are denoted by + or ++, with
the first + indicating one set of diffuse s- and p-functions on non-hydrogen atoms and the second
+ indicating that a diffuse s-function is added also to hydrogen. The argument for only adding dif-
fuse functions on non-hydrogen atoms is the same as for only adding polarization functions on non-
hydrogens (Section 5.2). Polarization functions are indicated after the G, with a separate designation
for non-hydrogen atoms and hydrogen. The 6-31+G(d), for example, is a split valence basis set with
one set of diffuse sp-functions and a single d-type polarization function on non-hydrogen atoms.
The 6-311++G(2df,2pd) is a triple split valence basis set with additional diffuse sp-functions, two d-
functions and one f-function on non-hydrogen atoms, and diffuse s- and two p- and one d-functions
on hydrogen. The largest standard Pople style basis set is 6-311++G(3df,3pd). These types of basis
set have been derived for hydrogen and the second row elements, and some of the basis sets have
also been derived for third and higher row elements. The composition in terms of contracted and
primitive functions for the s- and p-parts is given in Table 5.1.

If only one set of polarization functions is used, an alternative notation in terms of ∗ is also widely
used. The 6-31G∗ basis set is identical to 6-31G(d) and 6-31G∗∗ is identical to 6-31G(d,p). A special
note should be made for the 3-21G∗ basis. The 3-21G basis set is fundamentally too small to sup-
port polarization functions (it becomes unbalanced). However, the 3-21G basis set by itself performs
poorly for hypervalent molecules, such as sulfoxides and sulfones. This can be improved substantially
by adding a set of d-functions. The 3-21G∗ basis set has only d-functions on third row elements (it is
sometimes denoted 3-21G(∗) to indicate this) and should not be considered a polarized basis. Rather
the addition of a set of d-functions is an ad hoc repair of a known flaw.
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Table . Composition in terms of contracted and primitive basis functions for some Pople style basis sets.

Hydrogen Second row elements Third row elements

Basis Contracted Primitive Contracted Primitive Contracted Primitive

STO-3G 1s 3s 2s1p 6s3p 3s2p 9s6p
3-21G 2s 3s 3s2p 6s3p 4s3p 9s6p
6-31G(d,p) 2s1p 4s 3s2p1d 10s4p 4s3p1d 16s10p
6-311G(2df,2pd) 3s2p1d 5s 4s3p2d1f 11s5p 6s4p2d1fa 13s9pa

aMcLean–Chandler basis set.

The Pople style basis sets have been used extensively and continue to be used as general-purpose
basis sets for a variety of methods and properties, despite the fact that more modern basis sets provide
better performance, that is deliver lower basis set errors for a similar computational cost. Part of the
success of the Pople style basis sets is that they have been used in so many applications that certain
“magic” combinations of methods and basis sets have been identified, where basis set errors partly
compensate for method errors for a limited test set of systems and properties, the ubiquous B3LYP/6-
31G∗ combination being a vivid example. These “right-answers-for-the-wrong-reason” combinations
often employ small basis sets in order to generate compensating errors and consequently lead to com-
putationally very efficient procedures; this without doubt has fuelled the popularity. Furthermore, the
large number of calibration studies reported means that it is possible to get a fairly good idea of the
level of accuracy that can be attained with a given method/basis set combination. This is of course
a self-sustaining procedure; the more calculations that are reported with a given basis set, the more
popular it becomes, since the calibration set becomes larger and larger.

5.4.2 Dunning–Huzinaga Basis Sets

Huzinaga has determined uncontracted energy-optimized basis sets up to (10s6p) for second row ele-
ments.23 This was latter extended to (14s9p) by van Duijneveldt,24 and up to (18s13p) by Partridge.25

Dunning has used the Huzinaga primitive GTOs to derive various contraction schemes, and these are
known as Dunning–Huzinaga (DH) type basis sets.26 A DZ-type basis set can be made by a contrac-
tion of the (9s5p) PGTO to [4s2p]. The contraction scheme is 6,1,1,1 for s-functions and 4,1 for the
p-functions. A widely used split valence-type basis set is a contraction of the same primitive set to
[3s2p] where the s-contraction is 7,2,1 (note that one primitive enters twice). A widely used TZ-type
basis set (actually only a triple split valence) is a contraction of the (10s6p) to [5s3p], with the con-
traction scheme 6,2,1,1,1 for s-functions and 4,1,1 for p-functions. Again, a duplication of one of the
s- and p-primitives has been allowed.

McLean and Chandler have developed a similar set of contracted basis sets from Huzinaga primi-
tive optimized sets for third row elements.27 A DZ-type basis set is derived by contracting (12s8p) →
[5s3p] and a TZ-type is derived by contracting (12s9p) → [6s5p]. The latter contraction is 6,3,1,1,1,1
for the s-functions (note a duplication of one function) and 4,2,1,1,1 for the p-functions, and is often
used in connection with the Pople 6-311G when third row elements are present.

The Dunning–Huzinaga-type basis sets do not have the restriction of the Pople style basis sets of
equal exponents for the s- and p-functions, and they are therefore somewhat more flexible. These
basis sets are, with the exception of the McLean–Chandler version for third row atoms in connection
with the Pople style basis sets, only used very rarely.
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Table . Composition in terms of contracted and primitive basis functions for the Karlsruhe-type basis sets.

Hydrogen Second row elements Third row elements

Basis Contracted Primitive Contracted Primitive Contracted Primitive

SVP 2s1p 4s 3s2p1d 7s4p 4s3p1d 10s7p
TZV 3s2p1d 5s 5s3p2d1f 11s6p 5s4p2d1f 14s9p
QZV 4s3p2d1f 7s 7s4p3d2f1g 15s8p 9s6p4d2f1g 20s14p

5.4.3 Karlsruhe-Type Basis Sets

The group centered around R. Ahlrichs has designed basis sets of DZ, TZ and QZ quality for the
elements up to Kr (Table 5.2). The Split Valence Polarized (SVP) basis set is a [3s2p] contraction of
a (7s4p) set of primitive functions (contraction 5,1,1 and 3,1), while the Triple Zeta Valence (TZV)
basis set is a [5s3p] contraction of an (11s6p) set of primitive functions (contraction 6,2,1,1,1 and
4,1,1).28, 29 The series has been extended by a Quadruple Zeta Valence (QZV) basis set, being a [7s4p]
contraction of a (15s8p) set of primitive functions with the contraction 8,2,1,1,1,1,1 and 5,1,1,1, and
this work also included a general update of the SVP and TVP to produce the so-called Def2-SVP, -TVP,
-QZV basis sets.30 Note that both the TZV and QZV basis sets employ more contracted s-functions
than indicated by the TZ and QZ acronyms. The s- and p-exponents and corresponding contraction
coefficients are optimized at the HF level, while the polarization functions are taken from the cc-
pVXZ basis sets. Two slightly different sets of polarization functions are available for some atoms,
depending on whether the basis set is used for HF/DFT or electron correlation methods.

The Karlsruhe basis sets have been used extensively for both HF/DFT and electron correlation
methods, since they are computationally quite efficient and furthermore available for a large fraction
of atoms in the periodic table.

5.4.4 Atomic Natural Orbital Basis Sets

All of the above basis sets are of the segmented contraction type. Modern contracted basis sets aimed
at producing very accurate wave functions often employ a general contraction scheme. The Atomic
Natural Orbitals (ANOs) and correlation consistent basis sets below are of the general contraction
type.

The idea in the ANO-type basis sets is to contract a large PGTO set to a fairly small number of
CGTOs by using natural orbitals from a correlated calculation on the free atom, typically at the CISD
level.31, 32 The natural orbitals are those that diagonalize the density matrix and the eigenvalues are
called orbital occupation numbers (see Section 10.5). The orbital occupation number is the number of
electrons in the orbital. For an RHF wave function, ANOs would be identical to the canonical orbitals
with occupation numbers of exactly 0 or 2. When a correlated wave function is used, however, the
occupation number may have any value between 0 and 2. The ANO contraction selects the impor-
tant combinations of the PGTOs from the magnitude of the occupation numbers. A large primitive
basis set, often generated as an even-tempered sequence, may generate several different contracted
basis sets by gradually lowering the selection threshold for the occupation number. The nice feature
of the ANO contraction is that it more or less “automatically” generates balanced basis sets, for exam-
ple for neon the ANO procedure generates the following basis set: [2s1p], [3s2p1d], [4s3p2d1f] and
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[5s4p3d2f1g]. Furthermore, in such a sequence the smaller ANO basis sets are true subsets of the
larger, since the same set of primitive functions is used.

Roos and coworkers have constructed ANO-S (Small) and ANO-L (Large) basis sets for atoms
up to Kr by a general contraction of a set of primitive functions using coefficients from natural
orbitals calculated by CASPT2.33 For second row atoms the designations are (14s9p4d) → [3s2p1d]
and (14s9p4d3f) → [4s3p2d1f], respectively, while the corresponding designations for a third row
atom are (17s12p5d) → [4s3p1d] and (17s12p5d4f) → [5s4p2d1f].

5.4.5 Correlation Consistent Basis Sets

The primary disadvantage of ANO basis sets is that a large number of primitive GTOs are employed,
which makes them computationally inefficient. Dunning, Peterson and coworkers have proposed a
somewhat smaller set of primitives that yields comparable results to the ANO basis sets.34, 35 The
correlation consistent (cc; the convention is to use lower case letters as the acronym, to distinguish
it from coupled cluster (CC)) basis sets are geared towards recovering the correlation energy of the
valence electrons. The name correlation consistent refers to the fact that the basis sets are designed
such that functions that contribute similar amounts of correlation energy are included at the same
stage, independent of the function type. For example, the first d-function provides a large energy
lowering, but the contribution from a second d-function is similar to that from the first f-function.
The energy lowering from a third d-function is similar to that from the second f-function and the
first g-function. The addition of polarization functions should therefore be done in the order: 1d,
2d1f and 3d2f1g. An additional feature of the correlation consistent basis sets is that the energy error
from the sp-basis should be comparable with (or at least not exceed) the correlation error arising
from the incomplete polarization space, and the sp-basis therefore also increases as the polarization
space is extended. The s- and p-basis set exponents are optimized at the HF level for the atoms, while
the polarization exponents are optimized at the CISD level as an even-tempered sequence and the
primitive functions are contracted by a general contraction scheme using natural orbital coefficients.

Several different sizes of correlation consistent basis sets are available in terms of the number of
contracted functions. These are known by their acronyms: cc-pVDZ, cc-pVTZ, cc-pVQZ, cc-pV5Z
and cc-pV6Z (correlation consistent polarized Valence Double/Triple/Quadruple/Quintuple/Sextuple
Zeta). The composition in terms of contracted and primitive (for the s- and p-parts) functions is
shown in Table 5.3. Note that each step up in terms of quality increases each type of basis function
by one, and adds a new type of higher-order polarization function. For third row systems it has been
found that the performance is significantly improved by adding an extra tight d-function.36

Table . Composition in terms of contracted and primitive basis functions for the correlation consistent basis sets.

Hydrogen Second row elements Third row elements

Basis Contracted Primitive Contracted Primitive Contracted Primitive

cc-pVDZ 2s1p 4s 3s2p1d 9s4p 4s3p2d 12s8p
cc-pVTZ 3s2p1d 5s 4s3p2d1f 10s5p 5s4p3d1f 15s9p
cc-pVQZ 4s3p2d1f 6s 5s4p3d2f1g 12s6p 6s5p4d2f1g 16s11p
cc-pV5Z 5s4p3d2f1g 8s 6s5p4d3f2g1h 14s8p 7s6p5d3f2g1h 20s12p
cc-pV6Z 6s5p4d3f2g1h 10s 7s6p5d4f3g2h1i 16s10p 8s7p6d4f3g2h1i 21s14p
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The energy-optimized cc-pVXZ basis sets can be augmented with diffuse functions, indicated by
adding the prefix aug- to the acronym.37 The augmentation consists of adding one extra function with
a smaller exponent for each angular momentum, that is the aug-cc-pVDZ has additionally one s-, one
p- and one d-function, the cc-pVTZ has 1s1p1d1f extra for non-hydrogens and so on. The exponents
for the diffuse functions are determined by energy minimization of atomic anions. The aug′-cc-pVXZ
notation is sometimes used to indicate that diffuse functions are added only to non-hydrogen atoms.

The cc-pVXZ basis sets may also be augmented with additional tight functions (large exponents) if
the interest is in recovering core–core and core–valence electron correlation, producing the acronym
cc-pCVXZ (X = D, T, Q, 5). The cc-pCVDZ has additionally one tight s- and one p-function, the cc-
pCVTZ has 2s2p1d tight functions, the cc-pCVQZ has 3s3p2d1f and the cc-pCV5Z has 4s4p3d2f1g
for non-hydrogens.38 The exponents for the tight functions are determined by energy minimization of
the core–core and core–valence correlation energy. The cc-pwCVXZ basis sets39 employ a weighting
scheme in order to focus on the chemically more important core–valence, rather than the core–core,
correlation energy. The main difference is that the exponents of the additional tight functions are
somewhat smaller for the cc-pwCVXZ basis sets relative to the cc-pCVXZ basis sets.

The first paper in 1989 describing the correlation consistent basis sets marks the birth of modern
basis sets designed to provide systematic convergence towards the basis set limiting result. They have
been very succesful in establishing benchmark results for highly correlated wave function methods
for a variety of systems and properties. Since they have been specifically optimized for wave function
correlation methods, they should be the first choice for such calculations.

5.4.6 Polarization Consistent Basis Sets

The basis set convergence of electron correlation methods is inverse polynomial in the highest angu-
lar momentum functions included in the basis set, while the convergence of the independent-particle
HF and DFT methods is exponential (Section 5.9).7,40,41 This difference in convergence properties
suggests that the optimum basis sets for the two cases will also be different, especially should low
angular momentum functions be more important for HF/DFT methods than for electron correlation
methods as the basis set becomes large. Since DFT (Chapter 6) often is the preferred method for rou-
tine calculations, it is of interest to have basis sets that are optimized for DFT-type calculations and
that are capable of systematically approaching the basis set limit. The polarization consistent (pc) basis
sets have been developed analogously to the correlation consistent basis sets except that they are opti-
mized for DFT methods.42, 43 The name indicates that they are geared towards describing the polar-
ization of the (atomic) electron density upon formation of a molecule, rather than describing the cor-
relation energy. Since there is little difference between HF and DFT, and even less difference between
different DFT functionals, these basis sets are suitable for independent-particle methods in general.

The polarization consistent basis sets also employ an energetic criterion for determining the impor-
tance of each type of basis function. The level of polarization beyond the isolated atom is indicated
by a value after the acronym, that is a pc-0 basis set is unpolarized, pc-1 contains a single polarization
function with one higher angular momentum, pc-2 contains polarization functions up to two beyond
that required for the atom, etc. In contrast to the cc-pVXZ basis sets, the importance of the polariza-
tion functions must be determined at the molecular level, since the atomic energies only depend on
s- and p-functions (at least for elements in the first three rows in the periodic table). For the DZP- and
TZP-type basis sets (pc-1 and pc-2), the consistent polarization is the same as for the cc-pVXZ basis
sets (1d and 2d1f), but at the QZP and 5ZP levels (pc-3 and pc-4) there are one and two additional
d-functions (4d2f1g and 6d3f2g1h), respectively (Table 5.4). The s- and p-basis set exponents are opti-
mized at the DFT level for the atoms, while the polarization exponents are selected as suitable average
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Table . Composition in terms of contracted and primitive basis functions for the segmented polarization
consistent basis sets.

Hydrogen Second row elements Third row elements

Basis Contracted Primitive Contracted Primitive Contracted Primitive

pc-0 2s 3s 3s2p 6s3p 4s3p 9s6p
pc-1 2s1p 4s 3s2p1d 8s4p 4s3p1d 12s9p
pc-2 3s2p1d 6s 4s3p2d1f 11s6p 5s4p2d1f 15s11p
pc-3 4s4p2d1f 9s 5s4p4d2f1g 15s9p 6s5p4d2f1g 21s14p
pc-4 5s6p3d2f1g 11s 6s5p6d3f2g1h 20s11p 7s6p6d3f2g1h 25s17p

values from optimizations for a selection of molecules. The primitive functions are subsequently con-
tracted by a general contraction scheme by using the atomic orbital coefficients, where the degree of
contraction is determined such that the contraction error is smaller than the error relative to the basis
set limit. The general contracted pc-n basis sets have subsequently been converted into a segmented
contracted version, with the acronym pcseg-n, which has essentially the same accuracy, but is signifi-
cantly more efficient computationally.12 The conversion from pc-n to pcseg-n also included a general
update, and the original general contracted pc-n basis sets should therefore be considered obsolete.

For properties dependent on the wave function tail, such as electric moments and polarizabilities,
the convergence towards the basis set limit can be improved by explicitly adding a set of diffuse func-
tions, producing the acronym aug-pcseg-n. The pcseg-n basis sets are available for atoms up to Kr,
and since they have been specifically optimized for DFT methods, should be a first choice for such
type of calculations (the author admits to being biased in this statement).

5.4.7 Correlation Consistent F12 Basis Sets

The slow basis set convergence of wave function electron correlation methods is due to difficulties in
representing the Coulomb hole by an expansion in nuclear centered Gaussian functions. The descrip-
tion of the short-range electron correlation can be substantially improved by including a correla-
tion function depending explicitly on the interelectronic distance, and this leads to the so-called F12
methods (Section 4.11). Not surprisingly, these methods have different basis set requirements than
HF/DFT and standard electron correlation methods, and Table 5.5 shows optimized basis sets for
F12 methods developed along the same procedures as the cc-pVXZ basis sets.

Table . Composition in terms of contracted and primitive basis functions for the cc-pVXZ-F12 basis sets.

Hydrogen Second row elements Third row elements

Basis Contracted Primitive Contracted Primitive Contracted Primitive

cc-pVDZ-F12 3s2p 5s 5s5p2d 11s6p 6s6p3d 16s12p
cc-pVTZ-F12 4s3p1d 6s 6s6p3d2f 13s7p 7s7p4d2f 17s13p
cc-pVQZ-F12 5s4p2d1f 8s 7s7p4d3f2g 15s9p 8s8p5d3f2g 21s13p
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5.4.8 Relativistic Basis Sets

Inclusion of scalar relativistic effects (Chapter 9) has the qualitative consequence that s-orbitals con-
tract while other types of orbitals expand, and these effects become progressively larger as the atomic
number increases. Basis sets that are optimized for relativistic methods thus have s-functions with
larger exponents than those optimized for non-relativistic methods, and the contraction coefficients
also differ to reflect the different radial behavior. The requirement for s-functions with very large
exponents is to some extent relaxed if a finite size nucleus is used in place of a point-nucleus. Relativis-
tic methods of the four-component type include spin–orbit interactions and have different spinors,
such as p1/2 and p3/2, that are expanded in the same type of basis function. The small component p1/2
spinor acquires substantial s-character and thus also contracts compared to the non-relativistic case,
while the p3/2 spinor expands. This leads to a requirement of p-type basis functions with both larger
and smaller exponents compared to the non-relativistic case, and the contraction coefficients for the
p1/2 and p3/2 spinors in this set of primitive p-functions are also different. Similar considerations
apply for the spinors expanded in d- and f-type basis functions, although the differences compared
to the non-relativistic case are smaller than for the s- and p-type functions. Basis sets optimized for
four-component relativistic methods thus tend to have more primitive functions than corresponding
non-relativistic ones.

A common procedure for designing basis sets for scalar relativistic methods is to simply recontract
a set of basis functions optimized for a non-relativistic method with contraction coefficients from a
relativistic calculation. This ignores the need for primitive s-functions with larger exponents in order
to represent the 1s-orbital near the nucleus, but the resulting error is insensitive to the (molecular)
environment and therefore tends to cancel out when calculating relative energies. The cc-pVXZ
and ANO-L basis sets are available in such relativistic recontracted versions where the contraction
coefficients are taken from Douglas–Kroll–Hess calculations, with the labels cc-pVXZ-DK44 and
ANO-RCC.45

K. Dyall constructed general contracted basis sets of DZP, TZP and QZP quality that are suitable
for four-components methods. These basis sets are constructed along the same principles as used for
constructing the non-relativistic cc-pVXZ basis sets and are available for all the atoms in the periodic
table. The functions describing the atomic occupied orbitals are optimized at the Dirac–Hartree–
Fock level with a finite Gaussian nucleus model while correlating functions are determined at the
CISD level.46

5.4.9 Property Optimized Basis Sets

The basis set requirements for obtaining a certain accuracy of a given molecular property is often
different from that required for a corresponding accuracy in energy. There is no analogy to the vari-
ational principle for molecular properties, which makes the design of property optimized basis sets
less straightforward. Basis sets for properties are therefore often tailored by adding functions until
the desired accuracy is obtained.

Properties that depend directly on the potential energy surface, like equilibrium geometries and
vibrational frequencies (first and second derivatives of the energy with respect to nuclear positions),
usually do not have basis set requirements beyond those in standard energy-optimized basis sets.
The basis set requirements for other types of properties, however, depend on the specific perturba-
tion operator defining the property. Electric polarizabilities, for example, measure how easy the wave
function distorts when applying a perturbing electric field. An electric field adds a potential energy
operator to the Hamiltonian, and thus influences the wave function most where the potential from
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the nuclei and other electrons is small, that is in the region far from the nuclei where the electron
density is low. The important part of the wave function is thus the “tail”, necessitating diffuse func-
tion in the basis set. Furthermore, an electric field polarizes the electron cloud and diffuse polariza-
tion functions are therefore also important. For perturbation-independent basis functions, there is a
“2n + 1” rule, that is if the unperturbed system is reasonably described by basis functions up to angu-
lar momentum L, then a basis set that includes functions up to angular momentum L + n can predict
properties up to order 2n + 1. A minimum description of molecules containing up to third row atoms
requires s- and p-functions, implying that d-functions are necessary for the polarizability and the first
hyperpolarizability and f-functions should be included for the second and third hyperpolarizabilities.
A more realistic description, however, would include d-functions for the unperturbed system, neces-
sitating f-functions for the polarizability. The standard diffuse functions available for many basis sets
(Section 5.3.4) are often sufficient to substantially improve the basis set convergence of electric prop-
erties, but for certain properties, like high-order hyperpolarizabilities, addition of a second set of even
more diffuse functions is sometimes found to be necessary. The exponents for the diffuse functions
have for some types of basis sets been assigned by maximizing the calculated polarizability.13

A completely different type of property is the indirect spin–spin coupling constant, which contains
information about the interactions of nuclear spins coupled by the electron spins. There are four
operators involved in calculating the indirect spin–spin coupling constant (Section 11.8.7): Fermi-
contact, spin-dipole, paramagnetic-spin-orbit and diamagnetic-spin-orbit (Table 11.2). The Fermi-
contact operator is a 𝛿-function (Equation (11.109)), which measures the electron density of the wave
function at a single point, the nuclear position. Since Gaussian functions have an incorrect behavior
at the nucleus (zero derivative compared with the “cusp” displayed by an exponential function), this
requires the addition of a number of very “tight” (large exponents) s-functions in order to predict this
term accurately. The paramagnetic-spin-operator is found to require additional tight p-functions,
while the spin-dipole operator requires addition of tight p-, d- and f-functions. In order to allow
sufficient flexibility to describe the (small) differences in the wave function near the nuclei due to
differences in the valence bonding region, the basis set furthermore needs to be much less contracted
than for energetic properties. The pcJ-n and ccJ-pVXZ basis sets have been specifically optimized to
reduce the basis set errors using DFT and correlated wave function methods, respectively, and both
are available in several zeta-quality levels.47, 48

Nuclear magnetic shielding constants measure the interaction of nuclear spins with an external
magnetic field as shielded by the electrons, and the relevant operators are the diamagnetic shielding,
paramagnetic-spin-orbit and angular momentum operators (Equation (11.128)). The paramagnetic-
spin-orbit operator, in analogy with the indirect spin–spin constant, requires addition of tight
p-functions and a somewhat reduced contraction of the p-space in the basis set. For fourth row ele-
ments, which have occupied d-orbitals, the d-contraction must also be slightly reduced compared to
basis sets suitable for energetic properties. The pcS-n basis sets have been designed to reduce basis
set errors in the calculation of nuclear magnetic shielding constants using DFT methods, but they
have been shown also to be suitable for MP2 methods.49 In analogy with the energy optimized pc-n
basis sets, the general contracted pcS-n have been converted to the computationally more efficient
segmented contracted pcSseg-n.50

. Plane Wave Basis Functions

Rather than starting with basis functions aimed at modeling the atomic orbitals (STOs or GTOs) and
forming linear combination of these to describe orbitals for the whole system, one may instead use
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functions aimed directly at the full system. For modeling extended (infinite) systems, for example
a unit cell with periodic boundary conditions, this suggests the use of functions with an “infinite”
range. The outer valence electrons in metals behave almost like free electrons, which leads to the idea
of using solutions for the free electron as basis functions. The solutions to the Schrödinger equation
for a free electron in one dimension can be written either in terms of complex exponentials or cosine
and sine functions:

𝜙(x) = A eikx + B e−ikx (5.10)
𝜙(x) = A cos(kx) + B sin(kx) (5.11)

The energy depends quadratically on the k factor, as shown in

E = 1
2 k2 (5.12)

For infinite systems, the molecular orbitals coalesce into bands, since the energy spacing between
distinct levels vanishes. The electrons in a band can be described by orbitals expanded in a basis set
of plane waves, which in three dimensions can be written as a complex function:

𝜒k(r) = eik⋅r (5.13)

The wave vector k plays the same role as the exponent 𝜁 in a GTO (Equations (5.2) and (5.3)), and
is related to the energy by means of Equation (5.12) (conventionally given in units of eV). As seen
in Equation (5.11), k can also be thought of as a frequency factor, with high k values indicating a
rapid oscillation. The permissible k values are given by the unit cell translational vector t, that is
k ⋅ t = 2πm, with m being a positive integer. The number of plane waves is thus determined by the
highest energy k vector included, which implicitly defines the maximum kinetic energy that can be
represented (Equation (5.12)), and the volume V of the unit cell, as shown in

MPW = 1
2π2 VE3∕2

max (5.14)

Basis sets of increasing quality can be defined by increasing the Emax parameter. A typical energy
cutoff of 200 eV and a modest-sized unit cell of dimension ∼15 Å corresponds to a basis set with
∼20 000 functions, that is plane wave basis sets tend to be significantly larger than typical Gaussian
basis sets. Note also that the size of a plane wave basis set depends only on Emax and the size of
the periodic cell, not on the actual system described within the cell. This is in contrast to the lin-
ear increase with system size for nuclear-centered Gaussian functions, that is plane wave basis sets
become more favorable for large systems.

While plane wave basis sets have primarily been used for periodic systems, they can also be used
for molecular species by a supercell approach, where the molecule is placed in a sufficiently large unit
cell.51 Sufficiently large in this context is defined by the condition that the molecule does not interact
with its own images in the neighboring cells. For charged or strongly polar systems, this would require
a very large unit cell, which becomes computationally inefficient. Specialized techniques can be used
for handling such cases.52

Plane wave basis functions are ideal for describing delocalized slowly varying electron densities,
such as the valence and conduction bands in a metal. The core electrons, however, are strongly local-
ized around the nuclei, and the valence orbitals have a number of rapid oscillations in the core region
to maintain orthogonality. Describing the core region adequately thus requires a large number of
rapidly oscillating functions, that is a plane wave basis with very large Emax. The singularity of the
nucleus–electron potential is furthermore almost impossible to describe in a plane wave basis, and
this type of basis set is therefore often used in connection with pseudo-potentials (Section 5.12)
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for smearing the nuclear charge and modeling the effect of the core electrons. Note that a pseudo-
potential is also required for smearing the potential near the nucleus in hydrogen, even though
hydrogen does not have core electrons. Gaussian functions, on the other hand, are very efficient for
describing the core electrons, but poor for describing the wave-like character of the valence elec-
trons. The latter requires linear combinations of Gaussian functions with small exponents, which in
practice leads to severe numerical problems with linear dependency.

The most efficient way of explicitly describing both core and valence electrons for periodic systems
is a combination of a localized basis set for describing the core electrons and a plane wave basis set for
describing the valence electrons. This has the price of an increased computational complexity, since
new integrals involving different types of basis functions are required or the physical space must be
partitioned into core and valence regions with continuity conditions at the boundary. The localized
basis functions can be radial polynomials, numerical solutions to the atomic problem53 or Gaussian
functions,54, 55 and such mixed basis sets are often collectively called Augmented Plane Wave (APW)
methods.

. Grid and Wavelet Basis Sets

The Hartree–Fock Equations (3.42) are a set of coupled second-order differential equations that can
be transformed into a matrix Equation (3.54) by expansion into a basis set. For atoms and diatomic
molecules, the differential equations can be solved directly by transformation into a prolate spheroidal
coordinate system (𝜉, 𝜂, 𝜃), where 𝜃 is the angle around the molecular axis and the two other coor-
dinates are defined in the following equation by the internuclear distance RAB and electron–nuclear
distances rA and rB:

𝜉 =
rA + rB

RAB
; 𝜂 =

rA − rB
RAB

(5.15)

The angular dependence can be solved analytically, while the equations in the two other coordinates
are solved on a two-dimensional grid; such solutions are often referred to as numerical Hartree–Fock
results.56 Even modest-sized grids are capable of achieving milli-Hartree accuracy in terms of total
energy, but higher accuracy requires careful control of the grid size and cutoff criteria. Grid-based
techniques for solving the Hartree–Fock or Kohn–Sham equations for polyatomic molecules57, 58

and periodic systems59 have also been reported, and can be considered as solving the problem by
expansion into a basis set composed of 𝛿-functions. For independent particle methods (HF/DFT)
the number of grid points is typically a few thousands per atom (analogous to the integration of the
exchange-correlation contribution in the Kohn–Sham DFT method), but an extension to correlated
methods would require an unmangeable many millions of grid points per atom.

Harrison and coworkers have proposed a multiresolution procedure where the molecular orbitals
are expanded into a set of wavelets.60 The essence of the method is to place the molecule in a suitably
sized box and to repeatedly subdivide the space by a factor of 2, leading to 2n boxes at level n. The part
of the orbitals within each box is expanded into a set of (orthogonal) Legendre polynomials of order k,
the first few of which are given in Equation (5.6). By increasing the number of boxes and the number
of Legendre polynomials, the accuracy can be tuned to any desired degree, and the procedure can be
made self-adaptive, such that a given box is not further subdivided once the target accuracy has been
reached. For small systems, this approach is able to provide HF energies accurate to within 10−6 au.61

One significant advantage of the multiresolution method is that it by construction is a low-scaling
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method (near-linear for HF and DFT and quadratic for MP2), but the associated prefactor is large,
and these methods are therefore not competitive for small systems.

The advantage of nucleus positioned Gaussian basis sets is that they allow for a compact represen-
tation of the wave function in terms of only tens of functions per atom, while grid-based methods
require thousands of δ-functions per atom for an accurate result. Multiresolution methods can be
considered as grid-based methods, where the δ-functions are replaced by finite extent polynomials
and are intermediate in terms of the number of basis functions required for a given accuracy.

The main problem in multiresolution methods is the need to handle the large number of expan-
sion coefficients associated with the basis functions. For a given molecule and target accuracy, the
box containing the molecule is subdivided into many smaller boxes (of different sizes) each contain-
ing a number of one-dimensional polynomial functions. The wave function is represented in this
basis set of polynomials in boxes by a set of coefficients for products of polynomials. Independent
particle methods like HF and DFT only need to represent one-electron quantities (orbital/density)
and the number of expansion coefficients thus increases as p3, where p is a measure of the number of
polynomials and p increases with increasing desired accuracy of the final result. Methods including
electron-pair correlation, such as MP2, need to represent two-electron quantities, and the corre-
sponding scaling with accuracy is therefore p6, and methods including three-electron correlation,
such as CCSDT, scales as p9. The increase in the number of expansion coefficients with complexity
has been called the curse of dimensionality, and an essential part in handling the computational com-
plexity is to use tensor decomposition methods (Section 17.6.3) to reduce the number of coefficients
that need to be stored.62

. Fitting Basis Sets

Reduced prefactor methods (Section 3.8.7) often employ an auxiliary basis set where products of
(orbital) basis functions are replaced by an expansion in a single set of fitting functions:

|𝜒𝛼𝜒𝛽⟩ ≈
Maux∑

k
ck𝜒k (5.16)

The set of auxiliary basis functions must span the product space of the orbital basis functions, to
within a given threshold accuracy. For computational efficiency reasons the fitting functions are usu-
ally taken to be Gaussian-type functions. Construction of auxiliary basis sets can be done using sim-
ilar techniques as for optimizing orbital basis sets, by minimizing a suitable error function in place of
minimizing the total energy.63 The requirement of the auxiliary basis set to span the orbital product
function space means that it is somewhat larger and contains higher angular momentum functions
than the orbital basis set, and can usually only be contracted to a small extent. The optimum set of fit-
ting functions will, in analogy with the orbital basis set, depend on the property (Coulomb, exchange,
MP2, F12 methods) and to some extend also on the quality of the orbital basis set.64

. Computational Issues

The computational problem is formally the same whether a Gaussian, plane wave or polynomial basis
is used – calculate matrix elements of quantum mechanical (kinetic and potential) operators over
basis functions and solve the variational problem by an iterative procedure – but the nature of the
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functions results in some differences. With a GTO basis set the matrix elements can be calculated
by analytical integration and implementation of the corresponding formulas. The electron–electron
repulsion operator requires integrals of all combinations of four basis functions, and HF and DFT
methods therefore formally scales as M4

basis.
With plane wave basis sets the integrals involving the kinetic energy operator are trivial, since

they just correspond to multiplying by half the squared momentum operator, 1∕2k2. Matrix elements
involving local potential energy operators are similarly easy, since they correspond to simple multipli-
cation in the Fourier transformed space, and the (fast) Fourier transform only requires MPWlogMPW
computational effort. The Coulomb operator is local, as is the exchange operator in density functional
theory, but the exchange energy at the Hartree–Fock level involves a non-local operator. Incorporat-
ing HF exchange with plane wave basis sets requires a separate Fourier transform for each orbital pair,
and is therefore computationally expensive compared to the pure DFT method.65, 66 This difference at
least partly explains why (pure) density functional methods (as opposited to hybrid) have dominated
in solid-state physics, while HF traditionally has been preferred for molecular systems in connection
with GTO basis sets. Another reason is of course that HF theory cannot describe metallic systems –
the large band gap predicted by HF makes all periodic systems insulators or semiconductors.

A GTO basis set will typically have tens of functions per atom, with perhaps a few hundred or
thousand functions for the whole system. A plane wave basis set, on the other hand, will often have
hundreds of thousands of functions. In a traditional implementation, the variational problem is solved
by repeated diagonalization of a Fock-type matrix but this becomes problematic when the number
of basis functions exceeds a few thousand owing to the cubic scaling of matrix diagonalization. For
large plane wave basis sets, the variational problem is therefore often solved by other methods, such
as conjugate gradient optimization, quenched dynamics methods or DIIS-type extrapolations for
direct minimization of the energy or by reduced space methods (Section 17.2.5) for selectively extract-
ing a limited number of eigenvalue and eigenvectors of the energy matrix.67 In Car–Parrinello-type
dynamics (Section 15.2.5), the variational problem is solved by propagating the orbital parameters
with fictive masses along with the nuclear degrees of freedom. The computational scaling of solving
the variations problem with these methods is N2

electronMPW, that is the computational time increases
linearly with the number of plane wave functions. Electron correlation methods, like MP2, employ
an expansion of the correlation correction in the virtual orbitals and is therefore computationally
expensive with plane wave basis sets.68

A significant advantage of plane wave basis sets is that they are independent of the nuclear posi-
tions and essentially complete up to the maximum energy included. This means that the problem of
basis set superposition error (Section 5.13) does not occur, and the calculation of the gradient of the
energy is easy, as it is given directly by the Hellman–Feynman force (Section 11.3), that is there are
no components associated with the change of basis function position (“Pulay forces”).

. Basis Set Extrapolation

The main advantage of basis sets that are available in several well-defined quality levels, such as the
ANO, correlation consistent and polarization consistent basis sets, is the ability to generate results
that converge toward the basis set limit in a systematic fashion. For example, from a series of calcu-
lations with the 3-21G, 6-31G(d,p), 6-311G(2d,2p) and 6-311++G(3df,3pd) basis sets it may not be
obvious whether the property of interest is “converged” with respect to further increases in the basis,
and it is difficult to estimate what the basis set limit would be. The cc-pVXZ basis sets, on the other
hand, consistently reduce errors (both HF and correlation) for each step up in quality. In test cases
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it has been found that the cc-pVDZ basis can provide ∼65% of the total (valence) correlation energy,
the cc-pVTZ ∼85%, cc-pVQZ ∼93%, cc-pV5Z ∼96% and cc-pV6Z ∼98%, with similar reductions of
the HF error. The analysis of basis set convergence is often done in terms of the maximum angular
momentum function included in the basis set, but to avoid the ambiguity arising by having atoms
from different rows and/or blocks in the periodic table, the basis set quality is in the following quan-
tified in terms of the cardinal number X (X = 2 for a DZP-type basis set, X = 3 for a TZP-type basis
set, etc.).

Theoretical and numerical analyses suggest that the basis set convergence at HF and DFT levels is
square-root exponential:7

EHF∕DFT(X) = E(∞) + Ae−B
√

X (5.17)

Similar analyses for the correlation energy itself (i.e. not the total energy, which includes the HF
contribution) suggest a convergence with an inverse power dependence, with the leading term for
singlet electron pairs being X−3 while the leading term for triplet pairs is X −5:6,69, 70

ΔEcorr(X) = E(∞) + AX−3 + BX−4 + CX−5 +⋯ (5.18)

Electron correlation methods incorporating interelectronic distances, so-called F12 methods (Sec-
tion 4.11), provide an accurate representation of the electron–electron cusp in the wave function and
consequently converge much faster in terms of basis set quality. In analogy with standard electron
correlation methods, the convergence is inverse polynomial, but the leading term is X−7 rather than
X−3. This in effect means that the total correlation energy with F12 methods and a given zeta-quality
basis set is usually similar to a non-F12 method and basis sets of one or two higher zeta-quality. This
lower basis set requirement of F12 methods is to a large extent offset by the requirement of calculating
many additional integrals involving interelectronic coordinates.

Taking only the leading term in Equation (5.18) into account, the basis set convergence in Equa-
tions (5.17) and (5.18) can be generalized to the following equation by a function depending on the
cardinal number X:

EX = E∞ + AfX (5.19)

The complete basis set energy can thus be estimated from two calculations with basis sets having
cardinal numbers X and Y according to

E∞ =
f −1
X EX − f −1

Y EY

f −1
X − f −1

Y
(5.20)

For an inverse polynomial dependence X-n, as in Equation (5.18), the extrapolation becomes

ΔEcorr,∞ =
XnΔEcorr,X − Y nΔEcorr,Y

Xn − Y n (5.21)

A direct use of Equation (5.17) requires three points for extrapolation, but it can be used as a two-
point formula by taking the B parameter as a universal constant (typical value ∼6):

EHF∕DFT,∞ =
eB

√
XΔEHF∕DFT,X − eB

√
YΔEHF∕DFT,Y

eB
√

X − eB
√

Y
(5.22)

The theoretical assumption underlying the formulas in Equations (5.17) and (5.18) is that the basis
set is saturated in the radial part (e.g. a TZP- type basis set should be complete in the s-, p-, d-
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and f-function space). This is rarely the case as basis sets typically are designed to have compara-
ble (residual) errors for each type of angular momentum function. Nevertheless, it has been found
that extrapolations using the correlation-consistent basis sets and taking only the leading X−3 term in
Equation (5.21) into account give good results when compared with accurate results generated by, for
example, R12 methods.71 It has been suggested that a separate extrapolation of the singlet (opposite
spin) and triplet (same spin) correlation energies with X−3 and X−5 function forms, respectively, may
provide better results.72

The main difficulty in using the cc-pVXZ or pcseg-n basis sets is that each step up in quality roughly
doubles the number of basis functions. The simplest two-point extrapolation is using results from X,
Y = 2, 3 basis sets (e.g. cc-pVDZ and cc-pVTZ), but a DZP-type basis set is usually too small to
give good extrapolated correlation energies. An extrapolation based on X, Y = 3, 4 basis sets usually
provides an improvement, but the requirement of performing calculations with at least a QZP-type
basis set places severe constraints on the size of the systems that can be treated.

More empirical extrapolation formulas can be designed by rearranging Equation (5.20) and intro-
ducing a generalized fitting function depending on both cardinal numbers:73

E∞ =
f −1
X EX − f −1

Y EY

f −1
X − f −1

Y
=
(

1 −
fX
fY

)−1
(EX − EY ) + EY (5.23)

E∞ = F(X, Y )(EX − EY ) + EY (5.24)

The function F(X,Y) can be parameterized to partly compensate for inadequacies in the two basis
sets used for the extrapolation, and will then depend explicitly on the X, Y values. Extrapolation
may provide only a marginal improvement, especially when used with DZP/TZP-type basis sets, but
very rarely causes the results to deteriorate and can in favorable cases improve them corresponding
to roughtly one higher zeta level. Since extrapolation carries no additional computational effort, it
should be considered when the ability to perform calculations with (at least) two different basis sets
of well-defined quality levels exist.

Perhaps the most interesting aspect of the analyses that led to the development of the correlation-
consistent basis sets is the fact that high angular momentum functions are necessary for achieving
high accuracy. While d-polarization functions are sufficient for a DZ-type basis, a TZ-type should
also include f-functions. Similarly, it is questionable to use a QZ-type basis for the sp-functions with-
out also including three d-, two f- and one g-function in order to systematically reduce the errors.
It can therefore be argued that an extension of, for example, the 6-31G(d,p) basis to 6-311G(d,p) is
inconsistent as the second set of d-orbitals (and second set of p-orbitals for hydrogen) and a set of
f-functions (d-functions for hydrogen) will give similar contributions as the extra set of sp-functions.
Similarly, the extension of the 6-311G(2df,2pd) basis to 6-311G(3df,3pd) may be considered inconsis-
tent, as the third d-function is expected to be as important as the fourth valence set of sp-functions,
the second set of f-functions and the first set of g-functions, all of which are neglected.

In the search for a basis set converged value, other approximations should be kept in mind. Basis
sets with many high angular momentum functions are normally designed for recovering a large frac-
tion of the correlation energy. In the majority of cases, only the electron correlation of the valence
electrons is considered (frozen-core approximation), since the core orbitals usually are insensitive to
the molecular environment. As the valence space approaches completeness in terms of basis func-
tions, the error from the frozen-core approximation will at some point become comparable to the
remaining valence error. From studies of small molecules, where good experimental data are avail-
able, it is suggested that the effect of core electron correlation for unproblematic systems is compa-
rable with the change observed upon enlarging the cc-pV5Z basis, that is of a similar magnitude as
the introduction of h-functions.74 Improvements beyond the cc-pV6Z basis set have been argued to
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produce changes of similar magnitude to those expected from relativistic corrections for second row
elements, and further increases to cc-pV7Z and cc-pV8Z-type basis sets would be comparable with
corrections due to breakdown of the Born–Oppenheimer approximation for systems with hydro-
gen. Within the non-relativistic realm, it would therefore appear that basis sets larger than cc-pV6Z
would be of little use, except for extrapolating to the non-relativistic, clamped nuclei limit for testing
purposes. In attempts at obtaining results of “spectroscopic accuracy” (∼0.01 kJ/mol), a brute force
calculation with, for example, the cc-pV7Z quality basis set combined with explicit extrapolation has
been shown to become problematic,72 and such high-quality results require explicit correlated tech-
niques, such as the F12 method discussed in Section 4.11.

There is a practical aspect of using large basis sets, especially those including diffuse functions,
that requires special attention, namely the problem of linear dependence. Linear dependence means
that one (or more) of the basis functions can be written as a linear combination of the other, that is
the basis set is overcomplete. A diffuse function has a small exponent and consequently extends far
away from the nucleus on which it is located. An equally diffuse function located on a nearby atom
will therefore span almost the same space. A measure of the degree of linear dependence in a basis
set can be obtained from the eigenvalues of the overlap matrix S (Equation (3.54)). A truly linearly
dependent basis set will have at least one eigenvalue of exactly zero, and the smallest eigenvalue of
the S matrix is therefore an indication of how close the actual basis set is to linear dependence. As
described in Section 17.2.3, solution of the SCF equations requires orthogonalization of the basis set
by means of the S−1∕2 matrix (or a related matrix that makes the basis orthogonal). If one of the S
matrix eigenvalues is close to zero, this means that the S−1∕2 matrix is essentially singular, which in
turn will cause numerical problems if trying to carry out an actual calculation. In practice, there is
therefore an upper limit on how close to completeness a basis set can be chosen to be, and this limit
is determined by the finite precision with which the calculations are carried out. If the selected basis
set turns out to be too close to linear dependence to be handled numerically for the particular system,
the linear combinations of basis functions with low eigenvalues in the S matrix may be discarded.

. Composite Extrapolation Procedures

The large majority of systems can, in principle, be calculated with a high accuracy by using a highly
correlated method such as CCSD(T) and performing a series of calculations with systematically larger
basis sets in order to extrapolate to the basis set limit. In practice, even a single water molecule is
demanding to treat in this fashion (Chapter 12). Various approximate procedures have therefore been
developed for estimating the “infinite correlation, infinite basis” limit (Figure 4.3) as efficiently as
possible. These models rely on the fact that different properties converge with different rates as the
level of sophistication increases and that effects from extending the basis set to a certain degree are
additive. There are four main steps in these procedures:

1. Selecting the geometry.
2. Estimating the Hartree–Fock energy.
3. Estimating the electron correlation energy.
4. Estimating the energy from translation, rotation and vibrations.

Given a predefined target accuracy, the error from each of these four steps should be reduced below
the desired tolerance. The error at a given level may be defined as the change that would occur if
the calculation was taken to the “infinite correlation, infinite basis” limit. A typical target accuracy is
∼4 kJ/mol (∼1 kcal/mol), the so-called “chemical accuracy”, although more advanced methods aim
for an accuracy of ∼1 kJ/mol.
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Geometries converge relatively fast: at the HF level with a DZP-type basis the “geometry error” is
often already ∼4 kJ/mol or less, and an MP2 or DFT geometry optimized with a DZP or TZP basis set
is normally sufficient for most applications. The translational and rotational contributions are trivial
to calculate, as they depend only on the molecular mass and the geometry (Sections 14.5.1 and 14.5.2)
and are very small in absolute values. The error from these can be neglected. The vibrational effect is
mainly the zero-point energy, and it requires calculation of the frequencies. An accurate prediction
of frequencies is fairly difficult. However, since the absolute value of the zero-point energy is fairly
small, a large relative error is tolerable. Furthermore, the errors in calculated frequencies are to a
certain extent systematic and can therefore be improved by a uniform scaling.75

The HF error depends only on the size of the basis set. The energy, however, behaves asymptotically
as ∼exp(−

√
X), where X is the basis set cardinal number. For example, with a basis set of TZP quality

(4s3p2d1f for second row elements) the results are already quite stable. Combined with the fact that
an HF calculation is the least expensive ab initio method, this means that the HF error is rarely the
limiting factor.

The main problem is estimating the correlation energy. All electron correlation methods have a
rather steep increase in the computational cost as the size of the basis set is enlarged, and the con-
vergence in terms of the basis set cardinal number is quite slow (∼X−3). The main contribution to
the correlation energy is from pairs of electrons in the same spatial MO. This effect is reasonably well
described at the MP2 level, but requires a large basis set in order to recover a large fraction of the
absolute value. The remaining correlation energy is much harder to calculate: coupled cluster is the
preferred method here but, since the absolute value is substantially smaller than the MP2 correlation
energy, a smaller basis set can be employed. This means that the relative error is quite large but the
absolute error is of the same magnitude as the correlation error from the MP2 calculation with the
large basis set.

Several families of composite extrapolation procedures have been proposed, each with a number
of variations, and they differ in the exact procedure for estimating the infinite-correlation-infinite-
basis-set limit and the resulting accuracy for a chosen reference data set.76

5.10.1 Gaussian-n Models

The Gaussian-n (Gn, n = 1, 2, 3, 4) sequence of methods represents improvements in the target
accuracy, driven by the continuing incease in computational capabilities.77 Each of the Gn methods
exist in several different versions, depending on the specific combinations of methods and basis sets
for each of the steps, and carry acronyms such as Gn(MP2), GnB3, Gn(MP2)B3 and GnX(MP2). The
Gn methods are characteristic by employing mainly the Pople style basis sets and utilizing empirical
fitting parameters for improving the performance. The performance and parameterization is done
using experimental molecular benchmark data sets carrying acronyms such as G2/97, G3/99 and
G3/05, consisting of mainly enthalpies of formation, ionization potentials and electron affinities. As
an example, the G4 method involves the following steps:78

1. The geometry is optimized at the B3LYP/6-31G(2df,p) level, which is used as the reference
geometry.

2. Vibrational frequencies are calculated at the B3LYP/6-31G(2df,p) level and scaled by 0.9854 to
produce zero-point energies.

3. The basis set limit HF energy is estimated by an exponential extrapolation from results obtained
with slightly reduced versions of the aug-cc-pVQZ and aug-cc-pV5Z basis sets.

4. The energy is calculated at the CCSD(T)/6-31G(d) level, which automatically generates the MP4
value as an intermediate result. Additive basis set effects corresponding to augmenting with diffuse
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functions on non-hydrogen atoms (6-31+G(d)) and increasing the polarization space to (2df,p) is
estimated at the MP4 level.

5. Non-additive basis set effects are estimated at the MP2 level from calculations with the G3LargeXP,
6-31G(2df,p), 6-31+G(d) and 6-31G(d) basis sets, where G3LargeXP denotes a slightly extended
version of the 6-311G(2df,2p) basis set.

6. Spin-orbit corrections are taken from experiments or (other) theoretical estimates.
7. To correct for electron correlation beyond CCSD(T) and basis set limitations, an empirical Higher-

Level Correction (HLC) is added to the total energy, ΔEHLC = − b′N𝛽 for closed-shell systems
and ΔEHLC = −aN𝛼 − bN𝛽 for open-shell systems, where N𝛼/N𝛽 denotes the number of 𝛼 and 𝛽

electrons and it is assumed that the number of 𝛼 electrons is larger than or equal to the number of
𝛽 electrons. The numerical constants a,b,b′ are determined by fitting to the reference data and are
different for atoms and molecules. It should be noted that this correction makes the G4 method
non-size extensive.

The steps involved in a G4 calculation and associated extrapolations/combinations are illustrated
in Figure 5.4. In the G4(MP2) version, the effects of extending the basis set beyond 6-31G(d) in steps
4 and 5 are replaced by a single MP2/G3LargeXP calculation. The performance measured in terms
of the mean absolute deviation over three different sets of data is shown in Table 5.6.

5.10.2 Complete Basis Set Models

The Complete Basis Set (CBS) models also employ the Pople style basis sets but attempt to perform
an explicit extrapolation for estimating the correlation energy, rather than assuming additivity as in
the Gn methods. The main part of the correlation energy is due to electron pairs, that is described
by doubly excited configurations. In terms of perturbation theory, this may again be divided into
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Figure . Illustrating the calculations (black dots, open dots indicating estimated results) involved in a G4 composite
calculation, and how they are combined to the G4 result. Note that the highest level correlated calculation with a
given basis set automatically provides lower correlated level results.
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Table . Mean absolute deviations for Gn models (kJ/mol).77

Data Ndata G G(MP) G G(MP) G G(MP)

G2/97 298 6.2 7.9 4.1 5.4 3.4 4.4
G3/99 376 4.4 5.5 3.4 4.3
G3/05 454 4.7 5.8 3.5 4.4

contributions from different orders, the most important being from second order (MP2). By using
pair natural orbitals (being eigenvectors of the density matrix, see Section 10.5) as the expansion
parameter and assuming that enough pairs have been included to reach the asymptotic limit, it may be
shown that the MP2 energy calculated by a limited natural orbitals expansion (of the size N) behaves as
1/N, and can therefore be extrapolated to the complete basis set limit. There are several different CBS
methods, each having their own set of prescriptions and resulting computational cost and accuracy,
which are known by the acronyms CBS-4, CBS-q, CBS-Q and CBS-APNO,79 and updated versions
labeled CBS-4M and CBS-QB3. As an explicit example, we will take the CBS-QB3 model:80

1. The geometry is optimized at the B3LYP/6-311G(d,p) level, which is used as the reference
geometry.

2. Vibrational frequencies are calculated at the B3LYP/6-311G(d,p) level and scaled by 0.9854 to
produce zero-point energies.

3. An MP2/6-311+G(2df,2p) calculation is carried out, which automatically yields the corresponding
HF energy. The MP2 result is extrapolated to the basis set limit by the pair natural orbital method.

4. The energy is calculated at the MP4(SDQ)/6-31+G(d,p) and CCSD(T)/6-31+G(d†) level to esti-
mate the effect from higher-order electron correlation (d† indicates that the exponents for the
d-functions are taken from the 6-311G(d) basis set).

5. Corrections due to remaining correlation effects are estimated by an empirical expression,

ΔEemp = −0.00579
∑

i

(
∑

𝜇

C𝜇ii

)2

|S|2ii (5.25)

where the sum over C𝜇ii is the trace of the first-order wave function coefficients for the natural
orbital pair ii, |S|ii is the absolute value of the spatial overlap between the 𝛼 and 𝛽 spin components
of the ith MO and the factor 0.00579 is determined by fitting to the reference data. This empirical
correction is size extensive.

6. For open-shell species the UHF method is used, which in some cases suffers from spin contamina-
tion. To correct for this an empirical correction based on the deviation of ⟨S2⟩ from the theoreti-
cal value is added, ΔEemp = −0.00954[⟨S2⟩ − S(S − 1)], where the factor of −0.00954 is derived by
fitting.

The mean absolute deviations for CBS-QB3 and CBS-4M over the G2/97 data set are 4.6 and
13.6 kJ/mol, respectively, which can be compared with the results in Table 5.6.

It should be noted that the Gn data set primarily includes data for molecules containing few
non-hydrogen atoms. It is likely that the typical error for a given model to a certain extent depends
on the size of the system, that is the error in the calculated heat of formation of, say, C60 (if it was
computationally feasible) is likely to be substantially larger than the average errors shown in Table 5.6.
Furthermore, the properties included (atomization energies, ionization potentials, electron and
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proton affinities) all correspond to energy differences between well-separated systems: atomization
energies are energy differences between a molecule and isolated atoms, and the other three prop-
erties correspond to removal or addition of a single electron or proton. As illustrated in Chapter 12,
such energy differences are easier to calculate than between systems containing a half broken/formed
bond. As with any scheme that has been parameterized on experimental data, it is questionable
to assume that the typical accuracy for a selected set of properties will be true in general. A good
performance for the Gn data set does not necessarily indicate that the same level of accuracy can
be obtained over a wide variety of geometries, for example including transition structures. It should
furthermore be recognized that the values in Table 5.6 are average values, but the maximum error for
the reference data set is often 5–10 times larger. Since it is difficult to know in advance whether the
particular system of interest behaves as the average or the exceptional case, the predicted value must
realistically be assumed to have an uncertainty of perhaps 10–20 kJ/mol. Part of the reason for the
relatively large spread in the errors is the assumption of additivity in basis sets effect, which has little
theoretical foundation, although the empirical corrections at least partly absorb some of these errors.

5.10.3 Weizmann-n Models

If higher accuracy is desired, for example “subchemical” (∼0.5 kJ/mol) or “spectroscopic accuracy”
(∼1 cm−1, ∼0.01 kJ/mol), a number of other factors must also be considered:

1. Including correlation energy between the core and core–valence electrons. This becomes progres-
sively more important as systems with heavier elements are considered.

2. Inclusion of high-order correlation effects, such as connected triple, quadruple and quintuple exci-
tations.

3. Relativistic effects, such as mass–velocity, Darwin and spin–orbit coupling perturbative correc-
tions, or more sophisticated relativistic treatments. Obviously, these corrections become impor-
tant even at the chemical accuracy level if atoms from the lower part of the periodic table are
present in the system.

4. Non-Born–Oppenheimer corrections. These will be most important for systems containing
hydrogen.

5. Basis set superposition corrections.
6. Anharmonic vibrations.
7. Vibrational–rotational coupling.

At present, there is no standard procedure for achieving “spectroscopic accuracy”, but Martin and
coworkers have developed the Wn (n = 1, 2, 3, 4) methods aimed at a target accuracy of ∼1 kJ/mol on
the average for atomization energies, with worst-case systems having errors below ∼5 kJ/mol.81 The
Wn methods employ the cc-pVXZ basis sets and rely on explicit extrapolation to the infinite basis set
limit for the HF and correlation energies without empirical fitting parameters, as well as addition of
relativistic and non-Born–Oppenheimer effects. Each of the Wn methods exist in different versions,
with W4 being the most sophisticated and consisting of the following steps:81

1. The geometry is optimized at the CCSD(T)/cc-pVQZ level.
2. Anharmonic frequencies are calculated at the CCSD(T)/cc-pVQZ level.
3. The HF limit is estimated by extrapolating the results from the aug-cc-pV5Z and aug-cc-pV6Z

basis sets using Equation (5.17) with a fixed B value of 9.
4. The CCSD valence correlation energy is estimated from two-point extrapolation of the

results from the aug-cc-pV5Z and aug-cc-pV6Z basis sets using separate extrapolation for the
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singlet and triplet coupled electron pairs using Equation (5.18) with exponents of 3 and 5, respec-
tively.

5. The (T) contribution to the valence correlation energy is estimated from two-point extrapolation
of the results from the aug-cc-pVQZ and aug-cc-pV5Z basis sets.

6. The CCSDT-CCSD(T) difference in valence correlation energy is estimated from two-point
extrapolation of the results from the cc-pVTZ and cc-pVDZ basis sets.

7. The Q-contribution to the valence correlation energy is estimated from an additive correction
based on CCSDT(Q) calculations with the cc-pVTZ and cc-pVDZ basis sets and a CCSDTQ cal-
culation with the cc-pVDZ basis sets.

8. The 5-contribution to the valence correlation energy is estimated from a CCSDTQ5 calculations
with a DZ basis sets and a CCSDTQ calculation with the cc-pVDZ basis sets.

9. The core and core–valence correlation energy is estimated by extrapolation of the CCSD(T)
results using the aug-cc-pwCVQZ and aug-cc-pwCVTZ basis sets.

10. Scalar relativistic corrections are estimated from a second-order Douglas–Kroll–Hess
CCSD(T)/DK-aug-cc-pVQZ (relativistic version of the aug-cc-pVQZ basis) calculation.

11. Spin-orbit corrections are taken from experiments.
12. Non-Born–Oppenheimer effects are estimated as the diagonal-BO correction calculated at the

HF/aug-cc-pVTZ level.

The steps 3 to 8 involved in a W4 calculation and associated extrapolations/combinations are
illustrated in Figure 5.5.
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Figure . Illustrating the calculations (black dots, open dots indicating extrapolated results) involved in estimating
the non-relativistic valence correlation W4 composite energy, and how they are combined to the W4 result. Note that
the highest level correlated calculation with a given basis set automatically provides lower correlated level results.
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The W4 method provides a mean absolute deviation for atomization energies of 26 molecules of
0.38 kJ/mol, with the worst case having an error of 1.3 kJ/mol, and these values can be compared
with the average experimental error of 0.22 kJ/mol for the same set of data.81 It can be noted that the
experimental data were carefully selected to have small experimental uncertainties, a more typical
experimental error is 5–10 kJ/mol. Such elaborate composite methods are thus capable of yielding
results with accuracies comparable to or surpassing experimental methods, but the associated com-
putational cost is so high that only systems containing less than ∼20 valence electrons (4–5 atoms)
can be handled. The W3, W2 and W1 (and their variants) trade accuracy (W3 errors are roughly
twice as large as W4 and W2 errors are roughly twice as large as W3) against computational cost and
can be applied for somewhat larger systems.

5.10.4 Other Composite Models

There are a number of similar composite extrapolation procedures, such as the ccCA (correlation
consistent Composite Approach)82 and HEAT (High-accuracy Extrapolated Ab initio Thermochem-
istry)83 methods, each differing in the exact methods and basis set combinations and how these
results are combined. Hybrid methods mixing results from wave function and density functional
methods with a selection of basis sets by a set of fitted parameters have also been proposed with the
acronym MCCM (MultiCoefficient Correlation Method).84

There are in addition some simple correction procedures that may be considered as extrapolation
schemes. The Scaled External Correlation (SEC) and Scaled All Correlation (SAC) methods scale the
correlation energy by a factor such that calculated dissociation energy agrees with the experimental
value:85

ESEC∕SAC = Eref +
Ecorr − Eref

F

F =
De(corr) − De(ref)
De(exp) − De(ref)

(5.26)

The SEC acronym refers to the case where the reference wave function is of the MCSCF type and the
correlation energy is calculated by a MR-CISD procedure. When the reference is a single determinant
(HF), the SAC nomenclature is used. In the latter case the correlation energy may be calculated, for
example, by MP2, MP4 or CCSD, producing acronyms such as MP2-SAC, MP4-SAC and CCSD-
SAC. In the SEC/SAC procedure, the scale factor F is assumed to be constant over the whole surface.
If more than one dissociation channel is important, a suitable average F may be used.

The Parameterized Configuration Interaction X (PCI-X) method86 simply takes the correlation
energy and scales it by a constant factor X (typical value ∼1.2), that is it is assumed that the given
combination of method and basis set recovers a constant fraction of the correlation energy.

The introduction of various empirical corrections, such as scale factors for frequencies and energy
corrections based on the number of electrons and degree of spin contamination, blurs the distinction
between whether these methods should be considered ab initio, or as belonging to the semi-empirical
class of methods described in Chapter 7. Nevertheless, the accuracy that these methods are capa-
ble of delivering makes it possible to calculate absolute stabilities (heat of formation) for small- and
medium-sized systems that rival (or surpass) experimental data, often at a substantially lower cost
than that for actually performing the experiments.
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. Isogyric and Isodesmic Reactions

The most difficult part in calculating absolute stabilities (heat of formation) is the correlation energy.
For calculating energies relative to isolated atoms, which is the goal of the composite models
described in the previous section, essentially all the correlation energy of the bond(s) being broken
must be recovered. This in turn necessitates large basis sets and sophisticated correlation methods.
This is also the reason why ab initio energies are not converted into heat of formation, as is normally
done for semi-empirical methods (Equation (7.41)), since the resulting values are poor unless a very
high level of theory is employed.

In many cases, however, it is possible to choose less demanding reference systems than the isolated
atoms. Consider, for example, calculating the C H dissociation energy of CH4 (Figure 5.6). In a direct
calculation this is given as the difference in total energy of CH4 and CH3 + H.

CH4                          CH3 + H

Figure . Dissociation of CH4.

In order to calculate an accurate value for this energy difference, essentially all the electron correla-
tion (and HF) energy for the C H bond must be recovered. Consider now the reaction in Figure 5.7.

CH4 + H                         CH3 + H2

Figure . An example of an isogyric reaction.

The difference between the two reactions in Figures 5.6 and 5.7 is that the latter has the same
number of electron pairs on both sides; such reactions are called isogyric. The task of calculating all
the correlation energy of a C H bond is replaced by calculating the difference in correlation energy
between a C H and an H—H bond. The latter will benefit from cancellation of errors and therefore
stabilize much earlier in terms of theoretical level. Isogyric reactions can thus be used for obtaining
relative values. In the above example the CH4 dissociation energy is given relative to that of H2. By
using the experimental value for H2, the CH4 dissociation energy may be calculated quite accurately,
even at relatively low levels of theory.

The concept may be taken one step further. It is often possible to set up reactions where not only
the number of electron pairs is constant but also the formal type of bonds is the same on both sides.
Consider, for example, calculating the stability of propene by the reaction in Figure 5.8.

H2C    CH    CH3 + CH4 H2C    CH2 + H3C    CH3

Figure . An example of an isodesmic reaction.

In this case the number of C C, C—C and C H bonds is the same on both sides and the “reaction”
energy is therefore relatively easy to calculate since the electron correlation is to a large extent the
same on both sides. Such reactions that conserve both the number and types of bonds are called
isodesmic reactions. Combining the calculated energy difference for the left- and right-hand sides
with experimental values for H2C CH2, H3C CH3 and CH4, the (absolute) stability of propene
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can be obtained reasonably accurately at a quite low level of theory. It does, however, require that the
experimental values for the chosen reference compounds are available. Furthermore, there are several
possible ways of constructing isodesmic or isogyric reactions (e.g. replacing H with Cl in Figure 5.7);
that is such methods are not unique.

. Effective Core Potentials

Systems involving atoms from the lower part of the periodic table have a large number of core elec-
trons. These are, as already mentioned, unimportant in a chemical sense, but it is necessary to use a
large number of basis functions to expand the corresponding orbitals, otherwise the valence orbitals
will not be properly described (due to a poor description of the electron–electron repulsion). In the
lower half of the periodic table relativistic effects further complicate matters (see Chapter 9). These
two problems may be “solved” simultaneously by modeling the core electrons by a suitable function
and treating only the valence electrons explicitly.

The function modeling the core electrons is usually called an Effective Core Potential (ECP) in the
chemical community,87, 88 while the physics community uses the term Pseudo-Potential (PP).67 The
neglect of an explicit treatment of the core electrons, analogous to the semi-empirical methods in
Chapter 7, often gives quite good results at a fraction of the cost of a calculation involving all electrons,
and part of the relativistic effects (especially the scalar effects) may also be taken care of, without
having to perform the full relativistic calculation.

There are four major steps in designing a pseudo-potential:

1. Generate a good-quality all-electron wave function for the atom. This will typically be from a
numerical Hartree–Fock, a relativistic Dirac–Hartree–Fock or a density functional calculation.

2. Replace the valence orbitals by a set of nodeless pseudo-orbitals. The regular valence orbitals will
have radial nodes in order to make them orthogonal to the core orbitals, and the pseudo-orbitals
are designed such that they behave correctly in the outer part, but without the nodal structure in
the core region.

3. Replace the core electrons by a potential parameterized by expansion into a suitable set of ana-
lytical functions of the nuclear–electron distance, for example a polynomial or a set of spherical
Bessel or Gaussian functions. Since relativistic effects are mainly important for the core electrons,
this potential can effectively include relativity. The potential may be different for each angular
momentum.

4. Fit the parameters of the potential such that the solutions of the Schrödinger (or Dirac) equation
produce pseudo-orbitals matching the all-electron valence orbitals.

Molecular systems have traditionally been described by Gaussian-type basis sets, while plane waves
have been favored for extended (periodic) systems; this difference has resulted in some differences
for the corresponding pseudo-potentials. When using Gaussian functions for describing the valence
orbitals, it is natural to also use Gaussian functions to describe the ECP. Since Gaussian functions
are continuous, there is no fixed distance to characterize the extent of the core potential and the
quality of the ECP is determined by the number of electrons chosen to be represented by the ECP.
For transition metals, it is clear that the outer (n + 1)s-, (n + 1)p- and (n)d-orbitals constitute the
valence space. While such “full-core” potentials give reasonable geometries, it has been found that
the energetics are not always satisfactory. Better results can be obtained by also including the orbitals
in the next lower shell in the valence space, albeit at an increase in the computational cost. For silver
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Figure . The 5s-orbital for Ag with either an all-electron, large- or small-core effective core potential.

with an atomic number of 47, for example, one may consider two different choices of core size, where
the electrons replaced by an ECP are indicated in italic and the remaining electrons in bold:

� “Large-core” ECP: 11 electrons considered explicitly: (1s)2 (2s)2 (2p)6 (3s)2 (3p)6 (4s)2 (3d)10 (4p)6

(4d)10 (5s)1
� “Small-core” ECP: 19 electrons considered explicitly: (1s)2 (2s)2 (2p)6 (3s)2 (3p)6 (4s)2 (3d)10 (4p)6

(4d)10 (5s)1
� All-electron: 47 electrons considered explicitly: (1s)2 (2s)2 (2p)6 (3s)2 (3p)6 (4s)2 (3d)10 (4p)6

(4d)10 (5s)1

The shape of the resulting 5s-(pseudo)-orbital for these choices is shown in Figure 5.9.
The gain by using ECPs is largest for atoms in the lower part of the periodic table, especially those

where relativistic effects are important.89 Since fully relativistic results are scarce, the performance of
ECPs is somewhat difficult to evaluate by comparing with other calculations,90 but they often repro-
duce known experimental results, thereby justifying the approach. ECPs have also been designed
for second row elements (Li Ne),91 although the savings in these cases are marginal relative to
all-electron calculations.

The size of a plane-wave basis set is given by the maximum kinetic energy, which is inversely
related to the smallest variation of the wave function that can be described. The singularity of the
nuclear potential (Vne) and the resulting strongly localized core electrons are essentially impossible
to describe by any reasonable-sized plane-wave basis set. Pseudo-potentials are therefore used for
smearing the nuclear charge and modeling the core electrons. These potentials are typically charac-
terized by a “core radius” rc (which may depend on the angular momentum of the valence orbitals),
that is the pseudo-potentials used in connection with plane waves have a finite physical extent. The
potential for distances smaller than rc is described by a suitable analytical function, typically a polyno-
mial or spherical Bessel function, and the pseudo-wave function and its first and second derivatives
are required to match those of the reference wave function at rc. It is clear that a “hard” (small rc)
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pseudo-potential will require more plane wave basis functions for describing the region beyond rc
than a “soft” (large rc) pseudo-potential, but a too large rc will deteriorate the quality of the calculated
results and also make the pseudo-potential less transferable.

The norm-conserving pseudo-potentials proposed by Hamann, Schlüter and Chiang require in
addition to the above matching conditions at rc that the integral of the square of the reference and
pseudo-wave from 0 to rc agree, that is conservation of the wave function norm.92 For the late sec-
ond row elements (C to F) and the 3d transition metals (Sc to Zn), these pseudo-potentials are rather
“hard” and therefore require a relatively large energy cutoff for the plane waves. Vanderbilt proposed
to relax the norm-conserving requirement to give the so-called ultrasoft pseudo-potentials,93, 94

thereby reducing the necessary number of plane waves for expanding the valence orbitals by roughly
a factor of two.

While there is essentially no basis set error when using plane waves for expanding the orbitals, the
requirement of using a pseudo-potential to describe the core region means that there is a fundamental
limitation in how accurate the results can be. For systems composed of atoms from the first three
rows in the periodic table, the error in DFT calculations is roughly equivalent to that imposed by
using a Gaussian basis set of TZP quality in an all-electron calculation,95 and the differences between
different pseudo-potentials are of the same magnitude.96 An implicit limitation of pseudo-potential
methods is of course difficulty in describing molecular properties that depend directly on the core
electrons (as in X-ray photoelectron spectroscopy) or the electron density near the nucleus (as in
NMR spin–spin coupling constants). NMR shielding constants are sufficiently valence-like that quite
accurate results can be obtained by assuming that the contribution from the electrons neglected by
the pseudo-potential is constant, and can be added based on an atomic all-electron calculation.97

The Projector Augmented Wave (PAW) method is usually also considered a pseudo-potential
method, although it formally retains all the core electrons.98, 99 Indeed, the Vanderbilt ultrasoft
pseudo-potential can be derived by linearization of two terms in the PAW expression. The PAW wave
function is written as a valence term expanded in a plane-wave basis plus a contribution from the
region within the core radius of each nucleus, evaluated on a grid. The contribution from a core region
is expanded as a difference between two sets of densities, one arising from the (all-electron) atomic
orbitals, the other from a set of nodeless pseudo-atomic orbitals, that is this term allows the wave
function within the core region to adjust for different environments. In most applications the (all-
electron) atomic orbitals have been kept fixed at their form for the isolated atoms, that is a “frozen-
core” approach. Allowing for a full self-consistent optimization of the atomic core100 makes the PAW
equivalent to the all-electron mixed basis sets methods discussed in Section 5.5.

A closely related idea arising from the chemical community is the use of the frozen-core approxi-
mation.101, 102 The core electrons are here included in the treatment, but the corresponding orbitals
are fixed at their atomic values and represented by a fixed expansion in a suitable basis set. This pre-
serves the full electron–electron interaction but ignores the change in the core orbitals due to the
molecular environment. The savings are marginal for systems with only up to second row atoms, but
for systems with heavier elements the computational cost may be significantly reduced. The frozen-
core approximation may furthermore be useful for calculations using relativistic wave functions, as
it effectively prevents a variational collapse.

A common feature of all pseudo-potential methods is that the parameters depend on the employed
method, that is the potential derived for the Local Spin Density Approximation (LSDA) functional
(Section 6.5.1), for example, is different from that derived from a generalized gradient functional
such as Perdew–Burke–Ernzerhof (PBE) (Section 6.5.2). In practice, the difference is relatively small
and pseudo-potentials optimized for one functional are often used for other functionals without
re-optimization.
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. Basis Set Superposition and Incompleteness Errors

By far the most common type of basis set for molecular applications is a set of Gaussian functions
centered on the nuclei. Such a basis set can be made to be near-complete if a very large number
of functions are used, but reduction of the error in the total energy to chemical accuracy (∼ few
kJ/mol) requires several hundred functions per atom, which severely limits the size of molecules that
can be handled. For commonly used basis sets of DZP or TZP quality, the errors in the absolute
energy from basis set incompleteness are large, maybe several au (thousands of kJ/mol). The interest
is usually in relative energies, however, and the primary goal is therefore to make the basis set error
as constant as possible. This is one of the reasons why it is important to choose a “balanced” basis
set. The first, perhaps obvious, step is that the same basis set must be used when comparing energies:
comparing energies of two isomers where the 6-31G∗∗ basis set has been used for one of them and the
cc-pVDZ basis set for the other is meaningless, although both basis sets are of polarized double zeta
quality.

Fixing the position of the basis functions to the nuclei allows for a compact basis set; otherwise
sets of basis functions positioned at many points in the geometrical space would be needed. When
comparing energies for different molecular structures, however, a nuclear fixed basis set introduces
an error. The quality of the basis set is not the same at all geometries, owing to the fact that the electron
density around one nucleus may be described by functions centered at another nucleus. This is espe-
cially troublesome when calculating small effects, such as energies of van der Waals complexes and
hydrogen bonds. Consider, for example, the hydrogen bond between two water molecules. The sim-
plest approach consists of calculating the energy of the dimer and subtracting two times the energy of
an isolated molecule (assuming a size extensive method). The electron distribution within each water
molecule in the dimer is very close to that of the monomer. In the dimer, however, basis functions
from one molecule can help compensate for the basis set incompleteness on the other molecule, and
vice versa. The dimer will therefore be artificially lowered in energy and the strength of the hydrogen
bond overestimated. This effect is known as the Basis Set Superposition Error (BSSE). In the limit
of a complete basis set, the BSSE will be zero, and adding more basis functions will not give any
change. The conceptually simplest approach for eliminating BSSE is therefore to add more and more
basis functions, until the interaction energy no longer changes. Unfortunately, this requires very large
basis sets. Since non-bonded interactions are weak, the desired accuracy is often ∼0.5 kJ/mol. Using
the correlation consistent basis sets, the water dimer interaction energy stabilizes at this level with the
aug-cc-pVTZ basis (184 basis functions for H2O) at the HF level, but requires (at least) the aug-cc-
pV5Z basis (574 basis functions) at the MP2 level.103 As inclusion of electron correlation is manda-
tory for calculating the dispersion interaction between molecules, even the water dimer potential is
computationally challenging.

An approximate way of assessing BSSE is the CounterPoise (CP) correction.104 In this method the
BSSE is estimated as the difference between monomer energies with the regular basis and the ener-
gies calculated with the full set of basis functions for the whole complex. Consider two molecules
A and B, each having regular nuclear-centered basis sets denoted with subscripts a and b, and the
complex AB having the combined basis set ab. The geometries of the two isolated molecules and of
the complex are first optimized or otherwise assigned. The geometries of the A and B molecules in
the complex will usually be slightly different than for the isolated species, and the complex geometry
will be denoted with a ∗. The dimer energy minus the monomer energies is the directly calculated
complexation energy:

ΔEcomplexation = E(AB)∗ab − E(A)a − E(B)b (5.27)
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The CP estimate of how much of this complexation energy is due to BSSE requires four additional
energy calculations. Using the a basis set for A and the b basis set for B, the energies of each of the
two fragments are calculated with the geometry they have in the complex. Two additional energy
calculations of the fragments at the complex geometry are then carried out with the full ab basis set.
This means that the energy of A is calculated in the presence of both the normal a basis functions and
with the b basis functions of fragment B located at the corresponding nuclear positions, but without
the B nuclei present, and vice versa. Such basis functions located at fixed points in space are often
referred to as ghost orbitals. The fragment energy for A will be lowered due to these ghost functions,
since the a basis becomes more complete. The CP correction to the interaction energy is defined by

ΔECP = E(A)∗ab − E(A)∗a + E(B)∗ab − E(B)∗b (5.28)

The counterpoise-corrected complexation energy is then given as ΔEcomplexation − ΔECP.
There have been attempts at developing methods where the BSSE is excluded explicitly in the com-

putational expressions, such as the Chemical Hamiltonian Approach (CHA).105 The CHA has the
disadvantage that the Hamiltonian becomes non-Hermitian and, since the results are very similar
to those from the CP method,106 it is rarely used. It has also been argued that the full set of ghost
orbitals should not be used, since some of the functions in the complex are used for describing
the occupied orbitals of the other component, and only the virtual orbitals are available for “arti-
ficial” stabilization. This has been put on formal ground by the Same Number Of Optimized Parame-
ters (SNOOP) approach, where the number of parameters describing the electronic structure in the
two monomers and the dimer are required to be the same in order to provide a balance of errors.
The SNOOP approach calculates the monomer energy by taking the wave functions for the isolated
monomers, allowing the orbitals for A to relax in the additional space described by (only) the vir-
tual orbitals of B (and vice versa), and using only the combined virtual space for describing electron
correlation.107

The CP correction for methods including electron correlation is usually larger and more sensitive
to the size of the basis set than at HF or DFT levels. This is in line with the fact that HF/DFT methods
converge faster with respect to the size of the basis set than correlated wave functions. It is also well
recognized that the CP correction for intermolecular interactions only provides an estimate of the
BSSE effect, but does not provide either an upper or lower limit. It has in several cases been observed
that the interaction energy with the CP correction converges more regularly and stabilizes at the basis
set limiting value earlier than uncorrected values when regular basis sets are used, but not necessar-
ily if diffuse functions are included in the basis set. Furthermore, the CP corrected and uncorrected
interaction energies often converge towards the limiting value from opposite sides, which has led to
the suggestion that only half of the CP correction should be added.108 The SNOOP approach by con-
struction provides results that are intermediate between the CP corrected and uncorrected values,
and thus rationalizes this heuristic scheme. Detailed analyses suggest that the situation may be more
complicated for very weak interactions, and the CP correction can in some cases even be in the wrong
direction.109 This is due to the fact that a basis set for simple systems (e.g. atoms) is more complete
than for the complex systems, and the basis set therefore preferentially favors the isolated fragments
over the complex. The complexation energy can consequently be underestimated, even when BSSE
is present, and adding the CP correction will further disfavor the complex.

A heuristic method for substantially reducing BSSE is to use bond functions, where Gaussian func-
tions are placed at the midpoint between atoms/fragments. This is quite efficient for calculating
accurate intermolecular potentials with respect to a single variable (distance), but it is cumbersome
to generalize to many-dimensional and intramolecular cases. It furthermore often leads to unpre-
dictable basis set convergence, which prohibits the use of extrapolation methods (Section 5.9).
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The CP method is well-defined for non-bonded interactions where the A and B monomers can be
uniquely identified, but it should be recognized that the BSSE effect is always present when compar-
ing energies of different molecules (e.g. ethanol and dimethyl ether) or energies of the same molecule
with different structures (e.g. staggered and eclipsed ethane).110 The Basis Set Incompleteness Error
(BSIE) for an atom can be defined as the difference in the result obtained with a specific basis set and
the complete basis set value. The corresponding difference for a molecule, however, is a mixture of
BSIE and BSSE, and it is very difficult to disentangle the two effects. In a large molecule there may be
conformations where parts of the molecule are spatially close without being close in terms of bonding,
and such conformations will be artificially stabilized by the intramolecular analog of BSSE. For small
peptides with DZP-type basis sets, this may lead to errors of ∼20 kJ/mol in relative conformational
energies and completely change rotational energy profiles.111, 112 Even atoms that are directly bonded
will have components of intramolecular BSSE in addition to BSIE. Such directly bonded intramolec-
ular BSSE has been blamed for the spurious imaginary frequencies found for planar aromatic com-
pounds at correlated levels with certain basis sets, although it could also be attributed to basis set
imbalance, that is an inconsistent number of angular momentum functions of each type.113, 114

Attempts to extend the CP scheme to account for intramolecular BSSE face the problem of
how to partition the system into fragments. The least biased choice is to use individual atoms as
fragments, which requires a total of Natom CP calculations, each employing all basis functions for the
whole molecular system. While this at face value suggests a prohibitive computational cost, the use
of distance cutoffs and integral screening mean that the atomic CP correction can be calculated at
roughly the same cost as the uncorrected energy itself.115

Kruse and Grimme have proposed a parameterized correction for intramolecular BSSE denoted
geometrical CP (gCP) which only requires geometrical information and easy to calculate overlap inte-
grals.116 Local electron correlation methods (Section 4.12.2) tend to have reduced BSSE compared
to cannonical orbital methods, since only a (geometrically) limited number of orbitals are used in the
correlation treatment.

Calculations with periodic boundary conditions for modeling solids or liquids is strongly affected
by BSSE when localized (Gaussian) basis sets are employed,117 while plane wave basis sets are free of
BSSE, since the basis functions do not depend on the nuclear positions.
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Density Functional Methods

The basis for Density Functional Theory (DFT) is the proof by Hohenberg and Kohn1 that the ground
state electronic energy is determined completely by the electron density 𝜌 (see Appendix B for details).
In other words, there exists a one-to-one correspondence between the electron density of a system
and the energy. The “intuitive” proof of why the density completely defines the system is due to E. B.
Wilson,2 who argued that:
� The integral of the density defines the number of electrons.
� The cusps in the density define the position of the nuclei.
� The heights of the cusps define the corresponding nuclear charges.

The significance of the Hohenberg–Kohn theorem is perhaps best illustrated by comparing it with
the wave function approach. A wave function for an N electron system contains 4N variables, three
spatial and one spin coordinate for each electron. The electron density is the square of the wave
function, integrated over N − 1 electron coordinates, and each spin density only depends on three
spatial coordinates, independent of the number of electrons. While the complexity of a wave function
increases exponentially with the number of electrons, the electron density has the same number of
variables, independent of the system size. The “only” problem is that although it has been proven
that each different density yields a different ground state energy, the functional connecting these two
quantities is not known. The goal of DFT methods is to design functionals connecting the electron
density with the energy.3–9

A note on semantics: a function is a prescription for producing a number from a set of variables
(coordinates), while a functional is a prescription for producing a number from a function, which
in turn depends on variables. A wave function and the electron density are thus functions, while the
energy depending on a wave function or an electron density is a functional. We will denote a function
depending on a set of variables with parenthesis, f (x), while a functional depending on a function is
denoted with square brackets, F[ f ].

Early attempts at designing DFT models (actually predating wave mechanics) tried to express all
the energy components as a functional of the electron density, but these methods had poor per-
formance, and wave function-based methods were consequently preferred. The success of modern
DFT methods is based on the suggestion by Kohn and Sham in 1965 that the electron kinetic energy
should be calculated from an auxiliary set of orbitals used for representing the electron density.10

The exchange–correlation energy, which is a rather small fraction of the total energy, is then the only
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unknown functional, and even relatively crude approximations for this term provide quite accurate
computational models. The simplest model is the local density approximation, where the electron
density is assumed to be slowly varying, such that the exchange–correlation energy can be calculated
using formulas derived for a uniform electron density. A significant improvement in the accuracy can
be obtained by making the exchange–correlation functional dependent also on the first derivative of
the density, and further refinements also add the second derivative and mix Hartree–Fock exchange
into the functional. Density functional theory is conceptually and computationally very similar to
Hartree–Fock theory, but provides much better results and has consequently become a very popular
method. The main problem in DFT is the inability to systematically improve the results, which has
spawned a bewildering zoo of different functionals with (slightly) different performances for different
properties.

. Orbital-Free Density Functional Theory

Compared with the wave mechanics approach, it seems clear that the energy functional may be
divided into three parts, kinetic energy, T[𝜌], attraction between the nuclei and electrons, Ene[𝜌],
and electron–electron repulsion, Eee[𝜌] (the nuclear–nuclear repulsion is a constant within the
Born–Oppenheimer approximation). Furthermore, with reference to Hartree–Fock theory (Equa-
tion (3.33)), the Eee[𝜌] term may be divided into Coulomb and exchange parts, J[𝜌] and K [𝜌], implic-
itly including correlation energy in all the terms. The Ene[𝜌] and J[𝜌] functionals are given by their
classical expressions, where the factor of 1∕2 in J[𝜌] allows the integration to be over all space for both
variables:

Ene[𝜌] = −
Nnuclei∑

a ∫

Za(Ra)𝜌(r)
|Ra − r|

dr (6.1)

J[𝜌] = 1
2 ∬

𝜌(r)𝜌(r′)
|r − r′|

drdr′ (6.2)

Early attempts of deducing functionals for the kinetic and exchange energies considered a uniform
electron gas, where it may be shown that T[𝜌] and K [𝜌] are given by

TTF[𝜌] = CF
∫
𝜌5∕3(r)dr

CF = 3
10 (3𝜋2)2∕3

(6.3)

KD[𝜌] = −Cx
∫
𝜌4∕3(r)dr

Cx = 3
4

( 3
𝜋

)1∕3 (6.4)

The energy functional ETF[𝜌] = TTF[𝜌] + Ene[𝜌] + J[𝜌] is known as the Thomas–Fermi (TF) theory,
while inclusion of the KD[𝜌] exchange part (first derived by Bloch,11 but commonly associated with
the name of Dirac12) constitutes the Thomas–Fermi–Dirac (TFD) model.

The assumption of a uniform electron gas is fair for the valence electrons in certain metallic (peri-
odic) systems, but is poor for atoms and molecules. The TF kinetic energy furthermore leads to an
incorrect asymptotic behavior for the electron density (r−6 instead of exponential fall-off) and fails
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to reproduce the shell structure of atoms. A serious flaw from a chemical point of view is that neither
TF nor TFD theories predict bonding: molecules simply do not exist.

The kinetic and exchange functionals can be improved by the addition of terms depending on the
derivative(s) of the electron density. This is equivalent to considering a non-uniform electron gas and
performing a Taylor-like expansion with the density as a variable.13, 14 The expansion for the kinetic
energy is given in Equation (6.5), where odd terms vanish owing to the rotational invariance of the
energy with respect to r:

T[𝜌] = TTF[𝜌] + T2[𝜌] + T4[𝜌] + T6[𝜌] +⋯ (6.5)

T2[𝜌] = 𝜆𝜏w[𝜌] ; 𝜏w[𝜌] =
∫

|∇𝜌(r)|2

8𝜌(r)
dr (6.6)

T4[𝜌] = (540(3𝜋)2∕3)−1
∫
𝜌1∕3(r)

{(
∇2𝜌(r)
𝜌(r)

)2
− 9

8

(
∇2𝜌(r)
𝜌(r)

)(
∇𝜌(r)
𝜌(r)

)2
+ 1

3

(
∇𝜌(r)
𝜌(r)

)4
}

dr

(6.7)

The T2 correction contains the von Weizsacker kinetic energy, 𝜏W, where 𝜆 has a value of 1/9. Various
empirical values for 𝜆 have been used in cases where the expansion is terminated after the T2 term,
motivated by the fact that the von Weizsacker expression is equivalent to the Hartree–Fock kinetic
energy for one- and two-electron systems. The kinetic energy at the Thomas–Fermi level is typically
underestimated by ∼10%, which is reduced to ∼1% by addition of the T2 term, while inclusion of the
T4 correction leads to an overestimation of slightly larger magnitude. In terms of absolute energies,
this is comparable to the HF method, but energy differences (e.g. atomization energies) are calculated
with much lower accuracy than with the HF model. Unfortunately, the sixth- and higher-order T
terms diverge in regions far from the nuclei, preventing further improvements.

The second-order exchange term K2 is given in Equation (6.9) and the K4 term has an expression
similar to T4, except that not all the expansion coefficients are known:15

K [𝜌] = KD[𝜌] + K2[𝜌] + K4[𝜌] +⋯ (6.8)

K2[𝜌] = − 5
216

(3π5)−1∕3
∫

|∇𝜌(r)|2

𝜌4∕3(r)
dr (6.9)

Addition of gradient correction terms improves the Thomas–Fermi results, for example bonding is
now allowed, but the lack of sufficient error cancellation and the divergence of higher-order correc-
tion terms mean that this is not a viable approach for constructing DFT models capable of yielding
results comparable with those obtained by wave mechanics methods.

Although there have been attempts at constructing orbital-free (as opposed to the Kohn–Sham
version discussed in the next section) T functionals depending directly on the electron density, the
accuracy is still too low to be of general use.16, 17 If such functionals could be derived, however, the
full potential of DFT in having only three variables independent of system size could be fully realized.

. Kohn–Sham Theory

The foundation for the use of DFT methods in computational chemistry is the introduction of
orbitals, as suggested by Kohn and Sham (KS).5 The main flaw in orbital-free models is the poor
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representation of the kinetic energy, and the idea in the KS formalism is to split the kinetic energy
functional into two parts, one which can be calculated exactly and a small correction term. The price
to be paid is that orbitals are re-introduced, thereby increasing the complexity from 3 to 3N variables,
and that electron correlation re-emerges as a separate term. The KS model is closely related to the HF
method, sharing identical formulas for the kinetic, electron–nuclear and Coulomb electron–electron
energies.

The division of the electron kinetic energy into two parts, with the major contribution being equiv-
alent to the HF kinetic energy, can be justified as follows. Assume for the moment a Hamiltonian
operator of the form in the following equation with 0 ≤ 𝜆 ≤ 1:

H𝜆 = T + Vext(𝜆) + 𝜆Vee (6.10)

The external potential operator Vext is equal to Vne for 𝜆 = 1, but for intermediate 𝜆 values it is
assumed that Vext(𝜆) is adjusted such that the same density is obtained for 𝜆 = 1 (the real system),
for 𝜆 = 0 (a hypothetical system with non-interacting electrons) and for all intermediates 𝜆 values.
For the 𝜆 = 0 case, the electrons are non-interacting and the exact solution to the Schrödinger equa-
tion is given as a Slater determinant composed of (molecular) orbitals, 𝜙i. The exact kinetic energy
functional is given by

TS =
Nelec∑

i=1

⟨

𝜙i
|
|
|
− 1

2∇
2||
|
𝜑i

⟩

(6.11)

The subscript S denotes that it is the kinetic energy calculated from a Slater determinant. The 𝜆 = 1
case corresponds to interacting electrons, and Equation (6.11) is therefore only an approximation to
the real kinetic energy, but a substantial improvement over the TF formula (Equation (6.3)).

Another way of justifying the use of Equation (6.11) for calculating the kinetic energy is by reference
to natural orbitals (eigenvectors of the density matrix, Section 10.5). The exact kinetic energy can be
calculated from the natural orbitals (NO) arising from the exact density matrix:

T[𝜌exact] =
∞∑

i=1
ni

⟨

𝜙NO
i

|
|
|
− 1

2∇
2||
|
𝜙NO

i

⟩

(6.12)

𝜌exact =
∞∑

i=1
ni

|
|
|
𝜙NO

j
|
|
|

2
; Nelec =

∞∑

i=1
ni (6.13)

The orbital occupation numbers ni (eigenvalues of the density matrix) will be between 0 and 1, corre-
sponding to the number of electrons in the (spin) orbital. Representing the exact density will require
an infinite number of natural orbitals, with the Nelec first having occupation numbers close to 1 and
the remaining numbers close to 0. Since the exact density matrix is not known, an (approximate)
density can be written in terms of a set of auxiliary one-electron functions, that is orbitals:

𝜌approx =
Nelec∑

i=1
|𝜙i|

2 (6.14)

This corresponds to Equation (6.13) with occupation numbers of exactly 1 or 0. The “missing” kinetic
energy from Equation (6.11) is thus due to the occupation numbers deviating from being exactly 1 or
0. Since the occupation numbers of an HF (single-determinant) wave function are also exactly 1 or 0,
the missing kinetic energy can also be considered as the (kinetic) correlation energy.
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The key to Kohn–Sham theory is to calculate the kinetic energy under the assumption of non-
interacting electrons (in the same sense that HF orbitals in wave mechanics describe non-interacting
electrons) from Equation (6.11). In reality, the electrons are interacting and Equation (6.11) does not
provide the total kinetic energy. However, just as HF theory provides ∼99% of the correct answer, the
difference between the exact kinetic energy and that calculated by assuming non-interacting electrons
is small. The remaining kinetic energy is absorbed into an exchange–correlation term, and a general
DFT energy expression can be written as

EDFT[𝜌] = TS[𝜌] + Ene[𝜌] + J[𝜌] + Exc[𝜌] (6.15)

By equating EDFT to the exact energy, this expression defines Exc, that is it is the part that remains
after subtraction of the non-interacting kinetic energy, and the Ene and J potential energy terms:

Exc[𝜌] = (T[𝜌] − TS[𝜌]) + (Eee[𝜌] − J[𝜌]) (6.16)

The first parenthesis in Equation (6.16) may be considered as the kinetic correlation energy, while the
last contains both potential correlation and exchange energy.

The task in developing orbital-free models is to derive approximations to the kinetic and exchange
energy functionals (including correlation), while the corresponding task in Kohn–Sham theory is to
derive approximations to the exchange–correlation energy functional only. For the neon atom, for
example, the kinetic energy is 128.93 au, the exchange energy is −12.10 au and the correlation energy
is −0.38 au (as calculated by wave mechanics methods). Since the exchange–correlation energy is
roughly a factor of 10 smaller than the kinetic energy, Kohn–Sham theory is much less sensitive to
inaccuracies in the functional(s) than orbital-free theory. While orbital-free theory is a true density
functional theory (three variables), Kohn–Sham methods are independent-particle models (3N vari-
ables), analogous to Hartree–Fock theory, but are still much less complicated than many-particle
(correlation) wave function models.

. Reduced Density Matrix and Density Cumulant Methods

Before embarking on a more detailed analysis of how to design exchange–correlation energy func-
tionals in Kohn–Sham theory, it may be instructive to take a slight detour and consider methods using
Reduced Density Matrices (RDM), rather than the electron density itself.9 We will start by defining
the first- and second-order reduced density matrices γ1 and γ2:

γ1(r1, r′1) = Nelec
∫

Ψ∗(r′1, r2,… , rNelec

)
Ψ
(

r1, r2,… , rNelec

)
dr2 ⋯ drNelec

(6.17)

γ2(r1, r2, r′1, r′2) = Nelec(Nelec − 1)
∫

Ψ∗(r′1, r′2, r3,… , rNelec

)
Ψ
(

r1, r2, r3,… , rNelec

)
dr3 ⋯ drNelec

(6.18)

We will ignore electron spin, except when required. The corresponding reduced spin density matri-
ces are defined completely analogously to Equations (6.17) and (6.18), if the r variables are taken to
represent both spatial and spin coordinates.

The diagonal components of the first-order density matrix (setting r′1 = r1) gives the electron den-
sity function 𝜌1, often written without the subscript 1 when higher-order densities are not involved:

𝜌1(r1) = γ1(r1, r1) = Nelec
∫

Ψ∗(r1 ⋯ rNelec

)
Ψ
(

r1 ⋯ rNelec

)
dr2 ⋯ drNelec

(6.19)
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The integral is the probability of finding an electron (it does not matter which, since they are indis-
tinguishable) at position r1, and the Nelec prefactor ensures that the density integrates to the number
of electrons.

The corresponding second-order density matrix yields the electron pair-density upon setting
r′1 = r1 and r′2 = r2:

𝜌2(r1, r2) = γ2(r1, r2, r1, r2)

= Nelec(Nelec − 1)
∫

Ψ∗(r1, r2 ⋯ rNelec

)
Ψ
(

r1, r2 ⋯ rNelec

)
dr3 ⋯ drNelec

(6.20)

The integral is the probability of finding an electron at position r1 and another electron at position
r2, and the Nelec(Nelec − 1) prefactor ensures that 𝜌2 integrates to the number of electron pairs (note
that the number of unique electron pairs is only 1∕2Nelec(Nelec − 1)).

The exact kinetic and potential energies are given by the (exact) first- and second-order density
matrices, with an implicit summation over electron spin:

T = − 1
2 ∫

∇2γ1(r1, r′1)|r=r′dr1 (6.21)

Vne = −
Nnuclei∑

a ∫

Zaγ1(r1, r1)
|Ra − r1|

dr1 = −
Nnuclei∑

a ∫

Za𝜌1(r1)
|Ra − r1|

dr1 (6.22)

Vee =
1
2 ∫

γ2(r1, r2, r1, r2)
|r1 − r2|

dr1dr2 = 1
2 ∫

𝜌2(r1, r2)
|r1 − r2|

dr1dr2 (6.23)

Note that the potential energy terms in Equations (6.22) and (6.23) can be written in terms of 𝜌1 and
𝜌2; only the kinetic energy requires γ1. Note also that the Vee term can be split into a Coulomb term
that only depends on 𝜌1, while the exchange part depends on 𝜌2.

For the special case of a single-determinant wave function, the first- and second-order reduced
density matrices are given by Equations (6.25) and (6.26):

𝚽SD = 1
√

N!

|
|
|
|
|
|
|
|
|
|

𝜙1(1) 𝜙2(1) ⋯ 𝜙N (1)
𝜙1(2) 𝜙2(2) ⋯ 𝜙N (2)
⋮ ⋮ ⋱ ⋮

𝜙1(N) 𝜙2(N) ⋯ 𝜙N (N)

|
|
|
|
|
|
|
|
|
|

(6.24)

γ1(r1, r′1) =
Nocc∑

i=1
𝜙i(r′1)𝜙i(r1) (6.25)

γ2(r1, r2, r′1, r′2) =
Nocc∑

i,j=1

{
𝜙i(r′1)𝜙j(r′2)𝜙i(r1)𝜙j(r2) − 𝜙i(r′1)𝜙j(r′2)𝜙j(r1)𝜙i(r2)

}
(6.26)

Using Equations (6.25) and (6.26) in Equations (6.21) to (6.23) is readily seen to provide the Hartree–
Fock energy expression, Equation (3.32).

Since γ1 can be obtained by straightforward integration of γ2, an appealing idea is to use the ele-
ments of γ2 as variables for solving the Schrödinger equation or its equivalent density formulation by
a variational procedure. Unfortunately, the γ2 elements cannot be varied freely, since they must cor-
respond to an antisymmetric wave function.18 Although a formal solution of this N-representability
problem exists,19 it does not lend itself to an efficient computational implementation. Work by
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D. Mazziotti has shown that good approximations to the N-representability can be obtained by
enforcing positive semi-definiteness (non-negative eigenvalues) of three matrices during the opti-
mization of γ2.20 These three matrices are the two-particle density matrix γ2 itself and the corre-
sponding representations in terms of hole–hole and particle–hole creations, commonly denoted D,
Q and G. The semi-definite condition arises since these matrices describe probabilities. Performing
such constrained optimizations is a non-trivial computational task, but methods have been proposed
that (only) scales as M6

basis, making such calculation tractable for general systems.21 The accuracy of
the results can be improved by imposing semipositivity of higher-order density matrices,22 albeit
at a significantly higher computational cost. The quality of the results are typically comparable to
CCSD(T) but somewhat more tolerant toward multireference character.

An alternative approach, called Density Cumulant functional Theory (DCT), is to write γ2 as a
product of γ1 (compare to Equation (6.15)) and a reminder term:23

γ2(r1, r2, r′1, r′2) = γ1(r1, r′1)γ1(r2, r′2) − γ1(r2, r′1)γ1(r1, r′2) + λ2(r1, r2, r′1, r′1) (6.27)

The cumulant λ2 term accounts for the pair-correlation (correlation is also present in γ1, see Equa-
tion (6.28)) and must implicitly ensure the N-representability. The γ1 is similarly written as a sum of
an idempotent component (κ1) and a correlation (τ1) term:

γ1(r1, r′1) = κ1(r1, r′1) + τ1(r1, r′1)

κ2
1 = κ1

(6.28)

The κ1 term corresponds to the orbital product in Equation (6.25) for a single determinant wave
function, where the τ1 term is zero. The τ1 term can be formulated in terms of λ2, which is then
the central variable. The N-representability of λ2 can be approximately fulfilled to a given order by a
perturbation expansion.24 The advantage of DCT over RDM methods is that the N-representability
in the former only affects the correlation energy, not the total energy itself. A practical advantage is
also that DCT involves solving non-linear equations similar to those in coupled cluster theory, while
RDM methods require solving semi-definite equations involving constraints. At the time of writing,
DCT typically provides results of a quality intermediate between CCSD and CCSD(T).25

The electron pair-density 𝜌2 is sufficient for calculating the exact electron–electron interaction,
and Pair Density Functional Theory (PDFT) attempts to use this as the fundamental variable. The
electron–nucleus interaction requires the density 𝜌1, which can be obtained by integration of 𝜌2, but
the kinetic energy requires the reduced density matrix γ1. The challenge in PDFT is thus to design
kinetic energy functionals depending on 𝜌2, in addition to enforcing the N-representability condition.

The electron density matrix 𝜌1 can be diagonalized to produce eigenvalues and eigenvectors, called
occupation numbers ni and natural orbitals 𝜙NO

i . The γ1 can be written in terms of these quantities
(compare with Equation (6.25), but note that the summation now includes all orbitals, since ni ≠ 0 in
general):

γ1(r1, r′1) =
Norb∑

i
ni𝜙

NO
i (r′1)𝜙NO

i (r1) (6.29)

As an alternative to using γ2 as the fundamental variable, the first-order reduced density matrix,
or its parameterization in terms of natural orbitals and occupation numbers, can be used. The N-
representability problem for γ1 is easy to fulfill, since the only requirements are that the eigenval-
ues are between 0 and 1, and that they sum to Nelec. The task in this case is to derive a suitable
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approximation for the Vee energy term in terms of γ1, rather than 𝜌2.26, 27 The Coulomb and exchange
parts of Vee are given by the analogous formulas (Equations (6.23) and (6.26)) using natural orbitals
and occupation numbers, leaving the correlation energy as the only unknown function of γ1. The
correlation part can be incorporated by multiplying the orbital products with functions of the occu-
pation numbers as shown in Equation (6.31):

Vee =
1
2 ∫

𝜌2(r1, r2)
|r1 − r2|

dr1dr2 (6.30)

𝜌2(r1, r2) =
Norb∑

ij

{
f (ni, nj)𝜙NO

i (r1)𝜙NO
i (r1)𝜙NO

j (r2)𝜙NO
j (r2)

−g(ni, nj)𝜙NO
i (r1)𝜙NO

j (r1)𝜙NO
i (r2)𝜙NO

j (r2)

}

(6.31)

The choice of f (ni, nj) = g(ni, nj) = ninj implies the Hartree–Fock model, and optimization of the
occupation numbers and natural orbitals with this choice indeed returns the HF wave function, that
is the HF wave function cannot be improved by allowing fractional occupation numbers. The f (ni, nj)
function is usually set equal to ninj, since this is just the Coulomb interaction, and the exchange–
correlation part is modeled by g(ni, nj).28 A number of such Natural Orbital Functionals (NOFs) has
been proposed and tested for performance.29

The Hohenberg–Kohn theorem, which states that the energy is uniquely determined by the one-
electron density 𝜌1, forms the basis for what is commonly called density functional theory. As dis-
cussed in Section 6.1, it is difficult to construct a sufficiently accurate total energy functional depend-
ing only on 𝜌1. The Kohn–Sham version, where only the exchange–correlation part of the energy must
be estimated as a functional of 𝜌1, provides viable models, and these will be discussed in more detail
in Section 6.5.

Perhaps the most surprising result of the Hohenberg–Kohn theorem is that the correlation energy
is completely determined by the one-electron density function 𝜌1. Electron correlation is inher-
ently a two-electron phenomenon, and it is difficult to envisage how an accurate correlation func-
tional depending on only the one-electron density should be constructed from theoretical arguments,
although one certainly can understand that the correlation will affect the electron density. Indeed, the
interpretation of electron correlation in terms of correlation holes, as discussed in the next section,
requires the two-electron density 𝜌2. P.M.W. Gill has suggested that one could consider a quantity
similar to the second-order reduced density matrix, except that the arguments are the position and
momentum of the two electrons:30

W
(

r1,… , rNelec
, p1,… , pNelec

)
= π−3Nelec

∫
Ψ∗(r1 + q1,… , rNelec

+ qNelec

)

×Ψ
(

r1 − q1,… , rNelec
− qNelec

)
e2i(p1⋅q1,…pNelec ⋅qNelec )dq1 ⋯ dqNelec

W2(r1, r2, p1, p2) =
∫

W
(

r1,… , rNelec
, p1,… , pNelec

)
dr3 ⋯ drNelec

dp3 ⋯ dpNelec

(6.32)

The W2 is called the second-order Wigner intracule and represents a quasi-probability function for
finding two electrons at positions r1 and r2 with momentum p1 and p2. It cannot be interpreted as a
genuine probability function, as it can achieve negative values. Since one would expect the correla-
tion energy to depend on the distance between the two electrons, the relative momentum between
them and the orientation of the distance and momentum difference vectors, Gill et al. have suggested
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that the corresponding Ω intracule depending on the “internal” coordinates may contain information
sufficient for determining the correlation energy:

ΔEcorr =
∫

Ω(u, v,𝜔)G(u, v,𝜔)du dv d𝜔 (6.33)

W2(r1, r2, p1, p2) → Ω(u, v,𝜔)

u = |r1 − r2|; v = |p1 − p2|; cos𝜔 =
(r1 − r2)′(p1 − p2)
|r1 − r2||p1 − p2|

(6.34)

Analogously to density functional methods, the task is to construct a correlation kernel G that yields
the correlation energy upon integration with the Ω intracule, and use this in connection with the
exchange energy calculated at the Hartree–Fock level.

The differences between wave mechanics and density-based methods can be summarized as
follows:
� Wave mechanics employ the exact Hamiltonian operator, but makes approximations in the form

of the wave function.
� Density functional methods make approximations in the energy functional (Hamiltonian), but

allow a free variation of the electron density 𝜌1. The functional must therefore implicitly enforce
the N-representability. This is difficult to achieve in orbital-free methods, but the Kohn–Sham
approach with a determinantal orbital product takes care of the majority of this problem.31 Fur-
thermore, in orbital-free methods the kinetic energy functional is unknown, and since this is equal
in magnitude to the total energy, even minor inaccuracies cause large absolute errors. In the Kohn–
Sham version only the exchange–correlation functional is unknown, and since this is a relatively
minor component of the total energy, the results are less sensitive to inaccuracies in the functional.

� Methods using the first-order reduced density matrix as variable can be chosen to strictly enforce
the N-representability of γ1, and employ the exact energy functional for all the terms except the
correlation energy. The latter, however, inherently depends on γ2, which in this approach must
be approximated as a function of γ1. One can argue that Hartree–Fock belongs to this class of
methods, with implicit neglect of the electron correlation.

� Methods using the second-order reduced density matrix as variable employ the exact energy func-
tional in terms of γ2, but must make approximations for enforcing the N-representability of γ2.

� Methods using the electron-pair density 𝜌2 as a variable employ the exact energy functional for the
electron–nuclear and electron–electron interactions, but must make approximations for calculat-
ing the kinetic energy, in addition to enforcing the N-representability of 𝜌2.

Solving the Schrödinger equation by means of reduced density matrices has many appealing fea-
tures, such as being able to describe the whole potential energy curve with equal accuracy and to
account for a very large fraction of the correlation energy. At the time of writing, however, they pro-
duce results of roughly the same quality as a conventional wave function-based CCSD.

. Exchange and Correlation Holes

We now return to the problem of expressing the exchange–correlation energy as a functional of 𝜌
(= 𝜌1). Since the exchange energy is by far the largest contributor to Exc (compare the values for the
neon atom in Section 6.2), one may reasonably ask why not calculate this term “exactly” from orbitals
(analogous to the kinetic energy), by the formula known from wave mechanics (Equation (3.32)),
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and only calculate the computationally difficult part, the correlation energy, by DFT. Although this
has been tried, it gives poor results. The basic problem is that the DFT definitions of exchange and
correlation energies are not completely equivalent to their wave mechanics counterparts.32 The DFT
exchange energy may be defined by the same formula as in HF theory (Equation (3.31)), except that
Kohn–Sham orbitals are used. This leads to a non-local potential, that is the exchange potential at
a given point is strongly dependent on the density at distant points. The correlation energy in wave
mechanics is defined as the difference between the exact energy and the corresponding Hartree–
Fock value. Both the exchange and correlation energies have a short- and long-range part (in terms of
the distance between two electrons). The long-range correlation is essentially the “static” correlation
energy (i.e. the “multireference” part, see Section 4.6) while the short-range part is the “dynamical”
correlation. The long-range part of the correlation energy in wave mechanics effectively cancels the
delocalized part of the exchange energy. The definitions of exchange and correlation in DFT (at least
in current implementations) are local (short range), since they only depend on the density at a given
point and the immediate vicinity (via derivatives of the density). The cancellation at long range is (or
should be) implicitly built into the exchange–correlation functional. Calculating the exchange energy
by wave mechanics and the correlation by DFT thus destroys the cancellation, although research is
continuing towards designing correlation functionals to be used in connection with HF exchange.33

A more detailed discussion of these features is most easily given in terms of exchange and corre-
lation holes.34 Electrons avoid each other owing to their electric charges, and the energy associated
with this repulsion is given classically by the Coulomb Equation (6.2). Quantum mechanically, how-
ever, this repulsion must be modified to take into account that electrons have spins of 1∕2. The Pauli
principle states that two fermions (particles with half-integer spin) cannot occupy the same spatial
position or, equivalently, that the total wave function must be antisymmetric upon interchange of
any two particles. This leads to the exchange energy (see Section 3.3), which can be considered as
a quantum correction to the classical Coulomb repulsion and includes the electron self-repulsion.
The exchange term is already present in Hartree–Fock theory and must also be incorporated into
DFT. There is in addition a dynamical effect where electrons tend to avoid each other more than
given by an HF wave function, and this is the correlation energy calculated by wave mechanics
methods.

These qualitative considerations can be put into quantitative terms by probability holes. If electrons
did not have charge or spin, the probability of finding an electron at a given position would be inde-
pendent of the position of a second electron, and the electron-pair density 𝜌2 would be given as a
simple product of two one-electron densities 𝜌1, with a proper normalization factor:

𝜌
indep
2 (r1, r2) =

Nelec − 1
Nelec

𝜌1(r1)𝜌1(r2) =
(

1 − 1
Nelec

)

𝜌1(r1)𝜌1(r2) (6.35)

Since electrons have both charge and spin, however, there is a reduced probability of finding an elec-
tron near another electron. We can write this formally in terms of a conditional probability factor
hxc(r1, r2), which includes the 1/Nelec self-interaction factor in Equation (6.35):

𝜌2(r1, r2) = 𝜌1(r1)𝜌1(r2) + 𝜌1(r1)hxc(r1, r2) (6.36)

The reduced probability is called the exchange–correlation hole and can be written in terms of 𝜌2 and
𝜌1 by solving Equation (6.36):

hxc(r1, r2) =
𝜌2(r1, r2)
𝜌1(r1)

− 𝜌1(r2) (6.37)
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The exchange–correlation hole represents the reduced probability of finding electron 2 at a position
r2 given that electron 1 is located at r1. The exchange part of hxc is called the Fermi hole, while the
dynamical correlation gives rise to the Coulomb hole. Since exchange only occurs between electrons
of the same spin, the total hole can also be written in terms of individual spin contributions:

hxc = hx + hc

hx = h𝛼𝛼x + h𝛽𝛽x

hc = h𝛼𝛼c + h𝛽𝛽c + h𝛼𝛽c

(6.38)

From the definitions of 𝜌2 and 𝜌1, it follows that the integral of hxc over r2 equals −1; this is the
electron self-repulsion part:

∫
hxc(r1, r2)dr2 =

∫

𝜌2(r1, r2)
𝜌1(r1)

dr1dr2 −
∫
𝜌1(r2)dr2 =

Nelec(Nelec − 1)
Nelec

− Nelec = −1 (6.39)

A similar argument for the separate spin densities shows that the Fermi hole itself is negative every-
where and integrates to −1, which means that the integral of the Coulomb hole is 0. The Fermi
(exchange) hole describes a static reduction in the probability function corresponding to one elec-
tron. The Coulomb (correlation) function, on the other hand, reduces the probability of finding an
electron near the reference electron, but increases the probability of finding it far from the reference
electron.

The exchange energy in Hartree–Fock theory is a non-local function, that is the HF exchange hole
is delocalized over the whole system (or at least a large part of it). For a diatomic system, for example,
the exchange hole is delocalized over both nuclei. When electron correlation is added explicitly, the
left–right correlation to a large extent serves to cancel the delocalized nature of the HF exchange hole.
The exchange functional in DFT, on the other hand, is local, that is the cancellation of the delocalized
HF exchange hole by the left–right correlation in wave function approaches should be inherent in
the functional, and this is the main difference between the definitions of exchange and correlation in
wave function and current density functional descriptions.

A closely related phenomenon is the electron self-interaction energy. The Coulomb energy
functional given in Equation (6.2) only depends on 𝜌1. This means that the density arising from a
single electron will interact with itself (e.g. there will be a non-zero electron–electron Coulomb
repulsion even for a one-electron system), and this self-repulsion is clearly non-physical. For a
multielectron system, there will be such a self-interaction term for the density associated with each
electron, although it is difficult to define this rigorously. The HF model takes care of this problem
elegantly, since the expression for the exchange energy exactly cancels the Coulomb self-interaction
(Equation (3.33)).

A one-electron system should within the DFT model have an exchange energy exactly opposing
the Coulomb energy, Ex = −J, and the correlation energy should be zero. In a multielectron system,
one may thus consider part of the exchange energy as a correction for the self-interaction energy,
with the remaining being the “true” Fermi hole. The self-interaction correction is in this view the
major part of the exchange energy, with the “true” Fermi hole being comparable to the Coulomb
(correlation) hole. It should be noted, however, that such a partitioning is not invariant to a unitary
transformation of the occupied orbitals.35, 36 The self-interaction cancellation by the exchange energy
is not guaranteed in DFT, and very few of the current exchange–correlation functionals are com-
pletely self-interaction-free. It has been proven that a completely self-interaction-free local potential
does not exist.37 Perdew and Zunger have suggested an approximate correction scheme, where each
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Figure . Illustrating the exchange and correlation holes for the H2 molecule at the dissociation limit, with the
reference electron located near nucleus A and the vertical axis representing probability.

orbital becomes self-interaction-free.38 The procedure formally changes the underlying functional
and destroys the invariance of the energy with respect to mixing of the occupied orbitals.

These concepts can be illustrated for the H2 molecule for increasing internuclear distances.39, 40 The
ground state for H2 has in wave mechanics two electrons of opposite spin in the same spatial orbital,
and the exchange hole is thus entirely the self-interaction correction (no same-spin exchange):

𝜙 = N(𝜒A + 𝜒B)
𝜌1 = 2𝜙2

hx = − 1
2𝜌1

(6.40)

For the case of H2, this is just the negative of the occupied molecular orbital and, by symmetry argu-
ments, the HF exchange hole at each nucleus thus integrates to −1∕2, independent of the internuclear
separation. This delocalization is clearly non-physical in the dissociation limit, since the correct wave
function must have one electron localized at each nucleus. This means that for a reference electron
near nucleus A, the total probability hole is localized at nucleus A. The correlation hole must there-
fore exactly cancel the exchange hole at nucleus B, while increasing the hole at nucleus A in order to
integrate to −1 (Figure 6.1); this is the reason why the wave function correlation energy increases as
a function of internuclear distance.

Within wave mechanics, the exchange hole is static and delocalized over the whole molecule, while
the long-range part of the electron correlation serves to cancel the exchange hole away from the
reference electron.

. Exchange–Correlation Functionals

The difference between various DFT methods is the choice of functional form for the exchange–
correlation energy. It can be proven that the exchange–correlation potential is a unique functional,

iranchembook.ir/edu



Density Functional Methods 

valid for all systems, but an explicit functional form of this potential has been elusive, except for
special cases such as a uniform electron gas. It is possible, however, to derive a number of properties
that the exact functional should have, of which some of the more important ones are:41

1. The energy functional should be self-interaction-free, that is the exchange energy for a one-
electron system, such as the hydrogen atom, should exactly cancel the Coulomb energy and the
correlation energy should be zero. Although these seem like obvious requirements, none of the
common functionals have this property, and this leads to a systematic overstabilization of elec-
tronic states with delocalized electrons.

2. When the density becomes constant, the uniform electron gas result should be recovered. While
this surely is a valid mathematical requirement, and important for applications in solid-state
physics, it may not be as important for chemical applications, as molecular densities are relatively
poorly described by uniform electron gas models.

3. The coordinate scaling of the exchange energy should be linear, that is multiplying the electron
coordinates with a constant factor should result in a similar linear scaling of the exchange
energy:42

𝜌𝜆(x, y, z) = 𝜆3𝜌(𝜆x, 𝜆y, 𝜆z)
Ex[𝜌𝜆] = 𝜆Ex[𝜌]

(6.41)

4. No direct scaling law applies for the correlation energy, but scaling the electron coordinates by
a factor larger than 1 should increase the magnitude of the correlation (and vice versa).43 In the
low-density limit, the scaling becomes linear, as for the exchange energy:

−Ec[𝜌𝜆] > −𝜆Ec[𝜌]; 𝜆 > 1 (6.42)

5. As the scaling parameter goes to infinity, the correlation energy for a finite system approaches a
negative constant.

6. The Lieb–Oxford condition places an upper bound for the exchange–correlation energy relative to
the local density approximation (LDA) (see Section 6.5.1) exchange energy:43

Ex[𝜌] ≥ Exc[𝜌] ≥ 2.273ELDA
x [𝜌] (6.43)

7. The exchange potential should show an asymptotic −r−1 behavior as r → ∞.44 This follows since
for a neutral atom it must exactly cancel the Coulomb potential corresponding to a single posi-
tive charge. The exchange–correlation potential is furthermore discontinuous as a function of the
number of electrons, by an amount corresponding to the difference between the ionization poten-
tial and electron affinity.45 Functionals that depend only on the density will display an exponential
(e−𝛼r) fall-off for the potential, which causes problems in the long-range regime where the poten-
tial decays too fast to zero. Functionals incorporating a fraction of exact exchange will retain the
same fraction of the correct potential.

8. The correlation potential should show an asymptotic −1/2𝛼r−4 behavior, with 𝛼 being the polariz-
ability of the Nelec − 1 system.

The difference in scaling behavior (points 3 and 4) is a strong argument for separating the correspond-
ing exchange and correlation functionals but, on the other hand, it implies a difficult task for getting
the correlation component to exactly cancel the long-range exchange component.

Exchange–correlation functionals have, in analogy with other (partly) empirical methods, a math-
ematical form containing parameters. There are two main philosophies for assigning values to these
parameters, either by requiring the functional to fulfill the above criteria (or a suitable selection
thereof ) or by fitting the parameters to experimental data, although in practice a combination of
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these approaches is often used. The quality of exchange–correlation functionals will ultimately have
to be settled by comparing the performance with experiments or high-level wave mechanics calcula-
tions. Such calibration studies, however, only evaluate the quality for the chosen selection of systems
and properties. It has indeed been found that the “best” functionals depend on the system and prop-
erties, some being good for molecular systems, others for delocalized (periodic) systems, and others
again for properties such as excitation energies or NMR chemical shifts. At present, there are no clear
“standard” methods, like MP2 and CCSD in traditional ab initio theory, although the hybrid meth-
ods discussed below usually give good performance. Since DFT is an active area of research, new
and improved functionals are likely to emerge. The total number of proposed functionals is several
hundreds, but only a relatively small number of these are in common use. The bewildering number
of different functionals often has the consequence that “old” and well-tested functionals are used in
place of more modern ones, since the choice in many cases is based on a popularity count. Modern
functionals often offer only marginal improvement, and often only for selected properties and/or sys-
tems. It should be noted that many of the proposed functionals have never made it past the research
stage and are not available in commonly available programs. Below we will give a short summary of
functionals that have been proposed by different research groups. We will give the explicit forms for
some of the more commonly used functionals for illustration, although they do not contain much
physical insight by themselves.

It is customary to separate Exc into two parts, a pure exchange Ex and a correlation part Ec, which
seems reasonable based on the discussion of the exchange and correlation holes above, and their dif-
ferent scaling properties. It should be noted, however, that only the combined exchange–correlation
hole has a physical meaning, and it could be argued that this calls for a combined Exc. Early work
tended to focus on only one of the components, and subsequently combined these, while the current
trend is to construct the two parts in a combined fashion.

Each of the exchange and correlation energies is often written in terms of the energy per particle
(energy density), 𝜀x and 𝜀c:

Exc[𝜌] = Ex[𝜌] + Ec[𝜌] =
∫
𝜌(r)𝜀x[𝜌(r)]dr+

∫
𝜌(r)𝜀c[𝜌(r)]dr (6.44)

As mentioned at the start of Chapter 4, the correlation between electrons with parallel spin is different
from that between electrons with opposite spin. The exchange energy is “by definition” given as a
sum of contributions from the 𝛼 and 𝛽 spin densities, as exchange energy only involves electrons of
the same spin. The kinetic energy, the nuclear–electron attraction and Coulomb terms are trivially
separable in terms of electron spin:

Ex[𝜌] = E𝛼x [𝜌𝛼] + E𝛽x [𝜌𝛽 ] (6.45)

Ec[𝜌] = E𝛼𝛼c [𝜌𝛼] + E𝛽𝛽c [𝜌𝛽 ] + E𝛼𝛽c [𝜌𝛼 , 𝜌𝛽 ] (6.46)

The total density is the sum of the 𝛼 and 𝛽 contributions, 𝜌 = 𝜌𝛼 + 𝜌𝛽 , and these are identical (𝜌𝛼 = 𝜌𝛽 )
for a closed-shell singlet. Functionals for the exchange and correlation energies may be formulated in
terms of separate spin densities, but they are often given instead as functions of the spin polarization
𝜁 (normalized difference between 𝜌𝛼 and 𝜌𝛽 ) and the radius of the effective volume containing one
electron, rs:

𝜍 =
𝜌𝛼 − 𝜌𝛽
𝜌𝛼 + 𝜌𝛽

(6.47)

4
3πr3

s = 𝜌−1 (6.48)
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It is implicitly assumed in the formulas below that the exchange and correlation energies are summed
over both 𝛼 and 𝛽 densities.

The difference between various wave function-based methods is how the electron correlation is
included, and the quality of these methods can be characterized by an ordering parameter, such as
the perturbation order or the level of excitations included. There are no similar theoretically founded
ordering parameters for DFT methods, as the exchange–correlation functionals to a large extent are
empirical. A heuristic characterization can be done by considering the fundamental variables used
for defining the exchange–correlation functional. J.P. Perdew has suggested such a “Jacob’s ladder ”
approach, where one can expect or at least hope for an improvement in the accuracy for each step
up the ladder,46, 47 and this is the approach taken here to systematize the plethora of functionals that
have been proposed.

6.5.1 Local Density Approximation

In the Local Density Approximation (LDA) it is assumed that the density locally can be treated as
a uniform electron gas, or equivalently that the density is a slowly varying function. The exchange
energy for a uniform electron gas is given by the Dirac formula (Equation (6.4)):

ELDA
x [𝜌] = −Cx ∫ 𝜌

4∕3(r)dr
𝜀LDA

x = −Cx𝜌
1∕3 (6.49)

In the more general case, where the 𝛼 and 𝛽 densities are not equal, LDA (where the sum of the 𝛼 and
𝛽 densities is raised to the 4/3 power) has been virtually abandoned and replaced by the Local Spin
Density Approximation (LSDA) (which is given as the sum of the individual densities raised to the
4/3 power:

ELSDA
x [𝜌] = −21∕3Cx

∫

(

𝜌
4∕3
𝛼 + 𝜌4∕3

𝛽

)

dr (6.50)

LSDA may also be written in terms of the total density and a spin-polarization function:

𝜀LSDA
x = −Cx f1(𝜁 )𝜌1∕3

f1(𝜁 ) = 1
2 [(1 + 𝜍)4∕3 + (1 − 𝜍)4∕3]

(6.51)

For closed-shell systems, LSDA is equal to LDA and, since this is the most common case, LDA is
often used interchangeably with LSDA, although this is not true in the general case. The X𝛼 method
proposed by Slater in 195148 can be considered as an LDA method where the correlation energy is
neglected and the exchange term is as given in

𝜀X𝛼 = − 3
2𝛼Cx𝜌

1∕3 (6.52)

With 𝛼 = 2/3 this is identical to the Dirac expression. The original X𝛼 method used 𝛼 = 1, but a value
of 3/4 has been shown to give better agreement for atomic and molecular systems. The name Slater
is often used as a synonym for the L(S)DA exchange energy involving the electron density raised to
the 4/3 power.

The analytical form for the correlation energy of a uniform electron gas, which is purely dynamical
correlation, has been derived in the high- and low-density limits.49, 50 For intermediate densities, the
correlation energy has been determined to a high precision by quantum Monte Carlo methods (Sec-
tion 4.15). In order to use these results in DFT calculations, it is desirable to have a suitable analytic
interpolation formula, and such formulas have been constructed by Vosko, Wilk and Nusair (VWN)
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and by Perdew and Wang (PW), and are considered to be accurate fits.51, 52 The VWN parameteriza-
tion is given in Equation (6.53), where a slightly different spin-polarization function has been used:

𝜀VWN
c (rs, 𝜍) = 𝜀c(rs, 0) + 𝜀a(rs)

[
f2(𝜍)
f ′′2 (0)

]

(1 − 𝜍4) + [𝜀c(rs, 1) − 𝜀c(rs, 0)] f2(𝜍)𝜍4

f2(𝜍) =
( f1(𝜍) − 2)
(21∕3 − 1)

(6.53)

The 𝜀c(rs, 𝜁 ) and 𝜀a(rs) functions are parameterized as in the following equation, with A, x0, b and c
being suitable fitting constants:

𝜀c∕a(x) = A

⎧
⎪
⎪
⎨
⎪
⎪
⎩

ln x2

X(x)
+ 2b

Q
tan−1

(
Q

2x + b

)

−
bx0

X(x0)

[

ln
(x − x0)2

X(x)
+

2(b + 2x0)
Q

tan−1
(

Q
2x + b

)]

⎫
⎪
⎪
⎬
⎪
⎪
⎭

x =
√

rs ; X(x) = x2 + bx + c ; Q =
√

4c − b2

(6.54)

Several slightly different parameterizations were proposed in the original paper, which has caused
some confusion, since different implementations have used different parameterizations and therefore
produce slightly different numerical results.The PW parameterization for 𝜀c/a is given below, with a,
𝛼, 𝛽1, 𝛽2, 𝛽3 and 𝛽4 again being fitting parameters:

𝜀PW
c∕a (x) = −2a𝜌(1 + 𝛼x2) ln

(

1 + 1
2a(𝛽1x + 𝛽2x2 + 𝛽3x3 + 𝛽4x4)

)

(6.55)

The LSDA method is an exact DFT method for the special case of a uniform electron gas, except
for small differences depending on the interpolation formula chosen for the correlation energy. The
LSDA approximation underestimates the exchange energy by ∼10% for a molecular system, thereby
creating errors that are larger than the whole correlation energy. Electron correlation is overesti-
mated, often by a factor close to 2, and bond strengths are as a consequence overestimated, often by
∼100 kJ/mol. The overestimation of the exchange energy furthermore leads to an artificial stabiliza-
tion of high spin states, that is energy differences between states having different spin contain large
systematic errors. Despite the simplicity in the fundamental assumptions, LSDA methods are often
found to provide results with an accuracy similar to that obtained by wave mechanics Hartree–Fock
methods. It has furthermore been used extensively in the physics community for describing extended
systems, such as metals, where the approximation of a slowly varying electron density is reasonable.

6.5.2 Generalized Gradient Approximation

Improvements over the LSDA approach must consider a non-uniform electron gas. A step in this
direction is to make the exchange and correlation energies dependent not only on the electron density
but also on derivatives of the density. The first-order correction for the exchange energy is given in
Equation (6.9), and the corresponding quantity for the correlation energy is also known.53 While
inclusion of the first-order exchange term improves the exchange energy, inclusion of the first-order
correlation correction often makes the correlation energy positive. A straightforward inclusion of
these first-order terms leads to a model that performs worse than the simple LSDA model. The main
reason for the success of the LSDA approach is that it fulfills the requirements of the Fermi hole
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integrating to −1 and the Coulomb hole to 0, while the addition of gradient terms destroys these
important properties.

In Generalized Gradient Approximation (GGA) methods, the first derivative of the density is
included as a variable, and in addition it is required that the Fermi and Coulomb holes integrate
to the required values of −1 and 0. GGA methods are also sometimes referred to as non-local meth-
ods, although this is somewhat misleading since the functionals only depend on the density (and
derivative) at a given point, not on a space volume as the Hartree–Fock exchange energy.

One of the earliest and most popular GGA exchange functionals was proposed by A.D. Becke
(B or B88) as a correction to the LSDA exchange energy:54

𝜀B88
x = 𝜀LDA

x + Δ𝜀B88
x

Δ𝜀B88
x = −𝛽𝜌1∕3 x2

1 + 6𝛽x sinh−1 x
x = |∇𝜌|

𝜌4∕3

(6.56)

The 𝛽 parameter is determined by fitting to known data for the rare gas atoms using the dimensionless
gradient variable x. The B88 exchange functional has the correct asymptotic behavior for the energy
density (but not for the exchange potential).55 It reduces the error in the exchange energy by almost
two orders of magnitude relative to the LSDA result, and thus represents a substantial improvement
for a simple functional form containing only one adjustable parameter.

Handy and Cohen have investigated several forms related to Equation (6.56) where the parame-
ters were optimized with respect to exchange energies calculated at the HF level. The best resulting
model had two parameters and was labeled OPTX (OPTimized eXchange).56 It was also found that no
significant improvement could be made by including higher-order derivatives (discussed in the next
section). Hamprecht, Cohen, Tozer and Handy have further extended the B97 model discussed in the
next section, but using only the pure density components (i.e. no exact exchange) to a functional
containing 15 parameters that were fitted to experimental and ab initio data, giving the acronyms
HCTH93, HCTH147 and HCTH407, where the number refers to the number of molecules in the
fitting data set.57

There have similarly been various GGA functionals proposed for the correlation energy. One
popular functional is due to Lee, Yang and Parr (LYP),58, 59 which has the rather intimidating form
shown by

𝜀LYP
c = −4a

𝜌𝛼𝜌𝛽

𝜌2(1 + d𝜌−1∕3)

− ab𝜔

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜌𝛼𝜌𝛽

18

[
144(22∕3)CF

(

𝜌
8∕3
𝛼 + 𝜌8∕3

𝛽

)

+ (47 − 7𝛿)|∇𝜌|2

−(45 − 𝛿)
(
|∇𝜌𝛼|2 + |∇𝜌𝛽 |2) + 2𝜌−1(11 − 𝛿)

(
𝜌𝛼|∇𝜌𝛼|2 + 𝜌𝛽 |∇𝜌𝛽 |2)

]

+ 2
3𝜌

2 (
|∇𝜌𝛼|2 + |∇𝜌𝛽 |2 − |∇𝜌|2) −

(

𝜌2
𝛼
|∇𝜌𝛽 |2 + 𝜌2

𝛽
|∇𝜌𝛼|2

)

⎫
⎪
⎪
⎬
⎪
⎪
⎭

𝜔 = e−c𝜌−1∕3

𝜌14∕3(1 + d𝜌−1∕3)
; 𝛿 = c𝜌−1∕3 + d𝜌−1∕3

(1 + d𝜌−1∕3)
(6.57)

The a, b, c and d parameters are determined by fitting to data for the helium atom. Although not
obvious from the form shown in Equation (6.57), the LYP functional does not include parallel spin
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correlation when all the spins are aligned (e.g. the LYP correlation energy for 3He is zero). The LYP
correlation functional is often combined with the B88 or OPTX exchange functional to produce the
BLYP and OLYP acronyms.

J. P. Perdew and coworkers have proposed several related exchange–correlation functionals based
on removing spurious oscillations in the Taylor-like expansion to first order and ensuring that
the exchange and correlation holes integrate to the required values of −1 and 0. The associated
acronyms are PW86 (Perdew–Wang 1986),60 PW91 (Perdew–Wang 1991)61 and PBE (Perdew–Burke–
Ernzerhof).62 These three functionals should be considered as refinements of the same underlying
model, that is the PBE version should be used in favor of the PW86 and PW91 versions. The exchange
part is written as an enhancement factor multiplied on to the LSDA functional, where the dimension-
less gradient variable x is defined in Equation (6.56):

𝜀PBE
x = 𝜀LDA

x F(x)

F(x) = 1 + a − a
1 + bx2

(6.58)

The correlation part is similarly written as an enhancement factor added to the LSDA functional,
where the t variable is related to the x variable by means of yet another spin-polarization function:

𝜀PBE
c = 𝜀LDA

c + H(t)

H(t) = cf 3
3 ln

[

1 + dt2
(

1 + At2

1 + At2 + A2t4

)]

A = d

[

exp

(

−
𝜀LDA

c

cf 3
3

)

− 1

]−1

f3(𝜁 ) = 1
2
[
(1 + 𝜁 )2∕3 + (1 − 𝜁 )2∕3]

t =
[
2(3π3)1∕3f3

]−1 x

(6.59)

The a, b, c and d parameters in these functionals are non-empirical, that is they are not obtained
by fitting to experimental data, but derived from some of the conditions in Section 6.5. The PW91
functional has been tuned to improve the performance for weak interactions, producing the mPW91
acronym.63 The PBE functional has similarly been slightly modified (RPBE) to improve the per-
formance for periodic systems,64 but this modification actually destroys the hole condition (Equa-
tion (6.39)) for the exchange energy. An alternative modification using one additional parameter to
give the acronym mPBE has also been proposed.65

The KT3 (Keal–Tozer) functional has been constructed as a combination of LDA and OPTX
exchange combined with the LYP correlation functional, and modified with an additional gradient
term, all multiplied with fitting coefficients, as shown by66

EKT3
xc = aELDA

x + bEOPTX
x + cELYP

c + d
∫

|∇𝜌|2

𝜌4∕3 + e
(6.60)

The a, b and c coefficients have been optimized with respect to experimental quantities such as atom-
ization energies and geometries, while the d and e parameters are fitted to NMR shielding constants.
The primary focus of KT3 and earlier versions (KT1 and KT2) is to provide a functional suitable for
calculating NMR shielding constants, which other standard functionals have difficulties with. Part of
this deficiency may be due to the neglect of current density terms.67
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6.5.3 Meta-GGA Methods

The logical extension of GGA methods is to allow the exchange and correlation functionals to depend
on higher-order derivatives of the electron density, with the Laplacian (∇2𝜌) being the second-order
term. Alternatively, the functional can be taken to depend on the orbital kinetic energy density 𝜏 ,
which for a single orbital is identical to the von Weizsäcker kinetic energy 𝜏W (Equation (6.6)):

𝜏(r) = 1
2

occ∑

i
|∇𝜙i(r)|2 (6.61)

𝜏W(r) = |∇𝜌(r)|2

8𝜌(r)
(6.62)

The orbital kinetic energy density and the Laplacian of the density essentially carry the same infor-
mation, since they are related via the orbitals and the effective potential (all potential terms in the KS
equation):

𝜏(r) = 1
2

occ∑

i
𝜀i|𝜙i(r)|2 − veff (r)𝜌(r) + 1

2∇
2𝜌(r) (6.63)

This may also be seen from the gradient expansion of 𝜏 for slowly varying densities:68

𝜏(r) = 3
10

(6π2)2∕3𝜌(r)5∕3 + 1
72

|∇𝜌(r)|2

𝜌(r)
+ 1

6
∇2𝜌(r) + O(∇4𝜌(r)) (6.64)

Inclusion of either the Laplacian or the orbital kinetic energy density as a variable leads to the so-
called meta-GGA functionals, and functionals which in general use orbital information may also be
placed in this category. Calculation of the orbital kinetic energy density is numerically more stable
than calculation of the Laplacian of the density, and the two 𝜏 functions in Equations (6.61) and (6.62)
are common components of meta-GGA functionals.

One of the earliest attempts to include kinetic energy functionals was by Becke and Roussel (BR),
who proposed the exchange functional shown by69

𝜀BR
x = −2 − (2 + ab)e−ab

4b

a3e−ab = 8π𝜌 ; a(ab − 2) = b
∇2𝜌 − 4(𝜏 − 𝜏W)

𝜌

(6.65)

A similar correlation functional shown below was proposed somewhat later by A. D. Becke (B95) and
is one of the few functionals that does not have the self-interaction problem:70

𝜀B95
c = 𝜀𝛼𝛽c + 𝜀𝛼𝛼c + 𝜀𝛽𝛽c

𝜀
𝛼𝛽
c =

[

1 + a
(

x2
a + x2

𝛽

)]−1
𝜀PW,𝛼𝛽

c

𝜀𝜎𝜎c =
[
1 + bx2

𝜎

]−2 (𝜏 − 𝜏W)𝜎
25∕3CF𝜌

5∕3
𝜎

𝜀PW,𝜎𝜎
c

(6.66)

Here 𝜎 runs over 𝛼 and 𝛽 spins, x𝜎 is defined in Equation (6.56) with the implicit spin dependence
denoted by the subscript 𝜎, a and b are fitting parameters and 𝜀PW

c is the Perdew–Wang parameteri-
zation of the LSDA correlation functional (Equation (6.55)).
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The HCTH functional has been extended to also include the kinetic energy density as a variable,
producing the acronym 𝜏-HCTH.71 The VSXC (Voorhis–Scuseria exchange–correlation) functional
similarly includes the kinetic energy density and contains 21 parameters that are fitted to experimen-
tal data.72 The TPSS (Tao–Perdew–Staroverov–Scuseria) exchange–correlation functional, on the
other hand, is a non-empirical version that represents a further development of the PKZB (Perdew–
Kurth–Zupan–Blaha) functional,73 and can be considered as the next improvement over the PBE
functional.74 The inclusion of second-order density information to produce level-3 meta-GGA func-
tionals historically postdates the inclusion of exact HF exchange, leading to level-4 hybrid methods,
and there are thus relatively few pure meta-GGA functionals.

6.5.4 Hybrid or Hyper-GGA Methods

From the Hamiltonian in Equation (6.10) and the definition of the exchange–correlation energy in
Equation (6.16), an exact connection can be made between the exchange–correlation energy and the
corresponding hole potential connecting the non-interacting reference and the actual system (see
Appendix B for details). The resulting equation is called the Adiabatic Connection Formula (ACF)75

and involves integration over the parameter 𝜆, which “turns on” the electron–electron interaction:

Exc =
∫

1

0

⟨

Ψ𝜆
|
|
|
Vhole

xc (𝜆)||
|
Ψ𝜆

⟩

d𝜆 (6.67)

In the crudest approximation (taking Vhole
xc to be linear in 𝜆), the integral is given as the average of the

values at the two end-points:

Exc ≈
1
2

(⟨

Ψ0
|
|
|
Vhole

xc (0)||
|
Ψ0

⟩

+
⟨

Ψ1
|
|
|
Vhole

xc (1)||
|
Ψ1

⟩)

(6.68)

In the 𝜆 = 0 limit, the electrons are non-interacting and there is consequently no correlation energy,
only exchange energy. Furthermore, since the exact wave function in this case is a single Slater deter-
minant composed of KS orbitals, the exchange energy is exactly that given by Hartree–Fock theory
(Equation (3.34)). If the KS orbitals were identical to the HF orbitals, the exchange energy would be
precisely the energy calculated by HF wave mechanics methods; the energy calculated by using the
HF formula and KS orbitals is referred to as exact exchange or HF exchange. The last term in Equa-
tion (6.68) is still unknown. Approximating it by the LSDA result defines the Half-and-Half (H + H)
method:76

EH+H
xc = 1

2 EHF
x + 1

2
(
ELSDA

x + ELSDA
c

)
(6.69)

Since the GGA methods give a substantial improvement over LDA, a generalized version of the H+H
method may be defined by writing the exchange energy as a combination of LSDA and HF exchange
and a gradient correction term. The correlation energy may similarly be taken as the LSDA formula
plus a gradient correction term. Models that include HF exchange are often denoted hybrid methods,
and a prototypical example is the B3LYP functional, which consists of B88 and HF exchange, and the
LYP correlation functional, and contains three parameters:77, 78

EB3LYP
xc = (1 − a)ELSDA

x + aEHF
x + bΔEB88

x + (1 − c)ELSDA
c + cELYP

c (6.70)

The a, b and c parameters are determined by fitting to experimental data and are a= 0.20, b= 0.72 and
c = 0.81 for B3LYP. The choice of different VWN parameterizations of the LSDA correlation energy
(Section 6.5.1) unfortunately means that there are several different definitions of B3LYP, which give
slightly different results. The BHLYP model builds upon Equation (6.69) and can be considered as a
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variation of B3LYP, where the a, b and c parameters are 0.50. Other hybrid models can be constructed
by choosing other forms for EGGA

x and EGGA
c , and different fitting parameters, producing acronyms

such as B3PW91 and O3LYP. Increasing the number of fitting parameters to ten in the B9779 and
B9880 models was found to provide rather marginal improvements relative to the three-parameter
version, but the B97 model has subsequently been reparameterized to the B97-1, B97-2 and B97-3
models.66

The 𝜏-HCTH functional has been augmented with exact exchange to produce the acronym 𝜏-
HCTH-hybrid.71 The PBE functional has also been improved by addition of exact exchange to give
the PBE0 functional (also denoted PBE1PBE in the literature),81 where the mixing coefficient for the
exact exchange is argued to have a value of 0.25 from perturbation arguments.82 Similarly, the third-
rung TPSS functional has been augmented with∼10% exact exchange to give the TPSSh method.83, 84

The hybrid classification is defined by inclusion of exact exchange and does not distinguish between
whether second-order density information (orbital kinetic energy or density Laplacian) is included
or not.

Inclusion of HF exchange is often found to improve the calculated results, although the optimum
fraction to include depends on the specific property of interest. The improvement of new functionals
by inclusion of a suitable fraction of exact exchange is now a standard feature. At least part of the
improvement may arise from reducing the self-interaction error, since HF theory is completely self-
interaction-free. A more pragmatic view is that LSDA (part of most higher-rung functionals) and HF
often display systematic errors in opposite directions, and by taking a suitable linear combination
the average error can be made close to zero. Hybrid methods are used less frequently for solid-state
systems, since the calculation of exact exchange is computationally difficult for periodic systems.

6.5.5 Double Hybrid Methods

At the fifth level of the Jacob’s ladder classification, the full information of the KS orbitals is employed,
that is not only the occupied but also the virtual orbitals are included. An example of such methods is
to include part of an MP2-like energy, calculated by the MP2 formula in Equation (4.58) but using the
DFT orbitals and orbital energies. In the spirit of the hybrid methods, the resulting MP2-like energy
term is included with an empirical parameter, and a general double hybrid DFT energy expression is
given by85

EDHDFT
xc = (1 − a)EDFT

x + aEHF
x + (1 − b)EDFT

c + bEMP2
c (6.71)

The MP2-like term describes “real” electron correlation energy, and such double hybrid methods
allow a qualitative description of dispersion. One of the first examples of a double hybrid method
was B2PLYP, which builds on the B88 exchange and LYP correlation functionals,86 and PBE0-DH
similarly builds upon the PBE0 functional.87

Electron correlation can alternatively be calculated within a DFT framework by the Random Phase
Approximation (RPA), as described in Section 6.9.1, and it can similarly be used to define double
hybrid functionals.

The main disadvantage of the double hybrid methods is the computational cost. The MP2-like
expression has an N5 computational dependence, which prevents the application to large systems.
The presence of the MP2 expression furthermore means that the basis set convergence for double
hydrid methods is slower than for pure DFT methods. An extension to “multiple hybrid” methods by
including MP3, MP4 and CCSD(T) terms has been found not to provide any significant improvement
over just including an MP2 term.88
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6.5.6 Range-Separated Methods

DFT methods sometimes are found to display systematic errors for certain properties and, once iden-
tified, efforts are made to fix these errors. One such identified error was in the calculation of excitation
energies for charge transfer and to some extent also Rydberg states (Section 4.14) by TDDFT meth-
ods (Section 6.9.1), where excitation energies often were underestimated by a factor of two. This is
related to the general problem of most DFT methods to overdelocalize the electron density, that is
delocalized systems are predicted to be artificially lower in energy than localized systems.

A related problem is the presence of self-interaction errors, arising from the incomplete cancel-
lation of the exchange and Coulomb energies calculated from the electron density for a single elec-
tron and the incorrect long-range behavior of the exchange–correlation potential failing to cancel
the Coulomb potential. This is especially problematic for loosely bound electrons, for example in
Rydberg-type excited states and for anions formed from systems with low electron affinities. Since
loosely bound electrons by definition have most of the associated density far from the nuclei, the self-
interaction error may be larger than the actual binding energy, and for anions erroneously lead to an
unbound electron. In actual calculations using a limited basis set, this may not be obvious, since the
outer electron is confined by the most diffuse basis function. An anion with a positive HOMO energy,
however, is a clear warning sign, and extending the basis set with many diffuse functions in such cases
may cause the outer electron to drift away from the atom. This means that only systems with high
electron affinities have a well-defined basis set limiting value. Nevertheless, a medium-sized basis set
with a single set of diffuse functions will in many cases give a reasonable estimate of the experimental
electron affinity.89 The basis set confines the outer electron to be in the correct physical space and the
exchange–correlation functional gives a reasonable estimate of the energy of this density. It should be
noted that the relatively good performance is in essence due to a correct physical description, rather
than a correct theoretical methodology.

A possible fix to these problems is to partition the electron–electron Coulomb operator for the
exchange energy (only) into a short- and a long-range part, usually done by the standard error function
as shown below, since this facilitates the calculation of the resulting integrals, where the 𝜔 parameter
controls the partitioning between the two parts:90

1
|r1 − r2|

= 1
r12

=
1 − erf (𝜔r12)

r12
+

erf (𝜔r12)
r12

erf (x) = 2
√

π ∫

x

0
e−t2 dt

(6.72)

The trick is to use different exchange functionals for the short- and long-range parts. The most com-
mon is to employ a density exchange functional for the short-range part and the (exact) HF expression
for the long-range part. If the density exchange part by itself contains a fraction of HF exchange, the
interpolation is between that fraction and 100%, rather than between 0 and 100%. The long-range HF
exchange ensures that the DFT overdelocalization of charge separation is removed and yields much
improved excitation energies for charge-transfer states. This is primarily a consequence of the long-
range HF part taking care of the proper limiting behavior of the exchange potential (Section 6.5, item
7) and thus ensuring no self-interaction in the large-distance limit. Such range-separated, also called
long-range corrected, functionals also solve the problem of dissociation into fractionally charged sys-
tems and the problem of anions capable of binding only a factional number of electrons. They similarly
yield much improved electronic structure predictions of zwitterionic structures, that is systems that
have formally positively and negatively charged sites within the same molecule.91
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The 𝜔 parameter in Equation (6.72) determines when to switch between the short- and long-range
parts, and is a free variable. Range-separated versions can be constructed for all standard DFT func-
tionals (with acronyms like LC-BLYP, LC-PBE, etc.), but may require a retuning of parameters once
the new additional 𝜔 parameter is introduced. One of the first functionals to employ this idea was
the CAM-B3LYP,92 which builds upon the famous B3LYP method. The 𝜔B97X is similarly a range-
separated version of the B97 functional containing a moderate (17) number of empirical parame-
ters.93 Determining the optimal 𝜔 parameter can be done, for example, by fitting to experimental
thermodynamic data, and a typical 𝜔 value is 0.30–0.50/bohr.

The 𝜔 parameter influences the orbital energies, and an interesting idea by Livshits and Baer is to
choose𝜔 as non-empirical by requiring that Koopmans theorem is fulfilled, that is the HOMO energy
is equal to the ionization potential.94 This optimally tuned approach, however, requires a non-linear
search and leads to a different 𝜔 value for each system.

Functionals employing the “inverse” separation, that is using the HF exchange as the short-range
component and a density exchange expression as the long-range part, like the Heyd–Scuseria–
Ernzerhof (HSE) functional, has been advocated for use in solid-state calculations.95, 96 These func-
tionals are sometimes called screened-exchange to distinguish them from the range-separated ones.
A variation using two 𝜔 parameters such that HF exchange is initially increased and then decreased
as a function of r12 has also been proposed by Henderson, Izmaylov, Scuseria and Savin (HISS).97

6.5.7 Dispersion-Corrected Methods

One of the serious shortcomings of standard DFT methods is the inability to describe dispersion
forces (part of van der Waals-type interactions).98 Many functionals provide a purely repulsive inter-
action between rare gas atoms, while others describe a weak stabilizing interaction, but fail to have
the correct R−6 long-range distance behavior. The stabilization most likely arises due to charge pen-
etration effects in combination with parameterization against experimental results that include dis-
persion bound species, and for smaller basis sets may also include basis set superposition errors.
Although dispersion is a short-ranged weak interaction, it is cumulative, and therefore becomes
increasingly important as the system gets larger. Hydrogen bonding, however, is mainly electrostatic
and is reasonably well accounted for by many DFT functionals.

S. Grimme has proposed to include dispersion by additive empirical terms, much like the van der
Waals energy term in force field methods (Section 2.2.5).99 The parameterization in the earliest mod-
els simply included an R−6 energy term for each atom pair, with an atom-dependent C6 parame-
ter. The method has been refined by including higher-order terms (R−8, R−10) to better describe the
medium-range dispersion and making the parameters depend on the atomic environment in terms
of the number of directly bonded atoms. Adding such attractive energy terms has the potential prob-
lem of divergence for short interatomic distances and is consequently often used in connection with
a damping function:

ΔEdisp = −
∑

n=6(8,10)
sn

atoms∑

AB

CAB
n

Rn
AB

fdamp(RAB) (6.73)

A complication is that the parameterization of the dispersion correction depends on the underly-
ing exchange–correlation functional, as different functionals via their parameterization may include
some of the short-range interaction, and this can be taken into account by a functional-dependent
scaling factor sn in Equation (6.73). Such dispersion corrected methods are denoted with a D/D2/D3
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after the DFT acronym, as, for example, 𝜔B97XD.93 They can in addition be extended to include also
three-body effects.

Becke and Johnson (BJ) have proposed a physics-inspired dispersion model where the C6 parameter
is written as a function of the atomic polarizabilities 𝛼 and the average dipole moment associated with
the exchange hole ⟨𝜇2⟩, which introduces an explicit dependence on the actual electronic structure
of the system:100

CAB
6 =

𝛼A𝛼B⟨𝜇
2⟩A⟨𝜇2⟩B

𝛼A⟨𝜇2⟩B + 𝛼B⟨𝜇
2⟩A

(6.74)

Similar formulas can be derived for the C8 and C10 parameters in terms of averages over higher-order
multipole moments.

Another approach is to make the dispersion correction directly dependent on the actual electron
density by writing it as a six-dimensional integral over densities with an appropriate dispersion kernel
Φ (the factor 1∕2 corrects for double counting):

ΔEdisp = 1
2 ∫

𝜌(r)Φ(r, r′)𝜌(r′)drdr′ (6.75)

Such dispersion methods are often denoted non-local as they depend on electron densities that can
be far apart. The van Vorhis–Vydrov (VV10) kernel has the form shown in101

Φ(r, r′) = −3
2

[g(r)g(r′)(g(r) + g(r′))]−1 (6.76)

Here the g(r)∕g(r′) functions are defined below with the C and b parameters chosen to provide the
correct asymptotic C6 coefficients and controlling the short-range damping, respectively:

g(r) = |r − r′|2

√

C
(
∇𝜌(r)
𝜌(r)

)4
+ 4π

3
𝜌(r) + b 3π

2

(
𝜌(r)
9π

)1∕6
(6.77)

The VV10 dispersion expression has been combined with the B97 exchange functional to give a fam-
ily of functionals at the GGA, meta-GGA and hybrid-GGA with acronyms B97M-V and 𝜔B97X-V,
each employing a moderate (10–12) number of parameters.102 The development of these function-
als employed a search of a parameter space with dimension ∼1040 and an explicit testing of ∼1010

combinations in order to determine the optimum number of parameters and their optimum values.
The double hybrid methods described in Section 6.5.5 account explicitly for dispersion, for exam-

ple by an MP2 energy term scaled by an empirical parameter, but they can also be combined with
empirical dispersion terms, producing acronyms like B2PLYP-D3.

The above dispersion corrections can be classified according to whether they only depend on
the atom type (and perhaps bonding environment) or on the actual electron density calculated for
the specific system, and in the latter case, whether it is included self-consistently or as a posteriori
correction. The associated computational cost ranges from essentially zero for the additive prepa-
rameterized methods of Grimme, to ∼50% overhead for the BJ model and to ∼100% overhead for the
VV10 method. While the BJ and VV10 methods are capable of adjusting the dispersion interaction,
for example according to the oxidation state of the atom, all of the above methods have been found
to provide similar performance in benchmark investigations,103 and the computationally inexpen-
sive additive D3 correction is consequently rapidly becoming the method of choice for routine
applications.
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6.5.8 Functional Overview

The introduction of GGA and hybrid functionals during the early 1990s yielded a major improvement
in terms of accuracy for chemical applications, and resulted in the Nobel Prize in Chemistry being
awarded to W. Kohn and J. A. Pople in 1998. Progress since this initial exciting development has been
slower, and the (in)famous B3LYP functional77, 78 proposed in 1993 still represents one of the most
successful in terms of overall performance. Unfortunately, neither the addition of more fitting param-
eters, the addition of more variables in the functionals, nor imposing more fundamental restrictions
for the functional form have (yet) provided models with a significantly better overall performance.104

Although the performance for a given property can be improved by tailoring the functional form or
parameters, such measures often result in the deterioration of the results for other properties.

It should be noted that the implicit cancellation of the long-range part of the exchange and cor-
relation energies implies that the two functional parts should be at the same level of the ladder, and
preferably developed in an integrated fashion. A popular topic in the literature is to search for “magic”
combinations of exchange and correlation functionals, perhaps with a few adjustable scaling param-
eters and a choice of basis set, in order to reproduce a selected set of experimental data. This is not a
theoretically justified procedure and should be considered merely as data fitting without much phys-
ical relevance. Nevertheless, such a procedure can of course be taken as an “experimental” fitting
function that can be useful for predicting specific properties for a series of compounds.

Table 6.1 shows an overview of commonly used functionals given by their acronym101 and placed
in the Jacob’s ladder classification. One may furthermore differentiate the functionals based on their
use (or lack) of experimental data for assigning values to the parameters in the functional forms. The
non-empirical functional such as PW86, PW91, PBE and TPSS use the free parameters to fulfill as
many of the requirements in Section 6.5 as possible at each level. Empirical functionals such as BLYP,
B3LYP, HTCT and VSXC, on the other hand, attempt to improve the performance by fitting a handful
of free parameters to give good agreement with experimental data. Some functionals contain a large
(30–60) number of fitting parameters, and they tend to perform better (by construction) than the
non-empirical ones for systems that resemble those in the parameterization set. Since the param-
eterization data usually are molecular systems composed of atoms from the first three rows in the
periodic table (H to Ar), this means that they are often preferred for chemical purposes, but may give

Table . Perdew classification of exchange–correlation functionals. Italic indicates that these include
range-separated XC potentials while bold indicates inclusion of dispersion.

Examples

Level Name Variables Few (≤) parameters Many (>) parameters

1 Local density 𝜌 LDA, LSDA, X𝛼

2 GGA 𝜌, ∇𝜌 PW91, PBE, BLYP, OLYP, HCTH, KT3 SOGGA11, N12
3 Meta-GGA 𝜌, ∇𝜌, ∇2𝜌 or 𝜏 BR, B95, PKZB, TPSS, 𝜏-HCTH, B97M-V VSXC, M11L, MN12L
4 Hybrid-GGA 𝜌, ∇𝜌, ∇2𝜌 or 𝜏

HF exchange
BHLYP, B3LYP, B3PW91, O3LYP, PBE0,
TPSSh, 𝜏-HCTH-hyb, HSE, CAM-B3LYP,
𝝎B97X-V

B97-3, SOGGA11X, M11,
N12SX, MN12SX, 𝜔B97X,
𝝎B97XD

5 Double
hybrid

𝜌, ∇𝜌, ∇2𝜌 or 𝜏
HF exchange
Virtual orbitals

B2PLYP, PBE0-DH
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inferior performance for systems with transition metals or periodic systems. The “need” for a different
“optimum” functional for different systems/properties is not very satisfying from a purist perspective
and raises the nagging question as to whether these are just fancy non-linear fitting functions for
the reference data.105 From a pragmatic point of view this is irrelevant, as any method capable of
providing results with a useful accuracy is a valuable tool.

Most commonly used functionals belong to levels 2 and 4, as the inclusion of HF exchange histori-
cally has preceded the development of functionals using derivatives beyond first order. As one moves
along the rungs of the ladder, it is expected (or hoped) that the accuracy will improve, but there is no
guarantee that this is the case. The trend in functional development is to design families of functionals
belonging to different ladder levels but with the same underlying philosophy. The group centered on
D. G. Truhlar has proposed a series of functionals in categories 2, 3 and 4 with acronyms containing
a number reflecting the publication year.106 These families of functionals developed in 2005, 2006,
2008, 2011 and 2012 belong to the heavily empirical ones and contain 25–60 parameters that are
fitted to experimental data. The SOGGA11 (Second Order GGA) and N12 are GGA-type function-
als containing 24107 and 30108 parameters, respectively. The M11L (Minnesota Local) and MN12L
(Minnesota Non-separable Local, where non-separable indicates that the exchange and correlation
contributions cannot be written as separate terms) are level 3 functionals containing 55 parameters109

and 58 parameters,110 respectively. The SOGGA11X, M11, N12SX and MN12SX are all level 4 hybrid
models, where the latter three include range separation of the exchange, and contain 25,11146,112 28
and 58 parameters,113 respectively. The N12SX and MN12SX (SX= Screening eXchange) functionals
use in analogy with the HSE an inverse range separation, where a finite amount of HF exchange is
included at short range, but none at long range. The above versions carrying the year-label 11 or 12
should be considered as further developments of previous versions carrying labels such as 05, 06 or
08 (e.g. M05-2X, M06-2X, M08-HX, M11 form a progression of functionals with the same underlying
philosophy).

. Performance of Density Functional Methods

An evaluation of the performance of the plethora of different functionals for a variety of properties
is a major undertaking and has resulted in a number of benchmarks probing different aspects of the
performance. A few results for a selection of some of the more commonly used functionals have been
collected in Table 6.2,106 and additional results can be found in reference 114. The quality measure
is the Mean Absolute Deviation (MAD) from accurate reference values. The MGAE109 benchmark
set contains 109 atomization energies for systems composed of main group elements and the MAD
is per bond. The SRMBE13 contains 13 bond energies for single-reference systems containing metal
atoms and MRBE10 contains 10 bond energies for systems having multireference character. IP21 and
EA13 are data sets for ionization potentials and electron affinities (21 and 13 points, respectively),
while BH76 contains 76 barrier heights (activation energies) for atom transfer reactions (actually 38
reactions with barrier heights for the reaction in both directions, of which 8 are identity reactions).
The basis set is of TZP quality, which should be sufficiently large that residual basis set errors at the
DFT and HF levels at most should be a few kJ/mol. The methods that include wave function electron
correlation (B2PLYP, MP2, CCSD, CCSD(T)) will display significantly slower basis set convergence,
and the MAD values obtained by extrapolation to the complete basis set limit are given in paren-
thesis. The IP21 and SRMBE13 benchmarks contain systems with atoms from the fifth row in the
periodic table (Zr, Mo, Ru, Rh, Pd, Ag) and have been calculated using pseudo-potentials for the core
electrons, which limits the attainable accuracy using high-level methods like CCSD(T). Note that

iranchembook.ir/edu



Density Functional Methods 

Table . Comparison of the performance of DFT methods in terms of Mean Absolute Deviations from reference
values for different benchmarks (values in kJ/mol).

Functional Ladder levela MGAEb SRMBE MRBE IP EA BH

HF – 129 144 304 92 113 48
MP2 – 9 (10) 22 (21) 161 (141) 27 (21) 13 (8) 20 (19)
CCSD – 18 (8) 36 (26) 111 (93) 24 (12) 22 (11) 12 (10)
CCSD(T) – 12 (1) 23 (14) 73 (43) 21 (8) 16 (2) 5 (2)
LSDA 1 70 89 127 41 24 63
BLYP 2 6 28 27 27 11 34
OLYP 2 4 39 27 12 15 23
PBE 2 13 29 60 26 9 37
HCTH407 2 5 27 37 28 15 25
SOGGA11 2 7 52 41 26 22 23
N12 2 5 38 30 14 18 29
τ-HCTH 3 4 40 44 19 9 27
TPSS 3 4 24 28 17 10 35
τ-HCTHhyb 4 3 28 36 17 8 20
TPSSh 4 4 19 68 14 12 27
B3LYP 4 4 25 91 24 10 18
PBE0 4 4 21 117 14 12 16
MN12L 4 3 48 31 15 11 7
CAM-B3LYP 4-RS 3 33 120 21 9 12
ωB97XD 4-RS 2 24 106 13 8 13
MN12-SX 4-RS 2 45 44 22 9 5
B2PLYP 5 4 (2) 18 (15) 74 (64) 10 (10) 10 (6) 8 (8)

aLadder level: 1 = local spin density approximation, 2 = generalized gradient approximation, 3 = meta generalized gradient
approximation, 4 = hybrid functional including HF exchange, 4-RS = 4 with range-separated exchange, 5 = double hybrid
method. All results refer to calculations using a TZP-type basis set. The values in parenthesis are from extrapolation to the
complete basis set limit.
bMAD per bond.

the high accuracy of the CCSD(T) method only materializes when a large basis set is used, the per-
formance with the TZP basis set is only at par with the better of the DFT methods. One should as
usual be aware that statistical measures may hide specific failures; a ∼20 kJ/mol error for an activa-
tion energy may be acceptable for high-energy barriers, but for low-barrier reactions it may lead to
negative activation energies, and thus a qualitatively incorrect energy surface. Similarly, the error per
bond measure for the MGAE109 benchmark implies that the absolute error for a large system with
many bonds most likely will be significantly higher than for a small system with few bonds.

The LSDA method performs somewhat better than Hartree–Fock, but all the gradient-corrected
methods are clearly far superior. The PBE functional performs somewhat poorer than the other GGA
functionals for the MGAE109 data set, which likely reflects that it does not contain fitting parameters
that have been adjusted to reproduce atomization energies. There is only a small improvement in
the performance upon going from GGA to meta-GGA-type functionals. Hybrid methods including
exact exchange tend to perform (slightly) better than the corresponding pure functionals (e.g.
BLYP/B3LYP and PBE/PBE0), and inclusion of exact exchange also tends to improve meta-GGA
(𝜏-HCTH/𝜏-HCTHhyb and TPSS/TPSSh). Exact exchange, however, is clearly a disadvantage for
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systems with multireference character (MRBE10). The MP2, CCSD, CCSD(T) sequence system-
atically improves the results, but the convergence is slow for multireference systems. Non-hybrid
functionals, on the other hand, handle multireference systems with similar accuracy as the other
systems, and often produce results comparable to or better than those obtained by coupled cluster
methods (see also Section 12.7.3). Table 6.2 illustrates that functionals high on the Jacob’s ladder
typically perform better than those at lower rungs, but certain functionals may perform better
for specific systems and properties. For comparison, it can be noted that semi-empirical methods
(Chapter 7) have typical errors of 30–40 kJ/mol for the MGAE109 benchmark.115

. Computational Considerations

The strength of DFT is that only the total density needs to be considered. In order to calculate
the kinetic energy with sufficient accuracy, however, orbitals have to be reintroduced. Nevertheless,
Kohn–Sham DFT displays a computational cost similar to HF theory, with the possibility of providing
more accurate (exact, in principle) results.

Once an exchange–correlation functional has been selected, the computational problem is very
similar to that encountered in wave mechanics HF theory: determine a set of orthogonal orbitals that
minimizes the energy. Since the J[𝜌] (and Exc[𝜌]) functional depends on the total density, a deter-
mination of the orbitals involves an iterative sequence. The orbital orthogonality constraint may be
enforced by the Lagrange method (Section 13.5), again in complete analogy with wave mechanics HF
methods (Equation (3.35)):

L[𝜌] = EDFT[𝜌] −
Norb∑

ij
𝜆ij(⟨𝜙i|𝜙i⟩ − 𝛿ij) (6.78)

Requiring the variation of L to vanish provides a set of equations involving an effective one-electron
operator (hKS), similar to the Fock operator in wave mechanics (Equation (3.37)):

hKS𝜙i =
Norb∑

j
𝜆ij𝜙j

hKS = 1
2∇

2 + veff

veff (r) = Vne(r) +
∫

𝜌(r′)
|r − r′|

dr′ + Vxc(r)

(6.79)

The effective potential contains the nuclear contribution, the electronic Coulomb repulsion and the
exchange–correlation potential, which is given as the functional derivative of the energy with respect
to the density:

Vxc(r) =
𝛿Exc[𝜌]
𝛿𝜌(r)

= 𝜀xc[𝜌(r)] +
∫
𝜌(r′)

𝛿𝜀xc(r′)
𝛿𝜌(r)

dr′ (6.80)

A unitary transformation that makes the matrix of the Lagrange multiplier diagonal may again be cho-
sen, producing a set of canonical KS orbitals. The resulting pseudo-eigenvalue equations are known
as the Kohn–Sham equations:

hKS𝜙i = 𝜀i𝜙i (6.81)
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The KS orbitals can be determined completely by a numerical procedure, analogously to numerical
HF methods. Such procedures are in practice limited to small systems, and essentially all calculations
employ an expansion of the KS orbitals in an atomic basis set:

𝜙i =
Mbasis∑

𝛼

c𝛼i𝜒𝛼 (6.82)

The basis functions are often the same as used in wave mechanics for expanding the HF orbitals,
although basis sets specifically optimized for DFT have been designed to reduce the basis set error
at a given quality level (see Section 5.4.6 for details).

The variational procedure again leads to a matrix equation in the atomic orbital basis that can be
written in the following form (compare to Equation (3.54)):

hKSC = SC𝜀
h𝛼𝛽 = ⟨𝜒𝛼|hKS|𝜒𝛽⟩ ; S𝛼𝛽 = ⟨𝜒𝛼|𝜒𝛽⟩

(6.83)

The hKS matrix is analogous to the Fock matrix in wave mechanics and the one-electron and Coulomb
parts are identical to the corresponding Fock matrix elements. The exchange–correlation part, how-
ever, is given in terms of the electron density, and possibly also involves derivatives of the density or
orbitals:

∫
𝜒𝛼(r)Vxc[𝜌(r),∇𝜌(r)]𝜒𝛽 (r)dr (6.84)

Since the Vxc functional depends on the integration variables implicitly via the electron density, these
integrals cannot be evaluated analytically but must be generated by a numerical integration:

∫
𝜒𝛼(r)Vxc[𝜌(r),∇𝜌(r)]𝜒𝛽 (r)dr ≈

G∑

k
Vxc[𝜌(rk),∇𝜌(rk)]𝜒a(rk)𝜒𝛽 (rk)Δvk (6.85)

As the number of grid points G goes to infinity, the approximation becomes exact. The number of
points is in practice selected based on the desired accuracy of the final results; that is if the energy
is only required with an accuracy of 10−3, the number of integration points can be smaller than if
the energy is required with an accuracy of 10−5.116 There are also some technical skills involved in
selecting the optimum distribution of a given number of points to yield the best accuracy, that is
the points should be dense where the function Vxc varies most. The grid is usually selected as being
spherical around each nucleus, making it dense in the radial direction near the nucleus and dense
in the angular part in the valence space. For typical applications, 1000–10 000 points are used for
each atom.117 It should be noted that only the larger of such grids approach saturation, that is the
energy will depend on the number (and location) of grid points. In order to compare energies for
different systems, the same grid must therefore be used. The grid plays the same role for Exc as the
basis set for the other terms. Just as it is improper to compare energies calculated with different basis
sets, it is not justified to compare DFT energies calculated with different grid sizes. An incomplete
grid may furthermore lead to “grid superposition errors” analogous to basis set superposition errors
(Section 5.10).118

With an expansion of the orbitals in basis functions, the number of integrals necessary for solving
the KS equations rises as M4

basis, owing to the Coulomb integrals in the J functional (and possibly also
“exact” exchange in the hybrid methods). The number of grid points for the numerical Exc integra-
tion (Equation (6.85)) increases linearly with the system size, and the computational effort for the
exchange–correlation term rises as GM2

basis, that is a cubic dependence of the system size. When the

iranchembook.ir/edu



 Introduction to Computational Chemistry

Coulomb (and possibly “exact” exchange) term is evaluated directly from integrals over basis func-
tions, DFT methods scale formally as M4

basis. The reduced scaling and reduced prefactor methods
discussed in Sections 3.8.6 and 3.8.7 can be used for reducing the computational cost of the Coulomb
part. The numerical integration required for the exchange and correlation parts can also be reduced
to a computation cost that scales linearly with system size.119 The use of grid-based techniques for
the numerical integration of the exchange–correlation contribution has some disadvantages when
derivatives of the energy are desired, and grid-free DFT methods based on resolution-of-identity
techniques where the exchange–correlation potential is expressed completely in terms of analytical
integrals have also been proposed.120

The computational cost of a DFT calculation depends strongly on the implementation strategy. The
use of DFT in the chemical community has to a large extent been introduced by modifying existing
programs designed for wave function methods, and in these cases the numerical integration of the
exchange–correlation energy adds a small overhead relative to an HF calculation. Programs designed
for DFT from the outset, on the other hand, can exploit the reductions arising from reduced scal-
ing and prefactor methods and can consequently run significantly faster than a wave function HF
calculation.121

Finally, DFT methods are one-dimensional just like HF methods, and increasing the size of the basis
set allows a better and better description of the KS orbitals. Since the DFT energy depends directly
on the electron density, it has an exponential convergence with respect to basis set size, analogously
to HF methods, and a polarized triple zeta-type basis usually gives results close to the basis set limit.

. Differences between Density Functional Theory and Hartree-Fock

DFT methods based on unrestricted determinants (analogous to UHF, Section 3.7) for open-shell
systems have the significant advantage that they are not very prone to “spin contamination”, that is
⟨S2⟩ is normally close to S(S + 1) (see also Sections 4.4 and 12.5.3). This can be considered a con-
sequence of electron correlation being included in the single-determinant wave function (by means
of Exc) or as a consequenc of incomplete cancellation of the electron self-interaction energy. It has
furthermore been argued that “spin contamination” is not well defined in DFT methods and that ⟨S2⟩
should not be equal to S(S + 1).122, 123 The argument is that real systems display “spin polarization”,
that is there are points in space where 𝜌𝛼 is larger than 𝜌𝛽 (assuming that the number of 𝛼 electrons
is larger than the number of 𝛽 electrons). This effect cannot be achieved by a restricted open-shell-
type determinant (analogous to ROHF), but only by an unrestricted treatment that allows the 𝛼 and
𝛽 orbitals to be different. It is somewhat unclear whether this argument holds for cases with ⟨S2⟩ val-
ues very different from S(S + 1), as in, for example, systems with multiple open-shell fragments.124

Another consequence of the presence of Exc is that restricted-type determinants are much more sta-
ble toward symmetry breaking to an unrestricted determinant (Section 3.8.3) than Hartree–Fock
wave functions. For ozone (Section 4.4), for example, it is not possible to find a lower energy solution
corresponding to UHF for “pure” DFT methods (such as LSDA or BLYP), although those including
exact exchange (such as B3LYP) display a triplet instability. This “inverse” symmetry breaking is a
consequence of DFT having a tendency of favoring electron delocalization, which may be problem-
atic for some cases. DFT methods for radical cations, for example, usually refuse to localize the spin
and charge, and thereby create unrealistic energy surfaces.

The Lagrange multipliers arising in Hartree–Fock theory from the orthogonality constraints of the
orbitals are molecular orbital energies, and the occupied orbital energies correspond to ionization
potentials in a frozen orbital approximation via Koopmans’ theorem. The corresponding Lagrange
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multipliers in DFT do not have the same formal relationship, since Koopmans’ theorem does not
hold unless the exact exchange–correlation functional is employed. The Lagrange multipliers can for
approximate XC functionals be interpreted as the derivative of the total energy with respect to the
occupation number of the orbital, often called the Janak theorem125 but discussed first by Slater,126

and this is of course also closely related to experimentally measured ionization potential:

𝜕E
𝜕ni

= 𝜀i (6.86)

The Lagrange multipliers may also be considered as approximations to ionization potentials using
relaxed orbitals, and in practice gives quite accurate results for the valence orbitals.127, 128 The orbital
energies resulting from Kohn–Sham calculations were in early work not considered to have any phys-
ical relevance, since they often showed poor agreement with ionization potentials and orbital energy
differences correlated poorly with excitation energies. It is now clear that part of the poor agreement
was due to the self-interaction error embedded in LDA and GGA methods, while more modern func-
tionals yield much improved results. The optimally tuned approach can be used to specifically tune
a range-separated functional such that the HOMO energy is equal to the ionization potential,94 in
which case the orbital energy obviously has a well-defined interpretation.

Another difference is that the unoccupied orbital energies in Hartree–Fock theory are determined
in the field of N electrons and therefore correspond to adding an electron, that is the electron affinity.
The virtual orbitals in density functional theory, on the other hand, are determined in the field of N− 1
electrons and therefore correspond to exciting an electron, that is unoccupied orbitals in DFT tend to
be significantly lower in energy than the corresponding HF ones, and the highest occupied molecular
orbital–lowest unoccupied molecular orbital (HOMO–LUMO) gaps are therefore much smaller with
DFT methods than for HF. This also means that orbital energy differences in DFT are reasonable esti-
mates of excitation energies, in contrast to HF methods where excitation energies involve additional
Coulomb and exchange integrals.129 The LSDA method usually underestimates the HOMO–LUMO
gap, leading to the incorrect prediction of metallic behavior for certain semiconducting materials.

Although it is clear that there are many similarities between wave mechanics HF theory and DFT,
there is an important difference. If the exact Exc[𝜌] was known, DFT would provide the exact total
energy, including electron correlation. DFT methods therefore have the potential of including the
computationally difficult part in wave mechanics, the correlation energy, at a computational effort
similar to that for determining the uncorrelated HF energy. Although this certainly is the case for
approximations to Exc[𝜌], this is not necessarily true for the exact Exc[𝜌]. It may well be that the exact
Exc[𝜌] functional is so complicated that the computational effort for solving the KS equations will
be similar to that required for solving the Schrödinger equation (exactly) with a wave mechanics
approach. Indeed, unless one believes that the Schrödinger equation contains superfluous informa-
tion, this is likely to be the case. Since exact solutions are generally not available in either approach,
the important question is instead what the computational cost is for generating a solution of a given
accuracy. In this respect, DFT methods have very favorable characteristics.

. Time-Dependent Density Functional Theory (TDDFT)

Density functional theory can in analogy to wave function methods be extended to include time-
dependent (external) electric potentials,130 and this allows a description of, for example, excited
states and frequency-dependent polarizability (Section 11.10). The Hohenberg–Kohn theorem only
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holds for electron densities describing the time-independent ground state, but the Runge–Gross the-
orem131 states that the unique one-to-one correspondence between an external potential and the
electron density holds both in time-dependent and time-independent cases.

The time-dependent Schrödinger equation can be written as given below for the typical situation
where the perturbation consists of a time-dependent external electric potential:

i 𝜕
𝜕t
Ψ̃(r, t) = HΨ̃(r, t)

H(r, t) = H0(r) + Vext(r, t)
(6.87)

We will assume that the time-independent part (H0) has been solved and the external potential is
turned on at time t0 by means of the Heaviside step function 𝜃 (𝜃(t) = 0 for t < 0 and 𝜃(t) = 1 for
t ≥ 0):

Vext(r, t) = 𝜃(t − t0)Vext(r, t) (6.88)

The time-dependent wave function Ψ̃ can be written as a phase factor𝜛 times a regular wave function
Ψ, where the phase factor depends on time but not on space coordinates:132

Ψ̃(r, t) = e−i𝜛(t)Ψ(r, t) (6.89)

The formal solution to the time-dependent Schrödinger equation is given by

Ψ(r, t) = U(t, t0)Ψ(r, t0)

U(t, t0) = exp

[

−i
∫

t

t0

H(𝜏)d𝜏

]
(6.90)

The exponential time-evolution operator U, however, is very demanding to calculate, and practical
methods rely on approximating it as a sequence of finite time-steps, analogous to classical molecular
dynamics (Section 15.2.1):

U(t0 + Δt) ≃ exp(−iHΔt) (6.91)

The exponential Hamiltonian term may in actual applications be further approximated, for example
based on a Taylor expansion.

The time-independent Schrödinger equation leads to an energy minimum criterion (the variational
principle), which can be used to derive, for example, the Hartree–Fock equations. Energy is not a con-
served quantity in the time-dependent case, and the analogy to the variational principle is a stationary
condition for the action defined by

S[Ψ] =
∫

t

t0

⟨Ψ|

(

i 𝜕
𝜕t′

− H
)

|Ψ⟩dt′ (6.92)

Note that the stationary condition (∇S = 0) is a less useful criterion than the energy minimum condi-
tion (ΔE > 0) for generating (approximate) solutions. The action furthermore depends on the initial
time t0, and solutions to the stationary action condition will therefore depend on the initial state Ψ0.

If the wave function consists of a single Slater determinant composed of molecular orbitals the
time-dependent Schrödinger equation results in a set of time-dependent Hartree–Fock equations
for the orbitals, which must be solved self-consistently:

i 𝜕
𝜕t
𝜙i(r, t) = (F + Vext(t))𝜙i(r, t) = (T + Veff (t))𝜙i(r, t) (6.93)
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The evolution operator is the sum of the (time-dependent) Fock operator F and the external potential,
which can be written as the kinetic energy T and an effective potential operator Veff. The effective
potential can be decomposed into a nuclear-electron term, Coulomb and exchange potentials from
the electron–electron interaction and the external potential:

Veff (r, t) = Vne(r, t) + J(r, t) + K(r, t) + Vext(r, t) (6.94)

The Coulomb (J) and exchange (K) potentials are defined in terms of the orbitals, analogous to Equa-
tion (3.34), but are time-dependent since the orbitals are time-dependent:

Ji(r, t)𝜙i(r, t) =

[Nelec∑

j=1 ∫

𝜙j(r′, t)𝜙j(r′, t)
|r − r′|

dr′
]

𝜙i(r, t) (6.95)

Ki(r, t)𝜙i(r, t) =

[Nelec∑

j=1 ∫

𝜙j(r′, t)𝜙i(r′, t)
|r − r′|

dr′
]

𝜙j(r, t) (6.96)

TDDFT is, in analogy with the time-independent case, similar to TDHF. If the initial state is the
ground state, the Hohenberg–Kohn theorem ensures that this only depends on the initial density.
Under the same assumptions as in the Kohn–Sham theory, the time-dependent density is obtained
from a set of orbitals corresponding to a non-interacting reference system where the wave function
is a Slater determinant composed of Kohn–Sham orbitals:

𝜌(r, t) =
N∑

i=1
𝜙2

i (r, t) (6.97)

This leads to a set of equations where the orbitals are determined by solving self-consistently a set
of time-dependent Kohn–Sham equations identical in form to Equation (6.93) but with a different
effective potential:

Veff (r, t) = Vne(r, t) + J(r, t) + Vxc(r, t,Ψ0) + Vext(r, t) (6.98)

The nuclear-electron, Coulomb and external potentials are identical to the HF case, but the exchange
potential is replaced by the exchange–correlation potential. The Coulomb potential can be written in
terms of the instantaneous time-dependent density 𝜌(r′, t) (compare with Equation (6.95)):

J(r, t) =
∫

𝜌(r′, t)
|r − r′|

dr′ (6.99)

The exchange–correlation potential is more complicated. In the time-independent case, it is given
as the functional derivative of the exchange–correlation energy (Equation (6.80)), but in the time-
dependent case, it is given as the functional derivative of the exchange–correlation action:133

Vxc(r, t, 𝜌0) =
𝛿Sxc[𝜌]
𝛿𝜌(r, t)

(6.100)

The important difference relative to the time-independent case is that the exchange–correlation
potential now depends on the initial density at time t0, as well as the whole time-interval t−t0.
This means that solutions to the time-dependent Kohn–Sham Equations (6.93) has a memory and
must be solved self-consistently also in the time domain. Essentially all commonly employed TDDFT
methods make the adiabatic approximation of neglecting the time–memory effect on the exchange–
correlation potential. This is equivalent to assuming that the density is a slowly varying function of
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time, analogous to the LSDA assumption that the density is a slowly varying function of the posi-
tion. Formulated alternatively in frequency space, corresponding to a Fourier transformation, the
exchange–correlation potential is taken as its zero-frequency limit. This is clearly an approximation,
since the response of the electron density will depend on how rapidly the external potential varies.
With the adiabatic approximation the exchange–correlation potential in Equation (6.100) reduces to
the corresponding time-independent case in Equation (6.80).

6.9.1 Weak Perturbation – Linear Response

TDHF and TDDFT can be used to study time-dependent phenomenon in general, such as laser-
induced ionization, but the most common application is in the regime of weak perturbations, where
only the linear response is considered. Rather than solving the full time-dependent Equation (6.87),
the response of the system is calculated by perturbation theory. The perturbation is usually an oscil-
lating electric field, which in the dipole approximation can be written as

Vext(t) = μF cos(𝜔t) (6.101)

Here 𝜔 is the frequency, F is the strength of the field and μ is the dipole operator. The weak perturba-
tion regime corresponds to the situation where the external electric field is significantly smaller than
the field generated by the nuclear charge. For an electron in a hydrogen atom at a distance of 1 bohr,
the nuclear field is ∼5 × 109 V/m, which corresponds to a laser intensity of ∼4 × 1016 W/cm2.

The general problem of determining the wave function or density response to a time-dependent
weak perturbation is treated in Section 11.10. Using a (Y, Z) vector to represent the real and imagi-
nary parts of the first-order response, it can be obtained by solving a set of linear equations, and can
be written as given below (which is the same as Equation (11.164), with ∗ denoting complex conjuga-
tion):134

([
A B
B∗ A∗

]

− 𝜔
[

1 0
0 −1

])[
Y
Z

]

= −
[

P
P∗

]

(6.102)

The A matrix elements are for an HF wave function, given as the difference in orbital energies between
an occupied and virtual orbital, and a term corresponding to differences in electron–electron inter-
action upon changing orbital occupancy, while the B matrix elements are given as the difference in
electron–electron interaction (using the notation in Equation (3.62) with ij being occupied and ab
being virtual orbitals) (which is the same as Equations (11.66) to (11.68)):

Aab
ij =

⟨

Φa
i
|
|
|

H0
|
|
|
Φb

j

⟩

− E0𝛿ij𝛿ab = 𝛿ij𝛿ab(𝜀a − 𝜀i) + ⟨ij|ab⟩ − ⟨ia|jb⟩ (6.103)

Bab
ij =

⟨

Φ0
|
|
|

H0
|
|
|
Φab

ij

⟩

= ⟨ij|ab⟩ − ⟨ij|ba⟩ (6.104)

Pa
i = ⟨i|r|a⟩ (6.105)

The last two-electron integrals in Equation (6.103) and (6.104) are often called exchange terms. Solv-
ing Equation (6.102) for the wave function or density response allows a calculation of time-dependent
molecular properties, as discussed in Section 11.10.

If the right-hand side of Equation (6.102) is set equal to zero, the equation becomes a generalized
eigenvalue problem, with 𝜔 being the eigenvalues:

[
A B
B∗ A∗

] [
Y
Z

]

= 𝜔

[
1 0
0 −1

] [
Y
Z

]

(6.106)
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Solution of Equation (6.106) provides excitation and de-excitation energies occurring in pairs ±𝜔.
In CI language, the A matrix contains matrix elements between singly excited Slater determinants
while the B matrix contains matrix elements between doubly excited Slater determinants and the HF
reference determinant. If the B matrix is set to zero, known as the Tamm–Dancoff approximation
(TDA), TDHF therefore becomes identical to CIS (Section 4.14). The TDHF Equations (6.106) within
the TDA correspond to a diagonalization of A, where the eigenvalues provides the excitation energies
and the Y vector containing the corresponding eigenvectors provides the excited state wave function
expressed in singly excited Slater determinants. The B matrix can be considered as a correction term
corresponding to also allowing de-excitations, which provide inclusion of some electron correlation
for the reference state.

Equation (6.106) can also be derived by the so-called Random Phase Approximation (RPA) in
response theory. Unfortunately the RPA acronym is used both for the case where the A and B matrix
elements are given in Equations (6.103) and (6.104), and for the case where the last two-electron
exchange integrals are neglected in both A and B matrix elements. The first case is denoted full-
RPA or RPAX (RPA with eXchange) and is thus synonymous with TDHF, while the latter is denoted
direct-RPA but is often just called RPA. Note that “direct” in this context does not refer to the tech-
nical procedure of solving the equation by (re)generating the required integrals as they are needed
(Section 3.8.5), rather than calculating them only once and storing them on an external media.

The B matrix in Equation (6.106) describes, as noted above, electron correlation to some extent,
and the differences in excitation energies 𝜔 between solving Equation (6.106) with and without the B
matrix thus provides a measure of the electron correlation in the reference state. Solving the full Equa-
tion (6.106) can either be full-RPA/TDHF or direct-RPA, where the exchange terms are neglected,
while solving the equation without the B matrix is TDA/CIS. Since the exchange terms can be com-
putationally expensive, and furthermore can lead to problems due to triplet instabilities, the most
common option is to use the direct-RPA version. The RPA correlation energy can be defined as a sum
over differences in RPA and TDA excitation energies (positive 𝜔 only), and can be shown to be an
approximation to the CCD energy:135

ΔERPA
corr = 1

2
∑

i

(
𝜔RPA

i − 𝜔TDA
i

)
(6.107)

The RPA correlation energy is of similar quality to MP2 but is computationally more efficient, and
can be used either as a way of including electron correlation from an HF reference wave function or
as a component in double hybrid functionals in a DFT framework (Section 6.5.5). An advantage of
RPA is that it is insensitive to small orbital energy differences between occupied and virtual orbitals,
in contrast to MP2, and therefore can be used, for example, for semiconductor and metallic periodic
systems.

The A and B matrices also arise in the second derivative of the HF energy with respect to the orbitals
coefficients, where A + B is the matrix associated with real variations of the orbitals while A − B is
the matrix associated with imaginary variations.136 Diagonalization of the A + B and A − B matrices
therefore allows an evaluation of whether the solution to the HF equations obtained by setting the first
derivative equal to zero is a minimum or saddle point in the parameter space. It is in practice sufficient
to extract the lowest eigenvalue of these matrices to determine whether the solution is a minimum or
not. The A and B matrices can be separated into their α and β spin components, which for a singlet
RHF reference wave function can be combined to probe whether there is a lower energy RHF state
(internal or singlet instability) or a lower energy UHF-type state (external or triplet instability).

Both the A and B matrices have the dimension NoccNvir corresponding to all single excitations.
Solving the TDHF equations is roughly twice as expensive as solving the CIS equations, where only
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the A part of Equation (6.106) needs to be solved. TDHF often provides similar quality results as
CIS for singlet states, but worse results for triplet states, which is related to the presence of triplet
instabilities in the HF wave function; thus TDHF is consequently not a commonly used method.

The TDDFT equations are formally identical to Equation (6.106), but the last exchange-type two-
electron terms in the A and B matrix elements are replaced with corresponding XC terms:

Aab
ij = 𝛿ij𝛿ab(𝜀a − 𝜀i) + ⟨ij|ab⟩ + ⟨ij|fxc|ab⟩ (6.108)

Bab
ij = ⟨ij|ab⟩ + ⟨ij|fxc|ab⟩ (6.109)

The fxc is called the XC kernel and is given as the functional derivative of the corresponding potential,
and thereby also as the second derivative of the XC action:

fxc(r, t, r′, t′) =
𝛿Vxc[𝜌](r, t)
𝛿𝜌(r′, t′)

=
𝛿2Sxc[𝜌]

𝛿𝜌(r, t)𝛿𝜌(r′, t′)
(6.110)

The adiabatic approximation corresponds to neglecting the time-dependence, in which case the
action becomes the energy:

f adia
xc (r, r′) =

𝛿Vxc[𝜌](r)
𝛿𝜌(r′)

=
𝛿2Exc[𝜌]
𝛿𝜌(r)𝛿𝜌(r′)

(6.111)

The RPA acronym in TDDFT corresponds to the direct RPA in the HF case, that is neglecting the XC
contribution:

f RPA
xc (r, r′) = 0 (6.112)

The TDA (neglect of the B matrix) can also be used for TDDFT to improve the computational effi-
ciency, and it is usually a good approximation. TDDFT excitation energies for valence states are usu-
ally an improvement relative to TDHF/CIS, which primarily is due to the orbital energy differences
in the A matrix elements, with Equation (6.108)/Equation (6.109) being a much better approxima-
tion to the excitation energies than the HF orbital energy differences.137 The adiabatic approxima-
tion restricts TDDFT to describe only singly excited states since doubly excited states require the
XC kernel to be time/frequency-dependent.138 Inclusion of double excitations is also required for a
description of conical intersections.

The TDDFT formalism allows calculation of excitation energies and, by addition of these to the
ground state energy, leads to construction of excited state energy surfaces. Combining derivatives
of the ground state energy surface with derivatives of the excitation energies allows calculation of
nuclear gradients of the excited state surface, and thus geometry optimization and dynamic simula-
tions on excited states.

. Ensemble Density Functional Theory

The Hohenberg–Kohn theorem ensures that the electron density contains all the necessary informa-
tion, but the Kohn–Sham version expresses the kinetic energy in terms of the more general first-order
reduced density matrix in order to obtain sufficient accuracy. While any valid electron density can be
obtained from a single Slater determinant, the corresponding first-order reduced density matrix may
be inaccurate. There may therefore be systems where it is necessary to write the density matrix as
arising from a linear combination of more than one Slater determinant. This is called ensemble DFT
and is analogous to the extension of HF to MCSCF in wave mechanics. Ensemble DFT is expected to
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be important for systems with large amounts of static correlation in the wave function language, that
is when two (or more) electron configurations are near-degenerate, but the near-degeneracy con-
dition is much stronger in DFT compared to wave mechanics methods. The determination of the
optimum ensemble DFT can be reformulated as a simultaneous optimization of a set of orbitals and
their fractional electron occupancies.139

. Density Functional Theory Problems

Despite the many successes of DFT, there are some areas where the current functionals are known to
perform poorly.140

The embarrassingly simple problem of dissociating H2
+ is incorrectly described by essentially all

functionals as resulting in a state where a 1∕2 electron is residing at each nucleus.139 The dissocia-
tion energy profile as a result displays an artificial barrier and an incorrect dissociation energy, often
in error by ∼200 kJ/mol. While H2

+ is of limited interest by itself, the same problem of dissocia-
tion into species with a fractional number of electrons is present for radical cation and anion systems
in general, and leads to energetic artefacts for stretched bonds, as, for example, in atom transfer transi-
tion structures.141 Activation barriers are usually underestimated by functionals that do not included
exact exchange, but since Hartree–Fock overestimates activation barriers, hybrid methods often give
reasonable results. These failures may be viewed as a manifestation of the incomplete cancellation
of the electron self-interaction energy by the exchange functional, which leads to a favorization of
delocalized electron distributions.

Relative energies of states with different spin multiplicity are often poorly described. The energy
difference between a singlet and triplet state with the same orbital occupancy is in HF theory given by
an exchange integral. This must in DFT be described by the exchange–correlation functional, which
only depends on the electron density. If the two spin states arise from the same electron configuration
the two electron densities are very similar, and this makes the results sensitive to the details of the
exchange–correlation functional. These problems are especially problematic for transition metal sys-
tems, where several low-energy spin states often are possible, and many of these cannot be described
by a single determinant. Pure DFT methods favor low spin states while HF favors high spin states,
and hybrid methods with a suitable parameterized amount of exact exchange perform better, but
the optimum mixing parameter tends to be system-dependent.142, 143 These problems can perhaps
be improved by adding current density terms to the DFT formalism, but this is not yet a commonly
used procedure since it requires that the orbitals are allowed to become complex.

Individual spatial components of a spin multiplet may have different energies, even in the absence
of a magnetic field. The boron atom, for example, has the electron configuration 1s22s22p1, and the
single p-electron can be in either a p−1, p0 or p+1 orbital. These should all have the same energy, but
since the density associated with the p0 orbital is different from that of a p±1 orbital, their energies
as a result differ by ∼25 kJ/mol. This is clearly non-physical, but can be significantly improved by
introducing current density terms.144, 145

. Final Considerations

Should DFT methods be considered ab initio or semi-empirical? If ab initio is taken to mean the
absence of fitting parameters, LSDA methods are ab initio but gradient-corrected methods may or
may not be. The LSDA exchange energy contains no parameters and the correlation functional is
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known accurately as a tabulated function of the density. The use of a parameterized interpolation
formula in practical calculations does not represent fitting in order to improve the performance for
atomic and molecular systems. Some gradient-corrected methods (e.g. the B88 exchange and the
LYP correlation), however, contain parameters that are fitted to give the best agreement with exper-
imental atomic data, but the number of parameters is significantly smaller than for semi-empirical
methods. The semi-empirical PM3 method (Section 7.4.5), for example, has 18 parameters for each
atom, while the B88 exchange functional only has one fitting constant, valid for the whole periodic
table. Functionals such as VSXC or the Minnesota family contain a substantial number of parameters
(20–60), while other functionals such as PBE are derived entirely from theory and can consequently
be considered “pure” ab initio.

If ab initio is taken to mean that the method is based on theory, which in principle is able to produce
the exact results, DFT methods are ab initio. The only caveat is that current methods cannot yield the
exact results, even in the limit of a complete basis set, since the functional form of the exact exchange–
correlation energy is not known. At present it is easier to systematically improve on a wave function
description than adding corrections to the energy functional in DFT. Methods using reduced density
matrices are not yet sufficiently mature to allow any definitive conclusions to be drawn.

It is perhaps a little disturbing that seemingly very different functionals give similar-quality
results.146 It is possible to take an electron density from a wave function of near-exact quality (such
as CCSD(T)) and “invert” this to produce the corresponding KS exchange–correlation potential.147

Comparisons of such “exact” Vxc potentials with those discussed in the previous subsections have
revealed large deviations and erroneous functional behavior.148 Since many of these functionals per-
form well in practical applications, it is clear that the performance is not particularly sensitive to
details in the functional and that the good performance to some extent is due to error cancellations.

Although gradient-corrected DFT methods have been shown to give impressive results, even for
theoretically difficult problems, the lack of a systematic way of extending a series of calculations to
approach the exact result is a major drawback of DFT. The results converge toward a certain value as
the basis set is increased, but theory does not allow an evaluation of the errors inherent in this limit
(such as the systematic overestimation of vibrational frequencies with wave mechanics HF methods).
Furthermore, although a progression of methods such as LSDA, BLYP and B3LYP provides succes-
sively lower errors for a suitable set of reference data (such as that used for calibrating the Gaussian-2
model), there is no guarantee that the same progression will provide better and better results for a
specific property of a given system. Indeed, LSDA methods may in some cases provide better results,
even in the limit of a large basis set, than either of the more “complete” gradient-corrected models.
The quality of a given result can therefore only be determined by comparing the performance for sim-
ilar systems where experimental or high-quality wave mechanics results are available, and DFT in this
respect resembles semi-empirical methods. Nevertheless, DFT methods, especially those involving
gradient corrections and hybrid methods, are significantly more accurate (and the errors are much
more uniform) than those of, for example, the MNDO family, and DFT is consequently a valuable
tool for systems where (very) high accuracy is not needed.
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Semi-empirical Methods

Independent particle methods like Hartree–Fock and Kohn–Sham density functional theories (Chap-
ters 3 and 6) employ a single determinant wave function composed of molecular orbitals. When the
latter are expanded in a basis set, the variational principle leads to a matrix equation for determining
the expansion coefficient and the total energy (Section 3.5):

FC = SCε (7.1)

Without any further approximations, the cost of forming the Fock (or Kohn–Sham) matrix scales
formally as the fourth power of the number of basis functions, since this is the number of two-electron
integrals necessary for constructing F. Semi-empirical methods reduce the computational cost by
reducing the number of these integrals.1–4 Although linear scaling methods can reduce the scaling
of ab initio HF methods to ∼Mbasis, this is only the limiting behavior in the large basis set limit, and
ab initio methods will still require a significantly larger computational effort than semi-empirical
methods.

The first step in reducing the computational problem is to consider only the valence electrons
explicitly; the core electrons are accounted for by reducing the nuclear charge or introducing func-
tions to model the combined repulsion due to the nuclei and core electrons. Furthermore, only a
minimum basis set (the minimum number of functions necessary for accommodating the electrons
in the neutral atom) is used for the valence electrons. Hydrogen thus has one basis function, and all
atoms in the second and third rows of the periodic table have four basis functions (one s- and one set
of p-orbitals, px, py and pz).

The central assumption of semi-empirical methods is the Zero Differential Overlap (ZDO) approx-
imation, which neglects all products of basis functions that depend on the same electron coordinates
when located on different atoms. Denoting an atomic orbital on center A as 𝜇A (it is customary to
denote basis functions with 𝜇, 𝜈, 𝜆 and 𝜎 in semi-empirical theory, while we are using 𝜒𝛼 , 𝜒𝛽 , 𝜒𝛾 and
𝜒𝛿 for ab initio methods), the ZDO approximation corresponds to 𝜇A𝜈B = 0. Note that it is the prod-
uct of functions on different atoms that is set equal to zero, not the integral over such a product. This
has the following consequences (Equations (3.54), (3.59) and (3.60)):

1. The overlap matrix S is reduced to a unit matrix.
2. One-electron integrals involving three centers (two from the basis functions and one from the

operator) are set to zero.
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3. All three- and four-center two-electron integrals, which are by far the most numerous of the two-
electron integrals, are neglected.

Since only one- and two-center integrals survive the ZDO approximation, it is possible to employ
Slater-type orbitals (Chapter 5) as basis functions. To compensate for the above approximations, the
remaining integrals are usually made into parameters, and their values are assigned based on other
calculations or experimental data. Exactly how many integrals are neglected, and how the parame-
terization is done, defines the various semi-empirical methods.

Removal of the large majority of the integrals for constructing the Fock matrix in many cases trans-
fers the computational bottleneck to solving the matrix Equation (7.1), which by standard diagonal-
ization techniques scale as the cube of the matrix dimension, but it is possible to solve the variational
problem by other methods that scale less steeply with system size.5, 6 The focus in this chapter is on
the computational cost for construction of the Fock matrix F, and for simplicity we will assume that
Equation (7.1) is solved by standard diagonalization methods.

In order to discuss the differences in semi-empirical methods, Equation (3.55) is rewritten with
semi-empirical labels to give the following expression for a Fock matrix element, where a two-electron
integral is abbreviated as ⟨𝜇𝜈|𝜆𝜎⟩ (Equation (3.61)):

F𝜇𝜈 = h𝜇𝜈 +
Mbasis∑

𝜆𝜎

D𝜆𝜎(⟨𝜇𝜈|𝜆𝜎⟩ − ⟨𝜇𝜆|𝜈𝜎⟩)

h𝜇𝜈 = ⟨𝜇|h|𝜈⟩

(7.2)

Approximations are made for the one- and two-electron parts as follows.

. Neglect of Diatomic Differential Overlap (NDDO) Approximation

In the Neglect of Diatomic Differential Overlap (NDDO) approximation there are no further approx-
imations than those mentioned above. Using 𝜇 and 𝜈 to denote either an s- or p-type (px, py or pz)
orbital, the NDDO approximation is defined by Equations (7.3) to (7.7).

Overlap integrals (Equation (3.54)):

S𝜇𝜈 = ⟨𝜇|𝜈⟩ = 𝛿𝜇𝜈𝛿AB (7.3)

One-electron operator (Equation (3.25)):

h = −1
2
∇2 −

Nnuclei∑

A

Z′
A

|RA − r|
= −1

2
∇2 −

Nnuclei∑

A
VA (7.4)

where Z′ denotes that the nuclear charge has been reduced by the number of core electrons.
One-electron integrals (Equation (3.61)):

⟨𝜇A|h|𝜈A⟩ =
⟨

𝜇A
|
|
|
|
−1

2
∇2 − VA

|
|
|
|
𝜈A

⟩

−
Nnuclei∑

a≠A
⟨𝜇A|Va|𝜈A⟩ (7.5)

⟨𝜇A|h|𝜈B⟩ =
⟨

𝜇A
|
|
|
|
−1

2
∇2 − VA − VB

|
|
|
|
𝜈B

⟩

(7.6)

⟨𝜇A|VC|𝜈B⟩ = 0 (7.7)
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Due to the orthogonality of the atomic orbitals, the first one-center matrix element in Equation (7.5)
is zero unless the two functions are identical:

⟨

𝜇A
|
|
|
|
−1

2
∇2 − VA

|
|
|
|
𝜈A

⟩

= 𝛿𝜇𝜈

⟨

𝜇A
|
|
|
|
−1

2
∇2 − VA

|
|
|
|
𝜇A

⟩

(7.8)

Two-electron integrals (Equation (3.61)):

⟨𝜇A𝜈B|𝜆C𝜎D⟩ = 𝛿AC𝛿BD⟨𝜇A𝜈B|𝜆A𝜎B⟩ (7.9)

. Intermediate Neglect of Differential Overlap (INDO) Approximation

The Intermediate Neglect of Differential Overlap (INDO) approximation neglects all two-center two-
electron integrals that are not of the Coulomb type, in addition to those neglected by the NDDO
approximations. Furthermore, in order to preserve rotational invariance, that is the total energy
should be independent of a rotation of the coordinate system, integrals such as ⟨𝜇A|Va|𝜇A⟩ and
⟨𝜇A𝜈B|𝜇A𝜈B⟩ must be made independent of the orbital type (i.e. an integral involving a p-orbital must
be the same as with an s-orbital). This has the consequence that one-electron integrals involving two
different functions on the same atom and a Va operator from another atom disappear. The INDO
method involves the following additional approximations, besides those for NDDO.

One-electron integrals (Equation (7.5)):

⟨𝜇A|h|𝜇A⟩ =
⟨

𝜇A
|
|
|
|
−1

2
∇2 − VA

|
|
|
|
𝜇A

⟩

−
Nnuclei∑

a≠A
⟨𝜇A|Va|𝜇A⟩ (7.10)

⟨𝜇A|h|𝜈A⟩ = −𝛿𝜇𝜈
Nnuclei∑

a≠A
⟨𝜇A|Va|𝜇A⟩ (7.11)

Two-electron integrals are approximated as in the following equation, except that one-center inte-
grals ⟨𝜇A𝜆A|𝜈A𝜎A⟩ are preserved:

⟨𝜇A𝜈B|𝜆C𝜎D⟩ = 𝛿AC𝛿BD𝛿𝜇𝜆𝛿𝜈𝜎⟨𝜇A𝜈B|𝜇A𝜈B⟩ (7.12)

The surviving integrals are commonly denoted by 𝛾 :

⟨𝜇A𝜈A|𝜇A𝜈A⟩ = ⟨𝜇A𝜇A|𝜇A𝜇A⟩ = 𝛾AA (7.13)
⟨𝜇A𝜈B|𝜇A𝜈B⟩ = 𝛾AB (7.14)

The INDO method is intermediate between the NDDO and CNDO methods in terms of
approximations.

. Complete Neglect of Differential Overlap (CNDO) Approximation

In the Complete Neglect of Differential Overlap (CNDO) approximation all the Coulomb two-electron
integrals are subjected to the condition in Equation (7.12), including the one-center integrals, and are
again parameterized as in Equations (7.13) and (7.14). The approximations for the one-electron inte-
grals in CNDO are the same as for INDO. The Pariser–Pople–Parr (PPP) method can be considered
as a CNDO approximation where only π-electrons are treated.
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The main difference between CNDO, INDO and NDDO is in the treatment of the two-electron
integrals. While CNDO and INDO reduce these to just two parameters (𝛾AA and 𝛾AB), all the one-
and two-center integrals are retained in the NDDO approximation. Within an sp-basis, however,
there are only 27 different types of one- and two-center integrals, while the number rises to over 500
for a basis containing both s-, p- and d-functions.

. Parameterization

An ab initio HF calculation with a minimum basis set is rarely able to give more than a qualitative
description of the MOs, and it is of very limited value for predicting quantitative features. Introducing
the ZDO approximation decreases the quality of the (already poor) wave function, that is a direct
employment of the above NDDO/INDO/CNDO schemes is not useful. To “repair” the deficiencies
due to the approximations, parameters are introduced in place of some or all of the integrals.

There are three methods that can be used for transforming the NDDO/INDO/CNDO approxima-
tions into working computational models;

1. The remaining integrals can be calculated from the functional form of the atomic orbitals.
2. The remaining integrals can be made into parameters, which are assigned values based on a few

(usually atomic) experimental data.
3. The remaining integrals can be made into parameters, which are assigned values based on fitting

to many (usually molecular) experimental data.

Method 2 derives specific atomic properties, such as ionization potentials and excitation energies,
in terms of the parameters, and assigns their values accordingly. Method 3 takes the parameters as
fitting constants and assigns their values based on a least-squares fit to a large set of experimental
data, analogously to the fitting of force field parameters (Section 2.3).

The CNDO, INDO and NDDO methods use a combination of methods 1 and 2 for assigning
parameters.7 Some of the non-zero integrals are calculated from the atomic orbitals and others are
assigned values based on atomic ionization potentials and electron affinities. Many different versions
exist; they differ in the exact way in which the parameters have been derived. Some of the names
associated with these methods are CNDO/1, CNDO/2, CNDO/S, CNDO/FK, CNDO/BW, INDO/1,
INDO/2, INDO/S and SINDO1. These methods are rarely used in modern computational chem-
istry, mainly because the “modified” methods described below usually perform better. Exceptions are
INDO-based methods, such as SINDO18 and INDO/S.9 SINDO (Symmetric orthogonalized INDO)
methods employ the INDO approximations described above, but not the ZDO approximation for the
overlap matrix. The INDO/S method (INDO parameterized for Spectroscopy) is especially designed
for calculating electronic spectra of large molecules or systems involving heavy atoms.

M. J. S. Dewar and coworker used a combination of methods 2 and 3 for assigning parameter val-
ues, resulting in a class of commonly used methods. The molecular data used for parameterization
are geometries, heats of formation, dipole moments and ionization potentials. These methods are
denoted “modified” as their parameters have been obtained by fitting.

7.4.1 Modified Intermediate Neglect of Differential Overlap (MINDO)

Three versions of Modified Intermediate Neglect of Differential Overlap (MINDO) models exist,
MINDO/1, MINDO/2 and MINDO/3. The first two attempts at parameterizing INDO gave quite
poor results, but MINDO/3, introduced in 1975,10 produced the first general-purpose quantum
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chemical method that could successfully predict molecular properties at a relatively low com-
putational cost. The parameterization of MINDO contains diatomic variables in the two-center
one-electron term; thus the 𝛽AB parameters must be derived for all pairs of bonded atoms. The I𝜇
parameters are ionization potentials:

⟨𝜇A|h|𝜈B⟩ =
⟨

𝜇A
|
|
|
|
−1

2
∇2 − VA − VB

|
|
|
|
𝜈B

⟩

= S𝜇𝜈𝛽AB(I𝜇 + I𝜈)
S𝜇𝜈 = ⟨𝜇A|𝜈B⟩

(7.15)

MINDO/3 has been parameterized for H, B, C, N, O, F, Si, P, S and Cl, although certain combinations
of these elements have been omitted. MINDO/3 is rarely used in modern computational chemistry,
having been succeeded in accuracy by the NDDO methods below. Since there are parameters in
MINDO that depend on two atoms, the number of parameters rises as the square of the number
of elements. It is unlikely that MINDO will be parameterized in the future beyond those mentioned
above.

7.4.2 Modified NDDO Models

The MNDO, AM1 and PM3 methods11 are parameterizations of the NDDO model where the param-
eterization is in terms of atomic variables, that is referring only to the nature of a single atom. MNDO,
AM1 and PM3 are derived from the same basic approximations (NDDO) and differ only in the way in
which the core–core repulsion is treated and in how the parameters are assigned. Each method con-
siders only the valence s- and p-functions, which are taken as Slater-type orbitals with corresponding
exponents 𝜁s and 𝜁p.

The one-center one-electron integrals have a value corresponding to the energy of a single electron
experiencing the nuclear charge (Us or Up) plus terms from the potential due to all the other nuclei
in the system (Equation (7.5)). The latter is parameterized in terms of the (reduced) nuclear charges
Z′ and a two-electron integral:

h𝜇𝜈 = ⟨𝜇A|h|𝜈A⟩ = 𝛿𝜇𝜈U𝜇 −
Nnuclei∑

a≠A
Z′

a⟨𝜇Asa|𝜈Asa⟩ (7.16)

U𝜇 =
⟨

𝜇A
|
|
|
|
−1

2
∇2 − VA

|
|
|
|
𝜇A

⟩

(7.17)

The two-center one-electron integrals given by Equation (7.6) are written as a product of the corre-
sponding overlap integral multiplied by the average of two atomic “resonance” parameters, 𝛽:

⟨𝜇A|h|𝜈B⟩ =
1
2

S𝜇𝜈(𝛽𝜇 + 𝛽𝜈) (7.18)

The overlap element S𝜇𝜈 is calculated explicitly (note that this is not consistent with the ZDO approx-
imation and the inclusion is the origin of the “modified” label).
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There are only five types of one-center two-electron integrals surviving the NDDO approximation
within an sp-basis (Equation (7.19)):

⟨ss|ss⟩ = Gss
⟨sp|sp⟩ = Gsp
⟨ss|pp⟩ = Hsp
⟨pp|pp⟩ = Gpp

⟨pp′|pp′⟩ = Gp2

(7.19)

The G-type parameters are Coulomb terms, while the H parameter is an exchange integral. The Gp2
integral involves two different types of p-functions (i.e. px, py or pz).

There are a total of 22 different two-center two-electron integrals arising from an sp-basis, and these
are modeled as interactions between multipoles. Electron 1 in an ⟨s𝜇|s𝜇⟩-type integral, for example,
is modeled as a monopole, in an ⟨s𝜇|p𝜇⟩-type integral as a dipole and in a ⟨p𝜇|p𝜇⟩-type integral as a
quadrupole. The dipole and quadrupole moments are generated as fractional charges located at spe-
cific points away from the nuclei, where the distance is determined by the orbital exponents 𝜁s and
𝜁p. The main reason for adapting a multipole expansion of these integrals was the limited computa-
tional resources available when these methods were developed. In the limit of the two nuclei being
placed on top of each other, a two-center two-electron integral becomes a one-center two-electron
integral, which puts boundary conditions on the functional form of the multipole interaction. The
bottom line is that all two-center two-electron integrals are written in terms of the orbital exponents
and the one-center two-electron parameters given in Equation (7.19).

The core–core repulsion is the repulsion between nuclear charges, properly reduced by the number
of core electrons. The “exact” expression for this term is simply the product of the charges divided
by the distance, Z′

AZ′
B∕RAB. Due to the inherent approximations in the NDDO method, however,

this term is not cancelled by electron–electron terms at long distances, resulting in a net repulsion
between uncharged molecules or atoms even when their wave functions do not overlap. The core–
core term must consequently be modified to generate the proper limiting behavior, which means that
two-electron integrals must be involved. The specific functional form depends on the exact method
and is given below.

Each of the MNDO, AM1 and PM3 methods involves at least 12 parameters per atom: orbital
exponents, 𝜁s∕p; one-electron terms, Us∕p and 𝛽s∕p; two-electron terms, Gss, Gsp, Gpp, Gp2, Hsp; and
parameters used in the core–core repulsion, 𝛼, and for the AM1 and PM3 methods also a, b and c
constants, as described below.

7.4.3 Modified Neglect of Diatomic Overlap (MNDO)

The core–core repulsion of the Modified Neglect of Diatomic Overlap (MNDO) model12 has the form
given in

V MNDO
nn (A, B) = Z′

AZ′
B⟨sAsA|sBsB⟩

(
1 + e−𝛼ARAB + e−𝛼BRAB

)
(7.20)

The 𝛼 exponents are taken as fitting parameters.
Interactions involving O H and N H bonds are treated differently:

V MNDO
nn (A, H) = Z′

AZ′
H⟨sAsA|sHsH⟩

(
1 + RAHe−𝛼ARAH + e−𝛼HRAH

)
(7.21)

In addition, MNDO uses the approximation 𝜁s = 𝜁p for some of the lighter elements. The Gss, Gsp,
Gpp, Gp2 and Hsp parameters are taken from atomic spectra, while the others are fitted to molecular

iranchembook.ir/edu



Semi-empirical Methods 

data. MNDOC13, 14 (C for correlation) has the same functional form as MNDO, but electron corre-
lation is explicitly calculated by second-order perturbation theory. The derivation of the MNDOC
parameters is done by fitting the correlated MNDOC results to experimental data. Electron corre-
lation in MNDO is only included implicitly via the parameters, from fitting to experimental results.
Since the training set only includes ground-state stable molecules, MNDO has problems treating sys-
tems where the importance of electron correlation is substantially different from “normal” molecules.
MNDOC consequently performs significantly better for a system where this is not the case, such as
transition structures and excited states.

7.4.4 Austin Model 1 (AM1)

After some experience with MNDO, it became clear that there were certain systematic errors. For
example, the repulsion between two atoms that are 2–3 Å apart is too high. This has as a consequence
that activation energies in general are too large. The source was traced to a too-repulsive interaction
in the core–core potential. In order to remedy this, the core–core function was modified by adding
Gaussian functions, and the whole model was reparameterized. The result was called Austin Model 1
(AM1)15, in honor of Dewar’s move to the University of Austin at the time. The core–core repulsion
of AM1 has the form given in

V AM1
nn (A, B) = V MNDO

nn (A, B) +
Z′

AZ′
B

RAB

∑

k

(

akAe−bkA(RAB−ckA)2 + akBe−bkB(RAB−ckB)2
)

(7.22)

Here k is between 2 and 4, depending on the atom. It should be noted that the Gaussian functions
were added more or less as patches on to the underlying parameters, which explains why a different
number of Gaussians is used for each atom. As for MNDO, the Gss, Gsp, Gpp, Gp2 and Hsp parameters
are taken from atomic spectra, while the rest, including the ak , bk and ck constants, are fitted to
molecular data.

7.4.5 Modified Neglect of Diatomic Overlap, Parametric Method Number 3 (PM3)

The parameterization of MNDO and AM1 had been done essentially by hand, taking the Gss, Gsp,
Gpp, Gp2 and Hsp parameters from atomic data and varying the rest until a satisfactory fit had been
obtained. Since the optimization was done by hand, only relatively few reference compounds could
be included. J.J.P. Stewart made the optimization process automatic by deriving and implementing
formulas for the derivative of a suitable error function with respect to the parameters.16, 17 All param-
eters could then be optimized simultaneously, including the two-electron terms, and a significantly
larger training set with several hundred data could be employed. In this reparameterization, the AM1
expression for the core–core repulsion (Equation (7.22)) was kept, except that only two Gaussians
were assigned to each atom. These Gaussian parameters were included as an integral part of the
model and allowed to vary freely. The resulting method was denoted Modified Neglect of Diatomic
Overlap, Parametric Method Number 3 (MNDO-PM3 or PM3 for short) and is essentially AM1 with
all the parameters fully optimized. In a sense, it is the best set of parameters (or at least a good local
minimum) for the given set of experimental data. The optimization process, however, still requires
some human intervention in selecting the experimental data and assigning appropriate weight factors
to each set of data.

The MNDO, AM1 and PM3 methods have been parameterized for most of the main group ele-
ments,18 and parameters for many of the transition metals are also being developed under the name
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PM3(tm), which includes d-orbitals. The PM3(tm) set of parameters are determined exclusively from
geometrical data (X-ray) since there are few reliable energetic data available for transition metal com-
pounds.

7.4.6 The MNDO/d and AM1/d Methods

With only s- and p-functions included, the MNDO/AM1/PM3 methods are unable to treat a large
part of the periodic table. Furthermore, from ab initio calculations it is known that d-orbitals sig-
nificantly improve the results for compounds involving third row elements, especially hypervalent
species. The main problem in extending the NDDO formalism to include d-orbitals is the signifi-
cant increase in distinct two-electron integrals that ultimately must be assigned suitable values. For
an sp-basis there are only five one-center two-electron integrals, while there are 17 in an spd-basis.
Similarly, the number of two-center two-electron integrals rises from 22 to 491 when d-functions are
included.

Thiel and Voityuk have constructed a workable NDDO model that also includes d-orbitals for
use in connection with MNDO, called MNDO/d.19, 20 With reference to the above description for
MNDO/AM1/PM3, it is clear that there are immediately three new parameters: 𝜁d, Ud and 𝛽d (Equa-
tions (7.17) and (7.18)). Of the 12 new one-center two-electron integrals, only one (Gdd) is taken as a
freely varied parameter. The other 11 are calculated analytically based on pseudo-orbital exponents,
which are assigned such that the analytical formulas regenerate Gss, Gpp and Gdd.

With only s- and p-functions present, the two-center two-electron integrals can be modeled by
multipoles up to order 4 (quadrupoles); however, with d-functions present multipoles up to order 16
must be included. In MNDO/d all multipoles beyond order 4 are neglected. The resulting MNDO/d
method typically employs 15 parameters per atom and contains parameters for the following elements
(beyond those already present in MNDO): Na, Mg, Al, Si, P, S, Cl, Br, I, Zn, Cd and Hg.

7.4.7 Parametric Method Numbers 6 and 7 (PM6 and PM7)

PM3 is likely to represent close to the limit of accuracy that can be obtained within the NDDO approx-
imation. Building upon the experience with the PM3(tm) and MNDO/d models, J. J. P. Stewart has
developed the PM621 and PM722 methods (PM4 and PM5 being unpublished experimental versions)
with parameters covering most of the periodic table (70 elements). The main difference relative to
PM3 is a change in the MNDO core–core repulsion term (Equation (7.20)) from atomic to diatomic
parameters (xAB and 𝛼AB):

V PM6
nn (A, B) = Z′

AZ′
B⟨sAsA|sBsB⟩

(
1 + xABe−𝛼ABRAB

)
(7.23)

Certain combinations of atoms have slightly modified expressions, analogous to Equation (7.21). The
introduction of diatomic parameters was found to provide an increased accuracy, but significantly
increases the number of core–core parameters, from ∼70 atomic to ∼5000 diatomic parameters.
This additional flexibility made it possible to reduce the number of Gaussian repulsion terms (Equa-
tion (7.22)) to only one for each atom.

The PM7 method can be considered as a reparameterized version of PM6 where a number of errors
have been corrected and the reference data has been extended to include periodic systems (crystals).
The latter necessitated a modification of the 𝛾AB parameter (Equation (7.14)) to avoid infinite energies.
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PM7 in addition employs specific energy terms for hydrogen bonding and dispersion, and this allowed
removing the Gaussian core–core terms for all but the H, C, N, O atoms:

V PM7
H−bond(A, B) = −2.5(cos 𝜃AHB)4 e−80(RAB−2.67)2 (7.24)

The parameterization strategy developed for PM3 employing analytical gradients of the error func-
tion with respect to the parameter enabled the optimization of the large number of diatomic
parameters. The PM7 model performs relatively poorly for activation energies, with average errors
∼45 kJ/mol, but a reparameterized model denoted PM7-TS reduced the average error to ∼15 kJ/mol.
A common flaw of all the NDDO methods is that rotational barriers for bonds that have partly double
bond character are significantly too low. The barrier for rotation around the central bond in butadiene,
for example, is calculated to be only 2–8 kJ/mol, in contrast to the experimental value of 25 kJ/mol.23

Similarly, the rotational barrier around the C N bond in amides is calculated to be 30–50 kJ/mol,
which is roughly a factor of two smaller than the experimental value. A purely ad hoc fix has been
made by adding a force field rotational term to the C N bond that raises the value to ∼100 kJ/mol
and brings it into better agreement with experimental data.

7.4.8 Orthogonalization Models

The above NDDO methods enforce the ZDO approximation on the overlap matrix which reduces
it to a unit matrix. Qualitative molecular orbital theory (Section 15.3), however, suggests that the
orbital overlap elements play an important role, for example, in differentiating the energy change
between bonding and antibonding orbitals upon bond formation. This suggests that the parame-
terization should not be done on the secular equation FC = Cε (Equation (7.1) with S = I) but on
the symmetrical orthogonalized equation F′C′ = C′ε (F′ = S−1∕2FS−1∕2, C′ = S1∕2C, Section 17.2.3)
where overlap elements are included in the F′ elements. By analyzing the effects of the orthogonal-
ization on the one- and two-electron terms in the MNDO family of models, W. Thiel and coworkers
proposed the orthogonalization model 1/2/3 (OM1/2/3).24 The effect on the two-electron term was
deemed to be small enough to be ignored, OM1 introduced changes in the one-center-one-electron
term, while OM2 also changed the two-center one-electron terms. OM3 is a minor updated version
of OM2. The OMx models have at the time of writing been parameterized for the elements H, C, N,
O, F.25, 26

. Hückel Theory

7.5.1 Extended Hückel theory

The Hückel methods perform the parameterization on the Fock matrix elements (Equation (7.2))
and not at the integral level, as do NDDO/INDO/CNDO. This means that Hückel methods are non-
iterative and they only require a single diagonalization of the Fock (Hückel) matrix. The extended
Hückel theory (EHT) or method (EHM), developed primarily by R. Hoffmann, again only considers
the valence electrons.27 It makes use of Koopmans’ theorem (Equation (3.50)) and assigns the diago-
nal elements in the F matrix to be atomic ionization potentials. The off-diagonal elements are param-
eterized as averages of the diagonal elements, weighted by an overlap integral. The overlap integrals
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are actually calculated, that is the ZDO approximation is not invoked. The basis functions are taken
as Slater-type orbitals, with the exponents assigned according to the rules of Slater:28

F𝜇𝜇 = −I𝜇 (7.25)

F𝜇𝜈 = −1
2

K (I𝜇 + I𝜈)S𝜇𝜈 (7.26)

The K constant is usually taken as 1.75, as this value reproduces the rotational barrier in ethane.
Since the diagonal elements only depend on the nature of the atom (i.e. the nuclear charge), this

means, for example, that all carbon atoms have the same ability to attract electrons. After having
performed a Hückel calculation, the actual number of electrons associated with atom A, 𝜌A, can be
calculated by a Mulliken population analysis according to (see Equations (10.5) and (10.6))

𝜌A =
MO∑

i
ni

AO∑

𝛼∈A

AO∑

𝛽

c𝛼ic𝛽iS𝛼𝛽 (7.27)

The effective (net) atomic charge QA is given as the (reduced) nuclear charge minus the electronic
contribution:

QA = Z′
A − 𝜌A (7.28)

In general, it is unlikely that all carbon atoms have the exact same charge, that is owing to the different
environments their ability to attract electrons is no longer equal. This may be argued to be inconsis-
tent with the initial assumption of all carbons having the same diagonal elements in the Hückel matrix.
In order to achieve “self-consistency”, a diagonal element F𝜇𝜇 belonging to atom A may be modified
by the calculated atomic charge:

F𝜇𝜇 = −I𝜇 + 𝜔QA (7.29)

The 𝜔 parameter determines the weight of the charge on the diagonal elements. Since QA is calcu-
lated from the results (MO coefficients, Equation (7.27)) but enters the Hückel matrix that produces
the results (by diagonalization), such schemes become iterative. Methods where the matrix elements
are modified by the calculated charge are often called charge iteration or self-consistent (Hückel)
methods.

The main advantage of extended Hückel theory is that only atomic ionization potentials are
required, and it is easily parameterized to the whole periodic table. Extended Hückel theory can
be used for large systems involving transition metals, and until the development of DFTB methods
(Section 7.6), this was often the only possible computational model. The very approximate method
of extended Hückel theory makes it unsuitable for geometry optimizations without additional mod-
ifications29 or for calculations of energetic features at any reasonable level of accuracy. It is primarily
used for obtaining qualitatively correct MOs, which can, for example, be used as an initial guess of
the density matrix for ab initio SCF calculations, or for use in connection with qualitative theories, as
discussed in Chapter 15. Orbital energies (and thereby the total energy), however, in many cases show
the correct trend for geometry perturbations corresponding to bond bending or torsional changes,
and thus qualitative features regarding molecular shapes may often be predicted or rationalized from
EHT calculations.

7.5.2 Simple Hückel Theory

In the simple Hückel model the approximations are taken to the limit.30 Only planar conjugated sys-
tems are considered. The σ-orbitals, which are symmetric with respect to a reflection in the molecular
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plane, are neglected. Only electrons in the π-orbitals (antisymmetric with respect to the molecular
mirror plane) are considered. The overlap matrix is taken as a unit matrix and a diagonal element
of the F matrix is assigned a value of 𝛼, which depends on the atom type. Off-diagonal elements are
taken either as 𝛽 (depending on the two atom types) or zero, conditioned on whether the two atoms
are “neighbors” (i.e. connected by a σ-bond) or not:

F𝜇A𝜇A
= 𝛼A

F𝜇A𝜇B
= 𝛽AB (A and B are neighbors)

F𝜇A𝜇B
= 0 (A and B are not neighbors)

(7.30)

Atoms are assigned “types”, much as in force field methods, that is the parameters depend on the
nuclear charge and the bonding situation. The 𝛼A and 𝛽AB parameters for atom types A and B are
related to the corresponding parameters for sp2-hybridized carbon by means of the dimensionless
constants hA and kAB:

𝛼A = 𝛼C + hA𝛽CC
𝛽AB = kAB𝛽CC

(7.31)

The carbon parameters 𝛼C and 𝛽CC are normally just denoted 𝛼 and 𝛽, and are rarely assigned numer-
ical values. Simple Hückel theory thus only considers the connectivity of the 𝜋-atoms: there is no
information about the molecular geometry entering the calculations (e.g. whether some bonds are
shorter or longer than others, or differences in bond angles).

In analogy to extended Hückel theory, there are also charge iterative methods for simple Hückel
theory. The equivalent of Equation (7.27) is given in

𝜌A =
MO∑

i
nic2

Ai (7.32)

Equation (7.29) becomes

𝛼′A = 𝛼A + 𝜔(nA − 𝜌A)𝛽 (7.33)

Here nA is the number of 𝜋-electrons involved from atom A.
The Hückel method is essentially only used for educational purposes or for very qualitative orbital

considerations. It has the ability to produce qualitatively correct MOs, involving a computational
effort that is within reach of doing by hand.

. Tight-Binding Density Functional Theory

The semi-empirical methods of the NDDO family can be considered as approximation to Hartree–
Fock theory. Hartree–Fock theory has largely been replaced by Density Functional Theory, since DFT
provides more accurate results for a similar computational cost. It is therefore not surprising that
semi-empirical methods have also been developed as approximations to DFT. A widespread model is
called tight-binding DFT, with the acronym DFTB,31 with several different flavors in common use. In
analogy with the NDDO methods, DFTB assumes a minimal basis set, neglects all three- and four-
center integrals and only considers valence electrons explicitly. The core–core repulsion energy can be
considered as the zeroth-order energy without any electronic contribution (i.e. equivalent to the bare
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nucleus repulsion Vnn in all-electron models), with the factor 1∕2 compensating for the summation
over all pairs of atoms:

EDFTB0 = 1
2
∑

A≠B
EAB

core (7.34)

The core–core repulsion is typically parameterized in terms of spline functions and fitted to corre-
sponding all-electron DFT results. The valence electronic energy is calculated from the Fock (Kohn–
Sham) energy matrix, where the surviving one- and two-center terms are parameterized as shown in

F𝜇𝜈 =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜀atom
𝜇

; 𝜇 = 𝜈
⟨

𝜇A
|
|
|
|
−1

2
∇2 + VA + VB

|
|
|
|
𝜈B

⟩

; A ≠ B

0 ; otherwise

(7.35)

DFTB has primarily been used for solid-state purposes, where the basis functions 𝜇, 𝜈 should be
more compact than the free atoms orbitals and they are generated by calculating atomic orbitals sub-
ject to a confinement potential. The diagonal elements 𝜀atom correspond to orbital energies for the
free atoms to ensure proper dissociation, and can be considered as approximations to the ioniza-
tion potential, in line with the EHT model (Equation (7.25)). The off-diagonal elements contain the
effective potential V for the free atom, which includes the attraction to the nuclei and the electron–
electron interaction (Coulomb and exchange–correlation term within the DFT framework). The
energy and overlap matrix elements depend on internuclear distances, but can be precomputed in
a tabulated form using a suitable exchange–correlation functional and interpolated for the actual
geometry in a calculation.

The parameterization in terms of energy matrix elements and explicit consideration of the overlap
matrix is analogous to the extended Hückel method, but the energy matrix elements are param-
eterized independently and are not assumed proportional to the overlap matrix elements as in
Equation (7.26). The parameterization at the energy matrix element level means that the eigenvalue
problem of Equation (7.1) can be solved by a single diagonalization. This provides the valence elec-
tronic energy as a simple sum of eigenvalues multiplied with occupation numbers and is combined
with the core–core interaction to form the DFTB1 model:

EDFTB1 =
N∑

i=1
ni𝜀i + EDFTB0 (7.36)

The DFTB1 energy can, in analogy with the extended Hückel method, be improved by including
corrections due to charge equilibration (Equation (7.29)), to either second (DFTB2) or third (DFTB3)
order. DFTB2 modifies the energy matrix elements by a term corresponding to the Mulliken charge
Q on the atoms:

F𝜇𝜈 = F0
𝜇𝜈

+ 1
2

S𝜇𝜈
∑

C
QC(𝛾AC + 𝛾BC) ;

𝜇 ∈ A
𝜈 ∈ B

(7.37)

The 𝛾 function interpolates between R−1 in the long-distance limit, which is just the Coulomb
interaction, and twice the chemical hardness U (U = 2𝜂 = IP-EA, Section 16.2) in the R = 0 limit. A
possible interpolation function is the Klopman–Ohno formula given in

𝛾AB =
(

R2
AB + 1

4
(
U−1

A + U−1
B

))−1∕2
(7.38)
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The corresponding DFTB2 (alternative acronym is SCC-DFTB, for Self Consistent Charge DFTB)
energy can be written as

EDFTB2 = EDFTB1 +
1
2
∑

A≠B
QAQB𝛾AB (7.39)

Since the Mulliken charges depend on the LCAO coefficients (Equations (7.27) and (7.28)), this
leads to an iterative scheme where the atomic charges Q are calculated by solving Equation (7.1) self-
consistently with Fock matrix elements from Equation (7.37). Including charge corrections to third
order defines the DFTB3 model:

EDFTB3 = EDFTB2 +
1
3
∑

A,B
Q2

AQB
𝜕𝛾AB
𝜕QA

|
|
|
|QA= 0

(7.40)

DFTB, in analogy with DFT, does not account for dispersion, but this can be added by empirical
terms, as discussed in Section 6.5.7. Additional empirical energy terms may be added to improve on
specific interactions described poorly by DFTB models, such as, for example, “halogen bonding” due
to the positive electrostatic potential at the end of an R–X bond.32

. Performance of Semi-empirical Methods

The electronic energy (including the core–core repulsion) calculated by semi-empirical methods is,
in analogy with ab initio methods, the total energy relative to a situation where the nuclei (with their
core electrons) and the valence electrons are infinitely separated. It is customary, however, to con-
vert the electronic energy to a heat of formation by subtracting the electronic energy of the isolated
atoms that make up the system and adding the experimental atomic heat of formation. It should be
noted that thermodynamic corrections (e.g. zero-point energies, see Section 14.5.5) should not be
added to the ΔHf values, as these are included implicitly by the parameterization:

ΔHf (molecule) = Eelec(molecule) −
Matoms∑

Eelec(atoms) −
Matoms∑

ΔHf (atoms) (7.41)

Mean absolute deviations for heat of formation for consistent data sets for NDDO methods are given
in Table 7.1. Mean absolute deviations for bond distance are given in Table 7.2. Errors in bond angles
are typically in the 5–7◦ range.

The method progression MNDO–AM1–PM3–PM6–PM7 in most cases reflects an increase in the
number of parameters and better optimization with respect to reproducing the reference data, and
it is thus expected that the error decreases in the same order. This is indeed the general trend in the
above tables. The inclusion of solid-state reference data in addition to molecular data in the PM7
model, however, lead to a slight deterioration in the performance for some of the molecular species.
The OM2/3 methods for these benchmarks display very similar performance as PM7.

Consistent benchmark data covering a variety of methods are scarce. Table 7.3 shows results for
a subset of the GMTKN24/30 benchmarks comparing AM1, PM3/6/7, OM1/2/3, DFTB2 and the
all-electron DFT method B3LYP. The GMTKN24/30 benchmark sets contain a selection of molec-
ular properties covering relative energies, reaction and activation energies, ionization potentials,
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Table . Mean absolute deviations for heat of formation (kJ/mol).26

Data set Number MNDO/d AM/d PM PM PM OM OM OM

HCNO 1141 49 39 23 19 16 35 20 20
Core 1572 50 41 26 19 17
Extended 3163 141 122 88 85
All 4417 79 86
S22+S66 88 12 3.3 3.7 3.5

HCNO = compounds composed of H, C, N, O.
Core = HCNO set + elements F, P, S, Cl.
Extended = core + S-block, fourth and fifth period P-block, and selected other elements.
All = full periodic table.
S22+S66 = benchmarks containing intermolecular interactions.
MNDO, AM1, PM3, PM6 and PM7 data by courtesy of J. J. P. Stewart.

Table . Mean absolute deviations for bond distances (Å).

Data set Number MNDO/d AM/d PM PM PM

HCNO 313 0.019 0.021 0.018 0.018 0.019
Core 424 0.021 0.031 0.024 0.018 0.019
Extended 6605 0.100 0.090 0.084 0.078 0.073
All 9118 0.095 0.090 0.084 0.084 0.080

MNDO, AM1, PM3, PM6 and PM7 data by courtesy of J. J. P. Stewart.

Table . Mean absolute deviations for a subset of the GMTKN24 and GMTKN30 benchmarks having H, C, N, O, F
elements only (in kJ/mol).26, 33

GMTKN ( entries)

AM PM PM PM OM OM OM DFTB BLYP

Without dispersion 57 61 41 30 28 58 20
With dispersion 51 60 35 26 27 57 19

GMTKN30 (480 entries)

Without dispersion 69 60 68 69 50 33 30
With dispersion 32 30

electron affinities, proton affinities, atomization energies, radical stabilization energies and water
cluster binding energies.

The OM1/2/3 methods display a progression in accuracy and for these benchmarks perform bet-
ter than the non-orthogonalized NDDO models AM1 and PM6/7; they also outperform the DFTB2
method. The OM3 results for these systems are only slightly inferior to the all-electron DFT B3LYP
method.
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. Advantages and Limitations of Semi-empirical Methods

The parameterization of the NDDO models is performed by adjusting the constants involved in the
different methods such that the results of HF calculations fit experimental data as closely as pos-
sible. This is in a sense wrong. We know that the HF method cannot give the correct result, even
in the limit of an infinite basis set and without approximations. The HF results lack electron cor-
relation, as discussed in Chapter 4, but the experimental data of course include such effects. This
may be viewed as an advantage; the electron correlation effects are implicitly taken into account in
the parameterization and we need not perform complicated calculations to improve deficiencies in
the HF procedure. However, it becomes problematic when the HF wave function cannot describe the
system even qualitatively correctly, as with, for example, biradicals and excited states. In such cases,
additional flexibility can be introduced in the trial wave function by adding more Slater determinants,
for example by means of a CI procedure (see Chapter 4 for details). However, electron correlation is
then taken into account twice, once in the parameterization at the HF level and once explicitly by the
CI calculation.

Semi-empirical methods share the advantages and disadvantages of force field methods: they per-
form best for systems where much experimental information is already available while results for
totally unknown compound types are associated with much higher uncertainties. The dependence on
experimental data is not as severe as for force field methods, owing to the more complex functional
form of the model. The MNDO/AM1/PM3/OMx methods require only atomic parameters, while
PM6 and PM7 in addition require some diatomic parameters, but not tri- and tetra-atomic parame-
ters as do force field methods. Once a given atom, or atom pair, has been parameterized, all possible
compound types involving this/these element(s) can be calculated. The smaller number of parame-
ters and the more complex functional form has the disadvantage compared with force field methods
that it is very difficult to “repair” a specific problem by reparameterization. The lack of a reasonable
rotational barrier in amides, for example, cannot be attributed to an “improper” value for a single (or a
few) parameter(s). Too low a rotational barrier in a force field model can easily be fixed by increasing
the values of the corresponding torsional parameters. The clear advantage of semi-empirical methods
over force field techniques is the ability to describe bond-breaking and bond-forming reactions.

DFTB methods bypass the problem of insufficient experimental data, since the parameterization
is against all-electron DFT calculations. This of course means that any deficiencies in the chosen all-
electron DFT method will be inherent by the DFTB model, but the errors due to the DFTB approxi-
mations themselves are in most cases much larger than those in the parent DFT model.

Semi-empirical methods are zero-dimensional, just as force field methods are. There is no way of
assessing the reliability of a given result within the method. This is due to the selection of a minimum
basis set. The only way of judging results is by calibration, that is by comparing the accuracy of other
calculations on similar systems with experimental data.

Semi-empirical models provide a method for calculating the electronic wave function, which may
be used for predicting a variety of properties. There is nothing to hinder the calculation of, say, the
polarizability of a molecule (the second derivative of the energy with respect to an external electric
field), although it is known from ab initio calculations that good results require a large polarized
basis set including diffuse functions and the inclusion of electron correlation. Semi-empirical meth-
ods only employ a minimum basis (lacking polarization and diffuse functions), electron correlation
is only included implicitly by the parameters and no polarizability data have been used for deriv-
ing the parameters. Whether such calculations can produce reasonable results, as compared with
experimental data, is questionable, and careful calibration is certainly required. Again it should be
emphasized: the ability to perform a calculation is no guarantee that the results can be trusted!
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Valence Bond Methods

Essentially all practical calculations for generating solutions to the electronic Schrödinger equation
have been performed with molecular orbital methods. The zeroth-order wave function is constructed
as a single Slater determinant and the MOs are expanded in a set of atomic orbitals, the basis set. In
a subsequent step the wave function may be improved by adding electron correlation with either CI,
MP or CC methods. There are two characteristics of such approaches: (1) the one-electron functions,
the MOs, are delocalized over the whole molecule and (2) an accurate treatment of the electron cor-
relation requires many (millions or billions) “excited” Slater determinants. The delocalized nature of
the MOs is partly a consequence of choosing the Lagrange multiplier matrix to be diagonal (canoni-
cal orbitals, Equation (3.43)); they may in a subsequent step be mixed to form localized orbitals (see
Section 10.4) without affecting the total wave function. Such a localization, however, is not unique.
Furthermore, delocalized MOs are at variance with the basic concept, especially in organic chemistry,
that molecules are composed of structural units (functional groups), which to a very good approxi-
mation are constant from molecule to molecule. The MOs for propane and butane, for example, are
quite different, although “common” knowledge is that they contain CH3 and CH2 units that in terms
of structure and reactivity are very similar for the two molecules. A description of the electronic wave
function as having electrons in orbitals formed as linear combinations of all (in principle) atomic
orbitals is also at variance with the chemical language of molecules being composed of atoms held
together by bonds, where the bonds are formed by pairing unpaired electrons contained in atomic
orbitals. Finally, when electron correlation is important (as is usually the case), the need to include
many Slater determinants obscures the picture of electrons residing in orbitals.

There is an equivalent way of generating solutions to the electronic Schrödinger equation
that conceptually is much closer to the experimentalist’s language, known as Valence Bond (VB)
theory.1, 2 We will start by illustrating the concepts for the H2 molecule and note how it differs from
MO methods.

Introduction to Computational Chemistry, Third Edition. Frank Jensen.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion Website: http://www.wiley.com/go/jensen/computationalchemistry3
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. Classical Valence Bond Theory

A single-determinant MO wave function for the H2 molecule within a minimum basis consisting of
a single s-function on each nucleus is given by (see also Section 4.3)

Φ0 =
|
|
|
|
|

𝜙1(1) 𝜙1(1)
𝜙1(2) 𝜙1(2)

|
|
|
|
|

𝜙1 = (𝜒A + 𝜒B)𝛼 ; 𝜙1 = (𝜒A + 𝜒B)𝛽
(8.1)

We have here ignored the normalization constants. The Slater determinant can be expanded in AOs,
as shown below, with the order of the functions reflecting the electron coordinate:

Φ0 = 𝜙1𝜙1 − 𝜙1𝜙1 = (𝜙1𝜙1) [𝛼𝛽 − 𝛽𝛼]
Φ0 = (𝜒A + 𝜒B)(𝜒A + 𝜒B)[𝛼𝛽 − 𝛽𝛼]
Φ0 = (𝜒A𝜒A + 𝜒B𝜒B + 𝜒A𝜒B + 𝜒B𝜒A)[𝛼𝛽 − 𝛽𝛼]

(8.2)

This shows that the HF wave function consists of equal amounts of ionic (𝜒A𝜒A and 𝜒B𝜒B) and
covalent (𝜒A𝜒B and 𝜒B𝜒A) terms. In the dissociation limit only the covalent terms are correct, but
the single-determinant description does not allow the ratio of covalent to ionic terms to vary. In order
to provide a correct description, a second determinant is necessary:

Φ1 =
|
|
|
|
|

𝜙2(1) 𝜙2(1)
𝜙2(2) 𝜙2(2)

|
|
|
|
|

𝜙2 = (𝜒A − 𝜒B)𝛼 ; 𝜙2 = (𝜒A − 𝜒B)𝛽
Φ1 = (𝜒A𝜒A + 𝜒B𝜒B − 𝜒A𝜒B − 𝜒B𝜒A)[𝛼𝛽 − 𝛽𝛼]

(8.3)

By including the doubly excited determinant Φ1, built from the antibonding MO, the amounts of
covalent and ionic terms may be varied, and this is determined completely by the variational principle
(Equation (4.26)):

ΨCI = a0Φ0 + a1Φ1
ΨCI = {(a0 − a1)(𝜒A𝜒B + 𝜒B𝜒A) + (a0 + a1)(𝜒A𝜒A + 𝜒B𝜒B)}[𝛼𝛽 − 𝛽𝛼]

(8.4)

This two-configurational CI wave function allows a qualitatively correct description of the H2
molecule at all distances and in the dissociation limit, where the weights of the two configurations
become equal.

The classical VB wave function, on the other hand, is built from the atomic fragments by coupling
the unpaired electrons to form a bond. In the H2 case, the two electrons are coupled into a singlet pair,
properly antisymmetrized. The simplest VB description, known as a Heitler–London (HL) function,
includes only the two covalent terms in the HF wave function:

Φcov
HL = (𝜒A𝜒B + 𝜒B𝜒A)[𝛼𝛽 − 𝛽𝛼] (8.5)

Just as the single-determinant MO wave function can be improved by including excited determinants,
the simple VB-HL function can be improved by adding terms that correspond to higher energy con-
figurations for the fragments, in this case ionic structures:

Φion
HL = (𝜒A𝜒A + 𝜒B𝜒B)[𝛼𝛽 − 𝛽𝛼] (8.6)

ΨHL = a0Φcov
HL + a1Φion

HL (8.7)
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The final description, either in terms of a CI wave function written as a linear combination of two
determinants built from delocalized MOs (Equation (8.4)) or as a VB wave function written in terms
of two VB-HL structures composed of AOs (Equation (8.7)), is identical.

For the H2 system, the amount of ionic HL structures determined by the variational principle is
44%, close to the MO-HF value of 50%. The need for including large amounts of ionic structures in
the VB formalism is due to the fact that pure atomic orbitals are used.

Consider now a covalent VB function built from “atomic” orbitals that are allowed to distort from
the pure atomic shape:

ΦCF = (𝜙A𝜙B + 𝜙B𝜙A)[𝛼𝛽 − 𝛽𝛼]
𝜙A = 𝜒A + c𝜒B ; 𝜙B = 𝜒B + c𝜒A

(8.8)

Such a VB function is known as a Coulson–Fischer (CF) type. The c constant is fairly small (for H2, c is
∼0.04), but by allowing the VB orbitals to adopt the optimum shape, the need for ionic VB structures
is strongly reduced. Note that the two VB orbitals in Equation (8.8) are not orthogonal – the overlap
is given by

⟨𝜙A|𝜙B⟩ = (1 + c2)⟨𝜒A|𝜒B⟩ + 2c(⟨𝜒A|𝜒A⟩ + ⟨𝜒B|𝜒B⟩)
⟨𝜙A|𝜙B⟩ = (1 + c2)SAB + 4c

(8.9)

Compared with the overlap of the undistorted atomic orbitals used in the HL wave function, which
is just SAB, it is seen that the overlap is increased (c is positive), that is the orbitals distort such that
they overlap better in order to make a bond. Although the distortion is fairly small (a few percent),
this effectively eliminates the need for including ionic VB terms. When c is variationally optimized,
the MO-CI, VB-HL and VB-CF wave functions (Equations (8.4), (8.7) and (8.8)) are all completely
equivalent. The MO approach incorporates the flexibility in terms of an “excited” determinant, the
VB-HL in terms of “ionic” structures and the VB-CF in terms of “distorted” atomic orbitals.

In the MO-CI language, the correct dissociation of a single bond requires addition of a second
doubly excited determinant to the wave function. The VB-CF wave function, on the other hand, dis-
sociates smoothly to the correct limit, the VB-orbitals simply reverting to their pure atomic shapes,
with the overlap disappearing.

. Spin-Coupled Valence Bond Theory

The generalization of a Coulson–Fischer-type wave function to the molecular case with an arbitrary-
size basis set is known as Spin-Coupled Valence Bond (SCVB) theory.2–4

It is again instructive to compare with the traditional MO approach, taking the CH4 molecule as an
example. The MO single-determinant description (RHF, which is identical to UHF near the equilib-
rium geometry) of the valence orbitals is in terms of four delocalized orbitals, each occupied by two
electrons with opposite spin. The C—H bonding is described by four different, orthogonal molecular
orbitals, each expanded in a set of AOs:

ΦCH4
valence-MO = A[𝜙1𝜙1𝜙2𝜙2𝜙3𝜙3𝜙4𝜙4]

𝜙i =
Mbasis∑

𝛼=1
c𝛼i𝜒𝛼

(8.10)

Here A is the antisymmetrizing operator (Equation (3.22)) and a bar above an MO indicates that the
electron has a 𝛽 spin function, where no bar indicates an 𝛼 spin function.
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Figure . Two possible schemes for coupling four electrons to an overall singlet.

The SCVB description, on the other hand, considers the four bonds in CH4 as arising from coupling
of a single electron at each of the four hydrogen atoms with a single unpaired electron at the carbon
atom. Since the ground state of the carbon atom is a triplet, corresponding to the electron configu-
ration 1s22s22p2, the first step is formation of four equivalent “hybrid” orbitals by mixing three parts
p-function with one part s-function, generating four equivalent “sp3-hybrid” orbitals. Each of these
singly occupied hybrid orbitals can then couple with a hydrogen atom to form four equivalent C—H
bonds. The electron spins are coupled such that the total spin is a singlet, which can be done in sev-
eral different ways. The coupling of four electrons to a total singlet state, for example, can be done
either by coupling two electrons in a pair to a singlet, and then coupling two singlet pairs, or by first
coupling two electrons in a pair to a triplet, and subsequently coupling two triplet pairs to an overall
singlet (see Figure 8.1).

The ΘN
S,i symbol is used to designate the ith combination of spin functions coupling N electrons to

give an overall spin of S, and there are f N
S number of ways of doing this. The value of f N

S is given by

f N
S = (2S + 1) N!

(
1
2 N + S + 1

)

!
(

1
2 N − S

)

!
(8.11)

For a singlet wave function (S = 0), the number of coupling schemes for N electrons is given in
Table 8.1.

For the eight valence electrons in CH4 there are 14 possible spin couplings resulting in an overall
singlet state. The full SCVB function may be written (again neglecting normalization) as

ΦCH4
valence-SCVB =

14∑

i=1
aiA

{[
𝜙1𝜙2𝜙3𝜙4𝜙5𝜙6𝜙7𝜙8

]
ΘN

0,i

}

𝜙i =
Mbasis∑

𝛼=1
c𝛼i𝜒𝛼

(8.12)

Table . Number of possible
spin coupling schemes for
achieving an overall singlet state.

N f N
0

2 1
4 2
6 5
8 14
10 42
12 132
14 429
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Figure . A representation of the dominating spin coupling in CH4.

Figure . Molecular orbital energies in benzene.

There are now eight different spatial orbitals, 𝜙i, four of which are essentially carbon sp3-hybrid
orbitals, with the other four being close to atomic hydrogen s-orbitals. The expansion of each of the
VB-orbitals in terms of all the basis functions located on all the nuclei allows the orbitals to distort
from the pure atomic shape. The SCVB wave function is variationally optimized, both with respect to
the VB-orbital coefficients c𝛼i and the spin coupling coefficients ai. The result is that a complete set
of optimum “distorted” atomic orbitals is determined together with the weight of the different spin
couplings. Each spin coupling term (in the so-called Rumer basis) is closely related to the concept
of a resonance structure used in organic chemistry textbooks. An SCVB calculation of CH4 gives
as a result that one of the spin coupling schemes completely dominates the wave function, namely
that corresponding to the electron pair in each of the C—H bonds being singlet-coupled. This is the
quantum mechanical analog of the graphical representation of CH4 shown in Figure 8.2. Each of the
lines represents a singlet-coupled electron pair between two orbitals that strongly overlap to form a
bond, and the drawing in Figure 8.2 is the only important “resonance” form.

Consider now the π-system in benzene. The MO approach will generate linear combinations of the
atomic p-orbitals, producing six π-orbitals delocalized over the whole molecule with four different
orbital energies (two sets of degenerate orbitals). The stability of benzene can be attributed to the
large gap between the HOMO and LUMO orbitals (see Figure 8.3).

A SCVB calculation considering only the coupling of the six π-electrons gives a somewhat differ-
ent picture. The VB π-orbitals are strongly localized on each carbon, resembling p-orbitals that are
slightly distorted in the direction of the nearest neighbor atoms. It is now found that the five spin
coupling combinations shown in Figure 8.4 are important, where a bold line indicates two electrons
coupled into a singlet pair.

Each of the two first VB structures contributes∼40% to the wave function and each of the remaining
three contributes ∼6%.5 The stability of benzene in the SCVB picture is due to resonance between
these VB structures. It is furthermore straightforward to calculate the resonance energy by comparing

Figure . Representations of important spin coupling schemes in benzene.
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the full SCVB energy with that calculated from a VB wave function omitting certain spin coupling
functions.

The MO wave function for CH4 can be improved by adding configurations corresponding to excited
determinants, that is replacing occupied MOs with virtual MOs. Allowing all excitations in the
minimal basis valence space and performing a full optimization corresponds to an [8,8]-CASSCF
wave function (Section 4.6). Similarly, the SCVB wave function in Equation (8.12) can be improved
by adding ionic VB structures such as CH3

−/H+ and CH3
+/H−, and this corresponds to exciting an

electron from one of the singly occupied VB orbitals into another VB orbital, thereby making it dou-
bly occupied. The importance of these excited/ionic terms can again be determined by the variational
principle. If all such ionic terms are included, the fully optimized SCVB+CI wave function is for all
practical purposes identical to that obtained by the MO-CASSCF approach (the only difference is a
possible slight difference in the description of the carbon 1s-core orbital).

Both types of wave function provide essentially the same total energy, and thus include the same
amount of electron correlation. The MO-CASSCF wave function attributes the electron correlation to
the interaction of 1764 configurations, the Hartree–Fock reference and 1763 excited configurations,
with each of the 1763 configurations providing only a small amount of the correlation energy. The
SCVB wave function (which includes only one resonance structure), on the other hand, contains
90+% of the correlation energy, and only a few percent is attributed to “excited” structures. The ability
of SCVB wave functions to include electron correlation is due to the fact that the VB orbitals are
strongly localized and, since they are occupied by only one electron, they have the built-in feature
of electrons avoiding each other. In a sense, an SCVB wave function is the best wave function that
can be constructed in terms of products of spatial orbitals. By allowing the orbitals to become non-
orthogonal, the large majority (80–90%) of what is called electron correlation in an MO approach can
be included in a single-determinant wave function composed of spatial orbitals, multiplied by proper
spin coupling functions.

There are a number of technical complications associated with optimizing the SCVB wave function
due to the non-orthogonal orbitals. The MO-CI or MO-CASSCF approaches simplify considerably
owing to the orthogonality of the MOs, and thereby also of the Slater determinants. The MO-CI
matrix is sparse, since only Slater determinants differing by at most two orbitals can be interacting,
while the corresponding SCVB matrix is dense. Computationally, the optimization of an SCVB wave
function, where N electrons are coupled in all possible ways, is similar to that required for construct-
ing an [N,N]-CASSCF wave function. This effectively limits the size of SCVB wave functions to
coupling of 12–16 electrons, although algorithmic improvements have the promise to increase these
values.6 The actual optimization of the wave function is usually done by a second-order expansion
of the energy in terms of orbital and spin coupling coefficients, and employing a Newton Raphson-
type scheme, analogously to MCSCF methods (Section 4.6). The non-orthogonal orbitals have the
disadvantage that it is difficult to add dynamical correlation on top of an SCVB wave function by
perturbation or coupled cluster theory, although (non-orthogonal) CI methods are straightfor-
ward. SCVB+CI approaches may also be used to describe excited states, analogously to MO-CI
methods.

It should be emphasized that the results obtained from an [N,N]-CASSCF and a corresponding
N-electron SCVB wave function (or SCVB+CI and MRCI) are virtually identical. The difference is
in the way the results can be analyzed. Molecules in the SCVB picture are composed of atoms held
together by bonds, where bonds are formed by (singlet) coupling of the electron spins between (two)
overlapping orbitals. These orbitals are strongly localized, usually on a single atom, and are basically
atomic orbitals slightly distorted by the presence of the other atoms in the molecule. The VB descrip-
tion of a bond as the result of two overlapping orbitals is in contrast to the MO approach, where a
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bond between two atoms arises as a sum over (small) contributions from many delocalized molecular
orbitals. Furthermore, the weights of the different spin couplings in an SCVB wave function carries
a direct analogy with chemical concepts such as “resonance” structures.

The SCVB method is a valuable tool for providing insight into the problem. This is to a certain extent
also possible from an MO-type wave function by localizing the orbitals or by analyzing the natural
orbitals (see Sections 10.4 and 10.5 for details). However, there is no unique method for producing
localized orbitals and different methods may give different orbitals. Natural orbitals are analogous to
canonical orbitals delocalized over the whole molecule. The SCVB orbitals, by contrast, are uniquely
determined by the variational procedure, and there is no freedom to further transforming them by
making linear combinations without destroying the variational property.

The primary feature of SCVB is the use of non-orthogonal orbitals, which allows a much more com-
pact representation of the wave function. An MO-CI wave function of a certain quality may involve
many thousands of Slater determinants, while a similar-quality VB wave function may be written
as only a handful of “resonating” VB structures. Furthermore, the VB orbitals, and spin couplings,
of a C—H bond in, say, propane and butane are very similar, in contrast to the vastly different MO
descriptions of the two systems. The VB picture is thus much closer to the traditional descriptive
language used with (organic) molecules composed of functional groups. The widespread availability
of programs for performing CASSCF calculations, and the fact that CASSCF calculations are com-
putationally more efficient owing to the orthogonality of the MOs, have prompted developments of
schemes for transforming CASSCF wave functions to VB structures, denoted CASVB.5, 7 A corre-
sponding procedure using orthogonal orbitals (which introduce large weights of ionic structures)
has also been reported.8

. Generalized Valence Bond Theory

The SCVB wave function allows all possible spin couplings to take place and has no restrictions on
the form of the orbitals. The Generalized Valence Bond (GVB) method can be considered as a reduced
version of the full problem where only certain subsets of spin couplings are allowed.9 For a typical
case of a singlet system, the GVB method has two (non-orthogonal) orbitals assigned to each bond,
and each pair of electrons in a bond are required to couple to a singlet pair. The coupling of such
singlet pairs will then give the overall singlet spin state. This is known as Perfect Pairing (PP) and is
one of the many possible spin coupling schemes; such two-electron two-orbital pairs are called gem-
inal pairs. Just as an orbital is a wave function for one electron, a geminal is a wave function for two
electrons. In order to reduce the computational problem, the Strong Orthogonality (SO) condition
can furthermore be imposed on the GVB wave function. This means that orbitals belonging to dif-
ferent pairs are required to be orthogonal. While the perfect pairing coupling typically is the largest
contribution to the full SCVB wave function, the strong orthogonality constraint is often a quite poor
approximation, and may lead to artefacts. For diazomethane, for example, the SCVB wave function
is dominated (91%) by the PP coupling, leading to the conclusion that the molecule has essentially
normal C=N and N=N 𝜋-bonds, perpendicular to the plane defined by the CH2 moiety.10 Taking
into account also the in-plane bonding, this suggest that diazomethane is best described with a triple
bond between the two nitrogens, thereby making the central nitrogen “hypervalent”, as illustrated in
Figure 8.5.

There are strong overlaps between the VB orbitals; the smallest overlap (between the carbon
and terminal nitrogen) is ∼0.4 and that between the two orbitals on the central nitrogen is ∼0.9.
The GVB-SOPP approach, however, forces these geminal pairs to be orthogonal, leading to the
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Figure . A representation of the SCVB wave function for diazomethane.

Figure . A representation of the GVB wave function for diazomethane.

conclusion that the electronic structure of diazomethane has a very strong diradical nature, as illus-
trated in Figure 8.6.
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The central theme in relativity is that the speed of light, c, is constant in all inertia frames (coordinate
systems that move with respect to each other). Augmented with the requirement that physical laws
should be identical in such frames, this has as a consequence that time and space coordinates become
“equivalent”. A relativistic description of a particle thus requires four coordinates, three space and one
time coordinate.1–7 The latter is usually multiplied by c to have units identical to the space variables.

A change between different coordinate systems can be described by a Lorentz transformation,
which may mix space and time coordinates. The postulate that physical laws should be identical in
all coordinate systems is equivalent to the requirement that equations describing the physics must
be invariant (unchanged) to a Lorentz transformation. Considering the time-dependent Schrödinger
Equation (9.1), it is clear that it is not Lorentz invariant since the derivative with respect to space
coordinates is of second order, but the time derivative is only first order. The fundamental structure
of the Schrödinger equation is therefore not relativistically correct:

[

− 1
2m

(
𝜕2

𝜕x2 + 𝜕2

𝜕y2 + 𝜕2

𝜕z2

)

+ V
]

Ψ = i𝜕Ψ
𝜕t

(9.1)

For use below, we have elected here to explicitly write the electron mass as m, although it is equal to
one in atomic units.

One of the consequences of the constant speed of light is that the mass of a particle, which moves
at a substantial fraction of c, increases over the rest mass m0:

m = m0

(√

1 − v2

c2

)−1

(9.2)

The energy of a 1s-electron in a hydrogen-like system (one nucleus and one electron) is −1∕2Z2,
and classically this is equal to minus the kinetic energy, 1∕2mv2, owing to the virial theorem
(E = −T = 1∕2V). In atomic units (m = 1) the classical velocity of a 1s-electron is thus Z. The speed of
light in atomic units is 137.036, and it is clear that relativistic effects cannot be neglected for the core
electrons in atoms from the lower part of the periodic table. For atoms with large Z, the 1s-electrons
are relativistic and thus heavier, which has the effect that the 1s-orbital shrinks in size, by the same
factor as the mass increases (Equation (9.2)). In order to maintain orthogonality, the higher s-orbitals
also contract. This provides a more effective screening of the nuclear charge for the higher angular
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momentum orbitals, which consequently increase in size. For p-orbitals the spin–orbit interaction,
which mixes s- and p-orbitals, counteracts the inflation. The net effect is that p-orbitals are relatively
unaffected in size, while d- and f-orbitals become larger and more diffuse.

In terms of total energy, the relativistic correction becomes comparable to the correlation energy
already for Z∼10, but since the majority of the relativistic effects are concentrated in the core orbitals,
there is a large error cancellation for relative energies. Relativistic effects for geometries and energet-
ics are normally negligible for the first four rows in the periodic table (up to Kr, Z = 36, corresponding
to a “mass correction” of 1.04), the fifth row represents an intermediate case, while relativistic cor-
rections are necessary for the sixth and seventh rows, and for lanthanide/actinide metals. For effects
involving electron spin (e.g. spin–orbit coupling), which are purely relativistic in origin, there is no
non-relativistic counterpart, and the “relativistic correction” is of course everything.

Although an in-depth treatment of relativistic effects is outside the scope of this book, it may be
instructive to point out some of the features and problems in a relativistic quantum description of
atoms and molecules. Furthermore, we will require some operators derived from a relativistic treat-
ment for calculating molecular properties in Chapter 11.

. The Dirac Equation

For a free electron, Dirac proposed that the (time-dependent) Schrödinger equation should be
replaced by

[cα ⋅ p + βmc2]Ψ = i𝜕Ψ
𝜕t

(9.3)

Here α and β are 4 × 4 matrices, cα is the relativistic velocity operator and α can be written in terms
of the three Pauli 2 × 2 spin matrices σ and β in terms of a 2 × 2 unit matrix I:

αx,y,z =
(

0
σx,y,z

σx,y,z
0

)

, β =
(

I
0

0
−I

)

σx =
(

0
1

1
0

)

, σy =
(

0
i

−i
0

)

, σz =
(

1
0

0
−1

)

, I =
(

1
0

0
1

) (9.4)

Except for a factor of 1∕2, the σx,y,z matrices can be viewed as representations of the sx, sy and sz spin
operators, respectively, when the 𝛼 and 𝛽 spin functions are taken as (1,0) and (0,1) vectors:

sz = 1
2σz

sz

(
1
0

)

= 1
2

(
1
0

)

; sz

(
0
1

)

= − 1
2

(
0
1

) (9.5)

The 𝛼 function is an eigenfunction of the sz operator with an eigenvalue of 1∕2 and the 𝛽 function
similarly has an eigenvalue of −1∕2.

The Dirac equation is of the same order in all variables (space and time), since the momentum
operator p (= −i∇) involves a first-order differentiation with respect to the space variables. It should
be noted that the free electron rest energy in Equation (9.3) is mc2, equal to 0.511 MeV, while this
situation is defined as zero in the non-relativistic case. The zero point of the energy scale is there-
fore shifted by 5.11 × 105 eV, a large amount compared with the binding energy of 13.6 eV for a
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Figure . Non-relativistic and relativistic solutions. The energy scale of the discrete states is exaggerated relative to
the energy separation of the continuum states.

hydrogen atom. The two (relativistic and non-relativistic) energy scales may be aligned by subtract-
ing the electron rest energy, which corresponds to replacing the β matrix in Equation (9.3) by β′:

β′ =
(

0
0

0
−2I

)

(9.6)

The Dirac equation corresponds to satisfying the requirements of special relativity in connection
with the quantum behavior of the electron. Special relativity considers only systems that move with
a constant velocity with respect to each other, which can hardly be considered a good approximation
for the movement of an electron around a nucleus. A relativistic treatment of accelerated systems is
described by general relativity, which is a gravitational theory. For atomic systems, however, the grav-
itational interaction between electrons and nuclei (or between electrons) is insignificant compared
with the electrostatic interaction. Furthermore, a consistent theory describing the quantum aspects
of gravitation has not yet been developed.

The Dirac equation is four-dimensional and the relativistic wave function consequently contains
four components. Two of the degrees of freedom are accounted for by assigning an intrinsic mag-
netic moment (spin), while the other two are interpreted as two different particles, the electron and
positron. The positronic solutions show up as a continuum of “negative” energy states, having ener-
gies below −2mc2, as illustrated in Figure 9.1. Note that the spacing between bound states has been
exaggerated, as the binding energy is of the order of eV while 2mc2 is of the order of MeV.

It is conventional to write the four-component relativistic wave function as two two-component
wave functions, as shown in

Ψ =
⎛
⎜
⎜
⎜
⎝

𝜓1
𝜓2
𝜓3
𝜓4

⎞
⎟
⎟
⎟
⎠

=
(
ΨL
ΨS

)

(9.7)

Here ΨL and ΨS are called the large and small components of the wave function. For electrons
(positive energy solution in Figure 9.1), the large component reduces to the solutions of the
Schrödinger equation (the two components corresponding to the 𝛼 and 𝛽 spin parts) when c → ∞
(the non-relativistic limit) and the small component disappears, thus giving rise to the names. The
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large component, one the other hand, disappears for the negative energy solutions as the momentum
goes to zero.

Solving the Dirac equation for a hydrogen-like atom (one nucleus and one electron, both taken as
point particles) can be done in much the same way as solving the Schrödinger equation, and leads
to four quantum numbers, n, l, j and m, with interdependencies on their allowed values. The n and l
quantum numbers are very similar to the non-relativistic case (n = 1, 2, 3,…, l = 0, 1, 2,…, (n – 1)),
except that l no longer represents the total angular momentum. The total angular momentum
is instead quantified by the j value, which can take on two values, l + 1∕2 and l – 1∕2, except for
l = 0, where only j = 1∕2 is allowed. The j quantum number can be considered as the total angular
momentum obtained by coupling the orbital and spin moments, and this is commonly referred to as
spin–orbit coupling. The m quantum number can in analogy with the non-relativistic case take on
values between –j and j in steps of 1. The orbitals are denoted with the name corresponding to the
l quantum number (s, p, d, …) with j given as a subscript, such as s1∕2

, p1∕2
, p3/2, etc.

. Connections between the Dirac and Schrödinger Equations

9.2.1 Including Electric Potentials

In the presence of an electric potential V (e.g. from nuclei), the time-independent Dirac equation may
be written as follows, where we have again explicitly indicated the electron mass:

[cα ⋅ p + β′mc2 + V]Ψ = EΨ (9.8)

Since α and β′ are block matrices in terms of σ and I, Equation (9.8) can be factored out in two
equations:

c(σ ⋅ p)ΨS + VΨL = EΨL (9.9)
c(σ ⋅ p)ΨL + (−2mc2 + V)ΨS = EΨS (9.10)

Here ΨL and ΨS are (large and small) two-component wave functions that include the 𝛼 and 𝛽 spin
functions. The latter equation can be solved for ΨS:

ΨS = (E + 2mc2 − V)−1c(σ ⋅ p)ΨL (9.11)

The inverse quantity can be factorized as in

(E + 2mc2 − V)−1 = (2mc2)−1
(

1 + E−V
2mc2

)−1
=
(
2mc2)−1 K

K =
(

1 + E−V
2mc2

)−1 (9.12)

Equation (9.11) may then be written as

ΨS = K
σ ⋅ p
2mc

ΨL (9.13)

Equation (9.10) then becomes
[ 1

2m
(σ ⋅ p)K(σ ⋅ p) + (V − E)

]

ΨL = 0 (9.14)

In the non-relativistic limit (c →∞) the K factor is 1, and the first term becomes (σ ⋅ p)(σ ⋅ p). Using
the vector identity (σ ⋅ p)(σ ⋅ p) = p ⋅ p + iσ(p × p), this gives the non-relativistic kinetic energy
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p2/2m, since the vector product of any vector with itself is zero (p × p = 0). The equation for the large
component therefore reduces to the Schrödinger equation:

[
p2

2m
+ V

]

ΨL = EΨL (9.15)

The electron spin is still present in Equation (9.15), since ΨL is a two-component wave function, but
this can trivially be separated out since the operators do not contain any spin dependence.

In the non-relativistic limit the small component of the wave function is given by

ΨS =
σ ⋅ p
2mc

ΨL (9.16)

For a hydrogenic wave function (ΨL ≈ e−Zr), this gives the following equation in atomic units (setting
m = 1):

ΨS ≈ Z
2c

ΨL (9.17)

For a hydrogen atom the small component accounts for only ∼0.4% of the total wave function and
10−3% of the electron density, but for a uranium 1s-electron it is a third of the wave function and
∼10% of the density.

We may obtain relativistic corrections by expanding the K factor in Equation (9.12):

K =
(

1 + E − V
2mc2

)−1
≈ 1 − E − V

2mc2 + ⋅ ⋅ ⋅ (9.18)

This is only valid when E − V ≪ 2mc2; however, all atoms have a region close to the nucleus where
this is not fulfilled (since V →−∞ for r → 0). Inserting (9.18) in (9.14), assuming a Coulomb potential
−Z/r (i.e. V is the attraction to a nucleus), gives. after renormalization of the (large component) wave
function and some rearrangement. the terms shown in

[
p2

2m
+ V −

p4

8m3c2 + Zs ⋅ l
2m2c2r3 + Z𝜋𝛿(r)

2m2c2

]

ΨL = EΨL (9.19)

Equation (9.19) is called the Pauli equation. The first two terms are the usual non-relativistic kinetic
and potential energy operators and the p4 term is called the mass–velocity correction, and is due to
the dependence of the electron mass on the velocity. The next is the spin–orbit term (s is the electron
spin and l is the angular momentum operator r × p), which corresponds to an interaction of the elec-
tron spin with the magnetic field generated by the movement of the electron. The last term involving
the δ function is the Darwin correction, which corresponds to a correction that can be interpreted as
the electron making a high-frequency oscillation around its mean position, sometimes referred to as
Zwitterbewegung. The mass–velocity and Darwin corrections are often collectively called the scalar
relativistic corrections. Since they have opposite signs, they do to a certain extent cancel each other.
Methods incorporating (only) scalar relativistic effects can be classified as one-component meth-
ods, since the spin-dependence can be separated out analogous to non-relativistic methods. Methods
including electron spin, as for example the spin-orbit effect, however, are inherently two-component
methods since the spin and angular momentum magnetic moments are mixed. An approximate way
of including scalar relativistic effects on the valence orbitals is by using relativistic effective core
potentials (Section 5.12).

Owing to the divergence of the K expansion near the nuclei, the mass–velocity and Darwin cor-
rections can only be used as first-order corrections. Inclusion of such operators in a variational sense
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will result in a collapse of the wave function. An alternative method is to partition Equation (9.12) as
in Equation (9.20), which avoids the divergence near the nucleus:

(E + 2mc2 − V)−1 = (2mc2 − V)−1
(

1 + E
2mc2−V

)−1
=
(
2mc2 − V

)−1 K′

K′ =
(

1 + E
2mc2 −V

)−1 (9.20)

In contrast to Equation (9.18), the factor E/(2mc2 − V) is always smaller than 1 for energies less than
2mc2, and K′ may be expanded in powers of E/(2mc2 − V), analogously to Equation (9.17). Keep-
ing only the zeroth-order term (i.e. setting K′ = 1) gives the Zeroth-Order Regular Approximation
(ZORA) method:8

[
c2p2

2mc2 − V
+ 2c2

(
2mc2 − V

)2 − Zs ⋅ I
r3 + V

]

ΨL = EΨL (9.21)

Note that in this case the spin–orbit coupling is already included in zeroth order. Including the first-
order term from an expansion of K′ defines the First-Order Regular Approximation (FORA) method.
A disadvantage of these methods is that they are not gauge-invariant, that is changing the zero-point
for the potential energy does not lead to an identical change in the zero-point for the energy, and this
may be problematic in calculating molecular binding energies.8

9.2.2 Including Both Electric and Magnetic Potentials

The presence of a magnetic field can be included in the so-called minimal coupling by addition of a
vector potential A to the momentum operator p, forming a generalized momentum operator π, which
for an electron (charge of −1) is given by

π = p + A (9.22)

The magnetic field is defined as the curl of the vector potential:

B = ∇ × A (9.23)

For an external magnetic field, it is conventional to write the vector potential as in

A(r) = 1
2 B × (r − RG) (9.24)

Here RG is the gauge origin, that is the “zero” point for the vector potential. The gauge origin is often
taken as the center of mass for the system, but this is by no means unique. The results from an exact
calculation will be independent of RG but, for approximate calculations, this is not guaranteed, and
the results may thus depend on where the gauge origin is chosen. Such gauge-dependent properties
are clearly undesirable, since different results can be generated by selecting different (arbitrary) gauge
origins.

With the generalized momentum operator π replacing p, the time-independent Dirac equation
may be separated analogously to the procedure in Section 8.2.1 to give the equivalent of Equation
(9.14):

[ 1
2m

(σ ⋅ π)K(σ ⋅ π) + (V − E)
]

ΨL = 0 (9.25)
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Taking the non-relativistic limit corresponding to K = 1 gives (σ ⋅ π)(σ ⋅ π) for the first term. Using
again the vector identity (σ ⋅ π)(σ ⋅ π) = π ⋅ π + iσ(π × π), this may be written as in

[ 1
2m

(π ⋅ π + iσ ⋅ (π × π)) + V
]

ΨL = EΨL (9.26)

In contrast to the situation without a magnetic field, the latter vector product no longer disappears.
The π × π term can be expanded by inserting the definition of π from Equation (9.22):

π × π = (p + A) × (p + A)

= p × p + p × A + A × p + A × A
(9.27)

The first and last terms are zero (since a × a = 0). With p = −i∇ the other two terms yield

(p × A + A × p)Ψ = −i∇ × (AΨ) − iA × (∇Ψ)

= −i(∇ × A)Ψ − i(∇Ψ) × A − iA × (∇Ψ)
(9.28)

The two last terms cancel (since a × b = −b × a) and the curl of the vector potential is the magnetic
field (Equation (9.23)). The final result is given in

[
π2

2m
+ V + σ ⋅ B

2m

]

ΨL = EΨL (9.29)

The σ ⋅ B term is called the (spin) Zeeman interaction, and represents the interaction of an (external)
magnetic field with the intrinsic magnetic moment associated with the electron. As noted in Equation
(9.5), σ represents the spin operator (except for a factor of 1∕2) and the σ ⋅ B/2m interaction can (in
atomic units) also be written as s ⋅ B, with s being the electron spin operator. In a more refined treat-
ment, by including quantum field corrections, it turns out that the electron magnetic moment is not
exactly equal to the spin. It is conventional to write the interaction as ge𝜇Bs ⋅ B, where the Bohr mag-
neton 𝜇B (= eℏ∕2m) has a value of 1∕2 in atomic units and the electronic g-factor ge is approximately
equal to 2.0023 (the deviation from the value of 2 (exactly) is due to quantum field fluctuations).

Although electron spin is often said to arise from relativistic effects, the above shows that spin nat-
urally arises in the non-relativistic limit of the Dirac equation. It may also be argued that electron
spin is actually present in the non-relativistic case, as the kinetic energy operator p2/2m is mathe-
matically equivalent to (σ ⋅ p)2/2m. If the kinetic energy is written as (σ ⋅ p)2/2m in the Schrödinger
Hamiltonian, then electron spin is present in the non-relativistic case, although it would only have
consequences in the presence of a magnetic field.

The Dirac equation automatically includes effects due to electron spin, while this must be
introduced in a more or less ad hoc fashion in the Schrödinger equation (the Pauli principle).
Furthermore, once the spin–orbit interaction is included, the total electron spin is no longer a “good”
quantum number: an orbital no longer contains an integer number of 𝛼 and 𝛽 spin functions. The
proper quantum number in relativistic theory is the total angular momentum quantified by the j
quantum number obtained by vector addition of the orbital and spin moments.

Turning now to the π2 term in Equation (9.29), it can, with the use of Equation (9.22), be expanded
into

π2 = (p + A)2 = p2 + p ⋅ A + A ⋅ p + A2 (9.30)

The p2 gives the usual (non-relativistic) kinetic energy operator. Since p = −i∇, the p ⋅ A term gives

(p ⋅ A)Ψ = −i(∇ ⋅ A)Ψ = −iA ⋅ (∇Ψ) − iΨ(∇ ⋅ A) (9.31)
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The Coulomb gauge is defined by ∇ ⋅ A = 0, and in this gauge we have p ⋅ A = A ⋅ p. The two terms
involving A in Equation (9.30) can be evaluated by inserting the expression for the vector potential
(9.24):

A ⋅ p =
(

1
2 B × (r − RG)

)

⋅ p

= 1
2 B ⋅ (r − RG) × p

= 1
2 B ⋅ LG

(9.32)

A2 =
(

1
2 B × (r − RG)

)

⋅
(

1
2 B × (r − RG)

)

= 1
4
(

B2 ⋅ (r − RG)
)2 −

(
B ⋅ (r − RG)

)2
(9.33)

Here the vector identities a× b ⋅ c= a ⋅ b× c and (a× b) ⋅ (c×d)= (a ⋅ c)(b ⋅ d)− (a ⋅ d)(c ⋅ b) have been
used. In addition to the Zeeman term for electron spin (Equation (9.29)), the presence of a magnetic
field introduces two new terms, being linear and quadratic in the field. The linear operator in Equa-
tion (9.32) represents an (orbital) Zeeman-type interaction of the magnetic field with the magnetic
moment generated by the movement of the electron, as described by the angular momentum opera-
tor LG, while the quadratic term in Equation (9.33) gives rise to a component of the magnetizability
in a perturbation treatment, as discussed in Section 11.8.7.

. Many-Particle Systems

A fully relativistic treatment of more than one particle would have to start from a full QED treatment
of the system (Chapter 1) and perform a perturbation expansion in terms of the radiation frequency.
There is no universally accepted way of doing this, and a full relativistic many-body equation has not
yet been developed. For many-particle systems it is assumed that each electron can be described by
a Dirac operator (cα ⋅ π + β′mc2) and the many-electron operator is a sum of such terms, in analogy
with the kinetic energy in non-relativistic theory. Furthermore, potential energy operators are added
to form a total operator equivalent to the Hamiltonian operator in non-relativistic theory. Since this
approach gives results that agree with experiments, the assumptions appear justified.

The Dirac operator incorporates relativistic effects for the kinetic energy. In order to describe
atomic and molecular systems, the potential energy operator must also be modified. In non-
relativistic theory, the potential energy is given by the Coulomb operator:

V(r12) =
q1q2
r12

(9.34)

According to this equation, the interaction between two charged particles depends only on the dis-
tance between them, but not on time. This cannot be correct when relativity is considered, as it implies
that the attraction/repulsion between two particles occurs instantly over the distance r12, violating
the fundamental relativistic principle that nothing can move faster than the speed of light. The inter-
action between distant particles must be “later” than between particles that are close, and the poten-
tial is consequently “retarded” (delayed). The relativistic interaction requires a description, Quantum
ElectroDynamics (QED), which involves the exchange of photons between charged particles. The
photons travel at the speed of light and carry the information equivalent to the classical Coulomb
interaction. The relativistic potential energy operator becomes complicated and cannot be written
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in closed form. For actual calculations, it may be expanded in a Taylor series in 1/c and, for chem-
ical purposes, it is normally only necessary to include terms up to 1/c2.9 In this approximation, the
potential energy operator for the electron–electron repulsion is given by

Vee(r12) = 1
r12

− 1
r12

[

α1 ⋅ α2 −
(α1 × r12)(α2 × r12)

2r2
12

]

(9.35)

Note that the subscript on the α-matrices refers to the particle, and α here includes all of the αx,
αy and αz components in Equation (9.4). The first correction term in the square brackets is called
the Gaunt interaction and the whole term in the square brackets is the Breit interaction. The Dirac
matrices appear since they represent the velocity operators in a relativistic description. The Gaunt
term can be considered as a magnetic interaction (spin), but the whole Breit term represents a retar-
dation effect. Equation (9.35) is more often written in the form shown below, obtained by employing
the vector identity (a × b) ⋅ (c × d) = (a ⋅b)(c ⋅d) – (a ⋅d)(b ⋅ c):

VCoulomb−Breit
ee (r12) = 1

r12
− 1

2r12

[

α1 ⋅ α2 +
(α1 ⋅ r12)(α2 ⋅ r12)

r2
12

]

(9.36)

Relativistic corrections to the nuclear–electron attraction (Vne) are of order 1/c3 (owing to the much
smaller velocity of the nuclei) and are normally neglected.

An expansion in powers of 1/c (or, equivalently, in powers of the fine-structure constant 𝛼 = 1/c in
atomic units) is a standard approach for deriving relativistic correction terms. Taking into account
electron (s) and nuclear spins (I), and indicating explicitly an external electric potential by means of
the field (F = −∇𝜙 or −∇𝜙 − 𝜕A/𝜕t if time-dependent), an expansion up to order 1/c2 of the Dirac
Hamiltonian including the Coulomb–Breit potential gives the following set of operators,10 where
the QED correction to the electron spin has been introduced by means of the ge𝜇B factor. Note that
many of these operators arise from the minimal coupling of the magnetic field via the generalized
momentum operator, as discussed in more detail in Section 11.8.

The mass–velocity correction due to the velocity-dependent electron mass, Hmv
e , which also is

present in Equation (9.19), is

Hmv
e = − 1

8m3c2

Nelec∑

i=1
p4

i (9.37)

One-electron operators arising from interaction with external fields are

HZeeman
e = ge𝜇B

Nelec∑

i=1

[

si ⋅ Bi −
1

2mc2 (si ⋅ Bi)p2
i

]

(9.38)

HSO
e =

ge𝜇B
4mc2

Nelec∑

i=1

[
si ⋅ (Fi × pi − pi × Fi)

]
(9.39)

HDarwin
e = 1

8m2c2

Nelec∑

i=1
∇ ⋅ Fi (9.40)

Here Fi and Bi indicate the (electric and magnetic) fields at the position of particle i. The HZeeman
e has

the s ⋅ B term from Equation (9.29) and a relativistic correction. HSO
e and HDarwin

e are spin–orbit and
Darwin-type corrections with respect to an external electric field.
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Two electron operators:

HSO
ee = −

ge𝜇B
2mc2

Nelec∑

i=1

Nelec∑

j≠i

si ⋅ (rij × pi)

r3
ij

(9.41)

HSOO
ee = −

ge𝜇B
mc2

Nelec∑

i=1

Nelec∑

j≠i

si ⋅ (rij × pj)

r3
ij

(9.42)

HSS
ee =

g2
e𝜇

2
B

2c2

Nelec∑

i=1

Nelec∑

j≠i

(
si ⋅ sj

r3
ij

− 3
(si ⋅ rij)(rij ⋅ sj)

r5
ij

− 8𝜋
3

(si ⋅ sj)𝛿(rij)

)

(9.43)

HOO
ee = − 1

4m2c2

Nelec∑

i=1

Nelec∑

j≠i

(
pi ⋅ pj

rij
+

(pi ⋅ rij)(rij ⋅ pj)

r3
ij

)

(9.44)

HDarwin
ee = − 𝜋

2m2c2

Nelec∑

i=1

Nelec∑

j≠1
𝛿(rij) (9.45)

The sums run over all values of i and j, excluding the i = j term, and there is consequently a fac-
tor of 1∕2 included to avoid overcounting. HSO

ee is a spin–orbit operator, describing the interaction of
the electron spin with the magnetic field generated by its own movement, as given by the angular
momentum operator rij × pi. HSOO

ee is a spin–other-orbit operator, describing the interaction of an
electron spin with the magnetic field generated by the movement of the other electrons, as given by
the angular momentum operator rij × pj. HSS

ee and HOO
ee are spin–spin and orbit–orbit terms, account-

ing for additional magnetic interactions, where the orbit–orbit term comes from the Breit correction
to Vee (Equation (9.36)). The (two-electron) Darwin interaction HDarwin

ee contains a δ-function, which
arise from the divergence of the field (∇ ⋅ F) from the (electron–electron) potential energy operator,
that is ∇ ⋅ (∇(1/r)) =−4𝜋δ(r). The spin–spin interaction HSS

ee also has a δ-function, which comes from
taking the curl of the vector potential associated with the magnetic dipole corresponding to the elec-
tron spin. A mathematical reformulation leads to a term involving the divergence of the r/r3 operator,
giving ∇ ⋅ (r/r3) = (4𝜋/3)𝛿(r). Such terms are often called contact interactions, since they depend on
the two particles being at the same position (r = 0). In the spin–spin case, it is normally called the
Fermi-contact (FC) term.

Operators involving one nucleus and one electron:

HSO
ne =

ge𝜇B
2mc2

Nelec∑

i=1

Nnuclei∑

A=1
ZA

si ⋅ (riA × pi)
r3

iA
(9.46)

HPSO
ne =

𝜇N
mc2

Nelec∑

i=1

Nnuclei∑

A=1
gA

IA ⋅ (riA × pi)
r3

iA
(9.47)

HSS
ne = −

ge𝜇B𝜇N
c2

Nelec∑

i=1

Nnuclei∑

A=1
gA

(
si ⋅ IA

r3
iA

− 3
(si ⋅ riA)(riA ⋅ IA)

r5
iA

− 8𝜋
3

(si ⋅ IA)𝛿(riA)

)

(9.48)

HDarwin
ne = 𝜋

2m2c2

Nelec∑

i=1

Nnuclei∑

A=1
ZA𝛿(riA) (9.49)
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The HSO
ne operator is the one-electron part of the spin–orbit interaction, while the HSO

ee and HSOO
ee

operators in Equation (9.36) define the two-electron part. The one-electron term dominates and the
two-electron contribution is often neglected or accounted for approximately by introducing an effec-
tive nuclear charge in HSO

ne (corresponding to a screening of the nucleus by the electrons). The effect
of the spin–orbit operators is to mix states having different total spin, as, for example, singlet and
triplet states. The one-electron Darwin term in Equation (9.49) similarly dominates the two-electron
term in Equation (9.45) by typically two orders of magnitude.

The nucleus–electron equivalent of the electron–electron spin–other-orbit operator in Equation
(9.42) splits into two contributions, one involving the interaction of the electron spin with the mag-
netic field generated by the movement of the nuclei and one describing the interaction of the nuclear
spin with the magnetic field generated by the movement of the electrons. Only the latter survives
within the Born–Oppenheimer approximation, and it is normally denoted the Paramagnetic Spin–
Orbit (PSO) operator. The nucleus–electron spin–spin term is analogous to that in Equation (9.43),
while the term describing the orbit–orbit interaction disappears owing to the Born–Oppenheimer
approximation. The spin–orbit and (one-electron) Darwin terms are the same as given in Equation
(9.19), except for the quantum field correction factor of ge𝜇B.

All of the terms in Equations (9.37) to (9.49) may be used as perturbation operators in connection
with non-relativistic theory,11 as discussed in more detail in Chapter 11. It should be noted, how-
ever, that some of the operators are inherently divergent and should not be used beyond a first-order
perturbation correction.

. Four-Component Calculations

Although relativistic effects can be included by perturbative operators describing corrections to the
non-relativistic wave function, this rapidly becomes cumbersome if higher-order corrections are
required, and it is then perhaps more satisfying to include relativistic effects by solving the Dirac
equation directly. The simplest approximate wave function is a single Slater determinant constructed
from four-component one-electron functions, called spinors, having large and small components.
The spinors are the relativistic equivalents of the spin-orbitals in non-relativistic theory. With such
a wave function, the relativistic equation corresponding to the Hartree–Fock equation is the Dirac–
Fock equation, which in its time-independent form (setting π = p and m = 1 in Equation (9.8)) can
be written as

[cα ⋅ p + β′c2 + V]Ψ = EΨ (9.50)

The requirement that the wave function energy should be stationary with respect to a variation in
the orbitals results in an equation that is formally the same as in non-relativistic theory, FC = SC𝜀
(Equation (3.54)). However, the presence of solutions for the positronic states means that the desired
solution is no longer the global minimum (Figure 9.1) and care must be taken that the procedure
does not lead to variational collapse. The choice of a proper basis set for expanding the spinors is
an essential component in preventing this. Since practical calculations necessarily use basis sets that
are far from complete, the large and small component basis sets must be properly balanced. The
large component corresponds to the normal non-relativistic wave function and has similar basis set
requirements. The small component basis set is chosen to obey the kinetic balance condition, which
follows from Equation (9.16):

𝜒 small =
σ ⋅ p

2c
𝜒 large (9.51)
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The use of kinetic balance ensures that the relativistic solution smoothly reduces to the non-
relativistic wave function as c is increased. The presence of the momentum operator in Equation
(9.51) means that the small component basis set must contain functions that are derivatives of the
large component basis set, making the former roughly twice the size of the latter. This means that
there are ∼8 times as many large–small two-electron integrals and ∼16 times as many small–small
integrals than there are large–large-type integrals. A relativistic calculation thus requires roughly 25
times as many two-electron integrals compared with a non-relativistic calculation.

When the Dirac operator is invoked, the point charge model of the nucleus also becomes prob-
lematic. For a non-relativistic hydrogen atom, the orbitals have a cusp (discontinuous derivative) at
the nucleus. However, the relativistic solutions have a singularity. A singularity is much harder to
represent in an approximate treatment (such as an expansion in a Gaussian basis) than a cusp. Con-
sequently, a (more realistic) finite-size nucleus is often used in relativistic methods. A finite nucleus
model removes the singularity of the orbitals, which now assume a Gaussian-type behavior within
the nucleus. Neither experiments nor theory, however, provide a good model for how the positive
charge is distributed within the nucleus. The wave function and energy will of course depend on
the exact form used for describing the nuclear charge distribution. A popular choice is either a uni-
formly charged sphere, where the radius is proportional to the nuclear mass to the 1/3 power, or a
Gaussian charge distribution (which facilitates the calculation of the additional integrals) with the
exponent depending on the nuclear mass. Note that this implies that the energy (and derived prop-
erties) depends on the specific isotope, not just the atomic charge, that is the results for, say, 81Br will
be (slightly) different from 79Br. The difference between a finite and a point charge nuclear model for
an atom in the lower part of the periodic table is large in terms of total energy (∼1 au), but the differ-
ence due to different finite nucleus models is roughly two orders of magnitude smaller. For valence
properties, any “reasonable” model gives essentially the same results.

. Two-Component Calculations

Equations (9.13) and (9.14) show that the large and small components of the four-component wave
function can formally be separated by means of the K operator, but this is not a practical approach
since K depends on the energy (Equation (9.12) and is thus different for each energy solution and
furthermore depends on its own eigenvalue. Consider the one-electron Dirac Hamiltonian in the
following equation, where the α matrix in Equation (9.4) contains off-diagonal σ elements that couple
the large and small components:

HD = cα ⋅ p + β′mc2 + V =
(

V cσ ⋅ p
cσ ⋅ p V − 2mc2

)

(9.52)

The goal of so-called two-component methods is to decouple the large and small components by an
energy-independent unitary transformation:12

H′
D = UHDU† =

(
hL 0
0 hS

)

(9.53)

The desired positive (electronic) energy states in Figure 9.1 are described by (only) the hL operator
while the negative (positronic) energy states are described by (only) hS. The wave function is corre-
spondingly transformed and only the transformed large component Ψ′

L needs to be considered:

Ψ′ = UΨ = U
(
ΨL
ΨS

)

=

(
Ψ′

L
Ψ′

S

)

(9.54)

iranchembook.ir/edu



Relativistic Methods 

Although V in Equation (9.52) contains both one- and two-electron (Vne and Vee) terms, essen-
tially all commonly used methods consider only the one-electron part corresponding to the
nucleus–electron attraction.

Neglecting the transformed small component wave function means that the calculation of all large–
small and small–small integrals is avoided. Since the basis set required for describing the small com-
ponent wave function typically is twice the size of the basis set for describing the large component
wave function, this represents a major computational saving. Furthermore, all matrix operations
depending on the size of the basis set become similarly reduced.

The unitary transformation can be parameterized by a generalization of the connection in Equation
(9.13) between the small and large components in terms of an energy-independent X operator:

ΨS = XΨL (9.55)

The U transformation can be written as follows, where the square root factors ensure normalization:

U =
⎛
⎜
⎜
⎜
⎝

1
√

1+X†X
X†

√
1+X†X

−X
√

1+XX†
1

√
1+XX†

⎞
⎟
⎟
⎟
⎠

(9.56)

Using the transformation in Equation (9.56) on the Dirac equation in Equation (9.52) and requiring
that the off-diagonal elements vanish, leads to the following equation for the X operator ([X,V] being
the commutator = XV – VX):

cXσ ⋅ pX − cσ ⋅ p + [X, V] + 2mc2X = 0 (9.57)

Unfortunately no closed energy-independent form for the X operator has been discovered so far.
In so-called eXact 2-Component (X2C) methods, the X operator is constructed from Equation
(9.55) or Equation (9.57) as a matrix representation in a finite basis set from solutions of the full
four-component wave function, and this allows construction of the exact (within the limitations of
the basis set) unitary transformation in Equation (9.56). Although solving the full four-component
Dirac equation in order to arrive at a two-component equation appears counterintuitive; the key
point is that within the approximation of only including the one-electron potential energy operator,
the four-component Dirac equation only includes one-electron terms and is relatively undemanding
to solve. The X2C transformed Hamiltonian can then be used in subsequent steps involving two-
electron terms, for example for solving the Dirac–Fock equation, which usually is computationally
more demanding than solving the one-electron four-component Dirac equation.

For a free particle (V = 0) the unitary transformation that diagonalizes the Dirac Hamiltonian is
given as follows, which is known as the Foldy–Wouthuysen transformation:13

U0 = eβα⋅ p
|p| 𝜃 ; tan 2𝜃 =

|p|
m

(9.58)

In terms of the following abbreviations:

Ep =
√

p2c2 + m2c4 ; Ap =

√
Ep + mc2

2Ep
; Rp =

cα ⋅ p
Ep + mc2 (9.59)

the Foldy–Wouthuysen transformation can be written as in

U0 = Ap(1 + βRp) (9.60)

In Douglas–Kroll–Hess (DKH) methods, the unitary transformation is written as a sequence of uni-
tary transformations (U = ⋅⋅⋅ U2U1U0), which eliminates the off-diagonal elements coupling the large
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and small components to higher and higher orders in the potential V.14, 15 The U0 transformation is
done using Equation (9.60) for a free particle and yields the DKH1 Hamiltonian:

HDKH1 = U0HDU†
0 =

(
Ep 0

0 −Ep − 2mc2

)

+

(
Ap(V + RpVRp)Ap Ap[V, Rp]Ap

−Ap[V, Rp]Ap Ap(V + RpVRp)Ap

)

(9.61)

The implicit approximation in the DKH approach is to use only the upper-left block element in Equa-
tion (9.61) in the actual calculation. The off-diagonal elements in Equation (9.61) define the U1 oper-
ator, which leads to the DKH2 method, etc., where the number indicates the order by which the
potential is eliminated in the off-diagonal elements. DKH2 represents a computationally inexpen-
sive method for including relativistic effects and accounts for the large majority of relativistic effects,
and including up to fourth-order (DKH4) produces results close to those obtained by solving the full
four-component Dirac equation. Higher-order DKH methods are possible but require a number of
increasingly complicated unitary transformation operators. Carried out to infinite order, the DKH
approach is equivalent to solving the full four-component Dirac equation within a two-component
framework.

The key operational step in the DKH scheme is a formulation of all the operators in the basis where
the p2 operator is diagonal. Since the p2 operator represents twice the non-relativistic kinetic energy,
this basis is obtained by diagonalization of the kinetic energy matrix. The RpVRp term in Equation
(9.61), for example, can in this basis be calculated by scaling the matrix elements by factors involving
twice the eigenvalues of the kinetic energy matrix (p2):

RiVijRj =
Vij

√

p2
i c2 + m2c4 +

√
p2

j c2 + m2c4
(9.62)

If a spin-free DKH calculation (i.e. neglecting spin–orbit effects) is carried out in a standard atom-
centered Gaussian basis set, the computational operations consist of decontraction and orthogo-
nalizing the basis functions, diagonalization of the kinetic energy matrix, construction of the new
one-electron integrals according to Equation (9.62) and back transformation to the original basis
set.16 This requires only a minor additional computational effort compared to the other steps in a
non-relativistic calculation. A corresponding transformation of the two-electron integrals is a signif-
icantly larger task, and is usually ignored.

The elimination of the small component wave function leads to a computational more efficient way
of accounting for relativistic effects than the full four-component approach, but it has an additional
complication when molecular properties are desired. Consider a property P that is calculated as an
expectation value of an operator P over the four-component wave function Ψ:

P = ⟨Ψ|P|Ψ⟩ (9.63)

The same quantity can be obtained from the unitary transformed large-component-only wave func-
tion Ψ′

L, but as seen from the following equation, this involves a transformation of the operator as
well:

P = ⟨Ψ|U†UPU†U|Ψ⟩ = ⟨Ψ′
L|UPU†|Ψ′

L⟩ = ⟨Ψ′
L|P

′|Ψ′
L⟩ (9.64)

The difference in the result between using the P and P′ operators in connection with the Ψ′
L wave

function is called the picture change effect.17 Ignoring the picture change effect and employing the
untransformed U operator in connection with the Ψ′

L wave function can lead to serious errors for
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properties depending on the wave function close to the nuclei. An advantage of X2C methods is
that they readily can avoid picture change effects as the exact unitary transformation is available for
transforming the matrix representation of the operator.

. Relativistic Effects

The differences due to relativity can be described as:

1. Differences in the dynamics due to the velocity-dependent mass of the electron. This alters the size
of the orbitals: s- and p1∕2

-orbitals contract while p3/2-, d- and f-orbitals expand.
2. New (magnetic) interactions in the Hamiltonian operator due to electron spin. The spin–orbit

coupling, for example, destroys the picture of an orbital having a definite spin.
3. Introduction of a “small” component of the wave function, leading to a change in the shape of the

orbitals: relativistic orbitals, for example, do not have nodes since the small component is finite
when the large component is zero.

4. Modification of the potential operator due to the finite speed of light. In the lowest-order approx-
imation, this corresponds to addition of the Breit operator to the Coulomb interaction.

Results from full four-component relativistic calculations are scarce, and the importance of the vari-
ous effects is still sketchy. The Breit (Gaunt) term is believed to be small and many relativistic calcula-
tions neglect this term or include it as a perturbational term evaluated from the converged wave func-
tion. For geometries, the relativistic contraction of the s-orbitals normally means that bond lengths
become shorter.

Working with a full four-component wave function and the Dirac–Fock operator is significantly
more complicated than solving the Roothaan–Hall equations. The spin dependence can no longer
be separated out and the basis set for the small component of the wave function must contain
derivatives of the corresponding large component basis. This means that the basis set becomes
roughly twice as large as in the non-relativistic case for a comparable accuracy. Furthermore, the
presence of magnetic terms (spin) in the Hamiltonian operator means that the wave function
contains both real and imaginary parts, yielding a factor of two in complexity. In practice, a
(single-determinant) Dirac–Fock–Coulomb calculation is about two orders of magnitude more
expensive than the corresponding non-relativistic Hartree–Fock case, although integral screening
and density fitting techniques can be used to improve the efficiency.18 Since heavy atom systems
by definition contain many electrons, even small systems (in terms of the number of atoms) are
demanding. A relativistic calculation for a single radon atom with a DZP quality basis, for example,
is computationally equivalent to a non-relativistic calculation of a C13H28 alkane for a comparable
quality in terms of basis set limitations. To further complicate matters, there are many more systems
that cannot be adequately described by a single-determinant wave function in a relativistic treatment
owing to the spin–orbit coupling, and therefore require MCSCF-type wave functions.

The two-component X2C and Douglas–Kroll–Hess methods are computationally efficient for
including relativistic effects, especially if only scalar relativistic effects are included, but the picture
change effect cannot be ignored for many properties. The DKH approach has the technical advantage
that it can readily be incorporated into programs designed for non-relativistic methods, since it only
requires a few additional integrals and scaling of existing integrals, while the X2C method requires a
program capable of performing a full four-component calculation.

Table 9.1 illustrates the magnitude of relativistic effects for dihydrides of the sixth main group
in the periodic table, where the relativistic calculations are of the Dirac–Fock–Coulomb type (i.e. a
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Table . Properties of the sixth group dihydrides.

Non-relativistic Relativistic correction

Total energy ΔEatom Total energy ΔEatom

System (au) Req (Å) 𝜃eq (◦) (kJ/mol) (au) Req (Å) 𝜃eq (◦) (kJ/mol)

H2O −76.054 0.9391 107.75 643.8 −0.055 −0.00003 −0.07 −1.6
H2S −398.641 1.3429 94.23 514.1 −1.107 −0.00015 −0.09 −4.5
H2Se −2400.977 1.4530 93.14 459.4 −28.628 −0.00260 −0.27 −13.3
H2Te −6612.797 1.6557 92.57 392.5 −182.072 −0.00720 −0.58 −37.7
H2Po −20676.709 1.7539 92.21 350.2 −1555.822 −0.01060 −1.62 −126.8

single-determinant wave function and neglecting the Breit interaction).19 The relativistic correction
to the total energy is significant: even for a second row species such as H2O the difference is 0.055
au (145 kJ/mol). It increases rapidly down the periodic table and reaches ∼7% of the total energy for
H2Po, but the equilibrium distances and angles change only marginally. Similarly, the atomization
energy (for breaking both X H bonds completely) is remarkably insensitive to the large changes in
the total energies. This is of course due to a high degree of cancellation of errors; the major relativistic
correction is associated with the inner-shell electrons of the heavy atom, with the correction being
almost constant for the atom and the molecule. For the lighter elements the effect on the atomization
energies is almost solely due to the spin–orbit interaction in the triplet X atom (e.g. H2O → 3O +
22H), which is not present in the singlet H2X molecule.

Similar results have been obtained for the fourth group tetrahydrides, CH4, SiH4, SbH4, GeH4 and
PbH4, where the Gaunt term has been shown to give corrections typically an order of magnitude less
than the other relativistic changes.20 The general conclusion is that relativistic effects for geometries
and energetics can normally be neglected for molecules containing only up to third row elements
(i.e. up to argon). This is also true for fourth row elements (up to krypton) unless a high accuracy
is required. Although the geometry and atomization energy changes for H2S and H2Se in Table 9.1
may be considered significant, it should be noted that the errors due to incomplete basis sets and
neglect of electron correlation are much larger than the relativistic corrections. The experimental
geometries for H2S and H2Se, for example, are 1.3356 Å and 92.12◦ and 1.4600 Å and 90.57◦, respec-
tively. While the relativistic contraction of the H Se bond is 0.0026 Å, the basis set and electron
correlation error is 0.0096 Å. Relativistic effects typically become comparable to those from elec-
tron correlation at atomic numbers ∼40–50. For molecules involving atoms beyond the fifth row in
the periodic table, however, relativistic effects cannot be neglected for quantitative work. It should
be noted that an approximate inclusion of the scalar relativistic effects, most notably the change in
orbital size, can be modelled by replacing the inner electrons with a relativistic pseudo-potential, as
discussed in Section 5.12.

Relativistic methods can be extended to include electron correlation by methods analogous to
the non-relativistic cases, for example CI, MCSCF, MP and CC, but such methods are much less
developed than for the non-relativistic case.21, 22 Once relativistic effects are considered, one may
thus expand the two-dimensional Figure 4.2 with a third axis describing how accurate the relativistic
effects are treated, for example measured in terms of one-, two- or four-component wave functions,
as illustrated in Figure 9.2.
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Figure . Converging the computational results by increasing the basis set, the amount of electron correlation and
description of the relativistic effects.
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Wave Function Analysis

The previous chapters have focused on various methods for obtaining more or less accurate solutions
to the Schrödinger (or Dirac) equation. The natural “byproduct” of determining the electronic wave
function is the energy. However, there are many other properties that may be derived. Although the
quantum mechanical description of a molecule is in terms of positive nuclei surrounded by a cloud
of negative electrons, chemistry is still formulated as “atoms” held together by “bonds”. This raises
questions such as: given a wave function, how can we define an atom and its associated electron
population, or how do we determine whether two atoms are bonded?

Atomic charge is an example of a property often used for discussing/rationalizing structural and
reactivity differences.1 There are three commonly used methods for assigning atomic charges:

1. Partitioning the wave function in terms of the basis functions (Hilbert space partitioning).
2. Derivation from the electrostatic potential.
3. Partitioning the electron density into atomic domains (physical space partitioning).

. Population Analysis Based on Basis Functions

The electron density 𝜌 (probability of finding an electron) at a certain position r from a single molec-
ular orbital containing one electron is given as the square of the MO ø:

𝜌i(r) = 𝜙2
i (r) (10.1)

Assuming that the MO is expanded in a set of normalized, but non-orthogonal, basis functions 𝜒 ,
this can be written as (see also Equation (3.52)):

𝜙i =
Mbasis∑

𝛼

c𝛼i𝜒𝛼 (10.2)

𝜙2
i =

Mbasis∑

𝛼𝛽

c𝛼ic𝛽i𝜒𝛼𝜒𝛽 (10.3)

Introduction to Computational Chemistry, Third Edition. Frank Jensen.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion Website: http://www.wiley.com/go/jensen/computationalchemistry3
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Integrating and summing over all occupied MOs gives the total number of electrons, Nelec:

Nocc∑

i ∫
𝜙2

i dr =
Nocc∑

i

Mbasis∑

𝛼𝛽

c𝛼ic𝛽i
∫
𝜒𝛼𝜒𝛽dr =

Nocc∑

i

Mbasis∑

𝛼𝛽

c𝛼ic𝛽iS𝛼𝛽 = Nelec (10.4)

We may generalize this by introducing an occupation number (number of electrons), n, for each
MO. For a single-determinant wave function, this will be either 0, 1 or 2, while it may be a fractional
number for a correlated wave function (Section 10.5):

Norb∑

i
ni
∫
𝜙2

i dr =
Mbasis∑

𝛼𝛽

(Norb∑

i
nic𝛼ic𝛽i

)

S𝛼𝛽 =
Mbasis∑

𝛼𝛽

D𝛼𝛽S𝛼𝛽 = Nelec (10.5)

The sum of the product of MO coefficients and the occupation numbers is the density matrix
defined in Equation (3.55), and the sum over the product of the density and overlap matrices ele-
ments is the number of electrons.

The Mulliken Population Analysis uses the D ⋅ S matrix for distributing the electrons into atomic
contributions2 (D ⋅ S is the entrywise product matrix, Section 17.1, i.e. the products of elements, not
elements of the product matrix). A diagonal element D𝛼𝛼S𝛼𝛼 in Equation (10.5) is the number of elec-
trons in the 𝛼 AO and an off-diagonal element D𝛼𝛽S𝛼𝛽 is (half ) the number of electrons shared by AOs
𝛼 and 𝛽 (there is an equivalent D𝛽𝛼S𝛽𝛼 element). The contributions from all AOs located on a given
atom A may be summed up to give the number of electrons associated with atom A. This requires a
decision on how a contribution involving basis functions on different atoms should be divided. The
simplest, and the one used in the Mulliken scheme, is to partition the contribution equally between
the two atoms. The Mulliken electron population is thereby defined as in

𝜌A =
Mbasis∑

𝛼∈A

Mbasis∑

𝛽

D𝛼𝛽S𝛼𝛽 (10.6)

The gross charge on atom A is the sum of the nuclear and electronic contributions:

QA = ZA − 𝜌A (10.7)

The Mulliken method corresponds to a partitioning of the D ⋅ S matrix product, while another
commonly used method is the Löwdin partitioning, which uses the S1∕2 ⋅ D ⋅ S1∕2 matrix for analysis.3
These are mathematically related as shown in

∑
D ⋅ S = Nelec

∑
S1∕2 ⋅ (D ⋅ S) ⋅ S−1∕2 = S1∕2NelecS−1∕2

∑
S1∕2 ⋅ D ⋅ S1∕2 = Nelec

(10.8)

The Löwdin method is equivalent to a population analysis of the density matrix in the orthogonalized
basis set (Section 17.2.3) formed by transforming the original set of functions by S−1/2:

𝜒 ′ = S−1∕2𝜒 (10.9)

The Mulliken and Löwdin methods are just particular examples of a whole family of population
analysis using Sn ⋅ D ⋅ S1−n matrices.4 The Mulliken and Löwdin methods give different atomic
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charges but mathematically there is nothing to indicate which of these partitionings gives the
“best” result. It should be noted, however, that the Löwdin method is not rotationally invariant
if the basis set contains Cartesian polarization functions rather than spherical functions.5 The
lack of rotational invariance means that symmetry-equivalent atoms may end up having different
charges.

There are some common problems with all population analyses based on partitioning the wave
function in terms of basis functions:

1. The diagonal elements may be larger than two. This implies more than two electrons in an orbital,
violating the Pauli principle.

2. The off-diagonal elements may become negative. This implies a negative number of electrons
between two basis functions, which clearly is physically impossible.

3. There is no objective reason for dividing the off-diagonal contributions equally between the two
orbitals. It may be argued that the most “electronegative” (which then needs to be defined) atom
(orbital) should receive most of the shared electrons.

4. A basis function centered on atom A may have a small exponent, such that it effectively describes
the wave function far from atom A. Nevertheless, the electron density is counted as only belonging
to A.

5. The dipole, quadrupole, etc., moments are in general not conserved, that is a set of population
atomic charges does not reproduce the original multipole moments.

The Mulliken scheme suffers from all of the above, while the Löwdin method solves problems 1,
2 and 3. In the orthogonalized basis, all off-diagonal elements are 0 and the diagonal elements are
restricted to values between 0 and 2.

Problem 4 is especially troublesome, as a few examples for the water molecule will demonstrate. A
reasonable description of the wave function can be obtained by a Hartree–Fock single determinant
with a DZP basis set. An equally good wave function (in terms of energy) may be constructed by
having a very large number of basis functions centered on oxygen, and none on the hydrogens (a
DZP quality basis set on both oxygen and hydrogen gives an energy similar to having a 5ZP quality
basis set on oxygen only). The latter will, according to the above population analysis, have a +1
charge on hydrogen and a −2 charge on oxygen. Worse, another equally good wave function may
be constructed by having a large number of basis functions only on the hydrogens. This will give
charges of −4 for each of the hydrogens and +8 for the oxygen. Alternatively, the basis functions can
be taken to be non-nuclear-centered, in which case the electrons are not associated with any nuclei
at all, that is atomic charges of +1 and +8! A less artificial but illustrative example is the WAu12
cluster, where a Mulliken population analysis of the B3LYP/QZP electron density yields a charge of
−78 on W.6

The fundamental problem is that basis functions often describe electron density near a nucleus
other than the one they are centered on. An s-type Gaussian function on oxygen with an exponent
of 0.15, for example, has a maximum in the radial distribution (r2ø2) that peaks at 0.97 Å, that is at
the distance where a hydrogen nucleus is located in an OH group. Atomic charges calculated from
a Mulliken or Löwdin analysis will therefore not converge to a constant value as the size of the basis
set is increased. Enlarging the basis set involves addition of increasingly diffuse basis functions, often
leading to unpredictable changes in the atomic charges. This is a case where a “better” theoretical
procedure is actually counterproductive. Basis function derived population analyses are therefore
most useful for comparing trends in electron distributions, when small- or medium-sized basis sets
(which only contain relatively tight functions) are used.
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The density matrix can also be used for generating information about bond strengths. A quan-
titative measure is given by the Bond Order 𝜌. It was originally defined from bond distances, as
shown by7

𝜌 = e−(r−r0)∕a (10.10)

If the bond orders for ethane, ethylene and acetylene are defined to be 1, 2 and 3, respectively, the a
constant is found to have a value of approximately 0.3 Å. For bond orders less than 1 (i.e. breaking and
forming single bonds), it appears that a value of 0.6 Å is a more appropriate proportionality constant.
A “Mulliken” style measure of the bond strength between atoms A and B can be defined from the
density matrix as (note that this involves elements of the product of the D and S matrices)8

𝜌AB =
Mbasis∑

𝛼∈A

Mbasis∑

𝛽∈B
(DS)𝛼𝛽 (DS)𝛽𝛼 (10.11)

The bond order will, in analogy with Mulliken atomic charges, be basis-set-dependent, with exam-
ples shown in Table 10.3 (section 10.7). The concept can be generalized to higher-order quanti-
ties, that is three-, four-, five-, etc., center bond indices, which are derived from products of DS
elements.9

Population analysis with semi-empirical methods (Chapter 7) requires a special comment. These
methods normally employ the ZDO approximation, that is the overlap S is a unit matrix. The popu-
lation analysis can therefore be performed directly on the density matrix. In some cases, however, a
Mulliken population analysis is performed with D ⋅ S, which requires an explicit calculation of the S
matrix.

. Population Analysis Based on the Electrostatic Potential

One area where the concept of atomic charges is deeply rooted is in force field methods (Chapter 2). A
significant part of the non-bonded interaction between polar molecules is described in terms of elec-
trostatic interactions between fragments having an internal asymmetry in the electron distribution.
The fundamental interaction is between the ElectroStatic Potential (ESP), also called the Molecular
Electrostatic Potential (MEP), generated by one molecule (or fraction thereof ) and the charged par-
ticles of another. The ESP at position r is given as a sum of contributions from the nuclei and the
electron density, where the latter is provided by the electronic wave function:

𝜙ESP(r) =
nuclei∑

A

ZA
|r − RA|

−
∫

𝜌(r′)
|r − r′|

dr′

𝜌(r′) = |Ψ(r′)|2
(10.12)

The first part of the potential is trivially calculated from the nuclear charges and positions, but
the electronic contribution requires knowledge of the wave function. The latter is not available in
force field methods, and the simplest way of modeling the electrostatic potential is to assign partial
charges to each atom (Section 2.2.6). Atomic charges may be treated as regular force field parameters
and assigned values based on fitting to experimental data, such as dipole, quadrupole, octopole, etc.,
moments, but there are rarely enough data to allow a unique assignment.
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A common way of deriving partial atomic charges in force fields is as a set of parameters that in
a least-squares sense generates the best fit to the actual electrostatic potential as calculated from
an electronic wave function and sampled in a number of points surrounding the molecule.10 These
charges reflect a real physical phenomenon, the ESP, and can be used for analysis purposes as well.
The computational problem can be formulated as minimization of an error function (Section 13.1):

ErrF(Q) = N−1
points

Npoints∑

i
(𝜙ESP(ri) − 𝜙Approx(ri))2 (10.13)

𝜙Approx(ri) =
Natoms∑

A

QA(RA)
|ri − RA|

(10.14)

The atomic charges QA are determined as the parameters that reproduce the electrostatic potential
as closely as possible averaged over the sampling points, subject to the constraint that the sum is
equal to the total molecular charge. In some cases, the atomic charges may also be constrained to
reproduce, for example, the total dipole moment. Additional constraints such as forcing the total
charge of a subgroup (such as a methyl group or an amino acid) to be zero are also often employed
as this improves the parameter transferability and computational issues related to calculating the
electrostatic energy.

The different schemes for deriving ESP atomic charges differ in the number and location of points
used for sampling the ESP and whether additional constraints beyond preservation of charge are
imposed. A typical selection of sampling points is a few hundred points around each nucleus with dis-
tances from just outside the van der Waals radius to about twice that distance. The MSK11, 12 (Merz–
Singh–Kollman), CHELP13 (CHarges from ELectrostatic Potential) and CHELPG14 (CHarges from
ELectrostatic Potential using a Grid-based method) methods only differ by the selection of sampling
points, while the HLY (Hu, Lu and Yang) method employs a quite dense grid in a volumen space.15

Tsiper and Burke, however, have shown that the ESP on an isodensity surface that includes essentially
all the electron density uniquely determines the ESP at all points outside the surface.16 This implies
that the sampling points in Equation (10.13) can be chosen on an isodensity surface with a low den-
sity value (e.g. 10−4–10−5) and with a sufficiently dense grid that the sampling becomes a numerical
evaluation of a surface integral:

ErrF(Q) = N−1
points

Npoints∑

i
(𝜙ESP(ri) − 𝜙Approx(ri))2

≃ S−1
∮

S

(𝜙ESP(r) − 𝜙Approx(r))2dS
(10.15)

Differences in ESP atomic charges due to differences in the selection of sampling points thus pri-
marily reflect an incomplete sampling and associated numerical instabilities in solving the equations
arising from minimizing ErrF.

The electrostatic potential depends on the total wave function and therefore converges as the size
of the basis set and amount of electron correlation is increased. Since the potential depends directly
on the electron density 𝜌, it is fairly insensitive to the level of sophistication, that is an HF or DFT
calculation with a DZP-type basis set already gives quite good results. One might thus anticipate that
atomic charges based on fitting to the ESP would lead to well-defined values. This, however, is often
not the case. The fundamental problem is that the fitting procedure becomes statistically underde-
termined even for medium-sized systems, although the severity of this depends on how the fitting is
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done.17, 18 The difference between the true ESP and that generated by a set of atomic charges on, say,
only half the atoms is not significantly reduced by having fitting parameters on all atoms. The ESP
experienced outside the molecule is mainly determined by the atoms near the molecular surface, and
charges on atoms buried within a molecule can consequently not be assigned with any great confi-
dence. This is rooted in the Coulomb expression for the ESP having an inverse distance dependence
(Equation (10.14)), with atoms 2 Å away from a sampling point thus having a five times larger weight
than atoms 10 Å away. Furthermore, atoms, say, 9 and 10 Å away from a sampling point have almost
the same weight factors, and therefore span nearly the same function space. Having a full set of atomic
charges thus forms a near-redundant set of parameters: many different sets of charges may be cho-
sen, all of which are capable of reproducing the true ESP to almost the same accuracy. Although the
ESP at a very large number of sampling points (several thousand) is fitted by relatively few (perhaps
20–30) atomic parameters, the fact that the ESP values at the sampling points are highly correlated
makes the problem underdetermined. The RESP19 (Restrained ElectroStatic Potential) method adds
a hyperbolic penalty term to ErrF to ensure that only those atoms that contribute significantly in a
statistical sense acquire non-zero charges.

The larger importance of atoms near the molecular surface relative to buried atoms and the sta-
tistically underdetermined fitting procedure at least partly explain that ESP atomic charges depend
on the specific molecular conformation20 and display variability between structurally similar groups
in different molecules. The three hydrogens in a freely rotating methyl group, for example, may end
up having significantly different charges or two conformations may give two significantly different
sets of ESP atomic charges. This is a problem in connection with force field methods that rely on the
fundamental assumption that parameters are transferable between similar fragments and that atoms
that are easily interchanged (e.g. by bond rotation) should have identical parameters. One way of
eliminating the problem with conformationally dependent charges is to add additional constraints,
for example forcing the three hydrogens in a methyl group to have identical charges19 or averaging
over different conformations.21

Another problem with ESP atomic charges is related to the absolute accuracy of the fitting.
Although inclusion of charges on all atoms does not significantly improve the results over that
determined from a reduced set of parameters, the absolute deviation between the true and fitted elec-
trostatic potentials can be quite large. Interaction energies as calculated by an atom-centered charge
model in a force field may be off by several kJ/mol per atom in certain regions of space just outside
the molecular surface, an error of one or two orders of magnitude larger than the van der Waals inter-
action. In order to improve the description of the electrostatic interaction, additional non-nuclear-
centered charges may be added,22 or dipole, quadrupole, etc., moments may be added at nuclear
or bond positions.23 These descriptions are to a certain extent equivalent since a dipole may be
generated as two oppositely charged monopoles, a quadrupole as four monopoles, etc (Figure 10.1).

The Distributed Multipole Analysis (DMA) developed by A.J. Stone uses the fact that the ESP aris-
ing from the charge overlap between two basis functions can be written in terms of a multipole

+

_

+ +_

_

Dipole Quadrupole

Figure . Generation of dipole and quadupole moments by charges.
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expansion around a point between the two nuclei.24 These moments can be calculated directly from
the density matrix and the basis functions, and are not a result of a fitting procedure. The multipole
expansion is furthermore finite; the highest non-vanishing term is given as the sum of the angular
momenta for the two basis functions, for example the product of two p-functions gives at most rise
to a quadrupole moment. For Gaussian orbitals the expansion point is given in the following equa-
tion, where RA and RB are the positions of the two nuclei and 𝛼 and 𝛽 are the exponents of the basis
functions (this follows since the product of two Gaussians is a single Gaussian located between the
two originals, Equation (3.64)):

RC =
𝛼RA + 𝛽RB
𝛼 + 𝛽

(10.16)

If such distributed multipoles are assigned for each pair of basis functions, the electrostatic poten-
tial as seen from outside the charge distribution is reproduced exactly. This, however, would mean
that ∼M2

basis different sites are required. In practice, only the nuclei and possibly bond midpoints
are selected as multipole points and all the pair expansion points are moved to the nearest multi-
pole point. By moving the origin, the termination after a finite number of terms is destroyed and an
infinite sum over all moments must be used for an exact representation. Since most of the pair expan-
sion points are rather close to either a nucleus or the center of a bond, the importance of higher-order
moments is usually quite small. Furthermore, since the majority of the electron density can be repre-
sented with just s- and p-functions for atoms belonging to the first three rows of the periodic table,
it follows that a representation in terms of charges, dipoles and quadrupoles located on all nuclei
centers gives a quite accurate representation of the ESP center.

The original DMA approach has the disadvantage that the calculated multipole moments are quite
sensitive to the employed basis set, especially if diffuse basis functions are present, in analogy with
other analyses based on the basis functions used for representing the wave function (e.g. Mulliken).
A modified DMA version, where the contributions from the diffuse basis functions are evaluated by
a real space integration, while the original Hilbert space partitioning is used for the compact basis
functions, display a significantly better numerical stability.25 The DMA decomposition into atomic
contributions can exactly reproduce the reference data by going to sufficiently high multipoles, but
the representation by a truncated set of multipole moments is necessarily less accurate than a repre-
sentation in terms of fitted multipoles to the same order. Fitted multipole methods typically reduce
the required moments by one or two, that is fitted charges can reproduce DMA results including up to
quadrupoles. Another disadvantage of DMA multipole moments is that they are not very transferable
between similar molecules or even between different conformations of the same molecule.

. Population Analysis Based on the Electron Density

The examples in Section 10.1 illustrate that it would be desirable to base a population analysis on prop-
erties of the wave function or electron density itself, and not on the basis set chosen for representing
the wave function. The electron density is the square of the wave function integrated over Nelec − 1
coordinates (it does not matter which coordinates since the electrons are indistinguishable):

𝜌(r1) =
∫

|
|Ψ

(
r1, r2, r3,… , rNelec

)
|
|
2dr2dr3 ⋯ drNelec

(10.17)

The difficulties in partitioning the electron density into atomic contributions is how to define an
“atom” within a molecule. An isolated atom is defined as a nucleus and an integer number of electrons
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and an atom with a molecule can be defined as a nucleus and a suitable fraction of all the electrons.
If the total molecular volume is somehow divided into subsections, each belonging to one specific
nucleus, then the electron density can be integrated to give the number of electrons N present in
each of these atomic basins Ω, and the (net) atomic charge Q is then obtained by adding the nuclear
charge Z:

NA =
∫

ΩA

𝜌(r)dr (10.18)

QA = ZA − NA (10.19)

Equation (10.18) can be generalized to Equation (10.20) to allow for soft boundaries between atomic
basins, where the weight function wA(r) determines the fraction of electron density at point r that
belongs to atom A:

NA =
∫

wA(r)𝜌(r)dr (10.20)

The division into atomic basins by the weight function requires a choice to be made and several
different schemes have been proposed. We will in the following discuss the different methods with
focus on atomic charges, but higher-order atomic multipole (dipole, quadrupole, etc.) moments can
be calculated by suitable integrations over atomic basins analogous to Equation (10.20).

10.3.1 Quantum Theory of Atoms in Molecules

Perhaps the most rigorous way of dividing a molecular volume into atomic subspaces is the Quantum
Theory of Atoms In Molecules (QTAIM) method of R. Bader, also referred to as Quantum Chemical
Topology (QCT).26–28 The electron density is a function of three spatial coordinates and may be ana-
lyzed in terms of its topology (maxima, minima and saddle points). In the large majority of cases it is
found that the only maxima in the electron density occur at the nuclei (or very close to them), which
is reasonable since they are the only sources of positive charge. The nuclei thus act as attractors of
the electron density. At each point in space the gradient of the electron density points in the direc-
tion of the strongest (local) attractor. This forms a rigorous way of dividing the physical space into
atomic subspaces: starting from a given point in space a series of infinitesimal steps may be taken in
the gradient direction until an attractor is encountered. The collection of all such points forms the
atomic basin associated with the attractor (nucleus), corresponding to w = 1 inside and w = 0 outside
the basin in Equation (10.20). If the negative of the electron density is considered, the attractors are
local minima, and a basin is then defined as points that end up at the local minimum by a steepest
descent minimization (Section 13.2.1). In the other direction (away from other nuclei) the gradient
goes asymptotically to zero, and the atomic basin stretches into infinity in this direction. The border
between two three-dimensional atomic basins is a two-dimensional surface, often called a zero flux
surface, as illustrated in Figure 10.2.

The carbon and hydrogen atomic basins in cyclopropane are shown in Figure 10.3.
Once the molecular volume has been divided up, the electron density can be integrated within each

of the atomic basins to give atomic charges and dipole, quadrupole, etc., moments. As the dividing
surface is rigorously defined in terms of the electron density, these quantities will converge to specific
values as the quality of the wave function is increased. Furthermore, as only the electron density is
involved, the results are fairly insensitive to the theoretical level used for generating the wave func-
tion. If the net charges are taken as nuclear centered (analogous to partial charges for force field
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Figure . Dividing surface between two atomic basins. From N. Singh, R. J. Loader, P. J. O’Malley, P. L. A. Popelier, J.
Phys. Chem. A, 110 (2006), 6498. Reprinted with permission from The Americal Chemical Society.

methods), they do not reproduce the molecular dipole, quadrupole, etc., moments, and nor do they
yield a good representation of the molecular electrostatic potential. They are therefore not suitable for
transferring to a force field environment for modeling purposes. Reproducing the molecular electric
moment to order N requires that all atomic multipole moments up to order N are included. Includ-
ing only atomic charges thus only ensures that the total molecular charge is reproduced. If the dipole
moments of the atomic basins are also considered, the total molecular dipole moment is reproduced,
and similarly for higher-order moments. The dipole moment of CO, for example, is close to zero (0.12
Debye), despite calculated QTAIM charges of ±1.21. The large dipole moment generated by the two
atomic charges positioned at the nuclear positions (–6.54 Debye) is almost exactly cancelled by a
compensating contribution from the two atomic dipoles (+6.66 Debye). The QTAIM method is often
criticized for generating too large atomic charges for polar bonds, but it should be recognized that
this is largely due to the neglect of higher-order moments.

(b)(a)

Figure . Hydrogen and carbon AIM basins for cyclopropane; dots indicate bond and ring critical points. Illustration
by courtesy of M. Rafat and P. L. A. Popelier.
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A more fundamental problem in the QTAIM approach is the presence of non-nuclear attractors
for certain molecular systems, typically involving small clusters of low-valent metals such as Li, Na
or Mg, where the topological analysis leads to “atomic” basins that do not contain a nucleus. While
non-nuclear attractors are of interest by themselves, they spoil the picture of electrons associated
with nuclei, forming atoms within molecules. The presence of non-nuclear attractors depends on
both the level of theory, the basis set as well as the molecular geometry, but there are several examples
where this feature of the molecular electron density appears genuine.29, 30 For very short internuclear
distances an atomic basin may also contain more than one nucleus.

The gradient of the density at a point on a dividing surface between two atomic basins must nec-
essarily be tangential to the surface. Following the gradient path for such a point leads to a stationary
point on the surface where the total derivative is zero, marked with a dot in Figure 10.2. The basin
attractor is also a stationary point on the electron density surface. The second derivative of the elec-
tron density, the Hessian, is a function of the three (Cartesian) coordinates, that is it is a 3 × 3 matrix.
At stationary points, it may be diagonalized and the number of negative eigenvalues determined.
The basin attractor is an overall maximum with three negative Hessian eigenvalues. Other station-
ary points are usually found between nuclei that are “bonded”. Such points have a minimum in the
electron density in the direction of the nuclei and a maximum in the perpendicular directions, that is
the Hessian has one positive and two negative eigenvalues. These are known as bond critical points.
If the negative of the electron density is considered instead, the attractors are minima (all positive
eigenvalues in the second derivative matrix) and the bond critical points are analogous to transition
structures (one negative eigenvalue). Comparing with potential energy surfaces (Section 14.1), the
(negative) electron density surface may be analyzed in terms of “reaction paths” connecting “transi-
tion structures” with minima. Such paths trace the maximum electron density connecting the two
nuclei and may be taken as the molecular “bond”. It should be noted that bond critical points are
not necessarily located on the straight line connecting two nuclei: small strained rings such as cyclo-
propane, for example, have bond paths that are significantly curved, as illustrated in Figure 10.3.
Indeed, the degree of bending tends to correlate with the strain energy.

The value of the electron density at the bond critical point correlates with the strength of the bond,
the bond order. As mentioned above, there are certain systems such as metal clusters that have non-
nuclear-centered attractors. The corresponding bond critical points have electron densities at least
an order of magnitude smaller than “normal” single bonds, and the value of the density at the local
maximum is only slightly larger than at the bond critical point. The non-nuclear-centered attractors
are thus only weakly defined and may be considered as a special kind of metal bonding, where a “sea”
of electrons with weak local maxima surrounds the positive nuclei, which are strong local maxima. In
certain cases, bond critical points may also be found between atoms that are not bonded, but expe-
rience a strong steric repulsion, corresponding to situations where two atoms are forced to be closer
than the sum of their van der Waals radii.31, 32 Such systems usually have values of the electron den-
sity at the bond critical point that are at least an order of magnitude smaller than ordinary “bonded”
atoms.33

There are two other types of critical points, having either one or no negative eigenvalues in the
density Hessian. The former are usually found at the center of a ring (illustrated in Figure 10.3 for
cyclopropane) and are consequently denoted as a ring critical point. The latter are typically found at
the center of a cage (e.g. cubane) and are denoted as a cage critical point. They correspond to local
minima in the electron density in two or three directions.

The second derivative of the electron density, the Laplacian ∇2𝜌, provides information on where
electron density is depleted or increased. At a bond critical point the sign of the Laplacian has been
used for characterizing the nature of the bond; that is a negative value is taken to indicate a covalent
bond, while a positive value is taken to indicate an ionic bond or a van der Waals interaction.
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The division of the molecular volume into atomic basins follows from a deeper analysis based on
the principle of stationary action. The shapes of the atomic basins and the associated electron den-
sities in a given functional group are very similar in different molecules.34 The local properties of
the wave function are therefore transferable to a very good approximation, which rationalizes the
basis for organic chemistry, that is functional groups react similarly in different molecules. It may
be shown that any observable molecular property may be written as a sum of corresponding atomic
contributions:

⟨P⟩ =

atomic
basins∑

i
⟨P⟩i (10.21)

The total energy, for example, may be written as a sum of atomic energies and these atomic energies
are again almost constant for the same structural units in different molecules. The QTAIM atomic
basins are probably the closest quantum mechanical analogy to the chemical concepts of atoms within
a molecule. The good degree of transferability furthermore provides a rationale for defining atom
types in force field methods.

10.3.2 Voronoi, Hirshfeld, Stockholder and Stewart Atomic Charges

The QTAIM approach partitions the physical space into atomic basins based on a topological analysis
of the electron density itself, but several other methods have been proposed for dividing the molecular
space into atomic contributions.

Voronoi charges are based on dividing the physical space according to a distance criterion, that
is a given point in space belongs to the nearest nucleus. This is reminiscent of the Mulliken equal
partitioning, except that it is the physical space between two nuclei that is divided equally to each
side, not the Hilbert space defined by the basis functions. The atomic basins are bounded by planes
perpendicular to the interatomic bonds and are called Voronoi polyhedra or Voronoi cells. Voronoi
charges tend to be rather large. A modified approach where these dividing planes are moved away
from the bond midpoint by a distance related to the relative atom sizes, defined by their van der Waals
radii, has also been proposed, and this gives significantly smaller charges.35 In terms of Equation
(10.20), the weight function is analogous to the QTAIM approach, a step function with values of
either 0 or 1, depending only on the coordinates of the nuclei.

Hirshfeld charges are based on using atomic densities for partitioning the molecular electron den-
sity.36 The promolecular density is defined as a sum of atomic densities placed at the nuclear geome-
tries in the molecule. The actual molecular electron density at each point in space is then partitioned
by Equation (10.20), where the weight function is defined in Equation (10.23) according to the pro-
molecular contributions:

𝜌promolecule(r) =
Matoms∑

A
𝜌

atomic density
A (r) (10.22)

wA(r) =
𝜌

atomic density
A (r)
𝜌promolecule(r)

(10.23)

Hirshfeld charges may be considered as a soft-boundary version of Voronoi charges. An ambiguity
in the original Hirshfeld method is the source of the atomic densities. The normal approach is to
use spherically averaged ground state densities for neutral atoms but, in some cases, other valence
configurations may be considered, as, for example, the 4s03d10 electron configuration for Ni rather
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than 4s23d8.37 Ambiguities also arise for polar systems like LiF, where either neutral Li and F atoms or
charged Li+ and F− ions can be used for the promolecular density, and these choices lead to different
atomic charges. A similar problem is present in charged systems, where one (or more) atom(s) must
be (arbitrarily) selected as charged, rather than neutral, for constructing the promolecular density.

The dependence on the reference atomic densities can be removed by the iterative Hirshfeld
method.38 In this approach, the promolecular density and the weight functions are in iteration
N + 1 constructed from atomic densities obtained by linear interpolation between the neutral and
cationic/anionic limits based on the Hirshfeld charge at iteration N, and iterated to self-consistency:

𝜌N+1
A =

(
1 − QN

A
)
𝜌A0 + QN

A 𝜌A+ ; +1 ≻ QN
A ≻ 0

𝜌N+1
A =

(
1 + QN

A
)
𝜌A0 − QN

A 𝜌A− ; −1 ≺ QN
A ≺ 0

(10.24)

This works well for most organic molecules, but becomes problematic for ionic compounds like
metal oxides, where the oxygen atom may end up having a charge larger than −1. In the iterative
Hirshfeld method, this requires interpolation between densities for the O− and O2− ions, but since
no isolated atoms are capable of binding two electrons, this leads to an ill-defined interpolation. With
an approximate electronic structure method (like HF) and a limited basis set, the O2− density can of
course be calculated, but it will depend significantly on the method and basis set, and furthermore
extend so far from the nucleus that the weighting function in Equation (10.23) includes regions of
space that incorporate other nuclei. The extended Hirshfeld method39 attempts to solve this problem
by forming the atomic densities as linear combinations of atomic and monoionic densities only, that
is Equation (10.24) without the upper/lower bounds of +1/–1, and the charges are in analogy with
the iterative Hirshfeld approach determined self-consistently. This still leaves an open question for
atoms where the monoanion is not stable, such as, for example, the nitrogen atom.

The Charge Model 5 (CM5) is a parameterized method based on calculated Hirshfeld charges that
are adjusted such that the total molecular dipole moment is reproduced as well as possible for a
selected set of molecules.40 Earlier CM versions used the same type of parameterization, but build
upon Löwdin atomic charges. The electrostatic potential generated by CM5 charges is of similar qual-
ity as that from explicitly fitted ESP charges, but do not have the numerical problems associated with
the fitting process.

Stockholder charges was originally used as a synonym for Hirshfeld charges, but an Iterated Stock-
holder Atom (ISA) version has been proposed41 where the weight functions are defined from the
atomic spherical average of the (molecular) density as shown below, where the angular brackets ⟨⟩A
denote a spherical average centered on the position of atom A:

wA(r) =
⟨𝜌A(r)⟩A
∑

B
⟨𝜌B(r)⟩B

(10.25)

The difference relative to Equation (10.23) is that the weight functions are defined without reference
to calculated densities for isolated atoms and/or ions. The initial atomic weight functions can be
initiated simply as 1 for all atoms and iterated to self-consistency from Equations (10.20) and (10.25),
but the convergence is often very slow, requiring thousands of iterations. An improved algorithm for
determining the partitioned electron density has been proposed and this also allows defining atomic
multipole moments analogous to the distributed multipole analysis.42

Stewart atoms are defined as the spherical densities centered at the nuclei that in a least-squares
sense fit the molecular density as well as possible, and the resulting densities can be integrated to
yield atomic charges and higher-order electric moments.43 The Stewart atomic densities often have
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small negative contributions far from the nuclei, and the resulting charges are often large and coun-
terintuitive, but give good representations of the molecular electrostatic potential.

10.3.3 Generalized Atomic Polar Tensor Charges

The derivative of the dipole moment with respect to the nuclear coordinates determines intensities of
IR absorptions (Section 11.1.6). A central quantity in this respect is the Atomic Polar Tensor (APT),
which for a given atom is defined by

VAPT =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜕𝜇x
𝜕x

𝜕𝜇x
𝜕y

𝜕𝜇x
𝜕z

𝜕𝜇y

𝜕x
𝜕𝜇y

𝜕y
𝜕𝜇y

𝜕z
𝜕𝜇z
𝜕x

𝜕𝜇z
𝜕y

𝜕𝜇z
𝜕z

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(10.26)

Such a matrix is not independent of the coordinate system, but the trace is. J. Cioslowski has pro-
posed a definition of atomic charges as one-third of the trace over the APT, denoted Generalized
Atomic Polar Tensor (GAPT) charges.44 The charge on atom A is defined by

QGAPT
A = 1

3

(
𝜕𝜇x
𝜕xA

+
𝜕𝜇y

𝜕yA
+
𝜕𝜇z
𝜕zA

)

(10.27)

Since the dipole moment itself is the first derivative of the energy with respect to an external electric
field (Section 11.1.1), a calculation of GAPT charges requires the second derivative of the energy. This
is a computationally expensive method for generating atomic charges, but if vibrational frequencies
are calculated anyway, GAPT charges may be determined with very little additional effort. Dipole
derivatives determine intensities of IR absorptions and GAPT charges are therefore directly related to
experimentally observable quantities. The GAPT charges are computationally expensive to generate
and are sensitive to the amount of electron correlation in the wave function, which has limited the
general use of GAPT charges.

. Localized Orbitals

A single Slater determinant (HF or DFT) composed of a set of orthonormal MOs can be
written as in

Φ = 1
√

N!

|
|
|
|
|
|
|
|
|
|

𝜙1(1) 𝜙2(1) ⋯ 𝜙N (1)
𝜙1(2) 𝜙2(2) ⋯ 𝜙N (2)
⋮ ⋮ ⋱ ⋮

𝜙1(N) 𝜙2(N) ⋯ 𝜙N (N)

|
|
|
|
|
|
|
|
|
|

(10.28)

For computational purposes, it is convenient to work with canonical MOs, that is those that make
the matrix of Lagrange multipliers diagonal and are eigenfunctions of the Fock operator at conver-
gence (Equation (3.43)). This corresponds to a specific choice of a unitary (orthogonal) transformation
of the occupied MOs. Once the SCF procedure has converged, however, other sets of orbitals may be
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chosen by forming linear combinations of the canonical MOs. The total wave function, and thus all
observable properties, is independent of such a rotation of the MOs:

φ′ = φU

𝜙′
i =

Norb∑

j=1
uij𝜙j

(10.29)

The traditional view of molecular bonds is that they are due to an increased probability of find-
ing electrons between two nuclei, as compared with a sum of the contributions of the pure atomic
orbitals. The canonical MOs are delocalized over the whole molecule and do not readily reflect this,
since the density between two nuclei is the result of many small contributions from many (all) MOs.
There is furthermore little similarity between MOs for systems that by chemical measures should be
similar, such as a series of alkanes. The canonical MOs therefore do not reflect the concept of, for
example, functional groups in organic chemistry, and nor do they readily allow identification of the
bonding properties of the system.

The goal of Localized Molecular Orbitals (LMOs) is to define MOs that are spatially confined to a
relatively small volume, and therefore clearly display which atoms are bonded and have the property
of being approximately constant between structurally similar units in different molecules. LMOs are,
furthermore, key elements in linear scaling methods for HF, DFT and electron correlation methods
(Section 4.12.2), since they allow a description of the electron density and correlation effects in a given
region of the system by only a selected subset of orbitals, rather than all the cannonical orbitals.

A set of LMOs may be defined by optimizing the expectation value of a two-electron operator
Ω:45, 46

⟨𝛀⟩ =
Norb∑

i=1
⟨𝜙′

i𝜙
′
i|𝛀|𝜙′

i𝜙
′
i⟩ (10.30)

The expectation value depends on the uij parameters in Equation (10.29), which is again a function
optimization problem (Chapter 13). It should be noted that the unitary transformation of the orbitals
(Equation (10.29)) preserves the orthogonality, that is the resulting LMOs are also orthogonal. Since
all observable properties depend only on the total electron density, and not on the individual MOs,
there is no unique choice for Ω.

The Foster–Boys localization scheme uses the square of the distance between two electrons as the
operator and minimizes the expectation value:47

⟨𝛀⟩FB =
Norb∑

i=1
⟨𝜙′

i𝜙
′
i|(r1 − r2)2|𝜙′

i𝜙
′
i⟩ (10.31)

It can be shown that minimization of ⟨Ω⟩FB is equivalent to minimizing a sum of orbital contributions,
each measuring the spatial extent of the orbital relative to the orbital centroid:

⟨𝛀′⟩FB =
Norb∑

i
⟨𝜙′

i|(r − ⟨𝜙′
i|r|𝜙

′
i⟩)

2|𝜙′
i⟩ (10.32)

Høyvik and Jørgensen have generalized the FB functional to higher-order moments:48

⟨𝛀′⟩HJ =
Norb∑

i

(
⟨𝜙′

i|(r − ⟨𝜙′
i|r|𝜙

′
i⟩)

n|𝜙′
i⟩
)m (10.33)
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The Forster–Boys functional corresponds to n = 2 and m = 1, while n = 4 serves to decrease the
magnitude of the LMO tails and m = 2 reduces the spread of the least compact LMO. For extended
(periodic) systems described by plane wave basis functions, the equivalent of the Forster–Boys LMOs
is called Wannier orbitals.49

Feng et al.50 have shown that the Forster–Boys LMOs can be made even more compact by 10–25%
by allowing the localized orbitals to be non-orthogonal, but this requires a general optimization pro-
cedure rather than a simple unitary transformation.51 Non-orthogonal LMOs achieve the increased
compactness because they can remove the orthogonalization tails of orthogonal LMOs.

The Edmiston–Ruedenberg localization scheme uses the inverse of the distance between two elec-
trons as the operator and maximizes the expectation value:52

⟨𝛀⟩ER =
Norb∑

i=1

⟨

𝜙′
i𝜙

′
i
|
|
|
|

1
r1 − r2

|
|
|
|
𝜙′

i𝜙
′
i

⟩

(10.34)

This corresponds to determining a set of LMOs that maximizes the self-repulsion energy. It can be
shown that this is equivalent to minimizing the interorbital repulsion:

⟨𝛀′⟩ER =
Norb∑

i,j=1
j≠i

⟨

𝜙′
i𝜙

′
j
|
|
|
|

1
r1 − r2

|
|
|
|
𝜙′

i𝜙
′
j

⟩

(10.35)

The von Niessen localization scheme uses the 𝛿-function of the distance between two electrons as
the operator and maximizes the expectation value:53

⟨𝛀⟩vN =
Norb∑

i=1
⟨𝜙′

i𝜙
′
i|𝛿(r1 − r2)|𝜙′

i𝜙
′
i⟩ (10.36)

This corresponds to determining a set of LMOs that maximizes the “self-charge”.
The Pipek–Mezey localization scheme corresponds to maximizing the sum of Mulliken atomic

charges.45 The contribution to atom A is given in

QA = ZA −
Norb∑

i=1

Mbasis∑

𝛼∈A

Mbasis∑

𝛽

c𝛼ic𝛽iS𝛼𝛽 (10.37)

The function to be maximized is given in

⟨𝛀⟩PM =
Atoms∑

A=1
(QA)2 (10.38)

The optimization of ⟨Ω⟩PM may be problematic for systems where the Mulliken population analysis
itself is problematic, for example when using large basis sets with diffuse functions or for extended
systems (e.g. clusters with hundreds of atoms), where even a medium-sized basis set may be near-
linear-dependent. The Pipek–Mezey approach can be generalized to maximizing other types of
atomic charges, but the resulting LMOs are very similar.54

There is little experience with the von Niessen method but, for most molecules, the other three
schemes tend to give very similar LMOs. The main exception is systems containing both σ- and
π-bonds, such as ethylene. The Pipek–Mezey procedure (and its generalizations) will preserve the
σ/π-separation, while the Edmiston–Ruedenberg and Foster–Boys schemes produce bent “banana”
bonds. Similarly, for planar molecules that contain lone pairs (such as water or formaldehyde), the
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Canonical MOs Pipek–Mezey LMOs Boys LMOs 

Figure . Canonical and localized molecular valence orbitals for ethylene.

Pipek–Mezey method will produce one in-plane σ-type lone pair and one out-of-plane π-type lone
pair, while the Edmiston–Ruedenberg and Foster–Boys schemes produce two equivalent “rabbit ear”
lone pairs. The canonical MOs and the Foster–Boys and Pipek–Mezey LMOs for ethylene are shown
in Figure 10.4 for the valence orbitals.

10.4.1 Computational considerations

The dipole integrals in the molecular basis required for the Forster–Boys procedure may be obtained
from the corresponding AO integrals:

⟨𝜙i|r|𝜙i⟩ =
Mbasis∑

𝛼

c𝛼i

(Mbasis∑

𝛽

c𝛽i⟨𝜒𝛼|r|𝜒𝛽⟩

)

(10.39)
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This is a process that increases as the cube of the basis set size, and the optimization of the ⟨Ω′⟩FB func-
tion is therefore an M3

basis method. The Edmiston–Ruedenberg localization in the above formulation
requires standard two-electron integrals over MOs, analogous to those used in electron correlation
methods (Equation (4.13)), and it therefore involves a computational effort that increases as M5

basis. If
only LMOs for occupied orbitals are desired, only integrals involving occupied MOs are needed and
the transformation is not particularly time-consuming for reasonably sized systems,55 but it will ulti-
matively require a significant effort for large systems. Head-Gordon and coworkers56 have shown that
the problem can be reformulated as a series of iterative one-index transformations, which reduces the
formal scaling to M3

basis. The von Niessen method may be shown to involve a computational effort
that increases as M5

basis, while the Pipek–Mezey charge localization only involves overlap integrals
between basis functions and consequently has an M3

basis computational dependence. The computa-
tional requirements of the PM generalizations to other types of atomic charge depend on the specific
type of atomic charge.54

The localization of occupied MOs by the FB, ER or PM schemes is a relatively easy optimization
problem and has traditionally been done by performing a sequence of 2 × 2 orbital rotations (Sec-
tion 17.2). Localization of virtual orbitals and the use of more complicated localization schemes like
the HJ functional in Equation (10.33) is computationally more difficult and requires second-order
optimization methods (Section 13.2.3).

Although the localization by an energy criterion (Edmiston–Ruedenberg) may be considered more
“fundamental” than one based on distance (Forster–Boys) or atomic charge (Pipek–Mezey), the dif-
ference in computational effort means that the Forster–Boys or Pipek–Mezey procedures are often
used in practice, especially since there is normally little difference in the shape of the final LMOs.

Localized molecular orbitals are generally found to reflect the usual picture of bonding, that is
they are localized between two nuclei or in some cases, such as diborane, extended over three nuclei.
Although they indicate which atoms are bonded, they do not directly give any information about the
strength of the bonds. Furthermore, localizing a set of MOs corresponds to determining orbitals con-
taining electron pairs. In structures with significant open-shell character (e.g. transition structures)
it may be difficult to achieve a proper localization of the MOs and molecules with several resonance
structures, as, for example, aromatic systems, may have more than one set of LMOs.

. Natural Orbitals

The electron density calculated from a wave function is given as the square of the function, |Ψ|2 =
Ψ∗Ψ. The reduced density matrix of order k, γk , is defined by57

γk(r1,… , rk , r′1,… , r′k) =
(

Nelec
k

)

∫
Ψ∗

(

r′1,… , r′k , rk+1,… , rNelec

)

×Ψ
(

r1,… , rk , rk+1,… , rNelec

)

drk+1 ⋯ drNelec
(10.40)

Note that some of the coordinates for Ψ∗ and Ψ are different. Of special importance in elec-
tronic structure theory are the first- and second-order reduced density matrices, γ1(r1, r′1) and
γ2(r1, r2, r′1, r′2), since the Hamiltonian operator only contains one- and two-electron operators. Inte-
grating the first-order density matrix over coordinate 1 yields the number of electrons, Nelec, while
the integral of the second-order density matrix over coordinates 1 and 2 is Nelec(Nelec − 1), that is the
number of electron pairs. The first-order density matrix may be diagonalized and the corresponding
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eigenvectors and eigenvalues are called Natural Orbitals (NO) and Occupation Numbers. The cor-
responding eigenfunctions for the second-order density matrix are called Natural Geminals. For a
single-determinant RHF wave function, the first-order density matrix is identical to the density matrix
used in the formation of the Fock matrix (Equation (3.52)) and the natural orbitals have occupation
numbers of either 0 or 2 (exactly). Since there are 1∕2Nelec orbitals with degenerate eigenvalues of
2, the HF natural orbitals are not uniquely defined and they may be any linear combination of the
canonical orbitals. For a multideterminant wave function (MCSCF, CI, MP or CC) the occupation
numbers may assume fractional values between 0 and 2. UHF wave functions (when different from
RHF) will in general also give fractional occupations.

The original definition of natural orbitals was in terms of the density matrix from a full CI wave
function, that is the best possible for a given basis set.58 These natural orbitals have the significance
that they provide the lowest energy for a CI expansion using only a limited set of orbitals, when the
orbitals with the largest occupation numbers are selected. The natural orbitals thus provide the fastest
convergence towards the full CI result as the size of the orbital space is enlarged. Natural orbitals can
also be considered as a principal component analysis of a wave function (Section 18.4.3).

When natural orbitals are determined from a wave function that only includes a limited amount
of electron correlation (i.e. not full CI), the fastest convergence property is not rigorously guaranteed
but, since most practical methods recover 80–90% of the total electron correlation, the occupation
numbers provide a good guideline for how important a given orbital is. This is the reason why natural
orbitals are often used for evaluating which orbitals should be included in an MCSCF wave function
(Section 4.6).

10.5.1 Natural Atomic Orbital and Natural Bond Orbital Analyses

The concept of natural orbitals may be used for distributing electrons into atomic and molecular
orbitals, and thereby derive atomic charges and molecular bonds. The idea in the Natural Atomic
Orbital (NAO) and Natural Bond Orbital (NBO) analysis developed by Weinhold and coworkers59 is
to use the one-electron density matrix for defining the shape of the atomic orbitals in the molecular
environment and to derive molecular bonds from electron density between atoms.

Let us assume that the basis functions have been arranged such that all orbitals located on center
A are before those on center B, which are before those on center C, etc.:

𝜒A
1 ,𝜒A

2 ,𝜒A
3 ,… ,𝜒B

k ,𝜒B
k+1,𝜒B

k+2,… ,𝜒C
n ,𝜒C

n+1,𝜒C
n+2,… (10.41)

The (one-electron) density matrix can be written in terms of blocks of basis functions belonging to
a specific center, as shown in

D =

⎛
⎜
⎜
⎜
⎜
⎝

DAA DAB DAC ⋮

DAB DBB DBC ⋮

DAC DBC DCC ⋮

⋯ ⋯ ⋯ ⋱

⎞
⎟
⎟
⎟
⎟
⎠

(10.42)

The natural atomic orbitals for atom A in the molecular environment may be defined as those that
diagonalize the DAA block, NAOs for atom B as those that diagonalize the DBB block, etc. These
NAOs will in general not be orthogonal and the orbital occupation numbers will therefore not sum
to the total number of electrons. To achieve a well-defined partitioning of the electrons, the orbitals
must be orthogonalized.
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The NAOs will normally resemble the pure atomic orbitals (as calculated for an isolated atom) and
may be divided into a “natural minimal basis” (corresponding to the occupied atomic orbitals for the
isolated atom) and a remaining set of natural “Rydberg” orbitals based on the magnitude of the occu-
pation numbers. The minimal set of NAOs will normally be strongly occupied (i.e. having occupation
numbers significantly different from zero), while the Rydberg NAO usually will be weakly occupied
(i.e. having occupation numbers close to zero). There are as many NAOs as the size of the atomic
basis set and the number of Rydberg NAOs thus increases as the basis set is enlarged. It is therefore
desirable that the orthogonalization procedure preserves the form of the strongly occupied orbitals as
much as possible, which is achieved by using an occupancy-weighted orthogonalizing matrix (Equa-
tion (17.85)). If all orbital occupancies are exactly 2 or 0, the occupancy-weighted orthogonalization
is identical to the Löwdin method (Equation (10.9)). The procedure is as follows (Figure 10.5):

1. Each of the atomic blocks in the density matrix is diagonalized to produce a set of non-orthogonal
NAOs, often denoted “pre-NAOs”.

2. The strongly occupied pre-NAOs for each center are made orthogonal to all the strongly occupied
pre-NAOs on the other centers by an occupancy-weighted procedure. This destroys the orthogo-
nality of the occupied-virtual blocks.

3. The weakly occupied pre-NAOs on each center are made orthogonal to the strongly occupied
NAOs on all the centers by a Gram–Schmidt orthogonalization.

4. The (modified) weakly occupied NAOs are made orthogonal to all the weakly occupied NAOs on
the other centers by an occupancy-weighted procedure.

The final set of orthogonal orbitals are simply denoted NAOs and the diagonal elements of the den-
sity matrix in this basis are the orbital populations. Summing all contributions from orbitals belonging
to a specific center produces the atomic charge, often denoted the NPA (Natural Population Analysis)
charge. It is usually found that the natural minimal NAOs contribute 99+% of the electron density
and they form a very compact representation of the wave function in terms of atomic orbitals. The
further advantage of the NAOs is that they are defined from the density matrix, guaranteeing that
the electron occupation is between 0 and 2 and that they converge to well-defined values as the size
of the basis set is increased. Furthermore, the analysis may also be performed for correlated wave
functions. The disadvantage is that the NAOs may still extend quite far from the atom upon which
they are derived and, analogously to the Mulliken approach, these NAOs may describe electron den-
sity that is near another nucleus but are counted as belonging to the nucleus upon which they are
centered.

Once the density matrix has been transformed to the NAO basis, bonds between atoms may be
identified from the off-diagonal blocks. The procedure involves the following steps:

1. NAOs for an atomic block in the density matrix that have occupation numbers very close to 2
(say> 1.999) are identified as core orbitals. Their contributions to the density matrix are removed.

2. NAOs for an atomic block in the density matrix that have large occupancy numbers (say > 1.90)
are identified as lone pair orbitals. Their contributions to the density matrix are also removed.

3. Each pair of atoms (AB, AC, BC, …) are now considered and the two-by-two subblocks of the den-
sity matrix (with the core and lone pair contributions removed) are diagonalized. Natural bond
orbitals (NBO) are identified as eigenvectors that have large eigenvalues (occupation numbers
larger than, say, > 1.90).

4. If an insufficient number of NBOs are generated by the above procedure (sum of occupation num-
bers for core, lone pair and bond orbitals is significantly less than the number of electrons), the
criterion for accepting an NBO may be gradually lowered until a sufficiently large fraction of the
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electrons has been assigned to bonds. Alternatively, a search may be initiated for three-center
bonds. The contributions to the density matrix from all diatomic bonds are removed and all three-
by-three sub-blocks are diagonalized. Such three-center bonds are quite rare, boron systems being
the most notable exception.

Once NBOs have been identified, they may be written as linear combinations of the NAOs, forming
a localized picture of which “atomic” orbitals are involved in the bonding.

Gagliardi, Lindh and Karlström have proposed a LoProp (Local Properties) method,60 which con-
ceptually is very similar to the natural orbital analysis, with the difference that the analysis is done in
terms of the basis function overlap matrix, rather than the density matrix.

The procedure is as follows (Figure 10.5):

1. The basis functions are divided into atomic occupied and virtual orbitals. This is straightforward if
the basis set is of the ANO (atomic natural orbital) type (Section 5.4.5), since these are defined by a
general contraction of a set of primitive functions with atomic natural orbital coefficients and are
therefore already orthogonal and partitioned into occupied and virtual orbitals. For other types
of basis sets, where the contracted basis functions are non-orthogonal and all contribute to the
atomic occupied orbitals, this requries a recontraction and Gram–Schmidt orthogonalization of
the basis functions.

2. All the occupied basis functions on all atoms are made orthogonal to each other by a Löwdin
orthogonalization and all virtual orbitals are similarly made orthogonal to each other by a Löwdin
orthogonalization. This destroys the orthogonality of the occupied–virtual blocks.

3. All the virtual orbitals are made orthogonal to all the occupied orbitals by a Gram–Schmidt orthog-
onalization. This destroys the orthogonality of the virtual–virtual blocks.

4. The (modified) virtual orbitals are made orthogonal to each other by a Löwdin orthogonalization.

The LoProp can in analogy with the DMA approach be generalized to generate localized multi-
pole moments and polarizabilitites. A disadvantage of the LoProp scheme is that the convergence by
including higher and higher orders of multipole moments often is non-monotomic, for example a
representation with atomic charges and dipoles may be worse than with charges alone.61

The LoProp partitioning takes place in the Hilbert space defined by the basis set, while the NAO
partitioning takes place in a space defined by the electron density represented in the basis set. For
a given basis set, the LoProp method only depends on the molecular geometry, while the NAO
approach in addition depends on the electronic state. The LoProp method therefore allows analysis
of different electronic states with the same atomic partitioning and provides a more smooth connec-
tion when the electronic structure changes significantly with geometry than NAO, as, for example,
for following bond forming/breaking reactions or near an avoided crossing.

. Computational Considerations

Population analyses based on basis functions (such as Mulliken or Löwdin) require insignificant
computational time. The NAO and LoProp analyses involve only matrix diagonalization of small
subsets of the density or overlap matrix, and similarly require a negligible amount of computer time,
although they are more involved than a Mulliken or Löwdin analysis. The determination of ESP
fitted charges requires an evaluation of the potential at many (often several thousand) points in space
and a subsequent solution of a matrix equation for minimizing the least-squares error function. For
large systems, this is no longer completely trivial in terms of computer time. The QTAIM population
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Table . Atomic charges for carbon in CH3OH with the B3LYP method and basis sets of increasing quality.

Basis pcseg- pcseg- pcseg- pcseg- aug-pcseg- aug-pcseg- aug-pcseg- aug-pcseg-

Mulliken 0.04 0.17 −0.01 −0.07 0.16 −0.02 −0.28 −0.75
Löwdin −0.12 0.01 0.06 0.17 −0.02 0.30 0.41 0.56
NPA −0.20 −0.26 −0.24 −0.24 −0.21 −0.26 −0.24 −0.25
I-Hirshfeld −0.02 −0.02 −0.02 −0.02 −0.02 −0.02 −0.02 −0.02
GAPT 0.49 0.49 0.48 0.48 0.48 0.48 0.48 0.48
QTAIM 0.58 0.63 0.59 0.59 0.57 0.63 0.59 0.59
HLY 0.20 0.18 0.18 0.18 0.16 0.17 0.18 0.18

analysis requires a complete topological analysis of the electron density and a subsequent numerical
integration of the atomic basins. For medium-sized systems and medium-quality wave functions,
such an analysis may be more time-consuming than determining the wave function itself. Voronoi
and Hirshfeld charges similarly require a numerical integration of the electron density and the
determination of Stewart atoms has proven to be computationally quite difficult. GAPT charges
require calculation of the second derivative of the wave function, which is computationally demand-
ing, especially for large molecules and/or correlated wave functions. There is little doubt that these
computational considerations partly explain the popularity of especially the Mulliken population
analysis, despite its well-known shortcomings. For analysis purposes, the NAO or LoProp proce-
dures are attractive, but for modeling purposes (i.e. force field charges) ESP charges are clearly the
logical choice.

. Examples

Table 10.1 shows how the atomic charge on the carbon atom in methanol depends on the method
for assigning the charge, using the B3LYP computational level and basis sets of increasing quality.
It is evident that the Mulliken and Löwdin values do not converge as the basis set is increased and
the values in general behave unpredictably. The charges determined by the NPA, iterative Hirshfeld,
GAPT, QTAIM and HLY procedures, on the other hand, attain well-defined values as the basis set is
enlarged and are rather insensitive to the presence of diffuse functions. The charges assigned by these
methods, however, differ significantly, ranging from the NPA value of −0.25 to the QTAIM value of
+0.59. These variations are mirrored by the charges on the other atoms, as shown in Table 10.2. The

Table . Atomic charges for CH3OH with the B3LYP method and the aug-pcseg-3 basis set.

C O H (O) H (C) H (C)

NPA −0.24 −0.72 0.46 0.19 0.16
I-Hirshfeld −0.02 −0.25 0.16 0.05 0.03
GAPT 0.48 −0.60 0.24 −0.01 −0.06
QTAIM 0.59 −1.10 0.56 0.00 −0.02
ESP-HLY 0.17 −0.60 0.38 0.06 −0.01
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Table . Bond orders for the C–O and O–H bonds in CH3OH with the B3LYP method and basis sets of increasing
quality.

Basis pcseg- pcseg- pcseg- pcseg- aug-pcseg- aug-pcseg- aug-pcseg- aug-pcseg-

C–O 0.96 0.90 0.95 0.84 0.79 0.57 0.69 0.59
O–H 0.96 1.03 0.97 0.96 0.87 0.93 0.91 0.87

bond orders calculated by the Mulliken-type approach in Equation (10.11) are shown in Table 10.3,
and are likewise sensitive to the basis set quality, especially the presence of diffuse functions.
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Molecular Properties

The focus in Chapters 3 and 4 is on determining the wave function and its energy at a given geom-
etry in the absence of external fields (electric or magnetic). While relative energies are certainly of
interest, there are many other molecular properties that can be calculated by electronic structure
methods.1–4 Most properties may be defined as the response of a wave function, an energy or an
expectation value of an operator to a perturbation, where the perturbation may be any kind of opera-
tor not present in the Hamiltonian used for solving the Schrödinger equation. It may, for example, be
terms arising in a relativistic treatment (e.g. spin–orbit interactions), which can be added as pertur-
bations in non-relativistic theory. It may also be external fields (electric or magnetic) or an internal
perturbation, such as a nuclear or electron spin. If we furthermore include “perturbations” such as
adding or removing an electron, electron affinities and ionization potentials are also included in this
definition. There are a few remaining properties that cannot easily be characterized as a response
to a perturbation, most notably transition moments, which determine absorption intensities. These
depend on matrix elements between two different wave functions, but can be obtained from the same
type of calculations that provide, for example, excitation energies.

We will here consider five types of perturbations:

� External electric field (F)
� External magnetic field (B)
� Nuclear magnetic moment (nuclear spin, I)
� Electron magnetic moment (electron spin, s)
� Change in the nuclear geometry (R).

The external electric and magnetic fields may either be time-independent, which lead to static proper-
ties, or time-dependent, leading to dynamic properties. Time-dependent fields are usually associated
with electromagnetic radiation characterized by a frequency, and static properties may be considered
as the limiting case of dynamic properties when the frequency goes to zero. We will focus on prop-
erties of a single molecule for a fixed geometry, while a direct comparison with (gas-phase) exper-
imental macroscopic quantities may be done by proper averaging over for example vibrational and
rotational states. We will furthermore concentrate on the electronic contribution to properties; the
corresponding nuclear contribution (if present) is normally trivial to calculate as it is independent of
the wave function.

Introduction to Computational Chemistry, Third Edition. Frank Jensen.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion Website: http://www.wiley.com/go/jensen/computationalchemistry3
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The nuclear magnetic moment may be considered as an artificial perturbation, since it is an inherent
part of a given nucleus (isotope). In most applications, however, the nucleus is modeled as a point par-
ticle with an electric charge, and the magnetic moment needs only to be included in the Hamiltonian
if the interest is in magnetic interactions involving the nucleus. These interactions are furthermore
small and can be treated as a perturbative correction. One may analogously also neglect terms in
the Hamiltonian involving electron spins, but one cannot neglect the electron spin in the wave func-
tion. The fermion character of the electrons leads to the requirement of wave function antisymmetry,
which must be accounted for right from the outset for any theory. With a spin-free Hamiltonian, the
spin dependence in the wave function can be integrated out. When properties related to magnetic
interactions with the electron spin are desired, the spin-dependent terms in the Hamiltonian can be
reintroduced and treated as perturbations.

The theoretical formulation for the calculation of molecular properties is commonly done by one
of three closely related approaches:
� As derivatives of the energy.
� From perturbation theory based on the energy.
� As derivatives of the expectation value of an operator, often called propagator methods.

These approaches can be generalized to cases where the perturbation is time-dependent. We will use
the electric dipole polarizability as an illustrative example in the following.

The energy derivative formulation for the static case is perhaps the easiest to understand. The
energy is here expanded in a Taylor series in the perturbation P:

E(P) = E(0) + 𝜕E
𝜕P

P + 1
2
𝜕2E
𝜕P2 P2 + 1

6
𝜕3E
𝜕P3 P3 +⋯ (11.1)

The nth-order property is the nth-order derivative of the energy, 𝜕nE/𝜕Pn. Note that the perturbation
is usually a vector and the first derivative is therefore also a vector, the second derivative a matrix,
the third derivative a (third-order) tensor, etc. The polarizability tensor (matrix), for example, is the
second derivative with respect to an external electric field F:

α = −𝜕
2E
𝜕F2 (11.2)

The perturbation approach employs the same methodology as for calculating the electron correla-
tion energy in Section 4.8. The wave function, Hamilton operator and energy are expanded in terms of
a perturbation parameter 𝜆 and terms are collected according to the order of the perturbation, which
then defines the order of the property. The second-order term can be written as a sum of matrix
elements over all excited states (Equation (4.49)):

W2 = 2
∑

i≠0

⟨Ψ0|P|Ψi⟩⟨Ψi|P|Ψ0⟩

E0 − Ei
(11.3)

The polarizability corresponds to a perturbing dipolar electric field (P = r), which yields the formula

α = −2
∑

i≠0

|⟨Ψ0|r|Ψi⟩|
2

E0 − Ei
(11.4)

The additional factor of 2 relative to Equation (11.3) arises from the convention of using an order
expansion in perturbation theory, while the derivative formula in Equation (11.1) uses a Taylor expan-
sion which includes a factor of 1∕2 for the second-order term.
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The propagator formulation expands the expectation value of an operator O in terms of a pertur-
bation P:

⟨Ψ|O|Ψ⟩ = ⟨Ψ0|O|Ψ0⟩ +
𝜕⟨Ψ|O|Ψ⟩

𝜕P
P + 1

2
𝜕2⟨Ψ|O|Ψ⟩

𝜕P2 P2 +⋯ (11.5)

The polarizability is the first-order change in the dipole moment when subjected to a linear perturbing
electric field:

α =
𝜕⟨Ψ|μ|Ψ⟩

𝜕F
(11.6)

Equations for the corresponding dynamic properties must be derived from the time-dependent
Schrōdinger equation by including a frequency-dependent perturbation, which normally is an exter-
nal electric or magnetic field; this is discussed in Section 11.10.

. Examples of Molecular Properties

11.1.1 External Electric Field

The interaction of an electronic charge distribution 𝜌(r) with an electric potential𝜙(r) gives an energy
contribution:

E =
∫
𝜌(r)𝜙(r)dr (11.7)

Since the electric field (F = −𝜕𝜙/𝜕r) is normally fairly uniform at the molecular level, it is useful to
write E as a multipole expansion:

E = q𝜙 − μF − 1
2 QF′ −⋯ (11.8)

Here q is the net charge (monopole), μ is the (electric) dipole moment, Q is the quadrupole moment
and F and F′ are the field and field gradient (𝜕F/𝜕r), respectively. The dipole moment and electric field
are vectors and the μF term should be interpreted as the dot product (μF = 𝜇xFx + 𝜇yFy + 𝜇zFz). The
quadrupole moment and field gradient are 3 × 3 matrices and QF′ denotes the tensor contraction
of these matrices. It is rarely necessary to go beyond the quadrupole term for external fields, but
the octupole moment may also be important for molecular interactions (it is, for example, the first
non-vanishing moment for spherical molecules such as CH4).

The unperturbed dipole and quadrupole moments may in the absence of an external field be cal-
culated from the electronic wave function as simple expectation values:

μ0 = −⟨Ψ|r|Ψ⟩ (11.9)
Q0 = ⟨Ψ|rrt|Ψ⟩ (11.10)

The minus sign for the dipole moment arises from the negative charge on the electron. The superscript
t denotes a transposition of the r vector, that is converting it from a column to a row vector. The rrt

notation therefore indicates the outer product of r with itself, and the quadrupole moment is thus a
3 × 3 matrix, where the Qxy component is calculated as the expectation value of xy. The quadrupole
moment is often used in its traceless form where the sum of diagonal elements is zero, and is then
usually denoted 𝚯 to distinuish it from the second-order moment Q defined in Equation (11.9).
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The presence of a field influences the wave function and leads to induced dipole, quadrupole, etc.,
moments. For the dipole moment this may be written as

μ = μ0 + αF + 1
2βF2 + 1

6γF3 +⋯ (11.11)

Here μ0 is the permanent dipole moment, α is the (dipole) polarizability, β is the (first) hyper-
polarizability, γ is the second hyperpolarizability, etc. The quadrupole moment may similarly be
expanded in the field by means of a quadrupole polarizability, hyperpolarizability, etc., and mixed
dipole–quadrupole polarizabilities also occur. The energy in an external electric field can thus be
written as an expansion in terms of static and induced multipole moments, as shown by

E = q𝜙 − μ0F − 1
2𝚯0F′ −⋯ − 1

2αF2 − 1
6βF3 −⋯ − AFF′ − BF2F′ − C(F′)2 −⋯ (11.12)

Here A is the mixed dipole–quadrupole polarizability tensor, B is the mixed dipole–quadrupole
hyperpolarizability tensor and C is the quadrupole polarizability tensor, with implied tensor con-
traction of all terms.

For a homogeneous field (i.e. the field gradient and higher derivatives are zero), the total energy of
a neutral molecule may be written as a Taylor expansion, where all the derivatives are evaluated at
F = 0. There will be a derivative for each individual component of the field, which rapidly leads to a
large number of indices and summations in a proper mathematical formulation. In order to avoid this
notational cluttering, we will adopt a slightly non-standard notation where the field is indicated by a
vector notation, implying that derivatives should be taken along all the individual field components:

E(F) = E(0) + 𝜕E
𝜕F

|
|
|
|F=0

F + 1
2
𝜕2E
𝜕F2

|
|
|
|F=0

F2 + 1
6
𝜕3E
𝜕F3

|
|
|
|F=0

F3 + 1
24
𝜕4E
𝜕F4

|
|
|
|F=0

F4 +⋯ (11.13)

According to Equation (11.8) we also have 𝜕E/𝜕F = −μ, where μ is given by the expression in Equa-
tion (11.11). Differentiation of Equation (11.13) with respect to F gives

μ = − 𝜕E
𝜕F

|
|
|
|F=0

− 𝜕2E
𝜕F2

|
|
|
|F=0

F − 1
2
𝜕3E
𝜕F3

|
|
|
|F=0

F2 − 1
6
𝜕4E
𝜕F4

|
|
|
|F=0

F3 +⋯ (11.14)

Comparing Equations (11.11) and (11.14) shows that the first derivative is the (permanent) dipole
moment μ0, the second derivative is the polarizability α, the third derivative is the hyperpolarizability
β, etc.:

μ0 = − 𝜕E
𝜕F

|
|
|
|F=0

; α = − 𝜕2E
𝜕F2

|
|
|
|F=0

; β = − 𝜕3E
𝜕F3

|
|
|
|F=0

; γ = − 𝜕4E
𝜕F4

|
|
|
|F=0

(11.15)

An expansion analogous to Equation (11.13) in the field gradient allows connections to be made with
the quadrupole moment and associated polarizabilities as energy derivatives.

11.1.2 External Magnetic Field

The interaction with a magnetic field may similarly be written in terms of magnetic dipole,
quadrupole, etc., moments (there is no magnetic monopole, corresponding to electric charge). Since
the magnetic interaction is substantially smaller in magnitude than the electric field, only the dipole
term is normally considered, with the following equation being the magnetic equivalent of Equa-
tion (11.12) where magnetic field gradient terms are neglected:

E = −m0B − 1
2ξB2 −⋯ (11.16)
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The dipole moment m0 for an unperturbed system depends on the total electronic angular momen-
tum, which may be written in terms of the orbital angular momentum operator LG and the total
electron spin S:

m0 = − 1
2 ⟨Ψ|LG + geS|Ψ⟩

LG = (r − RG) × p
(11.17)

Here RG is the gauge origin (discussed in Section 11.8.8) and the electronic ge-factor is a constant
approximately equal to 2.0023. The orbital part of the permanent magnetic dipole moment will be
zero for all non-degenerate wave functions (i.e. belonging to A, B or Σ representations), since the
LG operator is purely imaginary (p = −i∇) and the wave function in such cases is real. Similarly,
only open-shell states (doublet, triplet, etc.) have the spin part of the magnetic dipole moment dif-
ferent from zero. Since the large majority of stable molecules are closed-shell singlets, it follows that
permanent magnetic dipole moments are quite rare. The presence of a field, however, may induce
a magnetic dipole moment, with the quantity corresponding to the electric polarizability being the
magnetizability ξ (the corresponding macroscopic quantity is called the magnetic susceptibility𝜒):

m = m0 + ξB +⋯ (11.18)

The energy can again be expanded in a Taylor series:

E(B) = E(0) + 𝜕E
𝜕B

|
|
|
|B=0

B + 1
2
𝜕2E
𝜕B2

|
|
|
|B=0

B2 +⋯ (11.19)

As for the electric field, this leads to the definition of the dipole moment and magnetizability as first
and second derivatives of the total energy with respect to the magnetic field:

m0 = −𝜕E
𝜕B

|
|
|
|B=0

; ξ = −𝜕
2E
𝜕B2

|
|
|
|B=0

(11.20)

11.1.3 Nuclear Magnetic Moments

The perturbation can also be a nuclear magnetic moment I, arising from a nuclear spin (the gA𝜇N
factor for converting from spin to magnetic moment has been ignored here):

E(I1, I2,…) = E(0) + 𝜕E
𝜕I1

I1 +
𝜕E
𝜕I2

I2 +
1
2
𝜕2E
𝜕I1𝜕I2

I1I2 +⋯

E(I1, I2,…) = E(0) − hJ12I1I2 +⋯
(11.21)

There is no energy contribution from the first derivative since there is nothing the magnetic moment
can interact with, while the second derivative with respect to two different nuclear spins is the NMR
coupling constant J (Planck’s constant appears owing to the convention of reporting coupling con-
stants in hertz, and the factor of 1∕2 disappears since we implicitly only consider distinct pairs of
nuclei).

11.1.4 Electron Magnetic Moments

Electron spin is implicitly taken into account in non-relativistic theory by the Pauli principle, but
without energetic consequences since the Hamilton operator does not depend on electron spin. The
actual interaction terms involving electron spin are small and again often accounted for by perturba-
tion theory. Molecules with a singlet state have no net electron spin, and thus only doublet, triplet,
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etc., molecules can have a non-zero energy correction. There is again no energy contribution from
the first derivative, since there is nothing the magnetic moment can interact with, and the equivalent
of Equation (11.21) is Equation (11.22), with s being the electronic spin:

E(s1, s2,⋯) = E(0) + 𝜕E
𝜕s1

s1 +
𝜕E
𝜕s2

s2 +
1
2

𝜕2E
𝜕s1𝜕s2

s1s2 +⋯

E(s1, s2,⋯) = E(0) − D12s1s2 +⋯
(11.22)

The first non-zero term corresponds to the interaction of two electron spins, and thus requires at
least two unpaired electrons, that is the electronic state must be (at least) a triplet. The D tensor is
called the zero field splitting and lifts the degeneracy of the individual components of a triplet (or
higher multiplet) state in the absence of a magnetic field.

11.1.5 Geometry Change

The change in energy for moving a nucleus can similarly be written as a Taylor expansion:

E(R) = E(R0) + 𝜕E
𝜕R

(R − R0) + 1
2
𝜕2E
𝜕R2 (R − R0)2 + 1

6
𝜕3E
𝜕R3 (R − R0)3 +⋯

E(R) = E(R0) + g(R − R0) + 1
2 H(R − R0)2 + 1

6 K(R − R0)3 +⋯
(11.23)

The first derivative is the gradient g (the negative gradient is the force), the second derivative is the
force constant (Hessian) H, the third derivative is the anharmonicity K, etc. If the R0 geometry is a
stationary point (g=0) the force constant matrix may be used for evaluating harmonic vibrational fre-
quencies and normal coordinates, q, as discussed in Section 17.2.2. If higher-order terms are included
in the expansion, it is possible also to determine anharmonic frequencies and phenomena such as
Fermi resonance.

11.1.6 Mixed Derivatives

Mixed derivatives refer to cross terms if the energy is expanded in more than one perturbation. There
are many such mixed derivatives that translate into molecular properties, a few of which are given
below.

The change in the dipole moment with respect to a geometry displacement along a normal coordi-
nate q is related to the intensity of an IR absorption. In the so-called double harmonic approximation
(terminating the expansion at first order in the electric field and geometry), the intensity is (except
for some constants) given by

IR intensity ∝
(
𝜕μ

𝜕q

)2
∝
(
𝜕2E
𝜕R𝜕F

)2
(11.24)

Only fundamental bands can have an intensity different from zero in the double harmonic approxima-
tion. Including higher-order terms in the expansion allows the calculation of intensities of overtone
bands, as well as adding contributions to the fundamental bands.

The intensity of a Raman band in the harmonic approximation is given by the derivative of the
polarizability with respect to a normal coordinate:

Raman intensity ∝
(
𝜕α

𝜕q

)2
∝
(

𝜕3E
𝜕R𝜕F2

)2
(11.25)
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The polarizability derivatives are often calculated in the static limit, but Ramen intensities do in reality
depend on the frequency of the incident light.5

The mixed derivative of an external and a nuclear magnetic field (nuclear spin) is the NMR shielding
tensor σ:

NMR shielding ∝
(
𝜕2E
𝜕B𝜕I

)

(11.26)

The corresponding quantity related to the electron spin is the ESR g tensor:

ESR g tensor ∝
(
𝜕2E
𝜕B𝜕s

)

(11.27)

The mixed derivative of a nuclear and electron magnetic moment is the hyperfine coupling constant:

Hyperfine coupling ∝
(
𝜕2E
𝜕I𝜕s

)

(11.28)

Table 11.1 gives some examples of properties that may be calculated from derivatives of a certain
order with respect to the above five perturbations:

Property ∝ 𝜕nF+nB+n1+ns+nR E
𝜕FnF𝜕BnB𝜕In1𝜕sns𝜕RnR

(11.29)

All of these properties can be calculated at various levels of sophistication (electron correlation and
basis sets).

The properties in Table 11.1 cover vibrational effects by the geometry derivatives, but additional
properties are related to the overall molecular rotation. The movement of electrically charged par-
ticles in a rotating molecule will give rise to a magnetic field, but within the Born–Oppenheimer
approximation, the nuclear and electron contributions will cancel exactly.There will in reality be a
small lag between the nuclear and electronic motions (a non-Born–Oppenheimer effect) which leads
to a magnetic moment that can interact with other magnetic moments. The rotational g tensor can be
considered as the second derivative with respect to the molecular rotational angular momentum and
an external magnetic field,6 and the spin-rotation constant is the mixed second-order term arising
from the coupling of the molecular rotational angular momentum and nuclear magnetic moment.7 If
the molecule has a net electronic spin (non-singlet state), there will be an electronic contribution to
the spin-rotation constant from interaction of the electronic spin and molecular rotational angular
momentum.8 Molecules with a non-zero angular momentum electronic wave function (e.g. π or Δ
states) have interaction terms with the overall rotation.9 Magnetic effects arising from the breakdown
of the Born–Oppenheimer approximation by vibrational motions and coupling with an external mag-
netic field provide the vibrational g tensor.10 The diagonal Born–Oppenheimer correction discussed
in Section 3.1 can also be considered as a molecular property related to the nuclear movements.

. Perturbation Methods

The presence of perturbations will give rise to extra terms in the Hamiltonian, and we will in the
following need to consider operators that are linear and quadratic in the perturbation strength 𝜆:

H = H0 + 𝜆P1 + 𝜆2P2 (11.30)
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Table . Examples of properties that may be calculated as derivatives of the energy.

nF nB nI ns nR Property

0 0 0 0 0 Energy
1 0 0 0 0 Electric dipole moment
0 1 0 0 0 Magnetic dipole moment
0 0 0 0 1 Molecular (nuclear) gradient
2 0 0 0 0 Electric polarizability
0 2 0 0 0 Magnetizability
0 0 2 0 0 Nuclear spin–spin coupling
0 0 0 2 0 Zero-field splitting
0 0 0 0 2 Harmonic vibrational frequencies
1 0 0 0 1 Infrared absorption intensities
1 1 0 0 0 Optical rotation, circular dichroism
0 1 1 0 0 Nuclear magnetic shielding
0 1 0 1 0 ESR g tensor
0 0 1 1 0 Hyperfine coupling constant
3 0 0 0 0 Electric hyperpolarizability (first)
0 3 0 0 0 Hypermagnetizability (first)
0 0 0 0 3 Anharmonic corrections to vibrational frequencies (cubic)
2 0 0 0 1 Raman intensities
1 1 0 0 1 Vibrational circular dichroism
1 1 1 0 0 Nuclear magnetic shielding (first) polarizability
1 0 0 0 2 Infrared intensities for overtone and combination bands
4 0 0 0 0 Electric hyperpolarizability (second)
0 4 0 0 0 Hypermagnetizability (second)
0 0 0 0 4 Anharmonic corrections to vibrational frequencies (quartic)
3 0 0 0 1 Hyper-Raman effects
2 1 1 0 0 Nuclear magnetic shielding (second) polarizability
2 0 0 0 2 Raman intensities for overtone and combination bands

H0 is the normal electronic Hamiltonian operator and the perturbations are described by the opera-
tors P1 and P2. Based on an expansion in exact wave functions, Rayleigh–Schrödinger perturbation
theory (Section 4.8) gives the first- and second-order energy corrections upon setting 𝜆 = 1:

W1 = ⟨Ψ0|P1|Ψ0⟩ (11.31)

W2 = ⟨Ψ0|P2|Ψ0⟩ + 2
∑

i≠0

⟨Ψ0|P1|Ψi⟩⟨Ψi|P1|Ψ0⟩

E0 − Ei
(11.32)

The first-order term is identical to Equation (4.46), while the second-order term corresponds to
Equation (4.49) including a factor of 2, as mentioned in Equation (11.4), and an additional term
involving the expectation value of P2 over the unperturbed wave function. The first-order energy
correction is identified with the first-order property, the second-order correction is the second-order
property, etc. Although these expressions only hold for exact wave functions, they may also be used
for approximative wave functions. The first-order term is simply the expectation value of the per-
turbation operator over the unperturbed wave function, and is easy to calculate. The second-order
property, however, involves a sum over all excited states. In some cases, mainly associated with
semi-empirical methods, second-order properties are evaluated directly from Equation (11.32),
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known as Sum Over States (SOS) methods. Since this involves a determination of all excited states,
it is very inefficient for ab initio methods.

. Derivative Techniques

Derivative techniques consider the energy in the presence of the perturbation, perform an analyti-
cal differentiation of the energy n times to derive a formula for the nth-order property and let the
perturbation strength go to zero.

Let us write the energy as

E(𝜆) = ⟨Ψ(𝜆)|H0 + 𝜆P1 + 𝜆2P2|Ψ(𝜆)⟩ (11.33)

This is strictly true for HF, MCSCF and CI wave functions, and can be generalized to MP and CC
methods, as shown in Section 11.5. The perturbation-dependent terms in the operator are written
explicitly, while the wave function dependence is implicit, via the parameterization (orbital and state
coefficients) and possibly also the basis functions.

The first derivative of the energy can be written as

𝜕E
𝜕𝜆

=
⟨
𝜕Ψ
𝜕𝜆

|
|
|
|
H0 + 𝜆P1 + 𝜆2P2

|
|
|
|
Ψ
⟩

+ ⟨Ψ|P1 + 2𝜆P2|Ψ⟩ +
⟨

Ψ
|
|
|
|
H0 + 𝜆P1 + 𝜆2P2

|
|
|
|

𝜕Ψ
𝜕𝜆

⟩

(11.34)

For real wave functions the first and third terms are identical. Letting the perturbation strength go to
zero yields

𝜕E
𝜕𝜆

|
|
|
|𝜆=0

= ⟨Ψ0|P1|Ψ0⟩ + 2
⟨
𝜕Ψ
𝜕𝜆

|
|
|
|
H0

|
|
|
|
Ψ0

⟩

(11.35)

The wave function depends on the perturbation indirectly, via parameters in the wave function (C),
and possibly also the basis functions (𝝌). The wave function parameters may be orbital coefficients
(HF), state coefficients (CI, MP, CC) or both (MCSCF):

𝜕Ψ
𝜕𝜆

= 𝜕Ψ
𝜕C

𝜕C
𝜕𝜆

+ 𝜕Ψ
𝜕χ

𝜕χ

𝜕𝜆
(11.36)

Assuming for the moment that the basis functions are independent of the perturbation (𝜕χ/𝜕𝜆 = 0),
the derivative (11.35) may be written as

𝜕E
𝜕𝜆

|
|
|
|𝜆=0

= ⟨Ψ0|P1|Ψ0⟩ + 2𝜕C
𝜕𝜆

⟨
𝜕Ψ
𝜕C

|
|
|
|
H0

|
|
|
|
Ψ0

⟩

(11.37)

If the wave function is variationally optimized with respect to all parameters (HF or MCSCF, but not
CI), the last term disappears since the energy is stationary with respect to a variation of the MO/state
coefficients (H0, P1 and P2 do not depend on the parameters C):

𝜕E
𝜕C

= 𝜕

𝜕C
⟨Ψ|H0 + 𝜆P1 + 𝜆2P2|Ψ⟩ = 2

⟨
𝜕Ψ
𝜕C

|
|
|
|
H0 + 𝜆P1 + 𝜆2P2

|
|
|
|
Ψ
⟩

(11.38)

𝜕E
𝜕C

|
|
|
|𝜆=0

= 2
⟨
𝜕Ψ
𝜕C

|
|
|
|
H0

|
|
|
|
Ψ0

⟩

= 0 (11.39)

Variational wave functions thus obey the Hellmann–Feynman theorem:

𝜕

𝜕𝜆
⟨Ψ|H|Ψ⟩ =

⟨

Ψ
|
|
|
|

𝜕H
𝜕𝜆

|
|
|
|
Ψ
⟩

(11.40)
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The expression from first-order perturbation theory (11.31) in such cases yields a result identical
to the first derivative of the energy with respect to 𝜆. For wave functions that are not completely
optimized with respect to all parameters (CI, MP or CC), the Hellmann–Feynman theorem does not
hold, and a first-order property calculated as an expectation value will not be identical to that obtained
as an energy derivative. Since the Hellmann–Feynman theorem holds for an exact wave function, the
difference between the two values becomes smaller as the quality of an approximate wave function
increases. However, for practical applications the difference is not negligible. It has been argued that
the derivative technique resembles the physical experiment more, and consequently formula (11.35)
should be preferred over (11.31).

The second derivative of the energy can for a real wave function be written as

1
2
𝜕2E
𝜕𝜆2 =

⟨
𝜕2Ψ
𝜕𝜆2

|
|
|
|

H0 + 𝜆P1 + 𝜆2P2
|
|
|
|
Ψ
⟩

+ 2
⟨
𝜕Ψ
𝜕𝜆

|
|
|
|
P1 + 2𝜆P2

|
|
|
|
Ψ
⟩

+
⟨
𝜕Ψ
𝜕𝜆

|
|
|
|

H0 + 𝜆P1 + 𝜆2P2
|
|
|
|

𝜕Ψ
𝜕𝜆

⟩

+ ⟨Ψ|P2|Ψ⟩
(11.41)

In the limit of the perturbation strength going to zero this reduces to

1
2
𝜕2E
𝜕𝜆2

|
|
|
|𝜆=0

=
⟨
𝜕2Ψ
𝜕𝜆2

|
|
|
|
H0

|
|
|
|
Ψ0

⟩

+ 2
⟨
𝜕Ψ
𝜕𝜆

|
|
|
|
P1

|
|
|
|
Ψ0

⟩

+
⟨
𝜕Ψ
𝜕𝜆

|
|
|
|
H0

|
|
|
|

𝜕Ψ
𝜕𝜆

⟩

+ ⟨Ψ0|P2|Ψ0⟩ (11.42)

The implicit wave function dependence on C allows the derivative to be written as

1
2
𝜕2E
𝜕𝜆2

|
|
|
|𝜆=0

= 𝜕2C
𝜕𝜆2

⟨
𝜕Ψ
𝜕C

|
|
|
|
H0

|
|
|
|
Ψ0

⟩

+
(
𝜕C
𝜕𝜆

)2 ⟨𝜕2Ψ
𝜕C2

|
|
|
|
H0

|
|
|
|
Ψ0

⟩

+ 2
(
𝜕C
𝜕𝜆

)⟨
𝜕Ψ
𝜕C

|
|
|
|
P1

|
|
|
|
Ψ0

⟩

+
(
𝜕C
𝜕𝜆

)2 ⟨𝜕Ψ
𝜕C

|
|
|
|
H0

|
|
|
|

𝜕Ψ
𝜕C

⟩

+ ⟨Ψ0|P2|Ψ0′⟩

(11.43)

The first term is again zero for variationally optimized wave functions (Equation (11.39)). Further-
more, the second term, which involves calculation of the second derivative of the wave function with
respect to the parameters, can be avoided. This can be seen by differentiating the stationary condition
of Equation (11.38) with respect to the perturbation:

𝜕

𝜕𝜆

⟨
𝜕Ψ
𝜕C

|
|
|
|
H0 + 𝜆P1 + 𝜆2P2

|
|
|
|
Ψ0

⟩|
|
|
|
|𝜆=0

=
(
𝜕C
𝜕𝜆

)⟨
𝜕2Ψ
𝜕C2

|
|
|
|
H0

|
|
|
|
Ψ0

⟩

+
⟨
𝜕Ψ
𝜕C

|
|
|
|
P1

|
|
|
|
Ψ0

⟩

+
(
𝜕C
𝜕𝜆

)⟨
𝜕Ψ
𝜕C

|
|
|
|
H0

|
|
|
|

𝜕Ψ
𝜕C

⟩

= 0
(11.44)

The second derivative in Equation (11.43) therefore reduces to

1
2
𝜕2E
𝜕𝜆2

|
|
|
|𝜆=0

= ⟨Ψ0|P2|Ψ0⟩ +
(
𝜕C
𝜕𝜆

)⟨
𝜕Ψ
𝜕C

|
|
|
|
P1

|
|
|
|
Ψ0

⟩

(11.45)

In a more compact notation this can be written as

1
2
𝜕2E
𝜕𝜆2

|
|
|
|𝜆=0

= ⟨Ψ0|P2|Ψ0⟩ +
⟨
𝜕Ψ
𝜕𝜆

|
|
|
|
P1

|
|
|
|
Ψ0

⟩

(11.46)

This shows that only the first-order change in the wave function is necessary and quadratic operators
only contribute. with an expectation value that is easy to calculate.
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For exact wave functions Equation (11.46) becomes identical to the perturbation expression (11.32),
since the first derivative of the wave function is the first-order correction to the wave function (Equa-
tion (4.45)), which can be expanded in a complete set of eigenfunctions:

𝜕Ψ
𝜕𝜆

= Ψ1 =
∞∑

i=1
aiΨi ; ai =

⟨Ψi|P1|Ψ0⟩

E0 − Ei
(11.47)

. Response and Propagator Methods

The Taylor expansions in Equations (11.14) and (11.15) suggest that, for example, second-order
molecular properties can be defined as the first derivative of a first-order property, and this approach
is often called the response or propagator method. It is similar to the derivative technique, but uses
the expectation value of an operator instead of the energy for performing a Taylor expansion in the
presence of a perturbation:

⟨Ψ|O|Ψ⟩ = ⟨Ψ0|O|Ψ0⟩ +
𝜕⟨Ψ|O|Ψ⟩

𝜕P
P + 1

2
𝜕2⟨Ψ|O|Ψ⟩

𝜕P2 P2 +⋯

⟨Ψ|O|Ψ⟩ = ⟨Ψ0|O|Ψ0⟩ + ⟨⟨O; P⟩⟩P + 1
2 ⟨⟨O; P, P⟩⟩P2 +⋯

(11.48)

The propagator notation ⟨⟨O; P⟩⟩ indicates the first-order change (linear response) in the property
subject to perturbation P, while ⟨⟨O; P, P⟩⟩ indicates the second-order change (quadratic response)
subject to perturbation P. Only the wave function depends on the perturbation, and ⟨⟨O; P⟩⟩ can for
real wave functions be written as

⟨⟨O; P⟩⟩ = 2
⟨
𝜕Ψ
𝜕P

|
|
|
|
O
|
|
|
|
Ψ0

⟩

(11.49)

This is equivalent to the last term in Equation (11.46). Note that the linear, quadratic, cubic, etc.,
response/propagator properties are associated with the second-, third-, fourth-, etc., derivatives or
energy corrections in the perturbation formulation.

. Lagrangian Techniques

For variationally optimized wave functions (HF or MCSCF) there is a 2n + 1 rule, analogous to the
perturbational energy expression (Equation (4.44)): knowledge of the nth derivative (response) of the
wave function is sufficient for calculating a property to order 2n + 1. For non-variational wave func-
tions Equation (11.42) suggests that the nth-order wave function response is required for calculating
the nth-order property. This may be avoided, however, by a technique first illustrated for CISD geom-
etry derivatives by Handy and Schaefer, often referred to as the Z-vector method.11 It has later been
generalized to cover other types of wave functions and derivatives by formulating it in terms of a
Lagrange function.12

The idea is to construct a Lagrange function that has the same energy as the non-variational wave
function but which is variational in all parameters. Consider, for example, a CI wave function, which is
variational in the state coefficients (a) but not in the orbital coefficients (c), since they are determined
by the stationary condition for the HF wave function (note that we employ lower case c for the orbital
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coefficients but capital C to denote all wave function parameters, that is C contains both a and c):

𝜕ECI
𝜕a

= 𝜕

𝜕a
⟨ΨCI(a, c)|H|ΨCI(a, c)⟩ = 2

⟨
𝜕ΨCI
𝜕a

|
|
|
|
H
|
|
|
|
ΨCI

⟩

= 0 (11.50)

𝜕ECI
𝜕c

= 𝜕

𝜕c
⟨ΨCI(a, c)|H|ΨCI(a, c)⟩ = 2

⟨
𝜕ΨCI
𝜕c

|
|
|
|
H
|
|
|
|
ΨCI

⟩

≠ 0 (11.51)

𝜕EHF
𝜕c

= 𝜕

𝜕c
⟨ΨHF(a, c)|H|ΨHF(a, c)⟩ = 2

⟨
𝜕ΨHF
𝜕c

|
|
|
|
H
|
|
|
|
ΨHF

⟩

= 0 (11.52)

Consider now the Lagrange function given in

LCI = ECI + κ
𝜕EHF
𝜕c

(11.53)

Here κ contains a set of Lagrange multipliers. The derivatives of the Lagrange function with respect
to a, c and κ are given in the following equations:

𝜕LCI
𝜕a

=
𝜕ECI
𝜕a

= 0 (11.54)

𝜕LCI
𝜕κ

=
𝜕EHF
𝜕c

= 0 (11.55)

𝜕LCI
𝜕c

=
𝜕ECI
𝜕c

+ κ
𝜕2EHF
𝜕c2 = 0 (11.56)

The first two derivatives are zero due to the properties of the CI and HF wave functions, Equa-
tions (11.50) and (11.52). Equation (11.56) is zero by virtue of the Lagrange multipliers, that is we
choose κ such that 𝜕LCI/𝜕c = 0. It may be written more explicitly as follows:

𝜕LCI
𝜕c

= 2
⟨
𝜕ΨCI
𝜕c

|
|
|
|
H
|
|
|
|
ΨCI

⟩

+ 2κ

[⟨
𝜕2ΨHF
𝜕c2

|
|
|
|
H
|
|
|
|
ΨHF

⟩

+
⟨
𝜕ΨHF
𝜕c

|
|
|
|
H
|
|
|
|

𝜕ΨHF
𝜕c

⟩]

= 0 (11.57)

Note that no new operators are involved, only derivatives of the CI or HF wave function with respect
to the MO coefficients. The matrix elements can thus be calculated from the same integrals as the
energy itself, as discussed in Sections 3.3 and 4.2.1.

The derivative with respect to a perturbation can now be written as

𝜕LCI
𝜕𝜆

=
𝜕ECI
𝜕𝜆

+ κ
𝜕

𝜕𝜆

(
𝜕EHF
𝜕c

)

= 0 (11.58)

Expanding out the terms gives

𝜕LCI
𝜕𝜆

= 𝜕

𝜕𝜆
⟨ΨCI|H|ΨCI⟩ + 2κ

𝜕

𝜕𝜆

⟨
𝜕ΨHF
𝜕c

|
|
|
|
H
|
|
|
|
ΨHF

⟩

=
⟨

ΨCI
|
|
|
|

𝜕H
𝜕𝜆

|
|
|
|
ΨCI

⟩

+ 2 𝜕a
𝜕𝜆

⟨
𝜕ΨCI
𝜕a

|
|
|
|
H
|
|
|
|
ΨCI

⟩

+ 2 𝜕c
𝜕𝜆

⟨
𝜕ΨCI
𝜕c

|
|
|
|
H
|
|
|
|
ΨCI

⟩

+κ

[⟨
𝜕ΨHF
𝜕c

|
|
|
|

𝜕H
𝜕𝜆

|
|
|
|
ΨHF

⟩

+ 𝜕c
𝜕𝜆

(⟨
𝜕2ΨHF
𝜕c2

|
|
|
|
H
|
|
|
|
ΨHF

⟩

+
⟨
𝜕ΨHF
𝜕c

|
|
|
|
H
|
|
|
|

𝜕ΨHF
𝜕c

⟩)]

(11.59)

The second term disappears since the CI wave function is variational in the state coefficients (Equa-
tion (11.50)). The three terms involving the derivative of the MO coefficients (𝜕c/𝜕𝜆) also disappear
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owing to our choice of the Lagrange multipliers (Equation (11.50)). If we furthermore adapt the def-
inition that 𝜕H/𝜕𝜆 = P1 (Equation (11.30)), the final derivative may be written as

𝜕LCI
𝜕𝜆

= ⟨ΨCI|P1|ΨCI⟩ + κ

⟨
𝜕ΨHF
𝜕c

|
|
|
|
P1

|
|
|
|
ΨHF

⟩

(11.60)

Here the Lagrange multipliers κ are determined from Equation (11.57).
What has been accomplished? The original expression (11.37) contains the derivative of the

MO coefficients with respect to the perturbation (𝜕c/𝜕𝜆), which can be obtained by solving the
CPHF equations (Section 11.6.1 below). For geometry derivatives, for example, there will be 3Natom
different perturbations, that is we need to solve 3Natom sets of CPHF equations. The Lagrange expres-
sion (11.60), on the other hand, contains a set of Lagrange multipliers κ that are independent of the
perturbation, that is we need only to solve one equation for κ, Equation (11.57). Furthermore, the
CPHF equations involve derivatives of the basis functions, while the equation for κ only involves
integrals of the same type as for calculating the energy itself.

The Lagrange technique may be generalized to other types of non-variational wave functions (MP
and CC) and to higher-order derivatives. It is found that the 2n + 1 rule is recovered; that is if the
wave function response is known to order n, the (2n + 1)th-order property may be calculated for any
type of wave function.

. Wave Function Response

While first-order properties in most cases can be obtained as simple expectation values over the
unperturbed wave function, second (and higher-order) properties require the first (and higher)- order
change (response) of the wave function in the presense of the perturbation. The first-order change in
the wave function 𝜕C/𝜕𝜆 can be obtained from Equation (11.44):

[⟨
𝜕2Ψ
𝜕C2

|
|
|
|
H0

|
|
|
|
Ψ0

⟩

+
⟨
𝜕Ψ
𝜕C

|
|
|
|
H0

|
|
|
|

𝜕Ψ
𝜕C

⟩](
𝜕C
𝜕𝜆

)

= −
⟨
𝜕Ψ
𝜕C

|
|
|
|
P1

|
|
|
|
Ψ0

⟩

(11.61)

This is a set of linear equations where the matrix elements on the left-hand side are second derivatives
of the energy with respect to the wave function parameters. For the case of a single Slater determinant
(Ψ = Φ), the wave function parameters are (only) the molecular orbital coefficients, and these can
be parameterized in terms of non-redundant orbital rotation parameters xa

i (Section 3.6). The wave
function derivatives can thus be calculated as matrix elements between the reference and doubly
excited determinants and between singly excited determinants (Equation (3.70)):

⟨

𝜕2Φ
𝜕xa

i 𝜕xb
j

|
|
|
|
|

H0

|
|
|
|
|

Φ0

⟩

∝
⟨

Φab
ij
|
|
|
H0

|
|
|
Φ0

⟩

− 𝛿ij𝛿abE0 (11.62)

⟨

𝜕Φ
𝜕xa

i

|
|
|
|
|

H0

|
|
|
|
|

𝜕Φ
𝜕xb

j

⟩

∝
⟨

Φa
i
|
|
|
H0

|
|
|
Φb

j

⟩

(11.63)

The right-hand side of Equation (11.61) contains matrix elements of the perturbation operator
between the reference and singly excited determinants, and is often called a property gradient, in
analogy with the energy gradient if the operator is the Hamiltonian (Equation (3.69)):

⟨
𝜕Φ
𝜕xa

i

|
|
|
|
P1

|
|
|
|
Φ0

⟩

∝
⟨
Φa

i
|
|P1||Φ0

⟩
(11.64)
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The above simplified notation hides a couple of critical details, the most important being that the
excitation manifold must include both excitation and de-excitations, that both real and imaginary
variations must be allowed and the xa

i notation implicitly defines both the xai and xia elements in the
X matrix in Equation (3.65). Performing this generalization, the response equations can be written
as in the following equation, where (Y,Z) contains the real and imaginary parts of the wave function
response, respectively:

[
A B
B∗ A∗

] [
Y
Z

]

= −
[

P
P∗

]

(11.65)

The A and B matrix elements follow from Equations (11.62) and (11.63) and can be obtained from
orbital energy differences and two-electron integrals (using the notation in Equation (3.61) with ij
being occupied and ab being virtual orbitals), as shown in the following equations:

Aab
ij =

⟨

Φa
i
|
|
|
H0

|
|
|
Φb

j

⟩

− E0𝛿ij𝛿ab = 𝛿ij𝛿ab(𝜀a − 𝜀i) + ⟨ij|ab⟩ − ⟨ia|jb⟩ (11.66)

Bab
ij =

⟨

Φ0
|
|
|
H0

|
|
|
Φab

ij

⟩

= ⟨ij|ab⟩ − ⟨ij|ba⟩ (11.67)

Pa
i =

⟨
Φ0||P1||Φ

a
i
⟩
= ⟨i|P1|a⟩ (11.68)

The response part of the property in Equation (11.46) can with Equation (11.61) be written as
⟨
𝜕Ψ
𝜕𝜆

|
|
|
|
P1

|
|
|
|
Ψ0

⟩

= −
⟨
𝜕Ψ
𝜕C

|
|
|
|
P1

|
|
|
|
Ψ0

⟩[⟨
𝜕2Ψ
𝜕C2

|
|
|
|
H0

|
|
|
|
Ψ0

⟩

+
⟨
𝜕Ψ
𝜕C

|
|
|
|
H0

|
|
|
|

𝜕Ψ
𝜕C

⟩]−1 ⟨
𝜕Ψ
𝜕C

|
|
|
|
P1

|
|
|
|
Ψ0

⟩

(11.69)

Using the notation from Equation (11.65) and generalizing to a propagator notation, the change in
the expectation value of operator O subject to perturbation P can be written as

⟨⟨O; P⟩⟩ = −[O O∗]
[

A B
B∗ A∗

]−1 [ P
P∗

]

(11.70)

Both the A and B matrices have the dimension NoccNvir corresponding to all single excitations, which
for all but the most trivial cases prohibits a calculation of the inverse matrix in Equation (11.70)
directly. The propagator is therefore calculated in two steps, by first solving for the response vector
(Y,Z) in Equation (11.65) by iterative techniques (Section 17.2.5) and subsequently multiplying it with
a vector containing the matrix elements of the O operator:

⟨⟨O; P⟩⟩ = −[ O O∗ ]
[

Y
Z

]

(11.71)

The above expressions for the first-order change in the wave function and the associated second-
order property can be generalized to calculating higher-order changes in the wave function required
for higher-order properties by repeated differentiations with respect to additional perturbations.

11.6.1 Coupled Perturbed Hartree–Fock

The above response formulation is quite general, except for the matrix elements in Equations (11.66)
to (11.68), which assumes an HF-type wave function parameterized in terms of non-redundant orbital
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rotations. As illustrated in Section 3.6 it is often possible to formulate the same problem in different
ways. For a Hartree–Fock wave function, an equation for the change in the MO coefficients may also
be formulated from the HF equation in the atomic orbital basis, (Equation (3.54):

F(0)C(0) = S(0)C(0)ε(0) (11.72)

The superscript (0) here denotes the unperturbed system. The orthonormality of the molecular
orbitals (Equation (3.20)) can be expressed as

Ct(0)S(0)C(0) = 1 (11.73)

Expanding each of the F, C, S and ε matrices in terms of a perturbation parameter (e.g. F= F(0) + 𝜆F(1)

+ 𝜆2F(2) + ⋯) and collecting all the first-order terms (analogous to the strategy used in Section 4.8)
gives

F(1)C(0) + F(0)C(1) = S(1)C(0)ε(0) + S(0)C(1)ε(0) + S(0)C(0)ε(1)

[F(0) − S(0)ε(0)]C(1) = [−F(1) + S(1)ε(0) + S(0)ε(1)]C(0) (11.74)

The orthonormality condition becomes

Ct(1)S(0)C(0) + Ct(0)S(1)C(0) + Ct(0)S(0)C(1) = 0 (11.75)

Equation (11.75) is the first-order Coupled Perturbed Hartree–Fock (CPHF ) equation.13 The per-
turbed MO coefficients are given in terms of unperturbed quantities and the first-order Fock,
Lagrange (ε) and overlap matrices. The F(1) term is given as follows, where the (external) pertur-
bation typically is part of h(1):

F(1) = h(1) + G(1)D(0) + G(0)D(1) (11.76)

Here h is the one-electron (core) matrix, D the density matrix and G the tensor containing the two-
electron integrals. The density matrix is given as a product of MO coefficients (Equation (3.55)):

D(0) = Ct(0)C(0) (11.77)
D(1) = Ct(1)C(0) + Ct(0)C(1) (11.78)

The S(1), h(1) and g(1) quantities are (first) derivatives of one- and two-electron integrals over basis
functions:

S𝛼𝛽 (1) = ⟨𝜒𝛼|𝜒𝛽⟩
(1) = 𝜕

𝜕𝜆
⟨𝜒𝛼|𝜒𝛽⟩ (11.79)

h𝛼𝛽 (1) = ⟨𝜒𝛼|h|𝜒𝛽⟩(1) = 𝜕

𝜕𝜆
⟨𝜒𝛼|h|𝜒𝛽⟩ (11.80)

g𝛼𝛽𝛾𝛿 (1) = ⟨𝜒𝛼𝜒𝛽 |g|𝜒𝛾𝜒𝛿⟩(1) = 𝜕

𝜕𝜆
⟨𝜒𝛼𝜒𝛽 |g|𝜒𝛾𝜒𝛿⟩ (11.81)

The derivatives of the integrals may involve derivatives of the basis functions or the operator, or both
(see Section 11.9). Using Equations (11.76) to (11.78) in Equation (11.74) gives a set of linear equations
relating C(1) to S(1), h(1), g(1) and C(0).

Just as the variational condition for an HF wave function can be formulated either as a matrix
equation or in terms of orbital rotations (Sections 3.5 and 3.6), the CPHF may also be viewed as
a rotation of the molecular orbitals, which was the approach taken in the previous section. In the
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absence of a perturbation, the molecular orbitals make the energy stationary, that is the derivative of
the energy with respect to a change in the MOs is zero. This is equivalent to the statement that the
off-diagonal elements of the Fock matrix between the occupied and virtual MOs are zero:

⟨𝜙i|F|𝜙a⟩ = 0

⟨𝜙i|h|𝜙a⟩ +
Norb∑

k=1
[⟨𝜙i𝜙k|g|𝜙a𝜙k⟩ − ⟨𝜙i𝜙k|g|𝜙k𝜙a⟩] = 0 (11.82)

When a perturbation is introduced, the stationary condition means that the orbitals must change,
which can be described as a mixing of the unperturbed MOs. In other words, the stationary orbitals
in the presence of a perturbation are given by a unitary transformation of the unperturbed orbitals
(see also Section 3.6):

φ′ = φU (11.83)

𝜙′
i =

Mbasis∑

j=1
uji𝜙j (11.84)

The U matrix describes how the MOs change, that is it contains the derivatives of the MO coeffi-
cients. In the absence of a perturbation, U is the identity matrix. Since the energy is independent of
a rotation among the occupied or virtual orbitals, only the mixing of occupied and virtual orbitals is
determined by requiring that the energy should be stationary. The occupied–occupied and virtual–
virtual mixing may be fixed from the orthonormality condition (Equation (11.75)) or, equivalently,
by requiring the perturbed Fock matrix to be diagonal also in the occupied–occupied and virtual–
virtual blocks. Without these additional requirements, the procedure is called Coupled Hartree–Fock
(CHF), as opposed to CPHF.

Let us now explicitly make U(1) the matrix containing the first-order changes in the MO coefficients
and being diagonal in the occupied–occupied and virtual–virtual blocks

C(1) = C(0)U(1) (11.85)

An equation for the U(1) elements can be obtained from the condition that the Fock matrix is diagonal
and by expanding all involved quantities to first order:

⟨𝜙i|h|𝜙a⟩ → ⟨𝜙i|h|𝜙a⟩
(0) + ⟨𝜙i|h|𝜙a⟩

(1) (11.86)
⟨𝜙i𝜙k|g|𝜙a𝜙k⟩ → ⟨𝜙i𝜙k|g|𝜙a𝜙k⟩

(0) + ⟨𝜙i𝜙k|g|𝜙a𝜙k⟩
(1) (11.87)

The ⟨𝜙i|h|𝜙a⟩
(1) and ⟨𝜙i𝜙k|g|𝜙a𝜙k⟩

(1) elements are integral derivatives with respect to the perturba-
tion, analogous to Equations (11.80) and (11.81), but expressed in terms of molecular orbitals. Insert-
ing these expansions into the ⟨𝜙i|F|𝜙a⟩ = 0 condition and collecting all terms that are first order in
𝜆 gives a set of linear equations that can be written as in Equation (11.65).

The CPHF equations can, as illustrated above, be formulated either in an atomic orbital or molec-
ular orbital basis. Although the latter has computational advantages in certain cases, the former is
more suitable for use in connection with direct methods (where the atomic integrals are calculated
as required), as discussed in Section 3.8.5.

There is one CPHF equation to be solved for each perturbation. If it is an external electric or mag-
netic field, there will in general be three components (Fx, Fy, Fz); if it is a geometry perturbation there
will be 3Natom (actually only 3Natom − 6 independent) components. Since the matrix elements on the
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left-hand side of Equation (11.65) are independent of the nature of the perturbation, such multiple
CPHF equations are often solved simultaneously.

The solution of the CPHF equations corresponds to finding the change in the optimum orbitals
when the perturbation is turned on, that is the orbitals are allowed to relax in the presence of the
perturbation. For certain properties, it is advantageous to not allow the orbitals to relax, because
of triplet instabilities in the wave function. The corresponding uncoupled HF corresponds to only
including the orbital energy difference in the A matrix (Equation (11.66)) and setting the B matrix
(Equation (11.67)) to zero.

The CPHF procedure may be generalized to higher order. Extending the expansion to second order
allows the derivation of an equation for the second-order change in the MO coefficients, by solving
a second-order CPHF equation, etc.

For perturbation-dependent basis sets (e.g. geometry derivatives) the (first-order) CPHF equations
involve (first) derivatives of the one- and two-electron integrals with respect to the perturbation. For
basis functions that are independent of the perturbation (e.g. an electric field), these derivatives are
zero. The solution of each CPHF equation (for each perturbation) typically requires approximately
half of the time required for solving the HF equations themselves. For basis set-dependent perturba-
tions, the first-order CPHF equations are only needed for calculating second (and higher) derivatives,
which have terms involving second (and higher) derivatives of the integrals themselves, and solving
the CPHF equations is usually not the computational bottleneck in these cases.

Without the Lagrange technique for non-variational wave functions (CI, MP and CC), the nth-
order CPHF is needed for the nth derivative. Consider, for example, the MP2 energy correction:

MP2 =
Nocc∑

i<j

Nvir∑

a<b

[⟨𝜙i𝜙j|𝜙a𝜙b⟩ − ⟨𝜙i𝜙j|𝜙b𝜙a⟩]2

𝜀i + 𝜀j − 𝜀a − 𝜀b
(11.88)

The derivative of a molecular integral is given by Equation (11.57):

𝜕

𝜕𝜆
⟨𝜙i𝜙j|𝜙a𝜙b⟩ =

𝜕

𝜕𝜆

Mbasis∑

𝛼𝛽𝛾𝛿

ci𝛼cj𝛽c𝛼𝛾cb𝛿⟨𝜒𝛼𝜒𝛽 |𝜒𝛾𝜒𝛿⟩ (11.89)

This requires both the derivative of the MO coefficients and the two-electron integrals in the AO
basis. The denominator leads to derivatives of the MO energies, which can be obtained by solving the
CPHF equations. A straightforward differentiation of Equation (11.88) thus leads to a formula where
the first-order response is required.

The following sections exemplify derivative and perturbation expressions for some first- and
second-order properties arising from different perturbations when using an HF-type wave function.

. Electric Field Perturbation

11.7.1 External Electric Field

If the perturbation is a homogeneous dipolar electric field F (F = Fr), the perturbation operator P1
(Equation (11.31)) is the position vector r and P2 is zero. Assuming that the basis functions are inde-
pendent of the electric field (as is normally the case), the first-order HF property, the dipole moment,
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is given by the derivative formula (11.35), as shown below (since an HF wave function obeys the
Hellmann–Feynman theorem):

μ = −
𝜕EHF
𝜕F

= −⟨ΦHF|r|ΦHF⟩ (11.90)

This is equivalent to the expression from first-order perturbation theory, Equation (11.31). For non-
variational wave functions the dipole moment calculated by the two approaches will be different,
since the derivative of the wave function with respect to the field will not be zero. The second-order
property, the dipole polarizability, is given by the derivative formula, Equation (11.46), as shown in

α = −
𝜕2EHF
𝜕F2 = 2

⟨
𝜕ΦHF
𝜕F

|
|
|
|
r
|
|
|
|
ΦHF

⟩

(11.91)

Second-order perturbation theory (Equation (11.32)) yields

α = −2
∑

i≠0

|⟨ΦHF|r|Φi⟩|
2

E0 − Ei
(11.92)

11.7.2 Internal Electric Field

Although nuclei are often modeled as point charges in quantum chemistry, they do in fact have a
finite size. The internal structure of the nucleus leads to a quadrupole moment for nuclei with spin
larger than 1∕2 (the dipole and octopole moments vanish by symmetry). This leads to an interaction
term that is the product of the nuclear quadrupole moment with the field gradient (F′ = ∇F) created
by the electron distribution:

HΘ = − 1
2

Nnuclei∑

A=1
𝚯AF′ (11.93)

This property is the second derivative of the energy with respect to the nuclear quadrupole moment
and the electric field gradient and can thus be considered as the electric analog of the nuclear magnetic
shielding constant. The quadrupole moment is a constant for a given nucleus and isotope, and the
measured interaction thus provides the electric field gradient at the nuclear position. The electric
field gradient is the second derivative of the electric potential with respect to the coordinates and thus
contains information regarding the electron distribution surrounding the nucleus. It can be calculated
as a simple expectation value over the wave function and terms from the other nuclei:

F′
A =

⟨

Ψ
|
|
|
|
|

3riArt
iA − rt

iAriA1

r5
iA

|
|
|
|
|

Ψ

⟩

−
∑

B≠A
ZB

3RABRt
AB − Rt

ABRAB1

R5
AB

(11.94)

The quadrupole interaction also determines the peak splitting in Mössbauer spectroscopy, while the
electron density at the nuclear position results in an isotope shift.14

. Magnetic Field Perturbation

The situation is somewhat more complicated when the perturbation is a magnetic field. An elec-
tric field interacts directly with the charged particles (electrons and nuclei) and adds a potential
energy term to the Hamiltonian operator. A magnetic field, however, interacts with the magnetic
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moments generated by the movement of the charged particles (electrons), that is a magnetic pertur-
bation changes the kinetic energy operator. The generalized (also called the canonical) momentum
operator π is defined in by

π = p − qA (11.95)

Here q is the charge and A is the vector potential associated with the magnetic field B (more
correctly, the magnetic induction or flux density, being different from the magnetic field by a factor
of 4π × 10−7 H/m), with the latter being given as the curl of the vector potential:

B = ∇ × A (11.96)

Only the kinetic energy of the electrons is considered within the Born–Oppenheimer approximation
and the generalized momentum becomes (q = −1):

π = p + A (11.97)

The vector potential is not uniquely defined since the gradient of any scalar function may be added
(the curl of a gradient is always zero). For an external magnetic field, it is conventional to write it as

Aext(r) = 1
2 Bext × (r − RG) (11.98)

Here RG is referred to as the gauge origin, that is the center of the vector potential. One may verify
by explicit calculation that the curl of Aext in Equation (11.98) indeed gives Bext.

A nucleus with a non-zero spin acts as a magnetic dipole, giving rise to a vector potential AA and
producing the associated magnetic field by taking the curl:

AA =
gA𝜇N

c2
IA × (r − RA)
|r − RA|

3 (11.99)

BA = −
gA𝜇N

c2

[ IA
|r − RA|

3 − 3
(r − RA)((r − RA) ⋅ IA)

|r − RA|
5 − 8𝜋

3
IA𝛿(r − RA)

]

(11.100)

Here gA𝜇NIA is the magnetic moment of nucleus A and RA is the position (the nucleus is the natural
gauge origin). The BA expression determines the magnetic field at position r (not necessarily indicat-
ing an electron) due to a magnetic nucleus at position RA. The 𝛿-function in the last term in the BA
expression arises from the quantum mechanical possibility of r − RA = 0, that is the magnetic field
directly at the nuclear position. Note that the presence of c−2 emerges from the units of magnetic
field (𝜇0/4π = c−2 in atomic units) and does not indicate a relativistic origin.

The spin associated with an electron also acts as a magnetic dipole (−ge𝜇Bsi), giving rise to a vector
potential Ae and an associated magnetic field:

Ae = −
ge𝜇B

c2
si × (r − ri)
|r − ri|

3 (11.101)

Be = −
ge𝜇B

c2

[ si
|r − ri|

3 − 3
(r − ri)((r − ri) ⋅ si)

|r − ri|
5 − 8𝜋

3
si𝛿(r − ri)

]

(11.102)

The Be expression similarly determines the magnetic field at position r due to an electron at
position ri.

The introduction of the generalized momentum operator in the one-electron kinetic energy part
of the Dirac equation leads to three new interaction terms, as shown in Equations (9.30) to (9.33).
It should be noted that the last two terms will also show up in a non-relativistic treatment when the
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magnetic vector potential is included, and only the s ⋅ B term should be considered as a relativistic
effect:

p2 → π2 = (p + A)2

⇓

ge𝜇Bs ⋅ B ; A ⋅ p ; 1
2 A2

(11.103)

If there is more than one type of magnetic field present there will be an additional mixed AA′ term.
Depending on the type of magnetic interactions present, these give operators as shown below. To
simplify the expressions, we will use the notations riA = ri − RA, rij = ri − rj and RAB = RA − RB.

In addition to the magnetic terms arising from the expansion of the generalized momentum oper-
ator, there are also magnetic perturbation terms arising from relativistic corrections, as discussed
in Section 9.2. These corrections may be derived by an expansion in the inverse speed of light. For
consistency, we will in the following only consider terms up to order c−2, with the exception of the
indirect nuclear spin–spin coupling, where the lowest non-vanishing term is of order c−4. Further-
more, in the rest of this section the summation over the number of electrons and nuclei has been
omitted for clarity.

11.8.1 External Magnetic Field

For an external magnetic field, the three terms in Equation (11.103) become

ge𝜇Bs ⋅ B = ge𝜇Bs ⋅ Bext (11.104)

A ⋅ p =
(

1
2 Bext × riG

)

⋅ p

= 1
2 Bext ⋅ (riG × p)

= 1
2 Bext ⋅ LG

(11.105)

1
2 A2 = 1

2

(
1
2 Bext × riG

)

⋅
(

1
2 Bext × riG

)

= 1
8

(

B2
ext ⋅ r2

iG −
(

Bext ⋅ riG
)2
)

= Bext ⋅ P𝜉2 ⋅ Bext

(11.106)

Here the vector identities a × b ⋅ c = a ⋅ b × c and (a × b) ⋅ (c × d) = (a ⋅ c)(b ⋅ d) − (a ⋅ d)(c ⋅ b)
have been used, and the angular momentum operator LG is defined implicitly by Equation (11.105).
The presence of a magnetic field thus introduces three new terms, two being linear and one being
quadratic in the field. The spin-Zeeman term s ⋅ Bext describes the interaction of the electron spin
with the magnetic field, while 1∕2Bext ⋅ LG is the orbital-Zeeman term describing the interaction of
the magnetic field with the magnetic moment associated with the movement of the electron. For a
many-electron system, the spin-Zeeman term becomes S ⋅ Bext, where S indicates the total molecular
spin. The quadratic P𝜉2 operator arising from 1∕2A2

ext may be written as

P𝜉2 = 1
8
(

rt
iGriG1 − riGrt

iG
)

(11.107)

Here rt
iGriG1 is the inner (dot) product times a unit matrix and riGrt

iG is the outer product, that is a
3 × 3 matrix containing the products of the x, y, z components, analogous to the quadrupole moment,
Equation (11.10). Note that both the LG and P𝜉2 operators are gauge-dependent.
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11.8.2 Nuclear Spin

The ge𝜇Bs ⋅ B term in Equation (11.103) in connection with BA in Equation (11.99) gives three terms,
which conventionally are collected in two operators:

HSD
ne = si ⋅ PSD

ne ⋅ IA = −
gegA𝜇B𝜇N

c2 si ⋅

(
rt

iAriA1 − 3riArt
iA

r5
iA

)

⋅ IA (11.108)

HFC
ne = si ⋅ PFC

ne ⋅ IA =
8𝜋gegA𝜇B𝜇N

3c2 𝛿(riA)(si ⋅ IA) (11.109)

HSD
ne is a (one electron) Spin-Dipolar and HFC

ne is a Fermi Contact operator, and their sum is the HSS
ne

operator in Equation (9.48).
The AA ⋅ p term in Equation (11.103) gives the Paramagnetic Spin–Orbit operator:

HPSO
ne = IA ⋅ PPSO

ne =
gA𝜇N

c2 ⋅ IA ⋅
riA × pi

r3
iA

(11.110)

HPSO
ne is identical to Equation (9.47).
The 1∕2A2

A term in Equation (11.103) gives a Diamagnetic Spin–Orbit operator, which is an opera-
tor of order c−4. Although we otherwise only consider terms up to order c−2, the nuclear spin–spin
coupling constant only contains terms of order c−4, which is why we need to include HDSO

nn :

HDSO
nn = IA ⋅ PDSO

nn ⋅ IB =
gAgB𝜇

2
N

2c4 IA ⋅

(
rt

iAriB1 − riBrt
iA
)

r3
iAr3

iB
⋅ IB (11.111)

When both nuclear spins and an external magnetic field are present, there is an additional mixed
Aext ⋅ AA term arising from the expansion of the generalized momentum operator:

HDS
ne = Bext ⋅ PDS

ne ⋅ IA =
gA𝜇N
2c2 Bext ⋅

rt
iGriA1 − riArt

iG

r3
iA

⋅ IA (11.112)

This nuclear Diamagnetic Shielding operator contributes to the NMR shielding tensor.

11.8.3 Electron Spin

The ge𝜇Bs ⋅ B term in Equation (11.103) in connection with Be in Equation (11.101) gives three terms,
which again are collected in two operators:

HSD
ee = si ⋅ PSD

ee ⋅ sj =
g2

e𝜇
2
B

2c2 si ⋅

(rt
ijrij1 − 3rijrt

ij

r5
ij

)

⋅ sj (11.113)

HFC
ee = si ⋅ PFC

ee ⋅ sj = −
4𝜋g2

e𝜇
2
B

3c2 𝛿(rij)(si ⋅ sj) (11.114)

PSD
ee is a (two-electron) Spin-Dipolar and PFC

ee is a Fermi Contact operator, with the sum being equal
to the HSS

ee operator in Equation (9.43).
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The Ae ⋅ p term in Equation (11.103) gives the two-electron part of the spin–orbit operator:

HSO
ee = si ⋅ PSO

ee = −
ge𝜇B
2c2 si ⋅

rij × pi + 2rij × pj

r3
ij

(11.115)

HSO
ee is equivalent to the sum of HSO

ee and HSOO
ee in Equations (9.41) and (9.42).

The 1∕2A2
e term in Equation (11.103) gives an operator analogous to Equation (11.111), but that

depends on two electron spins instead of two nuclear spins. This, however, is an order c−4 operator
compared with the order c−2 operators PSD

ee and PFC
ee (Equations (11.113) and (11.114)) describing

spin–spin interactions, and is therefore neglected.
The Ae ⋅ AA term in Equation (11.103) gives a coupling between the electronic and nuclear spins,

and is again an operator of order c−4. Compared with the order c−2 operators PSD
ne and PFC

ne (Equa-
tions (11.108) and (11.109)), it is again neglected.

When both electron spin and an external magnetic field are considered, there is a mixed Aext ⋅ Ae
term:

HDS
ee = Bext ⋅ PDS

ee ⋅ si = −
ge𝜇B
2c2 Bext ⋅

(
rt

iGrij1 − rijrt
iG
)

r3
ij

⋅ si (11.116)

This electronic Diamagnetic Shielding operator contributes to the ESR g tensor.

11.8.4 Electron Angular Momentum

The orbit–orbit magnetic interaction in Equation (9.44) provides a shift in the total energy but does
not lead to a splitting of energy levels and thus no observable properties.

11.8.5 Classical Terms

The expansion of the generalized momentum operator only involves the magnetic interactions in the
electronic part of the wave function. Since the corresponding nuclear part has been separated out by
the Born–Oppenheimer approximations, we need to add a few terms corresponding to the (classical)
interaction of the nuclear magnetic moments with an external magnetic field and between nuclei.

The nuclear spin-Zeeman term is analogous to the electronic term in Equation (11.104), except that
the electron magnetic moment of −ge𝜇Bs is replaced by the nuclear magnetic moment gA𝜇NI. The
nuclear magneton 𝜇N is defined analogously to the Bohr magneton 𝜇B, but using the proton mass
mp instead of the electron mass (𝜇N = eh̄/2mp = 2.723 × 10−4 in atomic units), while the gA factor
depends on the specific nucleus (isotope):

HZeeman
n = −𝜇N gAIA ⋅ B (11.117)

The term involving two nuclei is analogous to the electron–electron spin-dipole term in Equa-
tion (11.113). The corresponding Fermi contact term disappears since nuclei cannot occupy the same
position at energies relevant for chemistry. Note that the direct spin–spin coupling is independent of
the electronic wave function; it only depends on the molecular geometry:

HSS
nn =

𝜇2
NgAgB

2c2 IA ⋅

(
Rt

ABRAB1 − 3RABRt
AB

R5
AB

)

⋅ IB (11.118)
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11.8.6 Relativistic Terms

The most important relativistic corrections are the one-electron spin–orbit operator and the rela-
tivistic correction to the spin-Zeeman operator:

HSO
ne =

ge𝜇BZA
2mc2 si ⋅

riA × pi

r3
iA

(11.119)

HZeeman−rel
e =

ge𝜇B
2mc2 (si ⋅ Bi)p2

i (11.120)

Other relativistic corrections, such as the mass–velocity and Darwin terms, affect the wave function
but do not lead to operators associated with molecular properties.

11.8.7 Magnetic Properties

Magnetic properties can be considered as arising from the interaction of magnetic fields generated
by either an external magnetic field (Bext), a nuclear magnetic moment (I), an electron magnetic
moment (s) or the angular moment (l) from the electronic movement. Although electron spin and
angular momentum are implicitly included in even the simplest wave function by the Pauli principle,
their magnetic effects are not included, and these are therefore normally considered as perturbative
terms resulting in molecular properties. Table 11.2 shows the perturbation operators arising from

Table . Magnetic perturbation operators.

Perturbation order

Origin Operator Equation Name Bext I s l c−n

S ⋅ Bext S 11.104/9.38 Electron spin-Zeemana 1 0 1 0 0
Aext ⋅ p 1∕2LG 11.105 Orbital-Zeeman 1 0 0 1 0
1∕2A2

ext P𝜉2 11.107 Diamagnetic magnetizability 2 0 0 0 0
S ⋅ BA PSD

ne 11.108/9.48 Nuclear–electron spin-dipole 0 1 1 0 2
PFC

ne 11.109/9.48 Nuclear–electron Fermi contact 0 1 1 0 2
AA⋅p PPSO

ne 11.110/9.47 Paramagnetic spin–orbit 0 1 0 1 2
1∕2A2

A PDSO
nn 11.111 Diamagnetic nuclear spin–spin 0 2 0 0 4

AA⋅A ext PDS
ne 11.112 Diamagnetic NMR shielding 1 1 0 0 2

s⋅Be PSD
ee 11.113/9.43 Electron–electron spin-dipole 0 0 2 0 2

PFC
ee 11.114/9.43 Electron–electron Fermi contact 0 0 2 0 2

Ae⋅p PSO
ee 11.115/9.41/9.42 Two-electron spin–orbit 0 0 1 1 2

Ae⋅A ext PDS
ee 11.116 Diamagnetic ESR shielding 1 0 1 0 2

Classic IA 11.117 Nuclear spin-Zeeman 1 1 0 0 0
Classic PSS

nn 11.118 Nuclear spin–spin coupling 0 2 0 0 0
Relativistic PSO

ne 11.119/9.46 One-electron spin–orbit 0 0 1 1 2
Relativistic POO

ee 9.44 Orbit-orbit interaction 0 0 0 2 2
Relativistic p2s 11.120/9.38 Electron spin-Zeeman, relativistic correction 1 0 1 0 2

aThe spin-Zeeman term involves the total electron spin S.
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these magnetic fields, where the last five columns indicate the perturbation order with respect to the
perturbations and with respect to the inverse speed of light. Only the most important operators up
to order c−2 have been included, with the exception of the diamagnetic nuclear spin–spin coupling
operator, since the leading term for this quantity is of order c−4.

The first-order property is given as an expectation value of operator(s) linear in the perturbation, as
seen from Equation (11.31). The second-order property contains two contributions, an expectation
value over quadratic (or bilinear) operators and a sum over products of matrix elements involving
linear operators connecting the ground and excited states.

The first-order property with respect to an external field is the magnetic dipole moment m (Equa-
tion (11.17)). When field-independent basis functions are used, the HF magnetic dipole moment is
given as the expectation value of the 1∕2LG and S (total electron spin) operators over the unperturbed
wave function, Equations (11.31) and (11.35). Since the LG operator is imaginary it can only yield a
non-zero result for spatially degenerate wave functions and the expectation value of S is only non-zero
for non-singlet states:

m = −
𝜕EHF
𝜕Bext

= −
⟨

ΦHF
|
|
|

1
2 LG + ge𝛽BS||

|
ΦHF

⟩

(11.121)

Molecules with a permanent magnetic dipole moment are thus quite rare.
The second-order term, the magnetizability ξ, has two components. The derivative expression

(11.46) is given by

ξ = −
𝜕2EHF

𝜕B2
ext

= −2
⟨

ΦHF
|
|
|
P𝜉2

|
|
|
ΦHF

⟩

+ 2
⟨
𝜕ΦHF
𝜕Bext

|
|
|
|

1
2 LG

|
|
|
|
ΦHF

⟩

(11.122)

Second-order perturbation theory (Equation (11.32)) yields

ξ = −2
⟨

ΦHF
|
|
|
P𝜉2

|
|
|
ΦHF

⟩

− 2
∑

i≠0

|
|
|
|

⟨

ΦHF
|
|
|

1
2 LG

|
|
|
Φi

⟩|
|
|
|

2

EHF − Ei
(11.123)

The first term is referred to as the diamagnetic contribution, while the latter is the paramagnetic
part of the magnetizability. The total spin operator S gives no contribution to the paramagnetic term,
since the ground and excited states are orthogonal in the spatial part. Each of the two components
depends on the selected gauge origin but these gauge dependencies cancel exactly for an exact wave
function. This cancellation is not guaranteed for approximate wave functions, and the total property
may consequently depend on where the origin for the vector potential (Equation (11.98)) has been
chosen (Section 11.8.8).

The mixed second-order term with respect to a nuclear magnetic moment I and electron spin is the
hyperfine coupling tensor A.15 The leading order term (c−2) can be evaluated as a simple expectation
value of the PFC

ne and PSD
ne operators. The former provides the isotropic part of the tensor, while the

latter gives the anisotropic part:

A =
⟨

ΦHF
|
|
|
PFC

ne + PSD
ne
|
|
|
ΦHF

⟩

(11.124)

The second-order property related to two nuclear spins IA and IB is the nuclear spin–spin cou-
pling tensor. The direct interaction is determined entirely by the molecular geometry and is given by
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Equation (11.118). For rapidly tumbling molecules (solution or gas phase) this contribution averages
out to zero, but it is significant for solid-state NMR.

The indirect spin–spin coupling between nuclei A and B, which is the one observed in solution
phase NMR, contains several contributions, all being of order c−4:

JAB =
⟨

ΦHF
|
|
|
PDSO

nn
|
|
|
ΦHF

⟩

+ 2
∑

i≠0

⟨ΦHF|P1,A|Φi⟩⟨Φi|P′
1,B|ΦHF⟩

EHF − Ei
(11.125)

The first part can be evaluated as the expectation value of PDSO
nn (Equation (11.114)). The second part

corresponds to all combinations of operators that are linear in the nuclear spin, that is PFC
ne , PSD

ne and
PPSO

ne (Equations (11.108) to (11.110)). PFC
ne and PSD

ne contain the electron spin operators and for a
singlet ground state (as is usually the case) this means that the excited state Ψi in the summation
must be a triplet state. Since PPSO

ne does not depend on electron spin, the combination of PPSO
ne with

either PFC
ne or PSD

ne gives a zero contribution. For rapidly tumbling molecules, it can be shown that
the cross term between PFC

ne and PSD
ne averages out. For the trace (sum of the diagonal terms) of the

3 × 3 coupling matrix J, which is the observed coupling constant, only the three “diagonal” terms
(P1 = (P′

1) in Equation (11.125) thus survive. The Fermi contact term is the most important for one-
bond couplings (1J) in singly bonded systems, but the other three contributions become important
for multiple-bonded systems and for longer-range couplings (2J, 3J).16

The second-order term corresponding to the interaction of the total electron spin S with the orbital
magnetic moment is the spin–orbit interaction for open-shell molecules with a net angular momen-
tum, as, for example, NO with a2π ground state:

SO-interaction =
⟨

ΦHF
|
|
|
PSO

ne + PSO
ee

|
|
|
ΦHF

⟩

(11.126)

The second-order property related to two electron spins is the Zero Field Splitting (ZFS) tensor D,
which is responsible for making the three individual components of a triplet state non-degenerate,
with a typical magnitude being of the order of a few per cm.17, 18 It contains contributions from both
quadratic and linear operators, the latter being the spin–orbit operator containing both one- and
two-electron terms:

D =
⟨

ΦHF
|
|
|
PSD

ee + PFC
ee
|
|
|
ΦHF

⟩

+ 2
∑

i≠0

|
|
|
|

⟨

ΦHF
|
|
|
PSO

ne + PSO
ee

|
|
|
Φi

⟩|
|
|
|

2

EHF − Ei
(11.127)

The PFC
ee operator just introduces a uniform shift of all energy levels, and thus produces no observable

effect on the splitting of the energy levels.
The interaction of an external magnetic field with a nuclear spin gives a Zeeman splitting of the

energy levels by the IA ⋅ Bext term (Table 11.2). The details of the splitting, however, depend on the
molecular environment, since the local magnetic field at a nuclear position is shielded by the electrons
relative to the external field, Blocal = (1 − σ)Bext. The NMR shielding tensor σ, which is the mixed
second derivative with respect to a nuclear spin and an external magnetic field, has, by analogy with
the magnetizability, a diamagnetic and paramagnetic part.16, 19 The diamagnetic part arises from PDS

ne ,
while the paramagnetic contribution contains products of matrix elements involving operators linear
in B or I. These are given by the angular momentum operator 1∕2LG (Equation (11.105)) and by the
paramagnetic spin–orbit operator PPSO

ne (Equation (11.110)). Written in terms of the perturbation

iranchembook.ir/edu



 Introduction to Computational Chemistry

formula (11.32), the expression for the nuclear shielding for atom A becomes

σA =
⟨

ΦHF
|
|
|
PDS

ne
|
|
|
ΦHF

⟩

−
∑

i≠0

⟨
ΦHF ||PPSO

ne
|
|Φi

⟩⟨

Φi
|
|
|

1
2 LG

|
|
|
ΦHF

⟩

+
⟨

ΦHF
|
|
|

1
2 LG

|
|
|
Φi

⟩⟨
Φi ||PPSO

ne
|
|ΦHF

⟩

EHF − Ei
(11.128)

All the operators PDS
ne , PPSO

ne and LG are gauge-dependent and each of the dia- and paramagnetic
terms consequently depends on the chosen gauge. The shielding tensor is a 3 × 3 matrix, which can
be diagonalized to give three eigenvalues. These principal components can be observed by solid-state
NMR, but for rapidly tumbling molecules, as in the solution phase, only the average can be observed,
corresponding to one-third of the trace of the shielding tensor.

The ESR equivalent of the NMR shielding is called the g tensor and can be considered as the mixed
second derivative with respect to the electron spin and an external magnetic field.20, 21 It is a 3 × 3
tensor and can in analogy with the nuclear shielding tensor be written as the diagonal component for
the free electron plus a small correction due to the molecular environment:

g = ge1 + Δg (11.129)

The diagonal term ge1 arises from the spin-Zeeman term S ⋅ Bext, while the anisotropic part has two
contributions. The direct term arises from the PDS

ee operator (Equation (11.116)) and the relativistic
correction from the spin-Zeeman term (Equation (11.120)), with additional contributions coming
from the combination of 1∕2LG and the spin–orbit operators PSO

ne and PSO
ee :

Δg =
⟨

ΦHF
|
|
|
PDS

ee
|
|
|
ΦHF

⟩

−
ge𝜇B
2c2 ⟨ΦHF|p2|ΦHF⟩

−
∑

i≠0

⟨
ΦHF ||PSO

ne + PSO
ee

|
|Φi

⟩⟨

Φi
|
|
|

1
2 LG

|
|
|
ΦHF

⟩

+
⟨

ΦHF
|
|
|

1
2 LG

|
|
|
Φi

⟩⟨
Φi ||PSO

ne + PSO
ee

|
|ΦHF

⟩

EHF − Ei

(11.130)
It should be noted that the formulas in Equations (11.121) to (11.130) have been derived by consider-
ing only the operators from the leading order in the inverse speed of light. One may obtain relativistic
corrections by carrying out the expansion to higher orders, but this rapidly becomes quite involved,8, 9

as many different operators and their combinations can make contributions to a given property.22 For
systems where relativistic effects are important, a full four-component-type calculation (Section 9.4)
becomes attractive, at least conceptually, since it automatically includes all effects without the neces-
sity of multiple perturbation operators.

11.8.8 Gauge Dependence of Magnetic Properties

There are two factors that make the calculation of magnetic properties somewhat more complicated
than the corresponding electric properties. First, the angular momentum operator LG is imaginary
(Equation (11.17)), implying that the wave function must be allowed to be complex. Second, the
presence of the gauge origin in the operators means that the results may be origin-dependent. An
exact wave function will of course give origin-independent results, as will a Hartree–Fock wave
function if a complete basis set is employed. In practice, however, a finite basis must be employed,
and standard basis sets will yield results that depend on where the user has chosen the origin of the
gauge. The center of mass is often used in actual calculations, but this is by no means a unique choice.
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The gauge error depends on the distance between the wave function and the gauge origin, and
some methods try to minimize the error by selecting separate gauges for each (localized) molecular
orbital. Two such methods are known as individual Gauge for Localized Orbitals (IGLO )23 and
Localized Orbital/local oRiGin (LORG ).24

A more recent idea, which eliminates the gauge dependence for properties, is to make the basis
functions explicitly dependent on the magnetic field by inclusion of a complex phase factor referring
to the position of the basis function (usually the nucleus):

XA(r − RA) = e−
i
c AA⋅r𝜒A(r − RA)

𝜒A(r − RA) = Ne−𝛼(r−RA)2

AA = 1
2 B × (RA − RG)

(11.131)

Such orbitals are known as London Atomic Orbitals (LAOs) or Gauge Including/Invariant Atomic
Orbitals (GIAOs ).25, 26 The effect is that matrix elements involving GIAOs only contain a difference
in vector potentials, thereby removing the reference to an absolute gauge origin. For the overlap and
potential energy, it is straightforward to see that matrix elements become independent of the gauge
origin:

⟨XA|XB⟩ = ⟨𝜒A|e
i
c (AA−AB)⋅r

|𝜒B⟩

⟨XA|V|XB⟩ = ⟨𝜒A|e
i
c (AA−AB)⋅rV|𝜒B⟩

AA − AB = 1
2 B × (RA − RB)

(11.132)

The kinetic energy is slightly more complicated, but it can be shown that the following relation holds:

⟨XA|π
2|XB⟩ =

⟨

XA
|
|
|

(

p + 1
2 B × (r − RG)

)2 |
|
|
XB

⟩

=
⟨

𝜒A
|
|
|
e

i
c (AA−AB)⋅r

(

p + 1
2 B × (r − RB)

)2 |
|
|
𝜒B

⟩ (11.133)

Note that RG has been replaced by RB in the last bracket. The use of GIAOs as basis functions makes
all matrix elements, and therefore all properties, independent of the gauge origin. The wave function
itself, however, is expressed in terms of the basis functions, and therefore becomes gauge-dependent,
by means of a complex phase factor. The use of perturbation-dependent basis functions has the
further advantage of greatly reducing the need for high angular momentum basis functions; that is
the property is typically calculated with an accuracy comparable to that of the unperturbed system.27

While LAOs/GIAOs were proposed well before the advent of modern computational chemistry,
it was only owing to developments in calculating (geometrical) derivatives of the energy (and wave
function) that it became practical to use field-dependent orbitals.28

. Geometry Perturbations

The general formula for the first derivative of the energy with respect to a change in geometry, the
molecular (nuclear) gradient, is given by Equation (11.35):

g = 𝜕E
𝜕R

=
⟨

Ψ
|
|
|
|

𝜕H
𝜕R

|
|
|
|
Ψ
⟩

+ 2
⟨
𝜕Ψ
𝜕R

|
|
|
|
H
|
|
|
|
Ψ
⟩

(11.134)
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The first term is the Hellmann–Feynman force and the second is the wave function response. The
latter contains contributions from a change in the basis functions, the state and the MO coefficients:

𝜕Ψ
𝜕R

= 𝜕Ψ
𝜕χ

𝜕χ

𝜕R
+ 𝜕Ψ
𝜕a

𝜕a
𝜕R

+ 𝜕Ψ
𝜕c

𝜕c
𝜕R

(11.135)

The state and MO dependence disappears for HF, DFT and MCSCF-type wave functions owing
to their variational nature (𝜕Ψ/𝜕a = 0 and 𝜕Ψ/𝜕c = 0). For traditional basis sets consisting of
nuclear-centered Gaussian functions, the basis functions are clearly perturbation-dependent since
the functions move along with the nuclei, and standard perturbation theory is therefore not suit-
able for calculating molecular gradients. For a plane wave basis, however, the basis functions are
independent of a geometry perturbation and the molecular gradient is just the Hellmann–Feynman
term.

Since nuclear derivatives are important for optimizing geometries, it may be useful to look in more
detail at the quantities involved in calculating first and second derivatives of a Hartree–Fock wave
function with a Gaussian-type basis set, with the expressions for density functional methods being
very similar. These formulas are most easily derived directly from the HF energy expressed in terms
of the atomic quantities (Equation (3.57)):29

EHF =
Mbasis∑

𝛼𝛽

D𝛼𝛽h𝛼𝛽 +
1
2

Mbasis∑

𝛼𝛽𝛾𝛿

D𝛼𝛽D𝛾𝛿(⟨𝜒𝛼𝜒𝛾 |𝜒𝛽𝜒𝛿⟩ − ⟨𝜒𝛼𝜒𝛾 |𝜒𝛿𝜒𝛽⟩) + Vnn (11.136)

Differentiation (using 𝜆 as a general geometrical displacement of a nucleus) yields

𝜕EHF
𝜕𝜆

=
Mbasis∑

𝛼𝛽

(
𝜕D𝛼𝛽

𝜕𝜆
h𝛼𝛽 + D𝛼𝛽

𝜕h𝛼𝛽
𝜕𝜆

)

+1
2

Mbasis∑

𝛼𝛽𝛾𝛿

(
𝜕D𝛼𝛽

𝜕𝜆
D𝛾𝛿 + D𝛼𝛽

𝜕D𝛾𝛿

𝜕𝜆

)

(⟨𝜒𝛼𝜒𝛾 |𝜒𝛽𝜒𝛿⟩ − ⟨𝜒𝛼𝜒𝛾 |𝜒𝛿𝜒𝛽⟩)

+1
2

Mbasis∑

𝛼𝛽𝛾𝛿

D𝛼𝛽D𝛾𝛿

𝜕

𝜕𝜆
(⟨𝜒𝛼𝜒𝛾 |𝜒𝛽𝜒𝛿⟩ − ⟨𝜒𝛼𝜒𝛾 |𝜒𝛿𝜒𝛽⟩) +

𝜕Vnn
𝜕𝜆

(11.137)

The third and fourth terms are identical and may be collected to cancel the factor of 1∕2. Rearranging
the terms gives

𝜕EHF
𝜕𝜆

=
Mbasis∑

𝛼𝛽

D𝛼𝛽

𝜕h𝛼𝛽
𝜕𝜆

+ 1
2

Mbasis∑

𝛼𝛽𝛾𝛿

D𝛼𝛽D𝛾𝛿

𝜕

𝜕𝜆
(⟨𝜒𝛼𝜒𝛾 |𝜒𝛽𝜒𝛿⟩ − ⟨𝜒𝛼𝜒𝛾 |𝜒𝛿𝜒𝛽⟩)

+
Mbasis∑

𝛼𝛽

𝜕D𝛼𝛽

𝜕𝜆
h𝛼𝛽 +

Mbasis∑

𝛼𝛽𝛾𝛿

𝜕D𝛼𝛽

𝜕𝜆
D𝛾𝛿(⟨𝜒𝛼𝜒𝛾 |𝜒𝛽𝜒𝛿⟩ − ⟨𝜒𝛼𝜒𝛾 |𝜒𝛿𝜒𝛽⟩) +

𝜕Vnn
𝜕𝜆

(11.138)

The first two terms involve products of the density matrix with derivatives of the atomic integrals,
while the two next terms can be recognized as derivatives of the density matrix times the Fock
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matrix (Equation (3.55)):

𝜕EHF
𝜕𝜆

=
Mbasis∑

𝛼𝛽

D𝛼𝛽

𝜕h𝛼𝛽
𝜕𝜆

+ 1
2

Mbasis∑

𝛼𝛽𝛾𝛿

D𝛼𝛽D𝛾𝛿

𝜕

𝜕𝜆
(⟨𝜒𝛼𝜒𝛾 |𝜒𝛽𝜒𝛿⟩ − ⟨𝜒𝛼𝜒𝛾 |𝜒𝛿𝜒𝛽⟩)

+
𝜕Vnn
𝜕𝜆

+
Mbasis∑

𝛼𝛽

𝜕D𝛼𝛽

𝜕𝜆
F𝛼𝛽

(11.139)

The derivative in Equation (11.139) of the nuclear repulsion (third term) is trivial since it does not
involve electron coordinates. The one-electron derivatives are given in

h𝛼𝛽 = ⟨𝜒𝛼|h|𝜒𝛽⟩

𝜕h𝛼𝛽
𝜕𝜆

=
⟨
𝜕𝜒𝛼

𝜕𝜆

|
|
|
|
h
|
|
|
|
𝜒𝛽

⟩

+
⟨

𝜒𝛼
|
|
|
|

𝜕h
𝜕𝜆

|
|
|
|
𝜒𝛽

⟩

+
⟨

𝜒𝛼
|
|
|
|
h
|
|
|
|

𝜕𝜒𝛽

𝜕𝜆

⟩ (11.140)

The central term is recognized as the Hellmann–Feynman force. The two-electron derivatives in
Equation (11.139) become

⟨𝜒𝛼𝜒𝛾 |𝜒𝛽𝜒𝛿⟩ = ⟨𝜒𝛼𝜒𝛾 |g|𝜒𝛽𝜒𝛿⟩

𝜕

𝜕𝜆
⟨𝜒𝛼𝜒𝛾 |𝜒𝛽𝜒𝛿⟩ =

⟨
𝜕𝜒𝛼

𝜕𝜆
𝜒𝛾

|
|
|
|
g
|
|
|
|
𝜒𝛽𝜒𝛿

⟩

+
⟨

𝜒𝛼

𝜕𝜒𝛾

𝜕𝜆

|
|
|
|
g
|
|
|
|
𝜒𝛽𝜒𝛿

⟩

+
⟨

𝜒𝛼𝜒𝛾
|
|
|
|

𝜕g
𝜕𝜆

|
|
|
|
𝜒𝛽𝜒𝛿

⟩

+
⟨

𝜒𝛼𝜒𝛾
|
|
|
|
g
|
|
|
|

𝜕𝜒𝛽

𝜕𝜆
𝜒𝛿

⟩

+
⟨

𝜒𝛼𝜒𝛾
|
|
|
|
g
|
|
|
|
𝜒𝛽
𝜕𝜒𝛿

𝜕𝜆

⟩

(11.141)

The central term is again the Hellmann–Feynman force, which vanishes since the two-electron oper-
ator g is independent of the nuclear positions.

The last term in Equation (11.139) involves a change in the density matrix, that is the MO coeffi-
cients:

D𝛼𝛽 =
Nelec∑

i=1
nic𝛼ic𝛽i

𝜕D𝛼𝛽

𝜕𝜆
=

Nelec∑

i=1
ni

(
𝜕c𝛼i
𝜕𝜆

c𝛽i + c𝛼i
𝜕c𝛽i

𝜕𝜆

)
(11.142)

Since the HF wave function is variationally optimized, the explicit calculation of the density deriva-
tives can be avoided, as first derived by Pulay.30 The last term in Equation (11.139) may with Equa-
tion (11.142) be written as

Mbasis∑

𝛼𝛽𝛾𝛿

𝜕D𝛼𝛽

𝜕𝜆
F𝛼𝛽 =

Mbasis∑

𝛼𝛽𝛾𝛿

Nelec∑

i=1
ni

(
𝜕c𝛼i
𝜕𝜆

F𝛼𝛽c𝛽i +
𝜕c𝛽i

𝜕𝜆
F𝛼𝛽c𝛼i

)

(11.143)
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By virtue of the HF condition (FC = SCε), Equation (11.143) may be written in terms of overlap
integrals and MO energies:

Mbasis∑

𝛼𝛽𝛾𝛿

𝜕D𝛼𝛽

𝜕𝜆
F𝛼𝛽 =

Mbasis∑

𝛼𝛽𝛾𝛿

Nelec∑

i=1
ni

(
𝜕c𝛼i
𝜕𝜆

S𝛼𝛽𝜀ic𝛽i +
𝜕c𝛽i

𝜕𝜆
S𝛼𝛽𝜀ic𝛼i

)

(11.144)

Finally, since the MOs are orthonormal, the derivatives of the coefficients may be replaced by deriva-
tives of the overlap matrix:

⟨𝜙i|𝜙j⟩ =
Mbasis∑

𝛼𝛽

c𝛼ic𝛽i⟨𝜒𝛼|𝜒𝛽⟩ =
Mbasis∑

𝛼𝛽

c𝛼ic𝛽jS𝛼𝛽 = 𝛿ij

𝜕

𝜕𝜆
⟨𝜙i|𝜙j⟩ =

(
𝜕c𝛼i
𝜕𝜆

c𝛽jS𝛼𝛽 + c𝛼i
𝜕c𝛽j

𝜕𝜆
S𝛼𝛽 + c𝛼ic𝛽j

𝜕S𝛼𝛽
𝜕𝜆

)

= 0

2
𝜕c𝛼i
𝜕𝜆

c𝛽jS𝛼𝛽 = −c𝛼ic𝛽j
𝜕S𝛼𝛽
𝜕𝜆

(11.145)

The final derivative of the energy may thus be written as

𝜕EHF
𝜕𝜆

=
Mbasis∑

𝛼𝛽

D𝛼𝛽

𝜕h𝛼𝛽
𝜕𝜆

+ 1
2

Mbasis∑

𝛼𝛽𝛾𝛿

D𝛼𝛽D𝛾𝛿

𝜕

𝜕𝜆
(⟨𝜒𝛼𝜒𝛾 |𝜒𝛽𝜒𝛿⟩ − ⟨𝜒𝛼𝜒𝛾 |𝜒𝛿𝜒𝛽⟩)

+
𝜕Vnn
𝜕𝜆

−
Mbasis∑

𝛼𝛽

W𝛼𝛽

𝜕S𝛼𝛽
𝜕𝜆

(11.146)

Here the energy-weighted density matrix W has been introduced:

W𝛼𝛽 =
Nelec∑

i=1
𝜀ic𝛼ic𝛽i (11.147)

Consider now the case where the perturbation 𝜆 is a specific nuclear displacement, Xk → Xk +ΔXk.
The derivatives of the one- and two-electron integrals are of two types, those involving derivatives of
the basis functions and those involving derivatives of the operators. The latter are given by

𝜕h
𝜕Xk

= 𝜕

𝜕Xk

(

− 1
2∇

2
i −

Nnuclei∑

A

ZA
|ri − RA|

)

= −Zk

(
xi − Xk

)

|ri − Rk|
3 (11.148)

𝜕g
𝜕Xk

= 0 (11.149)

𝜕Vnn
𝜕Xk

= 𝜕

𝜕Xk

(Nnuclei∑

A>B

ZAZB
|RA − RB|

)

=
Nnuclei∑

A≠k
ZAZk

(
XA − Xk

)

|RA − Rk|
3 (11.150)

The derivative of the core operator h is a one-electron operator similar to the nuclear–electron attrac-
tion required for the energy itself (Equation (3.59)). The two-electron part yields zero and the Vnn
term is independent of the electronic wave function. The remaining terms in Equations (11.140),
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(11.141) and (11.146) all involve derivatives of the basis functions. When these are Gaussian func-
tions (as is usually the case) the derivative can be written in terms of two other Gaussian functions,
having one lower and one higher angular momentum:

𝜒𝛼(Rk) = N(x − Xk)l(y − Yk)m(z − Zk)ne−𝛼(r−Rk )2

𝜕𝜒𝛼

𝜕Xk
= −N(x − Xk)l−1(y − Yk)m(z − Zk)ne−𝛼(r−Rk )2

+ 2N𝛼(x − Xk)l+1(y − Yk)m(z − Zk)ne−𝛼(r−Rk )2

(11.151)

The derivative of a p-function can thus be written in terms of an s- and a d-type Gaussian function.
The one- and two-electron integrals involving derivatives of basis functions are therefore of the same
type as those used in the energy expression itself, the only difference being the angular momentum
and the fact that there are roughly three times as many of these derivative integrals than for the
energy itself. Of all the terms in Equation (11.146), the only significant computational effort is the
derivatives of the two-electron integrals. Note, however, that the density matrix elements are known
at the time when these integrals are calculated, and screening procedures analogous to those used in
direct SCF techniques (Section 3.8.5) can be used to avoid calculating integrals that make insignificant
contributions to the final result.

The second derivative of the energy with respect to a geometry change can be written as in

H =
𝜕2EHF
𝜕𝜆2

=
Mbasis∑

𝛼𝛽

D𝛼𝛽

𝜕2h𝛼𝛽
𝜕𝜆2 + 1

2

Mbasis∑

𝛼𝛽𝛾𝛿

D𝛼𝛽D𝛾𝛿

𝜕2

𝜕𝜆2 (⟨𝜒𝛼𝜒𝛾 |𝜒𝛽𝜒𝛿⟩ − ⟨𝜒𝛼𝜒𝛾 |𝜒𝛿𝜒𝛽⟩)

+
𝜕2Vnn
𝜕𝜆2 −

Mbasis∑

𝛼𝛽

W𝛼𝛽

𝜕2S𝛼𝛽
𝜕𝜆2 +

Mbasis∑

𝛼𝛽

𝜕D𝛼𝛽

𝜕𝜆

𝜕h𝛼𝛽
𝜕𝜆

+
Mbasis∑

𝛼𝛽𝛾𝛿

𝜕D𝛼𝛽

𝜕𝜆
D𝛾𝛿

𝜕

𝜕𝜆
(⟨𝜒𝛼𝜒𝛾 |𝜒𝛽𝜒𝛿⟩ − ⟨𝜒𝛼𝜒𝛾 |𝜒𝛿𝜒𝛽⟩)

−
Mbasis∑

𝛼𝛽

𝜕W𝛼𝛽

𝜕𝜆

𝜕S𝛼𝛽
𝜕𝜆

(11.152)

The first four terms only involve derivatives of operators and AO integrals, but the last three terms
require the derivative of the density matrix and MO energies. These can be obtained by solving the
first-order CPHF equations (Section 11.6.1).

The calculation of the second derivatives is substantially more involved than calculating the first
derivative, typically by an order of magnitude, and for large systems a full calculation of the Hessian
(force constant) matrix may thus be prohibitively expensive. If the second derivatives are required
only for characterizing the nature of a stationary point (minimum or saddle point), the full Hessian is
not required: only a few of the lowest eigenvalues are of interest. As shown by Deglmann and Furche,
the lowest eigenvalues may be extracted by iterative techniques without explicit construction of the
full second derivatives, leading to a substantial saving for large systems.31
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. Time-Dependent Perturbations

The perturbation, derivative and response/propagator approaches for defining molecular properties
can be generalized time-dependent perturbations. The equivalent of Equation (11.30) for a time-
dependent perturbation is

H(t) = H0 + Vext(t) (11.153)

The perturbation is usually an oscillating electric field, which in the general case can be written as

Vext(t) =
∑

k
PFke−i𝜔kt (11.154)

Here 𝜔k is the frequency of the field, Fk is the corresponding field strength and P is the perturbation
operator. The PFk term should again be interpreted as a sum over all products of components. If
the field is slowly varying over the molecular dimension (wave length of radiation significantly larger
than the molecular size), it can be represented by a linear approximation, that is P is then the dipole
operator μ and Fk is a vector containing the x, y and z components of the field. Concentrating on a
uniform field of strength F with a single frequency 𝜔, Equation (11.154) reduces to

Vext(t) = μF cos(𝜔t) (11.155)

The time-dependent wave function Ψ̃ can be written as a phase factor 𝜛 that depends on time but
not on space coordinates time a regular wave function:

Ψ̃(r, t) = e−i𝜛(t)Ψ(r, t) (11.156)

Within a perturbation formulation, the time-dependent regular wave function can be Taylor-
expanded as in

Ψ(r, t) = Ψ0(r) + Ψ1(r) cos𝜔t + Ψ2(r) cos 2𝜔t +⋯ (11.157)

Proceeding along the same lines as in Section 4.8 leads to an expression for the second-order cor-
rection term, which for the case of the perturbation in Equation (11.155) becomes the frequency-
dependent polarizability given in

α𝜔 =
∑

i≠0

|⟨Ψ0|r|Ψi⟩|
2

𝜔 − Ei + E0
−

|⟨Ψ0|r|Ψi⟩|
2

𝜔 + Ei − E0
(11.158)

A time-dependent property should reduce to the time-independent case in the limit of the frequency
going to zero, and Equation (11.158) reduces to Equation (11.92) when 𝜔 = 0.

The energy derivative approach in Section 11.3 is not suitable for time-dependent properties since
energy is not a conserved quantity in the presence of time-dependent perturbations. The analogy
to the energy for the time-dependent case is the time-averaged quasi-energy W defined below,
which is the same as the action integral in Equation (6.92) for the case where the perturbation is
periodic:4, 32

W = 1
T

T

∫

0

⟨

Ψ(t)
|
|
|
|
H − i 𝜕

𝜕t
|
|
|
|
Ψ(t)

⟩

dt (11.159)
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The quasi-energy may be differentiated analogously to Equation (11.1), where the perturbation
parameter P𝜔 now is associated with a frequency, and each derivative can be equated with a time-
dependent molecular property:

W (P𝜔) = E(0) + 𝜕W
𝜕P𝜔

P𝜔 + 1
2
𝜕2W
𝜕P2

𝜔

P2
𝜔
+ 1

6
𝜕3W
𝜕P3

𝜔

P3
𝜔
+⋯ (11.160)

Equation (11.160) can be generalized to include multiple perturbations, possibly with different
frequencies.

The response/propagator formalism in Equation (11.48) can be generalized to a time/frequency-
dependent property written as a Taylor expansion with respect to time-dependent perturbations P,
Q with frequencies 𝜔1 and 𝜔2 as in

⟨Ψ|O|Ψ⟩(t) = ⟨Ψ0|O|Ψ0⟩(0) + ⟨⟨O; P⟩⟩𝜔1
Pe−i𝜔1t + 1

2 ⟨⟨O; P, Q⟩⟩𝜔1,𝜔2
PQe−i(𝜔1+𝜔2)t +⋯

(11.161)

A general second-order property can be written in the sum-over-state perturbation expression as

⟨⟨O; P⟩⟩𝜔 =
∑

i≠0

⟨Ψ0|O|Ψi⟩⟨Ψi|P|Ψ0⟩

𝜔 − Ei + E0
−

⟨Ψ0|P|Ψi⟩⟨Ψi|O|Ψ0⟩

𝜔 + Ei − E0
(11.162)

The corresponding third-order expression is given in Equation (11.163), where additional terms (anal-
ogous to the second term in Equation (11.162)) involving permutations of the operators and frequen-
cies have been omitted:

⟨⟨O; P,Q⟩⟩𝜔1,𝜔2
=
∑

i,j

⟨Ψ0|O|Ψi⟩⟨Ψi|P|Ψj⟩⟨Ψj|Q|Ψ0⟩

(𝜔1 − Ei + E0)(𝜔2 − Ej + E0)
+ permutations (11.163)

For the case where O = P = μ (the dipole operator), the ⟨⟨μ; μ⟩⟩𝜔 propagator describes the linear
change in the dipole moment when subjected to an electric field (Equation (11.155)) and is thus the
dynamical polarizability α shown in Equation (11.158). The ⟨⟨μ; μ, μ⟩⟩𝜔1,𝜔2 propagator describes
the quadratic change in the dipole moment when subjected to two electric fields with frequencies 𝜔1
and 𝜔2, which is the dynamical version of the hyperpolarizability tensor β in Table 11.1.

Dynamical properties are typically derived from external electromagnetic perturbations with asso-
ciated frequencies. Higher-order properties may thus involve one or several different frequencies and
associated multiphoton processes,33 and the frequencies can be indicated either in parenthesis after
the tensor or as subscripts on the corresponding propagator. The β(𝜔; 𝜔1, 𝜔2) notation thus indi-
cates the hyperpolarizability with observation at the 𝜔 frequency as a function of perturbations at
frequencies 𝜔1 and 𝜔2. If the observation/perturbation is absorption of a photon, the frequency is
written as a positive quantity, while emission of a photon is written as the negative quantity –𝜔. The
conservation of energy implies that the sum of all frequencies is zero and the observation frequency
is thus given implicity by the (signed) sum of the perturbating frequencies. The propagator notation
⟨⟨μ; μ, μ⟩⟩𝜔1,𝜔2 only explicitly indicates the frequencies of the two perturbing fields, with the obser-
vation frequency given by energy conservation, that is ⟨⟨μ; μ, μ⟩⟩𝜔1,𝜔2 = β(–𝜔; 𝜔1, 𝜔2) with 𝜔 =
𝜔1 + 𝜔2. Perturbations corresponding to static fields are indicated by a 0 for the frequency in these
notations.

The sum-over-states expression in Equation (11.158) shows that the poles (where the denominator
is zero) correspond to excitation energies and the residues (numerator at the poles) correspond to
transition moments between the reference and excited states (excitation or deexcitation). Excitation
energies and transition moments can thus be considered as buyproducts of calculating the dynamical
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polarizability, and higher-order polarizabilities, for example, provide access to energy differences and
transition moments between excited states, as seen from Equation (11.163).

Time-dependent electromagnetic fields can be linear, circular or elliptical polarized, and have dif-
ferent orientations with respect to the sample; these combinations lead to a large variety of molecular
properties. The molecular response is commonly related to the dipole term, but some properties are
related to higher-order moments (e.g. quadrupole) or terms (e.g. field gradients), which further add
to the property zoo. The observed effect often involves several individual molecule properties that
can be extracted from the residues of suitable propagators, as illustrated in Table 11.3.4 Birefringence
is the term used for a difference in the real part of the refractive index of light in different directions,
while Dichroism refers to a difference in the imaginary part of the refractive index of light in different
directions. Each of these can be partitioned into Linear, Circular and Axial cases:
� Linear Birefringence/Dichroism (LB/LD) measures the difference between linear polarized light

parallel and perpendicular to an external field, and results in eliptical polarized light.
� Circular Birefringence/Dichroism (CB/CD) measures the difference between the two circular com-

ponents of linearly polarized light, and results in a rotation of the plane of the polarized light,
commonly associated with the phenomenon of optical activity.

� Axial Birefringence/Dichroism (AB/AD) measures the difference between unpolarized light in
opposite directions parallel to an external field, and results in a difference of velocities of prop-
agation, thus yielding a phase difference of the two beams.

The practical calculation of dynamical properties proceeds along the same lines as those leading to
Equation (11.65), where the only difference is that the diagonal elements are shifted by the energy of
the perturbing field:

[(
A B
B∗ A∗

)

− 𝜔
(

1 0
0 −1

)][
Y
Z

]

= −
[

P
P∗

]

(11.164)

Solving for the wave function response (Y, Z) for a given frequency then allows a calculation of the
dynamical property from Equation (11.70).

The perturbation, derivative and response formulations can be considered as three different ways
of formulating the same properties, and all lead to very similar working equations.4 The formulation
of time-dependent properties as derivatives of a quasi-energy is perhaps the most flexible since it
smoothly connects static and dynamical properties, and allows for different parameterizations of the
wave function and the time-evolution, as well as providing access to transition moments.32 A linear
parameterization corresponds to a CI-type expansion, while an exponential parameterization cor-
responds to a CC-type expansion. The combination of a CC expansion for the wave function and a
CI expansion for the time-evolution is very closely related to the Equation-Of-Motion Coupled Clus-
ter (EOM-CC ) method.35 The response formulation is completely general and can be derived for
different types of wave functions, such as DFT (TDDFT, Section 6.9.1), MCSCF or CC. The Second-
Order Polarization Propagator Approximation (SOPPA) can be considered as employing an MP2-
type wave function, while SOPPA(CCSD) is a hybrid method where CCSD amplitudes are used in
place of the MP2 coefficients for the excited Slater determinants. Different wave functions lead to dif-
ferent expressions for the matrix elements in Equations (11.66) to (11.68) but otherwise involve solv-
ing response equations like Equation (11.164). If the P vector is set equal to zero in Equation (11.164),
the equation reduces to a generalized eigenvalue problem where the 𝜔 eigenvalues are the excitation
energies. For an HF reference wave function, this is identical to diagonalizing the CI Hamiltonian
matrix (Sections 4.2 and 6.9.1). For other types of reference wave functions (e.g. MCSCF or CC), the
formulation allows a generalization of calculating excitation energies, such as the CC2, CCSD, CC3
hierachy discussed in Section 4.14.
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Table . Examples of some experimental effects and the response functions involved in their calculation, where the
property in some cases is associated with the residue of the propagator(s). The electric and magnetic dipole operators
are denoted μ and m, the electric quadrupole operator is denoted 𝚯 and the diamagnetic magnetizability operator
ξ= −2P𝜁2 (Equation (11.107)). No distinction is made between the quadrupole moment operator in its traced or
untraced form. By courtesy of Professor Antonio Rizzo.

Propagator(s)

Property (acronym) Effect Type Highest order Lower order

Transition moment One-photon absorption coefficient ⟨⟨μ; μ⟩⟩𝜔

Polarizability ⟨⟨μ; μ⟩⟩𝜔

Polarizability at imaginary
frequencies

Dispersion coefficients ⟨⟨μ; μ⟩⟩i𝜔

Electronic Circular
Dichroism (ECD)

Optical Rotation (OR)

Optical Activity (OA)
Raman Optical Activity (ROA)
Vibrational Optical Activity (VOA)a

Vibrational Raman Optical Activity
(VROA)a

CD ⟨⟨μ; m⟩⟩𝜔
⟨⟨μ;𝚯⟩⟩𝜔

Second-Harmonic
Generation (SHG)

Two-photon absorption coefficients
Emission of light with a frequency

double the incoming frequency

⟨⟨μ; μ, μ⟩⟩𝜔,𝜔

Electro-Optic Pockels Effect
(EOPE)
(dc-Pockels effect)

Electric field-dependent
polarizability

⟨⟨μ; μ, μ⟩⟩𝜔,0

Optical Rectification (OR) ⟨⟨μ; μ, μ⟩⟩𝜔,−𝜔

Faraday Effect (FE)b Optical activity induced by an
external magnetic field

CB ⟨⟨μ; μ, m⟩⟩𝜔,0

Magnetic Circular
Dichroism (MCD)

Optical activity induced by an
external magnetic field

CD ⟨⟨μ; μ, m⟩⟩𝜔,0

Magnetochiral Dichroism
(MChD)

AD ⟨⟨μ; m, m⟩⟩𝜔,0
⟨⟨μ;𝚯, m⟩⟩𝜔,0

Magnetochiral
Birefringence

AB ⟨⟨μ; m, m⟩⟩𝜔,0
⟨⟨μ;𝚯, m⟩⟩𝜔,0

Buckingham effect Birefringence induced by an external
field gradient

LB ⟨⟨μ; μ,𝚯⟩⟩𝜔,0
⟨⟨μ;𝚯, μ⟩⟩𝜔,0
⟨⟨μ; m, μ⟩⟩𝜔,0

⟨⟨μ; μ⟩⟩𝜔
⟨⟨μ; m⟩⟩𝜔
⟨⟨μ;𝚯⟩⟩𝜔

Third-Harmonic
Generation (THG)

Three-photon absorption
coefficients

Emission of light with a frequency
triple the incoming frequency

⟨⟨μ; μ, μ, μ⟩⟩𝜔,𝜔,𝜔

(continued)
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Table . (Continued)

Propagator(s)

Property (acronym) Effect Type Highest order Lower order

Intensity-Dependent
Refractive Index
(IDRI)

Degenerate Four-Wave
Mixing (DFWM)

⟨⟨μ; μ, μ, μ⟩⟩𝜔,𝜔,−𝜔

Optical Kerr Effect
(OKE) (ac-Kerr)

⟨⟨μ; μ, μ, μ⟩⟩𝜔,𝜔′ ,−𝜔′

Electric-Field-Induced
Second Harmonic
Generation (EFISHG)

Second-harmonic generation
induced by an external electric
field

⟨⟨μ; μ, μ, μ⟩⟩𝜔,𝜔,0

dc-Optical Rectification
(dc-OR)

⟨⟨μ; μ, μ, μ⟩⟩𝜔,−𝜔,0

Sum Frequency
Generation (SFG)

Emission of light with a frequency as
the sum of the different incoming
frequencies

⟨⟨μ; μ, μ, μ⟩⟩𝜔,𝜔′ ,0

Difference Frequency
Generation (DFG)

Emission of light with a frequency as
the difference of the different
incoming frequencies

⟨⟨μ; μ, μ, μ⟩⟩𝜔,−𝜔′ ,0

Magnetic-Field-Induced
Second Harmonic
Generation (MFISHG)

Second-harmonic generation
induced by an external magnetic
field

⟨⟨μ; μ, μ, m⟩⟩𝜔,𝜔,0

EFISHG Circular
Intensity Difference
(EFISHG-CID)

Optical activity in second-harmonic
generation induced by an external
electric field

CD ⟨⟨μ; μ, m, μ⟩⟩𝜔,𝜔,0
⟨⟨μ; μ, μ, m⟩⟩𝜔,𝜔,0
⟨⟨μ; μ,𝚯, μ⟩⟩𝜔,𝜔,0
⟨⟨μ; μ, μ,𝚯⟩⟩𝜔,𝜔,0

Electro-optic Kerr effect
(dc-Kerr)

Birefringence induced by external
electric fields

LB ⟨⟨μ; μ, μ, μ⟩⟩𝜔,0,0

Jones effect Birefringence induced by external
electric field gradient and external
magnetic field

LB ⟨⟨μ;𝚯, m, μ⟩⟩𝜔,0,0
⟨⟨μ; m, m, μ⟩⟩𝜔,0,0

⟨⟨μ;𝚯, m⟩⟩𝜔,0
⟨⟨μ; m, m⟩⟩𝜔,0
⟨⟨μ; ξ, μ⟩⟩𝜔,0
⟨⟨μ; ξ⟩⟩𝜔

Cotton–Mouton effectb Birefringence induced by external
magnetic fields

LB ⟨⟨μ; μ, m, m⟩⟩𝜔,0,0
⟨⟨m; m, m, m⟩⟩𝜔,0,0

⟨⟨μ; μ, m⟩⟩𝜔,0
⟨⟨μ; μ, ξ⟩⟩𝜔,0
⟨⟨m; m, m⟩⟩𝜔,0
⟨⟨m; m, ξ⟩⟩𝜔,0
⟨⟨μ; μ⟩⟩𝜔
⟨⟨m; m⟩⟩𝜔,0

aThese require derivatives of the propagators with respect to nuclear coordinates; see Table 11.1.
bAnalogous molecular properties where the magnetic perturbation arises from nuclear spin have also been considered.34
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. Rotational and Vibrational Corrections

An experimentally derived spectroscopic constant is usually based on the measured response of a
macroscopic system and thus corresponds to an average over a large number of molecules in dif-
ferent vibrational and rotational states determined by the Boltzmann distribution at the given tem-
perature. Although the spectroscopic constant calculated at a single geometry corresponding to the
optimized molecular geometry may be of sufficient accuracy for comparing to experimental results,
higher accuracy requires the ability to average the calculated property over a range of molecular
geometries corresponding to the experimental ensemble. The most important correction is normally
due to the effect of zero-point vibrations, but finite temperature effects (rotational and vibrational
excited states) may also contribute and they can often be included with little additional effort com-
pared to just including the zero-point correction.

Averaging over the complete Boltzmann ensemble of rotational–vibrational states requires the cal-
culation of a semiglobal energy surface in order to obtain detailed rotational–vibrational (nuclear)
wave functions and knowledge of the property surface for all geometries that are accessible by the
atomic motions at the given temperature. This is impractical for all but the smallest systems, and
practical methods for rotational–vibrational averaging employ approximate schemes to capture the
main contributions. These can conceptually be divided into two components: (1) a change in geome-
try due to the anharmonicity of vibrations that lead to a vibrationally averaged geometry (often called
an effective geometry) where, for example, bond lengths are slightly elongated and (2) a correction
to the non-linear geometry dependence of the property.

Calculation of harmonic vibrational normal coordinates only requires the second derivative of the
energy with respect to atomic coordinates at the equilibrium position (Section 17.2.2), while calcu-
lation of anharmonic corrections require (at least) third-order derivatives. In the absence of ana-
lytical third derivatives, these must be obtained by numerical differentiation of (analytical) second
derivatives. Calculation of the geometry dependence of the spectroscopic constant (the property sur-
face) similarly may requires a (large) number of individual calculations at slightly distorted molecu-
lar geometries. These numerical differentiations are computationally expensive and the number of
required components increases with the size of the molecule. An alternative is to calculate higher-
order mixed derivatives at the reference geometry in order to model the geometry dependence of
the specific property, which requires a computational efficient method for calculating many different
types of derivatives to quite high orders.36

A popular method for including rotational and vibrational effects is to first calculate an effective
geometry corresponding to averaging over vibrational anhamonicity and rotational centrifugal
distortions. At this effective geometry, the harmonic vibrational wave functions are then used to
perform a vibrational averaging over the property.37 It should be noted that the vibrational wave func-
tions depend on the nuclear masses, and thus lead to different vibrational corrections for different
isotopes.

The most important vibrational correction for many properties is due to anharmonicity of the
bond stretching modes. This effect has as a consequence that the effective (vibrational averaged)
bond lengths are slightly longer than the equlibrium bond lengths calculated by minimizing the
electronic energy. A heuristic way of modeling this effect is to simply calculate the property with
a molecular geometry where the bond length(s) is (are) slightly elongated. This also allows a heuristic
way of modeling isotope effects on properties since the effective bond length for the heavier iso-
tope is slightly shorter than for the lighter isotope. By employing an empirically determined standard
bond elongation, which is slightly different for different isotopes, it is possible to estimate the isotope
effect on the property from only two property calculations at slightly different geometries, and this
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has, for example, been used for probing isotope effects on nuclear magnetic shielding constants
(chemical shifts).

. Environmental Effects

Spectroscopic constants are often obtained from experimental measurements of the compund in
a condensed phase, most frequently a solution. Condensed phases can have a significant effect on
molecular properties, especially those depending on the outer part of the wave function. The solvent
effect can be modeled by a continuum solvation model (Section 15.6.1)38 or by including explicit
solvent molecules in either a quantum or classical description (QM/MM, Section 2.12), where the
latter can be in either an electronic or polarization embedding.39, 40

. Relativistic Corrections

Relativistic effects become increasingly important as the atomic number increases, and for systems
containing atoms from the fifth row and below in the periodic table (beyond Xe), two- or four-
component relativistic calculations (Chapter 9) are often required to get satisfactory accuracy.41, 42

For systems with atoms from the first four rows in the periodic table, the relativistic effects are often
small enough that they can be calculated by perturbational methods employing a non-relativistic
wave function as the reference. Spectroscopic parameters derived from perturbation expansions,
which may be of relativistic origin, only take into account the lowest-order effects. Higher-order rel-
ativistic corrections can be included as (additional) relativistic corrections to the basic spectroscopic
parameters.43, 44
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Illustrating the Concepts

In this chapter we will illustrate some of the methods described in the previous chapters. It is of
course impossible to cover all types of bonding and geometries, but for highlighting the features we
will look at the H2O molecule. This is small enough that we can employ the full spectrum of methods
and basis sets, and illustrate some general trends.

. Geometry Convergence

The experimental geometry for H2O has a bond length of 0.9578 Å and an angle of 104.49◦.1, 2 Let us
investigate how the calculated geometry changes as a function of the theoretical sophistication.

12.1.1 Wave Function Methods

We will look at the convergence as a function of basis set and amount of electron correlation (Fig-
ure 4.3). For independent-particle methods (HF and DFT) we will use the segmented polarization
consistent basis sets (pcseg-n, n = 0, 1, 2, 3, 4), while for correlated methods (MP2 and CCSD(T)) we
will use the correlation consistent basis sets (cc-pVXZ, X = D, T, Q, 5, 6). Table 12.1 shows how the
optimized geometry changes as a function of basis set at the HF, MP2 and CCSD(T) levels of the-
ory, where the quality of the basis sets is indicated by the cardinal number X that defines the highest
angular momentum functions included in the basis set.

The HF results are converged with the pcseg-2 basis set and the HF limit predicts a bond length
that is too short, reminiscent of the incorrect dissociation of the single-determinant wave function
(Section 4.3). The bond angle as a consequence becomes too large, owing to an overestimation of the
repulsion between the two hydrogens. The underestimation of bond lengths at the HF level is quite
general for covalent bonds, while the overestimation of bond angles is not. Although the increased
repulsion/attraction between atom pairs in general is overestimated owing to too-short bond lengths
and too-large charge polarization, these factors may pull in different directions for a larger molecule
and bond angles may either be too large or too small. Note that the bond length decreases as the basis
set quality is increased, thus an SZ or DZP-type basis may give bond lengths that are longer than the
experimental value for some systems. At the HF limit, however, covalent bond lengths will normally
be too short.

Introduction to Computational Chemistry, Third Edition. Frank Jensen.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion Website: http://www.wiley.com/go/jensen/computationalchemistry3
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Illustrating the Concepts 

Table . H2O geometry as a function of basis set quality at the HF, MP2 and CCSD(T) levels of theory (experimental
values are 0.9578 Å and 104.49◦).

HF MP CCSD(T)

X Basis set ROH (Å) 𝜃HOH (◦) Basis set ROH (Å) 𝜃HOH (◦) ROH (Å) 𝜃HOH (◦)

1 pcseg-0 0.9723 109.05
2 pcseg-1 0.9464 105.46 cc-pVDZ 0.9649 101.90 0.9663 101.91
3 pcseg-2 0.9395 106.39 cc-pVTZ 0.9591 103.59 0.9594 103.58
4 pcseg-3 0.9395 106.38 cc-pVQZ 0.9577 104.02 0.9579 104.12
5 pcseg-4 0.9395 106.36 cc-pV5Z 0.9579 104.29 0.9580 104.38
6 cc-pV6Z 0.9581 104.34 0.9582 104.42

Including electron correlation at the MP2 level increases the bond length by about 0.019 Å, fairly
independently of the basis set quality. The bond angle as a consequence decreases, by about 2◦. Note
that the convergence in terms of basis set quality is much slower than at the HF level. From the
observed behavior the MP2 basis set limit may be estimated as 0.9582 ± 0.0001 Å and 104.40◦ ±
0.04◦, which is already in good agreement with the experimental values of 0.9578 Å and 104.49◦.
H2O at the equilibrium geometry is a system where HF is a good zeroth-order wave function and
perturbation methods should consequently converge fast. Indeed, the MP2 method recovers ∼94% of
the electron correlation energy, as shown later in Table 12.5. Including additional electron correlation
with the CCSD(T) method gives only small changes relative to the MP2 level, and the effect of higher-
order correlation diminishes as the basis set is enlarged. For H2O the CCSD(T) method is virtually
indistinguishable from CCSDT and is presumably very close to the full CI limit.3, 4

The HF wave function contains equal amounts of ionic and covalent contributions (Section 4.3).
For covalently bonded systems, such as H2O, the HF wave function is too ionic and the effect of elec-
tron correlation is to increase the covalent contribution. Since the ionic dissociation limit is higher
in energy than the covalent, the effect is that the equilibrium bond length increases when correla-
tion methods are used. For dative bonds, for example in metal–ligand compounds, the situation is
reversed. In this case the HF wave function dissociates correctly and bond lengths are normally too
long. Inclusion of electron correlation adds attraction between ligands (dispersion interaction), which
causes the metal–ligand bond lengths to contract.

The MP2 and CCSD(T) values in Table 12.1 are for correlation of the valence electrons only, that
is the frozen-core approximation. In order to assess the effect of core electron correlation, the basis
sets need to be augmented with tight polarization functions; the corresponding MP2 and CCSD(T)
results are shown in Table 12.2.

The effect of core electron correlation is small: a small decrease of the bond length and a
corresponding small increase in bond angle. The CCSD(T)/cc-pwCV5Z result with all electrons cor-
related gives a bond length of 0.9571 Å and an angle of 104.50◦. Further basis set increases will pre-
sumably slightly increase the angle. Relativistic effects at the Dirac–Fock–Breit level of theory have
been reported to give changes of +0.00016 Å and −0.07◦.2 Including these corrections led to a final
predicted structure that is in good agreement with the experimental values of 0.9578 Å and 104.49◦.

These results show that ab initio methods can give results of very high accuracy, provided that
sufficiently large basis sets are used. Unfortunately, the combination of highly correlated methods,
such as CCSD(T), and large basis sets means that such calculations are computationally expensive.
A CCSD(T) calculation with the cc-pV5Z basis is already quite demanding for the H2O system. The
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Table . H2O geometry as a function of basis set at the MP2 and CCSD(T) levels of theory
including all electrons in the correlation (experimental values are 0.9578 Å and 104.49◦).

MP2 CCSD(T)

X Basis set ROH (Å) 𝜃HOH (◦) ROH (Å) 𝜃HOH (◦)

2 cc-pwCVDZ 0.9643 101.94 0.9656 101.97
3 cc-pwCVTZ 0.9578 103.66 0.9582 103.71
4 cc-pwCVQZ 0.9569 104.14 0.9571 104.23
5 cc-pwCV5Z 0.9570 104.41 0.9571 104.50

results also show, however, that a quite respectable level of accuracy is reached at the MP2/cc-pVTZ
level, which is applicable to a much larger variety of molecules. Furthermore, the errors at a given
level are quite systematic and relative values (comparing, for example, changes in geometries upon
introduction of substitutents) will be predicted with a substantially higher accuracy.

12.1.2 Density Functional Methods

The two variables in DFT methods are the basis set and the choice of the exchange–correlation poten-
tial. The performance of seven popular functionals for the geometry with the pcseg-n basis sets is
given in Tables 12.3 and 12.4. The LSDA functional employs the uniform electron gas approxima-
tion, the BLYP and PBE functionals are of the gradient-corrected type, while the B3LYP and PBE0 are
hybrid types that contain a fraction of Hartree–Fock exchange. The ωB97XD is a hybrid functional
with range-separation while B2PLYP is a double hybrid incorporating an MP2-like term.

Table . H2O bond distances (Å) as a function of basis set with various DFT functionals (experimental value is
0.9578 Å).

Basis LSDA BLYP PBE BLYP PBE ωBXD BPLYP

pcseg-0 1.0076 1.0152 1.0116 1.0002 0.9954 0.9902 0.9968
pcseg-1 0.9765 0.9791 0.9763 0.9683 0.9644 0.9634 0.9657
pcseg-2 0.9698 0.9705 0.9689 0.9604 0.9575 0.9554 0.9586
pcseg-3 0.9700 0.9704 0.9689 0.9603 0.9575 0.9558 0.9587
pcseg-4 0.9700 0.9704 0.9689 0.9603 0.9575 0.9558 0.9586

Table . H2O bond angles (◦) as a function of basis set with various DFT functionals (experimental value is 104.49◦).

Basis LSDA BLYP PBE BLYP PBE ωBDX BPLYP

pcseg-0 105.33 103.55 103.94 105.31 105.91 106.61 105.88
pcseg-1 103.95 103.04 102.91 103.88 103.83 104.05 103.84
pcseg-2 105.05 104.52 104.23 105.16 104.95 105.21 104.84
pcseg-3 104.99 104.53 104.21 105.14 104.91 105.15 104.87
pcseg-4 104.98 104.52 104.21 105.13 104.90 105.15 104.87
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The geometry displays a convergence characteristic similar to the wave mechanics HF method
(Table 12.1). A TZP-type basis (pcseg-2) gives good results and a QZP-type basis (pcseg-3) is essen-
tially converged to the basis set limiting value. The deviations between the basis set limiting values
and the experimental values are the inherent errors associated with the functionals. Incorporation
of exact exchange led to a shorter bond length and larger angle, as expected from the HF values in
Table 12.1.

. Total Energy Convergence

The total energy in ab initio theory is relative to the separated particles, that is bare nuclei and elec-
trons. The corresponding experimental value for an atom is therefore the sum of all the ionization
potentials; for a molecule there are in addition contributions from the molecular bonds and asso-
ciated zero-point energies. The experimental value for the total energy of H2O is −76.480 au and
the estimated contribution from relativistic effects is −0.045 au. Including also a mass correction
of 0.0028 au (a non-Born–Oppenheimer effect that accounts for the difference between finite and
infinite nuclear masses) allows the “experimental” non-relativistic Born–Oppenheimer energy to be
estimated as −76.438 ± 0.003 au.5

The full CI result is available with the cc-pVDZ basis set,6 which allows an assessment of the perfor-
mance of various approximate methods. The percent of the electron correlation recovered by different
methods is shown in Table 12.5.

The H2O molecule is, as already mentioned, an easy system, where the HF wave function provides
a good reference. Furthermore, since there are only ten electrons in H2O the effect of higher-order
electron correlation is small. The intraorbital correlation between electron pairs dominates the cor-
relation energy for such a small system and the doubly excited configurations, which mainly describe
the pair correlation, accounts for a large fraction of the total correlation energy. Consequently even
the simple MP2 method performs exceedingly well and the CCSD(T) result is for practical purposes
identical to the full CI result. For such simple systems, the MP2 and MP3 percent correlations are
probably significantly higher than would be expected for a larger system.

The calculated total energy as a function of the basis set and electron correlation (correlating all
electrons) at the experimental geometry is given in Table 12.6. As the cc-pCVXZ basis sets repre-
sent a systematic convergence toward the complete basis set limit, there is justification for extrapo-
lating the results to the “infinite” basis set limit (Section 5.4.6). The HF energy is expected to have
an exponential behavior and a functional form of the type A + B exp(−C

√
X) with X = 4, 5 and 6

Table . Percent electron correlation recovered by various methods in the cc-pVDZ basis arranged according to the
formal computational scaling.

Scaling MP CC CI

N5 MP2 94.0
N6 MP3 97.0 CCSD 98.3 CISD 94.5
N7 MP4 99.5 CCSD(T) 99.7 CISDT 95.8
N8 MP5 99.8 CCSDT 99.8 CISDTQ 99.8
N9 MP6 99.9 CISDTQ5 99.9
N10 MP7 100.0 CCSDTQ 100.0 CISDTQ56 100.0
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Table . Total non-relativistic energy (+76 au) as a function of basis set and electron correlation (all electrons)
estimated exact value from experimental data is −76.438 ± 0.003 au.5

Method cc-pCVDZ cc-pCVTZ cc-pCVQZ cc-pCVZ cc-pCVZ cc-pCV∞Z %EC

HF −0.027 −0.057 −0.065 −0.067 −0.067 −0.067 0.0
MP2 −0.269 −0.375 −0.408 −0.419 −0.424 −0.430 97.7
MP3 −0.276 −0.380 −0.410 −0.420 −0.423 −0.427 97.0
MP4 −0.282 −0.391 −0.422 −0.433 −0.436 −0.441 100.6
MP5 −0.282 −0.389 −0.420 −0.430 −0.433 −0.438 100.0
CCSD −0.279 −0.382 −0.411 −0.421 −0.424 −0.429 97.4
CCSD(T) −0.282 −0.390 −0.421 −0.431 −0.434 −0.439 100.2
CISD −0.269 −0.368 −0.397 −0.406 −0.426 −0.413 93.2

yields an infinite basis set limit of −76.0674 au, in complete agreement with the estimated HF limit
of −76.0674 au.7 The correlation energy is expected to have an inverse power dependence on the
highest angular momentum once the basis set reaches a sufficient (large) size. Extrapolating the cor-
relation contribution for X = 5 and 6 with a function of the type A + BX−3 yields the cc-pCV∞Z
values in Table 12.6. The extrapolated CCSD(T) energy is −76.439 au, which is well within the error
limits of the estimated experimental value of −76.438 ± 0.003 au. The total correlation energy is thus
−0.373 au, while a corresponding analysis using only the valence electrons yields a value of −0.308 au.
The core (and core–valence) electron correlation is thus 0.065 au, which is comparable to the value
for the valence electrons (i.e. 0.308 divided between four electron pairs is 0.077 au).

The percent of the total correlation energy at the basis set limit is given in the last column in
Table 12.6. The MP2 method recovers 97.7%, which can be compared with the value of 94% in the
cc-pVDZ basis (Table 12.5). Notice, however, that while the perturbation series is smoothly conver-
gent with the cc-pCVDZ basis, it becomes oscillating with the larger basis sets. With the cc-pCVTZ
basis, the MP5 result is higher in energy than MP4, and with the cc-pCV6Z the MP3 result is higher
than the MP2 value. This may be an indication that the perturbation series is actually divergent in a
sufficiently large basis set. The CISD method performs rather poorly, yielding results that are worse
than MP2 but at a cost similar to an MP4 calculation.

Since the CCSD(T) result is essentially equivalent to a full CI (Table 12.5), the data show that
the cc-pCVDZ basis is able to provide 69% of the total correlation energy. The corresponding val-
ues for the cc-pCVTZ, cc-pCVQZ and cc-pCV5Z basis sets are 90%, 96% and 98%, respectively.
Slightly lower percentages have been found in other systems.8 This illustrates the slow convergence
of the correlation energy as a function of the basis set. Each step up in basis set quality roughly
doubles the number of functions. The cc-pCVDZ basis is capable of recovering 69% of the cor-
relation energy, and improving the basis from cc-pCVDZ to cc-pCVTZ allows an additional 21%
to be calculated. The next step up gives only 6% and the expansion from cc-pCVQZ to cc-pCV5Z
gives only 2%. The last 5–10% of the correlation energy is therefore hard to get, requiring very large
basis sets. This slow convergence is the principal limitations of traditional ab initio methods. The
CCSD(T)/cc-pCV5Z total energy is still ∼18 kJ/mol off the experimentally derived non-relativistic
value, with the remaining error being distributed roughly equally between incomplete basis set and
incomplete electron correlation effects. These errors are comparable to the Born–Oppenheimer cor-
rection of 7 kJ/mol, and substantially smaller than the relativistic correction of 118 kJ/mol. Calculat-
ing the total energy with an accuracy of a few kJ/mol is thus only borderline possible for this simple
system.
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Although the total energy calculated by DFT methods should in principle converge to the “experi-
mental” value (−76.438 au), there are no upper or lower bounds for the currently employed methods
with approximate exchange–correlation functionals, and this can be considered a consequence of not
enforcing N-representability of the functionals.9 The PBE and B3LYP functionals, for example, give
total energies of −76.388 and −76.474 at the basis set limit.

. Dipole Moment Convergence

As examples of molecular properties we will look at how the dipole moment and harmonic vibrational
frequencies converge as a function of level of theory.

12.3.1 Wave Function Methods

The experimental value for the dipole moment is 1.847 Debye10 and the calculated value at various
levels of theory is shown in Table 12.7.

The dipole moment may be considered as the response of the wave function (energy) to the presence
of an external electric field, in the limit where the field strength is vanishingly small (Section 11.1.1).
It is consequently sensitive to the representation of the wave function “tail”, that is far from the nuclei,
and diffuse functions are therefore expected to be important. The results with the regular cc-pVXZ
basis sets converge only slowly, as compared with the results for the basis sets augmented with diffuse
functions. This illustrates that care must be taken when calculating properties other than the total
energy, as standard basis sets may not be able to describe important aspects of the wave function.

The HF dipole moment is too large, which is quite general, as the HF wave function overestimates
the ionic contribution. The MP2 procedure recovers the large majority of the correlation effect, but
the convergence with the aug-cc-pVXZ basis sets is not smooth and does not readily allow an extrap-
olation. The CCSD(T) result with the aug-cc-pV5Z basis is very close to the experimental value,
although remaining basis set effects and further correlation may change the value slightly. As expected
for this property, the effects of core correlation and relativistic corrections are small, as shown by the
results in Table 12.8.

12.3.2 Density Functional Methods

Table 12.7 establishes that diffuse functions are mandatory for calculating dipole moments and only
the aug-pcseg-n basis set have been used with DFT methods. The calculated results are given in
Table 12.9.

Table . H2O dipole moment (Debye) as a function of theory (valence correlation only); the experimental value is
1.847 Debye.

Basis HF MP CCSD(T) Basis HF MP CCSD(T)

cc-pVDZ 2.057 1.964 1.936 aug-cc-pVDZ 2.000 1.867 1.848
cc-pVTZ 2.026 1.922 1.903 aug-cc-pVTZ 1.983 1.852 1.839
cc-pVQZ 2.008 1.904 1.890 aug-cc-pVQZ 1.981 1.858 1.848
cc-pV5Z 2.003 1.895 1.884 aug-cc-pV5Z 1.981 1.861 1.851
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Table . H2O dipole moment (Debye) as a function of theory (all electrons); the
experimental value is 1.847 Debye.

Basis MP CCSD(T) CCSD(T)-DKH

aug-cc-pwCVDZ 1.868 1.850 1.846
aug-cc-pwCVTZ 1.856 1.843 1.839
aug-cc-pwCVQZ 1.863 1.853 1.849

Table . H2O dipole moment (Debye) as a function of DFT functional and basis set; the experimental value is
1.847 Debye.

Basis LSDA BLYP PBE BLYP PBE ωBXD BPLYP

aug-pcseg-0 2.744 2.610 2.630 2.661 2.683 2.711 2.704
aug-pcseg-1 1.849 1.788 1.786 1.846 1.851 1.869 1.909
aug-pcseg-2 1.860 1.804 1.802 1.860 1.865 1.881 1.921
aug-pcseg-3 1.856 1.800 1.796 1.856 1.859 1.874 1.916
aug-pcseg-4 1.856 1.799 1.796 1.855 1.858 1.873 1.916

The calculated dipole moment is remarkably insensitive to the size of the basis set, once polariza-
tion functions have been included (i.e. at least aug-pcseg-1). Note that the LSDA value in this case is
substantially better than the GGA functionals (BLYP and PBE), that is this is a case where the theoret-
ically “poorer” method provides better results than the more advanced gradient methods. Inclusion
of “exact” exchange (B3LYP and PBE0) again improves the performance, and provides results very
close to the experimental value, even with relatively small basis sets, while the B2PLYP double hybrid
method overestimates the value.

. Vibrational Frequency Convergence

The experimental values for the fundamental vibrational frequencies are 1595, 3657 and 3756 cm−1,
while the corresponding harmonic values are 1649, 3832 and 3943 cm−1.11 The differences due to
anharmonicity are thus 54, 175 and 187 cm−1, that is 3–5% of the harmonic values.

12.4.1 Wave Function Methods

The calculated harmonic frequencies at the HF, MP2 and CCSD(T) levels are given in Table 12.10.
Vibrational frequencies are examples of a slightly more complicated property. The frequencies are

obtained from the force constant matrix (second derivative of the energy), evaluated at the equilib-
rium geometry (Section 17.2.2). Both the equilibrium geometry and the shape of the energy surface
depend on the theoretical level. Part of the change in frequencies is due to changes in the geometry
since the force constant in general decreases with increasing bond length.

The HF vibrational frequencies are too high by about 7% relative to the experimental harmonic
values and by 10–13% relative to the anharmonic values. This overestimation is due to the incorrect
dissociation and the corresponding bond lengths being too short (Table 12.1) and is consequently
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Table . H2O harmonic frequencies (cm−1) as a function of method and basis set (only valence electrons are
correlated).

v v v

Basis HF MP CCSD(T) HF MP CCSD(T) HF MP CCSD(T)

cc-pVDZ 1776 1678 1690 4114 3852 3822 4212 3971 3928
cc-pVTZ 1753 1652 1669 4127 3855 3841 4227 3976 3946
cc-pVQZ 1751 1643 1659 4130 3855 3845 4229 3978 3952
cc-pV5Z 1748 1636 1653 4131 3849 3840 4231 3974 3950
cc-pV6Z 1748 1634 1651 4130 3845 3837 4231 3971 3947
Exp 1649 3832 3943

quite general. Vibrational frequencies at the HF level are therefore often scaled by ∼0.9 to partly
compensate for these systematic errors.12

The inclusion of electron correlation normally lowers the force constants, since the correlation
energy increases as a function of bond length. This usually means that vibrational frequencies
decrease, although there are exceptions (vibrational frequencies also depend on off-diagonal force
constants). The MP2 treatment recovers the majority of the correlation effect, and the CCSD(T)
results with the cc-pV6Z basis set are in good agreement with the experimental values (Table 12.10).
The remaining discrepancies of 2, 5 and 4 cm−1 are mainly due to basis set inadequacies (!). The MP2
values are in respectable agreement with the experimental harmonic frequencies, but of course still
overestimate the experimental fundamental ones by the anharmonicity. For this reason, calculated
MP2 harmonic frequencies are often scaled by ∼0.97 for comparing with experimental results.12

The effects of core electron correlation and relativistic corrections are small, as shown in
Table 12.11. It should be noted that the valence and core correlation energy per electron pair is of
the same magnitude. The core correlation, however, is almost constant over the whole energy sur-
face and consequently contributes very little to properties depending on relative energies, such as
vibrational frequencies. The bending frequency is almost unchanged, while the stretching frequen-
cies increase by 7 cm−1, which slightly deteriorates the agreement with the experimental values. The
relativistic corrections at the DKH2 level are a few cm−1.

For comparing with experimental frequencies (which necessarily are anharmonic), there is nor-
mally little point in improving the theoretical level beyond MP2 with a TZP-type basis set unless
anharmonicity constants are calculated explicitly. Although anharmonicity can be approximately

Table . H2O MP2 and CCSD(T) harmonic frequencies (cm−1) as a function of basis set (all electrons are correlated).

v v v

Basis MP CCSD(T) CCSD(T)-DKH MP CCSD(T) CCSD(T)-DKH MP CCSD(T) CCSD(T)-DKH

cc-pwVDZ 1678 1690 1691 3854 3824 3821 3973 3930 3926
cc-pwVTZ 1651 1667 1669 3859 3844 3841 3978 3947 3945
cc-pwVQZ 1641 1657 1659 3862 3851 3849 3985 3959 3956
cc-pwV5Z 1635 1652 1653 3856 3847 3845 3982 3957 3954
Exp 1649 3832 3943

iranchembook.ir/edu



 Introduction to Computational Chemistry

accounted for by scaling the harmonic frequencies by ∼0.97, the remaining errors in the harmonic
force constants at this level are normally smaller than the corresponding errors due to variations in
anharmonicity.

12.4.2 Density Functional Methods

The harmonic frequencies calculated with various DFT methods as a function of basis set are shown
in Tables 12.12 to 12.14.

The convergence as a function of basis set is similar to that observed for the HF method. The Jacob’s
ladder qualification in this case works very well, with the B2PLYP double hybrid providing amazing
agreement with the experimental values. It is also clear from Tables 12.12 to 12.14 that inclusion
of “exact” exchange (B3LYP and PBE0) substantially improves the performance. The “pure” DFT
gradient methods, BLYP and PBE, have errors of ∼150 cm−1 for the stretching frequencies and
∼50 cm−1 for the angle bending.

Table . H2O lowest harmonic frequency (cm−1) as a function of basis set with various DFT functionals; the
experimental value is 1649 cm−1.

Basis LSDA BLYP PBE BLYP PBE ωBXD BPLYP

pcseg-0 1556 1600 1597 1625 1629 1634 1640
pcseg-1 1549 1598 1596 1628 1635 1637 1644
pcseg-2 1543 1594 1590 1624 1630 1632 1636
pcseg-3 1549 1597 1594 1628 1634 1634 1638
pcseg-4 1550 1598 1594 1629 1635 1636 1639

Table . H2O second lowest harmonic frequency (cm−1) as a function of basis set with various DFT functionals; the
experimental value is 3832 cm−1.

Basis LSDA BLYP PBE BLYP PBE ωBXD BPLYP

pcseg-0 3327 3217 3276 3390 3470 3527 3426
pcseg-1 3689 3610 3664 3765 3835 3859 3812
pcseg-2 3727 3667 3707 3809 3868 3902 3835
pcseg-3 3719 3665 3705 3805 3863 3889 3819
pcseg-4 3718 3666 3706 3807 3865 3893 3829

Table . H2O highest harmonic frequency (cm−1) as a function of basis set with various DFT functionals; the
experimental value is 3943 cm−1.

Basis LSDA BLYP PBE BLYP PBE ωBXD BPLYP

pcseg-0 3457 3329 3394 3504 3588 3645 3549
pcseg-1 3812 3722 3780 3877 3951 3975 3932
pcseg-2 3839 3771 3815 3914 3975 4010 3946
pcseg-3 3828 3767 3810 3907 3968 3994 3930
pcseg-4 3827 3768 3811 3909 3970 3998 3939
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. Bond Dissociation Curves

As seen in Table 12.6, it is very difficult to converge the total energy to an accuracy of a few kJ/mol. The
total energy, however, is in almost all cases irrelevant; the important quantity is the relative energy.
Let us now examine how the shape of a potential energy surface depends on the theoretical level. We
will look at two cases: stretching one of the O H bonds in H2O and the HOH bending potential.
The O H dissociation curve is a case where the main change is associated with the difference in
electron correlation between the two electrons in the bond being stretched. It should be noted that
transition structures typically have bonds that are elongated by 0.5–0.8 Å, and the performance for
the dissociation curve in this range will model the behavior for describing bond breaking/forming
reactions. The HOH bending energy, on the other hand, does not involve any bond breaking and
should therefore be less sensitive to the level of theory.

12.5.1 Wave Function Methods

We will now look at how different types of wave function behave when the O H bond is stretched.
The basis set used in all cases is the aug-cc-pVTZ and the reference curve is taken as the [8, 8]-
CASMP2 result, which is slightly larger than a full valence CI followed by a second-order perturbation
correction. As mentioned in Section 4.6, this allows a correct dissociation, and since all the valence
electrons are correlated, it will generate a curve close to the full CI limit. The bond dissociation energy
calculated at this level is 503 kJ/mol, which is comparable to the experimental value of 525 kJ/mol.13

H2O is a closed-shell singlet and the HF wave function near the equilibrium geometry is of the
RHF type. As one of the bonds is stretched, however, a UHF type will become lower in energy at
some point (Section 4.4). Beyond this instability point, electron correlation methods may be based
either on the RHF or UHF reference. The UHF wave function will be spin-contaminated, which has
some consequences, as shown below. It should be noted that for open-shell species there is similarly
the option of using either an ROHF or UHF reference wave function, but in such cases they will be
different at all geometries, and also near the equilibrium. The difference will be small if the UHF wave
function is only slightly spin-contaminated.

Figure 12.1 illustrates the behavior of the single-determinant wave functions, RHF, UHF and PUHF
(projected UHF, Section 4.4). The RHF energy continues to increase as the bond is stretched since it
has the wrong dissociation limit, while the UHF converges to a value of 366 kJ/mol. At the equilibrium
geometry the two electrons in the O H bonding orbital are correlated, but this correlation energy
disappears once the bond is broken. The UHF wave function correctly describes the dissociation limit
in terms of energy, but does not recover any of the electron correlation at equilibrium (by definition,
since UHF = RHF here). The difference between the UHF dissociation energy and the CASMP2 value
is therefore a measure of the amount of electron correlation in the O H bond. With the present basis
set this is 137 kJ/mol, which is a typical value for the correlation energy between two electrons in the
same spatial MO.

Figure 12.2 shows how the spin contamination as measured by the ⟨S2⟩ value of the UHF wave
function increases as the bond is stretched. At the dissociation limit the UHF wave function is essen-
tially an equal mixture of a singlet and triplet state, as discussed in Section 4.4. Removal of the triplet
state by projection (PUHF) lowers the energy in the intermediate range, but has no effect when the
bond is completely broken since the singlet and triplet states are degenerate here.

The RHF/UHF instability point with this basis set occurs when the bond is stretched to 1.36 Å. Fig-
ure 12.3 shows the behavior of the energy curves in more detail in this region. It is seen that the PUHF
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Figure . RHF, UHF and PUHF dissociation curves for H2O.
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Figure . RHF, UHF and PUHF dissociation curves for H2O near the instability point.

has a discontinuous derivative at the instability point, and there is furthermore a shallow minimum
right after the instability point, at a bond length of ∼1.40 Å.

Since the RHF curve is too high in the transition structure region (ΔR ∼ 0.5–0.8 Å), it is clear that
RHF activation energies in general will be too large. UHF activation energies may either be too high
or too low, but the PUHF value will essentially always be too low. Furthermore, the shape of a spin-
contaminated UHF energy surface will be too flat and PUHF surfaces will be qualitatively wrong in the
TS region. Spin-contaminated UHF wave functions should consequently not be used for geometry
optimizations.

The corresponding difference between restricted, unrestricted and projected unrestricted wave
functions at the MP2 level is shown in Figure 12.4.

The RMP2 rises too high, owing to the wrong dissociation limit of the underlying RHF. Both the
UMP2 and PUMP2 dissociation energies are in reasonable agreement with the CASMP2 value, but
it is clear that the UMP2 energy is too high in the “intermediate” range owing to spin contamination.
The PUMP2 curve, on the other hand, traces the reference CASMP2 values more closely. Figure 12.5
shows the curves in more detail near the RHF/UHF instability point.

The UMP2 energy is higher than the RMP2, although the UHF energy is lower than the RHF. At the
HF level, the UHF energy is lowest owing to a combination of spin contamination and inclusion of
electron correlation (Section 4.8.2). Since the MP2 procedure recovers most of the electron correla-
tion, only the energy rising effect due to spin contamination remains and the UMP2 energy becomes
higher than RMP2. Removing the unwanted spin components makes the PUMP2 energy very similar
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Figure . RMP2, RMP3, RMP4, RCCSD and RCCSD(T) dissociation curves for H2O.

to RMP2 for elongations less than ∼1 Å, but is significantly better at longer bond lengths owing to the
correct dissociation of the UHF wave function. The RMP2 energy follows the “exact” curve closely
out to a bond length of ∼1.3 Å and is in qualitative agreement out to ∼1.8 Å. RMP2 activation ener-
gies are therefore often in quite reasonable agreement with experimental or higher level theoretical
values. It should also be noted that the discontinuity at the PUHF level essentially disappears when
the projection is carried out on the MP2 wave function.

Figures 12.6 and 12.7 show the effect of extending the perturbation series at the RMP and UMP
levels and the corresponding CCSD and CCSD(T) results. Addition of more terms in the pertur-
bation series improves the results, although the effect of MP3 compared with MP2 is minute. As
the bond is stretched beyond ∼2.5 Å, the perturbation series breaks down owing to the RHF wave
function becoming too poor a reference and the energies start to decrease. The infinite-order CCSD
and CCSD(T) methods outperform the MPn results and the effect of the triples become increasingly
important as the molecule dissociates.

The improvement by extending the perturbation series beyond second order is small when a UHF
wave function is used as the reference, that is the higher-order terms do very little to reduce the spin
contamination. In the dissociation limit the spin contamination is inconsequential and the MP2, MP3
and MP4 results are all in reasonable agreement with the CASMP2 result, but spin contamination
leads to significant errors in the intermediate region. The UCCSD and UCCSD(T) energy curves are
also somewhat too high in the intermediate region, but the infinite nature of coupled cluster methods
is significantly better at removing unwanted spin states as compared with UMPn methods.
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Figure . UMP2, UMP3, UMP4, UCCSD and UCCSD(T) dissociation curves for H2O.

12.5.2 Density Functional Methods

The performance of various DFT methods resembles the HF results. A restricted type of determinant
leads to an incorrect dissociation, while an unrestricted determinant has the energetically correct
dissociation limit. Figures 12.8 and 12.9 show the performance of restricted and unrestricted types
of determinants with the BLYP, B3LYP, wB97XD and B2PLYP functionals.

Figure 12.9 shows that DFT methods are much less sensitive to the “spin contamination” prob-
lem in the intermediate region, as also shown in Figure 12.2; indeed, spin contamination is not well
defined in DFT.14 Furthermore, as electron correlation is implicitly included, DFT methods are closer
in shape to the CASSCF curve. Removing the “spin contamination” by projection methods results in
discontinuous derivatives and artificial minima, analogously to the PUHF case in Figures 12.1 and
12.3, and should consequently not be employed.15 The B2PLYP double hybrid functional inherits the
poor performance of the MP2 method at the dissociation limit.

. Angle Bending Curves

The angle bending in H2O occurs without breaking any bonds and the electron correlation energy
is therefore relatively constant over the whole curve. The HF, MP2 and CCSD(T) bending potentials
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Figure . Angle bending curves for H2O.

are shown in Figure 12.10, where the reference curve is taken from a parametric fit to a large number
of spectroscopic data.16

The HF and MP2 methods over- and underestimate the barrier for linearity by 3 kJ/mol, respec-
tively, while the CCSD(T) result is within 0.1 kJ/mol of the reference value of 138.7 kJ/mol. The HF
curve is slightly too high for small bond angles, while the CCSD(T) results are within 1 kJ/mol of the
exact result over the whole curve. Compared with the bond dissociation discussed above, it is clear
that relative energies of conformations that have similar bonding are fairly easy to calculate. While
the HF and MP2 total energies with the aug-cc-pVTZ basis are ∼1000 and ∼300 kJ/mol higher than
the exact values at the equilibrium geometry, these errors are essentially constant over the whole
surface.

. Problematic Systems

The H2O case is an example of a system where it is relatively easy to obtain good results. Nature is
not always so kind; let us look at a couple of “theoretically difficult” cases.

12.7.1 The Geometry of FOOF

The FOOF molecule has an experimental geometry with an O O bond length of 1.217 Å and an
F O bond of 1.575 Å.17 The calculated bond distances at different levels of theory with the aug-cc-
pVTZ basis set are given in Table 12.15.
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Table . Bond distance (Å) in FOOF with the aug-cc-pVTZ
basis set.

Method ROO RFO

HF 1.300 1.356
MP2 1.166 1.619
MP3 1.300 1.427
MP4(SDQ) 1.291 1.453
CCSD 1.288 1.449
CCSD(T)a 1.234 1.545
CISD 1.295 1.389
LSDA 1.188 1.559
BLYP 1.206 1.632
PBE 1.198 1.606
B3LYP 1.227 1.523
PBE0 1.233 1.479
ωB97XD 1.246 1.468
B2PLYP 1.201 1.571
Experimental 1.217 1.575

aCCSD(T) basis set limiting values are 1.230 and 1.532 Å.19

The results in Table 12.15 clearly show that the results are very sensitive to the inclusion of elec-
tron correlation. The MP4(SDQ) geometry is very similar to the CCSD one, but inclusion of the triply
excited configurations in the full MP4(SDTQ) method has a huge effect. The F O bonds are elon-
gated to the point (>2.5 Å) where perturbation theory breaks down since the underlying RHF wave
function becomes extremely poor. The MP4(SDTQ) model basically does not predict a stable FOOF
molecule. The triples also have a large effect at the CCSD(T) level, but it is clear that the effect is wildly
overestimated with the MP4 method. Although the results are not converged with respect to a basis
set (aug-cc-pVTZ), the remaining changes are of the order of a few thousandths of an angstrom.18

Even with the sophisticated CCSD(T) model, the geometry errors are thus ∼0.03 Å.
The DFT methods are all well-behaved and perform surprisingly well for such a difficult system,

with the B2PLYP results providing better agreement with the experimental values than CCSD(T). The
main problem is of course that there is no way of systematically improving the structure, or knowing
beforehand whether DFT will be able to give a good description for the specific problem, or which
functional will be most suitable.

12.7.2 The Dipole Moment of CO

The experimental value for the dipole moment of CO is 0.122 Debye, with the polarity C−O+,
for a bond length of 1.1281 Å.20 Calculated values with the aug-cc-pVXZ basis sets21 are given in
Table 12.16.

The HF level (as usual) overestimates the polarity, in this case leading to an incorrect direction of
the dipole moment. The MP perturbation series oscillates and it is clear that the MP4 result is far
from converged. The CCSD(T) method apparently recovers the most important part of the electron
correlation and is very close to the full CCSDT result in an augmented DZP basis.22, 23 However, even
with the aug-cc-pV5Z basis sets, there is still a discrepancy of∼0.01 Debye relative to the experimental
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Table . Dipole moment (Debye) for CO; the experimental value is 0.122 Debye.

Method aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ aug-cc-pVZ

HF −0.259 −0.266 −0.265 −0.264
MP2 0.296 0.280 0.275 0.273
MP3 0.076 0.047 0.036 0.032
MP4 0.220 0.222 0.216 0.214
CCSD 0.097 0.070 0.059 0.055
CCSD(T) 0.141 0.127 0.118 0.115
CISD 0.050 0.023 0.011 0.008
LSDA 0.232 0.226 0.229 0.229
BLYP 0.187 0.184 0.185 0.185
PBE 0.229 0.224 0.224 0.224
B3LYP 0.091 0.086 0.087 0.088
PBE0 0.107 0.101 0.102 0.102
ωB97XD 0.086 0.097 0.099 0.097
B2PLYP −0.060 −0.067 −0.066 −0.065

value. The DFT methods are not particularly accurate, although for this specific problem the PBE0
method gives a reasonably good result, while the double hybrid B2PLYP provides an incorrect sign.

12.7.3 The Vibrational Frequencies of O3

Ozone is an example of a molecule where the single-reference RHF is quite poor, since there is consid-
erable biradical character in the wave function (as illustrated in Figure 4.9). The harmonic vibrational
frequencies derived from experiments are 716, 1089 and 1135 cm−1, where the band at 1089 cm−1

corresponds to an asymmetric stretch.24 As this nuclear motion changes the relative weights of the
ionic and biradical structures, this frequency is very sensitive to the quality of the wave function.
Although the wave function is equally poor for all the frequencies, the two other vibrations (sym-
metric stretch and angle bending) conserve the C2v symmetry, and thus benefit from a significant
cancellation of errors. The calculated frequencies at different levels of theory with the cc-pVTZ basis
are given in Table 12.17 together with the mean absolute deviation (MAD).

The simple picture with ozone as a resonance structure between ionic and biradical forms sug-
gests that a two-configuration wave function should be able to give a qualitatively correct descrip-
tion. The [2, 2]-CASSCF and [2, 2]-CASPT2 results, however, show that dynamical correlation is also
very important. The poor RHF reference wave function is clearly seen by the MPn results, with the
MP2 value being in error by a factor of two for the asymmetric stretch and the MP4 result being in
error by ∼500 cm−1 for 𝜈2, despite reproducing 𝜈1 and 𝜈3 to within 30 cm−1. The coupled cluster
methods are less sensitive to the quality of the HF wave function and are in somewhat better agree-
ment with the experimental values. The CCSD(T) results are within ∼20 cm−1 of the experimental
values, but part of this agreement is accidental as seen by the CCSDT and CCSDT(Q) results, and
even the CCSDT(Q) model has errors of ∼25 cm−1. Part of this discrepancy may be due to basis
set errors, although the results for the CASPT2 method indicate that larger basis sets will further
increase the value of the vibrational frequencies.26 The DFT methods display varying performance,
yielding results comparable to those at the CCSD or CCSD(T) levels, at a fraction of the computa-
tional cost. The pure functionals BLYP and PBE perform better than the hybrid DFT methods (B3LYP
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Table . Harmonic frequencies (cm−1) for O3 with the cc-pVTZ basis.

Method v v v MAD

HF 867 1418 1537 294
MP2 743 2241 1166 403
MP3 798 1713 1364 312
MP4 695 1592 1107 184
CCSD 762 1266 1278 122
CCSD(T) 716 1054 1153 18
CCSDTa 717 1117 1163 19
CCSDT(Q)a 709 1112 1133 6
CISD 815 1535 1407 272
[2,2]-CASSCF 799 1497 1189 182
[2, 2]-CASPT2b 737 1268 1318 128
[12, 9]-CASPT2b 692 1003 1092 51
LSDA 744 1147 1248 66
BLYP 683 980 1129 49
PBE 710 1057 1184 29
B3LYP 746 1193 1251 83
PBE0 777 1295 1322 151
ωB97XD 781 1320 1335 165
B2PLYP 712 1190 1135 35
Experimental 716 1089 1135

aData from Kucharski and Bartlett.25
bData from Ljubic and Sabljic.26

and PBE0), while the double hybrid B2PLYP is close to the CCSD(T) results. It can be noted that the
cc-pVTZ basis set is sufficiently large that the DFT results are essentially converged, and the results in
Table 12.17 thus reflect the intrinsic accuracy of the different DFT methods.

. Relative Energies of CH Isomers

The elaborate treatment for the H2O system is only possible because of its small size. For larger sys-
tems, less rigorous methods must be employed. Let us as a more realistic example consider a deter-
mination of the relative stability of the C4H6 isomers shown in Figure 12.11.

There are experimental heats of formation values for the first eight structures,27 which allow an
evaluation of the performance of different methods. This in turn enables an estimate of how much
trust should be put in the predicted values for structures 9, 10 and 11. The quoted errors in the
experimental values range from 0.6 to 2 kJ/mol, with an average value of 1.1 kJ/mol.

The experimental values are derived from combustion experiments and converted to ΔHf values,
which provide energies relative to the elements in their most stable state. The calculated energies,
however, are relative to the isolated nuclei + electron situation. Converting such energies to a the-
oretical ΔHf value would require taking a difference between total energies for the molecule and
carbon and hydrogen in their most stable states, that is graphite and H2. These widely different bond-
ing situations would require a very high computational level to achieve a sufficient error cancellation
to produce results of a useful accuracy (Section 5.2). It is therefore convenient to convert both sets
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Figure . C4H6 isomers.

of data to relative energies, but this requires a selection of a common reference value for both sets.
One could arbitrarily select one of the compounds, for example the most stable, as having an energy
of zero, and evaluate the performance of different computational methods by how well the stabil-
ity of the remaining compounds are predicted. This procedure, however, is sensitive to the choice of
reference compound. If a given method, for example, performs poorly for the reference compound,
but well for all the remaining compounds, then the method will appear as performing poorly for all
the compounds. An unbiased choice is to use the mean of the data set as the reference and evaluate
the performance, for example, in terms of the Mean Absolute Deviation (MAD), and the slope and
correlation coefficient for the least square line.

The geometry is normally relatively insensitive to the level of theory, and a typical choice for struc-
ture optimization is a DFT method with a DZP or TZP-type basis set; this can also be used for eval-
uating zero-point energies and finite temperature corrections (Section 14.5). The results below have
been obtained at the B2PLYP/pcseg-2 level. Improved estimates of the relative energies can then be
performed by various combinations of methods and basis sets, and in the limit of a sufficiently large
basis set, the error is solely due to the employed method. For the relative energies of the C4H6 isomers
in Figure 12.11, the basis set error is reduced to below 1 kJ/mol with an extrapolation of the results
from TZP and QZP-type basis sets (cc-pVTZ and cc-pVQZ for HF, MP2, CISD, CCSD and CCSD(T)
methods and pcseg-1, -2, -3 for DFT).

Table 12.18 shows the performance for four semi-empirical methods: MINDO/3, AM1, PM3 and
PM6 for calculating ΔHf (kJ/mol) for the compounds in Figure 12.11. The MAD values show that
typical errors are in the 20–30 kJ/mol range and the R values indicate considerable random errors.

Table 12.19 shows the performance for the wave function methods: HF, MP2, CISD, CCSD,
CCSD(T) extrapolated to the basis set limit, as well as the composite G4MP2 and W1 methods for
calculating ΔHf for the compounds in Figure 12.11. The MAD, slope and R values indicate a con-
sistent improvement along the HF, MP2, CISD, CCSD, CCSD(T) series, and the composite G4MP2
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Table . ΔHf (kJ/mol) values for the compounds in Figure 12.11 using semi-empirical methods.

Structure MINDO/ AM PM PM Exp.

1 151.7 129.4 132.2 122.6 108.8 ± 0.79
2 59.4 150.0 129.4 101.2 145.1 ± 1
3 148.0 196.9 159.6 144.3 157 ± 2
4 132.6 163.9 161.5 129.0 162.2 ± 0.59
5 130.8 168.2 153.4 126.4 165.2 ± 0.88
6 158.8 206.2 190.9 154.5 201 ± 2
7 237.6 347.6 306.8 271.3 217 ± 0.8
8 191.4 282.8 246.3 215.6 244 ± 1
9 232.2 293.2 256.8 228.6

10 387.5 496.3 461.1 401.1
11 379.1 515.0 476.3 461.9
MAD 39.2 29.4 23.3 26.5
Slope 0.75 1.46 1.20 1.04
R 0.634 0.853 0.842 0.791

and W1 methods display comparable performances. Residual basis set errors, corrections from core
and core-valence correlation and anharmonic vibrations are all below 1 kJ/mol. The MAD values of
∼3 kJ/mol should be compared with the quoted experimental errors in the 1–2 kJ/mol range. Roughly
half of the MAD error arises from compound 6, where all the sophisticated methods predict values
that are consistently∼9 kJ/mol below the experimental value, and this could point to a possible exper-
imental error.

Table 12.20 shows the performance for the DFT methods: LSDA, BLYP, PBE, B3LYP, PBE0,
ωB97XD and B2PLYP extrapolated to the basis set limit for calculating ΔHf for the compounds
in Figure 12.11. The DFT methods display rather similar performances, although there is a weak

Table . ΔHf (kJ/mol) values for the compounds in Figure 12.11 using wave function methods.

Structure HF MP CISD CCSD CCSD(T) GMP W Exp.

1 101.0 120.7 114.6 112.3 110.6 108.4 111.1 108.8 ± 0.79
2 136.4 143.1 144.9 145.7 147.2 148.5 147.2 145.1 ± 1
3 167.7 160.6 159.4 159.4 158.9 160.9 159.3 157 ± 2
4 155.4 171.8 165.1 162.3 161.8 160.5 162.0 162.2 ± 0.59
5 159.3 163.1 166.7 165.1 166.0 166.9 166.3 165.2 ± 0.88
6 194.1 194.2 190.9 192.3 193.0 192.1 192.3 201 ± 2
7 241.6 210.6 219.8 223.6 223.3 222.9 222.9 217 ± 0.8
8 244.7 236.1 238.8 239.6 239.4 240.2 239.3 244 ± 1
9 261.3 249.7 253.8 252.7 252.0 253.1 252.3

10 405.6 462.6 429.9 432.3 438.2 436.8 440.3
11 407.4 517.7 472.3 492.5 500.1 499.5 501.9
MAD 9.0 6.3 3.9 3.3 3.2 3.7 3.4
Slope 1.12 0.86 0.93 0.96 0.96 0.97 0.96
R 0.977 0.993 0.995 0.994 0.995 0.994 0.995

iranchembook.ir/edu



 Introduction to Computational Chemistry

Table . ΔHf (kJ/mol) values for the compounds in Figure 12.11 using density functional methods.

Structure LSDA BLYP PBE BLYP PBE ωBXD BPLYP Exp.

1 124.7 98.9 116.2 103.9 120.3 116.8 103.4 108.8 ± 0.79
2 162.8 140.8 154.8 143.3 155.9 151.2 141.4 145.1 ± 1
3 152.5 174.6 161.6 169.8 157.3 156.9 168.3 157 ± 2
4 164.2 142.5 157.0 149.3 163.6 160.4 153.0 162.2 ± 0.59
5 192.3 167.5 183.0 169.7 183.5 174.4 166.0 165.2 ± 0.88
6 178.6 190.6 183.1 189.1 182.5 186.5 190.7 201 ± 2
7 195.0 245.7 213.0 236.0 205.6 218.3 236.3 217 ± 0.8
8 230.2 239.7 231.6 239.1 231.6 235.8 241.4 244 ± 1
9 246.9 257.2 249.2 256.4 249.0 251.2 258.2

10 454.9 444.1 442.9 441.0 438.0 433.1 428.4
11 505.4 495.1 483.3 492.4 475.7 486.5 467.4
MAD 15.7 12.1 9.9 9.1 10.6 6.1 7.8
Slope 0.67 1.10 0.81 1.03 0.76 0.87 1.06
R 0.917 0.952 0.970 0.969 0.970 0.987 0.977

tendency that methods high on the Jacob’s ladder classification perform better than those at the lower
ranks.

The compounds 1 to 8 may be considered as a calibration set of data for evaluating how much faith
that should be put on the predicted values for structures 9 to 11. Structure 9 is very similar to the
structures 1 to 8 and should be unproblematic, and indeed all the wave function and DFT methods
agree to within a few kJ/mol. Structures 10 and 11, however, are hypovalence carbenes and 11 has a
different spin state than 10. If we accept the basis set extrapolated CCSD(T) result as a reference, then
it is clear that HF overestimates the stability of 10 and 11, while MP2 underestimates the stability.
CISD and CCSD have a smaller systematic error but predict the carbenes to be too stable. The DFT
methods in general do not systematically over- or underestimate the carbene stabilities.

The singlet-triplet energy difference between structures 10 and 11 is a more difficult property to
predict, since 11 has one fewer electron pair than 10 and the two structures therefore have signifi-
cantly different amounts of electron correlation. Taking again the CCSD(T) value of 62 kJ/mol as the
reference, it is seen (as expected) that the HF method severely underestimates this value. The CISD
method also predicts the triplet state to be too stable, while MP2 and CCSD are in good agreement
with the reference value. All of the DFT methods underestimate the singlet–triplet energy difference
by 10–20 kJ/mol.
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Optimization Techniques

Many problems in computational chemistry can be formulated as an optimization of a multidimen-
sional function (see Figure 13.1).1–3 Optimization is a general term for finding stationary points of a
function, that is points where the first derivative is zero. The desired stationary point is in the majority
of cases a minimum where all the second derivatives are positive. In some cases, the desired point is
a first-order saddle point, that is the second derivative is negative in one direction and positive in all
other directions. In a few special cases, a higher-order saddle point is desired.

Most optimization methods determine the nearest stationary point, but a multidimensional func-
tion may contain many (in some cases very many!) different stationary points of the same type. The
minimum with the lowest value is called the global minimum, while all the others are local minima.
Some examples:
� The energy as a function of nuclear coordinates. Both minima and first-order saddle points (tran-

sition structures) are of interest. The energy function may be of the force field type or from solving
the electronic Schrödinger equation.

� An error function depending on parameters. Only minima are of interest, and the global minimum
is usually (but not always) desired. This may, for example, be determination of parameters in a force
field, a set of atomic charges or a set of localized molecular orbitals.

� The energy of a wave function containing variational parameters, such as a Hartree–Fock (one
Slater determinant) or multiconfigurational (many Slater determinants) wave function. Parame-
ters are typically the molecular orbital and configurational state coefficients, but may also be, for
example, basis function exponents. Usually only minima are desired, although in some cases saddle
points may also be of interest (excited states).

When the parameters enter the function to be optimized in a quadratic fashion, the stationary
point(s) can be obtained by solving a set of linear equations by standard matrix techniques. In most
cases, however, the parameters enter the function in a non-linear fashion, which require iterative
methods for locating the stationary points. The latter can be further divided into methods for locat-
ing minima and methods for locating saddle points. The problem of optimizing quadratic functions
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Figure . Illustrating a multidimensional energy surface.

is treated in Section 13.1, minima and saddle points of general functions in Sections 13.2 and 13.4,
respectively, while methods for global optimization are covered in Section 13.6. Optimization of
functions subject to external constraints is dealt with in Section 13.5. Finally, Section 13.8 describes
methods for following reactions paths, which may be considered either as solving partial differential
equations or as a constrained optimization problem.

. Optimizing Quadratic Functions

Data fitting is a typical example of an optimization problem where the parameters enter the function
in a quadratic fashion. Consider, for example, the problem of determining a set of force field partial
charges Qa by minimizing an error function measuring the fit to the electrostatic potential sampled
at a number of points surrounding the molecule (Sections 2.2.6 and 10.2):

ErrF(Q) = N−1
points

Npoints∑

j

(

𝜙ESP(rj) −
Natoms∑

a

Qa(Ra)
|rj − Ra|

)2

(13.1)

We will at present ignore the constraint that the sum of the charges must be equal to the total molecu-
lar charge; this can be dealt with by the techniques in Section 13.5. The ErrF in Equation (13.1) can be
generalized as in the following equation, with bj being the reference values, xi the fitting parameters
(Qi) and aij the coefficients corresponding to the inverse distances |Ri − rj|

−1:

ErrF(x) =
M∑

j

(

bj −
N∑

i
xiaij

)2

(13.2)
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The best set of parameters is determined by setting all the first derivatives of ErrF to zero:

𝜕ErrF
𝜕x1

= −2
M∑

j
a1j

(

bj −
N∑

i
xiaij

)

= 0

𝜕ErrF
𝜕x2

= −2
M∑

j
a2j

(

bj −
N∑

i
xiaij

)

= 0

⋮

𝜕ErrF
𝜕xN

= −2
M∑

j
aNj

(

bj −
N∑

i
xiaij

)

= 0

(13.3)

By rearrangement, this gives a set of coupled linear equations:

N∑

i
xi

M∑

j
a1jaij =

M∑

j
a1jbj

N∑

i
xi

M∑

j
a2jaij =

M∑

j
a2jbj

⋮
N∑

i
xi

M∑

j
aNjaij =

M∑

j
aNjbj

(13.4)

These N equations with N unknowns can be written in a matrix–vector notation:

Ax = b (13.5)

The formal solution is obtained by multiplying with the inverse A matrix:

x = A−1b (13.6)

In actual applications, the A matrix may be singular, or nearly so, and the inverse matrix either does
not exist or is prone to numerical errors. A singular matrix indicates that at least one of the linear
equations can be written as a combination of the other equations, and such cases can be handled
by singular value decomposition methods, as discussed in Section 17.6.3. Indeed, for the example
of determining partial charges by fitting to the electrostatic potential, the equations determining the
charges on the atoms far from the molecular surface are often poorly conditioned, that is the external
electrostatic potential is only weakly dependent on the charges on the buried atoms.

Solving linear equations by matrix inversion as in Equation (13.6) (or by, for example, Gaussian
elimination) has a computational requirement that scales as the cube of the problem size, which is
problematic if the number of variables is large. The problem can in such cases be reformulated as a
minimization of a residual r calculated from a given trial solution x′:

r = b − Ax′ (13.7)
𝜕(rtr)
𝜕x′

= 0 ⇔ Ax′ = b (13.8)
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Minimization of the residual norm can be done, for example, by conjugate gradient methods
described in the next section, where x′ is iteratively converged to the solution x, and this will for
a large number of variables have a lower computational cost.

Other examples of optimizing functions that depend quadratically of the parameters include the
energy of Hartree–Fock (HF) and configuration interaction (CI) wave functions. Minimization of the
energy with respect to the MO or CI coefficients leads to a set of linear equations. In the HF case,
the aij coefficients depend on the parameters xi and must therefore be solved iteratively. In the CI
case, the number of parameters is typically 106–109, which prohibits a direct solution of the linear
equations, and iterative methods are used instead (Section 17.2.5). The use of iterative techniques for
solving the CI equations is not due to the mathematical nature of the problem, but due to computa-
tional efficiency considerations.

. Optimizing General Functions: Finding Minima

The simple-minded approach for minimizing a function is to step one variable at a time until the
function has reached a minimum and then switch to another variable. This requires only the ability to
calculate the function value for a given set of variables. As the variables are not independent, however,
several cycles through the whole set are necessary for finding a minimum. This is impractical for more
than five to ten variables, and may not work anyway.

The Simplex method represents a more efficient approach using only function values for construct-
ing an irregular polyhedron in parameters space and moving this polyhedron towards the minimum,
while allowing the size to contract or expand to improve the convergence.4 It is better than the simple-
minded “one-variable-at-a-time” approach, but becomes too slow for many-dimensional functions.

Since optimization problems in computational chemistry tend to have many variables, essentially
all commonly used methods assume that at least the first derivative of the function with respect to all
variables, the gradient g, can be calculated analytically (i.e. directly, and not as a numerical differen-
tiation by stepping the variables). Some methods also assume that the second derivative matrix, the
Hessian H, can be calculated.

It should be noted that the target function and its derivative(s) are calculated with a finite preci-
sion, which depends on the computational implementation. A stationary point can therefore not be
located exactly, the gradient can only be reduced to a certain value. Below this value, the numerical
inaccuracies due to the finite precision will swamp the “true” functional behavior. An optimization is
in practise considered converged if the gradient is reduced below a suitable threshold value or if the
function change between two iterations becomes sufficiently small. Both these criteria may in some
cases lead to problems, as a function with a very flat surface in a certain region may meet the criteria
without containing a stationary point.

There are three classes of commonly used optimization methods for finding minima, each having
their advantages and disadvantages.

13.2.1 Steepest Descent

The gradient vector g points in the direction where the function increases most, that is the func-
tion value can always be lowered by stepping in the opposite direction. In the Steepest Descent (SD)
method, a series of function evaluations are performed in the negative gradient direction, that is along
a search direction defined as d = −g. Once the function starts to increase, an approximate minimum
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Figure . Steepest descent minimization.

may be determined by interpolation between the calculated points. At this interpolated point, a new
gradient is calculated and used for the next line search.

The steepest descent algorithm is sure-fire. If the line minimization is carried out sufficiently accu-
rately, it will always lower the function value and is therefore guaranteed to approach a minimum.
It has, however, two main problems. Two subsequent line searches are necessarily perpendicular to
each other; if there was a gradient component along the previous search direction, the energy could
be further lowered in this direction. The steepest descent algorithm therefore has a tendency for
each line search to partly spoil the function lowering obtained by the previous search. The steepest
descent path oscillates around the minimum path, as illustrated in Figure 13.2, and this is particularly
problematic for surfaces having long narrow valleys.

Furthermore, as the minimum is approached, the rate of convergence slows down. The steepest
descent will actually never reach the minimum; it will crawl toward it at an ever decreasing speed.

An accurate line search requires several function evaluations along each search direction. Often the
minimization along the line is only carried out fairly crudely or a single step is simply taken along the
negative gradient direction. In the latter case, the step size is varied dynamically during the optimiza-
tion; if the previous step reduced the function value, the next step is taken with a slightly longer step
size, but if the function values increased, the step size is reduced. Without an accurate line search,
the guarantee for lowering the function value is lost and the optimization may potentially end up in
an oscillatory state.

By its nature, the steepest descent method can only locate function minima. The advantage is that
the algorithm is very simple and requires only storage of a gradient vector. It is furthermore one of
the few methods that is guaranteed to lower the function value. Its main use is to quickly relax a poor
starting point, before some of the more advanced algorithms take over, or as a “backup” algorithm if
the more sophisticated methods are unable to lower the function value.

13.2.2 Conjugate Gradient Methods

The main problem with the steepest descent method is the partial “undoing” of the previous step. The
Conjugate Gradient (CG) method tries to improve on this by performing each line search not along
the current gradient but along a line that is constructed such that it is “conjugate” to the previous
search direction(s). If the surface is purely quadratic, the conjugate direction criterion guarantees
that each successive minimization will not generate gradient components along any of the previ-
ous directions and the minimum is reached after at most Nvar steps. The first step is equivalent to a
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steepest descent step, but subsequent searches are performed along a line formed as a mixture of the
current negative gradient and the previous search direction:

di = −gi + 𝛽idi−1 (13.9)

The word conjugate denotes that search directions obey the orthogonality condition dt
i Adj = 0 for

i ≠ j with a suitable A matrix (second derivative matrix for a quadratic surface). There are several
ways of choosing the 𝛽 value. Some of the names associated with these methods are Fletcher–Reeves
(FR), Polak–Ribiere (PR) and Hestenes–Stiefel (HS). Their definitions of 𝛽 are given in the following
equations:

𝛽FR
i =

gt
igi

gt
i−1gi−1

(13.10)

𝛽PR
i =

gt
i(gi − gi−1)
gt

i−1gi−1
(13.11)

𝛽HS
i =

gt
i(gi − gi−1)

dt
i−1(gi − gi−1)

(13.12)

For non-quadratic surfaces, the conjugate property does not hold rigorously and, for real problems,
the CG algorithm must often be restarted (i.e. setting 𝛽 = 0) during the optimization. The PR formula
for 𝛽 has a tendency to restart the procedure more gracefully than the other two, and is usually pre-
ferred in practice. The conjugate property holds best for near-quadratic surfaces, and the convergence
properties of CG methods can be improved by scaling the variables by a suitable pre-conditioner
matrix, for example containing (approximate) inverse second derivatives, such that the curvatures in
different directions are of similar magnitude. Conjugate gradient methods have much better conver-
gence characteristics than the steepest descent, but they are again only able to locate minima. They
require slightly more storage than the steepest descent, since two (current gradient and previous
search direction) vectors must be stored, but this is rarely a problem.

13.2.3 Newton–Raphson Methods

The Newton–Raphson (NR) method expands the true function to second order around the current
point x0:

f (x) ≈ f (x0) + gt(x − x0) + 1
2 (x − x0)tH(x − x0) (13.13)

Requiring the gradient of the second-order approximation in Equation (13.13) to be zero produces
the step

(x − x0) = −H−1g (13.14)

In the coordinate system (x′) where the Hessian is diagonal (i.e. performing a unitary transformation,
see Section 17.2), the NR step may be written as

Δx′ =
(
Δx′1,Δx′2,Δx′3,… ,Δx′N

)t

Δx′i = −
g′i
𝜀i

(13.15)
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Here g′i is the projection of the gradient along the Hessian eigenvector with eigenvalue 𝜀i (the gradient
component pointing in the direction of the ith eigenvector).

As the real function contains terms beyond second order, the NR formula can be used iteratively
for stepping towards a stationary point. Near a minimum, all the Hessian eigenvalues are positive (by
definition) and the step direction is opposite to the gradient direction, as it should be. If, however, one
of the Hessian eigenvalues is negative, the step in this direction will be along the gradient component
and thus increase the function value. In this case, the optimization may end up at a stationary point
with one negative Hessian eigenvalue, a first-order saddle point. The NR method thus attempts to
converge on the “nearest” stationary point, regardless of whether this is a minimum, saddle point or
maximum.

Another problem is the use of the inverse Hessian for determining the step size. If one of the Hes-
sian eigenvalues becomes close to zero, the step size goes toward infinity (except if the corresponding
gradient component g′i is exactly zero). The NR step is thus without bound, and it may take the vari-
ables far outside the region where the second-order Taylor expansion is valid. The latter region is often
described by a “Trust Radius”. In some cases, the NR step is taken as a search direction along which
the function is minimized, analogously with the steepest descent and conjugate gradient methods.
The augmented Hessian methods described below are normally more efficient.

The advantage of the NR method is that the convergence is second order near a stationary point. If
the function only contains terms up to second order, the NR step will go to the stationary point in a
single step. The function normally contains higher-order terms, but the second-order approximation
becomes better and better as the stationary point is approached. Sufficiently close to the stationary
point, the gradient is reduced quadratically, that is if the gradient norm is reduced by a factor of 2
between two iterations, it will go down by a factor of 4 in the next iteration and a factor of 16 in the
next. The quadratic convergence, however, is often only observed very close to the stationary point
and the NR method typically only displays linear convergence, that is the gradient norm is reduced
by a roughly constant factor for each iteration.

Besides the above-mentioned problems with step control, there are also other computational
aspects that tend to make the straightforward NR problematic for many problem types. The true NR
method requires calculation of the full second derivative matrix, which must be stored and inverted
(diagonalized). For some types of function, a calculation of the Hessian is computationally demand-
ing. For others, the number of variables is so large that manipulating a matrix the size of the number of
variables squared is impossible. The following two sections address some solutions to these problems.

13.2.4 Augmented Hessian Methods

There are two aspects in step control, one is controlling the total length of the step, such that it does
not exceed the region in which the second-order Taylor expansion is valid, and the second is making
sure that the step direction is correct. If the optimization is towards a minimum, the Hessian should
have all positive eigenvalues in order for the step to be in the correct direction. If, however, the starting
point is in a region where the Hessian has negative eigenvalues, the NR step is toward a saddle point
or maximum. Both of these problems can be solved by introducing a shift parameter 𝜆 (compare to
Equations (13.14) and (13.15)):

(x − x0) = −(H − 𝜆I)−1g

Δx′i = −
g′i

𝜀i − 𝜆

(13.16)
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If 𝜆 is chosen to be below the lowest Hessian eigenvalue, the denominator is always positive, and the
step direction will thus be correct. Furthermore, if 𝜆 goes towards −∞, the step size goes towards
zero, that is the step size can be made arbitrarily small. Methods that modify the nature of the Hes-
sian matrix by a shift parameter are known by names such as “augmented Hessian ”, “level-shifted
Newton–Raphson”, “norm-extended Hessian” or “Eigenvector Following” (EF), depending on how 𝜆 is
chosen. We will here mention two popular methods for choosing 𝜆.

The Rational Function Optimization (RFO) expands the function in terms of a rational approxima-
tion instead of a straight second-order Taylor series (Equation (13.13)):5

f (x) ≈
f (x0) + gt(x − x0) + 1

2 (x − x0)tH(x − x0)

1 + 1
2 (x − x0)tS(x − x0)

(13.17)

The S matrix is eventually set equal to a unit matrix, which leads to the following equation for 𝜆:

∑

i

g′2i
𝜀i − 𝜆

= 𝜆 (13.18)

This is a one-dimensional equation in 𝜆 which can be solved by standard (iterative) methods. There
will in general be one more solution than the number of degrees of freedom, but by choosing the low-
est 𝜆 solution, it is ensured that the resulting step will be toward a minimum. The RFO step calculated
from Equation (13.16) will always be shorter than the pure NR step (Equation (13.15)), but there is
no guarantee that it will be within the trust radius. If the RFO step is too long, it may be scaled down
by a simple multiplicative factor, but if the factor is much smaller than 1, it follows that the resulting
step may not be the optimum for the given trust radius.

Another way of choosing 𝜆 is to require that the step length be equal to the trust radius R, which is in
essence the best step on a hypersphere with radius R. This is known as the Quadratic Approximation
(QA) method:6

|Δx′|2 =
∑

i

(
g′i

𝜀i − 𝜆

)2

= R2 (13.19)

This may again have multiple solutions, but by choosing the lowest 𝜆 value, the minimization step is
selected. The maximum step size R may be taken as a fixed value, or allowed to change dynamically
during the optimization. If the actual energy change between two steps agrees well with that predicted
from the second-order Taylor expansion, the trust radius for the next step may be increased, and vice
versa.

13.2.5 Hessian Update Methods

The second problem, the computational aspect of calculating the Hessian, is often encountered in
electronic structure calculations. Here the calculation of the second derivative matrix can be an order
of magnitude more demanding than calculating the gradient. In such cases, an updating scheme
may be used instead. The idea is to start off with an approximation to the Hessian, maybe just a unit
matrix. The initial step will thus resemble a steepest descent step. As the optimization proceeds, the
gradients at the previous and current points are used for making the Hessian a better approximation
for the actual system. After two steps, the updated Hessian is a rather good approximation to the
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exact Hessian in the direction defined by these two points (but not in the other directions). There
are many such updating schemes, some of the commonly used ones are associated with the names
Davidon–Fletcher–Powell (DFP), Broyden–Fletcher–Goldfarb–Shanno (BFGS) and Powell. For
minimizations, the BFGS update shown below is usually preferred, as it tends to keep the Hessian
positive definite:

Hn = Hn−1 + ΔH

ΔHBFGS =
ΔgΔgt

ΔgtΔx
− HΔxΔxtH

ΔxtHΔx
(13.20)

For saddle point searches, the updating must allow the Hessian to develop negative eigenvalues, and
the Powell or updates based on combining several methods are usually employed.7

The use of approximate Hessians within the NR method is known as quasi-Newton–Raphson,
pseudo-Newton–Raphson or variable metric methods. It is clear that they do not converge as fast as
true NR methods, where the exact Hessian is calculated in each step, but if, for example, five steps can
be taken for the same computational cost as one true NR step, the overall computational effort may
be less. True NR methods converge quadratically near a stationary point, while pseudo-NR methods
display a linear convergence. Far from a stationary point, however, the true NR method will typically
also only display linear convergence.

The Hessian updating scheme in Equation (13.20) uses only gradient information from the current
and previous points to sequentially build a Hessian matrix containing information from all previous
points, and this is subsequently used for predicting the next step (Equation (13.16)). Intuitively it may
seem that the construction and handling of the Hessian matrix is an unnecessary complication and
that the step can be formulated entirely in terms of previous points and associated gradients. This
is indeed possible and is known as limited memory BFGS (L-BFGS),8 where the “limited memory”
refers to the fact that storage of an N2

var matrix (Hessian) is replaced by storing a number of vectors
(variables and gradients) of (only) dimension Nvar. As the optimization progresses, the information
from early points may be of low value for characterizing the surface curvature at the actual point,
and this implies that it may be sufficient to store information from only a fixed number of previ-
ous points, which further reduces the storage requirement. The number of previous vectors kept
is a free variable and can be considered as a parameter for continously switching from a quasi-NR
BFGS (keep all points) to a conjugate gradient-like (keep only the previous point) optimization algo-
rithm. L-BFGS methods are often a good choice for optimizing functions containing a large number of
variables.

Quasi-NR methods are usually the best choice in geometry optimizations using an energy function
calculated by electronic structure methods. The quality of the initial Hessian of course affects the con-
vergence when an updating scheme is used. The use of an exact Hessian at the first point often gives
a good convergence, but this may not be the most cost-efficient strategy. A quite reasonable Hessian
for a minimum search may in many cases be generated by simple rules connecting, for example, bond
lengths and force constants.9 Alternatively, the initial Hessian may be taken from a calculation at a
lower level of theory. As an initial exploration of an energy surface is often carried out at a low level
of theory, followed by frequency calculations to establishing the nature of the stationary points, the
resulting force constants can be used for starting an optimization at higher levels. This is especially
useful for transition structure searches that require a quite accurate Hessian. The success of this strat-
egy relies on the fact that the qualitative structure of an energy surface is often fairly insensitive to
the level of theory, although there certainly are many examples where this is not the case.
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13.2.6 Truncated Hessian Methods

A potential problem of all NR-based methods is the storage and handling of the Hessian matrix. For
methods where the calculation of the Hessian is easy but the number of variables is large, this may
be a problem. A prime example here is geometry optimization using a force field energy function.
The computational effort for calculating the Hessian goes up roughly as the square of the number of
atoms. Diagonalization of the Hessian matrix required for the NR optimization, however, depends on
the cube of the matrix size, that is it goes up as the cube of the number of atoms. Since matrix diag-
onalization becomes a significant factor for dimensions ∼1000, it is clear that NR methods should
not be used for force field optimizations beyond a few hundred atoms. For large systems the com-
putational effort for predicting the geometry step will completely overwhelm the calculation of the
energy, gradient and Hessian. The conjugate gradient method avoids handling of the Hessian and
only requires storage of two vectors, and it is therefore usually the method of choice for force field
optimizations.

For large molecular systems many of the off-diagonal elements in the Hessian are very small, essen-
tially zero (the coupling between distant atoms is very small), and the Hessian for large systems is
therefore a sparse matrix. NR methods that take advantage of this fact by neglecting off-diagonal
blocks are denoted truncated NR. Some force field programs use an extreme example of this where
only the 3 × 3 submatrices along the diagonal are retained. These 3 × 3 matrices contain the coupling
elements between the x, y and z coordinates for a single atom. The task of inverting, say, a 3000 ×
3000 matrix is thus replaced by inverting 1000 3 × 3 matrices, reducing the computational cost for
the diagonalization by a factor of 106. Such truncated NR methods are often used in connection with
an explicit search along the NR step direction.

13.2.7 Extrapolation: The DIIS Method

During an iterative sequence for solving a set of (linear or non-linear) equations, information is gen-
erated at a number of points in the parameter space. The idea in extrapolation methods is to use
this information for inter- or extrapolation in order to arrive at the desired solution faster (fewer
iterations). The best known of these methods is the Direct Inversion in the Iterative Subspace (DIIS)
proposed by P. Pulay.10 Assume that the iterative procedure has generated n points in the parameter
space xi and that an error estimate ei is available for measuring how far each point is from the desired
solution. Instead of letting the algorithm proceed to point xn+1 from point xn, the step is instead gen-
erated from an interpolated point x∗n formed as a linear combination of all previous points:

x∗n =
n∑

i
cixi (13.21)

The error at the interpolated point is given by

e∗n =
n∑

i
ciei (13.22)

The coefficients ci are determined by minimizing the norm of the interpolated error, subject to a
normalization condition:

ErrF(c) = (e∗n ⋅ e∗n) ;
n∑

i
ci = 1 (13.23)
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The constrained minimization is handled by the Lagrange method (Section 13.5) and leads to the
following set of linear equations, where 𝜆 is the multiplier associated with the normalization:

⎛
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⎝
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aij = (ei ⋅ ej)

(13.24)

The set of linear equations can be written in a matrix notation:

Ac = b (13.25)

The A matrix in iteration n has dimension (n + 1) × (n + 1), where n usually is less than 50. The coef-
ficients c can thus be obtained by directly inverting the A matrix and multiplying it onto the b vector,
that is in the “subspace” of the “iterations” the linear equations are solved by “direct inversion”, thus
the name DIIS:

c = A−1b (13.26)

If the A matrix is close to singular, Equation (13.26) can instead be solved by singular value decom-
position methods (Section 17.6.3) or by discarding some of the previous points. The only remaining
question is the choice of the error estimate e. DIIS was originally proposed for accelerating and sta-
bilizing the SCF convergence (Section 3.8.1) where the x parameters are the Fock matrices F and the
error e is taken as the FDS − SDF difference (S and D are the overlap and density matrices, respec-
tively), which is related to the gradient of the SCF energy with respect to the MO coefficients; this has
been found to work well in practice. A closely related method uses the energy as the error indicator
and has the acronym EDIIS.11

DIIS has also been used for geometry optimizations in connection with Newton–Raphson meth-
ods, and the best known of these is the Geometry Direct Inversion in the Iterative Subspace (GDIIS).12

The x parameters are in this case the atomic coordinates, and the NR step in GDIIS is not taken from
the last geometry but from the interpolated point x∗n with a corresponding interpolated gradient:

g∗n =
n∑

i
cigi (13.27)

There are two common choices for the error vector, either a “geometry” or “gradient” vector, with the
latter usually being preferred:13

ei = H−1
n gi or ei = gi (13.28)

DIIS requires storage of information (x, e and perhaps g) from all previous iterations, which may
be problematic if the number of variables is large, as, for example, when using the method for solv-
ing non-linear coupled cluster equations (Section 4.9). It has been shown, however, that by a minor
change in the DIIS algorithm, only storage of three sets of information is required, and this is called
the Conjugate Residual with OPtimal trial vectors (CROP) method.14

The DIIS approach attempts to find a low-error point within the subspace already searched. For
optimizing electronic wave functions, there is usually only one minimum and the DIIS extrapolation
significantly improves both the convergence rate and stability. For geometry optimizations, however,
the target function is usually complicated and contains many minima and saddle points, making DIIS

iranchembook.ir/edu



Optimization Techniques 

extrapolations much less useful or even disadvantageous. It is not uncommon for an optimization to
move across a flat part of the surface before entering the local minimum region. This will result in
the gradient being small for several steps and then increase as the minimum is approached. The DIIS
procedure will in such cases attempt to pull the structure back to the flat energy region, since this is
where the gradient is small, and DIIS will in such cases be counterproductive.

. Choice of Coordinates

Naively one may think that any set of coordinates that uniquely describes the function is equally
good for optimization. This is not the case! A “good” set of coordinates may transform a divergent
optimization into a convergent one, or increase the rate of convergence. We will look specifically at
the problem of optimizing a geometry given an energy function depending on nuclear coordinates,
but the same considerations hold equally well for other types of optimization. We will furthermore
use the straight Newton–Raphson formula (13.14) to illustrate the concepts.

Given the first and second derivatives, the NR formula calculates the geometry step as the inverse
of the Hessian times the gradient:

(x − x0) = −H−1g (13.29)

In the coordinate system (x′) where the Hessian is diagonal, the step may be written as

Δx′ = (Δx′1,Δx′2,Δx′3,… ,Δx′N )t

Δx′i = −
g′i
𝜀i

(13.30)

Essentially all computational programs calculate the fundamental properties, the energy and deriva-
tives, in Cartesian coordinates. The Cartesian Hessian matrix has the dimension 3Natom × 3Natom. Of
these, three describe the overall translation of the molecule and three describe the overall rotation. In
the molecular coordinate system, there are only 3Natom − 6 coordinates needed for uniquely describ-
ing the nuclear positions. Moving all the atoms in, say, the x-direction by the same amount does not
change the energy and the corresponding gradient component (and all higher derivatives) is zero. The
Hessian matrix should therefore have six eigenvalues identical to zero and the corresponding gradi-
ent components, g′i , should also be identical zero. In actual calculations, however, these values are
certainly small, but not exactly zero. Numerical inaccuracies may introduce errors of perhaps 10−14–
10−16, and this can have rather drastic consequences. Consider, for example, a case where the gradient
in the x-translation direction is calculated to be 10−14, while the corresponding Hessian eigenvalue
is 10−16, leading to an NR step in this direction of 100! This illustrates that care should be taken if
redundant coordinates (i.e. more than are necessary for uniquely describing the system) are used in
the optimization. In the case of Cartesian geometry optimization, the six translational and rotational
degrees of freedom can be removed by projecting these components out of the Hessian prior to for-
mation of the NR step (Section 17.4). The calculated “steps” in the zero eigenvalue directions are then
simply neglected.

Another way of removing the six translational and rotational degrees of freedom is to use a set
of internal coordinates. For a simple acyclic system, these may be chosen as Natom − 1 distances,
Natom − 2 angles and Natom − 3 torsional angles, as illustrated in the construction of Z-matrices in
Appendix D. In internal coordinates the six translational and rotational modes are automatically

iranchembook.ir/edu



 Introduction to Computational Chemistry

removed (since only 3Natom − 6 coordinates are defined), and the NR step can be formed straightfor-
wardly. For cyclic systems, a choice of 3Natom − 6 internal variables that span the whole optimization
space may be somewhat more problematic to define, especially if symmetry is present.

Diagonalization of the Hessian is an example of a linear transformation; the eigenvectors are just
linear combinations of the original coordinates. A linear transformation does not change the conver-
gence/divergence properties or the rate of convergence. We can form the NR step directly in Cartesian
coordinates by inverting the Hessian and multiplying it with the gradient vector (Equation (13.29)) or
we can transform the coordinates to a system where the Hessian is diagonal, form the ratios −g′i∕𝜀i
(Equation (13.30)) and back-transform to the original system. Both methods generate the exact same
NR step (except for rounding-off errors). Since we need to give consideration to the six translational
and rotational modes, however, the diagonal representation is advantageous.

The transformation from a set of Cartesian coordinates to a set of internal coordinates, which may,
for example, be distances, angles and torsional angles, is an example of a non-linear transformation.
The internal coordinates are connected with the Cartesian coordinates by means of square root and
trigonometric functions, not simple linear combinations. A non-linear transformation will affect the
convergence properties. This can be illustrated by considering a minimization of a Morse-type func-
tion (Equation (2.5)) with D = 𝛼 = 1 and x = ΔR:

EMorse(x) = [1 − e−x]2 (13.31)

We will consider two other variables obtained by a non-linear transformation: y = e−x and z = e−x.
The minimum energy is at x = 0, corresponding to y = z = 1. Consider an NR optimization starting
at x = −0.50, corresponding to y = 1.6587 and z = 0.6065. Table 13.1 shows that the NR procedure
in the x-variable requires four iterations before x is less than 10−4. In the y-variable the optimization
only requires one step to reach the y = 1 minimum exactly! The optimization in the z-variable takes
six iterations before the value is within 10−4 of the minimum.

Consider now the same system starting from x = 0.30 ( y = 0.7408 and z = 1.3499) and x = 1.00
( y = 0.3679 and z = 2.7183). The first optimization step in the x-variable for the first case overshoots
the minimum but then converges in three additional steps. With the z-variable the first step results in
an “non-physical” negative value and subsequent steps do not recover. With the second set of starting
conditions, both the x- and z-variable optimizations diverge toward the x = ∞ limit. In both cases
the y-variable optimization converges (exactly) in one step.

The reason for this behavior is seen when plotting the three functional forms as shown in
Figure 13.3.

Table . Convergence for different choices of variables and starting values.

xstart = −. xstart = . xstart = .

Iteration x y z x y z x y z

0 −0.5000 1.6487 0.6065 0.3000 0.7408 1.3499 1.0000 0.3679 2.7183
1 −0.2176 1.0000 0.7401 −0.2381 1.0000 −0.2229 3.3922 1.0000 4.6352
2 −0.0541 0.8667 −0.0633 −0.3020 4.4283 7.3225
3 −0.0041 0.9570 −0.0055 −0.4110 5.4405 11.2981
4 0.0000 0.9951 0.0000 −0.5628 6.4449 17.2354
5 0.9999
6 1.0000
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Figure . Morse curves as a function of x, y and z.

The horizontal axis covers the same range of x-variables for all three figures. In the x-variable space
the second derivative is negative beyond x = ln 2 (= 0.69), and if the optimization is started at larger
x-values, the optimization is no longer a minimization, but a maximization toward the x =∞ asymp-
tote. The function in the y-variable is a parabola and the second-order expansion of the NR method is
exact. All starting points consequently converge to the minimum in a single step. The transformation
to the z-variable introduces a singularity at z = 0, and it can be seen from Figure 13.3 that the curve
shape is much less quadratic than the original function. Using y as a variable is an example of a “good”
non-linear transformation, while z is an example of a “poor” non-linear transformation.

These examples show that non-linear transformations may strongly affect the convergence prop-
erties of an optimization. The more “harmonic” the energy function is, the faster the convergence.
One should therefore try to choose a set of coordinates where the third- and higher-order derivatives
are as small as possible. Cartesian coordinates are not particularly good in this respect but have the
advantage that convergence properties are fairly uniform for different systems. A “good” set of internal
coordinates may speed up the convergence but a “poor” set of coordinates may slow it down or cause
divergence. For acyclic systems the above-mentioned internal coordinates consisting of Natom − 1
distances, Natom − 2 angles and Natom − 3 torsional angles are normally better than Cartesian coor-
dinates. Cyclic systems, however, are notoriously difficult for choosing a good set of internal coordi-
nates. Cyclopropane, for example, has three C–C bonds and three CCC angles, but only three inde-
pendent variables (not counting the hydrogens). Choosing two distances and one angle introduces a
strong coupling between the angle and distances due to the “remote” C C bond, which is described
indirectly by the other three variables. Cartesian coordinates may display better convergence charac-
teristics in such systems.

Another problem is when very soft modes are present. A prototypical example is rotation of a
methyl or hydroxy group. Near the minimum the energy changes very little as a function of the tor-
sional angle, that is the corresponding Hessian eigenvalue is small. Consequently, even a small gradi-
ent may produce a large change in geometry. The potential is not very harmonic and the result is that
the optimization may spend many iterations flopping from side to side. A similar problem is encoun-
tered in optimization of molecular clusters where the optimum structure is governed by weak van
der Waals-type interactions.

The problem of an “optimum” choice of coordinates has been addressed by Pulay and coworkers,
who suggested using Natural Internal Coordinates.15 These are defined by first classifying the atoms
into three types: “terminal” (having only one bond), “ring” (part of a ring) or “internal”. All distances
between bonded atoms are used as variables, using suitable distance criteria to decide which atom
pairs are bonded. The ring and internal atoms are assumed to have a local symmetry depending on
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the number of terminal atoms attached to them, that is an internal atom with three terminal bonds
has local C3v symmetry, one with two terminal bonds has C2v, a ring has local Dnh symmetry, etc.
Suitable linear combinations of bending and torsional angles are then formed such that the coupling
between these coordinates is exactly zero if the local symmetry is the exact symmetry. This will usu-
ally not be the case, but the local symmetry coordinates tend to minimize the coupling, and thus the
magnitude of third and higher derivatives, thereby improving the NR performance. Natural internal
coordinates appear to be a good choice for optimization to minima on an energy surface, since the
bonding pattern is usually well defined for stable molecules. For locating transition structures, how-
ever, it is much less clear whether natural internal coordinates offer any special advantage. The bond-
ing pattern is not as well defined for TSs, and a “good” set of coordinates at the starting geometry may
become ill behaved during the optimization. For loosely bound complexes, it has been suggested that
coordinates depending on the inverse distance or scaled by an inverse reference distance can improve
the convergence.16, 17

In the original formulation, a set of 3Natom − 6 independent natural internal coordinates was cho-
sen. It was later discovered that the same optimization characteristics could be obtained by using all
distances and bending and torsional angles between atoms within bonding distance as variables.18

Such a set of coordinates will in general be redundant (i.e. the number of coordinates is larger than
3Natom − 6) and special care must be taken to handle this. One solution is to extract a set of non-
redundant coordinates from a large set of (redundant) internal coordinates by selecting the eigenvec-
tors corresponding to non-zero eigenvalues of the square of the matrix defining the transformation
from Cartesian to internal coordinates. These linear combinations have been denoted delocalized
internal coordinates and can be viewed as either a generalization of the natural internal coordinates or
as the principal components of the Cartesian/internal transformation matrix.19 The original method
forms linear combinations of all types of internal coordinates (stretch, bend, torsion) but it can also
be formulated as making linear combinations only of interal coordinates of the same type.20 A major
advantage is that delocalized internal coordinates can be generated automatically without any user
involvement.

In summary, the efficiency of Newton–Raphson-based optimizations depends on the following
factors:

1. Hessian quality (exact or updated).
2. Step control (augmented Hessian, choice of shift parameter(s)).
3. Coordinates (Cartesian, internal).
4. Trust radius update (maximum step size allowed).

A comparison of various combinations of these can be found in the references.13,21, 22

. Optimizing General Functions: Finding Saddle Points
(Transition Structures)

Locating minima for functions is fairly easy. If everything else fails, the steepest descent method is
guaranteed to lower the function value. Finding first-order saddle points, Transition Structures (TS),
is much more difficult. There are no general methods that are guaranteed to work! Many different
strategies have been proposed, the majority of which can be divided into two general categories, those
based on interpolation between two minima and those using only local information.23, 24 Interpola-
tion methods assume that the reactant and product geometries are known and that a TS is located
somewhere “between” these two end-points. It should be noted that many of the methods in this
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group do not actually locate the TS; they only locate a point close to it. Local methods propagate
the geometry using only information about the function and its first and possibly also second deriva-
tives at the current point, that is they require no knowledge of the reactant and/or product geome-
tries. Local methods usually require a good estimate of the TS in order to converge. Once the TS
has been found, the whole reaction path may be located by tracing the intrinsic reaction coordinate
(Section 13.8), which corresponds to a steepest descent path in mass-weighted coordinates, from the
TS to the reactant and product.

13.4.1 One-Structure Interpolation Methods

The intuitively simple approach for locating a TS is to select one or a few internal “reaction” coordi-
nates, that is those that describe the main difference between the reactant and product structures.
A typical example is a torsional angle for describing a conformational TS or two bond distances for
a bond breaking/forming reaction. The selected coordinate(s) is (are) fixed at certain values, while
the remaining variables are optimized, thereby adiabatically mapping the energy as a function of the
reaction variable(s); such methods are often called “coordinate driving”. The goal is to find a geometry
where the residual gradients for the fixed variables are “sufficiently” small. The success of this method
depends on the ability to choose a good set of reaction variables, with a good choice being equated
with large coefficients for the selected variables in the actual reaction coordinate vector at the TS
(as given by the Hessian eigenvector with a negative eigenvalue). The reaction coordinate at the TS,
however, is only known after the TS has actually been found, making the choice strongly user-biased
and impossible to verify a priori.

If only one or two variables change significantly between the reactant and product, the coordinate
driving usually works well and the constrained optimized geometry with the smallest residual gradi-
ent is a good approximation to the TS. Some typical examples are rotation of a methyl group (reaction
variable is the torsional angle), the HNC to HCN rearrangement (reaction variable is the HCN angle)
and SN2 reactions of the type X + CH3Y → XCH3 + Y (reaction variables are the XC and CY dis-
tances). Good approximations to many conformational TSs can be generated by “driving” a selected
torsional angle, and this is often the basis for conformational analysis using force field energy func-
tions. It should be stressed that the highest energy structure located in this fashion is not exactly the
TS, but it is usually a very good approximation to it. A mapping with more than two reaction variables
becomes cumbersome and rarely leads anywhere.

If a bad choice of reaction variables has been made, “hysteresis ” is often observed. This is the term
used when a series of optimizations made by increasing the fixed variable(s) to a given value may
produce a different result than when decreasing the fixed variable(s) to the same point. If the reaction
variable scan is only run in one direction, hysteresis will usually be visible because the optimization
suddenly changes the geometry drastically for a small change in the fixed variable(s). This indicates
that the chosen reaction variable(s) do not contribute strongly to the actual reaction coordinate at
the TS. Some TSs have reaction vectors that are not dominated by a few internal variables and such
TSs are difficult to find by constrained optimization methods. Another set of (internal) coordinates
may in some cases alleviate the problem, but finding these is part of the “black magic” involved in
locating TSs.

The Linear Synchronous Transit (LST) method may be considered as a coordinate driving method
where all (Cartesian or internal) coordinates are varied linearly between the reactant and product and
no optimization is performed.25 The assumption is that all variables change at the same rate along
the reaction path and the TS estimate is simply the highest energy structure along the interpolation
line. The assumed synchronous change for all variables is rarely a good approximation and only for
simple systems does LST lead to a reasonable estimate of the TS. The Quadratic Synchronous Transit
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Figure . Illustration of the linear and quadratic synchronous transit methods; energy maxima and minima are
denoted by ∗ and ∙, respectively.

(QST) approximates the reaction path by a parabola instead of a straight line. After the maximum on
the LST is found, the QST is generated by minimizing the energy in the directions perpendicular to
the LST path and the QST path may then be searched for an energy maximum. These methods are
illustrated in Figure 13.4, where the Intrinsic Reaction Coordinate (IRC) represents the “true” reaction
coordinate.

Bell and Crighton refined the method by performing the minimization from the LST maximum
in the directions conjugate to the LST instead of the orthogonal directions as in the original for-
mulation.26 A variation of QST, called Synchronous Transit-guided Quasi-Newton (STQN), uses a
circle arc instead of a parabola for the interpolation, and uses the tangent to the circle for guiding
the search towards the TS region.27 Once the TS region is located, the optimization is switched to a
quasi-Newton–Raphson (Section 13.4.6).

The Sphere optimization technique involves a sequence of constrained optimizations on hyper-
spheres with increasingly larger radii, using the reactant (or product) geometry as a constant expan-
sion point.28 The lowest energy point on each successive hypersphere thus traces out a low-energy
path on the energy surface, as illustrated in Figure 13.5. The sphere method may be considered as
a coordinate driving algorithm where the driving coordinate is the distance to the minimum. Ohno
and Maeda have suggested a variation where the optimization is done in vibrational normal coordi-
nates scaled by the square root of the corresponding Hessian eigenvalues.29, 30 This makes all direc-
tions equivalent in an energetic sense and potentially allows more saddle points to be found, but at
the expense of searching the full variable space rather than just the low-energy region. They have
suggested that an exhaustive search along all the normal mode directions can potentially find all the

Figure . Illustration of the sphere method; energy minima on the hyperspheres are denoted by ∙, while R indicates
a (local) minimum in the full variable space.
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Figure . LST path in Cartesian and internal coordinates.

TSs connected with a given minimum. Tracing the IRC from all these TSs will lead to other minima,
which then can be subjected to a TS search, thereby potentially tracing out all possible reaction paths
for a given system.

Barkema and Mousseau have suggested a closely related dynamical version where the gradient at
a given point is split into two components parallel and perpendicular to the vector from the mini-
mum to the current point.31 The gradient component in the perpendicular direction is followed in
the downhill direction, while the structure is advanced in the uphill direction along the parallel com-
ponent.

It should be noted that the success or failure of LST/QST and related interpolation methods, as
with all optimizations, depends on the coordinates used in the interpolation. Consider, for example,
the HNC to HCN rearrangement. In Cartesian coordinates, the LST path preserves the linearity of
the reactant and product, and thus predicts that the hydrogen moves through the nitrogen and carbon
atoms. In internal coordinates, however, the angle changes from 0◦ to 180◦, and the LST will in this
case locate a much more reasonable point with the hydrogen moving around the C–N moiety (see
Figure 13.6).

For large complex systems, the LST path, even in internal coordinates, may involve geometries
where two or more atoms clash and it may be difficult or impossible to obtain a function value, for
example due to an iterative (SCF) procedure failing to converge.

13.4.2 Two-Structure Interpolation Methods

The methods in Section 13.4.1 all optimize one geometrical structure, and differ primarily in how they
parameterize the reaction path. The methods in this section operate with two geometrical structures,
which attempt to bracket the saddle point and gradually converge on the TS from the reactant and
product sides.

In the Saddle algorithm,32 the lowest of the reactant and product minima is first identified. A trial
structure is generated by displacing the geometry of the lower energy species a fraction (e.g. 0.05)
towards the high-energy minimum. The trial structure is then optimized, subject to the constraint
that the distance to the high-energy minimum is constant. The lowest energy structure on the hyper-
sphere becomes the new interpolation end-point and the procedure is repeated. The two geometries
will (hopefully) gradually converge on a low-energy structure intermediate between the original two
minima, as illustrated in Figure 13.7.
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Figure . Illustration of the saddle method; energy minima on the hyperspheres are denoted by ∙.

A related idea is used in the Line-Then-Plane (LTP) algorithm,33 where the constrained optimiza-
tion is done in the hyperplane perpendicular to the interpolation line between the two end-points,
rather than on a hypersphere.

The Ridge method initially locates the energy maximum along the LST path connecting the reactant
and product, and defines two points on either side of the energy maximum.34 These points are allowed
to relax in the downhill direction a given distance and a new energy maximum is located along the
interpolation line connecting the two relaxed points, and the cycle is repeated. As the saddle point is
approached, the two ridge points gradually contract on the actual TS. This method requires a careful
adjustment of the magnitude of the “side” and “downhill” steps as the optimization proceeds.

The Step-and-Slide algorithm35 is a variation where the reactant and product structures are stepped
along the LST line until they have energies equal to a preset value. Both structures are then optimized
with respect to minimizing the distance between them, subject to being on an isoenergetic contour
surface. The energy is increased, followed by another step-and-slide optimization, and this sequence
is continued until the distance between the two structures decreases to zero, that is converging on
the saddle point.

13.4.3 Multistructure Interpolation Methods

The methods in this section operate with multiple (more than two) structures or images connecting
the reactant and product and are often called chain-of-state methods. Relaxation of the images will
in favorable cases not only lead to the saddle point but also to an approximation of the whole reaction
path. The initial distribution of structures will typically be along a straight line connecting the reactant
and product (LST), but may also involve one or more intermediate geometries to guide the search in
a certain direction.

The Self-Penalty Walk (SPW) method (Figure 13.8) approximates the reaction path by minimizing
the average energy along the path, given as a line integral between the reactant and product geome-
tries (R and P):36

S(R, P) = 1
L ∫

P

R
E(x)dl(x) (13.32)

The line element dl(x) belongs to the reaction path, which has a total length of L. In practice, the line
integral is approximated as a finite sum of M images, where M typically is of the order of 10–20:

S(R, x1, x2,… , xM, P) ≈ 1
L

M∑

i=1
E(xi)Δli (13.33)

iranchembook.ir/edu



Optimization Techniques 

Figure . Illustration of the SPW method; optimized path points are denoted by x.

In order to avoid all images aggregating near the minima (reactant and product), constraints are
imposed for keeping the distance between two neighboring images close to the average distance. Fur-
thermore, repulsion terms between all images are also added to keep the reaction path from forming
loops. The resulting target function TSPW(R, P) may then be minimized by using, for example, a con-
jugate gradient method:

TSPW(R, x1, x2,… , xM, P) = 1
L

M∑

i=1
E(xi)Δli + 𝛾

M∑

i=0
(di,i+1 − d̄)2 + 𝜌

M+1∑

i≻j+1
exp

(

−
dij

𝜆d̄

)

dij = |xi − xj| ; d̄ =

√
√
√
√ 1

M + 1

M∑

i=0
d2

i,i+1

(13.34)

The 𝛾 , 𝜆 and 𝜌 parameters are suitable constants for weighting the distance and repulsion constraints
relative to the average path energy. In the original version of SPW, the TS is estimated as the image
with the highest energy after minimization of the target function, but Ayala and Schlegel have imple-
mented a version where one of the images is optimized directly to the TS and the remaining images
form an approximation to the IRC path.37

The Chain method (Figure 13.9) initially calculates the energy at a series of images placed at reg-
ular intervals (spacing of dmax) along a suitable reaction coordinate.38 The highest energy image is
allowed to relax by a maximum step size of dmax along a direction defined by the gradient compo-
nent orthogonal to the line between by the two neighboring images. This process is repeated with
the new highest energy image until the gradient becomes tangential to the path (within a specified
threshold). When this happens, the current highest energy image cannot be further relaxed, and is
instead moved to a maximum along the path.

During the relaxation the chain may form loops, in which case intermediate image(s) is (are)
discarded. Similarly, it may be necessary to add images to keep the distance between neighbours
below dmax.

Figure . Illustration of the chain method; initial points along the path are denoted by x and relaxed points are
denoted by ∙.
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The Locally Updated Planes (LUP) minimization is related to the chain method, where the relax-
ation is done in the hyperplane perpendicular to the reaction coordinate, rather than along a line
defined by the gradient.39 Furthermore, all the images are moved in each iteration, rather than one
at a time.

The Conjugate Peak Refinement (CPR) method may be considered as a dynamical version of the
chain method, where images are added or removed based on a sequence of maximizations along line
segments and minimizations along the conjugate directions.40 The first cycle is analogous to the Bell
and Crighton version of the QST: location of an energy maximum along a line between the reactant
and product, followed by a sequential minimization in the conjugate directions. The corresponding
image becomes a new path image and an attempt is made to locate an LST maximum between the
reactant and midpoint, and between the midpoint and product. If such a maximum is found, it is
followed by a new conjugate minimization, which then defines a new intermediate image, etc. The
advantage over the chain and LUP methods is that images tend to be distributed in the important
region near the TS, rather than uniformly over the whole reaction path.

In practice, it may not be possible to minimize the energy in all the conjugate directions, since the
energy surface in general is not quadratic. Once the gradient component along the LST path between
two neighboring images exceeds a suitable tolerance during the sequential line minimizations, the
optimization is terminated and the geometry becomes a new interpolation point. It may also happen
that one of the interpolation images has the highest energy along the path without being sufficiently
close to a TS (as measured by the magnitude of the gradient), in which case the image is removed and
a new interpolation is performed.

The above multistucture methods are mainly of historical interest, but have played an important
role in developing the widely used methods described below.

The Nudged Elastic Band (NEB) method defines a target function (“elastic band”) as the sum of
energies of all images and adds a penalty term having the purpose of distributing the images along
the path.41 A single spring constant k will attempt to distribute the images evenly along the path, but it
may also be taken to depend on the energy in order to provide a better sampling near the saddle point:

TNEB(R, x1, x2,… , xM, P) =
M∑

i=1
E(xi) +

M−1∑

i=1

1
2 k(xi+1 − xi)2 (13.35)

A straightforward minimization of TNEB gives a reaction path that has a tendency to cut corners if the
spring constant k is too large and a problem of images sliding down towards the minima if the spring
constant is too small. These problems can of course be solved by employing a large number of images,
but that would render the optimization inefficient. The “corner-cutting” and “down-sliding” problems
for a manageable number of images can be alleviated by “nudging” the elastic band, that is using only
the component of the spring force parallel to the tangent of the path and only the perpendicular
component of the energy force in the optimization of TNEB. The magnitude of the spring constant
influences the optimization efficiency; a small value causes an erratic coverage of the reaction path,
while a large value focuses the effort on distributing the images rather than on finding the reaction
path, and consequently slows down the convergence. The parallel forces for each image are obtained
by projecting the total force on to the reaction path tangent, and the perpendicular components by
an orthogonal projection. Since the reaction path is represented by a discrete set of images, the tan-
gent to the path at a given image must be estimated from the neighboring images. The NEB algorithm
defines the tangent as the difference vector of the neighboring images, while String Methods employ a
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cubic spline interpolation. String methods furthermore redistribute the images after each optimiza-
tion cycle, thereby omitting the last term in Equation (13.35) and dispensing with the requirement
of using the projected spring force in the optimization.42 In the Climbing Image (CI-NEB) version,
one of the images is allowed to move along the elastic band to become the exact saddle point.43 An
adaptive version of NEB has also been proposed, which gradually increases the number of images
and concentrates the images near the important saddle point region.44 The problem of generating an
initial path when the LST path is unsuitable has been addressed by gradually adding images from the
reactant and product sides, a procedure usually called Growing String.45

The main computational drawback of multistructure methods is that they require optimization of
a target function that contains ∼3MimageNatom variables, rather than ∼3Natom variables for the single-
structure methods. The optimization furthermore consists of two separate tasks, minimizing the gra-
dient perpendicular to the reaction path tangent (which is different for each image) and ensuring a
proper distribution of the images along the reaction path. Since the tangent to the reaction path at a
given image depends on the neighboring images, this leads to a coupling between all the image struc-
tures. If this coupling is ignored the optimization can be split into Mimage independent optimizations,
each involving only ∼3Natom variables. This, however, requires a two-step iterative procedure where
the reaction path tangent at each image is calculated from the current path and held fixed during the
optimization of all images, and then recalculated based on the new image coordinates. The image
distribution condition is handled by a penalty approach in NEB, where the gradient from the last
term in Equation (13.35) is subjected to a different projection than the gradient from the first term,
such that only the component parallel to the reaction path is retained. This different projection of the
two terms means that there is not a well-defined target function to minimize and implementation of,
for example, conjugate gradient or Newton–Raphson optimization schemes is not straightforward.
The minimization can instead be done using a Newtonian dynamics method (e.g. velocity Verlet,
Section 15.2.1) where the velocity is quenched regularly, which effectively corresponds to a steepest
descent algorithm with a dynamical step size. As discussed in Section 13.2.1, this is a rather inefficient
optimization method and minimization of TNEB therefore often requires a large number of iterations.

If the coupling of the NEB images is taken into account, then the tangent direction is allowed to
change during the optimization. This has the advantage that the target function has a well-defined
gradient and can be optimized with quasi-NR methods.46 The disadvantage is that the optimization
contains ∼3MimageNatom variables, which may be borderline possible with NR-based methods, but
can be handled with, for example, L-BFGS methods.

The Artificial Force Induced Reaction (AFIR) method can be considered as a two-point interpola-
tion method where the end-point structures are defined only by a partitioning of the atoms into two
fragments A and B.47 An approximate reaction path is obtained by minimization of a target function
composed of the energy and an artificial force term depending on the distancerij between all pairs of
atoms belonging to each fragment:

TAFIR(x) = E(x) + 𝛼

∑

i∈A

∑

j∈B
wijrij

∑

i∈A

∑

j∈B
wij

(13.36)

The weighting function can be parameterized as follows, where Ri and Rj are covalent atomic radii:

wij =

[
(Ri + Rj)

rij

]6

(13.37)
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The strength of the artificial force term is given in the following equation, where the sign can be
chosen to make the additional term either attractive or repulsive:

𝛼 = ±𝛾R−1
0

⎡
⎢
⎢
⎢
⎣

2−
1
6 −

(

1 +
√

1 + 𝛾

𝜀

)− 1
6
⎤
⎥
⎥
⎥
⎦

−1

(13.38)

R0 and 𝜀 are parameters typical for van der Waals interactions (i.e. ∼3.8 Å and 1 kJ/mol, respectively),
while 𝛾 is a reaction-specific user-defined parameter that controls the highest energy paths that can be
explored. The coordinates of two fragments, or of the atoms in the two fragments, may be randomly
chosen or perturbed, which allows an automated search of reaction paths within the user-defined
energy window. The energy minima and maxima of the TAFIR function may be refined to genuine
minima and TS of the energy function by a local optimization method, such as, for example, a quasi-
Newton–Raphson method.

13.4.4 Characteristics of Interpolation Methods

Interpolation methods have the following characteristics:

1. There may not be a TS connecting two minima directly. The algorithm may then find an interme-
diate geometry having a gradient substantially different from zero, that is no nearby stationary
point. This is primarily a problem for the one-structure methods in Section 13.4.1.

2. The TS found is not necessarily one that connects the two minima used in the interpolation. A
calculation of the reaction path may reveal that it is a TS for a different reaction. This is primarily
a problem for the one- and two-structure methods in Sections 13.4.1 and 13.4.2.

3. There may be several TSs (and therefore at least one minimum) between the two selected end-
points. Some algorithms may find one of these, and the two connecting minima can then be found
by tracing the reaction path, or all the TSs and intermediate minima may be located. Multistruc-
ture methods (e.g. NEB) are examples of the latter behavior.

4. The reaction path formed by a sequence of points generated by constrained optimizations may be
discontinuous. For methods where two points are gradually moved from the reactant and product
sides (e.g. saddle and LTP), this means that the distance between end-points does not converge
towards zero.

5. There may be more than one TS connecting two minima. As many of the interpolation meth-
ods start off by assuming a linear reaction coordinate between the reactant and product, the
user needs to guide the initial search (e.g. by adding intermediate structures) to find more than
one TS.

6. A significant advantage is that the constrained optimization can usually be carried out using
only the first derivative of the energy. This avoids an explicit, and computationally expensive,
calculation of the second derivative matrix.

7. For the one- and two-structure methods, each successive refinement of the TS estimate requires
either location of an energy maximum or minimum along a one-dimensional path (typically a
line) or a constrained optimization in an (N − 1)-dimensional hyperspace. A path minimization
or maximization will normally involve several function evaluations, while a multidimensional
minimization requires several gradient calculations. Geometry changes are often quite small near
convergence, but each step may still require a significant computational effort involving many
function and/or gradient calculations. In such cases, it is often advantageous to switch to one of
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the Newton–Raphson methods described in Section 13.4.6, but the dimensionality of the prob-
lem may prevent this.

8. The multistructure methods in Section 13.4.3 involve an optimization of a target function with M
images each having 3Natom coordinates, that is optimization of a function with ∼3MimageNatom
variables. Since the number of iterations typically increases with the number of variables, the
optimization of the target function may require a large number (several hundred or thousand) of
gradients.

9. The multistructure methods are quite tolerant toward the presence of many soft degrees of
freedom, which often causes problems with the local optimization methods described in Sec-
tions 13.4.5 to 13.4.7. Multistructure methods such as NEB are therefore well suited for systems
with many degrees of freedom, for example extended (periodic) systems.

10. If the structures corresponding to the two end-points are flexible and contain many conforma-
tions or loose van der Waals complexes, it may be difficult to select the correct combination of
end-points such that the reaction path only describes the chemical reaction, and not conforma-
tional transitions along the two exit channels.48 Care should also be taken when connecting for-
mally equivalent, but distinct, atoms between the two end-point structures, such as, for example,
the three hydrogen atoms in methyl groups.

11. The “automated” structure and reaction path methods, such as AFIR, often require a very large
number (103–105) of gradient calculations.

13.4.5 Local Methods: Gradient Norm Minimization

Since transition structures are points where the gradient is zero, they may in principle be located by
minimizing the gradient norm. This is in general not a good approach for two reasons:

1. There are typically many points where the gradient norm has a minimum without being zero.
2. Any stationary point has a gradient norm of zero; thus all types of saddle points and minima/

maxima may be found, not just TSs.

Figure 13.10 shows an example of a one-dimensional function and its associated gradient norm. It is
clear that a gradient norm minimization will only locate one of the two stationary points if started
near x = 1 or x = 9. Most other starting points will converge on the shallow part of the function near
x = 5. The often very small convergence radius makes gradient norm minimizations impractical for
routine use.

13.4.6 Local Methods: Newton–Raphson

By far the most common local methods are based on the augmented Hessian Newton–Raphson
approach (Section 13.2.4). The standard NR formula will locate the TS rapidly when started suffi-
ciently close to the TS. Sufficiently close means that the Hessian should have exactly one negative
eigenvalue and the associated eigenvector should be in the correct direction, along the “reaction
coordinate”. The NR step should furthermore be inside the trust radius. By using augmented Hessian
techniques, the convergence radius may be enlarged over the straight NR approach, and first-order
saddle points may be located even when started in a region where the Hessian does not have the
correct structure, as long as the lowest eigenvector is in the “correct” direction.

The NR step near a first-order saddle point maximizes the energy in one direction (along the Hes-
sian TS eigenvector) and minimizes the energy along all other directions. Such a step may be enforced
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Figure . An example of a function and the associated gradient norm.

by choosing suitable shift parameters in the augmented Hessian method, that is the step is parame-
terized as in Equation (13.16). The minimization step is similar to that described in Section 13.2.4 for
locating minima; the only difference is for the unique TS direction.

Two shift parameters are employed in the Partitioned Rational Function Optimization (P-RFO)
method:5

∑

i≠TS

g′2i
𝜀i − 𝜆

= 𝜆 (13.39)

g′2TS
𝜀TS − 𝜆TS

= 𝜆TS (13.40)

The 𝜆 for the minimization modes is determined as for the RFO method (Equation (13.18)). The
equation for 𝜆TS is quadratic and by choosing the solution that is larger than 𝜀TS it is guaranteed that
the step component in this direction is along the gradient, that is a maximization. As for the RFO
step, there is no guarantee that the total step length will be within the trust radius.

The Quadratic Approximation (QA) method uses only one shift parameter, requiring that
𝜆TS = −𝜆, and restricts the total step length to the trust radius (compare with Equation (13.19)):6

|Δx′|2 =
∑

i≠TS

(
g′i

𝜀i − 𝜆

)2

+

(
g′TS

𝜀TS + 𝜆

)2

= R2 (13.41)

The exact same formula may be derived using the concept of an “image potential” (obtained by invert-
ing the sign of g′TS and 𝜆TS), and the QA name is often used together with the TRIM (Trust Radius
Image Minimization) acronym.49

The ability of augmented Hessian methods for generating a search toward a first-order saddle point,
even when started in a region where the Hessian has all positive eigenvalues, suggests that it may
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be possible to start directly from a minimum and “walk” to the TS by following a selected Hessian
eigenvector uphill. Such mode followings, however, are only possible if the eigenvector being followed
is only weakly coupled to the other eigenvectors (i.e. third and higher derivatives are small). All NR-
based methods assume that one of the Hessian eigenvectors points in the general direction of the TS,
but this is only strictly true when the higher-order derivatives are small. If this is not the case, NR-
based methods may fail to converge even when started from a “good” geometry, where the Hessian
has one negative eigenvalue. Note also that the magnitude of the higher derivatives depends on the
choice of coordinates; that is a “good” choice of coordinates may transform a divergent optimization
into a convergent one.

All NR methods assume that a “sufficiently good” guess of the TS geometry is available. Generating
this guess is part of the magic, but some of the interpolating schemes described in Sections 13.4.1 to
13.4.3 may be useful in this respect.

There are two main problems with all NR-based methods. One is the already mentioned need for a
good starting geometry. The other is the requirement of a Hessian, which is quite expensive in terms
of computer time for electronic structure methods. Contrary to minimizations, TS optimizations
cannot start with a diagonal matrix and update it as the optimization proceeds. An NR TS search
requires the definition of a direction along which to maximize the energy, the reaction vector; that is
the start Hessian should preferably have one negative eigenvalue. Normally the Hessian needs to be
calculated explicitly at the first step; at subsequent steps the Hessian may be updated. An alternative
is to use a force field Hessian for starting the optimization, since this effectively removes one of the
more expensive steps in a TS optimization.50 If the geometry changes substantially during the opti-
mization, however, it may be necessary to recalculate the Hessian at certain intervals. Owing to the
relatively high cost of calculating the energy, gradient and especially the Hessian, quasi-NR methods
have traditionally been the preferred algorithm with ab initio wave functions.

13.4.7 Local Methods: The Dimer Method

The main problem with NR methods is the need for generating (calculating or updating) and manip-
ulating (storing and diagonalizing) the Hessian matrix. The main function of the Hessian for saddle
point optimizations is to provide the direction along which the energy should be maximized. Suffi-
ciently close to the TS, this direction is along the eigenvector corresponding to the lowest eigenvalue.
Determination of this direction, however, can be done without calculating the Hessian by placing two
symmetrically displaced images, a dimer, and minimizing the sum of their energies, subject to a con-
stant distance between them.51, 52 After minimization the lowest mode direction is given by the line
connecting the two images, and it can be used for displacing the central structure, followed by a new
dimer optimization. Since the dimer optimization can be done using only first derivatives, this alle-
viates the need for the Hessian matrix. There is relatively little experience with this method, but one
would expect it to have the same requirements as NR-based methods, that is a good starting geometry
is required for a stable convergence to the TS. Whether the added computational cost of optimizing
each dimer configuration outweighs the savings by not having an explicit Hessian is unclear, and will
in any case depend on the size of the system.

13.4.8 Coordinates for TS Searches

The choice of a “good” set of coordinates is even more critical in TS optimizations than for mini-
mizations. A good set of coordinates enlarges the convergence region and relaxes the requirement of
a good starting geometry. A poor set of coordinates, on the other hand, decreases the convergence
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Figure . The TS for an identity SN2 reaction has a higher symmetry than the reactant/product.

radius, forcing the user to generate a starting point very close to the actual TS in order for NR meth-
ods to work. Furthermore, NR methods are best suited for relatively “stiff” systems; large flexible
systems with many small eigenvalues in the Hessian are better handled by some of the interpolations
methods, such as NEB.

Mapping out whole reaction pathways by locating minima and connecting TSs is often compu-
tationally demanding. The (approximate) geometries of many of the important minima are often
known in advance and, as mentioned above, energy minimizations are fairly uncomplicated. Locating
TSs is much more involved. On a multidimensional energy surface, there will in general not be TSs
connecting all pairs of minima. It is, however, essentially impossible to prove that a TS does not exist.

Symmetry can sometimes be used to facilitate the location of TSs. For some reactions, especially
those where the reactant and product are identical, the TS will have a symmetry different from the
reactant/product. The reaction vector will belong to one of the non-totally symmetric representa-
tions in the point group. The TS can therefore be located by constraining the geometry to a certain
symmetry and minimizing the energy. Consider, for example, the SN2 reaction of Cl− with CH3Cl
(Figure 13.11). The reactant and product have C3v symmetry, but the TS has D3h symmetry. Mini-
mizing the energy under the constraint that the geometry should have D3h symmetry will produce
the lowest energy structure within this symmetry, which is the TS.

For non-identity reactions, it is often useful to start a search for stationary points by minimizing
high-symmetry geometries. A subsequent frequency calculation on the symmetry-constrained (and
minimized) structure will reveal the nature of the stationary point. If it is a minimum or TS we have
already obtained useful information. If it turns out to be a higher-order saddle point, the normal
coordinates associated with the imaginary frequencies show how the symmetry should be lowered
to produce lower energy species, which may be either minima or TSs. As calculations on highly sym-
metric geometries are computationally less expensive than on non-symmetric structures, it is often
a quite efficient strategy to start the investigation by concentrating on structures with symmetry.

13.4.9 Characteristics of Local Methods

Local methods have the following characteristics:

1. A starting geometry close to the saddle point is needed. Especially for reactions that are not dom-
inated by a few (internal) reaction variables, it may be difficult to generate such a guess. The con-
vergence radius is in many cases small, that is the starting geometry must be (very) close to the
saddle point in order to converge.

2. Hessian-based methods (Section 13.4.6) require explicit calculation of the second derivative
matrix, which may be computationally expensive, and handling of the Hessian matrix furthermore
becomes problematic for large systems.
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3. Systems with many soft vibrational modes are often problematic, as the resulting low Hessian
eigenvalues interfere with the negative curvature along the reaction vector.

4. If a good starting geometry and Hessian is available, the convergence is rapid, often requiring only
a few tens of gradient calculations.

13.4.10 Dynamic Methods

The methods in Sections 13.4.1 to 13.4.8 focus on finding a TS connecting a reactant and product,
and the resulting activation energy can provide reaction rates via the Arrhenius or Eyring formula
(Equations (14.53) and (14.54)). For large complex systems, however, the concept of a single “struc-
ture” becomes blurred. In cycloheptadecane, for example, there are hundreds of conformations
within 10 kJ/mol of the global minimum, and any experimentally observed property at room temper-
ature will be a Boltzmann average over many individual conformations. The reaction rate for a large
system will similarly be a Boltzmann average over perhaps hundreds of TSs, and a single reaction
path connecting two minima via a saddle point no longer dominates the reaction rate.53 A systematic
location of all minima (conformations) and corresponding TSs followed by a Boltzmann averaging is
a possibility, but this rapidly becomes unmanageable even for medium-sized systems. For large sys-
tems, one is therefore forced to perform a sampling of the TSs in order to estimate the reaction rate,
in analogy with the ensemble averaging discussed in Section 14.6 for minima. Standard molecular
dynamics methods (Section 15.2.1) only sample the low-energy part of the surface and are therefore
unsuitable for the (high-energy) saddle point region. A specific part of the surface can be sampled by
a biasing potential, such as, for example, in the umbrella sampling technique (Section 15.2.9). Such
an approach, however, requires a priori knowledge of the reaction path or at least the saddle point
region. Alternatively, a dynamics simulation may be initiated in the transition state region and the
trajectory followed in both directions.54 Other methods are also available for performing such tran-
sition path sampling.55

. Constrained Optimizations

In some cases, there are restrictions on the variables used to describe the function, such as, for
example:

1. Certain geometrical constraints may be imposed. Experimental data, for example, may indicate
that some atom pairs are within a certain distance of each other, or one may for analysis reasons
want to impose certain geometrical restrictions on a molecular structure.

2. Fitting atomic charges to give a best match to a calculated electrostatic potential. The constraint
is that the sum of atomic charges should equal the net charge of the molecule.

3. A variation of wave function coefficients is subject to constraints such as maintaining orthogonal-
ity of the MOs and normalization of the MOs and the total wave function.

4. Finding conical intersections between different energy surfaces. The constraint is that two different
energy functions should have the same energy for the same set of nuclear coordinates.

There are three main methods for enforcing constraints during function optimization:

1. Penalty functions
2. Lagrange method of undetermined multipliers
3. Projection methods.
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The penalty function approach adds a term of the type k(r − r0)2 to the function to be optimized.
The variable r is constrained to be near the target value r0 and the “force constant” k describes how
important the constraint is compared with the unconstrained optimization. By making k arbitrarily
large, the constraint may be fulfilled to any given accuracy. It cannot, however, make the constraint
variable exactly equal to r0. This would require the constant k to go towards infinity and in practice
cause numerical problems when it becomes sufficiently large compared with the other terms. The
penalty function approach is often used for restricting geometrical variables, such as distances or
angles, during geometry optimizations with force field methods. It may also be used for “driving” a
selected variable (Section 13.4.1), such as a torsional angle. In certain cases, the constraint is not to
limit a variable to a single value, but rather to keep it between lower and upper limits. This is typi-
cally the situation for refining a force field structure subject to constraints imposed by experimental
nuclear Overhauser effect (NOE) data, and in such cases the penalty function may be taken as a “flat
bottom” potential, that is the penalty term is zero within the limits and rises harmonically outside
the limits. The gradient for the penalty function simply has one additional term from each constraint
and the penalty function may be optimized using the methods described in Sections 13.2.1 to 13.2.3.

A more elegant method of enforcing constraints is the Lagrange method. The function to be opti-
mized depends on a number of variables, f (x1, x2,… , xN ), and the constraint condition can always
be written as another function, g(x1, x2,… , xN ) = c. Define now a Lagrange function as the original
function minus (or plus) a constant times the constraint condition:

L(x1, x2,… , xN , 𝜆) = f (x1, x2,… , xN ) − 𝜆[g(x1, x2,… , xN ) − c] (13.42)

If there is more than one constraint, one additional multiplier term is added for each constraint. The
optimization is then performed on the Lagrange function by requiring that the gradient components
with respect to the x- and 𝜆-variable(s) are equal to zero. If the desired stationary point for f is a
minimum, then the desired stationary point for the L function is an Nth order saddle point for a
Lagrange function having N Lagrange multipliers. The multiplier(s) 𝜆 can in many cases be given a
physical interpretation at the end. In the variational treatment of an HF wave function (Section 3.3),
the MO orthogonality constraints turn out to be MO energies and the multiplier associated with
normalization of the total CI wave function (Section 4.2) becomes the total energy.

The Lagrange method increases the number of variables by one for each constraint, which is coun-
terintuitive since introduction of a constraint should decrease the number of variables by one. For
simple objective and constraint functions, the reduction can be obtained by solving the constraint
condition for one of the variables and substituting it into the object function:

g(x1, x2,… , xN−1, xN ) = c ⇔ xN = h(x1, x2,… , xN−1, c)
f (x1, x2,… , xN−1, xN ) ⇒ f (x1, x2,… , xN−1, h(x1, x2,… , xN−1, c))

(13.43)

In the large majority of cases, however, the object and constraint functions are so complicated that
an analytical elimination of one of the variables is intractable, and this is especially true when there
is more than one constraint. The main exception is when the constraint equation is linear, in which
case it can be considered as a vector in the coordinate space. Instead of eliminating one of the vari-
ables explicitly, the constraint condition can be fulfilled by removing the corresponding component
of the object function gradient by projection (Section 17.4) and performing the optimization using
the projected gradient:

∇fp = ∇f − ⟨∇f|∇gn⟩∇gn

∇gn =
∇g
|∇g|

(13.44)
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A general (non-linear) constraint condition can be approximately fulfilled by projecting out the first-
order (linear) Taylor approximation to the function. Since the optimization normally proceeds by
iterative methods, the linear approximation may be sufficient in each step. Alternatively, a microiter-
ate based on successive linear approximations may be performed in each optimization of the objective
function.

. Global Minimizations and Sampling

The methods described in Section 13.2 can only locate the “nearest” minimum, which is normally a
local minimum, when starting from a given set of variables. In some cases, the interest is in the lowest
of all such minima, the global minimum; in other cases it is important to sample a large (preferably
representative) set of local minima. Considering that the number of minima typically grows expo-
nentially with the number of variables, the global optimization problem is an extremely difficult task
for a multidimensional function.56–59 It is often referred to as the multiple minima or combinatorial
explosion problem in the literature.

Consider, for example, the problem of determining the lowest energy conformations of linear alka-
nes, CH3(CH2)n+1CH3, by a force field method, with three possible energy minima for rotation
around each C–C bond. For butane, there are thus three conformations, one anti and two gauche
(which are symmetry equivalent). These minima may be generated by starting optimizations from
three torsional angles separated by 120◦. In the CH3(CH2)n+1CH3 case there are n such rotatable
bonds, giving a possible 3n different conformations, and in order to find the global minimum, the
energy must be calculated for all of them. Assume for the sake of argument that each conformation
optimization takes one second of computer time. Table 13.2 gives the number of possible conforma-
tions and the time required for optimizing them all.

The exponential increase in the number of conformations means that it is essentially impossible
to perform a complete sampling of systems with more than ∼20 degrees of freedom. For the linear
alkanes, it is known in advance that anti conformations in general are favored over gauche; thus we
may put some restrictions on the search, such as having a maximum of three gauche interactions in
total. For most systems, however, there are no good guidelines for such a priori selections. Further-
more, for some cases the sampling interval must be less than 120◦; in ring systems it may be more
like 60◦, increasing the potential number of conformations to 6n. Cycloheptadecane is a frequently
used test case for conformational searching and various methods have established that there are 262
different conformations within 12 kJ/mol of the global minimum with the MM2 force field.60 In the
early 1990s, this system was close to the limit for being able to establish the global minimum, but
with the increase in computer hardware performance such systems can now be treated within a few
hours of computer time.

Table . Possible conformations for linear alkanes, CH3(CH2)n+1CH3.

n Number of possible conformations (n) Time ( conformation =  second)

1 3 3 seconds
5 243 4 minutes

10 59 049 16 hours
15 14 348 907 166 days
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Figure . Visualizing conformations as a combinatorial tree.

The total number of conformations for a given resolution of each variable (e.g. 120◦ steps) can be
thought of as branches in a combinatorial tree, as illustrated in Figure 13.12.

For a reasonable-sized system, there may be certain combinations of torsional angle that always
lead to high-energy structures, for example by atoms clashing. These combinations correspond to
specific branches in the combinatorial tree (illustrated by dashed lines in Figure 13.12), and these may
consequently be pruned from the search at an early stage. This allows somewhat larger systems to be
treated compared with a brute force combinatorial search, but the number of possible conformations
still increases rapidly with the size of the system.61

Finding “reasonable” minima for large biomolecular systems is heavily dependent on selecting a
“good” starting geometry. One way of attempting this is by “building up” the structure. A protein,
for example, may be built from amino acid fragments, which have been optimized to their global
minimum or to a collection of low-energy minima, and/or smaller fragments of the whole structure
may be subjected to a global minimum search. By combining such pre-optimized fragments, it is
hoped that the starting geometry for the whole protein will also be “near” the global minimum for
the full system.62

The systematic, or grid, search is only possible for small systems, while global search methods must
be used for larger systems in order to provide estimates of the global minimum. The general problem
is to identify a point in a many-dimensional variable space that has the lowest possible object function.
Algorithms for global optimizations are numerous and can be used for many purposes, but we will
only describe some of the most commonly used:

1. Stochastic and Monte Carlo methods
2. Molecular dynamics
3. Simulated annealing
4. Genetic algorithms
5. Particle swarm optimization methods
6. Diffusion methods
7. Distance geometry methods.

None of these are guaranteed to find the global minimum, but they may in many cases generate a
local minimum that is close in energy to the global minimum (but not necessarily close in terms of
structure). A brief description of the ideas in these methods is given below. For simplicity, we assume
that the optimization is of an energy as a function of atomic coordinates, but it is of course equally
valid for any function depending on a set of variables.

13.6.1 Stochastic and Monte Carlo Methods

These methods start from a given geometry, which typically is a (local) minimum, and new configura-
tions are generated by adding a random “kick” to one or more atoms. In Monte Carlo (MC) methods,
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the new geometry is accepted as a starting point for the next perturbing step if it is lower in energy
than the current. Otherwise, the Boltzmann factor e−ΔE∕kT is calculated and compared with a random
number between 0 and 1. If e−ΔE∕kT is less than this number, the new geometry is accepted, otherwise
the next step is taken from the old geometry. This generates a sequence of configurations from which
geometries may be selected for subsequent minimization. In order to have a reasonable acceptance
ratio, however, the step size must be fairly small, and it is often chosen to give an acceptance ratio
of ∼0.5.

In stochastic methods, the random kick is somewhat larger and is usually performed on all the
atoms, and a standard minimization is carried out starting at the perturbed geometry.63 The opti-
mization may or may not produce a new minimum and a database of all unique structures is gradually
built up. A new perturbed geometry is then generated from one of the structures in the database and
minimized, etc. There are several variations on how this is done:

� The length of the perturbing step is important; a small kick essentially always returns the geometry
to the starting minimum, while a large kick may produce high-energy structures, which minimize
to high-energy local minima.

� The perturbing step may be done directly in Cartesian coordinates or in a selected set of internal
coordinates, such as torsional angles. The Cartesian procedure has the disadvantage that many of
the perturbed geometries are high in energy as two (or more) atoms are moved close together by
the kick, although this can be partly alleviated by readjusting all bond lengths to values close to
their starting values prior to the optimization. The use of torsional angles as variables is highly
efficient for acyclic systems but is problematic for cyclic and confined structures. Cyclic structures
can be treated by opening the ring, performing a random perturbation of the torsional angles and
attempting to re-close the ring. In the majority of cases this is not possible, and this results in many
trial structures being discarded.

� The perturbing step may be taken either from the last minimum found or from all the previous
found minima, perhaps weighted by a probability factor such that low-energy minima are used
more often than high-energy structures.

Kolossvary and Guida have proposed a method to generate the perturbing step along the eigenvec-
tors with small eigenvalues obtained by diagonalizing the Hessian matrix at each minimum, a method
called low-mode search.64 The premise is that the soft deformation modes for a given structure are
likely to lead to low-energy transition structures, and consequently to other low-energy minima. The
strategy is thus similar to the eigenvector-following tactic discussed in Section 13.4.6 for locating
transition structures, except that no attempt is made to find the actual TS. The interest is only in
perturbing the geometry sufficiently to get “past” the TS, such that a minimization will locate a new
minimum. The advantage of the low-mode search is that the search is concentrated on the low-energy
part of the energy surface, and the method furthermore essentially solves the problem of generating
trial structures for ring systems. The number of acceptable trial structures generated by the open–
perturb–reclose method is often very low, only a few percent, resulting in an inefficient search. Since
the Hessian eigenvalues contain information about the coupling of the internal (torsional) coordi-
nates, the low-mode technique can generate trial structures without opening and re-closing the ring.

The disadvantage of the low-mode search is that it requires calculating and diagonalizing the Hes-
sian matrix for each minimum found, which becomes problematic for systems with more than a few
hundred atoms. In order to use the method for large systems, the soft Hessian modes can be calculated
by an iterative procedure requiring only the gradient.65 Although this solves the problem of calculat-
ing and diagonalizing the Hessian, the computational effort for determining the low-mode directions
is still substantial. It has been suggested that for proteins, for example, the low-mode directions for

iranchembook.ir/edu



 Introduction to Computational Chemistry

one minimum can be reused for other minima as well, thereby avoiding the expensive low-mode
calculations.

The main problem with stochastic methods is generating trial structures. In small flexible
molecules, the torsional angles form a good set of coordinates for randomly perturbing the geom-
etry. For cyclic and confined structures, however, a perturbation of a single torsional angle will usu-
ally lead to a high-energy structure, either because the remaining (cyclic) structure becomes strained
or because of atoms clashing into each other. The low-mode technique solves this by determining a
proper combination of internal coordinates to avoid this, but the Hessian diagonalization prevents
its use for systems with thousands of atoms. Stochastic methods are therefore primarily useful for
searching the conformational space for flexible extended systems, but not for confined molecules
such as proteins and DNA. Stochastic methods, however, have the big advantage that they can gen-
erate conformations separated by large energy barriers, since the random kick is performed without
calculating any energies along the perturbing step, that is the conformations can “tunnel” through
large energy barriers.

13.6.2 Molecular Dynamics Methods

Molecular Dynamics (MD) methods solve Newton’s equation of motion for atoms on an energy sur-
face (see Section 15.2.1). The available energy for the molecule is distributed between potential and
kinetic energy, and molecules are thus able to overcome barriers separating minima if the energy of
the barrier is below the total energy. Given a high-enough energy, which is closely related to the simu-
lation temperature, the dynamics will sample the whole surface but will also require an impractically
long simulation time. Since quite small time steps must be used for integrating Newton’s equation,
the simulation time is short (pico- or nanoseconds). Combined with the use of “reasonable” temper-
atures (a few hundreds of degrees), this means that only the local area around the starting point is
sampled and that only relatively small barriers (typically a few tens of a kJ/mol) can be overcome.
Different (local) minima may be generated by selecting configurations at suitable intervals during the
simulation and subsequently minimize these structures. MD methods use the inherent dynamics of
the system to search out the low-energy deformation modes and they can be used for sampling the
conformational space for large confined systems. MD methods are typically used for sampling the
conformational space when the starting geometry is derived from experimental information, such as
an X-ray or NMR structure. The main disadvantage of MD is the inability to overcome barriers larger
than the internal energy determined by the simulation temperature. Since this is one of the advan-
tages of MC methods, it is no surprise that mixed MC/MD methods have been developed, of which
the Replica Exchange MD (REMD) is one of the most commonly used.66–68

13.6.3 Simulated Annealing

Both MD and MC methods employ a temperature as a parameter for generating or accepting new
geometries. At sufficiently high temperatures and long run times, all the conformational space is sam-
pled. In Simulated Annealing (SA) techniques, the initial temperature is chosen to be high, maybe
2000–3000 K.69–71 An MD or MC run is then initiated, during which the temperature is slowly
reduced. Initially the molecule is allowed to move over a large area of the energy surface, but as the
temperature is decreased, it becomes trapped in a minimum. If the cooling is done infinitely slowly
(implying an infinite run time), the resulting minimum is the global minimum. In practice, however,
an MD or MC run is so short that only the local area is sampled. The name, simulated annealing,
comes from the analogy of growing crystals. If a melt is cooled slowly, large single crystals can be
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formed. Such a single crystal represents the global energy minimum for a solid state. A rapid cooling
produces a glass (local minimum), that is a disordered solid.

13.6.4 Genetic Algorithms

Genetic or Evolutionary Algorithms take their concepts and terminology from biology.72, 73 The idea
is to have a “population” of structures, each characterized by a set of “genes”. The “parent” structures
are allowed to generate “children” having a mixture of the parent genes, allowing for a small amount
of “mutations” to occur in the process. The best species from a population are selected based on
Darwin’s principle, survival of the fittest, and carried on to the next “generation”, while the less-fit
structures are discarded.

Consider, for example, a molecule having 20 torsional angles, which may have ∼109 possible con-
formations. The species in an initial population of, say, 100 different conformations are characterized
by their fitness, for example a low-energy structure is equivalent to one of high fitness. These 100
structures are allowed to produce offsprings with a probability depending on their fitness, that is
low-energy structures are more likely to contribute to the next generation than high-energy confor-
mations. Two child conformations can be generated by taking the first n torsional angles from one
of the parents and the remaining 20 − n from the other (“single-point cross-over”), with the second
child being the complementary one. A small amount of mutation is usually allowed in the process,
that is randomly changing angles to produce conformations outside the range contained in the cur-
rent population. Having generated, say, 100 such children, their (minimized) energies are determined
and a suitable portion of the best parent and children structures are carried over to the next gener-
ation. The population is allowed to evolve for perhaps a few hundred generations or until no change
in the best structure has occurred for a suitable number of generations.

There are many variations on genetic algorithms: varying the size of the population, the mutation
rate, the breeding selection, the ratio of children to parents surviving to the next generation, single-
or multipoint cross-over, etc. Genetic algorithms have become popular as they are easy to implement
and have proven to be robust for locating a point in parameter space close to the global minimum.
If the parameters are coded into genes, the sampling is pointwise, and the final structures should
therefore be refined using a standard gradient optimization. Alternatively, the trial structures may
be subjected to a local optimization, making the parameter space continuous.74 Genetic algorithms
may have difficulties if some of the variables are strongly coupled such that the direction along which
the target function is lowered corresponds to a simultaneous and coordinated change of two or more
variables. In such cases the optimization may end up in a situation where a very large number of
small steps in the parameter space is required to reach the (global) minimum, and in practise cause
premature (apparent) convergence. Such a situation can be countered by increasing the population
or changing the variables, but it is usually difficult to predict or detect whether a particular problem
has strongly coupled variables.

13.6.5 Particle Swarm and Gravitational Search Methods

Particle swarm optimization (PSO) algorithms use in analogy with genetic algorithms a population
(a swarm) of structures (denoted particles), where each particle moves in the variable space according
to certain rules. The biological model in this case is a flock of birds searching for food, where a single
bird spotting a potential food source may cause the whole flock to turn toward that direction. The
particles in the swarm are initial assigned (random) values of the positions and (random) velocities
in the variable space, often limiting the positions to a subsection of the available space and employing
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low velocities. The algorithm moves the swarm of particles similar to the way a molecular dynamics
simulation moves the atoms, by updating the positions and velocities in a sequence of pseudo time
steps. Each iteration increments the “time” variable t and updates each particle position xi accord-
ing to the velocity vector vi (Equation (13.45)) and updates the velocity vector by a three-parameter
formula (Equation (13.46)):75

xt+1
i = xt

i + vt+1
i (13.45)
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)

(13.46)

Equation (13.46) exemplifies the general idea of PSO, but other velocity updating schemes have also
been used. In Equation (13.46), w represents an inertia parameter, such that velocities can only change
gradually between each step, while a1 and a2 are acceleration coefficients controlling the directional
change. R1 and R2 are random numbers in the interval [0,1] that are reassigned for each particle in
each iteration, bi is the best solution found so far for particle i, while B is the best solution found so
far for all particles, that is the current estimate of the global minimum. The a1 term thus serves as the
particle’s own memory of a (local) minimum, while the a2 term provides communication between the
particles regarding a possible global minimum. The B vector is in some PSO versions not the global
best minimum, but only the best within a suitable list of neighbors of particle i, thereby allowing a
small pool of global minimum estimates to act as attractors. The two acceleration terms modify the
velocities such that they are drawn toward their own best and the collectively best solutions, modified
with random factors to provide a spread in the variable space.

The PSO method only requires the ability to calculate the function value, not gradients or higher
derivatives, and typical swarm sizes are in the range 20–100. The w, a1 and a2 control parameters
determine the performance of the optimization, and it has been shown that the velocities remain
finite if a1 + a2 > 4w (a popular choice is a1 = a2 = 2.05) and w is in the interval [0,1].76 A w value
close to 1 tends to favor a global optimization, while smaller w values reduce the velocities and make
the PSO perform a local optimization. The w parameter is in some cases reduced dynamically during
the iterative sequence in order to make a local refinement of an initial wider global search.

A related method called Gravitational Search Algorithm (GSA) parameterizes the fitness by a
“mass” and allows a collection of “particles” to explore the parameter space by propagating their posi-
tions in “time” while interacting by “forces” calculated as the product of their masses and inversely
proportional to their distances.77, 78 GSA allows all particles to influence all other particles, modu-
lated by their fitness in terms of mass and distance in parameter space, while PSO has only a few
attractors influencing the movement of all particles and emploing a memory effect to prevent parti-
cles from collapsing on the current best estimate of the global minimum.

13.6.6 Diffusion Methods

In Diffusion Methods the energy function is changed such that it will eventually contain only one
minimum (see Figure 13.13).79 The function may be changed, for example, by adding a contribution
proportional to the local curvature of the function (second derivative). This means that minima are
raised in energy and saddle points (and maxima) are reduced in energy (negative curvature). Eventu-
ally only one minimum remains. Using the single minimum geometry of the modified potential, the
process can be reversed, ending up with a minimum on the original surface that often (but not neces-
sarily) is the global minimum. The mathematical description of this process turns out to be identical
to the differential equation describing diffusion.
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Figure . Illustration of the diffusion method.

13.6.7 Distance Geometry Methods

The idea in Distance Geometry methods is that trial geometries can be generated from a set of lower
and upper bounds on distances between all pairs of atoms.80 The method was originally developed for
generating possible geometries based on experimental information such as NMR NOE effects, which
place certain constraints on the distance between protons that may be far from each other in terms
of bonding. The bonding information itself, however, also places restrictions on distances between all
pairs of atoms. Once a set of upper and lower bounds for all pair distances has been assigned, many
different trial sets of distances may be generated by selecting random numbers between these limits.
Such a random distance matrix can then be translated into a three-dimensional structure, a procedure
known as embedding. Distance geometry can thus be used for generating trial conformations that can
be optimized using conventional methods. The main advantage of the distance geometry method is
the ease with which distant constraints between atoms far apart in terms of bonding can be translated
into valid trial structures. Without such constraints, some of the other methods in this section are
usually more efficient in searching the conformational space.

13.6.8 Characteristics of Global Optimization Methods

As described in the previous sections, it may be clear that MD, MC and stochastic methods tend to
primarily sample the local area, generating a relatively large number of local minima in the process.
The use of a larger step size in stochastic methods normally means that they are more efficient than
MC or MD, at least for systems that are not cyclic or confined. Simulated annealing and diffusion
methods, on the other hand, are primarily geared to locating the global minimum, and will in general
only produce one final structure, this being the best estimate of the global minimum. Genetic algo-
rithms and swarm optimization methods also focus on the global minimum, but the final population
contains a distribution of low-energy structures. Distance geometry methods are more or less ran-
dom searches, where “impossible” structures are excluded. Simulated annealing normally explores a
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significantly smaller space than genetic or swarm algorithms. Which method that is best for locating
the global minimum depends on the problem at hand.

. Molecular Docking

An important example of a global optimization problem is determining the best alignment of two
molecules with respect to each other, a typical example being the fitting of a small molecule into a
large protein structure, a process called docking. Given an X-ray structure of a protein, preferably with
a bound ligand to identify the active site, the ligand can be removed, and other (virtual) compounds
may be docked into the active site to possibly identify new molecules with a stronger binding affinity.
Since many drugs act by inhibiting specific proteins, docking is an important element in drug design
and lead optimization.

The process of docking a ligand into the active site of a rigid protein has six degrees of freedom,
three translational and three rotational, besides those arising from the ligand conformations. The
three translational degrees of freedom can be sampled on a grid, for example by placing the ligand
center of mass within a central box with grid points every 1 Å, which for even a rather small 10 × 10 ×
10 Å box generates ∼1000 possible points. For each of these points, the overall rotational orientation
of the ligand must be sampled, for example by the Euler angles, typically generating a few hundred
possibilities. A specific set of intermolecular translational and rotational variables is called a pose,
and each ligand conformation may thus have ∼105 possible poses, even on a rather coarse grid. Even
though the majority of these can be rejected based on, for example, atom pair distances between the
ligand and receptor, the combinatorial space is still large for even a relatively small ligand. A system-
atic sampling is often too demanding, so global optimization schemes such as genetic algorithms are
often employed for solving the optimization problem. Since the interest is typically to dock perhaps
thousands of ligands for (virtual) screening a library of compounds, this furthermore calls for a fast
method for estimating the binding energy. Given that the binding energy is the Gibbs free energy, this
is clearly a challenging task.

A force field attempt to calculate the enthalpic interaction and an estimate of the free energy by
simulation methods (Section 15.5) is much too expensive computationally. Instead, the non-bonded
part of a force field function can be augmented with empirical terms, hopefully capturing some of the
entropy and solvent effects, and the resulting scoring function can be parameterized against experi-
mental binding data. The entropy terms are typically structural descriptors, such as the number of
torsional degrees of freedom and the number of hydrogen acceptors and donors, the argument being
that fixing of torsional angles by binding to the protein causes a rather constant loss of entropy for
each entity:81–83

ΔGscoring = a1ΔEvdw + a2ΔEel + a3ΔGrot + a4ΔGH-bond + a5ΔGsolv +⋯ (13.47)

The ai weighting factors can be fitted to actual binding data for specific protein–ligand systems.
Developing scoring functions capable of accurately ranking binding energies is an active area of

research but it is probably fair to say that no generally accurate scoring function has yet been devel-
oped. Some scoring functions employ only force field terms, such as the first two in Equation (13.47),
others parameterize it entirely from descriptive terms, such as the last three in Equation (13.47),
and some employ a mixture of these. It should be noted that the interaction of the protein atoms
with potential ligand atoms at the grid points in the active site is the same for all ligands and their
poses, and can therefore be pre-computed to save computational resources. The main purpose of the
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scoring function is to rank a large number of poses rapidly, from which a smaller number of promising
candidates may be subjected to more refined methods for estimating the binding energies.

The main problem of docking ligands into an active site generated by removing an existing lig-
and from an X-ray structure is that the hole left behind naturally bears a strong resemblance to the
compound removed. This will provide a bias for finding compounds differing only slightly from the
already-known inhibitor. The fundamental problem is that the flexibility of the protein is neglected,
that is the protein is able to some extent to assume different shapes of the active site for different lig-
ands. Taking the enzyme conformational degrees of freedom into consideration during the docking
increases the computational problem to essentially unmanageable proportions. A heuristic proposal
is to reduce the van der Waals parameters of the protein atoms at the surface of the active site, thereby
allowing larger ligands to be docked. Subsequently, the original van der Waals parameters can be rein-
troduced followed by relaxation of the protein structure, an approach called induced fit docking.84

. Intrinsic Reaction Coordinate Methods

The optimization methods described in Sections 13.2 to 13.4 concentrate on locating stationary
points on an energy surface. The important points for discussing chemical reactions are minima,
corresponding to reactant(s) and product(s), and saddle points, corresponding to transition struc-
tures. Once a TS has been located, it should be verified that it indeed connects the desired minima.
The vibrational normal coordinate associated with the imaginary frequency at the TS is the reac-
tion coordinate (Section 17.2.2), and an inspection of the corresponding atomic motions may be a
strong indication that it is the “correct” TS. A rigorous proof, however, requires a determination of
the Minimum Energy Path (MEP) from the TS to the connecting minima. If the MEP is located in
mass-weighted coordinates, it is called the Intrinsic Reaction Coordinate (IRC).85 The IRC path is of
special importance in connection with studies of reaction dynamics, since the nuclei will usually stay
close to the IRC, and a model for the reaction surface may be constructed by expanding the energy
to, for example, second order around points on the IRC (Section 15.2.7). The IRC is formally the
reaction path taken in the limit of a zero temperature, and for a modest temperature the deviation
from this path is usually small. For high temperatures, however, the favored dynamical path will tend
to be the shortest path, regardless of the fact that this may be significantly higher in energy than along
the (longer) IRC path.

The IRC path is defined by the differential equation

dx(s)
ds

= −
g
|g|

= t (13.48)

Here x are the (mass-weighted) coordinates, s is the path length and t is the tangent to the reaction
path, defined by the normalized gradient. Determining the IRC requires solving Equation (13.48)
starting from a geometry slightly displaced from the TS along the normal coordinate for the imaginary
frequency.

The simplest method for integrating Equation (13.48) is the Euler method. A series of steps are
taken along the tangent direction at the current geometry xn:

xn+1 = xn + Δst(xn) (13.49)

This corresponds to a steepest descent minimization with a fixed step size Δs. As discussed in Sec-
tion 13.2.1, such an approach tends to oscillate around the true path and consequently requires a
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small step size to follow the IRC accurately. The Euler algorithm may be stabilized by using Equa-
tion (13.49) as a predictor step followed by a correction step to (partly) account for reaction path
curvature.86 The stabilized Euler integration provides a more accurate IRC following, but requires
one additional gradient calculation for each step.

A more advanced method is the Runge–Kutta (RK) algorithm. The idea here is to generate some
intermediate steps that allow a better and more stable estimate of the next geometry for a given step
size. The second-order Runge–Kutta (RK2) method first calculates the gradient at a point correspond-
ing to a Euler step with half the step size. The gradient at the halfway point is then used for taking the
full step:

k1 = Δst(xn) ; k2 = Δst
(

xn + 1
2 k1

)

xn+1 = xn + k2
(13.50)

The fourth-order Runge–Kutta (RK4) method generates four intermediate gradients, and combines
the steps as follows:

k1 = Δst(xn) ; k2 = Δst
(

xn + 1
2 k1

)

k3 = Δst
(

xn + 1
2 k2

)

; k4 = Δst(xn + k3)

xn+1 = xn + 1
6 k1 +

1
3 k2 +

1
3 k3 +

1
6 k4

(13.51)

The Euler and RK methods use only gradient information, but it is also possible to integrate Equa-
tion (13.48) using a second-order approximation to the energy surface, analogous to the Newton–
Raphson method for locating stationary points. The Hessian-based Predictor–Corrector (HPC)
algorithm87 employs the gradient of the second-order Taylor approximation (Equation (13.13)) in
Equation (13.48), where g and H are the gradient and Hessian at point x0 and Δx = x − x0:

dx(s)
ds

= −
g + HΔx
|g + HΔx|

(13.52)

The right-hand side of the differential equation now depends explicitly on x (Section 16.5.2), in con-
trast to Equation (13.48). The composite function on the right-hand side of Equation (13.52) can be
separated by introducing a parameter p:

dx
ds

= dx
dp

dp
ds

(13.53)

Here p is defined by

ds
dp

= |g + HΔx| (13.54)

and consequently

−dx
dp

= (g + HΔx) (13.55)

The formal solution to Equation (13.55) is given in

x(p) = x0 + A(p)g (13.56)
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The A matrix depends parametrically on p and the Hessian matrix H, as shown below, where 𝜆i are the
Hessian eigenvalues and U contains the eigenvectors (see Section 17.2 for how to calculate functions
of matrices):

A(p) = U𝛼Ut

𝛼i(p) =
(
e−𝜆ip − 1

)
𝜆−1

i
(13.57)

The second task is to determine the value of p from Equation (13.54) that produces the desired arc
length. Substituting Equation (13.56) into Equation (13.54) gives the following equation expressed
in the Hessian eigenvector space, where g′i is the projection of the gradient along the Hessian
eigenvector i:

ds
dp

=

(
∑

i
(g′i)

2e−2𝜆ip

)1∕2

(13.58)

Equation (13.58) is a simple first-order differential equation (Section 17.5.1) that can be solved by
numerical integration using a (large) number of (small) steps in p. The predictor step generated from
Equations (13.58) and (13.56) is followed by a series of corrector steps on the second-order model
surface. Although the HPC algorithm formally requires both first and second derivatives, the exact
Hessian matrix can in practise be replaced by an updated version, analogous to the quasi-NR meth-
ods in Section 13.2.5. The advantage of the HPC over the Euler or RK methods is that the Hessian
information permits larger steps to be taken for a similar accuracy, thus reducing the overall compu-
tational cost.

Another method for following the IRC that does not rely on integration of the differential Equa-
tion (13.48) has been developed by Gonzales and Schlegel (GS).88 The idea is to generate points on
the IRC by means of a series of constrained optimizations. The algorithm is illustrated in Figure 13.14.

An expansion point is generated by taking a step along the current direction with a step size of
1∕2Δs. The energy is then minimized on a hypersphere with radius 1∕2Δs, located at the expansion
point. This is an example of a constrained optimization that can be handled by means of a Lagrange
multiplier (Section 13.5). The GS procedure ensures that the tangent to the IRC path is correct at
each point.

Although it is clear that RK4 is more stable and accurate than the Euler method for a given step size,
this does not necessarily mean that it is the most efficient method. Since the RK4 method requires four
gradient calculations for each step, the simple Euler can employ a step size four times as small for the
same computational cost. The HPC method employs Hessian-based information to allow for larger
step sizes than the simple Euler scheme. The Gonzales–Schlegel method is also quite tolerant for large

Figure . Illustration of the Gonzales–Schlegel constrained optimization method for following an IRC.
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step sizes, but each constrained optimization may take a number of gradient calculations to converge,
which could also be used for advancing the Euler algorithm at a slower pace. Which algorithm is the
optimum will depend on the system at hand and the required accuracy of the IRC path. If only the
nature of the two minima on each side of the TS is required, a crude IRC is sufficient and a simple
Euler algorithm may be the most cost efficient. Note that chain-of-state methods (Section 13.4.3)
implicitly define the (approximate) reaction path and by construction ensure that the TS connects
the reactant and product. For use in connection with reaction path methods (Section 15.2.7), the
IRC needs to be located very accurately, and a sophisticated method and a small step size may be
required.
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Statistical Mechanics and Transition State Theory

The separation of the nuclear and electronic degrees of freedom by the Born–Oppenheimer
approximation leads to a mental picture of a chemical reaction as nuclei moving on a potential energy
surface. The easiest path from one minimum to another, that is for transforming one chemical species
to another, is along the reaction path having the lowest energy. The highest energy point along this
path is the transition structure and the energy relative to the reactant completely determines the
reaction rate within Transition State Theory (TST). Transition state theory is a semi-classical the-
ory where the quantum nature is taken into account by means of the quantization of vibrational and
rotational energy states. The connection between the properties of a single molecule and the experi-
mental conditions employing a very large number of species is given by statistical mechanics, which
provides a framework for performing the statistical averaging over a very large number of possible
energy distributions. The averaging can for an ideal gas be performed in a closed analytical form
within the rigid-rotor harmonic-oscillator approximation. For systems in condensed states, that is
liquid or solid states, the averaging must be done by explicitly sampling the phase space.

. Transition State Theory

Consider a chemical reaction of the type A + B → C + D. The rate of reaction may be written as in
Equation (14.1), with krate being the rate constant:

d [C]
dt

= d [D]
dt

= −d [A]
dt

= −d [B]
dt

= krate [A] [B] (14.1)

If krate is known, the concentration of the various species can be calculated at any given time from the
initial concentrations. At the microscopic level, the rate constant is a function of the quantum states
of A, B, C and D, that is the electronic, translational, rotational and vibrational quantum numbers.
The macroscopic rate constant is an average over such “microscopic” rate constants, weighted by the
probability of finding a molecule with a given set of quantum numbers. For systems in equilibrium, the
probability of finding a molecule in a certain state depends on its energy by means of the Boltzmann
distribution and the macroscopic rate constant thereby becomes a function of temperature.

Stable molecules correspond to minima on the potential energy surface within the Born–
Oppenheimer approximation and a chemical reaction can be described as nuclei moving from one

Introduction to Computational Chemistry, Third Edition. Frank Jensen.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion Website: http://www.wiley.com/go/jensen/computationalchemistry3

iranchembook.ir/edu

http://www.wiley.com/go/jensen/computationalchemistry3


 Introduction to Computational Chemistry

TS

Perpendicular 
coordinates

Reaction coordinate

Energy

ΔG#

ΔG=0

ΔG0

Reactant

Product

Figure . Schematic illustration of a reaction path.

minimum to another. In the lowest level of approximation, the motion is assumed to occur along the
path of least energy and this path forms the basis for transition state theory.1 The Transition State
is the configuration that divides the reactant and product parts of the surface (i.e. a molecule that
has reached the transition state will continue on to the product), while the geometrical configura-
tion of the energy maximum along the reaction path (Figure 14.1) is called the Transition Structure.
The transition state is thus a macroscopic ensemble with a Boltzmann energy distribution, while the
transition structure refers to the microscopic system. The two terms are often used interchangeably
and share the same acronym, TS. In the multidimensional case, the TS is a first-order saddle point on
the potential energy surface, a maximum in the reaction coordinate direction and a minimum along
all other coordinates.

TST is a semi-classical theory where the motion along the reaction coordinate is treated classically,
while the perpendicular directions take into account the quantization of, for example, the vibrational
energy. It furthermore assumes an equilibrium energy distribution among all possible quantum states
at all points along the reaction coordinate. The probability of finding a molecule in a given quantum
state is proportional to e−ΔE/kT, which is a Boltzmann distribution. Assuming that the molecules at
the TS are in equilibrium with the reactant, the macroscopic rate constant can be expressed as

krate = kT
h

e−ΔG≠∕RT

ΔG≠ = ΔGTS − ΔGreactant
(14.2)

ΔG≠ is the Gibbs free energy difference between the TS and reactant, and k is Boltzmann’s con-
stant. The TST expression only holds if all molecules that pass from the reactant over the TS go on
to the product. The dividing surface separating the reactant from the product is a hyperplane per-
pendicular to the reaction coordinate at the TS. The TST assumption is that no re-crossings occur,
that is all molecules passing through the dividing surface will go on to form the product. These
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assumptions mean that the rate constant calculated from Equation (14.2) will be an upper limit to
the true rate constant. In more refined models, the dividing surface may be located by minimizing
the flux through the surface, that is forming the dynamical bottleneck for the reaction, for example
by taking dynamics effects into account. To allow for “re-crossings”, where a molecule passes over
the TS but is reflected back to the reactant side, a transmission coefficient 𝜅 is sometimes introduced.
This factor also allows for the quantum mechanical phenomenon of tunnelling, that is molecules that
have insufficient energy to pass over the TS may tunnel through the barrier and appear on the product
side. The transmission coefficient is difficult to calculate but is usually close to 1 and for many systems
are in the range 0.5–2. At low temperatures the tunneling contribution dominates, leading to 𝜅 > 1,
while the re-crossing effect is the most important at high temperatures, giving 𝜅 < 1. For the majority
of reactions the calculated accuracy in ΔG≠ introduces errors much larger than a factor of 2 and the
transmission coefficient is usually ignored.

From the TST expression in Equation (14.2) it is clear that if the free energy of the reactant and TS
can be calculated, the reaction rate follows trivially. Similarly, the equilibrium constant for a reaction
can be calculated from the free energy difference between the reactant(s) and product(s):

Keq = e−ΔG0∕RT (14.3)

The Gibbs free energy is given in terms of the enthalpy and entropy, G = H − TS, and the enthalpy
and entropy for a macroscopic ensemble of particles may be calculated from properties of a relatively
few molecules by means of statistical mechanics, as discussed in Section 14.4.

The picture in Figure 14.1 relates to chemical reactions occurring on a single energy surface, as
is typical for a thermal reaction. Photochemical reactions, on the other hand, occur on at least two
and possibly more surfaces. The reaction is initiated by absorption of a photon to produce an excited
state with the same nuclear coordinates as the ground state. This geometry will rarely be a stationary
point on the excited surface and the resulting nuclear movements may be explored by minimization
or dynamical methods analogous to those on the ground state (Chapters 13 and 15). At some point,
however, the system must return to the ground electronic surface. While this can occur by a radiative
transition (fluorescence or phosphorescence), it may also occur by a non-radiative process where
the excess energy is transferred to vibrational energy on the ground state surface. The probability
for the latter process depends on the energy difference between the two surfaces, and therefore has
a tendency of occurring at nuclear geometries where the two surfaces “touch” each other, and these
points are known as conical intersections.2 Two energy surfaces of the same symmetry cannot cross
for a diatomic system and instead make an avoided crossing, as illustrated in Figure 3.2. In a multidi-
mensional system, however, there is no such restriction, and two energy surfaces may have the same
energy for the same set of nuclear coordinates. Locating conical intersections is a constrained opti-
mization problem, involving finding a set of nuclear coordinates where two different energy functions
have the same value, and also involves the non-adiabatic coupling elements between different wave
functions, as discussed in Section 3.1.

A conical intersection may be thought of as a “funnel” in the N − 2-dimensional subspace that
serves as the dynamical bottleneck for a photochemical reaction, analogously to the TS for a ther-
mal reaction. It should be noted, however, that the transition between the excited and ground state
surfaces may occur over quite a wide range of nuclear configurations, making the concept of a single
“transition structure” somewhat blurred. Furthermore, for many systems it is the movement on the
excited state surface to achieve the geometry of the conical intersection that limits the reaction rate,
and not the actual transition between the two surfaces at the conical intersection.
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. Rice–Ramsperger–Kassel–Marcus Theory

The canonical TST theory in Section 14.1 assumes fast energy exchange with the surroundings, that
is that the reacting molecule is in thermal equilibrium with the environment. For unimolecular reac-
tions in the gas phase this assumption may not hold, especially not if the pressure is low (e.g. frag-
mentations in a mass spectrometer). TST may alternatively be formulated in terms of the total energy,
also known as microcanonical TST. When applied to unimolecular reactions, this is usually known
as Rice–Ramsperger–Kassel–Marcus (RRKM) theory. The fundamental assumption here is that no
re-crossing occurs for a given total energy of the molecule.

Consider a reaction where a molecule A acquires energy by collision with a molecule M (which may
be the same as A) to form an energized molecule A∗, with the energy being distributed between the
translation, rotation and vibrational degrees of freedom. The vibrational energy can be transferred
between the different modes owing to vibrational anharmonicity and if it is higher than the activa-
tion energy E≠, it may at some point accumulate in a specific mode to reach an activated state A#

(transition state), leading to a chemical product P:

A + M
k1

←←←←←←←←←←←←←←←←←←←←⇀↽←←←←←←←←←←←←←←←←←←←←
k−1

A∗ + M

A∗ k2⟶ A# k#
⟶P

(14.4)

Assuming that the decay rate k# for the activated A# is much faster than k2, the rate for production
of P can be written in terms of the k1, k−1 and k2 constants by making a steady-state approximation
for A∗ , as shown by

d[P]
dt

= k2[A∗] =
k1k2[M][A]
k−1[M] + k2

= keff [A] (14.5)

The effective rate constant keff is thus a function of the concentration of M, that is the pressure of
the gas. The amount of energy transferred to A∗ by M will be a variable, and the rate constants
for the activation and reaction (but not the deactivation) will depend on the energy, that is k1(E)
and k2(E). The effective rate constant in a small energy interval around E is obtained by rearranging
Equation (14.5):

keff (E + dE) =
(dk1 (E)∕k−1) k2 (E)
1 + k2 (E)∕k−1 [M]

(14.6)

The ratio k1/k−1 is the equilibrium constant for the first step in Equation (14.4) and dk1(E)/k−1 is the
probability of A∗ being in a state with energy E, P(E). The k−1[M] factor is the collision frequency
for deactivation that is usually denoted by 𝜔. The unimolecular rate constant can be obtained by
integrating the effective rate constant over all energies higher than the activation energy:

kuni =
∫

∞

E≠

k2 (E)
1 + k2 (E)∕𝜔

P (E) dE (14.7)

The probability factor P(E) is given by a Boltzmann distribution for the reactant, while k2(E) is deter-
mined by the number of vibrational quantum states for the activated state A#. The details are suf-
ficiently complex that the reader is referred to more specialized textbooks,3, 4 but the essence of
Equation (14.7) is that the rate constant can be evaluated from the geometries and vibrational fre-
quencies of the reactant and activated complex. In the fast energy exchange limit (i.e. 𝜔 → ∞) the
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RRKM expression becomes equivalent to the TST expression (Equation (14.2)). RRKM calculations
typically assume harmonic vibrations, which may be poor for high-barrier reactions where the vibra-
tional anharmonicity significantly increases the state count. An exact calculation of all the anhar-
monic vibrational states, however, is a significant computational undertaking.

. Dynamical Effects

The inherent assumption of both TST and RRKM is that the internal (vibrational) energy redistri-
bution is significantly faster than the timescale for breaking/forming a bond. This means that the
reaction rate only depends on the total amount of internal energy, not on how the energy is acquired.
In other words, the reaction is independent of whether the energy is supplied by excitation of bending
or stretching vibrations. In the large majority of chemical reactions, this is probably a valid assump-
tion. For certain reactions where the reaction path involves an intermediate, however, the product
distribution indicates that the energy is not completely randomized for the intermediate, that is the
timescale for internal redistribution is comparable to that for the progression along the reaction coor-
dinate.5 A specific example is shown in Figure 14.2.

The reaction in Figure 14.2 involves a biradical intermediate and if it has a sufficiently long lifetime,
the thermal randomization of the energy should lead to a symmetric product distribution. Experi-
mentally, however, the exo product is found to be favored over the endo isomer by 4 : 1. Given that
the potential energy surface is symmetric, this has been interpreted as a non-statistical distribution
of the internal kinetic energy in the bond-forming step.6 The bond-breaking reaction occurs from a
sample of molecules with a Boltzmann energy distribution, but the small fraction of molecules that in
a given timeframe actually reacts must necessarily have the energy localized in the C—N bonds. The
molecules passing over the first TS (breaking the C—N bonds) therefore enter the biradical minimum
on the potential energy surface with the nuclear kinetic energy in a non-random fashion. In the exam-
ple shown in Figure 14.2, a direct continuation of the nuclear movement arising from breaking both
the C—N bonds leads to the exo product. The favoring of the exo product can thus be explained by
the molecules “surfing” over the intermediate minimum on the potential energy surface, rather than

N

N

D

D

D

D

D

D

D

D

–N2

endo

exo

Figure . Thermal decomposition leads to a 4 : 1 preference for the exo isomer.
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being trapped and thermally randomized. Describing such effects requires an explicit simulation of
the dynamics, as discussed in Section 15.2.

. Statistical Mechanics

Most experiments are performed on macroscopic samples, containing perhaps ∼1020 particles. Cal-
culations, on the other hand, are performed on relatively few particles, typically 1–103, or up to 106

in special cases. The (macroscopic) result of an experimental measurement can be connected with
properties of the microscopic system. The temperature, for example, is related to the average kinetic
energy of the particles:

⟨Ekin⟩ =
3
2 RT (14.8)

The connection between properties of a microscopic system and a macroscopic sample is provided
by statistical mechanics.

All molecules are in their energetic ground state at a temperature of 0 K but they have a distribution
of all possible (quantum) energy states at a finite temperature. The relative probability P of a molecule
being in a state with an energy 𝜀 at a temperature T is given by a Boltzmann factor:

P ∝ e−𝜀∕kT (14.9)

The exponential dependence on the energy means that there is a low (but non-zero) probability for
finding a molecule in a high-energy state. This decreased probability for high-energy states is partly
offset by the fact that there are many more states with high energy than with low energy. The most
probable energy of a molecule in a macroscopic ensemble is therefore not necessarily the one with
lowest energy, and a typical distribution is shown in Figure 14.3.

The key feature in statistical mechanics is the partition function.7, 8 Just as the wave function is
the cornerstone in quantum mechanics (from which everything else can be calculated by applying
proper operators), the partition function allows calculation of all macroscopic functions in statistical
mechanics.

Energy
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Figure . Boltzmann energy distribution.
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The partition function for a single molecule is usually denoted q and is defined as a sum of expo-
nential terms involving all possible quantum energy states:

q =
∞∑

i=states
e−𝜀i∕kT (14.10)

The partition function can also be written as a sum over all distinct energy levels, multiplied by a
degeneracy factor gi that indicates how many states there are with the same energy 𝜀i:

q =
∞∑

i=leves
gie−𝜀i∕kT (14.11)

The partition function can be considered as an average excited state number-operator, since it is the
probability-weighted sum of energy states, each counted with a factor of 1. It may also be viewed as
the normalization factor for the Boltzmann probability distribution:

P(𝜀i) = q−1e−𝜀i∕kT (14.12)

The partition function q is for a single particle; the corresponding quantity Q for a collection of N
identical non-interacting particles (ideal gas) is given in Equation (14.14):

Q = qN (different particles, non-interacting) (14.13)

Q =
qN

N!
(identical particles, non-interacting) (14.14)

If the particles are interacting (liquid or solid state), the partition function Q must be calculated by
summing over all energy states Ei for the whole system. Note that Q here describes the whole system
consisting of N interacting particles and the energy states Ei are consequently for all the particles:

Q =
∞∑

i
e−Ei∕kT (14.15)

Owing to the closely spaced energy levels, quantum effects can often be neglected and the state dis-
tribution treated as continuous. This corresponds to replacing the discrete sum over energies by an
integral over all coordinates (r) and momentum (p), called the phase space:

Q =
∫

e−E(r,p)∕kT dr dp (14.16)

More correctly, the partition function in Equation (14.16) should be written in terms of the Hamilto-
nian for the system, that is replacing E with H. The kinetic and potential energy components, however,
can be separated (H = T + V). In the absence of a potential energy, the Hamiltonian is purely kinetic
energy and the system is an ideal gas. The interesting component is therefore the potential energy
part in the partition function, which we denote by E. In the large majority of cases, the energy E is of
the force field type described in Chapter 2.

The significance of the partition function Q is that thermodynamic functions, such as the internal
energy U and Helmholtz free energy A (A = U − TS) can be calculated from it:

U = kT2
(
𝜕 lnQ
𝜕T

)

V
(14.17)

A = −kT lnQ (14.18)
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Macroscopic observables, such as pressure P and heat capacity at constant volume CV, may be cal-
culated as derivatives of thermodynamic functions:

P = −
(
𝜕A
𝜕V

)

T
= kT

(
𝜕 lnQ
𝜕V

)

T
(14.19)

CV =
(
𝜕U
𝜕V

)

V
= 2kT

(
𝜕 lnQ
𝜕T

)

V
+ kT2

(
𝜕 ln2Q
𝜕T2

)

V
(14.20)

Other thermodynamic functions, such as the enthalpy H, the entropy S and Gibbs free energy G, can
be constructed from these relations:

H = U + PV = kT2
(
𝜕 lnQ
𝜕T

)

V
+ kTV

(
𝜕 lnQ
𝜕V

)

T
(14.21)

S = U − A
T

= kT
(
𝜕 lnQ
𝜕T

)

V
+ k lnQ (14.22)

G = H − TS = kTV
(
𝜕 lnQ
𝜕V

)

T
− kT lnQ (14.23)

Note the difference between energetic properties such as U, P and H, which all depend on derivatives
of Q, and entropic properties such as A, S and G, which depend directly on Q. For simplicity, we will
use U and A for illustrations in the following, but other quantities such as H and S can be treated
completely analogously.

In order to calculate the partition function q (Q), one needs to know all possible quantum states for
the system. These can in principle be calculated by solving the nuclear Schrödinger equation, once
a suitable potential energy surface is available, for example from solving the electronic Schrödinger
equation. Such a rigorous approach is only possible for di- and triatomic systems. The energy levels
for a single conformation of an isolated polyatomic molecule can be calculated within the Rigid-
Rotor Harmonic-Oscillator (RRHO) approximation, where the electronic, vibrational and rotational
degrees of freedom are assumed to be separable. Additional conformations can be included straight-
forwardly by simply offsetting the energy scale relative to the most stable conformation. An isolated
molecule corresponds to an ideal gas state and the partition function can be calculated exactly for
such a system within the RRHO approximation, as discussed in Section 14.5.

The intermolecular interaction for a condensed phase (liquid, solution, solid) is comparable to or
larger than a typical kinetic energy, and no separation of degrees of freedom is possible. Calculating
the partition function by summing over all energy levels, or integrating over all phase space, is there-
fore impossible. It is, however, possible by sampling to estimate differences in Q and derivatives such
as 𝜕 ln Q/𝜕T from a representative sample of the phase space, as discussed in Section 14.6.

. The Ideal Gas, Rigid-Rotor Harmonic-Oscillator Approximation

The total energy for an isolated molecule can be approximated as a sum of terms involving transla-
tional, rotational, vibrational and electronic states, and this is a good approximation for the large
majority of systems. For linear, “floppy” (soft bending potential) molecules the separation of the
rotational and vibrational modes may be problematic. If two energy surfaces come close together
(avoided crossing), the separability of the electronic and vibrational modes may be a poor approxi-
mation (breakdown of the Born–Oppenheimer approximation, Section 3.1).

iranchembook.ir/edu



Statistical Mechanics and Transition State Theory 

There are in principle also energy levels associated with nuclear spins. In the absence of an external
magnetic field, these are degenerate and consequently contribute a constant term to the partition
function. As nuclear spins do not change during chemical reactions, we will ignore this contribution.

The assumption that the energy can be written as a sum of terms implies that the partition function
can be written as a product of terms. As the enthalpy and entropy contributions involve taking the
logarithm of q, the product of q’s thus transforms into sums of enthalpy and entropy contributions:

𝜀tot = 𝜀trans + 𝜀rot + 𝜀vib + 𝜀elec
qtot = qtransqrotqvibqelec

Htot = Htrans + Hrot + Hvib + Helec (14.24)
Stot = Strans + Srot + Svib + Selec

The sum over allowed quantum states runs to infinity for each of the partition functions. However,
since the energies become larger, the partition functions are finite. Let us examine each of the q factors
in a little more detail.

14.5.1 Translational Degrees of Freedom

The translational degrees of freedom can be exactly separated from the other 3N − 3 coordinates.
The allowed quantum states for the translational energy are determined by placing the molecule in a
“box”, that is the potential is zero inside the box but infinite outside. The only purpose of the box is
to allow normalization of the translational wave function, that is the exact size is not important. The
solutions to the Schrödinger equation for such a “particle in a box” are standing waves, cosine and
sine functions. The energy levels for a one-dimensional box of length L are associated with a quantum
number n, and depend only on the total molecular mass M:

𝜀n = n2h2

8ML2 (14.25)

Although the energy levels are quantized, the energy difference between levels is so small that the dis-
tribution can be treated as continuous. The summation involved in the partition function can there-
fore be replaced by an integral (an integral is just a sum in the limit of infinitely small contributions):

qtrans =
∞∑

n=0
e−𝜀n∕kT ≈

∞

∫

0

e−𝜀n∕kT dn (14.26)

Inserting the energy expression and performing the integration gives

qtrans =
(

2𝜋MkT
h2

)3∕2
V (14.27)

The only molecular parameter that enters is the total molecular mass M. The volume depends on
the number of particles. It is customary to work on a molar scale, in which case V is the volume of
1 mol of (ideal) gas.

14.5.2 Rotational Degrees of Freedom

The rotation of a molecule is in the lowest approximation assumed to occur with a geometry that is
independent of the rotational and vibrational quantum numbers. A more refined treatment allows
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the geometry to “stretch” with rotational energy, which may be described by adding a “centrifugal”
correction, and such corrections are typically of the order of a few percent. The presence of vibrational
anharmonicity will furthermore cause the effective geometry to depend on the vibrational quantum
state. Within the rigid-rotor approximation these effects are neglected, that is the rotation of the
molecule is assumed to occur with a fixed geometry.

The energy levels calculated from the Schrödinger equation for a diatomic “rigid rotor” are given
in terms of a quantum number J running from zero to infinity and the moment of inertia I:

𝜀J = J (J + 1) h2

8𝜋2I
(14.28)

The moment of inertia is calculated from the atomic masses m1 and m2 and the distances r1 and r2
of the nuclei relative to the center of mass:

I = m1r2
1 + m2r2

2 (14.29)

The moment of inertia is for all molecules, except very light species such as H2 and LiH, so large that
the spacing between the rotational energy levels is much smaller than kT at ambient temperatures.
As for qtrans, this means that the summation in Equation (14.10) can be replaced by an integral:

qrot =
∞∑

J=0
e−𝜀J∕kT ≈

∫

∞

0
e−𝜀J∕kT dJ (14.30)

Performing the integration yields

qrot =
8𝜋2IkT

h2𝜎
(14.31)

The symmetry index 𝜎 is 2 for a homonuclear system and 1 for a heteronuclear diatomic molecule.
For a polyatomic molecule, the equivalent of Equation (14.29) is a 3 × 3 matrix:

I =
⎛
⎜
⎜
⎜
⎝

∑
i mi

(
y2

i + z2
i
)

−
∑

i mixiyi −
∑

i mixizi

−
∑

i mixiyi
∑

i mi
(
x2

i + z2
i
)

−
∑

i miyizi

−
∑

i mixizi −
∑

i miyizi
∑

i mi
(
x2

i + y2
i
)

⎞
⎟
⎟
⎟
⎠

(14.32)

Here the coordinates are again relative to the center of mass. By choosing a suitable coordinate trans-
formation, this matrix may be diagonalized (Section 17.2), with the eigenvalues being the moments
of inertia and the eigenvectors called principal axes of inertia.

The rotational energy levels for a general polyatomic molecule cannot be written in a simple form.
A good approximation, however, can be obtained from classical mechanics, resulting in the following
partition function:

qrot =
√
𝜋

𝜎

(
8𝜋2kT

h2

)3∕2 √
I1I2I3 (14.33)

Here Ii are the three moments of inertia. The symmetry index 𝜎 is the order of the rotational subgroup
in the molecular point group (i.e. the number of proper symmetry operations); for H2O it is 2, for
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NH3 it is 3, for benzene it is 12, etc. The rotational partition function requires only information about
the atomic masses and positions (Equation (14.32)), that is the molecular geometry.

14.5.3 Vibrational Degrees of Freedom

The molecular vibrations may in the lowest approximation be described as those of a harmonic oscil-
lator. Harmonic vibrations can be derived by expanding the energy as a function of the nuclear coor-
dinates in a Taylor series around the equilibrium geometry. For a diatomic molecule, the only relevant
coordinate is the internuclear distance R:

E (R) = E
(
R0

)
+ dE

dR
(R − R0) + 1

2
d2E
dR2 (R − R0)2 + 1

6
d3E
dR3 (R − R0)3 +⋯ (14.34)

The first term may be taken as zero, since this is just the zero point for the energy. The second term
(the gradient) vanishes since the expansion is around the equilibrium geometry. Keeping only the
lowest non-zero term results in the harmonic approximation, where k is the force constant:

E (ΔR) ≅ 1
2

d2E
dR2 ΔR2 = 1

2 kΔR2 (14.35)

Including higher-order terms leads to anharmonic corrections to the vibration, and such effects are
typically of the order of a few percent. The energy levels obtained from the Schrödinger equation for
a one-dimensional harmonic oscillator (diatomic system) are given in

𝜀n =
(

n + 1
2

)

h𝜈

𝜈 = 1
2𝜋

√
k
𝜇

; 𝜇 =
m1m2

m1 + m2
(14.36)

Here n is a quantum number running from zero to infinity and 𝜈 is the vibrational frequency given
in terms of the force constant k (𝜕2E/𝜕R2) and the reduced mass 𝜇.

In contrast to the translational and rotational energy levels, the spacing between vibrational energy
levels is comparable to kT for temperatures around 300 K, and the summation for qvib (Equation
(14.10)) cannot be replaced by an integral. Due to the regular spacing, however, the infinite summa-
tion can be written in a closed form:

qvib =
∞∑

n=0
e−𝜀n∕kT = e−h𝜈∕2kT + e−3h𝜈∕2kT + e−5h𝜈∕2kT +⋯

qvib = e−h𝜈∕2kT (1 + e−h𝜈∕kT + e−2h𝜈∕kT +⋯)
qvib = e−h𝜈∕2kT

1−e−h𝜈∕kT

(14.37)

Each successive term in the infinite sum is smaller than the previous by a constant factor (e−h𝜈 /kT,
which is <1), and can therefore be expressed in a closed form. Calculating the vibrational partition
function for a harmonic oscillator thus requires the second derivative of the energy and the atomic
masses.

The force constant k is for a polynuclear molecule replaced by a 3Natom × 3Natom matrix containing
all the second derivatives of the energy with respect to the coordinates. By mass-weighting and trans-
forming to a new coordinate system called the vibrational normal coordinates, this may be brought
to a diagonal form (see Section 17.2.2 for details). In the vibrational normal coordinates, the 3N-
dimensional Schrödinger equation can be separated into 3N one-dimensional equations, each having
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the form of a harmonic oscillator. Of these, three describe the overall translation and three (two for
a linear molecule) describe the overall rotation, leaving 3N − 6(5) vibrations.

If the stationary point is a minimum on the energy surface, the eigenvalues of the force constant
matrix are all positive. If, however, the stationary point is a TS, one (and only one) of the eigenvalues
is negative. This corresponds to the energy being a maximum in one direction and a minimum in
all other directions. The “frequency” for the “vibration” along the eigenvector with a negative force
constant will formally be imaginary, as it is the square root of a negative number (Equation (14.36)),
and for a TS there are thus only 3N − 7 vibrations.

The vibrational degrees of freedom are decoupled in the vibrational normal coordinate system
within the harmonic approximation. Since the energy of the 3N − 6 vibrations can be written as a
sum, the partition function can be written as a product over 3N − 6 vibrational partition functions:

Evib =
3Natom−6(7)∑

i=1

(

ni +
1
2

)

h𝜈i (14.38)

qvib =
3Natom−6(7)∏

i=1

e−h𝜈i∕2kT

1 − e−h𝜈i∕kT
(14.39)

The vibrational frequencies are needed for calculating qvib, and can be obtained from the force con-
stant matrix and atomic masses.

14.5.4 Electronic Degrees of Freedom

The electronic partition function involves a sum over electronic quantum states. These are the solu-
tions to the electronic Schrödinger equation, that is the lowest (ground) state and all possible excited
states. The energy difference between the ground and excited states is in almost all molecules large
compared with kT, which means that only the first term (the ground state energy) in the partition
function summation (Equation (14.11)) is important:

qelec =
∞∑

i=0
gie−𝜀i∕kT ≈ g0e−𝜀0∕kT (14.40)

Defining the zero point for the energy as the electronic energy of the reactant, the electronic partition
functions for the reactant and TS are given below:

qreactant
elec

= g0 (14.41)

qTS
elec

= g0e−ΔE≠∕kT (14.42)

The ΔE≠ term is the difference in electronic energy between the reactant and TS, and g0 is the elec-
tronic degeneracy of the (ground state) wave function. The degeneracy may be either in the spin part
(g0 = 1 for a singlet, 2 for a doublet, 3 for a triplet, etc.) or in the spatial part (g0 = 1 for wave functions
belonging to an A, B or Σ representation in the point group, 2 for an E, Δ or Φ representation, 3 for
a T representation, etc.). The large majority of stable molecules have non-degenerate ground state
wave functions and consequently g0 = 1.
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14.5.5 Enthalpy and Entropy Contributions

Given the partition function, the enthalpy and entropy terms may be calculated by carrying out the
required differentiations in Equations (14.21) to (14.23). For one mole of molecules, the results for a
non-linear system are (R being the gas constant) given in the following equations:

Htrans =
5
2 RT (14.43)

Hrot =
3
2 RT (14.44)

Hvib = R
3N−6(7)∑

i=1

(h𝜈i
2k

+
h𝜈i
k

1
eh𝜈i∕kT − 1

)

(14.45)

Hreactant
elec

= 0 ; HTS
elec

= ΔE≠ (14.46)

Strans =
5
2 R + R ln

(

V
NA

(
2𝜋MkT

h2

)3∕2
)

(14.47)

Srot = R

(

3
2 + ln

(√
𝜋

𝜎

(
8𝜋2kT

h2

)3∕2 √
I1I2I3

))

(14.48)

Svib = R
3N−6(7)∑

i=1

(h𝜈i
kT

1
eh𝜈i∕kT − 1

− ln(1 − e−h𝜈i∕kT )
)

(14.49)

Sreactant
elec

= STS
elec

= R ln g0 (14.50)

The rotational terms are slightly different for a linear molecule, and the vibrational terms will contain
one more vibrational contribution:

Hrot(linear) = RT (14.51)

Srot(linear) = R
[

1 + ln
(

8𝜋2IkT
𝜎h2

)]

(14.52)

The vibrational enthalpy consists of two parts, the first being a sum of 1/2h𝜈 contributions giving the
zero-point energies. The second part depends on temperature and is a contribution from molecules
that are not in the vibrational ground state. This contribution goes toward zero as the temperature
goes to zero where all molecules are in the ground state. Note also that the sum over vibrational
frequencies runs over 3N − 6 for the reactant(s), but only 3N − 7 for the TS. One of the normal vibra-
tions has been transformed into the reaction coordinate at the TS, which formally has an imaginary
frequency.

In order to calculate ΔG≠ = GTS − Greactant, we need ΔH≠ and ΔS≠. ΔH≠

elec is directly the difference
in electronic energy between the TS and reactant. Except for complicated reactions involving several
electronic states of different degeneracy (e.g. singlet molecules reacting via a triplet TS),ΔS≠elec is zero.

For unimolecular reactionsΔH≠

trans,ΔH≠

rot andΔS≠trans are zero, whileΔS≠rot may be slightly different
from zero owing to a change in geometry (thereby changing the moments of inertia). The ΔH≠

vib
contribution is usually a few kJ/mol negative, as there is one less vibration at the TS (lack of zero-
point energy). The TS is normally somewhat more ordered than the reactant, typically giving a slightly
negative ΔS≠vib.
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For bimolecular reactions (i.e. where the reactant is two separate molecules) ΔH≠

trans and ΔH≠

rot
contribute a constant −4RT. The translational and rotational entropy changes are substantially neg-
ative, −30 to −50 J/mol K, due to the fact that there are six translational and six rotational modes in
the reactants but only three of each at the TS. The six remaining degrees of freedom are transformed
into the reaction coordinate and five new vibrations at the TS. These additional vibrations usually
make ΔH≠

vib a few kJ/mol positive and ΔS≠vib positive by 5–10 J/mol K. For bimolecular reactions,
the entropy typically raises the free energy barrier by 40–60 kJ/mol relative to the electronic energy
alone.

Similarly, in order to calculate ΔG0 = Gproduct − Greactant we need ΔH0 and ΔS0. The generalization
for the electronic, translational and rotational contributions to ΔH≠ and ΔS≠ given above also holds
forΔH0 andΔS0. The considerations for a unimolecular reaction hold for reactions where the number
of reactant and product molecules is the same, while the generalizations for a bimolecular reaction
correspond to an addition where two reactants form a single product molecule (the reverse process
being a fragmentation). The vibrational contribution toΔH0 andΔS0 for a “number-conserving” reac-
tion is usually small, since there is the same number of vibrational modes in the reactant and product.
For an addition reaction, the number of vibrational modes increases by six and the contributions to
ΔH0 and ΔS0 are again slightly positive, typically by a few kJ/mol and 5–10 J/mol K.

Tables 14.1 to 14.3 give some examples of the magnitude of each term for two bimolecular reac-
tions (Diels–Alder and SN2 reactions, forming either one or two molecules as the product) and a
unimolecular rearrangement (Claisen reaction) (Figure 14.4).

All values have been calculated at the ωB97XD level with the pcseg-2 basis set for the Diels–Alder
and Claisen reactions, and the aug-pcseg-2 basis set for the SN2 reaction. ΔH and TΔS values are
given in kJ/mol at a temperature of 298 K (RT = 2.5 kJ/mol) and ΔS values are in cal/mol K.

The ωB97XD/pcseg-2 activation enthalpies for the Diels–Alder and Claisen reactions are in good
agreement with the experimental values of 105 ± 8 kJ/mol9 and 125 kJ/mol,10 respectively, and the

Table . Diels–Alder reaction of butadiene and ethylene to form cyclohexene.

ΔH‡ ΔS‡ −TΔS‡ ΔH ΔS −TΔS

Electronic 95 0 0 −200 0 0
Vibrational 15 5 −6 29 2 −2
Rotational −4 −11 14 −4 −13 17
Translational −4 −35 43 −4 −35 43
Total 103 −41 52 −178 −46 58
Experimental 105 −41 52 −166 −45 56

Table . SN2 reaction of OH− with CH3F to form CH3OH and F−.

ΔH‡ ΔS‡ −TΔS‡ ΔH ΔS −TΔS

Electronic −5 0 0 −87 0 0
Vibrational 9 7 −9 11 1 −2
Rotational −2 0 0 −2 −4 5
Translational −4 −33 41 0 0 0
Total −2 −27 33 −78 −3 3
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Table . Claisen rearrangement of allyl vinyl ether to form 5-hexenal.

ΔH‡ ΔS‡ −TΔS‡ ΔH ΔS −TΔS

Electronic 140 0 0 −76 0 0
Vibrational −7 −6 7 –1 2 –2
Rotational 0 0 0 0 0 0
Translational 0 0 0 0 0 0
Total 134 −6 7 −77 2 –2
Experimental 125 −8 10

corresponding activation entropies are almost perfectly matched. The SN2 reaction refers to the sit-
uation in the gas phase where the reactants initially form an ion–dipole complex, pass over the TS
and form another ion–dipole complex. The energies given above are relative to the isolated reactants,
which is the reason for the slightly negative activation enthalpy. Note also that the rotational contri-
bution to the reaction enthalpy is not zero; this is due to the fact that one of the reactants is a diatomic
molecule, while one of the products is an atom (which has no rotational term).

In summary, to calculate rate and equilibrium constants we need to calculate ΔG≠ and ΔG0. This
can be done within the RRHO approximation if the geometry, energy and force constants are known
for the reactant, TS and product. The translational and rotational contributions are trivial to calcu-
late, while the vibrational frequencies require the full force constant matrix (i.e. all energy second
derivatives), which may be a significant computational effort.

The above treatment has made some assumptions, such as harmonic frequencies and “sufficiently
small” energy spacing between the rotational levels. If a more elaborate treatment is required, the
summation for the partition functions must be carried out explicitly. An approximate account for
vibrational anharmonicity can be obtained by using the harmonic form for the partition function (and
resulting enthalpy and entropy terms, Equations (14.43) to (14.50)), but using calculated anharmonic
frequencies. The latter can be obtained from the third derivative and partial (diagonal components
only) fourth-order derivatives of the energy with respect to the nuclear geometry.11 A computation-
ally cheap alternative is simply to scale the harmonic vibrational frequencies by a constant factor to
account for anharmonicity in an average fashion.12

Many molecules have internal rotations around bonds with quite small barriers. In the above treat-
ment, these are assumed to be described by simple harmonic vibrations, which may be a poor approx-
imation. The calculated “vibrational frequency” for a low-barrier rotation is often close to zero, and

+

+ –OH CH3OH + F–

O O

CH3F

Figure . The Diels–Alder, SN2 and Claisen reactions.
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inspection of Equation (14.45) shows that the enthalpy term in such cases approaches a constant
factor of RT. The entropy term (Equation (14.49)), however, goes towards infinity as the frequency
approaches zero. Calculating the energy levels and partition function for a hindered rotor is some-
what complicated,13 and is rarely done. If the barrier is very low, the motion may be treated as a free
rotor, in which case it contributes a constant factor of RT to the enthalpy and 1∕2R to the entropy. The
enthalpy contribution is thus asymptotically correct when a low-barrier internal rotation is treated
as a harmonic frequency, but the entropy term is not. Even minor inaccuracies in the calculated fre-
quency may thus lead to large errors in the entropy contribution for small frequencies and care must
be taken in such cases. A specific problem arises in bimolecular addition reactions (or the reverse
fragmentation reaction), where six translational and six rotational degrees of freedom in the reac-
tants are transformed into three translational and three rotational degrees of freedom in the product,
that is creating six new internal degrees of freedom. At the TS, several of these often correspond to
low-barrier internal rotations, which may be problematic to treat as harmonic vibrations.14 Although
the vibrational entropy reaches a value of 1∕2R already for a harmonic frequency of around 400 cm−1,
the difference relative to a hindered internal rotor only becomes significant for frequencies below
100 cm−1 and rotational barriers comparable to RT (∼3 kJ/mol at room temperature).

It should also be noted that the thermodynamic contributions in Equations (14.45) and (14.47)
to (14.49) are calculated using the most common atomic isotopes, while the experimental quanti-
ties of course represent an ensemble of molecules containing a statistical mixture of isotopomers.
It is straightforward but tedious to construct the thermodynamic contributions corresponding to a
mixture of molecules with different atomic isotopes.15 Since the resulting changes are substantially
smaller than the error due to neglect of vibrational anharmonicity, such improvements are usually
not considered.

The electronic energy difference between the reactant/TS and reactant/product is the most impor-
tant contribution to ΔG≠ and ΔG0, as can be seen from Tables 14.1 to 14.3. The electronic energy is
furthermore the most difficult to calculate accurately. Let us consider three cases.

1. The error in ΔE≠ or ΔE0 is ∼50 kJ/mol. It is clear that spending significant amounts of computer
time in order to include vibrational, rotational and translational corrections has little value.

2. The error in ΔE≠ or ΔE0 is ∼5 kJ/mol. The corrections from vibrations, rotations and transla-
tion now become important and should be included. However, sophisticated treatments such as
anharmonic vibrations are unimportant.

3. The error in ΔE≠ or ΔE0 is ∼0.5 kJ/mol. Corrections from vibrations, rotations and translation
are clearly necessary. Explicit calculation of the partition functions for anharmonic vibrations and
internal rotations may be considered. However, at this point other factors also become important
for the activation energy. These include, for example:
(a) The position of the TS has been assumed to be at the maximum on the electronic energy sur-

face, whereas in reality it should be at the maximum on the ΔG surface. This would include
entropy effects and thus allow the position of the TS to depend on temperature. Such treat-
ments are referred to as Variational Transition State Theory (VTST)16, 17 and are important for
reactions with small (or zero) enthalpy barriers, such as recombination of radicals or carbene
additions.18

(b) The possibility of re-crossings and tunneling (which requires a quantum description of the
nuclear motion) should be included in order to produce a transmission coefficient. The effect
of tunneling can be estimated from the imaginary frequency at the TS, but an accurate estimate
requires elaborate calculations. The re-crossing effect requires simulation of the dynamics of
the reaction, again a substantial computational problem.
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Calculating electronic activation energies with an accuracy of ∼0.5 kJ/mol is only possible for very
simple systems. An accuracy of ∼5 kJ/mol is usually considered a good, but hard to get, level of
accuracy. The situation is slightly better for relative energies of stable species, but a ∼5 kJ/mol accu-
racy still requires significant computational effort. Thermodynamic corrections beyond the rigid-
rotor/harmonic vibrations approximation are therefore rarely performed.

A prediction of ΔE≠/ΔE0 to within ∼0.5 kJ/mol may produce a ΔG≠/ΔG0 accurate to may be
∼1 kJ/mol. This corresponds to an error of a factor of ∼1.5 (at T = 300 K) in the rate/equilibrium
constant, which is poor compared with what is routinely obtained by experimental techniques. Cal-
culating ΔG≠/ΔG0 to within ∼5 kJ/mol is still only possible for fairly small systems. This corresponds
to predicting the absolute rate constant, or the equilibrium distribution, to within a factor of 10. Theo-
retical calculations are therefore not very useful for predicting absolute rate or equilibrium constants.
Relative rates, however, are somewhat easier. Often the interest is not in how fast a certain product
is formed, but on the rate difference between two reactions. The absolute rate (only) influences how
long the total reaction time will be or how high the temperature should be. Rate differences, on the
other hand, determine what the ratio between products is. When comparing calculated activation
parameters for similar reactions, one can always hope for some “cancellation of errors”. Theoretical
methods are most useful for predicting and rationalizing different reaction pathways, not in predict-
ing absolute rates.

The activation enthalpies and entropies in principle depend on temperature (Equations (14.43) to
(14.45) and (14.47) to (14.49)), but only weakly so, and for a limited temperature range they may be
treated as constants. Obtaining these quantities experimentally is possible by measuring the reaction
rate as a function of temperature and plotting ln (krate/T) against T−1:

krate = kT
h

e−ΔG≠∕RT

ln
(krate

T

)

= ln
(

k
h

)

+ ΔS≠
R

− ΔH≠

RT

(14.53)

Such plots should produce a straight line with the slope being equal to −ΔH≠/R and the intercept
equal to ln (k/h) + ΔS≠/R. As the available temperature range often is ∼100 ◦C, the error in ΔH≠

will typically be 0.5–2 kJ/mol. The activation entropy is determined by extrapolating outside the
data points to T = ∞ (1/T = 0), and is usually somewhat less well defined; a typical error may be
5 J/mol K.

Experimentalists often analyze their data in terms of an Arrhrenius expression instead of the TST
expression of Equation (14.53) by plotting ln (krate) against T−1:

krate = Ae−ΔE≠∕RT

ln(krate) = ln(A) − ΔE≠

RT
(14.54)

The connection with the TST expression (14.53) may be established from the definition of the acti-
vation energy:

ΔE≠ = RT2
(d ln krate

dT

)

V
(14.55)
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This produces the relationship shown below:

ΔH≠ = ΔE≠ − (1 − Δn) RT (14.56)

ΔS≠ = R
[

lnA − ln
(

kT
h

)

− (1 − Δn) + Δn (RT)
]

(14.57)

Here Δn is the change in the number of molecules from the reactant to the TS, that is Δn = 0 for a
unimolecular reaction, −1 for a bimolecular reaction, etc. For a solution phase reaction Δn is approx-
imately 0.

For a reaction taking place by multiple reaction paths (e.g. conformational TSs), the observed acti-
vation energy is obtained from the observed rate constant, which is a sum over individual rate con-
stants:

ki =
kT
h

e−ΔG≠

i ∕RT

kobserved =
∑

i
ki (14.58)

e−ΔG≠

observed∕RT =
∑

i
e−ΔG≠

i ∕RT

The presence of multiple reaction paths with similar activation energies will thus result in an effective
activation energy that is lower than the activation energy of the lowest TS.

. Condensed Phases

The (quantum) energy states for a single molecule in the rigid-rotor harmonic-oscillator approxima-
tion are sufficiently regular to allow an explicit construction of the partition function. For a collection
of many interacting particles (condensed phase), the relevant energy states are those describing the
vibrations and translation and rotation of molecules relative to each other. The energy states are in
this case not only numerous but also so irregularly spaced that it is impossible to derive them directly
from molecular quantities. It is consequently not possible to construct the partition function explic-
itly. It is, however, possible to estimate derivatives of Q and differences in Q by a representative sample
of the system. Condensed phases can be modeled by periodic boundary conditions and configura-
tions generated by either molecular dynamics or Monte Carlo procedures, as discussed in Sections
15.1 and 15.2.

We can derive formal expressions for U and A from Equations (14.15) and (14.17) by using the fact
that 𝜕 ln Q/𝜕T = Q−1𝜕Q/𝜕T:

U = kT2

Q
𝜕Q
𝜕T

=kT2

Q
𝜕

𝜕T

( ∞∑

i
e−Ei∕kT

)

=
∞∑

i
Ei(Q−1e−Ei∕kT ) (14.59)

A = −kT lnQ = −kT ln

( ∞∑

i
e−Ei∕kT

)

(14.60)
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The Boltzmann probability function P can be written either in a discrete energy representation or in
a continuous phase space formulation:

P(Ei) = Q−1e−Ei∕kT (14.61)
P (r, p) = Q−1e−E(r,p)∕kT (14.62)

Here Q−1 is a normalization factor. The internal energy U in Equation (14.59) can thus be written as

U =
∞∑

i
EiP(Ei) (14.63)

U =
∫

E(r, p)P(r, p)dr dp (14.64)

Equation (14.63) shows that U is simply a sum of energies weighted by the probability of being in that
state, that is U is the average (potential) energy of the system. Since high-energy states occur with a
low probability, only the low-energy region of the phase space is important for the internal energy.

A similar expression may be derived for A by substituting 1 with eE/kTe−E/kT in Equation (14.59)
and summing over all Nstates:

A = −kT lnQ = kT ln
(

1
Q

)

= kT ln
⎛
⎜
⎜
⎝

∞∑

i
e−Ei∕kT eEi∕kT

NstatesQ

⎞
⎟
⎟
⎠

A = −kT ln(Nstates) + kT ln
(∞∑

i
eEi∕kT P(Ei)

)
(14.65)

The ln (Nstates) term is constant and corresponds to a change of the zero point, and can consequently
be neglected. Alternatively, A may be written as an integral over phase space:

A = kT ln
∫

eE(r,p)∕kT P(r,p)dr dp (14.66)

In contrast to U (Equation (14.63)), the Helmholtz free energy A depends exponentially on the energy;
that is although high-energy states occur infrequently, they contribute significantly owing to the expo-
nential weighting factor. Alternatively stated, U depends only on the derivative of Q, while A depends
directly on Q.

It is not possible to carry out the summation over all states, or equivalently integrate over all phase
space in Equations (14.63) to (14.65). The U and A values could in principle be calculated by sam-
pling the phase space in a random fashion (Monte Carlo-type integration), but such an approach will
suffer from an extremely slow convergence as the large majority of points will have high energies
and consequently contribute with a very small probability. If, however, a representative collection of
configurations can be generated, the sum over all states can be approximated by an average over a
finite set of configurations. Representative here means that the number of configurations with a given
energy is proportional to that given by the Boltzman distribution, and that all “important” parts of
the phase space are sampled. For a finite number of points M, it is possible to calculate the average
value of a given property X according to Equation (14.67), where the points can be denoted either by
their energies or by their positions and momentum:

⟨X⟩M = 1
M

M∑

i=1
X(Ei) =

1
M

M∑

i=1
X(ri,pi) (14.67)
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The number of sampling points in a typical simulation is perhaps ∼106, which represents only an
infinitesimal fraction of the 6Natom-dimensional phase space (a rough 10-point sampling in each
dimension would give 106N points). As already mentioned, however, the vast majority of the huge
phase space is high in energy and is not accessible at normal temperatures. Consider, for example,
placing 1000 water molecules at random in a box with a dimension corresponding to a density of
1 g/cm3. If any two water molecules have a significant overlap, there will be a large repulsive interac-
tion, and therefore a vanishing probability of such a configuration occurring. Placing all 1000 water
molecules in the box without any two molecules having an overlap is difficult, and will essentially
never occur by a random placement. Starting from an energy-minimized structure and allowing the
system to evolve by a molecular dynamics algorithm, however, will only sample those configurations
where no serious molecular overlaps occur, that is the important low-energy region.

The “magic” in simulations is generating an ensemble that yields a good representation of the
“important” phase space for the given property. A collection of configurations is called an ensem-
ble and Equation (14.67) is called an ensemble average, with the subscript indicating what is being
averaged. There are two main techniques for generating an ensemble, Monte Carlo and molecular
dynamics, which are discussed in Sections 15.1 and 15.2. These methods are based on the ergodic
hypothesis (which can be proven rigorously only for a hard-sphere gas), which makes the assumption
that the average obtained by following a small number of particles over a long time is equivalent to
averaging over a large number of particles for a short time. Taken to the limit, this implies that a time
average over a single particle is equivalent to an average of a large number of particles at any given
time snapshot, that is time-averaging is equivalent to ensemble-averaging:

⟨X⟩ = lim
𝜏→∞

1
𝜏 ∫

𝜏

0
X (t) dt = lim

M→∞
1
M

M∑

i=1
Xi (14.68)

Alternatively stated, the ergodic hypothesis implies that no matter where a system is started, it is
possible to get to any other point in phase space. For U and A, this leads to the following expressions:

⟨U⟩M = 1
M

M∑

i=1
Ei = ⟨E⟩M (14.69)

⟨A⟩M = kT ln

(

1
M

M∑

i=1
eEi∕kT

)

= kT ln⟨eE∕kT⟩M (14.70)

A macroscopic observable can in general be calculated as an average over a corresponding micro-
scopic quantity. The average value of, for example, U calculated from Equation (14.51) has a
statistical uncertainty 𝜎(U), which is the square root of the variance 𝜎2 (Equation (18.2), making the
approximation M − 1 ≈ M for large samples):

𝜎2(U) = 1
M

M∑

i=1
(Ei − ⟨E⟩)2 (14.71)

The statistical uncertainty is therefore inversely proportional to the square root of the number of
sampling points M:

𝜎(X) ∝ 1
√

M
(14.72)
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Increasing the sample size from 1000 to 4000 thus reduces the standard deviation by a factor of 2. How
well the calculated average (from Equation (14.67)) resembles the “true” value, however, depends on
whether the ensemble is representative. If a large number of points are collected from a small part of
the phase space, the property may be calculated with a small statistical error but a large systematic
error (i.e. the value may be precise, but inaccurate). As it is difficult to establish that the phase space is
adequately sampled, this can be a very misleading situation, that is the property appears to have been
calculated accurately but may in fact be significantly in error. Different parts of the phase space may
furthermore be important for different properties. An ensemble that gives an accurate value for one
property may not necessarily be suitable for another property. Energy properties, such as U, H and CV,
depend on the derivative of Q for which the low-energy region of the phase space is important, while
entropic properties, such as A, S and G, depend directly on Q, where the whole phase space is impor-
tant. Since Monte Carlo and molecular dynamics techniques preferentially sample the low-energy
region, it is computationally difficult to achieve a reasonable statistical error for entropic quantities.

With standard MC or MD simulations, the ensemble reflects the temperature and only configura-
tions that are accessible at the given temperature are represented to any significant extent. This makes
it impossible to calculate the absolute value of the entropy, but it is possible to calculate differences in
entropy properties. Using the Helmholtz free energy for illustration, we can consider two systems A
and B described by two different energy functions EA and EB. The energy difference is given as follows
and involves a ratio of the corresponding partition functions:

AA − AB = −kT (lnQA − lnQB) = −kT ln
QA
QB

(14.73)

The energy difference can analogously to Equation (14.69) be evaluated as an ensemble average:

⟨ΔAAB⟩M = kT ln

(

1
M

M∑

i=1
e
(

EB
i −EA

i

)

∕kT
)

= kT ln⟨eΔEBA∕kT⟩M (14.74)

The important difference is that the exponential now involves an energy difference ΔEBA. Provided
that this is sufficiently small compared with kT, the ensemble average will show much better conver-
gence than the absolute entropy of either system. If the energy difference is large compared with kT,
we may introduce intermediate states between A and B that can be described in terms of a coupling
parameter 𝜆 (0 ≤ 𝜆≤ 1). The simplest approach involves a linear interpolation, but more complicated
connections can also be used:19

E𝜆 = 𝜆EA + (1 − 𝜆)EB (14.75)

The sampling can then be performed for each value of 𝜆 and all the intermediate results added
together to provide the difference ΔAAB. It should be noted that a system corresponding to an inter-
mediate value of 𝜆 does not necessarily represent an actual physically realizable system. If, for exam-
ple, the objective is to calculate the entropy difference between acetone and propane in a solvent, a
value of 𝜆 = 0.5 corresponds to a “molecule” with “half” a carbonyl oxygen and two “half” hydrogen
atoms on the central carbon. Such artificial intermediate systems do not represent special problems
in terms of calculation.

The preference of standard MC or MD methods for sampling the low-energy region of an energy
surface is a result of the way one configuration is propagated to the next. In MC methods the probabil-
ity for accepting a trial move depends on the ratio of the change in energy relative to the temperature,
while MD methods have a velocity (direction and magnitude) depending on the temperature. Alter-
native MC methods have also been proposed where the transition probability instead depends on the
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inverse density of states, rather than the energy.20 This in principle makes it possible to simulate an
ensemble that provides a uniform coverage of the whole phase space, and therefore allows calcula-
tion of absolute values of entropies and free energies. Since the density of states is unknown a priori,
the method requires a sequence of simulations where the density of the state diagram is gradually
constructed and refined.

The main problem in estimating thermodynamic quantities from simulations is the assumption
that the generated set of configurations forms a representative set. In practice, this is impossible to
guarantee or verify, making simulations somewhat of a “black art”. For configurations generated by
molecular dynamics, a typical simulation time is of the order of nanoseconds, and it is clear that this
is much too short a timespan to adequately sample all the phase space. There is thus a real risk of
a simulation being trapped in a small volume of the phase space during the whole simulation, and
thereby providing a misleading sampling. In order to evaluate the sensitivity of the results, several
simulations are often performed with different starting conditions.
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Simulation Techniques

The analysis of a potential energy surface by locating the minima and saddle points (Chapter 13)
corresponds to modeling the system at a temperature of 0 K, where all molecules are in their ground
electronic, vibrational and rotational states. The effects of a finite temperature can be incorporated by
means of the statistical mechanics methods discussed in Chapter 14. For a system of non-interacting
molecules (ideal gas), the partition function can be evaluated quite accurately by the rigid-rotor
harmonic-oscillator approximation from relatively simple quantities for the isolated molecule (geom-
etry and vibrational frequencies). Similar approaches are possible for crystalline solid states, where
the translational symmetry implies that only properties for the unit cell are required for describing
the whole system. For other systems, most notably liquids and solutions, the macroscopic quantities
derived from the partition function must be estimated from a representative sampling of the phase
space. Simulations refer to methods aimed at generating a representative sampling of a system at a
finite temperature.1–5

Electronic structure methods are typically used for solving the Schrödinger equation for a sin-
gle or a few molecules, infinitely removed from all other molecules. This physically corresponds to
the situation occurring in the gas phase under low pressure (vacuum). Experimentally, however, the
majority of chemical reactions are carried out in solution. Biologically relevant processes also occur
in solution, aqueous systems with rather specific pH and ionic conditions. Most reactions are both
qualitatively and quantitatively different under gas- and solution-phase conditions, especially those
involving ions or polar species. Molecular properties are also sensitive to the environment. Simula-
tions are therefore intimately related with describing solute–solvent interactions, but these effects
can also be modeled with less rigorous methods.

There are two major techniques for generating an ensemble: Monte Carlo and molecular dynamics.
In Monte Carlo (MC) methods,6 a sequence of points in phase space is generated from an initial

geometry by adding a random perturbation to the coordinates of a randomly chosen particle (atom
or molecule). In the Markov chain version, the new configuration is accepted if the energy decreases
and with a probability of e−ΔE/kT if the energy increases. This Metropolis procedure7 ensures that the
configurations in the ensemble obey a Boltzmann distribution, and the possibility of accepting higher
energy configurations allows MC methods to climb uphill and escape from a local minimum. In order
to have a reasonable acceptance ratio, however, the step size must be fairly small. This effectively
means that even some millions of MC steps (a typical computational limit) only explore the local
phase space around the starting geometry.

Introduction to Computational Chemistry, Third Edition. Frank Jensen.
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Monte Carlo methods generate configurations in a random fashion and the Metropolis selection
procedure ensures that a proper ensemble is generated. The geometry perturbation in each step may
be “non-physical”, which is actually an advantage since two consecutive geometries may be sepa-
rated by a high-energy barrier. MC methods thus have the possibility of “tunneling” between ener-
getically separated regions of phase space, thereby giving a better coverage. The perturbations may
be carried out in either internal or Cartesian coordinates, and it is quite easy to freeze out certain
degrees of freedom, such as, for example, sampling only the torsional angle space. MC methods are
inherently non-deterministic, as each configuration only depends on the previous point and a few
random numbers, and two simulations starting from the same geometry will not generate the same
sampling since the random numbers will be different. MC simulations require only the ability to
evaluate the energy of the system, which may be advantageous if calculating the first derivatives is
difficult or time-consuming. Furthermore, since only a single particle is moved in each step, only
the energy changes associated with this move must be calculated, not the total energy for the whole
system. A disadvantage of MC methods is the lack of the time dimension and atomic velocities, and
they are therefore not suitable for studying time-dependent phenomena or properties depending on
momentum.

Molecular Dynamics (MD) methods generate a series of time-correlated points in phase space (a
trajectory) by propagating a starting set of coordinates and velocities according to Newton’s second
equation by a series of finite time steps. A typical time step is ∼10−15 s and a simulation involving
106 steps thus “only” covers ∼10−9 s. This is substantially shorter than many important phenomena,
and MD methods, in analogy with MC, tend to only sample the region in phase space close to the
starting condition. Furthermore, MD methods simulate the physical evolution of configurations and
can easily become trapped in energy wells.

MD simulations are cumbersome to run in anything but Cartesian coordinates and it is some-
what difficult to enforce constraints on the system. MD simulations require small time steps and
tend to spend a significant effort describing relatively unimportant bond stretching and angle bend-
ing motions. The ability to climb over energy barriers is furthermore limited, as any uphill motion will
generate a force trying to pull the system back towards the minimum. MD is in principle determin-
istic, and starting two simulations with the exact same initial coordinates and velocities should give
the same trajectory. Even slight differences (∼10−8) in the starting conditions, however, rapidly lead
to uncorrelated trajectories within a few thousand time steps owing to an exponential divergence.
The numerical errors generated in each time step will in addition gradually add up to become signifi-
cant. As different computers (and compilers) produce different round-off errors, this means that MD
simulations in practice are non-deterministic and exhibit chaotic behavior on timescales longer than
∼50 ps. MD simulations implicitly have both atomic velocities and time dependence, and are thus
suitable for modeling, for example, transport phenomena and diffusion. Running an MD simulation
requires the ability to calculate the force (first derivatives of the energy) on all particles in the sys-
tem in addition to the energy. For parameterized energy functions, such as those used in force field
methods, this is not a limitation as forces can be calculated almost as easily as the energy. Since all
particles are moved in each step, the whole energy function (and gradient) must be recomputed at
each step.

The inherently non-deterministic nature of MC methods and the non-deterministic behavior of
actual MD simulations might be considered as potential problems. In reality the only concern is gen-
erating a representative sample of the phase space, and chaotic behavior may actually help in obtain-
ing a more complete sampling. The random and chaotic elements in simulations, however, make
troubleshooting and identification of programming bugs somewhat more problematic than for many
other types of computer programs. Verifying that a new simulation program is valid cannot easily
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be done by comparing exact numbers with another program, as even running the same program on
different types of machines may produce different results. Programming bugs that produce small
(systematic) errors may thus be swamped by the statistical errors inherent in all simulations and so
escape detection. Development of simulation packages must therefore be done with care, involving
monitoring many different quantities to ensure that the implementation is valid.8

The result of a simulation or an experiment involves averaging over both the number of molecules
and time, but usually with significantly different averaging lengths, and it is not completely obvious
that the calculated quantities are directly comparable with the experiments. An IR spectrum, for
example, records averages over a sample containing perhaps 1018 molecules over the timeframe of
perhaps 10−14 s (the interaction time of radiation with molecules), which is essentially a snapshot of
the quantum states for a large selection of molecules. A simulation, on the other hand, may follow the
molecular motions of perhaps 103 molecules for 10−9 s. The ergodic hypothesis makes the assumption
that the average obtained by following a small number of particles over a long time is equivalent to
averaging over a large number of particles for a short time. Taken to the limit, this implies that a time
average over a single particle is equivalent to an average of a large number of particles at any given
time snapshot, that is time-averaging is equivalent to ensemble-averaging:

⟨X⟩ = lim
𝜏→∞

1
𝜏 ∫

𝜏

0
X (t) dt = lim

M→∞
1
M

M∑

i=1
Xi (15.1)

Alternatively stated, the ergodic hypothesis implies that no matter where a system is started, it is
possible to get to any other point in phase space. MC techniques perform an ensemble average, while
MD performs a time average.

A simulation can be characterized by quantities such as volume (V), pressure (P), total energy (E),
temperature (T), number of particles (N), chemical potential (𝜇), etc., but not all of these are inde-
pendent. For a constant number of particles, either the volume or the pressure can be fixed, but not
both. Similarly, either the total energy or the temperature can be fixed, but not both, and a constant
chemical potential is incommensurable with a constant number of particles. The ensemble is labeled
according to the fixed quantities, as shown in Table 15.1, with the remainder being derived from the
simulation data, and thus displaying statistical fluctuations.

An MC simulation employs the temperature as the parameter for deciding acceptance or rejection
of trial moves and MC simulations are therefore naturally of the NVT type. An MD simulation, on the
other hand, preserves energy and is therefore naturally of the NVE type, but other ensembles for both
MC and MD can be generated by the techniques described in Section 15.2.2. Table 15.2 summarizes
some of the differences between MC and MD.

Table . Constants in different ensembles and corresponding equilibrium states.

N P V T E 𝜇 Acronym Equilibrium Name

× × × NVT A has minimum Canonical
× × × NVE S has maximum Microcanonical
× × × NPT G has minimum Isothermal–isobaric

× × × VT𝜇 (PV) has maximum Grand canonical

N = number of particles; P = pressure; V = volume; T = temperature; E = energy; 𝜇 = chemical potential; A = Helmholtz free
energy; S = entropy; G = Gibbs free energy.
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Table . Differences between Monte Carlo and molecular dynamics methods.

Property MC MD

Basic information needed Energy Gradient
Particles moved in each step One (few) All
Coordinates Any Cartesian
Constraints Easy Difficult
Atomic velocities No Yes
Time dimension No Yes
Deterministic No (Yes)
Sampling Non-physical Physical
Natural ensemble NVT NVE

It is probably no surprise that hybrid MC/MD methods have been devised, trying to capture the
best of both methods.9 These combined methods typically perform an MD simulation with an occa-
sional MC step thrown in, in order to give a better coverage of the phase space. Alternatively, a trial
step may be generated by an MD recipe, using a somewhat larger time step than for pure MD, and
this trial step is then accepted or rejected based on an MC criterion.

A popular hybrid method called Replica Exchange MD (REMD) or parallel tempering consists
of running several independent MD simulations of the same system at different temperatures (or
other independent variable), and at suitable time intervals use a Metropolis criterion to possibly
exchange configurations between these simulations.10, 11 The simulations at high temperatures will
sample larger fractions of the phase space, but the Metropolis exchange probability will be essentially
zero unless the energy distributions between two neighboring temperatures have a reasonable over-
lap. This means that a number of replica simulations with sufficiently small temperature differences
combined with pair-wise exchanges are required in order to achieve a high temperature that allows an
efficient phase space sampling. It should be noted that REMD does not provide direct information on
the actual kinetics as the configurations are frequently interchanged between different temperatures.

. Monte Carlo Methods

One of the advantages of Monte Carlo methods is the ease with which they can be implemented in
computer programs. The heart of the algorithm is a random number generator and the ability to cal-
culate the energy of the system for a given set of coordinates. Although truly random numbers are
difficult to come by, several implementations of pseudo-random number generators are available. A
pseudo-random number generator indicates a computer implementation of an algorithm that pro-
duces a sequence of seemingly random numbers, but the sequence is repeated (exactly) after some
period. A good pseudo-random number generator is characterized by having a long periodicity, and
within this periodicity the numbers do not show any systematic correlation with each other. As long
as the simulation only uses numbers from within one period, the random aspect is fulfilled and the
simulation data should be valid.12

An MC simulation starts from a suitable set of coordinates for all the particles. The set of coordi-
nates is perturbed in a random fashion and the new geometry is accepted as a starting point for the
next perturbing step if it is lower in energy than the current. If the new geometry is higher in energy,
the Boltzmann factor e−ΔE/kT is calculated and compared with a random number between 0 and 1. If
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e−ΔE∕kT is larger than this number the new geometry is accepted; otherwise the old configuration is
added to the sampling (again) and a new perturbing step is attempted.

The main variation of MC methods is how the perturbing step is done. For a system composed
of spherical particles (atoms), the only variables are the center of mass of each particle and the
trial moves are simple translations of particles. For rigid non-spherical particles, the three rotational
degrees of freedom must also be sampled, while for flexible molecules, it is usually also of interest to
sample the internal degrees of freedom (conformations, vibrations). The latter can be done in Carte-
sian coordinates or selectively in, for example, only the torsional variables.

A key point in MC methods is to ensure that the chain of configurations arises from a symmetric
probability decision. Symmetric in this context means that each step is reversible, that is the probabil-
ity of undoing a step by the next move is equal to the probability of generating the step, sometimes also
called the detailed balance condition. If this is not fulfilled, the properties derived from the resulting
ensemble can (but do not necessarily) display systematic errors, which are usually hard to detect. Gen-
erating random moves corresponding only to translations in the positive direction, rather than both
positive and negative directions, will almost be sure to lead to artefacts, although one might think
that this would be acceptable in a system subjected to periodic boundary conditions. The detailed
balance condition is obeyed when a single random particle is subjected to a single random perturba-
tion in each step, but this is not the case if a random perturbing step is applied sequentially to all the
particles. It has nevertheless been shown that the sequential update obeys a weaker balance condition
and does in fact generate a proper Boltzmann distribution.13 A procedure where only one particle is
moved in each trial step is computationally more efficient than a trial step consisting of moving all
particles. When only a single particle is moved, only the change in the energy related to this particle is
required, not the whole energy function. This makes the evaluation of each MC trial move somewhat
faster than a single time step in an MD simulation. Furthermore, if many (all) particles are allowed
to move in each trial step, the acceptance ratio usually becomes prohibitively small, unless very small
perturbations are selected.

The size of the perturbing step is an important control parameter. A small step will give a high
acceptance ratio but only a slow change of configurations. A large step, on the other hand, gives a low
acceptance ratio and therefore a sampling consisting of only a few relatively widely distributed points
in the configuration space. The optimum step size can formally be defined as the one that gives the
fastest convergence of a given property for a given amount of computer time, but this is difficult to
translate into an optimum acceptance ratio. Lacking a more objective criterion, a heuristic acceptance
ratio around 0.5 is usually selected, although slightly smaller ratios in many cases may give a better
sampling.

The ability to generate non-physical moves means that attention must be paid to the molecular
stereochemistry. A random move of atoms makes it possible to invert the configuration of a chiral
atom, a process that in reality may require large amounts of energy, but one that can easily be gen-
erated by moving a single atom. A Monte Carlo procedure must therefore be able to detect such
chirality changes and reject such moves.

The procedure of making random moves of a single or several (all) particles gives MC methods a
drawback for describing correlated motions. Exploring the conformational space of a larger molecule
such as a protein in a solvent is inefficient, since several simultaneous perturbations of torsional
angles are required for generating acceptable conformational changes. Such correlated movements
are difficult to generate by random perturbations in either Cartesian or internal coordinates, and
almost impossible if only single particle/variable movements are employed in each trial step. Even
a small random perturbation of a single torsional angle in a large protein will almost invariably
produce large geometrical changes in the overall structure and lead to atomic clashes, with
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resulting high energies and low acceptance ratios. The necessary correlated movement of several
degrees of freedom in each MC step can be introduced by augmenting each random torsional angle
perturbation with a sequence of derived torsional angle changes, as has been implemented in the
Concerted Rotations Involving Self-consistent Proposal (CRISP) algorithm.14 The minimum local per-
turbation by rotating a single torsional angle is achieved by also rotating the subsequent six torsional
angles in order to match the position of the end-atom. Nevertheless, MC methods tend to be best
for exploring the translational and rotational space for relatively small molecules, such as a solvent
or solution, and internal degrees of freedom for small molecules.

15.1.1 Generating Non-natural Ensembles

A standard MC simulation generates an NVT ensemble, that is the pressure and energy will fluctuate.
It is quite easy to generate other types of ensembles by MC methods, the most important being the
NPT ensemble, since this is directly related to most experimental conditions. A constant pressure
necessarily means that the volume must be able to change. For simulating an NPT ensemble, the total
volume of the system is treated as an additional variable and subjected to random perturbations.15

The acceptance criterion for a volume change is the same as for particle moves, except that the energy
change is augmented with two additional terms, that is ΔE → ΔE + PΔV − NkT ln (1 + ΔV/V).

. Time-Dependent Methods

The average kinetic energy is directly related to the temperature and at a finite temperature the
molecule(s) explores a part of the surface with energies lower than the typical kinetic energy. One
possible way of simulating the behavior at a finite temperature is by allowing the system to evolve
according to the relevant dynamical equation (Section 1.4). For nuclei this is normally Newton’s sec-
ond law, although the (nuclear) Schrödinger equation must be used for including quantum effects,
such as zero-point vibrational energy and tunneling. A dynamics simulation is also required if the
interest is in studying time-dependent phenomena, such as transport, and the results of a simulation
can yield information about the spectral properties, such as the IR spectrum.

A dynamics simulation requires a set of initial coordinates and velocities, and an interaction poten-
tial (energy function). The interaction may for a short time step be considered constant, allowing a
set of updated positions and velocities to be estimated, at which point the new interaction can be
calculated. By taking a (large) number of (small) time steps, the time behavior of the system can be
obtained. Since the phase space is huge and the fundamental time step is short, the simulation will
only explore the region close to the starting point, and several different simulations with different
starting conditions are required for estimating the stability of the results.

15.2.1 Molecular Dynamics Methods

Nuclei are heavy enough that they, to a good approximation, behave as classical particles and the
dynamics can thus be simulated by solving Newton’s second equation, F = ma, which in differential
form can be written as

− dV
dr

= m d2r
dt2 (15.2)
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Here V is the potential energy at position r. The vector r contains the coordinates for all the particles,
that is in Cartesian coordinates it is a vector of length 3Natom. The left-hand side is the negative of the
energy gradient, also called the force (F) on the particle(s).

Given a set of particles with positions ri, the positions a small time step Δt later are given by a
Taylor expansion:

ri+1 = ri +
𝜕r
𝜕t (Δt) + 1

2
𝜕2r
𝜕t2 (Δt)2 + 1

6
𝜕3r
𝜕t3 (Δt)3 + ⋅ ⋅ ⋅

ri+1 = ri + vi (Δt) + 1
2 ai (Δt)2 + 1

6 bi (Δt)3 + ⋅ ⋅ ⋅
(15.3)

The velocities vi are the first derivatives of the positions with respect to time (𝜕r∕𝜕t) at time ti, the
accelerations ai are the second derivatives (𝜕2r∕𝜕t2) at time ti, the hyperaccelerations bi are the third
derivatives, etc. The positions a small time step Δt earlier are derived from Equation (15.3) by substi-
tuting Δt with −Δt:

ri−1 = ri − vi(Δt) + 1
2 ai(Δt)2 − 1

6 bi(Δt)3 + ⋅ ⋅ ⋅ (15.4)

Addition of Equations (15.3) and (15.4) gives a recipe for predicting the position a time step Δt later
from the current and previous positions, and the current acceleration. The latter can be calculated
from the force, or equivalently, the potential:

ri+1 = (2ri − ri−1) + ai(Δt)2 + ⋅ ⋅ ⋅ (15.5)

ai =
Fi
mi

= − 1
mi

dV
dri

(15.6)

This is the Verlet algorithm16 for solving Newton’s equation numerically. Note that the term involving
the change in acceleration (b) disappears, that is the equation is correct to third order in Δt. At the
initial point, the previous positions are not available, but can be estimated from a first-order approx-
imation of Equation (15.3):

r−1 = r0 − v0Δt (15.7)

The acceleration must be evaluated from the forces (Equation (15.5)) at each time step, which then
allows the atomic positions to be propagated in time and thus generate a trajectory. As the step sizeΔt
is decreased, the trajectory becomes a better and better approximation to the “true” trajectory, until
the practical problems of finite numerical accuracy arise (e.g. the forces cannot be calculated with
infinite precision). A small time step, however, means that more steps are necessary for propagating
the system a given total time, that is the computational effort increases inversely with the size of the
time step.

The Verlet algorithm has the numerical disadvantage that the new positions are obtained by adding
a term proportional to Δt2 to a difference in positions (2ri − ri−1). Since Δt is a small number and
(2ri − ri−1) is a difference between two large numbers, this may lead to truncation errors due to
finite precision. The Verlet algorithm furthermore has the disadvantage that velocities do not appear
explicitly, which is a problem in connection with generating ensembles with constant temperature,
as discussed in section 15.2.2.

The numerical aspect and the lack of explicit velocities in the Verlet algorithm can be remedied by
the leap-frog algorithm.1 Performing expansions analogous to Equations (15.3) and (15.4) with half a
time step followed by subtraction gives

ri+1 = ri + v
i+ 1

2
Δt (15.8)
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The velocity is obtained by analogous expansions to give

v
i+ 1

2
= v

i− 1
2
+ aiΔt (15.9)

Equations (15.8) and (15.9) define the leap-frog algorithm, and it is seen that the position and velocity
updates are out of phase by half a time step. In terms of theoretical accuracy it is also of third order, as
the Verlet algorithm, but the numerical accuracy is better. The velocities furthermore appear directly,
which facilitates a coupling to an external heat bath (Section 15.2.2). The disadvantage is that the
positions and velocities are not known at the same time; they are always out of phase by half a time
step. The latter abnormality can be removed by the velocity Verlet algorithm, where the equations
used to propagate the atoms are given as17

ri+1 = ri + viΔt + 1
2 aiΔt2 (15.10)

vi+1 = vi +
1
2 (ai + ai+1)Δt (15.11)

The preference of Verlet and leap-frog-type algorithms over, for example, Runge–Kutta methods
(Section 13.8) for solving the differential Equation (15.2) in MD simulations is that they are time-
reversible, which in general tend to improve the energy conservation over long simulation times.18

The above solves the dynamical equation by a numerical integration of Newton’s second equation,
but it is in some cases useful to rewrite the equations in a more general form. Denoting a generalized
coordinate with q and its conjugate moment by p (p = 𝜕q/𝜕t), Equation (15.2) becomes

− 𝜕V
𝜕q

=
𝜕p
𝜕t

(15.12)

This can also be formulated in terms of a Lagrange function L = T – V:

𝜕L
𝜕q

− d
dt
𝜕L
𝜕p

= 0 (15.13)

Since T = p2/2 and the potential only depend on q, it is easily seen that the Lagrange equation is
completely equivalent to the Newton formulation.

The Lagrange formulation can be used to recast the differential form for the equation of motion
into an integral form, by defining the action S as the time integral of the Lagrange function:

S [q] =
∫

t

t0

L(q(𝜏), p(𝜏))d𝜏 (15.14)

The action depends on the trajectory q that the system follows as described by the time-dependent
generalized variables q. The principle of stationary action states that the actual path traversed by the
system is determined by the condition that the first-order change 𝛿S must vanish. The equivalence
of this condition to Equation (15.13) can be seen by requiring the stationary condition for a small
perturbation 𝜺:

𝛿S = S(q + 𝜺) − S(q)

=
∫

t

t0

[

L
(

q + ε, p + dε

dt

)

− L(q, p)
]

d𝜏 (15.15)

=
∫

t

t0

[

ε
𝜕L
𝜕q

+ dε

dt
𝜕L
𝜕p

]

d𝜏 = 0
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Integration by parts of the last term and using the boundary condition ε(t) = ε(t0) = 0 yields

𝛿S =
∫

t

t0

[

ε
𝜕L
𝜕q

− ε
d
dt
𝜕L
𝜕p

]

d𝜏 =
∫

t

t0

ε

[
𝜕L
𝜕q

− d
dt
𝜕L
𝜕p

]

d𝜏 = 0 (15.16)

The stationary action principle means that the integral must be zero for any perturbation ε, which
only can be true if Equation (15.13) holds.

Yet another formulation is given by the Hamilton function H = T + V and Equation (15.17), which
again may be verified to be completely equivalent to Equation (15.2):

𝜕H
𝜕q

+
dp
dt

= 0

𝜕H
𝜕p

−
dq
dt

= 0
(15.17)

The main advantage of the Lagrange and Hamilton formulations is that any set of non-redundant vari-
ables can be used, while the Newton formulation focuses on spatial coordinates and corresponding
velocities. The main difference between the Lagrange and Hamilton formulations is that the former
is a single second-order differential equation, while the latter is a coupled set of first-order differential
equations. The stationary action principle allows a formulation in terms of a vanishing gradient of a
parameterized integral. Depending on the system, one of these formulations may be easier to solve
than the other.

The time step employed is an important control parameter for a simulation. The maximum time
step that can be taken is determined by the rate of the fastest process in the system, that is typically
an order of magnitude smaller than the fastest process. Molecular motions (rotations and vibrations)
typically occur with frequencies in the range 1011–1014 s−1 (corresponding to wavenumbers of 3–
3300 cm−1), and time steps of the order of femtoseconds (10−15 s) or less are required to model such
motions with sufficient accuracy. This means that a total simulation time of 1 nanosecond (10−9 s)
requires ∼106 time steps and 1 microsecond (10−6) requires ∼109 time steps. A million time steps is
already a significant computational effort and typical simulation times are in the pico- or nanosecond
range, depending on the complexity of the energy function. Many interesting phenomena unfortu-
nately occur on a substantially longer timescale; protein folding and chemical reactions, for example,
occur on the order of milliseconds or seconds. Furthermore, a single trajectory may not be adequate
for representing the dynamics, thus requiring that many simulations must be carried out with differ-
ent starting conditions (positions and velocities) and be properly averaged.

The fastest processes for molecules are the stretching vibrations, especially those involving hydro-
gen. These degrees of freedom, however, have relatively little influence on many properties. It is there-
fore advantageous to freeze all bond lengths involving hydrogen atoms, which allow longer time steps
to be taken, and consequently longer simulation times to be obtained for the same computational
cost. As all atoms move individually according to Newton’s equation, constraints must be applied for
keeping bond lengths fixed. This is normally done by either the SHAKE19 (Verlet), LINCS20 (leap-
frog) or RATTLE21 (velocity Verlet) algorithms, where the distance constraints are incorporated by
the method of Lagrange undetermined multipliers (Section 13.5). The atoms are first allowed to move
under the influence of the forces, and subsequently forced to obey the constraints by making a few
sequential passes through all the variables.

Enforcement of bond length constraints typically allows the time step to be increased by a factor of 2
or 3. Angles may also be frozen by adding a distance constraint on atoms that are 1, 3 relative to each
other. Angle bending, however, affects calculated properties more than bond stretching and fixing
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them may often introduce unacceptable errors. Angle constraints are therefore used less frequently.
A simulation can also be performed using fixed molecular geometries, that is only the positions and
relative orientations of individual molecules are allowed to change. The natural variables to propagate
in time in such cases are the center of mass position and the three Euler angles of each molecule.

15.2.2 Generating Non-natural Ensembles

A standard MD simulation generates an NVE ensemble, that is the temperature and pressure will
fluctuate. The total energy is a sum of the kinetic and potential energies, and can be calculated from
the positions and velocities:

Etot =
N∑

i=1

1
2 miv2

i + V (r) (15.18)

Owing to the finite precision with which the atomic forces are evaluated and the finite time step
used, the total energy is not exactly constant, but this error can be controlled by the magnitude of the
time step. Indeed, preservation of the energy to within a given threshold may be used to define the
maximum permissible time step.

The temperature of the system is proportional to the average kinetic energy:

⟨Ekin⟩ =
1
2 (3Natoms − Nconstraint)kT (15.19)

The number of constraints is typically three, corresponding to conservation of linear momentum.
Note that for 1 mole of particles, Equation (15.19) reduces to the familiar expression ⟨Ekin⟩ = 3/2RT.
Since the kinetic energy is the difference between the total energy (almost constant) and the potential
energy (depends on the positions), the kinetic energy will vary significantly, that is the temperature
will be calculated as an average value with an associated fluctuation. Similarly, if the volume of the
system is fixed, the pressure will fluctuate.

Although the NVE is the natural ensemble generated by an MD simulation, it is possible also to gen-
erate NVT or NPT ensembles by MD techniques by modifying the velocities or positions in each time
step. The instant value of the temperature is given by the average of the kinetic energy, as indicated
by Equation (15.19). If this is different from the desired temperature, all velocities may be scaled by
a factor of (Tdesired/Tactual)

1∕2 in each time step to achieve the desired temperature. Such an “instant”
correction procedure actually alters the dynamics, such that the simulation no longer corresponds to
a canonical (NVT) ensemble. Performing the scaling at larger intervals introduces some periodicity
into the simulation, which is also undesirable. The system may alternatively be coupled to a “heat
bath”, which gradually adds or removes energy to/from the system with a suitable time constant, a
procedure often called a thermostat.22 The kinetic energy of the system is again modified by scaling
the velocities, but the rate of heat transfer is controlled by a coupling parameter 𝜏 :

dT
dt

= 1
𝜏

(Tdesired − Tactual)

⇕ (15.20)

Velocity scale factor =

√

1 + Δt
𝜏

(Tdesired
Tactual

− 1
)
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Thermostat methods such as Equation (15.20) are widely used but again do not produce a canonical
ensemble. They do produce correct averages but give incorrect fluctuations of properties. In Nosé–
Hoover methods23, 24 the heat bath is considered an integral part of the system and assigned fictive
dynamic variables, which are evolved on an equal footing with the other variables. These methods
are analogous to the extended Lagrange methods described in Section 15.2.5, and can be shown to
produce true canonical ensembles.

The pressure can similarly be held (approximately) constant by coupling to a “pressure bath”. Instead
of changing the velocities of the particles, the volume of the system is changed by scaling all coordi-
nates according to

dP
dt

= 1
𝜏

(Pdesired − Pactual)

⇕ (15.21)

Coordinate scale factor = 3

√

1 + 𝜅Δt
𝜏

(Pactual − Pdesired)

Here the constant 𝜅 is the compressibility of the system. Such barostat methods are again widely
used, both in MC and MD simulations, but do not produce strictly correct ensembles. The pressure
may alternatively be maintained by a Nosé–Hoover approach in order to produce a correct ensemble.

15.2.3 Langevin Methods

Molecular dynamics methods generate detailed information about all the particles in the system and
are therefore well suited for calculating collective properties. In other cases, the major interest is
in the dynamics of a single molecule, in which case the surrounding molecules can be modeled by
only including the average interactions. This average interaction is assumed to have a friction term
(with a friction coefficient 𝜁 ) proportional to the atomic velocity and a random component (Frandom)
that averages to zero. These terms are in addition to the normal intramolecular forces (Fintra) and
possibly also external forces, for example from an electric field. The random force is associated with
a temperature and adds energy to the system, while the friction term removes energy. The random
force is typically taken to have a Gaussian distribution with a mean value of zero. Newton’s second
equation then takes the form

m d2r
dt2 = −𝜁 dr

dt
+ Fintra + Frandom (15.22)

Equation (15.22) is called the Langevin equation of motion and gives rise to stochastic or Brownian
dynamics.1,3 The magnitude of the friction coefficient determines the importance of the intramolec-
ular forces compared with the friction term and large values of 𝜁 lead to the Brownian dynamics
limit.

15.2.4 Direct Methods

The major computational effort in a molecular or Langevin dynamic simulation is the calculation of
the forces on all particles at each time step. Any type of energy function can in principle be used: force
field, semi-empirical, ab initio electronic structure or DFT methods. Owing to the small time step
required, and the resulting many force evaluations necessary, the large majority of simulations are
performed with parameterized energy functions of the force field type. For studying macromolecules
and solvation, general force fields of the type discussed in Chapter 2 are normally used. While these
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may be of sufficient accuracy for simulating structural properties, they are unable to describe chemi-
cal reactions or to achieve high accuracy. A “global” energy surface may in such cases be constructed
by fitting high-level ab initio results and experimental data to a suitable functional form.25, 26 For suf-
ficiently small time steps and long simulations times, the result of a simulation is determined entirely
by the quality of the energy surface. In order to obtain “converged” results for the dynamics, the energy
surface must be accurate to better than 1 kJ/mol, over the whole surface that is accessible at the given
energy (temperature). Constructing such high-quality “global” energy surfaces is very demanding and
has only been done for a few systems. As mentioned in Chapter 1, the sheer dimensionality prevents
an adequate sampling of a surface by point calculations for more than three or four atoms, and high-
level dynamics have thus been limited to systems of this size.

Even for low-dimensional surfaces (three to six atoms), it is often difficult to design a well-behaved
fitting function capable of yielding a balanced description of all reaction channels. A simulation of the
reaction between an oxygen atom and methane, for example, requires a balanced energy description
of the following (stable) species, as well as the reaction paths connecting these:

� CH4 + 1,3O
� CH3OH
� H2CO + H2
� 1,3HCOH (cis and trans) + H2
� CH3O + H
� 1,3CH2 + H2O
� CH3 + OH

Note that both singlet and triplet energy surfaces are important for this reaction. Achieving a high-
quality surface will require a large number of MR-CI-type calculations, and designing a suitable
interpolation function to reproduce the experimental energy differences between all the above exit
channels is a non-trivial exercise.

The surface design and fitting process can be bypassed by performing the dynamics “directly”, that
is by calculating the required energies and forces in each time step of a simulation. The advantage
is that a fitting function is not required, there is no parameterization step and only the part of the
surface actually visited by the dynamics has to be calculated. The disadvantage is that the same (or
almost the same) points may be calculated many times, and if many trajectories are required, the total
amount of points calculated may be larger than required for performing a global fit. It is furthermore
difficult to add empirical corrections to the calculated surface. In a global fit approach, deficiencies in
the employed computational method can be partly alleviated by enforcing energy differences between
experimentally known species in the parameterization step. In some cases, the employed electronic
structure method is pre-modified in direct approaches in order to give better agreement with exper-
imental quantities. The latter has especially been used in connection with semi-empirical methods
(Chapter 7), where the atomic parameters can be re-tuned to model a specific reaction surface better
than the defaults parameters, a procedure called Specific Reaction Parameterization (SRP).27–29

15.2.5 Ab Initio Molecular Dynamics

Molecular dynamics propagate the nuclear positions and velocities by solving Newton’s second equa-
tion in a time-discretized form, and in the direct dynamics version the atomic forces are calculated
using an electronic structure method. When the latter is of the ab initio wave function or DFT type,
the approach can collectively be denoted Ab Initio Molecular Dynamics (AIMD).30
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The intuitively simplest approach is to determine a converged wave function at each time step
and use the corresponding nuclear gradients for propagating the time-evolution. In order to fulfill
energy conservation over the whole simulation length, however, such Born–Oppenheimer Molecular
Dynamics (BOMD) require a very tight convergence of the wave function in each time step, otherwise
the electrons will create an artificial frictional term on the nuclei, which makes the procedure com-
putationally expensive.31 In an elegant breakthrough by Car and Parrinello ,32, 33 it was shown that it
is not necessary to fully converge the wave function in each time step. After having determined a con-
verged wave function at the first point, the essence of Car–Parrinello Molecular Dynamics (CPMD)
is to let the wave function parameters (orbitals) evolve simultaneously with the changes in nuclear
positions. This can be achieved by including the wave function parameters as variables with fictive
“masses” in the dynamics, analogous to the nuclear positions and masses. Since this involves general-
ized variables, the Lagrange formulation (Equation (15.13)) for the dynamical equation is convenient.
The use of such extended Lagrange functions for describing the evolution of a system with both “real”
(nuclear/electronic) and “fictive” (method) parameters is quite general, and is, for example, also used
in force field methods incorporating fluctuating charges and/or polarization (Section 2.2.8).

The nuclear contributions in the CPMD method are given by

L = Tnuc − Vnuc

Tnuc =
1
2

Nnuc∑

a
Ma

(dRa
dt

)2
; Vnuc = V (Rnuc)

(15.23)

We now add contributions corresponding to treating the orbital expansion coefficients as variables
with fictive masses 𝜇i:

𝜙i =
Mbasis∑

𝛼

ci𝛼𝜒𝛼 (15.24)

L = Tnuc − Vnuc + Torb − Vorb

Torb = 1
2

Norb∑

i
𝜇i

(dci𝛼
dt

)2
; Vorb = E(corb)

(15.25)

The two potential energies can be combined to a single term depending on both the nuclear positions
and the orbital coefficients:

L = Tnuc + Torb − Vtot
Vtot = E(Rnuc, corb) (15.26)

The orbital orthogonality constraints can be included by addition of terms involving Lagrange mul-
tipliers:

⟨𝜙i|𝜙j⟩ = 𝛿ij (15.27)

L = Tnuc + Torb − Vtot −
Norb∑

ij
𝜆ij𝜎ij

𝜎ij =
Mbasis∑

𝛼𝛽

ci𝛼cj𝛽⟨𝜒𝛼|𝜒𝛽⟩ − 𝛿ij = 0
(15.28)
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The resulting dynamical equations then become

Ma
𝜕2Ra
𝜕t2 = − 𝜕E

𝜕Ra
+

Norb∑

ij
𝜆ij
𝜕𝜎ij

𝜕Ra
(15.29)

𝜇i
𝜕2ci𝛼
𝜕t2 = − 𝜕E

𝜕ci𝛼
+

Norb∑

ij
𝜆ij
𝜕𝜎ij

𝜕ci𝛼
(15.30)

The constraint forces are handled iteratively, analogously to the constraint of fixed bond lengths in
the SHAKE algorithm.

If the nuclear positions R are kept constant and the fictive orbital kinetic energy Torb is quenched,
the resulting algorithm is essentially a steepest descent minimization of the electronic energy with
respect to the orbital coefficients. This is done at the initial point, but at subsequent points the orbital
parameters are allowed to evolve along with the nuclear position according to the dynamical equation.
This means that the nuclear forces are not strictly correct since the electronic wave function is not
converged in the orbital parameter space. This error, however, can be controlled by suitable choices of
the fictive masses associated with the orbital parameters, that is small values provide results close to
the “true” Born–Oppenheimer results, but also require the use of small time steps since the resulting
“orbital parameter frequency” is high.34, 35 The fictive masses are typically taken to be a few hundred
atomic units, giving time steps of ∼0.1 femtoseconds, that is roughly an order of magnitude smaller
than for classical molecular dynamics. It should be noted that the optimum value for the fictive masses
depends on the system, and for metals and semiconductors, for example, it is difficult to choose
suitable values. Systems containing hydrogen are especially problematic, since the proton mass (1836
au) is only a factor of 5–10 higher than the fictive orbital parameter mass. This in some cases leads
to a coupling of these degrees of freedom, but it can be partly countered by using deuterium instead
of hydrogen.

In the CPMD approach, the total energy is conserved, and this now includes the fictive kinetic
energy of the orbital parameters. The “real” system of course has no orbital kinetic energy, and this
must therefore be kept small compared with the other terms in order for the CPMD method to
provide realistic simulation results. The magnitude of the fictive masses for the orbital parameters
serves as a coupling parameter between the nuclear and parameter kinetic energies. The tempera-
ture associated with the nuclei and orbital parameters are the same in an equilibrium condition, but
it is usually desirable to have the parameter kinetic energy to be significantly lower (a value of zero
corresponds to the Born–Oppenheimer case). This can be obtained by continuously removing the
fictive kinetic energy associated with the orbital parameters, while compensating for the energy loss
by adding energy to the nuclei. This can in practice be obtained by allowing the orbital parameters
to interact with a “heat bath” of a low temperature, while the nuclei interact with a heat bath of the
desired simulation temperature.

The CPMD technique can be used both in a “static” sense, for simultaneously optimizing the wave
function and the nuclear positions by periodically quenching the kinetic energies, but it can also be
used in a “dynamical” sense for sampling the (nuclear) phase space. The main advantage of the CPMD
technique is the much better error cancellation compared with a Born–Oppenheimer dynamics, that
is even with non-converged wave function parameters, the long-term energy conservation is ful-
filled to a quite high accuracy. The coupling of the real and fictive parameters builds a self-correction
into the CPMD method; that is if the nuclei at some point get slightly “ahead” of the electron cloud,
they will be slowed down, thus allowing the electrons to “catch up” with the nuclei. Similarly, if the
electronic parameters get ahead of the nuclei, the nuclei will be accelerated owing to the Coulomb
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attraction. The primary disadvantage of CPMD is that the inclusion of the electronic degrees of
freedom in the dynamics requires the use of significantly smaller time steps compared to a BOMD
approach. The tradeoff is thus that CPMD allows a computationally inexpensive force in each time
step, but the time step must be small, while BOMD has a higher computational cost for generating
the force, but allows larger time steps.

The main disadvantage of the original CPMD algorithm is the “fast” dynamics of the electronic
degree of freedom, which necessitates short time steps. A modified version has been proposed where
the electronic parameters are evolved by a predictor–corrector extrapolation from previous points,
rather than by their time-dependent dynamics. Using typically four previous points for the predic-
tor step and a single corrector step generate results close to those obtained from the true Born–
Oppenheimer surface, and allows time steps of the same magnitude as in the BOMD method.36 This
modified CPMD algorithm thus avoids the multiple SCF iterations of the BOMD method at each step
and avoids introducing fictitious variables with high frequencies, as in the original CPMD approach.

AIMD simulations can in principle be carried out with any type of wave function, but they are still
significantly more expensive computationally than traditional parameterized energy functions. The
CPMD method was originally implemented with DFT methods using plane waves as the basis set,
but the technique has also been used with other types of methods (e.g. HF or MP2) and Gaussian-
type basis functions, where the density matrix elements are used as variables instead of the molecular
orbital coefficients.37, 38 The great advantage over force field-type functions is that electronic struc-
ture methods are able to describe bond breaking/formation, that is AIMD methods allow a direct
simulation of chemical reactions and processes such as hydrogen exchange in water. Even with the
CPMD technique, however, the use of ab initio electronic structure calculations is so expensive that
only picosecond simulation can be carried out, compared with nano- or microsecond simulations
with parameterized energy functions.

AIMD may be considered as a semi-classical dynamics approach where the electrons are treated
quantum mechanically while the nuclear motion is treated classically. The latter implies that, for
example, zero-point vibrational effects are not included and nor can nuclear tunneling effects be
described; this requires fully quantum methods, as described in the next section.

15.2.6 Quantum Dynamical Methods Using Potential Energy Surfaces

In order to incorporate quantum effects into the nuclear motions (vibrational effects and tunneling),
the time-dependent (nuclear) Schrödinger equation must be used in place of Newton’s equation:

HΨ = (T + V)Ψ = i𝜕Ψ
𝜕t

(15.31)

Here T is the kinetic energy operator and V is the potential energy. The square of the wave function
is the probability of finding a particle at a given position. Heisenberg’s uncertainty principle means
that a quantum description of a nucleus must be a continuous function, not a single specific position
as in classical mechanics.39, 40 Such a continuous function is often denoted a wave package and may
be modeled by Gaussian functions (semi-classical methods) or numerically (quantum methods). The
wave function may, analogously to classical dynamics, be propagated through a series of small, but
finite, time steps:

Ψi+1 = −iHΨiΔt = −i (T + V)ΨiΔt (15.32)

Each time step thus involves a calculation of the effect of the Hamiltonian operator acting on the wave
function. In fully quantum methods, the wave function is often represented on a grid of points, these
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being the equivalent of basis functions for an electronic wave function. The effect of the potential
energy operator is easy to evaluate, as it just involves a multiplication of the potential at each point
with the value of the wave function. The kinetic energy operator, however, involves the derivative of
the wave function and a direct evaluation would require a very dense set of grid points for an accurate
representation.

The kinetic energy operator is proportional to the square of the momentum, T = p2/2m. In a
momentum representation (i.e. using the particle momentum instead of position as variables), T is
a simple multiplication operator, analogous to V in position space. The transformation from posi-
tion to momentum space can be achieved by a Fourier transformation. A numerical solution of the
time-dependent Schrödinger equation can thus be done by switching back and forth between a posi-
tion and momentum representation of the wave function, evaluating the effect of V in position space
and the effect of T in momentum space. Analogously to the leap-frog algorithm for the classical case
(Equations (15.8) and (15.9)), the update of the wave function by the potential and kinetic energy
operators may be chosen to be out of phase by half a time step to improve the accuracy. The key to
the popularity of this approach is the presence of highly efficient computer routines for performing
Fourier transformations.

The requirement of an accurate global energy surface is even more important for a quantum
mechanical treatment than for the classical case, since the wave function depends on a finite part
of the surface, not just a single point. The updating of the positions and velocities are computation-
ally inexpensive in the classical case, once the forces are available, but the requirement of two Fourier
transformations in each time step makes the quantum propagation a significant computational issue.
The representation of the wave function on a grid effectively limits the dimensionality to a maximum
of three, that is di- and triatomic systems (one and three internal coordinates, respectively). Larger
systems necessitate freezing some of the coordinates or treating them classically.41

15.2.7 Reaction Path Methods

The main problem in dynamical studies is the requirement of a continuous energy surface over a
wide range of geometries. A simulation will normally be done with specification of an energy (or a
temperature) and a surface must thus be available for all nuclear configurations that have an energy
lower than the chosen simulation value. For quantum methods, the surface must also be available at
higher energies as the wave function has a tail that penetrates into classically “forbidden” areas.

Such “global” energy surfaces have traditionally been constructed by fitting a suitable functional
form to energies (and possibly also first and second derivatives) calculated by ab initio methods at a
large number (perhaps a few hundreds or thousands) of geometries.25 The function may be further
refined by including experimental data (such as vibrational frequencies and geometries) in the fitting.
For “large” systems (i.e. more than three or four atoms) the generation of an adequate number of
fitting points is prohibitively expensive. In order to treat large systems, it is necessary to concentrate
the computational effort on the “chemically important” part of the potential energy surface.

A chemical reaction in the simplest description takes place along the lowest energy path connect-
ing the reactant and product, passing over the transition structure (Section 14.1) as the highest point.
This is the Minimum Energy Path (MEP), which in mass-weighted coordinates is called the Intrinsic
Reaction Coordinate (IRC) (Section 13.8). The idea in Reaction Path (RP) methods42 is to only con-
sider the energy surface in the immediate vicinity of a suitable one-dimensional reaction path, which
usually (but not necessarily) is taken as the IRC. The potential is typically expanded to second order
along the reaction path, corresponding to modeling the perpendicular degrees of freedom as har-
monic vibrational frequencies. The reaction path potential may be generated by a series of frequency
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calculations at points along the IRC and the point-wise potential made continuous by interpolation.
The potential may be generated prior to the reaction path calculation, or generated “on the fly” in a
“direct” fashion.43 Moyano and Collins have proposed a hybrid method where all the points calcu-
lated are stored and used for interpolation if the required point is sufficiently close to prior points.44

This approach thus starts out as a direct-type dynamics but ends up with an implicitly parameter-
ized surface for sufficiently long simulations times. For long simulation times or for running many
trajectories, the savings by interpolation can be substantial.

The reaction path method may be generalized by having two “reaction coordinates” (a reaction
surface) treated explicitly and the remaining degrees of freedom treated approximately, or by having
three “reaction coordinates” (a reaction volume).45 These generalizations are useful for performing
mixed classical–quantum dynamics, where the dynamics with the reaction coordinate(s) are treated
quantum mechanically while the remaining degrees of freedom are treated classically.

The inclusion of dynamical effects allows the calculation of corrections to simple transition state
theory, often described by a transmission coefficient 𝜅 to be multiplied with the TST rate constant
(Section 14.1) or used in connection with variational TST (Section 14.5.5). Classical dynamics allow
corrections due to re-crossing to be calculated, while a quantum treatment is necessary for including
tunneling effects. Owing to the stringent requirement of a highly accurate global energy surface, there
are only a few systems that have been subjected to a rigorous analysis.

The tunneling effect can be approximated by inclusion of a semi-classical correction based on tun-
neling through the barrier along the minimum energy path (i.e. the IRC). The Bell correction is based
on the assumption that the (one-dimensional) energy curve near the transition state can be approx-
imated by a parabola.46, 47 This yields a correction factor that only depends on the activation energy
ΔE≠ and the magnitude of the imaginary frequency 𝜈i, that is the curvature of the potential energy
surface at the TS:

𝜅Bell =
1
2 u≠

sin 1
2 u≠

− u≠e−ΔE≠∕kT
(

e−𝛽

2𝜋 − u≠
− e−2𝛽

4𝜋 − u≠
+ e−3𝛽

6𝜋 − u≠
−⋯

)

u≠ =
hvi
kT

; 𝛽 = 2𝜋ΔE≠

hvi

(15.33)

Except for reactions with low barriers (i.e. <40 kJ/mol at T = 300 K) or at high temperatures, the
quantity ΔE≠/kT is large and the last series can be neglected. The tunneling correction is then given
completely in terms of the magnitude of the imaginary frequency. The temperature where the sin
1∕2u≠ term diverges is called the crossover temperature Tc and can be considered as the temperature
below which the reaction rate is dominated by tunneling. When the imaginary frequency 𝜈i is given
in units of cm-1, the connection is Tc = 0.23 𝜈i, which indicates that tunneling at T = 300 K is only
important for reactions having 𝜈i larger than ∼1300 cm−1. For small values of u≠ the first term may
be Taylor-expanded to give

𝜅Wigner = 1 + 1
24 (u≠)2 +⋯ (15.34)

The first-order term is known as the Wigner correction.48

It is possible to derive tunneling corrections for functional forms of the energy barrier other than an
inverted parabola, but these cannot be expressed in analytical form. Since any barrier can be approx-
imated by a parabola near the TS, and since tunneling is most important for energies just below the
top, they tend to give results in qualitative agreement with the Bell formula.

The main approximation of such one-dimensional corrections is that the tunneling is assumed
to occur along the MEP. This may be a reasonable assumption for reactions having either early or
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Figure . A contour plot illustration of the “corner cutting” tunneling path.

late (close to either reactant or product) transition states. For reactions where bond breaking and
formation are both significant at the TS (as is usually the case), the dominant tunneling effect is
“corner cutting” (Figure 15.1), that is the favored tunnel path is not along the MEP. Although the
energy increases away from the MEP, the barrier also becomes narrower on the concave side of the
reaction path, which favors the tunneling probability.

Truhlar and coworkers have developed various approximate schemes for including tunneling in
multidimensional systems based on the Wentzel–Kramer–Brillouin approximation, where the tun-
neling correction along a one-dimensional path is given by43,49

𝜅WKB = (1 + e2𝜃(E)∕ℏ)−1 (15.35)

𝜃(E) =
∫

rb

ra

√
2m(V (r) − E)dr (15.36)

The barrier penetration integral 𝜃(E) depends on the mass of the tunneling particle m, the height of
the barrier and the length of the path between the two classical turning points ra and rb, where the
potential V is equal to the energy E. The path corresponding to the maximum tunneling probability is
thus a compromise between a long(er) path with a low(er) barrier and a short(er) path with a high(er)
barrier. In the Minimum Energy Path Semi-classical Adiabatic Ground state (MEPSAG) approxima-
tion the tunneling is assumed to occur along the MEP, analogous to the Bell approach, but for an
arbitrary shape of the energy surface. The Small Curvature Semi-classical Adiabatic Ground state
(SCSAG) approximation allows tunneling to occur within one vibrational half-amplitude perpendic-
ular to the reaction path and is expected to be a good approximation at temperatures close to Tc.
The Large Curvature Ground state (LCG) method approximates the tunneling path by a straight line
between the classical turning points on the IRC where the energy is equal to the potential energy, and
is expected to be a valid approximation for low temperatures relative to Tc.50 A linear interpolation
between the two paths has been proposed for intermediate temperatures, that is maximizing the tun-
neling rate as a function of an interpolation parameter.51 The SCSAG method requires knowledge of
the (generalized) frequencies along the IRC (Section 13.8), which can be obtained by calculating the
force constant matrix at suitable intervals and interpolating the results. The LCG methods require
additional calculations away from the IRC.

Instanton theory can be considered as a generalization of harmonic transition state theory to
include tunneling, and allows a determination of the optimal tunneling path without any a priori
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parameterizations.52 The delocalized nature of quantum particles (nuclei) is modeled by consider-
ing multiple paths connecting the reactant and product states, and the quantum statistical partition
function is an integral over all such paths, each of which can be characterized by the action S defined
in Equation (15.14). The tunneling process can be modeled by considering the action with an imagi-
nary time evolution, called the Euclidian action SE, which in (non-generalized) coordinates x can be
written as follows, with 𝜏 being a path parameterization variable:

SE [x] =
∫

ℏ∕kT

0

(

m
2

(
𝜕x (𝜏)
𝜕𝜏

)2
+ V (x (𝜏))

)

d𝜏 (15.37)

The stationary path for SE is the most probable tunneling path and can be considered as the semi-
classical generalization of the IRC in classical transition state theory. A manageable approximation
to integrating over all paths is constructed by only considering a second-order expansion around the
stationary path corresponding to δSE = 0. Switching to mass-weighted coordinates (y =

√
mx) and

approximating the integral by a sum over P images along the path provides the following equation,
where the pre-factor for the first summation includes a factor of four owing to the summation being
only over unique images, while the full path is a closed loop:

SE[ y] = 2PkT
ℏ

P−1∑

k=1
|yk+1 − yk|

2 + ℏ

PkT

P∑

k=1
V (yk) (15.38)

This is now a function of P images, each containing 3Natom coordinates, and the problem of locating
the most probable tunneling path corresponds to finding a first-order saddle point of the 3PNatom
multidimensional function. The computational problem is thus very similar to the multistructure
interpolation methods for locating transition structures described in Section 13.4.3, and essentially
the same optimization techniques can be employed. Once the optimized instanton path has been
located, the tunneling rate can be obtained from the second derivative of the action SE, which requires
the molecular Hessian for all P images along the path.

15.2.8 Non-Born–Oppenheimer Methods

The methods in Sections 15.2.5 and 15.2.6 attempt to include nuclear quantum corrections based on
the Born–Oppenheimer separation of the nuclear and electronic degrees of freedom, that is solving
the nuclear dynamics on a potential energy surface obtained by solving the electronic Schrödinger
equation. When quantum corrections such as tunneling are large, however, it is an implicit warning
that the Born–Oppenheimer approximation may also be problematic. Rather than trying to improve
on the underlying model by adding correction terms, it may be both easier and better to treat the
nuclei within a quantum framework from the start.

Methods that treat all of the electron and nuclear degrees of freedom within a combined quantum
framework are starting to appear; so far they are mostly based on a mean-field (i.e. Hartree–Fock)
approximation where the coupling of the nuclear and electron motions is included in an average
fashion. Both conceptual and computational developments are required before such methods can
be considered to be mature.53–55 One clear advantage of these methods is the ability to implicitly
include both tunneling and vibrational effects, and to selectively treat some nuclei as classical, thereby
allowing a simplification for large systems.

In the spirit of the Car–Parrinello approach, the whole set of variables (nuclei and wave function
parameters) may also be allowed to evolve simultaneously by solving the time-dependent Schrödinger
equation. Örhn and coworkers have developed an Electron–Nuclear Dynamics (END) method,56, 57

where both the orbitals describing the electronic wave function and the nuclear degrees of freedom
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are described by expansion into a Gaussian basis set, which moves along with the nuclei. Such an
approach in principle allows a complete solution of the combined nuclear–electron Schrödinger
equation without having to invoke approximations beyond those imposed by the basis set. Inclu-
sion of the electronic parameters in the dynamics, however, means that the fundamental time step is
short, and this results in a high computational cost for even quite short simulations and simple wave
functions.

15.2.9 Constrained and Biased Sampling Methods

The methods described in Section 15.2.7 focus on the lowest energy reaction path on the electronic
energy surface. The activation energy related to the experimental reaction rate, however, depends
on the free energy, that is one would optimally like to locate the reaction path on the free energy
surface. For small systems, this can be done by adding finite temperature corrections to the enthalpy
and entropy in a rigid-rotor harmonic-oscillator approximation based on a second-order expansion of
the energy around each point (Equations (14.43) to (14.50)). For large systems, however, the harmonic
approximation is less suitable and a more complete sampling by dynamical methods is usually desired.
This will yield information about the dynamics in the perpendicular directions and potentially be able
to provide a free energy profile along the reaction path.

A straightforward sampling of the reaction path is not possible since the dynamics at ordinary
temperatures only very rarely visit the high-energy region near the TS (unless the activation energy
is close to zero). In order to achieve a sampling of a specific region of the energy surface with molec-
ular dynamics or Monte Carlo methods, the sampling must be biased toward a specific volume of
phase space. A central component in biased sampling methods is the selection of one or a few Col-
lective Variables (CV) that can be used to describe the reaction path.58 A CV can be any function of
atomic coordinates, but it must be selected and defined by the user based on the given application.
A CV can in the simplest case be the position of a point, a distance between two points, an angle
between three points or a torsional angle between four points, where the points can either be sin-
gle atoms or centers of mass for a larger group of atoms. CVs defined as inverse distances between
atom pairs raised to the sixth power may be appropriate variables for biasing MD simulations toward
reproducing experimental NMR NOE measurements. CVs involving many (all) atoms can, for exam-
ple, be normal modes from a harmonic vibrational analysis or principal components from a dynamic
simulation or a correlation matrix. More complex CVs can measure the content of α-helix in a pro-
tein structure or be defined as the root mean square deviation between all atoms in two structures.
Once a set of CVs have been selected, the biasing can be done by two different methods, a penalty
and a Lagrange type approach, analogously to the optimization of functions with constraints (Section
13.5). A number of closely related methods have been proposed for performing simulations with bias
potentials, typically with the aim of calculating free energy profiles along a suitable reaction coor-
dinate, and the following describes some of these approaches.The penalty approach corresponds to
augmenting the energy surface with a biasing potential U, for example a harmonic function centered
at position 𝜉0 of the CV with a suitable width kU:

Vumbrella(𝜉) = V (𝜉) + U(𝜉)

U(𝜉) = kU (𝜉 − 𝜉0)2
(15.39)

By making the biasing potential sufficiently steep (large kU), the energy of the augmented energy
surface far from 𝜉0 will become so high in energy that only the region near 𝜉0 will be sampled at
ambient temperatures; this technique is called umbrella sampling.59 The ensemble calculated with
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the augmented potential Vumbrella will of course be non-Boltzmann, but this can be deconvoluted as
shown for a property P:

⟨P⟩ =
⟨P(𝜉)eU(𝜉)∕kT⟩Vumbrella

⟨eU(𝜉)∕kT⟩Vumbrella

(15.40)

Here ⟨ ⟩Vumbrella indicates an average over the ensemble generated by the augmented potential. By
performing a series of simulations with biasing potentials located at different positions along the
reaction path, the free energy along the reaction path, often called the Potential of Mean Force (PMF),
can be simulated.

The Lagrange approach constrains the sampling to the (N − 1)-dimensional subspace correspond-
ing to a specific value of the CV, where the constraint is fulfilled by means of an additional term in
the Hamiltonian involving a Lagrange multiplier. This is related to the extended Lagrange techniques
discussed in Section 15.2.5 and is usually referred to as Blue Moon sampling in the literature (the
term “Blue Moon” denotes the (relatively) rare phenomenon of having four full moons in a season
(three months), and denotes in general a rare phenomenon) and the Lagrange multiplier is called the
holonomic constraint.60, 61

The main disadvantage of the umbrella or Blue Moon sampling techniques is that the location of
the biasing potential must be selected manually and an a priori knowledge of an approximate reaction
coordinate is therefore required. Once this has been selected, the free energy along this path can be
calculated. Since the sampling explores a (small) region around the selected path, the calculated PMF
may deviate slightly from the initial selection. If desired, this updated PMF can then be used for a
new series of simulations with biasing potentials located along the previously calculated PMF.62 Such
adaptive umbrella sampling methods should in principle converge on the true PMF but, in practice,
the convergence is sensitive to the selection of a suitable initial reaction path.

Umbrella sampling employs a rather small perturbation potential in order to keep the dynamics
close to the unbiased one. The same technique can also be used to force a large conformational change
occurring on a long timescale to be observable during a relatively short simulation. This requires a
significantly larger bias force, and the technique is then called Steered Molecular Dynamics (SMD).63

It can, for example, be used to model the unfolding of proteins by anchoring one end and attaching the
other end to a point in space by a harmonic potential, and then move the point at a constant velocity
in a specific direction. SMD can similarly be used to “drag” a ligand from a binding site in a protein,
but this requires a careful choice of the direction where the bias force is applied. SMD can also be
used to generate a reaction path between two different protein structures by selecting a suitable set
of CVs to describe the transition pathway. If the root mean square deviation between the two end
structures is used as a CV, the method is called Targeted MD.

The binding or unbinding of a ligand to a buried active site in a protein is a key example of a process
that occurs on a timescale significantly longer than is achievable by regular MD simulations, and is
thus a prime target for enhanced sampling methods. The Random Expulsion MD (REMD) method
attempts to find a pathway for unbinding a ligand by adding an artificial force to the ligand atoms
in a random direction and letting the MD simulation run for a relatively short time (∼few hundred
picoseconds) while monitoring how much the ligand moves in the applied force direction.64 The
underlying idea is to probe the protein to find a low energy deformation mode that will allow the
ligand to escape and, by reversibility, to identify the binding pathway. If the randomly chosen direction
is towards a “stiff” part of the protein, the ligand displacement will be small and the MD can be aborted
after only a short simulation time. If, on the other hand, the chosen direction is towards a “soft” part of
the protein, the protein can distort and allow the ligand to move and eventually escape. The magnitude
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of the applied force is a user-defined parameter and is a compromise between a low value that allows
a “natural” but slow protein distortion and a high value that may give a fast but “unnatural” protein
distortion.

A common feature of unbiased MD is the tendency of the simulation to revisit the same region of
phase space by random thermal motion due to the presence of energy barriers substantially larger
than the available thermal energy. Metadynamics attempts to prevent this situation by gradually
adding repulsive Gaussian-shaped potentials based on the sampling history and can be thought of
as gradually filling up the energy minimum currently being sampled until the thermal energy is suf-
ficient for escaping to another minimum.65 The bias potential is defined in terms of CV and is for a
single CV given by

Umetadyn(𝜉) =
t−Δ∑

t0=0,Δ,2Δ,…
W exp

(

−
(𝜉(t) − 𝜉(t0))2

2𝜎2

)

(15.41)

Here W and 𝜎 are user-defined parameters controlling the high and width of the Gaussian and Δ
is the time interval between points on the trajectory where the bias potentials are placed. Equation
(15.28) is readily extended to include more than one CV by simply including an additional term in the
exponential function for each additional CV. Metadynamics can be considered as a generalization
of the conformational flooding, hyperdynamics and local elevation methods and includes these as
special cases. An appealing aspect of metadynamics is that the original free energy surface along the
trajectory can be reconstructed a posterior if the history of the applied bias potentials is collected
during the simulation. The speed of exploring phase space and the accuracy of the reconstructed
free energy surface is (not surprisingly) inversely related. Large values of W and 𝜎 ensure that the
dynamics is rapidly forced to leave the current energy minimum, but also means that each minimum
is only sampled sparsely. The accuracy also rapidly deteriorates as the number of CVs is increased
due to inefficient sampling.

The Adaptive Bias Force (ABF) method66 can be considered as a dynamical variation of metady-
namics where the bias force (potential) is constructed as a running average during the simulation such
that it cancels the (current) estimate of the free energy force along the reaction path. The simulation
is initiated as an unconstrained MD that samples (only) a small fraction of the phase space along
the CV chosen as the reaction variable. As the average force calculated from this sampling gradually
stabilizes, a bias force is applied that cancels the restoring force along the reaction path and allows
free diffusion to the next part of the path that eventually leads to a flat energy surface along the whole
reaction coordinate. When the sampling indicates a flat energy surface along the whole reaction coor-
dinates, the original free energy profile can be constructed from the negative of the bias force. The
sampling along the reaction path can be hindered by energy barriers in the orthogonal coordinates,
often referred to as hidden barriers, which implies that the selected CV is not a good description of
the actual reaction path.

Accelerated Molecular Dynamics (aMD) is similar to metadynamics but employs a time-
independent bias potential which is applied only for the part of the energy surface that is below a
pre-chosen boost energy value:67

VaMD(r) =
{

V (r) ; V (r) ≥ Eboost
V (r) + U(r) ; V (r) ≺ Eboost

(15.42)

The bias potential destabilizes the (local) energy minima below Eboost and thereby decreases the
energy barriers and allows the system to escape and sample other regions of the phase space. The

iranchembook.ir/edu



Simulation Techniques 

bias potential is given below, where 𝛼 is a parameter that determines how shallow the modified energy
surface is for values below Eboost:

U(r) =
(Eboost − V (r))2

𝛼 + (Eboost − V (r))
(15.43)

aMD has the advantage over metadynamics that no CVs are required, although the boost energy
value can be considered as a generalized CV. The aMD method can be employed in selected internal
coordinates, such as, for example, only in the torsional degrees of freedom to enhance conformational
transitions.

Temperature accelerated MD is a method where the sampling along one or more CVs is enhanced
by artificially increasing the temperature in these degrees of freedom.68

A key point in obtaining accurate free energy differences is a proper choice of CVs for describing the
reaction path. An internal check can be performed by running the dynamics in both directions, where
observed hysteresis is a clear sign that one or more important degrees of freedom are missing from
the selected CVs. For a process involving several intermediate metastable states, it may be difficult
to find a few CVs describing both end-points as well as the whole reaction path involving metastable
structures. As mentioned above, the sampling becomes inefficient if more than 2–3 CVs are selected.

. Periodic Boundary Conditions

A realistic model of a solution requires at least several hundred solvent molecules. To prevent the
outer solvent molecules from boiling off into space and minimizing surface effects, Periodic Boundary
Conditions (PBCs) are normally employed (Figure 15.2). The solvent molecules are placed in a suitable
box, often (but not necessarily) having a cubic geometry (it has been shown that simulation results
using any of the five types of space-filling polyhedra are equivalent69). This box is then duplicated in
all directions, that is the central box is surrounded by 26 identical cubes, which are again surrounded
by 98 boxes, etc.

If a solvent molecule leaves the central box through the right wall, its image will enter the box
through the left wall from the neighboring box. This means that the resulting solvent model becomes
quasi-periodic, with a periodicity equal to the dimensions of the box, in contrast to a real solvent
where there is no long-range order.

The electrostatic interaction is long-ranged (Section 2.2.6) and will extend beyond the boundary of
a box. Truncating the interaction by using a cutoff distance of, say, 10 Å gives discontinuous energies

Figure . Periodic boundary condition.
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and forces, and has some rather unfortunate consequences in giving non-physical distributions of
the solvent molecules near the cutoff distance and producing “hot” and “cold” spots. A switching
function approach, where the interaction is gradually reduced to zero over a range of a few angstroms,
performs significantly better.70, 71 The switching function is multiplied on to the real potential and has
the effect of smoothly reducing the potential from its real value to zero over a distance range from R1
to R2. An example of a third-order switching function that has zero first derivatives at both limits72

is shown by

S(r) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1 r ≤ R1(
R2

2 − r2)2 (R2
2 + 2r2 − 3R2

1
)

(
R2

2 − R2
1
)3 R1 ≤ r ≤ R2

0 r ≥ R2

(15.44)

An alternative form for the central part that also has vanishing second derivatives at both limits is
given by

S(r) = 1 − 10
( r − R1

R2 − R1

)3
+ 15

( r − R1
R2 − R1

)4
− 6

( r − R1
R2 − R1

)5
(15.45)

A variation of this is to use a shifting function, which corresponds to a switching function with
R1 = 0. Such functions modify the potential for all r values less than R2 and an example is given by

S(r) =
⎧
⎪
⎨
⎪
⎩

(

1 − r2

R2
2

)2

r ≤ R2

0 r ≥ R2

(15.46)

The use of switching or shifting functions modifies the model, since the potential and forces are
changed, and therefore affects the results of a simulation. Whether these changes are significant
relative to the other approximations in the model depends on the specific system and properties.
It should be noted that some of the errors introduced by using truncation and switching/shifting
functions can be absorbed by the force field parameters; that is if the parameters are determined by
fitting against experimental data, they will to some extent adjust their value to compensate for the
errors in the underlying model. This implies that the error cancellation may be partly destroyed if the
values of the switching/shifting distances are changed or the non-bonded interactions are calculated
by other methods, such as the Ewald sum methods described below.

Figure 15.3 shows the energy function of two unit charges interacting with a Coulomb potential,
one that has been subjected to the switching function (Equation (15.44)) with R1 = 10 Å and R2 =
12 Å, and one that has been subjected to the shifting function (Equation (15.46)) with the same limits.

Methods have also been developed where the electrostatic interaction is treated “exactly” (to within
a numerical threshold), but without having to perform the N2 summation over all atoms. Ewald sum
methods have been developed for periodic systems (such as crystals) but can also be applied to quasi-
periodic models arising by applying periodic boundary conditions (Figure 15.4). The idea in these
methods is to split the interaction into a “near”- and “far”-field contribution.73 The near-field con-
tribution is obtained by embedding each point charge in a screening potential, taken as a Gaussian
function with an exactly opposing charge centered at the position of the point charge. Outside the
range of the screening function, essentially given by the width of the Gaussian, the net charge is
thus zero, and the interaction between these screened point charges is therefore short-ranged and
can be evaluated directly. In order to recover the original point charge interaction, the effect of the
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Figure . Difference between original, switched and shifted Coulomb potentials.

screening potentials must be subtracted again. This compensating term is an interaction between
Gaussian charge distributions, which is long-ranged. Since it is a smooth charge distribution, how-
ever, it can be evaluated efficiently in reciprocal space by Fourier transform methods. The only free
parameter is the width of the Gaussian potential. A narrow Gaussian function makes the direct-
space part converge rapidly, but the reciprocal-space part converges slowly, and vice versa for a wide
Gaussian function. The optimum width is given by the condition that the computational effort is
distributed equally between the direct and reciprocal sums.

A key point in these methods is the existence of computationally efficient methods for performing
Fourier transformations, which reduces the scaling from N2 to N3/2. A related method is the Particle
Mesh Ewald (PME) method, which scales (only) as N ln (N).74 PME can also be used for calculating
the Lennard–Jones form of the van der Waals energy exactly.75

The Fast Multipole Moment (FMM) method similarly splits the contribution into a near-field and
far-field, and calculates the near-field exactly (Figure 15.5).76 The far-field energy is calculated by
dividing the physical space into boxes and the interaction between all molecules in one box with all

Screened point charges

Compensating charges

Figure . Illustration of the Ewald method.
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Figure . Illustration of the fast multipole moment method.

molecules in another is approximated as interactions between multipoles located at the centers of
the boxes. The further away from each other two boxes are, the larger the boxes can be for a given
accuracy, thereby reducing the formal N2 scaling into something that approaches linear scaling. The
prefactor, however, is rather large and when properly implemented it appears that the cross-over
point, where FMM becomes faster than PME, is around 105 particles. FMM furthermore works best
when the particles are relatively uniformly distributed; for a non-uniform distribution of particles, the
multipole order must be significantly increased in order to achieve a given accuracy. A disadvantage
of FMM is that the maximum error (relative to an exact calculation) is significantly larger than for
Ewald-type methods, that is there are certain particle pairs for which the error is larger than the
average error by perhaps a factor of 10. FMM, in contrast to Ewald-based methods, does not have the
requirement of periodicity, and is capable of modeling large non-periodic systems.

The original FMM has been refined by also adjusting the accuracy of the multipole expansion
as a function of the distance between boxes, producing the very Fast Multipole Moment (vFMM)
method.77

The exact calculation of the electrostatic interaction, albeit by treating the system as being pseudo-
crystalline,78, 79 has been shown to give significantly different results than a simple truncation
scheme71 and also different from a switching function approach.80 Given the existence of compu-
tationally efficient methods for performing, for example, PME, there seems to be little reason for
employing a non-physical truncation of the electrostatic interaction.

. Extracting Information from Simulations

A necessary (but not sufficient) requirement for producing a representative sampling is that the sys-
tem is in equilibrium. The starting configuration may be generated by completely random positions
(and velocities for MD), but is more often taken either from a previous simulation or by placing the
particles at or near the lattice points of a suitable crystal. The system is then equilibrated by running
perhaps 104–105 MC or MD steps, followed by perhaps 105–107 production steps. Various quantities,
such as the average potential energy or correlation functions, can be monitored to validate whether
equilibrium has been achieved. The question of how to partition data from a simulation into an equi-
libration and a sample set is non-trivial. A partition into a small equilibrium set and a large sample
set may bias the result towards the starting configuration, while a partition into a large equilibrium
set and a small sample set will give a larger statistical error in the result.81
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The averaging in Equation (15.1) should be over configurations that are uncorrelated, and this is
not the case for nearby points in an MD trajectory or sequence of MC steps. The whole set of points
should therefore be divided into blocks with a length that is sufficiently long to make equivalent points
in two neighboring blocks uncorrelated, but preferably also with a length that is sufficiently short so
that no information is lost. Flyvbjerg and Petersen have shown how to determine the optimum block
length by a sequence of statistical analyses.82 For the original data set the mean and variance are
calculated according to

x̄ = 1
N

N∑

i=1
xi (15.47)

𝜎2 = 1
N − 1

N∑

i=1
(xi − x̄)2 (15.48)

The variance calculated from Equation (15.48) is only valid for uncorrelated data, which is not the
case for the original data. In order to get a realistic estimate of the true variance, we must perform a
data compression to filter out the dependence, that is find the block size for producing uncorrelated
data and calculate the variance using this blocking. The method of Flyvbjerg and Petersen consists of
performing a sequence of data compressions by averaging two neighboring points, thereby reducing
the data size by a factor of two and calculating the corresponding variance (the mean is unchanged).
The variance divided by the number of data points at a given level, 𝜎2/(N′ − 1), will initially increase
and then level off to a constant value as the data within two consecutive blocks become uncorrelated.
The point where the value becomes constant is the optimum block size for the given property and
the 𝜎2/(N′ − 1) quantity can be taken as the estimate of the true variance of the property.

The distance between (uncorrelated) data in MD methods has the dimension of time and is called
the correlation time. It is important to recognize that different properties may have different corre-
lation times, and for some properties it may be comparable to or exceed the total length of the simu-
lation. A clear advantage of the above procedure for determining the optimum block size is that the
statistical error bars associated with the variance can also be calculated, that is the standard deviation
of the variance:

𝜎2(x) ≈ 𝜎2(x′)
N ′ − 1

(

1 ±
√

2
N ′ − 1

)

(15.49)

Here the prime notation indicates the data set at a given compression level. Equation (15.49) clearly
illustrates that the estimate of the variance becomes increasingly uncertain as the number of data
blocks decreases, that is when the data have been compressed into only two blocks, the (relative)
standard deviation is

√
2. In order to determine whether it is actually possible to obtain uncorrelated

data from the simulation, a plot of 𝜎2/(N′ − 1) against the compression level should therefore include
the associated statistical error from Equation (15.49). If the statistical errors impinge on a conclusion
as to whether a constant plateau has been reached, this is an indication that the simulation length is
insufficient for obtaining a valid estimate of the given quantity.

Ensembles generated by MC techniques are naturally of the constant NVT type, while MD methods
naturally generate a constant NVE ensemble. Both MC and MD methods, however, may be modified
to simulate other ensembles, as described in Sections 15.1.1 and 15.2.2. Of special importance is
the constant NPT condition, which directly relates to most experimental conditions. The primary
advantage of MD methods is that time appears explicitly, that is such methods are natural for simu-
lating time-dependent properties, such as correlation functions, and for calculating properties that
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depend on particle velocities. Furthermore, if the relaxation time for a given process is (approxi-
mately) known, the required simulation time can be estimated beforehand (i.e. it must be at least
several multiples of the relaxation time).

In order to reduce the statistical error, the averaging in Equation (15.1) is typically performed on
103–105 points in phase space. The requirement to calculate this many points and associated ener-
gies for a model consisting of several hundred particles means that the use of ab initio methods is
extremely demanding, even for small systems and simple wave functions. Semi-empirical electronic
structure methods may be used for small systems, implicitly accepting the low accuracy of these
methods, but the large number of calculations necessary still makes this computationally intensive.
The large majority of simulations are therefore carried out with an energy surface generated by a
parameterized function of the force field type.

The expressions derived from statistical mechanics (Section 14.4) are often rewritten into compu-
tationally more suitable forms that may be evaluated from the basic descriptors: positions r, velocities
v or momenta p and energies E. The temperature is related to the average kinetic energy:

1
2 (3Natom − Nconstraint)kT =

⟨Natom∑

i

1
2 miv2

i

⟩

M

(15.50)

The temperature is fixed in a standard MC simulation (NVT conditions), while it is a derived quantity
in a standard MD simulation (NVE conditions).

The pressure is related to the product of positions and forces (for pairwise potentials):

PV = NatomkT + 1
3

⟨Natom∑

i<j
rijfij

⟩

M

(15.51)

Here the first part is for an ideal gas.
The internal (potential) energy is directly a sum of energies, which is normally given as a sum over

pair-wise interactions (i.e. van der Waals and electrostatic contribution in a force field description):

U =
Natom∑

i
Ei =

Natom∑

i<j
Eij (15.52)

The internal energy will fluctuate around a mean value that may be calculated by averaging over the
number of configurations, ⟨U⟩M.

The heat capacity at constant volume is the derivative of the energy with respect to temperature at
constant volume (Equation (14.20). There are several ways of calculating such response properties.
The most accurate is to perform a series of simulations under NVT conditions and thereby determine
the behavior of ⟨U⟩M as a function of T (e.g. by fitting to a suitable function). Subsequently this func-
tion may be differentiated to give the heat capacity. This approach has the disadvantage that several
simulations at different temperatures are required. The heat capacity can alternatively be calculated
from the fluctuation of the energy around its mean value:

CV = 1
kT2 ⟨(U − ⟨U⟩M)2⟩M = 1

kT2
(
⟨U2⟩M − ⟨U⟩2

M
)

(15.53)

This approach requires only a single simulation. Since the fluctuation has a longer relaxation time
than the energy itself, the ensemble average in Equation (15.53) must be over a larger number of
points than for ⟨U⟩M to achieve a similar statistical error, that is the efficiency obtained by avoiding
multiple simulations is partly lost owing to a longer simulation time required. Another disadvantage
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is that Equation (15.53) involves taking differences between large numbers, which is susceptible to
round-off errors.

Distribution functions measure the (average) value of a property as a function of an independent
variable. A typical example is the radial distribution function g(r), which measures the probability
of finding a particle as a function of distance from a “typical” particle relative to that expected from
a completely uniform distribution (i.e. with a density of N/V). The radial distribution function is
defined by

g(r,Δr) = V
N

⟨N(r,Δr)⟩M
4𝜋r2Δr

(15.54)

Here N(r,Δr) is the number of molecules between r and r + Δr from another particle and 4𝜋r2 Δr
is the volume of a spherical shell with thickness Δr. The radial distribution function for a solution
will typically have a structure as shown in Figure 15.6 for the simulation of a benzene radical anion
in water.83 Figure 15.6 displays the radial distribution function of hydrogen relative to the center of
mass of the benzene radical anion. At short distances, the probability is zero due to van der Waals
repulsion. The distribution function then rises sharply to a value of ∼1.7 for a distance of ∼1.8 Å,
indicating that it is 1.7 times more likely to find particles with this separation than expected from
a uniform distribution. This corresponds to water molecules that are located above or below the
molecular plane. A second peak occurs at ∼3.2 Å, which corresponds to water molecules located
around the edge of the benzene molecule. The integral under a peak gives the number of solvent
molecules of a given type. At long range the distribution function levels off to a value of 1, that is the
particles no longer sense each other and behave as a uniform distribution.

The radial distribution function can for molecules be extended with orientation degrees of freedom
to characterize the angular distribution.

Figure . A typical radial distribution function.
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Correlation functions measure the relationship between two variables, x and y. A common defini-
tion is given by

Cxy =
⟨(x − ⟨x⟩M)(y − ⟨y⟩M)⟩M

√
⟨(x − ⟨x⟩M)2⟩M⟨(y − ⟨y⟩M)2⟩M

(15.55)

The correlation function is a number between −1 and 1, where 1 indicates that the two quantities are
completely correlated, −1 that they are (completely) anticorrelated and 0 means that they are inde-
pendent (uncorrelated). Such correlation functions are often time-dependent and measure how the
correlation between two quantities changes over time. They may be normalized by the corresponding
static (i.e. t = t0) limit:

Cxy(t) =
⟨x(t0)y(t)⟩N ,t0

⟨x(t0)y(t0)⟩N ,t0

(15.56)

Notice that the averaging is done over the number of particles N and t0, but not the number of con-
figurations M. Since an MD simulation produces a set of time-connected configurations, the number
of a given configuration is directly related to the simulation time.

In the case where x and y are the same, Cxx(t) is called an autocorrelation function; if they are
different, it is called a cross-correlation function. For an autocorrelation function, the initial value at
t= t0 is 1 and approaches 0 as t→∞. How fast it approaches 0 is measured by the relaxation time. The
Fourier transforms of such correlation functions are often related to experimentally observed spectra;
the far IR spectrum of a solvent, for example, is the Fourier transform of the dipole autocorrelation
function:84

I(𝜔) ∝
∫

+∞

−∞
⟨μ(t)⋅μ(0)⟩ei𝜔tdt (15.57)

The Raman spectrum can similarly be obtained from the polarizability autocorrelation function.
The averaging in the above focuses on a single long trajectory, but it may alternatively be done over

many short trajectories. The latter is trivially parallelizable in terms of computation time and thus has
some practical advantages; furthermore, it has been shown that it may give a better performance.85

This claim, however, is tightly connected with the quality of the force field, as illustrated in Figure 15.7.
With a good force field, the results obtained from a single long simulation should be the same as
that obtained from several shorter simulations with the same total simulation time (within the usual
statistical uncertainty). With a poor force field, however, the single long simulation has time to move
sufficiently far away from the starting point in phase space that the resulting average will be “poorer”
than averaging over several short simulations, which do not have time to move very far from the
starting point.

The key point is that short simulations necessarily can only sample regions of the phase space close
to the starting point, while long simulations have the possibility of sampling regions further from the
starting point. It should be noted, however, that “long” simulations in practice are only rarely long
enough that adequate sampling of the phase space can be expected. Although MD simulations in
principle are deterministic (the same trajectory should be obtained from the identical same starting
conditions), the behavior is in practice chaotic, and even tiny perturbations in the starting structure
lead to different trajectories within a few picoseconds.85 Simulations on nanosecond timescales at
ambient temperatures are only able to explore regions of phase space with low-energy barriers, and
different starting conditions may lead to (average) results that differ significantly more than the sta-
tistical errors for each simulation. The result from a single simulation thus appears to be much more
accurate than it is in reality. It is therefore highly advisable to run multiple simulations with different
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Several short simulations One long simulation

Good force field

Poor force field

Figure . Illustrating that differences between averaging over one long versus several short simulations may reflect
the quality of the force field. The central dot indicates the starting point in phase space, while the circle indicates the
region over which the averaging produces the ‘correct’ result.

starting conditions, but the combination of many long simulations is of course not desirable from a
computational resource point of view. Force field and sampling errors are with present computational
resources therefore intertwined and difficult to separate.

. Free Energy Methods

As noted in Section 14.6, it is difficult to calculate entropic quantities with any reasonable accu-
racy within a finite simulation time. It is, however, possible to calculate differences in such quan-
tities.86, 87 Of special importance is the Gibbs free energy, since it is the natural thermodynamic
quantity under normal experimental conditions (constant temperature and pressure, Table 15.1),
but we will illustrate the principle with Helmholtz free energy instead (constant temperature and
volume). As indicated in Equation (14.18), the fundamental problem is the same. There are two com-
monly used methods for calculating differences in free energy: Thermodynamic Perturbation and
Thermodynamic Integration.88 Some of the bias MD methods described in Section 15.2.9, such as
the adaptive bias force method, can also be used for calculating free energy profiles along a suitable
reaction coordinate.

15.5.1 Thermodynamic Perturbation Methods

The difference in entropy properties between two systems A and B can be calculated by an ensemble
average, as discussed in Section 14.6:

⟨ΔAAB⟩M = kT ln⟨e(EB−EA)∕kT⟩M (15.58)
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Since the energy difference must be small compared with kT, the transformation from A to B must
usually be broken into several intermediate steps described by a 𝜆 parameter, and the total free energy
change is given as the sum of changes in each step:

E𝜆 = 𝜆EA + (1 − 𝜆)EB (15.59)

To test the quality of the averaging, the perturbation is usually run in both directions (i.e. A → B and
B → A), and the difference is taken as a measure of how well ΔA is statistically converged. It should be
noted that (too) short simulation times may lead to forward- and backward-calculated values that are
in good agreement, without the energy difference being calculated accurately. Establishing a reliable
estimate of the statistical error requires running several independent simulations and carefully ana-
lyzing the size of the perturbation steps and the correlation times for the various processes occurring
in the system.89 Calculation of free energy differences by means of Equation (15.58) is often called
Thermodynamic Perturbation90 or Free Energy Perturbation (FEP).

Instead of performing a series of simulations with a fixed energy function as in Equation (15.58),
it may also be allowed to change continuously during a single simulation by changing 𝜆 slightly in
each time step. This is called the Slow Growth method and requires that the increase in 𝜆 is slow
enough that the system essentially remains at equilibrium at all times. This is difficult to ensure in
practice,91, 92 and the slow growth method is therefore used less commonly.

15.5.2 Thermodynamic Integration Methods

Given an energy function as in Equation (15.59), the partition function, and thereby also the free
energy, is a function of 𝜆:

A(𝜆) = −kT lnQ(𝜆) (15.60)

Differentiating this expressions yields

𝜕A
𝜕𝜆

= −kT
Q
𝜕Q
𝜕𝜆

= 𝜕E
𝜕𝜆

(15.61)

Here the definition of Q (Equation (14.15)) has been used. Replacing the right-hand side by an ensem-
ble average and integrating over 𝜆 gives

A (1) − A (0) =
∫

1

0

⟨
𝜕E (𝜆)
𝜕𝜆

⟩

M
d𝜆 (15.62)

The left-hand side is the desired free energy difference and the right-hand side may be approximated
by a discrete sum:

ΔA =
∑

i

⟨
𝜕E (𝜆)
𝜕𝜆

⟩

M
Δ𝜆i (15.63)

The use of Equation (15.63) for calculating ΔA is normally called Thermodynamic Integration (TI).93

The difference between Equations (15.58) and (15.63) is that the former averages over finite differ-
ences in energy functions, while the latter averages over a differentiated energy function. For param-
eterized energy functions, it is fairly easy to form the energy derivative with respect to the coupling
parameter analytically, and the averaging in Equation (15.63) is therefore no more complicated than
averaging over energy differences as in Equation (15.58). Furthermore, it should be noted that the
computational cost of performing the averaging is negligible compared with the cost of generating
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Figure . An example of a thermodynamic cycle for calculating differences in solvation energies.

the ensemble, and the same ensemble can therefore be used to calculate the free energy difference by
either Equation (15.58) or (15.63). This allows a measure of the reliability of the calculated value to
be obtained.

Free energy calculations are often combined with thermodynamic cycles to calculate properties that
would otherwise require impossible long simulation times.94, 95 A direct calculation of, for example,
solvating acetone in water would require simulating the transfer of an acetone molecule from the
gas phase (vacuum) to an aqueous phase, followed by solvent reorganization. If we wish to calculate
the solvation energy of acetone relative to propane, this would require a second (impossibly long)
simulation of transferring a propane molecule into the aqueous phase. Alternatively, the difference in
solvation may be calculated by means of the thermodynamic cycle shown in Figure 15.8.

Since G is a state function, the difference in solvation energy, ΔGsolv,A − ΔGsolv,B, which is difficult
to calculate, may instead be obtained as ΔΔGsolv − ΔΔGgas. If A and B are different molecules, such
as acetone and propane, the ΔΔG values correspond to non-physical transformations. Theoretically,
however, it is quite easy to transform an oxygen atom into two hydrogens. The ΔΔGgas value corre-
sponds to differences in the internal (translational, rotational and vibrational) degrees of freedom,
which can be calculated as discussed in Section 14.5. This difference also is part of ΔΔGsolv, but if
the internal energy levels are assumed to be independent of solvent, the solvent part of ΔΔGsolv is
directly the difference in solvation.

In the acetone/propane example, the A to B change means that the oxygen atom gradually disap-
pears and two hydrogens gradually appear at the appropriate positions. In a force field energy expres-
sion, this corresponds to reducing or increasing van der Waals parameters and atomic charges, as
well as changing all other parameters that are affected by the change in atom types. For 𝜆 = 0.5, the
A/B “molecule” thus consists of a CH3 C CH3 framework, with the central carbon having “half”
a carbonyl oxygen and two “half” hydrogens attached. Absolute values of solvation energies may be
calculated by transforming a solvent molecule to the solute, but if they are structurally very different
it may require long simulation times to ensure that equilibrium is attained.

The technique of thermodynamic cycles may be used for calculating relative free energies for a
variety of other cases. Differential binding of two ligands to a protein, for example, requires trans-
forming one ligand into the other in a pure solution, and when bound to the protein. The strength of
free energy methods is that differences in free energies may be obtained with a statistical accuracy
of a few kJ/mol, at quite reasonable computational costs. Whether the calculated values agree with
experimental results depends on the quality of the force field, but there are models for many solvents
that are capable of providing an accuracy of better than a few kJ/mol in terms of absolute values.

The basic requirement of free energy perturbation or thermodynamic integration methods is that
the non-physical transformation is carried out in sufficiently small steps that the sampling of the
phase space at two successive points overlaps. Even for quite similar systems, this often means that
the transformation must be broken into 10–20 steps, with each step requiring extensive sampling, and
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this makes such methods computationally intensive. In the Linear Interaction Energy (LIE) method,
only the physical end-points for the thermodynamic cycle in Figure 15.8 are subjected to a simulation.
The difference in binding free energy is then parameterized as a linear combination of the difference
in the non-polar (van der Waals) and polar (electrostatic) interactions between the ligands and sur-
roundings (enzyme or solvent):96

ΔGbind = 𝛼Δ⟨Evdw⟩ + 𝛽Δ⟨Eel⟩ + 𝛾 (15.64)

The 𝛽 constant is expected to have a value of 0.5 from theoretical arguments. Optimization of the
three parameters against experimental binding energies for the P450cam system confirms that the
optimum 𝛽 value is close to 0.5, while α and 𝛾 have values of ∼0.18 and ∼ −4.5.97 It is likely
that the optimum parameter values will depend on the specific system98 but the LIE offers a compu-
tational saving of an order of magnitude or more compared with FEP or TI methods.

. Solvation Models

An important aspect of computational chemistry is to evaluate the effect of the environment, such
as a solvent. Methods for evaluating the solvent effect may broadly be divided into two types:
those describing the individual solvent molecules and those that treat the solvent as a continuous
medium.99 Combinations are also possible, for example by explicitly considering the first solvation
shell and treating the rest by a continuum model. Each of these may be subdivided according to
whether they use a classical or quantum mechanical description. By far the most important solvent
is water, and since it is also one of the most difficult systems to model, the majority of methods have
been focused on water, and we will use this for exemplification in the following.

The effects of solvation can be partitioned into two main groups:
� Non-specific (long-range) solvation
◦ Polarization
◦ Dipole orientation

� Specific (short-range) solvation
◦ Hydrogen bonds
◦ van der Waals interaction
◦ Solvent shell structure
◦ Solvent–solute dynamics
◦ Charge transfer effects
◦ Hydrophobic effects (entropy effects).

The non-specific effects are primarily solvent polarization and orientation of the solvent electric mul-
tipole moments by the solute, where the dipole interaction is usually the most important. These effects
cause a screening of charge interactions, leading to the (macroscopic) dielectric constant being larger
than 1. The microscopic interactions are primarily located in the first solvation shell, although the
second solvation shell may also be important for multiple-charged ions. The microscopic interac-
tions depend on the specific nature of the solvent molecule, such as the shape and the ability to form
hydrogen bonds.

A molecular description involves periodic boundary conditions and sampling the phase space by
simulation methods. Such methods are in principle capable of accounting for all of the above sol-
vent effects but the quality of the results will of course depend on how realistically the solvent–solute
and solvent–solvent interactions are described. The requirement of many (hundreds or thousands
of) solvent molecules to form a realistic model means that force field methods are often the primary
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(or only) choice based on computational considerations. Since polarizable force fields are not yet in
common use, this means that a major part of the non-specific solvation is lacking. Car–Parrinello
molecular dynamics methods using density functional theory for describing the interaction are sig-
nificantly more expensive and can therefore only give a limited sampling of the phase space. They can
account for the polarization but many commonly employed functionals have a poor description of
the van der Waals interaction. Semi-empirical electronic structure methods (Chapter 7) are in general
not sufficiently accurate for calculating intermolecular potentials unless their parameters are specif-
ically tuned to reproduce a selected solvent. Mixed QM/MM methods, where the solute is described
by a (quantum) electronic structure method and the solvent by a (classical) force field, can account
for the polarization of the solute, but the backpolarization again requires a polarizable force field.

Explicit solvation models describe the solvent in terms of individual solvent molecules, and given
that a realistic solvation model usually requires many thousands of solvent molecules, this implies
parameterized energy functions of the force field type. These models can be classified by three criteria:

� Rigid or flexible geometry
� Number of interaction points
� Static or polarizable electrostatic interactions

The number of interaction points, often called sites, refers to how many expansion points that are
used for representing the electrostatic interaction. These often coincide with the nucleus positions,
but not necessarily, and additional off-nucleus points are often required when fixed point charges
are used for representing the electrostatic interaction. A more detailed description of different water
models is given in Section 2.5.

Methods involving an explicit description of the solvent molecules require, analogously with other
many-body methods, a sampling of the phase space. Since this is computationally expensive, there is
a strong interest in developing methods where the solvent is modeled in a less rigorous fashion. The
solvent–solute dynamics can be taken into account in an average fashion by the Langevin dynamics
method (Section 15.2.3). The non-specific effects of solvation can be modeled by considering the
solvent as a homogeneous medium with a dielectric constant, as will be discussed in more detail in
the next section.

15.6.1 Continuum Solvation Models

Continuum models consider the solvent as a uniform polarizable medium with a dielectric constant
of 𝜀 and with the solute M placed in a suitably shaped hole in the medium (Figure 15.9).100

Creation of a hole in the medium costs energy, that is this is a destabilization, while dispersion
interactions between the solvent and solute add a stabilization (this is roughly the van der Waals
energy between solvent and solute). The electric charge distribution of M will polarize the medium

Figure . Reaction field model.
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(induce charge moments), which in turn acts back on the molecule, thereby producing an electro-
static stabilization. One may also consider an exchange-repulsive component as well as a separate
term accounting for hydrogen bonding. The solvation (free) energy may thus be written as a sum of
components as shown below:

ΔGsolvation = ΔGcavity + ΔGelec + ΔGdispersion + ΔGexchange + ΔGH−Bond +⋯ (15.65)

Reaction field models differ in five aspects:

1. How are the size and shape of the hole defined?
2. How is the charge distribution of M represented?
3. How is the solute M described, either classical (force field) or quantum (semi-empirical or ab

initio)?
4. How is the dielectric medium described?
5. How are the non-electrostatic energy terms calculated?

The dielectric medium is normally taken to have a constant value of 𝜀, but may for some purposes
also be taken to depend, for example, on the distance from M. For dynamical phenomena it can also
be allowed to be frequency dependent,101 that is the response of the solvent is different for a “fast”
reaction, such as an electronic transition, and a “slow” reaction, such as a molecular reorientation. It
should be noted that 𝜀 is the only parameter characterizing the electrostatic component, and solvents
having the same 𝜀 value (such as acetone, 𝜀 = 20.7, and 1-propanol, 𝜀 = 20.1, or benzene, 𝜀 = 2.28,
and carbon tetrachloride, 𝜀 = 2.24) thus have the same electrostatic energy. The hydrogen bonding
capability of 1-propanol compared with acetone will in reality most likely make a difference, and the
solvent dynamics of an almost spherical CCl4 will be different from the planar benzene molecule.
These differences must be accounted for by parameterizations of the non-electrostatic energy terms.

The simplest shape for the hole is a sphere or an ellipsoid. This has the advantage that the electro-
static interaction between M and the dielectric medium may be calculated analytically. More realistic
models employ molecular-shaped holes, generated, for example, by interlocking spheres located on
each nucleus. Taking the atomic radius as a suitable factor (a typical value is 1.2) times a van der Waals
radius defines a van der Waals surface. Such as surface may have small “pockets” where no solvent
molecules can enter and a more appropriate descriptor may be defined as the surface traced out by
a spherical particle of a given radius (a typical radius of 1.4 Å to model a water molecule) rolling on
the van der Waals surface. This is denoted the Solvent Accessible Surface (SAS) and is illustrated in
Figure 15.10.

Since an SAS is computationally more expensive to generate than a van der Waals surface, and
since the difference is often small, a van der Waals surface is often used in practice. An additional

Figure . On a surface generated by overlapping van der Waals spheres there will be areas (hatched) that are
inaccessible to a solvent molecule (dotted sphere).
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disadvantage is that a very small displacement of an atom may alter the SAS in a discontinuous fash-
ion, as a “pocket” in the van der Waals surface suddenly becomes too small to allow the solvent probe
to enter. The cavity may alternatively be calculated directly from the wave function, for example by
taking an isodensity surface corresponding to a value of 10-3.–10-4.102 It is generally found that the
shape of the hole is important and that molecular-shaped cavities are necessary to be able to obtain
good agreement with experimental data (such as solvation energies).

The energy required in creating the cavity (entropy factors and loss of solvent–solvent interactions),
the stabilization due to dispersion between the solute and solvent, as well as the exchange-repulsion
energy is usually assumed to be proportional to the surface area. The corresponding energy terms are
often parameterized as being proportional to the total cavity area (a single proportionality constant)
or parameterized by having a constant 𝜉 specific for each atom type (analogous to van der Waals
parameters in force field methods), with the 𝜉 parameters being determined by fitting to experimental
solvation data. Explicit calculations have indicated that a linear parameterization in the SAS may be
quite poor:103

Gcavity + ΔGdispersion + ΔGexchange = 𝛾 SAS + 𝛽 (15.66)

Gcavity + ΔGdispersion + ΔGexchange =
atoms∑

i
𝜉iSi (15.67)

For solvent models where the cavity/dispersion/exchange interaction is parameterized by fitting to
experimental solvation energies, the use of a few explicit solvent molecules for the first solvation
sphere is not recommended, as the parameterization represents a best fit to experimental data with-
out any explicit solvent present. Short-range specific solvation effects, of which hydrogen bonding
between the solute and solvent is the most important, can be parameterized based on features in the
electrostatic component, as described below. The electrostatic component of Equation (15.65) can be
described at several different levels of approximation, as discussed in the following sections.

15.6.2 Poisson–Boltzmann Methods

The Poisson equation is a second-order differential equation describing the connection between the
electrostatic potential 𝜙, the charge distribution 𝜌 and the dielectric constant 𝜀104, 105

∇ ⋅ (𝜀 (r)∇𝜙 (r)) = −4𝜋𝜌 (r) (15.68)

Note that the dielectric “constant” may depend on the position. When it is independent of the position
(i.e. truly a constant), Equation (15.68) becomes

∇2𝜙 (r) = −4𝜋
𝜀
𝜌 (r) (15.69)

If the charge distribution is a point charge, the solution of Equation (15.69) reduces to the Coulomb
interaction. Equation (15.68) can be used to describe, for example, the solvation of a protein in water,
where the protein region is taken to have a low dielectric constant (2 < 𝜀 < 5) while the solvent has
a high dielectric constant (𝜀 = 78). The boundary between the two regions is typically taken as the
SAS.

The Poisson equation can be modified by taking into account a (thermal) Boltzmann distribution of
ions in the solvent. The negative ions will accumulate where the potential is positive, and vice versa,
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subject to a thermal fluctuation. The charge densities from a collection of ions with charges q and −q
and concentration c are given by

𝜌+ = qce−q𝜙∕kT

𝜌− = −qce−q𝜙∕kT
(15.70)

Addition of these contributions to Equation (15.68) leads to the Poisson–Boltzmann Equation (PBE):

∇ ⋅ (𝜀(r)∇𝜙(r)) − 𝜅2
(

kT
q

)

sinh
(

q𝜙(r)
kT

)

= −4𝜋𝜌(r)

𝜅2 = 8𝜋q2I
kT

(15.71)

Here I is the ion strength of the solution and the 𝜅2 factor is inversely related to the Debye–Hückel
length, measuring how far the electrostatic effects extend into the solution. The sinh(q𝜙(r)/kT) term
only applies for the region corresponding to the solvent, that is for r outside the cavity. Since q𝜙/kT
is dimensionless, the PBE is often written in terms of a reduced potential u instead:

∇ ⋅ (𝜀 (r)∇u (r)) − 𝜅2 sinh (u (r)) = −4𝜋𝜌 (r) (15.72)

If the potential is sufficiently small (i.e. the solute is not strongly charged), the sinh(x) function can be
expanded in a Taylor series, sinh(x) ≈ x + x3/6 +⋯. Keeping only the first term gives the Linearized
Poisson–Boltzmann Equation (LPBE):

∇ ⋅ (𝜀 (r)∇u (r)) − 𝜅2u (r) = −4𝜋𝜌 (r) (15.73)

All of these Equations ((15.68) to (15.73)) are differential equations that must be solved numerically,
typically by a grid representation, and the results give information about the electrostatic potential at
any point in space. It can be mapped on to the surface of the solute where it may suggest regions for
interaction with other polar molecules. It can also be used for generating the reaction field, defined
as the difference between the potential in the presence of a solvent (𝜀 = 78) and in vacuum (𝜀 = 1),
that is 𝜙reac = 𝜙solv − 𝜙vac. Multiplication of the reaction field with the solute charges in either a
continuous (𝜌) or partial charge (Q) description gives the electrostatic component of the free energy:

ΔGelec = 1
2 ∫

𝜌 (r)𝜙reac (r) dr (15.74)

ΔGelec = 1
2

∑

i
Q(ri)𝜙reac(ri) (15.75)

15.6.3 Born/Onsager/Kirkwood Models

The numerical aspects of solving the Poisson or Poisson–Boltzmann equations make them too
demanding for use in connections with, for example, geometry optimizations or simulations of
macromolecules. For certain special cases, however, the Poisson Equation (15.68) can be solved ana-
lytically, and this forms the basis for many approximate models for estimating the electronic compo-
nent in Equation (15.65).

The simplest reaction field model is a spherical cavity, where only the lowest-order electric moment
of the molecule is taken into account. For a net charge q in a cavity of radius a, the difference in energy
between a vacuum and a medium with a dielectric constant of 𝜀 is given by the Born model:106

ΔGelec (q) = −
(

1 − 1
𝜀

) q2

2a
(15.76)
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It can be noted that the Born model predicts equal solvation energies for positive and negative ions of
the same size, which is not the observed behavior in solvents such as water. The reciprocal dependence
on the dielectric constant furthermore means that the calculated solvent effect is sensitive to the
variation of 𝜀 in the low dielectric limit but is virtually unaffected by large differences in the high
dielectric limit. Changing 𝜀 from 1 to 2 gives a factor of 1∕2 in Equation (15.76) but there is virtually no
difference between a solvent with a dielectric constant of 30 (e.g. acetonitrile) and one with a dielectric
constant of 78 (e.g. water), although in actual experiments there may be a significant difference.

Using partial atomic charges in Equation (15.76) is often called the Generalized Born (GB)
model, which has been used especially in connection with force field methods in the Generalized
Born/Surface Area (GB/SA) model.107, 108 In this case, the Coulomb interaction between the partial
charges (Equation (2.21)) is combined with the Born formula by means of a function fij depending on
the internuclear distance and Born radii for each of the two atoms, ai and aj:

Gelec(Qi, Qj) = −
(

1 − 1
𝜀

) QiQj

fij

fij =
√

r2
ij + a2

ije−D ; a2
ij = aiaj ; D =

r2
ij

4a2
ij

(15.77)

The effective Born radius for a given atom depends on the nature and position of all the atoms. The
dependence on the other atoms is in practice relatively weak, and updates of the ai parameters can
be done at suitable intervals, for example when updating the non-bonded list in an optimization or
simulation. The boundary between the solute and solvent is usually taken as a modified van der Waals
surface generated from the unification of atomic van der Waals radii scaled by a suitable factor. The
cavity/dispersion terms are parameterized according to the SAS, as in Equation (15.67). The GB/SA
model provides a very fast method of incorporating solvent effects, and it is furthermore relatively
easy to formulate gradients of the energy function, making it possible to perform optimizations and
simulations. It has been shown to reproduce the results from Poisson–Boltzmann calculations rather
accurately, but it should be noted that the results are somewhat sensitive to the magnitude of the
partial charges.

The dipole in a spherical cavity is known as the Onsager model,109 which for a dipole moment of 𝜇
leads to an energy stabilization given by

ΔGelec(𝜇) = − 𝜀 − 1
2𝜀 + 1

𝜇2

a3 (15.78)

The Kirkwood model110 refers to a general multipole expansion in a spherical cavity, while the
Kirkwood–Westheimer model arises for an ellipsoidal cavity.111

The charge distribution of the molecule can be represented either as atom-centered partial charges
or as a multipole expansion. The lowest-order approximation for a neutral molecule considers only
the dipole moment. This may be a quite poor approximation and fails completely for symmetric
molecules that do not have a dipole moment. It is often necessary to extend the expansion up to
order six or more in order to obtain converged results, that is including dipole, quadrupole, octupole,
etc., moments. Furthermore, only for small and symmetric molecules can the approximation of a
spherical or ellipsoidal cavity be considered realistic. The use of the Born/Onsager/Kirkwood models
should therefore only be considered as a rough estimate of the solvent effects, and quantitative results
can rarely be obtained.
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15.6.4 Self-Consistent Reaction Field Models

A classical description of the molecule M in Figure 15.9 can be a force field with (partial) atomic
charges, while a quantum description involves calculation of the electronic wave function. The lat-
ter may be either a semi-empirical model, such as PM6, or more sophisticated electronic structure
methods, that is HF, DFT, MCSCF, MP2, CCSD, etc. When a quantum description of M is employed,
the calculated electric moments induce charges in the dielectric medium, which in turn acts back on
the molecule, causing the wave function to respond and thereby changing the electric moments, etc.
The interaction with the solvent model must thus be calculated by an iterative procedure, leading to
various Self-Consistent Reaction Field (SCRF) models.

The interaction of a fixed dipole moment with a polarizable medium is given by Equation (15.78).
This, however, is not an SCRF model, as the dipole moment and stabilization are not calculated in
a self-consistent way. When the backpolarization of the medium is taken into account, the dipole
moment changes, depending on how polarizable the molecule is. Taking only the first-order effect
into account, the stabilization is given by

ΔGelec (𝜇) = − 𝜀 − 1
2𝜀 + 1

𝜇2

a3

[

1 − 𝜀 − 1
2𝜀 + 1

2𝛼
a3

]−1
(15.79)

Here 𝛼 is the molecular polarizability, that is the first-order change in the dipole moment with respect
to an electric field. In the SCRF model the full polarization is taken into account, that is the initial
dipole moment generates a polarization of the medium, which changes the dipole moment, which in
turn generates a slightly different polarization, etc.

For spherical or ellipsoidal cavities the Poisson equation can be solved analytically, but for
molecular-shaped surfaces it must be done numerically. This is typically done by reformulating it
in terms of a surface integral over surface charges and solving this numerically by dividing the sur-
face into smaller fractions called tesserae, each having an associated charge 𝜎(rs). The surface charges
are related to the electric field F (the derivative of the potential 𝜙) perpendicular to the surface by

4π𝜀𝜎(rs) = (𝜀 − 1)F(rs) (15.80)

Once 𝜎(rs) is determined, the associated potential is added as an extra term to the Hamiltonian oper-
ator:

𝜙𝜎(r) =
∫

𝜎(rs)
|r − rs|

drs (15.81)

H = H0 + 𝜙𝜎 (15.82)

The potential 𝜙𝜎 from the surface charge is given by the molecular charge distribution (Equation
(15.81)), but also enters the Hamiltonian and thus influences the molecular wave function. The pro-
cedure is therefore iterative.

For the case of the Onsager model (spherical cavity, dipole moment only) the term added to the
molecular Hamiltonian operator is given by

𝜙𝜎 = −r ⋅ R (15.83)
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Here r is the dipole moment operator (i.e. the position vector) and R is proportional to the molecu-
lar dipole moment, with the proportionality constant depending on the radius of the cavity and the
dielectric constant:

R = gμ

g = 2(𝜀 − 1)
(2𝜀 + 1)a3

(15.84)

The 𝜙𝜎 operator at the HF level of theory corresponds to the addition of an extra term to the Fock
matrix elements (Section 3.5):

F𝛼𝛽 = ⟨𝜒𝛼|F|𝜒𝛽⟩ − gμ⟨𝜒𝛼|r|𝜒𝛽⟩ (15.85)

The additional integrals are just expectation values of x, y and z coordinates, and their inclusion
requires very little additional computational effort. Generalization to higher-order multipoles is
straightforward.

In connection with electronic structure methods (i.e. a quantum description of M), the term SCRF
is quite generic and it does not by itself indicate a specific model. Typically, however, the term is used
for models where the cavity is either spherical or ellipsoidal, the charge distribution is represented as
a multipole expansion, often terminated at quite low orders (e.g. only including the charge and dipole
terms), and the cavity/dispersion contributions are neglected. Such a treatment can only be used for
a qualitative estimate of the solvent effect, although relative values may be reasonably accurate if the
molecules are polar (dominance of the dipole electrostatic term) and sufficiently similar in size and
shape (cancellation of the cavity/dispersion terms).

The cavity size in the Born/Onsager/Kirkwood models strongly influences the calculated stabiliza-
tion, but there is no consensus on how to choose the cavity radius. In some cases, the molecular
volume is calculated from the experimental density of the solvent and the cavity radius is defined
by equating the cavity volume to the molecular volume. The cavity size may alternatively be derived
from the (experimental) dielectric constant and the calculated dipole moment and polarizability.112

The underlying assumption in all these models is that the molecule is roughly spherical or ellipsoidal,
which is only generally true for small compact molecules.

More sophisticated models employ molecular-shaped cavities, but there is again no consensus on
the exact procedure. The cavity is often defined based on van der Waals radii of the atoms in the
molecule multiplied by an empirical scale factor ∼1.2. The molecular volume may alternatively be
calculated directly from the electronic wave function, for example by using an isodensity surface
corresponding to a value of 10−3–10−4.

The Polarizable Continuum Model (PCM) employs a van der Waals cavity formed by interlocking
atomic van der Waals radii scaled by an empirical factor, a detailed description of the electrostatic
potential, and parameterizes the cavity/dispersion contributions based on the surface area.113 Several
slightly different implementations have been published, of which the Integral Equation Formalism
PCM (IEFPCM) is the most general.114

The COnductor-like Screening MOdel (COSMO) also employs molecular-shaped cavities and rep-
resents the electrostatic potential by partial atomic charges. COSMO was originally implemented
for semi-empirical methods but has also been used in connection with ab initio methods. It may
be considered as a limiting case of the PCM model, where the dielectric constant is set to infinity.
The COSMO-RS (RS for Real Solvents) includes additional terms in order to model, for example,
hydrogen bonding in terms of the surface charges.115
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The Solvation Models (SMx, x being a version number) developed by Cramer and Truhlar are gen-
eralized Born-type models,116 where the partial atomic charges are calculated from a wave function
and the dispersion/cavity terms in Equation (15.65) are parameterized based on the solvent exposed
surface area (Equation (15.67)). The version number of these models reflects increasingly sophisti-
cated parameterizations.

The Composite Method for Implicit Representation of Solvent (CMIRS) model employs a cavity
defined by an isodensity surface and describes the electrostatic component as in the PCM model,
but parameterize the dispersion, exchange–repulsion and hydrogen bonding in terms of descriptors
derived from the wave function.117 The dispersion is modeled after the van Vorhis–Vydrov DFT for-
mula (Section 6.5.7):

ΔGdispersion = A
∫solute

𝜌(r)I(r, 𝛿)

g(r)
(

g(r) +
√
𝜌solvent(r)

)dr (15.86)

g(r) =

√

𝜌(r) + 3K
4𝜋

(
∇𝜌(r)
𝜌(r)

)4
; I(r, 𝛿) =

∫solvent
[(r − r′)6 + 𝛿6]−1dr′ (15.87)

Here K is a fitting parameter taken from the van Vorhis–Vydrov work, 𝜌solvent is a solvent specific
constant, while the damping parameter 𝛿 and A are fitted to experimental reference data. The integral
over the solute in Equation (15.86) is over the interior of the cavity as well as the exterior of the cavity,
where the electron density is non-negligible. The integral over the solvent in Equation (15.87) is only
over the space outside the cavity. The exchange–repulsion is taken to be proportional to the integral
of the gradient of the electron density outside the cavity, that is it represents a measure of the amount
of solute electron density that is not contained in the cavity and thus interacts repulsively with the
surrounding solvent:

ΔGexchange = B
∫solvent

|∇𝜌(r)|dr (15.88)

The hydrogen bonding is parameterized in term of the largest negative and positive electric fields
perpendicular to the cavity surface:

ΔGH−bond = C|Fmin|
𝛾 + DF𝛾max (15.89)

The B, C, D and 𝛾 are fitting parameters.
It should be noted that the parameterization of continuums solvent models, such as, for exam-

ple, the cavity size defined by the atomic radii, is against experimental free energies, which implicitly
include entropy and finite temperature effects. These effects should therefore not be added from cal-
culated frequencies (Equations (14.45) and (14.49)), as this effectively would be a double counting.
Furthermore, the use of the ideal-gas rigid-rotor harmonic-oscillator approximation for calculating
finite temperature effects is unlikely to be a good approximation for condensed phases. The parame-
terization against experimental values also has as a consequence that the results are only strictly valid
at the temperature where the experimental data have been obtained (normally 298 K) and implicitly
include conformational averaging.

The “mixed” solvent models, where the first solvation shell is accounted for by including a num-
ber of solvent molecules, implicitly include the solute–solvent cavity/dispersion terms, although the
corresponding terms between the solvent molecules and the continuum are usually neglected. Once
discrete solvent molecules are included, however, the problem of configuration sampling arises. Fur-
thermore, a parameterization of the continuum model against experimental data must be done by
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explicitly taking the first solvation shell into account. Nevertheless, the first solvation shell is in many
cases by far the most important, and mixed models may yield substantially better results than pure
continuum models, at the price of an increased computational cost.

Given the diversity of the various SCRF models, and the fact that solvation energies in water may
range from a few kJ/mol for, say, ethane to perhaps several hundred kJ/mol for an ion, it is difficult
to evaluate just how accurately continuum methods may in principle be able to represent solvation.
It seems clear, however, that molecular-shaped cavities must be employed, the electrostatic polariza-
tion needs a description either in terms of atomic charges or quite high order multipoles and cavity,
dispersion and exchange terms must be included. Properly parameterized, such models appear to be
able to give absolute values with an accuracy of a few kJ/mol.118 Comparison with results obtained by
explicit solvent modeling, however, suggests that the electrostatic component is underestimated for
continuum models by roughly a factor of two, while the non-bonded part is essentially uncorrelated
with the surface area.119

Inclusion of solvent effects may change the geometry, charge distribution and conformational pref-
erences. Employing a PCM-type solvation water model in connection with the B3LYP/aug-cc-pVTZ
method, for example, leads to an increase of the C O bond length in acetamide by 0.015 Å, while the
C—N bond is reduced by a similar amount. The calculated dipole moment correspondingly changes
from 3.9 to 5.2 Debye. Since solvation preferentially stabilizes the more polar systems, it may also
change the conformational preference of molecules. Using the above computational model, for exam-
ple, changes the energy difference between the anti (no dipole moment by symmetry) and gauche (gas
phase dipole moment of 2.8 Debye) conformations of 1,2-dichloroethane from 6.7 kJ/mol in the gas
phase to 1.1 kJ/mol in solution. Molecular properties are in many cases also sensitive to the environ-
ment, but a detailed discussion of this is outside the scope of this book.39, 40
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Qualitative Theories

Although sophisticated electronic structure methods may be able to accurately predict a molecular
structure or the outcome of a chemical reaction, the results are often hard to rationalize. Generalizing
the results to other similar systems therefore becomes difficult. Qualitative theories, on the other
hand, are unable to provide accurate results but they may be useful for gaining insight, for example
why a certain reaction is favored over another. They also provide a link to many concepts used by
experimentalists. Frontier molecular orbital theory considers the interaction of the orbitals of the
reactants and attempts to predict relative reactivities by second-order perturbation theory. It may
also be considered as a simplified version of the Fukui function, which considered how easily the
total electron density can be distorted. The Woodward–Hoffmann rules allow a rationalization of the
stereochemistry of certain types of reactions, while the more general qualitative orbital interaction
model can often rationalize the preference for certain molecular structures over other possible
arrangements.

. Frontier Molecular Orbital Theory

Frontier Molecular Orbital (FMO) theory attempts to predict relative reactivity based on proper-
ties of the reactants. It is commonly formulated in terms of perturbation theory, where the energy
change in the initial stage of a reaction is estimated and “extrapolated” to the transition state.1 For
a reaction where two different modes of reaction are possible, this may be illustrated as shown in
Figure 16.1.

The reaction mode that involves the least energy change in the initial stage is assumed also to have
the lowest activation energy. FMO theory uses a low-order perturbation expansion with the reactants
as the unperturbed reference, and it is clear that such a treatment can only be used to follow the
reaction a short part of the whole reaction pathway.
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The change in the energy can be derived from second-order perturbation theory (Section 4.8) and
is given by2

ΔE = −
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(16.1)

Here A and B denote atoms in each of the two interacting molecules. The V operator contains all
the potential energy operators from both molecules and the ⟨𝜒A|V|𝜒B⟩ integral is a “resonance”-
type integral between two atomic orbitals, one from each molecule. The 𝜌A is the electron density on
atom A and the first term in (16.1) represents a repulsion (⟨𝜒A|V|𝜒B⟩ is a negative quantity) between
occupied MOs (steric repulsion). This will usually lead to a net energy barrier for a reaction. The
second term represents an attraction or repulsion between charged parts of the molecules, QA being
the (net) charge on atom A. The last term is a stabilizing interaction (𝜀i − 𝜀a < 0) due to mixing of
occupied MOs on one molecule with unoccupied MOs on the other, c𝛼i/c𝛼a being MO coefficients
and 𝜀i/𝜀a MO energies. The summation is over all pairs of occupied/unoccupied MOs.

If we are comparing reactions that have approximately the same steric requirements, the first term
is roughly constant. If the species are very polar, the second term will dominate and the reaction
is charge controlled. This means, for example, that an electrophilic attack is likely to occur at the
most negative atom or, in a more general sense, along a path where the electrostatic potential is most
negative. If the molecules are non-polar, the third term in Equation (16.1) will dominate and the
reaction is said to be orbital controlled. This means that the reaction will occur where the molecular
orbital coefficients are largest.

All other things being equal, the largest contribution to the double summation over orbital pairs in
the third term will arise when the denominator is smallest. This corresponds to the Highest Occupied
Molecular Orbital (HOMO) and the Lowest Unoccupied Molecular Orbital (LUMO) pair of orbitals.
FMO theory considers only this one contribution in the whole summation. From a purely numerical
consideration this is certainly not a good approximation: the contributions from all the other pairs
are much larger than the single HOMO–LUMO term. Nevertheless, it is possible to rationalize many
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Figure . AM1 LUMO coefficients for acrolein with net charges in parenthesis.

trends in terms of FMO theory and thus the result justifies the means. If we furthermore consider a
matrix element ⟨𝜒𝛼i|V|𝜒𝛼a.⟩ to be non-zero only between atoms, where new bonds are being formed
(where it is furthermore assumed to be roughly constant), the deciding factor becomes a sum over
products of MO coefficients from the HOMO on one fragment with LUMO coefficients on the other.
A few examples should help clarify this.

The reaction of a nucleophile involves the addition of electrons to the reactant, that is interaction
of the HOMO of the nucleophile with the LUMO of the reactant. If there is more than one possible
center of attack, the preferred reaction mode is predicted to occur on the atom having the largest
LUMO coefficient. Figure 16.2 shows that the orbital component shows preference for addition to the
4-position of acrolein (as a model for unsaturated carbonyl compounds in general), with the second
most reactive position being C2. The net charges, however, prefer position 2, as it is the most positive
carbon. Experimentally, it is found that attack at the 4-position is usually favoured (especially with
“soft” nucleophiles such as organocuprates), but addition at the 2-position is also observed (and may
dominate with “hard” nucleophiles such as organolithium compounds).3 This is consistent with the
reaction switching from being orbital controlled to charge controlled as the nucleophile becomes
more ionic.

Similarly, the reaction of an electrophile will involve the HOMO of the reactant, that is the reaction
should occur preferentially on the atom having the largest HOMO coefficient. The coefficients for
furan shown in Figure 16.3 indicate that electrophilic substitution should preferentially occur at the
2-position, again in agreement with experimental results.4

Consider now the reaction between butadiene and ethylene, where both 2 + 2 and 4 + 2 reaction
modes are possible. The qualitative appearances of the butadiene HOMO and ethylene LUMO are
given in Figure 16.4. The MO coefficients are given as a, b and c, where a > b > c.

For the 2 + 2 pathway the FMO sum becomes (ab − ac)2 = a2(b − c)2 while for the 4 + 2 reaction
it is (ab + ab)2 = a2(2b)2. As (2b)2 > (b − c)2, it is clear that the 4 + 2 reaction has the largest stabi-
lization, and therefore increases least in energy in the initial stages of the reaction (Equation (16.1)),
remembering that the steric repulsion will cause a net increase in energy). The 4 + 2 reaction should
consequently have the lowest activation energy and therefore occur more easily than the 2 + 2. This

0.39

O

0.59

Figure . AM1 HOMO coefficients for furan.
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Figure . FMO theory favors the 4 + 2 over the 2 + 2 reaction.

is indeed what is observed: the Diels–Alder reaction occurs readily but cyclobutane formation is not
observed between non-polar dienes and dieneophiles.

The appearance of the difference in MO energies in the denominator in Equation (16.1) suggests
that a smaller gap between the diene HOMO and dieneophile LUMO in a Diels–Alder reaction should
lower the activation energy. If the diene is made more electron-rich (electron-donating substituents)
or the dieneophile more electron-deficient (electron-withdrawing substituents), the reaction should
proceed faster. This is indeed the observed trend. For the reaction between cyclopentadiene and
cyanoethylenes (mono-, di-, tri- and tetra-substituted), the correlation is reasonably quantitative, as
shown in Figure 16.5.5

This is of course a rather extreme example, as the reaction rates differ by a factor of ∼107, and rate
differences by over a factor of 100 are observed for quite similar HOMO–LUMO differences. For a
more varied set of compounds where the reaction rates are more similar, the correlation is often quite
poor.

FMO theory can also be used for explaining the stereochemistry of the Diels–Alder reaction, as
can be illustrated by the reaction between 2-methylbutadiene and cyanoethylene. These may react to
give two different products, the “para” and/or “meta” isomer.

The MO coefficients for the p-orbitals on the butadiene HOMO and ethylene LUMO (taken from
AM1 calculations) are given in Figure 16.6. The FMO sum for the “para” isomer is (0.594 × 0.682 +
0.517 × 0.552)2 = 0.690, while the sum for the “meta” isomer is (0.594 × 0.552 + 0.517 × 0.682)2 =
0.680. FMO theory thus predicts that the “para” isomer should dominate, as is indeed observed
(experimental ratio 70 : 30). If cyanoethylene is replaced by 1,1-dicyanoethylene, the LUMO coeffi-
cients change to 0.708 and −0.511. The corresponding “para” and “meta” FMO sums change to 0.685
and 0.670, respectively, that is a larger difference between the two isomers. This is again reflected in
the experimental data, where the ratio is 91 : 9. The regiochemistry is thus determined by matching
the two largest sets of coefficients and the two smaller sets, rather than making two sets of large/small.

FMO theory was developed at a time when detailed calculations of reaction paths were infeasi-
ble. As many sophisticated computational models, and methods for actually locating the transition
state, have become widespread, the use of FMO arguments for predicting reactivity has declined.
The primary goal of computational chemistry, however, is not to provide numbers, but to provide
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understanding. As such, FMO theory still forms a conceptual model that can be used for rationaliz-
ing trends without having to perform time-consuming calculations.

. Concepts from Density Functional Theory

The success of FMO theory is not because the neglected terms in the second-order perturbation
expansion (Equation (16.1)) are especially small; an actual calculation will reveal that they completely
swamp the HOMO–LUMO contribution. The deeper reason is that the shapes of the HOMO and
LUMO resemble features in the total electron density, which determines the reactivity. There are
also other quantities derived from density functional theory that directly relate to the properties and
reactivity of molecules, and these are discussed in this section.6

A reaction will in general involve a change in the electron density, which may be quantified in terms
of the Fukui function:7

f (r) =
𝜕𝜌 (r)
𝜕Nelec

(16.2)

 0.594

–0.517
CN CN

CN 0.682

–0.552

+

Major

+

Minor

Figure . FMO rationalizes the stereochemistry of substituted Diels–Alder reactions.
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The Fukui function indicates the change in the electron density at a given position when the number
of electrons is changed. We may define two finite difference versions of the function, corresponding
to addition or removal of an electron:

f+ (r) = 𝜌N+1 (r) − 𝜌N (r) (16.3)
f− (r) = 𝜌N (r) − 𝜌N−1 (r) (16.4)

The f+ function is expected to reflect the initial part of a nucleophilic reaction and the f− function
an electrophilic reaction, that is the reaction will typically occur where the f± function is large.8 For
radical reactions the appropriate function is an average of f+ and f−:

f0 (r) = 1
2

(f+ (r) − f− (r)) = 1
2

(𝜌N+1 (r) − 𝜌N−1 (r)) (16.5)

The change in the electron density for each atomic site can be quantified by using the change in the
atomic charges, although this of course suffers from the usual problems of defining atomic charges,
as discussed in Chapter 10. The f± functions may also be written in terms of orbital contributions:

f+ (r) = 𝜙2
LUMO (r) +

Nelec∑

i=1

𝜕𝜙2
i (r)
𝜕ni

(16.6)

f− (r) = 𝜙2
HOMO (r) +

Nelec−1∑

i=1

𝜕𝜙2
i (r)
𝜕ni

(16.7)

In the frozen MO approximation the last terms are zero and the Fukui functions are given directly by
the contributions from the HOMO and LUMO. The preferred site of attack is therefore at the atom(s)
with the largest MO coefficients in the HOMO/LUMO, in exact agreement with FMO theory. The
Fukui function(s) may be considered as the equivalent (or generalization) of FMO methods within
density functional theory (Chapter 6).

In the Quantum Theory of Atoms In Molecules approach (Section 10.3), the Laplacian ∇2 (trace of
the second-derivative matrix with respect to the coordinates) of the electron density measures the
local increase or decrease of electrons. Specifically, if ∇2𝜌 is negative, it marks an area where the elec-
tron density is locally concentrated, and therefore susceptible to attack by an electrophile. Similarly,
if ∇2𝜌 is positive, it marks an area where the electron density is locally depleted, and therefore sus-
ceptible to attack by a nucleophile. It has in general been found that a map of negative values of ∇2𝜌
resembles the shape of the HOMO and a map of positive values of ∇2𝜌 resembles the shape of the
LUMO.

The fact that features in the total electron density are closely related to the shapes of the HOMO
and LUMO provides a much better rationale than the perturbation derivation as to why FMO theory
works as well as it does. It should be noted, however, that improvements in the wave function do
not necessarily lead to better performance of the FMO method. Indeed, the use of MOs from semi-
empirical methods or low-level ab initio methods often works better than data from more sophisti-
cated methods. Part of the reason for this is how the HOMO and LUMO are calculated.

The HOMO is the highest occupied molecular orbital, usually from an HF calculation, but could
also arise from a DFT calculation. The energy and shape of the HOMO will converge to a specific
value and shape if the basis set is improved, and as long as the system is well described by a single
determinant wave function, this will provide a good representation of the change in electron density
corresponding to removal of an electron with the least amount of energy (Koopmans’ theorem). The
LUMO, on the other hand, corresponds to an orbital that makes no contribution to the total energy
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of the molecular system, and its energy and shape depend on the employed basis set.9 It represents
the function with the lowest eigenvalue of the employed Hamilton operator in the function space
spanned by the basis set, once the occupied orbitals have been projected out. In a complete basis set
there will always be an orbital with zero energy corresponding to describing an unbound electron, and
for many molecular systems this will have the lowest eigenvalue of the virtual orbitals, but clearly not
carrying any molecular information. If a low- or medium-quality basis set composed of atom centered
functions resembling atomic orbitals are employed, such as, for example, a DZP quality Gaussian
basis set (Section 5.2), the occupied molecular orbitals will be combinations of the atomic orbitals
and the orthogonal function space describing the virtual orbitals will be restrained to antibonding
combinations of low-energy atomic orbitals and combinations of higher energy atomic orbitals. In
this constrained function space, the basis function combination with the lowest eigenvalue often
resembles the HOMO that would arise if an additional electron was added to the system, that is a
good description of the change in electron density arising from attachment of an additional electron.
If an extended basis set is employed, however, it is often quite arbitrary which of the virtual orbitals
acquires the lowest eigenvalue. This is especially problematic if the basis set contains diffuse (small-
exponent) functions, as these can be combined to resemble free-electron solutions, or if the basis set
consists of functions not resembling atomic orbitals (e.g. plane waves, Section 5.5). A well-defined
LUMO can be calculated as the HOMO of the corresponding system with one additional electron,
but this of course requires two separate calculations and that the system actually is capable of binding
an extra electron. Schmidt and coworker have suggested a procedure for transforming the canonical
virtual orbitals into Valence Virtual Orbitals (VVOs) that are insensitive to the basis set quality and
can be used in place of the actual canonical LUMO.9 HOMO and LUMO are inherently concepts
of one-determinantal methods (HF or DFT), while Fukui functions can be calculated for any type of
wave function since they are defined in terms of density differences.

Besides the already mentioned Fukui function, there are a couple of other commonly used concepts
that can be connected with density functional theory (Chapter 6).10 The electronic chemical potential
𝜇 is given as the first derivative of the energy with respect to the number of electrons, which in a finite
difference version is given as the average of the ionization potential (IP) and electron affinity (EA).
Except for a difference in sign, this is also the Mulliken definition of electronegativity 𝜒 :11

−𝜇 = 𝜒 = 𝜕E
𝜕Nelec

≈ 1
2 (IP + EA) (16.8)

It should be noted that there are several other definitions of electronegativity, which do not necessarily
agree on the ordering of the elements.12

The second derivative of the energy with respect to the number of electrons is the hardness 𝜂 (the
inverse quantity 𝜂−1 is called the softness), which again may be approximated in terms of the ionization
potential and electron affinity:

𝜂 = 1
2
𝜕2E
𝜕N2

elec
≈ 1

2 (IP − EA) (16.9)

The electrophilicity, which measures the total ability to attract electrons, is defined as13

𝜔 = 𝜇2

2𝜂
≈ (IP + EA)2

4 (IP − EA)
(16.10)

A local version of the electrophilicity can be obtained by multiplying 𝜔 with the relevant Fukui func-
tion. These concepts play an important role in the Hard and Soft Acid and Base (HSAB) principle,

iranchembook.ir/edu



 Introduction to Computational Chemistry

which states that hard acids prefer to react with hard bases, and vice versa.14 By means of Koop-
mans’ theorem (Section 3.4) the hardness is related to the HOMO–LUMO energy difference. A “hard”
molecule thus has a large HOMO–LUMO gap and is expected to be chemically unreactive, that is
hardness is related to chemical stability. A small HOMO–LUMO gap, on the other hand, indicates a
“soft” molecule, and from second-order perturbation theory it also follows that a small gap between
occupied and unoccupied orbitals will give a large contribution to the polarizability (Section 11.7.1),
that is softness is a measure of how easily the electron density can be distorted by external fields, for
example generated by another molecule. In terms of the perturbation Equation (16.1), a hard–hard
interaction is primarily charge controlled, while a soft–soft interaction is orbital controlled. Both
FMO and HSAB theories may be considered as being limiting cases of chemical reactivity described
by the Fukui function.8

. Qualitative Molecular Orbital Theory

Frontier molecular orbital theory is closely related to various schemes of qualitative orbital theory
where interactions between fragment MOs are considered.15, 16 Ligand field theory, as commonly
used in systems involving coordination to metal atoms, can be considered as a special case where
only the d-orbitals on the metal and selected orbitals of the ligands are considered.

Two interacting orbitals will in general produce two new orbitals having lower and higher energies
than the non-interacting orbitals. The magnitude of the changes is determined by the orbital energy
difference 𝜀a − 𝜀b and the overlap Sab. The overlap depends on the symmetries of the orbitals (orbitals
of different symmetry have zero overlap) and the distance between them (the shorter the distance, the
larger the overlap). The energies of the new orbitals can be calculated from the variational principle,
and the qualitative result is shown in Figure 16.7:

Δ ∝
|Sab|

|𝜀a − 𝜀b|
(16.11)

There are two important features. The change in orbital energies is dependent on the magnitude
of the overlap, |Sab|, and is inversely proportional to the energy difference of the original orbitals,

Figure . Linear combination of two orbitals leads to two new orbitals with different energies.
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Conformation 2Conformation 1

Figure . Possible propene conformations.

|𝜀a − 𝜀b|. Furthermore, the effect is largest for the highest energy orbital (antibonding combination),
that is Δ1 > Δ2.

If the two initial orbitals contain one, two or three electrons, the interaction will lead to a lower
energy, with the stabilization being largest for the case of two electrons (e.g. a filled orbital interact-
ing with an empty orbital). If both initial orbitals are fully occupied, the interaction will be desta-
bilizing, that is a steric-type repulsion. By adapting a set of HOMO and LUMO orbitals for atomic
or molecular fragments, the favorable interactions may be identified based on overlap and energy
considerations. Qualitative MO theory may thus be considered as an intramolecular form of FMO
theory, with suitably chosen fragments.

Consider, for example, the two conformations for propene shown in Figure 16.8: which should be
the more stable?

By “chemical intuition”, the most important interaction is likely to be between the (filled) hydrogen
s-orbitals and the (empty) π-orbital. The CH3 group as a fragment has C3v symmetry and the three
proper (symmetry adapted) linear combinations of the s-orbitals, together with the antibonding π-
orbital, are given in Figure 16.9. The 𝜙1 orbital is lowest in energy, while the 𝜙2 and 𝜙3 orbitals are
degenerate in perfect C3v symmetry.

The 𝜙1 and 𝜙2 orbitals have a different symmetry than the π∗-orbital and can consequently not
interact (S = 0). The interaction of the 𝜙3 orbital with the π∗ system in the two conformations is
shown in Figure 16.10.

The overlap between the nearest carbon p-orbital and 𝜙3 is the largest contribution, but it is the
same in the two conformations. The overlap with the distant carbon p-orbital is of opposite sign
and largest in conformation 2, since the distance is shorter. The total overlap between the 𝜙3 and

Figure . Fragment orbitals for propene.
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Figure . Fragment orbital interaction.

π∗-orbitals is thus largest for conformation 1, which implies a larger stabilizing interaction, and it
should consequently be lowest in energy. Indeed, conformation 2 is a transition structure for inter-
converting equivalent conformations corresponding to 1.

It is important to realize that whenever qualitative or frontier molecular orbital theory is invoked,
the description is within the orbital (Hartree–Fock or density functional) model for the electronic
wave function. In other words, rationalizing a trend in computational results by qualitative MO the-
ory is only valid if the effect is present at the HF or DFT level. If the majority of the variation is due
to electron correlation, an explanation in terms of interacting orbitals is not appropriate.

. Energy Decomposition Analyses

The interacting fragment orbital analysis can be put on more quantitative terms by performing
explicit energy decomposition analysis of HF or DFT wave functions.17 The Extended Transition State
(ETS) approach decomposes the energy change into four terms:18–20

ΔEETS = ΔEprep + ΔEel + ΔEPauli + ΔEorb (16.12)

The energy change can, for example, be formation of a bond and the analysis can be performed at
various points along the reaction path. The preparation energy ΔEprep describes the cost for perturb-
ing the nuclear geometry from the optimum for the fragment to that of the species of interest. The
electrostatic term ΔEel describes the Coulomb interaction between the two fragment charge densi-
ties, while ΔEPauli describes the repulsion due to antisymmetrization and re-normalization of the two
fragment wave functions when they are combined into one. Finally, ΔEorb describes the stabilizing
interaction due to mixing of occupied and unoccupied orbitals of the two fragments, which includes
polarization and charge-transfer terms. The two central terms, ΔEel and ΔEPauli, may loosely be asso-
ciated with the concept of steric repulsion.

An alternative decomposition, due to Kitaura and Morokuma (KM), partitions the interaction
energy into five terms:21

ΔEKM = ΔEel + ΔEpol + ΔECT + ΔEex + ΔEmix (16.13)

The electrostatic term ΔEel is the Coulomb interaction between the electron densities of the frag-
ments, analogous to the corresponding ETS quantity. The polarization term ΔEpol describes the sta-
bilization due to induced electric moments, while the charge transfer term ΔECT is a stabilization
due to the transfer of charge between the two fragments. The exchange term ΔEex is analogous to the
Pauli term in Equation (16.12), describing the repulsion due to the exchange energy arising from the
antisymmetrization of the fragment wave functions. Finally, the mix term ΔEmix contains the residual
interaction not accounted for by the first four terms. The KM energy decomposition is most useful
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for analyzing weak interactions; for strong interactions the mixing term often accounts for a signif-
icant part of the total interaction, thus obscuring the decomposition. The polarization and charge-
transfer terms furthermore become numerically unstable as the size of the basis set is increased. The
KM energy decomposition has been combined with the NBO analysis (Section 10.5.1) in the Nat-
ural Energy Decomposition Analysis (NEDA), which partly alleviates some of the instabilities in the
original method.22

The Reduced Variable Space (RVS) method can be considered as a modified version of the KM
decomposition, where the proper antisymmetry of the total wave function is enforced.23 This neces-
sitates combining the electrostatic and exchange energies into a single ΔEel-ex term:

ΔERVS = ΔEel−ex + ΔEpol + ΔECT + ΔEmix (16.14)

The polarization and charge-transfer terms are as a consequence also altered and the mixing term is
substantially reduced in magnitude.

The Absolute Localized Molecular Orbital (ALMO),24 Block-Localized Wave (BLW)25 and Density-
based Energy Decomposition Analysis (DEDA)26 methods decomposed the interaction energy into
an interaction between the frozen densitites of the fragments ΔEFRZ, and polarization and charge-
transfer terms:

ΔEALMO∕BLW∕DEDA = ΔEFRZ + ΔEpol + ΔECT (16.15)

The ΔEFRZ thus includes the electrostatic and exchange terms. If the interaction energy is calculated
with both HF and correlated wave functions, the effect of dispersion/correlation may be extracted
as a simple difference. The main difference between ALMO/BLW and DEDA is that the former per-
form the decomposition within the non-orthogonal space of the combined fragment orbitals, while
DEDA constructs a variationally optimized single Slater determinant with orthogonal orbitals that
exactly reproduce the electron densities of the isolated fragments. The electrostatic interaction of
these frozen densities defines the ΔEFRZ component, ΔEpol is the energy lowering by allowing the
fragment densities to relax, while ΔECT is the additional energy lowering by allowing electron den-
sity to move between the fragments. The polarization and charge-transfer terms both correspond to
mixing of the occupied and virtual orbitals, where polarization indicates orbital mixing within the
same fragment while charge-transfer indicates orbital mixing between fragments. The assignment of
orbitals or electron density as belonging to a specific fragment is somewhat arbitrary, as discussed
in Section 5.13 and Chapter 10, and the partitioning between these two energy terms consequently
depends on the exact scheme and often has a strong basis set dependence. A procedure where these
terms are evaluated by a limited expansion into a set of electric field perturbation orbitals has been
proposed, and this is much less basis set dependent.27

The above approaches decompose the total interaction energy into terms, but the interaction can
alternatively be estimated from the fragment wave functions. Within the NBO framework (Section
10.5.1) the interaction energies between occupied and virtual orbitals can be estimated from second-
order perturbation theory (compared to Equation (16.11)):

ΔE(2)
ia =

ni|Fia|
2

𝜀i − 𝜀a
(16.16)

Here Fia is a Fock matrix element between occupied orbital i and virtual orbital a, ni is the natural
occupation number and 𝜀i /𝜀a are orbital energies.
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The Symmetry-Adapted Perturbation Theory (SAPT)28 is a more rigorous approach where the
interaction energy is calculated by partitioning the total Hamiltonian into a term for each fragment
and an interfragment interaction potential VAB:

H = HA + HB + 𝜆VAB (16.17)

The VAB operator contains interactions between electrons/nuclei on one fragment with electrons/
nuclei on the other fragment and can be written as follows, with r and R being electron and nuclear
coordinates, respectively:

VAB =
A∑

a

B∑

b

(
1

|ra − rb|
−

Za
|rb − Ra|

−
Zb

|ra − Rb|
+

ZaZb
|Ra − Rb|

)

(16.18)

The total wave function is written as a product of the two fragment wave functions, and the interaction
energy is evaluated in terms of the perturbation parameter 𝜆, which eventually is set to 1, and taking
the proper antisymmetry of the total wave function into account by a projection operator. The effect of
the perturbation operator is denoted as induction and includes polarization and charge transfer in the
above notations, while the effect of antisymmetrization is denoted as exchange. Using a superscript
to denote the perturbation order, the interaction energy can be written as a sum of terms:

ΔESAPT = ΔE(1)
el + ΔE(1)

ex + ΔE(2)
ind + ΔE(2)

disp + ΔE(2)
ex-ind + ΔE(2)

ex-disp +⋯ (16.19)

The electrostatic and exchange terms arise at first order in the intermolecular perturbation parame-
ter 𝜆while induction and dispersion (interfragment correlation) effects appear at second order along
with their exchange components. When the A/B fragments are described at the single determinant
HF or DFT level, the method is denoted SAPT0 while SAPT2 denotes that electron correlation is tak-
ing into account to second order for each fragment. The latter method necessitates a double pertur-
bation expansion in both the 𝜆 parameter and corresponding parameters for the fluctuation potential
for each fragment. When intrafragment electron correlation is included, each of the terms in Equation
(16.19) may contain several contributions that can be classified acording to the perturbation order of
the fluctuation potential in the fragments. A number of SAPT variations exist where selected higher-
order terms and/or corrections are included. When using the SAPT formalism in connection with a
DFT description of the fragments, it is important to employ a range-separated version of the exchange
functional to avoid spurious errors due to the incorrect limiting form of the exchange potential. The
SAPT approach is capable of calculating intermolecular potentials with an accuracy that often rivals
brute force CCSD(T) calculations.

Energy analyses and decompositions are often used as reference data for parameterization of
advanced force field methods, as discussed in Section 2.2.8.

. Orbital Correlation Diagrams: The Woodward–Hoffmann Rules

The Woodward–Hoffmann (W–H) rules are qualitative statements regarding relative activation ener-
gies for two possible modes of reaction, which may have different stereochemical outcomes.29, 30 For
simple systems, the rules may be derived from a conservation of orbital symmetry, but they may also
be generalized by an FMO treatment with conservation of bonding. Let us illustrate the Woodward–
Hoffmann rules with a couple of examples, the preference of the 4 + 2 over the 2 + 2 product for the
reaction of butadiene with ethylene and the ring-closure of butadiene to cyclobutene.
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Figure . Reaction of two ethylenes to form cyclobutane under C2v symmetry.

A face-to-face reaction of two π-orbitals to form a cyclobutane involves the formation of two new
C C σ-bonds. The reaction may be imagined to occur under the preservation of symmetry, in this
case C2v, that is concerted (one-step, no intermediates) and synchronous (both bonds are formed at
the same rate) (see Figure 16.11).

Both the reactant and product orbitals may be classified according to their behaviour with respect
to the two mirror planes present, being either Symmetric (no change of sign) or Antisymmetric
(change of sign). The energetic ordering of the orbitals follows from a straightforward consideration
of the bonding/antibonding properties. Since orbitals of different symmetries cannot mix, conserva-
tion of orbital symmetry establishes the correlation between the reactant and product sides.

The orbital correlation diagram shown in Figure 16.12 indicates that an initial electron configura-
tion of (π1 + π2)2(π1 − π2)2 (ground state for the reactant) will end up as a doubly excited configu-
ration (σ1 + σ2)2(σ∗

1 + σ∗
2)2 for the cyclobutane product.31 This by itself indicates that the reaction

should be substantially uphill in terms of energy. It may be put on a more sound theoretical footing
by looking at the state correlation diagram in Figure 16.13.

The ground state wave function for the whole system (all four active and the remaining core and
valence electrons) is symmetric with respect to both mirror planes, while the first excited state is anti-
symmetric. The intended correlation is indicated with dashed lines, the lowest energy configuration
for the reactant correlates with a doubly excited configuration of the product, and vice versa. Since
these configurations have the same symmetry (SS), an avoided crossing is introduced, leading to a
significant barrier for the reaction. The presence of a reaction barrier due to symmetry conservation
for the orbitals makes this a Woodward–Hoffmann forbidden reaction. The reaction for the excited
state, however, does not encounter a barrier and is therefore denoted an allowed reaction.

The same conclusion may be reached directly from a consideration of the frontier orbitals. Forma-
tion of two new σ-bonds requires interaction of the HOMO of one fragment with the LUMO on the
other. When the interaction is between orbital lobes on the same side (suprafacial) of each fragment
(2s + 2s), this leads to the picture shown in Figure 16.14.

It is clearly seen that the HOMO–LUMO interaction leads to the formation of one bonding and one
antibonding orbital, that is this is not a favorable interaction. The FMO approach also suggests that
the 2 + 2 reaction may be possible if it could occur with bond formation on opposite sides (Antarafa-
cial) for one of the fragments. Although the 2s + 2a reaction is Woodward–Hoffmann allowed, it
is sterically so hindered that thermal 2 + 2 reactions in general are not observed (see Figure 16.15).
Photochemical 2 + 2 reactions, however, are well known.32

The 4s + 2s reaction of a diene with a double bond can in a concerted and synchronous reaction
be envisioned to occur with the preservation of Cs symmetry (Figure 16.16) and the corresponding
orbital correlation diagram is shown in Figure 16.17.

In this case the orbital correlation diagram shows that the lowest energy electron configuration
in the reactant, (π1)2(π2)2(π3)2, correlates directly with the lowest energy electron configuration in
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Figure . Orbital correlation diagram for cyclobutane formation.

the product, (σ1)2(σ2)2(π1)2. This is also shown by the corresponding state correlation diagram, Fig-
ure 16.18.

In this case, there is no energetic barrier due to unfavourable orbital correlation, although other
factors lead to an activation energy larger than zero. The direct correlation of ground state configu-
rations for the reactant and product indicates a (relatively) easy reaction, and is therefore an allowed
reaction. The lowest excited state for the reactant, however, does not correlate with the lowest excited
product state and the photochemical reaction is consequently forbidden. The FMO approach again
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Figure . State correlation diagram for cyclobutane formation.

Figure . 2s + 2s HOMO–LUMO interaction leading to two new σ-bonds.

Figure . 2s + 2a HOMO–LUMO interaction leading to two new σ-bonds.

Figure . Reaction of butadiene and ethylene to form cyclohexene under Cs symmetry.
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Figure . Orbital correlation diagram for cyclohexene formation.

Figure . State correlation diagram for cyclohexene formation.
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Figure . 4s + 2s HOMO–LUMO interaction leading to two new σ-bonds.

indicates that the 4s + 2s interaction should lead directly to formation of two new bonding σ-bonds,
that is this is an allowed reaction (Figure 16.19).

The preference for a concerted 4s + 2s reaction is experimentally supported by observations that
show that the stereochemistry of the diene and dieneophile is carried over to the product, for example
a trans,trans-1,4-disubstituted diene results in the two substituents ending up in a cis configuration
in the cyclohexene product.33

The ring-closure of a diene to a cyclobutene can occur with rotation of the two termini in the same
(Conrotatory) or opposite (Disrotatory) directions. For suitably substituted compounds, these two
reaction modes lead to products with different stereochemistry (see Figure 16.20).

The disrotatory path has Cs symmetry during the whole reaction, while the conrotatory mode pre-
serve C2 symmetry. The orbital correlation diagrams for the two possible paths are shown as Figures
16.21 and 16.22.

It is seen that only the conrotatory path directly connects the reactant and product ground state
configurations. Taking into account also the excited states leads to the state correlation diagram in
Figure 16.23.

The conrotatory path is Woodward–Hoffmann allowed for a thermal reaction, while the corre-
sponding photochemical reaction is predicted to occur in a disrotatory fashion.

The same conclusion may again be reached by considering only the HOMO (Figure 16.24). For the
conrotatory path the orbital interaction leads directly to a bonding orbital, while the orbital phases
for the disrotatory motion lead to an antibonding orbital.

Figure . Two possible modes of closing a diene to cyclobutene.
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Figure . Orbital correlation diagram for the disrotatory ring-closure of butadiene.

Figure . Orbital correlation diagram for the conrotatory ring-closure of butadiene.

Figure . State correlation diagram for the dis- and conrotatory ring-closure of butadiene.
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Figure . HOMO orbital for the ring-closure of butadiene.

While the orbital and state diagrams can only be rigorously justified in the simple parent system
where symmetry is present, the addition of substituents normally only alters the shape of the rel-
evant orbitals slightly. The nodal structure of the orbitals is preserved for a large range of substi-
tuted systems, and the “preservation of bonding” displayed by the FMOtype diagrams consequently
have a substantially wider predictive range. It may be used for analyzing reactions where there is no
symmetry element present under the whole reaction, as in, for example, the [1,5]-hydrogen shift in
1,3-pentadiene (Figure 16.25).

In the suprafacial migration the interaction of the pentadienyl radical singly occupied orbital with
the hydrogen s-orbital is seen to involve breaking and making bonds where the orbital phases match.
For the antarafacial path, however, the orbital in the product ends up being antibonding, that is a
[1,5]-hydrogen migration is predicted to occur suprafacially, in agreement with experiments.34

In the general case, the transferring group may migrate with either retention or inversion of its
stereochemistry. A [1,5]-CH3 migration, for example, is thermally allowed if it occurs suprafacially
with retention of the CH3 configuration, or if it occurs antarafacially with inversion of the methyl
group (see Figure 16.26).

Figure . FMO interactions for the [1,5]-hydrogen shift in 1,3-pentadiene.

Figure . FMO interactions for allowed modes of the [1,5]-methyl shift in 1,3-hexadiene.
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Table . Woodward–Hoffmann allowed reactions.

Reaction type
Number of
electrons Thermally allowed Photochemically allowed

Ring-closure 4n Conrotatory Disrotatory
4n + 2 Disrotatory Conrotatory

Cycloadditions 4n Supra–antara or antara–supra Supra–supra or antara–antara
4n + 2 Supra–supra or antara–antara Supra–antara or antara–supra

Migrations 4n Antara–retention or supra–inversion Supra–retention or antara–inversion
4n + 2 Supra–retention or antara–inversion Antara–retention or supra–inversion

The Woodward–Hoffmann allowed reactions can be classified according to how many electrons
are involved and whether the reaction occurs thermally or photochemically, as shown in Table 16.1.

The state correlation diagrams give an indication of the minimum theoretical level necessary for
describing a reaction. For allowed reactions, the reactant configuration smoothly transforms into
the product configuration by a continuous change of the orbitals, and they are consequently rea-
sonably described by a single-determinant wave function along the whole reaction path. Forbidden
reactions, on the other hand, necessarily involve at least two configurations since there is no con-
tinuous orbital transformation that connects the reactant and product ground states. Such reactions
therefore require MCSCF-type wave functions for a qualitative correct description.

While the state correlation diagram for the 2s + 2s reaction (Figure 16.13) indicates that the pho-
tochemical reaction should be allowed (and cyclobutanes are indeed observed as one of the products
from such reactions), the implication that the product ends up in an excited state is not correct.
Although the reaction starts out on the excited surface, it will at some point along the reaction path
return to the lowest energy surface, and the product is formed in its ground state. The transition
from the upper to the lower energy surface will normally occur at a geometry where the two surfaces
“touch” each other, that is they have the same energy, and this is known as a conical intersection.35

Achieving the proper geometry for a transition between the two surfaces is often the dynamical bot-
tleneck, and a conical intersection may be considered the equivalent of a TS for a photochemical
reaction. As conical intersections involve two energy surfaces, MCSCF-based methods are required
and non-adiabatic coupling elements (Section 3.1) are important. Locating a geometry corresponding
to a conical intersection for a multidimensional system may be done using constrained optimization
techniques (Section 13.5).

The product of a pericyclic reaction will in some cases itself be subject to a further pericyclic rear-
rangement. Such cascade reactions are often synthetically useful, as they may form complicated prod-
ucts in a single step. Depending on the exact system, two pericyclic reactions may occur with an
intermediate or in a single kinetic step, but with a very asynchronous bond breaking/formations. M.
T. Reetz has coined the name dyotropic reaction for two sigmatropic shifts occurring in tandem,36

while the term bispericyclic has been used in the more general case.37, 38

. The Bell–Evans–Polanyi Principle/Hammond Postulate/Marcus Theory

The simpler the idea, the more names, could be the theme of this section.39 The overriding idea is
simple: for similar reactions, the more exothermic (endothermic) reaction will have the lower (higher)
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Figure . Transition structure as the intersection of two parabolas.

activation energy. This was formulated independently by Bell, Evans and Polanyi (BEP) in the 1930s,
and is commonly known as the BEP principle.40, 41 The Hammond postulate relates the position of the
transition structure to the exothermicity: for similar reactions, the more exothermic (endothermic)
reaction will have the earlier (later) TS.42 Compared with FMO theory, which tries to estimate relative
activation energies from the reactant properties, the BEP principle tries to estimate relative activation
energies from product properties (reaction energies). The above qualitative statements have been
put on a more quantitative footing by the Marcus equation. This equation was originally derived for
electron transfer reactions,43 but it has since been shown that the same equation can be derived from
a number of different assumptions, three of which will be illustrated below.

Let us assume a reaction coordinate x running from 0 (reactant) to 1 (product). The energy of the
reactant as a function of x is taken as a simple parabola with a “force constant” of a. The energy of
the product is also taken as a parabola with the same force constant, but offset by the reaction energy
ΔE0. The position of the TS (x≠) is taken as the point where the two parabolas intersect, as shown in
Figure 16.27.

The TS position is calculated by equating the two energy expressions:

Ereactant = a (x)2 ; Eproduct = a (x − 1)2 + ΔE0

a(x≠)2 = a(x≠ − 1)2 + ΔE0

x≠ = 1
2
+

ΔE0
2a

(16.20)

For a thermoneutral reaction (ΔE0 = 0) the TS is exactly halfway between the reactant and product
(as expected), while it becomes earlier and earlier as the reaction becomes more and more exothermic
(ΔE0 negative). The activation energy is given by

ΔE≠ = E(x≠) = a
(

1
2
+

ΔE0
2a

)2

ΔE≠ = a
4
+

ΔE0
2

+
ΔE2

0
4a

(16.21)

iranchembook.ir/edu



 Introduction to Computational Chemistry

Let us define the activation energy for a (possible hypothetical) thermoneutral reaction as the intrinsic
activation energy, ΔE≠

0 .44 As seen from Equation (16.21), a = 4ΔE≠

0 . The TS position and activation
energy expressed in terms of ΔE≠

0 are given in

x≠ = 1
2
+

ΔE0

8ΔE≠

0

(16.22)

ΔE≠ = ΔE≠

0 +
ΔE0

2
+

ΔE2
0

16ΔE≠

0

(16.23)

Equation (16.23) is, except for a couple of terms, related to solvent reorganization, the Marcus equa-
tion. It should be noted that such curve-crossing models have been used in connection with VB meth-
ods to rationalize chemical reactivity and selectivity in a more general sense.45, 46

The central idea in the Marcus treatment is that the activation energy can be decomposed into a
component characteristic of the reaction type, the intrinsic activation energy and a correction due to
the reaction energy, being different from zero. Similar reactions should have similar intrinsic activa-
tion energies, and the Marcus equation obeys both the BEP principle and the Hammond postulate.
Except for very exo- or endothermic reactions (or a very smallΔE≠

0 ), the last term in the Marcus equa-
tion is small, and it is seen that roughly half the reaction energy enters the activation energy. Note,
however, that the activation energy is a parabolic function of the reaction energy. Thus for sufficiently
exothermic reactions the equation predicts that the activation energy should increase as the reaction
becomes more exothermic. The turnover occurs when ΔE0 = −4ΔE≠

0 . Much research has gone into
proving such an “inverted” region, but experiments with very exothermic reactions are difficult to
perform.47

An alternative way of deriving the Marcus equation is again to assume a reaction coordinate run-
ning from 0 to 1. The intrinsic activation energy is taken as a parabola centered at x = 1∕2. The reaction
energy is taken as progressing linearly along the reaction coordinate. Adding these two contributions
and evaluating the position of the TS and the activation energy in terms of ΔE0 and ΔE≠

0 again leads
to the Marcus equation.

Actually, the assumptions can be made even more general. The energy as a function of the reaction
coordinate can always be decomposed into an “intrinsic” term, which is symmetric with respect to
x = 1∕2, and a “thermodynamic” contribution, which is antisymmetric. Denoting these two energy
functions h2 and h1, it can be shown that the Marcus equation can be derived from the “square”
condition, h2 = h1

2.48 The intrinsic and thermodynamic parts do not have to be parabolas and linear
functions, as shown in Figure 16.28, they can be any type of function. As long as the intrinsic part is
the square of the thermodynamic part, the Marcus equation is recovered.

The idea can be taken one step further. The h2 function can always be expanded in a power series of
even powers of h1, that is h2 = c2h2

1 + c4h4
1 +… . The exact values of the c-coefficients only influence

the appearance of the last term in the resulting Marcus-like equation (Equation (16.23)). As already
mentioned, this is usually a small correction anyway. For reactions where the reaction energy is less
than or similar to the activation energy, there is thus a quite general theoretical background for the
following statement: For similar reactions, the difference in activation energy is roughly half the dif-
ference in reaction energy. The trouble here is the word “similar”. How similar should reactions be
in order for the intrinsic activation energy to be constant? And how do we calculate or estimate the
intrinsic activation energy? We will return to the latter question shortly.
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Figure . Decomposition of a reaction barrier into a parabola and a linear term.

The Marcus equation provides a nice conceptual tool for understanding trends in reactivity.49 Con-
sider, for example, the degenerate Cope rearrangement of 1,5-hexadiene and the ring-opening of
Dewar benzene (bicyclo-[2,2,0]hexa-2,5-diene) to benzene (see Figure 16.29).

The experimentally observed activation energies are 142 and 96 kJ/mol, respectively.50, 51 The Cope
reaction is an example of a Woodward–Hoffmann allowed reaction ([3,3]-sigmatropic shift) while the
ring-opening of Dewar benzene is a Woodward–Hoffmann forbidden reaction (the cyclobutene ring-
opening must necessarily be disrotatory, otherwise the benzene product ends up with a trans double
bond). Why does a forbidden reaction have a lower activation energy than an allowed reaction? This is
readily explained by the Marcus equation. The Cope reaction is thermoneutral (reactant and product
are identical) and the activation energy is purely intrinsic, while the ring-opening is exothermic by
297 kJ/mol, and therefore has an intrinsic barrier of 218 kJ/mol. The “forbidden” reaction occurs only
because it has a huge driving force in terms of a much more stable product, while the allowed reaction
occurs even without a net energy gain.

The goal of understanding chemical reactivity is to be able to predict how the activation energy
depends on properties of the reactant and product. Decomposing the activation energy into two
terms, an intrinsic and a thermodynamic contribution, does not solve the problem. The reaction
energy is relatively easy to obtain, from experiments, various theoretical methods or estimates based
on additivity. However, how does one estimate the intrinsic activation energy? It is purely a theoret-
ical concept – the activation energy for a thermoneutral reaction. But most reactions are not ther-
moneutral and there is no way of measuring such an intrinsic activation energy. For a series of “closely

ΔE#  = 142 kJ/mol 
ΔE0  =     0 kJ/mol 

ΔE0
# = 142 kJ/mol

ΔE#  =    96 kJ/mol 
ΔE0  = –297 kJ/mol 

ΔE0
# =  218 kJ/mol

Figure . The Cope rearrangement and Dewar benzene ring-opening reaction.
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Table . Comparing experimental activation barriers (kJ/mol) to those
calculated by the Marcus equation for the reaction OH– + CH3X.

ΔG‡ (identity) ΔG (exp.) ΔG‡ (exp.) ΔG‡ (Marcus)

OH− 170
F− 133 −94 109 108
Cl− 111 −92 103 98
Br− 99 −98 95 90
I− 97 −89 97 93

related” reactions it may be assumed to be constant, but the question then becomes: how closely
related should reactions be?

Alternatively, it may be assumed that the intrinsic component can be taken as an average of the two
corresponding identity reactions. Consider, for example, the SN2 reaction of OH− with CH3Cl. The
two identity reactions are OH− + CH3OH and Cl− + CH3Cl. These two reactions are thermoneutral
and their activation energies, which are purely intrinsic, can in principle be measured by isotopic
substitution (e.g. 35Cl− + CH3

37Cl → CH3
35Cl + 37Cl−). From the reaction energy for the OH− +

CH3Cl reaction and the assumption that the intrinsic barrier is the average of the two identity reac-
tions, the activation energy can be calculated. An example of the accuracy of this procedure for the
series of SN2 reactions OH− + CH3X is given in Table 16.2.

Again this averaging procedure can only be expected to work when the reactions are sufficiently
“similar”, which is difficult to quantify a priori. The Marcus equation is therefore more a conceptual
tool for explaining trends than for deriving quantitative result.

. More O’Ferrall–Jencks Diagrams

The BEP/Hammond/Marcus treatment only considers changes due to energy differences between
the reactant and product, that is changes in the TS position along the reaction coordinate. It is often
useful also to include changes that may occur in a direction perpendicular to the reaction coordinate.
Such two-dimensional diagrams are associated with the names of More O’Ferrall and Jencks (MOJ
diagrams).44,52–54

Consider, for example, the Cope rearrangement of 1,5-hexadiene. Since the reaction is degenerate
the TS will have D2h symmetry (the lowest energy TS has a conformation resembling a chair-like
cyclohexane). It is, however, not clear how strong the forming and breaking C C bonds are at the TS.
If they both are essentially full C C bonds, the reaction may be described as bond formation followed
by bond breaking. The TS therefore has a 1,4-biradical character, as illustrated by path B in Figure
16.30. Alternatively, the C C bonds may be very weak at the TS, corresponding to a situation where
bond breaking occurs before bond formation, and the TS can be described as two weakly interacting
allyl radicals (path C). The intermediate situation, where both bonds are roughly half formed/broken
can be described as having a delocalized structure similar to benzene, that is an “aromatic”-type TS
(path A).

In such MOJ diagrams the x- and y-coordinates are normally taken to be bond orders 𝜌 (Section
10.1) or (1 − 𝜌) for the breaking and forming bonds, such that the coordinates run from 0 to 1. A third
axis corresponding to the energy is implied, but rarely drawn.

iranchembook.ir/edu



Qualitative Theories 

Figure . MOJ diagram for the Cope rearrangement of 1,5-hexadiene.

At the TS, the energy along the reaction path is a maximum, while it is a minimum in the perpen-
dicular direction(s). A one-dimensional cut through the (0, 0) and (1, 1) corners for path A in Figure
16.30 thus corresponds to Figure 16.28. A similar cut through the (0, 1) and (1, 0) corners will dis-
play a normal (as opposed to inverted) parabolic behavior, with the TS being at the minimum on the
curve. The whole energy surface corresponding to Figure 16.29 will have the qualitative appearance
as shown in Figure 16.31.

There is good evidence that the Cope reaction in the parent 1,5-hexadiene has an “aromatic”-type
TS, corresponding to path A in Figure 16.30, that is a “central” or “diagonal” reaction path. The impor-
tance of MOJ diagrams is that they allow a qualitative prediction of changes in the TS structure for
a series of similar reactions. The addition of substituents that stabilize the product relative to the

Figure . MOJ diagram corresponding to Figure 16.30 with the energy as the vertical axis.
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reactant corresponds to a lowering of the (1, 1) corner, thereby moving the TS closer to the (0, 0)
corner, that is towards the reactant. The one-dimensional BEP/Hammond/Marcus treatment thus
corresponds to changes along the (0, 0)–(1, 1) diagonal.

Substituents that do not change the overall reaction energy may still have an influence on the TS
geometry. Consider, for example, 2,5-diphenyl-1,5-hexadiene. The reaction is still thermoneutral but
the phenyl groups will preferentially stabilize the 1,4-biradical structure, that is lower the energy of
the (1, 0) corner. From Figure 16.31 it is clear that this will lead to a TS that is shifted toward this
corner, that is moving the reaction from path A towards B in Figure 16.30. Similarly, substituents
that preferentially stabilize the bis-allyl radical structure (such as 1,4-diphenyl-1,5-hexadiene) will
perturb the reaction toward path C, since the (0, 1) corner is lowered in energy relative to the other
corners.

From such MOJ diagrams it can be inferred that changes in the system that alter the relative energy
along the reaction diagonal (lower-left to upper-right) imply changes in the TS in the opposite direc-
tion. Changes that alter the relative energy perpendicular to the reaction diagonal (upper-left to
lower-right) imply changes in the TS in the same direction as the perturbation.

The structures in the (1, 0) and (0, 1) corners are not necessarily stable species; they may correspond
to hypothetical structures. In the Cope rearrangement, it appears that the reaction only involves a
single TS, independent of the number and nature of substituents. The reaction path may change from
B → A → C depending on the system, but there are no intermediates along the reaction coordinate.

In other cases, one or both of the perpendicular corners may correspond to a minimum on the
potential energy surface, and the reaction mechanism can change from being a one-step reaction to a
two-step one. An example of this would be elimination reactions (see Figure 16.32). The x-axis in this
case corresponds to the breaking bond between carbon and hydrogen, while the y-axis is the breaking
bond between the other carbon and the leaving group.

An E2-type reaction has simultaneous breaking of the C H and C L bonds while forming the
B H bond, and corresponds to the diagonal path A in Figure 16.32. Path C involves initial loss of the
leaving group to form a carbocation (upper-left corner), followed by loss of H+ (which is picked up by
the base), that is this corresponds to an E1-type mechanism involving two TSs and an intermediate.

Figure . MOJ diagram for elimination reactions.
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Path B, on the other hand, involves formation of a carbanion, followed by elimination of the leaving
group in a second step, that is an E1cb mechanism. Substituents that stabilize the carbocation thus
shift the reaction from an E2- to an E1-type mechanism, while anionic stabilizing substituents will
shift the reaction towards an E1cb path.

In principle MOJ diagrams can be extended to more dimensions, for example by also including the
B H bond order in the above elimination reaction, but this is rarely done, not least because of the
problems of illustrating more than two dimensions.
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Mathematical Methods

Computational chemistry relies on computers to solve the complicated mathematical equations
describing the physics behind the models. The language for deriving and describing these models
is mathematics, and this chapter summarizes some of the commonly used mathematical concepts
and techniques used in computational chemistry.

. Numbers, Vectors, Matrices and Tensors

Some physical quantities, such as the total molecular mass or charge, can be specified by a sin-
gle number, referring to the magnitude of the quantity in a given set of units. The mathematical
term for such a number is a scalar. Other quantities require a set of numbers, such as, for exam-
ple, three scalars for specifying the position of a particle in a coordinate system. A coordinate
system is defined by the origin (“zero point”), the directions of the coordinate axes and the units
along the axes. Two common examples are Cartesian {x, y, z} and spherical polar {r, 𝜃, 𝜑} systems
(Figure 17.1). The same point in space can be specified either by the Cartesian x, y, z coordinates
(0.500, 0.866, 1.000) or by the spherical polar r, 𝜃, 𝜑 coordinates (2, 30, 60) with angles measured in
degrees.

The direction from the origin to the point specified by the three coordinates represents a vector,
having a length and a direction. Another example of a 3-vector is the velocity of a particle (vx, vy, vz),
or alternatively (𝜕x/𝜕t, 𝜕y/𝜕t, 𝜕z/𝜕t). For a system with N particles, the positions or velocities of all

x = r sinθ cosφ
y = r sinθ sinφ
z = r cosθ

x

z

r

yθ

φ

Figure . Cartesian and spherical polar coordinate systems.
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x

y

θ

r

  z
z = x + iy 

z = reiθ = rcos(θ ) + irsin(θ ) 

Figure . An imaginary number interpreted as a point in a two-dimensional coordinate system.

particles can be specified by a vector of length 3N, that is (x1, y1, z1, x2, y2,… , yN, zN) or (vx1, vy1, vz1,
vx2, vy2,… , vyN, vzN):

{vx1 vy1 vz1 vx2 ⋯} =
{
𝜕x1
𝜕 t

𝜕y1
𝜕 t

𝜕z1
𝜕 t

𝜕x2
𝜕 t

⋯
}

(17.1)

The notation for such vectors is often generalized to simply x = (x1, x2, x3,… , xN−1, xN), where N
now refers to the total number of elements, that is equal to 3N in the above notation.

A complex number z can be interpreted as a 2-vector in an xy-coordinate system, z = x + iy, where
i is the symbol for

√
−1 and x and y are real numbers. Here x and y are referred to as the real and

imaginary parts of z. Alternatively, the complex number can be associated with polar coordinates,
that is the distance r from the origin and the angle 𝜃 relative to the real axis, as shown in Figure 17.2.

The complex conjugate of a complex number z is denoted by z∗ and is obtained by changing the
sign of the imaginary part, that is z∗ = x − iy or equivalently z∗ = re−i𝜃 .

The concept of complex numbers can be generalized to hypercomplex numbers, with the next level
being a 4-vector, called a quarternion, that is q = q0 + iq1 + jq2 + kq3, with q0, q1, q2, q3 being real
numbers. A quarternion has a real part, q0, and the three imaginary components q1, q2, q3. The latter
can be considered as a vector in a three-dimensional space, where each of the unit vectors has the
property i2 = j2 = k2 = −1. As one moves up in dimensions in this generalization, common mathe-
matical laws gradually get lost. Quarternions, for example, do not obey the commutative law (qaqb ≠
qbqa), while octonions (8-vectors) in addition do not obey the associative law ((qaqb)qc ≠ qa(qbqc)).
Quarternions are encountered, for example, in relativistic (4-component) quantum mechanics, and
they also form a more natural basis for parameterizing the rotation of a three-dimensional structure,
rather than the traditional three Euler angles.1 The latter involves trigonometric functions that are
both computationally expensive to evaluate and display singularities. Furthermore, the quarternion
formulation treats all the coordinate axes as equivalent, while the Euler parameterization makes the
z-axis a special direction.

Vectors can also arise from mathematical operations on functions of coordinates, such as, for exam-
ple, the gradient being the first derivative of an energy function:

{g1 g2 g3 g4 ⋯} =
{
𝜕E
𝜕x1

𝜕E
𝜕x2

𝜕E
𝜕x3

𝜕E
𝜕x4

⋯
}

(17.2)

In such cases, it is implicit that the first gradient element is the derivative with respect to the first
variable, etc.
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The second derivative of the energy is an ordered two-dimensional set of numbers, called a
matrix:

⎛
⎜
⎜
⎜
⎝

H11 H12 ⋯

H21 H22 ⋯

⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜕2E
𝜕x2

1

𝜕2E
𝜕x1𝜕x2

⋯

𝜕2E
𝜕x2𝜕x1

𝜕2E
𝜕x2

2
⋯

⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(17.3)

The third derivative of the energy is an ordered three-dimensional set of numbers, called a
tensor, which can be arranged in a cube. Corresponding higher-order derivatives can be thought of
as ordered sets of numbers in “hypercubes”, called d-order tensors for a hypercube of dimension d.

Ordered sets of numbers may collectively be called tensors, with a matrix being a second-order
tensor and a vector a first-order tensor. Since tensors of order higher than two are relatively rare,
the terms vector and matrix are more commonly used. Sometimes it is also convenient to consider a
vector as a 1 × N or N × 1 matrix and a scalar as a 1 × 1 matrix.

The conversion between a 1 × N and an N × 1 vector, or from an M × N matrix to an N × M
matrix, is done by transposition, indicated by a superscript t. Transposition simply interchanges the
ijth element with the jith element:

(
a b
c d

)t

=

(
a c
b d

)

(
a b c
d e f

)t

=
⎛
⎜
⎜
⎜
⎝

a d
b e
c f

⎞
⎟
⎟
⎟
⎠

(17.4)

If the matrix elements are complex, the adjoint matrix is defined by complex conjugation of the ele-
ments followed by transposition, and is denoted by a superscript †. Hermitian matrices are very com-
mon in quantum chemistry and are defined as being self-adjoint, that is A = A†. If all the matrix
elements are real, the matrix is called symmetric, that is A = At.

The addition and subtraction of matrices, which now encompass vectors as well, is directly the
addition and subtraction of the elements, analogous to the rules for scalars:

⎛
⎜
⎜
⎜
⎝

a1

a2

⋮

⎞
⎟
⎟
⎟
⎠

+
⎛
⎜
⎜
⎜
⎝

b1

b2

⋮

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

a1 + b1

a2 + b2

⋮

⎞
⎟
⎟
⎟
⎠

(17.5)

⎛
⎜
⎜
⎜
⎝

a11 a12 ⋯

a21 a22 ⋯

⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎠

+
⎛
⎜
⎜
⎜
⎝

b11 b12 ⋯

b21 b22 ⋯

⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

a11 + b11 a12 + b12 ⋯

a21 + b21 a22 + b22 ⋯

⋮ ⋮ ⋱

⎞
⎟
⎟
⎟
⎠

(17.6)

The multiplication of matrices, however, is somewhat different. In standard matritx multiplications,
the ijth element in the product is formed by multiplying the elements of the ith row with the elements
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of the jth coloumn and adding all the terms. For the multiplication of two 2 × 2 matrices the result is
given in

(
a11

a21

a12

a22

)(
b11

b21

b12

b22

)

=

(
a11b11 + a12b21

a21b11 + a22b21

a11b12 + a12b22

a21b12 + a22b22

)

(17.7)

Note that this means that matrix multiplication is not necessarily commutative:
(

a11

a21

a12

a22

)(
b11

b21

b12

b22

)

≠

(
b11

b21

b12

b22

)(
a11

a21

a12

a22

)

(17.8)

This is perhaps most easily seen by multiplying two rectangular matrices. The result of multiplying a
2 × 3 matrix with a 3 × 2 matrix is a 2 × 2 matrix:

(
a11

a21

a12

a22

a13

a23

)⎛
⎜
⎜
⎜
⎝

b11

b21

b31

b12

b22

b32

⎞
⎟
⎟
⎟
⎠

=

(
c11

c21

c12

c22

)

(17.9)

while the result of multiplying a 3 × 2 matrix with 2 × 3 matrix is a 3 × 3 matrix:

⎛
⎜
⎜
⎜
⎝

b11

b21

b31

b12

b22

b32

⎞
⎟
⎟
⎟
⎠

(
a11

a21

a12

a22

a13

a23

)

=
⎛
⎜
⎜
⎜
⎝

c11

c21

c31

c12

c22

c32

c13

c23

c33

⎞
⎟
⎟
⎟
⎠

(17.10)

Even for square matrices, however, the matrix product AB is not necessarily equal to BA.
In some cases the matrix elements are multiplied together element by element, which is called an

entry-wise product, and is denoted with a “dot” between the two matrices:

⎛
⎜
⎜
⎜
⎝

a11

a21

⋮

a12

a22

⋮

⋯

⋯

⋱

⎞
⎟
⎟
⎟
⎠

⋅

⎛
⎜
⎜
⎜
⎝

b11

b21

⋮

b12

b22

⋮

⋯

⋯

⋱

⎞
⎟
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

a11b11

a21b21

⋮

a12b12

a22b22

⋮

⋯

⋯

⋱

⎞
⎟
⎟
⎟
⎠

(17.11)

For vectors, which can be considered 1 × N or N × 1 matrices, the result of multiplying a 1 × N matrix
with an N × 1 matrix is a 1 × 1 matrix, or a scalar. This is called an inner or dot product:

atb = (a1 a2)

(
b1

b2

)

= (a1b1 + a2b2) (17.12)

The length (or norm) of a vector follows directly from the interpretation of a vector as a directional
line from the origin to a point in space, and is defined as the square root of the dot product of the
vector with itself. If the vector components are complex numbers the transposition is replaced by the
adjoint instead:

|a| =
√

ata =
√

a2
1 + a2

2 + a2
3 + ⋅ ⋅ ⋅ (17.13)

The above norm is more specifically known as the Euclidian or 2-norm. The generalization to the
p-norm is shown in

|a|p = p
√∑

i
|ai|

p (17.14)
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The 2-norm is by far the most common, but the 1-norm, which is the sum of absolute value of the
ai-elements, and the infinity-norm, which is simply the largest ai-element, are also used frequently.

The “physical” interpretation of a dot product of two vectors is related to the angle between them;
specifically for two vectors of unit length, the dot product is the cosine of the angle:

atb = |a||b| cos 𝛼 (17.15)

A dot product of +1 means that the two (unit) vectors are aligned, a value of −1 means that they are
aligned, but pointing in opposite directions, while a dot product of 0 means that the two vectors are
orthogonal.

The opposite of a dot product is multiplication of an N × 1 matrix with a 1 × N matrix to give an
N × N matrix, and is called an outer product:

abt =

(
a1

a2

)

(b1 b2) =

(
a1b1

a2b1

a1b2

a2b2

)

(17.16)

The inner and outer products of two vectors produce a scalar and a matrix, respectively. Two 3-
vectors may also be multiplied together to generate a new 3-vector, a procedure called a vector or
cross product, with the result given by

⎧
⎪
⎨
⎪
⎩

x1

y1

z1

⎫
⎪
⎬
⎪
⎭

×
⎧
⎪
⎨
⎪
⎩

x2

y2

z2

⎫
⎪
⎬
⎪
⎭

=
⎧
⎪
⎨
⎪
⎩

y1z2 − z1y2

z1x2 − x1z2

x1y2 − y1x2

⎫
⎪
⎬
⎪
⎭

(17.17)

The vector product gives a vector perpendicular to both of the original vectors with a length of
|a|b|sin𝛼 (compare with Equation (17.15)), and is therefore zero if the two original vectors are aligned.
It follows trivially that a × a = 0 for any vector a and that a × b = −b × a.

The generalization of the inner (dot) product from vectors to tensors is usually called tensor con-
traction, where the contraction decreases the tensor dimension by the number of contraction indices.
Calculation of the Fock matrix elements in Equation (3.56) is an example of a contraction of the four-
dimension tensor containing the two-electron integrals with the two-dimensional density matrix,
giving a two-dimension Fock matrix. The generalization of the outer product from vectors to tensors
is called a tensor or dyadic product (often denoted by ⊗), where the tensor product increases the
dimension of the resulting tensor to the sum of the dimensions of the two tensors.

A matrix determinant is denoted |A| and is given explicitly for the 2 × 2 and 3 × 3 cases in the
following equations:

|A| =
|
|
|
|
|

a11

a21

a12

a22

|
|
|
|
|

= a11a22 − a12a21 (17.18)

|A| =

|
|
|
|
|
|
|
|

a11

a21

a31

a12

a22

a32

a13

a23

a33

|
|
|
|
|
|
|
|

=
a11a22a33 − a11a23a32 − a12a21a33+
a12a23a31 + a13a21a32 − a13a22a31

(17.19)

The determinant of larger matrices is similarly given as a sum of N! terms, each being the product
of N elements. A convenient procedure for the evaluation consists of decomposing the determinant
according to a row (or column), with each element being multiplied by a subdeterminant, formed by
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removing the elements of the corresponding rows and columns, and a factor (−1)(i+j):
|
|
|
|
|
|
|
|

a11

a21

a31

a12

a22

a32

a13

a23

a33

|
|
|
|
|
|
|
|

= a11

|
|
|
|
|

a22

a32

a23

a33

|
|
|
|
|

− a12

|
|
|
|
|

a21

a31

a23

a33

|
|
|
|
|

+ a13

|
|
|
|
|

a21

a31

a22

a32

|
|
|
|
|

(17.20)

This procedure can be applied recursively until only 1 × 1 determinants remain. Only square matrices
have determinants, and determinants have a number of important properties:

1. Interchanging two rows or columns in a matrix changes the sign of the determinant. This property
is used for parameterizing wave functions in terms of Slater determinants, as the wave function
antisymmetry is thereby automatically fulfilled (Section 3.2).

2. Adding a row (or a fraction thereof ) to another row leaves the determinant unchanged, and sim-
ilarly for columns. This allows, for example, representation of a wave function either in terms of
canonical or localized molecular orbitals (Section 10.4).

3. If two rows or columns are identical except for a multiplicative constant, the determinant is zero.
This is easily seen, since one of these rows/columns can be made into a zero vector by subtraction
of the two, and expansion according to this zero row/column by Equation (17.20) will give zero.
Such matrices may arise owing to linear dependencies of the rows or columns.

Division by matrices is done formally by multiplying with the inverse of a matrix, where the inverse
is defined such that multiplication of a matrix with its inverse produces a unit matrix:

A−1A = AA−1 = I =

⎛
⎜
⎜
⎜
⎜
⎝

1
0
0
⋮

0
1
0
⋮

0
0
1
⋮

⋯

⋯

⋯

⋱

⎞
⎟
⎟
⎟
⎟
⎠

(17.21)

The elements of a matrix inverse are given by the elements of the matrix itself and the inverse of
the matrix determinant. Specifically, the ijth element in the A−1 matrix is given as the inverse of |A|
times the determinant of the submatrix corresponding to removing the jth row and ith column, and
a factor (−1)(i+j). Note that the transposition of the ijth element in the inverse matrix is formed from
the submatrix corresponding to the jith element in the original matrix. For a 3 × 3 matrix, this is
exemplified by the b1j elements in

A =
⎛
⎜
⎜
⎜
⎝

a11

a21

a31

a12

a22

a32

a13

a23

a33

⎞
⎟
⎟
⎟
⎠

; A−1 = |A|−1
⎛
⎜
⎜
⎜
⎝

b11

b21

b31

b12

b22

b32

b13

b23

b33

⎞
⎟
⎟
⎟
⎠

b11 =
|
|
|
|
|

a22

a32

a23

a33

|
|
|
|
|

, b12 = −
|
|
|
|
|

a12

a32

a13

a33

|
|
|
|
|

, b13 =
|
|
|
|
|

a12

a22

a13

a23

|
|
|
|
|

(17.22)

It thus follows that only square matrices with determinants different from zero have an inverse matrix.
Rectangular matrices can be defined to have a generalized inverse matrix. Such generalized inverse
matrices and more complicated matrix algebra, such as calculating functions of matrices, are consid-
ered in the next section.

A square matrix can be considered as composed of row/column vectors. Matrices where each
row/column vector has a unit length (Equation (17.13)) and is orthogonal to all other row/column
vectors (Equation (17.15)) are called unitary, and have determinants equal to ei𝜃 (Figure 17.2 with
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Table . Some special matrices, names and properties.

Name Properties

Unit I, Iij = 𝛿ij
Complex conjugate A∗, complex conjugate all elements
Transposed At, interchange elements ij and ji
Adjoint A†, interchange and complex conjugate elements ij and ji
Symmetric At = A
Antisymmetric At = −A
Hermitian A† = A
Anti-Hermitian A† = −A
Inverse A−1A = AA−1 = I
Orthogonal |A| = ±1, real elements, A−1 = At

Unitary |A| = ei𝜃 , complex elements, A−1 = A†

r = 1). A unitary matrix, where all the elements are real (i.e. not complex), is called orthogonal and
has a determinant equal to +1 or −1. We will in general use the unitary notation, although in most
cases the matrices are actually orthogonal. Orthogonal matrices have the appealing property that the
inverse is simply the transposed matrix, A−1 = At; for unitary matrices the transposition must be
accompanied by a complex conjugation also, that is A−1 = A†. The names and properties of some
special matrices are shown in Table 17.1.

Matrices arise, for example, in solving a system of linear equations, where the formal solution can
be obtained by multiplication with A−1 on both sides:

a11x1 + a12x2 + ⋅ ⋅ ⋅ + a1nxn = b1

a21x1 + a22x2 + ⋅ ⋅ ⋅ + a2nxn = b2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮⋮ ⋮=⋮
an1x1 + an2x2 + ⋅ ⋅ ⋅ + annxn = bn

Ax = b ⇔ x = A−1b

(17.23)

It thus follows that a solution only exists if A−1 exists, that is if |A| is non-zero. In actual calculations,
it is rare that matrix determinants are exactly zero. If |A| is very small, the solution vector x becomes
sensitive to small details in the original A matrix. Such systems are called ill-conditioned and should
be treated by singular value decomposition, as described in the next section.

For the special case of the right-hand side (b-vector) in Equation (17.23) being zero, only the trivial
x = 0 solution exists if A−1 exists. A non-trivial solution is therefore only possible if A−1 does not
exist, which is equivalent to the condition that |A| is zero. Linear dependence in the A matrix is thus
a condition for a non-trivial solution and the resulting x-vector is obtained as a parametric solution of
one or more variables. These parameters can be fixed, for example, by requiring that the x-vector(s)
are normalized and mutually orthogonal.

. Change of Coordinate System

In many cases it is possible to simplify a problem by choosing a particular coordinate system. It is
therefore important to be able to describe how vectors and matrices change when switching from
one coordinate system to another.

iranchembook.ir/edu



 Introduction to Computational Chemistry

x1

x2

x'1

x'2

Figure . Rotation of a coordinate system.

Some coordinate transformations are non-linear, such as converting from a Cartesian to a spherical
polar system. Here the r, 𝜃, 𝜑 coordinates are related to the x, y, z coordinates by square root and
trigonometric functions, as shown in Figure 17.1. Other coordinate transformations are linear, with
the new coordinates given as linear combinations of the old ones. A linear transformation can be
described as a rotation of the coordinate system (Figure 17.3).

For the 2 × 2 case, the new coordinates x′1 and x′2 are related to the original x1 and x2 coordinates
by means of a 2 × 2 matrix containing cosines and sines of the rotational angle 𝛼:

(
x′1
x′2

)

=

(
cos 𝛼
− sin 𝛼

sin 𝛼
cos 𝛼

)(
x1

x2

)

(17.24)

The rotation matrix is an orthogonal (unitary) matrix U, since the rows/columns are orthonormal.
The significance of a unitary matrix is that it describes a rotation of the coordinate system without
changing the length of the coordinate axes. An orthogonal matrix with a determinant of −1 describes
a rotation of the coordinate system, followed by inverting the directions of the coordinate axis, that
is an improper rotation in the language of point group symmetry.

The connection between the primed and unprimed coordinate systems is given by the unitary
matrix in Equation (17.24), and can be written as

x′ = Ux (17.25)

The inverse operation U−1 corresponds to rotation with the angle −𝛼 and backtransforms the primed
coordinates to the unprimed ones:

(
x1

x2

)

=

(
cos 𝛼
sin 𝛼

− sin 𝛼
cos 𝛼

)(
x′1
x′2

)

x = U−1x′
(17.26)

It is easily verified that the matrix product U−1U gives a 2 × 2 unit matrix. The coordinate system can
alternatively be considered as spanned by basis vectors arranged as columns in an X matrix, in which
case the unitary transformations can be written as X′=XU.
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Consider now a (multidimensional) linear function f defined by the action of a matrix A on a
vector x:

f = Ax (17.27)
In the rotated coordinate system the corresponding connection is given by

f′ = A′x′ (17.28)
By using the transformations (17.25) between the two coordinate systems and the fact that a unit
matrix of the form U−1U can be freely inserted, we get

f = Ax
f = A(U−1U)x

Uf = UA(U−1U)x
(Uf) = (UAU−1)(Ux)

f′ = (UAU−1)x′

(17.29)

Changing the coordinate system thus changes a matrix by pre- and postmultiplication of a unitary
matrix and its inverse, a procedure called a similarity transformation. Since the U matrix describes
a rotation of the coordinate system in an arbitrary direction, one person’s U may be another person’s
U−1. There is thus no significance whether the transformation is written as U−1AU or UAU−1, and
for an orthogonal transformation matrix (U−1 = Ut), the transformation may also be written as UtAU
or UAUt.

For the case of a symmetric (A12 = A21) 2 × 2 matrix, the similarly transformed matrix elements
are given as

A′ = UAU−1

(
A′

11
A′

12

A′
12

A′
22

)

=

(
cos 𝛼
− sin 𝛼

sin 𝛼
cos 𝛼

)(
A11

A12

A12

A22

)(
cos 𝛼
sin 𝛼

− sin 𝛼
cos 𝛼

)

A′
11 = A11 cos2 𝛼 + A22 sin2 𝛼 + 2A12 cos 𝛼 sin 𝛼

A′
22 = A22 cos2 𝛼 + A11 sin2 𝛼 − 2A12 cos 𝛼 sin 𝛼

A′
12 = A12

(
cos2 𝛼 − sin2 𝛼

)
+ (A22 − A11) cos 𝛼 sin 𝛼

(17.30)

The off-diagonal element A′
12 can be made to vanish by choosing a specific rotational angle, as shown

in
A′

12 = A12(cos2 𝛼 − sin2 𝛼) + (A22 − A11) cos 𝛼 sin 𝛼 = 0
A12(cos2 𝛼 − sin2 𝛼) = (A11 − A22) cos 𝛼 sin 𝛼

A12(cos 2𝛼) = (A11 − A22)
(

1
2 sin 2𝛼

)

tan(2𝛼) =
2A12

(A11 − A22)

(17.31)

In the new coordinate system, the A′ matrix is simplified, as it only contains diagonal elements:

A′ =

(
A′

11
A′

12

A′
12

A′
22

)

=

(
𝜆1

0
0
𝜆2

)

= 𝚲 (17.32)
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An N × N Hermitian (or real symmetric) matrix can always be brought to a diagonal form by
a multidimensional rotation of the coordinate system, and there are efficient standard computa-
tional procedures for diagonalizing matrices. The simplest method consists of an iterative series of
2 × 2 rotations as in Equation (17.30), which reduces the off-diagonal elements to zero.The rota-
tional matrix U thus contains elements corresponding to products of cosines and sines of rotational
angles.

The elements of the A matrix in the diagonal form (𝜆) are called eigenvalues and the columns of
the unitary rotation matrix are called eigenvectors. In matrix notation the diagonalization can be
written as

𝚲 = UAU−1 (17.33)

A Hermitian matrix will always have real eigenvalues and orthogonal eigenvectors. Matrix diago-
nalizations play an important role in many areas of computational chemistry, and scientific compu-
tations in general, since they correspond to selecting a coordinate system where the variables are
(approximately) independent of each other. Furthermore, the magnitude of the eigenvalues indicates
the variation along that particular direction. For applications with many variables, it may be possi-
ble to describe a significant fraction of the whole variation by taking only a few selected eigenvector
directions into account, and this forms the basis for principal component analysis, as discussed in
Section 18.4.3, and can be generalized to tensor decompositions, as discussed in Section 17.6.3.

It can be shown that a matrix determinant is independent of a change in the coordinate system, and
in the diagonal representation the determinant is simply the product of the eigenvalues. A non-zero
determinant is thus equivalent to all the eigenvalues being different from zero. Furthermore, the trace
of a matrix, defined as the sum of the diagonal elements, is also invariant to a change in the coordinate
system, as can be verified for the 2 × 2 case from Equation (17.30). In the diagonal representation the
trace is given by the sum of the eigenvalues.

An alternative way of introducing matrix eigenvalues and eigenvectors is to require non-zero
x-solutions to

Ax = 𝜆x
(A − 𝜆I)x = 0

(17.34)

This is a set of linear equations in the form of Equation (17.23), with the right-hand side being zero,
and a non-trivial solution therefore only exists when the determinant is zero:

|A − 𝜆I| = 0 (17.35)

Expansion of the determinant (17.35) according to Equation (17.20) produces an Nth-order poly-
nomial in 𝜆, which can be solved to give N roots (eigenvalues). If some of these are identical, they
are called degenerate eigenvalues. For each eigenvalue, Equation (17.34) can be solved to produce
the corresponding eigenvector. In the non-degenerate case (all 𝜆i being different) the one free
parameter can be fixed by normalization. For degenerate eigenvectors, the normalization condition
must be augmented with a mutual orthogonality condition (Section 17.4) in order to fix all the free
parameters.

In the coordinate system (x′) where the A′ matrix is diagonal, it is easy to see that Equation (17.35)
holds since the (A′ – 𝜆I) matrix has at least one column consisting of only zeros. In this diagonal
representation, it is furthermore clear that the eigenvectors are simply unit vectors along the primed
coordinate axes, and the eigenvectors in the unprimed coordinate system are therefore given by the
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Figure . Construction of functions of matrices.

elements of the Ut transformation matrix:
A′x′ = 𝜆x′

(
𝜆1

0
0
𝜆2

) (
1
0

)

= 𝜆1

(
1
0

)

;

(
𝜆1

0
0
𝜆2

) (
0
1

)

= 𝜆2

(
0
1

)

x = Utx′

(17.36)

While the polynomial method can be used for solving small eigenvalue problems by hand, all com-
putational implementations rely on iterative similarity transform methods for bringing the matrix
to a diagonal form. The simplest of these is the Jacobi method, where a sequence of 2 × 2 rotations
analogous to Equations (17.30) to (17.32) can be used to bring all the off-diagonal elements below a
suitable threshold value.

In the diagonal form, the matrix 𝚲 contains only elements along the diagonal. The diagonal ele-
ments can be treated like regular numbers, allowing calculation of functions of matrices (see Fig-
ure 17.4). Calculating, for example, A1∕2 proceeds by first transforming it to a diagonal form, taking
the square root of the diagonal elements and backtransforming to the original coordinate system.
This procedure in general allows calculation of functions of matrices, such as eA, ln (A) or cos (A).

This also provides an alternative way of calculating the inverse of a matrix by simply taking the
inverse of the eigenvalues in the diagonal representation and backtransforming the matrix to the
original representation.

A unitary matrix can always be parameterized as the exponential of an anti-Hermitian matrix X:

U = eX ; X† = −X (17.37)

The unitarity follows from

U†U = (ex)†(ex) = (ex†)(ex) = (e−x)(ex) = 1 (17.38)

The X matrix in the general case contains complex elements, but these can be separated into an
antisymmetric real part (Rxij = – Rxji) and a symmetric imaginary part (Ixij = Ixji). For the two-
dimensional example in Equation (17.24), the X matrix contains the rotation angle 𝛼:

X =

(
0
−𝛼

𝛼

0

)

(17.39)

The absolute sign is again arbitrary, and there is no difference between defining the unitary matrix
as eX or e−X, as this simply implies changing the sign for 𝛼 in the X matrix. The connection
between X and U is illustrated in Figure 17.4 and construction of U involves diagonalization of X
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(to give eigenvalues of ± i𝛼), exponentiation (to give complex exponentials that may be written as
cos 𝛼 ± isin𝛼), followed by backtransformation:

U = eX =

(
cos 𝛼
− sin 𝛼

sin 𝛼
cos 𝛼

)

(17.40)

In the general case, the X matrix contains off-diagonal elements corresponding to angles for rotating
all pairs of variables.

The A matrix may in some cases have eigenvalues that are zero or nearly so. The number of non-
zero eigenvalues is called the rank of the matrix A and corresponds to the number of independent
rows/columns in the matrix. In actual applications, it is rare that an eigenvalue is exactly zero, but a
very small value will clearly give numerical problems for constructing matrices such as A−1 or ln (A).
The ratio between the largest and smallest eigenvalue is called the condition number, and large values
(>106) indicate that the A matrix is close to having linear dependencies. Singular value decomposition
(Section 17.6.3) constructs A−1 by inverting only those eigenvalues larger than a suitable threshold
and setting the rest to zero, before backtransformation to the original coordinate system.

For an N × M (N > M) rectangular matrix A, a generalized inverse can be defined by the matrix
(AtA)−1At. Such generalized inverse matrices correspond to obtaining the best solution in a least
squares sense for an overdetermined system of linear equations, for example, those that arise in sta-
tistical applications (Section 18.4.2). Consider, for example, a system of equations analogous to Equa-
tion (17.23), but with more b solution elements than x variables (n > m):

A11x1 + A12x2 +⋯ + A1mxm = b1

A21x1 + A22x2 +⋯ + A2mxm = b2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ = ⋮

An1x1 + An2x2 +⋯ + Anmxm = bn

Ax = b
AtAx = Atb

x = (AtA)−1Atb

(17.41)

Multiplication from the left by At and by the inverse of AtA leads to the formal solution, that is
(AtA)−1At acts as the inverse to the rectangular A matrix.

17.2.1 Examples of Changing the Coordinate System

From the “separability” theorem (Section 1.6.3) it follows that if an operator (e.g. the Hamiltonian)
depending on N coordinates can be written as a sum of operators that only depend on one coordi-
nate, the corresponding N coordinate wave function can be written as a product of one-coordinate
functions and the total energy as a sum of energies:

H(x1, x2, x3,…)Ψ(x1, x2, x3,…) = EtotΨ(x1, x2, x3,…)
H(x1, x2, x3,…) =

∑

i
hi(xi)

hi(xi)𝜙i(xi) = 𝜀i𝜙i(xi)
Etot =

∑

i
𝜀i

Ψ(x1, x2, x3,…) =
∏

i
𝜙i(xi)

(17.42)
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Instead of solving one equation with N variables, the problem is transformed into solving N equations
with only one variable. When the operator is transformed into a matrix representation, the separation
is equivalent to finding a coordinate system where the representation is diagonal.

Consider a matrix A expressed in a coordinate system (x1, x2, x3,… , xN). The coordinate axes are
the xi vectors, and these may be simple Cartesian axes, or one-variable functions, or many-variable
functions. The matrix A is typically defined by an operator working on the coordinates. Some exam-
ples are:

1. The force constant matrix in Cartesian coordinates (Section 14.5.3)
2. The Fock matrix in basis functions (atomic orbitals, Section 3.5)
3. The CI matrix in Slater determinants (Section 4.2).

Finding the coordinates where these matrices are diagonal corresponds to finding:

1. The vibrational normal coordinates
2. The molecular orbitals
3. The state coefficients, that is CI wave function(s).

The coordinate axes are usually orthonormal, but this is not a requirement, since they can be orthog-
onalized by the methods in Section 17.4.

17.2.2 Vibrational Normal Coordinates

The potential energy is approximated by a second-order Taylor expansion around the stationary
geometry x0:

V (x) ≈ V (x0) +
(

dV
dx

)t
(x − x0) + 1

2 (x − x0)t
(

d2V
dx2

)

(x − x0) (17.43)

The energy for the expansion point, V(x0), may be chosen as zero, and the first derivative is zero since
x0 is a stationary point:

V (Δx) = 1
2ΔxtFΔx (17.44)

Here F is a 3Natom × 3Natom (force constant) matrix containing the second derivatives of the energy
with respect to the coordinates.

The nuclear Schrödinger equation for an Natom system is given by
[

−
3Natom∑

i=1

(

1
2mi

𝜕2

𝜕x2
i

)

+ 1
2ΔxtFΔx

]

Ψnuc = EnucΨnuc (17.45)

Equation (17.45) is first transformed to mass-dependent y-coordinates by a G matrix containing the
inverse square root of atomic masses:

yi =
√

miΔxi ; 𝜕2

𝜕y2
i
= 1

mi

𝜕2

𝜕x2
i

; Gij =
1

√mimj
[

−
3Natom∑

i=1

(

1
2
𝜕2

𝜕y2
i

)

+ 1
2 yt (F ⋅ G) y

]

Ψnuc = EnucΨnuc

(17.46)
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A unitary transformation is then introduced that diagonalizes the F⋅G (entrywise product, Equa-
tion (17.11)) matrix, yielding eigenvalues 𝜀i and eigenvectors qi. The kinetic energy operator is still
diagonal in these coordinates:

q = Uy
[

−
3Natom∑

i=1

(

1
2
𝜕2

𝜕q2
i

)

+ 1
2 qt (U (F ⋅ G) Ut)q

]

Ψnuc = EnucΨnuc

[

−
3Natom∑

i=1

(

1
2
𝜕2

𝜕q2
i
+ 1

2𝜀iq2
i

)]

Ψnuc = EnucΨnuc

[3Natom∑

i=1
hi
(
qi
)
]

Ψnuc = EnucΨnuc

(17.47)

In the q-coordinate system, the vibrational normal coordinates, the 3Natom-dimensional Schrödinger
equation can be separated into 3Natom one-dimensional Schrödinger equations, which are just in
the form of a standard harmonic oscillator, with the solutions being Hermite polynomials in the
q-coordinates. The eigenvectors of the F⋅G matrix are the (mass-weighted) vibrational normal coor-
dinates and the eigenvalues 𝜀i are related to the vibrational frequencies as follows (analogous to Equa-
tion (14.36)):

𝜈i =
1

2𝜋
√
𝜀i (17.48)

When this procedure is carried out in Cartesian coordinates, there should be six (five for a linear
molecule) eigenvalues of the F⋅G matrix being exactly zero, corresponding to the translational and
rotational modes. In real calculations, however, these values are not exactly zero. The three transla-
tional modes usually have “frequencies” very close to zero, typically less than 0.01 cm−1. The deviation
from zero is due to the fact that numerical operations are only carried out with a finite precision and
the accumulations of errors will typically give inaccuracies in 𝜈 of this magnitude. The residual “fre-
quencies” for the rotational modes, however, may often be as large as 10–50 cm−1. This is due to
the fact that the geometry cannot be optimized to a gradient of exactly zero, again due to numer-
ical considerations. Typically, the geometry optimization is considered converged if the root mean
square (RMS) gradient is less than ∼10−4–10−5 au, corresponding to the energy being converged to
∼10−5–10−6 au. The residual gradient shows up as vibrational frequencies for the rotations of the
above magnitude. If there are real frequencies of the same magnitude as the “rotational frequencies”,
mixing may occur and result in inaccurate values for the “true” vibrations. For this reason, the trans-
lational and rotational degrees of freedom are normally removed by projection (Section 17.4) from
the force constant matrix before diagonalization.

The calculation of vibrational frequencies by the above procedure rests on the Born–Oppenheimer
decoupling of the nuclear and electronic motions, and the masses in Equation (17.46) are there-
fore expected to be nuclear masses. All programs, however, use atomic masses, which differ from
nuclear masses by the addition of the electron masses. This is consistent with the Born–Oppenheimer
approximation that the electrons follow the nuclear motion “instantaneously”. The core electrons
are closely associated with the nuclei and are expected to obey the Born–Oppenheimer approxima-
tion, but the valence electrons in a molecule are delocalized, and it therefore becomes problematic
to assign (exactly) Z electrons to a nucleus with atomic number Z in order to arrive at the atomic
mass.2 The Born–Oppenheimer approximation thus leads to ambiguities in the atomic masses in
Equation (17.40) with a magnitude of ∼10−4, corresponding to ambiguities in vibrational frequencies
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of a few tenths of a cm−1. The diagonal Born–Oppenheimer correction (Section 3.1) in compari-
son leads to vibrational frequency corrections of a few hundreds of a cm−1.3 Vibrational frequencies
therefore have an accuracy limit of ∼0.1 cm−1 within the Born–Oppenheimer approximation and
attempts to refine the electronic potential energy surface or solve the nuclear vibrational problem
beyond this accuracy have little physical relevance.

If the stationary point is a minimum on the energy surface, the eigenvalues of the F and F⋅G matri-
ces are all positive. If, however, the stationary point is a transition state (TS), one (and only one) of
the eigenvalues is negative. This corresponds to the energy being a maximum in one direction and
a minimum in all other directions. The “frequency” for the “vibration” along the eigenvector with a
negative eigenvalue will formally be imaginary, as it is the square root of a negative number (Equa-
tion (17.48)). The corresponding eigenvector is the direction leading downhill from the TS towards
the reactant and product. At the TS, the eigenvector for the imaginary frequency is the reaction coor-
dinate. The whole reaction path may be calculated by sliding downhill to each side from the TS. This
can be performed by taking a small step along the TS eigenvector, calculating the gradient and taking
a small step in the negative gradient direction. The negative of the gradient always points downhill
and by taking a sufficiently large number of such steps an energy minimum is eventually reached. This
is equivalent to a steepest descent minimization, but more efficient methods are available (see Sec-
tion 13.8 for details). The reaction path in mass-weighted coordinates is called the Intrinsic Reaction
Coordinate (IRC).

The vibrational Hamiltonian is completely separable within the harmonic approximation, with the
vibrational energy being a sum of individual energy terms and the nuclear wave function being a
product of harmonic oscillator functions (a Hermite polynomial in the normal coordinates). When
anharmonic terms are included in the potential, the Hamiltonian is no longer separable and the result-
ing nuclear Schrödinger equation can be solved by techniques completely analogous to those used for
solving the electronic problem. The vibrational SCF method is analogous to the electronic Hartree–
Fock method, with the nuclear harmonic oscillator functions playing the same role as the orbitals
in electronic structure theory. Corrections beyond the mean-field approximation can be added by
configuration interaction, perturbation theory or coupled cluster methods.4

It should be noted that the force constant matrix can be calculated at any geometry, but the trans-
formation to normal coordinates is only valid at a stationary point, that is where the first derivative is
zero. At a non-stationary geometry, a set 3Natom − 7 generalized frequencies may be defined by remov-
ing the gradient direction from the force constant matrix (e.g. by projection techniques, Section 17.4)
before transformation to normal coordinates.

17.2.3 Energy of a Slater Determinant

The variational problem is to minimize the energy of a single Slater determinant by choosing suit-
able values for the molecular orbital (MO) coefficients, under the constraint that the MOs remain
orthonormal. With 𝜙 being an MO written as a linear combination of the basis functions (atomic
orbitals) 𝜒 , this leads to a set of secular equations, F being the Fock matrix, S the overlap matrix and
C containing the coefficients (Section 3.5):

𝜙i =
Mbasis∑

𝛼=1
c𝛼i𝜒𝛼

F𝛼𝛽 =
⟨
𝜒𝛼 |F|𝜒𝛽

⟩
; S𝛼𝛽 =

⟨
𝜒𝛼∕𝜒𝛽

⟩

FC = SCε

(17.49)
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The basis functions (coordinate system) in this case are non-orthogonal, with the overlap elements
contained in the S matrix. By multiplying from the left by S−1∕2 and inserting a unit matrix written in
the form S−1∕2 S1∕2 , Equation (17.49) may be reformulated as

{
S−1∕2FS−1∕2 }{S1∕2C

}
=
{

S−1∕2S1∕2 }{S1∕2C
}

ε

F′C′ = C′ε
(17.50)

This equation is now in a standard form for determining the eigenvalues of the F′ matrix. The eigen-
vectors contained in C′ can then be backtransformed to the original coordinate system (C = S−1/2

C′). This is an example of a symmetrical orthogonalization (Section 17.4) of the initial coordinate
system, the basis functions 𝜒 . Solving Equation (17.49) corresponds to rotating the original space of
basis functions into one of molecular orbitals where the Fock matrix is diagonal.

17.2.4 Energy of a CI Wave Function

The variational problem may again be formulated as a secular equation, where the coordinate axes
are many-electron functions (Slater determinants) Φi, which are orthogonal (Section 4.2):

ΨCI =
∑

i
aiΦi

Hij = ⟨Φi|H|Φj⟩

Ha = Ea

(17.51)

The a matrix contains the coefficients of the CI wave function. This problem may again be considered
as selecting a basis where the Hamiltonian operator is diagonal (Equation (4.7) and Figure 4.5). In the
initial coordinate system, the Hamiltonian matrix will have many off-diagonal elements, but it can
be diagonalized by a suitable unitary transformation. The diagonal elements are energies of many-
electron CI wave functions, being approximations to the ground and exited states. The corresponding
eigenvectors contain the expansion coefficients ai.

17.2.5 Computational Considerations

The time required for diagonalizing a matrix grows as the cube of the size of the matrix and the amount
of computer memory necessary for storing the matrix grows as the square of the size. Diagonalizing
matrices with dimensions up to ∼100 takes insignificant amounts of time, unless there are extraor-
dinarily many such matrices. Matrices with dimensions up to ∼1000 pose no particular problems,
although some consideration should be made as to whether the time required for diagonalization
is significant relative to other operations. Matrices larger than ∼1000 require consideration, as the
storage and computational time for determining all eigenvalues and eigenvectors rapidly becomes a
computational bottleneck. In many cases, however, only one or a few eigenvalues and eigenvectors
are desired. A prime example is solving the CI matrix Equation (17.51), where the dimension may be
106–109, but only the lowest eigenvalue and eigenvector are required, since this is the ground state
energy and wave function. Such problems may be solved by iterative techniques, of which variations
of the Davidson method5 are commonly used.

The basic idea in iterative methods for extracting eigenvalues and eigenvectors of a matrix A is
to project the problem on to a smaller subspace and solve the subspace diagonalization problem by
standard methods. The error in the resulting solution vector is quantified by a residual vector in the
full space and terminated if this is small enough, or otherwise used for increasing the dimension of the
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subspace. The procedure for determining the lowest eigenvalue and eigenvector can be formulated
as follows:

1. The desired equation to be solved can be written as

Ax = 𝜆x (17.52)

2. Select a (small) initial set K of orthonormal trial vectors bi. These can be simply unit vectors or
obtained by diagonalization of a small subsection of the A matrix, and in the simplest case, the
space is just a single unit vector. These vectors are used to expand the current approximation to
the eigenvector x:

x =
K∑

i=1
𝛼ibi (17.53)

3. Project the large A matrix on to the subspace to form a smaller B matrix of dimension K × K with
elements given by

bij = bt
iAbj (17.54)

4. Diagonalize the B matrix. The lowest eigenvalue is the current estimate of the eigenvalue 𝜆 and
the corresponding eigenvector contains the expansion coefficients 𝛼i in Equation (17.53).

5. Form a residual vector r to measure how close the current x vector is to being an eigenvector in
the full space:

r = (A − 𝜆I)x (17.55)

6. Terminate if r is sufficiently small, for example measured by its norm.
7. If r is not sufficiently small, the eigenvalue Equation (17.52) is written in terms of a perturbed

eigenvalue and eigenvector:

A(x + δ) = (𝜆 + 𝜆′)(x + δ) (17.56)

Expanding Equation (17.56) and ignoring the quadratic 𝜆′δ term gives

(A − 𝜆I)δ = −(A − 𝜆I)x + 𝜆′x
(A − 𝜆I)δ = −r + 𝜆′x

δ = −(A − 𝜆I)−1(r − 𝜆′x)
(17.57)

8. The solution in Equation (17.57) formally requires the inverse of the (A – 𝜆I) matrix, but this
is computationally more expensive than solving Equation (17.52) itself. The key point is there-
fore to obtain a useful approximate solution to Equation (17.57) by a computationally inexpensive
method. The Davidson method corresponds to ignoring the 𝜆′x term and use a diagonal approx-
imation for the A matrix. The latter allows a straightforward inversion of the diagonal (A0 – 𝜆I)
matrix:

δ = −(A0 − 𝜆I)−1r (17.58)

9. The correction vector from Equation (17.58) is orthonormalized to the current subspace vectors
bi and included in the subspace in the next iteration.
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As the iterative sequence approaches convergence, the correction vector from Equation (17.58) can
become near-linear dependent with x and the subsequent orthonormalization is prone to numer-
ical instability. An improved correction vector can be obtained by keeping the 𝜆′x term in Equa-
tion (17.57) and requiring that δ is orthogonal to x such that it is guaranteed that it will improve
the subspace.6 The correction vector from Equation (17.58), and thus the overall convergence rate, is
furthermore sensitive to the A matrix being sufficiently diagonal dominant, as only the diagonal ele-
ments are used. Several modifications of the original Davidson algorithm have been proposed where
either selected subsections of A are included to improve the estimate of (A – 𝜆I)−1 or a suitable pre-
condition matrix is used to make the problem more diagonal dominant.

An attractive feature of the Davidson algorithm is that it can easily be modified to extract a selected
eigenvalue other than the lowest by choosing a different eigenvalue and eigenvector from the subspace
diagonalization in step 4. It can also be used to simultaneously extract more than one eigenvector
by calculating several residual and new expansion vectors in each iteration. In the CI example, this
would correspond to determining both the ground and a few of the lowest excited states in the same
iterative sequence. This of course requires that the initial selection of subspace vectors is at least the
desired number of eigenvectors, and the subspace should also be capable of providing a good zeroth-
order representation of the desired eigenvectors, as the iterative sequence otherwise may converge
on undesired solutions.

The main computational effort in the Davidson algorithm is the formation of the reduced space B
matrix, as this involves matrix–vector multiplications with the dimension of the large A matrix. The
A matrix, however, does not need to be stored at any point; only the result of multiplying elements in
A with elements in b is required. For the CI example, the matrix elements are given in terms of two-
electron integrals and there are often significantly fewer of these than CI matrix elements. The Ab
matrix–vector product can thus be calculated by a single pass through the list of two-electron inte-
grals, a procedure often called integral-driven or direct CI. A potential limitation is the requirement
of storing K b vectors, each having the dimension of the A matrix. If this is problematic, the iterative
sequence can be restarted at suitable intervals, with the current x vector becoming the starting b
vector in the new iterative sequence.

. Coordinates, Functions, Functionals, Operators and Superoperators

A function is a recipe for producing a scalar from another set of scalars, for example calculating the
energy E from a set of (nuclear) coordinates x:

E(x)∴ x → E (17.59)

A functional is a recipe for producing a scalar from a function, for example calculating the
exchange–correlation energy Exc from an electron density 𝜌 depending on a set of (electronic)
coordinates x:

Exc[𝜌(x)]∴ x → 𝜌 → Exc (17.60)

An operator is a recipe for producing a function from another function, for example the kinetic energy
operator acting on a wave function. The operator in this case consists of differentiating the function
twice with respect to the coordinates, adding the results and dividing by twice the particle mass:

TΨ(x) = TΨ(x, y, z)

T = 1
2m

(
𝜕2

𝜕x2 + 𝜕2

𝜕y2 + 𝜕2

𝜕z2

) (17.61)

iranchembook.ir/edu



Mathematical Methods 

A superoperator is a recipe for producing an operator from another operator. This level of abstraction
is rarely used, but is, for example, employed in some formulations of propagator theory:

Ô(h(f (x))) (17.62)

In the abstract function (or operator) space, often called a Hilbert space, it is possible to consider the
functions (or operators) as vectors. The bra –ket notation is defined as

bra : ⟨f| = f∗(x)
ket : |f⟩ = f(x)

(17.63)

The equivalent of a vector dot product is defined as the integral of the product of the two functions:

⟨f|g⟩ =
∫

f ∗(x)g(x)dx (17.64)

The combination of a bra and a ket is called a bracket, and the bracket notation is often also used
for the dot product of regular coordinate vectors (Equation (17.12)). By analogy with coordinate
vectors, the bracket of two functions measures the “angle” or overlap between the functions, with a
value of zero indicating that the two functions are orthogonal.

The norm of a function is defined as the square root of the bracket of the function with itself:

|f(x)| =
√
⟨f|f⟩ =

√

∫
f ∗(x)f(x)dx (17.65)

The bracket notation can also be used in connection with functions and operators, as in the example
below:

⟨f|O|g⟩ =
∫

f ∗(x)Og(x)dx (17.66)

Operator algebra shares the characteristic with matrix algebra; indeed, matrices can be considered
as representations of operators in a given set of functions (coordinate system).

Most operators in computational chemistry are linear:

O(cf) = cOf (17.67)
O(f + g) = Of + Og (17.68)

Operators are associative, but not necessarily commutative:

O(PQ) = (OP)Q (17.69)
OP ≠ PO (17.70)

The commutator of two operators is denoted with square brackets and defined as

[O, P] = OP − PO (17.71)

Two operators are said to commute when Equation (17.71) is zero.
Operator eigenvalues and eigenfunctions are defined analogously to Equation (17.34):

Of = 𝜆f (17.72)

Operators analogous to matrices (Equation (17.29)) can be subjected to a similarity transformation.
A commonly encountered example is shown below, where an operator O is similarity transformed by
the exponential P operator:

O′ = e−POeP (17.73)
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The eP operator is defined in terms of its Taylor expansion:

eP =
∞∑

n=0

1
n!

Pn (17.74)

The similarity transformed operator O′ can with the definition in Equation (17.74) be expressed as
an inifinite series of nested commutators, known as the Baker–Campbell–Hausdorff expansion:

O′ = O + [O, P] + 1
2!

[[O, P], P] + 1
3!

[[[O, P], P], P] +⋯ (17.75)

If P is anti-Hermitian, the eP corresponds to a unitary transformation (Equation (17.37)).

17.3.1 Differential Operators

Differential operators, which describe the first- and higher-order variations of functions, represent
an important class of operators in computational chemistry. For a simple one-dimensional function,
the first derivative is given by the normal rules for differentiation:

f (x) = x2 ⇒
df
dx

= 2x (17.76)

For a multidimensional scalar function (i.e. each point in space is associated with a number), the first
derivative is a vector containing all the partial derivatives. The corresponding operator is called the
gradient and is denoted by ∇:

f (x, y, z) = x + y2 + z3 + xy + xz

∇f (x, y, z) =
{
𝜕f
𝜕x

𝜕f
𝜕y

𝜕f
𝜕z

}

= {1 + y + z 2y + x 3z2 + x}
(17.77)

The gradient vector points in the direction where the function increases most.
Two choices are possible for defining the first derivative of a vector function (i.e. each point in space

is associated with a vector). The divergence is denoted by ∇⋅ and produces a scalar:

∇ ⋅ f (x, y, z) =
𝜕fx
𝜕x

+
𝜕fy
𝜕y

+
𝜕fz
𝜕z

(17.78)

The divergence measures how much the vector field “dilutes” or “contracts” at a given point. Alterna-
tively, the first derivative may be defined as the curl, denoted with ∇×, which produces a vector:

∇ × f (x, y, z) =

{(
𝜕fz
𝜕y

−
𝜕fy
𝜕z

) (
𝜕fx
𝜕z

−
𝜕fz
𝜕x

) (
𝜕fy
𝜕x

−
𝜕fx
𝜕y

)}

(17.79)

The curl describes how fast the vector field rotates, that is how rapidly and in which direction the
field changes.

Given the above three definitions of first derivatives, there are nine possible combinations for defin-
ing second derivatives. Four of these are invalid since the gradient only works on scalar fields and the
divergence and curl only work on vector fields. Two of the remaining five combinations can be shown
to be zero, leaving only three interesting combinations. Figure 17.5 indicates the action of the three
first derivatives (conversion from/to scalar and vector) and their combinations.
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Figure . Possibilities for second derivatives of multidimensional functions, with I indicating an invalid combination.

The divergence of the gradient is commonly denoted the Laplacian and is, for example, involved
in the (non-relativistic) quantum mechanical kinetic energy operator. It operates on a scalar function
and produces a scalar function:

∇ ⋅ ∇f (x, y, z) = ∇2f (x, y, z) =
𝜕2f
𝜕x2 +

𝜕2f
𝜕y2 +

𝜕2f
𝜕z2 (17.80)

The Laplacian measures the local depletion or concentration of the function. The two other combi-
nations produce a vector from a vector function and are used less commonly.

. Normalization, Orthogonalization and Projection

The vectors (functions) of a coordinate system may in some cases be given naturally by the prob-
lem, and these are not always normalized or orthogonal. For computational purposes, however, it is
often advantageous to work in an orthonormal coordinate system. We first note that normalization
is trivially obtained by simply scaling each vector by the inverse of its length:

⟨x|x⟩ = N2

x′ = N−1x
⟨x′|x′⟩ = 1

(17.81)

The orthogonalization of a set of non-orthogonal vectors can be done in many ways, but the two most
commonly used are Gram–Schmidt and symmetrical orthogonalization.

The Gram–Schmidt procedure selects an initial vector and then sequentially constructs additional
orthogonal vectors by removing (projecting out) the component(s) along all previous vectors, and
re-normalizing the remaining component, as shown by

x′1 = N−1
1 x1

x′2 = N−1
2
(

x2 −
⟨

x2|x′1
⟩

x′1
)

x′3 = N−1
3
(

x3 −
⟨

x3|x′1
⟩

x′1 −
⟨

x3|x′2
⟩

x′2
)

x′k = N−1
k

(

xk −
k−1∑

i=1

⟨
xk|x′i

⟩
x′i

)
(17.82)

It should be noted that the final set of orthogonal vectors will depend on the selection of the first
vector and the order in which the remaining vectors are orthogonalized, although the total space
spanned will of course be the same.
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A symmetrical orthogonalization corresponds to a transformation that has the property O†SO =
I, where S contains the overlap elements of all the xi coordinate vectors:

Sij = ⟨xi|xj⟩ (17.83)

One such transformation is given by the inverse square root of the overlap matrix (O = S−1∕2 ) and is
often called a Löwdin orthogonalization.7 It has the property that the orthogonalized set of vectors
is the least changed relative to the original set of vectors, and this is used, for example, in solving the
self-consistent field equations in Hartree–Fock and Kohn–Sham theories, and for performing the
Löwdin population analysis (Section 10.1):

x′ = S−1∕2x (17.84)

A variation of the Löwdin procedure allows a weighting of the original vectors, such that the similarity
of the original and orthogonalized set of vectors is not uniformly distributed over all vectors, but
selected vectors are chosen to change less than others. This corresponds to the transformation shown
below, where W is a diagonal matrix containing weighting factors, and this is used, for example, in
the natural bond analysis (Section 10.5.1):8

x′ = W(WSW)−1∕2x (17.85)

A second variation is a canonical orthogonalization, where the transformation is done by a unitary
matrix U containing the eigenvectors obtained by diagonalizing the overlap matrix and weighting by
the inverse square root of the eigenvalues:

x′ = (U𝚲−1∕2)x (17.86)

The advantage of a canonical orthogonalization is that it allows for handling (near-) linear depen-
dencies in the basis by truncating the transformation matrix by removal of columns with eigenvalues
smaller than a suitable cutoff value.

In multidimensional coordinate systems it may often be advantageous to work in a subset of the
full coordinate system. The component of a vector function f along a specific (unit) coordinate vector
xk is given by the projection

fk = ⟨f|xk⟩ (17.87)

For a matrix representation of an operator, A, the projection onto the xk subspace is given by pre-
and post-multiplying with a Qk matrix defined as the outer product of xk, or the function equivalent
in a ket-bra notation:

Qk = xkxt
k = |xk⟩⟨xk| (17.88)

Ak = Qt
kAQk (17.89)

The reverse process, removing the xk subspace, is done by projecting the xk subspace direction out
by the complementary matrix Pk, with I being a unit matrix:

Pk = I − Qk (17.90)
f¬k = Pkf = f − ⟨f|xk⟩xk (17.91)

A¬k = Pt
kAPk (17.92)

Projection of larger subspaces can be done similarly by adding more vectors to the projection matrix.
For the case of removing the translational and rotational degrees of freedom from the vibrational
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normal coordinates, for example, the (normalized) vector describes a translation in the x-direction:

tt
x = 1

√
Natom

(1, 0, 0, 1, 0, 0, 1, 0, 0,…) (17.93)

The superscript t indicates that tt
x is a row vector. The Tx matrix removes the direction corresponding

to translation in the x-direction:

Tx = I − txtt
x (17.94)

Extending this to include vectors for all three translational and rotational modes gives a projection
matrix for removing the six (five) translational and rotational degrees of freedom:

P = I − txtt
x − tytt

y − tztt
z − rart

a − rbrt
b − rcrt

c (17.95)

The r vectors are derived from the atomic coordinates and principal axes of inertia determined by
diagonalization of the matrix of inertia (Equation (14.32)).9 By forming the matrix product PtFP, the
translation and rotational directions are removed from the force constant matrix, and consequently
the six (five) trivial vibrations become exactly zero (within the numerical accuracy of the machine).

The resolution of the identity (Section 4.11) method can be considered as an internal double pro-
jection on to an auxiliary set of functions ki. This may, for example, allow separation of a composite
operator:

Value = ⟨f|O1O2|g⟩
I =

∑

ij
|ki⟩Mij⟨kj| ; Mij = ⟨ki|kj⟩

−1

Value =
∑

ij
⟨f|O1|ki⟩Mij⟨kj|O2|g⟩

(17.96)

When the auxiliary set of functions is complete, the procedure is an exact identity, but the use of a
finite number of functions in practice makes this an approximation, which of course can be controlled
by the size of the auxiliary basis set. Resolution of identity methods are very closely connected to
tensor decomposition methods, described in Section 17.6.3.

. Differential Equations

Many of the fundamental equations in physics (and science in general) are formulated as differential
equations. The desired mathematical function is typically known to obey some relationship in terms
of its first and/or second derivatives. The task is to solve this differential equation to find the func-
tion itself. A complete treatment of the solution of differential equations is beyond the scope of this
book and only a simplified introduction is given here. Furthermore, we will only discuss solutions
of differential equations with one variable. In most cases the physical problem gives rise to a differ-
ential equation involving many variables, but prior to solution these can often be (approximately)
decoupled by separation of the variables, as discussed in Section 1.6.

17.5.1 Simple First-Order Differential Equations

Differential equations where the right-hand side only depends on the variable are normally straight-
forward to solve. A simple example is shown below, where the first derivative of the unknown function
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f is equal to the value of the variable x times a constant c:

df
dx

= cx (17.97)

The equation can be solved formally by moving dx to the right-hand side and integrating:

∫
df = c

∫
x dx

f = c
(

1
2 x2 + a

) (17.98)

The integral of df is f itself, while the integral of x dx is 1
2 x2, except that any constant a can be added.

This is completely general: a first-order differential equation will give one additional integration con-
stant that must be determined by some other means, for example from knowing the functional value
at some point. That the function in Equation (17.98) indeed is a solution to the differential equation
in Equation (17.97) can be verified by differentiation. The same technique can be applied if the right-
hand side is a more complicated function of x, although in some cases the resulting integral cannot
be found analytically, in which case numerical methods can be employed.

17.5.2 Less Simple First-Order Differential Equations

Differential functions where the right-hand side depends only on the variable are relatively simple. A
slightly more difficult problem arises when the right-hand side depends on the function itself:

df
dx

= cx (17.99)

The task is now to find a function that upon differentiation gives the same function, except for a
multiplicative constant. Formally it can be solved as by separating the variables and integrating:

∫
f −1df = c

∫
dx

ln(f ) = cx + a
f = ecx+a = eaecx

f = Aecx

(17.100)

The solution is an exponential function where the integration constant can be written as a multi-
plicative factor A. It may again be verified that the solution indeed satisfies the original differential
equation by differentiation.

17.5.3 Simple Second-Order Differential Equations

A second-order differential equation involves the second derivative of the function

d2f
dx2 = cx (17.101)

Since the second derivative may be written as two consecutive differentiations, it can formally be
solved by applying the above technique twice. The first integration gives the same solution as in
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Equation (17.98), with an integration constant a1:

d2f
dx2 = d

dx

(
df
dx

)

= cx
(

df
dx

)

= c
∫

x dx

df
dx

= 1
2 cx2 + a1

(17.102)

The second integration is now analogous to a simple first-order differential equation:

df
dx

= 1
2 cx2 + a1

∫
df = 1

2 c
∫

x2dx + a1
∫

dx

f = 1
6 cx3 + a1x + a2

(17.103)

Solving the second-order differential equation produces two integration constants, which must be
assigned based on knowledge of the function at two points.

17.5.4 Less Simple Second-Order Differential Equations

Analogously to first-order differential equations, second-order differential equations may have the
function itself on the right-hand side, as, for example, in

d2f
dx2 = cf (17.104)

Another example is when the right-hand side involves both the function and its first derivative:

d2f
dx2 = c1f + c2

df
dx

(17.105)

The right-hand side may also involve both the unknown function f and another known function of
the variable, such as x2:

d2f
dx2 = c1f + c2x2 (17.106)

Equations of this type are representative of the Schrödinger equation, although in this case it is often
written in a slightly different form with the kinetic energy operator plus the potential energy on the
left-hand side, and with the c1 constant written as an energy 𝜀:

d2f
dx2 + cx2 = 𝜀f (17.107)

Equation (17.107), for example, arises for a harmonic oscillator, where the potential energy depends
on the square of the variable.

The task in these cases is to find a function that upon differentiation twice gives some combination
of the same function, its derivative and variable. Such differential equations cannot be solved by the
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above “separation of variables” technique. A detailed discussion of how to solve second-order differ-
ential equations is beyond the scope of this book, but we will consider two special cases that often
arise in computational chemistry.

17.5.5 Second-Order Differential Equations Depending on the Function Itself

A second-order differential equation with the function itself on the right-hand side times a positive
constant is, for example, involved in solving the radial part of the Schrödinger equation for the hydro-
gen atom:

d2f
dx2 = c2f (17.108)

For reasons that will become clear shortly, we have written the constant as c2, rather than c. By ref-
erence to the corresponding first-order equation (Equation (17.100)), we may guess that a possible
solution is an exponential function:

f = Aecx (17.109)

That this is indeed a solution can be verified by explicit differentiation twice. Recognizing that the
corresponding exponential function with a negative argument is also a solution, we can write a more
general solution as a linear combination of the two:

f = A1ecx + A2e−cx (17.110)

This contains two constants, A1 and A2, as required for a solution to a second-order differential equa-
tion, and it is indeed the complete solution. The two integration constants A1 and A2 must be assigned
based on physical arguments. For the radial part of the hydrogen atom, for example, the A1 constant
is zero, since the wave function must be finite for all values of x, and A2 becomes a normalization
constant.

A slightly different situation arises when the differential equation contains a negative constant on
the right-hand side, such as that involved in solving the angular part of the Schrödinger equation for
the hydrogen atom:

d2f
dx2 = −c2f (17.111)

The solutions are analogous to those above, except for the presence of a factor i in the exponentials:

f = A1eicx + A2e−icx (17.112)

However, since complex exponentials can be combined to give sine and cosine functions, the com-
plete solution can also be written as a linear combination of real functions:

f = B1 sin(cx) + B2 cos(cx) (17.113)

The constants A1/A2 or B1/B2 must again be assigned based on physical arguments.

. Approximating Functions

Although the fundamental mathematical equations describing a physical phenomenon are often very
compact, such as, for example, the Schrodinger equation written in operator form, HΨ = EΨ, their
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application to all but the simplest model systems usually leads to equations that cannot be solved in
analytical form. Even if the equations could be solved, one may only be interested in the solution for
a certain limited range of variables. It is therefore in many cases of interest to obtain an approximate
solution, and preferably in a form where the accuracy of the solution can be improved in a systematic
fashion. We will here consider four approaches for obtaining such approximate solutions:

1. Taylor expansion. The real function is approximated by a polynomial that is constructed such that
it becomes more and more accurate the closer the variable is to the expansion point. Away from
the expansion point, the accuracy can be improved by including more terms in the polynomial.

2. Basis set expansion. The unknown function is written as a (linear) combination of known functions.
The accuracy is determined by the number and mathematical form of the expansion functions. In
contrast to a Taylor expansion, which has an error that increases as the variable is removed from
the expansion point, a basis set expansion tends to distribute the error over the whole variable
range. The error can be reduced by adding more functions in the expansion.

3. Grid representation. This is similar to expansion in a basis set, except that the known functions are
points (𝛿-functions) rather than continuous functions. The accuracy is determined by the number
of grid points and their location.

4. Tensor decomposition. The function representation in a given (large) basis set is compressed into
a smaller basis set, which is derived in systematic fashion from the large basis set.

17.6.1 Taylor Expansion

The idea in a Taylor expansion is to approximate the unknown function by a polynomial centered at
an expansion point x0, typically at or near the “center” of the variable of interest. The coefficients of
an Nth-order polynomial are determined by requiring that the first N derivatives match those of the
unknown function at the expansion point. For a one-dimensional case this can be written as

f (x) = f (x0) +
𝜕f
𝜕x
|
|
|
|x0

(x − x0) + 1
2!

𝜕2f
𝜕x2

|
|
|
|
|x0

(x − x0)2 + 1
3!

𝜕3f
𝜕x3

|
|
|
|
|x0

(x − x0)3 +⋯ (17.114)

For a many-dimensional function, the corresponding second-order expansion can be written as

f (x) = f (x0) + gt(x − x0) + 1
2 (x − x0)tH(x − x0) +⋯ (17.115)

Here gt is a transposed vector (gradient) containing all the partial first derivatives and H is the
(Hessian) matrix containing the partial second derivatives. In many cases, the expansion point x0
is a stationary point for the real function, making the first derivative disappear, and the zeroth-order
term can be removed by a shift of the origin:

f (x) ≈ 1
2 k2(x − x0)2 + 1

6 k3(x − x0)3 + 1
24 k4(x − x0)4 +⋯ (17.116)

A Taylor expansion is an approximation to the real function by a polynomial terminated at order
N. For a given (fixed) N, the Taylor expansion becomes a better approximation as the variable x
approaches x0. For a fixed point x at a given distance from x0, the approximation can be improved
by including more terms in the polynomial. Except for the case where the real function is a poly-
nomial, however, the Taylor expansion will always be an approximation. Furthermore, as one moves
away from the expansion point, the rate of convergence slows down, that is more and more terms are
required to reach a given accuracy. At some point the expansion may become divergent, that is even
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inclusion of all terms up to infinite order does not lead to a well-defined value; this point is called
the radius of convergence. It is determined by the distance from the expansion point to the nearest
point (which may be in the complex plane) where the function has a singularity. A Taylor expansion
of the function ln (1 + x) around x = 0, for example, has a convergence radius of 1, as the logarithm
function is not defined for x = −1. Attempting to approximate ln (1 + x) by a Taylor expansion for
x-values near−1 or 1 will thus require inclusion of a very large number of terms and will not converge
if x ≥ 1.

A specific example of a Taylor expansion is the molecular energy as a function of the nuclear coor-
dinates. The real energy function is quite complex, but for describing a stable molecule at sufficiently
low temperatures, only the functional form near the equilibrium geometry is required. Terminating
the expansion at second order corresponds to modeling the nuclear motion by harmonic vibrations,
while higher-order terms introduce anharmonic corrections.

For illustration, we will consider the Morse potential in reduced units.

yMorse = (1 − e−(x−1))2 (17.117)

Figure 17.6 shows the second-, third- and fourth-order Taylor approximations to the Morse
potential.

Approximating the real function by a second-order polynomial forms the basis for the Newton–
Raphson optimization techniques described in Section 13.2.

17.6.2 Basis Set Expansion

An alternative way of modeling an unknown function is to write it as a linear combination of a set of
known functions, often called a basis set. The basis functions may or may not be orthogonal:

f (x) =
M∑

i=1
ci𝜒i(x) (17.118)
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Figure . Taylor approximations to the Morse potential.
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This corresponds to describing the function f in an M-dimensional space of the basis functions 𝜒 .
For a fixed basis set size M, only the components of f that lie within this space can be described, and
f is therefore approximated. As the size of the basis set M is increased, the approximation becomes
better since more and more components of f can be described. If the basis set has the property of
being complete, the function f can be described to any desired accuracy, provided that a sufficient
number of functions are included. The expansion coefficients ci are often determined either by vari-
ational or perturbational methods. For the expansion of the molecular orbitals in a Hartree–Fock
wave function, for example, the coefficients are determined by minimizing the total energy.

The basis set expansion can be illustrated by using polynomials as basis functions for reproducing
the Morse potential in Equation (17.117), that is the approximating function is given by

f (x) =
M∑

i=0
ai(x − 1)i (17.119)

The fitting coefficients ai can be determined by requiring that the integrated difference in a certain
range [a,b] is a minimum:

ErrF =
∫

b

a
(yMorse − f (x))2dx (17.120)

Taking the range to be either [0.5, 2.0] or [0.2, 2.5] produces the fits for a second-, third- and fourth-
order polynomials shown in Figure 17.7.

Note that the polynomial no longer has the same minimum as the Morse potential but pro-
vides a smaller average error over the fitting range than the corresponding Taylor polynomial. The
Taylor expansion provides an exact fit at the expansion point, which rapidly deteriorates as the vari-
able moves away from the reference point, while the basis set expansion provides a rather uniform
accuracy over the fitting range, at the price of sacrificing local accuracy.
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range used for the fitting.
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17.6.3 Tensor Decomposition Methods

The goal of many statistical and computational methods can be viewed as an information compres-
sion: how can the number of variables required to describe a given property to a given accuracy be
reduced by forming new descriptors from the original set of variables? This has connections to opti-
mization theory and can often be formulated as minimization or maximization of a suitable target
function. It can alternatively be formulated in terms of tensor decomposition methods.10 For a 2-
tensor, a matrix, the Principal Component Analysis (PCA, Section 18.4.3)) is a prototypical example
of a tensor decomposition method and corresponds operationally to selecting the new variables as the
matrix eigenvectors. PCA thus derives the new variables from properties of the variables themselves.
The Partial Least Squares (PLS, Section 18.4.4)) method attempts to derive a new set of variables by
also taking into account information about the property that the variables should describe. Tensor
decomposition can be considered as a generalization of PCA to arrays of dimension larger than 2
and Higher-Order PLS (HOPLS) is a corresponding generalization of PLS.11 PCA and PLS methods
are heavily used in correlation analyses, as described in Sections 18.4 and 18.5, which also contain
an illustrative example. Only the PCA generalization will be discussed in the following, starting with
the simplest case of a square symmetric matrix.

An N × N symmetric (real) matrix A can be diagonalized by a unitary transformation U, as shown
below (same as Equation (17.33)):

𝚲 = UAU−1 ; A = U−1𝚲U (17.121)

The A matrix can be written as a sum of outer products of the (normalized) eigenvectors u𝛼 contained
as column vectors in the U matrix:

A =
N∑

𝛼=1
𝜆𝛼u𝛼ut

𝛼

Aij =
N∑

𝛼=1
𝜆𝛼ui𝛼uj𝛼

(17.122)

The A matrix (2-tensor) can thus be decomposed into a sum of products of u𝛼 vectors (1-tensors),
and if all N eigenvectors are used, the decomposition is exact. An approximation to A can be obtained
by including only a limited number (K<N) of eigenvectors in Equation (17.122); the best approxima-
tion with K vectors is obtained by taking those corresponding to the K largest eigenvalues. Assuming
that the eigenvectors are arranged according to the magnitude of the eigenvalues, the approximation
at level K is given by

AK=
K∑

𝛼=1
𝜆𝛼u𝛼ut

𝛼
(17.123)

One can loosely define the (percent-wise) error at level K by the sum of the neglected N – K eigen-
values relative to the sum of all eigenvalues (= trace of A). The rank of A is the number of eigenvalues
different from zero. In practical calculations, the effective rank is defined as the number of eigenvalues
larger than a predefined cutoff factor.

Equation (17.123) is the essence of PCA. A matrix representing the property of interest is decom-
posed into vector components ranked in terms of their importance by their eigenvalues, and only a
limited number of components are used to capture the information to a given accuracy.
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The generalization of (17.121) to arbitrary matrices is called Singular Value Decomposition (SVD):

A = U𝚲V t (17.124)

A (real) A matrix can be written as a product of two unitary matrices U and V, and a diagonal matrix
𝚲 containing non-negative numbers. If A is an m × n rectangular matrix, then U and V are square
matrices of dimension m × m and n × n, respectively, while 𝚲 is a rectangular matrix of dimension
m × n (U may also be defined to be of dimension m × n, in which case 𝚲 has dimension n × n).
Equations (17.125) and (17.126) show that U and V contain eigenvectors of the AAt and AtA matrices,
and 𝚲 contains the square root of the eigenvalues of these eigenvalue equations, which therefore
necessarily are non-negative:

AAt = U𝚲V tVΛtUt = U𝚲2Ut (17.125)
AtA = VΛtUtU𝚲V t = VΛ2Vt (17.126)

Equation (17.122) can be generalized to

A =
∑

𝛼=1
𝜆𝛼u𝛼vt

𝛼

Aij =
R∑

𝛼=1
𝜆𝛼ui𝛼vj𝛼

(17.127)

The effective rank of A is the number of 𝜆 values larger than a predefined cutoff factor and the best
rank R approximation to A is obtained by taking the first R SVD components.

Tensor decomposition methods can be viewed as a generalization of SVD to dimensions larger
than 2, but in contrast to SVD there is no unique method for the decomposition. The rank of a tensor
is furthermore not a unique and well-defined quantity, as the rank in different dimensions may be
different and may depend on the method of decomposition. For illustration purposes we will in the
following assume a tensor M of dimension 3 with N elements and (effective) rank R (R ≤ N) in all
dimensions. This can be generalized to higher dimensions and different numbers of elements and
ranks in different dimensions, at the price of introducing further indices and summations.

The equivalent of Equation (17.127) is Equation (17.128), where a 3-tensor M is decomposed into a
sum of outer products of three vectors. The scalar s determines the weight of each product component
and corresponds to the singular value 𝜆, but is often included in the definition of the u, v, w vectors:

MR =
R∑

𝛼=1
s𝛼u𝛼 ⊗ v𝛼 ⊗ w𝛼

MR
ijk =

R∑

𝛼=1
s𝛼ui𝛼vj𝛼wk𝛼

(17.128)

This decomposition is called canonical decomposition (CANDECOMP), parallel factorization
(PARAFAC) or canonical polyadic (CP). In contrast to the SVD procedure for the twodimensional
case, there is no deterministic method for performing the decomposition. The decomposition can be
determined iteratively by minimizing the error function defined by

ErrF(R) =
N∑

ijk

(

Mijk −
R∑

𝛼

s𝛼ui𝛼vj𝛼wk𝛼

)2

(17.129)
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The effective rank R must be determined by sequentially including an increasing number of u, v,
w vectors, until the value of the error function is below a chosen cutoff. The minimization can be
performed by the alternating least squares procedure, where ErrF is minimized by a sequence of
iterations each consisting of: (1) keeping j and k fixed and minimizing with respect to i, (2) keeping i
and k fixed and minimizing with respect to j, (3) keeping i and j fixed and minimizing with respect to
k. Alternatively, the minimization can be performed by gradient methods described in Section 13.2.
The minimization of ErrF is unfortunately an ill-posed problem and numerically not stable, and the
objective function may contain multiple minima.

An alternative decomposition method is the Tucker decomposition shown below, where m is a ten-
sor of the same dimension as M, but only of size R (i.e. m contains only Rd elements instead of Nd

elements):

MR =
R∑

𝛼𝛽𝛾=1
m ⋅ (u𝛼 ⊗ v𝛽 ⊗ w𝛾 )

MR
ijk =

R∑

𝛼𝛽𝛾=1
m𝛼𝛽𝛾ui𝛼vj𝛽wk𝛾

(17.130)

The advantage of the Tucker decomposition is that it can be calculated by a series of SVD proce-
dures, and thus does not suffer from the numerical problems of the CP decomposition. The disad-
vantage is that the Tucker method retains a tensor m of dimension d, although only the size of the
(effective) rank R, and is thus primarily useful for tensors of low (3 or 4) dimensions. The CP decom-
position can be considered as a Tucker decomposition where the m tensor is super-diagonal and has
the same rank in all dimensions, and thus reduces to the scalar s in Equation (17.128).

The Tucker decomposition retains a coupling between (all) the u, v, w component vectors (the
m tensor), while the CP procedure completely decouples all the u, v, w component vectors. An inter-
mediate method is the Tensor-Train (TT) or Matrix Product State (MPS) decomposition defined
below, which can be viewed as a Tucker decomposition where only a sequential coupling of two-
dimensional tensors (matrices) is retained:

MR =
R∑

𝛼𝛽=1
u𝛼 ⊗ v𝛼𝛽 ⊗ w𝛽

MR
ijk =

R∑

𝛼𝛽=1
ui𝛼vj𝛼𝛽wk𝛽

(17.131)

The first and last components are one-dimensional (vectors) while all intermediate components are
two-dimensional (matrices). The TT/MPS decomposition can be calculated by a series of numerically
stable SVD procedures, where d – 1 tensor indices are initially grouped together and subsequently
ungrouped one-by-one after each SVD. Note that this decomposition depends on the order in which
the indices are selected for ungrouping.

17.6.4 Examples of Tensor Decompositions

Tensor decomposition methods, especially in the form of PCA, are widespread in computational
chemistry, but often carry other labels. PLS methods are widely used in correlation analyses
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(Section 18.4.4), where the response to be described is known in advance, but are less used in com-
putational chemistry, since the response often is the (unknown) result of the decomposition. The
PCA/PLS notation, however, may provide a conceptual framework for classifying many procedures.
Some examples are:

1. The generation of non-redundant natural internal coordinates from a large set of primitive inter-
nal coordinates for geometry optimization (Section 13.3). A set of primitive internal coordinates
p can be defined from a set of Cartesian atomic coordinates (x3N) by including all distances,
angles and torsional angles (or other types of internal coordinates) between atoms within prede-
fined distance criteria, that is p = f(x3N). This set of internal coordinates will normally be (much)
larger than the 3Natom – 6 non-redundant internal coordinates. The B matrix contains the first
derivative of the internal coordinates with respect to the Cartesian coordinates, and performing a
PCA on the BtB matrix will provide 3Natom – 6 eigenvalues different from zero; the correspond-
ing eigenvectors are the 3Natom – 6 non-redundant linear combinations of the primitive internal
coordinates:

p = f (x3N ) ; Bi𝛼 =
𝜕pi
𝜕x𝛼

(17.132)

2. Vibrational normal modes can be considered as the principle components of the harmonic vibra-
tional Hamilton operator or as the PLS components of mass-weighted coordinates for describing
the vibrational energy.

3. Hartree–Fock (or Kohn–Sham) Self-Consistent Field calculations. The original descriptors are
the non-orthogonal Gaussian basis functions and the principle components are the eigenvectors
of the overlap matrix S. PCA is thus used to transform the HF matrix equation into regular form
(FC = SCE into F′C′ = C′E) and for detecting/eliminating linear dependence in the basis set.
The SCF procedure can be considered as a non-linear PLS (linear and quadratic dependence)
procedure. In the first SCF iteration the Fock matrix is non-diagonal and the density matrix have
non-zero eigenvalues for all MOs. When converged, the Fock matrix is diagonal and the density
matrix has 1∕2Nelec eigenvalues = 2, while the rest (unoccupied MOs) have eigenvalues = 0. The
final PLS components are the MOs (occupied and virtual), where only 1∕2Nelec (occupied) MOs
are required to describe the electronic Hamilton operator, instead of Mbasis MOs.

4. Natural orbitals from a (correlated) wave function (Section 10.5). Löwdin showed that the orbitals
obtained by diagonalizing the density matrix from a full-CI wave function provide a system-
atic approach for obtaining the best approximation using a fixed number of (natural) orbitals
by including those with largest eigenvalues (occupation numbers). Natural orbitals can thus be
considered as a PCA of the density matrix.

5. Configuration interaction. The CI wave functions can be considered as the principle components
of the electronic Hamilton operator or as the PLS components in the space of Slater determinants
for describing the electronic energy.

6. Natural transition orbitals correspond to an SVD decomposition of the transition density matrix
arising in excited state calculations and produce a compact representation of the “hole” and “par-
ticle” nature of the excitation (Section 4.14.1).12 Alternatively, a PCA can be performed on the
density difference matrix, producing attachment/detachment natural orbitals, which again pro-
vide an easy visualization of the nature of an electronic excitation.12

7. The generation of better descriptors in QSAR models (Section 18.4). A large number of descrip-
tors for a given property collected in an X matrix may be internally correlated and unsuitable
for generating linear correlation models. Performing a PCA on the XtX matrix allows extraction
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of linear combinations of descriptors that are mutually orthogonal and ordered according to the
largest variation in the descriptors. A PLS decomposition instead extracts new variables from the
(ytX)t(ytX) matrix, where y contains the response to be described.

8. Description of molecular dynamics trajectories by a PCA analysis of the time-dependent cor-
relation matrix of atomic coordinates. The complicated overall motion of a large structure (e.g.
protein) from an MD trajectory can often effectively be described by a few (3–5) PCA compo-
nents displaying collective motion of many/all atoms. The selection of collective variables for
steering/guiding an MD simulation can be considered as trying to guess a few important PLS
components.

9. The collection of all two-electron integrals in a basis set 𝝌 can be viewed as a four-dimensional
tensor G with elements Gijkl as defined below (same as Equation (3.62) except for a change in
index labels):

∫
𝜒i(1)𝜒j(1)

(
1

|
|r1 − r2||

)

𝜒k(2)𝜒l(2)dr1dr2 =
(
𝜒i𝜒j ||𝜒k𝜒l

)
= Gijkl (17.133)

The Cholesky decomposition approximates the 4-tensor as a sum of products of 3-tensors using
a single external variable:

GR =
R∑

𝛼=1

(
𝜒i𝜒j ||𝜒

′
𝛼

) (
𝜒 ′
𝛼
|
|𝜒k𝜒l

)
(17.134)

The resolution of identity approach approximates the 4-tensor as a sum of products of two
3-tensors with a 2-tensor using two external variables. The 2-tensor can be split into two com-
ponents and included in the 3-tensors:

GR =
R∑

𝛼𝛽=1

(
𝜒i𝜒j ||𝜒

′
𝛼

) (

𝜒 ′
𝛼

|
|
|
𝜒 ′
𝛽

)−1 (
𝜒 ′
𝛽
|
|𝜒k𝜒l

)

=
R∑

𝛼𝛽=1

[
(
𝜒i𝜒j ||𝜒

′
𝛼

) (

𝜒 ′
𝛼

|
|
|
𝜒 ′
𝛽

)−1∕2
] [(

𝜒 ′
𝛼

|
|
|
𝜒 ′
𝛽

)−1∕2 (
𝜒 ′
𝛽
|
|𝜒k𝜒l

)]
(17.135)

The resolution of identity for simplifying three-electron integrals (Section 4.11) can similarly be
considered as a tensor decomposition, where a six-dimensional tensor is decomposed into prod-
ucts of four-dimensional quantities.

10. The coupled cluster amplitudes for the doubly excited state is similarly a four-dimensional tensor;
an attempt has been made to decompose these into simpler quantities.

The attractive aspect of tensor decomposition methods is the reduced complexity, but the algebra
involved in performing calculations with reduced rank tensors need careful analysis. Multiplications
of two tensors of ranks R1 and R2 formally produce a new tensor of rank R1⋅R2, but it is quite likely that
this can be decomposed into a new tensor of lower rank. The iterative solution of the coupled cluster
equations, for example, consists of a series of tensor products, and each such product must be sub-
jected to a tensor decomposition before progressing to the next step in order to keep the complexity at
a minimum. This clearly requires a numerically stable decomposition procedure and careful control
of the numerical accuracy in each step in order to keep the whole algorithm numerically stable.
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. Fourier and Laplace Transformations

Transforming functions between different coordinate systems can often simplify the description. It
may also be advantageous in some cases to switch between different representations of a function. A
function in real space, for example, can be transformed into a reciprocal space, where the coordinate
axes have units of inverse length. Similarly, a function defined in time may be transformed into a
representation of inverse time or frequency. Such interconversions can be done by Fourier transfor-
mations. The Fourier transform g of a function f is defined as

g(k) =
∫

∞

−∞
f (r)e−ikrdr (17.136)

The inverse transformation is given as

f (r) = 1
2𝜋 ∫

∞

−∞
g(k)eikrdk (17.137)

The factor of 2π can also be included as the square root in both the forward and reverse transforma-
tion or included in the complex exponent.

While the integral form of the Fourier transform is useful in analytical work, the computational
implementation is often done by a discrete representation of the function(s) on a grid, in which case
the integrals are replaced by a sum over grid points:

g(kn) =
N−1∑

n=0
f (rn)e−ikrn∕N (17.138)

In a straightforward implementation of the discrete Fourier transform, the computational time
increases as the square of the number of grid points. If, however, the number of grid points is an
integer power of two, that is Ngrid = 2m, the Fourier transform can be done recursively, and is called
the Fast Fourier Transform (FFT). The FFT involves (only) a computational effort proportional to
Ngrid ln Ngrid, which is a substantial reduction relative to the general case of N2

grid for large values of
Ngrid.

Fourier transforms are often used in connection with periodic functions, for example for evaluating
the kinetic energy operator in a density functional calculation where the orbitals are expanded in a
plane wave basis.

The Laplace transform is defined as below, where the integral can again be approximated as a finite
sum in practical applications:

g(k) =
∫

∞

0
f (r)e−krdr (17.139)

The inverse orbital energy differences in the MP2 method (Section 4.12), for example, can be rewritten
as the sum over the auxiliary variable r, and a sufficient accuracy can often be obtained by including
only a few points in the sum.13

. Surfaces

A one-dimensional function f(x) can be visualized by plotting the functional value against the vari-
able x. A two-dimensional function f(x, y) can similarly be visualized by plotting the functional value
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against the variables x and y. However, since plotting devices (paper or an electronic screen) are inher-
ently two-dimensional, the functional value must be plotted in a pseudo-three-dimensional fashion,
with the three-dimensional object being imagined by the viewer’s brain. Functions with more than
two variables cannot readily be visualized.

Functions in computational chemistry typically depend on many variables, often several hundreds,
thousands or millions. For analysis purposes, it is possible to visualize the behavior of such functions
in a reduced variable space, that is keeping some (most) of the variables constant. Figure 17.8 shows
the value of the acrolein LUMO (lowest unoccupied molecular orbital) in a two-dimensional cut
1 Å above the molecular plane.14 The magnitude and sign of the orbital is plotted along the third
perpendicular dimension.

An alternative way of visualizing multivariable functions is to condense or contract some of the
variables. An electronic wave function, for example, is a multivariable function, depending on 3N
electron coordinates. For an independent-particle model, such as Hartree–Fock or density functional
theory, the total (determinantal) wave function is built from N orbitals, each depending on three
coordinates:

ΦHF∕DFT = 1
√

N!

|
|
|
|
|
|
|
|
|
|

𝜙1(1)
𝜙1(2)
⋮

𝜙1(N)

𝜙2(1)
𝜙2(2)
⋮

𝜙2(N)

⋯

⋯

⋱

⋯

𝜙N (1)
𝜙N (2)
⋮

𝜙N (N)

|
|
|
|
|
|
|
|
|
|

(17.140)

The electron density can be obtained by integrating the coordinates for N − 1 electrons, giving a
function depending on only three coordinates:

𝜌(x, y, z) =
∫

Φ2(x1, y1, z1, x2, y2,… , zN )dx2dy2 ⋯ dzN (17.141)

Functions of three variables can be visualized by generating a surface in the three-dimensional space
corresponding to a constant value of the function, for example 𝜌(x, y, z) = constant. Such surfaces can
be plotted, again using the viewer’s brain for generating the illusion of a three-dimensional object. The
full three-dimensional figure can be visualized by plotting surfaces for different values. Figure 17.9

Figure . Representation of the acrolein LUMO orbital.
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ρ = 0.01 ρ = 0.001ρ = 0.05

ρ = 0.50 ρ = 0.32 ρ = 0.20 ρ = 0.10

Figure . Surfaces corresponding to the indicated value for the electron density of cyclohexane.

shows the total electron density of cyclohexane, plotted for decreasing density values. The scales of
the seven plots are the same, that is the sizes of the surfaces are directly comparable.

The first box corresponds to 𝜌 = 0.50 and only the core electrons for the carbon atoms are visible.
For 𝜌 = 0.32 the hydrogens also appear and bonds can be recognized for 𝜌 = 0.20. Further reduction
in the electron density level used for generating the surface obscures the bonding information and for
𝜌= 0.001 there is little information about the underlying molecular structure left. A surface generated
by a constant value of the electron density defines the size and shape of a molecule, but the exact size
and shape clearly depend on the value chosen. It can be noted that an isocontour value around 0.001
has often been taken to represent a van der Waals-type surface.

More information can be added to surface plots by color-coding. Orbitals, for example, have a
sign associated with the overall shape, which can be visualized by adding two different colors or
grey shading to the surface corresponding to a constant (numerical) value of the orbital. Figure 17.10
shows the acrolein LUMO in a grey-coded surface representation, which can be compared with the
two-dimensional plot shown in Figure 17.8.

Figure . Grey-coded surface representation of the acrolein LUMO.
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Figure . Electrostatic potential superimposed on a surface corresponding to a fixed value of the electron density
for acrolein.

Other properties have a continuous range of values, not just a sign. An example is the electrostatic
potential, which by itself is a function of three coordinates. The combined information of the molec-
ular shape and the value of the electrostatic potential can be visualized by color-coding the value of
the electrostatic potential on to a surface corresponding to a constant value of the electron density,
as illustrated in Figure 17.11 for the acrolein molecule (color figure available on web site).
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Statistics and QSAR

. Introduction

An essential component of calculations is to calibrate new methods and to use the results of cal-
culations to predict or rationalize the outcome of experiments. Both of these types of investigation
compare two types of data and the interest is in characterizing how well one set of data can represent
or predict the other. Unfortunately, one or both sets of data usually contain “noise”, and it may be
difficult to decide whether a poor correlation is due to noisy data or to a fundamental lack of con-
nection. Statistics is a tool for quantifying such relationships. We will start with some philosophical
considerations and move into elementary statistical measures before embarking on more advanced
tools.

The connection between reality and the outcome of a calculation can be illustrated as shown in
Figure 18.1.

A specific example for “Reality” could be the (experimental) atomization energy of a molecule,
defined as the energy required to separate a molecule into atoms, which is equivalent to the total
binding energy. The atomization energy is closely related to the heat of formation, differing only by
the zero-point reference state and neglect of vibrational effects. The zero point for the atomization
energy scale is the isolated atoms, while it is the elements in their most stable form (e.g. H2 and N2)
for the heat of formation. Since the dissociation energies for the reference molecules can also be
measured, the atomization energy is an experimental observable quantity.

It is important to realize that each element in Figure 18.1 contains errors, and these can be either
systematic or random. A systematic error is one due either to an inherent bias or to a user-introduced
error. A random error is, as the name implies, a non-biased deviation from the “true” result. A system-
atic error can be removed or reduced, once the source of the error is identified. A random error, also
sometimes called a statistical error, can be reduced by averaging the results of many measurements.

Model → Parameters → Computational implementation → Results ↔ Reality

Hartree–Fock → Basis set → Various cutoffs → Total energies ↔ Atomization energy 

Figure . Relationship between Model and Reality.

Introduction to Computational Chemistry, Third Edition. Frank Jensen.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion Website: http://www.wiley.com/go/jensen/computationalchemistry3
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Note that random errors can be truly random, for example due to thermal fluctuations or a cosmic
ray affecting a detector, but may also be due to many small unrecognized systematic errors adding up
to an apparent random noise.

Experimental measurements may contain both systematic and random errors. The latter can be
quantified by repeating the experiment a number of times and taking the deviation between these
results as a measure for the uncertainty of the (average) result. Systematic errors, however, are
difficult to identify. One possibility for detecting these is to measure the same quantity by different
methods or to use the same method in different laboratories. The literature is littered with inde-
pendent investigations reporting conflicting results for a given quantity, each with error bars smaller
than the deviation between the results. Such cases clearly indicate that at least one of the experiments
contains unrecognized systematic errors.

Theory almost always contains “errors”, but these are called “approximations” in the community.
The Hartree–Fock method, for example, systematically underestimates atomization energies since
it neglects electron correlation and the correlation energy is larger for molecules than for atoms.
For other properties, the Hartree–Fock method has the same fundamental flaw, neglect of electron
correlation, but this may not necessarily lead to systematic errors. For energy barriers for rotation
around single bonds, which are differences between two energies for the same molecule with (slightly)
different geometries, the contribution from the correlation energy often leads to near cancellation,
and Hartree–Fock calculations do not systematically over- or underestimate rotational barriers.

The use of a basis set also introduces a systematic error but the direction depends on the specific
basis set and the molecule to hand. For a system composed of second row elements (such as C, N, O),
the isolated atoms can be completely described with s- and p-functions at the Hartree–Fock level, but
molecules require the addition of higher angular momentum (polarization) functions. Using a basis
set containing only s- and p-functions will systematically underestimate the atomization energy, while
a basis set containing few s- and p-functions but many polarization functions may overestimate the
atomization energy. In principle one should chose a balanced basis set, defined as one where the error
for the molecule is almost the same as for the atoms, but since the number of basis functions of each
kind necessarily is quantized (one cannot have a fractional number of basis functions), this is not
rigorously possible, and will depend on the computational level in any case. A very large (complete)
basis set will fulfill the balance criterion but this is usually impossible in practice. An example of a
(systematic) user error is the use of one basis set for the molecule and another for the atoms, as is
sometimes done by inexperienced users of electronic structure methods.

The computational implementation of the Hartree–Fock method involves a choice of a specific
algorithm for calculating the integrals and solving the HF equations. Furthermore, various cutoff
parameters are usually implemented for deciding whether to neglect certain integral contributions
and a tolerance is set for deciding when the iterative HF equations are considered to be converged.
Since computers perform arithmetic with a finite precision, given by the number of bits chosen to
represent a number, this introduces truncation errors, which are of a random nature (roughly as many
negative as positive deviations for a large sample). These random errors can be reduced by increasing
the number of bits per number, by using smaller cutoffs and convergence criteria, but can never be
completely eliminated. Usually these errors can be controlled and reduced to a level where they are
insignificant compared with the other approximations, such as neglect of electron correlation and
the use of a finite basis set.

Janes and Rendell have reported interesting work using interval arithmetic to rigorously quantify
the numerical errors in a basis set Hartree–Fock calculation.1 Interval arithmetic corresponds to
replacing the value of a given quantity by two numbers that represent upper and lower bounds of
the finite precision representation of the value. Such calibration studies are of interest as calculations
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move to ever larger systems. Linear scaling methods allow electronic structure calculations to be
carried out with tens of thousands of basis functions, and these calculations formally require handling
∼1020 two-electron integrals. Although most of these are numerically small and can be neglected
without problems, the potential accumulative numerical noise in such calculations is daunting. Based
on extrapolations from smaller systems, the above work suggests that the relative energy error for
a system with 105 basis functions may be ∼10−8, and since the total energy for such a system will
be large, the numerical uncertainty in the absolute energy may be ∼10−3 au (∼3 kJ/mol), which is
comparable to the often quoted “chemical accuracy” level.

An alternative approach for quantifying numerical errors is to add small amounts of random
numerical noise at various stages in a calculation and observe how sensitive the final results are
towards the perturbations.2 While interval arithmetic focuses on the worst case errors, the ran-
dom noise approach allows for error cancellation and may be useful in locating potentially numerical
unstable algorithms and for testing whether, for example, single precision algorithms may be suffi-
cient for selected components of a given calculation.

. Elementary Statistical Measures

Statistics is a tool for characterizing a large amount of data by a few key quantities and it may therefore
also be considered as an information compression. Consider a data set containing N data points with
values xi (i = 1, 2, 3, . . . , N). One important quantity is the mean or average value, denoted with either
a bar or an angle bracket:

x = ⟨x⟩ = 1
N

N∑

i=1
xi (18.1)

The average is the “middle” point, or the “center of gravity”, of the data set but it does not tell how
wide the data point distribution is. The data sets {3.0, 4.0, 5.0, 6.0, 7.0} and {4.8, 4.9, 5.0, 5.1, 5.2}
have the same average value of 5.0.

The mean may depend on an external parameter, such as time. In a molecular dynamics simulation,
for example, the average energy (NVT ensemble) or temperature (NVE ensemble) will depend on the
simulation time. Indeed, a plot of the average energy or temperature against time can be used as a
measure of whether the system is sufficiently (thermal) equilibrated to provide a realistic model.

The width or the spread of the data set can be characterized by the second moment, the variance:

𝜎2 = 1
N − 1

N∑

i=1
(xi − x̄)2 (18.2)

The “normalization” factor is N − 1 when the average is calculated from Equation (18.1); if the exact
average is known from another source, the normalization is just N. For large samples the difference
between the two is minute and the normalization is often taken as N. The square root of the variance
(i.e. 𝜎) is called the standard deviation. The above two data sets have standard deviations of 1.6 and
0.2, clearly showing that the first set contains elements further from the mean than the second.

If the distribution of the data is given by a Gaussian function (exp (−ax2)), then 𝜎 determines how
large a percentage of the data is within a given range of the mean. Specifically, 68% of the data is within
one 𝜎 of the mean, 95% is within 2𝜎 and 99.7% is within 3𝜎. The measured result for experimental
quantities is often given by the notation ⟨x⟩ ± 𝜎. The 𝜎 is loosely called the “error bar”, reflecting the
common procedure of drawing a line stretching from ⟨x⟩ − 𝜎 to ⟨x⟩ + 𝜎 in a plot diagram. Note,
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however, that for a Gaussian data distribution there is a 32% chance that the actual value is outside
this interval. Furthermore, for actual data, the distribution is rarely exactly Gaussian. Note also that
the standard deviation depends inversely on the square root of the number of data points, that is for
truly random errors, the standard deviation can be reduced by increasing the number of points. Error
bars from experiments, however, are often based on only a few (2–10) data points.

The third and fourth moments are called the skew and kurtosis:

Skew = 1
N

N∑

i=1

(xi − x̄
𝜎

)3
(18.3)

Kurtosis = 1
N

N∑

i=1

(xi − x̄
𝜎

)4
− 3 (18.4)

These quantities are dimensionless, in contrast to the first and second moments (mean and variance).
The skew, kurtosis and corresponding higher moments are rarely used.

The mean and variance are closely connected with the qualifiers accurate and precise. An accurate
measure is one where the mean is close to the real value. A precise measure is one that has a small
variance. The goal is an accurate and precise measurement (many data points close to the “real” value).
An accurate but imprecise measurement (good mean, large variance) indicates large random and
small systematic errors, while a precise but inaccurate measurement (poor mean, small variance)
indicates small random but large systematic errors. This is illustrated in Figure 18.2.

Some data sets are (almost) symmetric, such as the digits in the phone book of a large city, contain-
ing almost the same number of elements below and above the mean value. Others may be asymmet-
ric, for example containing many points slightly below the mean, but relatively few with much larger
values than the mean (e.g. the income profile for the US population or the Boltzmann energy distribu-
tion). Higher-order moments such as the skew can be used to characterize such cases. Two alternative
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Figure . Illustrating the difference between the qualifiers: accurate and precise.
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quantities can also be used, the median and the mode. The median is the value in the middle of the
data points, that is 50% of the data are below the median and 50% are above. The mode is the most
probable element, that is the one that occurs with the highest frequency. In some cases, there may
be more than one maximum in the probability distribution, for example a bimodal distribution for a
probability function with two maxima. The median and mean are identical for a symmetric distribu-
tion, and a large difference between these two quantities thus indicates an asymmetric distribution.

One should be aware that essential information can easily be lost in the data compression of a
statistical analysis. European women, for example, have on average 1.5 children, but none have 1.5
children (but 0, 1, 2, 3, . . . children). Such “paradoxes” are at the root of characterizing statistics as “a
precise and concise method of communicating half-truths in an inaccurate way”.

. Correlation between Two Sets of Data

It is often of interest to quantify whether one type of data is connected with another type, that is
whether the data points from one set can be used to predict the other. We will denote two such data
sets x and y, and ask whether there is a function f(x) that can model the y data. When the function
f(x) is defined or known a priori, the question is how well the function can reproduce the y data.

Two quantities are commonly used for qualifying the “goodness of fit”, the Root Mean Square (RMS)
deviation and the Mean Absolute Deviation (MAD), which for a set of N data points are defined by

RMS =

√
√
√
√ 1

N

N∑

i=1
(yi − f (xi))2 (18.5)

MAD = 1
N

N∑

i=1
|yi − f (xi)| (18.6)

The MAD represents a uniform weighting of the errors for each data point, while the RMS quan-
tity has a tendency to be dominated by the (few) points with the largest deviations. The maximum
absolute deviation (MaxAD) is also a useful quantity, as it measures the worst-case performance of
the model. A more detailed description of the deviations can be provided by a box plot, shown in Fig-
ure 18.3, where the median is indicated by the central line, the upper and lower quartiles are indicated
by the box and the minimum and maximum correspond to the lower and upper lines.

Note that the function f(x) can be very complicated, for example calculating the atomization energy
by the Hartree–Fock method from a set of nuclear coordinates (Figure 18.1).

When the functional form f(x) is unknown, correlation analysis may be used to seek an approxi-
mate function connecting the two sets of data. The simplest case corresponds to a linear correlation
(Figure 18.4):

yi = f (xi) = axi + b (18.7)

We want to determine the a (slope) and b (intersection) parameters to give the best possible fit, that
is in a plot of y against x, we seek the best straight line.

The familiar least-squares linear fit arises by defining the “best” line as the one that has the smallest
deviation between the actual yi-points and those derived from Equation (18.7), and taking the error
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Figure . Illustrating how a box plot can visualize the spread of a data set.

to be the deviation squared. The equations defining a and b can be derived by minimizing (setting
the first derivations to zero) an error function:

ErrF =
N∑

i=1
wi(yi − axi − b)2

𝜕ErrF
𝜕a

= 0

𝜕ErrF
𝜕b

= 0

⎫
⎪
⎬
⎪
⎭

⇒ a, b

(18.8)

We note in passing that the minimum number of data points is two, since there are two fitting param-
eters a and b, that is the correlation between any two points can be modeled by a straight line. The
data points can be weighted by wi factors, for example related to the uncertainty with which the yi

x

y

Figure . Illustrating an approximate linear correlation between x and y.
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data points are measured. The actual equations for a and b can be written in several different ways.
One convenient form is by introducing some auxiliary sum-functions:

S =
N∑

i=1
wi ; Sx =

N∑

i=1
wixi ; Sy =

N∑

i=1
wiyi

Sxx =
N∑

i=1
wix2

i ; Syy =
N∑

i=1
wiy2

i ; Sxy =
N∑

i=1
wixiyi

K =
(
SSxx − S2

x
)−1

(18.9)

The optimum a and b parameters are given in terms of these quantities by

a = K (SSxy − SxSy) ; b = K (SxxSy − SxSxy) (18.10)

The associated variances are given by

𝜎2
a = KS ; 𝜎2

b = KSxx (18.11)

The “goodness of fit” for such xy-plots is commonly measured by the correlation coefficient, R, which
is defined by

R =

N∑

i=1
(xi − x̄)(yi − ȳ)

√
N∑

i=1
(xi − x̄)2

√
N∑

i=1
(yi − ȳ)2

(18.12)

The correlation coefficient is by construction constrained to the interval [−1, 1], where R= 1 indicates
that all points lie exactly on a line with a positive slope (a > 0), R = −1 indicates that all points lie
exactly on a line with a negative slope (a < 0), while R = 0 indicates two sets of uncorrelated data.
Note that the “correlation coefficient” is often given as R2 instead, which of course is constrained to
the interval [0, 1] and measures the fraction of the variation described by the linear model.

The error function in Equation (18.8) is defined by the vertical distance, that is assuming that the
error is located mainly in the y data set. If both data sets have similar errors, the perpendicular dis-
tance from the data points to the line can be used instead in the error function. This, however, leads
to somewhat complicated non-linear equations for the fitting parameters3 and is rarely used.

Non-linear correlations (e.g. a quadratic correlation, f(x) = ax2 + bx + c) can be treated completely
analogously to the linear case above, by defining an error function and setting the first derivatives
with respect to the fitting parameters to zero. Non-linear correlations, however, are used much less
than linear ones, for five reasons:

1. Many non-linear connections can be linearized by a suitable variable transformation. An expo-
nential dependence, for example, can be made linear by taking the logarithm (y = a ebx becomes
ln (y) = ln (a) + bx).

2. Increasing the number of fitting parameters will always produce a better fit, since the fitting func-
tion becomes more flexible (a quadratic fitting function has three parameters, while a linear one
has only two). The data set, however, usually contains noise (random errors), and a more flexible
fitting function may simply try to fit the noise rather than improving the fit of the “true” data. For
polynomial fitting functions of increasing degree, oscillations of the fitting function between the
data points are often seen, which is a clear indication of “overfitting”.
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3. Any function connecting two sets of data can be Taylor expanded and, to a first approximation,
the connection will be linear. All correlations will therefore be linear within a sufficiently “small”
interval.

4. For functions where the fitting parameters enter in a linear fashion, the equations defining the
parameters can be solved analytically. For a function with non-linear parameters, however, the
resulting equations must be solved by iterative techniques, with the risk of divergence or conver-
gence to a non-optimal solution (multiple minima problem).

5. If a specific non-linear behavior is anticipated, a new non-linear variable can be defined,
which can be used as a linear correlation parameter. The one-variable non-linear function
f(x) = ax2 + bx + c, for example, can be made into a two-variable linear function by defining z = x2,
and thus f(x,z) = az + bx + c.

Points 2 to 4 suggest that a non-linear fitting function should only be attempted if there are sound
theoretical reasons for expecting a non-linear correlation between the data. One such example is the
often observed parabolic dependence of the biological activity on the lipophilicity for a series of com-
pounds. Compounds with a low lipophilicity will have difficulty entering the cells and therefore often
have a low activity. Compounds with a high lipophilicity, however, will have a tendency to accumu-
late in the fat cells and therefore also have a low activity. A quadratic dependence with a negative
second-order term is therefore expected based on physical arguments.

. Correlation between Many Sets of Data

In the previous section there were only two sets of data, the y data we wanted to model and the
variable x, each being a vector of dimension N × 1. In many cases, however, there may be several sets
of x variables (x1, x2, x3, . . . , xM), each of which can potentially describe some of the variation in the
y data set, and we thus seek a function f(x1, x2, x3, . . . , xM) capable of modeling y.4 There may also be
several different sets of y data that we want to model with the same x descriptors, but for simplicity
we will only consider a single set of y data.

Using the concepts from Chapter 17, the x vectors can be thought of as being the (non-orthogonal
and unnormalized) basis vectors of an M-dimensional coordinate system, in which we want to model
y by a linear vector. The coefficients derived by the fitting process can be considered as coordinates for
the vector modeling the y data along each of the x axes. In Multiple Linear Regression, the basis vectors
x are usually non-orthogonal, while Principal Component Analysis performs an orthogonalization of
the vector space. Partial Least Squares in addition attempts to align the coordinate axes with the
variation in the y data.

The x variables can be arranged into an X matrix with dimension N × M:

X = {x1 x2 x3 ⋯ xM } =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

x1,1 x2,1 x3,1 ⋯ xM,1
x1,2 x2,2 x3,2 ⋯ xM,2
x1,3 x2,3 x3,3 ⋯ xM,3
⋮ ⋮ ⋮ ⋱ ⋮

x1,N x2,N x3,N ⋯ xM,N

⎫
⎪
⎪
⎬
⎪
⎪
⎭

(18.13)

The x descriptors are often derived from many different sources and may have different units, means
and variances. Prior to any correlation analysis, each x (and y) vector is usually centered to have a
mean value of zero (i.e. subtracting the mean value from each vector element), as this eliminates any
constant terms in the correlation analysis and focuses on describing the variation in the y data.
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Each x vector may also be scaled with a suitable factor to take into account, for example, different
units for the variables. This, however, is non-trivial and requires careful consideration. A common
procedure, which avoids a user decision, is to normalize each x vector to have a variance of 1, a pro-
cedure called autoscaling. Autoscaling equalizes the variance of each descriptor and can thus amplify
random noise in the sample data and reduce the importance of a variable having a large response and
a good correlation with the y data.

18.4.1 Quality Measures

Analogous to the correlation coefficient in Equation (18.12), we want a measure of the quality of fit
produced by a given correlation model. Two commonly used quantities are the Predicted REsidual
Sum of Squares (PRESS) and the correlation coefficient R2 defined by the normalized PRESS value
and the variance of the y data (𝜎y

2):

PRESS =
N∑

i=1

(

yactual
i − ypredicted

i

)2
(18.14)

𝜎2
y = 1

N

N∑

i=1

(
yactual

i − ȳ
)2 (18.15)

R2 = 1 − PRESS
N𝜎2

y
= 1 −

N∑

i=1

(

yactual
i − ypredicted

i

)2

N∑

i=1

(
yactual

i − ȳ
)2

(18.16)

R2 thus measures how well the model reproduces the variation in y, compared with a model that just
predicts the average y value for all data points.

A straightforward inclusion of more and more x variables having some relationship with y in a
correlation analysis will necessarily monotonically increase the amount of y variation described and
thus produce an R2 converging towards 1. Inclusion of variables that primarily serve to describe the
noise in the y data, however, will lead to a model with less predictive value for the real variation. This
is clearly something that should be avoided but in many cases it is not obvious when the additional
components included primarily serve to model the noise in the y data. To make an unbiased judgment,
it is of interest to introduce a quantity that does not measure how well the variables can fit the y data,
but one that measures how well the variables can predict the y data. Since we are ultimately interested
in predicting y data from the independent variables, such cross-validations are more useful quantities.

One possible measure is to make a correlation analysis using only N − 1 data points and ask how
well this model predicts the point left out. This can be performed for each of the data points and
thus requires a total of N correlation analyses to be performed. Such “leave-one-out” or “jackknife”
models give an independent measure of the predictive power of a correlation model using a given
number of variables. Either the PRESS calculated from summing over all the N correlation models or
the predictive correlation coefficient Q2, defined analogously to R2 in Equation (18.16), can be used
to measure the predictive capabilities of the model. Q2 has in analogy with R2 a maximum value of 1
but can achieve negative values for models with poor predictive capabilities (i.e. if the prediction is
worse than predicting the average y value for all data points). A small PRESS or a large Q2 value thus
indicates a model with good predictive powers and models with Q2 of 0.5–0.6 are often considered
acceptable.
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The leave-one-out cross-correlation model tends to overestimate the predictive capabilities, as the
predicted fraction of the sample is only 1/N, which rapidly approaches zero for a large sample. Alter-
native models can be generated by randomly leaving out, for example, k data points, rather than just
one, or by forming subgroups of the data set, and either leaving one point out in each group or leaving
all points in one group out.

Intuitively one expects the model with the largest R2 (or Q2) value to be the best, but this overlooks
the fact that the model attempts to fit (experimental) data that contains uncertainties (experimental
errors), often of poorly known magnitude. The maximum correlation coefficient is related to the
uncertainty and the spread in the data:5

R2
max = 1 −

(
𝜎uncertainty

𝜎data

)2
(18.17)

Although 𝜎uncertanity usually is unknown, Equation (18.17) shows that one should be cautious when
trying to fit data with a small spread and potentially large (relative) uncertainties. Furthermore,
constructing models with correlation coefficients close to (or exceeding) R2

max is clearly a sign of
overfitting. While R2

max is independent on the sample size, the confidence interval of the correlation
coefficient depends inversely on the number of data points.6 Two models with correlation coefficients
of 0.80 and 0.70 may thus be equally “accurate” in a statistical sense. Whether a model with correlation
coefficient R1 is statistically better than a model with correlation coefficient R2 depends on the sample
size, the difference between R1 and R2 and the magnitude of R1. The required sample size increases as
the magnitude of R1 decreases and as the R1, R2 difference becomes smaller. Differentiating between
two models each with low predictability is thus more difficult than between two models of high pre-
dictability. Even fairly high correlation coefficients, like 0.80 and 0.70, usually require several hundred
data points for selecting the model with the higher correlation coefficient with confidence. These lim-
itations should be kept in mind when, for example, selecting one QSAR model over another, where
both models may have correlation coefficients in the 0.60–0.70 range and constructed from perhaps
20–30 data points, and the selected model is subsequently used for predictions.

18.4.2 Multiple Linear Regression

For multiple-descriptor data sets, one could use the methods in Section 18.3 to derive a correlation
between y and x1, between y and x2, between y and x3, etc., to find the xk data set that gives the
best correlation with y. It is very likely, however, that one of the other x variables can describe part of
the y variation, which is not described by xk, and a third x variable describing some of the remaining
variation, etc. Since the x vectors may be internally correlated, however, the second most important x
vector found in a one-to-one correlation is not necessarily the most important once the most impor-
tant xk vector has been included. In the vector space language, the x vectors form a non-orthogonal
coordinate system.

In order to use all the information in the x variables, a Multiple Linear Regression (MLR) of the type
indicated in the following equations can be attempted:

y =
M∑

k=1
akxk + e (18.18)

y = Xa + e (18.19)
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Note that each data set (y and xk) is a vector containing N data points, and the constant corresponding
to b in Equation (18.7) is eliminated if the data are centered with a mean value of zero. The e vector
contains the residual variation in y that cannot be described by the x variables, that is this is a vector
outside the space spanned by the x vectors. Since the expansion coefficients are multiplied directly
on to the xk variables, MLR is independent of a possible scaling of the xk data (a scaling just affects
the magnitude of the ak coefficients but does not change the correlation).

The number of fitting parameters is M, and N must therefore be larger than or equal to M; in
practice one should not attempt fitting unless N > 5M, as overfitting is otherwise a strong possibility.
The optimum fitting coefficients contained in the a vector can be determined by requiring that the
norm of the error vector is minimized:

𝜕‖e‖2

𝜕a
=
𝜕‖y − Xa‖2

𝜕a
= 0 (18.20)

This leads to a solution in terms of the generalized inverse (Section 17.2) of the X matrix:

a = (XtX)−1Xty (18.21)

This procedure works well as long as there are relatively few x variables that are not internally corre-
lated. In reality, however, it is very likely that some of the x vectors describe almost the same variation,
and in such cases there is a large risk of overfitting the data. This can also be seen from the solution
vector in Equation (18.21); the (XtX)−1 matrix has dimension M × M and will be poorly conditioned
(Section 17.2) if the x vectors are (almost) linearly dependent. Note that the presence of (experimen-
tal) noise in the x data can often mask the linear dependence and MLR methods are therefore sensitive
to noisy x data.

MLR works best if N≫M and when the x data are not internally correlated. If either of these criteria
is not fulfilled, one can try to form MLR models by selecting subsets of the descriptors. Searching all
possible combinations of descriptors from a total of M data sets rapidly leads to a large number of
possibilities, which may be impossible to search in a systematic fashion. Global optimization methods
such as genetic algorithms or simulated annealing (Sections 13.6.3 and 13.6.4) can be used to hunt
for the best combination of number and types of descriptors. Such optimizations clearly should focus
on maximizing the Q2 value and not the R2 value. One may also consider weighting Q2 with a factor
depending (inversely) on the number of components, as a slight increase in Q2 by including one or
more components may not be statistical significant. Alternatively, and somewhat more systematically,
one of the methods in the next sections can be used.

18.4.3 Principal Component Analysis

Multiple linear regression cannot easily handle situations where M > N or when the x variables are
(almost) linearly correlated. These problems can be removed by introducing a modified set of descrip-
tors, often called principal components or latent variables. The idea is to extract linear combinations
of the x variables that are orthogonal and ranked according to their variation and only use a limited
set of these variables for performing the correlation with the y variables. In the vector space language,
the x coordinate system is transformed into an orthogonal set of coordinate axes in order to simplify
the description of the best linear vector modeling the y data. Simplify in this context means that there
are fewer coefficients that are significantly different from zero. Performing an orthogonalization pro-
duces a vector space describing the same fundamental coordinate system but with basis vectors that
are rotated with respect to the original x vectors.
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The eigenvalues of the XtX matrix (Equation (18.13)) contain information on the correlation
between the x variables: an eigenvalue of zero indicates that one column can be written as a lin-
ear combination of the other columns and a small non-zero value indicates that one column contains
almost redundant information. The eigenvector corresponding to the largest eigenvalue describes the
linear combination of x descriptors having the largest variation in the x data, the eigenvector corre-
sponding to the second largest eigenvalue has the second largest variations, etc. Furthermore, since
the eigenvectors are orthogonal, different eigenvectors describe different parts of the variation.

In Principal Component Analysis (PCA) methods the orthogonalization of the x vectors is done
using the eigenvectors of the XtX matrix (a canonical orthogonalization, Equation (17.86), without
the eigenvalue weighting). If we denote the orthogonalized basis vectors by z, we can write the con-
nection as

Z = XU (18.22)

The U matrix contains the eigenvectors of the XtX matrix and it is convenient to let the ordering
of the z vectors reflect the magnitude of the XtX eigenvalues, such that z1 is associated with the
largest eigenvalue, z2 with the second largest eigenvalue, etc. We note that if there are XtX eigenvalues
close to zero then the effective dimension of the coordinate system is less than M. The z vectors are
referred to as the principal components (of the x variables). The U matrix depends on the relative
magnitudes of the individual x vectors and the z vectors therefore depend on a possible scaling of the
original x descriptors. Figure 18.5 shows a two-dimensional example where the points for the two
non-orthogonal x descriptors have an internal correlation and display a similar variation along the
two directions. The new z variables are orthogonal and most of the variation is now located in the z1
variable, while z2 describes a much smaller variation.

The idea in PCA is to use the z components as the descriptive variables:

y = Zb + e (18.23)

Here b is a vector containing the fitting coefficients (analogous to a in Equation (18.19)) and e is again
the vector containing the residual error. The bk coefficients can, in contrast to Equation (18.21), be
obtained by a simple projection of the y vector on to each z component since the latter are orthogonal.
If the x variables are normalized, this corresponds to (Equation (18.21) where ZtZ is a unit matrix)

b = Zty (18.24)

If all M z vectors are used the result is identical to using the original x variables (i.e. MLR). However,
the premise of the PCA method is to include only a few z variables and to select them according to

z1
z2

x2

x1

Figure . Illustrating the relationship between the original (x) and latent (z) variables.
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the XtX eigenvalues. A sequence of linear correlation models are constructed by including more
and more z vectors, first (only) z1, then including also z2, then z3, etc. At each stage the predictive
capabilities of the model are calculated, for example quantified by Q2. If the original x data have a
reasonable correlation with the y data, then a plot of Q2 against the number of variables included
will typically display an initial steep increase, but then level off or even start to decrease slightly as
the number of latent variables is increased. The point where Q2 levels off indicates that the optimal
number of components has been reached, that is at this point the predictive power of the model
cannot be increased further by including more components.

The main problem with the PCA method is that some of the x variables may not be particularly
good at describing the y variables, that is the first few PCA vectors describing the largest variation
among the x variables may correlate poorly with the variation in the y data. In such cases, a global
optimization search can be made for a model based on a relatively small number of components
selected from all the PCA vectors with eigenvalues above a suitable cutoff.

Since the PCA vectors depend on the relative magnitude of the original x variable, and thus, for
example, on the units employed for each variable, the variables should have comparable variances or
be normalized to unit variance. Another problem is that the PCA vectors constructed from diago-
nalization of the XtX matrix involve all of the original x descriptors, that is all the original variables
are required even for a correlation models having only a few z vectors as descriptors. In sparse PCA
methods, the z variables are restricted to have a user-defined upper limit on the number of non-zero
elements, while still describing as much of the variation in the XtX matrix as possible. This, however,
is computationally a much harder problem (NP-hard) as it cannot be obtained simply by diagonaliz-
ing a matrix.

18.4.4 Partial Least Squares

The Partial Least Squares (PLS, also sometimes called Projection to Latent Structures) method in
analogy with PCA performs an orthogonalization of the x vectors to form new latent variables. In
contrast to PCA, however, PLS attempts to align the new coordinate axes with the variation in y,
rather than simply describing the variation in the x variables. This is obtained by weighting the X
matrix with the y vector prior to diagonalization, that is the U matrix in Equation (18.22) is obtained
by diagonalization of the XtyytX (equivalent to (ytX)t(ytX)) matrix instead of XtX.7 This ensures that
the z-vectors will be selected in an order that is biased towards describing the variation in y. The
only difference between PCA and PLS is thus in how the latent z variables are generated, either from
diagonalization of the XtX matrix or from the corresponding y-weighted matrix. Expressed in the
statistical language, the PLS components describe the largest covariance between X and y.

The PCA components can computationally be obtained by a single diagonalization of the XtX
matrix while the PLS components must be extracted iteratively. The latter can be done by sequentially
generating a z vector associated with the largest (only one non-zero) eigenvalue of the XtyytX matrix,
project this vector out of the X matrix (projection of the y matrix can also be done but is unnecessary)
and calculate the new XtyytX matrix. Since only the z vector corresponding to the largest eigenvalue
is required, it is computationally inefficient to diagonalize the full XtyytX matrix multiple times, espe-
cially if the X matrix is large, and the required z vector can instead be extracted by other algorithms,
of which the NIPALS (Non-linear Iterative PArtial Least-Squares) algorithm is commonly used. Tak-
ing the correlation model as in Equation (18.23) (y = Zb + e), the NIPALS algorithm sequentially
extracts PLS components by a series of matrix–matrix multiplications. If we denote vectors in the
current PLS iteration as u, z, p (u and z being column vectors in the matrices U and Z) and b as
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the coefficient (entry in the b vector), the steps in the NIPALS algorithm for a single y vector can be
written as follows:

1. u = Xty
2. u ← u∕|u|
3. z = Xu
4. z ← z∕|z| (18.25)
5. b = ytz
6. p = Xtz
7. X ← X − zpt

The PLS components will naturally be ordered according to their ability to describe the y varia-
tion, alleviating the necessity to perform a combinatorial search for which components to use in the
correlation model. For optimal cases, a plot of Q2 against the number of PLS components will rapidly
reach a maximum and provide a compact model with good predictive capabilities.

A disadvantage of the PLS method is the inherent bias toward selecting latent variables describing
noise in the y data, that is x variables that only have a small internal variation but correlate with the
noise in the y data are selected as important. For this reason, x variables with small internal variance
over the y data points are often removed from the descriptor data set prior to performing the PLS
analysis. This pre-selection procedure, however, requires user involvement and it is not always easy
to decide which variables to remove. Unfortunately, the predictive capabilities of a PLS model are
often sensitive to elimination of one or more x variables. A global optimization scheme may again be
employed in such cases, that is performing a search for which x components to remove from the PLS
analysis in order to provide a model with a high Q2 value. Other variations such as sparse PLS methods
are also being developed, but require more sophisticated optimization techniques for calculating the
latent components.

18.4.5 Illustrative Example

Consider the following y and X matrices where the variables have been centered to give a mean of
zero:

y =
⎛
⎜
⎜
⎜
⎝

0.1
0.1
0.9

−1.1

⎞
⎟
⎟
⎟
⎠

; X =
⎛
⎜
⎜
⎜
⎝

1.0 1.0
−1.0 −1.0

0.1 −0.1
−0.1 0.1

⎞
⎟
⎟
⎟
⎠

(18.26)

Clearly the first two rows show a large variation in x with no change in y, that is these variables are
not related to the response. The last two rows display correlation and anticorrelation, respectively,
with the y data in equal amounts. Solving with MLR Equation (18.21) gives the solution vector a in
Equation (18.27), which shows that both x columns are equally important in describing the y varia-
tion. The difference between the actual and predicted y indicates that there is a residual variation e
that cannot be modeled by the x variables:

a =
(

5
−5

)

; ypred = Xa =
⎛
⎜
⎜
⎜
⎝

0.0
0.0
1.0

−1.0

⎞
⎟
⎟
⎟
⎠

; e =
⎛
⎜
⎜
⎜
⎝

0.1
0.1

−0.1
−0.1

⎞
⎟
⎟
⎟
⎠

(18.27)
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Diagonalizing the XtX matrix to construct the principal components gives eigenvalues of 4.00 and
0.04, with corresponding (unnormalized) eigenvectors (1, 1) and (1, −1). In the transformed coordi-
nate system, the (unnormalized) principal components z (Equation (18.22)) can be written as

Z =
⎛
⎜
⎜
⎜
⎝

1.0 0.0
−1.0 0.0

0.0 0.1
0.0 −0.1

⎞
⎟
⎟
⎟
⎠

(18.28)

Clearly the eigenvector corresponding to the largest eigenvalue (the first principal component, i.e. the
first column in Z) has a zero overlap with the y data, while the second eigenvector accounts for all the
important variation in the original x variables. The PLS components arising from diagonalization of
the XtyytX, on the other hand, have eigenvalues of 0.0 and 0.08 with corresponding (unnormalized)
eigenvectors (1, 1) and (1, −1). The transformed X matrix is identical to Equation (18.28), except that
it is now the second column that corresponds to the largest eigenvalue. The direction associated with
the largest eigenvalue in the PCA case has an eigenvalue of zero in the PLS case, showing that it
contains no information of the y variation. In both the PCA and PLS cases, the y variation that can be
described is contained in only one component, but the PLS procedure identifies the most important
component as the first extracted component, while PCA has the information in the second principal
component. The predicted y is identical to the MLR results (Equation (18.27)) for both PCA and PLS;
the only difference is that only one component is required, rather than two.

. Quantitative Structure–Activity Relationships (QSAR)

One important application of PCA and PLS techniques is in the lead development and optimization
of new drugs in the pharmaceutical industry. From the basic chemical and physical theories, it is
clear that there must be a connection between the structure of a molecule and its biological activity.
It is also clear, however, that the connection is very complex and it is very unlikely that the biological
activity can ever be predicted completely a priori. A drug taken orally, for example, must first survive
the digestive enzymes and acidic conditions in the stomach, cross over into the blood stream, possibly
also cross over into the brain, diffuse to the target protein without binding to other proteins, bind the
target protein at a specific site and with a large binding constant, and finally have a suitable half-life
in the organism before being degraded into non-toxic components. Each of these quantities depends
on different parts of the molecular structure and the combined effect is therefore very difficult to
predict. Each quantity, however, may possibly be correlated with (different) molecular properties,
but adequate data for each effect is rarely available.

In the initial stages of developing a new drug, the focus is usually on the binding to the target protein
and having a suitable lipophilicity, the latter to ensure a reasonable transfer rate for crossing between
the blood and cells. A lead compound is somehow determined, more often than not by serendipity.
From this lead, a small initial pool of compounds is synthesized and their biological activity, of which
the binding constant to the target protein is an important quantity, is measured by a suitable biolog-
ical assay. At this point, statistical methods are often used to correlate the molecular structure and
properties to the observed activity, a Quantitative Structure–Activity Relationship (QSAR),8 thereby
providing a tool for “guessing” which new modified compounds should be tried next.

In a traditional QSAR study, a variety of molecular descriptors are included. Typically, these include
a measure of the lipophilicity (often taken as the partition coefficient between water and 1-octanol),
electronic and steric substituent parameters (Hammett and Taft constants9) and pKa/b values for
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acidic and/or basic groups. These are rather obvious molecular descriptors, but many other less obvi-
ous descriptors have also been used, such as the molecular weight, IR frequencies, dipole moments,
NMR chemical shifts, etc. The philosophy is to include, rather indiscriminately, as many descriptors
as can easily be generated and then let the statistical method sort out which of these are actually
important. With many of the descriptors having only a remote connection with the measured activ-
ity, classical or MLR correlations are clearly not suitable methods. PCA or PLS methods are better
at detecting poor descriptors and dealing with the fact that the measured biological activities often
have rather large uncertainties.

Classical QSAR methods focus on correlating experimental activities with experimental descrip-
tors. This allows an identification of important structural features, such as having a pKa value close
to 5 or having an electron-withdrawing group in a para-position of a phenyl ring, thereby limiting
the field of possible new compounds to prepare and test. The focus has increasingly been on “virtual”
(in silico) screening, that is correlating experimental activities with theoretical descriptors. If a good
QSAR model can be constructed from such data, this allows prediction of the biological activities
of molecules that exist only as a model in the computer. The activity of many thousands of (possibly
computer-generated) structures can thus be predicted and only those that are predicted to be reason-
ably active need to be synthesized. The theoretical descriptors can be similar to those in traditional
QSAR methods, for example replacing the experimental water–octanol partition coefficient with a
corresponding theoretical estimate, etc. The so-called 3D-QSAR models, however, are more repre-
sentative of these QSAR methods, and the COmparative Molecular Field Analysis (COMFA) method
was one of the first examples of these.10

The molecular descriptors are in the COMFA method taken as steric and electric fields calculated
at a large number of points surrounding each molecule. The molecule is placed in a “box” and a few
thousand points are selected between the surface of the molecule and a few van der Waals radii out-
wards. The steric repulsion or attraction from a probe atom (typically a carbon atom) is calculated at
each of these points by a force field van der Waals term. The electric attraction or repulsion is similarly
calculated by placing a point charge with magnitude+1 in each point. Specific interaction descriptors
can be generated by selecting specific force field atom types to probe, for example, hydrogen bonding
acceptor/donor capabilities. The complete set of molecular descriptors thus consists of a few thou-
sand data points, representing steric, electric and property specific interactions of the molecule with
other (possible) atoms in the near vicinity. These data are clearly strongly correlated; the value at a
given point will be very close to the average of the neighboring points. Deriving QSAR models with
such large sets of data descriptors is only possible using PCA and PLS methods. Such 3D-QSAR
methods are primarily used when the structure or identity of the receptor protein is unknown. If the
protein and binding site is known from an X-ray structure, the testing of possible drug candidates
can be done by docking methods, as described in Section 13.7.

The main problem with 3D-QSAR methods such as COMFA is the alignment of the molecules in
the test set.11 First, it must be assumed that each of the molecules binds to the protein at the same
site. Second, it is not always clear that all the molecules bind to the active site in the same overall
orientation. Third, if the molecule has several conformations available, one has to guess or estimate
which conformation actually binds to the protein. Furthermore, even if the overall orientation of
all the molecules is assumed to be the same, the specific alignment is not unambiguous. Even for
molecules having the same major structural features, one can choose either to align on the best RMS
fit of all atoms, on only the non-hydrogen atoms or on only the atoms in a substructure of the molecule
(e.g. a phenyl ring). Figure 18.6 illustrates the ambiguity for aligning the compound on the right with
that on the left and whether the imine or nitro group should be used for alignment.

When the molecular structure of the compounds in the training set has few or no common ele-
ments, the alignment may instead be done based on, for example, the electric moments (dipole,
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Figure . Illustrating the alignment problem in COMFA methods.

quadrupole, etc.) or on the electrostatic potential on a suitable molecular surface.12 If certain com-
mon interaction elements, like hydrogen bonding or hydrophobic interactions, can be identified for
a large class of active compounds, such pharmacophor elements may also be used for alignment.

Since the alignment of the molecules influences the values calculated at the steric and electric grid
points, this is a feature that influences the statistical correlation. If a successful QSAR model can be
obtained from such data, however, the model will provide information on which of the grid points are
important in a steric and electric sense. Analysis of such data provides a virtual mapping of the recep-
tor, that is identifying regions of the active site where the drug candidates should have large/small
groups and where they should have positively/negatively charged groups.

Pharmacophore modeling can be considered as a coarse-grained version of 3D-QSAR methods,
where so-called pharmacophore elements such as hydrogen donors/acceptors, hydrophobic interac-
tion sites, aromatic moieties, anion/cation sites, etc., are used as molecular descriptors, rather than
steric and electrostatic interaction points used in the COMFA method. The methodology and chal-
lenges (selection of conformations and molecular alignment), however, are very similar, and both
types of methods aim at building a virtual active site based only on information from a series of com-
pounds displaying activity toward a (unknown) receptor.13 A given ligand in a particular conforma-
tion can be characterized by its pharmacophor elements and a vector containing distances between
each pair of elements. From a list of ligands, which are known to be active, pharmacophor modeling
tried to identify a set of pharmacophor elements with the same pair-wise distance (within a given
threshold). If such a set can be found that includes all ligands, it is called a common pharmacophor.
Inactive or weakly active ligands with the same pharmacophor can be included in the model to map
out exclusion volume regions, where steric interactions lead to weak binding or non-binding. The
end result of a pharmacophore model is a collection of pharmacophore elements, and possibly steric
exclusion regions, in a three-dimensional arrangement that can be used for virtual screening of new
drug candidates.

. Non-linear Correlation Methods

MLR, PCA and PLS methods construct linear correlation models between the multidimensional x
and y data. There are no technical problems in also constructing non-linear correlation models, but,
as mentioned in Section 18.3, this should only be done if there are good arguments based on the
underlying problem for expecting a specific non-linear dependence. This may be possible for multi-
variable regression methods analogous to MLR, but is more difficult for PCA/PLS-based methods,
as these form linear combinations of the original descriptors. Non-linear correlation models may
instead be constructed by Artificial Neural Network or Symbolic Regression methods.

An Artificial Neural Network is modeled after the way the brain processes information by forming
multiple connections between neurons, with the strength of each connection being a variable that
controls the flow of information.14 A large variety of artificial neural networks are in use, but the
basic principle is illustrated in Figure 18.7.
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Figure . Illustrating the information flow in an artificial neural network containing a single hidden layer between
the input and output neurons.

The xk descriptors provide data to the input layer of neurons, and this information is passed to a
hidden layer of neurons, with a separate weighting factor for each connection. The hidden layer neu-
rons in turn pass the information to the output neuron, which produces the response y, again with
separate weighting factors for each connection. The connections are usually non-linear functions
containing parameters that are adjusted iteratively by training the network to produce a correlation
between the input descriptors and (known) output variables. Figure 18.7 illustrates that the num-
ber of parameters in even quite simple networks rapidly becomes large, and this leads to the risk
of overfitting, that is the network simply learns to “remember” the connections between input and
desired output, rather than extracting a (non-linear) correlation model that can be used in a predic-
tive sense. Cross-validation is therefore an essential component in ensuring that overfitting does not
occur. Artificial neural networks have proven to be very powerful in establishing non-linear correla-
tion models, but they have the disadvantage that it is difficult to obtain insight into why or how the
models work, that is extract information of which descriptors are the most important for the pre-
dicted property.

Symbolic Regression is an interesting method for constructing non-linear correlation models when
there is little or no a priori information regarding the specific non-linear functional behavior. Sym-
bolic regression methods employ a genetic type of global optimization (Section 13.6.4) using a (large)
set of mathematical operations and associated parameters as the genes and attempt to find a com-
bination of functions and parameters that can fit the data.15 The disadvantage is that many such
combinations may exist and many (all) may correspond to pure data fitting without any physical sig-
nificance. The advantage is that a particular solution can be written analytically in terms of standard
mathematical functions, which may provide insight into the problem.

. Clustering Methods

A large set of data often needs to be reduced or compressed before further analysis or refinement.
This could, for example, be a number of poses from docking a ligand into a protein target or a (large)
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number of structures arising from a force field conformational search that are targeted for further
refinement by a sequence of electronic structure methods to identify a number of low-energy con-
formations. A system composed of the order of hundreds of atoms often has thousands or millions
of possible conformations, which can be searched near-exhaustively by force field methods, but sub-
sequent refinements by more accurate methods are limited to a few hundred conformations. Since
relative energies by standard force fields often have errors in the 20–30 kJ/mol range, all structures
within a∼30 kJ/mol window of the lowest energy structure should be refined by a sequence of increas-
ingly accurate methods and pruning of high-energy structures at each level. In many cases, however,
it is only the overall structure of the whole systems that is of interest, and conformations that only
differ in terms of, for example, an OH group orientation are irrelevant. It is thus of interest to group
structures together into clusters, which by some measure are sufficiently similar that a single rep-
resentative structure can be extracted and used in the further refinement. Structures from different
clusters should furthermore be sufficiently dissimilar that a collection of a single representative struc-
ture from each cluster represents the full diversity of the original set of data.

There are many methods for cluster analyses, but we will only give a brief overview of the general
principles and provide some examples of algorithms commonly used in computational chemistry.
The three key elements in a cluster analysis are:

1. The similarity between two elements.
2. The linkage between clusters.
3. The clustering algorithm.

The similarity is for continuous variables commonly defined in terms of a distance in variable space,
and similarity and distance are often used interchangeably, but it should be kept in mind that they are
inversely related (a large similarity implies a short distance and vice versa). Many types of similarity
measures can be defined, but we will restrict the exemplification to some that have a clear geometrical
interpretation.

Consider a set of N elements each containing M variables. In the above example, N is the number
of conformations and M is the number of atomic coordinates. The similarity between each pair of
elements could be taken as the root mean square difference between all atomic coordinates when
optimally aligned. This is known as the Euclidian distance (2-norm), but could alternatively also be
defined in terms of the corresponding squared distance, the absolute distance (1-norm) or the maxi-
mum element distance (infinity-norm) (Section 17.1). The similarity can be calculated over all atoms
or a selected subset of atoms (e.g. only non-hydrogen atoms).

The linkage between clusters containing only a single element is unique, being just the similarity,
but the linkage between clusters containing more than one element can be defined in several different
ways, and four commonly used definitions are:

1. Single link: the shortest distance (largest similarity) between any pair of elements belonging to two
clusters (clusters are linked by a single element).

2. Complete link: the longest distance (smallest similarity) between any pair of elements belonging
to two clusters (clusters are linked by all elements).

3. Average link: the average over distances between all pairs of elements belonging to each of the two
clusters (similarity between elements in different clusters, then average).

4. Centroid link: the distance between the centroid of the two clusters (average over elements within
the same clusters, then similarity).

These differences are illustrated in Figure 18.8.
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Figure . Illustrating the differences between the Single link (upper left), Complete link (upper right), Average link
(lower left) and Centroid link (lower right) clustering methods.

The Single link method tends to be sensitive to outliers and noise in the data, which may link an
otherwise distinct cluster, while the Complete link method tends to favor globular clusters and can
break large clusters. The Average link method has intermediate characteristics between these two
methods. The Centroid link method has the disadvantage that the similarity measure for sequen-
tially joining clusters may be non-monotonic (the distance for joining clusters at level C+1 may be
smaller than for joining at level C), since the centroid position changes when an additional element
is included.

The clustering algorithm tries to answer two related questions: what is the “optimum” partitioning
of the N data into a predefined C set of clusters and what is the “optimum” number of clusters that
the data set can be partitioned into? The quotation marks around the words optimum indicate that
there is not a unique definition and that the answer depends on how optimum is defined, that is the
clustering algorithm. The clustering can furthermore be exclusive, where a given element belongs to
only one cluster, or overlapping, where an element can belong to more than one cluster, perhaps with
a weighting factor (then usually called fuzzy clustering).

We will in the following only consider exclusive clustering and Figure 18.9 can be used to illustrate
the ambiguities in cluster analyses. The 12 data points can visually be partitioned into four, three or
two clusters, but other choices are clearly also possible.

The optimum C clustering of N elements is one where each element has a smaller distance to
the centroid that it belongs to than to other centroids, usually called K-means clustering. Using the
squared 2-norm distance as the similarity measure, this can be formulated as a minimization of an
object function:

ObjF =
C∑

c=1

Nc∑

xk∈c
(xc − xk)2 (18.29)

xc =
1

Nc

Nc∑

xk∈c
xk (18.30)
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Figure . Three possible clusterings of the data in (a): (b) into four clusters, (c) into three clusters and (d) into two
clusters.

This definition, however, leads to an NP-hard optimization problem, as there are KN,C possible
ways of distributing N elements into C clusters, which even for small N and C values is infeasible to
search exhaustively. Practical algorithms employ an initial guess of C centroids (xc) that iteratively are
refined until convergence, where each iteration consists of assigning all elements to a specific centroid
based on the similarity and recalculating the centroid position from Equation (18.30). This usually
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converges in a few iterations and corresponds to finding a (local) minimum of the object function,
while a search in the full combinatorial space would locate the global minimum. Unfortunately the
object function usually has many local minima and different starting guesses often lead to different
local minima. Global search procedures discussed in Section 13.6 can be used to locate a best esti-
mate of the global minimum. Variations of the algorithm consist of starting with a small number of
clusters and sequentially split and recombine clusters in order to provide better estimates of the ini-
tial centroid positions at a given cluster level. The centroid position (xc) corresponds to the average of
all elements in the cluster, but this may be a poor representation of the physical objects in the cluster.
Averaging the (Cartesian) coordinates of several molecular conformations, for example, may yield an
average structure that has non-physical internal coordinates. Using the median (Section 18.2) instead
of the average as the cluster centroid may in such cases work better, especially if the centroid structure
subsequently is used as a representative element for the whole cluster.

The global optimization problem in K-means clustering is bypassed in hierarchical clustering meth-
ods, where the number of clusters is sequentially reduced from N to 1 based on the similarity matrix
elements. Initially the two elements with the smallest distance (largest similarity) are grouped into a
cluster, the similarity matrix is recalculated based on the chosen linkage, the element with the smallest
distance to another element/cluster is assigned to a cluster, etc., and this leads to a deterministic algo-
rithm for grouping N elements into C clusters. Alternatively, but used less frequently, the algorithm
can be run in reverse by initially grouping all elements into one cluster and sequentially increasing
the number of clusters to N. The result of a hierarchical clustering can be visualized as a dendrogram
showing which elements are grouped together as a function of the similarity for joining a cluster
at a given level. Using a squared Euclidian norm as the similarity and single linkage on the data in
Figure 18.9(a) gives the dendrogram shown in Figure 18.10.

The first cluster is formed by elements 7 and 9, the second cluster consists of elements 10 and 12,
etc. The dendrogram suggests that four clusters (Figure 18.9(b)) could be a reasonable partitioning,
but three clusters (Figure 18.9(c)) is clearly also a partitioning that should be considered.

Hierarchical clustering has the disadvantage that the assignment of an element to a given cluster
cannot be undone at a later stage, even though the element at a given cluster level may be closer to
another cluster centroid than the one to which it belongs. Another disadvantage is that calculation
of the full similarity matrix and its sequential update at each cluster level leads to an algorithmic N2

log N complexity, which makes it unsuitable for large data sets.
The optimum clustering of N elements for a given cluster size can be quantified in terms of an

object function, as shown in Equation (18.29). Assuming that the global optimization problem has
been solved for all cluster sizes from N to 1, the object function will increase monotonically from zero
to some maximum value as a function of C. Such a plot may display a “kink” for a given cluster size,
suggesting that this is the “natural” or “optimum” number of clusters, but this often yields inconclusive
results. Kelley et al. have suggested16 that the optimum partitioning can be found as the minimum of
a penalty function depending on the number of clusters and the average spread of the elements within
each cluster containing more than one element. The spread of the elements in a specific cluster c is
defined in Equation (18.31) and the corresponding average spread over all clusters containing more
than one element (C′) is given in Equation (18.32).

Sc =
1

Nc(Nc − 1)∕2

Nc∑

j=1

Nc∑

k<j
(xj − xk)2 (18.31)

SC = 1
C′

C′
∑

c=1
Sc (18.32)
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Figure . Hierachical clustering of the data in Figure 18.9 (a) represented by a dendrogram.

The average spread at each cluster level C is collected during the clustering process and normalized
at the end to be in the range of 1 to N – 1:

SN
C =

(

N − 2
Max(SC) − Min(SC)

)

(SC − Min(SC)) + 1 (18.33)

A “good” clustering has all elements assigned to a few clusters, each having very similar elements, that
is few clusters each with a small spread. Kelley et al. proposed that the optimum number of clusters
can be obtained by finding the minimum of a penalty function PC written as a sum of the normalized
average spread and the total number of clusters (including clusters having only one element):

PC = SN
C + C (18.34)

PC has a value of N for N – 1 and 1 clusters and a plot for the data in Figure 18.9(a) is shown in
Figure 18.11.

The minimum PC value occurs for four clusters, but the value for three clusters is only marginally
larger, which agrees with the conclusion drawn from the dendrogram in Figure 18.9 that four or three
clusters are a reasonable partitioning of the 12 elements.
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Figure . Plot of the Kelley function for the data in Figure 18.9(a).
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Concluding Remarks

The real world is very complex and a complete description is therefore also very complicated. Only by
imposing a series of often quite stringent limitations and approximations can a problem be reduced
in complexity such that is may be analyzed in some detail, such as, for example, by calculations. A
chemical reaction in the laboratory may involve perhaps 1020 molecules surrounded by 1024 solvent
molecules, in contact with a glass surface and interacting with gases (N2, O2, CO2, H2O, etc.) in the
atmosphere. The whole system will be exposed to a flux of photons of different frequency (light) and a
magnetic field (from the earth), and possibly also a temperature gradient from external heating. The
dynamics of all the particles (nuclei and electrons) is determined by relativistic quantum mechan-
ics and the interaction between particles is governed by quantum electrodynamics. In principle the
gravitational and strong (nuclear) forces should also be considered. For chemical reactions in biolog-
ical systems, the number of different chemical components will be large, involving various ions and
assemblies of molecules behaving intermediately between solution and solid state (e.g. lipids in cell
walls).

Except for a couple of rather extreme areas (such as the combination of general relativity and quan-
tum mechanics or the unification of gravitation with the strong and electroweak interactions), we
believe that all the fundamental physics is known. The “only” problem is that the real world contains
so many (different) components interacting by complicated potentials that a detailed description is
impossible.

As this book hopefully has given some insight into, the key is to know what to neglect or approxi-
mate when trying to obtain answers to specific questions in predefined systems. For chemical prob-
lems, only the electrostatic force needs to be considered; the gravitational interaction is a factor of
1039 weaker and can be completely neglected. Similarly, the strong nuclear force is so short-ranged
that is has no effect on chemical phenomena (although the brief claims regarding “cold” fusion for a
period seemed to contradict this). The weak interaction, which is responsible for radioactive decay by
the n → p + e process, is also much smaller than the electrostatic, although there have been various
estimates of whether it might give rise to symmetry breaking (i.e. preference for one enantiomer over
its mirror image), which possibly could be detected experimentally. Similarly, the earth’s magnetic
field is so tiny that only under very special circumstances can it have any detectable influence on the
outcome of a chemical reaction.

For electronic structure calculations within the wave function approach, the starting point is usu-
ally an independent-particle model, which for electrons is the Hartree–Fock model. The results from
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this model can be improved by adding electron correlation corrections and increasing the basis set.
The resulting two-dimensional diagram shown in Figure 4.3 indicates that the “exact” result can be
obtained by systematically increasing the level of sophistication along both axes until convergence
is reached. Usually the desired level of accuracy is such that the convergence cannot be reached
owing to limitations in computational resources, and the results thus suffer from approximations
in the one-particle (basis set) and many-particle (configurations) space. Even if the residual errors
could be reduced below the target accuracy, the “exact” solution is still subject to a number of limi-
tations that must also be considered in order to compare with the experimental results. These may,
for example, be:

1. Neglect of relativistic effects by using the Schrödinger instead of the Dirac equation. This is
reasonably justified in the upper part of the periodic table but not in the lower half. For some
phenomena, such as spin–orbit coupling, there is no classical counterpart and only a relativis-
tic treatment can provide an understanding. The relativistic effects may be incorporated by a
one-component (mass–velocity and Darwin terms), two-component (spin–orbit) or full four-
component methods (Figure 9.2).

2. The effects of the environment, such as solvent effects. These may be modeled, for example, by a
continuum model, by treating the solvent as an ensemble of classical particles (QM/MM meth-
ods) or by including them in the quantum description (e.g. Car–Parrinello methods).

3. Vibrational corrections. For energies, this would typically be inclusion of zero-point energies
while for properties this may correspond to vibrational averaging. The corrections may again be
done at several levels of accuracy, for example using a harmonic approximation or also including
anharmonic effects.

4. Finite temperature effects. This would correspond, for example, to a molecular structure not
being represented as a fixed geometry but rather as an ensemble of structures corresponding
to an average over accessible geometries at a given temperature.

5. Non-Born–Oppenheimer effects. The assumption of a rigorous separation of nuclear and elec-
tronic motions is in most cases a quite good approximation and there is a good understanding
of when it will fail. Methods for going beyond the Born–Oppenheimer approximation are still
somewhat limited in terms of generality and applicability.

6. Quantum effects for the nuclei. One may argue that the vibrational effects are the most important
of these, but in some cases other effects such as tunneling may also be important.

7. Quantum mechanics being replaced (wholly or partly) by classical mechanics. For electrons such
an approximation would lead to disastrous results, but for nuclei (atoms) the quantum effects are
sufficiently small that in most cases they can be neglected.

8. Approximating the intermolecular interactions to only include two-body effects, for example
electrostatic forces are only calculated between pairs of fixed atomic charges in force field tech-
niques. Alternatively, the discrete interactions between molecules may be treated only in an aver-
age fashion, by using Langevin dynamics instead of molecular dynamics.

9. Calculating ensemble or time averages over a relatively small number of points (perhaps a few
million) and a limited number of particles (perhaps a few hundred), instead of something that
approaches the macroscopic sample of perhaps 1020 molecules/configurations.

10. Finite temperature being reduced to zero kelvin, that is the use of static structures to represent
molecules, rather than treating them as an ensemble of molecules in a distribution of states (trans-
lational, rotational and vibrational) corresponding to a (macroscopic) temperature.

11. Making approximations in the Hamiltonian describing the system, for example semi-empirical
electronic structure methods or density functional theory.
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12. Approximating external fields (electric or magnetic) by only considering their linear components.
For normal conditions, this will be a quite good approximation, but this is not the case in, for
example, intense laser fields or for very large molecules.

13. Treating the nuclei as point particles. In reality a nucleus has a finite size (∼10−15 m) and since
the electrons can penetrate the nucleus the potential felt inside the nucleus will differ from that
of a point particle and consequently will lead to changes in the electronic energy.

14. QED corrections. The interaction between charged particles is normally described by the
Coulomb interaction, but when the quantization of the field is considered, there are additional
higher-order correction terms.

Most of these approximations are mainly of a computational nature, as there are well-defined meth-
ods available for going beyond the approximations, but they are computationally too demanding. The
key is therefore to be able to evaluate what level of theory (i.e. which approximations are appropriate)
is required for obtaining results that are sufficiently accurate to provide useful information about the
question at hand. Hopefully this book has given a few clues as how to select a suitable method for a
given problem.
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Appendix A

Notation

The following contains a list of the symbols used in the text. It is not possible, nor desirable, to enforce
a unique symbol notation, and the same symbols can therefore represent different quantities in differ-
ent contexts. Attempts have been made to have consistent notation within each chapter, but tradition
and common usage dictate differences in notation between chapters.

Bold quantities are operators, vectors, matrices or tensors. Plain symbols are scalars.

𝛼 Morse, Hill or screening parameter
α Polarizability
𝛼𝛽 Spin functions
αβ Dirac 4 × 4 spin matrices
𝛼𝛽𝛾𝛿 Summation indices for basis functions
𝛼, 𝛽, 𝛾 , 𝛿, 𝜁 Basis function exponents
𝛼A, 𝛽AB Hückel parameters for atom A, and between atoms A and B
a Born radius for solvation cavities
abcd Summation indices for virtual MOs
an, ai, bi, ci,… Expansion coefficients
a Acceleration
A, B, C,… General parameters or coefficients
A Helmholtz free energy
A Dipole–quadrupole polarizability
A Antisymmetrizing operator
A Vector potential
A Hyperfine coupling constant
β First hyperpolarizability
𝛽𝜇 Resonance parameter in semi-empirical theory
B Dipole–quadrupole hyperpolarizability
B Magnetic field (magnetic induction)
𝜒 Basis functions (atomic orbitals) in ab initio methods
𝜒 Electronegativity
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𝜒B Out-of-plane angle for atom B
χ Magnetic susceptibility
X Gauge including basis function
c Speed of light
c𝛼i MO expansion coefficients
Cxy Correlation function
C Quadrupole polarizability
C Matrix of coefficients
𝛿 A small variation or quantity
𝛿ij Kronecker delta (𝛿ij = 1 for i = j, 𝛿ij = 0 for i ≠ j)
𝛿(r) Dirac delta function (𝛿(r) = 0 for r ≠ 0)
Δ A finite difference or quantity
d Distance
D Dissociation energy
D𝛼𝛽 Density matrix element in AO basis
D Density matrix
D Zero field splitting tensor
𝜀 Matrix eigenvalue (energy related)
𝜀 van der Waals parameter
𝜀 Dielectric constant
𝜀 Small perturbation
𝜀 Energy, for one electron or as an individual term in a sum
𝜀[𝜌] Energy functional per electron
ε Energy matrix
e Error vector
E Energy, many particles or terms
Ee Electronic energy
E[𝜌] Energy functional
EA Electron affinity
𝜑 Block orbital
𝜙 Molecular orbital
𝜙 Electrostatic potential
Φ Slater determinant or similar approximate wave function
Φa

i ,Φab
ij Excited Slater determinants

f, g General functions
Fij, F𝛼𝛽 Fock matrix element in MO and AO basis
F Electric field
F Force
F Force constant matrix
F Fock operator or Fock matrix
𝛾AB Two-electron matrix element in semi-empirical methods
γ Second hyperpolarizability
γk Reduced density matrix of order k
gi Degeneracy factor
ge Electronic g-factor
gA Nuclear g-factor
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g Two-electron repulsion operator
g Gradient (first derivative)
g ESR g-tensor
G Gibbs free energy
Gxy Coulomb-type matrix elements in semi-empirical theory (x, y = s, p, d)
G Matrix containing square root of inverse atomic masses
G Tensor containing two-electron integrals
𝜂 Absolute hardness
h Planck’s constant
hij, h𝛼𝛽 Matrix element of a one-electron operator in MO and AO basis
h𝜇𝜈 Matrix element of a one-electron operator in semi-empirical theory
h Core or other effective one-electron operator
H Enthalpy
Hij Matrix element of a Hamiltonian operator between Slater determinants
Hxy Exchange-type matrix elements in semi-empirical theory (x, y = s, p, d)
H Hessian (second derivative matrix of a function)
H, He, Hn Hamiltonian operator or Hamiltonian matrix (general, electronic, nuclear)
ijkl Summation indices for occupied MOs
I Moment of inertia
I Unit matrix
I Nuclear magnetic moment or spin
IP, I𝜇 Ionization potential
Jij Coulomb integral
J Spin–spin coupling matrix
J Coulomb operator
J[𝜌] Coulomb functional
𝜅 Lagrange multiplier
𝜅 Transmission coefficient
𝜅 Compressibility constant
k Boltzmann’s constant
k Rate constant
k, kAB… Force constant (for atoms A, B,…)
k Wave vector
Kij Exchange integral
K Anharmonic constants (third derivative)
K Exchange operator
K[𝜌] Exchange functional
𝜆 Lagrange multiplier
𝜆 Matrix eigenvalue (general)
𝜆 General perturbation or scaling factor
𝜆 Hessian shift parameter
𝚲 Diagonal matrix
l, L Angular momentum quantum number
L Lagrange function
L Path length
l, L Angular momentum operator
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𝜇 Mulliken electronegativity, chemical potential
𝜇 Reduced or fictive mass
𝜇B Bohr magneton
𝜇N Nuclear magneton
𝜇, 𝜈, 𝜆, 𝜎 Basis functions (atomic orbitals) in semi-empirical methods
μ Dipole moment
m Mass, general or electron mass
m Magnetic dipole moment
M Number of basis functions or configurations
MA Nuclear mass
𝜈 Vibrational frequency
ni Orbital occupation number
N Number of particles
NA Avogadro’s number
O, P, Q General operators
π Generalized momentum operator
Π Product of diagonal elements in a Slater determinant
p Momentum operator or vector
P Probability
P Pressure
Pi Legendre polynomial
P, Pij Permutation operators (permuting indices i and j)
P, P1, P2 Perturbation operators (one- and two-electron)
q Charge on a particle (integer)
q Partition function (one particle)
q Normal or generalized coordinate
Q Atomic charge (can be fractional), fitted or from population analysis
Q Partition function (many particles)
Q Predictive correlation coefficient
Q Quadrupole moment in traced form
𝜌 Electron density, density matrix
𝜌 Bond order
r, 𝜃, 𝜙 Polar coordinates
rij Distance between electrons i and j
r Position vector(s), general or electronic
R Trust radius
R Gas constant
R Correlation coefficient
R, Rij, RAB, RAB Distance between atoms or nuclei, i and j or A and B
R Position vector, nuclear
𝜎 van der Waals collision parameter
𝜎 Order of rotational subgroup
𝜎 Charge density
𝜎2 Variance
σ NMR shielding tensor
σx,y,z Pauli 2 × 2 spin matrices
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s Electron spin operator
S Entropy
S Switching function
S Action
S𝛼𝛽 Overlap matrix element in AO basis
S, S2 Total spin and spin squared operators
𝜃(t) Heaviside step function (𝜃(t) = 0 for t < 0, 𝜃(t) = 1 for t > 0)
𝜃ABC Angle between atoms A, B and C
𝚯 Quadrupole moment in traceless form
ΘN

S,i Spin coupling function
𝜏 Heat or pressure bath coupling parameter
𝜏 Phase factor
𝜏 Imaginary time variable
𝜏 Orbital kinetic energy density
t Time
Δt Small (finite) time step
ta
i , tab

ij Cluster amplitudes
t Translational vector
t Normalized gradient or tangent vector
T Temperature
T Transition matrix
T, T1, T2,… Cluster operator (general, single, double,…, excitations)
T, Te, Tn Kinetic energy operator (general, electronic, nuclear)
T[𝜌] Kinetic energy functional, exact
Ts[𝜌] Kinetic energy functional, calculated from a Slater determinant
U Internal energy
U Bias potential
Ui Matrix element of a semi-empirical one-electron operator, usually parame-

terized
U Unitary matrix
v Velocity
V Volume
V, VAB, VAB Potential energy (between atoms A and B)
Vij Coulomb potential between particles i and j
Vn Potential energy parameter
veff, Veff Effective potential operators (one- or multielectron)
V, Vee, Vne, Vnn Potential (Coulomb) energy operator (general, electron–electron, nuclear–

electron, nuclear–nuclear)
𝜔 Electrophilicity
𝜔 Range separator parameter
𝜔 Excitation energy
𝜔 Frequency associated with an electric or magnetic field
𝜔ABCD Torsional angle between atoms A, B, C and D
𝜛 Phase factor
𝛀 Two-electron operator
wA Weighting factor for atom A
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W Energy or quasi-energy of an approximate wave function
Wi Perturbation energy correction at order i
Wk Wigner intracule of order k
W𝛼𝛽 Energy-weighted density matrix element in AO basis
W Matrix containing weighting factors
W Energy-weighted density matrix
𝜉 Collective variable
𝜉 Molecular surface parameter for calculating solvation energies
ξ Magnetizability
xi, yi, zi Cartesian coordinates for particle i
Δxi Component in a vector
𝚵 Hexadecapole moment
X, Y Cardinal numbers
Ψ, Ψe, Ψn Exact or multideterminant wave function (general, electronic, nuclear)
𝜁 Spin polarization
𝜁 Friction coefficient
Z Nuclear charge, exact
Z′ Nuclear charge, reduced by the number of core electrons
⟨n| Bra, referring to a function characterized by quantum number n
|n⟩ Ket, referring to a function characterized by quantum number n
⟨n|O|m⟩ Bracket (matrix element) of operator O between functions n and m
⟨O⟩ Average value of O
|O| Norm or determinant of O
⟨⟨O; P⟩⟩ Propagator of O and P
[O, P] Commutator of O and P ([O, P] = OP − PO)
∇ Gradient operator
∇2 Laplace operator
⋅ Entry-wise matrix product or tensor contraction
× Cross-product
⊗ Dyadic (outer) product
∇⋅ Divergence operator
∇× Curl operator
t Vector transposition
†, ∗ Complex conjugate
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The Variational Principle

The Variational Principle states that an approximate wave function has an energy that is above or
equal to the exact energy. The equality holds only if the wave function is exact. The proof is as follows.

Assume that we know the exact solutions to the Schrödinger equation:

HΨi = EiΨi, i = 0, 1, 2,… ,∞ (B.1)

There are infinitely many solutions and we assume that they are labeled according to their energies,
E0 being the lowest. Since the H operator is Hermitian, the solutions form a complete basis. We may
furthermore choose the solutions to be orthogonal and normalized:

⟨Ψi|Ψj⟩ = 𝛿ij (B.2)

An approximate wave function can be expanded in the exact solutions, since they form a complete
set:

Φ =
∞∑

i=0
aiΨi (B.3)

The energy of an approximate wave function is calculated as

W =
⟨Φ|H|Φ⟩

⟨Φ|Φ⟩
(B.4)

Inserting the expansion (B.3) we obtain

W =

∑∞
i=0

∑∞
j=0 aiaj⟨Ψi|H|Ψj⟩

∑∞
i=0

∑∞
j=0 aiaj⟨Ψi|Ψj⟩

(B.5)

Using the fact that HΨi = EiΨi and the orthonormality of the Ψi (Equations (B.1) and (B.2)), we
obtain

W =
∑∞

i=0 a2
i Ei

∑∞
i=0 a2

i
(B.6)
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The variational principle states that W ≥ E0 or, equivalently, W − E0 ≥ 0:

W − E0 =
∑∞

i=0 a2
i Ei

∑∞
i=0 a2

i
− E0 =

∑∞
i=0 a2

i (Ei − E0)
∑∞

i=0 a2
i

≥ 0 (B.7)

Since a2
i is always positive or zero and Ei − E0 is always positive or zero (E0 is by definition the lowest

energy), this completes the proof. Furthermore, in order for the equal sign to hold, all ai≠0 = 0 since
Ei≠0 − E0 is non-zero (neglecting degenerate ground states). This in turns means that a0 = 1, owing
to the normalization of Φ, and consequently the wave function is the exact solution.

This proof shows that any approximate wave function will have an energy above or equal to the
exact ground state energy. There is a related theorem, known as MacDonald’s Theorem, which states
that the nth root of a set of secular equations (e.g. a CI matrix) is an upper limit to the (n − 1)th
excited exact state, within the given symmetry subclass.1 In other words, the lowest root obtained by
diagonalizing a CI matrix is an upper limit to the lowest exact wave functions, the second root is an
upper limit to the exact energy of the first excited state, the third root is an upper limit to the exact
second excited state, and so on.

The Hohenberg–Kohn Theorems

The electron density is in wave mechanics given by the square of the wave function integrated over
N − 1 electron coordinates and the wave function is determined by solving the Schrödinger equation.
For a system of Nnuclei nuclei and Nelec electrons, the electronic Hamiltonian operator contains the
terms shown below:

He = −
Nelec∑

i=1

1
2∇

2
i −

Nelec∑

i=1

Nnuclei∑

A=1

ZA
|RA − ri|

+
Nelec∑

i=1

Nelec∑

j>i

1
|ri − rj|

+
Nnuclei∑

A=1

Nnuclei∑

B=1

ZAZB
|RA − RB|

(B.8)

The last term is a constant within the Born–Oppenheimer approximation. It is seen that the Hamil-
tonian operator is uniquely determined by the number of electrons and the potential created by the
nuclei, Vne, that is the nuclear charges and positions. This means that the ground state wave function
(and thereby the electron density) and ground state energy are also given uniquely by these quantities.

Assume now that two different external potentials (which may be from nuclei), Vext and V′
ext, result

in the same electron density, 𝜌. Two different potentials imply that the two Hamiltonian operators
are different, H and H′, and the corresponding lowest energy wave functions are different, Ψ and Ψ′.
Taking Ψ′ as an approximate wave function for H and using the variational principle yields

⟨Ψ′|H|Ψ′⟩ > E0

⟨Ψ′|H′|Ψ′⟩ + ⟨Ψ′|H − H′|Ψ′⟩ > E0

E′
0 +

⟨
Ψ′ |

|Vext − V′
ext
|
|Ψ′⟩ > E0

E′
0 + ∫

𝜌(r)
(

Vext − V′
ext
)

dr > E0

(B.9)

Similarly, taking Ψ as an approximate wave function for H′ yields

E0 −
∫
𝜌(r)

(
Vext − V′

ext
)

dr > E′
0 (B.10)
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Addition of these two inequalities gives E′
0 + E0 > E′

0 + E0, showing that the assumption was wrong.
In other words, for the ground state there is a one-to-one correspondence between the electron den-
sity and the nuclear potential, and thereby also with the Hamiltonian operator and the energy. In the
language of density functional theory, the energy is a unique functional of the electron density, E[𝜌].

Using the electron density as a parameter, there is a variational principle analogous to that in wave
mechanics. Given an approximate electron density 𝜌′ (assumed to be positive definite everywhere)
that integrates to the number of electrons and originates from a proper antisymmetric wave function,
the energy given by this density is an upper bound to the exact ground state energy, provided that the
exact functional is used:

∫
𝜌′(r)dr = Nelec

E0[𝜌′] ≥ E0[𝜌]
(B.11)

The Adiabatic Connection Formula

The Hellmann–Feynman theorem (Equation (11.40)) is given by

𝜕

𝜕𝜆
⟨Ψ𝜆|H𝜆|Ψ𝜆⟩ =

⟨

Ψ𝜆

|
|
|
|

𝜕H𝜆

𝜕𝜆

|
|
|
|
Ψ𝜆

⟩

(B.12)

With the Hamiltonian in Equation (6.10), this gives

H𝜆 = T + Vext(𝜆) + 𝜆Vee

𝜕

𝜕𝜆
⟨Ψ𝜆|H𝜆|Ψ𝜆⟩ =

⟨

Ψ𝜆

|
|
|
|

𝜕Vext(𝜆)
𝜕𝜆

+ Vee
|
|
|
|
Ψ𝜆

⟩ (B.13)

Integrating over 𝜆 between the limits 0 and 1 corresponds to smoothly transforming the non-
interacting reference to the real system:

∫

1

0

𝜕

𝜕𝜆
⟨Ψ𝜆|H𝜆|Ψ𝜆⟩d𝜆 =

∫

1

0

⟨

Ψ𝜆

|
|
|
|

𝜕Vext(𝜆)
𝜕𝜆

+ Vee
|
|
|
|
Ψ𝜆

⟩

d𝜆

⟨Ψ1|H1|Ψ1⟩ − ⟨Ψ0|H0|Ψ0⟩ = E1 − E0 =
∫

1

0

⟨

Ψ𝜆

|
|
|
|

𝜕Vext(𝜆)
𝜕𝜆

+ Vee
|
|
|
|
Ψ𝜆

⟩

d𝜆
(B.14)

The integration is done under the assumption that the density remains constant, that is Ψ0 and Ψ1
yield the same density. For the term involving the external potential, this allows the integration to be
written in terms of the two limits:

∫

1

0

⟨

Ψ𝜆

|
|
|
|

𝜕Vext(𝜆)
𝜕𝜆

|
|
|
|
Ψ𝜆

⟩

d𝜆 =
∫
𝜌(r)

(

∫

1

0

𝜕Vext(r, 𝜆)
𝜕𝜆

d𝜆
)

dr

=
∫
𝜌(r)(Vext(1) − Vext(0))dr

=
∫
𝜌(r)Vext(1)dr −

∫
𝜌(r)Vext(0)dr

(B.15)

The energy of the non-interacting (E0) system is given as follows since Vee makes no contribution:

E0 = ⟨Ψ0|T|Ψ0⟩ +
∫
𝜌(r)Vext(0)dr (B.16)
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Combining Equations (B.14), (B.15) and (B.16) yields

E1 = ⟨Ψ0|T|Ψ0⟩ +
∫
𝜌(r)Vext(1)dr +

∫

1

0
⟨Ψ𝜆|Vee|Ψ𝜆⟩d𝜆 (B.17)

Using the fact that Vext(1) = Vne and the definition of E1 (Equation (6.9)) we obtain

J[𝜌] + Exc[𝜌] =
∫

1

0
⟨Ψ𝜆|Vee|Ψ𝜆⟩d𝜆 (B.18)

The exchange–correlation energy can thus be obtained by integrating the electron–electron interac-
tion over the 𝜆 variable and subtracting the Coulomb part. The right-hand side of Equation (B.18) can
be written in terms of the second-order reduced density matrix, Equation (6.18), and the definition
of the exchange–correlation hole in Equation (6.37) allows the Coulomb energy to be separated out:

⟨Ψ𝜆|Vee|Ψ𝜆⟩ =
1
2 ∫

𝜌2(𝜆, r1, r2)
|r1 − r2|

dr1dr2

= 1
2 ∫

𝜌1(r1)𝜌1(r2)
|r1 − r2|

dr1dr2 +
1
2 ∫

𝜌1(r1)hxc(𝜆, r1, r2)
|r1 − r2|

dr1dr2

= J[𝜌] + 1
2 ∫

𝜌1(r1)hxc(𝜆, r1, r2)
|r1 − r2|

dr1dr2

(B.19)

Defining Vhole
xc as below gives the adiabatic connection formula (Equation (6.67)):

Vhole
xc (𝜆, r1) = 1

2 ∫

hxc(𝜆, r1, r2)
|r1 − r2|

dr2

Exc =
∫

1

0

⟨

Ψ𝜆
|
|
|
Vhole

xc (𝜆)||
|
Ψ𝜆

⟩

d𝜆

Exc =
∫
𝜌(r)

(

∫

1

0
Vhole

xc (𝜆, r)d𝜆
)

dr

(B.20)
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Atomic Units

It is convenient in electronic structure calculations to work in the atomic unit (au) system, which is
defined by setting me = e = ℏ = 1. From these values follow related quantities, as shown in Table C.1

Table C. The atomic unit system.

Symbol Quantity Value in au Value in SI units

me Electron mass 1 9.110 × 10−31 kg
e Electron charge 1 1.602 × 10−19 C
t Time 1 2.419 × 10−17 s
ℏ h/2𝜋. (atomic momentum unit) 1 1.055 × 10−34 J s
h Planck’s constant 2𝜋 6.626 × 10−34 J s
a0 Bohr radius (atomic distance unit) 1 5.292 × 10−11 m
EH Hartree (atomic energy unit) 1 4.360 × 10−18 J
c Speed of light 137.036 2.998 × 108 m/s
𝛼 Fine structure constant (= e2/ℏc 4𝜋𝜀0 = 1/c) 0.00729735 0.00729735
𝜇B Bohr magneton (= eℏ/2me) 1/2 9.274 × 10−24 J/T
𝜇N Nuclear magneton 2.723 × 10−4 5.051 × 10−27 J/T
4𝜋𝜀0 Vacuum permittivity 1 1.113 × 10−10 C2/J m
𝜇0 Vacuum permeability (4𝜋/c2) 6.692 × 10−4 1.257 × 10−6 N s2/C2
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Z-Matrix Construction

All calculations need a molecular geometry as input. This is commonly given by one of the following
three methods:

1. Cartesian coordinates
2. Internal coordinates
3. Via a graphical interface.

Generating Cartesian coordinates by hand is only realistic for small molecules. If, however, the geom-
etry is taken from outside sources, such as an X-ray structure, Cartesian coordinates are often the nat-
ural choice. Similarly, a graphical interface produces a set of Cartesian coordinates for the underlying
program, which carries out the actual calculation.

Generating internal coordinates such as bond lengths and angles by hand is relatively simple, even
for quite large molecules. One widely used method is the Z-matrix, where each atom is specified
in terms of a distance, angle and torsional angle to other atoms. It should be noted that internal
coordinates are not necessarily related to the actual bonding, they are only a convenient method
for specifying the geometry. The internal coordinates are usually converted to Cartesian coordinates
before any calculations are carried out. Geometry optimizations, however, are often done in internal
coordinates in order to remove the six (five) translational and rotational degrees of freedom.

Construction of a Z-matrix begins with a drawing of the molecule and a suitable numbering of
the atoms. Any numbering will result in a valid Z-matrix, although assignment of numerical values
to the parameters is greatly facilitated if the bonding and symmetry of the molecule is considered
when the numbering is performed (see the examples below). The Z-matrix specifies the position of
each atom in terms of a distance, an angle and a torsional angle relative to other atoms. The first
three atoms, however, are slightly different. The first atom is always positioned at the origin of the
coordinate system. The second atom is specified as having a distance to the first atom, and is placed
along one of the Cartesian axes (usually x or z). The third atom is specified by a distance to either
atom 1 or 2, and an angle to the other atom. All subsequent atoms need a distance, an angle and
a torsional angle to uniquely specify the position. The atoms are normally identified either by the
chemical symbol or by their atomic number.

Introduction to Computational Chemistry, Third Edition. Frank Jensen.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion Website: http://www.wiley.com/go/jensen/computationalchemistry3

iranchembook.ir/edu

http://www.wiley.com/go/jensen/computationalchemistry3


 Appendix D

If the molecular geometry is optimized by the program then only rough estimates of the parameters
are necessary. In terms of internal coordinates, this is fairly easy. Some typical bond lengths (Å) and
angles are given below:

A H: A C: 1.10; A O, N: 1.00; A S, P: 1.40
A B: A, B C, O, N: 1.40–1.50
A B: A, B C, O, N: 1.20–1.30
A B: A, B C, N: 1.20
A B: A C, B S, P: 1.80

Angles around sp3-hybridized atoms: 110◦
Angles around sp2-hybridized atoms: 120◦
Angles around sp-hybridized atoms: 180◦

Torsional angles around sp3-hybridized atoms: separated by 120◦
Torsional angles around sp2-hybridized atoms: separated by 180◦

Such estimates allow specification of molecules with up to 50–100 atoms fairly easily. For larger
molecules, however, it becomes cumbersome, and the molecule may instead be built from pre-
optimized fragments. This is typically done by means of a graphical interface, that is the molecule
is pieced together by selecting fragments (such as amino acids) and assigning the bonding between
the fragments.

Below are some examples of how to construct Z-matrices. Figure D.1 shows acetaldehyde.

Figure D. Atom numbering for acetaldehyde.

C1 0 0.00 0 0.0 0 0.0
O2 1 1.20 0 0.0 0 0.0
H3 1 1.10 2 120.0 0 0.0
C4 1 1.50 2 120.0 3 180.0
H5 4 1.10 1 110.0 2 0.0
H6 4 1.10 1 110.0 2 120.0
H7 4 1.10 1 110.0 2 −120.0
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The definition of the torsional angles is illustrated in Figure 2.7. To emphasize the symmetry
(Cs) of the above conformation, the Z-matrix may also be given in terms of symbolic variables, where
variables that are equivalent by symmetry have identical names.

C1
O2 1 R1
H3 1 R2 2 A1
C4 1 R3 2 A2 3 D1
H5 4 R4 1 A3 2 D2
H6 4 R5 1 A4 2 D3
H7 4 R5 1 A4 2 −D3

R1 = 1.20
R2 = 1.10
R3 = 1.50
R4 = 1.10
R5 = 1.10
A1 = 120.0
A2 = 120.0
A3 = 110.0
A4 = 110.0
D1 = 180.0
D2 = 0.0
D3 = 120.0

Some important things to notice:

1. Each atom must be specified in terms of atoms already defined, that is relative to atoms above.
2. Each specification atom can only be used once in each line.
3. The specification in terms of distance, angle and torsional angle has nothing to do with the bonding

in the molecule; for example the torsional angle for C4 in acetaldehyde is given to H3, but there is
no bond between O2 and H3. A Z-matrix, however, is usually constructed such that the distances,
angles and torsional angles follow the bonding. This makes it much easier to estimate reasonable
values for the parameters.

4. Distances should always be positive and angles always in the range 0◦–180◦. Torsional angles may
be taken in the range −180◦–180◦ or 0◦–360◦.

5. The symbolic variables show explicitly which parameters are constrained to have the same values,
that is H6 and H7 are symmetry equivalent and must therefore have the same distances and angles,
and a sign difference in the torsional angle. Although the R4 and R5 (and A3 and A4) parameters
have the same values initially, they will be different in the final optimized structure.

The limitation that the angles must be between 0◦ and 180◦ introduces a slight complication for linear
arrays of atoms, such as the cyano group in acetonitrile. Specification of the nitrogen in terms of a
distance to C2 and an angle to C1 does not allow a unique assignment of a torsional angle since the
C1 C2 N6 angle is linear, which makes the torsional angle undefined. There are two methods for
solving this problem, either by specifying N6 relative to C1 with a long distance:
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Figure D. Atom numbering for acetaldehyde.

C1
C2 1 R1
H3 1 R2 2 A1
H4 1 R2 2 A1 3 D1
H5 1 R2 2 A1 3 −D1
N6 1 R3 3 A2 4 D2

R1 = 1.50
R2 = 1.10
R3 = 2.70
A1 = 110.0
A2 = 110.0
D1 = 120.0
D2 = 120.0

Note that the variables imply that the molecule has C3v symmetry. Alternatively, a Dummy Atom (X)
may be introduced.

Figure D. Atom numbering for acetonitrile including a dummy atom.

C1
C2 1 R1
H3 1 R2 2 A1
H4 1 R2 2 A1 3 D1
H5 1 R2 2 A1 3 −D1
X6 2 R3 1 A2 3 D2
N7 2 R4 6 A3 1 D3

iranchembook.ir/edu



Appendix D 

R1 = 1.50
R2 = 1.10
R3 = 1.00
R4 = 1.20
A1 = 110.0
A2 = 90.0
A3 = 90.0
D1 = 120.0
D2 = 0.0
D3 = 180.0

A dummy atom is just a point in space and has no significance in the actual calculation. The
above two Z-matrices give identical Cartesian coordinates. The R3 variable has arbitrarily been
given a distance of 1.00 and the D2 torsional angle of 0.0◦ is also arbitrary – any other values may
be substituted without affecting the coordinates of the real atoms. Similarly, the A2 and A3 angles
should just add up to 180◦; their individual values are not significant. The function of a dummy atom
in this case is to break up the problematic 180◦ angle into two 90◦ angles. It should be noted that
the introduction of dummy atoms does not increase the number of (non-redundant) parameters,
although there are formally three more variables for each dummy atom. The dummy variables may
be identified by excluding them from the symbolic variable list or by explicitly forcing them to be
non-optimizable parameters.

When a molecule is symmetric, it is often convenient to start the numbering with atoms lying on a
rotation axis or in a symmetry plane. If there are no real atoms on a rotation axis or in a mirror plane,
dummy atoms can be useful for defining the symmetry element. Consider, for example, the cyclo-
propenyl system, which has D3h symmetry. Without dummy atoms, one of the C C bond lengths
will be given in terms of the two other C C distances and the C C C angle, and it will be compli-
cated to force the three C C bonds to be identical. By introducing two dummy atoms to define the
C3 axis, this becomes easy.

Figure D. Atom numbering for the cyclopropyl system.

X1
X2 1 1.00
C3 1 R1 2 90.0
C4 1 R1 2 90.0 3 120.0
C5 1 R1 2 90.0 3 −120.0
H6 1 R2 2 90.0 3 0.0
H7 1 R2 2 90.0 3 120.0
H8 1 R2 2 90.0 3 −120.0
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R1 = 0.80
R2 = 1.90

In this case there are only two genuine variables, the others are fixed by symmetry.
Let us finally consider two Z-matrices for optimization to transition structures, the Diels–Alder

reaction of butadiene and ethylene, and the [1,5]-hydrogen shift in (Z)-1,3-pentadiene. To enforce
the symmetries of the TSs (Cs in both cases) it is again advantageous to use dummy atoms.

Figure D. Atom numbering for the transition structure of the Diels–Alder reaction of butadiene and ethylene.

X1
X2 1 1.00
C3 1 R1 2 90.0
C4 1 R1 2 90.0 3 180.0
C5 3 R2 1 A1 2 180.0
C6 4 R2 1 A1 2 180.0
C7 3 R3 1 A2 2 D1
C8 4 R3 1 A2 2 −D1
H9 3 R4 5 A3 6 D2
H10 3 R5 5 A4 6 −D3
H11 4 R4 6 A3 5 −D2
H12 4 R5 6 A4 5 D3
H13 5 R6 3 A5 1 −D4
H14 6 R6 4 A5 1 D4
H15 7 R7 8 A6 4 D5
H16 7 R8 8 A7 4 −D6
H17 8 R7 7 A6 3 −D5
H18 8 R8 7 A7 3 D6

R1 = 1.40
R2 = 1.40
R3 = 2.20
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R4 = 1.10
R5 = 1.10
R6 = 1.10
R7 = 1.10
R8 = 1.10
A1 = 60.0
A2 = 70.0
A3 = 120.0
A4 = 120.0
A5 = 120.0
A6 = 120.0
A7 = 120.0
D1 = 60.0
D2 = 170.0
D3 = 30.0
D4 = 170.0
D5 = 100.0
D6 = 100.0

The mirror plane is defined by the two dummy atoms and the fixing of the angles and torsional
angle of the first two carbons. The torsional angles for atoms C5 and C6 are dummy variables as
they only define the orientation of the plane of the first four carbon atoms relative to the dummy
atoms, and may consequently be fixed at 180◦. Note that the C5 C6 and C7 C8 bond distances are
given implicitly in terms of the R2/A1 and R3/A2 variables. The presence of such “indirect” variables
means that some experimentation is necessary for assigning proper values to the “direct” variables.
The forming C C bond is given directly as one of the Z-matrix variables, R3, which facilitates a search
for a suitable start geometry for the TS optimization, for example by running a series of constrained
optimizations with fixed R3 distances.

The [1,5]-hydrogen shift in (Z)-1,3-pentadiene is an example of a “narcissistic” reaction, with the
reactant and product being identical. The TS is therefore located exactly at the halfway point and has
a symmetry different from either the reactant or product. By suitable constraints on the geometry
the TS may therefore be located by a minimization within a symmetry-constrained geometry.

Figure D. Atom numbering for the transition structure for the [1,5]-hydrogen shift in (Z)-1,3-pentadiene.
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X1
X2 1 1.00
X3 1 1.00 2 90.0
C4 1 R1 2 90.0 3 90.0
C5 1 R1 2 90.0 3 −90.0
C6 4 R2 1 A1 2 180.0
C7 5 R2 1 A1 2 180.0
C8 1 R3 3 A2 2 180.0
H9 4 R4 6 A3 8 −D1
H10 4 R5 6 A4 8 D2
H11 5 R4 7 A3 8 D1
H12 5 R5 7 A4 8 −D2
H13 6 R6 4 A5 1 D3
H14 7 R6 5 A5 1 −D3
H15 1 R7 3 A6 2 180.0
H16 1 R8 2 A7 3 0.0

R1 = 1.30
R2 = 1.40
R3 = 2.10
R4 = 1.10
R5 = 1.10
R6 = 1.10
R7 = 3.20
R8 = 0.70
A1 = 80.0
A2 = 90.0
A3 = 120.0
A4 = 120.0
A5 = 120.0
A6 = 90.0
A7 = 60.0
D1 = 160.0
D2 = 60.0
D3 = 160.0

The mirror plane is defined by the dummy atoms. The migrating hydrogen H16 is not allowed to
move out of the plane of symmetry and must consequently have the same distance to C4 and C5. A
minimization will locate the lowest energy structure within the given Cs symmetry, and a subsequent
frequency calculation will reveal that the optimized structure is a TS, with the imaginary frequency
belonging to the a′′ representation (breaking the symmetry).
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First and Second Quantization

The notation used in this book is in terms of first quantization. The electronic Hamilton operator, for
example, is written as

He = −
Nelec∑

i

1
2∇

2
i −

Nnuclei∑

a

Nelec∑

i

Za
|Ra − ri|

+
Nelec∑

i

Nelec∑

j>i

1
|ri − rj|

+
Nnuclei∑

a

Nnuclei∑

b>a

ZaZb
|Ra − Rb|

(E.1)

A single determinant wave function is given as an antisymmetized product of orbitals (Equation
(3.21)):

Φ = A[𝜙1(1)𝜙2(2)⋯𝜙N (N)] (E.2)

A matrix element of the Hamilton operator over the wave function in Equation (E.2) can be written
as a sum over one- and two-electron integrals (Equation (3.32)):

⟨Φ|He|Φ⟩ =
Nelec∑

i
⟨𝜙i|hi|𝜙i⟩ +

1
2

Nelec∑

ij
(⟨𝜙i𝜙j|g|𝜙i𝜙j⟩ − ⟨𝜙i𝜙j|g|𝜙j𝜙i⟩) + Vnn (E.3)

There is another commonly used notation known as second quantization.1,2 The wave function
in this language is written as a series of creation operators acting on the vacuum state. A creation
operator a†i working on the vacuum state generates an (occupied) molecular orbital i:

𝜙i = a†i |0⟩ (E.4)

The determinantal wave function in Equation (E.2) can be generated as

Φ = a†1a†2 ⋯ a†N |0⟩ (E.5)

The opposite of a creation operator is an annihilation operator ai, which removes orbital i from the
wave function it is acting on. The product of operators a†j ai removes orbital i and creates orbital j, that
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is it replaces the occupied orbital i with unoccupied orbital j. The antisymmetry of the wave function
is built into the operators by the following anticommutator relationships:

[
a†i , a†j

]

+ = a†i a†j + a†j a†i = 0 (E.6)
[ai, aj]+ = aiaj + ajai = 0 (E.7)

[
a†i , aj

]

+ = a†i aj + aja
†
i = 𝛿ij (E.8)

Equations (E.6) and (E.7) show that a†i a†i = aiai = 0.
The Hamilton operator in Equation (E.1) is in a second quantization given as (note the summation

now is over the full set of orbitals)

He =
Norb∑

pq
hpqa†paq +

1
2

Norb∑

pqrs
gpqrsa†pa†r aqas + Vnn

hpq = ⟨𝜙p|hi|𝜙q⟩ ; gpqrs = ⟨𝜙p𝜙r|g|𝜙q𝜙s⟩

(E.9)

The exponential orbital transformation in Equation (3.65) can be written as

φ′ = φeX (E.10)
X =

∑

ai
xaia

†
aai ; xai = −xia (E.11)

A CCSD wave function (Equation (4.65)) can be written as

|ΨCCSD⟩ = eT1+T2 |ΦHF⟩ (E.12)
T1 =

∑

ai
ta
i a†aai (E.13)

T2 = 1
4
∑

aibj
tab
ij a†aaia

†
baj (E.14)
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3-21G basis set 201
6-31G basis set 201
6-311G basis set 201

a
ab initio 88
Ab Initio Molecular Dynamics 480
Absolute Localized Molecular Orbital 525
Accelerated Molecular Dynamics 490
acceptance ratio 473
accurate 584
Adaptive Bias Force 490
adiabatic approximation 92
Adiabatic Connection Formula 252, 616
adjoint 545
ADMM, see Auxiliary Density Matrix Method
AIMD, see Ab Initio Molecular Dynamics
allowed reaction 527
alternating least squares 574
AM1 281
AMBER 63
AMOEBA 63
amplitudes 158
angular correlation 192
anharmonicity 387
annihilation operator 627
ANO, see Atomic Natural Orbital
antarafacial 527
antisymmetrizing operator 95
Arrhenius expression 463
Artificial Force Induced Reaction 425
Artificial Neural Network 597
associative 561

atomic multipoles 41
Atomic Natural Orbitals 203
atomic units 90, 618
attachment density matrix 181
attractors 324
augmented Hessian method 410
autoscaling 589
auxiliary basis set 117, 211
Auxiliary Density Matrix Method 117
average 583
Average link 599
Averaged Coupled-Pair Functional 164
averaged quasi-energy 372
avoided crossing 92

b
B3LYP 252
B3PW91 253
B97 253
Baker–Campbell–Hausdorff expansion 160, 562
band gap 121
basis set expansion 570
Basis Set Incompleteness Error 228
Basis Set Superposition Error 226
Bell correction 485
Bell–Evans–Polanyi principle 534
bending energy 23
BHLYP 252
bimodal 585
bimolecular reaction 460
Bloch theorem 120
Blue Moon sampling 489
Bohr magneton 305
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Boltzmann probability function 465
BOMD, see Born–Oppenheimer Molecular

Dynamics
bond critical points 326
bond dipole 37
Bond Dissociation Curve 389
bond functions 227
bond order 320
Born model 506
Born–Oppenheimer approximation 92
Born–Oppenheimer Molecular Dynamics 481
bra 90, 561
bracket 561
bra-ket notation 90
Bravais lattice 119
Breit interaction 307
Brillouin zone 120
Brillouin’s theorem 130, 153, 159
Brownian dynamics 479
Broyden–Fletcher–Goldfarb–Shanno 411
Brueckner theory 163
BSSE, see Basis Set Superposition Error
Buckingham potential 33
buffered 14-7 33

c
cage critical point 326
CAM-B3LYP 255
canonical decomposition 573
canonical molecular orbital 99
canonical orthogonalization 564
canonical polyadic 573
Car–Parrinello Molecular Dynamics 481
CASSCF, see Complete Active Space Self-Consistent

Field
centered 588
central field model 12
Centroid link 599
CG, see Coarse Grained
chain method 423
charge controlled 516
charge iteration 284
Charge Model 5 328
charge penetration 41–42
Charge-On-Spring 43
charge-transfer 182
CHARMM 63
CHELP 321
CHELPG 321
Chemical Hamiltonian Approach 227
chemist’s notation 103

Cholesky decomposition 118
CI, see Configuration Interaction
Climbing Image method 424
cluster analyses 598
CMIRS, see Composite Method for Implicit

Representation of Solvent
CNDO, see Complete Neglect of Differential Overlap
Coarse Grained 67
collective variables 488
COMFA, see COmparative Molecular Field Analysis
commutative 561
commutator 561
COmparative Molecular Field Analysis 596
Complete Active Space Self-Consistent Field 144
Complete Basis Set models 217
Complete Neglect of Differential Overlap 277
Complete link 599
complex conjugate 544
complex number 544
Composite Method for Implicit Representation of

Solvent 509
Concerted Rotations Involving Self-consistent

Proposal 474
condition number 554
COnductor-like Screening MOdel 509
Configuration Interaction 128
Configurational State Functions 129
conformational flooding 490
conical intersection 449, 534
Conjugate Gradient method 408
Conjugate Peak Refinement method 423
Conjugate Residual with OPtimal trial vectors 414
connected 158
conrotatory 531
contracted basis set 196
contracted function 194
core integrals 104
corner cutting 486
correlation coefficient 587
correlation consistent basis set 204
correlation functions 498
correlation hole 242
COS, see Charge-On-Spring
COSMO, see COnductor-like Screening MOdel
Coulomb gauge 306
Coulomb hole 243
Coulomb integral 97
Coulomb operator 97
Coulomb potential 37
Coulson–Fischer 293
CounterPoise correction 226
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coupled cluster 157
Coupled Electron Pair Approximation 164
Coupled Perturbed Hartree–Fock 354
CPHF, see Coupled Perturbed Hartree–Fock
CPMD, see Car-Parrinello Molecular Dynamics
creation operator 627
CRISP, see Concerted Rotations Involving

Self-consistent Proposal
CROP, see Conjugate Residual with OPtimal trial

vectors
cross product 547
cross terms 48
cross-correlation 498
crossover temperature 485
cross-validations 589
crystalline orbital 120
CSF, see Configurational State Functions
curl 562
cusp 310
cutoff distance 69

d
damping function 45
Darwin correction 303
dative bonds 137
Davidon–Fletcher–Powell 411
Davidson algorithm 558
Davidson correction 163
DBOC, see diagonal Born–Oppenheimer correction
DEC, see Divide-Expand-Consolidate
degree of contraction 197
delocalized internal coordinates 418
dendrogram 603
Density Cumulant functional Theory 239
density difference matrix 181
density fitting 117
Density Functional Theory 233
density matrix 102
Density-based Energy Decomposition Analysis 525
detachment density matrix 181
detailed balance 473
determinant 547
DFT, see Density Functional Theory
diagonal Born–Oppenheimer correction 93
diagonal correction 92
Diamagnetic Shielding operator 361
Diamagnetic Spin–Orbit operator 361
dielectric constant 37
Different Orbitals for Different Spins 106
differential equations 565
diffuse functions 200

diffusion methods 438
DIIS, see Direct Inversion in the Iterative Subspace
dimer method 429
dipole moment 385, 397
Dirac equation 300
Dirac–Fock equation 310
direct CI 134
Direct Inversion in the Iterative Subspace 109, 413
disconnected 158
disrotatory 531
distance geometry methods 439
Distributed Multipole Analysis 41, 322
distribution functions 497
divergence 562
Divide-and-Conquer 173
Divide–Expand–Consolidate 172
DMA, see Distributed Multipole Analysis
DO, see Drude Oscillator
docking 440
DODS, see Different Orbitals for Different Spins
dot product 546
double hybrid 253
Double Zeta 191
Double Zeta plus Polarization 193
double-bar notations 103
Douglas–Kroll–Hess 312
Drude Oscillator 43
Drude particle 44
Dunning–Huzinaga basis set 202
dyadic product 547
dynamical electron correlation 125, 144
dyotropic reaction 534

e
ECP, see Effective Core Potential
Edmiston–Ruedenberg localization 331
Effective Core Potential 223
Effective Fragment Potential 80
EFP, see Effective Fragment Potential
EHT, see Extended Hückel Theory
eigenvalues 552
eigenvectors 552
electric dipole moment 343
Electron Correlation 124
electron density 236
electron pair-density 237
electronegativity 43, 521
electronic chemical potential 521
electronic Hamiltonian operator 90
Electron–Nuclear Dynamics 487
electrostatic energy 37

iranchembook.ir/edu



 Index

electrostatic potential 39, 320
ensemble 466
ensemble average 471
ensemble DFT 268
enthalpy 454
entropy 454
EOM-CC, see Equation-Of-Motion Coupled Cluster
Equation-Of-Motion Coupled Cluster 374
ergodic hypothesis 466, 471
error function 405
ESR g-tensor 347
EVB, see Extended Valence Bond
even-tempered basis sets 195
Evolutionary Algorithm 437
Ewald sum methods 492
eXact 2-Component 311
exact exchange 252
exchange hole 242
exchange integral 97
exchange operator 97
exchange–correlation hole 242
excited states 176
extended Hirshfeld charge 328
Extended Hückel Theory 283
extended Lagrange functions 481
Extended Transition State 524
Extended Valence Bond 77

f
Fast Fourier Transform 577
Fast Multipole Moment 116, 493
Fermi Contact operator 308, 361
Fermi hole 243
FFT, see Fast Fourier Transform
first quantization 627
First-Order Regular Approximation 304
Fletcher–Reeves 409
fluctuating charge 43
FMM, see Fast Multipole Moment
FMO, see Fragment Molecular Orbital
FMO, see Frontier Molecular Orbital
Fock operator 98
Foldy–Wouthuysen 311
FORA, see First-Order Regular Approximation
forbidden reaction 527
force field 20
FORS, see Full Optimized Reaction Space
Foster–Boys localization 330
four components 301
Fourier transformation 577
FQ, see fluctuating charge
Fragment Molecular Orbital 173

Free Energy Perturbation 499
Frontier Molecular Orbital 515
frozen virtuals 126
frozen-core approximation 126, 225
Fukui function 519
Full Optimized Reaction Space 144
function 560
functional 560
fuzzy clustering 600

g
GASSCF, see Generalized Active Space

Self-Consistent Field
Gauge Including/Invariant Atomic Orbitals 367
gauge origin 304, 359, 366
Gaunt interaction 307
Gaussian-n models 216
Gaussian-Type Orbitals 189
GB/SA, see Generalized Born/Surface Area
general contraction 197
general Hartree–Fock 112
general relativity 301
Generalized Active Space Self-Consistent Field 145
Generalized Atomic Polar Tensor 329
Generalized Born model 507
Generalized Born/Surface Area 507
generalized frequencies 557
Generalized Gradient Approximation 248
generalized inverse matrix 548, 553
generalized momentum 359
generalized momentum operator 304
Generalized Valence Bond 297
genetic algorithm 437
Geometry Direct Inversion in the Iterative

Subspace 414
GGA, see Generalized Gradient Approximation
ghost orbitals 227
GIAO, see Gauge Including/Invariant Atomic

Orbitals
Gibbs free energy 454
global minimum 405, 433
gradient 562
Gram–Schmidt orthogonalization 563
Gravitational Search Algorithm 438
GROMOS 63
Growing String method 424
GTO, see Gaussian-Type Orbitals

h
half-electron method 107
Hamilton function 477
Hard and Soft Acid and Base 521
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hardness 43, 521
harmonic oscillator 457, 556
Hartree–Fock 88
Hartree–Fock equations 99
Hartree–Fock limit 105
HCTH93, HCTH147, HCTH407 249
Heitler–London 292
Hellmann–Feynman force 369
Hellmann–Feynman theorem 349
Helmholtz free energy 453
Hermitian 90, 545
Hessian update methods 411
Hestenes–Stiefel 409
HF, see Hartree–Fock
hierarchical clustering 602
Higher Order PLS 572
Highest Occupied Molecular Orbital 516
Hill potential 33
Hirshfeld charge 327
HISS 255
Hohenberg–Kohn theorems 615
holonomic constraints 489
HOMO, see Highest Occupied Molecular Orbital
HSAB, see Hard and Soft Acid and Base
hydrogen bonding 37
Hylleraas 167
hyperconjugation 49
hyperdynamics 490
hyperfine coupling 347, 364
hyperpolarizability 344
hysteresis 419

i
idempotent 110
identity reactions 538
IGLO, see Individual Gauge for Localized Orbitals
ill-conditioned 549
independent-particle model 88
indirect spin–spin coupling 365
Individual Gauge for Localized Orbitals 367
INDO, see Intermediate Neglect of Differential

Overlap
induced fit docking 441
induced Point Dipole 43–44
inner product 546
instability point 138, 391
instanton theory 486
Integral Equation Formalism PCM 509
Intermediate Neglect of Differential Overlap 277
intermediately normalized 149
interval arithmetic 582
intrinsic activation energy 536

Intrinsic Reaction Coordinate 420, 441, 484, 557
inverse matrix 548
IRC, see Intrinsic Reaction Coordinate
isodesmic 222
isogyric 222
iterative Hirshfeld charge 328

j
jackknife 589
Jacob’s ladder 247
Janak theorem 263
Jastrow factor 184

k
ket 90, 561
kinetic balance 310
Kirkwood model 507
Kirkwood–Westheimer model 507
Kitaura and Morokuma decomposition 524
Klopman–Ohno formula 286
K-means clustering 600
Kohn–Sham equations 261
Koopmans’ theorem 100
KT3 250
kurtosis 584

l
Lagrange function 476
Lagrange method 432
Lagrange multiplier 98
Langevin equation of motion 479
Laplace transform 577
Laplacian 563
large component 301
Large Curvature Ground state 486
latent variables 591
LCAO, see Linear Combination of Atomic Orbitals
LDA, see Local Density Approximation
leap-frog algorithm 475
least squares 585
leave-one-out 589
left–right correlation 137
Legendre polynomial 196
Lennard-Jones potential 33
level shifting 108
Lieb–Oxford condition 245
LINCS 477
Linear Combination of Atomic Orbitals 101
Linear Coupled Cluster Doubles 164
linear dependence 215
Linear Interaction Energy 501
Linear Synchronous Transit 419
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Linearized Poisson–Boltzmann Equation 506
Line-Then-Plane algorithm 421
linkage 599
LMO, see Localized Molecular Orbital
Local Density Approximation 247
local elevation methods 490
Local Spin Density Approximation 247
Localized Molecular Orbitals 329
localized orbital 172
Localized Orbital/local oRiGin 367
Locally Updated Planes 423
London Atomic Orbitals 367
long-range corrected 254
LoProp 337
Lorentz transformation 299
LORG, see Localized Orbital/local oRiGin
Lowest Unoccupied Molecular Orbital 516
low-mode search 435
LSDA, see Local Spin Density Approximation
LST, see Linear Synchronous Transit
LUMO, see Lowest Unoccupied Molecular Orbital
LYP 249
Löwdin orthogonalization 564
Löwdin population analysis 318

m
M11 258
M11L 258
MAD, see Mean Absolute Deviation
magnetic dipole moment 345
magnetizability 345
Many-Body Perturbation Theory 148
Marcus equation 535
MARTINI 67
mass-polarization operator 90
mass–velocity correction 303
matrix 545
Matrix Product State 574
MBPT, see Many-Body Perturbation Theory
MC, see Monte Carlo
MCMM, see Multi-Configurations Molecular

Mechanics
MCSCF, see Multi-Configuration Self-Consistent

Field
MD, see Molecular Dynamics
mean 583
Mean Absolute Deviation 585
mean-field approximation 100
median 585
Merck Molecular Force Field 33
metadynamics 490

meta-GGA 251
Metropolis procedure 469
MINDO 278
minimum 404
minimum basis set 190
Minimum Energy Path 441, 484
Minimum Energy Path Semi-classical Adiabatic

Ground state 486
mixed basis sets 194
MM2 20, 63
MM3 20, 63
MM4 63
MMFF, see Merck Molecular Force Field 64
MMP2 50
MN12L 258
MN12SX 258
MNDO 280
MO, see molecular orbital
mode 585
Molecular Dynamics 436, 470
Molecular Electrostatic Potential 320
molecular mechanics 20
molecular orbitals 94
Møller–Plesset perturbation theory 151
moments of inertia 456
momentum representation 484
Monte Carlo methods 469
More O’Ferrall, Jencks diagrams 538
Morse potential 23
MP, see Møller–Plesset perturbation theory
MRCI, see Multi-Reference Configuration Interaction
Mulliken notation 103
Mulliken population analysis 318
Multi-Configuration Self-Consistent Field 143
Multi-Configurations Molecular Mechanics 77
Multiple Linear Regression 590
Multi-Reference Configuration Interaction 148

n
N12SX 258
Natural Atomic Orbital 334
natural bond length 24
Natural Bond Orbital 334
Natural Energy Decomposition Analysis 525
Natural Geminals 333
Natural Internal Coordinates 417
Natural Orbital Functionals 240
Natural Orbitals 203, 333
Natural Transition Orbitals 182
NDDO, see Neglect of Diatomic Differential Overlap
Neglect of Diatomic Differential Overlap 276
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neighbor list 70
Newton’s second equation 474
Newton–Raphson 409, 428
NIPALS algorithm 593
NMR shielding 347, 365
NO, see Natural Orbital
NOMO, see Nuclear Orbital plus Molecular Orbital
non-adiabatic coupling elements 92
non-bonded energy 32
non-local 249
norm 546
norm-conserving pseudo-potentials 225
Nosé–Hoover methods 479
Nuclear Orbital plus Molecular Orbital 93
nuclear quadrupole moment 358
Nudged Elastic Band method 424
numerical Hartree–Fock 101, 210

o
O3LYP 253
Occupation Number 333
Occupation Restricted Maximum Orbital

Spaces 145
octonions 544
OM1, OM2, OM3 283
one-electron integrals 104
one-electron operator 95
ONIOM 80
Onsager model 507
operator 560
OPLS 64
optimally tuned 255
Optimized Virtual Orbital 174
OPTX 249
orbital controlled 516
orbital correlation diagram 527
Orbital Specific Virtual 174
orbital-Zeeman 360
orbit–orbit operator 309
origin 543
ORMAS, see Occupation Restricted Maximum

Orbital Spaces
orthogonal matrix 549
orthonormal 91
outer product 547
out-of-plane bending energy 28
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