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Preface

The original edition of this book, written in Chinese for students in mainland
China, was published in 2001 jointly by Chinese University Press and Peking
University Press. The second edition was published by Peking University Press
in 2006. During the preparation of the present English edition, we took the
opportunity to correct some errors and to include updated material based on the
recent literature.

The book is derived from lecture notes used in various courses taught by the
three authors at The Chinese University of Hong Kong and Peking University.
The course titles include Chemical Bonding, Structural Chemistry, Structure
and Properties of Matter, Advanced Inorganic Chemistry, Quantum Chemistry,
Group Theory, and Chemical Crystallography. In total, the authors have accu-
mulated over 100 man-years of teaching at the two universities. The book is
designed as a text for senior undergraduates and beginning postgraduate stu-
dents who need a deeper yet friendly exposure to the bonding and structure of
chemical compounds.

Structural chemistry is a branch of science that attempts to achieve a com-
prehensive understanding of the physical and chemical properties of various
compounds from a microscopic viewpoint. In building up the theoretical frame-
work, two main lines of development—electronic and spatial—are followed.
In this book, both aspects and the interplay between them are stressed. It is
hoped that our presentation will provide students with sufficient background and
factual knowledge so that they can comprehend the exciting recent advances
in chemical research and be motivated to pursue careers in universities and
research institutes.

This book is composed of three Parts. Part I, consisting of the first five
chapters, reviews the basic theories of chemical bonding, beginning with a
brief introduction to quantum mechanics, which is followed by successive
chapters on atomic structure, bonding in molecules, and bonding in solids.
Inclusion of the concluding chapter on computational chemistry reflects its
increasing importance as an accessible and valuable tool in fundamental
research.

Part II of the book, again consisting of five chapters, discusses the symmetry
concept and its importance in structural chemistry. Chapter 6 introduces students
to symmetry point groups and the rudiments of group theory without delv-
ing into intricate mathematical details. Chapter 7 covers group theory’s most
common chemical applications, including molecular orbital and hybridization
theories, molecular vibrations, and selection rules. Chapter 8 utilizes the sym-
metry concept to discuss the bonding in coordination complexes. The final two
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vi Preface

chapters address the formal description of symmetry in the crystalline state and
the structures of basic inorganic crystals and some technologically important
materials.

Part III constitutes about half of the book. It offers a succinct description of the
structural chemistry of the elements in the Periodic Table. Specifically, the main-
group elements (including noble gases) are covered in the first seven chapters,
while the last three deal with the rare-earth elements, transition-metal clusters,
and supramolecular systems, respectively. In all these chapters, selected exam-
ples illustrating interesting aspects of structure and bonding, generalizations of
structural trends, and highlights from the recent literature are discussed in the
light of the theoretical principles presented in Parts I and II.

In writing the first two Parts, we deliberately avoided the use of rigorous
mathematics in treating various theoretical topics. Instead, newly introduced
concepts are illustrated with examples based on real chemical compounds or
practical applications. Furthermore, in our selective compilation of material
for presentation in Part III, we strive to make use of the most up-to-date crys-
tallographic data to expound current research trends in structural inorganic
chemistry.

On the ground of hands-on experience, we freely make use of our own
research results as examples in the presentation of relevant topics throughout
the book. Certainly there is no implication whatsoever that they are particularly
important or preferable to alternative choices.

We faced a dilemma in choosing a fitting title for the book and eventually
settled on the present one. The adjective “inorganic” is used in a broad sense
as the book covers compounds of representative elements (including carbon)
in the Periodic Table, organometallics, metal–metal bonded systems, coordi-
nation polymers, host–guest compounds and supramolecular assemblies. Our
endeavor attempts to convey the message that inorganic synthesis is inher-
ently less organized than organic synthesis, and serendipitous discoveries are
being made from time to time. Hopefully, discussion of bonding and structure
on the basis of X-ray structural data will help to promote a better under-
standing of modern chemical crystallography among the general scientific
community.

Many people have contributed to the completion of this book. Our past and
present colleagues at The Chinese University of Hong Kong and Peking Univer-
sity have helped us in various ways during our teaching careers. Additionally,
generations of students have left their imprint in the lecture notes on which
this book is based. Their inquisitive feedback and suggestions for improvement
have proved to be invaluable. Of course, we are solely responsible for deficien-
cies and errors and would most appreciate receiving comments and criticisms
from prospective readers.

The publication of the original Chinese edition was financed by a special
grant from Chinese University Press, to which we are greatly indebted. We
dedicate this book to our mentors: S.M. Blinder, You-Qi Tang, James Trotter
and the late Hson-Mou Chang. Last but not least, we express our gratitude to
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Preface vii

our wives, Oi-Ching Chong Li, Zhi-Fen Liu, and Gloria Sau-Hing Mak, for
their sacrifice, encouragement and unflinching support.

Wai-Kee Li
The Chinese University of Hong Kong

Gong-Du Zhou
Peking University

Thomas Chung Wai Mak
The Chinese University of Hong Kong
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IFundamentals of Bonding
Theory

The theory of chemical bonding plays an important role in the rapidly evolving
field of structural inorganic chemistry. It helps us to understand the structure,
physical properties and reactivities of different classes of compounds. It is gen-
erally recognized that bonding theory acts as a guiding principle in inorganic
chemistry research, including the design of synthetic schemes, rationaliza-
tion of reaction mechanisms, exploration of structure–property relationships,
supramolecular assembly and crystal engineering.

There are five chapters in Part I: Introduction to quantum theory, The elec-
tronic structure of atoms, Covalent bonding in molecules, Chemical bonding in
condensed phases and Computational chemistry. Since most of the contents of
these chapters are covered in popular texts for courses in physical chemistry,
quantum chemistry and structural chemistry, it can be safely assumed that read-
ers of this book have some acquaintance with such topics. Consequently, many
sections may be viewed as convenient summaries and frequently mathematical
formulas are given without derivation.

The main purpose of Part I is to review the rudiments of bonding theory, so
that the basic principles can be applied to the development of new topics in
subsequent chapters.
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1Introduction to Quantum
Theory

In order to appreciate fully the theoretical basis of atomic structure and chemi-
cal bonding, we need a basic understanding of the quantum theory. Even though
chemistry is an experimental science, theoretical consideration (especially pre-
diction) is now playing a role of increasing importance with the development
of powerful computational algorithms. The field of applying quantum theo-
retical methods to investigate chemical systems is commonly called quantum
chemistry.

The key to theoretical chemistry is molecular quantum mechanics, which
deals with the transference or transformation of energy on a molecular scale.
Although the quantum mechanical principles for understanding the electronic
structure of matter has been recognized since 1930, the mathematics involved in
their application, i.e. general solution of the Schrödinger equation for a molec-
ular system, was intractable at best in the 50 years or so that followed. But
with the steady development of new theoretical and computational methods,
as well as the availability of larger and faster computers with reasonable price
tags during the past two decades, calculations have sometimes become almost
as accurate as experiments, or at least accurate enough to be useful to experi-
mentalists. Additionally, compared to experiments, calculations are often less
costly, less time-consuming, and easier to control. As a result, computational
results can complement experimental studies in essentially every field of chem-
istry. For instance, in physical chemistry, chemists can apply quantum chemical
methods to calculate the entropy, enthalpy, and other thermochemical functions
of various gases, to interpret molecular spectra, to understand the nature of the
intermolecular forces, etc. In organic chemistry, calculations can serve as a
guide to a chemist who is in the process of synthesizing or designing new
compounds; they can also be used to compare the relative stabilities of various
molecular species, to study the properties of reaction intermediates and tran-
sition states, and to investigate the mechanism of reactions, etc. In analytical
chemistry, theory can help chemists to understand the frequencies and intensi-
ties of the spectral lines. In inorganic chemistry, chemists can apply the ligand
filed theory to study the transition metal complexes. An indication that com-
putational chemistry has been receiving increasing attention in the scientific
community was the award of the 1998 Nobel Prize in chemistry to Professor
J.A. Pople and Professor W. Kohn for their contributions to quantum chemistry.
In Chapter 5, we will briefly describe the kind of questions that may be fruitfully
treated by computational chemistry.
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4 Fundamentals of Bonding Theory

In this chapter, we discuss some important concepts of quantum theory. A
clear understanding of these concepts will facilitate subsequent discussion of
bonding theory.

1.1 Dual nature of light and matter

Around the beginning of the twentieth century, scientists had accepted that light
is both a particle and a wave. The wave character of light is manifested in its
interference and diffraction experiments. On the other hand, its corpuscular
nature can be seen in experiments such as the photoelectric effect and Compton
effect. With this background, L. de Broglie in 1924 proposed that, if light is
both a particle and a wave, a similar duality also exists for matter. Moreover,
by combining Einstein’s relationship between energy E and mass m,

E = mc2, (1.1.1)

where c is the speed of light, and Planck’s quantum condition,

E = hν, (1.1.2)

where h is Planck’s constant and ν is the frequency of the radiation, de Broglie
was able to arrive at the wavelength λ associated with a photon,

λ = c
ν

= hc
hν

= hc
mc2 = h

mc
= h

p
, (1.1.3)

where p is the momentum of the photon. Then de Broglie went on to suggest
that a particle with mass m and velocity v is also associated with a wavelength
given by

λ = h
mv

= h
p

, (1.1.4)

where p is now the momentum of the particle.
Before proceeding further, it is instructive to examine what kinds of wave-

lengths are associated with particles having various masses and velocities, as
shown in Table 1.1.1.

By examining the results listed in Table 1.1.1, it is seen that the wavelengths
of macroscopic objects will be far too short to be observed. On the other hand,
electrons with energies on the order of 100 eV will have wavelengths between
100 and 200 pm, approximately the interatomic distances in crystals. In 1927,
C.J. Davisson and L.H. Germer obtained the first electron diffraction pattern of
a crystal, thus proving de Broglie’s hypothesis experimentally. From then on,
scientists recognized that an electron has dual properties: it can behave as both
a particle and a wave.
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Introduction to Quantum Theory 5

Table 1.1.1. Wavelength of different particles travelling with various velocities (λ = h/p =
h/mv; h = 6.63× 10−27 erg s = 6.63× 10−34 J s)

Particles m / kg v / m s−1 λ / pm

Electron at 298 K 9.11 × 10−31 1.16× 105 6270∗
1-volt electron 9.11 × 10−31 5.93 × 105 1230
100-volt electron 9.11 × 10−31 5.93 × 106 123†

He atom at 298 K 6.65 × 10−27 1.36 × 103 73.3
Xe atom at 298 K 2.18 × 10−25 2.38 × 102 12.8
A 100-kg sprinter running at world-
record speed

1.00 × 102 1.00 × 101 6.63 × 10−25

∗E = 3
2 kT = 1

2 mv2; v =
(

3kT
m

)
1
2 =
(

3×1.38×10−23J K−1×298 K
9.11×10−31kg

)
1
2 = 1.16× 105 m s−1;

λ = h
mv = 6.63×10−34Js

9.11×10−31kg×1.16×105m s−1 = 6.27× 10−9m = 6270 pm.
†E = 100 eV = 100× 1.60× 10−19 J = 1.60× 10−17J = 1

2 mv2,

v =
(

2E
m

)
1
2 =
(

2×1.60×10−17J
9.11×10−31kg

)
1
2 = 5.93× 106 m s−1;

λ = h
mv = 6.63×10−34Js

9.11×10−31kg×5.93×106m s−1 = 1.23× 10−10 m = 123 pm.

This wavelength is similar to the atomic spacing in crystals.

1.2 Uncertainty principle and probability Concept

Another important development in quantum mechanics is the Uncertainty Prin-
ciple set forth by W. Heisenberg in 1927. In its simplest terms, this principle
says, “The position and momentum of a particle cannot be simultaneously and
precisely determined.” Quantitatively, the product of the uncertainty in the x
component of the momentum vector ('px) and the uncertainty in the x direction
of the particle’s position ('x) is on the order of Planck’s constant:

('px)('x) ∼ h
4π

= 5.27× 10−35J s. (1.2.1)

While h is quite small in the macroscopic world, it is not at all insignificant
when the particle under consideration is of subatomic scale. Let us use an actual
example to illustrate this point. Suppose the 'x of an electron is 10−14 m,
or 0.01 pm. Then, with eq. (1.2.1), we get 'px = 5.27 × 10−21 kg m s−1.
This uncertainty in momentum would be quite small in the macroscopic world.
However, for subatomic particles such as an electron, with mass of 9.11×10−31

kg, such an uncertainty would not be negligible at all. Hence, on the basis of the
Uncertainty Principle, we can no longer say that an electron is precisely located
at this point with an exactly known velocity. It should be stressed that the
uncertainties we are discussing here have nothing to do with the imperfection
of the measuring instruments. Rather, they are inherent indeterminacies. If we
recall the Bohr theory of the hydrogen atom, we find that both the radius of
the orbit and the velocity of the electron can be precisely calculated. Hence the
Bohr results violate the Uncertainty Principle.

With the acceptance of uncertainty at the atomic level, we are forced to speak
in terms of probability: we say the probability of finding the electron within
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6 Fundamentals of Bonding Theory

this volume element is how many percent and it has a probable velocity (or
momentum) such and such.

1.3 Electronic wavefunction and probability density
function

Since an electron has wave character, we can describe its motion with a wave
equation, as we do in classical mechanics for the motions of a water wave or a
stretched string or a drum. If the system is one-dimensional, the classical wave
equation is

∂2Φ(x, t)
∂x2 = 1

v2

∂2Φ(x, t)
∂t2 , (1.3.1)

where v is the velocity of the propagation. The wavefunction Φ gives the
displacement of the wave at point x and at time t. In three-dimensional space,
the wave equation becomes
(

∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

)

Φ(x, y, z, t) = ∇2Φ(x, y, z, t) = 1
v2

∂2Φ(x, y, z, t)
∂t2 .

(1.3.2)

A typical wavefunction, or a solution of the wave equation, is the familiar
sine or cosine function. For example, we can have

Φ(x, t) = A sin(2π/λ)(x − vt). (1.3.3)

It can be easily verified that Φ(x, t) satisfies eq. (1.3.1). An important point
to keep in mind is that, in classical mechanics, the wavefunction is an ampli-
tude function. As we shall see later, in quantum mechanics, the electronic
wavefunction has a different role to play.

Combining the wave nature of matter and the probability concept of the
Uncertainty Principle, M. Born proposed that the electronic wavefunction is no
longer an amplitude function. Rather, it is a measure of the probability of an
event: when the function has a large (absolute) value, the probability for the
event is large. An example of such an event is given below.

From the Uncertainty Principle, we no longer speak of the exact position
of an electron. Instead, the electron position is defined by a probability den-
sity function. If this function is called ρ (x, y, z), then the electron is most
likely found in the region where ρ has the greatest value. In fact, ρ dτ is the
probability of finding the electron in the volume element dτ (≡ dxdydz) sur-
rounding the point (x, y, z). Note that ρ has the unit of volume−1, and ρ dτ ,
being a probability, is dimensionless. If we call the electronic wavefunction
ψ , Born asserted that the probability density function ρ is simply the absolute
square of ψ :

ρ(x, y, z) = |ψ(x, y, z)|2 . (1.3.4)
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Introduction to Quantum Theory 7

Since ψ can take on imaginary values, we take the absolute square of ψ to
make sure that ρ is positive. Hence, when ψ is imaginary,

ρ(x, y, z) = |ψ(x, y, z)|2 = ψ∗ψ , (1.3.5)

where ψ∗ is the complex conjugate (replacing i in ψ by –i) of ψ .
Before proceeding further, let us use some numerical examples to illustrate

the determination of the probability of locating an electron in a certain volume
element in space. The ground state wavefunction of the hydrogen atom is

ψ1s =
(

πa3
0

)− 1
2 e−

r
a0 , (1.3.6)

where r is the nucleus–electron separation and a0, with the value of 52.9 pm, is
the radius of the first Bohr orbit (hence is called Bohr radius). In the following
we will use ψ1s to determine the probability P of locating the electron in a
volume element dr of 1 pm3 which is 1a0 away from the nucleus.

At r = 1a0,

ψ1s =
(

πa3
0

)− 1
2 e−

a0
a0 =

[

π(52.9 pm)3
]− 1

2 e−1 = 5.39× 10−4 pm−
3
2 ,

ρ = |ψ1s|2 =
(

5.39× 10−4 pm−
3
2

)2
= 2.91× 10−7 pm−3,

P = |ψ1s|2 dτ = 2.91× 10−7 pm−3 × 1 pm3 = 2.91× 10−7.

In addition, we can also calculate the probability of finding the electron in a
shell of thickness 1 pm which is 1a0 away from the nucleus:

dτ = (surface area) × (thickness)

= (4πr2dr) = 4π(52.9 pm)2 × 1 pm

= 3.52× 104 pm3,

and

P = |ψ1s|2 dτ = 2.91× 10−7 pm−3 × 3.52× 104 pm3 = 1.02× 10−2.

In other words, there is about 1% chance of finding the electron in a spherical
shell of thickness 1 pm and radius 1a0.

In Table 1.3.1, we tabulate ψ1s, |ψ1s|2, |ψ1s|2dτ (with dτ = 1 pm3), and
4πr2|ψ1s|2dr (with dr = 1 pm), for various r values.

As |ψ |2dτ represents the probability of finding the electron in a certain region
in space, and the sum of all probabilities is 1, ψ must satisfy the relation

∫

|ψ |2 dτ = 1. (1.3.7)
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8 Fundamentals of Bonding Theory

Table 1.3.1. Values ofψ1s, |ψ1s|2, |ψ1s|2dτ (with dτ = 1 pm3), and 4πr2|ψ1s|2dr (with dr = 1
pm) for various nucleus–electron distances

r(pm) 0 26.45 (or a0/2) 52.9 (or a0) 100 200

ψ1s

(

pm−
3
2

)

1.47× 10−3 8.89× 10−4 5.39× 10−4 2.21× 10−4 3.34× 10−5

|ψ1s|2
(

pm−3
)

2.15× 10−6 7.91× 10−7 2.91× 10−7 4.90 ×10−8 1.12 ×10−9

|ψ1s|2 dτ 2.15 ×10−6 7.91 ×10−7 2.91 ×10−7 4.90 ×10−8 1.12 ×10−9

4πr2 |ψ1s|2 dr 0 6.95 ×10−3 1.02×10−2 6.16 ×10−3 5.62 ×10−4

When ψ satisfies eq. (1.3.7), the wavefunction is said to be normalized. On
the other hand, if

∫

|ψ |2dτ = N , where N is a constant, then N−1/2ψ is a
normalized wavefunction and N−1/2 is called the normalization constant.

For a given system, there are often many or even an infinite number of accept-
able solutions:ψ1,ψ2, . . . ,ψi,ψj, . . . and these wavefunctions are “orthogonal”
to each other, i.e.

∫

ψ∗i ψjdτ =
∫

ψ∗j ψidτ = 0. (1.3.8)

Combining the normalization condition (eq. (1.3.7)) and the orthogonality
condition (eq. (1.3.8)) leads us to the orthonormality relationship among the
wavefunctions

∫

ψ∗i ψjdτ =
∫

ψ∗j ψidτ

= δij =
{

0 when i '= j
1 when i = j

, (1.3.9)

where δij is the Kronecker delta function. Since |ψ |2 plays the role of a
probability density function, ψ must be finite, continuous, and single-valued.

The wavefunction plays a central role in quantum mechanics. For atomic sys-
tems, the wavefunction describing the electronic distribution is called an atomic
orbital; in other words, the aforementioned 1s wavefunction of the ground state
of a hydrogen atom is also called the 1s orbital. For molecular systems, the
corresponding wavefunctions are likewise called molecular orbitals.

Once we know the explicit functions of the various atomic orbitals (such as
1s, 2s, 2p, 3s, 3p, 3d,…), we can calculate the values of ψ at different points
in space and express the wavefunction graphically. In Fig. 1.3.1(a), the graph
on the left is a plot of ψ1s against r; the sphere on the right shows that ψ has
the same value for a given r, regardless of direction (or θ and ϕ values). In Fig.
1.3.1(b), the two graphs on the left plot density functions |ψ1s|2 and 4πr2|ψ1s|2
against r. The probability density describing the electronic distribution is also
referred to as an electron cloud, which may be represented by a figure such as
that shown on the right side of Fig. 1.3.1(b). This figure indicates that the 1s
orbital has maximum density at the nucleus and the density decreases steadily
as the electron gets farther and farther away from the nucleus.
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Fig. 1.3.1.
(a) The 1s wavefunction and (b) the 1s
probability density functions of the
hydrogen atom.

In addition to providing probability density functions, the wavefunction may
also be used to calculate the value of a physical observable for that state. In
quantum mechanics, a physical observable A has a corresponding mathematical
operator Â. When Â satisfies the relation

Âψ = aψ , (1.3.10)

ψ is called an eigenfunction of operator Â, and a is called the eigenvalue of
the state described by ψ . In the next section, we shall discuss the Schrödinger
equation,

Ĥψ = Eψ . (1.3.11)

Hereψ is the eigenfunction of the Hamiltonian operator Ĥ and the correspond-
ing eigenvalue E is the energy of the system.

If ψ does not satisfy eq. (1.3.10), we can calculate the expectation value (or
mean) of A, <A>, by the expression

<A> =
∫

ψ∗Âψ dτ
∫ |ψ |2 dτ

. (1.3.12)

If ψ is a normalized wavefunction, eq. (1.3.12) becomes

<A> =
∫

ψ∗Âψ dτ . (1.3.13)
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10 Fundamentals of Bonding Theory

In the ground state of a hydrogen atom, there is no fixed r value for the electron,
i.e. there is no eigenvalue for r. On the other hand, we can use eq. (1.3.13) to
calculate the average value of r:

<r> =
(

πa3
0

)−1
∫ 2π

0
dφ
∫ π

0
sin θdθ

∫ ∞

0
e−

r
a0 re−

r
a0 r2dr

=
(

πa3
0

)−1
· 4π
∫ ∞

0
e−

2r
a0 r3dr

= 3a0/2. (1.3.14)

In carrying out the integration in eq. (1.3.14), we make use of dτ =
r2dr sin θ dθ dϕ and 0 ≤ r <∞, 0 ≤ θ ≤ π , and 0 ≤ φ ≤ 2π .

In Fig. 1.3.1(b), in the plot of 4πr2|ψ1s|2 against r, the mean value <r>

is marked on the r axis, separating the graph into two parts. These two parts
have unequal areas, the unshaded area being larger than the shaded area. This
result implies that it is more likely to find a r value smaller than <r> than one
larger than <r>. In addition, the r value corresponding to the maximum in
the 4πr2|ψ1s|2 function is labelled rp. At rp, r = a0 and rp is called the most
probable electron distance.

1.4 Electronic wave equation: The Schrödinger equation

In 1926, E. Schrödinger developed his famous wave equation for electrons. The
validity of the Schrödinger equation rests solely on the fact that it leads to the
right answers for a variety of systems. As in the case of Newton’s equations, the
Schrödinger equation is a fundamental postulate that cannot be deduced from
first principles. Hence what is presented below is merely a heuristic derivation.
In this presentation, we can see how the particle character is incorporated into
a wave equation.

We start with eq. (1.3.2), the general differential equation for wave motion:

∇2Φ(x, y, z, t) = ∂
2Φ(x, y, z, t)

v2∂t2 . (1.3.2)

Note that wavefunction Φ has time t as one of its variables. Since our primary
concern is the energy of a system and this energy is independent of time (we
are ignoring the process of radiation here), we need an equation that is time
independent. The wavefunctions obtained from a time-independent equation are
called standing (or stationary) waves. To obtain such an equation, we assume
Φ(x, y, z, t) has the form

Φ(x, y, z, t) = ψ(x, y, z)g(t), (1.4.1)

where ψ is a function of space coordinates and g is a function of time t. For
standing waves, there are several acceptable g functions and one of them is

g(t) = e2π iνt , (1.4.2)
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Introduction to Quantum Theory 11

where frequency ν is related to propagation velocity v and wavelength λ by

ν = v

λ
. (1.4.3)

If we substitute

Φ(x, y, z, t) = ψ(x, y, z)e2π iνt (1.4.4)

into eq. (1.3.2), we get

e2π iνt∇2ψ = 1
v2ψ

∂2e2π iνt

∂t2

= −4π2ν2v−2e2π ivtψ , (1.4.5)

or, upon canceling e2π ivt ,

∇2ψ = −4π2ν2v−2ψ . (1.4.6)

Now we incorporate the corpuscular character (λ = h/p) into eq. (1.4.6)

v = νλ = ν
(

h
p

)

= hν
p

, (1.4.7)

and eq. (1.4.6) becomes

∇2ψ =
(−4π2p2

h2

)

ψ . (1.4.8)

If we rewrite p2 in terms of kinetic energy T , or total energy E, and potential
energy V ,

p2 = 2mT = 2m(E − V ), (1.4.9)

the wave equation now has the form

∇2ψ =
(−8mπ2

h2

)

(E − V )ψ . (1.4.10)

Rearranging eq. (1.4.10) yields,

[( −h2

8π2m

)

∇2 + V
]

ψ = Eψ , (1.4.11)

or

Ĥψ = Eψ , (1.4.12)
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12 Fundamentals of Bonding Theory

where the Hamiltonian operator Ĥ is defined as

Ĥ =
( −h2

8π2m

)

∇2 + V . (1.4.13)

In other words, Ĥ has two parts: kinetic energy operator (−h2/8π2m)∇2 and
potential energy operator V .

To summarize, the quantum mechanical way of studying the electronic
structure of an atom or a molecule consists of the following steps:

(1) Write down the Schrödinger equation of the system by filling in the proper
potential energy.

(2) Solve the differential equation to obtain the electronic energies Ei and
wavefunctions ψi, i = 1, 2, . . . .

(3) Use the wavefunctions ψi to determine the probability density functions
|ψi|2and the expectation values of physical observables.

In the following, we use the ground state wavefunction ψ1s [eq. (1.3.6)] to
determine the energy E1s of this state as well as the expectation values of the
kinetic energy, <T>, and potential energy, <V>.

By applying the Hamiltonian operator of the hydrogen atom on ψ1s, we can
readily obtain E1s:

Ĥψ1s =
[( −h2

8π2m

)

∇2 −
(

e2

4πε0r

)]

ψ1s

= E1sψ1s, (1.4.14)

and

E1s =
(

1
4πε0

)(−e2

2a0

)

= −2.18× 10−18 J = −13.6 eV. (1.4.15)

The expectation value of potential energy, <V>, can also be computed
easily:

<V> =
∫ 2π

0
dφ
∫ π

0
sin θdθ

∫ ∞

0

(

πa3
0

)−1
e−

r
a0

( −e2

4πε0r

)

e−
r

a0 r2dr

=
( −1

4πε0

)(

e2

a0

)

. (1.4.16)

The quantity <T> is simply the difference between E1s and <V>:

<T> = E1s− <V>=
(

1
4πε0

)(

e2

2a0

)

. (1.4.17)

iranchembook.ir/edu

https://iranchembook.ir/edu


Introduction to Quantum Theory 13

Comparing eqs. (1.4.16) and (1.4.17), we get

<T> = −<V>

2
. (1.4.18)

which is called the virial theorem for atomic and molecular systems.
In the following section, we treat several systems quantum mechanically to

illustrate the method introduced here.

1.5 Simple applications of the Schrödinger equation

In the four examples given below, a particle (or electron) is allowed to move
freely. The only difference is the shape of the “box,” in which the particle
travels. As will be seen later, different shapes give rise to different boundary
conditions, which in turn lead to different allowed energies (eigenvalues) and
wavefunctions (eigenfunctions).

1.5.1 Particle in a one-dimensional box

In this system, the box has only one dimension, with length a. The potential
energy is zero inside the box and infinity at the boundary and outside the box.
In other words, the electron can move freely inside the box and it is impossible
for it to get out of the box. Mathematically

V =
{

0, 0 < x < a;
∞, 0 ≥ x or x ≥ a. (1.5.1)

So the Schrödinger equation has the form
( −h2

8π2m

)(

d2ψ

dx2

)

= Eψ , (1.5.2)

or

d2ψ

dx2 =
(−8π2mE

h2

)

ψ = −α2ψ , (1.5.3)

with

α2 = 8π2mE
h2 . (1.5.4)

Solutions of eq. (1.5.3) are

ψ = A sin αx + B cosαx, (1.5.5)

where A and B are constants to be determined by the boundary conditions
defined by eq. (1.5.1). At x = 0 or x = a, the potential barrier is infinitely high
and the particle cannot be found at or around those points, i.e.

ψ (0) = ψ (a) = 0. (1.5.6)
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14 Fundamentals of Bonding Theory

With ψ(0) = 0, we get

B = 0. (1.5.7)

Also, ψ(a) = 0 yields

A sin α a = 0, (1.5.8)

which means either A or sin α a vanishes. Since the former is not acceptable,
we have

sin α a = 0, (1.5.9)

or

αa = nπ , n = 1, 2, 3, . . .. (1.5.10)

So, the wavefunctions have the form

ψn(x) = A sin
(nπx

a

)

, n = 1, 2, 3, . . .. (1.5.11)

The constant A can be determined by normalization:

∫ a

0
|ψn|2dx = A2

∫ a

0
sin2
(nπx

a

)

dx = 1, (1.5.12)

which leads to the following form for the wavefunctions:

ψn(x) =
(

2
a

)
1
2

sin
(nπx

a

)

. (1.5.13)

Note that ψ has the unit of length−1/2 and ψ2 has the unit of length−1.
By combining eqs. (1.5.4) and (1.5.10), the energy of the system can also be

determined:

α = nπ
a

=
(

8π2mE
h2

)

1
2

(1.5.14)

or

En = n2h2

8ma2 , n = 1, 2, 3, . . . . (1.5.15)

Figure 1.5.1 summarizes the results of this particle-in-a-box problem. From this
figure, it is seen that when the electron is in the ground state (n = 1), it is most
likely found at the center of the box. On the other hand, if the electron is in the
first excited state (n = 2), it is most likely found around x = a/4 or x = 3a/4.
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n=4
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a0 a

E1 = h2/8ma2

E2 = 4h2/8ma2

E3 = 9h2/8ma2

E4 = 16h2/8ma2

0

Fig. 1.5.1.
Pictorial representations of En, ψn (left),
and |ψn|2 (right) for the particle in a
one-dimensional box problem.

In the following, we calculate the expectation values <px> and <p2
x>, where

px is the momentum of the particle (recall this is a one-dimensional system),
for the ground state of this system. First,

<p2
x> = 2m <T> = 2mE

= (2m)

(

h2

8ma2

)

= h2

4a2 . (1.5.16)

Next, for <px>, we need to make use of the fact that the quantum mechanical
operator p̂x for px is (−ih/2π)(∂/∂x). So

<px> =
(

2
a

)
∫ a

0
sin
(πx

a

)

(−ih
2π

)(

∂

∂x

)

sin
(πx

a

)

dx = 0. (1.5.17)

So the mean momentum is zero, as the electron is equally likely to travel to
the left or to the right. On the other hand, <p2

x> is not zero, as the square of a
momentum is always positive. From statistics, the uncertainty of momentum,
'px, may be expressed in terms of <px> and <p2

x>:

'px =
[

<p2
x>−<px>

2
]

1
2

= h
2a

. (1.5.18)
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16 Fundamentals of Bonding Theory

In the following, again for the ground state, we calculate the mean value of
position x as well as that of x2:

<x> =
(

2
a

)
∫ a

0
sin
(πx

a

)

x sin
(πx

a

)

dx

= a
2

. (1.5.19)

This result can be obtained by simply examining the function |ψ1|2 shown in
Fig. 1.5.1. Meanwhile,

<x2> =
(

2
a

)
∫ a

0
sin
(πx

a

)

x2 sin
(πx

a

)

dx

= a2
(

1
3
− 1

2π2

)

. (1.5.20)

Now we are ready to determine the uncertainty in x:

'x =
[

<x2>− <x>2
]

1
2

= a
[(

1
12

)

−
(

1
2π2

)]
1
2

. (1.5.21)

The product 'x ·'px satisfies the Uncertainty Principle:

'x'px = a
[(

1
12

)

−
(

1
2π2

)]
1
2
(

h
2a

)

= 1.14
(

h
4π

)

>
h

4π
. (1.5.22)

There is a less mathematical way to show that the results of this one-
dimensional box problem do conform to the Uncertainty Principle. The ground
state, or minimum, energy of this system is h2/8ma2, which has a positive
value. On the other hand, when this system is treated classically, the minimum
energy would be zero. The residual energy of the (quantum) ground state, or
the energy above the classical minimum, is called the zero-point energy. The
existence of this energy implies that the kinetic energy, and hence the momen-
tum, of a bound particle cannot be zero. If we take the ground state energy to
be p2

x /2m, we get the minimum momentum of the particle to be ±h/2a. The
uncertainty in momentum, 'px, may then be approximated to be h/a. If we
take the uncertainty in position,'x, to be the length of the box, a, then'x'px
is (approximately) h, which is in accord with the Uncertainty Principle.

The results of the particle in a one-dimensional box problem can be used to
describe the delocalized π electrons in (linear) conjugated polyenes. Such an
approximation is called the free-electron model. Take the butadiene molecule
CH2=CH–CH=CH2 as an example. The four π electrons of this system would
fill up theψ1 andψ2 orbitals, giving rise to the (ψ1)

2(ψ2)
2 configuration. If we

excite one electron from the ψ2 orbital to the ψ3 orbital, we need an energy of

'E = 5h2

8ma2 = hc
λ

. (1.5.23)
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The length of the box, a, may be approximated in the following way. Typical
C–C and C=C bond lengths are 154 and 135 pm, respectively. If we allow the
π electrons to move a bit beyond the terminal carbon atoms, the length of the
box may be rounded off to (4 × 1.40 =) 560 pm. If a is taken to be this value,
λ in eq. (1.5.23) can be calculated to be 207.0 nm. Experimentally, butadiene
absorbs light at λ = 210.0 nm. So, even though the model is very crude, the
result is fortuitously good.

The free-electron model breaks down readily when it is applied to longer
polyenes. For hexatriene, we have a = 6 × 1.40 = 840 pm, 'E = E4 − E3,
and λ = 333 nm. Experimentally this triene absorbs at λ = 250 nm. For
octatetraene, the box length a now becomes 1120 pm, and 'E = E5 − E4
with λ = 460 nm, compared to the experimental value of 330 pm. Despite
this shortcoming, the model does predict that when a conjugated polyene is
lengthened, its absorption band wavelength becomes longer as well.

When a polyene reaches a certain length, its absorption wavelength will
appear in the visible region, i.e. λ is between 400 and 700 nm. When this occurs,
the polyene is colored. One of the better known colored polyenes is β-carotene,
which is responsible for orange color of carrots. It has the structure:

This polyene has 11 conjugated π bonds, with λ = 450 nm. Carotene can be
cleaved enzymatically into two units of all-trans-vitamin A, which is a polyene
with five conjugated π bonds:

CH2OH

The absorption peak of this compound appears at λ = 325 nm. This molecule
plays an important role in the chemistry of vision.

1.5.2 Particle in a three-dimensional box

The potential energy of this system has the form

V =
{

0, 0 < x < a and 0 < y < b and 0 < z < c,
∞, 0 ≥ x ≥ a or 0 ≥ y ≥ b or 0 ≥ z ≥ c. (1.5.24)
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18 Fundamentals of Bonding Theory

So the Schrödinger equation now is

( −h2

8π2m

)

∇2ψ = Eψ . (1.5.25)

To solve this equation, we make use of the technique of separation of variables

ψ(x, y, z) = X (x)Y (y)Z(z), (1.5.26)

where X , Y , and Z are one-variable functions involving variables, x, y, and z,
respectively. Substituting eq. (1.5.26) into eq. (1.5.25) leads to

∇2ψ =
[(

∂2

∂x2

)

+
(

∂2

∂y2

)

+
(

∂2

∂z2

)]

XYZ =
(−8π2mE

h2

)

XYZ ,

(1.5.27)

or

YZ
(

∂2X
∂x2

)

+ XZ
(

∂2Y
∂y2

)

+ XY
(

∂2Z
∂z2

)

=
(−8π2mE

h2

)

XYZ . (1.5.28)

Dividing eq. (1.5.28) by XYZ yields.

1
X

(

∂2X
∂x2

)

+ 1
Y

(

∂2Y
∂y2

)

+ 1
Z

(

∂2Z
∂z2

)

= −8π2mE
h2 . (1.5.29)

Now it is obvious that each of the three terms on the left side of eq. (1.5.29) is
equal to a constant:

1
X

(

∂2X
∂x2

)

= −α2
x , (1.5.30)

1
Y

(

∂2Y
∂y2

)

= −α2
y , (1.5.31)

1
Z

(

∂2Z
∂z2

)

= −α2
z , (1.5.32)

with the constraint on the constants being

α2
x + α2

y + α2
z = 8π2mE

h2 . (1.5.33)

In other words, each degree of freedom makes its own contribution to the total
energy:

α2
x = 8π2mEx

h2 , α2
y = 8π2mEy

h2 , α2
z = 8π2mEz

h2 , (1.5.34)
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and

E = Ex + Ey + Ez . (1.5.35)

Each of eqs. (1.5.30) to (1.5.32) is similar to that of the one-dimensional prob-
lem, eq. (1.5.2) or (1.5.3). Hence the solutions of eqs. (1.5.30) to (1.5.32) can
be readily written

Xj(x) =
(

2
a

)
1
2

sin
(

jπx
a

)

, j = 1, 2, 3, . . . , (1.5.36)

Yk(y) =
(

2
b

)
1
2

sin
(

kπy
b

)

, k = 1, 2, 3, . . . , (1.5.37)

Z2(z) =
(

2
c

)
1
2

sin
(

2πz
c

)

, 2 = 1, 2, 3, . . . . (1.5.38)

The total wavefunction, as given by eq. (1.5.26), then becomes

ψj,k,2(x, y, z) =
(

8
abc

)
1
2

sin
(

jπx
a

)

sin
(

kπy
b

)

sin
(

2πz
c

)

,

j, k, 2 = 1, 2, 3, . . . . (1.5.39)

Now ψ has the unit of volume−1/2 and |ψ |2 has the unit of volume−1, as
expected for a probability density function of a three-dimensional system.

As in the case of the wavefunctions, the energy of the system is also dependent
on three quantum numbers:

Ej,k,2 = (Ex)j + (Ey)k + (Ez)2

=
(

h2

8m

)[(

j2

a2

)

+
(

k2

b2

)

+
(

22

c2

)]

, j, k, 2 = 1, 2, 3, . . . . (1.5.40)

When the box is a cube, i.e. a = b = c, eq. (1.5.40) becomes

Ej,k,2 =
(

h2

8ma2

)

(j2 + k2 + 22), j, k, 2 = 1, 2, 3, . . . . (1.5.41)

An interesting feature of the energy expression given by eq. (1.5.41) is that
different states, with different sets of quantum numbers and different wavefunc-
tions, can have the same energy. When different states have the same energy,
they are called degenerate states. For examples,

E1,1,2 = E1,2,1 = E2,1,1 = 3h2

4ma2 , (1.5.42)

or

E1,2,3 = E2,1,3 = E1,3,2 = E3,1,2 = E3,2,1 = E2,3,1 = 7h2

4ma2 . (1.5.43)
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20 Fundamentals of Bonding Theory

Now we will apply the particle in a three-dimensional box model to a chem-
ical problem. When sodium vapor is passed over a crystal of NaCl, the crystal
exhibits a greenish-yellow color, which is the result of the process

δNa(g) + NaCl(c) −→ (Na+)1+δ(Cl−e−δ )(c), δ << 1.

e–

Na+

Fig. 1.5.2.
A color center (marked e−) in a sodium
halide crystal. Note that the electronic
position is an anionic site. Also, for
simplicity, anions are not shown here.

In this “solid-state reaction,” the adsorbed Na atoms ionize on the crystal sur-
face, and the excess electrons diffuse into the interior and occupy vacant anionic
sites, while an equal number of chloride ions migrate toward the surface to
preserve charge balance. Trapped electrons occupying anionic vacancies are
called color centers or F-centers (F stands for farbe, meaning color in Ger-
man). A trapped electron within the lattice of crystalline (Na+)1+δ(Cl−e−δ ) is
depicted in Fig. 1.5.2. The color observed in such experiments can be related
with a transition between two energy levels of a (free) particle trapped in a
box. Before treating this problem quantitatively, it is of interest to note that the
color observed in such experiments depends on the nature of the host crystal,
but not on the source of the electron. Thus heating KCl in potassium vapor
gives a purple color, and NaCl heated in the same potassium vapor emits a
greenish-yellow color.

Experimentally, the absorption maxima for NaCl and NaBr crystals have
energies ('E) 4.32×10−19 J (corresponding to λ = 460 nm) and 3.68×10−19

J (λ = 540 nm), respectively. If we take this 'E as the energy difference
between the two lowest levels of a three-dimensional box, E1,1,1 and E1,1,2, we
can readily calculate the dimension of the box (denoted as 2 below):

'E = 3h2

8m22
.

In the above expression we have replaced the dimension of the box a in eq.
(1.5.41) by 2. Now the 2 values for NaCl and NaBr can be easily calculated to
be 647 and 701 pm, respectively. It is noted that the 2 value of NaBr “box” is
longer than that of NaCl by 54 pm.

The cubic unit-cell dimensions (a) of NaCl and NaBr crystals are 563 and
597 pm, respectively (Table 10.1.4). As shown in Fig.1.5.2, the side (denoted
as 2′ below) of the three-dimensional box for an electron occupying a color
center can at most be the body diagonal of the unit cell minus twice the cationic
radius (the “true” value should be somewhat less):

2′ = (3)
1
2 a − 2rNa+ .

With rNa+ being 102 pm, we find that the (maximum) 2′ values for NaCl and
NaBr crystals are 771 and 830 pm, respectively. Because of the crudeness of the
model, these 2′ values differ to some extent from the 2 values calculated earlier.
Still, a good qualitative correlation between the two crystals is obtained: the
difference between the two 2 values, 54 pm, is in good accord with the difference
between the two 2′ values, 59 pm.

The topic of color centers in NaCl and related crystals will be discussed more
fully in Section 10.1.2.

iranchembook.ir/edu

https://iranchembook.ir/edu


Introduction to Quantum Theory 21

1.5.3 Particle in a ring

R

f

R

x

Fig. 1.5.3.
The variable in the particle-in-a-ring
problem.

In this system, the electron can move only along the circumference and therefore
polar coordinates can be used to advantage, as shown in Fig. 1.5.3:

V =
{

0, r = R;
∞ r '= R.

The Schrödinger equation is

( −h2

8π2m

)

d2ψ(x)
dx2 = Eψ(x). (1.5.44)

We can change the variable x to the angular variable φ by

x = φR. (1.5.45)

Now eq. (1.5.44) becomes

d2ψ(φ)

dφ2 =
(−8π2mER2

h2

)

ψ(φ) = −m2
2ψ(φ), (1.5.46)

with

m2
2 = 8π2mER2

h2 . (1.5.47)

Solutions to eq. (1.5.46) are obvious:

ψ(φ) = Aeim2φ . (1.5.48)

Since ψ(φ) must be single-valued,

ψ(φ + 2π) = ψ(φ) = Aeim2φ = Aeim2(φ+2π). (1.5.49)

In other words,

eim2(2π) = cos 2m2π + i sin 2m2π = 1. (1.5.50)

For eq. (1.5.50) to hold,

m2 = 0, ±1, ±2, . . . . (1.5.51)

So the wavefunctions have the form

ψm2(φ) = Aeim2φ , m2 = 0, ±1, ±2, . . . . (1.5.52)

The constant A can again be determined with the normalization condition:

A2
∫ 2π

0

∣

∣ψm2

∣

∣

2 dϕ = A2
∫ 2π

0
ψ∗m2ψm2dφ = A2

∫ 2π

0
dφ = 2πA2 = 1,

(1.5.53)
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Fig. 1.5.4.
The eigenvalues and eigenfunctions of
the particle-in-a-ring problem.
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2

or

A = (2π)−
1
2 . (1.5.54)

So the normalized wavefunctions are

ψm2 = (2π)−
1
2 eim2φ , m2 = 0, ±1, ±2, . . .. (1.5.55)

The allowed energy values for this system can be determined using eq. (1.5.47):

Em2 = m2
2h

2

8π2mR2 , m2 = 0, ±1, ±2, . . . . (1.5.56)

In other words, only the ground state is non-degenerate, while all the excited
states are doubly degenerate. The quantum mechanical results of the particle-
in-a-ring problem are summarized in Fig. 1.5.4.

If we apply the free-electron model to the six π electrons of benzene, we see
that the ψ0, ψ1, and ψ−1 orbitals are filled with electrons, while ψ2 and ψ−2
and all the higher levels are vacant. To excite an electron from ψ1 (or ψ−1) to
ψ2 (or ψ−2), we need an energy of

'E = 3h2

8π2mR2 = hc/λ.

If we take R = 140 pm, we get λ = 212 nm. Experimentally, benzene absorbs
weakly at 268 nm.

Next we apply this simple model to the annulenes. These compounds are
monocyclic conjugated polyenes with the general molecular formula (CH)n
with n even. Thus benzene may be considered as [6]-annulene. As n increases,
essentially all [n]-annulenes are non-planar. For instance, cyclooctatetraene,
(CH)8, has the well-know “tub” structure. However, [18]-annulene is nearly
planar, as shown below (bond lengths in picometers are displayed in bold italic
font).
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139.1 141.2

137.7
138.0

142.9

138.5
137.1

141.6

138.8

126.2˚124.1˚

123.6˚

127.8˚

122.9˚

124.0˚

128.1˚
123.6˚

123.9˚

Adding up the 18 bond lengths around the ring, we obtain a value of 2510 pm.
If we take this to be the circumference of the molecular ring, the radius R of
the ring is approximately 400 pm. Thus the lowest electronic transition of this
molecule requires an energy of

'E = 9h2

8π2mR2 = hc/λ.

Here λ is calculated to be 572 nm. Experimentally, [18]-annulene absorbs at
λ = 790 nm. Clearly the “agreement” is not very good. But this crude model
does arrive at an absorption wavelength that has the correct order of magnitude.

In Section 1.5.1, it was mentioned that the energy of the lowest state of a
particle confined in a one-dimensional box is not zero and this residual energy
is a consequence of the Uncertainty Principle. Yet the ground state energy of
the particle-in-a-ring problem is zero. Does this mean the present result is in
violation of the Uncertainty Principle? The answer is clearly no, and the reason
is as follows. In a one-dimensional box, variable x starts from 0 and ends at a,
the length of the box. Hence'x can at most be a. On the other hand, in a ring,
cyclic variable φ does not lie within a finite domain. In such a situation, the
uncertainty in position cannot be estimated.

1.5.4 Particle in a triangle

To conclude this chapter, we present the quantum mechanical results of the
particle-in-a-triangle problem. Before going into details, we first need to note
that, if the “box” is a scalene triangle, no analytical solution is known. Indeed,
the Schrödinger equation is exactly solvable for only a few triangular systems.
In addition, for all these solvable (two-dimensional) cases, the wavefunctions
are no longer the simple products of two functions each involving only one
variable.

In the following discussion, some language and notation of group theory are
used for convenience. The meaning of this language or notation is made clear
in Chapter 6.

(1) Isosceles right triangle
The coordinate system chosen for this problem is shown in Fig. 1.5.5.
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Fig. 1.5.5.
Coordinate system for the problem of a
particle in an isosceles right triangle.

y

x
0

x + y = a

(a,0)

(0,a)

The Schrödinger equation in this case is simply the two-dimensional analog
of eqs. (1.5.2) and (1.5.25):

( −h2

8π2m

)(

∂2ψ

∂x2 + ∂
2ψ

∂y2

)

= Eψ (1.5.57)

The boundary conditions for this problem are ψ vanishes when x = 0, y = 0
or x + y = a. If we apply the technique of separation of variables introduced in
Section 1.5.2 to eq. (1.5.57), we can easily obtain the following wavefunctions
and energy values:

ψj,k(x, y) =
[

(

2
a

)
1
2

sin
(

jπx
a

)

][

(

2
a

)
1
2

sin
(

kπy
a

)

]

, (1.5.58)

Ej,k =
(

h2

8ma2

)

(

j2 + k2
)

, j, k = 1, 2, 3, . . . . (1.5.59)

These are the solutions of the particle-in-a-square problem.
Since the expression for Ej,k is symmetrical with respect to the exchange of

quantum numbers j and k, i.e. Ej,k = Ek,j. In other words, ψj,k and ψk,j are
degenerate wavefunctions.

It is clear that wavefunctions ψj,k satisfy the boundary condition of ψ van-
ishes when x = 0 or y = 0, but not the condition ofψ vanishes when x+y = a.
In order to satisfy the latter condition, we first linearly combine ψj,k and ψk,j:

ψ ′j,k = (2)−
1
2 (ψj,k + ψk,j)

=
[

(2)
1
2

a

]

[

sin
(

jπx
a

)

sin
(

kπy
a

)

+ sin
(

kπx
a

)

sin
(

jπy
a

)]

(1.5.60)

ψ ′′j,k = (2)−
1
2 (ψj,k − ψk,j)

=
[

(2)
1
2

a

]

[

sin
(

jπx
a

)

sin
(

kπy
a

)

− sin
(

kπx
a

)

sin
(

jπy
a

)]

.

(1.5.61)
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When j = k, ψ ′j,k is simply ψ ′j,j (aside from a numerical factor) and ψ ′′j,j
vanishes; hence neither ψ ′j,j nor ψ ′′j,j is an acceptable solution. On the other
hand, when j = k ± 1, k ± 3, . . . ,ψ ′j,k vanishes when x + y = a; also, when
j = k ± 2, k ± 4, . . . ,ψ ′′j,k vanishes under the same condition. Thus, ψ ′j,k(j =
k ±1, k ±3, . . .) andψ ′′j,k(j = k ±2, j ±4, . . .) are the solutions to the isosceles
triangle problem. It is clear that these functions are no longer products of two
functions each involving only one variable. In addition, the energy expression
now becomes:

Ej,k =
(

h2

8ma2

)

(j2 + k2), j, k = 1, 2, 3, . . . and j '= k. (1.5.62)

Since only one wavefunction can be written for a set of quantum numbers (j, k),
i.e. ψ ′j,k = ψ ′k,j and ψ ′′j,k = ψ ′′k,j (aside from a negative sign), the “systematic”
degeneracy in the particle-in-a-square problem, i.e. Ek,j = Ej,k in eq. (1.5.59),
is now removed. This is expected as there is a reduction in symmetry from D4h
(square box) to C2v(isosceles triangular box). Still, some “accidental” degen-
eracies remain in the right-triangular case; for example, E1,8 = E4,7. These
degeneracies may be dealt with by techniques of elementary number theory,
which is clearly beyond the scope of this book. Additional discussions may be
found in the references listed at the end of this chapter.

(2) Equilateral triangle
When the triangle is equilateral, with the coordinates as shown in Fig. 1.5.6,
the boundary conditions for eq. (1.5.57) now take the form ψ = 0 for y = 0,
y = (3)1/2x or y = (3)1/2(a − x).

There are a number of ways to solve this problem, and the results obtained
by these methods appear to be quite different at first sight. In fact, in some
formulations, it takes multiple sets of quantum number to specify a single state.
In any event, the mathematics involved in all of these treatments is beyond
the scope of this book. Here we merely present the results of one approach
and discuss the energies and wavefunctions of this system from the symmetry
viewpoint.

y

y = 3½a – 3½x

y = 3½x

y = 0
xa

0

Fig. 1.5.6.
Coordinate system for an equilateral
triangle. Equations of the three sides
specify the boundary conditions.
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Table 1.5.1. Energies and symmetry of the
wavefunctions for the first seven levels of a
particle in an equilateral triangle.

(p, q) Energy∗ Symmetry

(1, 0) 1 A1
(11/3, 1/3) 21/3 E
(2, 0) 4 A1
(12/3, 2/3) 41/3 E
(21/3, 1/3) 61/3 E
(2, 1) 7 A1, A2
(3, 0) 9 A1

∗ In units of ground state energy E0, 2h2/3ma2.

For this two-dimensional system, it again takes a set of two quantum numbers
to specify a state. The energies of this system may be expressed as

Ep,q = (p2 + pq + q2)

(

2h2

3ma2

)

with q = 0,
1
3

,
2
3

, 1, . . . , p = q + 1, q + 2, . . . . (1.5.63)

So the ground state energy E0 is

E0 = E1,0 = 2h2

3ma2 . (1.5.64)

The wavefunctions ψp,q may be classified according to their symmetry proper-
ties. If we take the symmetry point group of this system to be C3v, there are three
symmetry species in this group: A1 (symmetric with respect to all operations of
this group), A2 (symmetric with respect to the threefold rotations but antisym-
metric with respect to the vertical symmetry planes), and E (a two-dimensional
representation).

For a level with energy Ep,0, the wavefunctionψp,0 has A1 symmetry and this
level is non-degenerate. On the other hand, a level defined by positive integral
quantum numbers p and q with energy Ep,q is doubly degenerate. One wavefunc-
tion of this level has A1 symmetry and the other one has A2 symmetry. When p
and q are non-integers (1/3, 2/3, 11/3, . . ., etc.), the doubly degenerate functions
form an E set. Table 1.5.1 lists the quantum numbers, energies and wavefunction
symmetry for the first seven states for a particle in an equilateral triangle.

The wavefunctions ψp,q have the form

ψp,q(A1) = cos
[

q(3)1/2πx
A

]

sin
[

(2p + q)πy
A

]

− cos
[

p(3)1/2πx
A

]

sin
[

(2q + p)πy
A

]

− cos
[

(p + q)(3)1/2πx
A

]

sin
[

(p− q)πy
A

]

(1.5.65)
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when q = 0,

ψp,0(A1) = sin
[

2pπy
A

]

− 2 sin
[pπy

A

]

cos
[

p(3)1/2πx
A

]

(1.5.66)

ψp,q(A2) = sin
[

q(3)1/2πx
A

]

sin
[

(2p + q)πy
A

]

− sin
[

p(3)1/2πx
A

]

sin
[

(2q + p)πy
A

]

+ sin
[

(p + q)(3)1/2πx
A

]

sin
[

(p− q)πy
A

]

. (1.5.67)

In eqs. (1.5.65) to (1.5.67), A represents the altitude of the triangle. The two
wavefunctions that make up the E set may also be expressed by eqs. (1.5.65)
and (1.5.67), but quantum numbers p and q now have non-integral values.

The wavefunctions for the first seven states with energies and symmetries
summarized in Table 1.5.1 are graphically illustrated in Fig. 1.5.7. It is now
clear that all levels with non-integral quantum numbers are doubly degenerate
and their respective wavefunctions form an E set. Also, the A1 wavefunctions
are symmetric with respect to the threefold rotations as well as to the symmetry
planes, while A2 wavefunctions are symmetric with respect to the threefold
rotations but antisymmetric with respect to the symmetry planes.

(3) The 30◦–60◦–90◦ triangle
This is a triangle that is half of an equilateral triangle. From Fig. 1.5.7, it is obvi-
ous that all the A2 functions and one component from each pair of the E functions
possess a nodal plane which bisects the equilateral triangle into two 30◦–60◦–
90◦ triangles. Thus a particle confined to a 30◦–60◦–90◦ triangle has energies
given by eq. (1.5.67), with the allowed quantum numbers q = 1/3, 2/3, 1, . . .
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Fig. 1.5.7.
Graphical representations of the
wavefunctions for the first seven states of
the equilateral triangle.
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and p = q + 1, q + 2, . . .. Among the seven states listed in Table 1.5.1, only
one component of the E states and the A2 states are the acceptable solutions of
the 30◦–60◦–90◦ triangle.
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2The Electronic
Structure of Atoms

Now we are ready to apply the method of wave mechanics to study the electronic
structure of the atoms. At the beginning of this chapter, we concentrate on the
hydrogen atom, which consists of one proton and one electron. After treating
the hydrogen atom, we will proceed to the other atoms in the Periodic Table.

2.1 The hydrogen atom

2.1.1 Schrödinger equation for the hydrogen atom

x

y

z

r

Z+

e
(x,y,z) 
(r,u,f)

u

f

Fig. 2.1.1.
The coordinate system for a
hydrogen-like (one-electron) atom;
Z = 1 for the H atom.

If we place the nucleus of the hydrogen atom at the origin of a set of Cartesian
coordinates, the position of the electron would be given by x, y, and z, as shown
in Fig. 2.1.1. However, the solution of the Schrödinger equation for this system
becomes intractable if it is done in Cartesian coordinates. Instead, this problem
is solved using polar spherical coordinates r, θ , and φ, which are also shown
in Fig. 2.1.1. These two sets of coordinates are related by:







z = r cos θ
x = r sin θ cosφ.
y = r sin θ sin φ

(2.1.1)

Some other useful relationships are

r2 = x2 + y2 + z2, (2.1.2)

tan φ = y
x

. (2.1.3)

Also, these two sets of variables have different ranges:

−∞ < x, y, z <∞; (2.1.4)







0 ≤ r <∞
0 ≤ θ ≤ π
0 ≤ φ ≤ 2π .

(2.1.5)
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The Laplacian operator ∇2 has the form

∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

= 1
r2

∂

∂r

(

r2 ∂

∂r

)

+ 1
r2 sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+ 1

r2 sin2 θ

∂2

∂φ2 . (2.1.6)

The volume element dτ is given by

dτ = dxdydz = r2dr sin θdθdφ. (2.1.7)

For the hydrogen atom and other hydrogenic ions, the potential energy V is
simply the attraction between the proton and the electron:

V =− Ze2

4πε0r
. (2.1.8)

So the Schrödinger equation for this system is
[(

− h2

8π2m

)

∇2 −
(

Ze2

4πε0r

)]

ψ(r, θ ,φ) = Eψ(r, θ ,φ), (2.1.9)

or

1
r2

∂

∂r

(

r2 ∂

∂r
ψ

)

+ 1
r2 sin θ

∂

∂θ

(

sin θ
∂ψ

∂θ

)

+ 1

r2 sin2 θ

∂2ψ

∂φ2 + 8π2m
h2

(

E + Ze2

4πε0r

)

ψ = 0. (2.1.10)

To solve eq. (2.1.10), we first assume that the functionψ (with three variables)
is a product of three functions, each of one variable:

ψ(r, θ ,φ) = R(r)Θ(θ)Φ(φ). (2.1.11)

Upon substituting, we can “factorize” eq. (2.1.10) into the following three
equations, each involving only one variable:

d2Φ

dφ2 = −m2
2Φ, (2.1.12)

m2
2Θ

sin2 θ
− 1

sin θ
d

dθ

(

sin θ
dΘ
dθ

)

− βΘ = 0, (2.1.13)

1
r2

d
dr

(

r2 dR
dr

)

− β
r2 R + 8π2m

h2

(

E + Ze2

4πε0r

)

R = 0. (2.1.14)

In eqs. (2.1.12) to (2.1.14), m2 and β are so-called “separation constants” and
they will eventually lead to quantum numbers. Also, R(r) is called the radial
function, while the productΘ(θ)Φ(φ), henceforth called Y (θ ,φ), is the angular
function:

Y (θ ,φ) = Θ(θ)Φ(φ). (2.1.15)
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2.1.2 Angular functions of the hydrogen atom

After solving eqs. (2.1.12) and (2.1.13), it is found that, in order for functions
to be meaningful, the separation constants m2 and β must take the following
values:

m2 = 0, ±1, ±2, . . . , (2.1.16)

β = 2(2+ 1), 2 = 0, 1, 2, . . . , (2.1.17)

and

m2 = −2,−2+ 1, . . ., 2. (2.1.18)

The integers 2 and m2 are called azimuthal (or angular momentum) and magnetic
quantum numbers, respectively.

Moreover, the function Φ(φ) depends on m2 and hence is writ-
ten as Φm2(φ), while Θ(θ) depends on both 2 and m2 and is writ-
ten as Θ2,m2(θ). Their product Y (θ ,φ) thus also depends on both 2
and m2:

Y2,m2(θ ,φ) = Θ2,m2(θ)Φm2(φ). (2.1.19)

The Y2,m2(θ ,φ) functions are called spherical harmonics. They determine
the angular character of the electronic wavefunction and will be of primary
consideration in the treatment of directional bonding.

Spherical harmonics, which describes the angular parts of the atomic orbitals,
are labeled by their 2 values according to the scheme

2 = 0,1,2, 3,4, . . . ,
Label = s, p,d, f , g, . . . . (2.1.20)

Table 2.1.1 lists the first few, and the most often encountered, spherical
harmonics.

The spherical harmonics Y2,m2(θ ,φ) form an orthonormal set of functions:

∫ 2π

0

∫ π

0
Y ∗2,m2Y2′,m′2 sin θ dθ dφ =

∫ 2π

0
Φ∗m′2
Φm2dφ ·

∫ π

0
Θ∗
2′,m′2
Θ2,m2 sin θdθ

=
{

1, when m′2 = m2 AND 2′ = 2;
0, when m′2 '= m2 OR 2

′ '= 2.
(2.1.21)

Note that the quantum number m2 appears in the exponential function eim2φ in
the spherical harmonics. The Y2,m2 functions, being complex, cannot be conve-
niently drawn in real space. However, we can linearly combine them to make
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Table 2.1.1. Explicit expressions for the spherical harmonics with 2 = 0, 1, 2, 3

Y0,0 = 1
(4π)1/2 Y3,3 =

(

35
64π

)1/2
sin3 θe3iφ

Y1,1 =
(

3
8π

)1/2
sin θeiφ Y3,2 =

(

105
32π

)1/2
sin2 θcosθe2iφ

Y1,0 =
(

3
4π

)1/2
cos θ Y3,1 =

(

21
64π

)1/2
(5 cos2 θ − 1) sin θeiφ

Y1,−1 =
(

3
8π

)1/2
sin θe−iφ Y3,0 =

(

63
16π

)1/2 ( 5
3 cos3 θ − cos θ

)

Y2,2 =
(

15
32π

)1/2
sin2 θe2iφ Y3,−1 =

(

21
64π

)1/2
(5 cos2 θ − 1) sin θe−iφ

Y2,1 =
(

15
8π

)1/2
sin θ cos θeiφ Y3,−2 =

(

105
32π

)1/2
sin2 θ cos θe−2iφ

Y2,0 =
(

5
16π

)1/2
(3 cos2 θ − 1) Y3,−3 =

(

35
64π

)1/2
sin3 θe−3iφ

Y2,−1 =
(

15
8π

)1/2
sin θ cos θe−iφ

Y2,−2 =
(

15
32π

)1/2
sin2 θe−2iφ

Table 2.1.2. The real angular functions of the s, p, d and f orbitals

2 = 0 s
(

1
4π

1/2)
2 = 3 fz3

1
4

(

7
π

)1/2
(5 cos3 θ − 3 cos θ)

2 = 1 pz

(

3
4π

)1/2
cos θ fxz2

1
8

(

42
π

)1/2
sin θ(5 cos2 θ − 1) cosφ

px

(

3
4π

)1/2
sin θ cosφ fyz2

1
8

(

42
π

)1/2
sin θ(5 cos2 θ − 1) sin φ

py

(

3
4π

)1/2
sin θ sin φ fxyz

1
4

(

105
π

)1/2
sin2 θ cos θ sin 2φ

2 = 2 dz2
1
4

(

5
π

)1/2
(3 cos2 θ − 1) fz(x2−y2)

1
4

(

105
π

)1/2
sin2 θ cos θ cos 2φ

dxz
1
4

(

15
π

)1/2
sin 2θ cosφ fx(x2−3y2)

1
8

(

70
π

)1/2
sin3 θ cos 3φ

dyz
1
4

(

15
π

)1/2
sin 2θ sin φ fy(3x2−y2)

1
8

(

70
π

)1/2
sin3 θ sin 3φ

dx2−y2
1
4

(

15
π

)1/2
sin2 θ cos 2φ

dxy
1
4

(

15
π

)1/2
sin2 θ sin 2φ

the imaginary parts vanish. For example:

1
(2)1/2

(

Y1,1 + Y1,−1
)

= 1
(2)1/2 · 1

2
·
(

3
2π

)1/2

sin θ
(

eiφ + e−iφ
)

= 1
4

(

3
π

)1/2

sin θ(cosφ + i sin φ + cosφ − i sin φ)

= 1
2

(

3
π

)1/2

sin θ cosφ. (2.1.22)

As sin θ cosφ describes the angular dependence of the x component of
r [eq. (2.1.1)], the combination (1/(2)1/2)(Y1,1 + Y1,−1) is hence called
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Fig. 2.1.2.
The angular functions of the s, p, and d
orbitals.

the px orbital. The most often used real angular functions are summarized
in Table 2.1.2.

The real angular functions given in Table 2.1.2 can be drawn readily. In
Fig. 2.1.2, the shapes of the s, p, and d orbitals are shown, along with the
signs of the lobes in each angular function, and the radial function R(r) is
assumed to be a constant. We note once again that these figures represent only
the shapes of the orbitals. The curves outlining the shapes are not the contour
lines of the atomic orbitals shown in some subsequent figures such as Figs. 2.1.4
and 2.1.6.

From Fig. 2.1.2, we can see that if we have an electron occupying an s
orbital, we will have equal probability of finding this electron in all possible
directions. On the other hand, for a px electron, we will most likely find it
along the +x or−x axis. For an electron in the dxy orbital, the electron is likely
found if we look for it in the xy plane and along the directions of x = y or
x = − y. For the remaining orbitals, the directions along which the electron
is most likely to be found can be determined readily with the help of these
figures.
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2.1.3 Radial functions and total wavefunctions of the hydrogen atom

The remaining equation to be solved is the radial equation [eq. (2.1.14)], bearing
in mind thatβ is now 2(2+1) [eq. (2.1.17)]. Hence the solution R(r) also depends
on 2. In addition, the principal quantum number n arises from the solution of
this equation. Thus the radial functions depend on both n and 2, and we write
them as Rn,2(r). Specifically, n and 2 take the values

n = 1, 2, 3, 4, . . . , (2.1.23)

2 = 0, 1, 2, 3, . . . , n− 1. (2.1.24)

Also, as energy E appears only in the radial equation, it might be expected
to be dependent on n and 2 and independent of m2. As it turns out, it only
depends on n.

The explicit forms of the radial functions of hydrogenic orbitals 1s through
4f are listed in Table 2.1.3, where Z is the nuclear charge of the atom and a0 is
the Bohr radius:

a0 = ε0h2/πme2 = 0.529× 10−10 m = 52.9 pm. (2.1.25)

Note that the radial functions Rn,2 also form an orthonormal set of functions:

∫ ∞

0
Rn′,2Rn,2r2dr =

{

1, when n′ = n;
0, when n′ '= n. (2.1.26)

The first six radial functions given in Table 2.1.3 are plotted in Fig. 2.1.3. The
squares of these functions, |Rn,2(r)|2, which is related to the probability density

Table 2.1.3. The radial functions for hydrogenic orbitals with n = 1–4

1s R1,0 =
(

Z
a0

)
3
2 2e−Zr/a0

2s R2,0 =
(

Z
2a0

)
3
2
(

2− Zr
a0

)

e−Zr/2a0

2p R2,1 =
(

Z
2a0

)
3
2
(

Zr
a0(3)1/2

)

e−Zr/2a0

3s R3,0 =
(

Z
3a0

)
3
2
[

2−
(

4Zr
3a0

)

+
(

4
27

) (

Zr
a0

)2
]

e−Zr/3a0

3p R3,1 =
(

Z
3a0

)
3
2
(

2(2)1/2

9

)[

(

2Zr
a0

)

− 1
3

(

Zr
a0

)2
]

e−Zr/3a0

3d R3,2 =
(

Z
3a0

)
3
2
(

4
27(10)1/2

) (

Zr
a0

)2
e−Zr/3a0

4s R4,0 =
(

Z
4a0

)
3
2
[

2−
(

3Zr
2a0

)

+
(

1
4

) (

Zr
a0

)2
−
(

1
96

) (

Zr
a0

)3
]

e−Zr/4a0

4p R4,1 =
(

Z
4a0

)
3
2
(

(5)1/2

2(3)1/2

)[

(

Zr
a0

)

−
(

1
4

) (

Zr
a0

)2
+
(

1
80

) (

Zr
a0

)3
]

e−Zr/4a0

4d R4,2 =
(

Z
4a0

)
3
2
(

1
8(5)1/2

)

[

(

Zr
a0

)2
−
(

1
12

) (

Zr
a0

)3
]

e−Zr/4a0

4f R4,3 =
(

Z
4a0

)
3
2
(

1
96(35)1/2

) (

Zr
a0

)3
e−Zr/4a0
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Fig. 2.1.3.
The first six radial functions of the hydrogen atom drawn to the same scale.

function, will be discussed in detail later. At this point, we are in a position
to write down the first few total wavefunctions ψ(r, θ ,φ), which are simply
the products of the angular functions (Table 2.1.2) and the radial functions
(Table 2.1.3). These total wavefunctions are listed in Table 2.1.4.

The hydrogenic wavefunctions have the general analytical form:

ψn,2,m2(r, θ ,φ) = Rn,2(r)Θ2,m2(θ)Φm2(φ), (2.1.27)

with each part normalized to unity. The total wavefunctions of some represen-
tative orbitals are plotted in Fig. 2.1.4.

From Fig. 2.1.4, it is seen that, while all s orbitals are spherically symmetric,
the 2s orbital is larger than the 1s, and the 3s is even larger. Note that the 2s
orbital has one node at r = 2a0 and the 3s orbital has two nodes at r = 1.91a0
and r = 7.08a0 (see below). On the other hand, the 2pz orbital is no longer
spherically symmetric. Instead, its absolute value has a maximum at θ = 0◦ and
θ = 180◦ and the function vanishes at θ = 90◦. In other words, the xy plane
is a nodal plane. As the figure indicates, the function has a positive value for
0◦< θ < 90◦ and it becomes negative for 90◦< θ < 180◦. The wavefunctions
of the other orbitals may be interpreted in a similar manner.
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Table 2.1.4. The total wavefunctions of atomic orbitals with n = 1–4

ψ(1s) =
(

(

1
π

)1/2
)

(

Z
a0

)3/2
e−Zr/a0

ψ(2s) =
(

1
4

(

1
2π

)1/2
)

(

Z
a0

)3/2 (
2− Zr

a0

)

e−Zr/2a0

ψ(2px) =
(

1
4

(

1
2π

)1/2
)

(

Z
a0

)5/2
re−Zr/2a0 sin θ cosφ

ψ(2py) =
(

1
4

(

1
2π

)1/2
)

(

Z
a0

)5/2
re−Zr/2a0 sin θ sin φ

ψ(2pz) =
(

1
4

(

1
2π

)1/2
)

(

Z
a0

)5/2
re−Zr/2a0 cos θ

ψ(3s) =
(

1
81

(

1
3π

)1/2
)

(

Z
a0

)3/2
[

27− 18
(

Zr
a0

)

+ 2
(

Zr
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)2
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1
81
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2
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)

(

Z
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(
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(
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Fig. 2.1.4.
The total wavefunctions of some
hydrogenic orbitals. The + and −
symbols give the sign of the function in
the region indicated, while the dashed
lines show the positions of the nodes.
The values of ψ contours shown have
been multiplied by a factor of 100.

In Fig. 2.1.4, the outer lines represent the value of ψ = 0.5 × 10−2 or
−0.5× 10−2, in which ψ1s, r = 2.4a0; ψ2s, r = 10.2a0; ψ3s, r = 15.8a0. These
r values and other r values in p and d orbitals can be used to indicate the relative
sizes of the orbitals. The radii of node spheres which are shown by broken lines
are as follows: ψ2s, r = 2a0; ψ3s, r = 1.91a0 and 7.08a0; ψ3pz , r = 6a0.

The following points are noted from the plots in Figs. 2.1.3 and 2.1.4:

(1) The orbitals increase in size as the principal quantum number n increases.
(2) Only s orbitals have finite density at the nucleus.
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Fig. 2.1.5.
The three-dimensional shapes of the 2s,
2p, and 3d orbitals.

2s 2px 2py 2pz

3dz2

x
y

z

3dx2–y2

3dxy 3dxz 3dyz

(3) The number of nodes for functions Rn,2 is n− 2−1.
(4) Among orbitals with the same n, those with smaller 2 have greater density

close to the nucleus, but their principal maximum is further out.

To summarize at this point, it is reiterated that wavefunction ψ(r, θ ,φ) is a
function of r, θ , and φ. When the point is moved to another location in space,
the value of the wavefunction is changed accordingly. The three-dimensional
shape of each orbital can be represented by a contour surface, on which every
point has the same value ofψ . The three-dimensional shapes of nine hydrogenic
orbitals (2s, 2p, and 3d) are displayed in Fig. 2.1.5. In these orbitals, the nodal
surfaces are located at the intersections where ψ changes its sign. For instance,
for the 2px orbital, the yz plane is a nodal plane. For the 3dxy orbital, the xz and
yz plane are the nodal planes.

2.1.4 Relative sizes of hydrogenic orbitals and the probability criterion

In the Bohr model of the hydrogen atom, the radius of an orbit in terms of unit
a0 is given by n2, and the sizes of the K , L, M and N shells are in the ratio
1:4:9:16.

For hydrogenic orbitals, the average distance of the electron from the nucleus,
r, can be evaluated exactly from the equation

r =
∫ ∞

0
rDn,2dr = n2[3/2− {2(2+ 1)}/2n2]. (2.1.28)
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Table 2.1.5. Average distances (r̄), most probable distances (rmax), and
associated probabilities (P) of hydrogenic orbitals

Atomic orbital r Size ratio P rmax P

1s 1.5 1 0.58 1 0.32
2s 6 4 0.54 5.24 0.39
2p 5 3.33 0.56 4 0.37
3s 13.5 9 0.49 13.07 0.44
3p 12.5 8.33 0.49 12 0.44
3d 10.5 7 0.55 9 0.39
4s 24 16 0.44 24.62 0.48
4p 23 15.33 0.44 23.58 0.48
4d 21 14 0.45 21.21 0.47
4f 18 12 0.46 16 0.41

The r values for orbitals 1s through 4f and their size ratios, calculated relative
to the 1s value as a standard, are given in the second and third columns of
Table 2.1.5.

For any given orbital, the probability of finding the electron in the volume
element dτ = r2 dr sin θ dθdφ [eq. (2.1.7)] in the vicinity of the point (r, θ ,φ) is

P = |ψn,2,m2(r, θ ,φ)|2r2dr sin θdθdφ. (2.1.29)

If we integrate this expression over all possible values of θ and φ, we get

∫ π

0

∣

∣Θ2,m2
∣

∣

2 sin θdθ ·
∫ 2π

0

∣

∣Φm2

∣

∣

2dφ ·
∣

∣Rn,2
∣

∣

2 r2dr

= r2R2
n,2dr ≡ Dn,2dr, (2.1.30)

which represents the probability of finding the electron between distances r and
r+dr from the nucleus regardless of direction. The Dn,2 function in eq. (2.1.30)
is called the radial probability distribution function. It is incorrect to write Dn,2
as 4πr2R2

n,2, which has the extraneous factor 4π , or as 4πr2ψ2 which holds
only for the spherically symmetric s orbitals.

Figure 2.1.6 shows plots of the Dn,2 functions against r for the first few
hydrogenic orbitals. The positions of the maxima and minima in each curve are
as follows:

1s: maximum at 1a0;
2s: maxima at 0.76 and 5.24a0; minimum at 2a0;
2p: maximum at 4a0;
3s: maxima at 0.73, 4.20 and 13.07a0; minima at 1.91 and 7.08a0;
3p: maxima at 3 and 12a0; minimum at 6a0;
3d: maximum at 9a0.

Take the 1s electron as an example. In the Bohr theory, the electron moves
in a fixed orbit of radius 1a0. On the other hand, in the wave mechanical treat-
ment, the electron can in principle be found at any distance from the nucleus,
and the most probable nucleus-electron separation is 1a0. Here we can see
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Fig. 2.1.6.
The radial probability function Dn,2 or |rRn,2|2, drawn to the same scale, of the first six hydrogenic orbitals.

the philosophical difference between these two models. In addition, while we
should look for a 2px or 3px electron along the +x or −x direction, Fig. 2.1.6
shows that the 2px electron is most likely found at a point 4a0 from the nucleus,
whereas the corresponding distance for a 3px electron is 12a0.

For hydrogenic orbitals with n−2 > 1, the most probable distance rmax may
be defined as the distance of the “principal maximum,” namely the outermost
and most prominent of the maxima of the Dn,2 function from the nucleus. The
rmax values of the hydrogenic orbitals are listed in the fifth column ofTable 2.1.5.
It is seen that the size ratios for the 1s, 2p, 3d, and 4f orbitals, which satisfy the
relation 2 = n− 1, are exactly the same as those of the Bohr orbits, which vary
as n2. Furthermore, for orbitals in the same shell, rmax decreases as 2 increases,
as in the case of r. The data in Table 2.1.5 show that orbital size ratios based
on r are smaller than those based on rmax.

A plausible estimate of the spatial extension of a hydrogenic orbital is the
radius of a spherical boundary surface within which there is a high probability
of finding the electron. In order to develop this criterion on a quantitative basis,
it is useful to define a cumulative probability function Pn2(ρ) which gives the
probability of finding the electron at a distance less than or equal to ρ from the
nucleus:

Pn2(ρ) =
∫ ρ

0
Dn,2dr. (2.1.31)

The function Pn2(ρ) can be expressed in closed form, and the expressions
for 1s through 4f orbitals are listed in Table 2.1.6. They can be used to give
some measure of correlation between the various criteria for orbital size. For
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Table 2.1.6. Cumulative probability functions for hydrogenic orbitals

Atomic
orbital

Pn2(ρ)

1s 1− e−2ρ (1 + 2ρ + 2ρ2)

2s 1− e−ρ (1 + ρ + ρ2/2 + ρ4/8)

2p 1− e−ρ (1 + ρ + ρ2/2 + ρ3/6 + ρ4/24)

3s 1− e−2ρ/3(1 + 2ρ/3 + 2ρ2/9+ 4ρ4/81 − 8ρ5/729 + 8ρ6/6561)

3p 1− e−2ρ/3(1 + 2ρ/3 + 2ρ2/9+ 4ρ3/81 + 2ρ4/243 − 4ρ5/2187 + 4ρ6/6561)

3d 1− e−2ρ/3(1 + 2ρ/3 + 2ρ2/9+ 4ρ3/81 + 2ρ4/243 + 4ρ5/3645 + 4ρ6/32805)

4s 1− e−ρ/2(1 + ρ/2 + ρ2/8 + 3ρ4/128 − ρ5/128 + 13ρ6/9216 − ρ7/9216 + ρ8/294912)

4p 1− e−ρ/2(1 + ρ/2 + ρ2/8 + ρ3/8 + ρ4/384 − ρ5/960 + 7ρ6/15360 − ρ7/20480 + ρ8/491520)

4d 1− e−ρ/2(1 + ρ/2 + ρ2/8 + ρ3/48 + ρ4/384 + ρ5/3840 + ρ6/46080 − ρ7/184320 + ρ8/1474560)

4f 1− e−ρ/2(1 + ρ/2 + ρ2/8 + ρ3/48 + ρ4/384 + ρ5/3840 + ρ6/46080 + ρ7/645120 + ρ8/10321920)

Table 2.1.7. Relative sizes of hydrogenic orbitals based on different probability criteria

Atomic
orbital

P = 0.50 P = 0.90 P = 0.95 P = 0.99

ρ Ratio ρ Ratio ρ Ratio ρ Ratio

1s 1.34 1 2.66 1 3.15 1 4.20 1
2s 5.80 4.38 9.13 3.43 10.28 3.27 12.73 3.03
2p 4.67 3.49 7.99 3.00 9.15 2.91 11.61 2.76
3s 13.62 10.19 19.44 7.31 21.39 6.80 25.46 6.06
3p 12.57 9.40 18.39 6.91 20.34 6.46 24.41 5.81
3d 10.01 7.48 15.80 5.94 17.76 5.64 21.86 5.20
4s 24.90 18.63 33.62 12.64 36.47 11.59 42.35 10.08
4p 23.87 17.86 32.59 12.25 35.45 11.26 41.32 9.83
4d 21.60 16.15 30.31 11.39 33.17 10.54 39.06 9.29
4f 17.34 12.97 25.99 9.77 28.87 9.17 34.81 8.28

any specified distance ρ, the probability of finding the electron within the range
0 < r ≤ ρ can be obtained by direct substitution into these expressions.

The cumulative probability functions listed in Table 2.1.6 can be used to give
some measure of correlation between the various criteria for orbital size. Once a
particular value for P is chosen, it can be equated to each of the expresssions in
turn and the resulting transcendental equation solved numerically. The ρ values
thus obtained for P = 0.50, 0.90, 0.95, and 0.99 are tabulated in Table 2.1.7.
The significant quantites are the size ratios, with the 1s ρ value as standard,
which provide a rational scale of relative orbital size based on any adopted
probability criterion. As the prescribed P value approaches unity, the size ratios
gradually decrease in magnitude and orbitals in the same shell tend to converge
to a similar size.

The probabilty criterion P = 0.95 (or 0.99) yields the most compact scale
of orbital size, according to which the size of the first four qunatum shells
are approximately in the ratio of 1:3:6:10. In the fourth and last columns of
Tables 2.1.5, the probabilities corresponding to r and rmax are listed, respec-
tively. Scrutiny of the data in Tables 2.1.5 and 2.1.7 show that adoption of r
as an indication of orbital size corresponds fairly closely to a 50% probability
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criterion. The use of rmax may be roughly matched with a lower criterion of
40%, but the correlation is not as satisfactory.

2.1.5 Energy levels of hydrogenic orbitals; summary

As mentioned previously, energy E appears only in the radial equation
[eq. (2.1.14)], which does not involve m2. Hence we readily note that s orbitals
are non-degenerate, p orbitals are triply degenerate, d orbitals have fivefold
degeneracy, and f orbitals have sevenfold degeneracy. As it turns out, for the
hydrogen atom only, E is also independent of 2:

En = −me4Z2

8ε2
0h2n2

= −Z2e2

8πε0a0n2 = −13.6
(

Z2

n2

)

eV. (2.1.32)

To summarize, each hydrogenic orbital is described by three quantum
numbers and each quantum number is responsible for some properties:

(1) Principal quantum number n, n = 1, 2, . . . : solely responsible for the
energy of the orbital and largely accountable for the orbital size;

(2) Azimuthal quantum number 2, 2 = 0, 1, 2, . . . , n − 1: mainly accounting
for the shape of the orbital; and

(3) Magnetic quantum number m2, m2 = −2,−2 + 1, . . . , 2: describes the
orientation of the orbital.

Comparing the results of the Bohr and the wave mechanical models, we
find that:

(a) Both theories lead to the same energy expression.
(b) It can be shown that wavefunctions may be used to determine other atomic

properties such as the intensity of the spectral lines, etc.
(c) Quantum numbers appear naturally in solving of the Schrödinger equation

(even though this has not been explicitly shown here). But they are inserted
arbitrarily in the Bohr model.

(d) Electrons in the Bohr theory occupy planet-like orbits. In the wave mechani-
cal model they occupy delocalized orbitals. Experimental evidences support
the Schrödinger picture.

2.2 The helium atom and the Pauli Exclusion Principle

Before we embark on this topic, we first introduce the “atomic units,” which
are defined in Table 2.2.1.

In the quantum mechanical treatment we have studied so far, we always try to
obtain the wavefunction ψ and energy E by solving the Schrödinger equation:

Ĥψ = Eψ . (2.2.1)

However, it often happens that an exact solution of the Schrödinger equation is
impossible. Instead we usually rely on approximation methods. If we have ψ ′
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Table 2.2.1. Atomic units (a.u.)

Length 1 a.u. = a0 = 5.29177× 10−11 m (Bohr radius)
Mass 1 a.u. = me = 9.109382× 10−31 kg (rest mass of electron)
Charge 1 a.u. = |e| = 1.6021764× 10−19 C (charge of electron)

Energy 1 a.u. = e2

4πε0a0
= 27.2114 eV (potential energy between two electrons

when they are 1 a0 apart)
Angular momentum 1 a.u. = h

2π (≡ h̄) = 1.05457× 10−34 J s
Scale factor 4πε0 = 1

u1

u2

e1(r1,u1,f1)

e2(r2,u2,f2)

f1

f2

r12

x

z

r2

y

r1

+Ze

Fig. 2.2.1.
The coordinate system for the helium
atom.

as an approximation solution of eq. (2.2.1), its energy is simply

E =
∫

ψ ′∗Ĥψ ′dτ
∫

ψ ′∗ψ ′dτ
. (2.2.2)

2.2.1 The helium atom: ground state

Now we turn to the helium atom, whose coordinate system is shown in Fig. 2.2.1.
The potential energy of this system (in a.u.) is

V = − Z
r1
− Z

r2
+ 1

r12
, (2.2.3)

and the Schrödinger equation takes the form
(

−1
2
∇2

1 −
1
2
∇2

2 −
Z
r1
− Z

r2
+ 1

r12

)

ψ = Eψ , (2.2.4)

where ψ = ψ(r1, θ1,φ1, r2, θ2,φ2) = ψ(1, 2). Note that operators ∇2
1 and

∇2
2 affect the coordinates of electrons 1 and 2, respectively. Equation (2.2.4)

cannot be solved exactly and, in the following treatment, we will attempt to
solve it by approximation.As a first (and very drastic) approximation, we ignore
the electronic repulsion term 1

r12
in eq. (2.2.3) or eq. (2.2.4). Now eq. (2.2.4)

becomes
[

−1
2
∇2

1 −
Z
r1

]

ψ(1, 2) +
[

−1
2
∇2

2 −
Z
r2

]

ψ(1, 2) = Eψ(1, 2). (2.2.5)
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If we separate the variables in ψ(1, 2),

ψ(1, 2) = ψ1(1)ψ2(2), (2.2.6)

and substitute this version of ψ(1, 2) into eq. (2.2.5), we have

ψ2(2)

[

−1
2
∇2

1 −
Z
r1

]

ψ1(1) + ψ1(1)

[

−1
2
∇2

2 −
Z
r2

]

ψ2(2) = Eψ1(1)ψ2(2).

(2.2.7)

Dividing eq. (2.2.7) by ψ1(1)ψ2(2) leads to

[

− 1
2∇2

1 − Z
r1

]

ψ1(1)

ψ1(1)
+

[

− 1
2∇2

2 − Z
r2

]

ψ2(2)

ψ2(2)
= E. (2.2.8)

It is obvious that both terms on the left side of eq. (2.2.8) must each be equal
to a constant, corresponding to Ea and Eb, respectively, and

Ea + Eb = E. (2.2.9)

So the simplified Schrödinger equation eq. (2.2.7) can be separated into two
(familiar) equations, each involving only the coordinates of one electron:

[

−1
2
∇2

1 −
Z
r1

]

ψ1(1) = Eaψ1(1); (2.2.10)

[

−1
2
∇2

2 −
Z
r2

]

ψ2(2) = Ebψ2(2). (2.2.11)

We have already solved eqs. (2.2.10) and (2.2.11) in the treatment of the hydro-
gen atom; the only difference is that now Z = 2. If we take the ground state
wavefunction and energy (in a.u.),

ψ1(1) = ψ1s(1) = 1
(π)1/2 Z

3
2 e−Zr1 ; (2.2.12)

ψ2(2) = ψ1s(2) = 1
(π)1/2 Z

3
2 e−Zr2 , (2.2.13)

and

ψ(1, 2) =
(

1
(π)1/2 Z

3
2 e−Zr1

)(

1
(π)1/2 Z

3
2 e−Zr2

)

; (2.2.14)

Ea = Eb = E1s = −1
2

Z2 a.u., (2.2.15)
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r2

r2

–e2

–e2r2>> r1, 
Zeff for 
e2 is ~1

r2<< r1, 
Zeff for 
e2 is ~2+2e +2e

electron 1 electron 1

Fig. 2.2.2.
Screening of the nucleus by one of the
electrons in the helium atom.

and

E = −Z2 a.u. = −108.8 eV. (2.2.16)

The experimental energy is −79.0 eV.
To improve on this result, we need to understand what causes the error in

the solution given by eq. (2.2.14), aside from the fact that electronic repulsion
has been ignored. From ψ1(1), ψ2(2), and ψ(1, 2) given by eqs. (2.2.12) to
(2.2.14), we can see that, in our approximation, each electron “sees” a nuclear
charge of +2. As illustrated in Fig. 2.2.2, when electron 2 is completely outside
electron 1, the charge it “sees” is about +1, as the +2 nuclear charge is shielded
by the −1 electron cloud. On the other hand, if electron 2 is deep inside the
electron cloud of electron 1, the charge it “sees” is close to +2. Hence a more
realistic picture would be that each electron should “see” an “effective nuclear
charge” (Zeff ) between 1 and 2:

1 < Zeff < 2. (2.2.17)

If that is the case, ψ1(1) and ψ2(2) in eqs. (2.2.12) and (2.2.13) now become

ψ1(1) = 1
(π)1/2 Z

3
2

eff e−Zeff r1 , (2.2.18)

ψ2(2) = 1
(π)1/2 Z

3
2

eff e−Zeff r2 , (2.2.19)

Again,

ψ(1, 2) = ψ1(1)ψ2(2). (2.2.6)

To determine the energy of the trial wavefunction given by eq. (2.2.18),
(2.2.19), and (2.2.6), we make use of eq. (2.2.2):

E = E(Zeff )

=
∫ ∫

ψ(1, 2)
[

− 1
2∇2

1 −
(

Z
r1

)

− 1
2∇2

2 −
(

Z
r2

)

+
(

1
r12

)]

ψ(1, 2)dτ1dτ2
∫ ∫ |ψ(1, 2)|2 dτ1dτ2

.

(2.2.20)
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It should be clear that E is dependent on Zeff . To calculate E is not very dif-
ficult, except for the integral involving 1/r12. Still, we are going to skip the
mathematical details here and will only be concerned with the results:

E =
(

Z2
eff − 2ZZeff + 5Zeff

8

)

a.u. (2.2.21)

To determine the optimal (or best) value for Zeff , we vary Zeff until E is at the
minimum:

dE
dZeff

= 2Zeff − 2Z + 5
8

= 0, (2.2.22)

or

Zeff = Z −
(

5
16

)

. (2.2.23)

For the specific case of helium, Z = 2, we get

Zeff = 27
16

= 1.6875. (2.2.24)

This value of Zeff is within the range we wrote down in eq. (2.2.17). Substituting
eq. (2.2.23) into eq. (2.2.21) leads to

Emin = −Z2
eff a.u. = −

[

Z −
(

5
16

)]2

a.u. (2.2.25)

For helium, with Z = 2, we have

Emin = −(1.6875)2 a.u. = −2.85 a.u. = −77.5 eV, (2.2.26)

recalling that experimentally helium has the energy of−79.0 eV. So, with such
a simple treatment, a very reasonable result is obtained. However, to close the
remaining gap of 1.5 eV, considerable effort is required (see below).

What we have applied to helium is called the variational method, which
usually consists of the following steps:

(1) Set up a trial function with one or more parameters ψ(α1,α2, . . .);

(2) Calculate E(α1,α2, . . .) =
∫

ψ∗Ĥψdτ
∫

ψ∗ψdτ .
(3) Obtain the optimal values of α1,α2, . . . and hence the minimum energy by

setting ∂E/∂α1 = ∂E/∂α2 = · · · = 0.

In 1959, C. L. Pekeris, by optimizing a 1,078-term wavefunction for helium,
obtained an energy essentially identical to the experimental value.

Before concluding this section, we will take a closer look at the relatively
simple trial wavefunctions for helium, i.e., those functions with one or two
adjustable parameters. While neglecting the mathematical details of the cal-
culations, we will pay particular attention to the physical meaning of the
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parameters. In so doing we will acquire a better understanding on the design of
trial wavefunctions.

First we rewrite the trial wavefunction for helium given by eqs. (2.2.18),
(2.2.19), and (2.2.6) as

ψa = e−α(r1+r2).

As mentioned previously, parameter α may be viewed as the effective nuclear
charge “felt” by either one of the two electrons. Such an interaction is commonly
called the screening effect. Furthermore, as described by this wavefunction, the
two electrons move independently of each other, i.e., angular correlation is
ignored. Electron correlation may be taken as the tendency of the electrons to
avoid each other. For helium, angular correlation describes the two electrons’
inclination to be on opposite sides of the nucleus. On the other hand, radial
correlation, or screening effect, is the tendency for one electron to be closer to
the nucleus, while the other one is farther away. A one-parameter trial function
that does take angular correlation into account is

ψb = e−Z(r1+r2)(1 + cr12).

As will be shown later, ψb is actually a better trial function than ψa. Thus it is
surprising, and a pity, that ψb has not been included in most of the text books.

Proceeding to trial functions with two parameters, we can see that a function
that includes both the screening effect and angular correlation is

ψc = e−α(r1+r2)(1 + cr12).

Clearly this function is an improvement on both ψa and ψb.
Recall ψa assumes that both electrons in helium experience the same effec-

tive nuclear charge α. While this may be so in an average sense, such an
approximation fails to take into account that, at a given instant, the two elec-
trons are not likely to be equidistant from the nucleus and hence the effective
nuclear charges they feel should not be the same. Taking this into consideration,
C. Eckart proposed the following trial function in 1930:

ψd = e−αr1 e−βr2 + e−βr1 e−αr2 .

It is clear in ψd one electron is allowed to move closer to the nucleus and
the other is allowed to be farther away. Once again, angular correlation is not
explicitly included in this function. It is noted that this function has two terms
because the two electrons are indistinguishable from each other. If we only
take the first term, electron 1 is labeled by effective nuclear charge α, while the
other electron is labeled by β. This is not allowed in quantum mechanics. The
indistinguishability of electrons will also be discussed in the next section.

The results for the aforementioned four trial wavefunctions are summarized
in Table 2.2.2.

Examining the tabulated results, it is clear that, between the one-parameter
trial functions, ψb is “better” than ψa. Physically, this implies that angular
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Table 2.2.2. Summary of four trial wavefunctions of helium atom in its ground state

Trial wavefunction Optimized parameter value(s) IE(calc) (eV)*

ψa = e−α(r1+r2) α = 1.6875 (exact) 23.1
ψb = e−Z(r1+r2)(1 + cr12) c = 0.5572 23.9
ψc = e−α(r1+r2)(1 + cr12) α = 1.8497; c = 0.3658 24.2
ψd = e−αr1 e−βr2 + e−βr1 e−αr2 α = 1.1885; β = 2.1832 23.8

∗ IE, ionization energy. The experimental IE of He is 24.6 eV.

correlation is a more important factor than the screening effect. Indeed, ψb
is even slightly better than the two-parameter function ψd. This once again
underscores the importance of angular correlation. In ψd, we can see that one
optimized parameter is close to 2, the nuclear charge, while the other is close
to 1. That means one electron is close to the nucleus and the other is effectively
screened by the inner electron. Finally, since ψc takes both screening effect
and angular correlation into consideration, it is naturally the best trial function
among the four considered here.

2.2.2 Determinantal wavefunction and the Pauli Exclusion Principle

In our treatment of helium, each electron occupies a 1s-like orbital, and hence
the wavefunctions given in eqs. (2.2.18), (2.2.19), and (2.2.6) may be written as

ψHe(1, 2) = 1s(1)1s(2). (2.2.27)

However, we cannot handle atoms with more than two electrons in the same
manner. For instance, for lithium, the wavefunction

ψLi(1, 2, 3) = 1s(1)1s(2)1s(3) (2.2.28)

is not acceptable at all, since it denotes an electronic configuration (1s3) that
violates the Pauli Exclusion Principle. This principle states that no two electrons
can have the same set of quantum numbers.

For atomic systems, it is often said that each electron is defined by four
quantum numbers: n, 2, m2, and ms. Actually, there is a fifth quantum number,
s, which has the value of 1/2 for all electrons. Quantum number ms can be either
1/2 or −1/2, corresponding to spin function α (spin up) and β (spin down),
respectively. Spin functions α and β form an orthonormal set,

∫

αα dγ =
∫

ββ dγ = 1, (2.2.29)

and

∫

αβ dγ = 0, (2.2.30)
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where γ is called a spin variable. If we add spin function to the spatial
wavefunction given by eq. (2.2.27) to yield the total wavefunction for helium,

ψp(1, 2) = 1sα(1)1sβ(2). (2.2.31)

However, function ψp implies that electrons are distinguishable: electron 1 has
its spin up and electron 2 spin down. Similarly, we should also consider the
following in the total wavefunction for helium:

ψq(1, 2) = 1sα(2)1sβ(1). (2.2.32)

There are two ways of combiningψp andψq in order to make the two electrons
indistinguishable:

(1)
1

(2)1/2

[

ψp(1, 2) + ψq(1, 2)
]

= 1
(2)1/2

[

1sα(1)1sβ(2) + 1sα(2)1sβ(1)
]

,

(2.2.33)

which is symmetric with respect to the exchange of the two electrons;

(2)
1

(2)1/2

[

ψp(1, 2)− ψq(1, 2)
]

= 1
(2)1/2

[

1sα(1)1sβ(2)− 1sα(2)1sβ(1)
]

,

(2.2.34)

which is antisymmetric with respect to the exchange of the two electrons. Note
that in expressions (2.2.33) and (2.2.34), the factor 1/(2)1/2 is a normalization
constant.

It is found that electronic wavefunctions must be antisymmetric with respect
to the exchange of the coordinates of any two electrons. Hence, only the function
given by expression (2.2.34) is acceptable for the helium atom:

ψ(1, 2) = 1
(2)1/2 [1sα(1)1sβ(2)− 1sα(2)1sβ(1)]

= 1s(1)1s(2)

{

1
(2)1/2 [α(1)β(2)− β(1)α(2)]

}

= (symmetric spatial part)× (antisymmetric spin part). (2.2.35)

In our previous treatment of helium, we only used the spatial function 1s(1)1s(2)

to calculate the energy, while ignoring the spin part. This is acceptable because
energy is independent of spin.

In eq. (2.2.35) we see that the helium wavefunction can be factorized into
spatial (or orbital) and spin parts. It should be noted that such a factorization is
possible only for two-electron systems. Yet another way of writing ψ(1, 2) of
He as given in eq. (2.2.35) is

ψ(1, 2) = 1
(2)1/2 [1sα(1)1sβ(2)− 1sα(2)1sβ(1)]

= 1
(2)1/2

∣

∣

∣

∣

1sα(1) 1sβ(1)

1sα(2) 1sβ(2)

∣

∣

∣

∣

. (2.2.36)
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This is called a Slater determinant, in honor of physicist J. C. Slater. Since a
determinant changes its sign upon the exchange of any two rows or columns, any
wavefunction written in determinantal form must be antisymmetric with respect
to electron exchange. If we take the determinantal function in eq. (2.2.36) and
exchange its two rows:

ψ(2, 1) = 1
(2)1/2

∣

∣

∣

∣

1sα(2) 1sβ(2)

1sα(1) 1sβ(1)

∣

∣

∣

∣

= 1
(2)1/2 [1sα(2)1sβ(1)− 1sα(1)1sβ(2)] = −ψ(1, 2). (2.2.37)

Also, such an antisymmetric function automatically satisfies the Pauli Exclusion
Principle. For instance, if we write a function for helium having both electrons
in the 1s orbital with spin up,

1
(2)1/2

∣

∣

∣

∣

1sα(1) 1sα(1)

1sα(2) 1sα(2)

∣

∣

∣

∣

= 1
(2)1/2 [1sα(1)1sα(2)− 1sα(1)1sα(2)] = 0.

(2.2.38)

Such a function vanishes because any determinant with two identical rows or
columns vanishes. In other words, any system having both electrons in the 1s
orbital with α spin cannot exist. Now we see there is an alternative way of
saying the Pauli Exclusion Principle: A wavefunction for a system with two or
more electrons must be antisymmetric with respect to the interchange of labels
of any two electrons.

Returning to the lithium atom, it is now clear the 1s orbital cannot accommo-
date all three electrons. Rather, two electrons are in the 1s orbital with opposite
spins, while the remaining electron is in the 2s orbital with either α or β spin.
Hence two determinantal wavefunctions can be written for the ground state of
lithium:

ψ(1, 2, 3) = 1
(6)1/2

∣

∣

∣

∣

∣

∣

1sα(1) 1sβ(1) 2sα(1)

1sα(2) 1sβ(2) 2sα(2)

1sα(3) 1sβ(3) 2sα(3)

∣

∣

∣

∣

∣

∣

, (2.2.39)

and

ψ(1, 2, 3) = 1
(6)1/2

∣

∣

∣

∣

∣

∣

1sα(1) 1sβ(1) 2sβ(1)

1sα(2) 1sβ(2) 2sβ(2)

1sα(3) 1sβ(3) 2sβ(3)

∣

∣

∣

∣

∣

∣

. (2.2.40)

Since there are two determinantal functions for lithium, its ground state is a
spin doublet. On the other hand, only one determinantal function can be written
for helium [eq. (2.2.36)], and its ground state is a spin singlet.

Another notation describing the ground state of helium and lithium is 1s2

and 1s22s1, respectively. From this notation, we can tell quickly which orbitals
accommodate the electrons and how the electron spins are related to each other.
Such an assignment for the electrons is called the electronic configuration of
the atom.
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2.2.3 The helium atom: the 1s12s1 configuration

When one of the electrons in helium is excited from the 1s to the 2s orbital,
the configuration 1s12s1 is obtained. Taking the indistinguishibility of electrons
into account, two spatial wavefunctions can be written:

symmetric spatial part :
1

(2)1/2 [1s(1)2s(2) + 1s(2)2s(1)], (2.2.41)

antisymmetric spatial part :
1

(2)1/2 [1s(1)2s(2)− 1s(2)2s(1)]. (2.2.42)

On the other hand, four functions can be written for the spin part:

symmetric spin part : α(1)α(2), (2.2.43)

symmetric spin part : β(1)β(2), (2.2.44)

symmetric spin part :
1

(2)1/2 [α(1)β(2) + α(2)β(1)], (2.2.45)

antisymmetric spin part :
1

(2)1/2 [α(1)β(2)− α(2)β(1)]. (2.2.46)

Since the total (spatial × spin) wavefunction must be antisymmetric, four
acceptable functions can be written from expressions (2.2.41) to (2.2.46):

ψ1(1, 2) = 1
(2)1/2 [1s(1)2s(2) + 1s(2)2s(1)] · 1

(2)1/2 [α(1)β(2)− α(2)β(1)]

= 1
(2)1/2

[

1
(2)1/2

∣

∣

∣

∣

1sα(1) 2sβ(1)

1sα(2) 2sβ(2)

∣

∣

∣

∣

− 1
(2)1/2

∣

∣

∣

∣

1sβ(1) 2sα(1)

1sβ(2) 2sα(2)

∣

∣

∣

∣

]

.

(2.2.47)

ψ2(1, 2) = 1
(2)1/2 [1s(1)2s(2)− 1s(2)2s(1)] · α(1)α(2)

= 1
(2)1/2

∣

∣

∣

∣

1sα(1) 2sα(1)

1sα(2) 2sα(2)

∣

∣

∣

∣

. (2.2.48)

ψ3(1, 2) = 1
(2)1/2 [1s(1)2s(2)− 1s(2)2s(1)] · β(1)β(2)

= 1
(2)1/2

∣

∣

∣

∣

1sβ(1) 2sβ(1)

1sβ(2) 2sβ(2)

∣

∣

∣

∣

. (2.2.49)

ψ4(1, 2) = 1
(2)1/2 [1s(1)2s(2)− 1s(2)2s(1)] · 1

(2)1/2 [α(1)β(2) + α(2)β(1)]

= 1
(2)1/2

[

1
(2)1/2

∣

∣

∣

∣

1sα(1) 2sβ(1)

1sα(2) 2sβ(2)

∣

∣

∣

∣

+ 1
(2)1/2

∣

∣

∣

∣

1sβ(1) 2sα(1)

1sβ(2) 2sα(2)

∣

∣

∣

∣

]

.

(2.2.50)
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As E = ∫ψ∗Ĥψdτ and Ĥ is spin-independent, it is clear that ψ2, ψ3, and
ψ4 have the same energy and form a spin triplet, while ψ1 has different energy
value and is called a spin singlet. In the following, we denote the orbital (or
spatial) part of the singlet [eq. (2.2.41) and triplet [eq. (2.2.42)] functions by
1ψ and 3ψ , respectively:

1ψ(1, 2) = 1
(2)1/2 [1s(1)2s(2) + 1s(2)2s(1)], (2.2.51)

3ψ(1, 2) = 1
(2)1/2 [1s(1)2s(2)− 1s(2)2s(1)]. (2.2.52)

Now we evaluate the energies 1E and 3E for the singlet and triplet states,
respectively. Recall, for helium, in atomic units

Ĥ =
(

−1
2
∇2

1 −
Z
r1

)

+
(

−1
2
∇2

2 −
Z
r2

)

+ 1
r12

. (2.2.53)

It can be shown that

1E =
∫ ∫

1ψ∗Ĥ 1ψdτ1dτ2

= E1s + E2s + J + K , (2.2.54)

where J (coulomb integral) and K (exchange integral) have the form

J =
∫ ∫

1s(1)2s(2)

(

1
r12

)

1s(1)2s(2)dτ1dτ2 = 34
81

a.u. = 0.420 a.u.,

(2.2.55)

K =
∫ ∫

1s(1)2s(2)

(

1
r12

)

1s(2)2s(1)dτ1dτ2 = 32
729

a.u = 0.044 a.u.

(2.2.56)

In deriving eq. (2.2.54), we have skipped some mathematical steps. Recall from
the treatment of hydrogen atom:

En = − Z2

2n2 a.u. (2.2.57)

Hence, for helium, with Z = 2,

E1s = −2 a.u., (2.2.58)

E2s = −1/2 a.u., (2.2.59)
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J = 0.420 a.u.

K = 0.044 a.u.

Columb
interaction

E1s + E2s,
with Z = 2
–2.5 a.u.

Exchange
interaction

2K = DE
K = 0.044 a.u.

Experimental DE = 0.93 eV

DE = 1E – 3E = 2K = 0.088.a.u. = 2.39 eV 

–0.208 a.u.

1E

3E

Fig. 2.2.3.
Determination of the energies of the
singlet and triplet states arising from the
1s12s1 configuration of the helium atom.

and

1E = (−2.500 + 0.420 + 0.044) a.u. = −2.036 a.u. (2.2.60)

In a similar manner, it can be shown that

3E =
(

−2
1
2

+ J − K
)

a.u.

= (−2.500 + 0.420− 0.044) a.u. = −2.124 a.u. <1E. (2.2.61)

The way we have arrived at the energies of the singlet and triplet states arising
from the 1s12s1 configuration is illustrated pictorially in Fig. 2.2.3. From the
above discussion and the example of the 1s12s1 configuration for the helium
atom, it is seen that more than one state can arise from a given configuration.
Furthermore, the energy difference for these states is due to the electronic
repulsion term.

To conclude this section, we note the following:

(1) For the ground configuration 1s2 of helium, only one wavefunction can be
written [eq. (2.2.36)]. Hence the ground state of helium is a singlet.

(2) For the ground configuration 1s22s1 of lithium, two wavefunctions can be
written [eqs. (2.2.39) and (2.2.40)]. Hence the ground state of lithium is a
doublet.

(3) For the excited configuration 1s12s1 of helium, two states can be derived.
One is a singlet and the other is a triplet, with the latter having the lower
energy.

As a final remark, from (3), it can be seen that, it is not proper to speak of
an electronic transition by mentioning only the configurations involved, such
as 1s2 → 1s12s1. This is because, in this particular case, it does not specify the
final state of the transition. Hence, to cite an electronic transition, we need to
specify both the initial and final electronic states. Only stating the initial and
final configurations is not precise enough. We will have more discussion on this
later.
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2.3 Many-electron atoms: electronic configuration and
spectroscopic terms

2.3.1 Many-electron atoms

For an atom with n electrons, the Schrödinger equation has the form (in a.u.)



−1
2

∑

i

∇2
i −
∑

i

Z
ri

+
∑

i<j

1
rij



ψ(1, 2, . . . , n) = Eψ(1, 2, . . . , n).

(2.3.1)

This equation cannot be solved exactly. The most often used approximation
model to solve this equation is called the self-consistent field (SCF) method,
first introduced by D. R. Hartree and V. A. Fock. The physical picture of this
method is very similar to our treatment of helium: each electron “sees” an
effective nuclear charge contributed by the nuclear charge and the remaining
electrons.

Figure 2.3.1 shows the radial distribution functions of sodium
(1s22s22p63s1). The shaded portion shows the electronic distribution of Na+

(1s22s22p6), which indicates that the K and L shells of Na+ are two concentric
rings close to the nucleus; such a picture resembles the orbits in the Bohr theory.
Also shown in Fig. 2.3.1 are the 3s, 3p, and 3d radial distribution functions.
As a general rule, s orbitals are least screened (it “sees” the largest effective
nuclear charge), or most penetrating. As 2 increases, the orbital penetrates less
into the region close to the nucleus so that the effective nuclear charge expe-
rienced by the electron decreases. As a result, for atoms with more than one
electron, orbitals having the same n but different 2 values are not degenerate.
Recall, for the hydrogen atom, orbitals with the same n but different 2 values
have the same energy [eq. (2.1.28)],

En = − Z2

2n2 a.u., (2.3.2)

but such degeneracies no longer hold true for atoms other than hydrogen.

Fig. 2.3.1.
The radial distribution functions of 3s,
3p, and 3d orbitals together with that of
the sodium core (1s22s22p6).

K L

(1s22s2p6)

3s

0 200
r/pm

r2 R
2

400 600
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In an atom with more than one electron, each electron (or orbital) is
characterized by the following quantum numbers:

n: It largely determines the energy associated with the orbital and its size.

2: It indicates the shape of the orbital; also, the electronic orbital angular
momentum has a magnitude of [(2(2+ 1)]1/2(h/2π), or [2(2+ 1)]1/2 a.u.

m2: It indicates the orientation of the orbital; also, the z component of the orbital
angular momentum of the electron is m2(h/2π) or m2 a.u.

s: It has a value of 1/2 for all electrons; also the electronic spin angular
momentum has a magnitude of [s(s + 1)]1/2 a.u. or 1/2(3)1/2 a.u.

ms: It has a value of either 1/2 or −1/2; the z component of the spin angular
momentum of an electron is ms a.u.

Note the 2 plus m2 and s plus ms make two equivalent pairs of angular
momentum quantum numbers. The former pair is for the orbital motion, and
the latter for the spin motion.

2.3.2 Ground electronic configuration for many-electron atoms

By applying the Pauli Exclusion Principle, we can put each successive elec-
tron into the available lowest-energy orbital to yield the following electronic
configurations for the first 30 elements in the periodic table (Table 2.3.1).

In the last column of Table 2.3.1, [Ar] denotes that the first 18 electrons
of these elements have the Ar configuration. For Sc (Z = 21), we have
1s22s22p63s23p6 for the first 18 electrons. For electron no. 19, E(3d) < E(4s),
and hence the electron enters into the 3d orbital. For electron no. 20, E(4s) <

E(3d), so it enters into the 4s orbital. For electron no. 21, E(4s) < E(3d), and
thus it enters into the 4s orbital. Finally, we have the configuration [Ar]3d14s2

for Sc, as well as [Ar]3d14s1 and [Ar]3d1 for Sc+ and Sc2+, respectively.
It is now clear that the energies of the atomic orbitals do not follow an

immutable sequence. Rather, the energy ordering depends on both the nuclear
charge and electronic configuration under consideration. For example, for elec-
tron no. 19 in both K (Z = 19) and Ca (Z = 20), we have E(4s) < E(3d). For
electron no. 19 in Sc (Z = 21), it becomes E(3d) < E(4s). Furthermore, for
electrons no. 20 and no. 21 of Sc, the ordering is reversed.

Table 2.3.1. Electronic configurations for the first 30 elements

H 1s1 Na 1s22s22p63s1 Sc [Ar]3d14s2

He 1s2 Mg 1s22s22p63s2 Ti [Ar]3d24s2

Li 1s22s1 Al 1s22s22p63s23p1 V [Ar]3d34s2

Be 1s22s2 Si 1s22s22p63s23p2 Cr [Ar]3d54s1

B 1s22s22p1 P 1s22s22p63s23p3 Mn [Ar]3d54s2

C 1s22s22p2 S 1s22s22p63s23p4 Fe [Ar]3d64s2

N 1s22s22p3 Cl 1s22s22p63s23p5 Co [Ar]3d74s2

O 1s22s22p4 Ar 1s22s22p63s23p6 Ni [Ar]3d84s2

F 1s22s22p5 K 1s22s22p63s23p64s1 Cu [Ar]3d104s1

Ne 1s22s22p6 Ca 1s22s22p63s23p64s2 Zn [Ar]3d104s2
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Note that there are two anomalies in the first transition series: [Ar]3d54s1

(instead of [Ar]3d44s2) for Cr and [Ar]3d104s1 (instead of [Ar]3d94s2) for Cu.
These two configurations arise from the extra stability of a half-filled or com-
pletely filled subshell. Such stability comes from the spherically symmetric
electron density around the nucleus for these configurations. Take the sim-
pler case of p3 as an example. The angular portion of the density function is
proportional to

|px|2 + |py|2 + |pz|2

= constant[(sin θ cosφ)2 + (sin θ sin φ)2 + (cos θ)2]
= constant. (2.3.3)

Similar spherical symmetry also occurs for configurations d5 and f 7.

2.3.3 Spectroscopic terms arising from a given electronic configuration

We are now in position to derive the electronic states arising from a given
electronic configuration. These states have many names: spectroscopic terms (or
states), term symbols, and Russell–Saunders terms, in honor of spectroscopists
H. N. Russell and F. A. Saunders. Hence, the scheme we use to derive these
states is called Russell–Saunders coupling. It is also simply referred to as L–S
coupling.

Each electronic state is defined by three angular momenta: total orbital angu-
lar momentum vector L, total spin angular momentum vector S, and total angular
momentum vector J. These vectors have the following definitions:

L =
∑

i

#i, (2.3.4)

S =
∑

i

si, (2.3.5)

and

J = L + S. (2.3.6)

In eqs. (2.3.4) and (2.3.5), #i and si are the orbital angular momentum vector
and spin angular momentum vector of an individual electron, respectively. For a
state defined by quantum numbers L, S, and J , the magnitudes of the total orbital
angular momentum, total spin angular momentum, and total angular momentum
vectors of the system are [L(L + 1)]1/2, [S(S + 1)]1/2, and [J (J + 1)]1/2 a.u.,
respectively.

Referring to eq. (2.3.6), in quantum mechanics, when we add two vectors
A and B to yield a resultant C, C can take on the values of A + B, A + B −
1, . . ., |A−B| only, where A, B, and C are the quantum numbers for the vectors
A, B, and C, respectively. Hence,

J = L + S, L + S − 1, . . . , |L− S|. (2.3.7)
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Furthermore, each state is labeled by its L value according to:

L value 0 1 2 3 4 5 6 …
State S P D F G H I …

A term symbol is written in the short-hand notation

2S+1LJ .

So if we have a state 4G3 1
2
, we can see immediately this state has L = 4,

S = 11/2, and J = 31/2. From eq. (2.3.7), we see that, for L = 4 and S = 11/2,
J can be 51/2, 41/2, 31/2, and 21/2. So 31/2 is one of the allowed values. The
superscript 2S+1 in the term symbol is called the spin multiplicity of the state.
When a state has spin multiplicity 1, 2, 3, 4, 5, 6, . . . , the state is called a singlet,
doublet, triplet, quartet, quintet, sextet, . . . , respectively. Usually the number
of allowed J values is the same as the state’s spin multiplicity; an example is
the aforementioned 4G. However, there are exceptions. For example, for the
state 2S, we have L = 0 and S = 1/2, and J = 1/2 only.

To derive the electronic states, we sometimes also need the z components of
angular momenta L and S, called Lz and Sz , respectively. The magnitudes of Lz
and Sz are ML and MS a.u., respectively, where

ML =
∑

i

(ml)i = L, L− 1, . . . ,−L; (2.3.8)

MS =
∑

i

(ms)i = S, S − 1, . . . ,−S. (2.3.9)

Similarly, the total angular momentum vector J also has its z component Jz ,
with its corresponding magnitude being MJ a.u., where

MJ = ML + MS = J , J − 1, . . . ,−J . (2.3.10)

Note that the sums in eqs. (2.3.8) to (2.3.10) are numerical sums, not
vector sums.

When we only have one electron in a configuration, e.g., 1s1 for H, we get

L = 21 = 0,

which indicates an S state. Also,

S = s1 = 1/2, or 2S + 1 = 2.

So we have only one term, 2S. The allowed J value is 1/2. Hence 2S1/2 is the
only state arising from the s1 configuration. Similarly, it is easy to show the
following:
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Configuration State(s)

s1 2S1/2

p1 2P11/2,
2P1/2

d1 2D11/2,
2D21/2

f 1 2F21/2,
2F31/2

Now we proceed to the configuration s2 of, say, helium. Here these electrons
are called equivalent electrons, since they have the same n value and also the
same 2 value. For such systems, we need to bear the Exclusion Principle in mind.
Now the two electrons can only be accommodated in the following manner:

1s ↑↓ ML =∑
i

(m2)i MS =∑
i

(ms)i

n = 1 2 = 0, m2 = 0, ML = 0 + 0 = 0 MS = 1/2 + (−1/2) = 0.

So the only (ML, MS) combination is (0,0). Such a combination is also called
a microstate. Here the only allowed value of ML = 0; the same is true for MS .
From eqs. (2.3.8) and (2.3.9), the only allowed value for L is 0; the same also
holds for S. So the only state from the s2 configuration is 1S0. Indeed, 1S0 (with
S = 0 and L = 0) is the only allowed state for all filled configurations:

Configuration State

s2 1S0
p6 1S0
d10 1S0
f 14 1S0

For the excited configuration 1s12s1 of helium, we have the following:

n = 1, 2 = 0, m2 = 0 n = 2, 2 = 0, m2 = 0 ML MS

↑ ↑ 0 1
↑ ↓ 0 0
↓ ↑ 0 0
↓ ↓ 0 −1

These four microstates lead to an (ML, MS) distribution shown below:

ML = 0 1 2 1

–1 0 1 MS

For such a simple distribution, it is obvious that only two terms can arise from
it: 1S [which requires one microstate: (ML = 0, MS = 0)] and 3S [which
requires three microstates: (0,1), (0,0), and (0,–1)]. Previously we have already
concluded that the 1s12s1 configuration of helium has two states, one singlet
and one triplet, with the triplet state having the lower energy. When we put
in the proper J values, the states arising from configuration ns1n′s1 are 1S0
and 3S1.
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An example often used in texts is the 1s22s22p2 configuration of carbon. Since
all filled subshells lead to L = 0 and S = 0, we only need to be concerned with
p2 here. There are 15 microstates for this configuration:

m2 = 1 m2 = 0 m2 = −1 ML MS

↑↓ 2 0
↑↓ 0 0

↑↓ −2 0
↑ ↑ 1 1
↓ ↓ 1 −1
↑ ↓ 1 0
↓ ↑ 1 0

↑ ↑ −1 1
↓ ↓ −1 −1
↑ ↓ −1 0
↓ ↑ −1 0

↑ ↑ 0 1
↓ ↓ 0 −1
↑ ↓ 0 0
↓ ↑ 0 0

These 15 microstates have the distribution shown below:

ML
2 1
1 1 2 1
0 1 3 1
−1 1 2 1
−2 1

−1 0 1 MS

This large distribution is made up of the following three smaller distributions:

ML
1S

0 1

0 MS

ML
3P

1 1 1 1
0 1 1 1
−1 1 1 1

−1 0 1 MS

ML
1D

2 1
1 1
0 1
−1 1
−2 1

0 MS

So three terms arise from configuration p2: 1D, 3P, and 1S. If we include the
allowed J values, we then have 1D2, 3P2, 3P1, 3P0, and 1S0. Levels such as
3P2, 3P1, and 3P0 which differ only in their J values are called multiplets. For
light elements, the levels of a multiplet will have slightly different energies,
while levels from different terms will have larger energy differences.

By writing out the microstates of a given configuration, it is easy to see that
configurations 2n and 242+2−n have the same states. This is because the number
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Table 2.3.2. Spectroscopic terms arising from configurations sn, pn, and dn

Configuration LS terms Configuration LS terms

p1, p5 2P d2, d8 1S, 1D, 1G, 3P, 3F
p2, p4 1S, 1D, 3P d3, d7 2D(2), 2P, 2F , 2G, 2H , 4P, 4F
p3 2P, 2D, 4S d4, d6 1S(2), 1D(2), 1F , 1G(2), 1I , 3P(2), 3D, 3F(2), 3G, 3H , 5D
d1, d9 2D d5 2S, 2P, 2D(3), 2F(2), 2G(2), 2H , 2I , 4P, 4D, 4F , 4G, 6S

of ways of assigning electrons to orbitals is equal to the number of ways of
assigning vacancies to the same orbitals. Hence carbon (1s22s22p2) and oxygen
(1s22s22p4) have the same states. Table 2.3.2 lists the term symbols (L and S
values only) arising from a given equivalent electronic configuration. We note
that configurations with only one electron in a subshell and configurations with
filled subshells have already been dealt with.

Note that the last term given for each configuration is the ground term (see
discussions on Hund’s rule below). The number in brackets indicates the number
of times that term occurs, e.g., there are two different 2D terms for the d3

configuration.

2.3.4 Hund’s rules on spectroscopic terms

When there are many terms arising from a given configuration, it would be
of interest to know the relative order of their energies, or at least which is the
ground term. To accomplish this, we make use of Hund’s rule, in honor of
physicist F. Hund:

(1) Of the terms arising from a given configuration, the lowest in energy is the
one having the highest spin multiplicity.

(2) Of two or more terms with the same multiplicity, the lowest in energy is
the one with the largest L value.

(3) For a configuration less than half-filled, the lowest state is the one with the
smallest J value (the multiplet is then called “normal”); if the configuration
is more than half-filled, the lowest state is the one with the largest J value
(the multiplet is “inverted”).

Note that, strictly speaking, Hund’s rules should be applied only to equivalent
electronic configurations and for the determination of only the ground state. By
applying these rules, we can see that both carbon (2p2) and oxygen (2p4) have
3P as the ground term. However, the ground state of carbon is 3P0, while
that for oxygen is 3P2. A complete energy ordering for the state of carbon is
given in Fig. 2.3.2. Also, a state 2S+1LJ has a (2J + 1)–fold degeneracy, as
MJ = J , J − 1, . . . ,−J . This degeneracy will be manifested when we apply an
external magnetic field to a sample and then take its spectrum (Zeeman effect).

Before leaving this topic, we once again note that electronic transitions occur
between states and may or may not involve a change in configuration. Take the
states in Fig. 2.3.2 as an example. Transition from ground state 3P0 to excited
state 1D2 (3P0 →1D2) [note that this is not an allowed transition in the first
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3P

2.684 eV 
=21,647.8 cm–1

1.264 eV 
=10,194.8 cm–1
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 effect
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3P1
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43.5 cm–1

Fig. 2.3.2.
Energies of the spectroscopic state for
the ground state configuration of carbon
(not to scale!).

place!] does not involve a change in configuration, as both the initial and final
states of the electronic transition arise from configuration 2p2.

To conclude this section, we illustrate how to obtain the ground term of a
given configuration without writing out all the microstates. Again we take p2

as an example. When we place there two electrons into the three p orbitals we
bear in mind that the ground term requires the maximum S (first priority) and
L values. To achieve this, we place the electron in the following manner:

m2 1 0 −1
↑ ↑ ML = 1 MS = 1

Since ML runs from L to –L and MS runs from S to −S, the maximum L and
maximum S values are both 1 in this case. Hence, the ground term is 3P.

Two more examples are given below:

(1) p3

m2 1 0 −1
↑ ↑ ↑ ML = 0 MS = 11/2

We thus have L = 0 and S = 11/2 and the ground term is 4S.

(2) d7

m2 2 1 0 −1 −2
↑↓ ↑↓ ↑ ↑ ↑ ML = 3 MS = 11/2

Hence we have L = 3 and S = 11/2 and the ground term is 4F .
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2.3.5 j–j Coupling

In the L–S coupling scheme we have just discussed, it is assumed that the elec-
tronic repulsion is much larger than the spin–orbit interaction. This assumption
certainly holds for lighter elements, as we have seen in the case of carbon atom
(Fig. 2.3.2). However, this assumption becomes less and less valid as we go
down the Periodic Table. The breakdown of this coupling scheme is clearly
seen from the spectral data given in Table 2.3.3.

Table 2.3.3. Spectral data (in cm−1) for the electronic states
arising from configurations np2, n = 2–6

3P0
3P1

3P2
1D2

1S0

C 0.0 16.4 43.5 10193.7 21648.4
Si 0.0 77.2 223.31 6298.8 15394.2
Ge 0.0 557.1 1409.9 7125.3 16367.1
Sn 0.0 1691.8 3427.7 8613.0 17162.6
Pb 0.0 7819.4 10650.5 21457.9 29466.8

In the extreme case where the spin–orbit interaction is much larger than
electronic repulsion, total orbital angular momentum L and total spin angular
momentum S are no longer “good” quantum numbers. Instead, states are defined
by total angular momentum J , which is the vector sum of all the total angular
momenta j values of the individual electrons:

J =
∑

i

j i, (2.3.11)

where

j i = #i + si. (2.3.12)

We can illustrate this scheme with a simple example. Consider the electronic
configuration p1s1. For the p electron, we have j1 = #1 + s1, which means
that j1 can be either 11/2 and 1/2. On the other hand, for the s electron, we have
j2 = 1/2. When j1 = 11/2 and j2 = 1/2 are coupled, J = j1 + j2 and quantum
number J can be 1 or 2. When j1 = 1/2 and j2 = 1/2 are coupled, J can be 0
or 1. So for the p1s1 configuration, there are four states: J = 0, 1, 1, 2. These
states are “correlated” to the Russell–Saunders terms in the manner shown in
Fig. 2.3.3.

To conclude this section, we take up a slightly more complex example: the
case of two equivalent p electrons. In the j–j coupling scheme, the Pauli’s
principle becomes “no two electrons can have the same set of quantum numbers
(n, 2, j, mj).” For configuration np2, 21 = 22 = 1, s1 = s2 = 1/2, j1, j2 = 11/2

or 1/2. Once again, as in the case of L–S coupling, there are now 15 microstates,
as listed in Table 2.3.4.

Note that in Table 2.3.4 labels 1 and 2 are for convenience only. It is important
to bear in mind that electrons are indistinguishable. The five electronic states
derived using this scheme may be correlated to those derived with the L–S
coupling scheme in Fig. 2.3.2. This correlation diagram is shown in Fig. 2.3.4.
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Correlation diagram for electronic states
arising from configuration
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schemes.

Table 2.3.4. The microstates for configuration np2 employing
the j–j coupling scheme

j1 j2 (mj)1 (mj)2 MJ J

1/2 1/2 1/2 −1/2 0 0
1/2 11/2 1/2 11/2 2

1/2 1/2 1
1/2 −1/2 0
1/2 −11/2 −1

2, 1−1/2 11/2 1
−1/2 1/2 0
−1/2 −1/2 −1
−1/2 −11/2 −2

11/2 11/2 11/2 1/2 2
11/2 −1/2 1
11/2 −11/2 0

2, 01/2 −1/2 0
1/2 −1/2 −1
−1/2 −11/2 −2
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2.4 Atomic properties

In this section we discuss the various atomic properties that are the manifestation
of the electronic configurations of the atoms discussed in the previous sections.
These properties include ionization energy, electron affinity, electronegativity,
etc. Other properties such as atomic and ionic radii will be discussed in subse-
quent chapters, as these properties are related to the interaction between atoms
in a molecule. Toward the end of this section, we will also discuss the influence
of relativistic effects on the properties of elements.

2.4.1 Ionization energy and electron affinity

(1) Ionization energy
The first ionization energy I1 of an atom is defined as the energy required to
remove the outermost electron from a gaseous atom in its ground state. This
energy may be expressed as the enthalpy change of the process

A(g)→ A+(g) + e−(g), 'H = I1. (2.4.1)

The second ionization energy I2 of A is then the energy required to remove an
electron from A+:

A+(g)→ A2+(g) + e−(g), 'H = I2. (2.4.2)

The third, fourth, and subsequent ionization energies may be defined in a similar
manner. Table 2.4.1 lists the I1 and I2 values of the elements. The variations of
I1 and I2 against atomic number Z are shown in Fig. 2.4.1.

Examining the overall trend of I1 shown in Fig. 2.4.1, it is seen that I1
decreases as Z increases. On the other hand, within the same period, I1 increases
with Z . Also, the noble gases occupy the maximum positions, as it is difficult
to remove an electron from a filled configuration (ns2np6). Similarly, but to
a less extent, Zn, Cd, and Hg, with configuration (n − 1)d10ns2, occupy less
prominent maxima. Also, N, P, and As, with half-filled subshells, are also in
less prominent maximum positions as well.

In the I1 curve shown in Fig. 2.4.1, the minimum positions are taken up by
the alkali metals. These elements have general configuration ns1 and this lone
electron is relatively easy to remove. On the other hand, in the I2 curve, the
alkali metals now occupy the maximum positions, as the singly charged cations
of the alkali metals have the noble gas electronic configuration. Additionally,
the I2 values of the alkali metals are very large, in the range 2.2–7.3× 103 kJ
mol−1. The chemical properties of these elements may be nicely explained by
their ionization energy data. Similarly, elements B, Al, Ga, In, and Tl, with only
one lone electron in the p orbital, also have relatively low I1 values.

The two valence electrons of alkali earth metals (Be, Mg, Ca, Sr, and Ba)
are comparatively easy to ionize, as the data in Fig. 2.4.1 show. These elements
occupy the minimum positions in the I2 curve. Hence the chemistry of these
elements is dominated by their M2+ cations. The only exception is Be, which,
with the largest (I1 +I2) value in the family, forms mainly covalent compounds.
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Table 2.4.1. Ionization energies (MJ mol−1) I1 and I2 and the electron affinities (kJ mol−1) Y
of the elements

Z Element I1 I2 Y Z Element I1 I2 Y

1 H 1.3120 72.77 47 Ag 0.7310 2.074 125.7
2 He 2.3723 5.2504 — 48 Cd 0.8677 1.6314 —
3 Li 0.5203 7.2981 59.8 49 In 0.5583 1.8206 29
4 Be 0.8995 1.7571 — 50 Sn 0.7086 1.4118 121
5 B 0.8006 2.4270 27 51 Sb 0.8316 1.595 101
6 C 1.0864 2.3526 122.3 52 Te 0.8693 1.79 190.1
7 N 1.4023 2.8561 −7 53 I 1.0084 1.8459 295.3
8 O 1.3140 3.3882 141.0 54 Xe 1.1704 2.046 —
9 F 1.6810 3.3742 327.9 55 Cs 0.3757 2.23 45.49

10 Ne 2.0807 3.9523 — 56 Ba 0.5029 0.9653 —
11 Na 0.4958 4.5624 52.7 57 La 0.5381 1.067 50
12 Mg 0.7377 1.4507 — 58 Ce 0.528 1.047 50
13 Al 0.5776 1.8167 44 59 Pr 0.523 1.018 50
14 Si 0.7865 1.5771 133.6 60 Nd 0.530 1.034 50
15 P 1.0118 1.9032 71.7 61 Pm 0.536 1.052 50
16 S 0.9996 2.251 200.4 62 Sm 0.543 1.068 50
17 Cl 1.2511 2.297 348.8 63 Eu 0.547 1.085 50
18 Ar 1.5205 2.6658 — 64 Gd 0.592 1.17 50
19 K 0.4189 3.0514 48.36 65 Tb 0.564 1.112 50
20 Ca 0.5898 1.1454 — 66 Dy 0.572 1.126 50
21 Sc 0.631 1.235 — 67 Ho 0.581 1.139 50
22 Ti 0.658 1.310 20 68 Er 0.589 1.151 50
23 V 0.650 1.414 50 69 Tm 0.5967 1.163 50
24 Cr 0.6528 1.496 64 70 Yb 0.6034 1.175 50
25 Mn 0.7174 1.5091 — 71 Lu 0.5235 1.34 50
26 Fe 0.7594 1.561 24 72 Hf 0.654 1.44 —
27 Co 0.758 1.646 70 73 Ta 0.761 60
28 Ni 0.7367 1.7530 111 74 W 0.770 60
29 Cu 0.7455 1.9579 118.3 75 Re 0.760 15
30 Zn 0.9064 1.7333 — 76 Os 0.84 110
31 Ga 0.5788 1.979 29 77 Ir 0.88 160
32 Ge 0.7622 1.5372 120 78 Pt 0.87 1.7911 205.3
33 As 0.944 1.7978 77 79 Au 0.8901 1.98 222.7
34 Se 0.9409 2.045 194.9 80 Hg 1.0070 1.8097 —
35 Br 1.1399 2.10 324.6 81 Tl 0.5893 1.9710 30
36 Kr 1.3507 2.3503 — 82 Pb 0.7155 1.4504 110
37 Rb 0.4030 2.633 46.89 83 Bi 0.7033 1.610 110
38 Sr 0.5495 1.0643 — 84 Po 0.812 180
39 Y 0.616 1.181 0.0 85 At — 270
40 Zr 0.660 1.267 50 86 Rn 1.0370 —
41 Nb 0.664 1.382 100 87 Fr —
42 Mo 0.6850 1.558 100 88 Ra 0.5094 0.9791
43 Tc 0.702 1.472 70 89 Ac 0.49 1.17
44 Ru 0.711 1.617 110 90 Th 0.59 1.11
45 Rh 0.720 1.744 120 91 Pa 0.57
46 Pd 0.805 1.875 60 92 U 0.59
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Fig. 2.4.1.
The variation of ionization energies, I1
and I2 against the atomic number Z .
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Before leaving this topic, it should be noted that ionization energy is only one
of the factors that influence the chemistry of the elements. For instance, even
though Ca+ is easier to form than Ca2+, we have never observed the existence
of Ca+. This is because the lattice energy of CaX2 is much larger than that
of CaX, enough to compensate the cost of the second ionization energy, which
comes to about 103 kJ mol−1. In solution, the hydration energy of Ca2+ is much
larger than that of Ca+, thus favoring the existence of Ca2+ over Ca+. In short,
the cation of calcium exists exclusively in the form Ca2+, either in solution or
in the crystalline state.

(2) Electron affinity
The electron affinity Y of an atom is defined as the energy released when the
gaseous atom in its ground state captures an electron to form an anion:

A(g) + e−(g)→ A−(g), −'H = Y . (2.4.3)

In other words, the electron affinity of A is simply the ionization energy of A−.
The electron affinities of the elements are also listed in Table 2.4.1.As the singly
charged anions of a number of elements including Zn, Cd, Hg, and the noble
gases, are unstable, the electron affinities of these elements are missing from
the table. Also, there is one element, nitrogen, which has a negative electron
affinity. This indicates that N− is an unstable species and it loses an electron
spontaneously.

In general, electron affinities have smaller values than ionization energies.
Chlorine has the largest electron affinity, 348.8 kJ mol−1, which is still smaller
than the smallest ionization energy, 375.7 kJ mol−1, of Cs.

Among the electron affinities listed in Table 2.4.1, the halogens have the
largest values. This is because these atoms will attain the noble gas configuration
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upon capturing an electron. The members of the oxygen family, neighbors of
the halogens, also have fairly large electron affinities. Another element that has
a relatively large electron affinity is gold, which, as in the case of halogens,
also forms salts such as CsAu. We shall have a more detailed discussion on
this element in the section on relativistic effects. Finally, all the lathanides have
similar electron affinities, about 50 kJ mol−1. This is the value listed for all
lathanides in Table 2.4.1.

There is no element that has a positive second electron affinity; i.e., the
electron affinity of any anion A− is always negative. This is understandable
as it is difficult to bring together two negatively charged particles. Thus the
electron affinities of O− and S− are –744 and –456 kJ mol−1, respectively.
Even though O2− and S2− are unstable in gas phase, they can exist in solution
or in the solid state. The stability of these divalent anions arises from lattice
energy, solvation energy, etc. These ions may also hydrolyze to form more
stable species, e.g., O2− + H2O→ 2OH−.

2.4.2 Electronegativity: the spectroscopic scale

Electronegativity is a qualitative concept with a long history and wide applica-
tion. As early as 1835, Berzelius considered chemical bonding as electrostatic
interaction. Also, he took metals and their oxides as electropositive substances
and nonmetals and their oxides as electronegative ones. Almost one hundred
years later, in 1932, Pauling defined electronegativity as “the power of atom
in a molecule to attract electrons to itself.” Quantitatively he proposed a scale,
hereafter denoted as χP , in the following manner: the difference between the
electronegativities of elements A and B, |χA − χB|, is proportional to '1/2,
where ' is the difference between the bond energy of AB and the mean of
the bond energies of A2 and B2. In 1934 to 1935, Mullikan proposed the χM
scale that the power of an atom to attract electrons should be the average of
its ionization energy and electron affinity. Later in 1958, Allred and Rochow
proposed their χAR scale. They assumed that the electronegativity of an atom is
proportional to the effective nuclear charge of its valence electron and inversely
proportional to the square of its atomic radius.

More recently, in 1989, Allen developed his spectroscopic scale, χS , where
he equated the electronegativity of an atom to its configuration energy (CE)

CE = nεs + mεp
n + m

, (2.4.4)

where n and m are the number of s and p valence electrons, respectively, and
εs and εp are the corresponding one-electron energies. These energies are the
multiplet-averaged total energy differences between the ground state neutral
and singly charged cation. As accurate atomic energy level data are readily
available, the CE of an atom can be easily calculated. Table 2.4.2 lists the
Pauling and spectroscopic electronegativities of the elements.

Before leaving this topic, we discuss in more detail the determination of CE
and χS values of an element. Table 2.4.3 lists the εs and εp, and CE values of
the first eight elements in the Periodic Table. For the first four elements, where
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Table 2.4.2. Electronegativities of the elements∗

H He
2.20 —

2.300 4.160

Li Be B C N O F Ne
0.98 1.57 2.04 2.55 3.04 3.44 3.98 —

0.912 1.576 2.051 2.544 3.066 3.610 4.193 4.787

Na Mg Al Si P S Cl Ar
0.93 1.31 1.61 1.90 2.19 2.58 3.16 —

0.869 1.293 1.613 1.916 2.253 2.589 2.869 3.242

K Ca Ga Ge As Se Br Kr
0.82 1.00 1.81 2.01 2.18 2.55 2.96 3.34

0.734 1.034 1.756 1.994 2.211 2.424 2.685 2.966

Rb Sr In Sn Sb Te I Xe
0.82 0.95 1.78 1.96 2.05 2.10 2.66 2.95

0.706 0.963 1.656 1.824 1.984 2.158 2.359 2.582

Cs Ba Tl Pb Bi Po At Rn
0.79 0.89 2.04 2.33 2.02 2.0 2.2 —

0.659 0.881 1.789 1.854 2.01 2.19 2.39 2.60

Sc Ti V Cr Mn Fe Co Ni Cu Zn
1.36 1.54 1.63 1.66 1.55 1.83 1.88 1.91 1.90 1.65
1.19 1.38 1.53 1.65 1.75 1.80 1.84 1.88 1.85 1.59

Y Zr Nb Mo Tc Ru Rh Pd Ag Cd
1.22 1.33 — 2.16 — — 2.28 2.20 1.93 1.69
1.12 1.32 1.41 1.47 1.51 1.54 1.56 1.59 1.87 1.52

Lu Hf Ta W Re Os Ir Pt Au Hg
— — — 2.36 — — 2.20 2.28 2.54 2.00

1.09 1.16 1.34 1.47 1.60 1.65 1.68 1.72 1.92 1.76
∗ χP values are given above the χS results.

Table 2.4.3. The εs, εp, and CE values of the first eight elements

Element Electronic configuration εp (eV) εs (eV) CE/eV χS

H 1s1 — 13.60 13.60 2.300
He 1s2 — 24.59 24.59 4.160
Li 1s22s1 — 5.39 5.39 0.912
Be 1s22s2 — 9.32 9.32 1.576
B 1s22s22p1 8.29 14.04 12.13 2.051
C 1s22s22p2 10.66 19.42 15.05 2.544
N 1s22s22p3 13.17 25.55 18.13 3.066
O 1s22s22p4 15.84 32.36 21.36 3.610

only S states are involved, the CE value is simply I1 of the element concerned.
For the remaining four elements, let us take O as an example.

For O, with configuration 2s22p4 and its states 3P, 1D, and 1S, we can deter-
mine its multiplet-averaged energy, using the available spectroscopic data. For
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O+, with configuration 2s22p3 and its states 4S, 2D, and 2P, we can also deter-
mine this cation’s multiplet-averaged energy. Then εp is simply the difference
between these two average energies. To determine εs, we consider configuration
2s12p4 and its states 4P, 2D, 2P, and 2S and calculate the average energy of this
configuration. Then εs is simply the energy difference between configurations
2s22p4 and 2s12p4. Upon calculating the CE of an element, we can convert it to
χS by multiplying the factor (2.30/13.60). As we can see from this procedure,
χS is related to the average one-electron valence shell ionization energy of an
atom, which, we would intuitively think, should be related to its power to attract
electrons in a molecule.

Figures 2.4.2 and 2.4.3 show the variations of electronegativities of repre-
sentative elements and transition metals, respectively, across a given period.
As we can see from these two figures, χS increases with Z in a period. The
noble gases have the largest χS values for elements of the same period, as
they have very strong tendency to retain the electrons. Among all elements,
Ne is the most electronegative, and F, He, and O are the next ones. Noble gas
Xe is less electronegative than F and O. Hence xenon fluorides and oxides
are capable of existence. Also, Xe and C have comparable electronegativities,
and Xe–C bond can be formed under suitable conditions. One such example is
[F5C6XeNCMe]+[(C6F5)2BF2]−MeCN, and the structure of the cation of this
compound is shown in Fig. 2.4.4.

From the electronegativities shown in Figs. 2.4.2 and 2.4.3, it is seen that
metals are less electronegative, with χS < 2, nonmetals are more electronega-
tive, with χS > 2. Around χS ∼ 2, we have metalloid elements such as B, Si
Ge, Sb, and Bi. Most of these elements have semi-conducting properties. For
elements of the same group, χS decreases as we go down the Periodic Table.
However, because of relativistic effects, for transition metals from group 7 to
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Fig. 2.4.2.
Variation of electronegativities of
representative elements across a given
period of the periodic table. Elements of
period 6 have electronegativities very
similar to those of elements of period 5.
For clarity, electronegativities of the
elements of period 6 are not shown.
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Fig. 2.4.3.
Variation of electronegativities of
transition metals across a given period of
the periodic table.
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group 12, the elements of the sixth period are more electronegative than the
corresponding elements of the fifth period.

In 1963, N. Barlett discovered that PtF6 can oxidize O2 to form salt-like
[O2]+[PtF6]−. As the I1 values of Xe (1.17×103 kJ mol−1) and O2 (1.18×103

kJ mol−1) are similar, he reacted Xe with PtF6 to form the first noble gas
compound Xe+[PtF6]−. Soon afterwards, XeF2 and XeF4 were synthesized
and a whole new area of chemistry was discovered. Now many compounds
with bonds such as Xe–F, Xe–O, Xe–N, and Xe–C have been synthesized;
an example is shown in Fig. 2.4.4. Even though Kr has a slightly higher I1
value than Xe, compounds such as KrF, [KrF]+[Sb2F11]−, and CrOF4 · KrF2
(structure shown below) have already been made.
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Since Ar has an I1 value lower than that of F, it is not unreasonable to expect
that argon fluorides will be synthesized soon. Recently HArF was detected in a
photodissociation study of HF in an Ar environment (see Section 5.8.1). With
infrared spectroscopic studies of species such as H40ArF, D40ArF, and H36ArF,
it was determined that the bond lengths of H–Ar and F–Ar are 133 and 197 pm,
respectively. As of now, He and Ne are the only two elements that do not form
any stable compounds.

2.4.3 Relativistic effects on the properties of the elements

In recent years, relativistic effects on the chemical properties of atoms have
received considerable attention. In the theory of relativity, when an electron is
traveling with high velocity v, its mass m is related to its rest mass mo in the
following way,

m = mo

/

[

1−
(v

c

)2
]1/2

, (2.4.5)

where c is the speed of light. In atomic units,

c = 137 a.u.

The average radial velocity <vrad> of a 1s electron in an atom is approximately
Z a.u., where Z is the atomic number. Hence, for an electron inAu, with Z = 79,
we have

vrad

c
∼ 79

137
= 0.58. (2.4.6)

Substituting this ratio into eq. (2.4.5), we get

m = mo

[1− (0.58)2]1/2 = 1.23mo. (2.4.7)

In other words, the mass of the electron has increased to 1.23mo, which influ-
ences significantly the radial distribution of the electron. Recall from Bohr’s
atomic theory that the radius of the nth orbit is given by

rn = n2h2ε0

πme2 .

Hence the ratio between the relativistic 1s radius, <r1s>R, to its non-
relativistic counterpart, <r1s>NR is simply

<r1s>R / <r1s>NR= (1.23mo)
−1/m−1

o = 0.81.

That is, relativistic effects have effectively contracted the 1s orbital by 19%.
The contraction of the 1s orbital in heavy atoms also results in a contraction

of the s orbitals in higher quantum shells of that atom, which in turn leads to
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Fig. 2.4.5.
Calculated orbital contraction ratio
<r6s>R / <r6s>NR as a function of
atomic number Z .
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lowering of the energies of these orbitals. This is known as the direct relativistic
effect, which accounts for orbital contraction and stabilization in s orbitals and,
to a lesser extent, in p orbitals.

In contrast, the valence d and f orbitals in heavy atoms are expanded and
destabilized by the relativistic effects. This is because the contraction of the s
orbitals increases the shielding effect, which gives rise to a smaller effective
nuclear charge for the d and f electrons. This is known as the indirect relativistic
orbital expansion and destabilization. In addition, if a filled d or f subshell lies
just inside a valence orbital, that orbital will experience a larger effective nuclear
charge which will lead to orbital contraction and stabilization. This is because
the d and f orbitals have been expanded and their shielding effect accordingly
lowered.

For heavy atoms with different Z values and various numbers of d and f elec-
trons, the two aforementioned relativistic effects will lead to different degrees
of 6s orbital contraction. Figure 2.4.5 shows the ratio <r6s>R / <r6s>NR as a
function of Z .

As we can see from Fig. 2.4.5, three of the elements that exhibit the largest
relativistic effects are Au, Pt, and Hg. In these atoms, the (mostly) filled 4f and
5d orbitals lie just inside the 6s valence orbital. In the following paragraphs, we
discuss some examples where relativistic effects are manifested in the atomic
structure and properties of the elements.

(1) Ground electronic configuration
In the fifth period of the Periodic Table, we find transition metal elements with
configurations 4dn5s1 and 4dn5s0. For the corresponding elements in the sixth
period, the configurations become 5dn−16s2 and 5dn−16s1, respectively. This
change is due to the aforementioned stabilization of the 6s orbital caused by the
relativistic effects. Table 2.4.4 lists the configuration of the elements concerned.
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Table 2.4.4. The ground electronic configuration of
some elements of the fifth and sixth periods

Period Group

5 6 7 8 9 10

5th Nb Mo Tc Ru Rh Pd
d4s1 d5s1 d5s2 d7s1 d8s1 d10s0

6th Ta W Re Os Ir Pt
d3s2 d4s2 d5s2 d6s2 d7s2 d9s1

(2) Lanthanide contraction
The properties of the elements of the sixth period are influenced by lanthanide
contraction: a gradual decrease of the atomic radius with increasing atomic
number from La to Lu. The elements of groups 5 to 11 for the fifth and sixth
periods have comparable structural parameters. For instance, Nb and Ta, as
well as the pair Mo and W, have very similar ionic radii, when they have
the same oxidation number. As a result, it is very difficult to separate Nb and
Ta, and it is also not easy to separate Mo and W. Similarly, Ag and Au have
nearly the same atomic radius, 144 pm. Recent studies of the coordination
compounds of Ag(I) and Au(I) indicate that the covalent radius of Au is even
shorter than that of Ag by about 8 pm. In elementary textbooks the phenomenon
of lanthanide contraction is attributed to incomplete shielding of the nucleus
by the diffuse 4f inner subshell. Recent theoretical calculations conclude that
lanthanide contraction is the result of both the shielding effect of the 4f electrons
and relativistic effects, with the latter making about 30% contribution.

(3) Effect of the 6s2 inert pair
In the group 13 triad gallium/indium/thallium, the experimental energy sep-
arations of the (ns2np1)2P and (ns1np2)2P states are 4.7, 4.3, and 5.7 eV,
respectively. The unusually large energy separation in Tl is another manifes-
tation of the relativistic stabilization of the 6s orbital. Also, whereas the ionic
radius of Tl+ (150 pm) is larger than that of In+ (140 pm), the average of the
second and third ionization energies, 1/2(I2+I3), of Tl (4.848×103 kJ mol−1) is
larger than that of In (4.524×103 kJ mol−1). In other words, even through Tl+

is larger than In+, the 6s electrons of Tl+ are more difficult to detach. Hence Tl
is predominantly monovalent as well as trivalent, whereas Ga and In are both
trivalent. The same kind of reasoning is valid for Pb and Bi, which tend to favor
the lower oxidation states Pb2+ and Bi3+, respectively, with the 6s2 electron
pair remaining intact.

(4) Comparison between gold and mercury
Elements Au and Hg differ by only one electron, with the following
configurations:

79Au : [Xe]4f 145d106s1;

80Hg : [Xe]4f 145d106s2.
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Because of the contraction and stabilization of the 6s orbital, the outermost, or
valence, shell of Au is formed by both the 5d and 6s orbitals. Indeed, electroni-
cally, Au is halogen-like, with one electron missing from the pseudo noble gas
(closed subshell) configuration. Hence, similar to the existence of halogen X2
molecule, gold also forms the covalent Au2 molecule. In addition, gold also
forms ionic compounds such as RbAu and CsAu, in which the Au− anion has
the pseudo noble gas electronic configuration.

Mercury, with filled 5d and 6s subshells, also has the pseudo noble gas config-
uration. In the gas phase, Hg exists as a monatomic “molecule.” From Fig. 2.4.1,
Hg has an I1 value similar to those of noble gases; it occupies a maximum posi-
tion in the I1 curve. The interaction between mercury atoms is of the van der
Waals type. Hence, Hg and Au have some notably different properties:

Hg Au

Density (g cm−3) 13.53 19.32
Melting point (◦C) −39 1064
'Hfusion (kJ mol−1) 2.30 12.8
Conductivity (kS m−1) 10.4 426

Finally, it should be mentioned that mercury forms the cation Hg2+
2 (as in

Hg2Cl2), which is isoelectronic to Au2.

(5) Melting points of the metals
The variation of the melting points of the transition metals, as well as those
of the alkali metals and alkali earth metals of the same period, are displayed
in Fig. 2.4.6. It is seen that the uppermost curve (that for the elements of the
sixth period) starts from Cs, increasing steadily and reaching a maximum at W.
Beyond W, the curve starts to decrease and reach the minimum at Hg at the end.
It is believed that this trend is the result of the relativistic effects.

In view of the previously discussed contraction and stabilization of the 6s
orbital, the valence shell of the elements of the sixth period consists of one s
and five d orbitals. In the metallic state, the six valence orbitals of each atom
overlap effectively with the six valence orbitals of the other atoms. For a metal
with N atoms, with a total of 6N valence orbitals, 3N of the molecular orbitals
are bonding. The energies of these bonding orbitals are very close to each other,
forming a bonding band in the process. The remaining 3N molecular orbitals
are antibonding. These antibonding molecular orbitals are also with energies
very close to each other and they form an antibonding energy band. It should
be noted that the overlap between the valence orbital is very effective, due to
the high symmetry of the coordination, which is essentially the closest packed
situation. As a result, there are only bonding and antibonding energy bands, and
there are no nonbonding energy bands.

As we go across the period, we feed electrons to the molecular orbitals,
starting from the bonding orbitals. As the bonding energy band starts to fill,
the metallic bond becomes stronger and stronger. At W, with six electrons per
atom, all the bonding molecular orbitals are filled, which leads to the strongest
metallic bond and highest melting point. Once we go beyond W, the antibonding
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Fig. 2.4.6.
Melting points of the elements.

molecular orbitals start to fill, weakening the metallic bond in the process.
Hence the melting point starts to decrease once we get to Re. At the end, at Hg,
with 12 valence electrons per atom, all the bonding and antibonding molecular
orbitals are fully occupied. There is no net bonding effect, as in the case of noble
gases. Hence Hg has the lowest melting point. A similar situation exists for the
elements of the two previous periods. However, the variation is less dramatic.
This is because the relativistic effects are most prominent for the elements of
the sixth period.

The variation of other physical properties such as hardness and conductivity
of the metals may be analyzed in a similar manner.

(6) Noble gas compounds of gold
Relativity plays an important role in stabilizing elusive species such as
XeAuXe+(a structural analog of the ClAuCl+ anion), which have been
observed experimentally by mass spectroscopy. A theoretical study of Pyykkö
has shown that about half of the bonding energy in AuXe+ arises from relativis-
tic effects.Anice example that illustrates the importance of relativistic effects in
the stabilization of gold compounds is [AuXe2+

4 ][Sb2F−11]2, the first bulk com-
pound with covalent bonding between a noble gas and a noble metal. Crystals
of this compound remain stable up to−40◦C. The dark red tetraxenonogold(II)
cation [AuXe4]2+ has a square-planar configuration with an average Au–Xe
bond distance of 274 pm. In [AuXe4]2+, xenon functions as a σ donor toward
Au2+, and calculation shows that a positive charge of about +0.4 resides on
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each ligand atom. The Xe–Au bond in [AuXe4]2+ may be contrasted with the
Xe–F bond in XeF4, in which a charge transfer of electrons occurs from xenon
to fluorine.
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3Covalent Bonding in
Molecules

After a discussion on atomic structure, we now consider the electronic structure
in molecules. It is clear that, whatever theory is chosen to treat this problem,
it must be able to answer “Why do molecules form at all?” For instance, when
two H atoms collide, the H2 molecule is formed. However, when two He atoms
are brought together, no He2 is formed.

One way to answer the aforementioned question is “Two atoms form a
molecule because the energy of the whole is lower than the sum of the energies
of its parts.” So the theory we need should bring about a decrease in energy
when a molecule is formed by two atoms. As in the case of an atom, the energy
of a molecule can also be calculated using quantum mechanical methods. In this
chapter, we first use the simplest diatomic molecules H+

2 and H2 as examples
to illustrate the basic concepts of chemical bonding. Then we will turn to other
more complicated molecules.

3.1 The hydrogen molecular ion: bonding and
antibonding molecular orbitals

3.1.1 The variational method

To apply the variational method, we first need to have a trial function. When
the system under study is a molecule composed of n atoms, the trial function,
which is to become a molecular orbital, is a linear combination of atomic orbitals
(LCAO):

ψ = c1φ1 + c2φ2 + · · · + cnφn, (3.1.1)

where φ1,φ2, . . . ,φn are known atomic functions, and the coefficients
c1, c2, . . . , cn are parameters to be optimized. In the following we use the
simplest LCAO to illustrate the variational method:

ψ = c1φ1 + c2φ2. (3.1.2)
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The energy of this wavefunction is

E =
∫

(c1φ1 + c2φ2)Ĥ (c1φ1 + c2φ2)dτ
∫

(c1φ1 + c2φ2)2dτ

= c2
1

∫

φ1Ĥφ1dτ + 2c1c2
∫

φ1Ĥφ2dτ + c2
2

∫

φ2Ĥφ2dτ

c2
1

∫

φ2
1dτ + 2c1c2

∫

φ1φ2 + c2
2

∫

φ2
2dτ

= c2
1H11 + 2c1c2H12 + c2

2H22

c2
1S11 + 2c1c2S12 + c2

2S22
, (3.1.3)

where we have made use of the Hermitian property of Ĥ

∫

φ1Ĥφ2dτ =
∫

φ2Ĥφ1dτ (3.1.4)

and also introduced the notation

Hij =
∫

φiĤφjdτ (3.1.5)

and

Sij =
∫

φiφjdτ . (3.1.6)

To obtain the minimum energy of the system, we set

(∂E/∂c1) = 0, (3.1.7)

and

(∂E/∂c2) = 0. (3.1.8)

Applying eqs. (3.1.7) and (3.1.8) to eq. (3.1.3), we obtain

{

(H11 − ES11)c1 + (H12 − ES12)c2 = 0
(H12 − ES12)c1 + (H22 − ES22)c2 = 0. (3.1.9)

These equations are called secular equations. Clearly, c1 = c2 = 0 is a solution
of eq. (3.1.9). But it is a meaningless solution, as ψ becomes zero. In order for
c1 and c2 to be non-vanishing, we need to have

∣

∣

∣

∣

H11 − ES11 H12 − ES12
H12 − ES12 H22 − ES22

∣

∣

∣

∣

= 0. (3.1.10)

This is known as a secular determinant, where the only unknown is E. The
remaining quantities in the determinant, Hij and Sij, may be evaluated readily
according to their definitions given in eqs. (3.1.5) and (3.1.6) and using the
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known functions φi and φj. Upon obtaining E from eq. (3.1.10), we can substi-
tute E into eq. (3.1.9) to solve for c1 and c2. Since there are two roots of E from
the secular determinant, there are also two corresponding sets of coefficients,
which lead to two molecular orbitals.

If our trial function has the form given in eq. (3.1.1), the corresponding
secular determinant has the dimensions n× n:

∣

∣

∣

∣

∣

∣

∣

∣

∣

H11 − ES11 H12 − ES12 · · · H1n − ES1n
H12 − ES12 H22 − ES22 . . . H2n − ES2n

...
...

...
...

H1n − ES1n H2n − ES2n · · · Hnn − ESnn

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (3.1.11)

There are now n roots of E. Substituting each E into the secular equations


















(H11 − ES11)c1 + (H12 − ES12)c2 + . . . + (H1n − ES1n)cn = 0
(H12 − ES12)c1 + (H22 − ES22)c2 + . . . + (H2n − ES2n)cn = 0

...
(H1n − ES1n)c1 + (H2n − ES2n)c2 + . . . + (Hnn − ESnn)cn = 0

(3.1.12)

we get a set of n coefficients. In other words, there are altogether n sets of
coefficients, or n molecular orbitals. To briefly summarize at this point, starting
with n atomic orbitals φi (i = 1, 2, . . ., n) in eq. (3.1.1), we can construct n
independent molecular orbitals using the variational method.

3.1.2 The hydrogen molecular ion: energy consideration

Now we consider the simplest molecular system, namely the hydrogen
molecular ion H+

2 . The Schrödinger equation for H+
2 , in a.u., is

[

−1
2
∇2 − (1/ra)− (1/rb) + (1/rab)

]

ψ = Eψ , (3.1.13)

where ra, rb, and rab (treated as a constant for the time being) are defined in
Fig. 3.1.1.

e

a brab

ra rb

Fig. 3.1.1.
The coordinate system of H+

2 .
When the nuclei are infinitely apart and the electron is on atom a, we have

ψ = 1sa = [1/(π)
1/2]e−ra = ψa. (3.1.14)

Similarly, when the electron resides on atom b instead, we have

ψ = 1sb = [1/(π)
1/2]e−rb = ψb. (3.1.15)

If the two nuclei are allowed to come together, it is reasonable to expect that
the “molecular orbital” ψMO would be some kind of combination of atomic
functions (3.1.14) and (3.1.15). This is the basis of the LCAO approximation
for describing the chemical bonding in molecular systems. Thus we now have

ψMO = c1ψa + c2ψb, (3.1.16)
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Fig. 3.1.2.
The overlap integral
Sab = ∫(1sa)(1sb)dτ , as represented by
the shaded volume.

a b

rab

where coefficients c1 and c2 are to be determined by the variational method. To
do that, we need to solve the secular determinant for E:

∣

∣

∣

∣

Haa − ESaa Hab − ESab
Hab − ESab Hbb − ESbb

∣

∣

∣

∣

= 0. (3.1.17)

The solution of E involves the evaluation of six integrals: Saa, Sbb, Sab, Haa, Hbb,
and Hab. From the normalization relationship, we have

Saa =
∫

|1sa|2dτ = Sbb =
∫

|1sb|2dτ = 1. (3.1.18)

In other words, Saa and Sbb are simply normalization integrals.
Integral Sab is called the overlap integral. Physically it represents the common

volume of the two atomic orbitals. A pictorial representation of Sab is given in
Fig. 3.1.2. It is clear that Sab varies with rab, the internuclear distance: when
rab = 0, Sab = 1; when rab →∞, Sab → 0. Mathematically, it can be shown
that, in a.u.,

Sab =
∫

(1sa)(1sb)dτ =
[

1 + rab +
(

r2
ab

3

)]

e−rab . (3.1.19)

Overlap integral Sab is often used as a measure of the strength of the chemical
bond: the bond is strong if Sab is large, while the bond is weak if Sab is small.

Now we deal with the integrals involving Hamiltonian operator Ĥ , in a.u.,

Haa = Hbb =
∫

(1sa)

[

−1
2
∇2 − 1

ra
− 1

rb
+ 1

rab

]

(1sa)dτ

= E1s + 1
rab

+ J , (3.1.20)

where

J =
∫

(1sa)
1
rb

(1sa)dτ =
∫

(1sb)
1
ra

(1sb)dτ

= − 1
rab

+
(

1 + 1
rab

)

e−2rab . (3.1.21)
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So

Haa = Hbb = −1
2

+
(

1 + 1
rab

)

exp[−2rab]. (3.1.22)

Hab =
∫

(1sa)

[

−1
2
∇2 − 1

ra
− 1

rb
+ 1

rab

]

(1sb)dτ

= Sab

(

E1s + 1
rab

)

+ K , (3.1.23)

where

K = −(1 + rab)e−rab . (3.1.24)

So

Hab =
(

r2
ab

3
+ rab + 1

)

exp[−rab] ·
(

1
rab
− 1

2

)

− (rab + 1)e−rab

= −
(

r2
ab

6
+ 7

6
rab + 1

2
− 1

rab

)

e−rab . (3.1.25)

Thus Haa, Hbb, and Hab are dependent on rab as well. Note that the Sab integrals
are dimensionless, while the H integrals have the energy unit. Also, all H
integrals are negative.

Expanding secular determinant (3.1.17), we have

(Haa − E)2 − (Hab − ESab)
2 = 0, (3.1.26)

which leads to roots

ES = Haa + Hab

1 + Sab
= −1

2
+ 1

rab
− 1 + rab (rab + 1) e−rab − (rab + 1) e−2rab

rab

[

1 + e−rab

(

r2
ab
3 + rab + 1

)] ,

(3.1.27)

and

EA = Haa − Hab

1− Sab
= −1

2
+ 1

rab
− 1− rab (rab + 1) e−rab − (rab + 1) e−2rab

rab

[

1− e−rab

(

r2
ab
3 + rab + 1

)] ,

(3.1.28)

with

ES < EA.

iranchembook.ir/edu

https://iranchembook.ir/edu


82 Fundamentals of Bonding Theory

If we minimize ES by setting dES /drab = 0, we get the optimal bond length

re = 2.494 a.u. = 131.9 pm. (3.1.29)

Experimentally, the internuclear separation in H+
2 is 2 a.u. or 105.8 pm. When

rab = 2.494 a.u., Sab = 0.460 (a rather large value for Sab). If we substitute
rab = 2.494 a.u. into eq. (3.1.27), we get

ES =
[

−1
2

+
(

1
rab

)

− 0.466
]

a.u. (3.1.30)

The electronic dissociation energy (De) of H+
2 is

De = E(H )− ES(H+
2 )

= {−1/2− [−1/2 + (1/2.494)− 0.466]}a.u.

= 0.065 a.u. = 1.77 eV. (3.1.31)

This is only in fair agreement with the experimental value of 2.79 eV for De. An
improvement in the calculation can be made if we replace the nuclear charge
Z in 1sa and 1sb by the effective nuclear charge Zeff as a parameter. With
Zeff = 1.239, we have De = 2.34 eV and re = 106 pm.

If we plot the ES and EA, as given in eqs. (3.1.27) and (3.1.28), against rab, we
get the curves shown in Fig. 3.1.3. These are called potential energy curves. In
the figure, re is the equilibrium bond length, and De is the electronic dissociation
energy. It should be noted that molecular vibration exists even at 0 K, so that
it does not require all of De to dissociate the molecule. Rather, the dissociation
energy D0, as shown in Fig. 3.1.3, will suffice. The difference between De and
D0 is the zero-point vibrational energy (ZPVE) of the molecule.De

E1s

EA

ES

E

Do
re

rab

ZPVE

Fig. 3.1.3.
Energies ES and EA of H+

2 as a function
of rab.

Returning to the hydrogen molecular ion, we see that the energy of the system,
E(H+

2 ), is lower than E(H) + E(H+). In other words, the quantum mechanical
results “predict” a stable H+

2 species.

3.1.3 The hydrogen molecular ion: wavefunctions

Upon obtaining the energies of the molecular orbitals by solving the secu-
lar determinant [eq. (3.1.17)], we are now ready to proceed to determine the
coefficients c1 and c2 of eq. (3.1.16). To do this we need to solve the secular
equations

{

(Haa − E)c1 + (Hab − ESab)c2 = 0
(Hab − ESab)c1 + (Hbb − E)c2 = 0. (3.1.32)

When E = ES = (Haa + Hab)/(1 + Sab), we have c1 = c2, or

ψS = c1(ψa + ψb) ≡ c1(1sa + 1sb). (3.1.33)

iranchembook.ir/edu

https://iranchembook.ir/edu


Covalent Bonding in Molecules 83

Upon normalization, ψS becomes

ψS = (2 + 2Sab)
−1/2(1sa + 1sb). (3.1.34)

Wavefunction ψS is called a bonding orbital, as its energy is lower than that of
its constituent atomic orbitals (c.f. Fig. 3.1.3).

When E = EA = (Haa−Hab)/(1−Sab), upon substituting into eq. (3.1.32),
we obtain c1 = −c2, or

ψA = c1(ψa − ψb) = c1(1sa − 1sb). (3.1.35)

Upon normalization, ψA becomes

ψA = (2− 2Sab)
−1/2(1sa − 1sb) (3.1.36)

Wavefunction ψA is called an antibonding molecular orbital, as its energy is
higher than that of its constituent atomic orbitals.

The more detailed energy diagram in Fig. 3.1.3 can be simplified to that shown
in Fig. 3.1.4, where we see that atomic orbitals 1sa and 1sb are combined to
form two molecular orbitals ψS (to be called σ1s later) and ψA (to be called
σ ∗1s). Also, σ1s with energy lower than those of atomic orbitals is a bonding
orbital; σ ∗1s with energy higher than those of atomic orbitals is an antibonding
orbitals. The ground electronic configuration for H+

2 is thus (σ1s)
1.

H H2
+ H+

σ1s
* !   Aψ

σ1s
 !   Sψ

1sb1sa

E

Fig. 3.1.4.
A simplified energy level diagram
for H+

2 .

An important point regarding the energy level diagram in Fig. 3.1.4 is that,
when a bonding and an antibonding molecular orbital are formed by two atomic
orbitals, the antibonding effect (the energy difference between 1s and σ ∗1s) is
greater than the bonding effect (the energy difference between 1s and σ1s). This
is not difficult to see if we examine the expressions for ES and EA given in eqs.
(3.1.27) and (3.1.28). The denominators for ES and EA are 1 + Sab and 1− Sab,
respectively. Recall that 0 < Sab < 1. So 1 + Sab > 1 and 1− Sab < 1 and this
leads to the result that the bonding effect is smaller than the antibonding effect.
If we ignore the overlap of the atomic orbitals by setting Sab = 0, the bonding
effect would be the same as the antibonding effect.

Now we examine the bonding orbital σ1s and antibonding orbital σ ∗1s as well
as their probability density functions |σ1s|2 and |σ ∗1s|2. A schematic represen-
tation of σ1s is shown in Fig. 3.1.5(a). In this combination of two 1s orbitals,
electron density accumulates in the internuclear region.Also, σ1s has cylindrical
symmetry around the internuclear axis.

(a) (b)

Nodal plane

z z+

– +

Fig. 3.1.5.
Molecular orbitals of H+

2 : (a) σ1s,
(b) σ∗1s.
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Fig. 3.1.6.
Probability density distribution of H+

2
plotted along the internuclear axis:
(a) |σ 1s|2, (b) |σ∗1s|2.

Nodal plane

(a) (b)

In Fig. 3.1.5(b), a schematic drawing for σ ∗1s is shown. It is seen that this
combination of 1s orbitals has no charge accumulation between the nuclei.
Indeed, in the nodal plane there is zero probability of finding an electron. As
in the case of σ1s, the σ ∗1s orbital also has cylindrical symmetry around the
molecular axis.

The accumulation of charge density between the nuclei in σ1s is clearly seen
when we consider the probability density function |σ1s|2:

|σ1s|2 = |1sa + 1sb|2

= |1sa|2 + 2|1sa||1sb| + |1sb|2. (3.1.37)

When we plot this function along the internuclear axis, Fig. 3.1.6(a) is obtained.
In this figure, the build-up of charge density between the nuclei is obvious.

For the antibonding orbital σ ∗1s, we have the probability density function

|σ ∗1s|2 = |1sa − 1sb|2

= |1sa|2 − 2|1sa||1sb| + |1sb|2. (3.1.38)

If we plot |σ ∗1s|2 along the internuclear axis, we get Fig. 3.1.6(b). Now there is
a clear deficiency of charge density between the nuclei.

3.1.4 Essentials of molecular orbital theory

In sections 3.1.2 and 3.1.3, we use the example of H+
2 to illustrate the molecular

orbital theory. In particular, we note the following:

(1) Since molecular orbitals are linear combinations of atomic orbitals, it
follows that n atomic orbitals will generate n molecular orbitals.

(2) If we have n atomic orbitals forming n molecular orbitals, “usually” half
of the molecular orbitals are bonding, while the other half are antibonding.
However, this condition does not always hold. For instance, if we have
three atomic orbitals to form three molecular orbitals, obviously half of the
latter cannot be bonding. Also, there is an additional type that we have not
yet considered: nonbonding molecular orbitals, which by definition neither
gains nor loses stability (or energy).

(3) Bonding molecular orbitals have two characteristics: its energy is lower
than those of the constituent atomic orbitals and there is a concentration of
charge density between the nuclei.
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Table 3.1.1. Molecular orbital theory applied to H+
2 , H2, He+

2 , and He2

Molecule Configuration Bond energy
(kJ mol−1)

Bond length
(pm)

Remark

H+
2 σ 1

1s 255 106 The bond is formed by one bonding
electron.

H2 σ 2
1s 431 74 There are now two bonding electrons.

Hence the bond is stronger and shorter
than that in H+

2 .
He+

2 σ 2
1sσ

∗1
1s 251 108 This bond is slightly weaker than that in

H+
2 , since antibonding effect is greater

than bonding effect.
He2 σ 2

1sσ
∗2
1s Repulsive state The gain of energy by the bonding

electrons is more than offset by the
antibonding electrons. Hence there is
no bond in He2.

(4) On the other hand, the energy of an antibonding molecular orbital is higher
than those of the constituent atomic orbitals. Also, the wavefunction of an
antibonding orbital has one or more nodes between the nuclei. Hence there
is a deficiency of charge density between the nuclei.

To conclude this section, we apply the energy level diagram in Fig. 3.1.4 to
four simple molecules having one to four electrons. The results are summarized
in Table 3.1.1.

Examining Table 3.1.1, we see that our simple treatment is able to rationalize,
at least semi-quantitatively, the formation of H2 and the non-existence of He2.

3.2 The hydrogen molecule: molecular orbital and
valence bond treatments

3.2.1 Molecular orbital theory for H2

In our previous discussions on H+
2 , we saw that the lone electron occupies the

σ1s molecular orbital:

σ1s = (2 + 2Sab)
−1/2(1sa + 1sb). (3.2.1)

The molecular orbital theory was first introduced by F. Hund (of the Hund’s rule
fame) and R. S. Mullikan, with the latter winning the Nobel Prize in chemistry
in 1966. Since σ1s can accommodate two electrons, in molecular orbital theory,
the wavefunction for H2 is

ψ(1, 2) = σ1s(1)σ1s(2)

= (2 + 2Sab)
−1/2[1sa(1) + 1sb(1)]

× (2 + 2Sab)
−1/2[1sa(2) + 1sb(2)]. (3.2.2)

From this function, we can see that both electrons in H2 reside in the ellipsoidal
σ1s orbital. This situation is similar to that of the helium atom, where both
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electrons reside in the spherical 1s orbital, with wavefunction 1s(1)1s(2). It is
important to appreciate that, in σ1s, the identity of the atomic orbital is lost.
This is the essential tenet of molecular orbital theory.

When we use eq. (3.2.2) to determine the energy of H2, we obtain De = 260
kJ mol−1 and re = 85 pm, while the experimental results are 458 kJ mol−1

and 74 pm, respectively. If we vary the nuclear charge, we obtain Zeff = 1.197,
De = 337 kJ mol−1, and re = 73 pm. So while the quantitative results may
only be called fair, we do get a stable H2 molecule.

3.2.2 Valence bond treatment of H2

Historically, molecular orbital theory was preceded by an alternative and suc-
cessful description of the bonding in H2. In 1927, W. Heitler and F. London
proposed the valence bond theory, in which each electron resides in an atomic
orbital. In other words, in this model, the identity of the atomic orbital is
preserved. There are two ways in which the two electrons in H2 can be
accommodated in the pair of 1s atomic orbitals:

(a) Electron 1 in a 1s orbital centered at nucleus a and electron 2 in a 1s orbital
centered at nucleus b. Mathematically:

ψI(1, 2) = 1sa(1)1sb(2). (3.2.3)

(b) Electron 1 in orbital 1sb and electron 2 in 1sa, or,

ψII(1, 2) = 1sb(1)1sa(2). (3.2.4)

The valence bond wavefunction for H2 is simply a linear combination of ψI
and ψII:

ψ(1, 2) = cIψI + cIIψII

= cI1sa(1)1sb(2) + cII1sb(1)1sa(2), (3.2.5)

where the coefficients cI and cII are to be determined by the variational method.
To do that, we once again need to solve a secular determinant:

∣

∣

∣

∣

HI I − ESI I HI II − ESI II
HI II − ESI II HII II − ESII II

∣

∣

∣

∣

= 0, (3.2.6)

Upon solving for E, we substitute E into the following secular equations to
obtain coefficient cI and cII:

{

(HI I − ESI I)cI + (HI II − ESI II)cII = 0
(HI II − ESI II)cI + (HII II − ESII II)cII = 0 . (3.2.7)

With HI I = HII II and SI I = SII II, the roots of eq. (3.2.6) are

E+ = (HI I + HI II)/(1 + SI II), (3.2.8)

E− = (HI I − HI II)/(1− SI II). (3.2.9)
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A diagram illustrating the various distances in H2 is shown in Fig. 3.2.1. The
Hamiltonian operator for this system, in a.u., is

Ĥ = −1
2
∇2

1 −
1
2
∇2

2 −
1

ra1
− 1

rb1
− 1

ra2
− 1

rb2
+ 1

r12
+ 1

rab
. (3.2.10)

a brab

ra2
rb1

rb2

e2

e1 r12

ra1

Fig. 3.2.1.
The molecular system of H2.

In the following, we evaluate the various Hij and Sij integrals:

SI I = SII II =
∫∫

1sa(1)1sb(2) · 1sa(1)1sb(2)dτ1dτ2

=
∫

|1sa(1)|2 dτ1 ·
∫

|1sb(2)|2dτ2 = 1. (3.2.11)

SI II =
∫∫

1sa(1)1sb(2) · 1sb(1)1sa(2)dτ1dτ2

=
∫

1sa(1)1sb(1)dτ1 ·
∫

1sa(2)1sb(2)dτ2

= S2
ab, (3.2.12)

where Sab is simply the overlap integral introduced in the treatment of H+
2 .

Meanwhile,

HI I = HII II =
∫∫

1sa(1)1sb(2)Ĥ1sa(1)1sb(2)dτ1dτ2

= 2E1s + 1
rab

+ J1 − 2J2, (3.2.13)

where J1 and J2 are called Coulomb integrals:

J1 =
∫∫

1
r12

|1sa(1)1sb(2)|2 dτ1dτ2, (3.2.14)

J2 =
∫∫

1
ra2

|1sa(1)1sb(2)|2 dτ1dτ2

=
∫∫

1
rb1

|1sa(1)1sb(2)|2 dτ1dτ2. (3.2.15)

Finally,

HI II =
∫∫

1sa(1)1sb(2)Ĥ1sb(1)1sa(2)dτ1dτ2

= 2E1sS2
ab + S2

ab

rab
+ K1 − 2K2, (3.2.16)
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where K1 and K2 are called resonance integrals:

K1 =
∫∫

1
r12

|1sa(1)1sb(2)1sb(1)1sa(2)| dτ1dτ2, (3.2.17)

K2 =
∫∫

1
ra1

|1sa(1)1sb(2)1sb(1)1sa(2)| dτ1dτ2

=
∫∫

1
rb1

|1sa(1)1sb(2)1sb(1)1sa(2)| dτ1dτ2. (3.2.18)

Substituting Hij and Sij into eqs. (3.2.8) and (3.2.9), we obtain

E+ = 2E1s + 1
rab

+ J1 − 2J2 + K1 − 2K2

1 + S2
ab

(3.2.19)

E− = 2E1s + 1
rab

+ J1 − 2J2 − K1 + 2K2

1− S2
ab

(3.2.20)

Note the integrals J1, J2, K1, and K2 are all functions of rab.
When we plot E+ and E− against rab, we get the energy curves shown

in Fig. 3.2.2. So, once again, the valence bond treatment yields a stable
H2 molecule, even though the quantitative results do not match exactly the
experimental data.

Upon substituting E+ into eq. (3.2.7), we get cI = cII. After normalization,
the wavefunction becomes

ψ+ = (2 + 2S2
ab)
−1/2[1sa(1)1sb(2) + 1sb(1)1sa(2)]. (3.2.21)

Also, with E−, we get cI = −cII. After normalization, the wavefunction
becomes:

ψ− = (2− 2S2
ab)
−1/2[1sa(1)1sb(2)− 1sb(1)1sa(2)]. (3.2.22)

After a simple valence bond treatment of H2, we now proceed to study the
excited states of H2. Through this discussion, we will recognize that the molec-
ular orbital and valence bond treatments, after modification, can bring about
the same quantitative results.

Fig. 3.2.2.
Valence bond energies E+ and E−
plotted as functions of rab.

E

E = 2E1s

E+

E–

Eexp

rab
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3.2.3 Equivalence of the molecular orbital and valence bond models

As discussed previously, the bonding molecular orbital of H2 is

σ1s = (2 + 2Sab)
−1/2(1sa + 1sb), (3.2.23)

and the antibonding molecular orbital has the form

σ ∗1s = (2− 2Sab)
−1/2(1sa − 1sb). (3.2.24)

The ground configuration of H2 is σ 2
1s, with the (unnormalized) wavefunction

ψ1(σ
2
1s) = [1sa(1) + 1sb(1)]× [1sa(2) + 1sb(2)]. (3.2.25)

Upon adding the spin part, the total wavefunction for the ground state of H2 is

ψ1(σ
2
1s) = [1sa(1) + 1sb(1)][1sa(2) + 1sb(2)][α(1)β(2)− β(1)α(2)]

=
∣

∣

∣

∣

σ1sα(1) σ1sβ(1)

σ1sα(2) σ1sβ(2)

∣

∣

∣

∣

. (3.2.26)

Clearly, this is a spin singlet state.
Similarly, the excited configuration σ ∗2

1s has the wavefunction

ψ2(σ
∗2
1s ) = [1sa(1)− 1sb(1)][1sa(2)− 1sb(2)][α(1)β(2)− β(1)α(2)]

=
∣

∣

∣

∣

σ ∗1sα(1) σ ∗1sβ(1)

σ ∗1sα(2) σ ∗1sβ(2)

∣

∣

∣

∣

. (3.2.27)

This is also a spin singlet state. Furthermore, this is a repulsive state; i.e., it is
not a bound state.

For the excited configuration σ 1
1s σ

∗1
1s , there are two states, one singlet and one

triplet. This situation is similar to that found in the excited configuration 1s12s1

of the helium atom. The singlet and triplet wavefunctions for these excited
configurations are:

ψ3(σ
1
1sσ

∗1
1s ; S = 0) = [σ1s(1)σ ∗1s(2) + σ1s(2)σ ∗1s(1)][α(1)β(2)− β(1)α(2)]

(3.2.28)

ψ4(σ
1
1sσ

∗1
1s ; S = 1) = [σ1s(1)σ ∗1s(2)− σ1s(2)σ ∗1s(1)]







[α(1)β(2) + β(1)α(2)]
α(1)α(2).
β(1)β(2)

(3.2.29)

On the other hand, the (un-normalized) ground (ψ+) and excited (ψ−) state
valence bond wavefunctions are

ψ+ = 1sa(1)1sb(2) + 1sb(1)1sa(2) (3.2.30)

ψ− = 1sa(1)1sb(2)− 1sb(1)1sa(2). (3.2.31)
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Expanding the wavefunction in eq. (3.2.25), we get

ψ1(σ
2
1s) = [1sa(1)1sb(2) + 1sb(1)1sa(2)] + [1sa(1)1sa(2) + 1sb(1)1sb(2)]

= ψ+ + ψi, (3.2.32)

where

ψi = 1sa(1)1sa(2) + 1sb(1)1sb(2). (3.2.33)

Wavefunction ψi refers to the situation where both electrons are on nucleus
a or nucleus b, i.e., ionic structures. Now it is obvious that the valence bond
wavefunctionψ+ considers only covalent structure, while the molecular orbital
wavefunction ψ1 has an equal mixture of covalent and ionic contributions.
Similarly, expanding the wavefunction in eq. (3.2.27) yields

ψ2(σ
∗2
1s ) = −[1sa(1)1sb(2) + 1sb(1)1sa(2)] + [1sa(1)1sa(2) + 1sb(1)1sb(2)]

= −ψ+ + ψi. (3.2.34)

So the wavefunction for the excited configuration σ ∗2
1s is also an equal mixture

of covalent and ionic parts, except now that the linear combination coefficients
have different signs.

Solving eqs. (3.2.32) and (3.2.34) for ψ+, we get

ψ+ = ψ1 − ψ2. (3.2.35)

So, put another way, the valence bond wavefunctions for the ground state of H2
has equal contributions from configurations σ 2

1s and σ ∗2
1s , and the combination

coefficients have different signs. Such a wavefunction, which employs a mixture
of configurations to describe the electronic state of an atom or molecule, is called
a configuration interaction (CI) wavefunction.

It is obvious that the deficiency of ψ+ is that it does not take ionic con-
tributions (ψi) into account. Conversely, ψ1 suffers from too much (50%)
contribution from the ionic structures. To get the wavefunction with optimal
ionic contribution, we set

ψ ′+ = c+ψ+ + ciψi, (3.2.36)

where coefficient c+ and ci are to be determined through the following 2×2
secular determinant and the associated secular equations:

∣

∣

∣

∣

H++ − ES++ H+i − ES+i
H+i − ES+i Hii − ESii

∣

∣

∣

∣

= 0 (3.2.37)

{

(H++ − ES++)c+ + (H+i − ES+i)ci = 0
(H+i − ES+i)c+ + (Hii − ESii)ci = 0 . (3.2.38)

The result of this optimization process is ci/c+ = 0.16. In other words, the opti-
mal wavefunction has ionic and covalent contributions in the ratio of about 1:6.
Such a dominance of covalent character is expected for a molecule such as H2.
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Table 3.2.1. Optimized dissociation energies and equilibrium bond lengths from trial wavefunc-
tions for H2 with adjustable parameters

Trial wavefunction De(kJ mol−1) re(pm)

[1sa(1) + 1sb(1)] [1sa(2) + 1sb(2)], eq. (3.2.1); Z = 1 260.0 85.2
[1sa(1) + 1sb(1)] [1sa(2) + 1sb(2)], eq. (3.2.1); Zeff = 1.197 336.5 73.0
1sa(1)1sb(2) + 1sb(1)1sa(2), eq. (3.2.30); Z = 1 304.5 86.8
1sa(1)1sb(2) + 1sb(1)1sa(2), eq. (3.2.30); Zeff = 1.166 364.9 74.6
c[1sa(1)1sb(2) + 1sb(1)1sa(2)] + [1sa(1)1sa(2) + 1sb(1)1sb(2)],

eqs. (3.2.30), (3.2.33), and (3.2.36); Z = 1 and c = 6.322
311.6 88.4

c[1sa(1)1sb(2) + 1sb(1)1sa(2)] + [1sa(1)1sa(2) + 1sb(1)1sb(2)],
eqs. (3.2.30), (3.2.33), and (3.2.36); Zeff = 1.194 and c = 3.78

388.4 75.6

φa(1)φb(2) + φb(1)φa(2), φ = 1s + λ2pz (a “polarized” atomic
function); Zeff (1s) = Zeff (2p) = 1.190, λ = 0.105

389.8 74.9

c[φa(1)φb(2) + φb(1)φa(2)] + [1sa(1)1sa(2) + 1sb(1)1sb(2)],
φ = 1s + λ2pz ; Zeff (1s) = Zeff (2p) = 1.190, c = 5.7, λ = 0.07

397.7 74.6

Four-parameter function by Hirschfelder and Linnett (1950) 410.1 76.2
Thirteen-term function by James and Coolidge (1933) 455.7 74.1
One hundred-term function by Kołos and Wolniewicz (1968) 458.1 74.1
Experimental 458.1 74.1

Similarly, we can also improve ψ1 by mixing in an optimal amount of ψ2:

ψ ′1 = c1ψ1 + c2ψ2. (3.2.39)

The optimal c2/c1 ratio is−0.73. More importantly, the improved valence bond
wavefunction ψ ′+ and the improved molecular orbital wavefunction ψ ′1 are
one and the same, thus showing these two approaches can lead to identical
quantitative results.

Table 3.2.1 summarizes the results of various approximate wavefunctions for
the hydrogen molecule. This list is by no means complete, but it does show that,
as the level of sophistication of the trial function increases, the calculated dis-
sociation energy and bond distance approach closer to the experimental values.
In 1968, W. Kołos and L. Wolniewicz used a 100-term function to obtain results
essentially identical to the experimental data. So the variational treatment of
the hydrogen molecule is now a closed topic.

3.3 Diatomic molecules

After the treatments of H+
2 and H2, we are ready to take on other diatomic

molecules. Before we do that, we first state two criteria governing the formation
of molecular orbitals:

(1) For two atomic orbitals φa and φb to form a bonding and antibonding
molecular orbitals, φa and φb must have a non-zero overlap, i.e.,

Sab =
∫

φaφbdτ '= 0. (3.3.1)

Furthermore, for Sab '= 0, φa and φb must have the same symmetry. In
Fig. 3.3.1, we can see that there is net overlap in the left and middle cases,
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Fig. 3.3.1.
Non-zero overlap in the two cases shown
on the left and in the middle, and zero
overlap in the case shown on the right. A B A B A B

while Sab vanishes in the case shown on right. The concept of symmetry
will be studied more fully in Chapters 6 and 7, when the topic of group
theory is taken up.

(2) The second criterion is the energy factor: for φa and φb to have significant
bonding (and antibonding) effect, they should have similar energies. This
is why, in our treatments of H2 and H+

2 , we are only concerned with the
interaction between two 1s orbitals. We ignore the interaction between, say,
the 1s orbital on Ha and the 2s orbital on Hb. These two atomic orbitals
do have non-zero overlap between them. But these orbitals do not bond (or
interact) effectively because they have very different energies.

3.3.1 Homonuclear diatomic molecules

Now we proceed to discuss homonuclear diatomics with 2s and 2p valence
orbitals. Starting from these atomic orbitals, we will make (additive and sub-
tractive) combinations of them to form molecular orbitals. In addition, we also
need to know the energy ordering of these molecular orbitals.

We first consider the 2s orbitals.As in the cases of H+
2 and H2, the combination

of (2sa +2sb) leads to a concentration of charge between the nuclei. Hence it is a
σ bonding orbital and is calledσs. On the other hand, the (2sa−2sb) combination
has a nodal plane between the nuclei and there is a charge deficiency in this
region. Hence this is a σ antibonding orbital, which is designated as σ ∗s .

For the 2p orbitals, there are two types of overlap. We first note that the two
pz orbitals both lie along the internuclear axis (conventionally designated as
the z axis), while the px and py orbitals are perpendicular to this axis. Once
again, 2pza + 2pzb leads to a bonding orbital called σz , while the combination
2pza − 2pzb is an antibonding molecular orbital called σ ∗z . It is seen that these
two molecular orbitals also have cylindrical symmetry around the internuclear
axis. So both of them are σ orbitals.

The overlap between the 2pxa and 2pxb orbitals occurs in two regions, which
have the same size and shape but carry opposite signs: one above the yz plane
and the other below it. As there is no longer cylindrical symmetry around the
nuclear axis, the molecular orbital is not a σ type. Rather, it is called aπx orbital,
which is characterized by a change in sign across the yz plane (a nodal plane). In
an analogous manner, the combination 2pxa− 2pxb leads to the antibonding π∗x
orbital, which is composed of four lobes of alternating signs partitioned by two
nodal planes. Similarly, there are the corresponding bonding πy(2pya + 2pyb)

and antibonding π∗y (2pya − 2pyb) molecular orbitals.

iranchembook.ir/edu

https://iranchembook.ir/edu


Covalent Bonding in Molecules 93

Before we proceed to discuss the energy order of these molecular orbitals, it
is important to note that the 2px orbital on atom a has zero overlap with either
2py or 2pz on atom b; in other words, the pair of orbitals do not have compatible
symmetry. Therefore, among the six 2p orbitals on the two atoms, 2pxa interacts
only with 2pxb, 2pya with 2pyb, and 2pza with 2pzb. Furthermore, the πx and πy
orbitals have the same energy; i.e., they are doubly degenerate. Similarly, the
π∗x and π∗y orbitals compose another degenerate set at a higher energy.

To summarize briefly at this point: referring to Fig. 3.3.2, we have started
with eight atomic orbitals (one 2s and three 2p orbitals on each atom) and
have constructed eight molecular orbitals, σ2s, σ ∗2s, σz , σ ∗z , πx, π∗x , πy,
and π∗y . The relative energies of these molecular orbitals can be determined
from experiments such as spectroscopic measurements or from calculations.
For homonuclear diatomics, there are two energy level schemes, as shown in
Fig. 3.3.2.

In each scheme, the eight molecular orbitals form six energy levels and can
accommodate up to 16 electrons. The scheme on the right is applicable to
atoms whose 2s–2p energy difference is small, while the scheme on the left is
for atoms with a large 2s–2p energy gap. (Recall, from Fig. 3.3.1, s orbitals can
overlap with p orbitals to form σ molecular orbitals. Whether this interaction
is important depends on the energy difference between the interacting atomic
orbitals.)

The experimental 2s–2p energy differences of the elements of the second
period are summarized in Table 3.3.1. It can be readily seen that O and F have
the largest 2s–2p gap. Hence the energy ordering shown on the left side of Fig.
3.3.2 is applicable to O2 and F2. On the other hand, the energy scheme on the
right side of Fig. 3.3.2 is applicable for Li2, Be2, B2, C2, and N2. Furthermore,
the only difference between the two scheme is the relative ordering of the σz and
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Fig. 3.3.2.
The shapes and energy ordering of the
molecular orbitals for homonuclear
diatomic molecules. The scheme on the
left is applicable to O2 and F2, while that
on the right is applicable to other
diatomics of the same period.
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Table 3.3.1. The 2s–2p energy gap of the second-row elements

Element Li Be B C N O F

−E2s(eV) 5.39 9.32 12.9 16.6 20.3 28.5 37.8
−E2p(eV) 3.54 6.59 8.3 11.3 14.5 13.6 17.4
E2p − E2s(eV) 1.85 2.73 4.6 5.3 5.8 14.9 20.4

degenerate (πx, πy) levels. For O2 and F2, there is no significant s–p mixing, due
to the larger 2s–2p energy gaps of O and F. On the other hand, for the remaining
homonuclear diatomics of the same period, through s–p mixing, the molecular
orbitals are no longer called σs, σ ∗s , σz , σ ∗z , etc. Instead they are now called σg,
σu, etc., where g indicates centrosymmetry and u indicates antisymmetry with
respect to the molecular center.

Table 3.3.2. Electronic configurations and structural parameters of homonuclear
diatomic molecules of the second period

X2 Electronic configuration Bond length
(pm)

Bonding energy
(kJ mol−1)

Bond order

Li2 1σ 2
g 267.2 110.0 1

Be2 1σ 2
g 1σ 2

u — — 0
B2 1σ 2

g 1σ 2
u 1π2

u 158.9 274.1 1
C2 1σ 2

g 1σ 2
u 1π4

u 124.25 602 2
C2−

2 1σ 2
g 1σ 2

u 1π4
u 2σ 2

g 120 — 3
N2 1σ 2

g 1σ 2
u 1π4

u 2σ 2
g 109.76 941.69 3

N+
2 1σ 2

g 1σ 2
u 1π4

u 2σ 1
g 111.6 842.15 21/2

N2−
2 σ 2

s σ
∗2
s σ

2
z π

2
x π

2
y π
∗1
x π

∗1
y 122.4 — 2

O2 σ 2
s σ
∗2
s σ

2
z π

2
x π

2
y π
∗1
x π

∗1
y 120.74 493.54 2

O+
2 σ 2

s σ
∗2
s σ

2
z π

2
x π

2
y π
∗1
x 112.27 626 21/2

O−2 σ 2
s σ
∗2
s σ

2
z π

2
x π

2
y π
∗2
x π

∗1
y 126 392.9 11/2

O2−
2 σ 2

s σ
∗2
s σ

2
z π

2
x π

2
y π
∗2
x π

∗2
y 149 138 1

F2 σ 2
s σ
∗2
s σ

2
z π

2
x π

2
y π
∗2
x π

∗2
y 141.7 155 1

Table 3.3.2 summarizes the various properties of second-row homonuclear
diatomic molecules. In the last column of the table, we list the “bond order”
between atoms A and B in the molecule AB. Simply put, the bond order is a
number that gives an indication of its strength relative to that of a two-electron
single bond. Thus the bond order of H+

2 (σ 1
1s) is 1/2, while that of H2 (σ 2

1s) is 1.
For a system with antibonding electrons, we take the simplistic view that one
antibonding electron “cancels out” one bonding electron. Thus the bond orders
in He+

2 (σ 2
1s σ

∗1
1s ) and He2 (σ 2

1s σ
∗2
1s ) are 1/2 and 0, respectively, and helium is

not expected to form a diatomic molecule.
Some interesting points are noted from the results given in Table 3.3.2:

(1) The bond in Li2 is longer and weaker than that in H2 (74 pm; 431 kJ mol−1).
This is because the bond in Li2 is formed by 2s valence electrons that lie
outside filled 1s atomic orbitals.
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(2) The diatomic molecule Be2 is unstable; the ground state is a repulsive state.
As in He2, the stabilization gained by the bonding electrons is more than
offset by the destabilizing antibonding electrons.

(3) The bond in B2 is stronger than that in Li2 because B has a smaller atomic
radius than Li. Also, B2 has two unpaired electrons in the 1πu orbital and
is hence a paramagnetic species.

(4) The bond length and bond energy in C2 are compatible with the double
bond predicted by molecular orbital theory. It is noted that the 2σg orbital
is only slightly higher in energy than 1πu. Indeed, C2 absorbs light in the
visible region at 19,300 cm−1. This corresponds to exciting an electron
from the 1πu molecular orbital to the 2σg orbital. This is a fairly small
excitation energy for a diatomic molecule, since electronic excitations for
other diatomics are usually observed in the ultraviolet region.

(5) The bond in N2 is a triple bond, in agreement with the Lewis structure
:N≡N: of this molecule. We now can see that the lone pairs in the Lewis
structure correspond to the 1σ 2

g and 1σ 2
u electrons; the two pairs of bond-

ing and antibonding electrons result in no net bonding. The three bonds in
the Lewis structure correspond to the 1π4

u and 2σ 2
g electrons in molecular

orbital theory. The electronic excitation from the 2σg orbital to 1πg orbital
occurs at around 70,000 cm−1 in the vacuum ultraviolet region. The exper-
imental energy ordering of the molecular orbitals for the N2 molecule is
shown in Fig. 3.3.3(a). Upon losing one electron to form N+

2 , there is not
much change in bond length, as the electron is from a weakly bonding 2σg
orbital. In a recently determined crystal structure of SrN2, the bond length
found for the diazenide anion (N2−

2 ) is compatible with the theoretical bond
order of 2.

(6) Molecular orbital theory predicts that O2 is paramagnetic, in agreement
with experiment. Note that the Lewis structure of O2 does not indicate that
it has two unpaired electrons, even through it does imply the presence of a
double bond. In fact, the prediction/confirmation of paramagnetism in O2
was one of the early successes of molecular orbital theory.Also, the ions O+

2
(dioxygen cation), O−2 (superoxide anion), and O2−

2 (peroxide anion) have
bond orders 21/2, 11/2, and 1, respectively. The experimental energy levels
of the molecular orbital for the O2 molecule are shown in Fig. 3.3.3(b).

(7) Fluorine F2, is isoelectronic with O2−
2 . Hence they have similar bond

lengths as well as similar bond energies. Finally, molecular orbital theory

(a)

N2 O2
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–17.0
–15.6

–12.5

–17.0
–19.5

–26.0

–39.0
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σ2s

σ2pz

π2p

∗

∗

1σu

2σg

1πu
π2p
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E
(e

V
)

E
(e

V
)

(b)

Fig. 3.3.3.
Energy level diagrams for N2 and O2.
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predicts that the ground electronic configuration of Ne2 (with two more
electrons than F2) leads to a repulsive state. So far there is no experimen-
tal evidence for the existence of Ne2, in agreement with molecular orbital
results.

3.3.2 Heteronuclear diatomic molecules

(1) The hydrogen fluoride molecule
Before discussing heteronuclear diatomic XY, where both X and Y are second-
row atoms, we first take HF as an example for detailed molecular orbital
treatment. Since the H 1s orbital (with energy −13.6 eV) and F 2p (−17.4 eV)
have similar energies, while that of F 2s (−37.8 eV) is much lower, we only
need to consider the interaction between H 1s and F 2p orbitals.

If we take the internuclear axis as the z axis, it is clear that the F 2pz and
the H 1s orbital overlap. The bonding orbital (called σz) is represent by the
combination

σz = c1[1s(H)] + c2[2pz(F)]. (3.3.2)

The coefficients c1 and c2 give the relative contributions of the H 1s and F 2pz
orbitals to the σz orbital. Unlike the case of homonuclear diatomics, these coef-
ficients are no longer equal, since the interacting atomic orbitals have different
energies.

As we know, bonding electrons are “pulled” toward the more electronega-
tive atom, which has the more stable valence orbitals. Therefore, in eq. (3.3.2),
c2 is greater than c1; i.e., the F 2pz contributes more than H 1s to the bond-
ing molecular orbital σz . It is always true that the atomic orbital on the more
electronegative atom contributes more to the bonding molecular orbital.

The antibonding orbital (called σ ∗z ) between F 2pz and H 1s orbitals has
the form

σ ∗z = c3[1s(H)]− c4[2pz(F)]. (3.3.3)

Since most of the 2pz orbital on F is “used up” in the formation of σz , it is
now clear that, in σ ∗z , c3 > c4. In other words, the atomic orbital on the more
electropositive atom always contributes more to the antibonding molecular
orbital.

The F 2px and F 2py orbitals are suitable for forming π molecular orbitals.
However, in the HF molecule, the hydrogen 1s orbital does not have the proper
symmetry to overlap with the F 2px or F 2py orbital. Thus, the F 2px and F 2py
orbitals are nonbonding orbitals. By definition, a nonbonding molecular orbital
in a diatomic molecule is simply an atomic orbital on one of the atoms; it gains
or loses no stability (or energy) and its charge density is localized at the atom
where the aforementioned atomic orbital originates.

HF F

σz

σz

∗

H

1s

2p

2s 2s

πx
n πy

n

E

Fig. 3.3.4.
Energy level diagram of HF.

The energy level diagram for HF is shown in Fig. 3.3.4. By the dotted lines,
we can see that σz is formed by the H 1s and F 2p (2pz in this case) orbitals.
Since the energy of σz is closer to that of F 2p than that of H 1s, it is clear
the F 2p orbital contributes more to the σz orbital. On the other hand, the H
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1s contributes more to the σ ∗z orbital. Also, the degenerate nonbonding πn
x and

πn
y orbitals are formed solely by F 2px and F 2py orbitals, respectively, without

any energy change.
From the energy level diagram in Fig. 3.3.4, it follows naturally that the

ground configuration of HF is 2s2σ 2
z (πn

x = πn
y )4. Among the four pairs of

electron in this molecule, only the pair in σ z is shared by H and F, while the
other three pairs are localized at F. This bonding picture is in total agreement
with the Lewis formula:

H F

Since the two electrons in σ z are not equally shared by H and F, it would be
of interest to determine the charge separation in this molecule. This information
is furnished by the experimentally determined dipole moment, 6.06 × 10−30

C m, of the molecule. Also, the electrons are closer to F than to H; i.e., the
negative end of the dipole points toward F.

The H–F bond length is 91.7 pm. If the lone electron of H is transferred to
F, giving rise to the ionic structure H+F−, the dipole moment would be

(91.7× 10−12m)× (1.60× 10−19C) = 1.47× 10−29C m.

Hence we see that the electron of H is only partially transferred to F. The ionic
percentage of the HF may be estimated to be

6.06× 10−30C m
1.47× 10−29C m

× 100% = 41%.

(2) Heteronuclear diatomic molecules of the second-row elements
Now we describe the bonding in a general diatomic molecule XY, where both
X and Y are second-row elements and Y is more electronegative than X. The
molecular orbital energy level diagram is shown in Fig. 3.3.5. The σ and π
bonding and antibonding orbitals are formed in the same manner as for X2,
but the coefficients of the orbitals on Y are larger than those on X for the
bonding orbitals, and the converse holds for the antibonding orbitals. In other
words, the electrons in bonding orbitals are more likely to be found near the
more electronegative atom Y, while the electrons in the antibonding orbitals
are more likely to be near the more electropositive atom X. In Fig. 3.3.5, the
molecular orbitals no longer carry the subscripts u and g, since there is no center
of symmetry in XY.

The bonding properties of several representative diatomics are discussed
below.

(a) BN (with eight valence electrons): This paramagnetic molecule has the
ground configuration of 1σ 21σ*21π32σ 1, with two unpaired electrons.
For this system, the 2σ orbital energy is higher than that of 1π by about the
same energy required to pair two electrons. In any event, the bond order is
2. The bond lengths of C2 and BN are 124.4 and 128 pm, respectively. The
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Fig. 3.3.5.
Energy level diagram of a heteronuclear
diatomic molecule.
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Fig. 3.3.6.
Energy level diagrams of CO and NO.

–14.0

(a) (b)
–9.2

–14.6
–15.2

–23.4

–40.4

–16.5

E
 (e

V
)

E
 (e

V
)–19.7

–39.8 1σ 1σ

2σ 2σ

1π∗ 1π∗

1π 1π
1σ∗

1σ∗

CO NO

bond energy of BN is 385 kJ mol−1, suspiciously low compared with 602
kJ mol−1 for C2. Clearly more experimental work is required in this case.

(b) BO, CN, and CO+ (with nine valence electrons): The electronic configura-
tion for these molecules is 1σ 21σ*21π42σ 1, with bond order 21/2. They all
have bond lengths shorter than BN (or C2), 120 pm for BO, 117 pm for CN,
and 112 pm for CO+. Also, they have fairly similar bond energies: 800,
787, and 805 kJ mol−1 for BO, CN, and CO+, respectively, all of which
are greater than that of C2.

(c) NO+, CO, and CN− (with ten valence electrons): Here the electronic con-
figuration is 1σ 21σ*21π42σ 2, with a bond order of 3. They have similar
bond lengths: 106, 113, and 114 pm for NO+, CO, and CN−, respectively.
The bond energy of carbon monoxide (1070 kJ mol−1) is slightly greater
than that of N2 (941 kJ mol−1). The energy level diagram for CO is shown
in Fig. 3.3.6(a).

(d) NO (with eleven valence electrons): The ground electronic configuration is
1σ 22σ*21π42σ 2

z 1π*1 and the bond order is 21/2. The bond length of NO,
115 pm, is longer than those of both CO and NO+. Its bond dissociation
energy, 627.5 kJ mol−1, is considerably less than those of CO and N2. The
importance of NO in both chemistry and biochemistry will be discussed
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in detail in Section 14.2. The energy level diagram for NO is shown in
Fig. 3.3.6(b).

3.4 Linear triatomic molecules and spn hybridization
schemes

In this section, we first discuss the bonding in two linear triatomic molecules:
BeH2 with only σ bonds and CO2 with both σ and π bonds. Then we go on to
treat other polyatomic molecules with the hybridization theory. Next we discuss
the derivation of a self-consistent set of covalent radii for the atoms. Finally, we
study the bonding and reactivity of conjugated polyenes by applying Hückel
molecular orbital theory.

3.4.1 Beryllium hydride, BeH2

The molecular orbitals of this molecule are formed by the 2s and 2p orbitals of
Be and the 1s orbitals of Ha and Hb. Here we take the molecular axis in BeH2
as the z axis, as shown in Fig. 3.4.1.

Ha Be Hbz

x

y

Fig. 3.4.1.
Coordinate system for BeH2.

To form the molecular orbitals for polyatomic molecules AXn, we first carry
out linear combinations of the orbitals on X and then match them, taking into
account their symmetry characteristics, with the atomic orbitals on the central
atom A.

For our simple example of BeH2, the valence orbitals on Ha and Hb, 1sa and
1sb, can form only two linear (and independent) combinations: 1sa + 1sb and
1sa−1sb. We can see that combination 1sa +1sb matches in symmetry with the
Be 2s orbital. Hence they can form both bonding and antibonding molecular
orbitals:

σs = c12s(Be) + c2(1sa + 1sb), c2 > c1 (3.4.1)

σ ∗s = c′12s(Be)− c′2(1sa + 1sb), c′1 > c′2. (3.4.2)

The relative magnitudes of coefficients c1 and c2, as well as those of c′1 and c′2,
are determined by the relative electronegatives of the atoms concerned, which
are reflected by the relative energies of the atomic orbitals.

Similarly, the combination 1sa − 1sb has a net overlap with the 2pz orbital
of Be. They form bonding and antibonding molecular orbitals in the following
manner:

σz = c32pz(Be) + c4(1sa − 1sb), c4 > c3 (3.4.3)

σ ∗z = c′32pz(Be)− c′4(1sa − 1sb), c′3 > c′4. (3.4.4)

Finally, the 2px and 2py orbitals on Be are not symmetry-compatible with the
1sa or 1sb orbitals (or their linear combinations). Hence they are nonbonding
orbitals:

{

πn
x = 2px(Be)
πn

y = 2py(Be) . (3.4.5)
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Table 3.4.1. Summary of the formation of the molecular orbitals in BeH2

Orbital on Be Orbitals on H Molecular orbitals

2s (2)−
1/2(1sa + 1sb) σs, σ∗s

2pz (2)−
1/2(1sa − 1sb) σz , σ∗z

{

2px

2py
—

{

πn
x
πn

y

There are totally six molecular orbitals (σs, σ ∗s , σz , σ ∗z ,πn
x , and πn

y ) formed
by the six atomic orbitals (2s and 2p orbitals on Be and 1s orbitals on the hydro-
gens). Note that the σ molecular orbitals have cylindrical symmetry around the
molecular axis, while the nonbondingπ orbitals do not.Another important char-
acteristic of these orbitals is that they are “delocalized“ in nature. For example,
an electron occupying the σs orbital has its density spread over all three atoms.
Table 3.4.1 summarizes the way the molecular orbitals of BeH2 are formed by
the atomic orbitals on Be and H, where the linear combinations of H orbitals
are normalized.

The energy level diagram for BeH2, shown in Fig. 3.4.2, is constructed as
follows. The 2s and 2p of Be are shown on the left of the diagram, while the
1s orbitals of the hydrogens are shown on the right. Note that the H 1s orbitals
are placed lower than either the Be 2p or Be 2s orbitals. This is because Be
is more electropositive than H. The molecular orbitals—bonding, antibond-
ing, and nonbonding—are placed in the middle of the diagram. As usual, the
bonding orbitals have lower energy than the constituent atomic orbitals, and
correspondingly the antibonding orbitals are of higher energy. The nonbonding
orbitals have the same energy as their parent atomic orbitals. After constructing
the energy level diagram, we place the four valence electrons of BeH2 in the
two lowest molecular orbitals, leading to a ground electronic configuration of
σ 2

s σ
2
z . In this description, the two electron-pair bonds are spread over all these

atoms. The delocalization of electrons is an important feature of the molecular
orbital model.

Be

2p

σs
*

σz

σs

σz
*

πx
n πy

n

2s

1sa 1sb

BeH2 2H

E

Fig. 3.4.2.
Energy level diagram of BeH2.

Concluding the molecular orbital treatment of BeH2, we can see that the two
(filled) bonding molecular orbitals σs and σz have different shapes and different
energies. This is contrary to our intuition for BeH2: we expect the two bonds
in BeH2 to be identical (in shape as well as in stability) to each other. In any
event, this is the picture provided by the molecular orbital model.

3.4.2 Hybridization scheme for linear triatomic molecules

If we prefer to describe the bonding of a polyatomic molecule using localized
two-center, two-electron (2c-2e) bonds, we can turn to the hybridization theory,
which is an integral part of the valence bond method. In this model, for AXn
systems, we linearly combine the atomic orbitals on atom A in such a way that
the resultant combinations (called hybrid orbitals) point toward the X atoms.
For our BeH2 molecule in hand, two equivalent, colinear hybrid orbitals are
constructed from the 2s and 2pz orbitals on Be, which can overlap with the
two 1s hydrogen orbitals to form two Be–H single bonds. (The 2px and 2py
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+
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Fig. 3.4.3.
The formation of the two sp hybrid
orbitals in BeH2 [(a) and (b)] and the two
equivalent bonds in BeH2 (c).

orbitals do not take part in the hybridization scheme, otherwise the resultant
hybrid orbitals would not point directly at the hydrogens.) If we combine the
2s and 2pz orbitals in the following manner:

h1 = (2)
−1/2(2s + 2pz), (3.4.6)

h2 = (2)
−1/2(2s− 2pz), (3.4.7)

the hybrid orbitals h1 and h2 would overlap nicely with the 1s orbitals on Ha
and Hb, respectively, as shown in Fig. 3.4.3.

The two bonding orbitals in BeH2 have the wavefunctions

ψ1 = c5h1 + c61sa, c6 > c5 (3.4.8)

ψ2 = c5h2 + c61sb, c6 > c5. (3.4.9)

So now we have two equivalent bonding orbitals ψ1 and ψ2 with the same
energy. Moreover,ψ1 andψ2 are localized orbitals:ψ1 is localized between Be
and Ha and ψ2 between Be and Hb. They are 2c-2e bonds.

Oa ObCz

xa xb
x

ya yb

y

za zb

Fig. 3.4.4.
The coordinate system of CO2.

3.4.3 Carbon dioxide, CO2

Carbon dioxide is a linear molecule with both σ and π bonds. The coordinate
system chosen for CO2 is shown in Fig. 3.4.4. Once again, the molecular axis
is taken to be the z axis. The atomic orbitals taking part in the bonding of this
molecule are the 2s and 2p orbitals on C and the 2p orbitals on O. There are a
total of ten atomic orbitals and they will form ten molecular orbitals.

The σ orbitals in CO2 are very similar to those in BeH2. The only difference
is that the oxygens make use of their 2pz orbitals instead of the 1s orbitals used
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Fig. 3.4.5.
(a) The linear combination (xa + xb),
which overlaps with the 2px orbital on C,
and (b) linear combination (xa − xb),
which does not overlap with the 2px
orbital on C. Here xa and xb represent
2px(a) and 2px(b), respectively.
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+ +

+
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by the hydrogens in BeH2. The σ orbitals thus have the wavefunctions

σs = c72s(C) + c8[2pz(a) + 2pz(b)], c7 > c8 (3.4.10)

σ ∗s = c′72s(C)− c′8[2pz(a) + 2pz(b)], c′8 > c′7 (3.4.11)

σz = c92pz(C) + c10[2pz(a) + 2pz(b)], c10 > c9 (3.4.12)

σ ∗z = c′92pz(C)− c′10[2pz(a) + 2pz(b)], c′9 > c′10. (3.4.13)

The π molecular orbitals are made up of the 2px and 2py orbitals of the three
atoms. Let’s take the 2px orbitals first. The two 2px orbitals can be combined
in two ways:

2px(a) + 2px(b) (3.4.14)

2px(a)− 2px(b). (3.4.15)

Combination (3.4.14) overlaps with the C 2px orbital as shown in Fig. 3.4.5(a).
Since, for our linear molecule, the x and y axes are equivalent (and not uniquely
defined), we can readily write down the following π bonding and antibonding
molecular orbitals:

πx = c112px(C) + c12[2px(a) + 2px(b)], c12 > c11 (3.4.16)

π∗x = c′112px(C)− c′12[2px(a) + 2px(b)], c′11 > c′12 (3.4.17)

πy = c112py(C) + c12[2py(a) + 2py(b)], c12 > c11 (3.4.18)

π∗y = c′112py(C)− c′12[2px(a) + 2px(b)], c′11 > c′12 (3.4.19)

On the other hand, combination (3.4.15) has zero overlap with the C 2px
orbital [Fig. 3.4.5(b)] and is therefore a nonbonding orbital. Indeed, we have
two equivalent nonbonding orbitals:

πn
x = 2px(a)− 2px(b) (3.4.20)

πn
y = 2py(a)− 2py(b). (3.4.21)

As previously mentioned, ten molecular orbitals are formed. Table 3.4.2
summarizes the formation of the molecular orbitals in CO2, where the linear
combinations of O orbitals are normalized. Note that all bonding and antibond-
ing orbitals spread over all three atoms, while the nonbonding orbitals have no
participation from C orbitals.
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Table 3.4.2. Summary of the formation of the molecular orbitals in CO2

Orbital on C Orbitals on O∗ Molecular orbitals

2s (2)
1/2(za + zb) σs, σ∗s

2pz (2)
1/2(za − zb) σz , σ∗z

2px (2)
1/2(xa + xb) πx π∗x

2py (2)
1/2(ya + yb) πy π∗y

(2)
1/2(xa − xb) πn

x
(2)

1/2(ya − yb) πn
y

∗ Here xa represents 2px(a), Similar abbreviations are also used to designate
other orbitals on the oxygen atoms.

{
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{
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2pb
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2sa 2sb 2sa 2sb

πx
* πy

*

*
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σs

πy

n πy
n

E

Fig. 3.4.6.
Energy level diagram of CO2.

The energy level diagram for CO2 is shown in Fig. 3.4.6. Note that the oxygen
2p orbitals are more stable than their corresponding orbitals on carbon. The 16
valence electrons in CO2 occupy the orbitals as shown in Fig. 3.4.6 and the
ground configuration for CO2 is

2s2
a2s2

bσ
2
s σ

2
z (πx =πy)

4(πn
x =πn

y )4.

So there are two σ bonds, two π bonds, and four nonbonding electron pairs
localized on the oxygen atoms.

In the valence bond or hybridization model for CO2, we have two resonance
(or canonical) structures, as shown in Fig. 3.4.7. In both structures, the two
σ bonds are formed by the sp hybrids on carbon with the 2pz orbitals on the
oxygens. In the left resonance structure, the π bonds are formed by the 2px
orbitals on C and Oa and the 2py orbitals on C and Ob. In the other structure,
the π bonds are formed by the 2px orbitals on C and Ob and the 2py orbitals
on C and Oa. The “real” structure is a resonance hybrid of these two extremes.
In effect, once again, we get two σ bonds, two π bonds, and four “lone pairs”
on the two oxygens. This description is in total agreement with the molecular
orbital picture. The only difference is that electron delocalization in CO2 is
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2s 2s 2s2s

x x

y y y y

x x x

y y

x

zb zb
za za

spa spa
spb spb

π

π

σ σ

σ
π

π

σ

Fig. 3.4.7.
The resonance structures of CO2.

inherent in the molecular orbital model, whereas description according to the
valence-bond hybridization scheme requires the concept of resonance between
two canonical structures.

3.4.4 The spn (n = 1–3) hybrid orbitals

(1) The sp hybridization scheme
Recalling from Section 3.4.1, we use the s orbital and the pz orbital to form two
equivalent hybrid orbitals, one pointing in the +z direction and the other in the
−z direction. These two orbitals are called sp hybrids, since they are formed by
one s and one p orbital. The wavefunctions of the sp hybrid orbitals are given
by eqs. (3.4.6) and (3.4.7). In matrix form the wavefunction are

∣

∣

∣

∣

h1
h2

∣

∣

∣

∣

=
∣

∣

∣

∣

1/(2)
1/2 1/(2)

1/2

1/(2)
1/2 −1/(2)

1/2

∣

∣

∣

∣

∣

∣

∣

∣

s
pz

∣

∣

∣

∣

=
∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

∣

∣

∣

∣

s
pz

∣

∣

∣

∣

(3.4.22)

We now use this 2 × 2 coefficient matrix to illustrate the relationships among
the coefficients:

(a) Since each atomic orbital is “used up” in the construction of the hybrids,
a2 + c2 = 1 and b2 + d2 = 1.

(b) Since each hybrids is normalized, a2 + b2 = 1 and c2 + d2 = 1.
(c) Since hybrids are orthogonal to each other, ac + bd = 0.

x

y

h1

h3 h2
+

– –

+ –

+

Fig. 3.4.8.
A coordinate system for the sp2 hybrid
orbitals.

(2) The sp2 hybridization scheme
If we use the s orbital and the px and py orbitals to form three equivalent orbitals
h1, h2, and h3, these orbitals are called sp2 hybrids. Furthermore, they lie in
the xy plane and form 120◦ angles between them. Now the hybrids have the
wavefunctions

∣

∣

∣

∣

∣
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h1
h2
h3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

a b c
d e f
g j k

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s
px
py

∣

∣

∣

∣

∣

∣

. (3.4.23)

If the three hybrids have the orientations as shown in Fig. 3.4.8, we then get
the following results for the coefficients. Since the s orbital is (equally) split
among the three equivalent hybrids,

a2 = d2 = g2 = 1/3, (3.4.24)

a = d = g = 1/(3)1/2. (3.4.25)
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(a) Since h1 lies on the x axis, py cannot contribute to h1,

c = 0. (3.4.26)

(b) Relation a2 + b2 + c2 = 1 leads to

b =
(

2
3

)1/2

. (3.4.27)

(c) Orbital px contributes equally to h2 and h3 and b2 + e2 + j2 = 1. Hence

e = j = −
(

1
6

)1/2
. (3.4.28)

Note that both e and j are negative because h2 and h3 project on the −x
direction.

(d) Orbital py contributes equally to h2 and h3 (but f > 0 and k < 0) and
c2 + f 2 + k2 = 1. Hence

f = 1/(2)
1/2, (3.4.29)

k = −1/(2)
1/2. (3.4.30)

Collecting all the coefficients, we have
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∣

. (3.4.31)

The correctness of these coefficients can be checked in many ways. For example,

ad + be + cf = 1

(3)
1/2

1

(3)
1/2

+
(

2
3

)1/2
(

− 1

(6)
1/2

)

+ 0

[

− 1

(2)
1/2

]

= 0.

(3.4.32)

Also, the angle θ between h2 and the +y axis can be calculated:

θ = tan−1[(6)
−1/2/(2)

−1/2] = tan−1(3)
−1/2 = 30◦. (3.4.33)

To confirm that h1, h2, and h3 are equivalent to each other, we can calculate
their hybridization indices and see that they are identical. The hybridization
index n of a hybrid orbital is defined as

m = total p orbital population
total s orbital population

=
∑ |p orbital coefficients|2
|s orbital coefficients|2 . (3.4.34)
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For h1, h2, and h3 given in eq. (3.4.31), n = 2. Hence they are called sp2

hybrids. The two hybrid orbitals in BeH2 [eq. (3.4.22)] have n = 1. So they are
sp hybrids.

A molecule whose bonding can be readily rationalized by the sp2 hybridiza-
tion scheme is BF3. As indicated by the Lewis formulas shown below, there
are three canonical strructures, each with three σ bonds, one π bond, and eight
lone pairs on the F atoms. The three σ bonds are formed by the overlap of the
sp2 hybrids (formed by 2s, 2px, and 2py) on B with the 2pz orbital on each F
atom, while the π bond is formed by the 2pz orbital on B and the 2px orbital
on one of the F atoms. This description is in accord with the experimental FBF
bond angles of 120◦. Also, it may be concluded that the bond order for the B–F
bonds in BF3 is 11/3.

B

F

F F.. .... ..
..B

F

F F

....
.. ....

..

..
..B

F

F F

....
.. ..

..

..
..
..

+ –

......
+

––

+

d
z

yx
= cos–1(–1/3)

c

a

b

1

θ

θ

3/2
2

3/2

Fig. 3.4.9.
The angle formed by two sp3 hybrids.

(3) The sp3 hybridization scheme
Now we take up the construction of the sp3 hybrid orbitals. It is well known
that the angle between two sp3 hybrids is about 109◦. With the aid of Fig. 3.4.9,
this angle can now be calculated exactly:

θ = cos−1
(

−1
3

)

∼ 109◦28′16′′.

If the four hybrids h1, h2, h3, and h4 points to atoms a, b, c, and d , respectively,
as shown in Fig. 3.4.9, it can be readily shown that

∣

∣

∣

∣

∣

∣

∣

∣

h1
h2
h3
h4

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

1/2 1/2 1/2 1/2
1/2 −1/2 −1/2 1/2
1/2 1/2 −1/2 −1/2
1/2 −1/2 1/2 −1/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s
px
py
pz

∣

∣

∣

∣

∣

∣

∣

∣

(3.4.35)

If we adopt the coordinates system in Fig. 3.4.10 for the four sp3 hybrids, we
can readily get
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. (3.4.36)

cos–1 (–1/3) y

x
h1

h2

h3

h4

z

Fig. 3.4.10.
The “original” (1931) Pauling coordinate
system for the sp3 hybrids.

It is of interest to note that, in his original construction of the sp3 hybrids, L.
Pauling adopted this coordinate system.
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It can be easily checked that the hybrids given in either eq. (3.4.35) or eq.
(3.4.36) are sp3 hybrids; i.e., their hybridization index (population ratio of p
orbitals and s orbital) is 3. The four sp3 hybrids of C are directed toward the
corners of a tetrahedron and suitable for forming four localized bonding orbitals
with four hydrogen 1s orbitals. Such a bonding picture for CH4 is familiar to
all chemistry students.

Another sp3 hybridized system is the sulfate anion SO2−
4 , in which the four

oxygen atoms are also arranged in a tetrahedral manner. However, in addition
to the four σ bonds, this anion also has two π bonds:

S
O O

O O

.. ..
..
..

..

.. --

.. ..
.. ..

It is clear that there are six equivalent resonance structures for SO2−
4 . Hence

the bond order of S–O bonds in SO2−
4 is 11/2.

(4) Inequivalent hybrid orbitals

Lone
Pair

Bonded
Pair

Bonded
Pair

Lone
Pair

y

h1

h4h3

h2

z

x

α

β

Fig. 3.4.11.
Hybrids h1 and h2 are for lone pairs, and
h3 and h4 are for bonded pairs.

We conclude this section by discussing systems where there are two types of
hybrid orbitals. One such example is NH3, where there are three equivalent
bond hybrids and one lone pair hybrid. Another example is the water molecule.
As shown in Fig. 3.4.11, hybrids h1 and h2 are lone pairs orbitals, while hybrids
h3 and h4 are used to form bonding orbitals with hydrogen 1s orbitals. If we let
the coefficient for the s orbital in h1 be (a/2)

1/2, the other coefficients for all
hybrids can be expressed in terms of a:
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(3.4.37)

Now we can derive a relationship between angles α (formed by h1 and h2)
and β (formed by h3 and h4):

cot
(α

2

)

= [(1− a)/2]1/2

(1/2)
1/2

= (1− a)
1/2. (3.4.38)

cot
(

β

2

)

= (a/2)
1/2

(1/2)
1/2

= a
1/2. (3.4.39)

Combining eqs. (3.4.38) and (3.4.39),

cot2
(α

2

)

+ cot2
(

β

2

)

= 1. (3.4.40)
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For H2O, < HOH = β = 104.5◦. Now we can calculate the angle formed
by the two lone pairs:

α = 115.4◦. (3.4.41)

The angle between lone pairs is larger than that between two bonded pairs, in
agreement with the VSEPR (valence-shell electron-pair repulsion) theory.

Now we derive a relationship between the hybridization index of a bonded
pair (nb) with that of a lone pair (n2):

n2 = n1 = n2 = [1/2 + (1− a)/2]
(a/2)

= (2− a)

a
,

or

a = 2
(n2 + 1)

. (3.4.42)

nb = n3 = n4 = [(1 + a)/2]
[(1− a)/2]

= (1 + a)

(1− a)
,

or

a = (nb − 1)

(nb + 1)
. (3.4.43)

Combining eqs. (3.4.42) and (3.4.43) we can obtain a relationship between n2
and nb:

nb = (n2 + 3)

(n2 − 1)
. (3.4.44)

Finally, we relate bond angle β with parameter a:

cosβ = cos2
(
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2

)

− sin2
(

β

2

)

=
[

a
2

/

(

1
2

+ a
2

)]

−
[

1
2

/

(

1
2

+ a
2

)]

= (a − 1)

(a + 1)
. (3.4.45)

With eq. (3.4.43), we get

cosβ = −1/nb, or nb = − secβ. (3.4.46)

For water, β = 104.5◦, nb = 3.994, n2 = 2.336, a = 0.600.
It should be noted that, in this treatment, it is assumed that bonded hybrids

h3 and h4 point directly at the hydrogens. In other words, the O–H bonds are
“straight,” not “bent.”
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3.4.5 Covalent radii

A covalent bond is formed through the overlap of the atomic orbitals on two
atoms. All atoms have their structural characteristics; the bond length and bond
energy of a covalent bond between two atoms are manifestations of these char-
acteristics. Based on a large quantity of structural data, it is found that there
is a certain amount of constancy for the lengths of the single bonds formed
between atoms A and B. This kind of constancy also exists for the lengths of
the double bonds and triple bonds formed between the same two atoms. From
these structural data chemists arrive at the concept of a covalent radius for each
element. It is expected that the length of bond A–B is approximately the sum
of covalent radii for elements A and B.

The covalent radius of a given element is determined in the following manner.
Experimentally, the single bonds formed by the overlap of sp3 hybrids in C
(diamond), Si, Ge, Sn (gray tin) have lengths 154, 235, 245, and 281 pm,
respectively. Hence the covalent radii for the single bonds of these elements are
77, 117, 122, and 140 pm, respectively. From the average length of C–O single
bonds, the single-bond covalent radius for O can be determined to be 74 pm.
Table 3.4.3 lists the covalent radii of the main group elements.

Different authors sometimes give slightly different covalent radii for the same
element; this is particularly true for alkali metals and alkali earth metals. Such
a variation arises from the following factors:

(a) Atoms A and B have different electronegativities and the bonds they form
are polar, having a certain amount of ionic character.

(b) The bond length usually varies with coordination number. It is often that
the higher the coordination number, the longer the bonds.

(c) The length of a bond is also influenced by the nature of the neighboring
atoms or group.

As pointed out in Sections 14.3.3 and 14.3.4, the length of a C–C single bond
ranges from 136 to 164 pm. Hence the data given in Table 3.4.3 are for reference

Table 3.4.3. The covalent radii, in picometers (pm), of main group elements

Single bond H He
37 —
Li Be B C N O F Ne
134 111 88 77 74 74 71 —
Na Mg Al Si P S Cl Ar
154 136 125 117 110 102 99 —
K Ca Cu Zn Ga Ge As Se Br Kr
196 174 117 125 122 122 122 117 114 110
Rb Sr Ag Cd In Sn Sb Te I Xe
— 192 133 141 150 140 141 137 133 130
Cs Ba Au Hg Tl Pb Bi
— 198 125 144 155 154 152
B C N O P S

Double bond 79 67 62 60 100 94
Triple bond 71 60 55 — — —
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only. The bond lengths arising from these covalent radii should not be taken as
very accurate structural data.

3.5 Hückel molecular orbital theory for conjugated
polyenes

In this section, we first study the π bonding in conjugated polyenes by means of
the Hückel molecular orbital theory. Then we will see how the wavefunctions
obtained control the course of the reaction for these molecules.

3.5.1 Hückel molecular orbital theory and its application to
ethylene and butadiene

A schematic energy level diagram for conjugated polyenes is shown in
Fig. 3.5.1. It is obvious that the chemical and physical properties of these com-
pounds are mostly controlled by the orbitals within the dotted lines; i.e., the
π and π∗ molecular orbitals, as well as the nonbonding orbitals, if there are
any. Hence, to study the electronic structure of these systems, as a first approx-
imation, we can ignore the σ and σ ∗ orbitals and concentrate on the π and π∗

orbitals.

antibondingσ

nonbonding
(if any)

antibondingπ

bondingπ filled

E

bondingσ

Fig. 3.5.1.
Schematic energy level diagram for
conjugated polyenes.

CH CH

φ

CH

CH2H2C

2

φ1

φ3 φn–1

φn
+ + +

– – –

+

–

+

–

Fig. 3.5.2.
Labeling of the π atomic orbitals in a
conjugated polyene.

In conjugated polyenes, each carbon atom contributes one p orbital and one
electron to the π bonding of the system, as illustrated in Fig. 3.5.2. So the π
molecular orbitals have the general form

ψ =
∑

ciφi

= c1φ1 + c2φ2 + . . . + cnφn. (3.5.1)

The values of the coefficient ci can be determined “variationally”; i.e., they are
varied until the total energy reaches a minimum. The energies of the molecular
orbitals are obtained by solving for values of E in the secular determinant:

∣

∣

∣

∣

∣

∣

∣

∣

∣

H11 − ES11 H12 − ES12 . . . H1n − ES1n
H12 − ES12 H22 − ES22 . . . H2n − ES2n

...
...

...
H1n − ES1n H2n − ES2n . . . Hnn − ESnn

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (3.5.2)

Different methods of approximation means different ways of calculating
integrals Hij and Sij. The Hückel approximation, first proposed by German
physicist E. Hückel, is very likely to be simplest:

(1) Sij = ∫φiφjdτ =
{

0, if i '= j,
1, if i = j.

That is, there is no overlap between orbitals on different atoms. Note that
this drastic approximation violates the basic bonding principle: To form a
bond there must an overlap of orbitals.

(2) Hii = ∫φiĤφidτ = α.
Hii is called the Coulomb integral and is assumed to be the same for each
atom. Also, α < 0.
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(3) Hij = ∫φiHφjdτ = β if φi and φj are neighboring atomic orbitals.
Hij is called the resonance integral. Also, β < 0.

(4) Hij = 0 if φi and φj are not neighboring atomic orbitals.
In other words, the interaction between non-neighboring orbitals is ignored.

After solving for E (n of them in all) in eq. (3.5.2), we can then substitute each
E in the following secular equations to determine the values of coefficient ci:


















(H11 − ES11)c1 + (H12 − ES12)c2 + . . . + (H1n − ES1n)cn = 0
(H12 − ES12)c1 + (H22 − ES22)c2 + . . . + (H2n − ES2n)cn = 0
...

...
...

(H1n − ES1n)c1 + (H2n − ES2n)c2 + . . . + (Hnn − ESnn)cn = 0

. (3.5.3)

Now we apply this approximation to the π system of a few polyenes.

H

HH

H
+ +

– –

C C

φ1 φ2

Fig. 3.5.3.
The atomic orbitals for π bonding in
ethylene.

(1) Ethylene
The two atomic orbitals participating in π bonding are shown in Fig. 3.5.3. The
secular determinant has the form

∣

∣

∣

∣

α − E β

β α − E

∣

∣

∣

∣

=
∣

∣

∣

∣

x 1
1 x

∣

∣

∣

∣

= 0 (3.5.4)

with x = (α − E)/β. Solving eq. (3.5.4) leads to x = ±1, or

E1 = α + β = E(π), (3.5.5)

E2 = α − β = E(π∗). (3.5.6)

Substituting E1 and E2 into the equations
{

(α − E)c1 + βc2 = 0
βc1 + (α − E)c2 = 0 (3.5.7)

we can obtain the molecular orbital wavefunctions:
When E = E1, we have c1 = c2, or

ψ1 = ψ(π) = (2)−1/2(φ1 + φ2). (3.5.8)

When E = E2, we have c1 = −c2, or

ψ2 = ψ(π∗) = (2)−1/2(φ1 − φ2). (3.5.9)

The two π electrons in ethylene occupy the ψ(π ) orbital. Hence the energy
for a π bond in the Hückel model is

Eπ = 2α + 2β. (3.5.10)

α

π
φ

β–

α β

π

+
1 φ2

E
*

Fig. 3.5.4.
The energy level diagram for the π
molecular orbitals of ethylene.

The energy level diagram for the π orbitals in ethylene is very simple and
shown in Fig. 3.5.4. Note that in this approximation the bonding effect is equal
to the antibonding effect. This arises from ignoring the overlap.
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(2) Butadiene
Now we proceed to use the same method to treat a higher homolog of ethylene,
namely butadiene. The atomic orbitals taking part in the π bonding of this
molecule is shown in Fig. 3.5.5. For this system, the secular determinant is
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∣

∣

∣

∣

∣
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∣
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∣

∣

∣

∣

= 0, (3.5.11)

H 2 C CH CH CH2

+ +

_ _

+ +

_ _

φ1 φ2 φ3 φ4

Fig. 3.5.5.
The atomic orbitals for π bonding in
butadiene.

where, again, x = (α − E)/β. Expanding this determinant, we get

x4 − 3x2 + 1 = 0,

or

x = [±(5)
1/2 ± 1]/2 = ±1.618, ±0.618. (3.5.12)

The energies and the wavefunctions are tabulated in Table 3.5.1. The wave-
functions are shown pictorially in Fig. 3.5.6. Note that as the number of nodes in
a wavefunction increases, so does the energy associated with the wavefunction.

Table 3.5.1. The Hückel energies and wavefunction of the π molecular orbitals of butadiene

x Energy Wavefunction

1.618 E4 = α − 1.618β ψ4(π∗) = 0.372φ1 − 0.602φ2 + 0.602φ3 − 0.372φ4
0.618 E3 = α − 0.618β ψ3(π∗) = 0.602φ1 − 0.372φ2 − 0.372φ3 + 0.602φ4

−0.618 E2 = α + 0.618β ψ2(π) = 0.602φ1 + 0.372φ2 − 0.372φ3 − 0.602φ4
−1.618 E1 = α + 1.618β ψ1(π) = 0.372φ1 + 0.602φ2 + 0.602φ3 + 0.372φ4

Fig. 3.5.6.
The π and π∗ molecular orbitals of
butadiene.
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Since the first two orbitals (ψ1 and ψ2) are filled,

Eπ = 2(α + 1.618β) + 2(α + 0.618β) = 4α + 4.472β. (3.5.13)

If the two π bonds in butadiene were localized, they would have energy
2(2α + 2β) = 4α + 4β. Hence, by allowing the four π electrons to delocalize
over the entire molecular skeleton, there is a gain in stability, which is called
delocalization energy (DE). For butadiene,

DE = 4α + 4.472β − (4α + 4β)

= 0.472β < 0. (3.5.14)

By combining high-level ab initio calculations with high-resolution infrared
spectroscopy, the equilibrium bond lengths in s-trans-butadiene have been
determined to an unprecedented precision of 0.1 pm. The values found for
the pair of π -electron delocalized double bonds and the delocalized central
single bond are 133.8 and 135.4 pm, respectively. The data provide defini-
tive structural evidence that validates the fundamental concepts of π -electron
delocalization, conjugation, and bond alternation in organic chemistry.

3.5.2 Predicting the course of a reaction by considering the symmetry
of the wavefunction

The molecular orbitals of butadiene, shown in Fig. 3.5.6, can be used to predict,
or at least to rationalize, the course of concerted reactions (those which take
place in a single step without involvement of intermediates) it would undergo.
For instance, experimentally it is known that different cyclization products are
obtained from butadiene by heating and upon light irradiation.

In 1965, the American chemists R. B. Woodward and R. Hoffmann (“con-
servation of orbital symmetry” or Woodward–Hoffmann rules) and Japanese
chemist K. Fukui (“frontier orbital theory”) proposed theories to explain these
results as well as those for other reactions. (Woodward won the Nobel Prize in
Chemistry in 1965 for his synthetic work. In 1981, after the death of Woodward,
Hoffmann and Fukui shared the same prize for the theories discussed here.)

These theories assert that the pathway of a chemical reaction accessible to
a compound is controlled by its highest occupied molecular orbital (HOMO).
For the thermal reaction of butadiene, which is commonly called “ground-state
chemistry,” the HOMO isψ2 and lowest unoccupied molecular orbital (LUMO)
isψ3 (Fig. 3.5.6). For the photochemical reaction of butadiene, which is known
to be “excited-state chemistry,” the HOMO is ψ3 (Fig. 3.5.6).

The thermal and photochemical cyclization of a butadiene bearing different
substituents at its terminal carbon atoms is represented by eqs. (3.5.15) and
(3.5.16), respectively. Note that for a short conjugated polyene consisting of
four or six carbon atoms, conformational interconversion between their transoid
(or s-trans) and cisoid (or s-cis) forms takes place readily.
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For wavefunctionψ2, the terminal atomic orbitals φ1 and φ4 have the relative
orientations as shown in Fig. 3.5.7. It is evident that a conrotatory process leads
to a bonding interaction between φ1 and φ4, while a disrotatory process leads to
an antibonding interaction between φ1 and φ4. Clearly the conrotatory process
prevails in this case.

Conversely, for wavefunction ψ3, the terminal atomic orbitals φ1 and φ4
have the relative orientations shown in Fig. 3.5.8. Here a conrotatory pathway
yields an antibonding interaction between the terminal atomic orbitals, while a
disrotatory step leads to a stabilizing bonding interaction. Hence the disrotatory
process wins out in this case.

To conclude this section, we apply this theory to the cyclization of hexatriene:

3

4 5
6

2
1

(3.5.17)

Fig. 3.5.7.
Thermal cyclization of butadiene.
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Fig. 3.5.8.
Photocyclization of butadiene.

Table 3.5.2. The Hückel energies and wavefunctions of the π moleular orbitals of hexatriene

x Energy Wavefunction

1.802 E6 = α − 1.802β ψ6 = 0.232φ1 − 0.418φ2 + 0.521φ3 − 0.521φ4 + 0.418φ5 − 0.232φ6

1.247 E5 = α − 1.247β ψ5 = 0.418φ1 − 0.521φ2 + 0.232φ3 + 0.232φ4 − 0.521φ5 + 0.418φ6

0.445 E4 = α − 0.445β ψ4 = 0.521φ1 − 0.232φ2 − 0.418φ3 + 0.418φ4 + 0.232φ5 − 0.521φ6

−0.445 E3 = α + 0.445β ψ3 = 0.521φ1 + 0.232φ2 − 0.418φ3 − 0.418φ4 + 0.232φ5 + 0.521φ6

−1.247 E2 = α + 1.247β ψ2 = 0.418φ1 + 0.521φ2 + 0.232φ3 − 0.232φ4 − 0.521φ5 − 0.418φ6

−1.802 E1 = α + 1.802β ψ1 = 0.232φ1 + 0.418φ2 + 0.521φ3 + 0.521φ4 + 0.418φ5 + 0.232φ6

The secular determinant of hexatriene is
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x 1 0 0 0 0
1 x 1 0 0 0
0 1 x 1 0 0
0 0 1 x 1 0
0 0 0 1 x 1
0 0 0 0 1 x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0, with x = (α − E)/β. (3.5.18)

The solutions of this determinant, along with the energies and wavefunc-
tions of the π molecular orbitals, are summarized in Table 3.5.2. While these
wavefunctions are not pictorially shown here, we can readily see that the num-
ber of nodes of the wavefunctions increases as their energies increase. Indeed,
ψ1,ψ2, . . . ,ψ6 have 0, 1, . . . , 5 nodes, respectively. Also,

Eπ = 2(α + 1.802β) + 2(α + 1.247β) + 2(α + 0.445β)

= 6α + 6.988β. (3.5.19)

DE = 6α + 6.988β − 3(2α + 2β)

= 0.988β < 0. (3.5.20)

For the thermal and photochemical cyclization of hexatriene, the controlling
HOMO’s are ψ3 and ψ4, respectively. As shown in Fig. 3.5.9, the allowed
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Fig. 3.5.9.
Thermal and photochemical cyclization
reactions of hexatriene.
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pathway for the thermal reaction is disrotatory. On the other hand, the allowed
pathway for the photochemical reaction is conrotatory. These results are just the
opposite of those found for the cyclization reactions of butadiene (Figs. 3.5.7
and 3.5.8).
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4 Chemical Bonding in
Condensed Phases

Studies of structural chemistry in the solid state are of particular interest in view
of the following justifications:

(a) The majority of the important materials used in modern optical, electronic,
and magnetic applications are solids.

(b) Our present understanding of structure-property correlation originates
mainly from results obtained in the gaseous and solid states. Based on
this foundation, the structure of matter in the liquid phase can be deduced
and further investigations then carried out.

(c) Starting from the knowledge of the fixed atomic positions in the solid state
of a given compound, new materials can be designed by adding atoms into
the lattice or removing atoms from the lattice, and such new materials will
have different properties.

(d) The atoms in a solid are bonded together through many types of interactions,
the nature of which often determines the properties of the material.

In this chapter, the basic types of chemical bonds existing in condensed
phases are discussed. These interactions include ionic bonds, metallic bonds,
covalent bonding (band theory), and intermolecular forces. In Chapter 10, the
structures of some inorganic crystalline materials will be presented.

4.1 Chemical classification of solids

Solids are conveniently classified in terms of the types of chemical bonds that
hold the atoms together, as shown in Table 4.1.1. The majority of solids involve

Table 4.1.1. Classification of simple solids

Class Example

Ionic NaCl, MgO, CaF2, CsCl
Covalent C (diamond), SiO2 (silica)
Molecular Cl2, S8, HgCl2, benzene
Metallic Na, Mg, Fe, Cu, Au
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Table 4.1.2. Some examples of complex solids held together by a combination of different
bond types

Bond types involved Example

Ionic, covalent ZnS, TiO2
Ionic, covalent, van der Waals CdI2
Ionic, metallic NbO, TiOx (0.75 < x < 1.25)

Ionic, covalent, metallic, van der Waals ZrCl
Ionic, covalent, metallic K2Pt(CN)4Br0.3·3H2O, (SNBrx)∞ (0.25 < x < 1.5)

Covalent, metallic, van der Waals C (graphite)
Covalent, hydrogen bond Ice
Ionic, covalent, metallic, van der Waals TTF:TCNQ, Tl2RbC60

TTF, tetrathiafulvalene; TCNQ, tetracyanoquinodimethane.

more complex chemical bonding, and some examples are given in Table 4.1.2.
Here the term “metallic” indicates electron delocalization over the entire solid.

In ZnS the transfer of two electrons from the metal atom to the non-metal
is incomplete, so that the bond between the formal Zn2+ and S2− ions has
significant covalent character. The same is true for compounds containing metal
ions with a high formal charge such as TiO2.

(a) (b)

Fig. 4.1.1.
Layer structure in (a) CdI2 and (b) ZrCl.

In the layer structure of CdI2, the iodine atoms belonging to adjacent layers
are connected by van der Waals forces (Fig. 4.1.1(a)). The metal atoms in TiO
and NbO are in a low oxidation state and the excess electrons can form metal–
metal bonds extending in one and two dimensions, which are responsible for
the metallic character of these oxides. The sheet structure of ZrCl is composed
of four homoatomic layers in the sequence · · ·ClZrZrCl· · ·ClZrZrCl· · ·, as
shown in Fig. 4.1.1(b). Each Zr has six metal neighbors in the same layer at
342 pm, and three metal neighbors in the next layer at 309 pm, compared to
an average distance of 320 pm in α-Zr. There is strong metal–metal bonding
in the double Zr layers. Each Zr has three Cl neighbors in the adjacent layer at
263 pm, indicating both covalent and ionic bonding. The Cl· · ·Cl inter-sheet
distances at ∼360 pm are normal van der Waals contacts.
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Fig. 4.1.2.
Overlap of 5dz2 orbitals along a chain of
Pt centers in the crystal structure of
K2Pt(CN)4Br0.3·3H2O.

Pt

C

N

The partially oxidized complex K2Pt(CN)4Br0.3·3H2O behaves as a one-
dimensional conductor, owing to overlap of the platinum 5dz2 orbitals atoms
along a chain composed of stacking of square-planar [Pt(CN)4]1.7− units
(Fig. 4.1.2).

The 1:1 solid adduct of tetrathiafulvalene (TTF) and tetracyanoquin-
odimethane (TCNQ) is the first-discovered “molecular metal,” which consists
of alternate stacks each composed of molecules of the same type (Fig. 4.1.3). A
charge transfer of 0.69 electron per molecule from the HOMO (mainly S atom’s
lone pair in character) of TTF to the LUMO of TCNQ results in two partially
filled bands, which account for the electrical conductivity of TTF:TCNQ.

Fig. 4.1.3.
Crystal structure of the “molecular
metal” TTF:TCNQ.

S(1)
S(2)
N(2)

N(1)

z

y

A binary compound AnBm consists of atoms of two kind of elements, A
and B, and its bond type depends on the average value of the electronega-
tivities of the two elements (χ̄ , mean of χA and χB), and on the difference
of the electronegativities of the two elements ('χ = |χA−χB|). Figure 4.1.4
shows the distribution of the compounds AnBm in a diagram of the “χ̄–'χ”
relationship. This diagram may be divided into four regions which corre-
spond to the four bond types: ionic (I), metallic (II), semi-metallic (III), and
covalent (IV). For example, the compound SF4 has the following parameters:
χF = 4.19,χS = 2.59, χ̄ = 3.39, and 'χ = 1.60, which place the compound in
region IV. Thus the bond type of SF4 is covalent. In another example, the param-
eters of ZrCl are χZr = 1.32,χCl = 2.87, χ̄ = 2.20, and'χ = 1.55, which place
the compound on the border of regions I and IV. So the bond in ZrCl is expected
to exhibit both ionic and covalent characters.
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Fig. 4.1.4.
Bond types and electronegativities of
some binary compounds.

4.2 Ionic bond

4.2.1 Ionic size: crystal radii of ions

A set of empirical ionic radii can be derived from the direct measurement of
internuclear distances in crystal structures. The additivity of ionic radii is sub-
stantiated by the near constancy of the differences in internuclear distances'r
between the alkali metal halides, as shown in Table 4.2.1.

By assuming a value for the radius of each single ion (e.g., 140 pm for
O2− and 133 pm for F−), a set of self-consistent ionic radii can be generated.
There exist several compilations of ionic radii, and some selected representative
values for ions with coordination number 6 are listed in Table 4.2.2.

Some comments on the ionic radii collected in Table 4.2.2 are as follows:

(1) Values of the ionic radii are derived from experimental data, which give
the internuclear distances and electron densities, and generally take the
distance of contacting neighbor ions to be the sum of the ionic radii of the
cation and anion:

Internuclear distance between contacting neighbors = rcation + ranion.

Thus, a hard sphere model is assumed for the ionic crystal, with ions of
opposite charge touching one another in the crystal lattice. Such an approxi-
mation means that the assignment of individual radii is somewhat arbitrary.
The values listed in Table 4.2.2 are a set of data which assume that the radius
of O2− is 140 pm and that of F− is 133 pm.
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Table 4.2.1. Internuclear distance (pm) and their difference in alkali metal halides

Cation Anion Avg 'r

F− Cl− Br− I−

Li+ 201 257 275 300
28 24 22 23 24

Na+ 229 281 297 323
37 33 32 30 33

K+ 266 314 329 353
16 13 15 13 14

Rb+ 282 327 344 366
18 29 27 29 26

Cs+ 300 356 371 395

Anion Cation Avg 'r

Li+ Na+ K+ Rb+ Cs+

F− 201 229 266 282 300
56 52 48 45 56 51

Cl− 257 281 314 327 356
18 16 15 17 15 16

Br− 275 297 329 344 371
25 26 24 22 24 24

I− 300 323 353 366 395

(2) The valence state of ions listed in Table 4.2.2 are obtained from the oxidation
states of the atoms in the compounds. They are only formal values and they
do not indicate the number of transferred electrons. In other words, the
bonding type between the atoms is not considered. These radii are effective
ionic radii and they can be used for rough estimation of the packing of ions
in crystals and other calculations.

(3) There is an increase in size with increasing coordination number and for a
given coordination number with increasing Z within a periodic group. In
general:

Coordination number: 4 6 8 12
Relative radius: 0.94 1.00 1.03 1.12

For cations with high charge the decrease in radii as the coordination num-
ber decreases can be quite large. For instance, the radii of Mn7+ in six- and
four-coordinate geometry are 46 and 25 pm, respectively. Some effective
ionic radii of four-coordinate high-valence cations are listed below:

Cation B3+ C4+ Cr6+ Mn7+ Mo6+ P5+ Pb4+ S6+ Se6+ Si4+ Sn4+ V5+ W6+ Zr4+

Radius (pm) 11 15 26 25 41 17 65 12 28 26 55 35.5 42 59

(4) The ionic radii are generally irregular, slowly decreasing in size with
increasing Z for transition metals of the same charge. Also, the high-spin
(HS) ions have larger radii than low-spin (LS) ions of the same species and
charge.
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Table 4.2.2. Ionic radii (in pm)∗ with coordination number 6

Ion Radius Ion Radius Ion Radius Ion Radius Ion Radius

Ac3+ 112 Cr2+(HS) 80 Li+ 76 Pa4+ 90 Sm3+ 95.8
Ag+ 115 Cr3+ 61.5 Lu3+ 86.1 Pa5+ 78 Sn4+ 69.0
Ag2+ 94 Cr4+ 55 Mg2+ 72.0 Pb2+ 119 Sr2+ 118
Ag3+ 75 Cr5+ 49 Mn2+(LS) 67 Pb4+ 77.5 Ta3+ 72
Al3+ 53.5 Cr6+ 44 Mn2+(HS) 83.0 Pd2+ 86 Ta4+ 68
Am3+ 97.5 Cs+ 167 Mn3+(LS) 58 Pd3+ 76 Ta5+ 64
Am4+ 85 Cu+ 77 Mn3+(HS) 64.5 Pd4+ 61.5 Tb3+ 92.3
As3+ 58 Cu2+ 73 Mn4+ 53 Pm3+ 97 Tb4+ 76
As5+ 46 Cu3+ 54 Mn7+ 46 Po4+ 94 Tc4+ 64.5
At7+ 62 Dy2+ 107 Mo4+ 65.0 Po6+ 67 Tc5+ 60
Au+ 137 Dy3+ 91.2 Mo5+ 61 Pr3+ 99 Tc7+ 56
Au3+ 85 Er3+ 89.0 Mo6+ 59 Pr4+ 85 Te2− 221
Au5+ 57 Eu2+ 117 N3+ 16 Pt2+ 80 Te4+ 97
B3+ 27 Eu3+ 94.7 N5+ 13 Pt4+ 62.5 Te6+ 56
Ba2+ 135 F− 133 Na+ 102 Pt5+ 57 Th4+ 94
Be2+ 45 F7+ 8 Nb3+ 72 Pu4+ 86 Ti2+ 86
Bi3+ 103 Fe2+(LS) 61 Nb4+ 68 Pu5+ 74 Ti3+ 67.0
Bi5+ 76 Fe2+(HS) 78.0 Nb5+ 64 Pu6+ 71 Ti4+ 60.5
Bk3+ 96 Fe3+(LS) 55 Nd3+ 98.3 Rb+ 152 Tl+ 150
Bk4+ 83 Fe3+(HS) 64.5 Ni2+ 69.0 Re4+ 63 Tl3+ 88.5
Br− 196 Fe4+ 58.5 Ni3+(LS) 56 Re5+ 58 Tm2+ 103
Br7+ 39 Fr+ 180 Ni3+(HS) 60 Re6+ 55 Tm3+ 88.0
C4+ 16 Ga3+ 62.0 Ni4+ 48 Re7+ 53 U3+ 102.5
Ca2+ 100 Gd3+ 93.8 No2+ 110 Rh3+ 66.5 U4+ 89
Cd2+ 95 Ge2+ 73 Np2+ 110 Rh4+ 60 U5+ 76
Ce3+ 101 Ge4+ 53 Np3+ 101 Rh5+ 55 U6+ 73
Ce4+ 87 Hf 4+ 71 Np4+ 87 Ru3+ 68 V2+ 79
Cf3+ 95 Hg+ 119 Np5+ 75 Ru4+ 62.0 V3+ 64.0
Cf 4+ 82.1 Hg2+ 102 Np6+ 72 Ru5+ 56.5 V4+ 58
Cl− 181 Ho3+ 90.1 Np7+ 71 S2− 184 V5+ 54
Cl7+ 27 I− 220 O2− 140 S4+ 37 W4+ 66
Cm3+ 97 I5+ 95 OH− 137 S6+ 29 W5+ 62
Cm4+ 85 I7+ 53 Os4+ 63.0 Sb3+ 76 W6+ 60
Co2+(LS) 65 In3+ 80.0 Os5+ 57.5 Sb5+ 60 Xe8+ 48
Co2+(HS) 74.5 Ir3+ 68 Os6+ 54.5 Sc3+ 74.5 Y3+ 90.0
Co3+(LS) 54.5 Ir4+ 62.5 Os7+ 52.5 Se2− 198 Yb2+ 102
Co3+(HS) 61 Ir5+ 57 P3+ 44 Se4+ 50 Yb3+ 86.8
Co4+ 53 K+ 138 P5+ 38 Se6+ 42 Zn2+ 74.0
Cr2+(LS) 73 La3+ 103.2 Pa3+ 104 Si4+ 40.0 Zr4+ 72

∗ Selected from R. D. Shannon. Acta Crystallogr. A32, 751–67 (1976). Notations HS and LS refer to
high- and low-spin state, respectively.

Because of the diversity of the chemical bonds, the bond type usually varies
with the coordination number, especially for the ions with high valence and low
coordination number. Figure 4.2.1 shows the relationship between the ionic radii
and the number of d electrons in the first series of transition metals.

iranchembook.ir/edu

https://iranchembook.ir/edu


124 Fundamentals of Bonding Theory

Fig. 4.2.1.
Relationship between the ionic radii and
the number of d electrons of the first
series of transition metals. Open circles
denote high-spin complexes.
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4.2.2 Lattice energies of ionic compounds

The lattice energy U of an ionic compound is defined as the energy required to
convert one mole of crystalline solid into its component cations and anions in
their thermodynamic standard states (non-interacting gaseous ions at standard
temperature and pressure). It can be calculated using either the Born–Landé
equation

U = N0AZ+Z−e2

4πε0re

(

1− 1
m

)

(4.2.1)

or the Born–Mayer equation

U = N0AZ+Z−e2

4πε0re

(

1− ρ
re

)

, (4.2.2)

where N0 is Avogardro’s number, A is the Madelung constant, Z+ andZ− are
the charges on the cation and anion, re is the equilibrium interionic distance,
and ρ is a parameter in the repulsion term−be−r/ρ , which is found to be nearly
constant for most crystals with a value of 34.5 pm, and m is a parameter in
the repulsion term a/rm for interionic interaction, which is usualy assigned an
integral value of 9. Table 4.2.3 gives the Madelung constants A for a number
of ionic crystals. The values listed refer to the structural type with unit charges
(Z+ = Z− = 1) at the ion sites.

Kapustinskii noted that if the Madelung constant A is divided by the number
of ions per formula unit for a number of crystal structures, nearly the same value
is obtained. Furthermore, as both A/n and re increase with the coordination
number, their ratio A/nre is expected to be approximately the same from one
structure to another. Therefore, Kapustinskii proposed that the structure of any
ionic solid is energetically equivalent to a hypothetical rock-salt structure and
its lattice energy can be calculated using the Madelung constant of NaCl and
the appropriate ionic radii for (6,6) coordination.
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Table 4.2.3. Madelung constants of selected crystals

Formula Space group Compound name Coordination mode Madelung constant

NaCl Fm3̄m rock salt (6,6) 1.7476
CsCl Pm3̄m cesium chloride (8,8) 1.7627
β−ZnS F 4̄3m zinc blende (sphalerite) (4,4) 1.6381
α−ZnS P6mc wurzite (4,4) 1.6413
CaF2 Fm3̄m fluorite (8,4) 2.5194
Cu2O Pn3m cuprite 2.2212
TiO2 P4/mnm rutile (6,3) 2.408
TiO2 C4/2mc anatase 2.400
β−SiO2 P6222 β-quartz (4,2) 2.220
α−Al2O3 R3̄c corundum (6,4) 4.172

Substituting re = r+ + r− (in pm), ρ = 34.5 pm, A = 1.7476, and values for
N0, e and ε0 into the Born–Mayer equation gives the Kapustinskii equation:

U = 1.214× 105Z+Z−n
r+ + r−

(

1− 34.5
r+ + r−

)

kJ mol−1. (4.2.3)

The lattice energies calculated using this equation are compared with those
obtained from the Born–Haber cycle in Table 4.2.4.

Table 4.2.4. Lattice energies (in kJ mol−1) of some alkali metal halides and divalent transition
metal chalcogenides

Ionic Compound Born–Haber Kapustinskii Ionic compound Born–Haber Kapustinskii

LiF 1009 952 CsF 715 713
LiCl 829 803 CsCl 640 625
LiBr 789 793 CsBr 620 602
LiI 734 713 CsI 587 564
NaF 904 885 MnO 3812 3895
NaCl 769 753 FeO 3920 3987
NaBr 736 734 CoO 3992 4046
NaI 688 674 NiO 4075 4084
KF 801 789 CuO 4033 4044
KCl 698 681 ZnO 3971 4142
KBr 672 675 ZnS(zinc blende) 3619 3322
KI 632 614 ZnS (wurtzite) 3602 3322
RbF 768 760 MnS 3351 3247
RbCl 678 662 MnSe 3305 3083
RbBr 649 626 ZnSe 3610 3150
RbI 613 590

A useful application of the Kapustinskii equation is the prediction of the
existence of previously unknown compounds. From Table 4.2.5, it is seen that
all dihalides of the alkali metals with the exception of CsF2 are unstable with
respect to their formation from the elements. However, CsF2 is unstable with
respect to disproportionation: the enthalpy of the reaction CsF2 →CsF+1/2F2
is −405 kJ mol−1.
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Table 4.2.5. Predicted enthalpies of formation (in kJ mol−1) of
some metal dihalides and oxides using the Kapustinskii equation

M MF2 MCl2 MBr2 MI2 MO

Li — 4439 4581 4740 4339
Na 1686 2146 2230 2427 2184
K 435 854 975 1117 1017
Rb 163 548 661 — 787
Cs −126 213 318 473 515
Al −774 −272 −146 8 −230
Cu −531 −218 −142 −21 −155
Ag −205 96 167 282 230

In cases where the lattice energy is known from the Born–Haber cycle, the
Kapustinskii equation can be used to derive the ionic radii of complex anions
such as SO4

2− and PO4
3−. The values determined in this way are known as

thermochemical radii; some values are shown in Table 4.2.6.

Table 4.2.6. Thermochemical radii of polyatomic ions∗

Ion Radius (pm) Ion Radius (pm) Ion Radius (pm) Ion Radius (pm)

AlCl −4 295 GeCl 2−
6 328 O −

2 158 SnCl 2−
6 349

BCl −4 310 GeF 2−
6 265 O 2−

2 173 TiBr 2−
6 352

BF −4 232 HCO −
3 156 O −

3 177 TiCl 2−
6 331

BH −
4 193 HF −2 172 OH− 133 TiF 2−

6 289

CN− 191 HS− 207 PtCl 2−
4 293 UCl 2−

6 337

CNS− 213 HSe − 205 PtCl 2−
6 313 VO −

3 182

CO 2−
3 178 HfF 2−

6 271 PtF 2−
6 296 VO 3−

4 260

ClO −
3 171 MnCl 2−

6 322 ReF 2−
6 277 WCl 2−

6 336

ClO −
4 240 MnF 2−

6 256 RhF 2−
6 264 ZnCl 2−

4 286

CoF 2−
6 244 MnO −

4 229 S −2 191 ZrCl 2−
6 358

CrF 2−
6 252 N −

3 195 SO 2−
4 258 ZrF 2−

6 273

CrO 2−
4 256 NCO− 203 SbCl −6 351

CuCl 2−
4 321 NO −

2 192 SeO 2−
3 239 Me4N + 201

FeCl −4 358 NO −
3 179 SeO 2−

4 249 NH +
4 137

GaCl −4 289 NbO −
3 170 SiF 2−

6 259 PH +
4 157

∗ Selected from: H. D. B. Jenkins and K. P. Thakur, J. Chem. Educ. 56, 576–7 (1979).

4.2.3 Ionic liquids

An ionic liquid is a liquid that consists only of ions. However, this term includes
an additional special definition to distinguish it from the classical definition
of a molten salt. While a molten salt generally refers to the liquid state of a
high-melting salt, such as molten sodium chloride, an ionic liquid exists at
much lower temperatures (approx. < 100 ◦C). The most important reported
ionic liquids are composed of the following cations and anions:
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N N
R R'

+

imidazolium ion

R = R'= methyl (MMIM)
R = methyl, R'= ethyl (EMIM)
R = methyl, R'= n-butyl (BMIN)

N

R

+

pyridinium ion

Anions:

Cations:

AlCl4
–, Al2Cl7

–, BF4
–, Cl–, AlEtCl3

–, PF6
–, NO3

–, CF3SO3
–

N+

R'

R
R

R

ammonium ion

P

R'

R
R

R
+

phosphonium ion

The development of ionic liquids has revealed that the ions possess the
following structural features:

(1) The ionic radii have large values. The key criterion for the evaluation of
an ionic liquid is its melting point. Comparison of the melting points of
different chlorides salts, as listed in Table 4.2.7, illustrates the influence of
the cation clearly: High melting points are characteristic for alkali metal
chlorides, which have small cationic radii, whereas chlorides with suitable
large organic cations melt at much lower temperatures. Besides the effect
of the cation, an increasing size of anion with the same charge leads to a
further decrease in melting point, as shown in Table 4.2.7.

(2) There are weak interactions between the ions in an ionic liquid, but the
formation of hydrogen bonds is avoided as far as possible.

(3) In general, the cations and anions of ionic liquids are composed of organic
and inorganic components, respectively. The solubility properties of an
ionic liquid can be achieved by variation of the alkyl group on the cations
and by choice of the counter-anions.

The physical and chemical properties of the ionic liquids that make them
interesting as potential solvents and in other applications are listed below.

(1) They are good solvents for a wide range of inorganic and organic materials
at low temperature, and usual combinations of reagents can be brought into
the same phase. Ionic liquids represent a unique class of new reaction media
for transition metal catalysis.

(2) They are often composed of poorly coordinating ions, so they serve as
highly polar solvents that do not interfere with the intended chemical
reactions.

Table 4.2.7. Melting point of some salts and ionic liquids

Salt/ionic liquid mp (◦C) Salt/ionic liquid mp (◦C)

NaCl 801 [EMIM]NO2 55
KCl 772 [EMIM]NO3 38
[MMIM]Cl 125 [EMIM]AlCl4 7
[EMIM]Cl 87 [EMIM]BF4 6
[BMIM]Cl 65 [EMIM]CF3SO3 −9
[BMIM]CF3SO3 16 [EMIM]CF3CO2 −14
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(3) They are immiscible with a number of organic solvents and provide a
non-aqueous, polar alternative for two-phase systems. Hydrophobic ionic
liquids can also be used as immiscible polar phases with water.

(4) The interacting forces between ions in the ionic liquids are the strong
electrostatic Coulombic forces. Ionic liquids have no measurable vapor
pressure, and hence they may be used in high-vacuum systems to over-
come many contaminant problems. Advantage of their non-volatile nature
can be taken to conduct product separation by distillation with prevention
of uncontrolled evaporation.

4.3 Metallic bonding and band theory

Metallic structure and bonding are characterized by delocalized valence elec-
trons, which are responsible for the high electrical conductivity of metals. This
contrasts with ionic and covalent bonding in which the valence electrons are
localized on particular atoms or ions and hence are not free to migrate through
the solid. The physical data for some solid materials are shown in Table 4.3.1.

The band theory of solids has been developed to account for the electronic
properties of materials. Two distinct lines of approach will be described.

4.3.1 Chemical approach based on molecular orbital theory

Table 4.3.1. Conductivities of some metals, semiconductors, and insulators

Category Material Conductivity (7−1 m−1) Band gap (eV)

Metals Copper 6.0 × 107 0
Sodium 2.4 × 107 0
Magnesium 2.2 × 107 0
Aluminium 3.8 × 107 0

Zero-band gap semiconductor Graphite 2 × 105 0
Semiconductors Silicon 4 × 10−4 1.11

Germanium 2.2 × 10−4 0.67
Gallium arsenide 1.0 × 10−6 1.42

Insulators Diamond 1 × 10−14 5.47
Polythene 10−15

A piece of metal may be regarded as an infinite solid where all the atoms are
arranged in a close-packed manner. If a large number of sodium atoms are

Fig. 4.3.1.
The evolution of a band of molecular
orbitals as the number of contributing
atoms such as Na increases. The shaded
part in the band of N atoms indicates its
containing electrons.
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brought together, the interaction of the 3s valence orbitals will generate a very
closely spaced set of molecular orbitals, as shown in Fig. 4.3.1. It is more
appropriate to refer to such molecular orbitals as energy states since each is
delocalized over all atoms in the metal, and the entire spectrum of energy states
is known as a band.

The energy states in a band are not evenly distributed, and the band structure
is better described by a plot of energy E against a density of states function
N (E) which represents the number of energy states lying between E and δE,
as shown in Fig. 4.3.2.

The number of states within each band is equal to the total number of orbitals
contributed by the atoms. For one mole of metal, a s band will consist of N0
states and a 3p band of 3N0 states. These bands will remain distinct if the s–p
separation is large, as shown in Fig. 4.3.3(a). However, if the s–p separation
is small, the s and p bands overlap extensively and band mixing occurs. This
situation, as illustrated in Fig. 4.3.3(b), applies to the alkaline-earth metals and
main group metals.

E

N(E)

Fig. 4.3.2.
Density of states diagram for the 3s band
of sodium.

The electronic properties of a solid are closely related to the band structure.
The band that contains the electrons of highest energy is called the valence
band, and the lowest unoccupied energy levels above them are called the
conduction band.

There are four basic types of band structure as shown in Fig. 4.3.3. In (a) the
valence band is only partially filled by electrons, and metals such as Na and
Cu with a half-filled s band are well described by this diagram. The energy
corresponding to the highest occupied state at 0 K is known as the Fermi
energy EF.

The alkaline-earth metals and group 12 metals (Zn, Cd, Hg) have the
right number of electrons to completely fill an s band. However, s–p mix-
ing occurs and the resulting combined band structure remains incompletely
filled, as shown in Fig. 4.3.3(b). Hence these elements are also good metallic
conductors.

Vacant
band

(a) (b) (c) (d)

Partially
occupied

band

Occupied
and empty

bands
overlap

Vacant
band Vacant

band

occupied
band

occupied
band

Eg Eg large
Eg small

EF

E

EF

E E E

N(E ) N(E ) N(E ) N(E )

Fig. 4.3.3.
Schematic representation of band structure and the primary density of states situations: (a) metal will no overlapping bands, (b) metal with
overlapping bands, (c) an insulator, and (d) a semiconductor.
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Insulators have a completely filled valence band separated by a large gap
from the empty conduction band, as illustrated in Fig. 4.3.3(c). Diamond is an
excellent insulator with a band gap of 5.47 eV. Figure 4.3.3(d) shows a situation
in which a fully occupied band is separated from a vacant band by a small band
gap. This property characterizes a semiconductor, the subject matter of the next
section.

4.3.2 Semiconductors

Intrinsic semiconductors have a band structure similar to that of insulators,
except that the gap is smaller, usually in the range 0.5 to 3 eV. A few electrons
may have sufficient thermal energy to be promoted to the empty conduction
band. Each electron leaving the valence band not only creates a charge carrier
in the conduction band but also leaves behind a hole in the valence band. This
hole provides a vacancy which can promote the movement of electrons in the
valence band.

The presence of an impurity such as an As or a Ga atom in silicon leads to
an occupied level in the band gap just below the conduction band or a vacant
level just above the valence band, respectively. Such materials are described
as extrinsic semiconductors. The n-type semiconductors have extra electrons
provided by donor levels, and the p-type semiconductors have extra holes
originating from the acceptor levels. Band structures of the different types of
semiconductors are shown in Fig. 4.3.4.

In solid-state electronic devices, a p–n junction is made by diffusing a dopant
of one type into a semiconductor layer of the other type. Electrons migrate from
the n-type region to the p-type region, forming a space charge region where
there are no carriers. The unbalanced charge of the ionized impurities causes
the bands to bend, as shown in Fig. 4.3.5, until a point is reached where the
Fermi levels are equivalent.

A p–n junction can be used to rectify an electric current, that is, to make it
much easier to pass in one direction than the other. The depletion of carriers
for the junction effectively forms an insulating barrier. If positive potential is
applied to the n-type side (a situation known as reverse bias), more carriers
are removed and the barrier becomes wider. However, under forward bias the
n-type is made more negative relative to the p side, so that the energy barrier is
decreased and the carriers may flow through.

Fig. 4.3.4.
Density of states diagrams for (a) an
intrinsic semiconductor, (b) an n-type
semiconductor, and (c) a p-type
semiconductor.
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Fig. 4.3.5.
Schematic representation of a p–n junction: (a) No electric field, (b) positive electric field to p-region, and (c) positive electric
field to n-region.

4.3.3 Variation of structure types of 4d and 5d transition metals

Calculated relative energies from the density of states curves including the d
orbitals have been used to rationalize the changes in metallic structure observed
across the 4d and 5d transition series, as summarized in Table 4.3.2. To under-
stand the variation of these structures, we first determine the average electronic
energy for a model transition metal with body-centered cubic packing (bcp),
hexagonal closest packing (hcp), and cubic closest packing (ccp) structures.
Then we plot the energy differences of these structures as a function of the
number of d electrons. As shown in Fig. 4.3.6, the solid line indicates the
energy of bcp minus the energy of ccp (bcp–ccp), and the broken line indicates
the energy of hcp minus the energy of ccp (hcp–ccp).

Table 4.3.2. Crystal structure of 4d and 5d transition metals

4d element Structure 'E 5d element Structure 'E
and number of and number of
d electrons (hcp – ccp) (bcp – ccp) d electrons (hcp – ccp) (bcp – ccp)

Y (1) hcp − + La (1) hexagonal − +
Zr (2) hcp − + Hf (2) hcp − +
Nb (3) bcp + − Ta (3) bcp + −
Mo (4) bcp + − W (4) bcp + −
Tc (5) hcp ∼ 0 − Re (5) hcp ∼ 0 −
Ru (6) hcp − + Os (6) hcp − +
Rh (7) ccp − + Ir (7) ccp − +
Pd (8) ccp ∼ 0 + Pt (8) ccp ∼ 0 +
Ag (9) ccp + − Au (9) ccp + −
Cd (10) hcp 0 0 Hg (10) trigonal 0 0

Studying the plots in Fig. 4.3.6, we can see that for d electron counts of 1
and 2, the preferred structure is hcp. For n = 3 or 4, the bcp structure is the
most stable. These results are in agreement with the observation as listed in
Table 4.3.2. For d electron counts of 5 or more, the hcp and ccp structures
have comparable energies. However, the hcp structure is correctly predicted to
be more stable for metals with six d electrons, and the ccp for later transition
elements. These calculations show how the structures of metallic elements are
determined by rather subtle differences in the density of states, which in turn
are controlled by the different types of bonding interaction present.
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Fig. 4.3.6.
The computed relative energy of bcp –
ccp (solid line) and hcp – ccp, (broken
line) as a function of the number of d
electrons.
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4.3.4 Metallic radii

The metallic radius (rmet) is defined as one half of the internuclear distance
between neighboring metal atoms in a metallic crystal, and is dependent upon
the coordination number (CN). The relative metallic radius for different poly-
morphs of the same metal varies with CN. When CN decreases, rmet also
decreases. The relative rmet values are estimated to be as follows:

Coordination number: 12 8 6 4
Relative radius: 1.00 0.97 0.96 0.88

For example, metallic barium has a bcp lattice with a = 502.5 pm (Table
10.3.2). From these results, the metallic radius of Ba atom can be calculated:

rmet (CN = 8) = 217.6 pm,
rmet (CN = 12) = 224.3 pm.

The values of rmet listed in Table 4.3.3 refer to 12-coordinate metal centers.
Since not all metals actually adopt structures with equivalent 12-coordinate
atoms such as the ccp structure, the rmet values are estimated from the exper-
imental values. For the hcp structure, there are two sets of six-coordinate
atoms, which are not exactly equivalent to each other. In such circumstances,
we usually adopt the average value of the two sets. Gallium possesses a
complex structure in which each atom has one neighbor at 244 pm, two at
270 pm, two at 273 pm, and two at 279 pm, and its rmet can be estimated
as 141 pm.

The metallic radii may be used to define the relative sizes of atoms, which
has implications for their structural and chemical properties. For example,
going down a given group in the Periodic Table, the metallic radii of the
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Table 4.3.3. Metallic radii (in pm) of the elements

Li Be
157 112
Na Mg Al
191 160 143
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge
235 197 164 147 135 129 137 126 125 125 128 137 141 137
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb
250 215 182 160 147 140 135 134 134 137 144 152 167 158 169
Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi
272 224 188 159 147 141 137 135 136 139 144 155 171 175 182
Fr Ra Ac
280 247 190

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
183 183 182 181 180 204 180 178 177 177 176 175 194 174
Th Pa U Np Pu Am Cm Bk Cf
180 164 154 155 159 173 174 170 169

elements increase, the first ionization energies generally decrease, and the
electronegativities also decrease.

4.3.5 Melting and boiling points and standard enthalpies of atomization of
the metallic elements

Table 4.3.4 lists the melting and boiling points and enthalpies of atomiza-
tion ('H ◦

at) of the metallic elements. These data show that, in general, these
properties are closely correlated. The 'H ◦

at values reflect the strength of the
metal–metal bonds in their metallic structures. For example, the sixth row ele-
ments show an overall increase in'H ◦

at from Cs to W and then there is a marked
decrease from W to Hg. Because of the relativistic effects on the sixth row ele-
ments (which have been discussed in section 2.4), the energies of 6s and 5d
orbitals are very similar. Hence, for a metal containing N atoms, there are 6N
valence orbitals. The band structure of the metal corresponds to an infinite set of
delocalized molecular orbitals which extend throughout the structure. Half of
these closely spaced orbitals are bonding (3N orbitals) and half are antibonding
(3N orbitals). If the bands of molecular orbitals are filled in the aufbau fashion,
the'H ◦

at values should increase from a low initial value for d0s1 (metal Cs) to
a maximum at d5s1 (metal W), and a minimum for the completely filled shell
d10s2 (metal Hg), where all the bonding and antibonding orbitals are filled and
may be approximated as nonbonding. These features of the band structure of
metals are in accord with the data listed in Table 4.3.4 and with the discussion
given in section 2.4.

In the fourth row elements, the large exchange energies associated with the
3d54s1 (Cr) and 3d54s2 (Mn) configurations (both with either half-filled or
completely filled orbitals) result in non-aufbau configurations for these ele-
ments when the metallic valence bands are populated. For these non-aufbau
configurations, some electrons are not paired up, leading to magnetic proper-
ties and occupation of antibonding levels in the band. Consequently, there is a
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Table 4.3.4. Melting points [mp (K), upper], boiling points [bp (K), middle], and standard
enthalpies of atomization ['H◦at (kJ mol−1), bottom] of metallic elements

Li Be
454 1551

1620 3243
135 309
Na Mg Al
371 922 934
1156 1363 2740
89 129 294
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge

337 1112 1814 1933 2160 2130 1517 1808 1768 1726 1357 693 303 1211
1047 1757 3104 3560 3650 2945 2235 3023 3143 3005 2840 1180 2676 3103

78 150 305 429 459 349 220 351 382 372 305 115 256 334
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb
312 1042 1795 2125 2741 2890 2445 2583 2239 1825 1235 594 429 505 904
961 1657 3611 4650 5015 4885 5150 4173 4000 3413 2485 1038 2353 2543 1908
69 139 393 582 697 594 585 568 495 393 255 100 226 290 168
Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po
302 1002 1194 2503 3269 3680 3453 3327 2683 2045 1338 234 577 601 545 527
952 1910 3730 5470 5698 5930 5900 5300 4403 4100 3080 630 1730 2013 1883 1235
66 151 400 661 753 799 707 628 564 510 324 59 162 179 179 101
Fr Ra Ac
300 973 1324
— — —
— — —

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu

1072 1204 1294 1441 1350 1095 1586 1629 1685 1747 1802 1818 1097 1936
3699 3785 3341 ∼ 3000 2064 1870 3539 3396 2835 2968 3136 2220 1466 3668
314 333 284 — 192 176 312 391 293 251 293 247 159 428
Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr

2023 1845 1408 917 913 1444 1173 1323 1173 1133 1800 1100 1100 1900
— — — — — — — — — — — — — —
— — — — — — — — — — — — — —

weakening of the metal–metal bond and Cr and Mn metals have the anomalously
low 'H ◦

at values listed in Table 4.3.4.

4.4 Van der Waals interactions

The collective term “intermolecular forces” refers to the interactions between
molecules. These interactions are different from the those involved in covalent,
ionic, and metallic bonds. Intermolecular interactions include forces between
ions or charged groups, dipoles or induced dipoles, hydrogen bonds, hydropho-
bic interactions, π · · ·π overlap, nonbonding repulsions, etc. The energies of
these interactions (usually operative within a range of 0.3–0.5 nm) are generally
below 10 kJ mol−1, or one to two order of magnitude smaller than that of an
ordinary covalent bond. These interactions are briefly described below.

The interaction between charge groups, such as –COO− · · ·+H3N−, gives
rise to an energy which is directly proportional to the charges on the groups and
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inversely proportional to the distance between them. The interactions among
dipoles and induced dipoles are proportional to r−6, where r is the separation
between the interacting bodies. These interactions are collectively called van
der Waals forces and they will be discussed in some detail later in this section.
Hydrogen bonding is one of the most important intermolecular interactions and
it will be described in some detail in section 11.2.

In protein molecules, hydrophobic side-chain groups such as phenylalanine,
leucine, and isoleucine aggregate together, forming a hydrophobic zone in the
interior of the molecule. The forces that hold these groups together are the
hydrophobic interactions. These interactions include both energetic and entropy
effects. It is of interest to note that these hydrophobic groups unite together not
because they prefer each other’s company, but because all of them are “repelled”
by water.

The π · · ·π overlap interaction is the force that holds together two or more
aromatic rings that tend to be parallel to each other in molecular packing. The
most well-known example is the interlayer interaction in graphite, where the
distance separating layers measures 335 pm.

Finally, nonbonding repulsion exists in all types of groups. It is a short-range
interacting force and is on the order of r−9 to r−12.

4.4.1 Physical origins of van der Waals interactions

The interactions between molecules are repulsive at short range and attractive at
long range. When the intermolecular separation is small, the electron clouds of
two adjacent molecules overlap to a significant extent, and the Pauli exclusion
principle prohibits some electrons from occupying the overlap region. As the
electron density in this region is reduced, the positively charged nuclei of the
molecules are incompletely shielded and hence repel each other.

The long-range attractive interaction between molecules, generally known
as van der Waals interaction, becomes significant when the overlap of electron
clouds is small. There are three possible contributions to this long-range inter-
action, depending on the nature of the interacting molecules. These physical
origins are discussed below.

(1) Electrostatic contribution
Apolar molecule such as HCl possesses a permanent dipole moment µ by virtue
of the non-uniform electric charge distribution within the neutral molecule. The
electrostatic energy Uµµ between two interacting dipoles µ1 and µ2 is strongly
dependent on their relative orientation. If all relative orientations are equally
probable and each orientation carries the Boltzmann weighting factor e−Uµµ/kT ,
the following expression is obtained:

<Uµµ>el= −
2µ2

1µ
2
2

3(4πε0)2kTr6 . (4.4.1)

This expression shows that the attractive electrostatic interaction, commonly
known as the Keesom energy, is inversely proportional to the sixth power
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of the intermolecular separation, and the temperature dependence arises from
orientational averaging with Boltzmann weighting.

Some non-polar molecules such as CO2 possess an electric quadrupole
moment Q which can contribute to the electrostatic energy in a similar manner.
The results for dipole–quadrupole and quadrupole–quadrupole interactions are

<UµQ>el = −µ2
1Q2

2 + µ2
2Q2

1

(4πε0)2kTr8 (4.4.2)

<UQQ>el = − 14Q2
1Q2

2

5(4πε0)2kTr10 . (4.4.3)

(2) Induction contribution
When a polar molecule and a non-polar molecule approach each other, the
electric field of the polar molecule distorts the electron charge distribution of
the non-polar molecule and produces an induced dipole moment within it. The
interaction of the permanent and induced dipoles then results in an attractive
force. This induction contribution to the electrostatic energy is always present
when two polar molecules interact with each other.

The average induction energy (called Debye energy) between a polar
molecule with dipole moment µ and a non-polar molecule with polarizabil-
ity α is

<Uµα>ind= −
µ2α

(4πε0)2r6 . (4.4.4)

Note that the induction energy, unlike the electrostatic energy, is not
temperature dependent although both vary as r−6.

For two interacting polar molecules, the induction energy averaged over all
orientations is

<Uµµ>ind= −
µ2

1α2 + µ2
2α1

(4πε0)2r6 . (4.4.5)

(3) Dispersion contribution
The electrons in a molecule are in constant motion so that at any instant even
a non-polar molecule such as H2 possesses an instantaneous electric dipole
which fluctuates continuously in time and orientation. The instantaneous dipole
in one molecule induces an instantaneous dipole in a second molecule, and
interaction of the two synchronized dipoles produces an attractive dispersion
energy (known as London energy). In the case of interaction between two
neutral, non-polar molecules the dispersion energy is the only contribution to
the long-range energy.

When an instantaneous dipole is treated as a charge of −q oscillating about
a charge of +q with frequency ν0, the dispersion energy for two identical
molecules in their ground states is

Udisp = − 3α2hν0
4(4πε0)2r6 . (4.4.6)
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For the most general case of the interaction between two polar molecules,
the total long-range intermolecular energy is

U = Uel + Uind + Udisp. (4.4.7)

For two neutral polar molecules of the same kind that are free to rotate, the
intermolecular energy is

U = − 1
(4πε0)2r6

[

2µ4

3kT
+ 2µ2α + 3α2hν0

4

]

= −(cel + cind + cdisp)r−6. (4.4.8)

Table 4.4.1 lists typical values of dipole moments and polarizabilities of some
simple molecules and the three coefficients of the r−6 term at 300 K. Except
for H2O which is small and highly polar, the dispersion term dominates the
long-range energy. The induction term is always the least significant.

Table 4.4.1. Comparison of contributions to long-range intermolecular energy for like pairs of
molecules at 300 K

Molecule 1030µ (C m∗) 1030α(4πε0)−1 (m3) 1079cel (J m2) 1079cind (J m2) 1079cdisp (J m2)

Ar 0 1.63 0 0 50
Xe 0 4.0 0 0 209
CO 0.4 1.95 0.003 0.06 97
HCl 3.4 2.63 17 6 150
NH3 4.7 2.26 64 9 133
H2O 6.13 1.48 184 10 61

∗ Dipole moments are usually given in Debye units. In the rationalized SI system, the unit used is Coulomb
meter (C m); 1 Debye = 3.33× 10−30 C m.

The magnitudes of the three attractive components of the intermolecular
energy per mole of gas of some simple molecules are compared in Table 4.4.2,
along with the bond energy of the polyatomic species and the enthalpy of sub-
limation ('H ◦

s ). The calculation is based on the assumption that the molecules
interact in pairs at a separation δ where the total potential energy U (δ) = 0.

Table 4.4.2. Intermolecular energies, bond energies and enthalpies of sublimation for some
simple molecules

Molecule δ (nm) Attractive energy (kJ mol−1) Single-bond energy
(kJ mol−1)

'H o
s

(kJ mol−1)

Uel Uind Udisp

Ar 0.33 0 0 −1.2 — 7.6
Xe 0.38 0 0 −1.9 — 16
CO 0.36 −4× 10−5 −8× 10−4 −1.4 343 6.9
HCl 0.37 −0.2 −0.07 −1.8 431 18
NH3 0.260 −6.3 −0.9 −13.0 389 29
H2O 0.265 −16.0 −0.9 −5.3 464 47

iranchembook.ir/edu

https://iranchembook.ir/edu


138 Fundamentals of Bonding Theory

Fig. 4.4.1.
Lennard–Jones 12–6 potentials:
V (r) = 0 at r = δ; V (r) = −ε at
r = re = 21/6δ.
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It must be emphasized that the above discussion of long-range attractive
interactions is very much simplified. A rigorous treatment of the subject is
obviously very complicated, or even impossible if the molecules of interest are
large and have complex structures.

4.4.2 Intermolecular potentials and van der Waals radii

A widely used energy function V that describes intermolecular interaction as a
function of intermolecular separation r is the Lennard–Jones 12–6 potential:

V (r) = 4ε[(δ/r)12 − (δ/r)6]. (4.4.9)

The resulting potential energy curve is shown in Fig. 4.4.1 in which re is the
equilibrium distance.

Some values for the parameters ε (usually given as ε/k, where k is Boltz-
mann’s constant) and δ are given in Table 4.4.3. For simple and slightly polar
substances, ε and δ3 are approximately proportional to the critical temperature
TC and the critical volume VC, respectively.

Crystal structure data show that intermolecular nonbonded distances between
pairs of atoms vary over a very narrow range. In the absence of hydrogen

Table 4.4.3. Parameters of the Lennard–Jones 12–6 potential
function

Molecule ε/k (K) 10δ (nm) TC (K) VC (cm3 mol−1)

Ne 47.0 2.72 44.4 41.7
Ar 141.2 3.336 150.8 74.9
K 191.4 3.575 209.4 91.2
Xe 257.4 3.924 289.7 118
N2 103.0 3.613 126.2 89.5
O2 128.8 3.362 154.6 73.4
CO2 246.1 3.753 304.2 94
CH4 159.7 3.706 190.5 99
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Table 4.4.4. van der Waals radii of atoms (pm)∗,†

H He
120 140
Li C N O F Ne
182 170 155 152 147 154
Na Mg Si P S Cl Ar
227 173 210 180 180 175 188
K Ni Cu Zn Ga Ge As Se Br Kr
275 163 143 139 187 219 185 190 185 202

Pd Ag Cd In Sn Te I Xe
163 172 162 193 217 206 198 216

U Pt Au Hg Tl Pb CH3
186 175 166 170 196 202 200

∗ For the methyl group, 200 pm; half thickness of phenyl group, 185 pm.
† Taken from A. Bondi, J. Phys. Chem. 68, 441–451 (1964); 70, 3006–3007 (1966).

bonding and donor–acceptor bonding, the contact between C, N, and O atoms
is around 370 pm for a wide variety of compounds. This observation leads to the
concept of van der Waals radii (rvdw) for atoms, which can be used to calculate
average minimum contacts between atoms belonging to neighboring molecules
in a condensed phase. The rvdw values of some common elements are show in
Table 4.4.4. The van der Waal radius of an atom is close to the δ parameter of
the Lennard–Jones 12–6 potential function, and it can also be correlated with
the size of the outermost occupied atomic orbital. For instance, a carbon 2p
orbital enclosing 99% of its electron density extends from the nucleus to about
190 pm, as compared to rvdw = 170 pm for carbon.
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5 Computational Chemistry

5.1 Introduction

Traditionally chemistry is an experimental science and, for a long time, math-
ematics played only a very minor role. For many decades, in order to justify
doing computational chemistry, it was almost obligatory to start a talk or pref-
ace a book on theoretical chemistry by quoting P. A. M. Dirac (1902–84), one
of the greatest physicists of the last century:

The underlying physical laws necessary for the mathematical theory of a large part of
physics and the whole of chemistry are thus completely known, and the difficulty is only
that the exact application of these laws leads to equations much too complicated to be
soluble.

Dirac made this statement in 1929, when he was only 27 years old. He was at
the University of Cambridge where he was appointed to the chair once occupied
by Sir Isaac Newton. In a way, this statement by Dirac reflects a good news –
bad news situation: The good news is that we know how to do it in theory, and
the bad news is that we cannot do it in practice!

The physical laws and the mathematical theory Dirac referred to in the afore-
mentioned quote were, of course, the essence of quantum theory, which is briefly
described in Chapter 1. As we recall, when we treat a chemical problem com-
putationally, we are usually confronted by the task of solving the Schrödinger
equation

Ĥψ = Eψ ,

where Ĥ , the Hamiltonian operator, is a mathematical entity characteristic of
the system under study. In other words, in this equation, Ĥ is a known quantity,
while ψ and E are the unknowns to be determined. Once we get E, we know
the electronic energy of the system; once we get ψ , we have an idea of how the
electrons are distributed in a molecule. From these solutions, useful information
regarding the system under study, such as structure, energetics, and reactivity,
may be obtained, or at least inferred.

It is important that the energy E of the system is one of the solutions of the
Schrödinger equation. As we mentioned in Chapter 3, atoms and molecules
are rather “simple-minded” species. Their behavior is entirely dictated by the
energy factor. For instance, two atoms will combine to form a molecule if the for-
mation leads to a lowering in energy.Also, a reaction will proceed spontaneously
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if again there is a lowering in energy. If a reaction does not take place sponta-
neously, we can still “kick-start” it by supplying energy to it. Hence, energy is
the all important property if we wish to understand or predict the behavior of a
molecular species.

As early as the 1930s, physicists and chemists knew that solving the
Schrödinger equation held the key to understanding the nature of bonding and
the reactivity of molecules. However, the task remained to be mathematically
daunting for more than half of a century. Indeed, at the beginning, drastic
approximations (such as those used in the Hückel molecular orbital theory
introduced in Chapter 3) were made in order to make the problem solvable.
Consequently, the results obtained in such a manner were at best qualitative.
After decades of work on the development of theoretical models as well as
the related mathematics, along with the concomitant increase in computing
power made possible by faster processors and enormous data storage capacity,
chemists were able to employ calculations to solve meaningful chemical prob-
lems in the latter part of the last century. At the present stage, in many cases
we can obtain computational results almost as accurate as those from experi-
ments, and such findings are clearly useful to experimentalists. As mentioned
in Chapter 1, an indication that theoretical calculations in chemistry have been
receiving increasing attention in the scientific community was the award of
the Nobel Prize to W. Kohn and J. A. Pople for their contributions to quan-
tum chemistry. It is of interest to note that, in his Nobel lecture, Pople made
reference to the Dirac statement mentioned earlier.

The title of this chapter is clearly too ambitious: it can easily be the title of a
series of monographs. In fact, the aim of this chapter is confined to introducing
the kind of results that may be obtained from calculations and in what way
calculations can complement experimental research. Hence, the discussion is
essentially qualitative, with practically all the theoretical and mathematical
details omitted.

5.2 Semi-empirical and ab initio methods

For a molecule composed of n atoms, there should be 3n-6 independent struc-
tural parameters (bond lengths, bond angles, and dihedral angles). This number
may be reduced somewhat if symmetry constraint is imposed on the system.
For instance, for H2O, there are three structural parameters (two bond lengths
and one bond angle). But if C2v symmetry (point groups will be introduced
in Chapter 6) is assumed for the molecule, which is entirely reasonable, there
will only be two unique parameters (one bond length and one bond angle). The
electronic energy of the molecule is then a function of these two parameters;
when these parameters take on the values of the equilibrium bond length and
bond angle, the electronic energy is at its minimum. There are many cases
where symmetry reduces the number of structural parameters drastically. Take
benzene as an example. For a 12-atom molecule with no symmetry, there will
be 30 parameters. On the other hand, if we assume the six C–H units form a
regular hexagon, then there will be only two independent parameters, the C–C
and C–H bond lengths. The concepts of symmetry will be discussed in the next
chapter.
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There are two general approaches to solving the Schrödinger equation of a
molecular system: semi-empirical and ab initio methods. The semi-empirical
methods assume an approximate Hamiltonian operator and the calculations are
further simplified by approximating integrals with various experimental data
such as ionization energies, electronic spectral transition energies, and bond
energies. An example of these methods is the Hückel molecular orbital theory
described in Chapter 3. When applied to conjugated polyenes, this method uses
a one-electron Hamiltonian and treats the Coulomb integral α and resonance
integral β as adjustable parameters.

On the other hand, ab initio (meaning “from the beginning” in Latin) meth-
ods use a “correct” Hamiltonian operator, which includes kinetic energy of
the electrons, attractions between electrons and nuclei, and repulsions between
electrons and those between nuclei, to calculate all integrals without making
use of any experimental data other than the values of the fundamental con-
stants. An example of these methods is the self-consistent field (SCF) method
first introduced by D. R. Hartree and V. Fock in the 1920s. This method was
briefly described in Chapter 2, in connection with the atomic structure calcula-
tions. Before proceeding further, it should be mentioned that ab initio does not
mean “exact” or “totally correct.” This is because, as we have seen in the SCF
treatment, approximations are still made in ab initio methods.

Another approach closely related to the ab initio methods that has gained
increasing prominence in recent years is the density functional theory (DFT).
This method bypasses the determination of the wavefunction ψ . Instead, it
determines the molecular electronic probability density ρ directly and then
calculates the energy of the system from ρ.

Ab initio and DFT calculations are now routinely applied to study molecules
of increasing complexity. Sometimes the results of these calculations are valu-
able in their own right. But more often than not these results serve as a guide
or as a complement to experimental work. Clearly computational chemistry is
revolutionizing how chemistry is done. In the remaining part of this chapter,
the discussion will be devoted to ab initio and DFT methods.

An ab initio calculation is defined by two “parameters”: the (atomic) basis
functions (or basis sets) employed and the level of electron correlation adopted.
These two topics will be described in some detail (and qualitatively) in the next
two sections.

5.3 Basis sets

The basis sets used in ab initio calculations are composed of atomic functions.
Pople and co-workers have devised a notation for various basis sets, which will
be used in the following discussion.

5.3.1 Minimal basis set

A minimal basis set consists of just enough functions required to accommodate
all the filled orbitals in an atom. Thus, for hydrogen and helium, there is only
one s-type function; for elements lithium to neon, this basis set has 1s, 2s, and
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2p functions (making a total of five); and so on. The most popular minimal basis
set is called STO-3G, where three Gaussian functions (of the form rn−1e−αr2

)

are used to represent one Slater-type orbital (STO, which has the general form
of rn−1e−αr).

The STO-3G basis set does surprisingly well in predicting molecular geome-
tries, even though it has been found that the success is partly due to a fortuitous
cancellation of errors. On the other hand, not surprisingly, the energetics results
obtained using minimal basis sets are not very good.

5.3.2 Double zeta and split valence basis sets

In order to have a better basis set, we can replace each STO of a minimal basis
set by two STOs with different orbital exponent ζ (zeta). This is known as a
double zeta basis set. In this basis, there is a linear combination of a “contracted”
function (with a larger zeta) and a “diffuse” function (with a smaller zeta) and
the coefficients of these combinations are optimized by the SCF procedure.
Using H2O as an example, a double zeta set has two 1s STOs on each H, two 1s
STOs, two 2s STOs, two 2px, two 2py and two 2pz STOs on oxygen, making a
total of 14 basis functions.

If only valence orbitals are described by double zeta basis, while the inner
shell (or core) orbitals retain their minimal basis character, a split valence basis
set is obtained. In the early days of computational chemistry, the 3-21G basis was
fairly popular. In this basis set, the core orbitals are described by three Gaussian
functions. The valence electrons are also described by three Gaussians: the
inner part by two Gaussians and the outer part by one Gaussian. More recently,
the popularity of this basis set is overtaken by the 6-31G set, where the core
orbitals are a contraction of six Gaussians, the inner part of the valence orbitals
is a contraction of three Gaussians, and the outer part is represented by one
Gaussian.

Similarly, the basis set can be further improved if three STOs (with three
different zetas, of course) are used to describe each orbital in an atom. Such
a basis is called a triple zeta set. Correspondingly, the 6-311G set is a triple-
split valence basis, with the core orbitals still described by six Gaussians and
the valence orbitals split into three functions described by three, one, and one
Gaussians, respectively.

5.3.3 Polarization functions and diffuse functions

The aforementioned split valence (or double zeta) basis sets can be further
improved if polarization functions are added to the mix. The polarization func-
tions have a higher angular momentum number 2; so they correspond to p
orbitals for hydrogen and helium and d orbitals for elements lithium to neon,
etc. So if we add d orbitals to the split valence 6-31G set of a non-hydrogen
element, the basis now becomes 6-31G(d). If we also include p orbitals to the
hydrogens of the 6-31G(d) set, it is then called 6-31G(d,p).

Why may the inclusion of polarization functions improve the quality of the
basis set? Let us take the hydrogen atom, which has a symmetrical electronic
distribution, as an example. When a hydrogen atom is bonded to another atom,
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Fig. 5.3.1.
The addition of a polarization functions
yields a distorted, but more flexible,
orbital.
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its electronic distribution will be attracted toward the other nucleus. Such a
distortion is similar to mixing a certain amount of p orbital to the hydrogen’s
1s orbital, yielding a kind of sp hybrid, as illustrated in Fig. 5.3.1(a). For a p
orbital of a carbon atom, mixing in some amount of d orbital will also cause
a distortion (or polarization) of its electronic distribution, as shown in Fig.
5.3.1(b). It is not difficult to see that the addition of polarization functions to
a basis set improves its flexibility to describe certain bonding situations. For
example, the 6-31G(d,p) set is found to describe the bonding in systems with
bridging hydrogen atoms particularly well.

The basis sets discussed so far are suitable for systems where electrons are
tightly bound. Hence they are not adequate to describe anions where the extra
electron is usually quite loosely held. Indeed, even the very large basis sets
such as 6-311G(d,p) do not have functions that have significant amplitude far
away from the nucleus. To remedy this situation, diffuse functions are added
to the basis sets. The additional functions are described as diffuse because they
have fairly small (on the order of 10−2) zeta values. If we add diffuse functions
to the non-hydrogen atoms of the 6-31G(d,p) set, the basis now becomes 6-
31+G(d,p). If we add diffuse functions to the hydrogens of the 6-31+G(d,p)
set, it is now called 6-31++G(d,p).

With the addition of polarization functions and/or diffuse functions to the
basis sets, the Pople notation can become rather cumbersome. For example,
the 6-311++G(3df,2pd) set has a single zeta core and triple zeta valence shell,
diffuse functions for all the atoms. Regarding polarized functions, there are
three sets of d functions and one set of f functions on the non-hydrogens and
two sets of p functions and one set of d orbitals on the hydrogens.

Before leaving this topic, it should be mentioned that, in addition to the
(Pople) basis sets discussed so far, there are others as well. The more popular
ones include the Dunning-Huzinaga basis sets, correlation consistent basis sets,
etc. These functions will not be described here.

5.4 Electron correlation

The SCF method, or the Hartree–Fock (HF) theory, assumes that each elec-
tron in a molecule moves in an average potential generated by the nuclei and
the remaining electrons. This assumption is flawed in that it ignores electron
correlation. What is electron correlation? Simply put, and as introduced in our
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discussion in the Introduction, it is the tendency for electrons to avoid each
other in an atom or in a molecule. Electrons do not like each other and wish to
stay as far apart as possible in order to lower the energy of the system. Since
the HF theory neglects electron correlation, correlation energy is defined as the
difference between the Hartree–Fock energy and the exact energy.

There are various ways to account for the electron correlation effects. In
the following we will classify these methods into three groups: configuration
interaction, perturbation, and coupled cluster methods.

5.4.1 Configuration interaction

In our treatment on the hydrogen molecule, we mentioned that the ground
state wavefunction can be improved if the ground configuration σ 2

1s function is
admixed with a certain amount of the excited configuration σ ∗2

1s wavefunction.
Such a method is called configuration interaction (CI), as these two config-
urations interact with each other (to lower the energy of the system). Note
that another excited configuration, σ 1

1sσ
∗1
1s , cannot take part in the interaction

with the two aforementioned configurations. This is because σ 1
1sσ

∗1
1s does not

have the proper symmetry properties, even though its energy is lower than
that of σ ∗2

1s .
Clearly more than one excited configuration can take part in CI. A full CI

is the most complete treatment possible within the limitation of the basis set
chosen. In most cases, a full CI is prohibitively expensive to carry out and we
need to limit the excited states considered. If we consider only those wave-
functions that differ from the HF ground state wavefunction by one single spin
orbital, we are said to be doing a configuration interaction singles (CIS) calcu-
lation. Similarly, there are those calculations that involve double substitutions
(configuration interaction doubles, CID). Sometimes even a full CIS or CID
calculation can be very difficult. In that case, we can restrict the unoccupied
molecular orbitals taking part in the interaction. If we combine CIS and CID,
we will then have configuration interaction singles and doubles (CISD). Still
higher levels of CI treatments include CISDT and CISDTQ methods, where
T and Q denote triple and quadruple excitations, respectively. At this point,
it is convenient to introduce the following notation: a CISD calculation with
the 6-31G(d) basis set is simply written as CISD/6-31G(d). Other types of cal-
culations using different kinds of basis functions may be written in a similar
manner. Furthermore, the longer notation CISD/6-311++G(d,p)//HF/6-31G(d)
signifies an energy calculation at the CISD level with the 6-311++G(d,p) basis
set using a molecular geometry optimized at the HF level with the 6-31G(d)
basis. In this example, the computationally expensive geometry optimization
is done at the lower level of theory of HF/6-31G(d), while a “single-point”
calculation at the higher level of theory of CISD/6-311++G(d,p) is carried out
in order to obtain a more reliable energetic value.

In the CI methods mentioned so far, only the mixing coefficients of the excited
configurations are optimized in the variational calculations. If we optimize
both the coefficients of the configurations and those of the basis functions, the
method is called MCSCF, which stands for multiconfiguration self-consistent
field calculation. One popular MCSCF technique is the complete active-space
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SCF (CASSCF) method, which divides all the molecular orbitals into three
sets: those doubly occupied orbitals which do not take part in the CI calcula-
tions, those vacant orbitals which also do not participate in the CI exercise, and
those occupied orbitals and vacant orbitals that form the “active space.” The
list of configurations that take part in the CI calculation can be generated by
considering all possible substitutions of the active electrons among the active
orbitals.

Finally, it should be stressed again that CI calculations are variational; i.e.,
the energy obtained cannot be lower than the exact energy, as stipulated by the
variational principle.

5.4.2 Perturbation methods

Perturbation theory is a standard approximation method used in quantum
mechanics. Early in 1930s, C. Møller and M. S. Plesset (MP) applied this
method to treat the electron correlation problem. They found that, using the HF
wavefunction as the zeroth-order wavefunction, the sum of the zeroth-order and
first-order energies correspond to the HF energy. So the electron correlation
energy is the sum of the second-order, third-order, fourth-order, etc., correc-
tions. Even though these methods have long been available in the literature, the
second-order (MP2) energy correction was not routinely calculated until the
1980s. Currently, even third-order (MP3) and fourth-order (MP4) corrections
have become very common.

Because of its computational efficiency and good results for molecular prop-
erties, notably structural parameters, the MP2 level of theory is one of the most
popular methods to include correlation effects on computed molecular proper-
ties. The other widely applied method is the density functional method, which
will be introduced later.

Unlike the CI methods, which are variational, the MP corrections are per-
turbational. That is, they can in practice lead to an energy that is lower than
the exact energy. In addition, an analysis of the trends in the MP2, MP3, and
MP4 energies for many systems indicates that the convergence of perturbation
theory is slow or even oscillatory.

5.4.3 Coupled-cluster and quadratic configuration interaction methods

Another way to improve the HF description is the coupled-cluster (CC)
approach, where the CC wavefunction ψcc is written as an exponential of a
cluster operator T̂ working on the HF wavefunction ψ0

ψcc = eT̂ψ0 = (T̂1 + T̂2 + T̂3 + . . .)ψ0, (5.4.1)

where T̂1 creates single excitations, T̂2 creates double excitations, and so on.
Experience shows that the contribution of T̂i decreases rapidly after i = 2. Hence
when a CC calculation ends after i = 2, we have the coupled-cluster singles and
doubles (CCSD) method. If we go further to include the T̂3 terms, we then have
the CCSDT method, where all the triples are also involved in the calculation.
Note that the CC methods introduced here are not variational.

iranchembook.ir/edu

https://iranchembook.ir/edu


Computational Chemistry 147

Currently the full CCSDT model is far too expensive for routine calculations.
To save time, we first carry out a CCSD calculation, which is then followed
by a computation of a perturbative estimate of the triple excitations. Such an
approximate method is called CCSD(T).

In the 1980s, Pople and co-workers developed the non-variational quadratic
configuration interaction (QCI) method, which is intermediate between CC and
CI methods. Similar to the CC methods, QCI also has the corresponding QCISD
and QCISD(T) options. Both the CCSD(T) and QCISD(T) have been rated as
the most reliable among the currently computationally affordable methods.

5.5 Density functional theory

As mentioned earlier, density functional theory (DFT) does not yield the wave-
function directly. Instead it first determines the probability density ρ and
calculates the energy of the system in terms of ρ. Why is it called density
functional theory and what is a functional anyway? We can define functional
by means of an example. The variational integral E(ϕ) = ∫ϕĤϕdτ / ∫ϕϕdτ
is a functional of the trial wavefunction ϕ and it yields a number (with energy
unit) for a given ϕ. In other words, a functional is a function of a function. So,
in the DFT theory, the energy of the system is a functional of electron density
ρ, which itself is a function of electronic coordinates.

In the 1960s, Kohn and co-workers showed that for molecules with a non-
degenerate ground state, the energy and other electronic properties can be
determined in terms of the electronic probability density ρ of the ground state.
It was later proved this is also true for systems with degenerate ground states.
Soon afterwards, physicists applied the first version of DFT (something called
local spin density approximation, LSDA) to investigate the electronic structure
of solids and it quickly became a popular method for studying solids. However,
chemists were slow to pick up this method, probably because of numerical
difficulties. In the early 1980s, after the numerical difficulties were essentially
resolved, DFT LSDA calculations were applied to molecules and good results
were obtained for molecular species, especially for structural parameters. After
about ten years of advancement on this theory, DFT methods were added to the
popular software packages such as Gaussian, and since then DFT calculations
have experienced an explosive growth.

As in the case of ab initio calculations, which range from the rather crude
HF method to the very sophisticated CCSD(T) or QCISD(T) method, DFT
also offers a variety of functionals for users to opt for. More commonly used
DFT levels of theory include local exchange and correlation functional SVWN
(a synonym for LSDA in the Gaussian package) and its variant SVWN5, as
well as gradient-corrected functional BLYP and hybrid functionals B3LYP and
B3PW91.Among these functionals, B3LYP appears to be the most popular one.
In addition, it is noted that DFT methods also make use of the kind of basis sets
that have been employed in ab initio calculations. So a typical DFT calculation
has a notation such as B3LYP/6-31G(d).

One important reason for DFT’s ever-increasing popularity is that even the
most elementary calculation includes correlation effects to a certain extent but
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takes roughly the same amount of time as a HF calculation, which does not take
correlation into account. Indeed, there are some DFT advocates who believe
DFT will replace HF as well as those correlation methods based on the HF
wavefunctions (such as MP, CC, and CI), but whether this will come to fruition
remains to be seen.

5.6 Performance of theoretical methods

How good are the ab initio and DFT methods in providing an adequate treatment
of a molecule of interest? Clearly, a proper answer to this and related questions
requires at least a major review article, if not a monograph (or maybe even a
series of monographs). Still, it is useful to have a clear idea of the applicability
and limitation of each chosen method. In this section, we concentrate on the
performance of various theoretical methods in yielding the geometric parame-
ters (bond lengths, bond angles, and dihedral angles) as well as the vibrational
frequencies of a given molecule. In the next section, we shall discuss various
composite methods, i.e., those that approximate the energy of a very high level
of theory with a combination of lower level energetic calculations. In addition,
the (energetic) performance of these methods will be assessed.

The structural parameters and vibrational frequencies of three selected exam-
ples, namely, H2O, O2F2, and B2H6, are summarized in Tables 5.6.1 to 5.6.3,
respectively. Experimental results are also included for easy comparison. In
each table, the structural parameters are optimized at ten theoretical levels,
ranging from the fairly routine HF/6-31G(d) to the relatively sophisticated
QCISD(T)/6-31G(d). In passing, it is noted that, in the last six correlation
methods employed, CISD(FC), CCSD(FC),…, QCISD(T)(FC), “FC” denotes
the “frozen core” approximation. In this approximation, only the correlation
energy associated with the valence electrons is calculated. In other words, exci-
tations out of the inner shell (core) orbitals of the molecule are not considered.
The basis of this approximation is that the most significant chemical changes
occur in the valence orbitals and the core orbitals remain essentially intact. On

Table 5.6.1. Structural parameters (in pm and degrees) and vibrational frequencies (in cm−1) of
H2O calculated at various ab initio and DFT levels

Level of theory O–H H–O–H ν1 (A1) ν2 (A1) ν3 (B2)

HF/6-31G(d) 94.7 105.5 1827 4070 4189
MP2(Full)/6-31G(d) 96.9 104.0 1736 3776 3917
MP2(Full)/6-311+G(d,p) 95.9 103.5 1628 3890 4009
B3LYP/6-31G(d) 96.9 103.6 1713 3727 3849
B3LYP/6-311+G(d,p) 96.2 105.1 1603 3817 3922
CISD(FC)/6-31G(d) 96.6 104.2 1756 3807 3926
CCSD(FC)/6-31G(d) 97.0 104.0 1746 3752 3878
QCISD(FC)/6-31G(d) 97.0 104.0 1746 3749 3875
MP4SDTQ(FC)/6-31G(d) 97.0 103.8 1743 3738 3869
CCSD(T)(FC)/6-31G(d) 97.1 103.8 1742 3725 3854
QCISD(T)(FC)/6-31G(d) 97.1 103.8 1742 3724 3853

Experimental 95.8 104.5 1595 3652 3756
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Table 5.6.2. Structural parameters (in pm and degrees) and vibrational frequencies (in cm−1) of
O2F2 calculated at various ab initio and DFT levels

Level of theory O–O O–F F–O–O F–O–O–F Vibrational frequencies

HF/6-31G(d) 131.1 136.7 105.8 84.2 210 556 709 1135 1145 1161
MP2(Full)/6-31G(d) 129.1 149.5 106.9 85.9 210 456 566 657 782 1011
MP2(Full)/6-311+F(d,p) 112.9 185.0 114.7 90.2 112 192 354 496 567 2032
B3LYP/6-31G(d) 126.6 149.7 108.3 86.7 215 481 575 732 787 1125
B3LYP/6-311G+(d,p) 121.6 155.1 109.8 88.4 217 443 528 682 691 1233
CISD(FC)/6-31G(d) 131.8 141.5 105.8 84.8 209 522 647 952 992 1080
CCSD(FC)/6-31G(d) 131.4 147.2 106.2 85.7 202 481 583 761 837 1009
QCISD(FC)/6-31G(d) 127.5 154.1 107.6 86.7 200 475 578 751 823 1006
MP4SDTQ(FC)/6-31G(d) 131.3 147.6 106.4 85.6 196 391 518 599 693 997
CCSD(T)(FC)/6-31G(d) 127.2 154.7 107.8 86.7 190 392 514 616 690 1065
QCISD(T)(FC)/6-31G(d) 128.8 152.8 107.2 86.7 189 386 510 617 688 1074

Experimental 121.7 157.5 109.5 87.5 202 360 466 614 630 1210

the other hand, in one of the methods listed in these tables, MP2(Full), “Full”
indicates that all orbitals, both valence and core, are included in the correlation
calculation.

When these tables are examined, it is found that, for structural parameters,
most theoretical methods yield fair to excellent results when compared to the
experimental data. Also, in general (though not always true), the agreement
between calculated and experimental values improves gradually as we go to
more and more sophisticated methods. On the other hand, it is seen that, for
O2F2, one level of theory, MP2(Full)/6-311+G(d,p), gives highly unsatisfac-
tory results. In particular, the calculated O–F bond (185.0 pm) is about 28 pm
too long, while the O–O bond (112.9 pm) is about 10 pm too short, giving rise
to an erroneous bonding description of Fδ+ . . . δ−O–Oδ− . . . δ+F. Since there
is no way to tell beforehand which method will lead to unacceptable results
for a particular chemical species, it is often advantageous to carry out a series
of calculations to make certain that convergence is attained. In Tables 5.6.1 to
5.6.3, the last five levels of theory give essentially the same results for each
molecule, which lends credence to validity of the calculations. In summary, the
calculated bond lengths can be within ±2 pm of the experimental value, while
the corresponding accuracy for bond angles and dihedral angles is about ±2◦.
For some molecules, their energies may not be very sensitive to the change of
some dihedral angles. In such cases, the calculated dihedral angles may be less
reliable.

Let us now turn our attention to the calculated vibrational frequencies of
H2O, O2F2, and B2H6. First of all, it should be mentioned that the calculation of
these frequencies is a computationally “expensive” task. As a result, high-level
calculations of vibrational frequencies are performed only for relatively small
systems. When the calculated frequencies are examined and compared with
experimental data, it is found that the former are often larger than the latter.
Indeed, after an extensive comparison between calculation and experiment,
researchers have arrived at a scaling factor of 0.8929 for the HF/6-31G(d)
frequencies. In other words, vibrational frequencies calculated at this level are

iranchembook.ir/edu

https://iranchembook.ir/edu


150
Fundam

entalsofBonding
Theory

Table 5.6.3. Structural parameters (in pm and degrees) and vibrational frequencies (in cm−1) of B2H6 calculated at various ab initio and DFT levels

Level of theory B–H∗t B–H†
b Ht–B–Ht Hb–B–Hb Vibrational frequencies

HF/6-31G(d) 118.5 131.5 122.1 95.0 409 828 897 900 999 1071 1126 1193 1286
1303 1834 1933 2067 2301 2735 2753 2828 2843

MP2(Full)/6-31G(d) 118.9 130.9 121.7 96.2 363 842 878 907 970 999 1017 1083 1240
1248 1817 1970 2112 2277 2693 2707 2793 2805

MP2(Full)/6-311+F(d,p) 118.7 131.5 122.3 95.7 360 826 869 902 955 981 1010 1081 1218
1230 1766 1932 2039 2214 2643 2659 2741 2755

B3LYP/6-31G(d) 119.1 131.7 121.9 95.6 354 799 851 889 946 977 1000 1054 1206
1211 1732 1864 2022 2205 2640 2653 2732 2745

B3LYP/6-311G+(d,p) 118.6 131.6 121.9 95.8 358 797 849 894 936 949 992 1022 1190
1199 1701 1845 1980 2166 2598 2611 2686 2701

CISD(FC)/6-31G(d) 119.1 131.2 121.6 96.0 377 841 872 898 968 1018 1019 1094 1235
1245 1815 1945 2092 2268 2678 2694 2774 2786

CCSD(FC)/6-31G(d) 119.4 131.3 121.6 96.1 369 836 862 886 958 1001 1003 1073 1220
1228 1805 1933 2080 2249 2649 2663 2744 2756

QCISD(FC)/6-31G(d) 119.4 131.4 121.6 96.1 369 835 861 885 957 1000 1001 1072 1219
1227 1801 1929 2076 2246 2646 2661 2742 2753

MP4SDTQ(FC)/6-31G(d) 119.4 131.5 121.7 96.1 362 833 862 885 957 987 999 1063 1218
1225 1798 1935 2077 2242 2650 2664 2748 2759

CCSD(T)(FC)/6-31G(d) 119.5 131.5 121.6 96.1 364 830 858 880 953 991 997 1062 1214
1222 1796 1925 2070 2237 2638 2653 2734 2746

QCISD(T)(FC)/6-31G(d) 119.5 131.5 121.6 96.1 363 830 857 880 953 990 997 1062 1214
1222 1795 1924 2069 2236 2637 2652 2733 2745

Experimental 119.4 132.7 121.7 96.4 368 794 833 850 915 950 973 1012 1177
1180 1602 1768 1915 2104 2524 2525 2591 2612

∗Ht, terminal hydrogen
†Hb, bridging hydrogen.
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on the average about 10% too large. On the other hand, the scaling factor for
the MP2(Full)/6-31G(d) frequencies is 0.9661. While this scaling factor is very
close to 1, the absolute discrepancy can still be in the range of 100-200 cm−1, as
some vibrational frequencies, especially those involving the stretching motions
of X–H bonds, have energies of a few thousand wavenumbers.

5.7 Composite methods

It has long been a computational chemist’s goal to have a method at his dis-
posal that would yield energetic values that have “chemical accuracy,” which
translates to an uncertainty of ±1 kcal mol−1, or about ±4 kJ mol−1. Currently,
high-level methods such as QCISD(T), CCSD(T), or MP6 with very large basis
sets may be able to achieve this. However, such calculations are only possible
for very small systems. To get around this difficulty, composite methods that
would allow calculations on systems with a few non-hydrogen atoms have been
proposed.

Since 1990, Pople and co-workers have been developing a series of Gaussian-
n (Gn) methods: G1 in 1989, G2 in 1990, G3 in 1998, and G4 in 2007. In
addition, a number of variants of the G2 and G3 methods have also been pro-
posed. Since G1 did not last very long, and G4 has not yet been widely used,
only G2 and G3 will be discussed here. The G2 method is an approxima-
tion for the level of theory of QCISD(T)/6-311+G(3df,2p). In this method,
instead of directly doing such an expensive calculation, a series of less time-
consuming single-points are carried out and the G2 energy is obtained by
applying additivity rules to the single-points and including various corrections
such as zero-point vibrational energy (ZPVE) correction and empirical “higher
level” correction (HLC). On the other hand, the G3 method is an approximation
for QCISD(T)/G3Large, where G3Large is an improved version of the afore-
mentioned 6-311+G(3df,2p) basis set. Once again, for the G3 method, a series
of single-points are performed (which are less expensive than the G2 single-
points) and various corrections such as ZPVE, HLC, and spin–orbit interaction
(newly included for G3) are taken into account.

To test the accuracy of the G2 method, Pople and co-workers used a set of very
accurate experimental data consisting of 55 atomization energies, 38 ionization
energies, 25 electron affinities, and 7 proton affinities of small molecules. Later,
these workers also proposed an extended G2 test set of 148 gas-phase heats of
formation. For this extended set of data, the average absolute errors for G2 and
G3 are 6.7 and 3.8 kJ mol−1, respectively. Furthermore, it is noted that G3 is
actually less expensive than G2, which shows the importance of designing a
basis set judiciously. Experience indicates that, for systems of up to 10 non-
hydrogen atoms, the expected absolute uncertainty for G2/G3 is about 10 to 15
kJ mol−1.

In addition to the Gaussian-n methods, there is a variety of CBS (complete
basis set) methods, including CBS-Q, CBS-q, and CBS-4, which have also
enjoyed some popularity among computational chemists. In these methods,
special procedures are designed to estimate the complete-basis-set limit energy
by extrapolation. Similar to the Gn methods, single-point calculations are also
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required in the CBS methods. For the aforementioned extended G2 test set of
148 heats of formation, the absolute errors for the CBS-Q, CBS-q, and CBS-4
models are 6.7, 8.8, and 13.0 kJ mol−1, respectively.

Another series of composite computational methods, Weizmann-n (Wn), with
n = 1–4, have been recently proposed by Martin and co-workers: W1 and W2
in 1999 and W3 and W4 in 2004. These models are particularly accurate for
thermochemical calculations and they aim at approximating the CBS limit at
the CCSD(T) level of theory. In all Wn methods, the core–valence correlations,
spin–orbit couplings, and relativistic effects are explicitly included. Note that
in G2, for instance, the single-points are performed with the frozen core (FC)
approximation, which was discussed in the previous section. In other words,
there is no core–valence effect in the G2 theory. Meanwhile, in G3, the core–
valence correlation is calculated at the MP2 level with a valence basis set. In
the Wn methods, the core–valence correlation is done at the more advanced
CCSD(T) level with a “specially designed” core–valence basis set.

In the W3 and W4 methodologies, connected triple and quadruple corre-
lations are incorporated in order to correct the imperfection of the CCSD(T)
wavefunction. As a result, the very sophisticated W3 and W4 methods are only
applicable to molecular systems with no more than three non-hydrogen atoms.
For the extended G2 test set, the uncertainty for W1 is ±1.98 kJ mol−1. On the
other hand, for the original G2 test set, the absolute errors for the W2 and W3
methods are 1.50 and 0.89 kJ mol−1, respectively. Tested with a very small test
data set consisting of 19 atomization energies, the respective absolute errors for
the W2, W3, W4a, and W4b methods are 0.96, 0.64, 0.60, and 0.71 kJ mol−1,
where W4a and W4b are two variants of the W4 method.

Before presenting some case examples, we note that ab initio calculations
are usually carried out for individual molecules (or ions or radicals). Hence,
strictly speaking, theoretical results should only be compared with gas-phase
experimental data. Cautions should be taken when computational results are
compared with data obtained from experiments in the solid state, liquid or
solution phase.

5.8 Illustrative examples

In the foregoing discussion, the computational methods currently being used
are very briefly introduced. Indeed, in most cases, only the language and ter-
minology of these methods are described. Despite this, we can now use a few
actual examples found in the literature to see how computations can complement
experiments to arrive at meaningful conclusions.

5.8.1 A stable argon compound: HArF

Up to the year of 2000, no compound of helium, neon, or argon was known.
However, that did not discourage theoretical chemists from nominating can-
didate compounds to the synthetic community. In a conference in London in
August 2000, there were two poster papers with the following intriguing titles:
“Prediction of a stable helium compound: HHeF” by M. W. Wong and “Will
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HArF be the first observed argon compound?” by N. Runeberg and co-workers.
The formal paper by Wong was published in July 2000, which includes the cal-
culated bond lengths of the linear triatomics HHeF, HNeF, and HArF, as well as
the vibrational frequencies of these molecules. Interestingly, one month later,
Runeberg and co-workers published an experimental article reporting the detec-
tion of HArF. This compound was made by the photolysis of HF in a solid argon
matrix and then characterized by infrared spectroscopy. It was found that the
measured vibrational frequencies were in good agreement with the calculated
ones. One year later, calculations of still higher quality on HArF were reported
by the Runeberg group.

Before discussing the computational results in more details, let us first con-
sider the bonding of HArF in elementary and qualitative terms. In hindsight,
it is perhaps not very surprising that HArF should be a stable molecule, espe-
cially since analogous Kr- and Xe-containing compounds are known to exist. In
any event, the bonding of HArF may be understood in terms of a three-center
four-electron (3c–4e) bond, as shown in Fig. 5.8.1. In this figure, it is seen
that the 1s orbital of H and the 2p orbitals of Ar and F combine to form three
molecular orbitals: σ , σ n, and σ ∗, with bonding, nonbonding, and antibonding
characteristics, respectively. Also, the two lower molecular orbitals are filled
with electrons, leading to a 3c–4e bond for this stable molecule.

Let us now consider the calculated results. The calculated bond lengths
of HArF are summarized in Table 5.8.1, while the calculated vibrational
frequencies, along with the experimental data, are listed in Table 5.8.2.

Examining the results given in these two tables, it is seen that, for this
small molecule, very advanced calculations can be carried out. In the tables,
all the methods employed have been introduced in the previous sections. For
the basis sets, aug-cc-pVnZ stands for augmented correlation consistent polar-
ized valence n zeta, with n = 2–5 referring to double, triple, quadruple, and
quintuple, respectively. Clearly, these basis functions are specially designed for
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+ +

+
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σn

σ*–

–

Ar F

Fig. 5.8.1.
The 3c–4e bond in HArF.

Table 5.8.1. Calculated structural parameters (in pm) of HArF

Method Basis set H–Ar Ar–F

CCSD cc-pVTZ 133.4 196.7
CCSD(T) aug-cc-pVDZ 136.7 202.8
CCSD(T) aug-cc-pVTZ 133.8 199.2
CCSD(T) aug-cc-pVQZ 133.4 198.0
CCSD(T) aug-cc-pV5Z 132.9 196.9
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Table 5.8.2. Calculated and experimental vibrational frequencies (in cm−1) of HArF

Method Basis set ν(Ar–F) δ (H–Ar–F) ν(Ar–H)

MP2 aug-cc-pVDZ 458 706 2220
CCSD cc-pVTZ 488 767 2.60
CCSD(T) aug-cc-pVDZ 461 674 1865
CCSD(T) aug-cc-pVTZ 474 725 2053
CCSD(T) aug-cc-pVQZ 480 729 2097
CCSD(T)∗ aug-cc-pVQZ 463 686 1925
Experimental 435.7 687.0 1969.5

∗ Corrected for anharmonicity and matrix effects.

correlated calculations. The bond lengths listed in Table 5.8.1 are very consis-
tent with one another and they should be reliable estimates. Meanwhile, as can
be seen from the results in Table 5.8.2, the only physical data of the molecule,
the vibrational frequencies, are in good accord with the calculated results, thus
leading us to believe that this is indeed a linear molecule. Furthermore, accord-
ing to these calculations, HArF should be stable in the gas phase as well. This
awaits experimental confirmation.

As far as charge distribution is concerned, the charges on H, Ar, and F have
been estimated to be 0.18, 0.66, and −0.74 a.u., respectively. This indicates a
significant charge transfer from the F atom to the ArH moiety. In other words,
the bonding of this molecule may be portrayed by the ionic description of
HArδ+Fδ−. The calculations of both groups also report the reaction profile of
the dissociation reaction HArF → Ar + HF. Both calculations agree that the
transition state of this reaction has a bent structure, with H–Ar–F angle of
about 105◦. The barriers of dissociation calculated by Wong and Runeberg and
co-workers are 96 and 117 kJ mol−1, respectively. These results indicate that
HArF is trapped in a fairly deep potential well. Similarly, Wong reported that,
for HHeF, the barrier of dissociation is about 36 kJ mol−1. While this potential
is not as deep as that of HArF, it is still not insignificant. This may provide an
incentive for experimentalists to prepare this compound.

To conclude, HArF represents one of those rare examples for which
calculations preceded experiment. In addition, it nicely demonstrates that com-
putational results can play an indispensable role in the characterization and
understanding of small molecules.

5.8.2 An all-metal aromatic species: Al2−4

Benzene (CH)6, of course, is the most prototypal aromatic system. When one
or more of the CH groups are replaced by other atom(s), a heterocyclic aro-
matic system is obtained. Well-known examples include pyridine N(CH)5 and
pyrimidine N2(CH)4, while lesser known cases are phosphabenzene P(CH)5
and arsabenzene As(CH)5. There are also systems where the heteroatom is a
heavy transition metal; examples include LnOs(CH)5 and LnIr(CH)5.

However, it is rare when all the atoms in an aromatic species are metals. One
such system was synthesized in 2001 byA. I. Boldyrev and L.-S. Wang and their
colleagues. Using a laser vaporization supersonic cluster source and a Cu/Al
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alloy as the target, these scientists were able to produce the anion CuAl−4 . Sim-
ilarly, when Al/Li2CO3 and Al/Na2CO3 were used as targets, anions LiAl−4 and
NaAl−4 were prepared, respectively. After these anions were synthesized, their
vertical detachment energies (VDEs) were measured by photoelectron spec-
troscopy. As its name implies, VDE is simply the energy required to detach an
electron from a bonding orbital of a species and, during the ionization process,
the structure of the species remains unchanged. Subsequently, the VDE data
were analyzed with the aid of ab initio calculations.

Before discussing the computational results, we will attempt to understand
the bonding involved in the synthesized anions, using the elementary theories
introduced in Chapter 3. First of all, it should be noted that the aromatic system
referred to above is not the MAl−4 anion as a whole. Instead, structurally, the
MAl−4 anion should be considered as consisting of an M+ cation coordinated
to a square-planar Al2−4 unit and it is the dianion that has aromatic character.
For Al2−4 , there are 14 valence electrons and the resonance structures can be
easily written:
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•
•

Al Al

AlAl

•

•

•
• Al Al

AlAl
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In other words, for this square-planar dianion, there are four σ bonds and one
π bond, as well as two lone pairs. Hence each Al–Al linkage has a bond order
of about 11/4. Additionally, there are two π electrons in this planar ring system,
satisfying the (4n + 2)-rule for aromatic species.

Now let us turn to the computational results. The structures of the square
planar Al2−4 , and square pyramidal LiAl−4 , NaAl−4 and CuAl−4 are shown in
Fig. 5.8.2. It is noted that the structure of CuAl−4 has been optimized at the
MP2/6-311+G(d) level, while the theoretical level for the remaining three
species is CCSD(T)/6-311+G(d). When these structures are examined, it is seen
that the four-membered ring does not undergo significant structural change upon
coordination to a M+ cation. This is especially true when the metal is lithium

Li

283

260

Al Al Al

LiAl4
– NaAl4

– CuAl4
–

Na

315

260

Cu
244

269

Al4
2– HOMO of Al4

2–

258
Fig. 5.8.2.
Optimized structures (with bond lengths
in pm) of LiAl−4 , NaAl−4 , CuAl−4 , and

Al2−4 , and the HOMO of Al2−4 .
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Table 5.8.3. Experimental and calculated vertical electron detachment energies (VDEs, in kJ
mol−1) for LiAl−4 , NaAl−4 , and CuAl−4

Species VDE (experimental) VDE∗ (calculated) Molecular orbital involved

LiAl−4 207.4 ± 5.8 201.7 3a1
212.3 ± 5.8 209.4 1b1
272.1 ± 7.7 259.5 2a1
298.1 ± 3.9 286.6 1b2

NaAl−4 196.8 ± 4.8 185.3 3a1
201.7 ± 4.8 197.8 1b1
260.5 ± 4.8 243.1 2a1
285.6 ± 4.8 275.9 1b2

CuAl−4 223.8 ± 5.8 223.8 2b1
226.7 ± 5.8 230.6 4a1
312.6 ± 8.7 323.2 2b2
370.5 ± 5.8 352.2 3a1

∗ VDE’s are calculated at the theoretical level of OVGF/6-311+G(2df), based on the structures shown in
Fig. 5.8.2.

or sodium. When M+is Cu+, there is a change of 0.11 Å in the Al–Al bond
lengths. Such a relative large change may be due to the fact that Cu+ is bigger
than Li+ or Na+; it may also be due to the fact that the structure of CuAl−4 is
optimized at a different theoretical level. In any event, the optimized structures
of these four species support the argument that Al2−4 is an aromatic species.
Also shown in Fig. 5.8.2 is the HOMO of Al2−4 , which is very similar to the
most stable π molecular orbital of benzene shown in Fig. 7.1.12. The only dif-
ference is that benzene is a six-membered ring, while Al2−4 is a four-membered
ring. Also, while benzene has two more filled delocalized π molecular orbitals
(making a total of three to accommodate its six π electrons), Al2−4 has only one
delocalized π molecular orbital for its two π electrons.

The calculated and experimental VDEs of LiAl−4 , NaAl−4 , and CuAl−4 are
summarized in Table 5.8.3. The calculated VDEs have been obtained using the
outer valence Green function (OVGF) method with the 6-311+G(2df) basis,
based on the structures shown in Fig. 5.8.2. The OVGF model is a relatively
new method designed to calculate correlated electron affinities and ionization
energies. As seen from the table, the agreement between the calculated results
and the experimental data is, on the whole, fairly good. Such an agreement is
in support of the proposed square-pyramidal structure for the MAl−4 anions.
The notation for the molecular orbitals shown in the table will be discussed in
Chapters 6 and 7.

5.8.3 A novel pentanitrogen cation: N+
5

Even though nitrogen is a very common and abundant element, there are very
few stable polynitrogen species, i.e., those compounds containing only nitrogen
atoms. Among the few known examples, dinitrogen, N2, isolated in 1772, is
the most familiar. Another one is the azide anion, N−3 , which was discovered in
1890. Other species such as N3 and N4, as well as their corresponding cations,
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N+
3 and N+

4 , have been observed only as free gaseous or matrix-isolated ions
or radicals. The only polynitrogen species synthesized on a macroscopic scale
thus far is the pentanitrogen cation N+

5 by Christe and co-workers in 1999.
Before discussing N+

5 , maybe we should ask why polynitrogen species are so
interesting. It is noted that the bond energy of the N≡N triple bond (in N2, 942
kJ mol−1) is much larger than those of the N–N single bond (160 kJ mol−1)

and the N==N double bond (418 kJ mol−1). In other words, any dissociation
of a polynitrogen species to N2 molecules will be highly exothermic. Hence,
polynitrogen compounds are potential high-energy density materials (HEDM),
which, by definition, have high ratios between the energy released in a frag-
mentation reaction and the specific weight. Clearly, HEDM have applications
as explosives and in rocket propulsion.

The first synthesis of a N+
5 compound was accomplished in the following

straightforward manner:

N2F+AsF−6 + HN3
HF−−−−−−→

−78◦C
N+

5 AsF−6 + HF.

In the authors’ words, the product “N+
5 AsF−6 is a highly energetic, strongly

oxidizing material that can detonate violently.” Upon synthesizing the com-
pound, low-temperature Raman (−130◦C) and infrared (−196◦C) spectra were
recorded, and high-level ab initio calculations were performed in order to
determine the structure of the cation and to make assignments of the spectra.

The structure of the N+
5 cation, optimized at the CCSD(T)/6-311+G(2d)

level, is shown in Fig. 5.8.3. This structure is V-shaped, having two short termi-
nal bonds and two longer inner bonds. With such a structure, it is not difficult
to visualize a simple bonding description for the cation. In this bonding pic-
ture, which is also shown in the same figure, the hybridization scheme for the
central N atom is sp2, while that for its neighboring nitrogen atoms is sp. For
the central atom, the exo sp2 hybrid and the pz orbital are filled by four valence
electrons, while the remaining two sp2 hybrids interact with two terminal N2
units to complete the bonding scheme. Based on such a description, we can
quickly write down the following resonance structures for the N+

5 cation:

N
+N

N

N+ +N N+ +N N+

N⋅⋅ ⋅⋅

⋅⋅⋅⋅
- N

N N⋅⋅ ⋅⋅

⋅⋅

-
⋅⋅

N

N N

⋅⋅

⋅⋅ ⋅⋅
⋅⋅-

N

N
N

N
N

sp2

sp2

sp2

pz

∆Hf298 = 1463 kJ mol−1

112

+

133

108.3

166.4
Fig. 5.8.3.
Optimized V-shape structure (bond
lengths in pm and bond angles in
degrees) of N+

5 , and its bonding scheme.
The heat of formation is calculated at the
G3 level.
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Table 5.8.4. Raman and infrared bands (in cm−1) of N+
5

(in solid N+
5 AsF−6 ) and their assignments based on calculated

harmonic frequencies (in cm−1) of gaseous N+
5

Raman Infrared Assignment Calculated∗

2271 2270 ν1(A1) 2229
2211 2210 ν7(B2) 2175

— 1088 ν8(B2) 1032
871 872 ν2(A1) 818
672 — ν3(A1) 644
— — ν5(A2) 475
— 420 ν6(B1) 405
— — ν9(B2) 399
209 — ν4(A1) 181

∗ At the theoretical level of CCSD(T)/6-311+G(2d). The group-
theoretic notation of the vibrational spectra will be made clear in
Chapters 6 and 7.

While the three resonance structures may not be of equal importance, it is safe
to say that the two terminal N–N bonds have a bond order between 2 and 3, and
the remaining two bonds are somewhere between a single bond and a double
bond. The optimized bond lengths are in good accord with this description. If,
for simplicity, we consider only these three resonance structures and assume
they contribute equally, the bond orders of the outer and inner N–N bonds are
22/3 and 11/3, respectively.

Based on the optimized structure, the harmonic vibrational frequencies of N+
5

have been calculated at the CCSD(T)/6-311+G(2d) level, and these results are
listed in Table 5.8.4, along with the experimental data. Comparing the exper-
imental and calculated results, we can see that there is fairly good agreement
between them, bearing in mind that the calculations are done on individual
cations and experimental data are measured in the solid state. Such an agreement
lends credence to the structure optimized by theoretical methods.

Before leaving this novel cation, it is of interest to point out that in the
literature, four more structures (optimized at the MP2/6-31G(d) level) have
been considered for the N+

5 cation, and these are shown in Fig. 5.8.4. However,
as can be seen from the G3 heats of formation listed in Figs. 5.8.3 and 5.8.4
for these five isomers, the V-shaped isomer is by far the most stable. The other
four isomers are much less stable by about 500 to 1,000 kJ mol−1.

5.8.4 Linear triatomics with noble gas–metal bonds

Since the turn of the present century, a series of linear complexes with the
general formula NgMX (Ng =Ar, Kr, Xe; M = Cu, Ag, Au; X = F, Cl, Br) have
been prepared and characterized by physical methods. These complexes were
prepared by laser ablation of the metal from its solid and letting the resulting
plasma react with the appropriate precursor. The complexes formed were then
stabilized in a supersonic jet of argon gas. Characterization of these complexes
was carried out mainly by microwave spectroscopy.
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∆Hf298 = 1943 kJ mol−1
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147.3

x

Fig. 5.8.4.
Optimized structures (bond lengths in pm
and bond angles in degrees) and G3 heats
of formation of four other N+

5 isomers.

The linear structure of NgMX is found to be rigid with small centrifugal
distortion constants. (A molecule’s centrifugal distortion constant is a measure
of its flexibility, and this quantity may be determined from its microwave spec-
trum.) The Ng–M bond lengths are fairly short, and they range from ∼225 pm
for Ar–Cu,∼245 pm for Ar–Au,∼260 pm for Ar–Ag,∼265 pm for Kr–Ag, etc.
In addition, based on the centrifugal distortion constants, the Ng–M stretching
frequencies can be estimated and they are found to be above 100 cm−1. Sum-
marized in Table 5.8.5 are the experimental and calculated Ng–M bond lengths
and stretching frequencies as well as force constants and computed electronic
dissociation energies for the Ng–M bonds in NgMX complexes. The calculated
results were obtained at the MP2 correlated level. The basis set used for F was
6-311G(d,p) and those for the remaining elements were of comparable quality
(such as triple zeta sets). In the following paragraphs we shall discuss these
results in some detail from four different, yet interconnected, perspectives.

(1) Ng–M bond lengths
Comparing the experimental and calculated Ng–M bond lengths tabulated in
Table 5.8.5, it is seen that the ab initio methods adopted do reproduce this
quantity very well. In order to obtain a better understanding of the nature of the
Ng–M bonds, let us compare these bond lengths with values estimated from
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Table 5.8.5. Experimental and calculated (in brackets) Ng–M bond lengths and
stretching frequencies ν as well as computed electronic dissociation energies De
for the Ng–M bonds in NgMX complexes

NgMX Ng–M (pm) ν(Ng–M) (cm−1) ν(M–X) (cm−1) De(kJ mol−1)

ArCuF 222 (219) 224 (228) 621 (674) 44
ArCuCl 227 (224) 197 (190) 418 (456) 33
ArCuBr 230 (226) 170 (164) 313 (350) —
KrCuF 232 (232) (185) — 48
ArAgF 256 (256) 141 (127) 513 (541) 14
ArAgCl 261 (259) 135 (120) 344 (357) 16
KrAgF 259 (260) 125 (113) 513 (544) 17
KrAgCl 264 (263) 117 (105) 344 (352) 15
KrAgBr 266 (269) 106 (89) 247 (255) 17
XeAgF 265 (268) 130 — 43
ArAuF 239 (239) 221 (214) 544 (583) 55
ArAuCl 247 (246) 198 (184) 383 (413) 42
ArAuBr 250 (249) 178 (165) 264 (286) —
KrAuF 246 (245) 176 (184) 544 58
KrAuCl 252 (251) 161 (163) 383 (409) 44
XeAuF 254 (255) 169 (165) — 97

standard parameters such as van der Waals radius (rvdW), ionic radius (rion), and
covalent radius (rcov). For instance, we may take the sums rcov(Ng) + rcov(MI)

as a covalent limit and rvdW(Ng) + rion(M+) as a van der Waals limit.
Among the NgMX complexes, the Ar–Ag bond length is closer to the van

der Waals limit than the covalent limit: the Ar–Ag bond lengths in ArAgX
range from 256 to 264 pm, while the rvdW(Ar) + rion(Ag+) sum is 269 pm and
the rcov(Ar) + rcov(AgI) sum is 226 pm. At the other end of the spectrum, the
Xe–Au bond length (254 pm) in XeAuF is very close to the covalent limit: the
rcov(Xe) + rcov(AuI) sum is 257 pm, while the van der Waals limit of rvdW(Xe) +
rion(Au+) is much longer at 295 pm. Summarizing all the results for all the
NgMX complexes, it may be concluded that covalent character increases in the
orders of Ar < Kr < Xe and Ag < Cu < Au.

(2) Stretching frequencies
The small centrifugal distortion constants (4 to 95 kHz) of the NgMX complexes
are consistent with the high rigidity of their linear skeleton. These constants cor-
relate well with the short Ng–M bond lengths, implying strong Ng–M bonding.
They also lead to high Ng–M stretching vibrational frequencies, all of which
exceed 100 cm−1. The Ng–M and M–X frequencies calculated with the MP2
method agree fairly well with the experimental data, as shown in Table 5.8.5.

When the Ng–M stretching force constants of the NgMX complexes listed
in Table 5.8.5 are examined, it is seen that these values are approximately half
of that for the bond stretching vibration of KrF2, ranging from 30 N m−1 for
ArAgBr (recall that the Ar–Ag bond length in ArAgX is near the “van der Waals
limit”) to 137 N m−1 for XeAuF (whose Xe–Au bond length is essentially at the
“covalent limit”). In comparison, the corresponding value for Ar–NaCl, which
may be considered as a benchmark van der Waals complex, is 0.6 N m−1. Thus
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in this respect the Ng–M bonding in NgMX is considerably stronger than typical
van der Waals interaction.

(3) Electronic dissociation energies
As shown in Table 5.8.5, the calculated Ng–M dissociation energies cover a
rather wide range, from 14 kJ mol−1 in Ar–AgF to 97 kJ mol−1 in Xe–AuF.
In comparison, for the aforementioned van der Waals complex Ar–NaCl, the
corresponding value for the Ar–Na bond is estimated to be 8 kJ mol−1. Also,
the mean Kr–F and Xe–F bond energies in KrF2 and XeF2 are 49 and 134 kJ
mol−1, respectively.

It is instructive to compare the Ng–M bond energies with purely electrostatic
induction energies such as dipole-induced dipole and charge-induced dipole
interactions. Without going into the computational details, we simply note that
the dipole-induced dipole energy is∼35% of the charge-induced dipole interac-
tion. Furthermore, for NgAuF complexes, the charge-induced dipole interaction
is ∼10% of the dissociation energy, while the corresponding value for NgCuF
and NgAgF complexes is∼60%. In comparison, for the “typical” van der Waals
complex Ar–NaCl, the charge-induced dipole interaction exceeds its dissocia-
tion energy. Based on these results, it may be concluded that, in NgCuF and
NgAgF complexes, the Ng–M bonds are unlikely to be electrostatic in nature.
For NgAuF complexes, particularly for XeAuF, the Xe–Au bond is almost
certainly not electrostatic.

(4) Electronic distribution of the Ng–M bond
We can also obtain some idea about the nature of the Ng–M bond by studying
the electronic distribution in the complexes. For KrAuF, there is a σ -donation
of 0.21 electron from Kr to AuF accompanied by a smaller π -donation. A com-
parable result is also found for KrAuCl, while the corresponding values for
ArAuF and ArAuCl are 0.12–0.14 electron. For NgAgX complexes, the calcu-
lated donation from Ng to AgX is significantly less, about 0.06–0.07 electron.
For XeAuF, the complex with the largest dissociation energy so far, the cor-
responding donation is about 0.26 electron. For XeAgF, the donation is ∼0.1
electron less than that in XeAuF. So the “interaction strength” in these com-
plexes once again follows the trends mentioned previously: Ar < Kr < Xe and
Ag < Cu < Au.

In summary, the physical properties of the NgMX complexes may vary quan-
titatively, but these properties remain remarkably similar qualitatively as we go
from one complex to the next. For instance, all complexes feature a short,
rigid Ng–M bond with stretching frequency above 100 cm−1. Also, the Ng–
M dissociation energies is relatively large, and there is noticeable electronic
rearrangement upon the formation of the Ng–M bond. Neither the dissociation
energies nor the electronic re-distribution upon bond formation can be fully
accounted for by electrostatic interaction alone. For XeAuF, the complex with
the largest interaction strength, it is fairly certain that the Xe–Au bond is cova-
lent in nature. At the same time, we may also conclude that there is Ng–M
chemical bonding, to a greater or lesser degree, in all the remaining NgMX
complexes.
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Before leaving the NgMX complexes and the compound HArF introduced in
Section 5.8.1, it is noted that a fuller discussion on the chemistry of noble gases
may be found in Section 17.5, including a subsection on gold–xenon complexes
in Section 17.5.6.

With reference to the four examples given in this section, each literature
article describing the preparation of the relevant compound(s) also includes
a computational section reporting the calculated results, which are used to
interpret the experimental data obtained by various physical methods. Clearly,
computation has become a very common tool to the experimentalists, not much
different from an infrared spectrophotometer or a mass spectrometer. Another
point worth noting is that, while high-level calculations can give us a more
detailed bonding description, in the examples shown here, we can make use of
the simple concepts introduced in Chapters 2 and 3, such as Lewis electron-pair,
σ and π bonds, hybridization schemes, resonance theory, ionic radii, cova-
lent radii, and van der Waals radii, to obtain a qualitative, but useful, bonding
description of the novel molecular species.

5.9 Software packages

Currently there are numerous software packages that perform the ab initio or
DFT calculations introduced in this section. Most of these programs are avail-
able commercially, but there are a few distributed to the scientific community
free of charge. Some popular programs are briefly described below, and the list
is by no means exhaustive.

(1) Gaussian (http://www.gaussian.com): This is probably the most popular
package around. It was first released in 1970 as Gaussian 70 and the latest
version is Gaussian 03, issued in 2003. It does essentially every type
of ab initio, DFT, and semi-empirical methods and it is easy to use. Its
popularity is well earned.

(2) Gamess (http://www.msg.ameslab.gov/GAMESS): This is another pop-
ular package and it is available free of charge. It is able to calculate
molecular properties at various correlated levels, but it requires a good
understanding of the theories.

(3) MOLPRO (http://www.molpro.net): This program is highly optimized for
CCSD calculations and it has a special input format which allows the user
to define sophisticated computational steps.

(4) SPARTAN (http://www.wavefun.com): This is a very user-friendly pro-
gram and it is popular among experimental organic and organometallic
chemists. Most of the calculations beyond HF level are carried out by a
modified Q-Chem (see below) package that comes with SPARTAN.

(5) Q-Chem (http://www.q-chem.com): This commercial package is able to
perform energy calculations and geometry optimizations at ground state
and excited states at various ab initio and DFT levels. It also performs
calculations of NMR chemical shifts, solvation effects, etc.

(6) NWChem (http://www.emsl.pnl.gov/docs/nwchem/newchem.html): This
program is free of charge for faculty members or staff members of
academic institutions.
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(7) MQPC (http://www.mqpc.org): This program is also available free of
charge and its source code is accessible for modification by users.

(8) MOPAC 2000 (http://www.schrodinger.com/Products/mopac.html): This
commercial package is mainly for semi-empirical calculations.

(9) AMPAC (http://www.semichem.com/ampac/index.html): This is another
commercial package for semi-empirical calculations.

(10) HyperChem (www.hyper.com): This is an inexpensive PC-based package
for molecular modeling and visualization.
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IISymmetry in Chemistry

In the study of the structure and properties of molecules and crystals, the
concept of symmetry is of fundamental importance. Symmetry is an abstract
concept associated with harmony and balance in nature or in social relationship.
Yet in chemistry this ever-evolving concept does have a very practical role to
play.

The main advantage of studying the symmetry characteristics of a chemical
system is that we can apply symmetry arguments to solve physical problems
of chemical interest. Specifically, we utilize a mathematical tool called group
theory to simplify the physical problem and to yield solutions of chemical
significance. The advantage of this method becomes more obvious when the
symmetry of the chemical system increases. Quite often, for highly symmetric
molecules or crystals, very complex problems can have simple and elegant
solutions. Even for less symmetric systems, symmetry arguments can lead to
meaningful results that cannot be easily obtained otherwise.

Before applying group theory, we need to recognize the symmetry properties
of a chemical system. For individual molecules, we only need to consider the
symmetry of the species itself, but not the symmetry that may exist between the
species and its neighbors. In trying to determine the symmetry of a molecule,
we need to see whether it has any symmetry elements, which are defined as
geometrical entities such as an axis, a plane, or a point about which symmetry
operations can be carried out. A symmetry operation on a molecule may be
defined as an exchange of atoms in the molecule about a symmetry element
such that the molecule’s outward appearance, including orientation and loca-
tion, remains the same after the exchange. Chapters 6 and 7 discuss molecular
symmetry and elementary group theory, as well as chemical applications of
group theory. In Chapter 8, the coordination bond is described, again with sym-
metry and group theory playing an important role. Also, the presentation of
group theory in these chapters is informal and includes many illustrations and
examples, while essentially all the mathematical derivations are omitted.

In contrast to discrete molecules, crystals have a lattice structure exhibit-
ing three-dimensional periodicity. As a result, we need to consider additional
symmetry elements that apply to an infinitely extended object, namely the
translations, screw axes, and glide planes. Chapters 9 and 10 introduce the
concept and nomenclature of space groups and their application in describing
the structures of crystals, as well as a survey of the basic inorganic crystalline
materials.
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6Symmetry and Elements
of Group Theory

In this chapter, we first discuss the concept of symmetry and the identification
of the point group of any given molecule. Then we present the rudiments of
group theory, focusing mainly on the character tables of point groups and their
use.

6.1 Symmetry elements and symmetry operations

Symmetry is a fundamental concept of paramount importance in art, mathemat-
ics, and all areas of natural science. In the context of chemistry, once we know
the symmetry characteristics (i.e., point group) of a molecule, it is often possible
for us to draw qualitative inferences about its electronic structure, its vibrational
spectra, as well as other properties such as dipole moment and optical activity.

To determine the symmetry of a molecule, we first need to identify the sym-
metry elements it may possess and the symmetry operations generated by these
elements. The twin concepts of symmetry operation and symmetry element are
intricately connected and it is easy to confuse one with the other. In the follow-
ing discussion, we first give definitions and then use examples to illustrate their
distinction.

A symmetry operation is an atom-exchange operation (or more precisely, a
coordinate transformation) performed on a molecule such that, after the inter-
change, the equivalent molecular configuration is attained; in other words, the
shape and orientation of the molecule are not altered, although the position of
some or all of the atoms may be moved to their equivalent sites. On the other
hand, a symmetry element is a geometrical entity such as a point, an axis, or
a plane, with respect to which the symmetry operations can be carried out. We
shall now discuss symmetry elements and symmetry operations of each type in
more detail.

H H
O

C2

(C2v)

Fig. 6.1.1.
The C2 axis in H2O.

H H
H

N

C3

(C3v)

Fig. 6.1.2.
The C3 axis in NH3.

6.1.1 Proper rotation axis Cn

This denotes an axis through the molecule about which a rotation of 360◦/n
can be carried out. For example, in H2O the C2 axis is a symmetry element
(Fig. 6.1.1), which gives rise to the symmetry operation C2. (In this book all
symmetry operations will be indicated in bold font.) Meanwhile, NH3 has a
symmetry element C3 (Fig. 6.1.2), but now there are two symmetry operations
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Fig. 6.1.3.
Two orientations of CH4 showing the
directions of the C3 and C2 axes.

H

H

H
(Td)

H
C

C3

H

H

H

H
C

C2

Fig. 6.1.4.
Two views of SF6 showing the C4 and
C3 axes. In the figure on the right, the C3
axis is perpendicular to the paper and
passes through the S atom. In both
figures, a secondary C2 axis (the same
one!) is also shown.

5 5

4
4

C2
C2

C4

2 2

6
6

F3 3

(Oh)

1
1

S

generated by this element: a rotation of 120◦ and another of 240◦. Sometimes it
is easy to identify the Cn axis in a molecule (as in the cases of H2O and NH3),
and sometimes it is not. To clearly see one particular rotational axis, often it is
advantageous to draw the molecule in a certain orientation. Figure 6.1.3 shows
CH4 in two orientations; for one it is easy to see the C3 axis, and for the other
the C2 axis. Similarly, Fig. 6.1.4 shows SF6 in two orientations, one for the C4
axis and the other for the C3 axis. Cyclohexane has one C3 axis and three C2
axes perpendicular to it; these are clearly shown in Fig. 6.1.5. In this molecule,
the C3 axis is called the principal symmetry axis.

Fig. 6.1.5.
Two views of cyclohexane showing the
principal C3 axis (perpendicular to the
paper in the figure on the right) and three
secondary C2 axes. In the figure on the
right, the + and − signs label the C
atoms lying above and below the mean
plane of the molecule, respectively.

C3

C2

(D3d)

+

+

+
–

– –

C2

C2

6.1.2 Symmetry plane σ

This denotes a plane through the molecule, about which a reflection operation
may be carried out. The symbol σ originates from the German word Spiegel,
which means a mirror. In H2O (Fig. 6.1.1), when one of the hydrogen atoms is
substituted by its isotope D, the C2 axis no longer exists. However, the molecular
plane is still a symmetry plane.

Symmetry (or mirror) planes may be further classified into three types. First,
there are the vertical planes σv whose common intersection constitutes the rota-
tion axis Cn. For example, it is obvious that there are twoσv’s in H2O (Fig. 6.1.1)
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and three σv’s in NH3 (Fig. 6.1.2). Generally speaking, for a molecule with a
rotational axis Cn, the identification of one σv necessarily implies the presence
of n σv’s.

Secondly, there is the horizontal plane σh which lies perpendicular to the
principal axis Cn. Examples are given in Figs. 6.1.6 and 6.1.7. Note that some
highly symmetric molecules have more than one σh; for instance, octahedral
SF6 has three σh’s that are mutually orthogonal to one another.

N N

F

F
(C2h)

Fig. 6.1.6.
The molecular plane in trans-N2F2 is a
σh.

(C3h)

Fig. 6.1.7.
The plane containing all carbon atoms in
all-trans-1,5,9-cyclododecatriene is a σh.

Lastly, in molecules with a principal rotational axis Cn and n secondary C2
axes perpendicular to it, sometimes there are additionally n vertical planes which
bisect the angles formed between the C2 axes. These vertical planes are called
σd, or dihedral planes. In cyclohexane, there are three σd’s, each lying between
a pair of C2 axes (Fig. 6.1.5). It should be noted that sometimes σv’s and σd’s
cannot be differentiated unambiguously. For example, in BrF−4 (Fig. 6.1.8), in
addition to the principal C4 axis, there are four C2 axes perpendicular to C4,
and four vertical planes containing the C4 axis. By convention, the two C2
axes passing through the F atoms are called C ′2, while those which do not pass
through the F atoms are the C ′′2 axes. Furthermore, the vertical planes containing
the C ′2 axes are called σv’s, while those containing the C ′′2 axes are σd’s. In group
theory, it can be shown that the C ′2 axes form a class of symmetry operations.
Other distinct classes are composed of the C ′′2 axes, the σv’s, and the σd’s.

6.1.3 Inversion center i

The inversion operation is carried out by joining a point to the inversion cen-
ter (or center of symmetry) and extending it an equal distance to arrive at
an equivalent point. Molecules which possess an inversion center are termed
centrosymmetric. Among the eight examples given so far, SF6 (Fig. 6.1.4),
cyclohexane (Fig. 6.1.5), trans-N2F2 (Fig. 6.1.6), and BrF−4 (Fig. 6.1.8) are
centrosymmetric systems. Molecules lacking an inversion center are called
non-centrosymmetric.

6.1.4 Improper rotation axis Sn

This denotes an axis about which a rotation-reflection (or improper rotation)
operation may be carried out. The rotation-reflection operation Sn involves a

σd

Br

F

C2',σv

C2',σv
C2"

(D4h)

C2",σd

Fig. 6.1.8.
The C′2 and C′′2 symmetry axes in BrF−4 .
By convention, the symmetry planes
containing the C′2 axes are designated as
σv’s, while those containing C′′2 are the
σd’s.
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Fig. 6.1.9.
The S6 operation in ethane.

S6

C6

C6
σσ

σ

rotation of the molecule by 360◦/n about the improper rotation axis Sn, which
is followed by a reflection of all atoms through a plane perpendicular to the Sn
axis. Note that the rotation-reflection operation Sn can be carried out in either
order, i.e., Sn = Cnσ = σCn. An example of the S6 operation in ethane is
shown in Fig. 6.1.9. Now it is obvious that the three C2 axes in CH4 (Fig. 6.1.3)
coincide with the corresponding S4 axes, the C4 and C3 axes in SF6 (Fig. 6.1.4)
are S4 and S6 axes, respectively, and the C3 axis in cyclohexane (Fig. 6.1.5) is
also an S6 axis. Finally, it is pointed out that operation S1 is the same as σ (e.g.,
HOD), and the operation S2 is equivalent to the inversion i (e.g., trans-N2F2
in Fig. 6.1.6).

6.1.5 Identity element E

The symbol E comes from the German word Einheit meaning unity. This ele-
ment generates an operation E which leaves the molecule unchanged. All
molecules possess such an element or operation. The need for this seemingly
trivial “do nothing” or “leave it alone” operation arises from the mathematical
requirements of group theory, as we shall see in Chapter 7. Note that in some
books the symbol I (for identity) is used in place of E.

6.2 Molecular point groups

6.2.1 Classification of point groups

When we say a molecule belongs to a certain point group, it is meant that the
molecule possesses a specific, self-consistent set of symmetry elements. The
most common point groups are described below with illustrative examples.

(1) Point group C1

This group has only one symmetry element: identity element E; i.e., the
molecule concerned is asymmetric. Examples include methane derivatives with
the central carbon atom bonded to four different groups, e.g., CHFClBr.

iranchembook.ir/edu

https://iranchembook.ir/edu


Symmetry and Elements of Group Theory 171

(2) Point group Cs

This group has only two symmetry elements: E and σ . The aforementioned
HOD belongs to this group. Other examples include thionyl halide SOX2 and
secondary amines R2NH (Fig. 6.2.1).

S
O

X
X

N
H

R
R

(Cs)

Fig. 6.2.1.
Examples of molecules with Cs
symmetry: thionyl halide (SOX2) and
secondary amines R2NH.

(3) Point group Ci

This group has only two symmetry elements: E and i. There are not many
molecules with this kind of symmetry. Two examples are given in Fig. 6.2.2.

(4) Point group Cn

This group has only symmetry elements E and Cn. Examples for the Cn group
are shown in Fig. 6.2.3.

Note that the term “dissymmetric” is reserved for describing a molecule
not superimposable on its own mirror image. Accordingly, an object with no
improper rotation (rotation-reflection) axis must be dissymmetric.All asymmet-
ric objects are dissymmetric, but the converse is not necessarily true. In fact,
those molecules that possess one or more rotational axes of any order as the only
symmetry elements are dissymmetric; for instance, the 1,3,5-triphenylbenzene
molecule in the three-leaved propeller configuration (point group C3) and the
[Co(en)3]3+ cation (point group D3) are dissymmetric species. Note that the
term “asymmetric unit” has a special meaning in crystallography, as explained
in Section 9.3.6.

A

B

(Ci)

B

M

A

A

B

Fig. 6.2.2.
Examples of molecules with Ci
symmetry.

(5) Point group Cnv

This group has symmetry elements E, a rotational axis Cn, and n σv planes. The
H2O (Fig. 6.1.1) and NH3 (Fig. 6.1.2) molecules have C2v and C3v symmetry,
respectively. Other examples are given in Fig. 6.2.4.

O
H H

N

M

C2

X
(C2)

(C3)(C3)

(C2)

N

N

N

X

A
B

B

A

M

O

Fig. 6.2.3.
Examples of molecules with Cn
symmetry. The fragment N9N
represents the bidentate chelating ligand
ethylenediamine H2NCH2CH2NH2,
while A9B represents a bidentate
chelating ligand with different
coordinating sites such as
Me2NCH2CH2NH2.
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Fig. 6.2.4.
Examples of molecules with Cnv
symmetry: (a) BrF5, (b)
(η5-C5H5)Ni(NO) with the NO group
linearly coordinated to the Ni center, and
(c) (η6-C6H6)Cr(η6-C6F6).

Br

(C4v) (C5v) (C6v)

(a) (b) (c)
O
N

Ni
F

F

F F

F
F

Cr

(6) Point group Cnh

This group has symmetry element E, a rotational axis Cn, and a horizontal plane
σh perpendicular to Cn. Note that Sn also exists as a consequence of the elements
already present (Cn and σh). Also, when n is even, the presence of i is again
a necessary consequence. Examples include trans-N2F2 (C2h; Fig. 6.1.6), all-
trans-1,5,9-cyclododecatriene (C3h; Fig. 6.1.7), and boric acid B(OH)3 (C3h;
Fig. 13.5.1).

Fig. 6.2.5.
Representative example of tris-chelated
metal complexes with D3 symmetry:
[Cr(en)3]3+. The bidentate ligand
ethylenediamine is represented by N9N.

Cr3+

N

(D3)

(7) Point group Dn

This group has a principal Cn axis with n secondary C2 axes perpendicular to
it. The symbol D arises from the German Diedergruppe, which means dihedral
group. Examples of this group are uncommon, as the presence of Dn is usually
accompanied by other symmetry elements. An organic molecule of this type
is cycloocta-1,5-diene (D2). The most important as well as interesting inor-
ganic examples are the chiral tris-chelated transition metal complexes such as
Mn(acac)3 (acac = acetylacetonate) and tris(ethylenediamine)chromium(III),
which is illustrated in Fig. 6.2.5.

(8) Point group Dnh

This group has symmetry element E, a principal Cn axis, n secondary C2 axes
perpendicular to Cn, and a σh also perpendicular to Cn. The necessary conse-
quences of such combination of elements are a Sn axis coincident with the Cn
axis and a set of n σv’s containing the C2 axes. Also, when n is even, symmetry
center i is necessarily present. The BrF−4 molecule has point group symmetry
D4h, as shown in Fig. 6.1.8. Examples of other molecules belonging to point
groups D2h, D3h, D5h and D6h are given in Fig. 6.2.6.

(9) Point group Dnd

This group consists of E, a principal Cn axis, n C2’s perpendicular to Cn, and
n σd’s between the C2 axes. A necessary consequence of such a combination
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Ru

(D2h) (D3h) (D4h) (D5h)

(a) (b) (c) (d)

Cu2+

Fig. 6.2.6.
Examples of molecules with Dnh
symmetry: (a) [Cu(en)2]2+, the
bidentate chelating ligand
ethylenediamine is represented by N9N;
(b) triprismane C6H6; (c) ruthenocene
(η5-C5H5)2Ru; and (d) benzene C6H6.

is the presence of symmetry element S2n. The cyclohexane molecule shown in
Fig. 6.1.5 has D3d symmetry. Two other Dnd examples are given in Fig. 6.2.7.

H

H

(a)

(D2d) (D4d)

(b)

C C C
H

H

H

H

H OC OCCOMnMn Mn

OC

OC

CO COOC

CO CO COO
C

OCO
C

O
C

O
C

O
C

HC C C CO

Fig. 6.2.7.
Examples of molecules with Dnd symmetry: (a) allene and (b) Mn2(CO)10.

A general geometrical relationship holds for any molecule that can be repre-
sented as two regular polygons of n vertices (n-gons) separated by a distance
along the principal Cn rotation axis. In the fully eclipsed conformation, i.e.,
when the two polygons exactly overlap when viewed along Cn, the point group is
Dnh. In the perfectly staggered conformation, the point group is Dnd. In the skew
(or gauche) conformation, the point group is Dn. Common examples illustrating
such patterns are ethane and sandwich-type metallocenes (η-CnHn)2M.

(10) Point group Sn

This point group has only two symmetry elements: E and Sn. Since carrying
out the Sn operation n times should generate the identity operation E, integer n
must be even. Also, n≥ 4. Examples of this point group are rare; two are given
in Fig. 6.2.8. Molecules belonging to Sn with n≥ 6 are quite uncommon. In
hexakis(pyridine N -oxide)coblalt(II) perchlorate [Fig. 6.2.8(d)], the pyridine
N -oxide ligand is coordinated to the metal center at a Co–O–N bond angle of
119.5(2)◦; the dihedral angle between the plane containing these three atoms
and the pyridine ring is 72.2◦.

(11) Point groups D∞h and C∞v

Symmetric linear molecules such as H2, CO2, and HC≡CH have D∞h symme-
try, while unsymmetric linear molecules such as CO, HCN, and FCCH belong
to the C∞v point group.

iranchembook.ir/edu

https://iranchembook.ir/edu


174 Symmetry in Chemistry

N

(a) (b)

(c) (d)

N N

N

S
S

F
S

F

S
F

F
N

N

N

N

S S
F

S
F

S
F

F

side view
top view

H H

H

H

(S4)

(S6)

(S4)

(S6)

Fig. 6.2.8.
Examples of molecules with Sn symmetry: (a) N4(SF)4, (b) 2,3,7,8-tetramethylspiro[4.4]nonane, (c) C6(CMe=CH2)6, and (d)
[(C5H5NO)6Co]2+.

(12) High-symmetry point groups Td, Oh, and Ih

Tetrahedral molecules such as CH4 (Fig. 6.1.3) have 24 symmetry operations
(E, 8C3, 3C2, 6S4 and 6σ d) and belong to the Td point group. In comparison,
octahedral molecules such as SF6 (Fig. 6.1.4) have 48 symmetry operations
(E, 8C3, 6C2, 6C4, 3C2 = 3C2

4, i, 6S4, 8S6, 3σ h, and 6σ d) and belong
to the Oh point group. It would be instructive for students to examine all the
operations for these two important high-symmetry point groups with the aid of
molecular models.

Among organic molecules, cubane C8H8 (Oh) and adamantane (CH)4(CH2)6
(Td) stand out distinctly by virtue of their highly symmetric cage structures.
In contrast to the scarcity of organic analogs such as hexamethylenetetramine
N4(CH2)6 and hexathiaadamantane (CH)4S6, there exists an impressive diver-
sity of inorganic and organometallic compounds containing cubane-like and
adamantane-like molecular skeletons. In current usage, the term cubane-like
(cubanoid) generally refers to a M4Y4 core composed of two interpenetrating
tetrahedra of separate atom types, resulting in a distorted cubic framework of
idealized symmetry Td (Fig. 6.2.9(a)). Similarly, the adamantane-like (adaman-
toid) M4Y6 skeleton consists of a M4 tetrahedron and a Y6 octahedron which
interpenetrate, giving rise to a fused system of four chair-shaped rings with
overall symmetry Td (Fig. 6.2.9 (b)). If M stands for a metal atom, the com-
pound is often described as tetranuclear or tetrameric. In either structural type
additional ligand atoms or groups L and L′ may be symmetrically appended
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y

z
z

y

x

x

Yb

Yb

Mb Mb

Ma MaYa

Ya

Fig. 6.2.9.
(a) Cubane-like M4Y4 core referred to a
Cartesian frame. (b) Adamantane-like
M4Y6 core referred to a Cartesian frame.
The reference cube is outlined by broken
lines. Atoms of type M and Y are
represented by open and solid circles,
respectively.

to core atoms M and Y, respectively. The two families of cubane-like and
adamantane-like cage compounds may be formulated as (LmM)4(YL′n)4 (with
m = 0, 1, 3; n = 0, 1) and (LmM)4(YL′n)6 (with m = 0, 1; n = 0, 1, 2), respec-
tively. Not included in these two categories are structurally related compounds
such as the oligomeric silasesquioxane Me8Si8O12 and basic beryllium acetate
Be4O(CH3COO)6, in which the core atoms are bridged by oxygen atoms.

Table 6.2.1. Relations between bond angles Y–M–Y(α) and M–Y–M(β) in M4Y4 and M4Y6 cores

M4Y4 core, see Fig. 6.2.9(a) M4Y6 core, see Fig. 6.2.9(b)

Atom positions
expressed in
terms of u and v

Ma (uuu) Yb (v̄vv) Ma(uuu) Ya(00 v)

Mb(ū ū u) Yb(v̄ v̄ v̄) Mb(ū ū u) Yb(0 v̄ 0)

d sin(α/2) = v(2)
1
2 v/(2)

1
2

d sin(β/2) = u(2)
1
2 u(2)

1
2

d2 = 3u2 − 2uv + 3v2 3u2 − 2uv + v2

sin(α/2) = [sin(β/2) + {6− 8 sin2(β/2)}
1
2 ]/3 (1) [sin(β/2) + (2)

1
2 cos(β/2)]/2 (3)

sin(β/2) = [sin(α/2) + {6− 8 sin2(α/2)}
1
2 ]/3 (2) [2 sin(α/2)+{6−8 sin2(α/2)}

1
2 ]/3 (4)

Equations (1) to (4) may be recast in the following forms:
cos α = [4− 7 cos β − 4(1 + cos β − 2 cos2 β)

1
2 ]/9 (1′)

cos β = [4− 7 cos α − 4(1 + cos α − 2 cos2 α)
1
2 ]/9 (2′)

cos α = (1− cos β)/4− sin β/(2)
1
2 (3′)

cos β = [1− 4 cos α − 8(1 + cosα − 2 cos2 α)
1
2 ]/9 (4′)

In describing the idealized Td cage structure of either the cubane or adaman-
tane type, it is customary to give the bond length d , the Y–M–Y angle α,
and the M–Y–M angle β. While the parameter d readily conveys an appre-
ciation of molecular size, it is not generally appreciated that only one bond
angle suffices to define the molecular geometry uniquely. Derivation of the
bond-angle relationship between α and β for both structural types are out-
lined in Table 6.2.1. If an external ligand atom L is bound to core atom M,
the bond angle L–M–Y (γ ) may be calculated from α using the equation
sin(π − γ ) = 2 sin(α/2)/(3)1/2 for local C3v symmetry. For the M4Y6 core,
if a pair of ligand atoms L′ are symmetrically attached to atom Y to attain local
C2v symmetry, the bond angle L′–Y–L′ (δ) may be calculated from β using the
equation cot2(δ/2) + cot2(β/2) = 1.
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Table 6.2.2. Application of bond-angle relationships to cubane-like and adamantane-like compounds

Complex Core Crystallographic site
symmetry

Bong angles (◦) S

Experimental values αc calculated
from β

[(η5-C5H5)4Fe4(CO)4] Fe4C4 1(C1) β = 78.8, σmax = 0.3 100.2 2.2
(Et4N)2[(PhCH2S∗)4Fe4S4] Fe4S4 1(C1) β = 73.81, σmax = 0.06 104.09 5.7
[(η5-C5H5)4Co4S4] Co4S4 2(C2) β = 95.31, σmax = 0.06 84.43 37
(Me4N)2[Cu4OCl10] Cu4OCl6 23 (T ) β = 81.5, σmax = 1.2 119.1 0

4̄(23) β = 81.3, σmax = 0.9 119.1 1.1
(Et2NHCH2CH2NHEt2)2[Cu4OCl10] Cu4OCl6 2(C2) β = 81.5, σmax = 0.3 119.1 18
K4[Cu4OCl10] Cu4OCl6 2(C2) β = 81.1, σmax = 0.3 119.2 23
(Et2NH2)4Cu4OCl10 Cu4OCl6 1(C1) β = 80.4, σmax = 0.1 119.3 103

If either α or β is known for a given structure, eqs. (1)–(4) in Table 6.2.1
can be used to evaluate the remaining angle. Another possible use of these
equations is in assessing the extent to which the cores of related compounds
deviate from idealized Td symmetry. For this purpose we assume that there
is no systematic variation in the observed M–Y bond distances and define a
goodness-of-fit index S by the equation:

S =
∑

i,j

[(αi − αc)
2/nα + (βj − β)2/nβ ]

1
2

σmax
(5)

where nα and nβ are, respectively, the numbers of independently measured
angles αi and βj, β is the average of βj, αc is calculated from β with equation (1)
or (1′) for cubane-like and (3) or (3′) for adamantane-like systems, and σmax
is the maximum value of the estimated standard deviations of individual bond
angles. In Table 6.2.2, the computed S values of 2.2, 5.7, and 37 for the cubane-
like Fe4C4, Fe4S4, and Co4S4 cores, respectively, indicate increasing deviations
from idealized Td symmetry. This is in accord with the assignment of the core
symmetries in the literature as Td, D2d, and lower than D2d, respectively. In
the case of the adamantane-like [Cu4OCl10]4− anion (Cu coordinated by three
bridging Cl, an external Cl, and the O atom at the center), which occupies
sites of different symmetry in four reported crystal structures, consideration
of the relative S values in Table 6.2.2 leads to the conclusion that it conforms
to Td symmetry in its tetramethylammonium salt, and becomes increasingly
more distorted in the N , N , N ′, N ′,-tetraethylenediammonium, potassium, and
diethylammonium salts. The present procedure, when applied to a series of
related molecules, yields a set of numbers which allow one to spot a trend and
distinguish between clear-cut cases.

The most characteristic feature of point group Ih is the presence of six fivefold
rotation axes, ten threefold rotation axes, and 15 twofold rotation axes. A σ
plane lies perpendicular to each C2 axis. Group Ih has 120 symmetry operations
(E, 12C5, 12C2

5, 20C3, 15C2, i, 12S10, 12S3
10, 20S6, and 15σ ). Well-known

cage-like molecules that belong to this point group are icosahedral B12H2−
12 and
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Fig. 6.2.10.
Perspective views of C60 along its C2,
C3 and C5 axes (Ih symmetry).

dodecahedrane C20H20. Fullerene C60 is a truncated icosahedron that exhibits
Ih symmetry, and the C2, C3, and C5 axes of this cage system are shown in
Fig. 6.2.10.

The point groups Td and Oh, together with their subgroups T , Th, and O, are
known as cubic groups because they are geometrically related to the cube.
The point groups Ih and I are known as icosahedral groups. These seven
point groups reflect part or all of the symmetry properties of the five Platonic
solids: the tetrahedron, the cube, the octahedron, the pentagonal dodecahedron,
and the icosahedron. Note that the eight-coordinate dodecahedral complexes
such as [Mo(CN)8]4−, [ZrF8]4−, and [Zr4(OH)8(H2O)16]8+ are based on the
triangulated dodecahedron, which has D2d symmetry.

N N
N

N

Fe

N

N

(a) (b) (c)

Fig. 6.2.11.
Examples of molecules with Th
symmetry: (a) [Fe(C5H5N)6]2+ and (b)
[M(NO2)6]n− viewed along a C3 axis.
In (c), the three pairs of bars (each bar
representing a planar ligand) lying on the
faces of a reference cube exhibit the
same symmetry.

(13) Rarely occurring point groups O, T , Th, I , and Kh

Point groups O is derived from Oh by removing all symmetry elements except
the rotational axes. A rare example is octamethylcubane, C8(CH3)8, in which
the CH3 group is rotated about an exo-polyhedral C–C bond to destroy the
σd plane; note that this simultaneously eliminates symmetry elements i, σh,
S4, and S6. Similarly, point group T is derived from Td by leaving out the σd
planes. Examples of molecules that possess point symmetry T are tetrahedral
Pt(PF3)4 and Si(SiMe3)4, in which the two sets of substituents attached to
atoms forming the corresponding Pt–P or Si–Si single bond take the gauche
conformation.

Point group Th has 24 symmetry operations (E, 4C3, 4C2
3, 3C2, i,

4S4, 4S4, and 3σ h). Inorganic complexes that belong to this point group
are [Fe(C5H5N)6]2+ and [M(NO2)6]n−(M = Co, n = 3; M = Ni, n =
4), as shown in Figs. 6.2.11(a) and (b), respectively. In each complex,
three pairs of monodentate ligands lie on mutually orthogonal mirror planes
(Fig. 6.2.11(c)).
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Point group I is derived from Ih by deleting the σ planes normal to the 15
C2 axes. It is inconceivable that any molecule having symmetry I can ever be
constructed.

A finite object that exhibits the highest possible symmetry is the sphere,
whose point group symbol Kh is derived form the German word Kugel. It has
an infinite number of rotation axes of any order in every direction, all passing
through the center, as well as an infinite number of σh planes each perpendicular
to a C∞ axis. Obviously, Kh is merely of theoretical interest as no chemical
molecule can possess such symmetry.

6.2.2 Identifying point groups

To help students to determine the symmetry point group of a molecule, various
flow charts have been devised. One such flow chart is shown in Table 6.2.3.
However, experience indicates that, once we are familiar with the various oper-
ations and with visualizing objects from different orientations, we will dispense
with this kind of device.

Often it is difficult to recognize the symmetry elements present in a molecule
from a perspective drawing. A useful technique is to sketch a projection of
the molecule along its principal axis. Plus and negative signs may be used
to indicate the relative locations of atoms lying above and below the mean
plane, respectively. Cyclohexane has been used as an example in Fig. 6.1.5.
The identification of the point groups of some other non-planar cyclic molecules
with the aid of projection diagrams is illustrated in Table 6.2.4.

Table 6.2.3. Flow chart for systematic identification of the point group of
a molecule
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Table 6.2.4. Point group identification of some cyclic molecules

Compound Perspective diagram Projection diagram Point group

N4 (SF)4

N

N N

N

S
S

F

S

F

S
F

F
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N N

N

S
S

F

S

F

S
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+

+

+

+

+

+
_

_
_ _

__

S4

S 8
S

S

S

S

S
S

S

S

_

+ +

+

+

_

__

D4d

C 8H 8

_

+

+

+

+

_

_ _

D2d

S 4N 4

S

N

S

N

S

N
S

N
S

N S N

S

N
S

N

+ +

_

_

D2d

6.2.3 Dipole moment and optical activity

The existence of a dipole moment tells us something about the molecular geom-
etry or symmetry, and vice versa. For example, the existence of a dipole moment
for H2O and NH3 implies that the former cannot be linear and the latter cannot
be trigonal planar. Indeed, it is not difficult to show that molecules that possess
dipole moments belong only to point groups Cn, Cs, or Cnv.

For a molecule to be optically active, it and its mirror image cannot be
superimposed on each other; i.e., they are dissymmetric (see Section 6.1.3).
In the language of symmetry operations, this means that an optically active
molecule cannot have any Sn element. In particular, since S1 is σ and S2 is i,
any molecule that possesses a symmetry plane or a center of inversion cannot
be optically active.
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6.3 Character tables

In the next chapter, we will present various chemical applications of group
theory, including molecular orbital and hybridization theories, spectroscopic
selection rules, and molecular vibrations. Before proceeding to these topics, we
first need to introduce the character tables of symmetry groups. It should be
emphasized that the following treatment is in no way mathematically rigorous.
Rather, the presentation is example- and application-oriented.

According to group theory, for a molecule belonging to a certain symmetry
point group, each electronic or vibrational wavefunction of this molecule must
have the symmetry of one of the irreducible representations of the point group.
For simplicity, we sometimes replace the mathematical term “irreducible repre-
sentation” with the simple name “symmetry species.” For a given point group,
there are only a limited number of symmetry species, and the properties of each
symmetry species are contained in the characters of the species. The characters
of all the irreducible representations of a point group are summarized in the
character table of this group. A typical character table, that of the C2v group,
will now be examined in detail.

As shown in Table 6.3.1, we can see that the C2v character table is divided
into four parts: Areas I to IV. We now discuss these four areas one by one.

Area I. In this area, we see that the four symmetry operations of the C2v group,
E, C2, σ v(xz), σ ′v(yz), constitute four classes of operations; i.e., each class has
one operation. According to group theory, for any point group, the number of
irreducible representations is equal to the number of (symmetry operation)
classes. Here, for C2v, there are four irreducible representations and the char-
acters of the representations are given in this area. For the first representation,
called A1, all the characters are 1, which signifies that any wavefunction with
A1 symmetry is symmetric (with character 1) with respect to all four symmetry
operations. (Examples will be given later.) On the other hand, representation
A2 is symmetric with respect to operation E and C2, but antisymmetric (with
character−1) with respect to the two mirror reflections. For the remaining two
representations, B1 and B2, they are antisymmetric with respect to C2 and to
one of the mirror reflections.

Additionally, it is noted that, mathematically, each irreducible representation
is a square matrix and the character of the representation is the sum of the
diagonal matrix elements. In the simple example of the C2v character table,
all the irreducible representations are one-dimensional; i.e., the characters are
simply the lone elements of the matrices. For one-dimensional representations,
the character for operation R, χ(R), is either 1 or −1.

Table 6.3.1. Character table of point group C2v

C2v E C2 σ v(xz) σ ′v(xz)

A1 1 1 1 1 z x2, y2, z2

A2 1 1 −1 −1 Rz xy
B1 1 −1 1 −1 x, Ry xz
B2 1 −1 −1 1 y, Rx yz
Area II Area I Area III Area IV
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H H

v1 = 3652 cm–1 v2 = 1559 cm–1 v3 = 3756 cm–1

H H H H

x

z

y

O O O Fig. 6.3.1.
Normal vibrational modes of the water
molecule; ν1 (symmetric stretch) and ν2
(bending) have A1 symmetry, while ν3
(asymmetric stretch) has B2 symmetry.

Before leaving the discussion of this area, let us consider a specific chemical
example. The water molecule has C2v symmetry, hence its normal vibrational
modes have A1, A2, B1, or B2 symmetry. The three normal modes of H2O are
pictorially depicted in Fig. 6.3.1. From these illustrations, it can be readily seen
that the atomic motions of the symmetric stretching mode, ν1, are symmetric
with respect to C2, σ v(xz) and σ ′v(yz); thus ν1 has A1 symmetry. Similarly,
it is obvious that the bending mode, ν2, also has A1 symmetry. Finally, the
atomic motions of the asymmetric stretching mode, ν3, is antisymmetric with
respect to C2 and σ v(xz), but symmetric with respect to σ ′v(yz). Hence ν3 has B2
symmetry. This example demonstrates all vibrational modes of a molecule must
have the symmetry of one of the irreducible representations of the point group
to which this molecule belongs. As will be shown later, molecular electronic
wavefunctions may be also classified in this manner.

Area II. In this area, we have the Mulliken symbols for the representations.
The meaning of these symbols carry is summarized in Table 6.3.2.

Referring to the C2v character table and the nomenclature rules in Table 6.3.2,
we can see that all symmetry species of the C2v group are one-dimensional;
i.e., they are either A or B representations. The first two symmetry species,
with χ(C2) = 1, are clearly A representations, while the remaining two are B
representations. To these representations, subscripts 1 or 2 can be easily added,
according to the rules laid down in Table 6.3.2. (It is noted that the classification
of B1 and B2 cannot be unambiguously assigned.) Also, the first representation,
with all characters equal to 1, is called the totally symmetric representation
(sometimes denoted as ΓTS). Such a representation exists for all groups, even
though ΓTS is not called A1 in all instances.

Before concluding the discussion on the notation of the irreducible represen-
tations, we use C2v point group as an example to repeat what we mentioned
previously: since this point group has only four symmetry species, A1, A2, B1,
and B2, the electronic or vibrational wavefunctions of all C2v molecules (such
as H2O, H2S) must have the symmetry of one of these four representations.
In addition, since this group has only one-dimensional representations, we
will discuss degenerate representations such as E and T in subsequent
examples.

Area III. In this part of the table, there will always be six symbols: x, y, z, Rx,
Ry, Rz , which may be taken as the three components of the translational vector
(x, y, z) and the three rotations around the x, y, z axes (Rx, Ry, Rz). For the C2v
character table, z appears in the row of A1. This means that the z component
of the translational vector has A1 symmetry. Similarly, the x and y components
have B1 and B2 symmetry, respectively. The symmetries of rotations Rx, Ry,
and Rz can be seen from this table accordingly.
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Table 6.3.2. Mulliken symbols for irreducible representations

Dimensionality

A: One-dimensional, i.e., χ(E) = 1; symmetric with respect to Cn, i.e., χ(Cn) = 1
B: One-dimensional, i.e., χ(E) = 1; antisymmetric with respect to Cn, i.e., χ(Cn) = −1
E: Two-dimensional, i.e., χ(E) = 2
T : Three-dimensional, i.e., χ(E) = 3
G: Four-dimensional, i.e., χ(E) = 4
H : Five-dimensional, i.e., χ(E) = 5

Superscript

′: Symmetric with respect to σ h, i.e., χ(σ h) = 1
′′: Antisymmetric with respect to σ h, i.e., χ(σ h) = −1

Subscript

(i) g: Symmetric with respect to i, i.e., χ(i) = 1
u : Antisymmetric with respect to i, i.e., χ(i) = −1

(ii) For A and B representations,
1 : Symmetric with respect to C2 or σ v, i.e., χ(C2) or χ(σ v) = 1
2 : Antisymmetric with respect to C2 or σ v, i.e., χ(C2) or χ(σ v) = −1

(iii) For E and T representations, numerical subscripts 1, 2, . . ., are also employed in a general
way which does not always indicate symmetry relative to C2 or σ v.

For linear molecules with C∞v and D∞h symmetry

<+ One-dimensional, symmetric with respect to σ v or C2, i.e., χ(E) = 1, χ(σ v) or
χ(C2) = 1
<− One-dimensional, antisymmetric with respect to σ v or C2, i.e., χ(E) = 1, χ(σ v)

or χ(C2) = −1
= Two-dimensional, i.e., χ(E) = 2
' Two-dimensional, i.e., χ(E) = 2
> Two-dimensional, i.e., χ(E) = 2

Lower case letters (a, b, e, t, σ , π , …) are used for the symmetries of individual orbitals;
capital letters (A, B, E, T , <, =, . . .) for the symmetries of the overall states.

Another way of rationalizing these results is to treat x, y, z as px, py, pz orbitals
of central atom A in an AHn molecule. A molecule with C2v symmetry is H2S.
A convention to set up the Cartesian coordinates for this molecule is as follows.
Take the principle axis (C2 in this case) as the z axis. Since H2S is planar, we
take the x axis to be perpendicular to the molecular plane. Finally, the y axis is
taken so as to form a right-handed system. Following this convention, the px,
py, pz orbitals on sulfur in a H2S molecule are shown in Fig. 6.3.2. When the
orientations of these orbitals are examined, it is obvious that the pz orbital is
symmetric with respect to all four operations of the C2v point group: E, C2,
σ v(xz), σ ′v(yz). Thus the pz orbital has A1 symmetry. On the other hand, the
px orbital is symmetric with respect to E and σ v(xz), but antisymmetric with
respect to C2 and σ ′v(yz); hence px has B1 symmetry.

Now it can be easily deduced that the py orbital has B2 symmetry.
Area IV. This area contains the quadratic terms x2, y2, z2, xy, yz, xz or their

linear combinations. Sometimes, instead of x2 and y2, we use their combinations
x2 +y2 and x2−y2. Following the discussion on Area III for the H2S molecule,
one might be inclined to consider these six entities as possible d functions of
central atom A in an AH2 molecule, as shown in Fig. 6.3.3. Noting that there
exist only five independent d orbitals each possessing two nodes, the x2 + y2

function can be ruled out as it is devoid of nodal property. Furthermore, the
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H H HH

3pz 3py 3px

H H

x x x

y y y

z z z

Fig. 6.3.2.
The three p orbitals of sulfur in a H2S
molecule, which lies in the yz plane.

x2+y2 x2–y2 z2

H H

x

y

z

H H
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y

z

H H

x

y

z

H H

y

z

H H

x

y

z
H H

x

y

z

xy xz yz

Fig. 6.3.3.
The quadratic functions x2 + y2,
x2 − y2, z2 (more correctly 3z2 − 1), xy,
xz, and yz. The x2 + y2 function cannot
represent a d orbital because it does not
have a node. The remaining five are
taken as pictorial representations of the
five d orbitals of central atom A in the
AH2 molecule. Note that xy, xz, yz, and
x2 − y2 each has two nodal planes,
whereas the nodes of z2 are the curved
surfaces of two co-axial cones sharing a
common vertex.

presence of x2−y2 implies that we can write down the equivalent terms y2− z2

and z2 − x2; however, these three functions are not linearly independent. If
x2 − y2 is chosen, the sum of y2 − z2 and z2 − x2 gives y2 − x2, which is the
same as x2 − y2 except for a reversal in sign, but the difference of y2 − z2 and
z2−x2 gives the new function 2z2−x2−y2, which can be simplified to 3z2−1
since x2 + y2 + z2 = 1 (polar coordinate r with unit length). In practice, it is
conventional to denote the 3z2 − 1 function simply as z2. The five d orbitals
are therefore labelled z2, x2 − y2, xy, yz, and xz.

Examining the six quadratic functions displayed in Fig. 6.3.3, it is clear that
x2 + y2, x2 − y2, and z2 are symmetric with respect to all four operations
of the C2v point group. Hence they belong to the totally symmetric species
A1, as do x2 and y2 since they are merely linear combinations of x2 + y2 and
x2 − y2. Similarly, the xy function is symmetric with respect to E and C2 and
antisymmetric with respect to the reflection operations, and hence it has A2
symmetry. The symmetries of the xz and yz functions can be determined easily
in an analogous manner.

The character tables of most familiar point groups are listed inAppendix 6.1 at
the end of this chapter. It is noted that some collections of character tables, such
as those given in Appendix 6.1, also include an “Area V,” where the symmetry
species of the seven f orbitals (on the central atom) is indicated. Since the f
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orbitals are treated in Section 8.11 of this book, we will ignore this area in this
initial discussion on the character tables.

Before we leave the C2v character table, it is noted that the characters of all
groups satisfy the “orthonormal” relation:

1
h

∑

R

χi(R)χj(R) = δij =
{

1 when i = j
0 when i '= j

, (6.3.1)

where h is the order of the group (the number of operations in the group; for
C2v, h = 4) and χi(R) is the character of operation R for the irreducible
representation Γi, etc. The relation can be illustrated by the following two
examples:

When Γi = Γj = A2, eq. (6.3.1) becomes

1
4
[(1)(1) + (1)(1) + (−1)(−1) + (−1)(−1)] = 1. (6.3.2)

When Γi = A2 and Γj = B1, eq. (6.3.1) now has the form

1
4
[(1)(1) + (1)(−1) + (−1)(1) + (−1)(−1)] = 0. (6.3.3)

After a fairly lengthy discussion on the character table of the C2v group, we
will proceed to those for the C3v and C4v point groups. The character tables
of these two groups are shown in Tables 6.3.3 and 6.3.4, respectively. When
Table 6.3.3 is examined, it is seen that the six operations of the C3v group are
divided into three classes: E; C3, and C−1

3 ; the three σ v’s. Hence there are three
symmetry species for this group. According to group theory, if the dimensions
of the irreducible representations of a group are called 21, 22, …, then we have

∑

i

22i = h, (6.3.4)

Table 6.3.3. Character table of point group C3v

C3v E 2C3 3σ v

A1 1 1 1 z x2 + y2, z2

A2 1 1 −1 Rz
E 2 −1 0 (x, y)(Rx , Ry) (x2 − y2, xy) (xz, yz)

Table 6.3.4. Character table of point group C4v

C4v E 2C4 C2 2σ v 2σ d

A1 1 1 1 1 1 z x2 + y2, z2

A2 1 1 1 −1 −1 Rz
B1 1 −1 1 1 −1 x2 − y2

B2 1 −1 1 −1 1 xy
E 2 0 −2 0 0 (x, y)(Rx , Ry) (xz, yz)
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where, once again, h is the order of the group. So, for the C3v group, with h = 6,
21 = 1, 22 = 1, and 23 = 2.

When examining Table 6.3.3, the first one-dimensional (totally symmetric)
representation is again called A1. The second one-dimensional representation,
which is symmetric with respect to the C3 and C−1

3 operations and antisym-
metric with respect to the three σ v operations, is called A2. From these results,
it is now obvious that, for a given representation, operations belonging to the
same class have the same character. Also, the A1 and A2 representations are
“orthogonal” to each other, as stipulated by eq. (6.3.1):

1
h

∑

R

χA1(R)χA2(R) =
(

1
6

)

[(1)(1) + 2(1)(1) + 3(1)(−1)] = 0. (6.3.5)

The last symmetry species of the C3v group is a two-dimensional E represen-
tation. If we consider the p orbitals of phosphorus in PF3, a C3v molecule, we
can see that the pz orbital has A1 symmetry. On the other hand, the px and py
orbitals form an inseparable set with E symmetry. In other words, no single
function can have E symmetry and it takes two functions to form an E set. It
is straightforward to show that the E representation is orthogonal to both A1
and A2. Similarly, the x2− y2 and xy functions for an E set and the xz and yz
functions constitute yet another E set. In passing, it is pointed that the nota-
tion of representation E originates from the German word entartet, meaning
degenerate or abnormal. It should not be confused with the identity operation
E, which, as already mentioned, is from Einheit meaning unity.

Asimilar situation exists for the C4v group, as shown in Table 6.3.4. Now there
are five classes of operations and hence five irreducible representations. With
h = 8, there are four one-dimensional and one two-dimensional representations
[cf. eq. (6.3.4)]. For a hypothetical AX4 (or AX5) molecule with C4v symmetry,
the pz orbital on A has A1 symmetry (note that the C4 axis is taken as the z axis),
while the px and py functions form an E pair. Regarding the d orbitals on A, the
dz2 orbital has A1 symmetry, the dx2−y2 orbital has B1 symmetry, the dxy orbital
has B2 symmetry, while the dxz and dyz orbitals form an E set.

6.4 The direct product and its use

6.4.1 The direct product

In this section we discuss the direct product of two irreducible representations.
The concept of direct product may seem abstract initially. But it should become
easily acceptable once its applications are discussed in subsequent sections.

When we obtain the direct product Γij of two irreducible representations Γi
and Γj, i.e.,

Γi × Γj = Γij (sometimes written as Γi ⊗ Γj). (6.4.1)

Γij has the following properties:

(1) The dimension of Γij is the product of the dimensions of Γi and Γj;
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Table 6.4.1. Direct products of the representations of the C3v group

C3v E 2C3 3σ v

A1 1 1 1
A2 1 1 −1
E 2 −1 0
A1 × A1 1 1 1 ≡ A1
A1 × A2 1 1 −1 ≡ A2
A1 × E 2 −1 0 ≡ E
A2 × A2 1 1 1 ≡ A1
A2 × E 2 −1 0 ≡ E
E × E 4 1 0 ≡ A1 + A2 + E∗

∗ n(A1) = (1/6)[(4)(1) + 2(1)(1) + 3(0)(1)] = 1;
n(A2) = (1/6)[(4)(1) + 2(1)(1) + 3(0)(−1)] = 1;
n(E) = (1/6)[(4)(2) + 2(1)(−1) + 3(0)(0)] = 1.

(2) The character of Γij for operation R is equal to the product of the characters
of Γi and Γj for the same operation:

χij(R) = χi(R)χj(R). (6.4.2)

(3) In general, Γij is a reducible representation, i.e., a combination of irre-
ducible representations. The number of times the irreducible representation
Γk occurs in the direct product Γij can be determined by:

nk = 1
h

∑

R

χij(R)χk(R). (6.4.3)

Now let us apply these formulas to some examples. All the direct products
formed by the three irreducible representations of the C3v group are summarized
in Table 6.4.1. These results show that the direct product of two irreducible
representations is sometimes also an irreducible representation. When it is not,
its constitution can be readily determined using eq. (6.4.3).

When eq. (6.4.3) is examined more closely, it is seen that, the division by
h, the group order, makes the equation untenable for groups with an infinite
order, namely, C∞v and D∞h. Fortunately, in most cases the decomposition of
a reducible representation for such groups can be achieved by inspection. Also,
a work-around method is available in the literature (see references 19 and 20
listed at the end of the chapter). In any event, examples will be given later.

Based on the rather limited examples of direct products involving the rep-
resentations of the C3v group, we can draw the following conclusions (or
guidelines) regarding the totally symmetric representation ΓTS:

(1) The direct product of any representation Γi with ΓTS is simply Γi.
(2) The direct product of any representation Γi with itself, i.e., Γi × Γi, is or

contains ΓTS. In fact, only the direct product of a representation with itself
is or contains ΓTS.

These results are useful in identifying non-zero integrals involving in various
applications of quantum mechanics to molecular systems. This is the subject to
be taken up in the next section.
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6.4.2 Identifying non-zero integrals and selection rules in spectroscopy

The importance of direct products becomes more obvious when we consider
some of the integrals we encounter in quantum chemistry. Take the simple
case of

I1 =
∫

ψiψjdτ . (6.4.4)

An example of I1 is the overlap integral withψi being an orbital on one atom and
ψj an orbital on a different atom. Integral I1 will vanish unless the integrand
is invariant under all symmetry operations of the point group to which the
molecule belongs. This condition is a generalization of the simple case of

I2 =
∫ ∞

−∞
ydx =

∫ ∞

−∞
f (x)dx. (6.4.5)

When f (x) is an odd function, i.e., f (−x) = −f (x), I2 = 0. Integral I2 vanishes
because the integrand is not invariant to the inversion operation.

Returning to integral I1, when we say that integrand ψiψj is invariant to all
symmetry operations, it means, in group theory language, the representation
for ψiψj (denoted Γij) is or contains ΓTS. In order for Γij to be or contain ΓTS,
Γi (representation for ψi) and Γj (representation for ψj) must be one and the
same. In chemical bonding language, for two atomic orbitals to have non-zero
overlap, they must have the same symmetry.

Another integral that appears often in quantum chemistry is the energy
interaction integral between orbitals ψi and ψj

I3 =
∫

ψiĤψjdτ , (6.4.6)

where Ĥ is the Hamiltonian operator. Since Ĥ is the operator for the energy
of the molecule, it must be invariant to all symmetry operations; i.e., it has the
symmetry of ΓTS. It follows that the symmetry of the integrand of I3 is simply
Γi × ΓTS × Γj = Γi × Γj.

For Γi ×Γj to be or to contain ΓTS, Γi = Γj. In non-mathematical language,
only orbitals of the same symmetry will interact with each other.

Integrals of the form

I4 =
∫

ψiÂψjdτ , (6.4.7)

where Â is a certain quantum mechanical operator, are also common in quantum
chemistry. For these integrals to be non-vanishing, Γi × ΓA × Γj is or contains
ΓTS . For such condition to hold, Γi × Γj must be or contain ΓA. (So I3 is a
special case of I4.) In the following, we consider a special case of I4.

In spectroscopy, for an electronic transition between the ith state with wave-
function ψi and the jth state with wavefunction ψj, its intensity in the x, y, or
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z direction (denoted as Ix, Iy, and Iz , respectively) is proportional to the square
of an integral similar to I4:

Ix ∝
∣

∣

∣

∣

∫

ψixψjdτ
∣

∣

∣

∣

2

, (6.4.8)

Iy ∝
∣

∣

∣

∣

∫

ψiyψjdτ
∣

∣

∣

∣

2

, (6.4.9)

Iz ∝
∣

∣

∣

∣

∫

ψizψjdτ
∣

∣

∣

∣

2

. (6.4.10)

Stating the conditions for Ix, Iy, and Iz to be non-zero amounts to laying down
the selection rule for the electric dipole transitions. Based on the foregoing
discussion, it is now obvious that, for a transition between states with wave-
functions ψi and ψj to be allowed, direct product Γi × Γj must be or contain
Γx, Γy, or Γz .

Let us now apply this method to see whether the electron transition between
states A2 and B2 is allowed for a molecule with C2v symmetry (such as H2S):

Γi = A2,Γx = B1,Γj = B2 : A2×B1×B2 = A1, allowed in the x direction;

Γi = A2,Γy = B2,Γj = B2 : A2×B2×B2 = A2, forbidden in the y direction;

Γi = A2,Γz = A1,Γj = B2 : A2×A1×B2 = B1, forbidden in the z direction.

So the transition A2 ↔ B2 is allowed in the x direction, or x-polarized. The
polarization of other transitions can be determined in a similar manner. The
polarization of the allowed transitions for a C2v molecule is summarized in
Fig. 6.4.1.

Awell-known selection rule concerning centrosymmetric systems (those with
a center of inversion) is the Laporte’s rule. For such systems, states are either
g (even) or u (odd). Laporte’s rule states that only transitions between g and
u states are allowed; i.e., transitions between two g states and those between
two u states are forbidden. With the foregoing discussion, this rule can now
be easily proved. For centrosymmetric molecules, the three components of the
dipole moment vector are all u. For g ↔ g transitions, the overall symmetry

Fig. 6.4.1.
Polarization of all electric dipole
transitions for a C2v molecule.

forbidden

forbidden

A1

A1 A2

A2

B1

B1

B2

B2

x-polarized x-polarized

z-polarized

z-polarized

z-polarized

z-polarized

y-polarized
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of the transition dipole moment is g × u × g = u (antisymmetric) and hence
the transition is not allowed. For u ↔ u transitions, we have u × u × u = u
and the transitions are again forbidden. For u ↔ g ones, we get u× u× g = g
(symmetric) and they are allowed.

In this section, we have shown that, by determining the symmetry of the
integrand, we can identify the non-zero integrals and, in turn, derive the various
selection rules in electronic spectroscopy.

6.4.3 Molecular term symbols

In our treatment on the bonding in linear molecules, we called the molecular
orbitals of these systems either σ or π orbitals. We now know that σ and π are
actually irreducible representations of the C∞v or D∞h groups. For nonlinear
molecules, names such as σ and π no longer apply. Instead, we should use
the symbols of the irreducible representations of the symmetry group to which
the molecule belongs. So for the C2v molecules such as H2S and H2O, the
molecular orbitals are a1, a2, b1, or b2 orbitals. (Again we note that we use
lower case letters for individual orbitals and capital letters for the overall states.
This is a convention we also use for atoms: we have s, p, d, . . . atomic orbitals
and S, P, D, . . . atomic states.) If the molecular orbitals have the symmetries of
the irreducible representations, so do the states, or the molecular term symbols,
arising from the electronic configurations. This is the subject to be taken up in
this section.

When the electronic configuration has only filled orbitals, there is only one
state: 1ΓTS , where ΓTS is the totally symmetric representation. If the configura-
tion has only one open shell (having symmetry Γi) with one electron, we again
have only one state: 2Γi. When there are two open shells (having symmetries
Γi and Γj) each with one electron, the symmetry of the state is Γi × Γj = Γij
and the overall states (including spin) are 3Γij and 1Γij.

Let us now apply this method to a specific example. Consider the ethylene
molecule with D2h symmetry. As can be seen from the character table of the
D2h point group (Table 6.4.2), this group has eight symmetry species. Hence
the molecular orbitals of ethylene must have the symmetry of one of these eight
representations. In fact, the ground electronic configuration for ethylene is

(1ag)
2(1b1u)

2(2ag)
2(2b1u)

2(1b2u)
2(3ag)

2(1b3g)
2(1b3u)

2(1b2g)
0.

Table 6.4.2. Character table of point group D2h

D2h E C2(z) C2(y) C2(x) i σ (xy) σ (xz) σ (yz)

Ag 1 1 1 1 1 1 1 1 x2, y2, z2

B1g 1 1 −1 −1 1 1 −1 −1 Rz xy
B2g 1 −1 1 −1 1 −1 1 −1 Ry xz
B3g 1 −1 −1 1 1 −1 −1 1 Rx yz
Au 1 1 1 1 −1 −1 −1 −1
B1u 1 1 −1 −1 −1 −1 1 1 z
B2u 1 −1 1 −1 −1 1 −1 1 y
B3u 1 −1 −1 1 −1 1 −1 −1 x
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Fig. 6.4.2.
Some molecular orbitals of ethylene
(point group D2h). All are completely
filled except 1b2g in the ground state.
The x axis points into the paper.

2ag 3ag2b1u 1b2u

1b3g 1b3u 1b2g

y

x

z

So the eight pairs of electrons of this molecule occupy delocalized molecular
orbitals 1ag to 1b3u, while the first vacant orbital is 1b2g. Note that the names of
these orbitals are simply the symmetry species of the D2h point group. In other
words, molecular orbitals are labeled by the irreducible representations of the
point group to which the molecule belongs. So for ethylene there are three filled
orbitals with Ag symmetry; the one with the lowest energy is called 1ag, the next
one is 2ag, etc. Similarly, there are two orbitals with B1u symmetry and they
are called 1b1u and 2b1u. All the molecular orbitals listed above, except the first
two, are illustrated pictorially in Fig. 6.4.2. By checking the D2h character table
with reference to the chosen coordinate system shown in Fig. 6.4.2, it can be
readily confirmed that these orbitals do have the labeled symmetry. In passing,
it is noted that the two filled molecular orbitals of ethylene not displayed in Fig.
6.4.2, 1ag and 1b1u, are simply the sum and difference, respectively, of the two
carbon 1s orbitals.

So for the ethylene molecule, with an electronic configuration having only
filled orbitals, the ground state is simply 1Ag, where Ag is the totally symmetric
species of the D2h point group. For the ethylene cation, with configura-
tion . . .(1b3u)

1, the electronic state is 2B3u. For ethylene with the excited
configuration . . .(1b3u)

1(1b2g)
1, the electronic states are 1B1u and 3B1u, as

B3u × B2g = B1u.
If, in the configuration, there are a number of completely filled orbitals and

one open (degenerate) shell with two (equivalent) electrons, there will be singlet
as well as triplet states. To determine the spatial symmetry of these states, we
make use of the formulas:

n = 2 : χ(R, singlet) = 1/2[χ2(R) + χ(R2)], (6.4.11)

χ(R, triplet) = 1/2[χ2(R)− χ(R2)]. (6.4.12)

In eqs. (6.4.11) and (6.4.12), χ2(R) is the square of χ(R), while χ(R2) is the
character of operation R2, which, according to group theory, must also be an
operation of the group.

iranchembook.ir/edu

https://iranchembook.ir/edu


Symmetry and Elements of Group Theory 191

Table 6.4.3. Derivation of the electronic states arising from configuration
(e)2 of a molecule with C3v symmetry

C3v E 2C3 3σ v

A1 1 1 1
A2 1 1 −1
E 2 −1 0

R E C3 σ v
R2 E C3 E

χ(R) in E representation 2 −1 0
χ2(R) in E representation 4 1 0
χ(R2) in E representation 2 −1 2

χ(R, singlet) = 1/2[χ2(R) + χ(R2)] 3 0 1 ≡ 1E + 1A1
χ (R, triplet) = 1/2[χ2(R)− χ(R2)] 1 1 −1 ≡ 3A2

For a molecule with C3v symmetry, when there are two electrons in an
e orbital; i.e., when we have a configuration of (e)2 (note that it takes four
electrons to completely fill the doubly degenerate e orbital), we can use eqs.
(6.4.11) and (6.4.12) to derive the electronic states of this configuration, as
shown in Table 6.4.3.

According to Hund’s rule, among the three electronic states derived, 3A2
should have the lowest energy. So for a molecule with C3v symmetry, config-
urations involving e orbitals will lead to the following electronic states: (e)1,
2E; (e)2, 3A2 (lowest energy), 1E, 1A1; (e)3, 2E; (e)4, 1A1. Note that (e)1 and
(e)3, being conjugate configurations, have the same state(s), analogous to the
p1 and p5 configurations for atomic systems.

Now let us turn to a three-dimensional irreducible representation for the
first time. Take the T2g representation of a molecule with Oh symmetry as an
example. For configurations (t2g)

1 and (t2g)
5, the only electronic state is 2T2g.

(Note that a t2g orbital can accommodate up to six electrons.) For configurations
(t2g)

2 and (t2g)
4, the states are 3T1g (lowest energy), 1T2g, 1Eg, and 1A1g. The

detailed derivation of these states is summarized in Table 6.4.4. For (t2g)
6, a

closed-shell configuration, the only term is 1A1g, a singlet state with totally
symmetric spatial wavefunction. For the only remaining configuration, (t2g)

3,
there will be doublet and quartet states. To derive these states, we require the
following formulas:

n = 3 : χ(R, doublet) = 1
3
[χ3(R)− χ(R3)], (6.4.13)

χ(R, quartet) =
(

1
6

)

[χ3(R)− 3χ(R)χ(R2) + 2χ(R3)].
(6.4.14)

In eqs. (6.4.13) and (6.4.14), χ(R3) is the character of operation R3 which of
course is also one of the operations in the group. Applying these equations,
we can derive the following states for the (t2g)

3 configuration: 4A2g (lowest
energy), 2T1g, 2T2g, and 2Eg, as shown in Table 6.4.4.
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Table 6.4.4. Derivation of the electronic states arising from the configurations (t2g)2 and (t2g)3

of a coordination complex with Oh symmetry

Oh E 8C3 6C2 6C4 3C2
4 i 6S4 8S6 3σ h 6σ d

A1g 1 1 1 1 1 1 1 1 1 1
A2g 1 1 −1 −1 1 1 −1 1 1 −1
Eg 2 −1 0 0 2 2 0 −1 2 0
T1g 3 0 −1 1 −1 3 1 0 −1 −1
T2g 3 0 1 −1 −1 3 −1 0 −1 1
A1u 1 1 1 1 1 −1 −1 −1 −1 −1
A2u 1 1 −1 −1 1 −1 1 −1 −1 1
Eu 2 −1 0 0 2 −2 0 1 −2 0
T1u 3 0 −1 1 −1 −3 −1 0 1 1
T2u 3 0 1 −1 −1 −3 1 0 1 −1

R E C3 C2 C4 C2
4 i S4 S6 σ h σ d

R2 E C3 E C2
4 E E C2

4 C3 E E

R3 E E C2 C4 C2
4 i S4 i σ h σ d

χ(R) in T2g 3 0 1 −1 −1 3 −1 0 −1 1
χ(R2) in T2g 3 0 3 −1 3 3 −1 0 3 3
χ(R3) in T2g 3 3 1 −1 −1 3 −1 3 −1 1

χ (R, singlet) 6 0 2 0 2 6 0 0 2 2 ≡ 1A1g + 1Eg + 1T2g

χ (R, triplet) 3 0 −1 1 −1 3 1 0 −1 −1 ≡ 3T1g

χ (R, doublet) 8 −1 0 0 0 8 0 −1 0 0 ≡ 2Eg + 2T1g + 2T2g

χ (R, quartet) 1 1 −1 −1 1 1 −1 1 1 −1 ≡ 4A2g

For the sake of completeness, we give below the formulas for open-shell
systems with four or five equivalent electrons:

n = 4 : χ(R, singlet) =
(

1
12

)

[χ4(R)− 4χ(R)χ(R3) + 3χ2(R2)],
(6.4.15)

χ(R, triplet) =
(

1
8

)

[χ4(R)− 2χ2(R)χ(R2)

+ 2χ(R4)− χ2(R2)], (6.4.16)

χ(R, quintet) =
(

1
24

)

[χ4(R)− 6χ2(R)χ(R2) + 8χ(R)χ(R3)

− 6χ(R4) + 3χ2(R2)]. (6.4.17)

n = 5 : χ(R, doublet) =
(

1
24

)

[χ5(R)− 2χ3(R)χ(R2)− 4χ2(R)χ(R3)

+ 6χ(R)χ(R4) + 3χ(R)χ2(R2)

− 4χ(R2)χ(R3)], (6.4.18)

χ(R, quartet) =
(

1
30

)

[χ5(R)− 5χ3(R)χ(R2) + 5χ2(R)χ(R3)

+ 5χ(R2)χ(R3)− 6χ(R5)], (6.4.19)
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Table 6.4.5. The direct product of =×= or a molecule
with C∞v symmetry

C∞v E 2Cφ∞ … ∞σv

<+ 1 1 … 1
<− 1 1 … −1
= 2 2 cosφ … 0
' 2 2cos 2φ … 0
> 2 2 cos 3φ … 0
...

...
...

...
Γ (=×=) 4 4 cos2 φ = 2 + 2 cos 2φ … 0

χ(R, sextet) =
(

1
120

)

[χ5(R)− 10χ3(R)χ(R2) + 20χ2(R)χ(R3)

− 30χ(R)χ(R4) + 15χ(R)χ2(R2)

− 20χ(R2)χ(R3) + 24χ(R5)]. (6.4.20)

Equations (6.4.15) to (6.4.20) may be of use for systems with Ih symmetry.
For such systems, we may be dealing with orbitals with G or H symmetry,
which have four- and five-fold degeneracy, respectively.

To conclude this section, we discuss an example involving a linear molecule,
for which eq. (6.4.3) is not applicable. Consider configuration (1π)1(2π)1 for
linear molecule XYZ with C∞v symmetry. As shown in Table 6.4.5, we can
decompose the direct product =×= into the symmetry species of the C∞v
group, without using eq. (6.4.3) explicitly.

To decompose Γ (=×=), by inspecting χ(Cφ∞), we can see that Γ (=×=)

must contain ' once. Elimination of ' from Γ (= ×=) yields characters (2,
2, …, 0), which is simply the sum of <+ and <−. Hence, after considering
the spin part, it can be readily seen that the states arising from configuration
(1π)1(2π)1 are 3', 1', 3<+, 1<+, 3<−, and 1<−.

In addition to the derivation of selection rules in electronic spectroscopy
and electronic states from a given configuration, there are many other fruitful
applications of group theory to chemical problems, some of which will be
discussed in the next chapter.
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Appendix 6.1 Character tables of point groups

1. The non-axial groups

C1 E

A 1

Cs E σ h

A′ 1 1 x, y, Rz x2 , y2, z2, xy xz2, yz2, x(x2 − 3y2), y(3x2 − y2)

A′′ 1 −1 z, Rx, Ry yz, xz z3, xyz, z(x2 − y2)

Ci E i

Ag 1 −1 Rx, Ry, Rz x2 , y2, z2, xy, xz, yz
Au 1 −1 x, y, z all cubic functions

2. The Cn groups

C2 E C2

A 1 1 z, Rz x2 , y2, z2, xy z2, xyz, z(x2 − y2)

B 1 −1 x, y, Rx, Ry yz, xz xz2, yz2, x(x2 − 3y2), y(3x2 − y2)

C3 E C3 C2
3 ε = exp(2π i/3)

A 1 1 1 z, Rz x2 + y2, z2 z3, x(x2 − 3y2), y(3x2 − y2)

E
{

1
1

ε

ε∗
ε∗

ε

}

(x, y), (Rx, Ry) (x2 − y2, xy), (yz, xz) (xz2, yz2, [xyz, z(x2 − y2)]
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C4 E C4 C2 C3
4

A 1 1 1 1 z, Rz x2 + y2, z2 z3

B 1 −1 1 −1 x2 − y2, xy xyz, z(x2 − y2)

E
{

1
1

i
−i

−1
−1

−i
i

}

(x, y), (Rx, Ry) (xz, yz) (xz2, yz2), [x(x2 − 3y2), y(3x2 − y2)]

C5 E C5 C2
5 C3

5 C4
5 ε = exp(2π i/5)

A 1 1 1 1 1 z, Rz x2 + y2, z2 z3

E1

{

1
1

ε

ε∗
ε2

ε2∗
ε2∗

ε2
ε∗

ε

}

(x, y), (Rx, Ry) (yz, xz) (xz2, yz2)

E2

{

1
1

ε2

ε2∗
ε∗

ε

ε

ε∗
ε2∗

ε2

}

(x2 − y2, xy) [xyz, z(x2 − y2)], [x(x2 − 3y2), y(3x2 − y2)]

C6 E C6 C3 C2 C2
3 C5

6 ε exp(2π i/6)

A 1 1 1 1 1 1 z, Rz x2 + y2, z2 z3

B 1 −1 1 −1 1 −1 x(x2 − 3y2), y(3x2 − y2)

E1

{

1
1

ε

ε∗
−ε∗
−ε

−1
−1

−ε
−ε∗

ε∗

ε

}

(x, y), (Rx, Ry) (xz, yz) (xz2, yz2)

E2

{

1
1

−ε∗
−ε

−ε
−ε∗

1
1

−ε∗
−ε

−ε
−ε∗
}

(x2 − y2, xy) [xyz, z(x2 − y2)]
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C7 E C7 C2
7 C3

7 C4
7 C5

7 C6
7 ε = exp(2π i/7)

A 1 1 1 1 1 1 1 z, Rz x2 + y2, z2 z3

E1

{

1
1

ε

ε∗
ε2

ε2∗
ε3

ε3∗
ε3∗

ε3
ε2∗

ε2
ε∗

ε

}

(x, y), (Rx, Ry) (xz, yz) (xz2, yz2)

E2

{

1
1

ε2

ε2∗
ε3∗

ε3
ε∗

ε

ε

ε∗
ε3

ε3∗
ε2∗

ε2

}

(x2 − y2, xy) [xyz, z(x2 − y2)]

E3

{

1
1

ε3

ε3∗
ε∗

ε

ε2

ε2∗
ε2∗

ε2
ε

ε∗
ε3∗

ε3

}

[x(x2 − 3y2), y(3x2 − y2)]

C8 E C8 C4 C2 C3
4 C3

8 C5
8 C7

8 ε = exp(2π i/8)

A 1 1 1 1 1 1 1 1 z, Rz x2 + y2, z2 z3

B 1 −1 1 1 1 −1 −1 −1

E1

{

1
1

ε

ε∗
i
−i

−1
−1

−i
i

−ε∗
−ε

−ε
−ε∗

ε∗

ε

}

(x, y), (Rx, Ry) (xz, yz) (xz2, yz2)

E2

{

1
1

i
−i

−1
−1

1
1

−1
−1

−i
i

i
−i

−i
i

}

(x2 − y2, xy) [xyz, z(x2 − y2)]

E3

{

1
1

−ε
−ε∗

i
−i

−1
−1

−i
i

ε∗

ε

ε

ε∗
−ε∗
−ε [x(x2 − 3y2), y(3x2 − y2)]
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3. The Dn groups

D2 E C2(z) C2(y) C2(x)

A 1 1 1 1 x2, y2, z2 xyz
B1 1 1 −1 −1 z, Rz xy z3, z(x2 − y2)

B2 1 −1 1 −1 y, Ry xz yz2, y(3x2 − y2)

B3 1 −1 −1 1 x, Rx yz xz2, x(x2 − 3y2)

D3 E 2C3 3C2 (x axis coincident with C2)

A1 1 1 1 x2 + y2, z2 x(x2 − 3y2)

A2 1 1 −1 z, Rz z3, y(3x2 − y2)

E 2 −1 0 (x, y), (Rx, Ry) (x2 − y2, xy), (xz, yz) (xz2, yz2), [xyz, z(x2 − y2)]

D4 E 2C4 C2(= C2
4) 2C ′2 2C′′2 (x axis coincident with C ′2)

A1 1 1 1 1 1 x2 + y2, z2

A2 1 1 1 −1 −1 z, Rz z3

B1 1 −1 1 1 −1 x2 − y2 xyz
B2 1 −1 1 −1 1 xy z(x2 − y2)

E 2 0 −2 0 0 (x, y), (Rx, Ry) (xz, yz) (xz2, yz2), [x(x2 − 3y2), y(3x2 − y2)]

D5 E 2C5 2C2
5 5C2 (x axis coincident with C2)

A1 1 1 1 1 x2 + y2, z2

A2 1 1 1 −1 z, Rz z3

E1 2 2 cos 72◦ 2 cos 144◦ 0 (x, y), (Rx, Ry) (xz, yz) (xz2, yz2)

E2 2 2 cos 144◦ 2 cos 72◦ 0 (x2 − y2, xy) [xyz, z(x2 − y2)], [x(x2 − 3y2), y(3x2 − y2)]
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D6 E 2C6 2C3 C2 3C′2 3C′′2 (x axis coincident with C ′2)

A1 1 1 1 1 −1 1 x2 + y2, z2

A2 1 1 1 1 −1 −1 z, Rz z3

B1 1 −1 1 −1 1 −1 x(x2 − 3y2)

B2 1 −1 1 −1 −1 1 y(3x2 − y2)

E1 2 −1 −1 −2 0 0 (x, y), (Rx, Ry) (xz, yz) (xz2, yz2)

E2 2 −1 −1 −2 0 0 (x2 − y2, xy) [xyz, z(x2 − y2)]

4. The Cnv groups

C2v E C2 σ v(xz) σ ′v(yz)

A1 1 1 1 1 z x2, y2, z2 z3, z(x2 − y2)

A2 1 1 −1 −1 Rz xy xyz
B1 1 −1 1 −1 x, Ry xz xz2, x(x2 − 3y2)

B2 1 −1 −1 1 y, Rx yz yz2, y(3x2 − y2)

C3v E 2C3 3σ v

A1 1 1 1 z x2 + y2, z2 z3, x(x2 − 3y2)

A2 1 1 −1 Rz y(3x2 − y2)

E 2 −1 0 (x, y), (Rx, Ry) (x2 − y2, xy), (xz, yz) (xz2, yz2), [xyz, z(x2 − y2)]
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C4v E 2C4 C2 2σ v 2σ d

A1 1 1 1 1 1 z x2 + y2, z2 z3

A2 1 1 1 −1 −1 Rz
B1 1 −1 1 1 −1 x2 − y2 z(x2 − y2)

B2 1 −1 1 −1 1 xy xyz
E 2 0 −2 0 0 (x, y), (Rx, Ry) (xz, yz) (xz2, yz2), [x(x2 − 3y2), y(3x2 − y2)]

C5v E 2C5 2C2
5 5σ v

A1 1 1 1 1 z x2 + y2, z2 z3

A2 1 1 1 −1 Rz
E1 2 2 cos 72◦ 2 cos 144◦ 0 (x, y), (Rx, Ry) (xz, yz) (xz2, yz2)

E2 2 2 cos 144◦ 2 cos 72◦ 0 (x2 − y2, xy) [xyz, z(x2 − y2)], [x(x2 − 3y2), y(3x2 − y2)]

C6v E 2C6 2C3 2C2 3σ v σ d

A1 1 1 1 1 1 1 z x2 + y2, z2 z3

A2 1 1 1 1 −1 −1 Rz
B1 1 −1 1 −1 1 −1 x(x2 − 3y2)

B2 1 −1 1 −1 −1 1 y(3x2 − y2)

E1 2 1 −1 −2 0 0 (x, y), (Rx, Ry) (xz, yz) (xz2, yz2)

E2 2 −1 −1 2 0 0 (x2 − y2, xy) [xyz, z(x2 − y2)]
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5. The Cnh groups

C2h E C2 i σ h

Ag 1 1 1 1 Rz x2, y2, z2, xy
Bg 1 −1 1 −1 Rx, Ry xz, yz
Au 1 1 −1 −1 z z3, xzy, z(x2 − y2)

Bu 1 −1 −1 1 x, y xz2, yz2, x(x2 − 3y2), y(3x2 − y2)

C3h E C3 C2
3 σ h S3 S5

3 ε = exp(2π i/3)

A′ 1 1 1 1 1 1 Rz x2 + y2, z2 x(x2 − 3y2), y(3x2 − y2)

E′
{

1
1

ε

ε∗
ε∗

ε

1
1

ε

ε∗
ε∗

ε

}

(x, y) (x2 − y2, xy) (xz2, yz2)

A′′ 1 1 1 −1 −1 −1 z z3

E′′
{

1
1

ε

ε∗
ε∗

ε

−1
−1

−ε
−ε∗

−ε∗
−ε

}

(Rx, Ry) (xz, yz) [xyz, z(x2 − y2)]

C4h E C4 C2 C3
4 i S3

4 σ h S4

Ag 1 1 1 1 1 1 1 1 Rz x2 + y2, z2

Bg 1 −1 1 −1 1 −1 1 −1 x2 − y2, xy

Eg

{

1
1

i
−i

−1
−1

−i
i

1
1

i
−i

−1
−1

−i
i

}

(Rx, Ry) (xz, yz)

Au 1 1 1 1 −1 −1 −1 −1 z z3

Bu 1 −1 1 −1 −1 1 −1 1 xyz, z(x2 − y2)

Eu

{

1
1

i
−i

−1
−1

−i
i
−1
−1

−i
i

1
1

i
−i

}

xy (xz2, yz2), [x(x2 − 3y2), y(3x2 − y2)]
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C5h E C5 C2
5 C3

5 C4
5 σ h S5 S7

5 S3
5 S9

5 ε = exp(2π i/5)

A′ 1 1 1 1 1 1 1 1 1 1 Rz x2 + y2, z2

E′1

{

1
1

ε

ε∗
ε2

ε2∗
ε2∗

ε2
ε∗

ε

1
1

ε

ε∗
ε2

ε2∗
ε2∗

ε2
ε∗

ε

}

(x, y) (xz2, yz2)

E′2

{

1
1

ε2

ε2∗
ε∗

ε

ε

ε∗
ε2∗

ε2
1
1

ε2

ε2∗
ε∗

ε

ε

ε∗
ε2∗

ε2

}

(x2 − y2, xy) [x(x2 − 3y2), y(3x2 − y2)]

A′′ 1 1 1 1 1 −1 −1 −1 −1 −1 z z3

E′′1

{

1
1

ε

ε∗
ε2

ε2∗
ε2∗

ε2
ε∗

ε

−1
−1

−ε
−ε∗

−ε2

−ε2∗
−ε2∗

−ε2
−ε∗
−ε

}

(Rx, Ry) (xz, yz)

E′′2

{

1
1

ε2

ε2∗
ε∗

ε

ε

ε∗
ε2∗

ε2
−1
−1

−ε2

−ε2∗
−ε∗
−ε

−ε
−ε∗

−ε2∗

−ε2

}

[xyz, z(x2 − y2)]

C6h E C6 C3 C2 C2
3 C5

6 i S5
3 S5

6 σ h S6 S3 ε = exp(2π i/6)

Ag 1 1 1 1 1 1 1 1 1 1 1 1 Rz x2 + y2, z2

Bg 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

E1g

{

1
1

ε

ε∗
−ε∗
−ε

−1
−1

−ε
−ε∗

ε∗

ε

1
1

ε

ε∗
−ε∗
−ε

−1
−1

−ε
−ε∗

−ε∗
−ε

}

(Rx, Ry) (xz, yz)

E2g

{

1
1
−ε∗
−ε

−ε
−ε∗

1
1
−ε∗
−ε

−ε
−ε∗

1
1
−ε∗
−ε

−ε
−ε∗

1
1
−ε∗
−ε

−ε
−ε∗

}

(x2 − y2, xy)

Au 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 z z3

Bu 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 x(x2 − 3y2), y(3x2 − y2)

E1u

{

1
1

ε

ε∗
−ε∗
−ε

−1
−1

−ε
−ε∗

ε∗

ε

−1
−1

−ε
−ε∗

ε∗

ε

1
1

ε

ε∗
−ε∗
−ε

}

(x, y) (xz2, yz2)

E2u

{

1
1
−ε∗
−ε

−ε
−ε∗

1
1
−ε∗
−ε

−ε
−ε∗

−1
−1

ε∗

ε

ε

ε∗
−1
−1

ε∗

ε

ε

ε∗

}

[xyz, z(x2 − y2)]
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6. The Dnh groups

D2h E C6(z) C2(y) C2(x) i σ (xy) σ (xz) σ (yz)

Ag 1 1 1 1 1 1 1 1 x2, y2, z2

B1g 1 1 −1 −1 1 1 −1 −1 Rz xy
B2g 1 −1 1 −1 1 −1 1 −1 Ry xz
B3g 1 −1 −1 1 1 −1 −1 1 Rx yz
Au 1 1 1 1 −1 −1 −1 −1 xyz
B1u 1 1 −1 −1 −1 −1 1 1 z z3, z(x2 − y2)

B2u 1 −1 1 −1 −1 1 −1 1 y yz2, y(3x2 − y2)

B3u 1 −1 −1 1 −1 1 1 −1 x xz2, x(x2 − 3y2)

D3h E 2C3 3C2 σ h 2S3 3σ v (x axis coincident with C2)

A′1 1 1 1 1 1 1 x2 + y2, z2 x(x2 − 3y2)

A′2 1 1 −1 1 1 −1 Rz y(3x2 − y2)

E′ 2 −1 0 2 −1 0 (x, y) (x2 − y2, xy) (xz2, yz2)
A′′1 1 1 1 −1 −1 −1
A′′2 1 1 −1 1 −1 1 z z3

E′′ 2 −1 0 −2 1 0 (Rx, Ry) (xz, yz) [xyz, z(x2 − y2)]

iranchembook.ir/edu

https://iranchembook.ir/edu


D4h E 2C4 C2 2C′2 2C′′2 i 2S4 σ h 2σ v 2σ d (x axis coincident with C ′2)

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 1 −1 −1 1 1 1 −1 −1 Rz
B1g 1 −1 1 1 −1 1 −1 1 1 −1 x2 − y2

B2g 1 −1 1 −1 1 1 −1 1 −1 1 xy
Eg 2 0 −2 0 0 2 0 −2 0 0 (Rx, Ry) (xz, yz)
A1u 1 1 1 1 1 −1 −1 −1 −1 −1
A2u 1 1 1 −1 −1 −1 −1 −1 1 1 z z3

B1u 1 −1 1 1 −1 −1 1 −1 −1 1 xyz
B2u 1 −1 1 −1 1 −1 1 −1 1 −1 z(x2 − y2)

Eu 2 0 −2 0 0 −2 0 2 0 0 (x, y) (xz2, yz2), [x(x2 − 3y2), y(3x2 − y2)]

D5h E 2C5 2C2
5 5C′2 σ h 2S5 2S3

5 2σ v (x axis coincident with C ′2)

A′1 1 1 1 1 1 1 1 1 x2 + y2, z2

A′2 1 1 1 −1 1 1 1 −1 Rz
E′1 2 2 cos 72◦ 2 cos 144◦ 0 2 2 cos 72◦ 2 cos 144◦ 0 (x, y) (xz2, yz2)

E′2 2 2 cos 144◦ 2 cos 72◦ 0 2 2 cos 144◦ 2 cos 72◦ 0 (x2 − y2, xy) [x(x2 − 3y2), y(3x2 − y2)]
A′′1 1 1 1 1 −1 −1 −1 −1
A′′2 1 1 1 −1 −1 −1 −1 1 z z3

E′′1 2 2 cos 72◦ 2 cos 144◦ 0 −2 −2 cos 72◦ −2 cos 144◦ 0 (Rx, Ry) (xz, yz)
E′′2 2 2 cos 144◦ 2 cos 72◦ 0 −2 −2 cos 144◦ −2 cos 72◦ 0 [xyz, z(x2 − y2)]

iranchembook.ir/edu

https://iranchembook.ir/edu


D6h E 2C6 2C3 C2 3C′2 3C′′2 i 2S3 2S6 σ h 3σ d 3σ v (x axis coincident with C ′2)

A1g 1 1 1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 1 1 −1 −1 1 1 1 1 −1 −1 Rz
B1g 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1
B2g 1 −1 1 −1 −1 1 1 −1 1 −1 −1 1
E1g 2 1 −1 −2 0 0 2 1 −1 −2 0 0 (Rx, Ry) (xz, yz)
E2g 2 −1 −1 2 0 0 2 −1 −1 −2 0 0 (x2 − y2, xy)
A1u 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1
A2u 1 1 1 1 −1 −1 −1 −1 −1 −1 1 1 z z3

B1u 1 −1 1 −1 1 −1 −1 1 −1 1 −1 1 x(x2 − 3y2)

B2u 1 −1 1 −1 −1 1 −1 1 −1 1 1 −1 y(3x2 − y2)

E1u 2 1 −1 −2 0 0 −2 −1 1 2 0 0 (x, y) (xz2, yz2)

E2u 2 −1 −1 2 0 0 −2 1 1 −2 0 0 [xyz, z(x2 − y2)]

D8h E 2C8 2C3
8 2C4 C2 4C′2 4C′′2 i 2S3

8 2S8 2S4 σ h 4σ v 4σ d (x axis coincident with C ′2)

A1g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 1 1 1 −1 −1 1 1 1 1 1 −1 −1 Rz
B1g 1 −1 −1 1 1 1 −1 1 −1 −1 1 1 1 −1
B2g 1 −1 −1 1 1 −1 1 1 −1 −1 1 1 −1 1
E1g 2 (2)1/2 −(2)1/2 0 −2 0 0 2 (2)1/2 −(2)1/2 0 −2 0 0 (Rx, Ry) (xz, yz)
E2g 2 0 0 −2 2 0 0 2 0 0 −2 2 0 0 (x2 − y2, xy)
E3g 2 −(2)1/2 (2)1/2 0 −2 0 0 2 −(2)1/2 (2)1/2 0 −2 0 0
A1u 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1
A2u 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 1 1 z z3

B1u 1 −1 −1 1 1 1 −1 −1 1 1 −1 −1 −1 1
B2u 1 −1 −1 1 1 −1 1 −1 1 1 −1 −1 1 −1
E1u 2 (2)1/2 −(2)1/2 0 −2 0 0 −2 −(2)1/2 (2)1/2 0 2 0 0 (x, y) (xz2, yz2)

E2u 2 0 0 −2 2 0 0 −2 0 0 2 −2 0 0 [xyz, z(x2 − y2)]
E3u 2 −(2)1/2 (2)1/2 0 −2 0 0 −2 (2)1/2 −(2)1/2 0 2 0 0 [x(x2 − 3y2), y(3x2 − y2)]
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7. The Dnd groups

D2d E 2S4 C2 2C′2 2σ d (x axis coincident with C ′2)

A1 1 1 1 1 1 x2 + y2, z2 xyz
A2 1 1 1 −1 −1 Rz z(x2 − y2)

B1 1 −1 1 1 −1 x2 − y2

B2 1 −1 1 −1 1 z (x, y) (xz2, yz2), [x(x2 − 3y2), y(3x2 − y2)]
E 2 0 −2 0 0 (x, y)(Rx, Ry) (xz, yz) (xz2, yz2), [x(x2 − 3y2), y(3x2 − y2)]

D3d E 2C3 3C2 i 2S6 3σ d (x axis coincident with C2)

A1g 1 1 1 1 1 1 x2 + y2, z2

A2g 1 1 −1 1 1 −1 Rz
Eg 2 −1 0 2 −1 0 (Rx, Ry) (x2 − y2, xy)(xz, yz)
A1u 1 1 1 −1 −1 −1 x(x2 − 3y2)

A2u 1 1 −1 −1 −1 1 z y(3x2 − y2), z3

Eu 2 −1 0 −2 1 0 (x, y) (xz2, yz2), [xyz, z(x2 − y2)]

D4d E 2S8 2C4 2S3
8 C2 4C′2 4σ ′d (x axis coincident with C ′2)

A1 1 1 1 1 1 1 1 x2 + y2, z2

A2 1 1 1 1 1 −1 −1 Rz
B1 1 −1 1 −1 1 1 −1
B2 1 −1 1 −1 1 −1 −1 z z3

E1 2 (2)1/2 0 −(2)1/2 −2 0 0 (x, y) (xz2, yz2)

E2 2 0 −2 0 2 0 0 (x2 − y2, xy) [xyz, z(x2 − y2)]
E3 2 −(2)1/2 0 (2)1/2 −2 0 0 (Rx, Ry) (xz, yz) [x(x2 − 3y2), y(3x2 − y2)]
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D5d E 2C5 2C2
5 5C2 i 2S3

10 2S10 5σ d (x axis coincident with C2)
A1g 1 1 1 1 1 1 1 1 x2 + y2 , z2

A2g 1 1 1 −1 1 1 1 −1 Rz
E1g 2 2 cos 72◦ 2 cos 144◦ 0 2 2 cos 72◦ 2 cos 144◦ 0 (Rx, Ry) (xz, yz)
E2g 2 2 cos 144◦ 2 cos 72◦ 0 2 2 cos 144◦ 2 cos 72◦ 0 (x2 − y2, xy)
A1u 1 1 1 1 −1 −1 −1 −1
A2u 1 1 1 −1 −1 −1 −1 1 z z3

E1u 2 2 cos 72◦ 2 cos 144◦ 0 −2 −2 cos 72◦ −2 cos 144◦ 0 (x, y) (xz2, yz2)

E2u 2 2 cos 144◦ 2 cos 72◦ 0 −2 −2 cos 144◦ −2 cos 72◦ 0 [xyz, z(x2 − y2)],
[x(x2 − 3y2), y(3x2 − y2)]

D6d E 2S12 2C6 2S4 2C3 C2 6C2 5σ d 6σ d (x axis coincident with C2)
A1 1 1 1 1 1 1 1 1 1 x2 + y2, z2

A2 1 1 1 1 1 1 1 −1 −1 Rz
B1 1 −1 1 −1 1 −1 1 1 −1
B2 1 −1 1 −1 1 −1 1 −1 1 z z3

E1 2 (3)1/2 1 0 −1 −(3)1/2 −2 0 0 (x, y) (xz2, yz2)

E2 2 1 −1 −2 −1 1 2 0 0 (x2 − y2, xy)
E3 2 0 −2 0 2 0 −2 0 0 [x(x2 − 3y2), y(3x2 − y2)]
E4 2 −1 −1 2 −1 −1 2 0 0 [xyz, z(x2 − y2)]
E5 2 −(3)1/2 1 0 −1 (3)1/2 −2 0 0 (Rx, Ry) (xz, yz)
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8. The Sn groups

S4 E S4 C2 S3
4

A 1 1 1 1 Rz x2 + y2, z2 xyz, z(x2 − y2)

B 1 −1 1 −1 z x2 − y2, xy z3

E
{

1 i −1 −i
1 −i −1 i

}

(x, y), (Rx, Ry) (xz, yz) (xz2, yz2)[x(x2 − 3y2), y(3x2 − y2)]

S6 E C3 C2
3 i S5

6 S6 ε = exp(2π i/3)

Ag 1 1 1 1 1 1 Rz x2 + y2, z2

Eg

{

1 ε ε∗ 1 ε ε∗

1 ε∗ ε 1 ε∗ ε

}

(Rx, Ry) (x2 − y2, xy)(xz, yz)

Au 1 1 1 −1 −1 −1 z z3, x(x2 − 3y2), y(3x2 − y2)

Eu

{

1 ε ε∗ −1 −ε − ε∗
1 −ε∗ ε −1 −ε∗ − ε

}

(x, y) (xz2, yz2), [xyz, z(x2 − y2)]

S8 E S8 C4 S3
8 C2 S5

8 C3
4 S7

8 ε = exp(2π i/8)

A 1 1 1 1 1 1 1 1 Rz x2 + y2, z2

B 1 −1 1 −1 1 −1 1 −1 z z3

E1

{

1 ε i − ε∗ −1 −ε −i ε∗

1 ε∗ − i − ε −1 −ε∗ i ε

}

(x, y) (xz2, yz2)

E2

{

1 i − 1 − i 1 i − 1 − i
1 −i − 1 i 1 −i − 1 i

}

(x2 − y2, xy) [xyz, z(x2 − y2)]

E3

{

1 −ε∗ − i ε −1 ε∗ i − ε
1 −ε i ε∗ −1 ε −i − ε∗

}

(Rx, Ry) (xz, yz) [x(x2 − 3y2), y(3x2 − y2)]
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9. The cubic groups

T E 4C3 4C2
3 3C2 ε = exp(2π i/3)

A 1 1 1 1 x2 + y2 + z2 xyz

E
{

1 ε ε∗ 1
1 ε∗ ε 1

}

(2z2 − x2 − y2, x2 − y2)

T 3 0 0 −1 (Rx, Ry, Rz)(x, y, z) (xy, xz, yz) (x3, y3, z3), [x(z2 − y2), y(z2 − x2), z(x2 − y2)]

Th E 4C3 4C2
3 3C2 i 4S6 4S5

6 3σ h ε = exp(2π i/3)

Ag 1 1 1 1 1 1 1 1 x2 + y2 + z2

Eg

{

1 ε ε∗ 1 1 ε ε∗ 1
1 ε∗ ε 1 1 ε∗ ε 1

}

(2z2 − x2 − y2, x2 − y2)

Tg 3 0 0 −1 3 0 0 −1 (Rx, Ry, Rz) (xy, xz, yz)
Au 1 1 1 1 −1 −1 −1 −1 xyz

Eu

{

1 ε ε∗ 1 −1 −ε −ε∗ −1
1 ε∗ ε 1 −1 −ε∗ −ε −1

}

Tu 3 0 0 −1 −3 0 0 1 (x, y, z) (x3, y3, z3), [x(z2 − y2), y(z2 − x2), z(x2 − y2)]

Td E 8C3 3C2 6S4 6σ d

A1 1 1 1 1 1 x2 + y2 + z2 xyz
A2 1 1 1 −1 −1
E 2 −1 2 0 0 (2z2 − x2 − y2, x2 − y2)

T1 3 0 −1 1 −1 (Rx, Ry, Rz) [x(z2 − y2), y(z2 − x2), z(x2 − y2)]
T2 3 0 −1 −1 1 (x, y, z) (x3, y3, z3)
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O E 6C4 3C2(= C2
4) 8C3 6C2

A1 1 1 1 1 1 x2 + y2 + z2

A2 1 −1 1 1 −1 xyz
E 2 0 2 −1 0 (2z2 − x2 − y2, x2 − y2)

T1 3 1 −1 0 −1 (Rx, Ry, Rz) (x3, y3, z3)

T2 3 −1 −1 0 1 (xy, xz, yz) [x(z2 − y2), y(z2 − y2), z(x2 − y2)]

Oh E 8C3 6C2 6C4 3C2(= C2
4) i 6S4 8S6 3σ h 6σ d

A1g 1 1 1 1 1 1 1 1 1 1 x2 + y2 + z2

A2g 1 1 −1 −1 1 1 −1 1 1 −1
Eg 2 −1 0 0 2 2 0 −1 2 0 (2z2 − x2 − y2, x2 − y2)

T1g 3 0 −1 1 −1 3 1 0 −1 −1
T2g 3 0 1 −1 −1 3 −1 0 −1 1 (Rx , Ry , Rz)

A1u 1 1 1 1 1 −1 −1 −1 −1 −1 (xy, xz, yz)
A2u 1 1 −1 −1 1 −1 1 −1 −1 1 xyz
Eu 2 −1 0 0 2 −2 0 1 −2 0
T1u 3 0 −1 1 −1 −3 −1 0 1 1 (x, y, z) (x3, y3, z3)

T2u 3 0 1 −1 −1 −3 1 0 1 −1 [x(z2 − y2), y(z2 − x2), z(x2 − y2)]
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10. The groups C∞v and D∞h for linear molecules

C∞v E 2C>∞ · · ·∞σ v

A1 ≡ <+ 1 1 · · · 1 z x2 + y2, z2 z3

A2 ≡ <− 1 1 · · · −1 Rz
E1 ≡ = 2 2 cos> · · · 0 (x, y)(Rx, Ry) (xz, yz) (xz2, yz2)

E2 ≡ ' 2 2 cos 2> · · · 0 (x2 − y2, xy) [xyz, z(x2 − y2)]
E3 ≡ > 2 2 cos 3> · · · 0 [x(x2 − 3y2), y(3x2 − y2)]

...
...

...
...

...

D∞h E 2C>∞ · · ·∞σ v i 2S>∞ · · ·∞C2

A1g ≡ <+
g 1 1 · · · 1 1 1 · · · 1 x2 + y2, z2

A2g ≡ <−g 1 1 · · · −1 1 1 · · · −1 Rz

E1g ≡ =g 2 2 cos> · · · 0 2 −2 cos> · · · 0 (Rx, Ry) (xz, yz)
E2g ≡ 'g 2 2 cos 2> · · · 0 2 2 cos 2> · · · 0 (x2 − y2, xy)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
A1u ≡ <+

u 1 1 · · · 1 −1 −1 · · · −1 z z3

A2u ≡ <−u 1 1 · · · −1 −1 −1 · · · 1
E1u ≡ =u 2 2 cos> · · · 0 −2 2 cos> · · · 0 (x, y) (xz2, yz2)

E2u ≡ 'u 2 2 cos 2> · · · 0 −2 −2 cos 2> · · · 0 [xyz, z(x2 − y2)]
E3u ≡ >u 2 2 cos 3> · · · 0 −2 2 cos 3> · · · 0 [x(x2 − 3y2), y(3x2 − y2)]

...
...

...
...

...
...

...
...

...
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11. The Icosahedral groups

I E 12C5 12C2
5 20C3 15C2 η± = 1/2[1 ± (5)1/2]

A 1 1 1 1 1 x2 + y2 + z2

T1 3 η+ η− 0 −1 (x, y, z)(Rx, Ry, Rz)

T2 3 η− η+ 0 −1 (x3, y3, z3)

G 4 −1 −1 1 0 [x(z2 − y2), y(z2 − x2), z(x2 − y2), xyz]
H 5 0 0 −1 1 (2z2 − x2 − y2, x2 − y2,

xy, xz, yz)

Ih E 12C5 12C2
5 20C3 15C2 i 12S10 12S3

10 20S6 15σ η± = 1/2[1 ± (5)1/2]
Ag 1 1 1 1 1 1 1 1 1 1 x2 + y2 + z2

T1g 3 η+ η− 0 −1 3 η− η+ 0 −1 (Rx, Ry, Rz)

T2g 3 η− η+ 0 −1 3 η+ η− 0 −1
Gg 4 −1 −1 1 0 4 −1 −1 1 0
Hg 5 0 0 −1 1 5 0 0 −1 1 (2z2 − x2 − y2, x2

−y2, xy, xz, yz)
Au 1 1 1 1 1 −1 −1 −1 −1 −1
T1u 3 η+ η− 0 −1 −3 −η− −η+ 0 1 (x, y, z)
T2u 3 η− η+ 0 −1 −3 −η+ −η− 0 1 (x3, y3, z3)

Gu 4 −1 −1 1 0 −4 1 1 −1 0 [x(z2 − y2), y(z2 − x2),
z(x2 − y2), xyz]

Hu 5 0 0 −1 1 −5 0 0 1 −1

Note: In these groups and others containing C5, the following relationships may be useful:

η+ = 1/2[1 + (5)1/2] = 1.61803 . . . = −2 cos 144◦

η− = 1/2[1− (5)1/2] = −0.61803 . . . = −2 cos 72◦

η+ × η+ = 1 + η+, η− × η− = 1 + η−, η+ × η− = −1.
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7Application of Group
Theory to Molecular
Systems

In this chapter, we discuss the various applications of group theory to chemical
problems. These include the description of structure and bonding based on
hybridization and molecular orbital theories, selection rules in infrared and
Raman spectroscopy, and symmetry of molecular vibrations. As will be seen,
even though most of the arguments used are qualitative in nature, meaningful
results and conclusions can be obtained.

7.1 Molecular orbital theory

As mentioned previously in Chapter 3, when we treat the bonding of a molecule
by applying molecular orbital theory, we need to solve the secular determinant

∣

∣

∣

∣

∣

∣

∣

∣

∣

H11 − ES11 H12 − ES12 . . . H1n − ES1n
H12 − ES12 H22 − ES22 . . . H2n − ES2n

...
...

...
H1n − ES1n H2n − ES2n . . . Hnn − ESnn

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (7.1.1)

In eq. (7.1.1), energy E is the only unknown, while energy interaction inte-
grals Hij (≡ ∫φiĤφjdτ ) and overlap integrals Sij (≡ ∫φiφjdτ ) are calculated
with known atomic orbitals φ1,φ2, . . .φn. After solving for E (n of them in all),
we can substitute each E in the following secular equations to determine the
values of coefficients ci:


















(H11 − ES11)c1 + (H12 − ES12)c2 + . . . + (H1n − ES1n)cn = 0
(H12 − ES12)c1 + (H22 − ES22)c2 + . . . + (H2n − ES2n)cn = 0

...
...

...
...

(H1n − ES1n)c1 + (H2n − ES2n)c2 + . . . + (Hnn − ESnn)cn = 0

.

(7.1.2)

In molecular orbital theory, the molecular orbitals are expressed as linear
combinations of atomic orbitals:

ψ =
n
∑

i=1

ciφi = c1φ1 + c2φ2 + . . . + cnφn. (7.1.3)
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So we have n E’s from eq. (7.1.1), and each E value leads to a set of coef-
ficients, or to one molecular orbital. In other words, n atomic orbitals form n
molecular orbitals; i.e., the number of orbitals is conserved.

The solution of eq. (7.1.1) is made easier if the secular determinant can be
put in block-diagonal form, or block-factored:

k % k

zeroes

l % l l % l . . .# k % k % % %

n

n

zeroes

with k ! l ! ... ! m # n.m % m

m % m # 0,

(7.1.4)

We will then be solving several small determinants (k × k; l × l; . . .; m × m)
instead of a very large one (n × n). By taking advantage of the symmetry
property of the system, group theory can do just that. In this section, we illustrate
the reduction of the secular determinant by studying several representative
molecular systems.

7.1.1 AHn (n = 2–6) moleculesz

y
O

Hb Ha

Fig. 7.1.1.
Coordinate system for the H2O
molecule. Note that the x axis points
toward the reader.

As mentioned in Chapter 3, to construct the molecular orbitals for an AXn
molecule, we need to combine the atomic orbitals on X and then match the
resultant combinations with the atomic orbitals on the central atom A. With
group theory, we can derive the linear combinations systematically.

Let us use the simple molecule H2O as the first example. The coordinate
system we adopt for this molecule is shown in Fig. 7.1.1. The orientation of the
adopted set of axes is similar to that for H2S in Fig. 6.4.2.

If we assume that the 2s and 2p orbitals of oxygen and the 1s orbitals of the
hydrogen atoms take part in the bonding, the secular determinant to be solved
has the dimensions 6 × 6. Now we proceed to determine the symmetries of
the participating atomic orbitals. From the C2v character table, it can be seen
that the 2px, 2py, and 2pz orbitals on oxygen have B1, B2, and A1 symme-
tries, respectively, while the oxygen 2s orbital, being totally symmetric, has
A1 symmetry. To determine the characters of the representation generated by
the hydrogen 1s orbitals, we make use of this simple rule: the character (of an
operation) is equal to the number of objects (vectors or orbitals) unshifted by
the operation. So, for the hydrogen 1s orbitals:

C2v E C2 σ v(xz) σ ′v(yz)
ΓH 2 0 0 2 ≡ A1 + B2

In other words, the two 1s orbitals will form two linear combinations, one
with A1 symmetry and the other with B2 symmetry. To deduce these two linear
combinations, we need to employ the projection operator, which is defined as

Pi =
h
∑

j=1

χ i(Rj)Rj, (7.1.5)
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where Pi is the projection operator for representation Γi, χ i(Rj) is the char-
acter of the representation Γi for operation Rj, and the summation is over all
the symmetry operations (h in total). To derive the linear combinations of the
hydrogen 1s orbitals with A1 symmetry, we apply PA1 on, say, the 1s orbital on
Ha (denoted as 1sa). So we need to know the result of applying every symmetry
operation in the C2v group to 1sa:

C2v E C2 σ v(xz) σ ′v(yz)
1sa 1sa 1sb 1sb 1sa

Now we apply PA1 to 1sa:

PA1(1sa) = [1 · E + 1 · C2 + 1 · σ v(xz) + 1 · σ ′v(yz)]1sa

= 1sa + 1sb + 1sb + 1sa = 2(1sa) + 2(1sb)

⇒ (2)−1/2(1sa + 1sb) (after normalization). (7.1.6)

To obtain the combination with B2 symmetry:

PB2(1sa) = [1 · E + (−1)C2 + (−1)σ v(xz) + 1 · σ ′v(yz)]1sa

= 1sa − 1sb − 1sb + 1sa = 2(1sa)− 2(1sb)

⇒ (2)−1/2(1sa − 1sb) (after normalization). (7.1.7)

In Table 7.1.1 we summarize the way in which the molecular orbitals are
formed in H2O. From these results, we can see that the original 6×6 secu-
lar determinant is now block-factored into three smaller ones: one 3×3 for
functions with A1 symmetry, one 2×2 with B2 symmetry, and one 1×1 with B1
symmetry. A schematic energy diagram for this molecule is shown in Fig. 7.1.2.
From this diagram, we can see that there are two bonding orbtals (1a1 and 1b2),
two other orbitals essentially nonbonding (2a1 and 1b1), and two antibonding
orbitals (2b2 and 3a1). Also, all the bonding and nonbonding orbitals are filled,
giving rise to a ground electronic configuration of (1a1)

2(1b2)
2(2a1)

2(1b1)
2

and an electronic state of 1A1. This bonding picture indicates that H2O has
two σ bonds and two filled nonbonding orbitals. Such a result is in qualitative
agreement with the familiar valence bond description for this molecule.

In passing, it is of interest to note that, according to Fig. 7.1.2, the first
excited electronic configuration is (1a1)

2(1b2)
2(2a1)

2(1b1)
1(2b2)

1, giving rise
to states 3A2 and 1A2. It is easy to show that electronic transition A1 → A2 is
not allowed for a molecule with C2v symmetry. In other words, 1A1 → 1A2

Table 7.1.1. Formation of the molecular orbitals in H2O

Symmetry Orbital on O Orbitals on H Molecular orbitals

A1 2s (2)1/2(1sa + 1sb) 1a1, 2a1, 3a1
2pz

B1 2px — 1b1
B2 2py (2)1/2(1sa − 1sb) 1b2, 2b2
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Fig. 7.1.2.
A schematic energy level diagram for
H2O.

E

2p

2s

3a1

1b1

2a1

1b2

1a1

H2OO H

2b2

1sa 1sb

is spin-allowed and symmetry-forbidden, while 1A1 →3A2 is both spin- and
symmetry-forbidden.

B Ha

Hc

Hb

y

x

Fig. 7.1.3.
Coordinate system for BH3.

Now let us turn to a slightly more complicated system, that of BH3 with D3h
symmetry. Note that BH3 is not a stable species: it dimerizes spontaneously
to form diborane, B2H6. A convenient coordinate system for BH3 is shown in
Fig. 7.1.3.

From the D3h character table, it is readily seen that boron 2s and 2pz orbitals
have A′1 and A′′2 symmetry, respectively, while the 2px and 2py orbitals form an E′

set. To determine the symmetry species of the hydrogen 1s orbital combinations,
we perform the operations

D3h E 2C3 3C2 σ h 2S3 3σ v
ΓH 3 0 1 3 0 1 ≡ A′1 + E′

So, among the three linear combinations of hydrogen 1s orbitals, one has
A′1 symmetry, while the remaining two form an E′ set. To obtain the explicit
functions, we require the symmetry operation results

D3h E 2C3 3C2 σ h 2S3 3σ v
1sa 1sa 1sb, 1sc 1sa, 1sb, 1sc 1sa 1sb, 1sc 1sa, 1sb, 1sc

Now, it is straightforward to obtain the linear combinations

PA′1(1sa) = 1(1sa) + 1(1sb + 1sc) + 1(1sa + 1sb + 1sc) + 1(1sa)

+ 1(1sb + 1sc) + 1(1sa + 1sb + 1sc)

= 4(1sa + 1sb + 1sc)

⇒ (3)−1/2(1sa + 1sb + 1sc) (after normalization); (7.1.8)

PE′(1sa) = 2(1sa)− 1(1sb + 1sc) + 2(1sa)− 1(1sb + 1sc)

= 4(1sa)− 2(1sb + 1sc)

⇒ (6)−1/2[2(1sa)− 1sb − 1sc] (after normalization). (7.1.9)
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Still one more combination is required to complete the E′ set. It is not difficult
to see that when we operate PE′ on 1sb and 1sc, we get

PE′(1sb) = (6)−1/2[2(1sb)− 1sa − 1sc], (7.1.10)

PE′(1sc) = (6)−1/2[2(1sc)− 1sa − 1sb]. (7.1.11)

Since the two combinations of an E′ set must be linearly independent, and sum-
mation of eqs. (7.1.10) and (7.1.11) yield eq. (7.1.9) (aside from a normalization
factor), we need to take the difference of eqs. (7.1.10) and (7.1.11) to obtain the
remaining combination:

[2(1sb)− 1sa − 1sc]− [2(1sc)− 1sa − 1sb] = 3(1sb − 1sc)

⇒ (2)−1/2(1sb − 1sc) [after normalization]. (7.1.12)

Obviously, there are different ways to choose the combination of an E′ set.
We choose the ones given by eqs. (7.1.9) and (7.1.12) because these func-
tions overlap with the boron 2px and 2py orbitals, respectively, as shown in
Fig. 7.1.4.

Table 7.1.2 summarizes how the molecular orbitals in BH3 are formed.
From these results, we can see that the original 7×7 secular determinant
(four orbitals from B and three from the H’s) is block-factored into three
2×2 and one 1×1 determinants. The 1×1 has A′′2 symmetry, one 2×2 has
A′1 symmetry, while the remaining two 2×2 form an E′ set. It is important
to note that the two 2×2 determinants that form the E′ pair have the same
pair of roots; i.e., we only need to solve one of these two determinants! A
schematic energy level diagram for BH3 is shown in Fig. 7.1.5. According to
this diagram, the ground configuration for BH3 is (1a′1)

2(1e′)4 and the ground
state is 1A′1.

Hb

Ha

Hc

–

–

– + +

Hb
+

Ha

Hc

–

–

+

y

x

y

x

(a) (b)

Fig. 7.1.4.
(a) Overlap between the boron 2px
orbital with combination
(6)−1/2[2(1sa)− 1sb − 1sc].
(b) Overlap between the boron 2py
orbital with the combination
(2)−1/2[1sb − 1sc]. By symmetry, the
total overlaps in (a) and (b) are the same.

Table 7.1.2. Summary of the formation of the molecular orbitals in BH3

Symmetry Orbital on B Orbitals on H Molecular orbitals

A′1 2s (3)−1/2(1sa + 1sb + 1sc) 1a′1, 2a′1

E′
{

2px
2py

{

(6)−1/2[2(1sa)− 1sb − 1sc]
(2)−1/2(1sb − 1sc)

1e′, 2e′

A′′2 2pz — 1a′′2
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Fig. 7.1.5.
A schematic energy level diagram for
BH3.

2a1&

2p

E

2s

B H

1a2''
1sa

2e&

1sb 1sc

1a1'

1e'

BH3

Next we turn to the highly symmetric molecule CH4, which belongs to point
group Td. A coordinate system for this molecule is shown in Fig. 7.1.6. For
this molecule, there are eight valence atomic orbitals: 2s and 2p orbitals of
carbon and the 1s orbitals of the hydrogens. Regarding the carbon orbitals,
2s has A1 symmetry, while the 2px, 2py, and 2pz orbitals form a T2 set. The
irreducible representations spanned by the hydrogen 1s orbitals can be readily
determined:

Td E 8C3 3C2 6S4 6σ d
ΓH 4 1 0 0 2 ≡ A1 + T2

Hb

Ha

C

Hc

Hd

y

z

x

Fig. 7.1.6.
Coordinate system for CH4.

So the four hydrogen 1s orbitals form one linear combination with A1 sym-
metry and three other combinations that make up a T2 set. To obtain these
combinations, we make use of the symmetry operation results

Td E 8C3 3C2 6S4 6σ d
1sa 1sa 2(1sa), 2(1sb), 1sb, 1sc, 2(1sb), 2(1sc), 3(1sa), 1sb, 1sc,

2(1sc), 2(1sd ) 1sd 2(1sd ) 1sd

Now the linear combination can be obtained readily:

PA1(1sa) = 1(1sa) + 1[2(1sa) + 2(1sb) + 2(1sc) + 2(1sd )]
+ 1(1sb + 1sc + 1sd ) + 1[2(1sb) + 2(1sc) + 2(1sd )]
+ 1[3(1sa) + 1sb + 1sc + 1sd ]

⇒ 1
2
(1sa + 1sb + 1sc + 1sd ) (after normalization).

(7.1.13)

PT2(1sa) = 3(1sa)− 1(1sb + 1sc + 1sd )− 1[2(1sb) + 2(1sc) + 2(1sd )]
+ 1[3(1sa) + 1sb + 1sc + 1sd ]

= 6(1sa)− 2(1sb)− 2(1sc)− 2(1sd ). (7.1.14)
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Similarly, when we operate PT2 on 1sb, 1sc, 1sd , we obtain

PT2(1sb) = 6(1sb)− 2(1sa)− 2(1sc)− 2(1sd ), (7.1.15)

PT2(1sc) = 6(1sc)− 2(1sa)− 2(1sb)− 2(1sd ), (7.1.16)

PT2(1sd ) = 6(1sd )− 2(1sa)− 2(1sb)− 2(1sc). (7.1.17)

To obtain the three linear combinations of the T2 set, we combine eqs. (7.1.14)
to (7.1.17) in the following manner:

Sum of eqs. (7.1.14) and (7.1.15):

4(1sa) + 4(1sb)− 4(1sc)− 4(1sd ) = 1
2
(1sa + 1sb − 1sc − 1sd )

(after normalization). (7.1.18)

Sum of eqs. (7.1.14) and (7.1.16) :
1
2
(1sa − 1sb + 1sc − 1sd ). (7.1.19)

Sum of eqs. (7.1.14) and (7.1.17) :
1
2
(1sa − 1sb − 1sc + 1sd ). (7.1.20)

There are many ways of combining eqs. (7.1.14) to (7.1.17) to arrive at the
three combinations that form the T2 set. We choose those ones given by eqs.
(7.1.18) to (7.1.20) as these functions overlap effectively with the 2pz , 2px, and
2py orbitals, respectively, as shown in Fig. 7.1.7.

Table 7.1.3 summarizes the formation of the molecular orbitals in CH4. For
this molecule, the original 8×8 secular determinants is reduced to four 2×2
ones, one with A1 symmetry, while the other three form a T2 set. In other
words, we only need to solve the A1 2×2 determinant as well as one of the
three determinants that form the T2 set. By symmetry, the three determinants

x

y

z

–

–

–

+

+

x

+

x

y

z

–

–

–

+

+

+

y

z

–

–

–

+

+

+

Fig. 7.1.7.
The overlap between 2px , 2pz , and 2py
orbitals of carbon with the 1s orbitals of
the hydrogens in CH4

Table 7.1.3. Formation of the molecular orbitals in CH4

Symmetry Orbital on C Orbitals on H Molecular orbitals

A1 2s 1
2 (1sa + 1sb + 1sc + 1sd ) 1a1, 2a1

T2







2px
2py
2pz















1
2 (1sa − 1sb + 1sc − 1sd )

1
2 (1sa − 1sb − 1sc + 1sd )

1
2 (1sa + 1sb − 1sc − 1sd )

1t2, 2t2
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Fig. 7.1.8.
A schematic energy level diagram for
CH4.

1s

CH4C H

1a1

2p

E 2a1

2t2

1t2
2s

Table 7.1.4. Formation of the molecular orbitals in AH5

Symmetry Orbital on A Orbitals on H Molecular Orbitals

A′1 ns
(2)−1/2(1sa + 1sb)

(3)−1/2(1sc + 1sd + 1se)
1a′1, 2a′1, 3a′1

E′
{

npx
npy

{

(6)−1/2[2(1sc)− 1sd − 1se)]
(2)−1/2(1sd − 1se)

1e′, 2e′

A′′2 npz (2)−1/2(1sa − 1sb) 1a′′2 , 2a′′2

forming the T2 set have the same roots. A schematic energy level diagram for
CH4 is shown in Fig. 7.1.8. According to this diagram, the ground configuration
is simply (1a1)

2(1t2)6 and the ground state is 1A1.

He

Ha

Hb

Hc
x

y

z

Hd
A

Fig. 7.1.9.
Coordinate system for AH5.

So far we have illustrated the method for constructing the linear combina-
tions of atomic orbitals, using H2O, BH3, and CH4 as examples. In these simple
systems, all the ligand orbitals are equivalent to each other. For molecules with
non-equivalent ligand sites, we first linearly combine the orbitals on the equiv-
alent atoms. Then, if the need arises, we can further combine the combinations
that have the same symmetry. Take a hypothetical molecule AH5 with trigo-
nal bipyramidal structure (D3h symmetry) as an example. Figure 7.1.9 shows a
convenient coordinate system for this molecule. It is clear that these are two sets
of hydrogen atoms: equatorial hydrogens Hc, Hd , and He and axial hydrogens
Ha and Hb.

When we linearly combine the orbitals on Ha and Hb, two (un-normalized)
combinations are obtained: 1sa + 1sb (A′1 symmetry), 1sa − 1sb (A′′2). On the
other hand, the combinations for the orbitals on the equatorial hydrogens are
1sc + 1sd + 1se (A′1); 2(1sc) − 1sd − 1se and 1sd − 1se (E′ symmetry). If
we assume central atom A contributes ns and np orbitals to bonding, we can
easily arrive at the results summarized in Table 7.1.4. Note that we can further
combine the two ligand linear combinations with A′1 symmetry by taking their
sum and difference.

Hf

Ha

Hd

He

Hb

Hc

A

y
x

z

Fig. 7.1.10.
Coordinate system for AH6.

Finally, we treat the highly symmetrical octahedral molecule AH6 with Oh
symmetry. A coordinate system for this molecule is shown in Fig. 7.1.10. If we
assume that central atom A contributes ns, np, and nd orbitals to bonding, the
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Table 7.1.5. Formation of the molecular orbitals in AH6

Symmetry Orbital on A Orbitals on H Molecular Orbitals

A1g ns (6)−1/2(1sa + 1sb + 1sc + 1sd + 1se + 1sf ) 1a1, 2a1

Eg

{

ndz2

ndx2−y2







(12)−1/2[(2(1se) + 2(1sf )− 1sa − 1sb
−1sc − 1sd )

1
2 (1sa + 1sb − 1sc − 1sd )

1eg, 2eg

T2g







ndxy
ndyz
ndxz

—
—
—

1t2g

T1u







npx
npy
npz







(2)−1/2(1sa − 1sb)

(2)−1/2(1sc − 1sd )

(2)−1/2(1se − 1sf )

1t1u, 2t1u

secular determinant has the dimensions 15×15. To obtain the symmetries of
the six 1s orbital linear combinations:

Oh E 8C3 6C2 6C4 3C2 = C2
4 i 6S4 8S6 3σh 6σd

ΓH 6 0 0 2 2 0 0 0 4 2 ≡ A1g + Eg + T1u

To derive the combinations, we need the following tabulation listing the effect
of various symmetry operations of Oh on the 1s orbital on hydrogen atom Ha:

Oh E 8C3 6C2 6C4 3C2 = C2
4 i 6S4 8S6 3σh 6σd

1sa 1sa 2(1sc),
2(1sd ),
2(1se),
2(1sf )

2(1sb),
1sc ,1sd ,
1se ,1sf

2(1sa),
1sc ,1sd ,
1se ,1sf

1sa ,
2(1sb)

1sb 2(1sb),
1sc ,1sd ,
1se ,1sf

2(1sc),
2(1sd ),
2(1se),
2(1sf )

2(1sa),
1sb

2(1sa),
1sc ,1sd ,
1se ,1sf

Now it is straightforward to derive the results summarized in Table 7.1.5.
It is clear that the 15×15 secular determinant is block-factored into three 1×1
determinants that form a T2g set, one 2×2 with A1g symmetry, two 2×2 that
form an Eg set, and three 2×2 that form a T1u set. In other words, we only need to
solve one 1×1 and three 2×2 secular determinants for this highly symmetrical
molecule. This example shows the great simplification that group theory brings
to the solution of a large secular determinant.

7.1.2 Hückel theory for cyclic conjugated polyenes

Previously in Chapter 3 we introduced the Hückel molecular orbital the-
ory and applied it to the π system of a number of conjugated polyene
chains. In this section we will apply this approximation to cyclic conjugated
polyenes, taking advantage of the symmetry properties of these systems in the
process.

C2'

a

c

d

e

f b

(σv)

C2
'' (σd)

Fig. 7.1.11.
Labeling of the 2p orbitals taking part in
the π bonding of benzene. Also shown
are the locations of the symmetry
elements C′2, C′′2 , σv and σd.

Now let us take benzene as an example. The six 2p atomic orbitals taking
part in the π bonding are labeled in the manner shown in Fig. 7.1.11. In the
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Hückel approximation, the 6×6 secular determinant has the form

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α − E β 0 0 0 β

β α − E β 0 0 0
0 β α − E β 0 0
0 0 β α − E β 0
0 0 0 β α − E β

β 0 0 0 β α − E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0. (7.1.21)

If we consider the D6h symmetry of the system, we can determine the
symmetries of the six π molecular orbitals:

D6h E 2C6 2C3 C2 3C′2 3C′′2 i 2S3 2S6 σh 3σd 3σv

Γπ 6 0 0 0 -2 0 0 0 0 −6 0 2 ≡ A2u + B2g + E1g + E2u

Recall that the character of an operation is equal to the number of vectors
unshifted by that operation. Previously, for AHn molecules, in determining
ΓH, the 1s orbitals on the hydrogen atoms are spherically symmetric. In the
present case, however, the 2p orbitals have directional properties. Take σh as
an example. Upon reflection, the direction of the 2p orbitals is reversed. Hence
χ(σ h) = −6.

Upon decomposing Γπ , we can conclude that the secular determinant in
eq. (7.1.21) can be factored into six 1×1 blocks: one with A2u symmetry, one
with B2g symmetry, two others composing an E1g set (with the same root), and
the remaining two forming an E2u set (also with the same root). To derive the
six linear combinations, we make use of the following results:

D6h E 2C6 2C3 C2 3C′2 3C′′2 i 2S3 2S6 σh 3σd 3σv

pa pa pb , pf pc , pe pd −pa , −pc , −pb , −pd , −pd −pc , −pe −pb , −pf −pa pb , pd , pa , pc ,

−pe −pf pf pe

The derivation of the non-degenerate linear combinations are straightforward:

PA2u (pa) = (6)−1/2(pa + pb + pc + pd + pe + pf ) (after normalization).
(7.1.22)

PB2g(pa) = (6)−1/2(pa − pb + pc − pd + pe − pf ) (after normalization).
(7.1.23)

The first component of the E1g set can also be derived easily:

PE1g(pa) = (12)−1/2[2(pa) + pb − pc − 2(pd )− pe + pf ]
(after normalization). (7.1.24)

For the second component, we operate PE1g on pb an pc:

PE1g(pb) = pa + 2(pb) + pc − pd − 2(pe)− pf , (7.1.25)

PE1g(pc) = −pa + pb + 2(pc) + pd − pe − 2(pf ). (7.1.26)
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Since subtracting eq. (7.1.26) from eq. (7.1.25) yields eq. (7.1.24) (aside from
a normalization constant), we need to take the sum of these two equations:

Eq. (7.1.25) + Eq. (7.1.26) :
1
2
(pb + pc − pe − pf ) (after normalization).

(7.1.27)

Similar manipulation leads to the following two linear combinations forming
the E2u set:

E2u :
{

(12)−1/2[2(pa)− pb − pc + 2(pd )− pe − pf ], (7.1.28)
1
2 (pb − pc + pe − pf ) (7.1.29)

The energy of the six molecular orbitals can now be calculated, using the
Hückel approximation as discussed in Chapter 3:

E(a2u) = α + 2β, (7.1.30)

E(e1g) = α + β, (7.1.31)

E(e2u) = α − β, (7.1.32)

E(b2g) = α − 2β (7.1.33)

The π energy levels, along with the molecular orbital wavefunctions, are pic-
torially displayed in Fig. 7.1.12. Since there are six π electrons in benzene,
orbitals a2u and e1g are filled, giving rise to a 1A1g ground state with the total
π energy

Eπ = 6α + 8β. (7.1.34)

α−β

α−  β2 b2g

e2u

α+β

α     β2 a2u

e1g

+

+

–
––

++

+–

+–

–+

+–

++

–
+

–

–

––

–
+

+

–

++

+
+

+

+

E

Fig. 7.1.12.
The energy level diagram and the
wavefunctions of the six π molecular
orbitals in benzene.
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If the three π bonds in benzene were independent of each other, i.e., localized,
they would have energy 3(2α + 2β) = 6α + 6β. Hence the delocalization
energy (DE) for benzene is

DE = 6α + 8β − 6α − 6β = 2β. (7.1.35)

Calculation of β from first principles is a fairly complicated task. On the other
hand, it can be approximated from experimental data:

|β| ∼ 18 kcal mol−1 = 75 kJ mol−1. (7.1.36)

g
h

y

x

e

f
j

i a

b

c
d

Fig. 7.1.13.
Labelling of the 2p orbitals taking part in
the π bonding of naphthalene. The z axis
points outward.

Another example of a cyclic conjugated polyene system is naphthalene. A
coordinate system for this molecule, along with the labeling of the π atomic
orbitals, is shown in Fig. 7.1.13. The 10×10 secular determinant has the form:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

α − E β 0 0 0 0 0 0 β 0
β α − E β 0 0 0 0 0 0 0
0 β α − E β 0 0 0 0 0 0
0 0 β α − E 0 0 0 0 0 β

0 0 0 0 α − E β 0 0 0 β

0 0 0 0 β α − E β 0 0 0
0 0 0 0 0 β α − E β 0 0
0 0 0 0 0 0 β α − E β 0
β 0 0 0 0 0 0 β α − E β

0 0 0 β β 0 0 0 β α − E

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

(7.1.37)

With the aid of the D2h character table, we can determine the symmetries of
the ten molecular orbitals of this system:

D2h E C2(z) C2(y) C2(x) i σ (xy) σ (xz) σ (yz)

Γπ 10 0 0 −2 0 −10 2 0 ≡ 2Au + 3B2g + 2B3g + 3B1u

In other words, the secular determinant in eq. (7.1.37) can be factored into two
2×2 and two 3×3 blocks. To obtain the explicit forms of these ten combinations,
we need the results of each of the eight symmetry operations. Also, since the
system now has three types of (structurally non-equivalent) carbon atoms, we
need the operation results on the 2p orbitals of these three kinds of atoms:

D2h E C2(z) C2(y) C2(x) i σ (xy) σ (xz) σ (yz)
pa pa pe −pd −ph −pe −pa ph pd
pb pb pf −pc −pg −pf −pb pg pc
pi pi pj −pj −pi −pj −pi pi pj

The resultant combinations can be obtained easily:

Au : φ1 = 1
2
(pa − pd + pe − ph), (7.1.38)

φ2 = 1
2
(pb − pc + pf − pg); (7.1.39)
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B2g : φ3 = 1
2
(pa − pd − pe + ph), (7.1.40)

φ4 = 1
2
(pb − pc − pf + pg), (7.1.41)

φ5 = (2)−1/2(pi − pj); (7.1.42)

B3g : φ6 = 1
2
(pa + pd − pe − ph), (7.1.43)

φ7 = 1
2
(pb + pc − pf − pg); (7.1.44)

B1u : φ8 = 1
2
(pa + pd + pe + ph), (7.1.45)

φ9 = 1
2
(pb + pc + pf + pg), (7.1.46)

φ10 = (2)−1/2(pi + pj). (7.1.47)

Next we need to set up the four smaller secular determinants. Take the one
with Au symmetry as an example:

H11 = ∫φ1Ĥφ1dτ

= 1
4

∫

(pa − pd + pe − ph)Ĥ (pa − pd + pe − ph)dτ = α; (7.1.48)

H12 = ∫φ1Ĥφ2dτ

= 1
4

∫

(pa − pd + pe − ph)Ĥ (pb − pc + pf − pg)dτ = β; (7.1.49)

H22 = ∫φ2Ĥφ2dτ

= 1
4

∫

(pb − pc + pf − pg)Ĥ (pb − pc + pf − pg)dτ = α − β.

(7.1.50)

Thus the Au secular determinant has the form

Au :
∣

∣

∣

∣

α − E β

β α − β − E

∣

∣

∣

∣

= 0. (7.1.51)

The other three determinants can be obtained in a similar manner:

B2g :

∣

∣

∣

∣

∣

∣

∣

α − E β (2)1/2β

β α − β − E 0

(2)1/2β 0 α − β − E

∣

∣

∣

∣

∣

∣

∣

= 0. (7.1.52)

B3g :
∣

∣

∣

∣

α − E β

β α + β − E

∣

∣

∣

∣

= 0. (7.1.53)

B1u :

∣

∣

∣

∣

∣

∣

∣

α − E β (2)1/2β

β α + β − E 0
(2)1/2β 0 α + β − E

∣

∣

∣

∣

∣

∣

∣

= 0. (7.1.54)

iranchembook.ir/edu

https://iranchembook.ir/edu


226 Symmetry in Chemistry

Table 7.1.6. The Hückel energies and wavefunctions of the π molecular orbitals in
naphthalene

Orbital Energy Wavefunction

3b2g α − 2.303β 0.3006(pa − pd − pe + ph)− 0.2307(pb − pc − pf + pg )− 0.4614(pi − pj)

2au α – 1.618β 0.2629(pa − pd + pe − ph)− 0.4253(pb − pc + pf − pg )

3b1u α – 1.303β 0.3996(pa + pd + pe + ph)− 0.1735(pb + pc + pf + pg )− 0.3470(pi + pj)

↑ 2b2g α − β 0.4082(pb − pc − pf + pg )− 0.4082(pi − pj)

E 2b3g α – 0.618β 0.4253(pa + pd − pe − ph)− 0.2629(pb + pc − pf − pg )

1au α + 0.618β 0.4253(pa − pd + pe − ph) + 0.2629(pb − pc + pf − pg )

2b1u α + β 0.4082(pb + pc + pf + pg )− 0.4082(pi − pj)

1b2g α + 1.303β 0.3996(pa − pd − pe + ph) + 0.1735(pb − pc − pf + pg ) + 0.3470(pi − pj)

1b3g α + 1.618β 0.2629(pa + pd − pe − ph) + 0.4253(pb + pc − pf − pg )

1b1u α + 2.303β 0.3006(pa + pd + pe + ph) + 0.2307(pb + pc + pf + pg ) + 0.4614(pi + pj)

The solving of these determinants may be facilitated by the substitution x =
(α − E)/β. In any event, the energies of the ten molecular orbitals can be
obtained readily. With the energies we can then solve the corresponding secular
equations for the coefficients. The energies and the wavefunctions of the ten π
molecular orbitals for naphthalene are summarized in Table 7.1.6. From these
results, we can arrive at the following ground electronic configuration and state:

(1b1u)
2(1b3g)

2(1b2g)
2(2b1u)

2(1au)
2, 1Ag.

By adding up the energies for all ten π electrons, we get

Eπ = 10α + 13.684β, (7.1.55)

and

DE = 3.684β. (7.1.56)

In addition, we can obtain the following allowed electronic transitions:

1Ag → [. . . (1au)
1(2b3g)

1], 1B3u, x-polarized;

1Ag → [. . . (1au)
1(2b2g)

1], 1B2u, y-polarized;

1Ag → [. . . (2b1u)
1(1au)

2(2b3g)
1], 1B2u, y-polarized.

Note that all three transitions are g ↔ u, in accordance with Laporte’s rule.
In the previous section, we discussed the construction of the σ molecular

orbitals in AHn systems. In this section, we confine our treatment to the π
molecular orbitals in cyclic conjugated polyenes. In most molecules, there are
σ bonds as well as π bonds, and these systems can be treated by the methods
introduced in these two sections.

Before concluding this section, it is noted that a fairly user-friendly SHMO
(simple Hückel molecular orbital) calculator is now available on the Internet,
http://www.chem.ucalgary.ca/shmo/. With this calculator, the Hückel energies
and wavefunctions of planar conjugated molecules can be obtained “on the fly.”
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Table 7.1.7. Some useful steps in the derivation of the linear combinations of atomic
orbitals for the π system of (NPX2)3.

D3h E 2C3 3C2 σ h 2S3 3σ v

Γp 3 0 −1 −3 0 1 ≡ A′′2 + E′′
Γd 3 0 1 −3 0 −1 ≡ A′′1 + E′′
c c −a,−e a,−c, e −c a, e −a, c,−e
d d −b,−f −b, d ,−f −d b, f b,−d , f

7.1.3 Cyclic systems involving d orbitals

Sometimes a cyclic π system also involves d orbitals. An example of such a
system is the inorganic phosphonitrilic halide (NPX2)3, which has D3h sym-
metry with a pair of out-of-plane halide groups σ -bonded to each phosphorous
atom. Now the six atomic orbitals taking part in the π bonding are the three p
orbitals on nitrogen and the three d orbitals on phosphorus. These orbitals and
their signed lobes above the molecular plane are shown in Fig. 7.1.14. Note that
the overlap of the six orbitals is not as efficient as that found in benzene. There
is an inevitable “mismatch” of symmetry, here occurring between orbitals a
and f , among the six atomic orbitals.

The incorporation of the d orbitals complicates the group theoretic procedure
to some extent. Table 7.1.7 gives some useful steps in the derivation of the linear
combinations of six atomic orbitals. With the results in Table 7.1.7, the linear
combination of the atomic orbitals can be readily derived:

PA′′2 c ⇒ (3)−1/2(a − c + e) (after normalization). (7.1.57)

P

N
P

N

P
N
a

b

c
d

e

f

+

+

+

+

+

Fig. 7.1.14.
Labeling of the N 2p orbitals and P 3d
orbitals taking part in the π bonding of
(NPX2)3. Note that only the signed lobes
above the molecular plane are shown.
Also, a “mismatch,” in this case
occurring between orbitals a and f , is
inevitable.

For the degenerate E′′ pair, we have

PE′′a = 2a + c− e

PE′′c = a + 2c + e

PE′′e = −a + c + 2e.

Since the first expression is the difference of the last two expressions, we can
select the first expression as well as the sum of the last two:

E′′ :
{

(6)−1/2(2a + c− e)
(2)−1/2(c + e)

. (7.1.58)

Similarly, for the phosphorus 3d orbitals, we have:

PA′′1 b ⇒ (3)−1/2(b− d + f ) (after normalization). (7.1.59)

E′′ :
{

(6)−1/2(b + 2d + f )

(2)−1/2(b− f )
. (7.1.60)

It is not difficult to show that, when we form the 2×2 secular determinants
with E′′ symmetry, the first component of (7.1.58) interacts with the second
component of (7.1.60).Analogously, the second component of (7.1.58) interacts
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Fig. 7.1.15.
The six pi molecular orbitals of (NPX2)3.

with the first component of (7.1.60). Without further quantitative treatment, it
is apparent that the six πgolecular orbitals have the energy ordering and nodal
characters shown in Fig. 7.1.15.

Molecular orbitals 1e′′ and 2e′′ may be classified as bonding and antibonding,
respectively, while 1a′′2 and 1a′′1 may be considered as nonbonding orbitals.
The ground configuration for this system is (1e′′)4(1a′′2)2. It is clear that the
delocalization of the six π electrons of this compound is not as extensive as
that in benzene. As a result, the P3N3 cycle is not as rigid as the benzene ring.
Furthermore, it should be noted that the phosphorus d oribital participation in
the bonding of this type of compounds has played an important role in the
development of inorganic chemistry. Indeed, the phosphorus d orbitals can
participate in the bonding of the (NPX2)3 molecule in a variety of ways, as
discussed in Chapter 15. The presentation here is mainly concerned with the
symmetry properties of the π molecular orbitals.

7.1.4 Linear combinations of ligand orbitals for AL4 molecules with Td
symmetry

In previous discussion, we constructed the symmetry-adapted linear combina-
tions of the hydrogen 1s orbitals forAHn molecules. In this section, we consider
ALn molecules, where L is a ligand capable of both σ and π bonding. For such
systems, the procedure to derive the linear combinations of ligand orbitals can
become fairly complicated. As an illustration, we take an AL4 molecule with
Td symmetry as an example.
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Fig. 7.1.16.
Coordinate system for a tetrahedral AL4
molecule.

The coordinate systems for all five atoms in AL4 are shown in Fig. 7.1.16.
Note that all of them are right-handed. Also, x1 and x4 lie in the AL1L4 plane,
while x2 and x3 lie in the AL2L3 plane.

The four linear combinations with A1 and T2 symmetries of the four vectors
z1, . . . , z4 forming σ bonds with orbitals on atom A may be easily obtained
by the technique of projection operators. Therefore, only the results are given
in Table 7.1.8, where all linear combinations of ligand orbitals will be listed.
It is noted that the four combinations of the z1 vectors are identical to the
combinations of hydrogen 1s orbitals obtained for methane.

The remaining eight vectors, x1, . . ., x4 and y1, . . ., y4, will form eight linear
combinations having symmetries E, T1, and T2. In order to see how these ligand
vectors transform under the 24 symmetry operations of the Td point group, the
direction numbers of all the ligand vectors are required. They are

x1(−1,−1, 2) x2(−1, 1, 2) x3(1,−1, 2) x4(1, 1, 2)

y1(1,−1, 0) y2(1, 1, 0) y3(−1,−1, 0) y4(−1, 1, 0)

z1(1, 1, 1) z2(−1, 1,−1) z3(1,−1,−1) z4(−1,−1, 1).

Among these, the direction numbers of the four z vectors are obvious. From
these four vectors, any other vector may be generated by doing the cross
product between an appropriate pair of vectors. For instance, y1 = z1 × z4,
x1 = y1 × z1, etc.

Next we write down the transformation matrices for all the operations:
C3(i): A threefold axis passing through atoms A and Li

C3(1) =

∣

∣

∣

∣

∣

∣

∣

∣

0 0 1

1 0 0

0 1 0

∣

∣

∣

∣

∣

∣

∣

∣

C3(2) =

∣

∣

∣

∣

∣

∣

∣

∣

0 0 1

−1 0 0

0 −1 0

∣

∣

∣

∣

∣

∣

∣

∣

C3(3) =

∣

∣

∣

∣

∣

∣

∣

∣

0 0 −1

−1 0 0

0 1 0

∣

∣

∣

∣

∣

∣

∣

∣

C3(4) =

∣

∣

∣

∣

∣

∣

∣

∣

0 0 −1

1 0 0

0 −1 0

∣

∣

∣

∣

∣

∣

∣

∣

.

Note that the matrix for C−1
3 (i), or C2

3(i), is simply the transpose of C3(i).
C2(q): A twofold axis which coincides with axis q on atom A

C2(X ) =

∣

∣

∣

∣

∣

∣

∣

1 0 0

0 −1 0

0 0 −1

∣

∣

∣

∣

∣

∣

∣

C2(Y ) =

∣

∣

∣

∣

∣

∣

∣

−1 0 0

0 1 0

0 0 −1

∣

∣

∣

∣

∣

∣

∣

C2(Z) =

∣

∣

∣

∣

∣

∣

∣

−1 0 0

0 −1 0

0 0 1

∣

∣

∣

∣

∣

∣

∣

.
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S4(q): Again, the axis of this operation coincides with axis q on atom A

S4(X ) =

∣

∣

∣

∣

∣

∣

∣

−1 0 0

0 0 −1

0 1 0

∣

∣

∣

∣

∣

∣

∣

S4(Y ) =

∣

∣

∣

∣

∣

∣

∣

0 0 1

0 −1 0

−1 0 0

∣

∣

∣

∣

∣

∣

∣

S4(Z) =

∣

∣

∣

∣

∣

∣

∣

0 −1 0

1 0 0

0 0 1

∣

∣

∣

∣

∣

∣

∣

.

Note that the matrix for S−1
4 (q), or S3

4(q), is also simply the transpose of S4(q).
σ (ij): A symmetry plane passing through atoms A, Li, and Lj

σ (12) =

∣

∣

∣

∣

∣

∣

0 0 1
0 1 0
1 0 0

∣

∣

∣

∣

∣

∣

σ (13) =

∣

∣

∣

∣

∣

∣

1 0 0
0 0 1
0 1 0

∣

∣

∣

∣

∣

∣

σ (14) =

∣

∣

∣

∣

∣

∣

0 1 0
1 0 0
0 0 1

∣

∣

∣

∣

∣

∣

.

σ (23) =

∣

∣

∣

∣

∣

∣

0 −1 0
−1 0 0
0 0 1

∣

∣

∣

∣

∣

∣

σ (24) =

∣

∣

∣

∣

∣

∣

1 0 0
0 0 −1
0 −1 0

∣

∣

∣

∣

∣

∣

σ (34) =

∣

∣

∣

∣

∣

∣

0 0 −1
0 1 0
−1 0 0

∣

∣

∣

∣

∣

∣

.

So now we have the transformation matrices of all the symmetry operations
in the Td point group, except the identity operation E, which is simply a unit
matrix with the dimensions 3 × 3.

When we carry out mathematically a symmetry operation on a ligand vector,
we perform a matrix multiplication between the symmetry operation matrix and
the vector composed of its directional numbers. For instance, when we operate
C3(1) on x1, we do the following:

C3(1)x1 =

∣

∣

∣

∣

∣

∣

0 0 1
1 0 0
0 1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−1
−1
2

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

2
−1
−1

∣

∣

∣

∣

∣

∣

.

Since operation C3(1) does not change the position of ligand L1, the above
resultant new vector (2,−1,−1) may be resolved along the x1 and y1 directions
by taking the dot products

(6)−1/2(2,−1,−1) · (6)−1/2(−1,−1, 2) = −1
2

x1

(6)−1/2(2,−1,−1) · (2)−1/2(1,−1, 0) = 1
2
(3)1/2y1.

In other words, C3(1)x1 = −1
2

x1 + 1
2
(3)1/2y1. Note that when we resolve

the new vector along the x1 and y1 directions, all vectors involved need to be
normalized first.

Similarly, when we operate C3(2) on x1, we get C3(2)x1 = (2, 1, 1). Since
operation C3(2) on ligand L1 yields L3, the resultant vector (2, 1, 1) is to be
resolved along the x3 and y3 directions. Now it is easy to show C3(2)x1 =
1
2

x3 −
1
2
(3)1/2y3.

When we carry out all 24 symmetry operations in the Td point group on
vector x1, we get

C3(1) : − 1
2

x1 + 1
2
(3)1/2y1, C−1

3 (1) : − 1
2

x1 −
1
2
(3)1/2y1

C3(2) :
1
2

x3 −
1
2
(3)1/2y3, C−1

3 (2) : − 1
2

x4 −
1
2
(3)1/2y4
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C3(3) : − 1
2

x4 + 1
2
(3)1/2y4, C−1

3 (3) :
1
2

x2 + 1
2
(3)1/2y2

C3(4) :
1
2

x2 −
1
2
(3)1/2y2, C−1

3 (4) :
1
2

x3 + 1
2
(3)1/2y3.

After summing up, 8C3x1 = −x1 + x2 + x3 − x4.

C2(X ) : − x3, C2(Y ) : − x2, C2(Z) : x4.

After summing up, 3C2x1 = −x2 − x3 + x4.

S4(X ) : − 1
2

x4 −
1
2
(3)1/2y4, S−1

4 (X ) :
1
2

x2 + 1
2
(3)1/2y2

S4(Y ) :
1
2

x3 −
1
2
(3)1/2y3, S−1

4 (Y ) : − 1
2

x4 + 1
2
(3)1/2y4

S4(Z) : − x2, S−1
4 (Z) : − x3.

After summing up, 6S4x1 = −1
2

x2 −
1
2

x3 − x4 + 1
2
(3)1/2y2 −

1
2
(3)1/2y3.

σ (12) : − 1
2

x1 + 1
2
(3)1/2y1, σ (13) : − 1

2
x1 −

1
2
(3)1/2y1, σ (14) : x1

σ (23) : x4, σ (24) :
1
2

x3 + 1
2
(3)1/2y3, σ (34) :

1
2

x2 −
1
2
(3)1/2y2.

After summing up, 6σ d x1 = 1
2

x2 + 1
2

x3 + x4 −
1
2
(3)1/2y2 + 1

2
(3)1/2y3.

Finally, for the identity operation E, we have E, Ex1 = x1.
If we carry out the same 24 symmetry operations on vector y1, we get

Ey1 = y1.

8C3y1 = −y1 + y2 + y3 − y4.

3C2y1 = −y2 − y3 + y4.

6S4y1 = 1
2

y2 + 1
2

y3 + y4 + 1
2
(3)1/2x2 −

1
2
(3)1/2x3.

6σ dy1 = −1
2

y2 −
1
2

y3 − y4 −
1
2
(3)1/2x2 + 1

2
(3)1/2x3.

Now we are in a position to apply the projection operator to obtain the linear
combinations of ligand orbitals with the desired symmetry. For instance, for
the two linear combinations that form the degenerate set with E symmetry, we
carry out the operations

PEx1 = 3x1 − 3x2 − 3x3 + 3x4, or
1
2
(x1 − x2 − x3 + x4).

Similarly, PEy1 = 1
2
(y1−y2−y3+y4).All linear combinations may be obtained

in an analogous manner. Table 7.1.8 lists the 16 linear combinations of ligand
orbitals for an AL4 molecule with Td symmetry.

iranchembook.ir/edu

https://iranchembook.ir/edu


232 Symmetry in Chemistry

Table 7.1.8. The symmetry-adapted linear combinations of ligand orbitals for an AL4 molecule
with Td symmetry

Symmetry Orbital on A Orbitals on ligands Molecular orbitals

A1 s 1
2 (s1 + s2 + s3 + s4); 1

2 (z1 + z2 + z3 + z4) 1a1, 2a1, 3a1

E

{

dz2
dx2−y2

{

1
2 (x1 − x2 − x3 + x4)
1
2 (y1 − y2 − y3 + y4)

1e, 2e

T1



















1
4 [(3)

1
2 (x1 + x2 − x3 − x4) + (y1 + y2 − y3 − y4)]

1
4 [(3)

1
2 (x1 − x2 + x3 − x4) + (y1 − y2 + y3 − y4)]

1
2 (y1 + y2 + y3 + y4)

1t1

T1











px

py

pz











1
2 (s1 − s2 + s3 − s4)
1
2 (s1 + s2 − s3 − s4)
1
2 (s1 − s2 − s3 + s4)











1
2 (z1 − z2 + z3 − z4)
1
2 (z1 + z2 − z3 − z4)
1
2 (z1 − z2 − z3 + z4)

1t2, 2t2, 3t2, 4t2, 5t2











dyz

dxz

dxy



















1
4 [(x1 + x2 − x3 − x4) + (3)

1
2 (−y1 − y2 + y3 + y4)]

1
4 [(x1 − x2 + x3 − x4) + (3)

1
2 (y1 − y2 + y3 − y4)]

1
2 (x1 + x2 + x3 + x4)

For an AL4 molecule with Td symmetry, if we assume that nine atomic
orbitals on A and four atomic orbitals on each L participate in bonding, there
will be 25 molecular orbitals in total. Based on symmetry arguments, as shown
in Table 7.1.8, among the molecular orbitals formed, there will be three with a1
symmetry, two doubly degenerate sets with E symmetry, one triply degenerate
set with T1 symmetry (which is nonbonding, i.e., localized on the ligands), and
five triply degenerate set with T2 symmetry. Clearly, for such a complex system,
it is not straightforward to come up with a qualitative energy level diagram.

7.2 Construction of hybrid orbitals

As introduced in Chapter 3, for AXn systems, the hybrid orbitals are the linear
combinations of atomic orbitals on central atom A that point toward the X
atoms. In addition, the construction of the spn hybrids was demonstrated. In
this section, we will consider hybrids that have d–orbital contributions, as well
as the relationship between the hybrid orbital coefficient matrix and that of the
molecular orbitals, all from the viewpoint of group theory.

7.2.1 Hybridization schemes

As is well known, if we construct four equivalent hybrid orbitals using one s
and three p atomic orbitals, the hybrids would point toward the four corners of
a tetrahedron. However, is this the only way to construct four such hybrids? If
not, what other atomic orbitals can be used to form such hybrid orbitals? To
answer these questions, we need to determine the representations spanned by
the four hybrid orbitals that point toward the corners of a tetrahedron:

Td E 8C3 3C2 6S4 6σ d

Γσ 4 1 0 0 2 ≡ A1 + T2
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This result implies that, among the four required atomic orbitals (on the
central atom), one must have A1 symmetry and the other three must form a T2
set. From Areas III and IV of the Td character table, we know that the s orbital
has A1 symmetry, while the three p orbitals, or the dxy, dyz , and dxz orbitals,
collectively form a T2 set. In other words, the hybridization scheme can be
either the well-known sp3 or the less familiar sd3, or a combination of these
two schemes.

On symmetry grounds, the sp3 and sd3 schemes are entirely equivalent to
each other. However, for a particular molecule, we can readily see that one
scheme is favored over the other. For instance, in CH4, carbon can use the 2s
and three 2p orbitals to form a set of sp3 hybrids. It is also clear that carbon is
unlikely to use its 2s orbital and three 3d orbitals (which lie above the 2p orbitals
by about 950 kJ mol−1) to form the hybrids. On the other hand, for tetrahedral
transition metal ions such as MnO−4 , it is likely that Mn would use three 3d
orbitals, instead of the three higher energy 4p orbitals, for the formation of the
hybrids.

We now list the possible hybridization schemes for several important
molecular types.

(1) AX3, trigonal planar, D3h symmetry:

D3h E 2C3 3C2 σ h 2S3 3σ v

Γσ 3 0 1 3 0 1 ≡ A′1(s; dz2 ) + E′[(px , py); (dxy , dx2−y2 )]

Hence the possible schemes include sp2, sd2, dp2, and d3.
(2) AX4, square planar, D4h symmetry:

D4h E 2C4 C2 2C2 ′ 2C2 ′′ i 2S4 σh 2σv 2σd

Γσ 4 0 0 2 0 0 0 4 2 0 ≡ A1g (s; d
z2 ) + B1g(d

x2−y2 )+Eu(px , py)

Hence the possible schemes include dsp2 and d2p2.
(3) AX5, trigonal bipyramidal, D3h symmetry:

D3h E 2C3 3C2 σh 2S3 3σv

Γσ 5 2 1 3 0 3 ≡ 2A′1(s; dz2 ) + A′′2(pz) + E′[(px , py); (dxy , dx2−y2 )]

Hence the possible schemes include dsp3 and d3sp.
(4) AX6, octahedral, Oh symmetry:

Oh E 8C3 6C2 6C4 3C2 i 6S4 8S6 3σh 6σd

Γσ 6 0 0 2 2 0 0 0 4 2 ≡ A1g(s) + Eg(d
z2 , d

x2−y2 )+T1u (px , py , pz )

So the only possible scheme is d2sp3.
Once we have determined the atomic orbitals taking part in the formation

of the hybrids, we can employ the method outlined in Chapter 3 to obtain the
explicit expressions of the hybrid orbitals.

7.2.2 Relationship between the coefficient matrices for the hybrid and
molecular orbital wavefunctions

As has been mentioned more than once already, to construct the hybrid orbitals
for an AXn molecule, we linearly combine the atomic orbitals on A so that the
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resultant hybrid orbitals point toward the X ligands. On the other hand, to form
the molecular orbitals for the AXn molecule, we linearly combine the orbitals
on the ligands such that the combinations match in symmetry with the orbitals
on A. Upon studying these two statements, we would not be surprised to find
that the coefficient matrices for the hybrid orbitals and for the ligand orbital
linear combinations are related to each other. The basis for this relationship is
that both matrices are derived by considering the symmetry properties of the
molecule. Indeed, this relationship is obvious if we take up a specific example.

From eq. (3.4.31), the sp2 hybrids for an AX3 (or AH3) molecule with D3h
symmetry is:

∣

∣

∣

∣

∣

∣

h1
h2
h3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

(3)−1/2 (2/3)1/2 0
(3)−1/2 −(6)−1/2 (2)−1/2

(3)−1/2 −(6)−1/2 −(2)−1/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s
px
py

∣

∣

∣

∣

∣

∣

. (7.2.1)

From Table 7.1.2, the linear combinations of ligand orbitals for BH3 have the
form

∣

∣

∣

∣

∣

∣

(3)−1/2 (3)−1/2 (3)−1/2

(2/3)1/2 −(6)−1/2 −(6)−1/2

0 (2)−1/2 −(2)−1/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1sa
1sb
1sc

∣

∣

∣

∣

∣

∣

. (7.2.2)

It is now obvious that the matrix in eq. (7.2.1) is simply the transpose of
the matrix in expression (7.2.2), and vice versa. In addition, it can be easily
checked that the coefficient matrix for the sp3 hybrids given in eq. (3.4.35)
and the coefficient matrix for the linear combinations of ligand orbitals in CH4
(Table 7.1.3) have the same relationship.

To conclude, there are two ways to determine the explicit expressions of
a set of hybrid orbitals. The first one is that outlined in Chapter 3, taking
advantage of the orthonormality relationship among the hybrids as well as
the geometry and symmetry of the system. The second method is to apply
the appropriate projection operators to the ligand orbitals, which are placed
at the ends of the hybrids, to obtain the linear combinations of the ligand
orbitals. The coefficient matrix for the hybrids is simply the transpose of the
coefficient matrix for the linear combinations. These two methods are nat-
urally closely related to one another. The only difference is that the latter
formally makes use of group theory techniques, such as projection operator
application and decomposition of a reducible representation, whereas the former
does not.

7.2.3 Hybrids with d-orbital participation

In Section 7.2.1, we have seen that many hybridization schemes involve d
orbitals. In fact, we do not anticipate any technical difficulty in the construction
of hybrids that have d orbital participation. Let us take octahedral d2sp3 hybrids,
directed along Cartesian axes (Fig. 7.1.10), as an example. From Table 7.1.5,
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we have the coefficient matrix for the linear combinations of ligand orbitals:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(6)−1/2 (6)−1/2 (6)−1/2 (6)−1/2 (6)−1/2 (6)−1/2

−(12)−1/2 −(12)−1/2 −(12)−1/2 −(12)−1/2 2(12)−1/2 2(12)−1/2

1/2 1/2 −1/2 −1/2 0 0
(2)−1/2 −(2)−1/2 0 0 0 0

0 0 (2)−1/2 −(2)−1/2 0 0
0 0 0 0 (2)−1/2 −(2)−1/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1sa

1sb

1sc

1sd

1se

1sf

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

With these results, we can easily obtain the hybrid wavefunctions

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ha

hb

hc

hd

he

hf

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(6)−1/2 −(12)−1/2 1/2 (2)−1/2 0 0
(6)−1/2 −(12)−1/2 1/2 −(2)−1/2 0 0
(6)−1/2 −(12)−1/2 −1/2 0 (2)−1/2 0
(6)−1/2 −(12)−1/2 −1/2 0 −(2)−1/2 0
(6)−1/2 2(12)−1/2 0 0 0 (2)−1/2

(6)−1/2 2(12)−1/2 0 0 0 −(2)−1/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

s
dz2

dx2−y2

px

py

pz

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(7.2.3)

In eq. (7.2.3), hybrids ha, hb, . . . , hf point toward orbitals 1sa, 1sb, . . . , 1sf ,
respectively (Fig. 7.1.10).

Lastly, we consider a system with non-equivalent positions. An example of
such a system is the trigonal bipyramidal molecule AX5 with D3h symmetry.
As discussed previously, one possible scheme is the dsp3 hybridization, where
dz2 is the only d orbital participating.

If we use the dz2 and pz orbitals for the construction of axial hybrids ha and
hb, and the s, px, and py orbitals for the equatorial hybrids hc, hd , and he (Fig.
7.1.8), we can readily write down the wavefunctions of these hybrids:

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ha
hb
hc
hd
he

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2)−1/2 (2)−1/2 0 0 0
(2)−1/2 −(2)−1/2 0 0 0

0 0 (3)−1/2 2(6)−1/2 0
0 0 (3)−1/2 −(6)−1/2 (2)−1/2

0 0 (3)−1/2 −(6)−1/2 −(2)−1/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

dz2

pz
s

px
py

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(7.2.4)

However, there is no reason at all to assume ha and hb are made up of only
pz and dz2 orbitals: The dz2 orbital can also contribute to the equatorial hybrids,
and the s orbital can also contribute to the axial hybrids. In fact, if we use
only the s and pz orbitals for the axial hybrids, and the dz2 , px, and py for the
equatorial hybrids, we then have

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

ha
hb
hc
hd
he

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 (2)−1/2 (2)−1/2 0 0
0 −(2)−1/2 (2)−1/2 0 0

−(3)−1/2 0 0 2(6)−1/2 0
−(3)−1/2 0 0 −(6)−1/2 (2)−1/2

−(3)−1/2 0 0 −(6)−1/2 −(2)−1/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

dz2

pz
s

px
py

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(7.2.5)
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Obviously, both of the matrices in eqs. (7.2.4) and (7.2.5) are limiting cases.
A general expression encompassing these two cases is

∣

∣

∣

∣

∣

∣

∣

∣

∣

ha
hb
hc
hd
he

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2)−1/2 sin α (2)−1/2 (2)−1/2 cosα 0 0
(2)−1/2 sin α −(2)−1/2 (2)−1/2 cosα 0 0
−(3)−1/2 cosα 0 (3)−1/2 sin α 2(6)−1/2 0
−(3)−1/2 cosα 0 (3)−1/2 sin α −(6)−1/2(2)−1/2

−(3)−1/2 cosα 0 (3)−1/2 sin α −(6)−1/2(2)−1/2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

dz2

pz
s

px
py

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

(7.2.6)

To obtain eqs. (7.2.4) and (7.2.5) from eq. (7.2.6), we only need to set angle α
to be 90◦ and 0◦, respectively. It is not difficult to show that the five hybrids
form an orthonormal set of wavefunctions. The parameter α in the coefficient
matrix in eq. (7.2.6) may be determined in a number of ways, such as by the
maximization of overlap between the hybrids and the ligand orbitals, or by the
minimization of the energy of the system. In any event, such procedures are
clearly beyond the scope of this chapter (or this book) and we will not deal with
them any further.

7.3 Molecular vibrations

Molecular vibrations, as detected in infrared and Raman spectroscopy, provide
useful information on the geometric and electronic structures of a molecule.
As mentioned earlier, each vibrational wavefunction of a molecule must have
the symmetry of an irreducible representation of that molecule’s point group.
Hence the vibrational motion of a molecule is another topic that may be fruitfully
treated by group theory.

7.3.1 The symmetries and activities of the normal modes

A molecule composed of N atoms has in general 3N degrees of freedom, which
include three each for translational and rotational motions, and (3N − 6) for
the normal vibrations. During a normal vibration, all atoms execute simple
harmonic motion at a characteristic frequency about their equilibrium positions.
For a linear molecule, there are only two rotational degrees of freedom, and
hence (3N − 5) vibrations. Note that normal vibrations that have the same
symmetry and frequency constitute the equivalent components of a degenerate
normal mode; hence the number of normal modes is always equal to or less
than the number of normal vibrations. In the following discussion, we shall
demonstrate how to determine the symmetries and activities of the normal
modes of a molecule, using NH3 as an example.

Step 1. For a molecule belonging to a certain point group, we first deter-
mine the representation Γ (N0) whose characters are the number of atoms that
are unshifted by the operations in the group. Taking the NH3 molecule as an
example,

C3v E 2C3 3σ v
Γ (N0) 4 1 2
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Step 2. Multiply each character of Γ (N0) by the appropriate factor f (R) to
obtainΓ3N . Now we show how to determine factor f (R) for operation R. When
R is a rotation of angle φ, Cφ , we use

f (Cφ) = 1 + 2 cosφ. (7.3.1)

Thus, f (E) = 3; f (C2) = −1; f (C3) = f (C2
3) = 0; f (C4) = f (C3

4) = 1;
f (C6) = f (C5

6) = 2; etc. When R is an improper rotation of angle φ, Sφ , we
have

f (Sφ) = −1 + 2 cosφ. (7.3.2)

Thus, f (S1) = f (σ ) = 1; f (S2) = f (i) = −3; f (S3) = −2; f (S4) = f (S3
4) =

−1; f (S6) = f (S5
6) = 0; etc. So, for NH3,

C3v E 2C3 3σ v
f (R) 3 0 1
Γ3N = f (R)× Γ (N0) 12 0 2

Note that the values of f (R) can also be obtained from the characters of the
symmetry species Γxyz (representation based on x, y, and z). For point group
C3v, Γxyz = Γxy (based on x and y) + Γz (based on z) = E + A2.

Upon decomposing Γ3N using e.g. (6.4.3), we get

Γ3N (NH3) = 3A1 + A2 + 4E.

Step 3. From Γ3N subtract the symmetry species Γtrans(= Γxyz) for the trans-
lation of the molecule as a whole and Γrot (based on Rx, Ry, and Rz) for the
rotational motion to obtain the representation for molecular vibration, Γvib:

Γvib = Γ3N − Γtrans − Γrot. (7.3.3)

For NH3, we have

Γvib(NH3) = (3A1 + A2 + 4E)− (A1 + E)− (A2 + E)

= 2A1 + 2E.

In other words, among the six normal vibrations of NH3, two have A1 symmetry,
two others form a degenerate E set, and the remaining two form another E set.

Step 4. For a vibrational mode to be infrared (IR) active, it must bring about
a change in the molecule’s dipole moment. Since the symmetry species of the
dipole moment’s components are the same as Γx, Γy, and Γz , a normal mode
having the same symmetry asΓx,Γy, orΓz will be infrared active. The argument
employed here is very similar to that used in the derivation of the selection
rules for electric dipole transitions (Section 7.1.3). So, of the six vibrations of
NH3, all are infrared active, and they comprise four normal modes with distinct
fundamental frequencies.
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Fig. 7.3.1.
The vibrational modes of NH3 and
observed frequencies. Note that only one
component is shown for the E modes. ~950 cm–1

v2(A1)

3414 cm–1

v3a(E )

1627 cm–1

v4a(E )

3337 cm–1

v1(A1)

On the other hand, for a vibrational mode to be Raman (R) active, it must
bring about a change in the polarizability of the molecule. As the components
of the polarizability tensor (based on the quadratic products of the coordinates)
have the symmetry ofΓx2 ,Γy2 ,Γz2 ,Γxy,Γxz , andΓyz , a normal mode having one
of these symmetries will be Raman active. So, for NH3, we again will observe
four fundamentals in its Raman spectrum. In other words,

Γvib(NH3) = 2A1(R/IR) + 2E(R/IR).

The four observed frequencies and the pictorial representations of the nor-
mal modes for NH3 are displayed in Fig. 7.3.1. From this figure, we can see
that ν1 and ν3 are stretching modes, while ν2 and ν4 are bending modes.
Note that the number of stretching vibrations is equal to the number of
bonds. Also, the stretching modes have higher frequencies than the bending
ones.

Before discussing other examples, we note here that, for a centrosymmet-
ric molecule (one with an inversion center), Γx, Γy, and Γz are “u” (from the
German word ungerade, meaning odd) species, while binary products of x, y,
and z have “g” (gerade, meaning even) symmetry. Thus infrared active modes
will be Raman forbidden, and Raman active modes will be infrared forbid-
den. In other words, there are no coincident infrared and Raman bands for a
centrosymmetric molecule. This relationship is known as the rule of mutual
exclusion.

Another useful relationship: As the totally symmetric irreducible representa-
tion ΓTS in every group is always associated with one or more binary products
of x, y, and z and it follows that totally symmetric vibrational modes are always
Raman active.

Besides being always Raman active, the totally symmetric vibrational modes
can also be readily identified in the spectrum. As shown in Fig. 7.3.2, the
scattered Raman radiation can be resolved into two intensity components,
I⊥ and I‖. The ratio of these two intensities is called the depolarization
ratio ρ:

ρ = I⊥/I‖. (7.3.4)

If the incident radiation is plane-polarized, such as that produced by lasers in
Raman spectroscopy, scattering theory predicts that totally symmetric modes
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will have 0 < ρ < 3/4 and all other (non-totally symmetric) modes will have
ρ = 3/4. A vibrational band with 0 < ρ < 3/4 is said to be polarized, and
one with ρ = 3/4 is said to be depolarized. In fact, for highly symmetric
molecules, the polarized bands often have ρ ∼ 0, which makes identifying
totally symmetric modes relatively simple. For the NH3 molecule, the two A1
modes are polarized.

Figure 7.3.2 shows the intensities I⊥ and I‖ for the ν1(A1) and ν2(E) Raman
bands of CCl4. It is seen that I⊥ of ν1(A1) is essentially zero. Precise measure-
ments yield ρ = 0.005 ± 0.002 for ν1(A1) and ρ = 0.72 ± 0.002 for ν2(E).
These results are consistent with scattering theory.

460

In
te

ns
ity

214
v/cm–1~

I || I

I || I

Fig. 7.3.2.
Raman band intensities I⊥ and I‖ of
CCl4 for ν1(A1) (top) and ν2(E)

(bottom). The splitting in the ν1 band is
due to the isotopic effect of Cl.

7.3.2 Some illustrative examples

In this section, we will attempt to illustrate the various principles and tech-
niques introduced in the previous section with several simple examples. Special
emphasis will be on the stretching modes of a molecule.

(1) trans-N2F2

The molecule N2F2 can exist in two geometrical forms, namely, cis and trans.
Here we are only concerned with the trans isomer with C2h symmetry. The
methodical derivation of the symmetry species of the vibrational modes is best
conducted in tabular form, as shown below.

C2h E C2 i σ h Remark

Γ (N0) 4 0 0 4 row 1 (atoms not moved by R)
Γ3N 12 0 0 4 row 2 = row 1× row 3
Γtrans = f (R) 3 −1 −3 1 row 3, Γtrans based on (x, y, z)
Γrot 3 −1 3 −1 row 4, Γrot based on (Rx, Ry, Rz)

Γvib 6 2 0 4 row 5 = row 2 − row 3 − row 4

Hence Γ3N (N2F2) = 4Ag + 2Bg + 2Au + 4Bu, and

Γvib(N2F2) = 3Ag(R) + Au(IR) + 2Bu(IR).

So trans-N2F2 has three bands in both its infrared spectrum and its Raman
spectrum. However, none of the bands are coincident, as this is a centrosym-
metric molecule. The normal modes, as well as their observed frequencies, of
trans-N2F2 are shown in Fig. 7.3.3. Note that this molecule has three bonds and
hence has three stretching modes: ν1(Ag) is the symmetric stretch of two N–F
bonds, ν2(Ag) is the N=N stretching, while ν4(Bu) is the asymmetric stretch of
the two N–F bonds. As the symmetric N–F stretch and N=N stretch have the
same symmetry (Ag), ν1 and ν2 are both mixtures of these two types of stretch
motion. Among the three modes, ν2(Ag) has the highest energy, as N=N is a
double bond and N–F is a single bond.
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Fig. 7.3.3.
The vibrational modes and the
corresponding frequencies of
trans-N2F2. Note that only ν1, ν2,
and ν4 are stretching modes.

1010 cm–1
v1(Ag) (R,pol)

990 cm–1
v4(Bu) (IR)

423 cm–1
v5(Bu) (IR)

364 cm–1

–

+
+

–

v6(Au) (IR)

1522 cm–1
v2(Ag) (R,pol)

600 cm–1
v3(Ag) (R,pol)

Fig. 7.3.4.
The vibrational modes and their
frequencies of CF4. Note that only one
component is shown for the degenerate
modes.

v1(A1) (R)
908 cm–1

v2(E) (R)
435 cm–1

v3(T2) (IR/R)
1283 cm–1

v4(T2) (IR/R)
631 cm–1

(2) CF4

This is a tetrahedral molecule with Td symmetry. The derivation of the
vibrational modes is summarized below.

Td E 8C3 3C2 6S4 6σ d

Γ (N0) 5 2 1 1 3
f (R) 3 0 −1 −1 1
Γ3N 15 0 −1 −1 3 ≡ A1 + E + T1+ 3T2

Γvib(CF4) = A1(R) + E(R) + 2T2(IR/R)

So CF4 has two infrared bands and four Raman bands, and there are two
coincident absorptions. The normal modes and their respective frequencies are
given in Fig. 7.3.4. Note that ν1(A1) and ν3(T2) are the stretching bands. Also,
this is an example that illustrates the “rule” that a highly symmetrical molecule
has very few infrared active vibrations. The basis of the “rule” is that, in a point
group with very high symmetry, x, y, and z often combine to form degenerate
representations.

(3) P4

The atoms in the P4 molecule occupy the corners of a regular tetrahedron. In
point group Td, following the previous procedure, we have

Td E 8C3 3C2 6S4 6σ d

Γ (N0) 4 1 0 0 2
f (R) 3 0 −1 −1 1
Γ3N 12 0 0 0 2 ≡ A1 + E + T1 + 2T2

Γvib(P4, Td) = A1(R) + E(R) + T2(IR, R).
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ν1(A1), 606 cm
_1 ν2(E), 363 cm

_1 ν3(T2), 465 cm
_1

Fig. 7.3.5.
The normal modes and Raman
frequencies of P4. Only one component
is shown for the degenerate modes.

If the molecule were to adopt a hypothetical square-planar structure in point
group D4h, the normal modes would be

Γvib(P4, D4h) = A1g(R) + B1g(R) + B2g(R) + B2u + Eu(IR).

Both models have the same numbers of infrared, Raman, and polarized
Raman bands. However, they can be distinguished by the fact that the T2 mode in
the Td structure is both IR and Raman active (there is one coincidence), whereas
the rule of mutual exclusion holds for the centrosymmetric D4h structure.

The normal modes of P4 and their observed Raman frequencies are shown
in Fig. 7.3.5. Here A1 is called the breathing mode, since all P–P bonds are
stretching and contracting in unison. In the ν2(E) mode, two bonds are con-
tracting while the other four are lengthening; in the ν3(T2) mode, three bonds
are contracting while the other three are lengthening. It is of interest to note
that all six vibrations of P4 are stretching motions.

(4) XeF4

This molecule has a square-planar structure with D4h symmetry. With reference
to the coordinate system displayed in Fig. 7.3.6, the symmetry of the vibrational
modes may be derived in the following manner:

D4h E 2C4 C2 2C′2 2C′′2 i 2S4 σ h 2σ v 2σ d

Γ (N0) 5 1 1 3 1 1 1 5 3 1
f (R) 3 1 −1 −1 −1 −3 −1 1 1 1
Γ3N 15 1 −1 −3 −1 −3 −1 5 3 1

Γ3N (XeF4) = A1g + A2g + B1g + B2g + Eg + 2A2u + B2u + 3Eu.

Γvib(XeF4) = A1g(R) + B1g(R) + B2g(R) + A2u(IR) + B2u + 2Eu(IR).
(7.3.5)

So XeF4 has three bands in its infrared spectrum as well as in its Raman
spectrum. None of the bands are coincident, as this molecule is centrosymmet-
ric. In addition, there is a “silent” mode, with B2u symmetry, which does not
show up in either spectrum. The normal modes and their frequencies are given
in Fig. 7.3.6.
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Fig. 7.3.6.
Normal modes and vibrational
frequencies of XeF4. Note that the x and
y axes are equivalent, and only one
component is shown for the degenerate
modes. The coordinate system of
locations of secondary twofold axes and
mirror planes are shown in the lower part
of the figure.
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Among the normal modes shown in Fig. 7.3.6, ν1(A1g), ν2(B1g), and ν6(Eu),
are the stretching modes. It is appropriate here to note that it is straightforward
to come up with these pictorial representations. If we call the four Xe–F bonds
a, b, c, and d , the ν1(A1g) mode may be denoted as a + b + c + d , with
“+” indicating contracting motion and “–” indicating stretching motion. The
combination a+b+c+d is what we will get if we apply the projection operator
PA1g to a. Similarly, if we apply PB1g to a, we will get a − b + c − d , which
translates to ν2(B1g) in Fig. 7.3.6. If we apply PEu to a, we get a− c; similarly,
applying PEu to b will yield b − d . When we combine these combination
further, (a − c) ± (b− d) are the results. One of these combinations is shown
in Fig. 7.3.6, while the other is not. The stretching motions of a molecule can
usually be derived in this manner.

If the x and y axes are chosen to bisect the F–Xe–F bond angles, the symmetry
of the normal modes is expressed as

Γvib(XeF4) = A1g(R) + B1g(R) + B2g(R) + A2u(IR) + B1u + 2Eu(IR).
(7.3.6)
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As compared to eq. (7.3.5), the only difference is that the silent mode B2u in
that expression is converted to B1u here, and now ν2 has B2g symmetry and
ν4 has B1g symmetry. All deductions concerning infrared and Raman activities
remain unchanged.

Given the illustrations of the normal modes of a molecule, it is possible to
identify their symmetry species from the character table. Each non-degenerate
normal mode can be regarded as a basis, and the effects of all symmetry oper-
ations of the molecular point group on it are to be considered. For instance, the
ν1 mode of XeF4 is invariant to all symmetry operations, i.e. R(ν1) = (1)ν1 for
all values of R. Since the characters are all equal to 1, ν1 belongs to symmetry
species A1g. For ν2, the symmetry operation C4 leads to a character of −1, as
shown below:

C4 = = (–1)

Working through all symmetry operations in the various classes by inspection,
we can readily identify the symmetry species of ν2 as B1g.

For a doubly degenerate normal mode, both components must be used
together as the basis of a two-dimensional irreducible representation. For exam-
ple, the operations C2 and σ v on the two normal vibrations that constitute the ν6
mode lead to the character (sum of the diagonal elements of the corresponding
2×2 matrix) of−2 and 0, respectively, as illustrated below. Working through the
remaining symmetry operations, the symmetry species of ν6 can be identified
as Eu.

C2 ==
−1 0

0 −1

==
0 1

1 0

σv

(5) SF4

As shown below, this molecule has C2v symmetry with two types of S–F bonds,
equatorial and axial. The vibrational modes can be derived in the following way:

C2v E C2 σ v(xz) σ ′v(yz)
Γ (N0) 5 1 3 3
f (R) 3 −1 1 1
Γ3N 15 −1 3 3
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Fig. 7.3.7.
Normal modes of SF4 and observed
frequencies. The + and - symbols refer to
motions of “coming out” and “going
into” the paper, respectively.
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Γ3N (SF4) = 5A1 + 2A2 + 4B1 + 4B2.

Γvib(SF4) = 4A1(IR/R) + A2(R) + 2B1(IR/R) + 2B2(IR/R).

So there are nine Raman lines and eight infrared lines. All eight infrared bands
may be found in the Raman spectrum. The normal modes and their frequen-
cies for SF4 are shown in Fig. 7.3.7. From this figure, it may be seen that
stretching modes include ν1 (symmetric stretch for equatorial bonds), ν2 (sym-
metric stretch for axial bonds), ν6 (asymmetric stretch for axial bonds), and ν8
(asymmetric stretch for equatorial bonds).

It is worth noting that we have so far discussed the vibrational spectra of
three five-atom molecules: CF4, XeF4, and SF4, with Td, D4h, and C2v sym-
metry, respectively. In their infrared spectra, two, three, and eight bands are
observed, respectively. These results are consistent with the expectation that
more symmetrical molecules have less infrared bands.

(6) PF5

This well-known molecule assumes a trigonal bipyramidal structure with D3h
symmetry.As in the case of SF4, PF5 also has two types of bonds, equatorial and
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v1(A1' ) (R)
817 cm–1

v5(E' ) (IR/R)
1026 cm–1

v6(E' ) (IR/R)
532 cm–1

v7(E' ) (IR/R)
300 cm–1

v8(E" ) (IR/R)
514 cm–1

v2(A1' ) (R)
640 cm–1

v3(A2") (IR)
944 cm–1

v4(A2") (IR)
575 cm–1

Fig. 7.3.8.
Normal modes of PF5 and their
frequencies. Note that only one
component is shown for each degenerate
mode.

axial P–F bonds. The vibrational modes for this molecule can be determined in
the following way:

D3h E 2C3 3C2 σ h 2S3 3σ v

Γ (N0) 6 3 2 4 1 4
f (R) 3 0 −1 1 −2 1
Γ3N 18 0 −2 4 −2 4 ≡ 2A′1 + A′2 + 4E′ + 3A′′2 + 2E′′

Γvib(PF5) = 2A′1(R) + 3E′(IR/R) + 2A′′2(IR) + E′′(R).

So there are five infrared and six Raman bands, three of which are coincident.
The normal modes and their frequencies are shown in Fig. 7.3.8. From this
figure, it is seen that ν1(A′1) and ν5(E′) are the stretching modes for the equatorial
bonds, while ν2(A′1) and ν3(A′′2) are the symmetric and asymmetric stretches
for the axial bonds. Recall that in the derivation of the linear combinations for
three equivalent functions a, b, and c, the results are a + b + c; 2a − b − c,
and b − c, with the last two being degenerate. Mode ν1(A′1) in Fig. 7.3.8 is
equivalent to a +b+c, while ν5(E′) is 2a−b−c. The remaining combination,
b− c, is not shown in this figure.

(7) SF6

This highly symmetrical molecule has an octahedral structure with Oh symme-
try. Contrary to SF4 and PF5, where there are two types of bonds, all six bonds
in SF6 are equivalent to each other. The vibrational modes of this molecule can
be determined in the following manner:

Oh E 8C3 6C2 6C4 3C2 = C2
4 i 6S4 8S6 3σ h 6σ d

Γ (N0) 7 1 1 3 3 1 1 1 5 3
f (R) 3 0 −1 1 −1 −3 −1 0 1 1
Γ3N 21 0 −1 3 −3 −3 −1 0 5 3

Γ3N (SF6) = A1g + Eg + T1g + T2g + 3T1u + T2u.

Γvib(SF6) = A1g(R) + Eg(R) + 2T1u(IR) + T2g(R) + T2u.
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Fig. 7.3.9.
Normal modes of SF6 and their
frequencies. Note that only one
component is shown for each degenerate
mode.

v1(A1g) (R)
774 cm–1

v4(T1u) (IR)
614 cm–1

v5(T2g) (R)
523 cm–1

v3(T2u)
347 cm–1(estimated)

v2(Eg) (R)
642 cm–1

v3(T1u) (R)
939 cm–1

So there are three Raman and two infrared bands, none of which are coincident.
Also, the T2u mode is silent. The normal modes and their frequencies are shown
in Fig. 7.3.9. It is clear now that ν1(A1g), ν2(Eg), and ν3(T1u) are the stretching
modes.

If we call the six bonds a, b, . . ., f , with a and b colinear, and so are c and
d , as well as e and f , then ν1(A1g) is equivalent to a+b+c+d+e+f; ν2(Eg) is
equivalent to 2e+2f –a–b–c–d ; ν3(T1u) is equivalent to e − f . The ones not
shown in Fig. 7.3.9 are the remaining component of Eg, a + b − c − d , and
the last two components of T1u, a − b and c − d . These six combinations
are identical to those listed in Table 7.1.5, the combinations of ligand orbitals
in AH6.

7.3.3 CO stretch in metal carbonyl complexes

In the previous examples for molecules with relatively few atoms, we studied
and presented the results of all 3N−6 vibrations of the molecules. However,
for molecules composed of a large number of atoms, often it is convenient to
concentrate on a certain type of vibration. The prime example of this kind of
investigation is the enumeration of the CO stretching modes in metal carbonyl
complexes.

Most metal carbonyl complexes exhibit sharp and intense CO bands in the
range 1800–2100 cm−1. Since the CO stretch motions are rarely coupled with
other modes and CO absorption bands are not obscured by other vibrations,
measurement of the CO stretch bands alone often provides valuable information
about the geometric and electronic structures of the carbonyl complexes. As we
may recall, free CO absorbs strongly at 2155 cm−1, which corresponds to
the stretching motion of a C≡O triple bond. On the other hand, most ketones
and aldehyde exhibit bands near 1715 cm−1, which corresponds formally to
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Fig. 7.3.10.
The σ and π bonding in metal carbonyls.
Note that electrons flow from the shaded
orbital to the unshaded orbital in both
instances.

the stretching of a C=O double bond. In other words, the CO bonds in metal
carbonyls have a bond order somewhere between 2 and 3. This observation
may be rationalized by the simple bonding model illustrated in Fig. 7.3.10.

The M–C σ bond is formed by donating the lone electrons on C to the empty
dz2 orbital on M (upper portion of Fig. 7.3.10). The π bond is formed by back
donation of the metal dπ electrons to the π∗ orbital (introduced in Chapter 3) of
CO. Populating the π∗ orbital of CO tends to decrease the CO bond order, thus
lowering the CO stretch frequency (lower portion of Fig. 7.3.10). These two
components of metal-carbonyl bonding may be expressed by the two resonance
structures

CM" !O C

(I) (II)

M O

Thus structure (I), with higher CO frequencies, tends to build up electron density
on M and is thus favored by systems with positive charges accumulated on the
metal. On the other hand, structure (II), with lower CO frequencies, is favored
by those with negative charge (which enhances back donation) on metal. In
other words, net charges on carbonyl compounds have a profound effect on the
CO stretch frequencies, as illustrated by the following two isoelectronic series:

Importance of resonance structure −M–C≡O+ −→

ν (in cm−1) V(CO)−6 Cr(CO)6 Mn(CO)+6
ν(A1g) 2020 2119 2192
ν(Eg) 1895 2027 2125
ν(T1u) 1858 2000 2095

Fe(CO)2−
4 Co(CO)−4 Ni(CO)4

ν(A1) 1788 2002 2125
ν(T2) 1786 1888 2045

←− Importance of resonance structure M=C=O

The identification of the symmetries of the CO stretching modes and the
determination of their activities may be accomplished by the usual group theory
techniques. Take the trigonal bipyramidal Fe(CO)5 (with D3h symmetry) as an
example. The representation spanned by the five CO stretching motions, ΓCO,
is once again derived by counting the number of CO groups unshifted by each
operation in the D3h point group.
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Fig. 7.3.11.
Carbonyl stretching modes and their
frequencies for Fe(CO)5. Note that only
one component is shown for ν10(E′).
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D3h E 2C3 3C2 σ h 2S3 3σ v
ΓCO 5 2 1 3 0 3

ΓCO[Fe(CO)5] = 2A′1(R) + A′′2(IR) + E′(IR/R).

So there are two and three CO stretch bands in the infrared and Raman spec-
tra, respectively. The CO stretching modes and their frequencies are given in
Fig. 7.3.11.

The CO stretching modes shown in Fig. 7.3.11 may be easily obtained using
the standard group theory technique. If we call the equatorial CO groups a, b, and
c, and the axial groups d and e, the combinations for these five entities are simply
A′1, a+b+c; E′, 2a–b–c and b–c; A′1, d +e; A′′2, d–e; where + denotes stretching
and – denotes contracting. Since there are two A′1 combinations, we can combine
them further to form k(a+b+c)+d +e and k ′(−a−b−c)+d +e, where k and
k ′ are the combination coefficients. The stretching modes shown in Fig. 7.3.11
are simply graphical representations of these five linear combinations, except
that one component of the E′ mode, b− c, is not shown. Again, ν1(A′1) is called
the breathing mode, since all carbonyl groups are stretching and contracting
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in unison. For metal-carbonyl complexes, the breathing mode often has the
highest energy, as in the case of Fe(CO)5.

Now it is straightforward to show that, for tetrahedral carbonyl complexes
M(CO)4 with Td symmetry,

ΓCO[M(CO)4] = A1(R) + T2(IR/R).

For octahedral carbonyl complexes M(CO)6 with Oh symmetry,

ΓCO[M(CO)6] = A1g(R) + Eg(R) + T1u(IR).

Since there is a direct relationship between the structure of a metal-carbonyl
complex and the number of CO stretching bands, it is often possible to deduce
the arrangement of the CO groups in a complex when we compare its spectrum
with the number of CO stretch bands predicted for each of the possible structures
using group theory techniques. As an illustrative example, consider the cis and
trans isomers of an octahedral M(CO)4L2 complex. For the trans isomer, with
D4h symmetry, we have

ΓCO[trans-M(CO)4L2] = A1g(R) + B1g(R) + Eu(IR).

So there are two CO stretching bands in the Raman spectrum and only one
in infrared. Also, there are no coincident bands. For the cis isomer, with C2v
symmetry, we have

ΓCO[cis-M(CO)4L2] = 2A1(IR/R) + B1(IR/R) + B2(IR/R).

So there are four infrared/Raman coincident lines for the cis isomer. When M
is Mo and L is PCl3, the trans isomer has indeed only one infrared CO stretch
band, while there are four for the cis isomer. These results are summarized in
Fig. 7.3.12, along with the pictorial illustrations of the CO stretching modes. It
appears that the two A1 modes of the cis isomer do not couple strongly. Also,
this is another example for the general rule that a more symmetrical molecule
will have fewer infrared bands.

In some cases, two isomers may have the same number of CO stretching
bands, yet they may still be distinguished by the relative intensities of the
bands. Take the cis- and trans-[(η5-C5H5)Mo(CO)2PPh3C4H6O]+ and their
spectra as an example. The structural formulas of these complex ions and their
infrared spectra are shown in Fig. 7.3.13. In both spectra, the two bands are
the symmetric and asymmetric CO stretch modes. As shown in the previous
example of cis-[Mo(CO)4(PCl3)2], the symmetric modes has a slightly higher
energy. Also, as shown below, the intensity ratio is related to the angle formed
by the two groups.

Referring to Fig. 7.3.14, the dipole vector R for a stretching mode is simply
the sum or difference of the two individual CO group dipoles. Since the inten-
sities of the symmetric and asymmetric stretches are proportional to R2

sym and
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Fig. 7.3.12.
CO stretching modes and their infrared
bands of cis- and
trans-[Mo(CO)4(PCl3)2].
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Fig. 7.3.13.
The CO stretching bands and their
relative intensities of the cis and trans
isomers of
[(η5–C5H5)Mo(CO)2PPh3C4H6O]+.

O

0.10

0.30

A
bs

or
ba

nc
e (1) (2) (1) (2)

0.50

0.70

1.00
2.00

2200 2000 1800 2200

v/cm–1

2000 1800

OC

OCCO

CO

+ +

Mo
C

Ph3P Ph3P

O
C

Fig. 7.3.14.
Diagram showing how the two CO
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R2
asym, respectively, the ratio of these two intensities is simply

I(1)/I(2) = R2
sym/R2

asym

= (2r cos θ2)/(2r sin θ)2

= cot2 θ ,

where 2θ is the angle formed by the two CO groups. For the left spectrum in
Fig. 7.3.13, I(1)/I(2) = 1.44, and 2θ is 79◦, indicating this spectrum is that of
the cis isomer. For the spectrum on the right, I(1)/I(2) = 0.32, and 2θ is 121◦,
signifying this spectrum is that of the trans isomer.

In polynuclear carbonyls, i.e., those carbonyl complexes with two or more
metal atoms, the CO ligands may bond to the metal(s) in different ways. In
addition to the terminal carbonyl groups, those we have studied so far, we may
also have µn bridging carbonyls, which bond to n metal atoms. In the case
of µ2 bridging, it may be assumed that a CO group donates one electron to
each metal. Also, both metals back-donate to the CO ligand, thus leading to
vibrational frequencies lower than those of terminal COs. Indeed, most µ2-
bridging CO groups absorb in the range of 1700–1860 cm−1. In the following
we consider the dinulclear complex Co2(CO)8 which, in the solid state, has the
following structure with C2v symmetry:

OC

OC

OC

CO CO
CO

CO

z

y

x
CO

To derive the CO stretching modes, we may consider the bridging and terminal
groups separately.

C2v E C2 σ v(xz) σ ′v(yz)
(ΓCO)brid 2 0 0 2
(ΓCO)term 6 0 2 0

(ΓCO)brid[Co(CO)8] = A1(IR/R) + B2(IR/R),

(ΓCO)term[Co(CO)8] = 2A1(IR/R) + A2(R) + 2B1(IR/R) + B2(IR/R).

So there are seven CO stretching bands in the infrared spectrum, as found
experimentally. The terminal CO stretching frequencies are at 2075, 2064, 2047,
2035, and 2028 cm−1, and the two bridging CO stretch peaks are at 1867 and
1859 cm−1.
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As another example, consider the highly symmetrical Fe2(CO)9, with D3h
symmetry, as shown above. The symmetries of the CO stretching modes can
be determined readily:

D3h E 2C3 3C2 σ h 2S3 3σ v
(ΓCO)brid 3 0 1 3 0 1
(ΓCO)term 6 0 0 0 0 2

(ΓCO)brid[Fe2(CO)9] = A′1(R) + E′(IR/R),

(ΓCO)term[Fe2(CO)9] = A′1(R) + A′′2(IR) + E′(IR/R) + E′′(R).

So there are three infrared absorption bands: 2066 (A′′2), 2038 (E′, terminal),
and 1855 (E′, bridging) cm−1.

In this section, using purely qualitative symmetry arguments, we have dis-
cussed the kind of information regarding structure and bonding we can obtain
from vibrational spectroscopy. Obviously, treatments of this kind have their
limitations, such as their failure to make reliable assignments for the observed
vibrational bands. To carry out this type of tasks with confidence, we need to
make use of quantitative methods, which are beyond the scope of this book.

7.3.4 Linear molecules

In this section, we examine the vibrational spectra of a few linear molecules to
illustrate the principles we have discussed.

(1) Hydrogen cyanide and carbon dioxide
Both HCN and CO2, with C∞v and D∞h symmetry, respectively, have two
bonds and, hence, have two stretching modes and one (doubly degenerate)
bending mode. In CO2, the two bonds are equivalent and they may couple in a
symmetric and an antisymmetric way, giving rise to symmetric and asymmetric
stretching modes. However, for HCN, we simply have the C–H and C≡N
stretching modes. The observed frequencies and their assignments for these
two triatomic molecules are summarized in Tables 7.3.1 and 7.3.2.

Table 7.3.1. The normal modes of HCN and their observed
frequencies

Symmetry cm−1 Normal mode Activity Description

= 712 CH N IR/R bending

<+ 2089 CH N IR/R C≡N stretch

<+ 3312 CH N IR/R C–H stretch

(2) Cyanogen
Cyanogen, N≡C–C≡N, is a symmetric linear molecule. It has three stretching
modes and two (doubly degenerate) bending modes. Just as in the case of CO2,
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Table 7.3.2. The normal modes of CO2 and their observed frequencies

Symmetry cm−1 Normal mode Activity Description

=u 667 CO O IR bending

<+
g 1388 CO O R symmetric stretch

<+
u 2349 CO O IR asymmetric stretch

there are no coincident bands. Hence, the assignments are fairly straightforward,
as summarized in Table 7.3.3.

Table 7.3.3. The normal modes of cyanogen and their observed frequencies

Symmetry cm−1 Normal mode Activity Description

=u 226 CN NC IR asymmetric C–C–N bending

=g 506 CN NC R symmetric bending

<+
g 848 CN NC R C–C stretch

<+
u 2149 CN NC IR asymmetric C≡N stretch

<+
g 2322 CN NC R symmetric C≡N stretch

(3) Carbon suboxide
Carbon suboxide, O=C=C=C=O, has four stretching modes and three (doubly
degenerate) bending modes. The spectral assignments can be made in a similar
manner, as summarized in Table 7.3.4.

While most of the assignments given in Tables 7.3.1 to 7.3.4 may be made
by qualitative arguments, it should be stressed that quantitative treatments are
indispensable in making certain that the assignments are correct.

Finally, it is useful to mention here a “systematic” way to derive the sym-
metries of the vibrational modes for a linear molecule. Even though formally
carbon suboxide has D∞h symmetry, its vibrational modes may be derived by
using the D2h character table. The procedure is illustrated below for the carbon
suboxide molecule:

D2h E C2(z) C2(y) C2(x) i σ (xy) σ (xz) σ (yz)
Γ (N0) 5 5 1 1 1 1 5 5
f (R) 3 −1 −1 −1 −3 1 1 1
Γ3N 15 −5 −1 −1 −3 1 5 5
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Table 7.3.4. The normal modes of carbon suboxide and their observed frequencies

Symmetry cm−1 Normal mode Activity Description

=u 557 CO OC C IR asymmetric C–C–O bending

=g 586 CO OC C R symmetric bending

=u 637 CO OC C IR asymmetric C–C–C bending

<+
g 843 CO OC C R symmetric C=C stretch

<+
u 1570 CO OC C IR asymmetric C=C stretch

<+
g 2200 CO OC C R symmetric C=O stretch

<+
u 2290 CO OC C IR asymmetric C=O stretch

Γ3N = 2Ag + 2B2g + 2B3g + 3B1u + 3B2u + 3B3u.

Γvib(C3O2, D2h) = 2Ag + B2g + B3g + 2B1u + 2B2u + 2B3u.

Note that in deriving these results, we have considered Γvib(C3O2, D2h) =
Γ3N − Γtrans − Γ (Rx)− Γ (Ry), which gives rise to a total of 10 vibrations for
this linear molecule. There is no need to take rotation Rz (with B1g symmetry)
into account here as we have assigned the molecular axis to be the z axis.

To convert the symmetry species in point group D2h to those of D∞h, we
make use of the correlation diagram shown below, which can be easily deduced
from the pair of character tables:

D2h  D'h
Ag

B2g

B3g

B1u

B2u

B3u

z2

xz

yz

z

y

x

Σg
+

Πg

Σu
+

Πu

So, in terms of the symmetry species of point group D∞h, we have

Γvib(C3O2) = 2<+
g +=g + 2<+

u + 2=u.

7.3.5 Benzene and related molecules

In the final section of this chapter, we discuss the vibrational spectra of benzene,
its isostructural species C6O2−

6 (rhodizonate dianion), and dibenzene metal
complexes.
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(1) Benzene
Historically, the cyclic structure of benzene with D6h symmetry, as shown in
Fig. 7.3.15, was deduced by enumerating the derivatives formed in the mono-,
di-, tri-substitution reactions of benzene. The structure can also be established
directly using physical methods such as X-ray and neutron diffraction, NMR,
and vibrational spectroscopy. We now discuss the infrared and Raman spectral
data of benzene.

C2'

C2"

y

σd

σv

x

Fig. 7.3.15.
Symmetry elements of the benzene
molecule. The x axis is chosen to pass
through a pair of carbon atoms, and the
z axis points toward the reader.

The symmetries of the 30 normal vibrations can be derived in the usual
way. The symmetry elements C ′2, C ′′2 , σd, and σv are taken as those shown in
Fig. 7.3.15.

D6h E 2C6 2C3 C2 3C′2 3C′′2 i 2S3 2S6 σ h 3σ d 3σ v

Γ (N0) 12 0 0 0 4 0 0 0 0 12 0 4
f (R) 3 2 0 −1 −1 −1 −3 −2 0 1 1 1
Γ3N 36 0 0 0 −4 0 0 0 0 12 0 4

Γ3N = 2A1g + 2A2g + 2B2g + 2E1g + 4E2g + 2A2u + 2B1u + 2B2u

+ 4E1u + 2E2u.

Γvib(C6H6) = 2A1g(R) + A2g + 2B2g + E1g(R) + 4E2g(R) + A2u(IR)

+ 2B1u + 2B2u + 3E1u(IR) + 2E2u.

So four bands are expected in the IR spectrum (one with A2u symmetry and
three sets with E1u symmetry), while there should be seven bands in the Raman
spectrum (two with A2u symmetry, one set having E1g symmetry, and four sets
with E2g symmetry).

The 20 vibrational modes of benzene are pictorially illustrated in Fig. 7.3.16.
Also shown are the observed frequencies. In this figure, ν(CH) and ν(CC)

represent C–H and C–C stretching modes, respectively, while δ and π denote
in-plane and out-of-plane bending modes, respectively. For each E mode, only
one component is shown.

The 20 vibrational modes illustrated in Fig. 7.3.16 may be broken down
into various types of vibrations. In the following tabulation, the representation
generated by the 12 vibrations of the carbon ring skeleton is denoted by ΓC6,
and ΓC-C and ΓC-H are the representations for the stretching motions of C–C
and C–H bonds, respectively.

D6h E 2C6 2C3 C2 3C′2 3C′2 i 2S3 2S6 σ h 3σ d 3σ v

Γ (N0)(C6) 6 0 0 0 2 0 0 0 0 6 0 2
f (R) 3 2 0 −1 −1 −1 −3 −2 0 1 1 1
Γ3N (C6) 18 0 0 0 −2 0 0 0 0 6 0 2
ΓC-C 6 0 0 0 0 2 0 0 0 6 2 0
ΓC-H 6 0 0 0 2 0 0 0 0 6 0 2

Γ3N (C6) = A1g + A2g + B2g + E1g + 2E2g + A2u + B1u

+ B2u + 2E1u + E2u.
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Fig. 7.3.16.
Vibrational modes and their observed frequencies (in cm−1) of benzene.
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Now,

ΓC6 (vibration of the carbon ring)

= Γ3N (C6)− Γ (translation)− Γ (rotation)

= A1g + A2g + B2g + E1g + 2E2g + A2u + B1u + B2u

+ 2E1u + E2u − (A2u + E1u)− (A2g + E1g)

= A1g + B2g + 2E2g + B1u + B2u + E1u + E2u.

Also,

ΓC–C = A1g + E2g + B2u + E1u, which are the C–C stretching modes;

ΓC–H = A1g + E2g + B1u + E1u, which are the C–H stretching modes.

The vibrations that involve the distortion of the carbon ring are therefore
ΓC6 − ΓC–C = B2g + E2g + B1u + E2u.

Another way to analyseΓvib(C6H6) is to separate the in-plane vibration repre-
sentationΓvib(x,y) from the out-of-plane vibration representationΓvib(z). To do
this, we need to first derive the representation based on the x and y coordinates
of all 12 atoms, Γ2N (x, y):

D6h E 2C6 2C3 C2 3C′2 3C′′2 i 2S3 2S6 σ h 3σ d 3σ v

Γ2N (x, y) 24 0 0 0 0 0 0 0 0 24 0 0
Γ (x, y) = E1u 2 1 −1 −2 0 0 −2 −1 1 2 0 0
Rz = A2g 1 1 1 1 −1 −1 1 1 1 1 −1 −1

Now, the representation of the in-plane vibrations of benzene is simply
Γ2N (x, y)− E1u − A2g, which is

Γvib(x, y) = 2A1g + A2g + 4E2g + 2B1u + 2B2u + 3E1u.

The dimension ofΓvib(x, y) is 24 (total number of degrees of freedom for motion
in the xy-plane) – 2 (translation of the molecule in the x and y directions)
– 1 (rotation of the molecule about the z axis, Rz) = 21. Furthermore, the
representation of the out-of-plane vibrations of benzene can be easily obtained:

Γvib(z) = Γvib(C6H6)− Γvib(x, y) = 2B2g + E1g + A2u + 2E2u.

The infrared and Raman spectra of benzene are shown in Fig. 7.3.17. It is
seen that the Raman lines at 991 and 3062 cm−1 represent A1g vibrations, with
ρ = I⊥/I‖ 8 3/4 while all remaining lines have ρ = 3/4. Note that there are
also weak bands arising from 2νi (first harmonic or overtone), νi−νj (difference
band), or νi + νj (combination band) frequencies. These are not to be discussed
here.
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Fig. 7.3.17.
Infrared (upper) and Raman (lower)
spectra of benzene.
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Benzene and the rhodizonate dianion (C6O6
2−, structure shown above; also see

Section 20.4.4) are isostructural species. Hence all the symmetry arguments and
results given in the previous section for benzene are applicable here. The results
for C6O6

2− are summarized in Table 7.3.5.

(3) Dibenzene metal complexes
Dibenzene chromium, [Cr(C6H6)2], has an eclipsed sandwich structure with
D6h symmetry. It has 3× 25− 6 = 69 normal vibrations:

Γvib[Cr(C6H6)2] = 4A1g(R) + A2g + 2B1g + 4B2g + 5E1g(R) + 6E2g(R)

+ 2A1u + 4A2u(IR) + 4B1u + 2B2u + 6E1u(IR) + 6E2u.

So it is anticipated that there are 15 Raman and 10 infrared spectral lines for
complexes of this type. Listed in Table 7.3.6 are the 10 infrared frequencies for
some group VIA dibenzene complexes.

In Table 7.3.6, the term “ring slant” describes a vibration that causes the rings
to be inclined (non-parallel) to each other, ν(M-ring) is a vibration that changes
the distance between the metal and the rings, while δ(ring-M-ring) is a twisting
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Table 7.3.5. The normal modes of the rhodizonate dianion and observed frequencies

Symmetry Normal cm−1 Activity Description
Mode IR Raman Calculated

A1g ν(CO) 1669 1594 R(pol) symmetric CO stretch
A1g ν(CC) 553 580 R(pol) breathing mode of the carbon ring
A2g δ(CO) 854 — in-plane CO bending
B2g π (CO) — — ring bending
B2g π (CC) — — out-of-plane CO bending
E1g π (CC) unobs — R out-of-plane ring bending
E2g ν(CO) 1546 1562 R CO stretch
E2g ν(CC) 1252 1222 R CC stretch
E2g δ(CO) 436 420 R in-plane CO bending
E2g δ(CC) 346 339 R in-plane ring bending
A2u π (CO) 235 — IR out-of-plane CO bending
B1u ν(CO) 1551 — CO stretch
B1u ν(CC) 489 — in-plane ring bending
B2u δ(CO) 451 — in-plane CO bending
B2u ν(CC) 1320 — CC stretch
E1u ν(CO) 1449 1589 IR CO stretch
E1u ν(CC) 1051 1031 IR CC stretch
E1u δ(CO) 386 340 IR in-plane CO bending
E2u π (CO) – – out-of-plane CO bending
E2u π (CC) – – out-of-plane ring bending

Table 7.3.6. Observed infrared frequencies (cm−1) for some dibenzene metal complexes

Complex ν(CH) ν(CC) δ(CH) δ(CC) π (CH) Ring ν δ

slant (M-ring) (ring-M-ring)

[Cr(C6H6)2] 3037 — 1426 999 971 833 794 490 459 140
[Cr(C6H6)2]2+ 3040 — 1430 1000 972 857 795 466 415 144
[Mo(C6H6)2] 3030 2916 1425 995 966 811 773 424 362 —
[W(C6H6)2] 3012 2898 1412 985 963 882 798 386 331 —

motion that changes the symmetry of the molecule from D6h to D6d and then
back to D6h.
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8Bonding in Coordination
Compounds

Coordination compounds are often referred to as metal complexes. They
consist of one or more coordination centers (metal atom or ion), each of which
is surrounded by a number of anions (monatomic or polyatomic) or neutral
molecules called ligands. The set of ligands L constitutes the coordination
sphere around a metal center M. The term coordination geometry is used to
describe the spatial arrangement of the ligands, and the number of ligand atoms
directly bonded to M is called its coordination number. If all ligands are of the
same type, the complex is homoleptic; otherwise it is heteroleptic.Ametal com-
plex may be cationic, anionic, or neutral, depending on the sum of the charges
on the metal centers and the ligands. It may take the form of a discrete mononu-
clear, dinuclear, or polynuclear molecule, or exist as a coordination polymer of
the chain, layer, or network type. Dinuclear and polynuclear complexes stabi-
lized by bonding interactions between metal centers (i.e., metal–metal bonds)
are covered in Chapter 19, and some examples of coordination polymers are
described in Chapter 20.

In this chapter, we discuss mostly the bonding in mononuclear homoleptic
complexes MLn using two simple models. The first, called crystal field theory
(CFT), assumes that the bonding is ionic; i.e., it treats the interaction between
the metal ion (or atom) and ligands to be purely electrostatic. In contrast, the
second model, namely the molecular orbital theory, assumes the bonding to be
covalent. A comparison between these models will be made.

8.1 Crystal field theory: d-orbital splitting in octahedral
and tetrahedral complexes

L

z

y

xL L

L

L

Mm+

L

Fig. 8.1.1.
The octahedral arrangement of six
ligands surrounding a central metal ion.

By considering the electrostatic interaction between the central atom and the
surrounding ligands, the CFT shows how the electronic state of a metal atom is
affected by the presence of the ligands. Let us first consider the highly symmet-
rical case of a metal ion Mm+ surrounded by six octahedrally arranged ligands,
as shown in Fig. 8.1.1. If the metal ion has one lone d electron, this electron
is equally likely to occupy any of the five degenerate d orbitals, in the absence
of the ligands. However, in the presence of the ligands, the d orbitals are no
longer degenerate, or equivalent. Specifically, as Fig. 8.1.2 shows, the dz2 and
dx2−y2 orbitals have lobes pointing directly at the ligands, while the lobes of the
dxy, dyz , and dxz are pointing between the ligands. As the ligands are negatively
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Fig. 8.1.2.
The electron density functions of the five
d orbitals relative to the ligand positions
in an octahedral complex. The gray and
white regions in each orbital bear
positive and negative signs, respectively.
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charged (or at least have the negative end of the dipole moment pointing at the
metal), the dxy, dyz , and dxz orbitals should be more favored for electron occu-
pation than the other two. Moreover, the dxy, dyz , and dxz orbitals are equally
likely for electron occupation and hence are degenerate orbitals. On the other
hand, the dz2 and dx2−y2 are less likely to accommodate the single d electron.
Furthermore, as pointed out in Chapter 6, it is easy to show that the dz2 is simply
the sum of dz2−x2 and dz2−y2 functions (aside from a constant), each of which
is clearly equivalent to the dx2−y2 orbital, i.e.,

dz2−x2 + dz2−y2 ∝ z2 − x2 + z2 − y2 = 3z2 − r2 = r2(3 cos2 θ − 1) ∝ dz2 .
(8.1.1)

Similarly, when a metal ion is surrounded by four tetrahedrally arranged
ligands, as shown in Figs. 8.1.3 and 8.1.4, it is not difficult to see that in
this case the electrons tend to occupy the dz2 and dx2−y2 orbitals in prefer-
ence to the other three orbitals, dxy, dyz , and dxz . The splitting patterns for a
set of d orbitals in octahedral and tetrahedral complexes are summarized in
Fig. 8.1.5.

L

x

z

y

L

L

L

Mm+

Fig. 8.1.3.
Arrangement of the four ligands in a
tetrahedral complex.

dx2–y2 dxy

+

+
––

+ –

– +

Fig. 8.1.4.
Orientations of the dx2−y2 and dxy

orbitals with respect to the four ligands in
a tetrahedral complex, looking down the
z axis. Both d orbitals lie in the xy plane.
Filled and open circles represent ligands
that lie above and below the xy plane,
respectively. It is obvious that the dx2−y2

orbital is more favored for electron
occupation in a tetrahedral complex.

In Fig. 8.1.5(a), it is seen that, in an octahedral complex, the pair of dz2 and
dx2−y2 orbitals are grouped together and called the eg orbitals, while the dxy, dyz ,
and dxz orbitals are called the t2g orbitals. The energy difference between these
two sets of orbitals is denoted as 'o, where the subscript o is the abbreviation
for octahedral. In order to retain the “center of gravity” of the d orbitals before
and after splitting, i.e., the gain in energy by one set of orbitals (t2g in this
case) is offset by the loss in stability by the other set (eg here), the t2g orbitals
lie (2/5)'o below the set of unsplit d orbitals and the eg orbitals lie (3/5)'o
above it. Finally, it is noted that t2g and eg are simply two of the irreducible
representations in the Oh group.

In Fig. 8.1.5(b), for tetrahedral complexes, the dz2 and dx2−y2 pair is now
called the e orbitals, and the dxy, dyz , and dxz trio is called the t2 orbitals. Once
again, e and t2 are two of the irreducible representations of the Td point group.
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(a) (b)
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Fig. 8.1.5.
The d orbitals splitting patterns in (a)
octahedral and (b) tetrahedral complexes.

The energy difference between these two sets of orbitals is't (t for tetrahedral).
Also, due to the “center of gravity” condition, the t2 orbitals lie (2/5)'t above
the unperturbed d orbitals and e orbitals lie (3/5)'t below. When the metal ion,
the ligands, and the metal–ligand distance are the same for both the octahedral
and tetrahedral systems, it can be shown that

't = 4
9
'o.

However, since CFT is a rather crude model, such an exact relationship is
seldom of use. Instead, it is instructive and convenient to realize that, with all
conditions being equal, the crystal field splitting for a tetrahedral complex is
about half of that for an octahedral complex.

Finally, it is of interest to note that, in the purturbative treatment of CFT,'o
has a quantum mechanical origin:

'o = 10Dq, (8.1.2)

where

D = 35Ze2

4a5 , (8.1.3)

q = 2
105

∫ ∞

0
Rndr4Rndr2dr. (8.1.4)

In the above expressions for D and q, Z is the charge on each ligand, a is the
metal–ligand distance, Rnd is the radial function for the nd orbital on the metal.
The crystal field splittings,'o and't (or in terms of Dq), are seldom determined
by direct calculations. Rather, they are usually deduced from spectroscopic
measurements.

8.2 Spectrochemical series, high spin and low spin
complexes

We now briefly examine the factors that influence the magnitude of the crystal
field splitting'o (or 10Dq). In general,'o increases for similar transition met-
als as we go down the Periodic Table, i.e., first row < second row < third row.
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Also, 'o increases with the charge on the metal ion, i.e., M2+ < M3+, etc. As
far as the ligands are concerned,'o increases according to the spectrochemical
series

I−< Br−< S2−< SCN−< Cl−< NO−3 < F−< OH−< C2O2−
4 < H2O <

NCS−< CH3CN < NH3 < en(H2NCH2CH2NH2) < bipy(2, 2′-bipyridine

or 2, 2′dipyridine) < phen(o-phenanthroline) < NO2−
2 < CN−< CO.

It is not easy to rationalize this series with the point charge model. For instance,
on the basis of ionic bonding, it is difficult to see that a neutral ligand, CO,
yields the largest (or at least one of the largest)'o. However, this point may be
readily understood once we consider covalent bonding between the metal ion
and the ligands.

With the aid of the aufbau principle and Hund’s rule, we are now in position
to determine the ground electronic configuration of a given octahedral complex.
As shown in Fig. 8.2.1 there is only one electronic assignment for d1–d3 and
d8–d10 complexes, which have the ground configurations

d1 : t1
2g; d2 : t2

2g; d3 : t3
2g; d8 : t6

2ge2
g; d9 : t6

2ge3
g; d10 : t6

2ge4
g.

However, for d4 to d7 complexes, there are high-spin and low-spin configura-
tions. In the high-spin complexes, we have'o smaller than the pairing energy;
i.e., electrons avoid pairing by occupying both the t2g and eg orbitals. For low-
spin complexes, 'o is greater than the pairing energy; i.e., electrons prefer
pairing in the t2g orbitals to occupying the less stable eg orbitals.

For a first transition series octahedral complex, whether it has a high-spin or
low-spin configuration depends largely on the nature of the ligand or the charge
on the metal ion. For second- or third-row complexes, low-spin configuration
is favored, since now 'o is larger and pairing energy becomes smaller. In the
larger 4d and 5d orbitals, the electronic repulsion, which contributes to pairing
energy, is less than that for the smaller 3d orbital.

For tetrahedral complexes, with their crystal field splitting 't being only
about half of 'o, the high-spin configuration is heavily favored. Indeed, low-
spin tetrahedral complexes are rarely observed.

eg

t2g t2g t2g t2g
d1 d2 d3 d4 d4(HS)

(HS)

d5 (HS)(LS) d5 (LS)

eg eg eg

eg
eg eg eg eg egeg

eg eg eg

t2gt2g

d6 (HS)d7 (LS)d7 d8 d9 d10(LS)d6
t2g t2g t2g t2g t2g t2g t2g

t2g

Fig. 8.2.1.
Electronic configurations of octahedral complexes for d1 − d10 metals ions. The high-spin (HS) complexes have'o smaller than pairing energy,
while the low-spin (LS) complexes have 'o larger than pairing energy.
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Fig. 8.3.1.
Two examples of tetragonal distortion
for an octahedral complex: (a) axial
elongation and (b) axial compression.
Note that the center of symmetry of the
octahedral system is preserved after the
distortion.

8.3 Jahn–Teller distortion and other crystal fields

Among the 14 configurations for octahedral complexes shown in Fig. 8.3.1,
only five actually exist in the strictest sense. The non-existence of the other
nine configurations is due to Jahn–Teller distortion. According to the theory put
forth by physicists H. A. Jahn and E. Teller in 1937, any non-linear molecule
with a degenerate electronic state, i.e., with orbital degeneracy, will undergo
distortion to remove the degeneracy. Furthermore, if the “original” system is
centrosymmetric, the center of symmetry will be retained after the distortion.
When the 14 configurations shown in Fig. 8.2.1 are examined, it can be readily
seen that only those of d3, d5 high spin, d6 low spin, d8, and d10 have non-
degenerate ground state and hence are not subjected to Jahn–Teller distortion.
On the other hand, the remaining nine systems will distort from its octahedral
geometry in order to remove the orbital degeneracy.

In octahedral complexes, the Jahn–Teller distortion is small when t2g orbitals
are involved; this distortion becomes larger when there is uneven electronic
occupancy in the eg orbitals. Let us take a d9 octahedral complex as an exam-
ple: for configuration t6

2ge3
g, the orbital degeneracy occurs in the eg orbitals. In

order to preserve the center of symmetry, the complex will undergo a tetragonal
distortion: the two ligands lying along the z axis will be either compressed or
pulled away from the metal, while the four ligands on the xy plane retain their
original positions, as shown in Fig. 8.3.1. The crystal field splitting pattern of
a tetragonal distortion on an octahedral complex, deformed by either stretch-
ing or compressing two ligands along the z axis, is summarized in Fig. 8.3.2.
From this figure, it is clear that either configuration e4

gb2
2ga2

1gb1
1g (for an axially

elongated complex) or b2
2ge4

gb2
1ga1

1g (for an axially compressed complex) will

be energetically more favorable than the t6
2ge3

g configuration of an octahedral
complex. It is this energy stabilization that leads to the Jahn–Teller distortion.
Well-known examples of axial elongation are found in Cu(II) halides. In these
systems, each Cu2+ ion is surrounded by six halide ions, four of them lying
closer to the cation and the remaining two farther away. The structural data for
these halides are summarized in Fig. 8.3.3.

Referring to the orbital splitting pattern for an axially elongated tetrago-
nal complex shown in Fig. 8.3.2, if we continue the elongation, the splittings
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Fig. 8.3.2.
Crystal field splitting pattern of a
tetragonal distortion, either by stretching
or compressing two ligands along the
z axis. Note that δ1 is appreciably larger
than δ2.

D4h

d1/2

d1/2

d1/2

d1 > d2

d1/2

Do

d2/3
d2/32d2/3

Increasing
compressing

along z

Increasing
stretching

along z

t2g

eg

2d2/3

a1g(dz2)

a1g(dz2)

eg(dxz,dyz )

eg(dxz,dyz )

b1g(dx2 – y2)

b1g(dx2 – y2)

b2g(dxy)

b2g(dxy)

D4hOh

denoted by δ1 and δ2 will become larger and larger. Eventually this will lead
to the removal of two ligands, forming a square-planar complex in the process.
The orbital splitting pattern of such a complex is shown in Fig. 8.3.4.

Fig. 8.3.3.
Examples of Jahn–Teller distortion:
Cu(II) halides with two long bonds and
four short ones.

Cu—XCu2+
X = C1 295 pm

318
227

230 pm
240
193

X = Br
X = F

Cu—X'

X'

X'

X

X X

X

Most square-planar complexes have the d8 configuration, and there are also
some with the d9 configuration. Practically all d8 square-planar complexes are
diamagnetic, with a vacant b1g level (cf. Fig. 8.3.4).Also, most d8 square-planar
complexes with first-row transition metals have strong field ligands. Since the
energy gap between the b1g and b2g levels is (exactly) 'o, strong field ligands
would produce a large 'o, favoring a low-spin, i.e., diamagnetic, configura-
tion. For example, Ni2+ ion forms square-planar complexes with strong field
ligands (e.g., [Ni(CN)4]2−), and it forms tetrahedral, paramagnetic complexes
with weak field ligands (e.g., [NiCl4]2−). For second- and third-row transi-
tion metals, the'o splittings are much larger and square-planar complexes are
formed even with relatively weak field ligands (e.g., [PtCl4]2−).

Fig. 8.3.4.
Correlation between the orbital splitting
patterns of octahedral ML6 and
square-planar ML4 complexes. ML6 (Oh) ML4 (D4h)

t2g

eg
(exactly)

b1g(dx2–y2)

b2g(dxy)

eg(dxz,dyz)

a1g(dz2)
~2∆ο/5

~∆ο/12

∆o

∆o
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Table 8.4.1. The character table of the group O

O E 6C4 3C2(= C2
4) 8C3 6C2

A1 1 1 1 1 1 x2 + y2 + z2

A2 1 −1 1 1 −1
E 2 0 2 −1 0 (2z2 − x2 − y2, x2 − y2)
T1 3 1 −1 0 −1 (Rx , Ry , Rz) (x,y,z)
T2 3 −1 −1 0 1 (xy, xz, yz)

8.4 Octahedral crystal field splitting of spectroscopic
terms

As shown in previous sections, under an octahedral crystal field, the five d
orbitals are split into two sets of orbitals, t2g and eg. In terms of spectroscopic
states, we can readily see that the 2D term arising from configuration d1 will split
into 2T2g and 2Eg states, arising from configurations t1

2g and e1
g, respectively.

But what about the spectroscopic terms such as F and G arising from other dn

configurations? In this section, we will see how these terms split in an octahedral
crystal field.

Octahedral complex ML6 has Oh symmetry. However, for simplicity, we
may work with the O point group, which has only rotations as its symmetry
operations and five irreducible representations, A1, A2, . . . , T2. The character
table for this group is shown in Table 8.4.1. It is seen that the main difference
between the Oh and O groups is that the former has inversion center i, while
the latter does not. As a result, the Oh group has ten symmetry species: A1g,
A1u, A2g, A2u, . . . , T2g, T2u.

To see how an octahedral crystal field reduces the (2L+1)-fold degeneracy
of a spectroscopic term, we first need to determine the character of a rotation
operating on an atomic state defined by the orbital angular momentum quantum
number L. It can be shown that the character χ for a rotation of angle α about
the z axis is simply

χ(α) =
[

sin
(

L + 1
2

)

α

]/

sin
α

2
. (8.4.1)

In particular, for the identity operation, i.e., when α = 0, we have

χ(α = 0) = 2L + 1. (8.4.2)

With these formulas, it is now straightforward to obtain the χ values for all
the rotations in the O group and for any L value. Furthermore, we can then
reduce the representations with these χ values as characters into the irreducible
representations of the O group. All these results are summarized in Table 8.4.2.

To illustrate how the results are obtained, let us take the F term, with L = 3,
as an example. With eq. (8.4.2), we get

χ(E) = 7. (8.4.3)
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Table 8.4.2. Representations of atomic terms in the O point group and the states
these terms generate

Term L E 6C4 3C2(= C2
4) 8C3 6C2 States generated

S 0 1 1 1 1 1 A1
P 1 3 1 −1 0 −1 T1
D 2 5 −1 1 −1 1 E + T2
F 3 7 −1 −1 1 −1 A2 + T1 + T2
G 4 9 1 1 0 1 A1 + E + T1 + T2
H 5 11 1 −1 −1 −1 E + 2T1 + T2
I 6 13 −1 1 1 1 A1 + A2 + E + T1 + 2T2

With eq. (8.4.1), we have

χ(C4) =
[

sin
(

3 + 1
2

)

(90◦)
]/

sin 45◦ = −1. (8.4.4)

χ(C2) =
[

sin
(

3 + 1
2

)

(180◦)
]/

sin 90◦ = −1. (8.4.5)

χ(C3) =
[

sin
(

3 + 1
2

)

(120◦)
]/

sin 60◦ = 1. (8.4.6)

Combining the results of eqs. (8.4.3) to (8.4.6), we obtain the following
representation for the F term:

O E 6C4 3C2(= C2
4) 8C3 6C2

F , L = 3 7 −1 −1 1 −1

This representation can be easily reduced to the irreducible representations
A2 +T1 +T2. Note that if this F term arises from a configuration with electrons
occupying d orbitals, which are even functions, the electronic states split from
this term in an octahedral crystal field are then A2g, T1g, and T2g. (On the other
hand, if the F term comes from a configuration with f electron(s) such as f1,
the electronic states in an octahedral crystal field will then be A2u, T1u, and T2u.
This is because f orbitals are odd functions.) All the results given in Table 8.4.2
can be obtained in a similar fashion.

8.5 Energy level diagrams for octahedral complexes

After determining what levels are present for an octahedral complex with a
given electronic configuration, we are now ready to discuss the energy level
diagrams for these spectroscopic terms.

8.5.1 Orgel diagrams

Let us first consider an octahedral complex ML6 with one single d electron.
Configuration d1 has only one term, 2D, which splits into 2Eg and 2T2g levels in
a crystal field with Oh symmetry. Levels 2Eg and 2T2g arise from configurations
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e1
g and t1

2g, respectively. Also, from Fig. 8.1.5(a), we see that the energy of the
eg orbitals are higher than that of the d orbitals by (3/5)'o (or 6Dq), and the
energy of the t2g orbitals is lower than that of the d orbitals by (2/5)'o (or 4Dq).
Combining these results we can readily arrive at the energy level diagram shown
in Fig. 8.5.1. In this diagram, we plot the energies of the spectroscopic levels
against Dq, one tenth of the octahedral crystal field splitting 'o. Furthermore,
the energy difference between the 2Eg and 2T2g level is always 10Dq. Such
a diagram is called an Orgel diagram, named after chemist L. E. Orgel, who
popularized these diagrams in the 1950’s.

(d1) 2D

(eg
1)   + 6Dq

(t2g
1)   – 4Dq

Dq

E 2Eg

2T2g

strong field
configuration

Fig. 8.5.1.
Orgel diagram for a d1 octahedral
complex.

For the d6 configuration, the ground term is 5D, which splits into 5Eg and
5T2g in an Oh field. For a high-spin d6 complex, the only quintet term arising
from configuration t4

2ge2
g is 5T2g and that arising from t3

2ge3
g is 5Eg. These states

correspond exactly to the d1 case, except now the states are spin quintets.
In other words, for such a complex there is only one spin-allowed transition,
5T2g → 5Eg. Hence the d1 and high spin d6 octahedral complexes have the
same Orgel diagram. (Note that the d6 configuration has a total of 16 terms, and
5D is the only quintet term. The remaining 15 terms are triplets and singlets
and they are ignored in the current discussion.)

As mentioned in Chapter 2, both d9 and d1 configurations have only one
term, 2D. For a d9 octahedral complex, the 2D term once again splits into
2T2g and 2Eg states, with the energy difference between them being 10Dq.
However, for the d9 configuration, which is equivalent to the one-hole, or
one-positron, case, the energy ordering is just the opposite of that for the d1

configuration. In other words, for the d9 octahedral complex, we have the 2Eg
state lower than the 2T2g state, and the energy difference between the states is
again 10Dq.

Similarly, d4 is the hole-counterpart of d6, both of which have the ground
term 5D. As have been mentioned many times already, this term splits into
5T2g and 5Eg states in an Oh crystal field. For the d4 case, these quintet states
arise from the high-spin configurations t2

2ge2
g and t3

2ge1
g, respectively. As may

be surmised by the configurations from which they arise, the 5Eg state is now
lower than the 5T2g state for a d4 complex, which is just the opposite for a
high-spin d6 octahedral complex. The energy difference between the states is
once again 10Dq.

The foregoing results for d1, high-spin d4 and d6, as well as d9 octahedral
complexes can be summarized by the fairly simple Orgel diagram shown in
Fig. 8.5.2.

Additionally, we note that octahedral and tetrahedral complexes have oppo-
site energy orderings (Fig. 8.1.5). Hence d1 octahedral and d9 tetrahedral have
the same Orgel diagram; the same is true for d6 octahedral and d4 tetrahedral
complexes. In other words, the Orgel diagram in Fig. 8.5.2 is also applicable to
d1, d4, d6, and d9 tetrahedral complexes. Since tetrahedral complexes are not
centrosymmetric, their states do not have g or u designations. States in Fig. 8.5.2
do not carry subscripts; they should be put back on for octahedral complexes.

Now we turn our attention to the d2 octahedral complexes. For this config-
uration, there are two triplet terms, 3F (ground term) and 3P. In an octahedral
crystal field, there are three configurations: t2

2g < t1
2ge1

g < e2
g, in increasing
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Fig. 8.5.2.
Orgel diagrams for d1, high-spin d4 and
d6, and d9 complex.

D

T2

T2E

E E

6Dq

4Dq

Dq

d1, d6 tetrahedral
d4, d9 octahedral

d1, d6 octahedral
d4, d9 tetrahedral

Dq

energy order. From Table 8.4.2, it is clear that 3P becomes 3T1g(P) in an octa-
hedral field, with no change in energy, while the 3F term splits into 3T1g(F),
3T2g, and 3A2g states. (Since there are two 3T1g states in this system, we call
one 3T1g(P) and the other 3T1g(F).) Upon treating the crystal field splitting
perturbationally, it is found that the 3T1g(F) state lies 6Dq below the energy of
3F , while the 3T2g and 3A2g states are 2Dq and 12Dq above 3F , respectively.
(It is seen that the “center of gravity” is also preserved here.) These results
are shown in Fig. 8.5.3. Note that the splittings shown in this figure are due
to interactions among the components of the same term; these interactions are
sometimes called first-order crystal field interactions. In addition to first-order
interactions, there are also interactions among components from different terms
with the same symmetry, the so-called second-order crystal field interactions.
Take the energy levels in Fig. 8.5.3 as an example.Among the four states shown,
only 3T1g(P) and 3T1g(F) have the same symmetry and hence they will interact
with each other. In quantum mechanics, when two states of the same symmetry
interact, the upper level will go still higher and the lower level further below.
The results of such a second-order interaction are shown in Fig. 8.5.4. In this
figure, it is seen that the (upper) 3T1g(P) level bends upward, while the (lower)
3T1g(F) bends downward.

12Dq

Dq

6Dq

2Dq

3T1g(F )

E
3T1g(P)3P

3F

3T2g

3A2g

Fig. 8.5.3.
Energy level diagram for a d2 octahedral
complex, ignoring second-order crystal
field interaction.

18Dq

Dq

8Dq

3T1g(F )

E 3T1g(P)
3P

3F

3T2g

3A2g

Fig. 8.5.4.
Energy level diagram for a d2 octahedral
complex, including the second-order
crystal field interaction.

As we have seen for the d1 and d6 systems (Fig. 8.5.2), the d2 Orgel diagram
in Fig. 8.5.4 is also applicable to d7 octahedral, d3 and d8 tetrahedral complexes.
Furthermore, the reverse splitting pattern applies to d3 and d8 octahedral, as
well as to d2 and d7 tetrahedral complexes. These results are summarized in
Fig. 8.5.5.

The two Orgel diagrams shown in Figs. 8.5.2 and 8.5.5 deal with the
spin-allowed transitions for all dn systems except d0, d5, and d10. Let us con-
fine our attention to octahedral complexes. Only one transition is expected
for d1 (2T2g →2Eg) and d9 (2Eg → 2T2g) complexes. For the d1 com-
plex of [Ti(H2O)6]3+, this band is observed at 20,300 cm−1. This absorption
shows a shoulder at ∼17,500 cm−1, due to the Jahn-Teller distortion of
the excited state 2Eg (arised from configuration e1

g). For a d2 complex, the
ground state is 3T1g(F) and three transitions are expected: 3T1g(F) → 3T2g,
3T1g(F) → 3T1g(P), and 3T1g(F) → 3A2g. For [V(H2O)6]3+, these Transi-
tions are observed at 17,000, 25,000, and 37,000 cm−1 (obscured somewhat by
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(P)
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(P)T1

(F)T1

(F)

E

P

F
T1

A2

A2

d2, d7 tetrahedral
d3, d8 octahedral

d2, d7 octahedral
d3, d8 tetrahedral

Dq

Fig. 8.5.5.
Orgel diagram for d2, d3, as well as
high-spin d7 and d8 complexes. Note
that, in the figure on the left, the T1 states
are more bent (than those on the right)
because they are closer in energy.

charge transfer transitions), respectively. For a d3 system, the ground state is
4A2g and again three transitions are expected: 4A2g → 4T2g, 4A2g → 4T1g(F),
4A2g → 4T2g(P). For [Cr(H2O)6]3+, they are observed at ∼17,500, 24,700,
and 37,000 cm−1, respectively.

Finally, regarding the aforementioned omissions of d0, d5, and d10 sys-
tems, it is noted that d0 and d10 complexes exhibit no d–d band, and there
are no spin-allowd transitions for high-spin d5 complexes. But we shall dis-
cuss the electronic spectrum of a d5 complex, [Mn(H2O)6]2+, in the next
section.

8.5.2 Intensities and band widths of d–d spectral lines

Crystal field, or d–d, transitions are defined as transitions from levels that are
exclusively perturbed d orbitals to levels of the same type. In other words,
the electron is originally localized at the central metal ion and remains so in
the excited state. When the system has Oh symmetry, Laporte’s rule says that
an electric-dipole allowed transition must be between a “g” state and an “u”
state, i.e., u ↔ g. Since all the crystal field electronic states are gerade (“g”),
no electric-dipole allowed transitions are possible. In short, all d–d transitions
are symmetry forbidden and hence have low intensities. The fact that the d–d
transitions are observed at all is due to the interaction between the electronic
motion and the molecular vibration. We will discuss this (vibronic) interaction
later (Section 8.10).

In addition to the symmetry selection rule, there is also another selection
rule on spin: 'S = 0, i.e., only the transitions between states with the same
spin are allowed. The fact that we sometimes do observe spin-forbidden d–d
transitions is mainly due to spin–orbit coupling, which will be discussed later
in this section.

Spin-forbidden (say,'S = ±1) transitions, when observed, are usually about
1% as strong as the spin-allowed ones. For the octahedral complexes of the first
transition series, the molar extinction coefficients ε (in L mol−1cm−1) of the
transitions range from ∼0.01 in Mn(II) complexes (see below) to as high as
∼25–30 of some non-chelate Co(III) and Ni(II) complexes. The tetrahedral
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Fig. 8.5.6.
The Orgel diagram for a high-spin d5

octahedral complex.
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Fig. 8.5.7.
Electronic spectrum of [Mn(H2O)6]2+.
Note that the intensities of all the
transitions are very low, since they are
both symmetry- and spin-forbidden.
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complexes have more intense transitions (by a factor of about 50 to 200) due
to their lack of center of symmetry. For examples, the ε value for the 2T2g →
2Eg transition of [Ti(H2O)6]3+ is ∼5, while those for the d–d transitions of
[V(H2O)6]2+ also have similar intensity.

We now turn to the d–d transitions of the complex [Mn(H2O)6]2+. For this
d5 configuration, the ground state is 6S, which becomes 6A1g in an octahedral
crystal field. This is the only sextet state for this configuration; the remaining
states are either quartets or doublets. An Orgel diagram covering the sextet
ground state and the four quartet excited states are shown in Fig 8.5.6. The
electronic spectrum of [Mn(H2O)6]2+ is shown in Fig. 8.5.7.

Note that all transitions for this system are both symmetry- and spin-
forbidden and hence have very low ε values, which are responsible for the
very pale pink color of this cation. (As a comparison, tetrahedral complexes of
Mn(II) are yellow-green, and the color is more intense. The molar absorbance
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values for these complexes are in the range of 1.0–4.0). The assignment for the
spectrum of [Mn(H2O)6]2+ shown in Fig. 8.5.7 is as follows:

Transition cm−1

6A1g → 4T1g(G) 18,800
→ 4T2g(G) 23,000
→ 4Eg(G) 24,900
→ 4A1g(G) 25,100
→ 4T2g(D) 28,000
→ 4Eg(D) 29,700
→ 4T1g(P) 32,400
→ 4A2g(F) 35,400
→ 4T1g(F) 36,900
→ 4T2g(F) 40,600

Another feature of the [Mn(H2O)6]2+ spectrum shown in Fig. 8.5.7 is its
variation of bandwidths of the spectral lines. Theoretical considerations indicate
that the widths of spectral lines is dependent on the relative slopes of the two
states involved in the transition. As the ligands vibrate, the value of Dq changes
as a result [cf. eqs. (8.1.3) and (8.1.4)]. If the energy of the excited state is a
sensitive function of Dq, while that of the ground state is not, the spectral band
will be broad. This argument is pictorially illustrated in Fig. 8.5.8. Referring
to the Orgel diagram for d5 complexes shown in Fig. 8.5.6, it is seen that the
energies of the ground state 6A1g and the excited states 4A1g(G), 4E1g(G), and
4Eg(D) all happen to be independent of Dq. Hence the spectral bands for the
transitions from the ground state to these three excited states should be narrow,
as are indeed found to be the case.

B

C

E

A

Dq

δνC

δνB

δDq

Fig. 8.5.8.
Diagram showing how bandwidth varies
with the ratio of the slopes of the ground
and excited states. In the present
example, the ground state (A) energy is
independent of Dq, while excited states
B and C have energies which change as
Dq changes. Here δDq is the range of
variation of Dq due to ligand vibrations,
and δνB and δνC are the bandwidths for
transitions A→B and A→C, respectively.

Before concluding this section, we briefly discuss how formally spin-
forbidden transitions gain their intensity. The mechanism through which this is
achieved is the spin–orbit interaction. Here we use the two most stable terms, 6S
and 4G, of the d5 configuration for illustration. After spin–orbit (L–S) coupling
among the components for each term, 6S becomes 6S21/2, while 4G splits into
4G51/2,

4G41/2,
4G31/2, and 4G21/2. Such “intra-term” coupling may be considered

as first-order spin–orbit interaction. Additionally, states with the same J value,
namely, 6S21/2 and 4G21/2 in the present example, will further interact. Such
inter-term coupling is called second-order spin–orbit interaction. As a result of
the interaction, the 6S term gains some quartet character; also the 4G term gains
some sextet character. Mathematically, if we call the wavefunctions before and
after spin–orbit interaction ψ and ψ ′, respectively, then we have

ψ ′(6S) = aψ(6S) + bψ(4G), a 9 b; (8.5.1)

ψ ′(4G) = cψ(4G) + dψ(6S), c 9 d . (8.5.2)

This minute amount of mixing of the quartet and sextet states leads to a very
small intensity for the sextet–quartet transition, as, strictly speaking, the'S = 0
selection rule is no longer violated.Amore detailed discussion on the spin–orbit
interaction in complexes is given in Section 8.7.
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8.5.3 Tanabe–Sugano diagrams

The Orgel diagrams shown in Figs. 8.5.2 and 8.5.5 have the distracting fea-
ture of decreasing ground state energy with increasing 'o or Dq. To remedy
this “deficiency,” Japanese scientists Y. Tanabe and S. Sugano represented the
energy of the ground state of a complex as a horizontal line. The Tanabe–Sugano
diagrams for d2, d3, and d8 octahedral complexes are shown in Fig. 8.5.9.

In these figures, states with spin multiplicities different from that of the
ground state are also included. Thus, using these diagrams, spin-forbidden tran-
sitions may also be considered. The coordinates of the diagrams are E/B and
'o/B, both of which are dimensionless (i.e., scalar quantities). Here B is one of
the Racah parameters in terms of which the energy of each (free) atomic term is
expressed. Hence the diagrams shown can be used for various metal ions with
the same dn configuration and with different ligands.

The Tanabe–Sugano diagrams for d4–d7 octahedral complexes are shown in
Fig. 8.5.10. In this figure, each diagram has two parts separated by a vertical
line. The left part applies to high-spin (or weak field) complexes and the right
side to low spin (or strong field) cases. Take the d6 diagram as an example.
For high-spin d6 complexes, the ground state is 5T2g, while that for a low-spin
complex is 1A1g. This is in agreement with the result shown in Fig. 8.2.1, which
indicates that a high-spin d6 complex has four unpaired electrons (or a quintet
spin state) and a low-spin d6 complex is diamagnetic (or a singlet state).

8.5.4 Electronic spectra of selected metal complexes

In this section, we present some additional spectra in order to illustrate the
principles discussed in the previous sections.

(1) [Co(H2O)6]2+and [CoCl4]2−

These are d7 complexes and their spectra are shown in Fig. 8.5.11. From the
positions and the intensities of the spectral band, we can readily deduce that
[Co(H2O)6]2+ is pale purple, while [CoCl4]2− is deep blue. With the help of
the Orgel diagram shown in Fig. 8.5.5, and some quantitative results, the only
band in each spectrum may be assigned to the following transition: 4A2 →
4T1(P) in [CoCl4]2− and 4T1g(F) → 4T1g(P) in [Co(H2O)6]2+, while the
other spin-allowed transitions are not clearly seen.

For the octahedral complex, the 4T1g(F) → 4A2g should have compara-
ble energy with the observed band. But 4T1g(F) arises from configuration
t5
2ge2

g, while 4A2g is from t3
2ge4

g. So this is a two-electron process and hence
the transition is weak. Meanwhile, the 4T1g(F)→ 4T2g transition occurs in the
near-infrared region. For the tetrahedral complex, the 4A2 → 4T1(F) transition
also takes place in the near infrared region, while 4A2 → 4T2 occurs in a region
of even lower energy.

(2) trans-[Cr(en)2F2]+

This is a d3 complex with a tetragonal structure with D4h symmetry. (Strictly
speaking, this system has D2h symmetry.) Hence the Orgel diagram shown in
Fig. 8.5.5 no longer applies. If we assume this cation has an elongated octahedral
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Fig. 8.5.9.
Tanabe–Sugano diagrams for d2, d3, and d8 octahedral complexes. Quantities B and C are Racah parameters, in terms of which the energy of a
spectroscopic term is expressed. Hence both E/B and Dq/B are dimensionless.
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Fig. 8.5.10.
Tanabe–Sugano diagrams for d4–d7 octahedral complexes. Both E/B and Dq/B are dimensionless.

geometry, the “original” triply degenerate T states will split into two terms (E
with A or B). This splitting pattern is shown in Fig. 8.5.12. With this energy
level diagram, the spectral bands of this complex, shown in Fig. 8.5.13, can be
assigned in a fairly straightforward manner:

Transition cm−1

4B1g → 4Eg 18,500
→ 4B2g 21,700
→ 4Eg 25,300
→ 4A2g 29,300
→ 4A2g 41,000(shoulder)
→ 4Eg 43,700(calculated)
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Fig. 8.5.11.
Visible spectra of [Co(H2O)6]2+ (curve
A) and [CoCl4]2− (curve B). The ε scale
on the left side applies to
[Co(H2O)6]2+; the one on the right
applies to [CoCl4]2−. As expected, the
bands of the tetrahedral complex are
much more intense than those of the
octahedral complex.
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Fig. 8.5.12.
Energy level splitting for a d3 ion as its
crystal field environment changes form
octahedral (Oh symmetry) to tetragonal
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Fig. 8.5.13.
Electronic spectrum of
trans-[Cr(en)2F2]+.
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The visible spectrum of cis- and trans-[Co(en)2F2]+. The broken line signifies that the most
intense band actually consists of two overlapping transitions. The asymmetry of this band is
caused by the slight splitting of 1T1g state in the cis isomer. For the trans isomer, the splitting is
much more pronounced, and two separate bands are observed. The schematic diagram on the
right shows the energy levels involved in these two electronic spectra.

Fig. 8.5.15.
Electronic spectra of [Ni(H2O)6]2+ (—)
and [Ni(en)3]2+ (−−−).
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(3) cis-[Co(en)2F2]+ and trans-[Co(en)2F2]+

These are low-spin d6 complexes with a 1A1g ground state. According to the
Tanabe-Sugano diagram shown in Fig. 8.5.10, the two lowest energy singlet
excited states for a d6 octahedral complex are 1T1g and 1T2g.When the symmetry
of the complex is lowered by substitution to form cis- or trans-[CoX4Y2]+,
both of the triply degenerate excited states will split. Also, the splitting of the
1T1g state will be more prominent if the ligands X and Y are far apart in the
spectrochemical series; understandably this is especially so for the trans isomer.
These results are summarized schematically in Fig. 8.5.14. Note that, in this
figure, the splitting of the 1T2g is so small that it is completely ignored. These
expected electronic transitions are observed in the respective spectra. Finally, it
is noted that, since the cis isomer has no center of symmetry, its spectral bands
have higher intensities.

(4) [Ni(H2O)6]2+ and [Ni(en)3]2+

These are d8 complexes and we may once again employ the Orgel diagram
shown in Fig. 8.5.5 to interpret their spectra, which are displayed in Fig. 8.5.15.
Three spin-allowed transitions are expected and observed:

Transition [Ni(H2O)6]2+ [Ni(en)3]2+
3A2g → 3T2g 9,000 cm−1 11,000 cm−1

→ 3T1g(F) 14,000 18,500
→ 3T1g(P) 25,000 30,000
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Since ethylenediamine (en) is a stronger ligand than water, all the transi-
tions for [Ni(en)3]2+ have higher energies than the corresponding ones for
[Ni(H2O)6]2+. Also, since [Ni(H2O)6]2+ is centrosymmetric, its spectral bands
have lower intensities. From these spectra, it may be deduced that [Ni(en)3]2+

is purple, while [Ni(H2O)6]2+ is green.
Finally, it is noted that the splitting of the middle band in the [Ni(H2O)6]2+

spectrum arises from spin–orbit interaction between the 3T1g(F) and 1Eg states
(cf. Fig. 8.5.9). These two states are close in energy at the 'o value generated
by six H2O molecules. But they are far apart at the stronger field of three en
molecules. As a result, no splitting is observed in the spectrum of [Ni(en)3]2+.

With the sample spectra discussed in this section, it is clear that the Orgel
diagrams and/or Tanabe–Sugano diagrams are useful in making qualitative anal-
ysis for the spectra. However, there are also cases where quantitative treatments
are indispensable in order to make definitive assignments and interpretations.

8.6 Correlation of weak and strong field approximations

In the Tanabe–Sugano diagrams for d2 complexes shown in Fig. 8.5.9, it is
seen that the 3T1g ground state is identified as derived from the t2

2g strong field
configuration. Actually, such an identification can be made for all states shown.
To do that, let us first give a more formal definition for weak and strong field
approximations.

For the weak field case, we have the situation where the crystal field inter-
action is much weaker than the electronic repulsion. In this approximation, the
Russell-Saunders terms 3F , 3P, 1G, 1D, and 1S for the d2 configuration are
good basis functions. When the crystal field is “turned on,” these terms split
according to the results given in Table 8.4.2:

3F → 3A2g + 3T1g + 3T2g,
3P → 3T1g,
1G → 1A1g + 1Eg + 1T1g + 1T2g,
1D → 1Eg + 1T2g,
1S → 1A1g.

These are the states arising from the weak field approximation.
For the strong field case, we have the reverse situation: the electronic repul-

sion is much smaller than the crystal field interaction. Now, for a system with
two d electrons, we need to consider three crystal field configurations: t2

2g, t1
2ge1

g,
and e2

g (in the order of increasing energy). The states derived from these config-
urations can be obtained with the standard group theoretical methods described
in Section 6.4.3. Now it is straightforward to arrive at the following results:

t2
2g → 3T1g + 1A1g + 1Eg + 1T2g,

t1
2ge1

g → 3T1g + 3T2g + 1T1g + 1T2g,

e2
g → 3A2g + 1A1g + 1Eg.
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Fig. 8.6.1.
Correlation diagram for a d2 octahedral
complex. The g subscript is omitted in all
the state or orbital designations. Note
that the lines connecting the triplet states
constitute the Orgel diagram shown in
Fig. 8.5.4 or Fig. 8.5.5.
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Of course, these are the same states obtained in the weak field approximation.
The way these two sets of states is correlated is shown in Fig. 8.6.1. In drawing
the connection lines, we minimize crossing, even for species with different
symmetry. Note that the four lines connecting the triplet states constitute the
Orgel diagram for d2 complexes (Fig. 8.5.4 or Fig. 8.5.8).

8.7 Spin–orbit interaction in complexes: the double
group

Previously we stated that, for a state with orbital angular momentum L, the
character for a rotation of angle α is given by

χ(α) = [sin(L + 1/2)α]/ sin α/2 (8.4.1.)

When we use this formula to derive crystal field states of a complex, we have
made the assumption that spin–orbit interaction is weak and hence is ignored.

When spin–orbit interaction is significant, the quantum number that defines
a state is total angular momentum J , instead of L. Quantum number J can be
an integer or a half-integer. When J is an integer, we can again make use of eq.
(8.4.1) and replace L with J . However, when J is a half-integer, a complication
arises: χ(α + 2π) no longer equals to χ(α), as it should. Mathematically

χ(α + 2π) = sin[(J + 1/2)(α + 2π)]/ sin[1/2(α + 2π)]

= sin[2π + (J + 1/2)α]/ sin
(

π + α/2
)

= sin[(J + 1/2)α]/
(

− sin α/2
)

= −χ(α). (8.7.1)
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Table 8.7.1. The character table of double group O′

O′ E R 4C3 4C2
3 3C2 3C4 3C3

4 6C′2
(h=48) (α = 4π ) (α = 2π ) 4C2

3R 4C3R 3C2R 3C3
4R 3C4R 6C′2R

Γ1 A′1 1 1 1 1 1 1 1 1
Γ2 A′2 1 1 1 1 1 −1 −1 −1
Γ3 E′1 2 2 −1 −1 2 0 0 0
Γ4 T ′1 3 3 0 0 −1 1 1 −1
Γ5 T ′2 3 3 0 0 −1 −1 −1 1

Γ6 E′2 2 −2 1 −1 0 (2)
1/2 −(2)

1/2 0

Γ7 E′3 2 −2 1 −1 0 −(2)
1/2 (2)

1/2 0
Γ8 G′ 4 −4 −1 1 0 0 0 0

To get around this difficulty, H. A. Bethe introduced a rotation by 2π , called R,
which is different from the identity operation E. To add this operation to any
rotation group such as O, we need to expand the group by taking the product of R
with all existing rotations; these are now the operations of the new group called
the double group. For example, the O group has rotations E, 8C3, 3C2, 6C4
and 6C′2 (Table 8.4.1) and its corresponding double group O′ has operations
E( = R2), R, (4C3, 4C2

3R), (4C2
3, 4C3R), (3C2, 3C2R), (3C4, 3C3

4R), (3C3
4 ,

3C4R), and (6C′2, 6C′2R), i.e., a total of 48 symmetry operations forming
eight classes. The character table of the O′ group is shown in Table 8.7.1.
Upon examining this table, it is seen that:

(1) The O′ group has eight irreducible representations, with the first five iden-
tical to those of the O group (Table 8.4.1). The last three representations of
the O′ group are new.

(2) There are two systems of notation for the representations. The first one,
Γ1, Γ2, . . ., Γ8, is due to Bethe. The other one, A′1, A′2, …, etc. is due to
Mulliken, who put the primes in to signify that these are the representations
of the double group.

We may now use Table 8.7.1 to determine the representations, under O sym-
metry, spanned by a state with half-integer quantum number J . These results
are summarized in Table 8.7.2. Those for states with integral J are included
for convenience and completeness. In other words, this table contains all the
results listed in Table 8.4.2, in addition to those for half-integer J states.

To illustrate how to obtain the characters for rotation operations listed in
Table 8.7.2, we take χ(α = 2π) for J = 1/2 as an example:

χ(α = 2π) = lim
α→2π

[

sin
(

1
2

+ 1
2

)

α

]

/ sin
1
2
α

= lim
α→2π

2
[

cosα/ cos
1
2
α

]

= −2. (8.7.2)

Now we consider the 4D term (an excited state) of a d5 octahedral complex
as an example. If spin–orbit interaction is ignored, this term splits into 4Γ3 and
4Γ5 states (Table 8.7.2) in a crystal field with Oh symmetry. When we “turn on”
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Table 8.7.2. Representations, under O or O′ symmetry, spanned by a state characterized by an
integral or a half-integral J value

J E R 4C3 4C2
3 3C2 3C4 3C3

4 6C′2 Representations in O or O′
= R2 4C2

3R 4C3R 3C2R 3C3
4R 3C4R 6C′2R

0 1 Γ1
1/2 2 −2 1 −1 0 (2)

1/2 −(2)
1/2 0 Γ6

1 3 Γ4
11/2 4 −4 −1 1 0 0 0 0 Γ8
2 5 Γ3 + Γ5

21/2 6 −6 0 0 0 −(2)
1/2 (2)

1/2 0 Γ7 + Γ8
3 7 Γ2 + Γ4 + Γ5
31/2 8 −8 1 −1 0 0 0 0 Γ6 + Γ7 + Γ8
4 9 Γ1 + Γ3 + Γ4 + Γ5

41/2 10 −10 −1 1 0 (2)
1/2 −(2)

1/2 0 Γ6 + 2Γ8
5 11 Γ3 + 2Γ4 + Γ5
51/2 12 −12 0 0 0 0 0 0 Γ6 + Γ7 + 2Γ8
6 13 Γ1 + Γ2 + Γ3 + Γ4 + 2Γ5

61/2 14 −14 1 −1 0 −(2)
1/2 (2)

1/2 0 Γ6 + 2Γ7 + 2Γ8

the spin–orbit interaction, these states will further split. To do this, it is seen
that spin quantum number S is 11/2 for the present case; this spin state has Γ8
symmetry (Table 8.7.2). When this spin state interacts with the orbitals parts
(Γ3 and Γ5), the resultant states are

Γ3 × Γ8 = Γ6 + Γ7 + Γ8;

Γ5 × Γ8 = Γ6 + Γ7 + 2Γ8.

This means that 4Γ3 splits into three states and 4Γ5 into four. Note that now
spin quantum number S is no longer used to define the resultant states.

On the other hand, if spin–orbit coupling is larger than crystal field inter-
action, J is the quantum number that defines a state before the crystal field is
“turned on.” For 4D, we have J values of 1/2, 11/2, 21/2, and 31/2. In an octahedral
crystal field, with the aid of Table 8.6.2, we can readily see that these states
split into

J = 1/2 Γ6;

J = 11/2 Γ8;

J = 21/2 Γ7 + Γ8;

J = 31/2 Γ6 + Γ7 + Γ8.

The way these two sets of states are correlated is shown in Fig. 8.7.1. It is
important to note that, whenever we are dealing with spin–orbit interaction in
a system with half-integral J values, we should employ the double group.

8.8 Molecular orbital theory for octahedral complexes

In the crystal field treatment of complexes, the interaction between the central
metal ion and the ligands is taken to be purely electrostatic, i.e., ionic bonding. If
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Fig. 8.7.1.
Relative effects of spin-orbit coupling
and octahedral crystal field interaction on
the electronic state 4D.

L5
L2

L1

L6

L4

L3
σ3

σ4
σ6

σ1

σ2
σ5

M x

y

z

Fig. 8.8.1.
A coordinate system for ML6, where the
ligands have only σ to bond with the
metal ion.

we wish to take the overlap between the metal and ligand orbitals, i.e., covalent
bonding, into account, we need to turn to molecular orbital theory. The basic
concepts of this theory have already been discussed in Chapters 3 and 7.

8.8.1 σ bonding in octahedral complexes

We first treat those complexes that have onlyσ metal–ligand bonding. Examples
of this type of complexes include [M(H2O)6]n+ and [M(NH3)6]n+, where Mn+

is a first transition series metal ion and a typical n value is either 2 or 3. A
coordinate system for such a complex is shown in Fig. 8.8.1. The representation
generated by the six ligand orbitals is

Oh E 8C3 6C2 6C4 3C2 i 6S4 8S6 3σ h 6σ d
Γσ 6 0 0 2 2 0 0 0 4 2
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Table 8.8.1. Summary of the formation of σ molecular orbitals (Fig. 8.8.2) in ML6

Symmetry Metal orbitals Ligand σ orbitals Molecular orbitals

A1g s (6)−
1
2 (σ1 + σ2 + σ3 + σ4 + σ5 + σ6) 1a1g, 2a1g

Eg

{

dx2−y2

dz2

{ 1
2 (σ1 − σ2 + σ3 − σ4)

(12)−
1
2 (2σ5 + 2σ6 − σ1 − σ2 − σ3 − σ4)

1eg, 2eg

T1u







px
py
pz















(2)−
1
2 (σ1 − σ3)

(2)−
1
2 (σ2 − σ4)

(2)−
1
2 (σ5 − σ6)

1t1u, 2t1u

T2g







dxy
dyz
dzx

— 1t2g

Fig. 8.8.2.
Linear combinations of σ ligand orbitals
matching symmetry with the atomic
orbitals on the central metal ion in ML6.
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+
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+
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+

+

+
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z

z
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zz
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x
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x

y
x

y
x

y
x

y
x

y
x

y
x

y
x

x

s

+

+
+
–

–

(σ1+σ2+σ3+σ4+σ5+σ6)1
(6)½

(2)½1dx2–y2

dz2

pz

T1u

Eg

px

py

2

(σ5–σ6)

(σ1–σ3)

(σ2–σ4)1

(2)½
1

(2)½
1

(2σ5+2σ6–σ1–σ2–σ3–σ4)

(σ1–σ2+σ3–σ4)

1

which reduces as Γσ = A1g + Eg + T1u. The six linear combinations of ligand
orbitals can be readily generated, and they match in symmetry with the suitable
metal orbitals. These are summarized in Table 8.8.1 and illustrated in Fig. 8.8.2.
The molecular orbital energy level diagram for an octahedral ML6 complex with
only σ bonding is shown in Fig. 8.8.3.

Examining the energy level diagram shown in Fig. 8.8.3, we see that the
electron pairs from the six ligands enter into the 1t1u, 1a1g, and 1eg orbitals,
thus leaving 1t2g and 2eg orbitals to accommodate the d electrons from the metal
ion. Also note that the 1t2g orbitals are more stable than the 2eg orbitals and the
energy gap between them is once again called 'o. This is in total agreement
with the results of crystal field theory (Fig. 8.1.5). But the two theories arrive
at their results in different ways. In crystal field theory, the t2g orbitals are more
stable than the eg orbitals because the former have lobes pointing between the
ligands and the latter have lobes pointing at the ligands. On the other hand, in
molecular orbital theory, the 1t2g orbital are more stable than the 2eg orbitals
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Fig. 8.8.3.
The molecular orbital energy level
diagram for an octahedral complex with
only σ bonding between the metal and
the ligands.
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Fig. 8.8.4.
A coordinate system for ML6, showing
the orientations of the twelve π ligand
orbitals.

because the former are nonbonding orbitals, while the latter are antibonding σ ∗

orbitals.

8.8.2 Octahedral complexes with π bonding

When the ligands in complex ML6 also haveπ orbitals available for interaction,
the bonding picture becomes more complicated. If the ligand π orbitals are
oriented in the manner depicted in Fig. 8.8.4, it can be readily shown that the
representation generated by the twelve ligand π orbitals is

Oh E 8C3 6C2 6C4 3C2(= C2
4) i 6S4 8S6 3σ h 6σ d

Γπ 12 0 0 0 −4 0 0 0 0 0

This reduces to Γπ = T1g + T1u + T2g + T2u. The twelve linear combina-
tions with the proper symmetry are listed in Table 8.8.2. Since there are no
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Table 8.8.2. The symmetry-adapted linear combinations of ligand π orbitals
for ML6 complexes (Fig. 8.8.4) with Oh symmetry

Symmetry Combination Symmetry Combination

T1g
1
2 (x2 + y4 − x5 − y6) T1u

1
2 (y1 − x3 + x5 − y6)

1
2 (x1 + y3 − y5 − x6) 1

2 (−y2 + x4 + y5 − x6)
1
2 (−y1 + y2 − x3 + x4) 1

2 (x1 − x2 − y3 + y4)

T2g
1
2 (x2 + y4 + x5 + y6 T2u

1
2 (y1 − x3 − x5 + y6)

1
2 (x1 + y3 + y5 + x6) 1

2 (−y2 + x4 − y5 + x6)
1
2 (y1 + y2 + x3 + x4) 1

2 (−x1 − x2 + y3 + y4)

Fig. 8.8.5.
Comparison of the overlaps between the
T1uσ and π ligand combinations with
the same npz orbital on the metal. Note
that the σ type overlap will lead to more
significant interaction between the
ligands and the metal.

y y

x x

z z

+
+

+
+

+

+

–

–

+

–
–

–
–

–

npz with ½ (x1–x2–x3+x4) npz with (2)-½ (σ5–σ6)

metal orbitals with either T1g or T2u symmetry, the combinations of ligand
orbitals with these symmetries given in Table 8.8.2 are essentially nonbonding
orbitals. Also, the linear combinations of ligand π orbitals with T1u symmetry
will have less effective overlap with the metal np oritals than the σ combina-
tions (Table 8.8.1) of the same symmetry. The comparison of these two types
of overlap is illustrated in Fig. 8.8.5. In other words, the molecular orbitals
consisting mostly of the ligand π orbitals with T1u symmetry is essentially
nonbonding or at most weakly bonding. So the most important ligand orbitals
participating in π bonding are the combinations of T2g symmetry. Figure 8.8.6
shows how these combinations overlap with the metal d orbitals.

Fig. 8.8.6.
The π -type overlap with T2g symmetry
between the ligands and the metal.

– –

– +

+ +

++

+

– –

–

z

x
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∆o

1t1g+1t2u
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(n−1)d

2a1g

2eg

2t2g

2t1u

1t1g

3t1u

np

ns

π

σ

ML6M L

Fig. 8.8.7.
Schematic energy level diagram for an
octahedral ML6 complex in which the
ligands have filled π orbitals for
bonding. Compared to complexes with
only σ bonding, the present system has a
smaller 'o. See also Fig. 8.8.8(a).

When the ligands have filled π orbitals to bond with the metal, examples
of which include F−, Cl−, OH−, . . ., etc., the schematic energy level diagram
for such complexes is shown in Fig. 8.8.7. Note that the orbitals up to and
including 1t1g and 1t2u are filled by electrons from ligands, and we fill in the
metal d electrons starting from 2t2g. Now the 2eg orbitals remain antibonding
σ ∗ in nature, while the 2t2g orbitals have become antibonding π∗ (recalling that
these orbitals, called 1t2g in Fig. 8.8.3, are nonbonding in a complex with only
σ bonding). As a result, compared to the complexes with only σ bonding, the
present system has a smaller'o. As illustrated in Fig. 8.8.8(a), such a decrease
in 'o implies an electron flow from ligands to metal (L→M).

t2g

t2g

t2g

∆

∆0

L

ο ∆ο ∆οt2g

t2g

t2g

t2g

eg egeg

filled
ligand
orbitals

(a) (b)

M π bonding

L π bonding

decreased

increased

empty
ligand
orbitals

σ bonding
only

∆0

M

Fig. 8.8.8.
Comparison of the effects of π bonding
using (a) filled π ligand orbitals for
L→M donation and (b) empty π ligand
orbitals for M→L donation. Note that,
compared to complexes with only σ
bonding, the former leads to a smaller
'o and the latter to a larger one.

Conversely, when the ligands have low-lying empty π orbitals for bonding,
examples of which include CO, CN−, PR3, . . ., etc., the originally nonbonding
t2g orbitals now become π bonding in nature, while the eg orbitals remain
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σ ∗ antibonding. As a result, compared to complexes with only σ bonding, 'o
becomes larger.As we feed electrons into theseπ bonding t2g orbitals, electrons
appear to flow from metal to ligands (M→L). This is illustrated in Fig. 8.8.8(b).

To conclude this section, we once again compare and contrast the crystal
field theory and molecular orbital theory for metal complexes. Both theories
lead to an orbital energy ordering of eg above t2g. Crystal field theory arrives
at these results by arguing that the eg orbitals point at the ligands and the t2g
orbitals point between the ligands. In other words, only electrostatic interaction
is considered in this model. In molecular orbital theory, the overlap between
the metal and ligand orbitals is taken into account. In complexes with only σ
bonding, the eg orbitals are antibonding σ ∗ and t2g orbitals are nonbonding. In
complexes with ligands having filledπ orbitals, the eg orbitals remain antibond-
ing σ ∗ and t2g orbitals have become antibonding π∗, leading to a smaller'o. In
complexes with ligands having empty π∗ orbitals for bonding, the eg orbitals
are still antibonding σ ∗ and t2g orbitals have become π bonding, thus yielding a
larger 'o.

8.8.3 The eighteen-electron rule

In studying the compounds of representative elements, we often speak of the
octet rule, which ascribes special stability to an electronic configuration of a rare
gas atom, i.e., with eight valence electrons. Since transition metals have five d
orbitals in their valence shell, in addition to one s and three p orbitals, their sta-
ble electronic configuration would have eighteen valence electrons, giving rise
to the eighteen-electron rule for transition metal complexes. However, while
this rule is often found useful, it is by no means rigorously followed. Indeed,
in reference to the eighteen-electron rule, complexes may be broadly classi-
fied into three types: (1) those with electronic configurations entirely unrelated
to this rule, (2) those with eighteen or less valence electrons, and (3) those
with exactly eighteen valence electrons. Employing the energy level diagram
shown in Fig. 8.8.3, we will see how these three types of behavior can be
accounted for.

For case (1) complexes, examples of which include many first transition
series compounds (Table 8.8.3), the 1t2g orbitals are essentially nonbonding
and 'o is small. In other words, the 2eg orbitals are only slightly antibonding
and they may be occupied without much energy cost. Hence, there is little or
no restriction on the number of d electrons and the eighteen-electron rule has
no influence on these complexes.

For case (2) complexes, examples of which include many second- or
third-row transition metal complexes (Table 8.8.3), the 1t2g orbitals are still
nonbonding and 'o is large. In other words, the 2eg orbitals are strongly anti-
bonding and there is a strong tendency not to fill them. But there is still no
restriction on the number of electrons that occupy the 1t2g orbitals. Hence,
there are eighteen or less valence electrons for these complexes.

For case (3) complexes, examples of which include many metal carbonyls
and their derivatives (Table 8.8.3), the 1t2g orbitals are strongly bonding due
to back donation and the 2eg orbitals are strongly antibonding. Thus, while it
is still imperative not to have electrons occupying the 2eg orbitals, it is equally

iranchembook.ir/edu

https://iranchembook.ir/edu


Bonding in Coordination Compounds 289

Table 8.8.3. Three types of complexes in relation to the eighteen-electron rule

Type (1)
complex

Number of
valence

electrons

Type (2)
complex

Number of
valence

electrons

Type (3)
complex

Number of
valence

electrons

[Cr(NCS)6]3− 15 [WCl6]2− 13 [V(CO)6]− 18
[Mn(CN)6]3− 16 [WCl6]3− 14 [Mo(CO)3(PF3)3] 18

[Fe(C2O4)3]3− 17 [TcF6]2− 15 [HMn(CO)5] 18
[Co(NH3)6]3+ 18 [OsCl6]2− 16 [(C5H5)Mn(CO)3] 18
[Co(H2O)6]2+ 19 [PtF6] 16 [Cr(CO)6] 18

[Ni(en)3]2+ 20 [PtF6]− 17 [Mo(CO)6] 18
[Cu(NH3)6]2+ 21 [PtF6]2− 18 [W(CO)6] 18

L4

L2

L1L3 M x

y

z

h1

h2

h3

h4

σ4

σ1

σ2σ3

3

4

2

1

Fig. 8.9.1.
Coordinate system for a square-planar
complex ML4, where the ligand σ
orbitals are labelled as σ1, . . ., σ4, and
the ligand π orbitals as v1, . . ., v4 and
h1, . . ., h4.

important to have the 1t2g orbitals fully filled. Removal of electrons from the
completely occupied 1t2g orbitals would destabilize the complex due to loss of
bond energy. Hence these molecules tend to have exactly eighteen electrons.

8.9 Electronic spectra of square planar complexes

In this section, we use the square-planar complex ML4 as an example to discuss
the various types of electronic transitions observed in coordination compounds.

8.9.1 Energy level scheme for square-planar complexes

A coordinate system for a square-planar complex ML4 (D4h symmetry) is dis-
played in Fig. 8.9.1. The linear combinations of ligand orbitals, matched in
symmetry with the metal orbitals, and the molecular orbitals they form, are
summarized in Table 8.9.1. A schematic energy level diagram for this type of
complexes is given in Fig. 8.9.2.

Examining Fig. 8.9.2, we can see that the most stable molecular orbitals are
bonding σ orbitals with symmetries B1g, A1g, and Eu; they are mainly located on
the ligands.Above them are the bonding and nonbondingπ orbitals, also located
on the ligands. All these orbitals are fully filled. After these two sets of levels,
we come to the five orbitals (in four levels) that are essentially antibonding σ ∗

and π∗ in nature and are located mainly on the metal’s d orbitals. The ordering
of these four levels may vary from ligand to ligand, but it is well established
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Table 8.9.1. Summary of the formation of molecular orbitals in square-
planar complexes ML4

Symmetry Metal orbital Ligand orbitals Molecular orbitals

A1g s 1
2 (σ1 + σ2 + σ3 + σ4) 1a1g, 2a1g, 3a1g

d2
z

A2g — 1
2 (h1 + h2 + h3 + h4) 1a2g

A2u pz
1
2 (v1 + v2 + v3 + v4) 1a2u, 2a2u

B1g dx2−y2
1
2 (σ1 − σ2 + σ3 − σ4) 1b1g, 1b2g

B2g dxy
1
2 (h1 − h2 + h3 − h4) 1b2g, 2b2g

B2u — 1
2 (v1 − v2 + v3 − v4) 1b2u

Eg

{

dxz
dyz







(2)−
1
2 (v1 − v3)

(2)−
1
2 (v2 − v4)

1eg, 2eg

Eu

{

px
py







(2)−
1
2 (σ1 − σ3)

(2)−
1
2 (σ2 − σ4)

1eu, 2eu, 3eu







(2)−
1
2 (h4 − h2)

(2)−
1
2 (h1 − h3)

that the b1g(dx2−y2) orbital is the most unstable one. In any event, the ordering
of these four levels is consistent with the results found for square-planar halides
and cyanides. Interestingly, this ordering is also identical to that obtained by
crystal field theory (Fig. 8.3.4). So once again we find consistency between the
results of crystal field theory and molecular orbital theory, even though these
two theories arrive at their results in different manners.

Fig. 8.9.2.
Schematic energy level diagram for a
square-planar complex ML4. Note the
block of levels labelled π* is present
only for ligands with low-lying π
orbitals such as CO, CN−, and PR3.

Bonding,
nonbonding π π

(n+1)p

(n+1)s

b2g(dxy)
a1g(dz2)

eg(dxz,dyz,)

b1g(dx2–y2)

nd

Bonding s

(if any)

 s

E

∆O

π∗
π∗

s∗

ML4M L

As mentioned in Section 8.3, many square-planar complexes have the d8 con-
figuration. This observation is consistent with the energy level scheme shown
in Fig. 8.9.2, with eight electrons occupying the relatively more stable eg, a1g,
and b2g orbitals, and leaving the highly unstable b1g level vacant.
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Based on the energy level scheme shown in Fig. 8.9.2, we can expect three
types of electronic transitions: d–d, ligand to metal (L→M), and metal to lig-
and (M→L) charge transfers. For d8 square-planar complexes, there should be
three spin-allowed d–d transitions: electron promoted to the b1g orbital from
the b2g, a1g, and eg orbitals. In addition, L→M charge transfer bands originate
from symmetry-allowed transitions promoting an electron to the b1g orbital
from either the σ or π bonding orbitals. On the other hand, for complexes with
π -acceptor ligands, M→L charge transfer bands are due to the promotion of
an electron from the three filled “metal” levels to the lowest energy “ligand”
orbitals. It is useful to recall here that a charge transfer is an electronic transition
from an orbital mostly localized on one atom or group to another orbital mostly
localized on another atom or group. The majority of these charge transfer tran-
sitions take place in the ultraviolet region; they usually have higher energies,
as well as higher intensities, than the d–d transitions. In passing, it is noted that
crystal field theory can be employed to make assignments for the d–d transi-
tions. But we need to make use of molecular orbital theory to treat the M→L
and L→M charge transfers.

(n+1)s

(n+1)p

3eu

3au

3a1g

2b1g

2b2g

2a1g

2eg

2eu

1b2g

1a2u

1eg

ML4 L

s

π

M

nd
1a2g,1b2u

1b1g,1a1g,1eu

∆o

Fig. 8.9.3.
Schematic energy level diagram for
square-planar halides.

8.9.2 Electronic spectra of square-planar halides and cyanides

With the energy level scheme shown in Fig. 8.9.2, we can easily derive two
types of energy level diagrams: those for halides, as shown in Fig. 8.9.3, and
those for cyanides, as shown in Fig. 8.9.4. We will make use of these results to
interpret some spectral data for square-planar ML4 complexes.
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Fig. 8.9.4.
Schematic energy level diagram for
square-planar cyanides.
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1b2g
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s

π

π*

(n+1)s

(n+1)p

nd

E

(1) d–d bands
The d–d spectrum of [PtCl4]2− in solution is shown in Fig. 8.9.5. Note that the
bands are relatively weak, signifying that they are due to symmetry-forbidden
transitions. As mentioned previously, three d–d bands are expected; indeed,
three are observed. Hence the assignment is relatively straightforward:

1A1g → 1A2g(2b2g → 2b1g) 21, 000 cm−1

→ 1B1g(2a1g → 2b1g) 25, 500

→ 1Eg(2eg → 2b1g) 30, 200.

The labeling of the orbitals refers to those given in Fig. 8.9.3.

Fig. 8.9.5.
Aqueous solution d–d spectrum of
[PtCl4]2−. v/cm–1

v = 21000
" = 15

" = 59
v = 25500 " = 64

v = 30200

50

"/
dm

3  
m

ol
–1
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m

–1
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(2) L→M charge transfers
Two intense bands are observed in the spectrum of [PtCl4]2−, as shown in
Fig 8.9.6. They are charge transfer bands, as characterized by their energies
and intensities. Compared to the d–d transitions shown in Fig. 8.9.5, the charge
transfer bands are seen at much higher energy and are more intense by a factor of
nearly 103. Hence these transitions must be symmetry allowed. With the aid of
Fig. 8.9.3, as well as some computational treatments, the following assignments
have been made:

1A1g → 1Eu(2eu → 2b1g)

→ 1A2u(1b2u → 2b1g)

}

36, 0000 cm−1

→ 1Eu(1eu → 2b1g) 44, 900.

v = 36000
" = 12000

v = 44000
" = 30000

v /cm–1

"/
dm

3  
m

ol
–1

 c
m

–1

Fig. 8.9.6.
Charge transfer spectrum of [PtCl4]2− in
aqueous solution containing excess Cl−.
Note that these bands are much more
intense than the d–d bands observed in
[PtCl4]2− (see Fig. 8.9.5).

(3) M→L charge transfers
Figure 8.9.7 shows that there are three closely spaced bands in the electronic
spectrum of [Ni(CN)4]2−. Since CN− has vacant low-lying π∗ orbitals, these
three bands have been assigned as the transitions from three closely spaced
filled metal d levels (2eg, 2a1g, and 2b2g in Fig. 8.9.4) to the first available
ligand level, 2a2u. Apparently, the 2a2u level, mostly localized on the four
CN− groups, has been significantly stabilized by the 4pz orbital on the metal.
In any event, these three bands have been assigned as

1A1g → 1B1u(2b2g → 2a2u) 32, 300 cm−1

→ 1A2u(2a1g → 2a2u) 35, 200

→ 1Eu(2eg → 2a2u) 37, 600.

It is noted that the 1A1g → 1B1u transition is formally symmetry forbidden, even
though it is Laporte allowed (g ↔ u). Hence the intensity of this transition is
somewhere between a d–d band and a symmetry-allowed charge transfer band.

v = 37600
" = 10600

v = 35200
" = 4200

v = 32300
" = 700

v /cm–1

"/
dm

3  
m

ol
–1

 c
m

–1

Fig. 8.9.7.
Charge transfer spectrum of
[Ni(CN)4]2− in aqueous solution. Note
that these bands are also much more
intense than the d–d bands (Fig. 8.9.5).
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Fig. 8.10.1.
Two vibrational modes in an octahedral
complex ML6 that do not preserve the
center of symmetry of the molecule.

M M

T1u T2u

8.10 Vibronic interaction in transition metal complexes

As mentioned earlier, in a centrosymmetric complex, d–d transitions are Laporte
forbidden. The fact that they are observed at all is due to a mechanism called
vibronic interaction, which is a mixing of the vibrational and electronic wave-
functions. Qualitatively, we may imagine that an electronic transition occurs at
the very moment some vibrational modes of the complex distort the molecule
in such a way that the center of symmetry is destroyed. When such a vibration
takes place, the “g” character of the state is lost and the transition becomes (very
slightly) allowed. Figure 8.10.1 shows two vibrations, with “u” symmetry, of
an octahedral complex which remove the inversion center.

When the vibrational and electronic motions are coupled, the intensity inte-
gral for the transition between ψ ′ (ground state) and ψ ′′ (excited state) has the
form

∫(ψ ′eψ ′v)x(ψ ′′e ψ ′′v )dτ , (x may also be y or z),

where ψe and ψv are the electronic and vibrational wavefunctions for a given
state, respectively. To evaluate this integral by symmetry arguments, we first
note that ψ ′v is totally symmetric and can thus be ignored. (This is because all
vibrational modes are in their ground state, which is totally symmetric.) Now
we need to determine whether there exists a vibration (with symmetry Γv)

such that, even though the product representation of ψ ′′e xψ ′e,Γ (ψ ′′e xψ ′e), does
not contain the totally symmetric representationΓTS, the product representation
Γ (ψ ′′e xψ ′e)×Γv does. WhenΓ (ψ ′′e xψ ′e)×Γv containsΓTS, the aforementioned
intensity integral would not vanish. Also, for Γ (ψ ′′e xψ ′e)× Γv to contain ΓTS,
we need Γ (ψ ′′e xψ ′e) to contain Γv.

An example will illustrate the above arguments. The ground state of a d1

octahedral complex ML6 is 2T2g and the only excited state for this complex is
2Eg. In the Oh point group, Γx,y,z is T1u. Also, this complex has the vibrational
modes

Γvib = A1g + Eg + 2T1u + T2g + T2u.

For the transition 2T2g → 2Eg, we have

T2g × T1u × Eg = A1u + A2u + 2Eu + 2T1u + 2T2u.
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H3C

H3C
CH3

CH3

Ph PhC CCu
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x
CC

O

O O

O

Fig. 8.10.2.
Molecular structure of planar complex
[Cu(3-Ph-acac)2] with D2h symmetry.

Therefore, for this electronic transition to have any intensity, it must be
accompanied by a vibration of either T1u or T2u symmetry.

We now employ one final example to conclude this discussion. The planar
complex [Cu(3-Ph-acac)2] has D2h symmetry and its structure is shown in
Fig. 8.10.2. In its crystal spectrum four y-polarized bands are observed and
they have been assigned to the transitions 2B1g → 2Ag (twice), 2B1g → 2B2g,
and 2B1g → 2B3g. Given that the “u” vibrational modes of a MA2B2 complex
belonging to the D2h point group are of symmetries Au, B1u, B2u, and B3u, we
can readily determine the vibrations responsible for the forbidden transitions
to gain intensity.

In the D2h group, Γy = B2u. So for the 2B1g → 2Ag transition, we have
B1g×B2u×Ag = B3u; i.e., the B3u vibrational mode is needed. For the 2B1g →
2B2g transition B1g×B2u×B2g = B1u, or the B1u vibrational mode is required.
Finally, for 2B1g → 2B3g, B1g×B2u×B3g = Au; i.e., the Au mode of vibration
accompanies this electronic transition.

8.11 The 4f orbitals and their crystal field splitting
patterns

To conclude this chapter, we discuss the shapes of the 4f orbitals as well as their
splitting patterns in octahedral and tetrahedral crystal fields. The results are of
use in studying the complexes of the rare-earth elements.

8.11.1 The shapes of the 4f orbitals

The are seven 4f orbitals that correspond to m2 values of 0, ±1, ±2, and ±3
in their angular parts. Of these the one with m2 = 0 is real, but the other
six are complex, and their linear combinations lead to real functions. However,
there is not a unique or conventional way to express the angular functions of the
sevenfold degenerate 4f orbitals, all of which have three nodes and ungerade (u)
symmetry. If simple linear combinations of the m2 = ±1, ±2, and ±3 functions
are taken in pairs, the resulting six Cartesian functions (with abbreviated labels
enclosed in square brackets) are x(4z2− x2− y2) [xz2]; y(4z2− x2− y2) [yz2];
xyz; z(x2 − y2); x(x2 − 3y2); and y(3x2 − y2). These six orbitals, together with
z(2z2 − 3x2 − 3y2) [z3] arising from m2 = 0, constitute the general set of 4f
orbitals as displayed in Table 2.1.2, and they are also listed in Table 8.11.1.
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Table 8.11.1. Angular functions of the 4f orbitals

Orbital∗ The general set The cubic set

z3 1
4 (7/π)

1
2 (5 cos3 θ − 3 cos θ) 1

4 (7/π)
1
2 (5 cos3 θ − 3 cos θ)

z(x2 − y2) 1
4 (105/π)

1
2 sin2 θ cos θ cos 2φ 1

4 (105/π)
1
2 sin2 θ cos θ cos 2φ

xyz 1
4 (105/π)

1
2 sin2 θ cos θ sin 2φ 1

4 (105/π)
1
2 sin2 θ cos θ sin 2φ

x3 — 1
4 (7/π)

1
2 sin θ cosφ(5 sin2 θ cos2 φ − 3)

x(z2 − y2) — 1
4 (105/π)

1
2 sin θ cosφ(cos2 θ − sin2 θ sin2 φ)

xz2 1
8 (42/π)

1
2 sin θ − (5 cos2 θ − 1) cosφ —

x(x2 − 3y2) 1
8 (70/π)

1
2 sin3 θ cos 3φ —

y3 — 1
4 (7/π)

1
2 sin θ sin φ(5 sin2 θ sin2 φ − 3)

y(z2 − x2) — 1
4 (105/π)

1
2 sin θ sin φ(cos2 θ − sin2 θ cos2 φ)

yz2 1
8 (42/π)

1
2 sin θ(5 cos2 θ − 1) sin φ —

y(3x2 − y2) 1
8 (70/π)

1
2 sin3 θ sin 3φ —

* z3 denotes the fz3 orbital, etc.

The shapes of the seven 4f orbitals in the general set are illustrated in
Fig. 8.11.1, and their nodal characteristics are shown in Fig. 8.11.2. The number
of vertical nodal planes varies from 0 to 3. The z3, yz2, and xz2 orbitals each
has two nodes that are the curved surfaces of a pair of cones with a common
vertex at the origin.

xyz z(x2–y2) x(x2–3y2)y(3x2–y2)

z
c2(z3) z3 yz2 xz2

z

x

x x

y

z

x
y

z

x
y

z

x
y

z

x
y

zz

x
yy

Fig. 8.11.1.
The general set of the seven 4f orbitals. The gray and white regions in each orbital bear positive and negative signs, respectively. Placed to the
left of the z3 orbital is a cross section of ψ2(z3), in which dots indicate the “electron-density” maxima, and contour lines are drawn for
ψ2/ψ2

max = 0.1.

For systems of cubic symmetry, it is convenient to choose an alternative set
of combinations known as the cubic set. Their abbreviated Cartesian labels and
symmetry species in point group Oh are xyz(A2u); x3, y3, z3 (T1u); z(x2 − y2),
x(z2 − y2), y(z2 − x2) (T2u). These functions are particularly useful when
octahedral and tetrahedral crystal field splitting patterns are considered. The
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xyz

Reference axes z3 yz2 xz2

x

z

y

z(x2–y2) x(x2–3y2)y(3x2–y2)

Fig. 8.11.2.
Nodal characteristics of the general set of
4f orbitals. The positive and negative
lobes in each orbital are shaded and
un-shaded, respectively.

orbitals x3 and y3 have the same shape as z3, but they lie along the x and y axis,
respectively. The orbital xyz has eight lobes pointing toward the corners of a
cube. The orbitals x(z2 − y2), y(z2 − x2), and z(x2 − y2) are shaped like xyz,
but they are rotated by 45◦ about the x, y, and z axis, respectively.

The two sets of angular functions of the 4f orbitals are compared in Table
8.11.1; it is noted that three of them, namely z3, z(x2−y2), and xyz, are common
to both sets. The remaining four members of the two sets are related by linear
transformation. Specifically,

fx3 = −1
4
[(6)

1
2 fxz2 − (10)

1
2 fx(x2−3y2)], (8.11.1)

fy3 = −1
4
[(6)

1
2 fyz2 + (10)

1
2 fy(3x2−y2)], (8.11.2)

fx(z2−y2) = 1
4
[(10)

1
2 fxz2 + (6)

1
2 fx(x2−3y2)], (8.11.3)

fy(z2−x2) = 1
4
[(10)

1
2 fyz2 − (6)

1
2 fy(3x2−y2)]. (8.11.4)

8.11.2 Crystal field splitting patterns of the 4f orbitals

In an octahedral crystal field, the seven 4f orbitals should split into two groups
of triply degenerate sets and one non-degenerate orbital. This information can
be readily obtained when we examine the character table of the Oh group, where
it is seen that the x3, y3, and z3 orbitals form a T2u set, the z(x2−y2), y(z2−x2),
and x(z2 − y2) functions constitute a T1u set, while the remaining orbital, xyz,
has A2u symmetry. In the following, we discuss the energy ordering of these
three sets of orbitals.

If we place six ligands at the centers of the faces of a cube, as shown in
Fig. 8.11.3, it can be readily seen that the t2u orbitals (x3, y3, z3) have lobes
pointing directly toward the ligands. Hence they have the highest energy. Also,
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Fig. 8.11.3.
Splitting of the f orbitals in an octahedral
crystal field.

y

t2u (x3, y3, z3)

t1u [z(x2–y2), y(z2–x2), x(z2–y2)]
12Dq'2Dq'

f

z

x

a2u (xyz)

6Dq'

the eight lobes of the a2u orbital (xyz) point directly at the corners of the cube. In
other words, the eight lobes of the xyz orbitals are as far away from the ligands
as possible. Hence, this orbital should have the lowest energy. Finally, the t1u
orbitals have lobes pointing toward the midpoints of the edges of the cube.
Hence, they have energy lower than that for the t2u orbitals, but higher than that
for the a2u orbital. When this problem is treated quantitatively by perturbation
theory, we find that the t2u orbitals are destabilized by 6Dq′, while the t1u and
a2u orbitals are stabilized by 2Dq′ and 12Dq′, respectively. These results are
summarized in Fig. 8.11.3. It should be noted in the crystal field parameter
Dq′ given in Fig. 8.11.3 is not the same as that for transition metal complexes
[eqs. (8.1.3) and (8.1.4)], as f orbitals, rather than d orbitals, are involved here.
Also, examining the splitting pattern shown in Fig. 8.11.3, we can see that the
center of gravity is once again preserved, as the energy lost by the t2u orbitals
is balanced by the energy gained by the t1u and a2u orbitals.

Fig. 8.11.4.
Splitting pattern of the 4f orbitals in a
tetrahedral crystal field.

y

t1 (x3, y3, z3)

t2 [z(x2–y2), y(z2–x2), x(z2–y2)]
f

z

x

a1 (xyz)

The splitting pattern of the 4f orbitals in a tetrahedral crystal field can be
deduced in a similar manner. If we adopt the coordinate system shown in Fig.
8.11.4, we can obtain the splitting pattern shown in the same figure.As expected
the 1:3:3 pattern for the tetrahedral crystal field is just the reverse of the 3:3:1
pattern of the octahedral field. Also, the symmetry classification of the orbitals
in a tetrahedral complex can be readily obtained from the character table of the
Td group.
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9 Symmetry in Crystals

A single crystal is a homogeneous solid, which means that all parts within it
have identical properties. However, it is not in general isotropic, so that physical
properties such as thermal and electrical conductivity, refractive index, and
non-linear optical effect generally vary in different directions.

9.1 The crystal as a geometrical entity

The majority of pure compounds can be obtained in crystalline form, although
the individual specimens may often be very small or imperfectly formed. A
well-developed crystal takes the shape of a polyhedron with planar faces, linear
edges, and sharp vertices. In the simplest terms, a crystal may be defined as a
homogeneous, anisotropic solid having the natural shape of a polyhedron.

9.1.1 Interfacial angles

In 1669, Steno discovered that, for a given crystalline material, despite varia-
tions in size and shape (i.e., its habit), the angles between corresponding faces
of individual crystals are equal. This is known as the Law of Constancy of
Interfacial Angles. The geometrical properties (the form) of a crystal may be
better visualized by considering an origin inside it from which perpendiculars
are drawn to all faces. This radiating set of normals is independent of the size
and shape of individual specimens, and is thus an invariant representation of the
crystal form. In Fig. 9.1.1, a perfectly developed hexagonal plate-like crystal
is shown in part (a), and a set of normals are drawn to its vertical faces from an
interior point in part (b). Two other crystal specimens that look very different

(a) (b) (c) (d)

Fig. 9.1.1.
Representation of vertical crystal faces of a hexagonal by a system of radiating normals from a
point inside it. The broken lines indicate extensions of the planar faces.
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Fig. 9.1.2.
Parametral face, intercepts, and Miller
indices.

are shown in parts (c) and (d), and they are seen to possess the same set of
radiating normals.

9.1.2 Miller indices

For a mathematical description of crystal faces, take any three non-parallel faces
(chosen to be mutually orthogonal, if possible) and take their intersections as
reference axes, which are labeled OA, OB, and OC with the origin at O, as
shown in Fig. 9.1.2(a). Let another face (the standard face or parametral face
A′B′C′) meet these axes at A′, B′, and C′, making intercepts OA′ = a, OB′ = b
and OC′ = c, respectively. The ratios a:b:c are called the axial ratios.

If now any face on the crystal makes intercepts of a/h, b/k, and c/2 on
the axes OA, OB, and OC, respectively, it is said to have the Miller indices
(hk2), which have no common divisor. The Miller indices of any face are thus
calculated by dividing its intercepts on the axes by a, b, c, respectively, taking
the reciprocals, and clearing them of fractions if necessary. If a plane is parallel
to an axis, the intercept is at infinity and the corresponding Miller index is zero.
The Miller indices of the standard face are (111), and the plane outlined by
the dotted lines in Fig. 9.1.2(a) has intercepts a/3, b, c/2, which correspond to
the Miller indices (312). In Fig. 9.1.2(b) another plane is drawn parallel to the
aforesaid plane, making intercepts a, 3b, 3c/2; it is obvious that both planes
outlined by dotted lines in Fig 9.1.2 have the same orientation as described by
the same Miller indices (312).

In 1784, Haüy formulated the Law of Rational Indices, which states that all
faces of a crystal can be described by Miller indices (hk2), and for those faces
that commonly occur, h, k, and 2 are all small integers. The eight faces of an
octahedron are (111), (1̄11), (11̄1), (111̄), (11̄1̄), (1̄11̄), (1̄1̄1), and (1̄1̄1̄). The
form symbol that represents this set of eight faces is {111}. The form symbol
for the six faces of a cube is {100}. Some examples in the cubic system are
shown in Figs. 9.1.3. and 9.1.4.

9.1.3 Thirty-two crystal classes (crystallographic point groups)

The Hermann-Mauguin notation for the description of point group symmetry
(in contrast to the Schönflies system used in Chapter 6) is widely adopted in
crystallography. An n-fold rotation axis is simply designated as n. An object is
said to possess an n-fold inversion axis n̄ if it can be brought into an equivalent
configuration by a rotation of 360◦/n in combination with inversion through a
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Fig. 9.1.3.
Idealized shapes of cubic crystals with
well-developed faces described by form
symbols (a) p{100}, (b) q{111}, (c)
r{110}, and various combinations
(d)–(h).

(a) (b) (c) (d)

(e) (f) (g) (h)

p

p p

q

q

q
r

r r r
p

q q

p

point on the axis. Note that 1̄ is an inversion center, and 2̄ is the same as mirror
plane m. The symbol 2/m means a twofold axis with a mirror plane m lying
perpendicular to it.

Fig. 9.1.4.
Some cubic crystals with faces indexed
by Miller indices. (a) Cubic unit cell and
labels of axes and angles; (b) and (c) two
habits of pyrites FeS2, class m3; (d)
tetrahedrite Cu3SbS3, class 4̄3m; (e)
spinel MgAl2O4, class m3m; and (f)
almandine (garnet) Fe3Al2(SiO4)3, class
m3m.
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A single crystal, considered as a finite object, may possess a certain combi-
nation of point symmetry elements in different directions, and the symmetry
operations derived from them constitute a group in the mathematical sense.
The self-consistent set of symmetry elements possessed by a crystal is known
as a crystal class (or crystallographic point group). Hessel showed in 1830 that
there are thirty-two self-consistent combinations of symmetry elements n and
n̄ (n = 1, 2, 3, 4, and 6), namely the thirty-two crystal classes, applicable to
the description of the external forms of crystalline compounds. This important
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result is a natural consequence of the Law of Rational Indices, and the deduction
proceeds in the following way.

n
2π

n
2π

O

E

E'

E''

F

Fig. 9.1.5.
Vertical planes related by a n-fold
rotation axis.

Consider a crystal having a n-fold rotation axis, often simply referred to
as an n-axis. In Fig. 9.1.5, OE, OE′, OE′′ represent the horizontal projections
of three vertical planes generated by successive rotations of 2π/n about the
symmetry axis, which passes through point O. As reference axes, we adopt the
n-axis, OE′, and OE′′, and the latter two are assigned unit length. Next, we
consider a plane E′F which is drawn parallel to OE. The intercepts of E′F on
the three axes are∞, 1, and (sec 2π/n)/2. The Miller indices of plane E′F are
therefore (0, 1, 2 cos 2π/n) which must be integers. Since | cos 2π/n| ≤ 1, the
only possible values of 2 cos 2π/n are ±2, ±1, and 0. Hence

cos 2π/n = 1, 1/2, 0,−1/2,−1, leading to n = 1, 6, 4, 3, 2, respectively.

Therefore, in compliance with the Law of Rational Indices, only n-axes with
n = 1, 2, 3, 4 and 6 are allowed in crystals. The occurrence of the inversion
center means that the rotation-inversion axes 1̄, 2̄(= m), 3̄, 4̄ and 6̄ are also
possible.

9.1.4 Stereographic projection

The thirty-two crystal classes are usually represented by stereographic pro-
jections of a system of equivalent points. The stereographic projection of a
particular crystal class is derived in the manner illustrated in Fig. 9.1.6. Con-
sider an idealized crystal whose planar faces exhibit the full symmetry 4̄ of
its crystallographic point group. Enclose the crystal by a sphere and draw per-
pendiculars to all faces from a point inside the crystal. The radiating normals
intersect the sphere to give a set of points A, B, C and D. From the south pole S
of the sphere, draw lines to the points A and B lying in the northern hemisphere,
and their intersection in the equatorial plane gives points A′ and B′ denoted by
the small open circles. Similarly, lines are drawn from the north pole N to points
C and D in the southern hemisphere to intersect the equatorial plane, yielding
points C′ and D′ denoted by the filled dots. The set of equivalent points A′,
B′, C′, and D′ in the equatorial circle is a faithful representation of the crystal
class 4̄.

N

C

S

D

D' D'C' C'A'

A
B

B'

B'

A'
Fig. 9.1.6.
Stereographic projection of crystal class
(point group) 4̄.
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The stereographic projection of a crystal class consists of all intersected
equivalent points in the equatorial circle and associated symmetry symbols.
The location of the symmetry elements and the stereographic projection of point
group 4̄3m is shown in Fig. 9.1.7. The graphic symbols indicate three 4̄-axes
along the principal axes of the cube, four 3-axes along the body diagonals, and
six mirror planes normal to the face diagonals.

All thirty-two crystal classes in stereographic projection are tabulated in
Fig. 9.1.8. For each crystal class, two diagrams showing the equipoints and
symmetry elements are displayed side by side. Note that the thicker lines indi-
cate mirror planes, and the meaning of the graphic symbols of the symmetry
elements are given in Table 9.3.2.

9.1.5 Acentric crystalline materials

Of the thirty-two crystal classes, twenty-two lack an inversion center and
are therefore known as non-centrosymmetric, or acentric. Crystalline and
polycrystalline bulk materials that belong to acentric crystal classes can
exhibit a variety of technologically important physical properties, including
optical activity, pyroelectricity, piezoelectricity, and second-harmonic gen-
eration (SHG, or frequency doubling). The relationships between acentric
crystal classes and physical properties of bulk materials are summarized in
Table 9.1.1.

Eleven acentric crystal classes are chiral, i.e., they exist in enantiomorphic
forms, whereas ten are polar, i.e., they exhibit a dipole moment. Only five (1, 2,
3, 4, and 6) have both chiral and polar symmetry. All acentric crystal classes
except 432 possess the same symmetry requirements for materials to display
piezoelectric and SHG properties. Both ferroelectricity and pyroelectricity are
related to polarity: a ferroelectric material crystallizes in one of ten polar crystal
classes (1, 2, 3, 4, 6, m, mm2, 3m, 4mm, and 6mm) and possesses a permanent
dipole moment that can be reversed by an applied voltage, but the sponta-
neous polarization (as a function of temperature) of a pyroelectric material is
not. Thus all ferroelectric materials are pyroelectric, but the converse is not
true.

Fig. 9.1.7.
Symmetry elements and stereographic
projection of crystal class 4̄3m.
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1
C1(1)

5
C2h(2/m)

C2(2)
3

7
C2v(mm2)

15

D4h (4/mmm)

13
C4v(4mm)

11
C4h(4/m)

9

C4(4)

6

D2(222)

8
D2h(mmm)

16

C3(3)

2
Ci(1)

-

4
Cs(m ≡ 2)

-

10
S4(4)

-

12
D4(422)

-

14

D2d(42m)
-

Fig. 9.1.8.
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21
C6 (6)

19
C3v (3m)

23
C6h (6/m)

27
D6h (6/mmm)

25
C6v (6mm)

18
D3 (32)

24
D6 (622)

28

T (23)

30

O (432)

17
C3i (3)

-

31

Td (43m)
-

29
Th (m3)

-

32

Oh (m3m)
-

26
D3h (6m2)

-

22
C3h (6 ≡ 3/m)

-

20
D3d (3m)

-

Fig. 9.1.8. (continued)
Stereographic projections showing the general equivalent positions (left figure) and symmetry elements (right figure) of the thirty-two crystal
classes (crystallographic point groups). The z axis is normal to the paper in all drawings. Note that the dots and open circles can overlap, and the
thick lines represent mirror planes. For each point group, the Hermann–Mauguin symbol is given in parentheses after the Schönflies symbol.
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Table 9.1.1. Physical properties of materials found in acentric crystal classes

Crystal Crystal Chiral Optical activity Polar Piezoelectric,
system class (enantiomorphism) (circular dichroism) (pyroelectric) SHG

Triclinic 1 + + + +
Monoclinic 2 + + + +

m + + +
Orthorhombic 222 + + +

mm2 + + +
Tetragonal 4 + + + +

4̄ + +
422 + + +
4mm + +
4̄2m + +

Trigonal 3 + + + +
32 + + +
3m + +

Hexagonal 6 + + + +
6̄ +

622 + + +
6mm + +
6̄m2 +

Cubic 23 + + +
432 + +
4̄3m +

9.2 The crystal as a lattice

9.2.1 The lattice concept

A study of the external symmetry of crystals naturally leads to the idea that a
single crystal is a three-dimensional periodic structure; i.e., it is built of a basic
structural unit that is repeated with regular periodicity in three-dimensional
space. Such an infinite periodic structure can be conveniently and completely
described in terms of a lattice (or space lattice), which consists of a set of points
(mathematical points that are dimensionless) that have identical environments.

An infinitely extended, linear, and regular system of points is called a row,
and it is completely described by its repeat distance a. A planar regular array of
points is called a net, which can be specified by two repeat distances a and b and
the angle γ between them. The analogous system of regularly distributed points
in three dimensions constitute a lattice (or space lattice), which is described by a
set of three non-coplanar vectors (a, b, c) or six parameters: the repeat intervals
a, b, c and the angles α, β, γ between the vectors. As far as possible, the angles
are chosen to be obtuse, particularly 90◦ or 120◦, and lattices in one, two, and
three dimensions are illustrated in Fig. 9.2.1.

9.2.2 Unit cell

Rather than having to visualize an infinitely extended lattice, we can focus our
attention on a small portion of it, namely a unit cell, which is a parallelopiped
(or box) with lattice points located at its eight corners. The entire lattice can
then be re-generated by stacking identical unit cells in three dimensions. A unit
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Fig. 9.2.1.
Row, net and lattice.

a

row

net lattice

a a

b b

c

cell with lattice points only at the corners is described as primitive, as it contains
only one structural motif (one lattice point). Alternatively, it is also possible to
choose a centered unit cell that contains more than one lattice point.

Figure 9.2.2(a) shows a net with differently chosen unit cells. The unit cells
having sides (a1, b1), (a2, b1), and (a2, b2) are primitive, and the one with sides
(a1, b2) is C-centered. Note that the unit cell outlined by dotted lines is also a
legitimate one, although it is not a good choice.

Fig. 9.2.2.
(a) Two-dimensional lattice showing
different choices of the unit cell. (b) A
primitive unit cell for a
three-dimensional lattice.

a1

a1

a1

a2

a

b

c

a2
a γ

b1

b1

b1

b2

b2

β

(a) (b)

In general, the size and shape of a unit cell is specified by six parameters:
the axial lengths a, b, c and the interaxial angles α, β, γ [Fig.9.2.2(b)]. The
volume of a triclinic unit cell is calculated by the formula V = abc(1−cos2 α−
cos2 β − cos2 γ + 2 cosα cosβ cos γ )1/2, which reduces to simpler forms for
the other crystal systems.

The choice of a unit cell depends on the best description of the symmetry
elements present in the crystal structure. In practice, as far as it is possible, the
unit cell is chosen such that some or all of the angles are 90◦ or 120◦. Repetition
of the unit cell by translations in three non-coplanar directions regenerates the
whole space lattice.

The unit cell is the smallest volume that contains the most essential structural
information required to describe the crystal structure. For a particular crystalline
compound, each lattice point is associated with a basic structural unit, which
may be an atom, a number of atoms, a molecule, or a number of molecules. In
other words, if the coordinates of all atoms within the unit cell are known, com-
plete information is obtained on the atomic arrangement, molecular packing,
and derived parameters such as interatomic distances and bond angles.
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rhombohedral R cubic P cubic I cubic F
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Fig. 9.2.3.
The fourteen Bravais lattices.

9.2.3 Fourteen Bravais lattices

Bravais showed in 1850 that all three-dimensional lattices can be classified
into 14 distinct types, namely the fourteen Bravais lattices, the unit cells of
which are displayed in Fig. 9.2.3. Primitive lattices are given the symbol P.
The symbol C denotes a C face centered lattice which has additional lattice
points at the centers of a pair of opposite faces defined by the a and b axes;
likewise the symbol A or B describes a lattice centered at the corresponding A
or B face. When the lattice has all faces centered, the symbol F is used. The
symbol I is applicable when an additional lattice point is located at the center
of the unit cell. The symbol R is used for a rhombohedral lattice, which is based
on a rhombohedral unit cell (with a = b = c and α = β = γ '= 90◦) in
the older literature. Nowadays the rhombohedral lattice is generally referred
to as a hexagonal unit cell that has additional lattice points at (2/3, 1/3, 1/3) and
(1/3, 2/3, 2/3) in the conventional obverse setting, or (1/3, 2/3, 1/3) and (2/3, 1/3, 2/3)
in the alternative reverse setting. In Fig. 9.2.3 both the primitive rhombohedral
(R) and obverse triple hexagonal (hR) unit cells are shown for the rhombohedral
lattice.

9.2.4 Seven crystal systems

The fourteen Bravais lattices are divided into seven crystal systems. The term
“system” indicates reference to a suitable set of axes that bear specific rela-
tionships, as illustrated in Table 9.2.1. For example, if the axial lengths take
arbitrary values and the interaxial angles are all right angles, the crystal system
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Table 9.2.1. Characteristics of the seven crystal systems

System Crystal classes Unit cell Standard axes

Triclinic 1, 1̄ a '= b '= c
α '= β '= γ

a, b, c not coplanar

Monoclinic 2, m, 2/m a '= b '= c
α = γ = 90◦

principal axis b parallel to 2-axis or
perpendicular to m;
a, c smallest lattice vectors
perpendicular to b

Orthorhombic 222, mm2, mmm a '= b '= c
α = β = γ = 90◦

a, b, c each oriented along a 2-axis,
or perpendicular to a mirror plane

Tetragonal 4, 4̄, 4/m, 422,
4mm, 4̄2m,
4/mmm

a = b '= c
α = β = γ = 90◦

c oriented parallel to 4- or 4̄-axis;
a, b smallest lattice vectors
perpendicular to c

Trigonal 3, 3̄, 32, 3m, 3̄m

Rhombohedral
setting

a = b = c,
α = β = γ '= 90◦
and < 120◦

a, b, c selected to be the smallest
non-coplanar lattice vectors
related by 3- or 3̄-axis

Hexagonal
setting

a = b '= c,
α = β = 90◦
γ = 120◦

c parallel to 3- or 3̄-axis;
a, b smallest lattice vectors
perpendicular to c

Hexagonal 6, 6̄, 6/m, 622,
6mm, 6̄m2,
6/mmm

a = b '= c
α = β = 90◦
γ = 120◦

c parallel to 6- or 6̄-axis;
a, b smallest lattice vectors
perpendicular to c

Cubic 23, m3̄, 4̄32,
4̄3m, m3̄m

a = b = c
α = β = γ = 90◦

a, b, c each parallel to a 2-axis (23
and m3̄), or to a 4̄-axis (4̄3m), or a
4-axis (432, m3̄m)

is orthorhombic; if only one angle is a right angle, the crystal system is mon-
oclinic (meaning one inclined axis). The crystal system is triclinic (meaning
three inclined axes) if all six parameters a, b, c, α, β, and γ take on unrestricted
values. It should be emphasized that the crystal system is determined by the
characteristic symmetry elements present in the crystal lattice, and not by the
unit-cell parameters.

The thirty-two crystal classes (crystallographic point groups) described in
Section 9.1.4 can also be classified into the same seven crystal systems,
depending on the most convenient coordinate system used to indicate the loc-
ation and orientation of their characteristic symmetry elements, as shown in
Table 9.2.1.

9.2.5 Unit cell transformation

c1
c2 a2

a1

b1 b2

Fig. 9.2.4.
Face-centered and primitive unit cells
described by two sets of vectors.

Consider two different choices of unit cells: a F-centered unit cell with axes
(a1, b1, c1) and a primitive one with axes (a2, b2, c2), as shown in Fig. 9.2.4.
We can write

a2 = 1/2a1 + 1/2c1 a1 = a2 + b2 − c2

b2 = 1/2a1 + 1/2b1 and b1 =−a2 + b2 + c2

c2 = 1/2b1 + 1/2c1 c1 = a2 − b2 + c2
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These relationships may be expressed in the form of square matrices:

h1 k1 l1 h2 k2 l2

a1 b1 c1 a2 b2 c2

h2 a2 ½ 0 ½ h1 a1 1 1 −1
k2 b2 ½ ½ 0 k1 b1 −1 1 1
l2 c2 0 ½ ½ l1 c1 1 −1 1

The hk2 indices of a reflection referred to these two unit cells are transformed
in the same manner, i.e., h2 = 1/2h1 +0k1 + 1/221, etc. The volume ratio is equal
to the modulus of the determinant of the transformation matrix; if we take the
left matrix, V2/V1 is equal to 1/4.

As a concrete example, consider a rhombohedral lattice and the relation-
ship between the primitive rhombohedral unit cell (in the conventional obverse
setting) and the associated triple-sized hexagonal unit cell, as indicated in
Fig. 9.2.5.

The triply primitive hexagonal unit cell has lattice points at (0 0 0),
(2/3, 1/3, 1/3), and (1/3, 2/3, 2/3). From Fig. 9.2.5, it can be seen that the rhom-
bohedral and hexagonal axes, labeled by subscripts “r” and “h” respectively,
are related by vector addition:

ar = 2/3ah + 1/3bh + 1/3ch ah = ar − b

br = −1/3ah + 1/3bh + 1/3ch and bh = br − cr

cr = −1/3ah − 2/3bh + 1/3ch ch = ar + br + cr .

+zh

+yr+xr

+zr

+xh
+yh

+xh

+zr

+xr
1

2

+yh

+yr2

1

Fig. 9.2.5.
Relationship between rhombohedral (obverse setting) and hexagonal unit cells for a rhombohedral lattice. Note that in the right figure, lattice
points at z = 0, 1/3, and 2/3 are differentiated by circles of increasingly darker circumferences, and the lattice point at z = 1 is indicated by a
filled circle, which obscures the lattice point at the origin.
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The pair of matrices can be written down easily, and the volume ratio Vr/Vh
worked out to be 1/3.

In the alternative reverse setting (seldom used), the rhombohedral axes are
rotated by 60◦ in an anti-clockwise sense about the c axis of the hexagonal unit
cell. The equivalent lattice points are then (0 0 0), (1/3, 2/3, 1/3), and (2/3, 1/3, 2/3). The
reader can readily deduce the vectorial and matrix relationships for the two sets
of axes and verify that Vr/Vh remains unchanged at 1/3.

9.3 Space groups

An infinitely extended periodic structure can be brought into self-coincidence
by point symmetry operations or translations 2a+mb+nc, where a, b, c are the
lattice vectors and 2, m, n are arbitrary positive and negative integers, including
zero. In particular, any symmetry operation that moves a lattice one transla-
tion forward (or backward) along an axis leaves it unchanged. This means that,
in addition to the point symmetry operations, new types of symmetry opera-
tions are also applicable to the periodic arrangement of structural units in a
crystal. Such symmetry operations, which are carried out with respect to new
symmetry elements called screw axes and glide planes, are obtained by com-
bining rotations and reflections, respectively, with translations along the lattice
directions.

9.3.1 Screw axes and glide planes

The symmetry operation performed by a screw axis nm is equivalent to a com-
bination of rotation of 2π/n radians (or 360◦/n) followed by a translation of
m/n in the direction of the n-fold axis, where n = 1, 2, 3, 4, or 6 is the order
of the axis and the subscript m is an integer less than n. There exist totally
eleven screw axes: 21, 31, 32, 41, 42, 43, 61, 62, 63, 64, and 65 in the crystal
lattices. Figure 9.3.1 shows the positions of the equivalent points (also called
equipoints for simplicity) around the individual 4-, 4̄-, 41-, 42-, and 43-axes.

Fig. 9.3.1.
Equipoints related by a 4-, 4̄-, 41-, 42-,
and 43-axis.
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O

a a

b bO–

–

+

+ +
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+
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Fig. 9.3.2.
Comparison of the effect of (a) a twofold
screw axis and (b) a glide plane on an
asymmetric object represented by a left
hand. The plus and minus signs indicate
that the object lies above and below the
plane (001), respectively.

The small circle represents any object (an atom, a group of atoms, a molecule,
a group of several molecules, etc.) and the positive sign indicates that it lies
above the plane containing the reference axes (x horizontal, y vertical). In the
diagram showing a 4̄-axis, the comma inside the circle emphasizes that the
original object has been converted to its mirror image, and the negative sign
indicates that it lies below the plane.

The combination of reflection and translation gives a glide plane. If the gliding
direction is parallel to the a axis, the symbol for the axial glide plane is a and
the operation is “reflection in the plane followed by translation parallel to the
a axis by a/2”. Similar axial glide planes b and c have translation components
of b/2 and c/2, respectively.

A screw axis and a glide plane generate equivalent objects in fundamentally
different ways. Consider an asymmetric object (such as a chiral molecule, which
may be represented by a left hand) located at (x, y, z) close to the origin of
the unit cell. The 21-axis along b rotates the left hand about the line (x =
0, z = 0) to generate the equivalent left hand at (x̄, 1/2 + y, z̄), as shown in
Fig. 9.3.2(a). In contrast, starting with a left hand at (x, y, z), reflection across
the b glide plane at x = 0 generates a right hand at (x̄, 1/2 + y, z), as shown in
Fig. 9.3.2(b).

If the translation is parallel to a face diagonal by 1/2(a + b), 1/2(b + c), or
1/2(c +a), then the glide plane is called a diagonal glide and denoted by n. Less
commonly, the n glide operation may involve a translation of 1/2(a + b + c) in
the tetragonal, rhombohedral, and cubic systems. A third type is the diamond
glide plane d which has translations of 1/4(a ± b), 1/4(b ± c), or 1/4(c ± a) in the
orthogonal and tetragonal systems, and also 1/4(a ± b ± c) in the cubic system.
The recently introduced double glide plane has two coexisting 1/2 translations
parallel to it; this type of e glide appears in seven orthorhombic A-, C-, and F-
centered space groups, five tetragonal I -centered space groups, and five cubic
I - and F-centered space groups.

9.3.2 Graphic symbols for symmetry elements

Different graphic symbols are used to label symmetry axes normal to the plane
of projection, symmetry axes in the plane of the figure, symmetry axes inclined
to the plane of projection, symmetry planes normal to the plane of projection,
and symmetry planes parallel to the plane of projection. These symbols are
illustrated in Tables 9.3.1 to 9.3.5, respectively.
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Table 9.3.1. Symbols of symmetry axes normal to the plane of projection and inversion center
in the plane of the figure

Symmetry element (screw
rotation is right-handed)

Graphic
symbol

Translation in units of the
shortest lattice vector
parallel to the axis

Printed
symbol

Identity none none 1
Twofold rotation axis none 2

Twofold screw axis: “2 sub 1” 1/2 21

Threefold rotation axis none 3

Threefold screw axis: “3 sub 1” 1/3 31

Threefold screw axis: “3 sub 2” 2/3 32

Fourfold rotation axis none 4

Fourfold screw axis: “4 sub 1” 1/4 41

Fourfold screw axis: “4 sub 2” 1/2 42

Fourfold screw axis: “4 sub 3” 3/3 43

Sixfold rotation axis none 6

Sixfold screw axis: “6 sub 1” 1/6 61

Sixfold screw axis: “6 sub 2” 1/3 62

Sixfold screw axis: “6 sub 3” 1/2 63

Sixfold screw axis: “6 sub 4” 2/3 64

Sixfold screw axis: “6 sub 5” 5/6 65

Center of symmetry, inversion center: “bar 1” none 1̄

Inversion axis: “bar 3” none 3̄

Inversion axis: “bar 4” none 4̄

Inversion axis: “bar 6” none 6̄

Twofold rotation axis with center of symmetry none 2/m

Twofold screw axis with center of symmetry 1/2 21/m

Fourfold rotation axis with center of symmetry none 4/m

“4 sub 2” screw axis with center of symmetry 1/2 42/m

Sixfold rotation axis with center of symmetry none 6/m

“6 sub 3” screw axis with center of symmetry 1/2 63/m
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Table 9.3.2. Symmetry axes parallel to the plane of projection

Symmetry axis Graphic symbol Symmetry axis Graphic symbol

Twofold rotaion 
2

Fourfold screw 
41

Twofold screw 
21

Fourfold screw 
42

Fourfold rotation 
4

Fourfold screw 
43

Inversion axis 4

Table 9.3.3. Symmetry axes inclined to the plane of projection (cubic space groups only)

Symmetry axis Graphic symbol Symmetry axis Graphic symbol

Twofold rotaion 2 Threefold screw 31

Twofold screw 21 Threefold screw 32

Threefold rotation 3 Inversion axis 3

Table 9.3.4. Symmetry planes normal to the plane of projection

Symmetry plane or
symmetry line

Graphic
symbol

Glide vector in units of lattice
translation vectors parallel and normal
to the projection plane

Printed
symbol

Reflection plane,
mirror plane

None m

“Axial” glide plane 1/2 lattice vector along line in projection plane a, b, or c
“Axial” glide plane ········· 1/2 lattice vector normal to projection plane a, b, or c
“Digonal” glide plane . . . One glide vector with two components: 1/2

along line parallel to projection plane, and 1/2
normal to projection plane

n

“Diamond” glide
plane∗ (pair of
planes; in centred
cells only)

. .! . 1/4 along line parallel to projection plane,
combined with 1/4 normal to projection plane
(arrow indicates direction parallel to the
projection plane for which the normal
component is positive)

d

. ." .

“Double” glide plane
(pair of planes; in
centered cells only)

.. .. Two coexisting glides of 1/2 (related by a
centering translation) parallel to and
perpendicular to the projection plane

e

∗ Glide planes d occur only in orthorhombic F space groups, in tetragonal I space groups, and in cubic I
and F space groups. They always occur in pairs with alternating glide vectors, for instance 1

4 (a + b) and
1
4 (a − b). The second power of a glide reflection d is a centering vector.

iranchembook.ir/edu

https://iranchembook.ir/edu


316 Symmetry in Chemistry

Table 9.3.5. Symmetry planes parallel to the plane of projection

Symmetry plane Graphic symbol∗ Glide vector in units of
lattice translation vectors parallel
to the projection plane

Printed
symbol

Reflection plane,
mirror plane

1 4 None m

“Axial” glide plane 1/2 lattice vector in the direction of
the axis

a, b, or c

“Diagonal” glide
plane

Latttice vector in the direction of the
arrow (glide vector with two 1/2
components)

n

“Diamond” glide
plane

3 8 1 8

1/4 lattice vector in the direction of
the arrow (glide vector with two or
three components)

d

“Double” glide plane A pair of 1/2 lattice vectors in the
direction of the two arrows

e

∗ The symbols are given at the upper corner of the space group diagrams. A fraction h attached to a
symbol indicates two symmetry planes with “height” h and h + 1/2 above the plane of projection; e.g.
1/8 stands for h = 1/8 and 5/8. No fraction means h = 0 and 1/2.

9.3.3 Hermann–Mauguin space–group symbols

The term space-group indicates a self-consistent set of symmetry operations,
constituting a group in the mathematical sense, that bring an infinitely extended,
three-dimensional periodic structure into self-coincidence. Between the years
1885 and 1894, Fedorow, Schönflies, and Barlow independently showed that
there are 230 space groups. The Hermann–Mauguin notation for space groups
includes a set of symbols sufficient to completely specify all the symmetry
elements and their orientation with respect to the unit-cell axes. It consists of
two parts. The first part is a symbol for the type of lattice: P, C (or A or B), I ,
F , or R (formerly H was also sometimes used for the hexagonal lattice). The
second part is a set of symbols for symmetry elements sufficient to fully reflect
the space group symmetry without listing other symmetry elements that must
necessarily be present. These are written in an order that indicates the orientation
of the symmetry elements, in the same manner as for the point groups. In this
system a symmetry element associated with a plane has the orientation of the
normal to the plane. The symbols 1 and 1̄ are usually omitted unless they are the
only ones or unless they are needed as spacers. When two symmetry elements
have the same orientation and both are necessary, their symbols are separated
with a slash, for example, 2/m indicates a twofold axis with a mirror plane
normal to it.

9.3.4 International Tables for Crystallography

The 230 space groups are described in Volume A: Space-Group Symmetry of the
International Tables for Crystallography. Detailed graphic projections along
the axial directions showing the symmetry elements present in the unit cell, a
list of general and special equivalent positions designated by Wyckoff letters
(or positions), multiciplicities, and the symmetry of each local site are given for
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each space group. This volume is an expanded and updated version of Volume
I: Symmetry Groups of the International Tables for X-Ray Crystallography,
which contains a simplified presentation. The 230 space groups are listed in
Table 9.3.6.

9.3.5 Coordinates of equipoints

In crystallography the coordinates of the equipoints are each expressed as a
fraction of the distance along the corresponding unit-cell edge, and they are
therefore actually fractional coordinates. For any space group referred to a
specific choice of origin (generally at 1̄, if possible), the coordinates of all
equipoints can be derived. Table 9.3.7 shows the derivation of points from
those of one prototype with fractional coordinates (x, y, z) by carrying out
symmetry operations with respect to various symmetry elements. Note that the
coordinates (x, y, z) of a molecule composed of n atoms represent the set of 3n
atomic coordinates (xi, yi, zi; i = 1, 2, . . ., n).

Figure 9.3.3 illustrates the derivation of coordinates for equipoints related
by a 4-, 3-, and 6-axis along c through the origin. Coordinates related by a 4̄-,
3̄-, and 6̄-axis can be readily written down using this information. If a different
choice of origin is made, a different set of coordinates will be obtained.

Given the fractional coordinates of all atoms in the unit cell, bond lengths
2ij and bond angles θijk can be calculated from their differences ('xij = xi −
xj,'yij = yi − yj,'zij = zi − zj) and the lattice parameters. In the general
triclinic case, the interatomic distance between two atoms labeled 1 and 2 is
given by

2212 = (a'x12)
2 + (b'y12)

2 + (c'z12)
2 − 2ab'x'y cos γ

− 2ac'x'z cosβ − 2bc'y'z cosα.

The θ123 angle at atom 2, which forms bonds with 1 and 3, is calculated from
the cosine law

cos θ123 = (2212 + 2213 − 2223)/2212213.

For a linear sequence of four bonded atoms A–B–C–D, the torsion angle τ is
defined as the angle between the projections of the bond B–A and C–D when
viewed along the direction of B–C.

B C

A
D

A

D

B C

τ

θΒ θC

The torsion angle τ an be calculated from the equation

cos τ = (AB× BC)·(BC× CD)/AB(BC)2CD sin θB sin θC,

where AB is the vector from A to B, AB is magnitude of AB, the symbols
· and × indicate scalar and vector products, respectively, and θB is the bond
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Table 9.3.6. The 230 three-dimensional space groups arranged by crystal systems and classes∗

No. Crystal system
and class

Space groups

Triclinic
1 1 (C1) P1
2 1̄ (Ci) P1̄

Monoclinic
3–5 2 (C2) P2, P21, C2
6–9 m(Cs) Pm, Pc, Cm, Cc
10–15 2/m(C2h) P2/m, P21/m, C2/m, P2/c, P21/c, C2/c

Orthorhombic
16–24 222 (D2) P222, P2221, P21212, P212121, C2221, C222, F222, I222, I212121
25–46 mm2 (C2v) Pmm2, Pmc21, Pcc2, Pma21, Pca21, Pnc21, Pmn21, Pba2, Pna21, Pnn2, Cmm2, Cmc21, Ccc2, Amm2, Abm2, Ama2,

Aba2, Fmm2, Fdd2, Imm2, Iba2, Ima2
47–74 mmm (D2h) Pmmm, Pnnn, Pccm, Pban, Pmma, Pnna, Pmna, Pcca, Pbam, Pccn, Pbcm, Pnnm, Pmmn, Pbcn, Pbca, Pnma, Cmcm,

Cmca, Cmmm, Cccm, Cmma, Ccca, Fmmm, Fddd , Immm, Ibam, Ibca, Imma

Tetragonal
75–80 4 (C4) P4, P41, P42, P43, I4, I41
81–82 4̄ (S4) P4̄, I 4̄
83–88 4/m(C4h) P4/m, P42/m, P4/n, P42/n, I4/m, I41/a
89–98 422 (D4) P422, P4212, P4122, P41212, P4222, P42212, P4322, P43212, I422, I4122
99–110 4mm (C4v) P4mm, P4bm, P42cm, P42nm, P4cc, P4nc, P42mc, P42bc, I4mm, I4cm, I41md, I41cd
111–122 4̄2m(D2d) P4̄2m, P4̄2c, P4̄21m, P4̄21c, P4̄m2, P4̄c2, P4̄b2, P4̄n2, I 4̄m2, I 4̄c2, I 4̄2m, I 4̄2d
123–142 4/mmm (D4h) P4/mmm, P4/mcc, P4/nbm, P4/nnc, P4/mbm, P4/mnc, P4/nmm, P4/ncc, P42/mmc, P42/mcm, P42/nbc, P42/nnm,

P42/mbc, P42/mnm, P42/nmc, P42/ncm, I4/mmm, I4/mcm, I41/amd, I41/acd

Trigonal
143–146 3 (C3) P3, P31, P32, R3
147–148 3̄(C3i) P3̄, R3̄
149–155 32 (D3) P312, P321, P3112, P3121, P3212, P3221, R32
156–161 3m(C3v) P3m1, P31m, P3c1, P31c, R3m, R3c
162–167 3̄m(D3d) P3̄1m, P3̄1c, P3̄m1, P3̄c1, R3̄m, R3̄c

Hexagonal
168–173 6 (C6) P6̄, P61, P65, P62, P64, P63
174 6̄ (C3h) P6̄
175–176 6/m(C6h) P6/m, P63/m
177–182 622 (D6) P622, P6122, P6522, P6222, P6422, P6322
183–186 6mm (C6v) P6mm, P6cc, P63cm, P63mc
187–190 6̄m2 (D3h) P6̄m2, P6̄c2, P6̄2m, P6̄2c
191–194 6/mmm(D6h) P6/mmm, P6/mcc, P63/mcm, P63/mmc

Cubic
195–199 23 (T ) P23, F23, I23, P213, I213
200–206 m3̄ (Th) Pm3̄, Pn3̄, Fm3̄, Fd3̄, Im3̄, Pa3̄, Ia3̄
207–214 432 (O) P432, P4232, F432, F4132, I432, P4332, P4132, I4132
215–220 4̄3m(Td) P4̄3m, F 4̄3m, I 4̄3m, P4̄3n, F 4̄3c, I 4̄3d
221–230 m3̄m(Oh) Pm3̄m, Pn3̄n, Pm3̄n, Pn3̄m, Fm3̄m, Fm3̄c, Fd 3̄m, Fd 3̄c, Im3̄m, Ia3̄d

∗ The 230 space groups include 11 enantiomorphous pairs: P31(P32), P3112 (P3212), P3121 (P3221), P41(P43), P4122 (P4322), P41212 (P43212),
P61(P65), P62(P64), P6122 (P6522), P6222 (P6422), and P4132 (P4332). If the (+)-isomer of an optically active molecule crystallizes in an enantiomor-
phous space group, the (–)-isomer will crystallize in the related one. Although both members of an enantiomorphous pair are distinguishable by X-ray
diffraction (using anomalous dispersion), they can be counted together for classification purposes if the absolute chirality sense (handedness) is unknown
or irrelevant, leading to 219 “distinct” space groups. However, once the chirality sense of the asymmetric unit is specified, repetition of that unit in one
enantiomorphous space group is quite distinct from repetition in the other. It is therefore virtually impossible for a given chiral compound to crystallize
in both enantiomorphous space groups because the resulting packing arrangements (and energies) would be completely different.

Space groups (or enantiomorphous pairs) that are uniquely determined from the symmetry of the diffraction pattern and systematic absences are shown
in boldface type.

Recent adoption of the double glide plane e as a symmetry element leads to changes in the international symbols for five A- and C-centered orthorhombic
space groups: No. 39, Abm2 → Aem2; No. 41, Aba2 → Aea2; No. 64, Cmca → Cmce; No. 67, Cmma → Cmme; No. 68, Ccca → Ccce.
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Table 9.3.7. Derivation of atomic coordinates

Symmetry element Fractional coordinates

Center at origin (0, 0, 0) x, y, z; x̄, ȳ, z̄; or ±(x, y, z)
Center at origin (1/4, 0, 0) x, y, z; 1/2− x, ȳ, z̄;
Mirror plane at y = 0 x, y, z; x, ȳ, z
Mirror plane at y = 1/4 x, y, z; x, 1/2− y, z
c glide plane at y = 0 x, y, z; x, ȳ, 1/2 + z
c glide plane at y = 1/4 x, y, z; x, 1/2− y, 1/2 + z
n glide plane at y = 0 x, y, z; 1/2 + x, ȳ, 1/2 + z
n glide plane at y = 1/4 x, y, z; 1/2 + x, 1/2− y, 1/2 + z
d glide plane at x = 1/8 x, y, z; 1/4− x, 1/4 + y, 1/4 + z
2-axis along line 0, 0, z (i.e. c) x, y, z; x̄, ȳ, z
2-axis along line 0, 1/4, z x, y, z; x̄, 1/2− y, z
21-axis along c x, y, z; x̄, ȳ, 1/2 + z
21-axis along line 1/4 , 0, z x, y, z; 1/2− x, ȳ, 1/2 + z
4-axis along c x, y, z; y, x̄, z; x̄, ȳ, z; ȳ, x, z
4̄-axis along c with 1̄ at origin x, y, z; y, x̄, z̄; x̄, ȳ, z; ȳ, x, z̄
4̄-axis along c with 1̄ at (0, 0, 1/4) x, y, z; y, x̄, 1/2− z; x̄, ȳ, z; ȳ, x, 1/2− z
41-axis along line 1/4, 1/4, z with origin on 2 x, y, z; y, 1/2− x, 1/4 + z; 1/2− x, 1/2− y, 1/2 + z; 1/2− y, x, 3/4 + z
3-axis along c x, y, z; ȳ, x − y, z; y − x, x̄, z
3̄−axis along c with 1̄ at origin ± (x, y, z; ȳ, x - y, z; y - x, x̄, z)
6-axis along c x, y, z; x − y, x, z; ȳ, x − y, z; x̄,ȳ, z; y − x, x̄, z; y, y − x, z
3-axis along [111] body diagonal in cubic unit cell x, y, z; z, x, y; y, z, x
C-centering (on ab face) x, y, z; x, 1/2 + y, 1/2 + z or (0, 0, 0; 1/2, 1/2, 0) +
I -centering x, y, z; 1/2 + x, 1/2 + y, 1/2 + z; or (0, 0, 0; 1/2, 1/2, 1/2)+
F-centering (0, 0, 0; 1/2, 1/2, 0; 0, 1/2, 1/2; 1/2, 0, 1/2)+
R-centering,∗ obverse setting x, y, z; 2/3 + x, 1/3 + y, 1/3 + z; 1/3 + x, 2/3 + y, 2/3 + z or (0, 0, 0; 2/3, 1/3, 1/3; 1/3, 2/3, 2/3) +
R-centering,∗ reverse setting x, y, z; 1/3 + x, 2/3 + y, 1/3 + z; 2/3 + x, 1/3 + y, 2/3 + z or (0, 0, 0; 1/3, 2/3, 1/3; 2/3, 1/3, 2/3) +

∗ Rhombohedral unit cell based on hexagonal lattice.

angle at atom B. Note that this formula is valid in any coordinate system, but
the usual textbook expressions for the scalar and vector products in terms of
vector components holds only in a Cartesian coordinate system. The torsion
angle τ is not well defined when one or both of θB and θC is/are 0◦ or 180◦. A
positive value of τ indicates that the A–B–C–D link corresponds to the sense
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Fig. 9.3.3.
Derivation of coordinates of equipoints related by a 3-, 4-, or 6-axis.
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Table 9.3.8. The order of positions in the international symbols for point groups and space
groups

System Position in international symbol

1st 2nd 3rd

Triclinic Only one symbol is used
Monoclinic 1st setting: 2, 21, or 2̄ along unique c axis∗

2nd setting: 2, 21, or 2̄ along unique b axis (conventional)

Orthorhombic 2, 21, or 2̄ along a 2, 21, or 2̄ along b 2, 21, or 2̄ along c
Tetragonal 4, 41, 42, 43, or 4̄

along c
2, 21, or 2̄ along a and b 2 or 2̄ along [110] and

[11̄0]
Trigonal 3, 31, 32, or 3̄ along c 2 or 2̄ along a, b, and

[110]
2 or 2̄ perpendicular to

a, b, and [110]
Hexagonal 6, 61, 62, 63, 64, 65, or

6̄ along c
2 or 2̄ along a, b, and
[110]

2 or 2̄ perpendicular to
a, b, and [110]

Cubic 4, 41, 42, 43, 4̄, 2, 21, or
2̄ along a, b, and c

3 or 3̄ along <111> 2 or 2̄ along <110>

∗ Note that a 2̄-axis is equivalent to a mirror plane m normal to it; for example, 2̄ along a means m
perpendicular to a.

of a right-handed screw (or helix). The sign of τ is unaffected by rotation or
translation, but is reversed by reflection or inversion.

9.3.6 Space group diagrams

Table 9.3.8 summarizes the order of positions in the point group or space group
symbols; note that a 2̄-axis is equivalent to a mirror plane m perpendicular
to it.

For example, in the orthorhombic system, mm2 refers to mirror planes per-
pendicular to a and b, and a twofold axis along c. In the hexagonal system,
6̄2m means a 6̄-axis along c, twofold axes along a, b and a + b (i.e., [110]),
and mirror planes perpendicular to a, b and [110]. In some other books and
tables, the equivalent alternative 6̄m2 may be used in place of 6̄2m. In the cubic
system, 4̄3m means three 4̄-axes along the equivalent axes of a cube, four 3-
axes along the body diagonals <111>, and six mirror planes perpendicular
to the face diagonals <110>. In m3̄ the first position indicates mirror planes
perpendicular to 0the cubic axes, and the second position means 3̄-axes along
the body diagonals. The third position is left blank as there is no symmetry
element in the <110> directions. The older symbol for m3̄ is m3, as the 3- and
3̄-axis are coincident.

The most frequently occurring space group P121/c1 (No. 14) serves as a
good example to illustrate the use of the space group tables. In the Hermann–
Mauguin nomenclature, the lattice symbol is given first; here P means that the
lattice is primitive (i.e., there is no lattice centering). The second symbol (1)
indicates that there is no symmetry with respect to a, the next symbol (21/c)
shows that both 21 and c refer to the b axis (the unique symmetry axis in the
conventional second setting), and the last symbol (1) indicates that there is
no symmetry with respect to c. The symmetry elements 21/c mean that the
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Laue symmetry is 2/m (disregarding the translational components of the 21-
axis and the c glide), so the space group belongs to the monoclinic system. The
simplified symbol P21/c normally replaces the full symbol P121/c1, and the
old Schönflies symbol C5

2h (the fifth space group derived from the point group
C2h) is seldom used.

Space group P21/a often appears in the older literature in place of P21/c; in
such case the unique axis is still b, but the glide plane is a. If we make a different
choice of the axes normal to the 21-axis, the glide plane might be changed to
a diagonal glide n; and the space group symbol becomes P21/n. (This choice
is sometimes made to make the β angle close to 90◦.) Furthermore, if c were
chosen as the unique axis (as in the unconventional first setting), the space
group symbol would become P21/a or P21/b. Thus the same space group may
be designated by several different symbols depending on the choice of axes and
their labeling.

In the following discussion, for simplicity we make use of the pair of sym-
metry diagrams that constitute a representation of space group P21/c (No. 14)
in International Tables for X-Ray Crystallography Volume I, as displayed in
Fig. 9.3.4.

In both diagrams, the origin is located at the upper left corner of the unit
cell, with a pointing downward, b horizontally to the right, and c toward the
viewer. The right diagram (b) shows the symmetry elements and their location
using graphic symbols. Each colinear pair of half arrows represents a 21-axis
parallel to b, and the label 1/4 indicates that it lies at a height of z = 1/4. The
dotted line indicates the c glide with glide component coming out of the plane of
the diagram. The small open circle represents a center of symmetry (inversion
center) that must be present in P21/c but is not explicitly indicated in the space
group symbol. Note that all three types of symmetry elements necessarily occur
at 1/2 unit intervals along the lattice translations.

The left diagram (a) shows the locations and coordinates of the general equiv-
alent positions in the space group. To see how this diagram can be derived from
the symmetry diagram at the right, we insert a general point labeled 1 in the unit
cell and represent it by a large open circle. This position (x, y, z) has an arbitrary
fractional height z above the ab plane, which is conventionally designated by
the symbol + beside it. For the 21 screw axis at x = 0, z = 1/4, rotation first
carries position 1 to a point (x̄, y, 1/2− z) outside the unit cell at the top, and the
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Fig. 9.3.4.
Diagrams showing (a) the general equivalent positions and (b) the symmetry elements in space
group P21/c as presented in International Tables for X-Ray Crystallography Volume I. The bold
numerals in the left figure are added for the purpose of discussion.
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subsequent b/2 translation carries the latter to position 2 marked – (meaning
a height of −z), and its coordinates are (x̄, 1/2 + y, 1/2 − z). For the c glide at
y = 1/4, reflection across the plane first brings 1 to the point (x, 1/2− y, z), and
the subsequent c/2 translation carries the latter into position 3 marked 1/2+
(meaning a height of 1/2 + z), and its coordinates are (x, 1/2 − y, 1/2 + z). The
comma inside the circle means that the position, together with its environment,
is a mirror image of the original position and its environment. Starting with
position 2, the glide plane at y = 3/4 generates the position at (x̄, 1 − y, z̄),
and we label it 4. The positions 2′ and 4′ are derived from 2 and 4, respec-
tively, by unit translation along a. Note that positions 1 and 4′ are related by
the inversion center at (1/2, 1/2, 1/2), positions 2 and 3 are related by the inversion
center at (0, 1/2, 1/2), and positions 3 and 2′ are related by the inversion center
at (1/2,1/2,1/2). The point 4∗ at (x̄, ȳ, z̄) is usually chosen instead of 4, since it
is related to 1 by the inversion center at the origin. Equipoints 1, 4∗, 2, and 3
constitute the set of general equivalent positions in space group P21/c. Further
action of the symmetry operations on them produces no new position, so these
four positions reflect the full symmetry of the space group. They are denoted
by the Wyckoff notation 4(e) in the first row of Table 9.3.9.

The Wyckoff notation for a set of equivalent positions consists of two parts:
(i) the multiplicity M , which is the number of equivalent positions per unit cell,
and (ii) an italicized small letter a starting at the bottom of the list and moving
upward in alphabetical order. For a primitive unit cell, M is equal to the order
of the point group from which the space group is derived; for centered cells, M
is the product of the order of the point group and the number of lattice points
per unit cell.

Note that in Fig. 9.3.4, diagram (b) can be derived from diagram (a), and vice
versa, and either one is sufficient to represent the full symmetry of the space
group.

Consider the general equivalent positions of space group P21/c as shown in
Fig. 9.3.4(a). Let position 1 approach the origin of the unit cell; in other words,
let the coordinates x → 0, y → 0, and z → 0. As this happens, position 4′′

also approaches the origin, while both 2 and 3 simultaneously approach the
center of inversion at (0, 1/2, 1/2). When x = 0, y = 0, and z = 0, 1 and 4∗

coalesce into one, and 2 and 3 likewise become the same position. There remain
only two equivalent positions: (0, 0, 0) and (0, 1/2, 1/2) that occupy sites of
symmetry 1̄, and they constitute the special equivalent position 2(a), which is
designated as Wyckoff position 2(a). Other sets of special equivalent positions
of site symmetry 1̄ are obtained by setting x = 1/2, y = 0, z = 0; x = 0, y = 0,

Table 9.3.9. General and special positions of space group P21/c.

No. of
positions

Wyckoff
letter

Site
symmetry

Coordinates of equivalent positions

4 e 1 x, y, z; x̄, ȳ, z̄; x̄, 1/2 + y, 1/2− z; x, 1/2− y, 1/2 + z
2 d 1̄ 1/2, 0, 1/2; 1/2, 1/2, 0
2 c 1̄ 0, 0, 1/2; 0, 1/2, 0
2 b 1̄ 1/2, 0, 0; 1/2, 1/2, 1/2
2 a 1̄ 0, 0, 0; 0, 1/2, 1/2
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z = 1/2; x = 1/2, y = 0, z = 1/2, giving rise to Wyckoff position 2(b), 2(c),
and 2(d ), respectively (see Table 9.3.9). The multiplicity of a special position
is always a divisor of that of the general position.

To describe the contents of a unit cell, it is sufficient to specify the coor-
dinates of only one atom in each equivalent set of atoms, since the other
atomic positions in the set are readily deduced from space group symmetry.
The collection of symmetry-independent atoms in the unit cell is called the
asymmetric unit of the crystal structure. In the International Tables, a portion
of the unit cell (and hence its contents) is designated as the asymmetric unit. For
instance, in space group P21/c, a quarter of the unit cell within the boundaries
0 ≤ x ≤ 1, 0 ≤ y ≤ 1/4, and 0 ≤ z ≤ 1 constitutes the asymmetric unit.
Note that the asymmetric unit may be chosen in different ways; in practice, it is
preferable to choose independent atoms that are connected to form a complete
molecule or a molecular fragment. It is also advisable, whenever possible, to
take atoms whose fractional coordinates are positive and lie within or close to the
octant 0 ≤ x ≤ 1/2, 0 ≤ y ≤ 1/2, and 0 ≤ z ≤ 1/2. Note also that if a molecule
constitutes the asymmetric unit, its component atoms may be related by non-
crystallographic symmetry. In other words, the symmetry of the site at which the
molecule is located may be a subgroup of the idealized molecular point group.

9.3.7 Information on some commonly occurring space groups

Apart from P21/c, other commonly occurring space groups are C2/c (No. 15),
P212121 (No. 19), Pbca (No. 61), and Pnma (No. 62); the symmetry diagrams
and equivalent positions of these space groups are displayed in Table 9.3.10.
It should be noted that each space group can be represented in three ways: a
diagram showing the location of the general equivalent positions, a diagram
showing the location of the symmetry elements, and a list of coordinates of the
general positions. The reader should verify that, given any one of these, the
other two can be readily deduced.

9.3.8 Using the International Tables

Detailed information on all 230 space groups are given in Volume A: Space-
Group Symmetry of the International Tables for Crystallography.The tabulation
for space group C2/c is reproduced in the left column of Table 9.3.11, and
explanation of various features are displayed in the right column. This may be
compared with the information for C2/c given in Table 9.3.10.

9.4 Determination of space groups

9.4.1 Friedel’s law

The intensity of a reflection (hk2) is proportional to the square of the structural
factor F(hk2), which is given by

F(hk2) =
∑

j

fj cos 2π(hxj + kyj + 2zj) + i
∑

j

fj sin 2π(hxj + kyj + 2zj),
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Table 9.3.10. Symmetry diagrams and equivalent positions of some commonly occurring
space groups

Monoclinic 2/m No. 15 C2/c (C6
2h)

No. of
positions

Wyckoff
notation

Site
symmetry

Coordinates of equivalent positions
(0, 0, 0; 1/2, 1/2, 0)+

8 f 1 x, y, z; x̄, ȳ, z̄; x̄, y, 1/2− z; x, ȳ, 1/2 + z
4 e 2 0, y, 1/4; 0, ȳ, 3/4
4 d 1̄ 1/4, 1/4, 1/2; 3/4, 1/4, 0
4 c 1̄ 1/4, 1/4, 0; 3/4, 1/4, 1/2
4 b 1̄ 0, 1/2, 0; 0, 1/2, 1/2
4 a 1̄ 0, 0, 0; 0, 0, 1/2

Orthorhombic 222 No.  19 P212121(D4
2)

No. of
positions

Wyckoff
notation

Site
symmetry

Coordinates of equivalent positions

4 a 1 x, y, z; 1/2− x, ȳ, 1/2 + z; 1/2 + x, 1/2− y, z̄; x̄, 1/2 + y, 1/2− z

Orthorhombic mmm No.   61 Pbca (D15)2h

No. of
positions

Wyckoff
notation

Site
symmetry

Coordinates of equivalent positions

8 c 1 x, y, z; 1/2 + x, 1/2− y, z̄; x̄, 1/2 + y, 1/2− z; 1/2− x,
ȳ, 1/2 + z; x̄, ȳ, z̄; 1/2− x, 1/2 + y, z; x, 1/2− y, 1/2 + z;
1/2 + x, y, 1/2− z

4 b 1̄ 0,0,1/2; 1/2,1/2,1/2; 0,1/2,0; 1/2,0,0
4 a 1̄ 0,0,0; 1/2,1/2,0; 0,1/2,1/2; 1/2,0,1/2
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Table 9.3.10. Continued

Orthorhombic mmm No.  62 Pbca (D16)2h

No. of
positions

Wyckoff
notation

Site
symmetry

Coordinates of equivalent positions

8 d 1 x, y, z; 1/2 + x, 1/2− y, 1/2− z; x̄, 1/2 + y, z̄; 1/2− x, ȳ, 1/2 + z;
x̄, ȳ, z̄; 1/2− x, 1/2 + y, 1/2 + z; x, 1/2− y, z; 1/2 + x, y, 1/2− z

4 c m x, 1/4, z; x̄, 3/4, z̄; 1/2− x, 3/4, 1/2 + z; 1/2 + x, 1/4, 1/2− z
4 b 1̄ 0,0,1/2; 0,1/2,1/2; 1/2,0,0; 1/2,1/2,0
4 a 1̄ 0,0,0; 0,1/2,0; 1/2,0,1/2; 1/2,1/2,1/2

where fj is the atomic scattering factor of atom j, and the summation is
over all atoms in the unit cell. For simplicity, we may write |F(hk2)|2 =
A2 + B2.

F(hk2) is in general a complex quantity, which can be expressed as F(hk2) =
A + iB. The structure factor for the reflection with indices -h, -k, -2 is F(h̄k̄ 2̄),
and the observed intensity is |F(h̄k̄ 2̄)|2 = A2 + B2.

The intensities of reflections (hk2) and (h̄k̄ 2̄) are the same, so that the diffrac-
tion pattern has an apparent center of symmetry, even if the crystal structure
is not centrosymmetric. This is known as Friedel’s law. Note that Friedel’s
law breaks down under the conditions of anomalous scattering, which happens
when the wavelength is such that the X-rays are highly absorbed by the atoms
in the crystal.

9.4.2 Laue classes

As a consequence of Friedel’s law, the diffraction pattern exhibits the symmetry
of a centrosymmetric crystal class. For example, a crystal in class 2, on account
of the 1̄ symmetry imposed on its diffraction pattern, will appear to be in class
2/m. The same result also holds for crystals in class m. Therefore, it is not
possible to distinguish the classes 2, m, and 2/m from their diffraction patterns.
The same effect occurs in other crystal systems, so that the 32 crystal classes
are classified into only 11 distinct Laue groups according to the symmetry of
the diffraction pattern, as shown in Table 9.4.1.
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Knowledge of the diffraction symmetry of a crystal is useful for its clas-
sification. If the Laue group is observed to be 4/mmm, the crystal system is
tetragonal, the crystal class must be chosen from 422, 4mm, 4̄2m, and 4/mmm,
and the space group is one of those associated with these four crystallographic
point groups.

Table 9.3.11. Detailed information on space group C2/c (No. 15)

C2/c C6
2h 2/m Monoclinic C6

2h is Schönflies symbol

No. 15 C 1 2/c 1 Patterson symmetry: C 1 2/m 1 Patterson symmetry: C 1 2/m 1

UNIQUE AXIS b, CELL CHOICE 1 Unique axis is b, which leads to
C2/c; alternative cell choices
are described in other pages.

1 
4

1 
4

1 
4

1 
4

1 
4

1 
2

1 
2

1 
2

1 
2

1 
2

1 
21 

4
1 
4

1 
4

1 
4

1 
4

1 
4

1 
4

1 
4

1 
4

1 
4

1 
4

1 
4

1 4
1 4

1 4 1 4
1 4

1 4
1 4

1 41 4
1 4

a b o

c

b

O

O

, , ,

,

, ,

,

,

,

+ +

+

+ +

+

+

+

+

– –

– –

–

–

–––

ap

c p

Three projections of the unit cell
down b, a, and c (showing the
symmetry elements), and a
projection down b (showing the
general equivalent positions).

cp is the projection of c

ap is the projection of a

© represents an equipoint

,© is generated from© by an
operation of the second kind
(inversion, reflection, and glides)
+, − : coordinate above or below
the plane of projection along the
unique b axis.

Origin at 1̄ on glide plane c Location of origin is specified.

Asymmetric Unit 0 ≤ x ≤ 1
2 ; 0 ≤ y ≤ 1

2 ; 0 ≤ z ≤ 1
2

Symmetry Operations

For (0,0,0)+ set Numbering (in parentheses) and
location of the operations
(identity, twofold rotation,
inversion, c glide, translation,
and n glide).

(1) 1 (2) 2 0, y, 1
4 (3) 1̄ 0,0,0 (4) c x, 0, z

For ( 1
2 , 1

2 ,0)+ set

(1) t( 1
2 , 1

2 , 0) (2) 2(0, 1
2 , 0) 1

4 ,y, 1
4

(3) 1̄ 1
4 , 1

4 , 0 (4) n( 1
2 , 0, 1

2 ) x 1
4 , z

Generators selected (1); t(1, 0, 0); t(0, 1, 0); t(0, 0, 1); Identity, axial and centering
translations, twofold rotation,
and inversion.

t( 1
2 , 1

2 , 0); (2); (3)
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Table 9.3.11. Continued

Positions

Multiplicity
Wyckoff letter,
Site symmetry

Coordinates
(0, 0, 0)+ ( 1

2 . 1
2 , 0)+

Reflection conditions Multiplicity, Wyckoff
letter, site symmetry, and
coordinates given for each
set of equivalent
positions.

General:
8 f 1 (1) x, y, z (2) x̄, y, z̄ + 1

2 hk2 : h + k = 2n
(3) x̄, ȳ, z̄ (4) x, ȳ, z + 1

2 h02 : h, 2 = 2n
0k2 : k = 2n
hk0 : h + k = 2n
0k0 : k = 2n
h00 : h = 2n
002 : 2 = 2n

Multiplicity = 8 for general
positions

Systematic absences: hk2
with (h + k) odd indicates
C lattice; h02 with 2 odd
indicates c glide; the other
conditions only provide
redundant information.

Special: as above, plus
4 e 2 0, y, 1

4 , 0, ȳ, 3
4 no extra conditions

4 d 1̄ 1
4 , 1

4 , 1
2 , 3

4 , 1
4 , 0 hk2 : k + 2 = 2n

4 c 1̄ 1
4 , 1

4 , 0, 3
4 , 1

4 , 1
2 hk2 : k + 2 = 2n

4 b 1̄ 0, 1
2 , 0, 0, 1

2 , 1
2 hk2 : 2 = 2n

4 a 1̄ 0, 0, 0, 0, 0, 1
2 hk2 : 2 = 2n

Special positions are 4(a)
to 4(e); 4(a) is always last
listed; if an atom occupies
4(c), it only contributes to
hkl with (k + 2) even.

Symmetry of special projections

Along [001] c2mm Along [100] p2gm Along [010] p2 Plane groups and axes of
the projections down c, a
and b

a′ = ap b′ = b a′ = 1
2 b b′ = cp a′ = 1

2 c b′ = 1
2 a

Origin at 0, 0, z Origin at x, 0, 0 Origin at 0, y, 0

Maximal non-isomorphic subgroups

I [2] C 1 2 1(C2) (1;2)+
[2] C 1̄(P1̄) (1;3)+
[2] C 1 c 1 (1;4)+

II [2] P 1 2/c 1(P2/c) 1;2;3;4
[2] P 1 2/n 1(P2/c) 1; 2; (3; 4) + ( 1

2 , 1
2 , 0)

[2] P 1 21/n 1(P21/c) 1; 3; (2; 4) + ( 1
2 , 1

2 , 0)

[2] P 1 21/c 1(P21/c) 1; 4; (2; 3) + ( 1
2 , 1

2 , 0)

IIIb none

t subgroups type I (same
lattice translations)

k subgroups type II (same
crystal class); subdivision
IIa (same unit cell), IIb,
IIc (larger cell)

Index of the subgroup is
enclosed in square
brackets.

Maximal isomorphic subgroups of lowest index

IIc [3] C 1 2 1(b′ = 3b)(C2/c);
[3] C 1 2 1(c′ = 3c)(C2/c);
[3] C 1 2 1(a′ = 3a or a′ = 3a, c′ = −a + c or a′ = 3a,

c′ = a + c)(C2/c)

Index, full international
symbol, lattice vectors,
and conventional symbol.

Minimal non-isomorphic subgroups

I [2]Cmcm; [2]Cmca; [2]Cccm; [2]Ccca; [2]Fddd ;
[2]Ibam; [2]Ibca; [2]Imma; [2]I41/a; [3]P3̄12/c;
[3]P3̄2/c1; [3]R3̄2/c

t supergroups

II [2]F12/m1(C2/m); [2]C12/m1(2c′ = c)(C2/m);
[2]P12/c1(2a′ = a, 2b′ = b)(P2/c)

k supergroups

iranchembook.ir/edu

https://iranchembook.ir/edu


328 Symmetry in Chemistry

Table 9.4.1. The 11 Laue groups for diffraction symmetry

Crystal system Crystal class Laue group

Triclinic 1, 1̄ 1̄
Monoclinic 2, m, 2/m 2/m
Orthorhombic 222, mm2, mmm mmm
Tetragonal 4, 4̄, 4/m 4/m

422, 4mm,4̄2m, 4/mmm 4/mmm
Trigonal 3, 3̄ 3̄

32, 3m, 3̄m 3̄m
Hexagonal 6, 3̄, 6/m 6/m

622, 6mm, 6̄2m, 6/mmm 6/mmm
Cubic 23, m3̄ m3̄

432, 4̄3m, m3̄m m3̄m

9.4.3 Deduction of lattice centering and translational symmetry elements
from systemic absences

Systematic absences (or extinctions) in the X-ray diffraction pattern of a sin-
gle crystal are caused by the presence of lattice centering and translational
symmetry elements, namely screw axes and glide planes. Such extinctions are
extremely useful in deducing the space group of an unknown crystal.

Fig. 9.4.1.
Some lattice planes through primitive
(P), body-centered (I ), and face-centered
(F) lattices.

(100) (110) (111)

P

I

F

(1) Effect of lattice centering
In Fig. 9.4.1, the planes (100), (110), and (111) are drawn in heavy shading
for pairs of adjoining primitive (P), body-centered (I), and face-centered (F)
unit cells. In the I -lattice, the centered points lie midway between the (100)
and (111) planes, and their contribution to X-ray scattering exactly cancels out
that due to points located at the corners of the unit cells. These two reflections
are therefore systematically absent. However, the reflections (200), (110), and
(222) are observable since each passes through all the lattice points. Similarly,
in the F-lattice, the (100) and (110) reflections are systematically absent, but
the (200), (220), and (111) reflections are observable.

For subsequent discussion of the general case, we make use of the following
theorem from geometry:
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A line OL from the origin O of a space lattice to a lattice point L, as represented
by the vector OL = ua + vb + wc, is divided into (uh + vk + w2) parts by the
set of planes (hk2).

Consider the C-centered unit cell shown in Fig. 9.4.2. Setting OL = a + b,
the line OL, which runs through the C-centered point, is divided into 5 parts by
the planes (320). Thus the points located at the corners of the unit cell lie in the
(320) set of planes, but the C-centered point does not. It is easily seen that, in
general, the C-centered point lies in the (hk2) planes when (h + k) is even, and
in between the planes when (h+k) is odd. In the latter case, X-ray scattering by
the points at the corners of the unit cell is exactly out of phase with that caused
by the C-centered point; in other words, reflections (hk2) are systematically
absent with (h+k) odd. Conversely, whenever this kind of systematic absences
is observed, the presence of a C-centered lattice is indicated.

O

(320)

L
b

a

Fig. 9.4.2.
C-centered unit cell showing that the line
OL is divided into five parts by the (320)
planes, and the C-centered point lies
midway between a pair of planes.For a F-centered lattice, reflections (hk2) are observable only when the con-

ditions (h+k) even, (k +2) even, and (2+h) even are simultaneously satisfied;
this means that the indices h, k, 2 must be either all even or all odd. This result
can also be deduced analytically. In a F-centered lattice, the following equiva-
lent positions are present: (x, y, z); (x, y + 1/2, z + 1/2); (x + 1/2, y, z + 1/2);
(x + 1/2, y + 1/2, z). Accordingly, the structure factor expression is

Fhk2 =
n/4
∑

j=1

fj exp[i2π(hxj + kyj + 2zj)]{1 + exp[i2π(k/2 + 2/2)]

+ exp[i2π(k/2 + 2/2)] + exp[i2π(k/2 + 2/2)]}.

For reflections of the type (hk2), when the indices are all even or all odd
(i.e., h + k = 2n, h + 2 = 2n, k + 2 = 2n),

Fhk2 = 4
n/4
∑

j=1

fj exp[i2π(hxj + kyj + 2zj)].

If the h, k, 2 indices are of mixed parity (i.e., not all odd or all even), then
Fhk2 = 0. For example, F112 = F300 = 0.

For an I -centered lattice, we consider the vector OL = a + b + c which
passes through the I -centered point. The line OL is divided into (h + k + 2)
parts, which must be even for reflections (hk2) to be observable.

Consider a rhombohedral lattice referred to a hexagonal set of axes. In the
obverse setting, we consider the vector OL = −a+b+c, which passes through
the points at (−1/3, 1/3, 1/3), (−2/3, 2/3, 2/3), and (−1, 1, 1). The line OL is
divided into (−h + k + 2) parts, which must be a multiple of 3 for all lattice
points to lie in the planes (hk2). In other words, the systematic absences for
reflections (hk2) are (−h+k+2) '= 3n for a rhombohedral lattice in the obverse
setting. In the reverse setting, the systematic absences are (h− k + 2) '= 3n.

(2) Effect of glide planes and screw axes
Consider the arrangement of asymmetric objects (e.g., left and right hands)
generated by a n glide plane normal to the c axis at z = 0, as shown in Fig.
9.4.3(a). Note that to the (hk0) reflections, the z coordinate is immaterial, as
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Fig. 9.4.3.
Effect of (a) n glide normal to c and
(b) b glide normal to c on an asymmetric
object represented by a hand. The plus
and minus signs indicate that the object
lies above and below the plane (001),
respectively.

aa

b

(a) (b)

–

+

+ +

+ +

+

+

+

–

–

b

the structure projected onto the ab plane looks exactly like a C-centered lattice.
Hence the systematic absences (hk0) absent with (h + k) odd implies the pres-
ence of a n glide plane normal to the c axis. Note that this condition is covered
by that for C-centering, and therefore if the lattice is already C-centered, the n
glide may or may not be present.

In like manner, for the b glide normal to c shown in Fig. 9.4.3(b), the right
and left hands make the same contribution to the (h00) reflections. Therefore,
the systematic absences of (hk0) reflections with k odd indicate the presence
of a b glide plane normal to the c axis.

a

b

+

+ +

–

–

+

Fig. 9.4.4.
Effect of 21-axis along b on an
asymmetric object represented by a
hand. The plus and minus signs indicate
that the object lies above and below the
plane (001), respectively.

Consider now a 21-axis parallel to the b axis.As shown in Fig. 9.4.4, the coor-
dinates x and z are irrelevant for the (0k0) planes, and the systematic absences
(0k0) absent with k odd implies the presence of a 21-axis parallel to b. Note that
this is a very weak condition as compared to those for lattice centering and glide
planes, and is already covered by them. Since the (0k0) reflections are few in
number, some may be too weak to be observable, and hence the determination
of a screw axis from systematic absences is not always reliable.

Analytical deductions can be made in the following way. Suppose the unit
cell has a c glide plane perpendicular to the b axis. For an atom at x, y, z, there
is an equivalent atom at x,−y, 1/2 + z. The contribution of these two atoms to
the structure factor is

F(hk2) = f {exp[2π i(hx + ky + 2z)] + exp[2π i(hx − ky + 2/2 + 2z)]}.

For the special case of k = 0,

F(h02) = f exp[2π i(hx + 2z)][1 + exp(2π i2)]
= f exp[2π i(hx + 2z)][1 + (−1)2].

This expression vanishes if 2 is odd, and is equal to 2f [2π i(hx + 2z) if 2 is
even. Reflections of the type (h02) will, therefore, be missing unless 2 is an
even number. The characteristic absence or extinction of (h02) reflections with
2 odd thus indicates a c glide plane perpendicular to the b axis.

For a twofold screw axis running parallel to c, the equivalent positions are
x, y, z and −x, −y, z + 1/2.

F(hk2) =
n
∑

j=1

fj exp[i2π(hxj + kyj + 2zj)]

=
n/2
∑

j=1

fj(exp{i2π [hxj + kyj + 2zj]} + exp{i2π [−hxj − kyj + 2(zj + 1/2)]}).

iranchembook.ir/edu

https://iranchembook.ir/edu


Symmetry in Crystals 331

When h and k are both zero,

F(002) =
n/2
∑

j=1

fj exp(i2π2zj)[1 + exp(i2π2/2)].

This expression vanishes if 2 is odd, and is equal to 2
n/2
∑

j=1
fj exp[i2π2zj] when 2

is even. When reflections of the type (002) are absent with 2 odd, they suggest
the presence of a screw axis in the c direction.

The systematic absences due to the various types of lattice centering, screw
axes, and glide planes are given in Table 9.4.2, which is used in the deduction
of space groups.

Table 9.4.2. Determination of lattice type, screw axes, and glide planes from systematic absences
of X-ray reflections

Lattice type Reflections affected Conditions for absence

A-face centered hk2 k + 2 = odd
B-face centered hk2 h + 2 = odd
C-face centered hk2 h + k = odd
F-face centered hk2 h, k, 2 not all odd or even
I -body centered hk2 h + k + 2 = odd
R (rhombohedral lattice)
obverse setting hk2 −h + k + 2 '= 3n
reverse setting +h− k + 2 '= 3n

Screw axis Reflections affected Conditions for absence

21, 42, or 63 along a h00 h = odd
b 0k0 k = odd
c 00l 2 = odd

31, 32, 62, or 64 along c 00l 2 '= 3n
41 or 43 along a h00 h '= 4n

b 0k0 k '= 4n
c 00l 2 '= 4n

61 or 65 along c 00l 2 '= 6n

Glide plane Reflections affected Conditions for absence

a glide ⊥ b h02 h = odd
⊥ c hk0 h = odd

b glide ⊥ a 0k2 k = odd
⊥ c hk0 k = odd

c glide ⊥ a 0k2 2 = odd
⊥ b h02 2 = odd

n glide ⊥ a 0k2 k + 2 = odd
⊥ b h02 h + 2 = odd
⊥ c hk0 h + k = odd

d glide ⊥ a 0k2 k + 2 '= 4n
⊥ b h02 h + 2 '= 4n
⊥ c hk0 h + k '= 4n
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Table 9.4.3. Examples of deduction of space groups from systematic absences

Crystal system Symmetry elements deduced by systematic
absences with remarks

Possible space group

Monoclinic (a) no systematic absence P2, Pm, P2/m
(b) hk2: (h + k) odd⇒ C-centered

h02: h odd⇒ not a new condition
h02: 2 odd⇒ c glide ⊥ b axis
0k0: k odd⇒ not new

Cc, C2/c

Orthorhombic (a) no systematic absence⇒ P
0k2: 2 odd⇒ c glide ⊥ a axis
hk0: (h + k) odd⇒ n glide ⊥ c axis
h02: 2 odd⇒ c glide ⊥ b axis

Pccn

(b) hk2: (h + k) odd⇒ C
0k2: k odd⇒ not new
h02: h odd⇒ not new
h02: 2 odd⇒ c glide ⊥ b axis
hk0: (h + k) odd⇒ not new

Cmcm, C2cm ≡
Ama2, Cmc21

Tetragonal (a) Laue group 4/m
hk2: no systematic absence⇒ P
hk0: (h + k) odd⇒ n glide ⊥ c axis
002: 2 odd⇒ 42 axis // c axis

P42/n

(b) Laue group 4/m
hk2: (h + k + 2) odd⇒ I
hk0: (h + k) odd⇒ not new
002: 2 odd⇒ not new

I4, I 4̄, I4/m

(c) Laue group: 4/mmm
hk2: (h + k + 2) odd⇒ I
hk0: (h + k) odd⇒ not new
002: 2 odd⇒ not new

I422, I4mm, I 4̄m2
(m⊥ a, b; 2 //
diagonal of ab
plane), I 4̄2m (2 //
a, b; m⊥ diagonal of
ab plane)

Trigonal (based on
hexagonal cell)

(a) Laue group: 3̄
hk2: (−h + k + 2) '= 3n ⇒ R
002: 2 '= 3n ⇒ not new

R3, R3̄

(b) Laue group: 3̄m
hk2: (−h + k + 2) '= 3n ⇒ R
002: 2 '= 3n ⇒ not new

R32, R3m, R3̄m

Hexagonal (a) Laue group: 6/m
hk2: no systematic absence⇒ P
002: 2 odd⇒ 63 // c axis

P63, P63/m

(b) Laue group: 6mmm
hk2: no systematic absence⇒ P
002: 2 odd⇒ 63 // c axis

P6322

Cubic (a) Laue group: m3̄
hk2: (h + k), (k + 2) and (2+ h) odd⇒ F
0k2: (k + 2) '= 4n ⇒ d glide ⊥ a axis

Fd 3̄

(b) Laue group: m3̄m
hk2: (h + k), (k + 2) and (2+ h) odd⇒ F

F432, F 4̄3m, Fm3̄m

(3) Deduction of space groups from systematic absences
Selected examples of the use of systematic absences in the deduction of space
groups are illustrated in Table 9.4.3. Note that some conditions are redun-
dant, as they are already covered by more general conditions. Some space
groups can be determined uniquely, but others can only be narrowed down to a
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few possibilities. In Table 9.4.4, those space groups that cannot be established
unequivocally from systematic absences are listed.

9.5 Selected space groups and examples of crystal
structures

9.5.1 Molecular symmetry and site symmetry

In a molecular crystal, the idealized symmetry of the molecule is often not
fully expressed; in other words, the molecule occupies a site of lower point
symmetry. For example, in the crystal structure of naphthalene, the C8H10
molecule (idealized symmetry D2h) is located at a site of symmetry 1̄. On
the other hand, the hexamethylenetetramine molecule, (CH2)6N4, retains its Td
symmetry in the crystalline state. Biphenyl, C6H5−C6H5, which exists in a non-
planar conformation with a dihedral angle of 45◦ (symmetry D2) in the vapor
phase, occupies a site of symmetry 1̄ in the crystalline state and is therefore
completely planar.

Crystallization may in rare cases result in chemical transformation of the con-
stituents of a chemical compound. For example, PCl5 is a trigonal bipyramidal
molecule, but its crystal structure is composed of a packing of tetrahedral PCl+4
and octahedral PCl−6 ions. In contrast, PBr5 in the crystalline state comprises
PBr+4 and Br− ions; formation of the PBr−6 ion is precluded by steric repulsion
between the bulky peripheral bromide ions.

9.5.2 Symmetry deductions: assignment of atoms and groups to equivalent
positions

The presence of symmetry elements in a crystal imposes restrictions on the
numbers of atoms that can be accommodated in a unit cell. If the space group
does not have point symmetry elements which can generate special positions,
atoms can be placed only in the general position, and their numbers in the cell
are restricted to multiples of the multiplicity of that position. For example, space
group P212121 has just one set of equivalent positions of multiplicity equal to
4; accordingly, atoms can occur only in sets of fours in the unit cell of any
crystal belonging to this space group. A compound which crystallizes in this
space group is codeine hydrobromide dihydrate, C18H21O3N·HBr·2H2O. The
number of formula units per cell, Z , is equal to 4, so that every atom must be
present in multiples of 4.

When the space group has special positions in addition to the general position,
there is more latitude to the numbers of each atom type which can be present
in the cell. For example, FeSb2 belongs to space group Pnnm with Z = 2. This
space group has one general eightfold, three special fourfold (site symmetry 2
or m), and four twofold (site symmetry 2/m) sets of equipoints. The Fe atoms
must occupy one of the twofold sets. The Sb atoms may be assigned to two of
the three remaining twofold equipoints or one of the three fourfold equipoints,
but not the eightfold equipoint.

In simple inorganic crystals having only a few atoms per unit cell, equipoint
considerations alone may lead to a solution of the crystal structure, or to a small
number of possible solutions. For example, if a cubic crystal of composition
AB has Z = 4, its structure is fixed as either the NaCl type or the ZnS type.
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Table 9.4.4. Space groups not established uniquely from systematic absences

Laue class Symbol from
systematic absences∗

Possible space groups†

Triclinic 1̄ P! P1, P1̄
Monoclinic 2/m P! Pm, P2, P2/m

P!c Pc, P2/c
P21! P21, P21/m
C! Cm, C2, C2/m
C!c Cc, C2/c

Orthorhombic mmm P!!! Pmm2, P222, Pmmm
Pc!! Pcm21(= Pmc21), Pc2m (= Pma2), Pcmm (= Pmma)

Pn!! Pnm21(= Pmn21), Pnmm(= Pmmn)

Pcc! Pcc2, Pccm
Pca! Pca21, Pcam (= Pbcm)

Pba! Pba2, Pbam
Pnc! Pnc2, Pncm (= Pmna)

Pna! Pna21, Pnam (= Pnma)

Pnn! Pnn2, Pnnm
C!!! Cmm2, Cm2m (= Amm2), C222, Cmmm
C!c! Cmc21, C2cm (= Ama2), Cmcm
C!!a Cm2a (= Abm2), Cmma
C!ca C2ca, Cmca
Ccc! Ccc2, Cccm
I!!! Imm2, I222, I212121, Immm
I!a! Ima2, Imam (= Imma)

Iba! Iba2, Ibam
F!!! Fmm2, F222, Fmmm

Tetragonal 4/m P! P4̄, P4, P4/m
P42! P42, P42/m
I! I 4̄, I4, I4/m

Tetragonal P4/mmm P!!! P4̄2m, P4̄m2, P4mm, P422, P4/mmm
P!21! P4̄21m, P4212
P!!c P4̄2c, P42mc, P42/mmc
P!b! P4̄b2, P4bm, P4/mbm
P!bc P42bc, P42/mbc
P!c! P4̄c2, P42cm, P42/mcm
P!cc P4cc, P4/mcc
P!n! P4̄n2, P42nm, P42/mnm
P!nc P4nc, P4/mnc
I!!! I 4̄m2, I 4̄2m, I4mm, I422, I4/mmm
I!c! I 4̄c2, I4cm, I4/mcm
I!!d I 4̄2d , I41md

Trigonal 3̄ P! P3, P3̄
R! R3, R3̄

Trigonal 3̄m P!!! P3m1, P31m, P312, P321, P3̄1m, P3̄m1
P!c! P3c1, P3̄c1
P!!c P31c, P3̄1c
R!! R3m, R32, R3̄m
R!c R3c, R3̄c

Hexagonal 6/m P! P6, P6̄, P6/m
P63 P63, P63/m

Hexagonal 6/mmm P!!! P6̄m2, P6̄2m, P6mm, P622, P6/mmm
P!c! P6̄c2, P63cm, P63/mcm
P!!c P6̄2c, P63mc, P63/mmc
P!cc P6cc, P6/mcc

Cubic m3̄ P!! P23, Pm3̄
I!! I23, I213, Im3̄
F!! F23, Fm3̄

Cubic m3̄m P!!! P4̄3m, P432, Pm3̄m
P!!n P4̄3n, Pm3̄n
I!!! I 4̄3m, I432, Im3̄m
F!!! F 4̄3m, F432, Fm3̄m
F!!c F 4̄3c, Fm3̄c

∗ The symbol ! indicates a position for a possible point symmetry element.
† For orthorhombic space groups, the standard Hermann–Mauguin symbol for a different choice of axes
is enclosed in parentheses.
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The first belongs to space group Fm3̄m, and the latter to F4̄3m, and these two
possibilities can be distinguished by comparing the X-ray diffraction intensities
expected from the two structure types with those actually observed. This type
of deduction is based on consideration of the roles of the individual atoms in
a crystal structure, which usually finds application in compounds of inorganic
composition such as binary and ternary compounds, alloys, and minerals.

Symmetry considerations are most useful when applied to molecular crystals.
In most organic and organometallic crystals, the building units are not the
individual atoms but rather sets of atoms already organized into molecules.
In such cases the whole chemical molecule must conform to the equipoint
restrictions as to both number and symmetry. If the molecule occupies a general
position, it need not have any imposed symmetry, because the general position
has symmetry 1. But if the molecule is located on a special position, it must
have at least the symmetry of that special position. Accordingly, if the space
group and the equipoint occupied by the molecule are known, the minimum
symmetry which the molecule may have is determined. This information may
be useful for a chemist who is trying to decide which, of several configurations
that a molecule might conceivably have, is the true one.

It is commonly, but not always, true that all the molecules in a molecular
crystal are equivalent. When this is the case, then all the molecules occupy
the same set of equipoints; this implies that they are related to one another
by the various symmetry operations of the space group. On the other hand,
if the molecules occupy two or more Wyckoff positions, whether general or
special, they are chemically equivalent but crystallographically distinct. A good
example is the 1:1 adduct of hexamethylenetetramine oxide with hydroquinone,
(CH2)6N4→O · p-C6H4(OH)2. This compound crystallizes in space group P1̄
with Z = 2, and the p-C6H4(OH)2 molecules occupy two non-equivalent sites
of 1̄ symmetry, rather than a general position. In other words, the asymmetric
unit consists of a (CH2)6N4→O and two “half-molecules” of p-C6H4(OH)2,
which are chemically equivalent but crystallographically distinguishable.

The following three compounds all crystallize in space group P21/c. Useful
information on molecular structure can be deduced when Z is less than the
space-group multiplicity of 4.

(1) Naphthalene. Since Z = 2, the molecule occupies a site of symmetry 1̄;
in other words, there is an inversion center in the middle of the C4a–C8a
bond. With reference to the atom numbering system shown below, the
asymmetric unit can be taken as one of the right (1–4,4a), left (5–8,8a),
upper (1, 2, 7, 8, 8a) or lower (3, 4, 4a, 5, 6) half of the molecule. Note that
the idealized molecular symmetry D2h of naphthalene is not fully utilized
in the solid state, and some of the chemically identical bond distances and
bond angles have different measured values.

1

2

3

45

6

7

8
8a

4a
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(2) Biphenyl. Since Z = 2, an inversion center is present in the middle of
the bridging C–C bond between the two C6H5 rings. This means that both
phenyl rings are coplanar. The planar conformation of biphenyl in the crys-
talline state, which differs from its non-planar conformation in the solution
and gas phases, is attributable to efficient molecular packing stabilized by
intermolecular interactions between the phenyl rings.

(3) Ferrocene. With Z = 2, the molecule must be placed in a special position
of symmetry 1̄. The pair of cyclopentadienyl (Cp) rings are thus expected
to be staggered. In fact, the situation is more complicated. A thorough study
of the structure of crystalline ferrocene by X-ray and neutron diffraction
at temperatures of 173 and 298 K showed that the apparently staggered
arrangement of the Cp rings results from the presence of molecules in dif-
ferent orientations randomly distributed at both 173 and 298 K.Adisordered
model with the two Cp ring rotated about 12◦ from the eclipsed position is
displayed in Fig. 9.5.1. (The rotation angle is 0◦ for the precisely eclipsed
D5h conformation, and 36◦ for the exactly staggered D5d conformation.)

As a worked example, the assignment of atoms and groups to equivalent
positions for basic beryllium acetate is illustrated in detail in the following
paragraphs.

Basic beryllium acetate has the properties of a molecular solid rather than an
ionic salt. X-ray analysis has shown that it consists of discrete Be4O(CH3COO)6
molecules. The crystal structure is cubic, with a = 1574 pm and ρx = 1.39
g cm−3. The molecular weight of Be4O(CH3COO)6 is 406, and hence Z =
ρNoV /M = (1.39)(6.023 × 1023)(15.74 × 10−8)3/406 ≈ 8. The diffraction
(Laue) symmetry is m3̄. The condition for observable hk2 reflections: h, k, 2
all even or all odd indicates a F lattice; 0k2 present for (k + 2) = 4n indicates
the presence of a d glide plane. Hence the space group is uniquely established
as Fd 3̄ (No. 203).

Since Z = 8, the asymmetric unit consists of one molecule located in special
positions 8(a) or 8(b). The former may be taken for convenience. The molecular
symmetry utilized in the space group is therefore 23.

All atomic positional parameters, which define the crystal and molecular
structure, can be assigned to the general and special equivalent positions of
space group Fd 3̄ (origin at 23):

Fig. 9.5.1.
A possible nearly eclipsed configuration
for ferrocene in the disordered model.
From P. Seiler and J. D. Dunitz, Acta
Crystallogr., Sect. B 35, 1068–74 (1979).
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Wyckoff position Site symmetry Coordinates
(0, 0, 0; 0, 1/2, 1/2; 1/2, 0, 1/2; 1/2, 1/2, 0) +

96(g) 1 x, y, z; etc.
48(f ) 2 x, 0, 0; etc.
32(e) 3 x, x, x; etc.
16(d ) 3̄ 5/8, 5/8, 5/8; etc.
16(c) 3̄ 1/8, 1/8, 1/8; etc.
8(b) 23 1/2, 1/2, 1/2; 3/4, 3/4, 3/4

8(a) 23 0, 0, 0; 1/4, 1/4, 1/4

The atom numbering scheme and molecular structure of Be4O(CH3COO)6
is shown in Fig. 9.5.2.

The assignment of atomic positions proceeds as follows. The basic oxygen
O(1) is placed in 8(a); Be in 32(e), not in 16(c)+16(d) because its coordination
preference is tetrahedral rather than octahedral, and the molecule possesses
symmetry element 3 but not 3̄; carboxylate carbon C(1) in 48(f ) lying on twofold
axis; methyl carbon C(2) in 48(f ) lying on twofold axis; acetate oxygen O(2)
in 96(g). The crystal and molecular structure is therefore determined by six
parameters: x of Be; x of C(1); x of C(2); x, y, z of O(2).

The following assignment shows that six positional parameters (neglecting
the hydrogen atoms) are required for a description of the crystal structure.
The hydrogen atoms are orientationally disordered, and they occupy general
position 96(g) with half-site occupancy, as indicated in the last three rows of
the table.

Assignment Parameters Remarks

Be4O(CH3COO)6 in 8(a) none Molecular symmetry has 23(T )
O(1) in 8(a) none Basic oxygen atom is at the centroid of the tetrahedron

formed by Be atoms.
Be(1) in 32(e) xBe Beryllium atom lies on C3 axis.
O(2) in 96(g) xO2, yO2, zO2 Carboxylate oxygen atom is in general position.
C(1) in 48(f ) xC1 Carboxylate carbon atom lies on C2 axis.
C(2) in 48(f ) xC2 Methyl carbon lies on the same C2 axis.
1
2 H(1) in 96(g) xH1, yH1, zH1 The methyl group is twofold disordered along
1
2 H(2) in 96(g) xH2, yH2, zH2 the C–C bond; the site occupancy factor of
1
2 H(3) in 96(g) xH3, yH3, zH3 each methyl hydrogen atom is 1/2.

C(2)
O(2)

C(1)

O(1)

Be

Fig. 9.5.2.
Molecular structure of
Be4O(CH3COO)6 with atom labels.
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In the crystal structure, the symmetry of the Be4O(CH3COO)6 molecule
is 23. The central oxygen atom is tetrahedrally surrounded by four beryllium
atoms, and each beryllium atom is tetrahedrally surrounded by four oxygen
atoms. The six acetate groups are attached symmetrically to the six edges of the
tetrahedron. Hydrogen atoms of statistical weight 1/2 are distributed over two
sets of positions, corresponding to two equivalent orientations of the methyl
group. Although the idealized molecular point group of Be4O(CH3COO)6 is
4̄3m(Td), the molecular symmetry in the crystal is reduced to the subgroup 23
(T ), and the symmetry elements 4̄ and m are not utilized.

9.5.3 Racemic crystal and conglomerate

A racemic crystal contains equal numbers of both enantiomeric forms of a
given compound in the unit cell of a centrosymmetric space group. A helicate
consists of a linear array of metal ions along a central axis, around which there
is a helical arrangement of bridging polytopic ligands. If a helicate crystallizes
in a centrosymmetric space group, both right- and left-handed helices must
coexist in equal numbers.

A conglomerate contains a 50:50 mixture of single crystals of both enan-
tiomeric forms of a pure compound.Asingle crystal of either enantiomer may be
picked up by chance for X-ray structure analysis. The space group is necessarily
non-centrosymmetric.

Note that even for an achiral compound, there is the possibility of its building
blocks being organized into chiral structures in the solid state, such as a right-
handed (or left-handed) helix or three-leafed propeller. The classical inorganic
example is α-quartz; the space group is P3121 (No. 152) for the dextrorotatory
form and P3221 (No. 154) for the levorotatory form. An organic example is
provided by an isomorphous series of channel inclusion compounds of urea,
which crystallize in the hexagonal space group P6122 (No. 178) or P6522 (No.
179). The structure of this type of compounds will be described in Section 9.6.5.

9.5.4 Occurrence of space groups in crystals

Nowadays the number of reported crystal structures is growing at the rate of
more than 10,000 per year. There are known compounds in each of the 230
space groups. Several statistical studies have been carried out using the wealth of
structural information in three major resources: Cambridge Structural Database
(for organic compounds, organometallic compounds, and metal complexes con-
taining organic ligands; abbreviated as CSD), the Inorganic Crystal Structure
Database (ICSD), and the Metals Data File (MDF). The principal findings on
the distribution of space groups are summarized below:

(1) Inorganic compounds are fairly evenly distributed among the seven crystal
systems. Orthorhombic, monoclinic, and cubic crystals (in the order of
abundance) comprise about 60% of the total number.

(2) In contrast, organic compounds are heavily concentrated in the
lower-symmetry crystal systems. Monoclinic, orthorhombic, and triclinic
crystals (in that order) comprise over 95% of the total number.
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Table 9.5.1. Distribution of the most common space groups for crystals

Rank Inorganic Organic

Space group % Space group %

1 Pnma 8.25 P21/c 36.57
2 P21/c 8.15 P1̄ 16.92
3 Fm3̄m 4.42 P212121 11.00
4 P1̄ 4.35 C2/c 6.95
5 C2/c 3.82 P21 6.35
6 P63/mmc 3.61 Pbca 4.24
7 C2/m 3.40 Pna21 1.63
8 I4/mmm 3.39 Pnma 1.57
9 Fd 3̄m 3.03 P1 1.23
10 R3̄m 2.47 Pbcn 1.01
11 Cmcm 1.95 Cc 0.97
12 P3̄m1 1.69 C2 0.90
13 Pm3̄m 1.46 Pca21 0.75
14 R3̄ 1.44 P21/m 0.64
15 P6/mmm 1.44 P21212 0.53
16 Pbca 1.34 C2/m 0.49
17 P21/m 1.33 P2/c 0.49
18 R3̄c 1.10 R3̄ 0.46

∗ Centrosymmetric space groups are highlighted in bold-face type. From W. H.
Baur and D. Kassner, Acta Crystallogr., Sect B 48, 356–69 (1992).

(3) About 75–80% of known compounds crystallize in centrosymmetric space
groups. About 80% of the non-centrosymmetric organic structures occur in
space groups without an improper rotation axis n (the Sohncke groups).

(4) A1992 survey of over 86,000 compounds in the three main crystallographic
databases showed that about 57% of inorganic compounds are found in
18 most frequent space groups, which are all centrosymmetric. This is
compared to about 93% for organic compounds in a different list of 18 space
groups, of which eight lack an inversion center, including five possible ones
for enantiomerically pure materials. Eight space groups are common to both
lists. The principal findings are tabulated in Table 9.5.1.

(5) The three most common space groups for chemical compounds are
P21/c, P1, and C2/c. In particular, P21/c is by far the dominant space
group for organic crystals.

(6) Wrong assignment of space groups occurs most frequently for Cc (correct
space group is C2/c, Fdd2, or R3̄c). Other incorrect assignments often
made are P1 (correct space group P1̄), Pna21 (correct space group Pnma),
and Pc (correct space group P21/c).

9.6 Application of space group symmetry in crystal
structure determination

A precise description of the structure of a crystalline compound necessitates
prior knowledge of its space group and atomic coordinates in the asymmetric
unit. Illustrative examples of compounds belonging to selected space groups in
the seven crystal systems are presented in the following sections.
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153.1

156.3

154.1

138.6

138.9

138.8
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Fig. 9.6.1.
Bond lengths and crystal structure of C6Me6.

9.6.1 Triclinic and monoclinic space groups

(1) Space group P1 (no. 2), multiplicity = 2
Hexamethylbenzene, C6Me6, exists as a plastic phase I above 383 K, a room-
temperature phase II, and a low-temperature phase III below 117.5 K. Both
phase II and phase III crystallize in space group P1̄ with Z = 1. The molecule
is therefore located at an inversion center, and the site symmetry 1̄ is much lower
than the idealized molecular symmetry of D6h. The asymmetric unit consists
of one-half of the molecule.

Determination of the crystal structure of phase II by Lonsdale in 1929
unequivocally settled over 70 years of debate concerning the geometry and
bonding of aromatic molecular systems. The measured bond lengths and crystal
structure of hexamethylbenzene are shown in Fig. 9.6.1. The hexamethylben-
zene molecules lie within planes approximately perpendicular to (111). Phase
III is structurally very similar to phase II, but differs from it mainly by a shear-
ing process between molecular layers that results in a pseudo-rhombohedral,
more densely packed arrangement.

Cisplatin is the commercial name of cis-diamminedichloroplatinum(II),
which is widely used as an approved drug since 1978 for treating a variety
of tumors. In the crystal structure, Z = 2, and the cis-PtCl2(NH3)2 molecule
was found to occupy a general position. The measured dimensions and crystal
packing are shown in Fig. 9.6.2.

(2) Space group P21 (no. 4), multiplicity = 2
This is one of the most common space groups for non-centrosymmetric
molecules, particularly natural products and biological molecules. For example,
sucrose is a non-reducing sugar, and X-ray analysis has revealed that its α-D-
glucopyranosyl-β-D-fructofuranoside skeleton consists of a linkage between
α-glucose and β-fructose moieties. The intramolecular hydrogen bonds and
crystal structure are illustrated in Fig. 9.6.3.
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Cl
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NH3

Cl 205(4)

195(3)

232.8(9)

233.3(9)
o

a
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c

Fig. 9.6.2.
Molecular and crystal structure of
cis-PtCl2(NH3)2.

(3) Space group P21/c (no. 14), multiplicity = 4
Naphthalene crystallizes in this space group with Z = 2; the measured
molecular dimensions and molecular packing are displayed in Fig. 9.6.4.

Also crystallizing in space group P21/c, uranocene has two molecules per
unit cell, so that the U(C8H8)2 molecule occupies a special position of site
symmetry 1̄. In other words, the molecule has an eclipsed conformation, and
it may be assigned to special position 2(a). Similarly, the two halves of the
[Re2Cl8]2− dianion in K2[Re2Cl8]·2H2O (Z = 2) are in the eclipsed orientation
with respect to each other. The measured molecular dimensions (indicating
that the symmetry of the dianion is D4h within experimental error) and crystal
structure are shown in Fig. 9.6.5.

O C
H

o c

a

b

Fig. 9.6.3.
Molecular and crystal structure of sucrose.

With Z = 2, the iron(II) phthalocyanine molecule occupies a 1̄ site, and its
molecular and crystal structures are shown in Fig. 9.6.6.

N ′′-Cyano-N , N -diisopropylguanidine crystallizes in space group P21/c
with Z = 40. The asymmetric unit thus contains an exceptionally high
number of ten molecules, which are labeled A to J in Fig. 9.6.7. These crys-
tallographically independent yet structurally similar molecules constitute five
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Fig. 9.6.4.
Molecular and crystal structure of naphthalene.

Fig. 9.6.5.
Molecular and crystal structure of
[Re2Cl8]2−.

Re

Cl

Re—Re = 224.2 pm
Re—Cl = 229.0 pm (av.)

c

a

b

o

Fe

N C
H oa
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c

Fig. 9.6.6.
Molecular and crystal structure of iron(II) phthalocyanine.
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N
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N N
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H
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F
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D

Fig. 9.6.7.
Top: hydrogen-bond ribbon formed from
ten independent molecules in the
asymmetric unit. Bottom left: structural
formula of
N ′′-cyano-N , N -diisopropylguanidine.
Bottom right: projection of the
asymmetric unit along [101], which
appears as a helix.
[Ref. X. Hao, J. Chen, A. Cammers, S.
Parkin and C. P. Block, Acta
Crystallogr., Sect B, 61, 218–26 (2005).]

hydrogen-bonded dimers (AB, CD, EF, GH, IJ), which are connected by addi-
tional hydrogen bonds to form a twisted ribbon. Extension of the ribbon along
[101] generates an infinite helix with five dimeric units per turn.

Al

C
215.3

195.7

189.3

213.4

O

a

b

c

Fig. 9.6.8.
Molecular and crystal structure of Al2Me6.

(4) Space group C2/c (no. 15), multiplicity = 8
Trimethylaluminum is a dimer with idealized molecular symmetry D2h, so that
its molecular formula should be written as Al2Me6. There are four dimeric
molecules in the unit cell. The molecule may be placed in Wyckoff position
4(a) of site symmetry 1̄ or 4(e) of site symmetry 2, and the former has been
found. The measured molecular dimensions and crystal structure are shown in
Fig. 9.6.8.

9.6.2 Orthorhombic space groups

(1) Space group P212121 (no. 19), multiplicity = 4
The iron-thiolato complex (Me4N)2[Fe4S4(SC6H5)4] crystallizes in this space
group with Z = 4, and the asymmetric unit consists of two Me4N+ cations and
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Fig. 9.6.9.
(a) Molecular structure of
[Fe4S4(SC6H5)4]2−. (b) Crystal
structure of its Me4N+ salt.

o

a

c

b

(a) (b)

a tetranuclear [Fe4S4(SC6H5)4]2− cluster dianion. The molecular and crystal
structures are shown in Fig. 9.6.9.

(2) Space group Pnma (no. 62), multiplicity = 8
Hexachlorocyclophosphazene, (PNCl2)3, has Z = 4. Space group Pnma (no.
62) has special positions of site symmetry 1̄ and m; clearly 1̄ can be ruled
out, and the molecule has a mirror plane passing through a PCl2 group and an
opposite N atom in the ring. The molecular and crystal structure are shown in
Fig. 9.6.10.

The Dewar benzene derivative 1′,8′:3,5-naphtho[5.2.2]propella-3,8,10-
triene, C18H14, also has Z = 4, and a crystallographic mirror plane passes
through the central naphthalene C–C bond and the midpoints of the bonds
C(8)-C(8′), C(9)-C(9′) and C(10)-C(10′). The measured bond lengths in the
strained ring system and crystal structure are shown in Fig. 9.6.11.

Fig. 9.6.10.
Molecular and crystal structures of
(PNCl2)3.

Cl

P

N

o

c

b

a

(3) Space group Cmca (no. 64), multiplicity = 16
If the formula of orthorhombic black phosphorus is written simply as P, then
Z = 8. The special positions of space group Cmca are 4(a) 2/m, 4(b) 2/m, 8(c)
1̄, 8(d ) 2, 8(e) 2, 8(f ) m, and general position 16(g) 1. The independent P atom
actually is located in 8(f ), generating a continuous double-layer structure, which
is a heavily puckered hexagonal net in which each P atom is covalently bound
to three others within the same layer. In Fig. 9.6.12, two puckered layers in
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C8−C8´       156.5 pm
C9−C9´       131.1 pm
C10−C10´   131.9 pm
C8−C7        150.8 pm
C8−C9        152.1 pm
C8−C10      152.4 pm

o

b

a

c

7

9

9'
  8
 8'

10
10'

Fig. 9.6.11.
Molecular and crystal structures of
1’,8’:3,5-naphtho[5.2.2]propella-3,8,10-
triene.

projection are shown on the left, and a perspective view of the crystal structure
is shown on the right.

9.6.3 Tetragonal space groups

(1) Space group P41212 (no. 90), multiplicity = 4
The compound 1,1′-binaphthyl exists in its stable conformation as a chiral
molecule. In the crystalline state, it exists in higher melting (159◦C) and lower
melting (145◦C) forms. The latter form is a racemic crystal in space group
C2/c.

In the crystal structure of the chiral higher melting form, a crystallographic
twofold axis that bisects the central C(1)–C(1′) bond. The molecule has a gauche
configuration about the C(1)–C(1′) bond with a dihedral angle of 103.1◦. The
molecular structure and packing are shown in Fig. 9.6.13.

o c

a

o

a

c

b

Fig. 9.6.12.
Two views of the crystal structure black
phosphorus.

(2) Space group P4̄21m (no. 113), multiplicity = 8
Urea was the first organic compound to be synthesized in the laboratory, a feat
accomplished by Wöhler in 1828. In the crystal, urea occupies special position
2(c) where its mm2 molecular symmetry is fully utilized. Every hydrogen atom
is involved in a N–H· · · O hydrogen bond, and this accounts for the fact that
urea occurs as a solid at room temperature. A feature of chemical interest in the
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o

a

b

c

Fig. 9.6.13.
Molecular and crystal structure of 1,1’-binaphthyl.

urea structure is that it provides the first example of a carbonyl O atom which
forms four acceptor N–H· · · O hydrogen bonds. The crystal packing of urea is
shown in Fig 9.6.14.

(3) Space group I4/mmm (no. 139), multiplicity = 32
Xenon difluoride XeF2 and calcium carbide (form I) CaC2 are isomorphous;
with Z = 2, the linear triatomic molecule occupies Wyckoff position 2(a) of
site symmetry 4/mmm. Hg2Cl2 (calomel) has a very similar crystal structure,
although it is tetraatomic. The molecular structure and crystal packing of XeF2
and Hg2Cl2 are compared in Fig. 9.6.15.

O

C

N

H

a

oc

b

b o

a

c

Fig. 9.6.14.
Molecular and crystal structures of urea.

(4) Space group I4/mcm (no. 140), multiplicity = 32
The newly prepared calcium nitridoberyllate Ca[Be2N2] crystallizes in this
space group with a = 556.15 pm, c = 687.96 pm, and Z = 4. The atoms are
located as shown in the following table:
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F

198.3

c

o

a

b

252.7

242.4

Cl

Hg

Xe

a

o
b

c

(a) (b)

Fig. 9.6.15.
Comparison of the molecular and crystal
structure of (a) XeF2 and (b) Hg2Cl2.

Atom Wyckoff
position

Site
symmetry

Coordinates
(0, 0, 0; 1/2, 1/2, 1/2)+

Be 8(h) mm x, 1/2 + x, 0; x̄, 1/2− x, 0; 1/2 + x, x̄, 0; 1/2− x, x, 0; x = 0.372
N 8(h) mm x, 1/2 + x, 0; x̄, 1/2− x, 0; 1/2 + x, x̄, 0; 1/2− x, x, 0; x = 0.833
Ca 4(a) 42 0, 0, 1/4; 0, 0, 3/4

The crystal structure contains planar nitridoberyllate 4.82 nets (the notation
4.82 indicates that each node in the net is the common vertex of one four-
membered and two eight-membered rings), which are stacked in a . . .ABAB. . .

sequence but slightly rotated with respect to each other, such that the Be and
N atoms aternate along the [001] direction. The slightly irregular octagonal
voids between the nitridoberyllate layers are filled by Ca2+ ions, as shown in
Fig. 9.6.16.

(5) Space group I 4̄2d (no. 122), multiplicity = 16
meso-(Tetraphenylporphinato)iron(II), [Fe(TPP)], C44H28N4Fe, has Z = 4.
The molecule occupies Wyckoff position 4(a) of site symmetry 4̄; it has a ruffled
structure. The dihedral angles between the porphyrin and the pyrrole planes, and
between the porphyrin and the benzene planes, are 12.8◦ and 78.9◦, respectively.
The molecular and crystal structure of Fe(TPP) are shown in Fig. 9.6.17.

9.6.4 Trigonal and rhombohedral space groups

(1) Space group P3̄ (no. 147), multiplicity = 6
The crystal structure of the salt [{K(2.2.2-crypt)}2][Pt@Pb12] contains a dian-
ion composed of a cage of 12 Pb atoms that encloses a centered Pt atom, denoted
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Fig. 9.6.16.
Crystal structure of Ca[Be2N2]; the Be,
N and Ca atoms are represented by
circles of increasing size. From E. N.
Esenturk, J. Fettinger, F. Lam and B.
Eichhorn, Angew. Chem. Int. Ed. 43,
2132-4 (2004).

Fig. 9.6.17.
Molecular and crystal structure of
[Fe(TPP)].

o
c b

  a

Fig. 9.6.18.
Molecular structure of [Pt@Pb12]2−:
(a) view down the 3̄-axis; (b) perspective
view.

(a) (b)

by the symbolic structural formula [Pt@Pb12]2−, which has near-perfect icosa-
hedral symmetry Ih. With Z = 1, the anion occupies a 3̄ site [Wyckoff position
1(a)], and the [K(2.2.2-crypt)]+ cation lies on a 3-axis [Wyckoff position 2(d )].
The molecular structure of [Pt@Pb12]2− is shown in Fig. 9.6.18.
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 C
H

oa

b

c

Fig. 9.6.19.
Molecular and crystal structure of
cubane.

(2) Space group R3̄ (no. 148), multiplicity = 6 for rhombohedral
unit cell

Cubane was first synthesized by Eaton in 1964. In the crystal, with Z = 1,
the molecule has symmetry 3̄, so that there are two independent carbon atoms
that occupy general position 6(f ) and special position 2(c) of site symmetry 3.
The C–C bond lengths are 155.3(3) and 154.9(3) pm, and the C–C–C bond
angles are 89.3◦, 89.6◦, and 90.5◦, all being close to the values expected for a
regular cube. Figure 9.6.19 shows the molecular structure and crystal packing
of cubane. Historically, the cubane structure was used in the first demonstration
of the molecular graphics program ORTEP (Oak Ridge Thermal Ellipsoid Plot)
written by C. K. Johnson.

N

C
H

c

b

a

0 Fig. 9.6.20.
Molecular and crystal structures of
s-triazine.

(3) Space group R3̄c (no. 167), multiplicity = 36 for hexagonal
unit cell

The hexagonal unit cell of s-triazine has Z = 6, and the molecule occupies
Wyckoff position 2(a) of site symmetry 32. The molecule is planar, but it devi-
ates quite markedly from a regular hexagon. From a neutron study, the C–N
and C–H bond lengths are 131.5(2) and 93(4) pm, respectively, and the N–C–N
angle is 125(1)◦. Figure 9.6.20 shows the molecular structure and packing of
s-triazine molecules in the unit cell. The molecules are arranged in columns
parallel to c with a regular spacing of c/2. Besides the pair of neighbors above
and below it, each molecule is surrounded by six others at a center-to-center
separation of 570 pm.

Crystalline s-triazine undergoes a phase transition from a rhombohedral
structure (space group R3̄c) at room temperature to a monoclinic structure
(space group C2/c) below 198 K.
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Y
0

X

Z

X

Y

Fig. 9.6.21.
Crystal structure of α-rhombohedral boron: (a) a layer of linked B12 icosahedra viewed along the c axis;
(b) linkage between layers.

(4) Space group R3̄m (no. 166), multiplicity = 36 for hexagonal
unit cell

The hexagonal unit cell of the α-rhombohedral form of elemental boron (α-
R12 boron) contains 36 B atoms that form three B12 icosahedra. The B12
icosahedron occupies Wyckoff position 3(a) of site symmetry 3̄m, so that the
asymmetric unit contains two independent B atoms in position 18(h) of site
symmetry m.

In the crystal structure of α-R12 boron, the B12 icosahedra are arranged
in approximately cubic closest packing and are linked together in a three-
dimensional framework. Figure 9.6.21 shows a layer of interlinked icosahedra
perpendicular to the 3̄-axis, and a perspective view of the crystal structure
approximately along the a axis (note the linkage between layers of icosahedra
at z = 0, 1/3, 2/3, 1). Further details are given in Section 13.2.

9.6.5 Hexagonal space groups

(1) Space group P6122 (no. 178), multiplicity = 12
Urea forms an isomorphous series of crystalline non-stoichiometric inclusion
compounds with n-alkanes and their derivatives (including alcohols, esters,
ethers, aldehydes, ketones, carboxylic acids, amines, nitriles, thioalcohols, and
thioethers), provided that their main chain contains six or more carbon atoms.
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Fig. 9.6.22.
(Top) Stereodrawing of the
hydrogen-bonded urea host lattice
showing an empty channel extending
parallel to the c axis. A
shoulder-to-shoulder urea ribbon is
highlighted by showing its N–H· · · O
hydrogen bonds as open lines. (Bottom)
The channel-type structure of inclusion
compounds of urea viewed along the c
axis. For clarity the guest molecules are
represented by large circles.

The hexagonal unit cell, belonging to space group P6122 or P6522, contains
six urea molecules in Wyckoff position 6(a) of site symmetry 2. The urea host
molecules are arranged in three twined helical spirals, which are interlinked
by hydrogen bonds to form the walls of each channel, within which the guest
molecules are densely packed (Fig. 9.6.22, top). The host molecules are almost
coplanar with the walls of the hexagonal channel, and the channels are packed
in a distinctive honeycomb-like manner (Fig. 9.6.22, bottom). The host lattice is
stabilized by the maximum possible number of hydrogen bonds that lie virtually
within the walls of the hexagonal channels: each NH2 group forms two donor
bonds, and each O atom four acceptor bonds, with their neighbors.

(2) Space group P6/mcc (no. 192), multiplicity = 24
Beryl has the structural formula Be3Al2[Si6O18], with a = 920.88(5), c =
918.96(7) pm and Z = 2. The structure of beryl was determined by Bragg
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Fig. 9.6.23.
Crystal structure of beryl.

and West in 1926. The atoms are located in the following general and special
positions.

Atom Wyckoff position Site symmetry x y z

Si 12(2) m 0.3875 0.1158 0
Be 6(f ) 222 1/2 0 1/4
Al 4(c) 32 2/3 1/3 1/4
O(1) 12(2) m 0.3100 0.2366 0
O(2) 24(m) 1 0.4988 0.1455 0.1453

The crystal structure consists of [SiO4] tetrahedra, which are connected by
sharing oxygen atoms of the type O(1) so as to form a sixfold ring. The resulting
[Si6O18]2− cyclic anions are arranged in parallel layers about the z = 0 and z =
1/4 planes. They are further linked together by bonding, through oxygen atoms
of the type O(2), to BeII and AlIII ions, to give a three-dimensional framework,
as shown in Fig. 9.6.23. The bond distances are Si–O = 159.2 to 162.0 pm
in the [SiO4] tetrahedron, Be–O = 165.3 pm in the [BeO4] tetrahedron, and
Al–O = 190.4 pm in the [AlO6] octahedron.

(3) Space group P63/mmc (no. 194), multiplicity = 24
The crystal structure of cesium iron fluoride, Cs3Fe2F9, comprises a packing
of binuclear face-sharing octahedral Fe2F3−

9 units and Cs+ ions. With a =
634.7(1), c = 1480.5(3) pm and Z = 2, the locations of the atoms and the
Fe2F3−

9 anion are shown in the following table:

iranchembook.ir/edu

https://iranchembook.ir/edu


Symmetry in Crystals 353

(a) (b)

Fig. 9.6.24.
(a) Molecular structure of the Fe2F3−

9
anion and (b) crystal structure of its Cs+
salt.

Atom/Unit Wyckoff position Site symmetry x y z

Cs(1) 2(d ) 6̄m2 1/3 2/3 3/4

Cs(2) 4(f ) 3m 1/3 2/3 0.43271
Fe 4(e) 3m 0 0 0.15153
F(1) 6(h) mm 0.1312 0.2624 1/4

F(2) 12(k) 1 0.1494 0.2988 0.5940
Fe2F3−

9 2(b) 6̄m2 0 0 1/4

The structure of the Fe2F3−
9 anion and the crystal packing in Cs3Fe2F9 are

shown in Fig. 9.6.24.

9.6.6 Cubic space groups

(1) Space group Pa3̄ (no. 205), multiplicity = 24
The alums are a group of hydrated double salts with the general formula MIMIII

(XO4)2·12H2O in which MI is a monovalent metal such as Na+, K+, Rb+, Cs+,
NH+

4 , or Tl+; MIII is a trivalent metal such as Al3+, Cr3+, Fe3+, Rh3+, In3+,
or Ga3+ and X is S or Se. They crystallize in the space group Pa3̄ (no. 205)
but occur in three distinct types, α, β, and γ ; the order of increasing MI size
is generally γ , α, β, but this is not always true. There are only a few known γ
alums with sodium as the monovalent MI ion. Most cesium sulfate alums adopt
the β structure, but exceptions occur when MIII is cobalt, rhodium, or iridium,
for which the cesium sulfate alums have the α structure. The best known alum is
potassium aluminum alum (potash alum), KAl(SO4)2·12H2O, which belongs
to the α type.

The crystal structure of KAl(SO4)2·12H2O is cubic, with a = 1215.8 pm
and Z = 4; if the formula is written as K2SO4·Al2(SO4)3·24H2O, then Z = 2.
The Laue symmetry of the diffraction pattern is m3̄; the systematic absences
are 0k2 reflections with k odd, h02 with 2 odd, and hk0 with h odd. From
these conditions, the space group can be uniquely established as Pa3̄ (no.
205). The space group symbol indicates a primitive lattice, with a glide plane
normal to the a axis (the glide direction is 1/2 along b, i.e., a glide compo-
nent of b/2) and four 3̄-axes along the body diagonals of the unit cell. Since
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the crystal system is cubic, the symbol a also implies a glide plane normal
to b with glide component c/2, and a glide plane normal to c with glide
component a/2.

All atomic positional parameters of the potash alum structure can be
assigned to the following general and special equivalent positions of space
group Pa3̄.

Wyckoff position Site symmetry Coordinates

24(d) 1 x, y, z; x̄, ȳ, z̄; etc.
8(c) 3 x, x, x; x̄, x̄, x̄; etc.
4(b) 3̄ 1/2, 1/2, 1/2; 1/2, 0, 0; 0, 1/2, 0; 0, 0, 1/2

4(a) 3̄ 0, 0, 0; 0, 1/2, 1/2; 1/2, 0, 1/2; 1/2, 1/2, 0

There are four K+ and four Al3+ ions in the unit cell, and they can be
assigned to the 3̄ sites 4(a) and 4(b), respectively. The reverse assignment
makes no real difference as it merely involves a shift of the origin of the unit
cell. Once sites 4(a) and 4(b) have been filled, the eight sulfur atoms must be
assigned to 8(c) which means that the SO2−

4 ion lies on a 3-axis. The 32 sulfate
oxygens can be assigned to 8(c) + 24(d); since the sulfate ion is tetrahedral,
only one of its oxygen atom can lie on the same 3-axis; there are thus two
types of independent sulfate oxygen atoms. The 48 water oxygen atoms can
be assigned to 2× 24(d), and their 96 water hydrogen atoms to 4× 24(d). In
summary, the positional parameters of non-hydrogen atoms can be assigned as
follows:

Assignment Parameters Remarks

K(1) in 4(a)
Al(1) in 4(b)
S(1) in 8(c)
O(1) in 8(c)
O(2) in 24(d )
O(1w) in 24(d )
O(2w) in 24(d )

none
none
xS
xO1
xO2, yO2, zO2
xO1w , yO1w , zO1w
xO2w , yO2w , zO2w

Arbitrarily placed
Must be placed in this position
S atom lying on 3-axis
S-O bond lying on 3-axis
The other sulfate O in general position
Water molecule coordinated to K+
Water molecule coordinated to Al3+

Therefore, eleven parameters are sufficient to define the crystal structure, and
an additional 4 × 3 = 12 parameters are required if the hydrogen atoms are
also included. When a water molecule is coordinated to a K+ or Al3+ cation,
an octahedral coordination environment is generated around the cation by the
3̄ symmetry operation. Therefore, the crystal structure of KAl(SO4)2·12H2O
can be regarded as a packing of [K(H2O)6]+ and [Al(H2O)6]3+ octahedra and
SO2−

4 tetrahedra. If the structural formula of KAl(SO4)2·12H2O is rewritten
as K(H2O)6·Al(H2O)6·2SO4, it is easy to see that the three kinds of moi-
eties can be assigned to Wyckoff positions 4(a), 4(b), and 8(c), respectively.
Both hydrated cations have site symmetry 3̄ (a subgroup of m3̄m for a regular
octahedron), and the sulfate anion has site symmetry 3 (a subgroup of 4̄3m
for a regular tetrahedron). The crystal structure of potash alum is shown in
Fig. 9.6.25.
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o

a

b

c

Fig. 9.6.25.
Crystal structure of potash alum.

Representative examples of the β and γ alums are CsAl(SO4)2·12H2O and
NaAl(SO4)2·12H2O, respectively. In theα andγ alums, the six water molecules
generated from O(1w) constitute a flattened octahedron centered at MI. In con-
trast, in a β alum these six water molecules lie almost in a planar hexagon
around the large MI atom. In both α andβ alums, the S–O(1) bond points away
from the nearest MI atom, but in the γ form the S–O(1) bond points towards it.
Accordingly, the coordination number of MI in a γ alum is eight (six waters and
two sulfate oxygens of type O(1)), which is increased to twelve for the α and β
alums (six waters and six sulfate oxygens of type O(2)). In both α and β alums,
the MIII(H2O)6 unit is a distorted octahedron whose principal axes are nearly
parallel to the unit-cell axes; in contrast, the MIII(H2O)6 octahedron in the γ
form is very regular but rotated by approximately 40◦ about the body diagonal
of the unit cell. The crystal structures of the β and γ forms are compared in
Fig. 9.6.26.

(2) Space group I 4̄3m (no. 217), multiplicity = 48
Hexamethylenetetramine, (CH2)6N4, was the first organic molecule to be
subjected to crystal structure analysis. The crystals are cubic, with a = 702
pm and measured density ρ = 1.33 g cm−3. Calculation using the formula
Z = ρNoV /M = (1.33)(6.023 × 1023)(7.02 × 10−8)3/140 ∼ 2 shows that
there are two molecules in the unit cell.

From the X-ray photographs, the Laue symmetry is established as cubic m3̄m
and the systematic absences are hk2with (h+k +2) odd. All three point groups
432, 4̄3m, and m3̄m belong to the same Laue class m3̄m, and three space groups
I432, I 4̄3m, and Im3̄m are consistent with the observed systematic absences
and Laue symmetry. Furthermore, as the (CH2)6N4 molecule lacks either a
4-axis or a center of symmetry, the true space group can be unequivocally
established as I 4̄3m, which has the following general and special equivalent
positions:
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(a) (b)

Fig. 9.6.26.
Comparison of the crystal structures of (a) γ alum NaAl(SO4)2·12H2O and (b) β alum CsAl(SO4)2·12H2O. For clarity the bonds between the
MI atoms and the sulfate groups are represented by broken lines.

Wyckoff position Site symmetry Coordinates
(0, 0, 0; 1/2, 1/2, 1/2)+

48(h)
24(g)
24(f )
12(e)
12(d )
8(c)
6(b)
2(a)

1
m
2
mm
4̄
3m
4̄2m
4̄3m

x, y, z; etc.
x, x, z; etc.
x, 1/2, 0; etc.
x, 0, 0; etc.
1/4, 1/2, 0; etc.
x, x, x; etc.
0, 1/2, 1/2; etc.
0, 0, 0

All atomic positions, including hydrogens in the unit cell, can be assigned to
the following special positions in space group I 4̄3m:

Assignment Parameters Remarks

(CH2)6N4 in 2(a)
N in 8(c)
C in 12(e)
H in 24(g)

none
xN
xC
xH, zH

molecular symmetry is Td
N at the intersection of C3 and three σd’s
C at the intersection of two σd’s
methylene H lies in σd

As the structure consists of a body-centered arrangement of (CH2)6N4
molecules, four positional parameters are required for a complete description
of the crystal structure. Moreover, the fractional coordinates for carbon and
nitrogen can be deduced from relevant chemical data: (a) the van der Waals
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(a) (b)

Fig. 9.6.27.
(a) Molecular structure of (CH2)6N4,
with H atoms represented by small open
circles. There are three 2-axes, each
passing through a pair of carbon atoms,
four 3-axes, each through a nitrogen
atom, and six σd’s, each containing a
methylene group. (b) Crystal structure of
(CH2)6N4; the H atoms are not shown.

separation between carbon atoms in neighboring molecules in an axial direction
∼ 368 pm and (b) the length of a C–N single bond ∼148 pm.

The carbon atoms having fractional coordinates (xC, 0, 0) and (1 − xC, 0,
0) are closest to each other. Therefore, a[(1 − xC) − xC] = 368, leading to
xC = 0.238. Now consider the bond from C at (xC, 0, 0) to N at (xN, xN, xN),
which gives a[(0.238− xN)2 + x2

N + x2
N)]1/2 = 148. Solution of this equation

yields xN = 0.127 or 0.032. Consideration of the molecular dimensions of
(CH2)6N4 shows that the first answer is the correct one. The molecular and
crystal structures of (CH2)6N4 are illustrated in Fig. 9.6.27.

Methyllithium, (CH3Li)4, also crystallizes in space group I 4̄3m with a = 724
pm and Z = 2. The tetrameric unit may be described as a tetrahedral array of
Li atoms with a methyl C atom located above the center of each face of the Li4
tetrahedron or, alternately, as a distorted cubic arrangement of Li atoms and
CH3 groups. The locations of the (CH3Li)4 unit and its constituent atoms are
listed in the following table.

Atom/unit Wyckoff position Site symmetry x y z

Li 8(c) 3m 0.131 0.131 0.131
C 8(c) 3m 0.320 0.320 0.320
H 24(g) m 0.351 0.351 0.192
(CH3Li)4 2(a) 4̄3m 0 0 0

The crystal structure of methyllithium is not built of discrete (CH3Li)4
molecules. Such tetrameric units are connected together to give a three-
dimensional polymeric network, as illustrated in Fig. 9.6.28. The Li–C bond
length within a tetrameric unit is 231 pm, which is comparable to the
intertetramer Li–C bond distance of 236 pm.

(3) Space group Fm3̄m (no. 225), multiplicity = 192
Adamantane, a structural analog of hexamethylenetetramine, crystallizes at
room temperature in the cubic space group Fm3̄m with aC = 944.5 pm and
Z = 4. The structure is disordered, not ordered in space group F 4̄3m (no. 216,
multiplicity = 96) as described in a previous report. The cubic close-packed
arrangement of (CH2)6(CH)4 is favored over the body-centered cubic structure
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Fig. 9.6.28.
(a) Polymeric crystal structure of
methyllithium. (b) Space-filling model of
the tetrameric (CH3Li)4 unit.

(a) (b)

of (CH2)6N4 because the (CH2)6(CH)4 molecule is approximately spherical.
The model which gives the best fit with the intensity data consists of hindered
reorientations of a rigid molecular skeleton with the CH groups aligned in the
[111] directions.

Below−65◦C, disordered cubic adamantane transforms to an ordered tetrag-
onal form [space group P4̄21c (no. 114), multiplicity = 8, aT = 660, cT = 881
pm at −110◦C, Z = 2, molecule occupying site of symmetry 4̄]. The mea-
sured C–C bond lengths have a mean value of 153.6(11) pm. The structure of
this low-temperature phase, as illustrated in Fig. 9.6.29, is related to that at
room temperature in that aT lies along the ab face diagonal of the cubic cell
[|aT| ∼ |a|/(2)1/2] and cT corresponds to cC = aC in the cubic form.

Fig. 9.6.29.
Stereoview of the tetragonal structure of
adamantane at −110◦C.

Many compounds exhibiting the adamantane skeleton can be formally
derived by the exchange of “equivalent” atoms or groups. For instance, replac-
ing all four CH groups of (CH2)6(CH)4 by nitrogen atoms gives rise to
hexamethylenetetramine, (CH2)6N4. Some examples of adamantane-like cage
compounds containing equivalent constituents include O6E4 (E = P, As, Sb),
(AlMe)6(CMe)4, (BMe)6(CH)4, (SnR2)6P4 (R = Me, Bu, Ph), E6(SiH)4 (E =
S, Se), S6(EMe)4 (E = Si, Sn, Ge), S6(PE)4 (E = O, S), (NMe)6(PE)4 (E = O,
S, Se) and [O6(TaF3)4]4−.
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Fig. 9.6.30.
Stereoview of the packing of
(CH2)6N4O molecules in a
rhombohedral unit cell.

A stereoview of the crystal structure of hexamethylenetetramine N -oxide,
(CH2)6N4O, which crystallizes in space group R3m (no. 160, multiplicity =
6 with Z = 1 in the rhombohedral unit cell), is shown in Fig. 9.6.30. The
molecular packing is related to that of (CH2)6N4 in a simple way. Starting with
a body-centered cubic unit cell of (CH2)6N4 (space group I 4̄3m, Z = 2), one
can arrive at the (CH2)N4O structure in three steps: (i) remove the (CH2)6N4
molecule at the body-center, then (ii) introduce the N→O function in the [111]
direction to each remaining molecule, and finally (iii) compress the resulting
primitive lattice along [111] until the oxygen atom of each (CH2)6N4O molecule
nests snugly in a recess formed by three hydrogen atoms of a neighboring
molecule.

The borine adduct (CH2)6N4·BH3 and the hydrohalides [(CH2)6N4H]+X−

(X = Cl, Br) are isomorphous with (CH2)6N4O. Table 9.6.1 shows the relation-
ship of hexamethylenetetramine with its quaternized derivatives and the effect
of the different “substituents.”

Table 9.6.1. Structural relationship of (CH2)6N4 and some quaternized derivatives

Compound Space group Z aR(pm) αR(◦) VR(pm3)/Z∗

(CH2)6N4 I 4̄3m 2 702.1 90 173.0× 106

(CH2)6N4O R3m 1 591.4 106.3 175.5× 106

[(CH2)6N4H]Cl R3m 1 594.7 97.11 205.0× 106

(CH2)6N4·BH3 R3m 1 615.0 103.2 210.6× 106

[(CH2)6N4H]Br R3m 1 604.0 96.13 216.2× 106

∗ VR is the volume of the rhombohedral unit cell.

(4) Space group Fd 3̄m (No. 227), multiplicity = 192
The structure of spinel, MgAl2O4, was first analyzed independently by
W. H. Bragg and S. Nishikawa in 1915. It has an essentially cubic close-packed
array of oxide ions with Mg2+ and Al3+ ions occupying tetrahedral and octa-
hedral interstices, respectively. With a = 808.00(4) pm and Z = 8, the atoms
are located in special positions as shown below.

Atom Wyckoff position Site symmetry x y z

Mg 8(a) 4̄3m 0 0 0
Al 16(d ) 3̄m 5/8 5/8 5/8

O 32(e) 3m 0.387 0.387 0.387

Origin at 4̄3m, at (−1/8, −1/8, −1/8) from center (3̄m).
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Fig. 9.6.31.
Crystal structure of spinel.

1/2
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Layer sequence-

Figure 9.6.31 shows the crystal structure of spinel, the unit cell being divided
into octants. The MgO4 tetrahedra and AlO6 octahedra are arranged alternately,
so that every oxide ion is the common vertex of one tetrahedron and three
octahedra.

The type II clathrate hydrates of the general formula 8GL·16GS·136H2O
also crystallize in space group Fd 3̄m with a ∼ 1.7 nm and Z = 1. The
water molecules are connected by O–H· · ·O hydrogen bonds to form a host
network composed of a close-packed arrangement of (H2O)20 pentagonal
dodecahedra (12-hedra bounded by 12 pentagonal faces, idealized symme-
try Ih) and (H2O)24 hexakaidecahedra (16-hedra composed of 12 pentagons
and 4 hexagons, idealized symmetry Td) in the ratio of 2 to 1. In the crystal
structure, both kinds of polyhedra have slightly nonplanar faces with unequal
edges and angles. The large guest molecules GL are accommodated in the 16-
hedra, whereas the small guest species GS occupy the 12-hedra, as illustrated in
Fig. 9.6.32(a). Note that here the choice of origin of the space group differs
from that used in the structural description of spinel.

Formation of type II clathrate hydrates is facilitated by passing in H2S or
H2Se as a “help gas” during the preparation. Crystal structure analyses have
been reported for the tetrahydrofuran–H2S hydrate (8C4H8O·16H2S·136H2O)
at 250 K, the carbon disulphide–H2S hydrate (8CS2·16H2S·136H2O) at 140 K,
and the carbon tetrachloride–Xe hydrate 8CCl4 · nXe·136D2O (n = 3.5) at 13 K
and 100 K. For the last compound, the host and guest molecules are assigned
to the special positions in the following table. The CCl4 molecule exhibits
orientational disorder, and the Xe atom has a statistical site occupancy of 0.22.
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(a) (b)

Fig. 9.6.32.
(a) Stereogram illustrating the type II clathrate hydrate host framework, with two 16-hedra centered at (3/8, 3/8, 3/8) and (5/8, 5/8, 5/8), and two
cluster units (each consisting of four 12-hedra) centered at (1/8, 1/8, 1/8) and (7/8, 7/8, 7/8). Each line represents a O–H· · ·O hydrogen bond
between two host water molecules. The open circles of decreasing sizes represent guest species GL and GS , respectively, located inside the
corresponding 16- and 12-hedra. (b) The host framework of a type I clathrate hydrate. The 12-hedra occupy the center and corners of the cubic
unit cell, and two fused 14-hedra are highlighted by darkened edges.

Atom Wyckoff position Site symmetry x y z

H2O(1) 8(a) 4̄3m 1/8 1/8 1/8

H2O(2) 32(e) 3m 0.21658 0.21658 0.21658
H2O(3) 96(g) m 0.18215 0.18215 0.36943
GL = CCl4 8(b) 4̄3m 3/8 3/8 3/8

GS = Xe 16(c) 3̄m 0 0 0

Origin at center 3̄m, at (1/8, 1/8, 1/8) from 4̄3m. At 100 K, a = 1.7240 nm.

Since small gas species such as O2, N2, O3, and Kr may be trapped inside
the 12-hedra, all type II clathrate hydrates usually contain non-stoichiometric
amounts of air unless special precautions are taken to avoid its inclusion as
guest species.

(5) Space group Pm3̄n (no. 223), multiplicity = 48
The type I clathrate hydrates of the general formula 6GL·2GS ·46H2O crystallize
in this space group with a ∼ 1.2 nm and Z = 1. The hydrogen-bonded host
framework is composed of fused (H2O)20 pentagonal dodecahedra and (H2O)22
tetrakaidecahedra (14-hedra composed of 12 pentagons and 2 hexagons, ide-
alized symmetry D6d) in the ratio of 1 to 3, as illustrated in Fig. 9.6.32(b).
The 12-hedra are generally empty or partially filled by air as guest species GS ,
and the 14-hedra can accommodate a variety of guest species GL such as Xe,
Cl2, SO2, CH4, CF4, CH3Br, and ethylene oxide. The type I clathrates of COS,
CH3SH, and CH3CHF2 are reported to change to type II in the presence of H2S
as a help gas.

In a neutron diffraction study of the ethylene oxide clathrate deuterohy-
drate 6(CH2)2O·46D2O, the hydrogen-bonded host framework is defined by
three independent deuterated water oxygen atoms occupying special positions,
as shown in the table below. The deuterium atoms are located precisely as
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disordered half-atoms. The ethylene oxide guest molecule (CH2)2O is disor-
dered about GL, and a small amount of entrapped air (site occupancy 0.067) is
disordered about GS.

Atom Wyckoff position Site symmetry x y z

O(i) 16(i) 3 0.18375 0.18375 0.18375
O(k) 24(k) m 0 0.3082 0.1173
O(c) 6(c) 4̄2m 0 1/2 1/4

D(ii) 16(i) 3 0.2323 0.2323 0.2323
D(ck) 24(k) m 0 0.4340 0.2015
D(kc) 24(k) m 0 0.3787 0.1588
D(kk) 24(k) m 0 0.3161 0.2015
D(ki) 48(l) 1 0.0676 0.2648 0.1397
D(ik) 48(l) 1 0.1170 0.2276 0.1588
GL 6(d ) 4̄2m 0 1/4 1/2

GS 2(a) m3̄ 0 0 0

Origin at center m3̄. All D atoms have a site occupancy factor of 1/2; D(ck)
is a deuterium atom that is covalently bound to O(c) and hydrogen-bonded to
O(k). At 80K, a = 1.187 nm.
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10 Basic Inorganic Crystal
Structures and Materials

Over 25 million compounds are known, but only about one percent of them have
their crystal structures elucidated by X-ray and neutron diffraction methods.
Many inorganic structures are closely related to each other. Sometimes one
basic structural type can incorporate several hundred compounds, and new
crystalline compounds may arise from the replacement of atoms, deformation
of the unit cell, variation of the stacking order, and the presence of additional
atoms in interstitial sites.

This chapter describes some basic inorganic crystal structures and their rela-
tionship to the new structural types, which often exhibit different symmetry
and characteristic properties that make them useful in materials research and
industrial applications.

10.1 Cubic closest packing and related structures

10.1.1 Cubic closest packing (ccp)

Many pure metals and noble gases adopt the cubic closest packing (ccp) struc-
ture of identical spheres, which is based on a face-centered cubic (fcc) lattice in
space group O5

h − Fm3̄m. The atomic coordinates and equivalent points of this
space group are listed in Table 10.1.1. These data are taken from International
Tables for Crystallography, Vol. A.

Table 10.1.1. Atomic coordinates* of space group O5
h − Fm3̄m

Multiplicity Wyckoff
position

Site
symmety

Coordinates
(

0, 0, 0; 0, 1
2 , 1

2 ; 1
2 , 0, 1

2 ; 1
2 , 1

2 , 0
)

+

32 f 3m x,x,x; x, x̄, x̄; x̄, x, x̄; x̄, x̄, x;

x̄, x̄, x̄; x̄, x, x; x, x̄, x; x, x, x̄.

24 e 4mm x,0,0; 0,x,0; 0,0,x; x̄, 0, 0; 0, x̄, 0; 0, 0, x̄.

24 d mmm 0, 1
4 , 1

4 ; 1
4 , 0, 1

4 ; 1
4 , 1

4 , 0; 0, 1
4 , 3

4 ; 3
4 , 0, 1

4 ; 1
4 , 3

4 , 0.

8 c 4̄3m 1
4 , 1

4 , 1
4 ; 3

4 , 3
4 , 3

4 .

4 b m3̄m 1
2 , 1

2 , 1
2

4 a m3̄m 0,0,0

∗ This table is not complete; equivalent positions with multiplicities > 32 are not listed.
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In three-dimensional closest packing, the spherical atoms are located in posi-
tion 4(a). There are two types of interstices: octahedral and tetrahedral holes
which occupy positions 4(b) and 8(c), respectively. The number of tetrahedral
holes is twice that of the spheres, while the number of octahedral holes is equal
to that of the spheres. The positions of the holes are shown in Fig.10.1.1.

The elements with the ccp structure and their unit-cell parameters are listed
in Table 10.1.2.

Some alloys in high-temperature disordered phases adopt the ccp struc-
ture. For example, Au and Cu have the same valence electronic configuration.
When these two metals are fused and then cooled, the mixture solidifies into a
completely disordered solid solution phase, in which the gold atom randomly
and statistically replaces the copper atom. Figure 10.1.2(a) shows the struc-
ture of Cu1−xAux with x = 0.25, and the space group is still O5

h − Fm3̄m.
If the Cu0.75Au0.25 alloy (or Cu3Au) is annealed at a temperature lower than
395◦C through isothermal ordering, the gold atoms occupy the corners of the

sphere

(a) (b)

octahedral hole

sphere

tetrahedral hole

a/2
a/√2

a/√2

a   3/4

Fig. 10.1.1.
Hole positions in ccp structure.

Table 10.1.2. Elements with the ccp structure and their unit-cell parameters

Element a (pm) Element a (pm) Element a (pm)

Ac 531.1 Cu 361.496 Pd 388.98
Ag 408.62 γ -Fe 359.1 Pt 392.31
Al 404.958 In 324.4 Rh 380.31

Am 489.4 Ir 383.94 β-Sc 454.1
Ar 525.6(4.2 K) Kr 572.1(58K) α-Sr 608.5
Au 407.825 β-La 530.3 α-Th 508.43
α-Ca 558.2 γ -Mn 385.5 Xe 619.7(58K)

γ -Ce 516.04 Ne 442.9(4.2K) α-Yb 548.1
β-Co 454.8 Ni 352.387
β-Cr 368 Pb 495.05
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Fig. 10.1.2.
Structure of (a) disordered Cu1−xAux
and (b) α-Cu3Au.

anneal at < 395°C

(Cu0.75, Au0.25) CuAu

(a) (b)

Table 10.1.3. Equivalent positions* of space group O1
h − Pm3̄m

Multiplicity Wyckoff
position

Site
symmety

Coordinates

8 g 3m x,x,x; x, x̄, x̄; x̄, x, x̄; x̄, x̄, x;
x̄, x̄, x̄; x̄, x, x; x, x̄, x; x, x, x̄.

6 f 4mm x, 1
2 , 1

2 ; 1
2 , x, 1

2 ; 1
2 , 1

2 , x; x̄, 1
2 , 1

2 ; 1
2 , x̄, 1

2 ; 1
2 , 1

2 , x̄.
6 e 4mm x,0,0; 0,x,0; 0,0,x; x̄, 0, 0; 0, x̄, 0; 0, 0, x̄.
3 d 4/mmm 1

2 , 0, 0; 0, 1
2 , 0; 0, 0, 1

2 .
3 c 4/mmm 0, 1

2 , 1
2 ; 1

2 , 0, 1
2 ; 1

2 , 1
2 , 0.

1 b m3̄m 1
2 , 1

2 , 1
2

1 a m3̄m 0,0,0.

* This table is not complete; equivalent positions with multiplicities greater than 8 are not listed.

cube while the copper atoms occupy the centers of the faces, as shown in
Fig. 10.1.2(b). This disordered-to-ordered phase transition gives rise to a sim-
ple cubic α-phase in space group O1

h−Pm3̄m. The equivalent positions of space
group O1

h − Pm3̄m are listed in Table 10.1.3. In the structure of Cu3Au in this
low-temperature ordered phase, the Au atom is located in position 1(a), and the
Cu atoms occupy position 3(c).

10.1.2 Structure of NaCl and related compounds

(1) Structure type of sodium chloride (rock salt, halite), and its common
occurrence

The structure of NaCl can be regarded as being formed from a ccp arrangement
of Cl− anions with the smaller Na+ cations located in the octahedral interstices.
Since spherical Na+ and Cl− conform to the m3̄m symmetry of the sites 4(a)

and 4(b), respectively (listed in Table 10.1.1), the space group of NaCl is also
O5

h−Fm3̄m. Either the Na+ or Cl− ion can be placed at the origin (site 4a), and
each has coordination number six. There are more than 400 binary compounds
that belong to the NaCl structural type, such as alkali metal halides and hydrides,
alkaline-earth oxides and chalcogenides, the oxides of divalent early first-row
transition metals, the chalcogenides of divalent lanthanides and actinides, the
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Table 10.1.4. Compounds with the NaCl structure and parameters of their cubic
unit cells

Compound a (pm) Compound a (pm) Compound a (pm)

AgBr 577.45 LiH 408.5 ScSb 585.9
AgCl 554.7 LiI 600.0 SnAs 572.48
AgF 492 MgO 421.12 SnSb 613.0
BaO 553.9 MgS 520.33 SnSe 602.3
BaS 638.75 MgSe 545.1 SnTe 631.3
BaSe 660.0 MnO 444.48 SrO 516.02
BaTe 698.6 MnS 522.36 SrS 601.98
CaO 481.05 MnSe 544.8 SrSe 623
CaS 569.03 NaBr 597.324 SrTe 666.0
CaSe 591 NaCl 562.779 TaC 445.40
CaTe 634.5 NaF 462.0 TaO 442.2
CdO 469.53 NaH 488.0 TiC 431.86
CoO 426.67 NaI 647.28 TiN 423.5
CrN 414.0 NbC 446.91 TiO 417.66
CsF 600.8 NiO 416.84 VC 418.2
CsH 637.6 PbS 593.62 VN 412.8
FeO 430.7 PbSe 612.43 YAs 578.6
KBr 660.0 PbTe 645.4 YN 487.7
KCl 629.294 PdH 402 YTe 609.5
KF 534.7 RbBr 685.4 ZrB 465
KH 570.0 RbCl 658.10 ZrC 468.28
KI 706.555 RbF 564 ZrN 456.7
LaN 530 RbH 603.7 ZrO 462
LiBr 550.13 RbI 734.2 ZrP 527
LiCl 512.954 ScAs 548.7 ZrS 525
LiF 401.73 ScN 444

nitrides, phosphides, arsenides and bismuthides of the lanthanide and actinide
elements, silver halides (except the iodide), tin and lead chalcogenides, and
many interstitial alloys. Some examples and the parameters of their cubic unit
cells are listed in Table 10.1.4.

The data listed in Table 10.1.4 are useful in understanding the structure and
properties of many compounds. Two examples are presented below.

(a) Deduction of ionic radii
The effective ionic radii listed in Table 4.2.2 can be calculated from the experi-
mentally determined values of the ionic distances or the parameters of the unit
cells. For example, NaH has the structure of NaCl type with a = 488 pm, so
the Na+ · · · H− distance is 244 pm. Taking the radius of Na+ as 102 pm, the
radius of H− in the NaH crystal is 142 pm.

(b) The strength of ionic bonding and the melting point of compounds
The alkaline-earth oxides MO are composed of M2+ and O2− stabilized by
electrostatic forces. The electrostatic Coulombic energies are directly propor-
tional to the product of the two ionic charges and inversely proportional to the
interionic distance. The alkaline-earth oxides MO are 2:2 valence compounds
and have the same electronic charge for M2+, but the radii of M2+ and the
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distances of M2+ · · · O2− are successively increased with atomic number in the
order Mg2+ < Ca2+ < Sr2+ < Ba2+. The strength of ionic bonding decreases
successively, so the melting points and the hardness also decrease in the same
sequence. The experimental melting points and hardness data listed below are
consistent with expectation.

MgO CaO SrO BaO

M2+ · · · O2− distance (pm) 211 241 258 276
mp (K) 3125 2887 2693 2191

Mohs hardness 6.5 4.5 3.5 3.3

(2) Defects in the structure type of NaCl
Various kinds of packing defects exist in the ionic crystals of NaCl type. A
pair of cation and anion may be shifted from their stable positions toward the
surface of the crystal, thus leaving behind a pair of vacancies. This is called
the Schottky defect. The cation may leave its stable position and enter into an
interstitial site. The formation of an interstitial cation and a vacancy is called the
Frenkel defect. In addition to these two common kinds of defects, the presence
of impurity atoms, atoms of varied valence, vacancies, and/or interstitial atoms
is also possible. Some other important defects are discussed below.

(a) Color center
A color center or F-center is formed from diffusion of a small quantity of M+

ion into an ionic crystal MX. Since the crystal must keep its charge neutrality,
additional electrons readily move to fill the vacancies normally occupied by
anions. Thus the composition of the crystal becomes (M+)1+δ(X−e−δ ). The
origin of the color is due to electronic motion, and a simple picture of an
electron in a vacancy is illustrated by the particle in a three-dimensional box
problem, which is discussed in Section 1.5.2.

(b) Koch cluster of Fe1−δO
The structure of crystalline FeO belongs to the NaCl type. When iron(II) oxide
is prepared under normal conditions, the composition of the product (wustite)
is always Fe1−δO. In order to retain overall electric neutrality, part of the Fe2+

is oxidized to Fe3+, and the chemical formula becomes Fe3+
2δ Fe2+

1−3δO. Since
the radius of Fe3+ is small, the Fe3+ cations tend to occupy the tetrahedral
holes to form a short-range ordered Fe4O10 cluster, which is called the Koch
cluster of Fe1−δO, as shown in Fig. 10.1.3. The Koch clusters are distributed
randomly in the crystal structure. To satisfy charge neutrality, the formation of
a Koch cluster must be accompanied by the presence of six Fe2+ vacancies,
one of which is located at the center of the cluster, and the remaining five are
distributed randomly at the centers of the edges of the cubic unit cell.

(c) Vacancies in the NbO crystal
The unit cell of niobium monoxide NbO can be derived from the cubic unit cell
of NaCl, by deleting the body-central Na+ (coordinate: 1

2 , 1
2 , 1

2 ) and the vertex
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Fig. 10.1.3.
Structure of Koch cluster of Fe1−δO
(black circle, Fe3+; large white circle,
O2−; small white circle represents an
octahedral vacancy).

Cl− (coordinate: 0,0,0), and then replacing Na+ by Nb2+ and Cl− by O2−.
The crystal structure of NbO can be regarded as arising from ordered vacancy
defects of the NaCl structural type, as shown in Fig. 10.1.4(a). The NbO crystal
has a primitive cubic lattice in space group O1

h−Pm3̄m, in which the Nb2+ and
O2− ions occupy sites 3(d) and 3(c), respectively, as listed in Table 10.1.3. In
the NbO crystal, the Nb atoms form octahedral clusters held by Nb–Nb metallic
bonds, which result from the overlap of the 5s and 4d orbitals. The Nb6 octahe-
dral clusters constitute a three-dimensional framework by sharing vertices, and
each Nb atom is in square-planar coordination with four O neighbors. Although
the geometrical arrangement and coordination environment of the Nb and O
atoms are equivalent to each other, an analogously drawn O6 octahedral cluster
has no physical meaning as the O atom lacks d orbitals for bonding.

Some lower oxidation state oxoniobates contain the Nb6O12 cluster shown in
Fig. 10.1.4(b) as a basic structural unit. An O atom located above an edge of the
Nb6 octahedron may belong to the cluster or connect with another cluster. Up
to six O atoms can be attached to the apices of the Nb6 octahedron to constitute
an outer coordination sphere; such additional atoms may be exclusive to the
cluster or shared between clusters.

(a) (b)

Fig. 10.1.4.
(a) Unit cell of NbO. (b) Nb6O12 cluster
with capacity for attachment of six
ligands to its metal centers.

(3) Structure of CaC2 and BaO2

Calcium carbide CaC2 exists in at least four crystalline modifications whose
occurrence depends on the temperature of formation and the presence of impu-
rities. The tetragonal phase CaC2(I), which is stable between 298 and 720 K, is

iranchembook.ir/edu

https://iranchembook.ir/edu


370 Symmetry in Chemistry

Fig. 10.1.5.
Crystal structure of CaC2(I).

the common form found in the commercial product. Its structure can be derived
from the NaCl structure by replacing the Na+ cations by Ca2+ and the Cl−

anions by C2−
2 , thereby reducing the crystal symmetry from cubic Fm3̄m to

tetragonal I4/mmm, with the C2−
2 group lying on the unique 4-axis. The mea-

sured C≡C bond length of 120 pm is in agreement with its triple-bond character.
Figure 10.1.5 shows the crystal structure of CaC2(I), in which solid lines rep-
resent the body-centered tetragonal unit cell with a = 389 pm and c = 638
pm, and the broken lines represent a non-primitive face-centered tetragonal unit
cell, with a′ = 550 pm and c = 638 pm, which clearly traces its lineage to the
NaCl structure.

There are many compounds that are isomorphous with tetragonal CaC2(I),
such as the acetylides of the alkaline- and rare-earth elements (BaC2, SrC2,
LaC2, CeC2, PrC2, NdC2, SmC2), the silicides of molybdenum and tungsten
(MoSi2, WSi2), the superoxides of alkali metals (KO2, RbO2, CsO2), and the
peroxides of alkaline-earth metals (CaO2, BaO2). In O−2 , the O–O distance
is 128 pm; in O2−

2 , the O–O distance is 149 pm; in Si2−2 , the Si–Si distance
is 260 pm.

10.1.3 Structure of CaF2 and related compounds

The structure of fluorite, CaF2, may be regarded as being composed of cubic
closest packed Ca2+ cations with all the tetrahedral interstices occupied by F−

anions, as shown in Fig. 10.1.6. The stoichiometric formula is consistent with
the fact that the number of tetrahedral holes is twice that of the number of
closest packed atoms.

Ca2+ F–

Fig. 10.1.6.
Structure of fluorite (CaF2).

Some compounds, such as Na2O and K2S, have the inverse fluorite (or anti-
fluorite) structure, which is a ccp structure of anions with all the tetrahedral
interstices occupied by cations.

Many inorganic compounds have the fluorite and inverse fluorite structures:
(a) all halides of the larger divalent cations except two fluorides in this class; (b)
oxides and sulfides of univalent ions; (c) oxides of large quadrivalent cations;
and (d) some intermetallic compounds. Table 10.1.5 lists some compounds of
the fluorite and inverse fluorite types and their a parameters.

The fluorite structure may also be regarded as being composed of a simple
cubic packing of anions, and the number of cubic holes is the same as the
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Table 10.1.5. Some compounds with fluorite and anti-fluorite structures and a values

Fluorite a (pm) Fluorite a (pm) Anti-fluorite a (pm)

AuAl2 600 PrH2 551.7 Be2B 467.0
AuGa2 606.3 PrO2 539.2 Be2C 433
AuIn2 650.2 PtAl2 591.0 Ir2P 553.5
AuSb2 665.6 PtGa2 591.1 K2O 643.6
BaCl2 734 PtIn2 635.3 K2S 739.1
BaF2 620.01 PtSn2 642.5 K2Se 767.6
CaF2 546.295 RaF2 636.8 K2Te 815.2
CdF2 538.80 ScH2 478.315 Li2O 461.9
CeO2 541.1 SiMg2 639 Li2S 570.8
CoSi2 535.6 SmH2 537.6 Li2Se 600.5
HfO2 511.5 SnMg2 676.5 Li2Te 650.4
HgF2 554 SrCl2 697.67 Mg2Ge 637.8
IrSn2 633.8 SrF2 579.96 Na2O 555
NbH2 456.3 ThO2 559.97 Na2S 652.6
NiSi2 539.5 UN2 531 Na2Se 680.9
NpO2 543.41 YH2 519.9 Na2Te 731.4
β-PbF2 592.732 ZrO2 507 Rb2O 674
PbMg2 683.6 AgAsZn 591.2∗ Rb2S 765
α-PbO2 534.9 NiMgSb 604.8∗ Rb2P 550.5
α-PoO2 568.7 NaYF4 545.9+ LiMgN 497.0‡

∗The last two elements either occupy 1/4, 1/1, 1/4, ; 3/4, 3/4, 3/4; F.C. separately or are statistically
distributed over these positions. †The metal atoms are statistically distributed over the calcium
positions of CaF2. ‡The nitrogen atom takes the place of the calcium atom in CaF2, and the
two kinds of metal atoms are statistically distributed over the fluorine positions.

number of anions. Half of the holes are occupied by cations, and the other half
are unoccupied. The center of the unit cell shown in Fig. 10.1.6 is an unoccupied
cubic hole.

The structure of zircon, ZrO2, is of the fluorite type. The Zr4+ cations occupy
half of the cubic holes, and the O2− anions can easily migrate through the empty
cubic holes. Doping of ZrO2 with Y2O3 or CaO stabilizes the fluorite struc-
ture and introduces vacant O2− sites. The resulting doped crystalline material
shows higher electrical conductivity when the temperature is increased. Hence
ZrO2(Y2O3) is a good solid electrolyte of the anionic (O2−) type which can
be utilized in devices for measuring the amount of dissolved oxygen in molten
steel, and as an electrolyte in fuel cells.

The structure of Li3Bi is formed by a ccp of Bi atoms with the Li atoms
occupying all the tetrahedral and octahedral holes.

10.1.4 Structure of cubic zinc sulfide

The structure of cubic zinc sulfide (zinc blende, sphalerite) may be described as
a ccp of S atoms, in which half of the tetrahedral sites are filled with Zn atoms;
the arrangement of the filled sites is such that the coordination numbers of S and
Zn are both four, as shown in Fig. 10.1.7. The crystal belongs to space group
T 2

d − F43m. Note that the roles of the Zn and S atoms can be interchanged by
a simple translation of the origin.

Fig. 10.1.7.
Structure of cubic zinc sulfide.
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Many binary compounds adopt the cubic zinc sulfide structure. Some of these
compounds and their unit-cell parameter a values are listed in Table 10.1.6.

The ternary iodide Ag2HgI4 exists in two forms: the low-temperature form
(β) is a yellow tetragonal crystal, whereas the high-temperature form (α) is an
orange-red cubic crystal, the transition temperature being 50.7◦C. The structure
of Ag2HgI4 is shown in Fig. 10.1.8. In the β-form, two Ag atoms occupy the
sites (0,0,0) and ( 1

2 , 1
2 ,0), and one Hg atom is disordered over the sites (0, 1

2 , 1
2 )

and ( 1
2 ,0, 1

2 ) with occupancy 1
2 . When the β-form undergoes transformation to

the α-form, the Ag and Hg atoms are almost randomly distributed over all
four sites, so that the average composition at each site is (Ag 1

2 Hg 1
4! 1

4 ). The
α-form has the structure type of cubic zinc sulfide and is a good superionic
conductor. Therefore, the structure of Ag2HgI4 can be considered as a closest
packed arrangement of I− anions, with the Ag+ and Hg2+ cations occupying
the tetrahedral holes in either an ordered or disordered fashion.

Table 10.1.6. Some binary compounds with cubic zinc sulfide structure and their a
values

Compound a (pm) Compound a (pm) Compound a (pm)

γ -AgI 649.5 CdS 583.2 HgTe 646.23
A1As 566.22 CdSe 605 InAs 605.838
A1P 545.1 CdTe 647.7 InP 586.875
A1Sb 613.47 γ -CuBr 569.05 InSb 647.877
BAs 477.7 CuCl 540.57 β-MnS 560.0
BN 361.5 CuF 425.5 β-MnSe 588
BP 453.8 γ -CuI 604.27 SiC 434.8
BePo 583.8 GaAs 565.315 ZnPo 630.9
BeS 486.5 GaP 445.05 ZnS 540.93
BeSe 513.9 GaSb 609.54 ZnSe 566.76
BeTe 562.6 HgS 585.17 ZnTe 610.1
CdPo 666.5 HgSe 608.4

The ternary iodide Cu2HgI4, a structural analog of Ag2HgI4with very similar
properties, exists as brown tetragonal crystals at room temperature. Its high-
temperature crystalline form (transition temperature is 80◦C) belongs to the
cubic system and exhibits the red color.

Many ternary, quaternary, and multicomponent metal sulfides also exhibit
tetrahedral coordination of atoms and possess structures similar to that of cubic

Fig. 10.1.8.
Structure of Ag2HgI4 [large white circle,
I−; small black circle, (Hg2+) 1

2
; small

white circle, Ag+; small black-white
circle, (Ag+

1
2

Hg2+
1
4

! 1
4 )].

50.7˚C

β-form α-form
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Fe

(a) (b) (c)

Fe

S
S

S

Cu

Cd Sn

CuAl

Fig. 10.1.9.
Structure of some multimetal sulfides: (a)
CuFeS2, (b) CdAl2S4, (c) Cu2FeSnS4.

zinc sulfide. In these compounds, the Zn atoms are orderly replaced by other
atoms or by vacancies. Figure 10.1.9 shows the structures of (a) CuFeS2, (b)
CdAl2S4, and (c) Cu2FeSnS4. In these structures, the c axis of the unit cell is
twice as long as a and b.

Mg

(a) (b)

Al O

II II

II

II

IIII

II
I

I

I

I

I

I
I

Fig. 10.1.10.
Crystal structure of spinel.

10.1.5 Structure of spinel and related compounds

The mixed-metal oxide spinel, MgAl2O4, is one of the most important inorganic
materials. The structure of spinel can be regarded as a ccp structure of O2−

anions with Mg2+ ions orderly occupying 1/8 of the tetrahedral interstices, and
Al3+ ions orderly occupying half of the octahedral interstices; the remainder 7/8

tetrahedral interstices and half octahedral interstices are unoccupied. The sites
of the three kinds of ions in the face-centered cubic unit cell are displayed in
Fig. 9.6.29.

Figure 10.1.10 shows the crystal structure of spinel. The unit cell (represented
by solid lines) is divided into eight small cubic octants (represented by broken
lines) of two different types, as shown in (a); the structure of type I and type II
octants and the connections of atoms are shown in (b).There are four O2− in each
octant. The number of O2− in the unit cell is 32 (= 8× 4). The Mg2+ ions are
located at the centers of type I octants and half of the vertices of type I and type II
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octants. The number of Mg2+ in the unit cell is 8 [= 4(1+4×1/8)+4×4×1/8].
The Mg2+ ions have tetrahedral coordination. There are four Al3+ ions in the
type II octant. The number of Al3+ in the unit cell is 16 (= 4× 4). The Al3+

ions have octahedral coordination.
According to the cation distribution over the 8(a) and 16(d) sites, the spinels

of formula AB2O4 can be divided into normal and inverse classes. Examples of
normal spinels are MgAl2O4 and MgTi2O4, in which the oxidation states of Al
and Ti are both +3; their respective structural formulas are [Mg2+]t[Al3+

2 ]oO4

and [Mg2+]t[Ti3+
2 ]oO4, in which the subscripts t and o indicate tetrahedral and

octahedral sites, respectively.
In inverse spinels, half of the B ions are in tetrahedral 8(a) sites, leav-

ing the remaining B ions and the A ions to fill the 16(d) sites. Usually, the
occupancy of these 16(d) sites is disordered. Examples of inverse spinels are
MgFe2O4 and Fe3O4; their structural formulas are [Fe3+]t[Mg2+Fe3+]oO4 and
[Fe3+]t[Fe2+Fe3+]oO4, respectively.

In intermediate spinels any combination of cation arrangement between
the extremes of normal and inverse spinels is possible. Table 10.1.7 lists
some normal spinels and inverse spinels and the values of their unit-cell
parameter a.

Table 10.1.7. Some normal spinels and inverse spinels and their a parameters

Normal Spinel Inverse Spinel

Compound a (pm) Compound a (pm) Compound a (pm)

CoAl2O4 810.68 MgAl2O4 808.0 CoFe2O4 839.0
CoCr2O4 833.2 MgCr2O4 833.3 CoIn2S4 1055.9
CoCr2S4 993.4 MgMn2O4 807 CrAl2S4 991.4
CoMn2O4 810 MgRh2O4 853.0 CrIn2S4 1059
Co3O4 808.3 MgTi2O4 847.4 FeCo2O4 825.4
CoV2O4 840.7 MgV2O4 841.3 FeGa2O4 836.0
CdCr2O4 856.7 MnCr2O4 843.7 Fe3O4 839.4
CdCr2S4 998.3 Mn3O4 813 MgIn2O4 881
CdCr2Se4 1072.1 MnTi2O4 860.0 MgIn2S4 1068.7
CdFe2O4 869 MnV2O4 852.2 NiCo2O4 812.1
CdMn2O4 822 MoAg2O4 926 NiFe2O4 832.5
CuCr2O4 853.2 MoNa2O4 899 NiIn2S4 1046.4
CuCr2S4 962.9 NiCr2O4 824.8 NiLi2F4 831
CuCr2Se4 1036.5 NiRh2O4 836 NiMn2O4 839.0
CuCr2Te4 1104.9 WNa2O4 899 SnCo2O4 864.4
CuMn2O4 833 ZnAl2O4 808.6 SnMg2O4 860
CuTi2S4 988.0 ZnAl2S4 998.8 SnMn2O4 886.5
CuV2S4 982.4 ZnCo2O4 804.7 SnZn2O4 866.5
FeCr2O4 837.7 ZnCr2O4 832.7 TiCo2O4 846.5
FeCr2S4 999.8 ZnCr2S4 998.3 TiFe2O4 850
GeCo2O4 813.7 ZnCr2Se4 1044.3 TiMg2O4 844.5
GeFe2O4 841.1 ZnFe2O4 841.6 TiMn2O4 867
GeMg2O4 822.5 ZnMn2O4 808.7 TiZn2O4 844.5
GeNi2O4 822.1 ZnV2O4 841.4 VCo2O4 837.9

iranchembook.ir/edu

https://iranchembook.ir/edu


Basic Inorganic Crystal Structures 375

10.2 Hexagonal closest packing and related structures

10.2.1 Hexagonal closest packing (hcp)

The crystal structure of many pure metals adopts the hcp of identical spheres,
which has a primitive hexagonal lattice in space group D4

6h − P63/mmc.
There are two atoms in the hexagonal unit cell with coordinates (0,0,0)
and ( 2

3 , 1
3 , 1

2 ).

(a) (b)

Fig. 10.2.1.
Positions of interstices in the hcp
structure: (a) octahedral interstices, (b)
tetrahedral interstices.

There are two types of interstices in the hcp structure: octahedral and tetrahe-
dral holes, as in the ccp structure. However, the hcp and ccp structures differ in
the linkage of interstices. In ccp, neighboring octahedral interstices share edges,
and the tetrahedral interstices behave likewise. In hcp, neighboring octahedral
interstices share faces, and a pair of tetrahedral interstices share a common
face to form a trigonal bipyramid, so these two tetrahedral interstices cannot be
filled by small atoms simultaneously. Figure 10.2.1 shows the positions of the
octahedral interstices (a) and tetrahedral interstices (b). Table 10.2.1 lists the
pure metals with hcp structure and the parameters of the unit cell.

Table 10.2.1. Metals with hcp structure and the parameters of the hexagonal unit cell

Metal a (pm) c (pm) Metal a (pm) c (pm)

Be 228.7 358.3 α-Nd 365.8 1179.9
β-Ca 398 652 Ni 265 433
Cd 297.9 561.8 Os 273.5 431.9
α-Co 250.7 406.9 α-Pr 367.3 1183.5
γ -Cr 272.2 442.7 Re 276.1 445.8
Dy 359.25 565.45 Ru 270.4 428.2
Er 355.90 559.2 α-Sc 330.80 526.53
Gd 363.15 577.7 α-Sm 362.1 2625
He 357 583 β-Sr 432 706
α-Hf 319.7 505.8 Tb 359.90 569.6
Ho 357.61 561.74 α-Ti 250.6 467.88
α-La 377.0 1215.9 α-Tl 345.6 552.5
Li 311.1 509.3 Tm 353.72 556.19
Lu 350.50 554.86 α-Y 364.51 573.05
Mg 320.9 521.0 Zn 266.5 494.7
Na 365.7 590.2 α-Zr 331.2 514.7
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10.2.2 Structure of hexagonal zinc sulfide

In the crystal structure of hexagonal zinc sulfide (wurtzite), the S atoms are
arranged in hcp, in which half of the tetrahedral interstices are filled with Zn
atoms, and the space group is C4

6ν − P63mc. The positions of atoms in the
hexagonal unit cell are

S 0, 0, 0; 2/3, 1/3, 1/2

Zn 0, 0, 3/8; 2/3, 1/3, 7/8

The Zn atoms are each tetrahedrally coordinated by four S atoms, and likewise
Fig. 10.2.2.
Structure of hexagonal zinc sulfide.

the S atoms are each connected to four Zn atoms, as shown in Fig. 10.2.2. The
bonding has both covalent and ionic character.

Note that an equivalent structure is obtained when the positions of the Zn
and S atoms are interchanged, but in this case the polar direction of the crystal
is reversed. This arises because P63mc is a polar space group, and historically
the polar sense of a single crystal of ZnS has been used to demonstrate the
breakdown of Friedel’s law under conditions of anomalous dispersion.

Many binary compounds adopt the structure type of hexagonal zinc sulfide.
Table 10.2.2 lists some of these compounds and their unit-cell parameters.

10.2.3 Structure of NiAs and related compounds

In the crystal structure of nickel asenide, NiAs, the As atoms are in hcp with all
octahedral interstices occupied by the Ni atoms, as shown in Fig. 10.2.3(a). An
important feature of this structure is that the Ni and As atoms are in different
coordination environments. Each As atom is surrounded by six equidistant Ni
atoms situated at the corners of a regular trigonal prism. Each Ni atom, on
the other hand, has eight close neighbors, six of which are As atoms arranged
octahedrally about it, while the other two are Ni atoms immediately above and
below it at z = ±c/2. The Ni–Ni distance is c/2 = 503.4/2 = 251.7 pm, which
corresponds to the interatomic distance in metallic nickel. Compound NiAs is
semi-metallic, and its metallic property results from the bonding between Ni
atoms. In the NiAs structure, the axial ratio c/a = 503.4/361.9 = 1.39 is much

Table 10.2.2. Some compounds with hexagonal zinc sulfide structure and their unit-cell
parameters

Compound a (pm) c (pm) Compound a (pm) c (pm)

AgI 458.0 749.4 MgTe 454 739
AlN 311.1 497.8 MnS 397.6 643.2
BeO 269.8 437.9 MnSe 412 672
CdS 413.48 674.90 MnTe 408.7 670.1
CdSe 430.9 702.1 SiC 307.6 504.8
CuCl 391 642 ZnO 324.95 520.69
CuH 289.3 461.4 ZnS 381.1 623.4
GaN 318.0 516.6 ZnSe 398 653
InN 353.3 569.3 ZnTe 427 699
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A

(a) (b)

A

C

C

B

A

C

C

C

B Fig. 10.2.3.
Structure of NiAs: (a) origin at As atom
(white circle); (b) origin at Ni atom
(black circle).

smaller than the calculated value for hcp of identical spheres (1.633). This fact
suggests that, with a decrease in ionic character, metal atoms are less likely to
repel each other, and more likely to form metal–metal bonds.

The space group of NiAs is D4
6h − P63/mmc. The atomic coordinates are

As 2(a) 3̄m 0, 0, 0; 2/3, 1/3, 1/2

Ni 2(c) 6̄m2 1/3, 2/3, 3/4, 1/3, 2/3, 1/4

When a translation is applied so that the origin of the unit cell now resides
on the Ni atom, as shown in Fig. 10.2.3(b), the atomic coordinates become

As 2(a) 3̄m 1/3, 2/3, 1/4; 2/3, 1/3, 3/4

Ni 2(c) 6̄m2 0, 0, 0; 0, 0, 1/2

Figure 10.2.3(b) shows clearly that the Ni atoms are arranged in hexagonal
layers which exactly eclipse one another, and only half of the large trigonal
pyramidal interstices are filled by the As atoms. The large vacant interstices can
be occupied easily by other atoms of an additional component. The structure
of Ni2In can be regarded as two Ni atoms forming hexagonal layers that lead
to four trigonal pyramidal interstices per unit cell, which are occupied by two
In atoms and two Ni atoms.

Some compounds with the NiAs structure and their unit-cell parameters are
listed in Table 10.2.3.

10.2.4 Structure of CdI2 and related compounds

The hcp structure consists of a stacking of atomic layers in the sequence
ABABAB· · ·. The octahedral holes are located between adjacent layers, as
shown in Fig. 10.2.3(a). In the crystal structure of nickel asenide, the As
atoms constitute a hcp lattice, and the Ni atoms occupy all the octahedral
holes. In contrast, cadmium iodide, CdI2, may be described as a hcp of I−

anions, in which only half the octahedral holes are occupied by Cd2+ ions.
The manner of occupancy of the octahedral interstices is such that entire lay-
ers of octahedral interstices are filled, and these alternate with layers of empty
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Table 10.2.3. Some compounds with the NiAs structure and their unit-cell parameters

Compound a (pm) c (pm) Compound a (pm) c (pm)

AuSn 432.3 552.3 NiSb 394.2 515.5
CoS 337.4 518.7 NiSe 366.13 535.62
CoSb 386.6 518.8 NiSn 404.8 512.3
CoSe 362.94 530.06 NiTe 395.7 535.4
CoTe 388.6 536.0 PdSb 407.8 559.3
CrSb 413 551 PdSn 411 544
CrSe 371 603 PdTe 415.2 567.2
CrTe 393 615 PtBi 431.5 549.0
CuSb 387.4 519.3 PtSb 413 548.3
CuSn 419.8 509.6 PtSn 411.1 543.9
FeSb 407.2 514.0 RhBi 407.5 566.9
FeSe 361.7 588 RhSn 434.0 555.3
IrSb 398.7 552.1 RhTe 399 566
IrSn 398.8 556.7 ScTe 412.0 674.8
MnAs 371.0 569.1 TiAs 364 615
MnBi 430 612 TiS 329.9 638.0
MnSb 412.0 578.4 TiSe 357.22 620.5
MnTe 414.29 670.31 VS 333 582
NiAs 361.9 503.4 VSe 366 595
NiBi 407.0 535 VTe 394.2 612.6
NiS 343.92 534.84 ZrTe 395.3 664.7

interstices. The layer stacking sequence along the c axis of the unit cell in
CdI2 is shown schematically in Fig. 10.2.4(a), and the unit cell is shown in
Fig. 10.2.4(b).

Fig. 10.2.4.
Structure of CdI2 (black circle, Cd2+):
(a) schematic layer structure and (b) unit
cell.

A

A

(a) (b)

A

A

B

B
B

A layer structure can be conveniently designated by the following scheme:
the capital letters A, B, C indicate the relative positions of anions, lower-case
letters a, b, c indicate the positions of cations, and vacant octahedral interstices
are represented by !. The structure of CdI2 can thus be written as

A c B !A c B !A c B !A · · · · ·
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Table 10.2.4. Some compounds with the CdI2 structure and their unit-cell parameters

Compound a (pm) c (pm) Compound a (pm) c (pm)

CaI2 448 696 ZnI2 425 654
CdI2 424 684 IrTe2 393.0 539.3
CoBr2 368 612 NiTe2 386.9 530.8
CoI2 396 665 PdTe2 403.65 512.62
FeBr2 374 617 PtS2 354.32 503.88
FeI2 404 675 PtSe2 372.78 508.13
GeI2 413 679 PtTe2 402.59 522.09
MgBr2 381 626 TiS2 340.80 570.14
MgI2 414 688 TiSe2 353.56 600.41
MnBr2 382 619 TiTe2 376.4 652.6
MnI2 416 682 Ca(OH)2 358.44 489.62
PbI2 455.5 697.7 Cd(OH)2 348 467
TiBr2 362.9 649.2 Co(OH)2 317.3 464.0
TiCl2 356.1 587.5 Fe(OH)2 325.8 460.5
TiI2 411.0 682.0 Mg(OH)2 314.7 476.9
VBr2 376.8 618.0 Mn(OH)2 334 468
VCl2 360.1 583.5 Ni(OH)2 311.7 459.5
VI2 400.0 667.0

Many binary compounds which consist of I−, Br−, OH− and M2+ cations, or
S2−, Se2−, Te2−, and M4+ cations, usually adopt the CdI2 structure. Table 10.2.4
lists some compounds with the CdI2 structure and their unit-cell parameters.

The crystal structure of CdCl2 is closely related to that of CdI2. Both originate
from the same type of MXM sandwiches, differing only in the way of stacking.
The CdI2 structure is based on the hcp type, whereas the CdCl2 structure is based
on the ccp type. The structure of CdCl2 is represented by the layer sequence:

A c B ! C b A! B a C !A c B ! C · · · · ·

10.2.5 Structure of α-Al2O3

α-Al2O3 occurs as the mineral corundum. Because of its great hardness (9 on
the Mohs scale), high melting point (2045◦C), involatility (0.1 Pa at 1950◦C),
chemical inertness, and good electrical insulating properties, it is an important
inorganic material that finds many applications in abrasives, refractories, and
ceramics. Larger crystals of α-Al2O3, when colored with metal-ion impuri-
ties, are prized as gemstones with names such as ruby (Cr3+, red), sapphire
(Fe2+/3+and Ti4+, blue), and oriental amethyst (Cr3+/Ti4+, violet). Many of
these crystals are synthesized on an industrial scale and used as laser materials,
gems, and jewels.
α-Al2O3 belongs to the trigonal system in space group D6

3d − R3̄c. The
parameters of the hexagonal unit cell are a = 476.280 pm, c = 1300.320 pm
(31◦C). The atomic coordinates (R-centered) are

Al (12c)(0, 0, 0; 1/3, 2/3, 2/3; 2/3, 1/3, 1/3) ± (0, 0, z; 0, 0, 1/2 + z), z = 0.352

O (18e)(0, 0, 0; 1/3, 2/3, 2/3; 2/3, 1/3, 1/3) ± (x, 0, 1/4; 0, x, 1/4; x, x, 1/4), x = 0.306
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In the crystal structure of α-Al2O3, the O atoms are arranged in hcp, while
the Al atoms are orderly located in the octahedral interstices. As the number
of Al atoms is 2/3 of the number of O atoms, there are 1/3 vacant octahedral
interstices. The distribution of the interstices can be described in terms of the
arrangement of the Al atoms. Between each pair of adjacent closest packed
O layers, the Al atoms form a planar hexagonal layer, and the center of each
hexagon is an interstice (which is analogous to the arrangement of C atoms in
hexagonal graphite). The interstices are evenly distributed in the unit cell at
three different sites, as indicated by C′, C′′, and C′′′ in Fig. 10.2.5. The Al atoms
of two neighboring layers overlap, so that the twoAlO6 octahedral coordination
polyhedra are connected by face sharing, as represented by the vertical lines in
Fig. 10.2.5(a).

Some trivalent metal oxides adopt the corundum structure. Table 10.2.5 lists
these compounds and the parameters of their hexagonal unit cells.

Fig. 10.2.5.
Structure of α-Al2O3: (a) schematic
distribution of hcp of O atoms and Al
atoms in different layers (black circle, Al;
vertical lines represent the shared face
form of AlO6), (b) distribution of atoms
located in various layers in a unit cell.
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10.2.6 Structure of rutile

Rutile, TiO2, belongs to the tetragonal space group D14
4h−P42/mnm. The param-

eters of the unit cell are a = 459.366 pm, c = 295.868 pm (298 K). The atomic
coordinates are

Ti (2a) 0, 0, 0; 1/2, 1/2, 1/2

O (4f ) ± (x, x, 0; 1/2 + x, 1/2− x, 1/2), x = 0.30479

Table 10.2.5. Compounds with the corundum structure and their lattice parameters

Compound a (pm) c (pm) Compound a (pm) c (pm)

α-Al2O3 476.3 1300.3 Rh2O3 511 1382
Cr2O3 495.4 1358.4 Ti2O3 514.8 1363
α-Fe2O3 503.5 1375 V2O3 510.5 1444.9
α-Ga2O3 497.9 1342.9
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Fig. 10.2.6.
Structure of rutile: (a) connection of
TiO6 octahedra and the unit cell, (b)
chains share vertices, viewed along the
caxis.

In the structure of rutile, the Ti atoms constitute deformed TiO6 octahedra, in
which the Ti–O distance are 194.85 pm (four) and 198.00 pm (two). The TiO6
octahedra share edges to form chains, which further share vertices to yield a
three-dimensional network, as shown in Fig. 10.2.6.

The structure of rutile may also be described as a nearly hcp of O atoms, with
Ti atoms located in half of the octahedral interstices.

Many tetravalent metal oxides and divalent metal fluorides adopt the rutile
structure. Table 10.2.6 lists some compounds with the rutile structure and the
parameters of their tetragonal unit cells.

Table 10.2.6. Compounds with rutile structure

Compound a (pm) c (pm) Compound a (pm) c (pm)

CrO2 441 291 TaO2 470.9 306.5
GeO2 439.5 285.9 TiO2 459.366 295.868
IrO2 449 314 WO2 486 277
β-MnO2 439.5 286 CoF2 469.5 318.0
MoO2 486 279 FeF2 469.7 330.9
NbO2 477 296 MgF2 462.3 305.2
OsO2 451 319 MnF2 487.3 331.0
PbO2 494.6 337.9 NiF2 465.1 308.4
RuO2 451 311 PdF2 493.1 336.7
SnO2 473.7 318.5 ZnF2 470.3 313.4

10.3 Body-centered cubic packing and related structures

10.3.1 Body-centered cubic packing (bcp)

Body-centered cubic packing (bcp) is a common structure type among metals.
The space group is O9

h-Im3̄m, and the atomic coordinates of equivalent positions
are listed in Table 10.3.1.

In the bcp structure, the cubic unit cell has two atoms in site 2(a) :
(0, 0, 0; 1/2, 1/2, 1/2). Figure 10.3.1(a) shows that at the center of every face and
the edge of the unit cell there are octahedral interstices, each surrounded by
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Table 10.3.1. Atomic coordinates of equivalent positions in cubic space group O9
h −

Im3̄m*

Multiplicity Wyckoff
position

Site
symmety

Coordinates
(

0, 0, 0; 1
2 , 1

2 ; 1
2

)

+

24 h mm2 0,y,y; 0, ȳ, y; 0, y, ȳ; 0, ȳ, ȳ; y,0,y; y, 0, ȳ;
ȳ, 0, y; ȳ, 0, ȳ; y,y,0; ȳ, y, 0; y, ȳ, 0; ȳ, ȳ, 0.

24 g mm2 x, 0, 1
2 ; x̄, 0, 1

2 ; 1
2 , x, 0; 1

2 , x̄, 0; 0, 1
2 , x; 0, 1

2 , x̄;

0, x, 1
2 ; 0, x̄, 1

2 ; x, 1
2 , 0; x̄, 1

2 , 0; 1
2 , 0, x̄; 1

2 , 0, x.
16 f 3m x,x,x; x̄, x̄, x; x̄, x, x̄; x, x̄, x̄.

x, x, x̄; x̄, x̄, x̄; x, x̄, x; x̄, x, x.
12 e 4mm x,0,0; x̄, 0, 0; 0,x,0; 0, x̄, 0; 0,0,x; 0, 0, x̄.
12 d 4̄m2 1

4 , 0, 1
2 ; 3

4 , 0, 1
2 ; 1

2 , 1
4 , 0; 1

2 , 3
4 , 0; 0, 1

2 , 1
4 ; 0, 1

2 , 3
4 .

8 c 3̄m 1
4 , 1

4 , 1
4 ; 3

4 , 3
4 , 1

4 ; 3
4 , 1

4 , 3
4 ; 1

4 , 3
4 , 3

4 .

6 b 4/mmm 0, 1
2 , 1

2 ; 1
2 ,0, 1

2 ; 1
2 , 1

2 ,0.
2 a m3̄m 0,0,0

∗ This table is not complete and only lists eight sets.

six spheres. Each sphere of radius R corresponds to three such octahedral inter-
stices. These octahedra are not regular but are compressed along one axis. The
shortest dimension of an interstice dictates the radius r of a small sphere that
can be accommodated in it, and the ratio r/R is 0.154.

Distorted tetrahedral interstices also occur on the faces of the unit cell. Each
face has four such distorted tetrahedral interstices with a radius ratio r/R =
0.291, as shown in Fig. 10.3.1(b). Each sphere corresponds to six of these
tetrahedral interstices.

Fig. 10.3.1.
The positions of interstices in the bcp
structure: (a) octahedral interstices
(small black spheres), (b) tetrahedral
interstices (small open spheres).

(a) (b)

a√3/2 a√3/2 a√5/4
a/√2

a/2 a

These two types of interstitial polyhedra are not mutually exclusive; i.e.,
a particular part of volume in the unit cell does not belong to one particular
polyhedron. In addition, distorted trigonal-bipyramidal interstitial polyhedra
are each formed from two face-sharing tetrahedra. The number of such inter-
stices that corresponds to one sphere is 12. Therefore, each sphere in the bcp
structure is associated with three octahedral, six tetrahedral, and twelve trigonal-
bipyramidal interstices, i.e., a total of 21 interstices. The size and distribution
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Table 10.3.2. Some metals with the bcp structure and their a values

Metal a (pm) Metal a (pm) Metal a (pm)

Ba 502.5 Mo 314.73 β-Th 411
γ -Ca 438 Na 429.06 β-Ti 330.7
δ-Ce 412 Nb 330.04 β-Tl 388.2
α-Cr 288.39 β-Nd 413 γ -U 347.4
Cs 606.7 γ -Np 352 V 302.40
Eu 457.8 β-Pr 413 W 316.496
α-Fe 286.65 ε-Pu 363.8 β-Y 411
K 524.7 Rb 560.5 β-Yb 444
γ -La 426 β-Sn 407 β-Zr 362
Li 350.93 γ -Sr 485
δ-Mn 307.5 Ta 330.58

of these interstices directly affect the properties of the structure. Table 10.3.2
lists some metals with the bcp structure and their a values.

10.3.2 Structure and properties of α-AgI

Silver iodide,AgI, exists in several polymorphic forms. In theα-AgI crystal, the
I− ions adopt the bcp structure, and the Ag+ cations are distributed statistically
among the 6(b), 12(d), and 24(h) sites of space group O9

h − Im3m, as listed
in Table 10.3.1, and also partially populate the passageways between these
positions. The cubic unit cell, with a = 504 pm, provides 42 possible positions
for two Ag+ cations, and the Ag+ · · · I− distances are listed below:

6(b) positions having 2 I−neighbors at 252 pm,

12(d) positions having 4 I−neighbors at 282 pm, and

24(h) positions having 3 I−neighbors at 267 pm.

Figure 10.3.2 shows the crystal structure of α-AgI and the possible positions of
the Ag+ ions, the mobility of which accounts for the prominent ionic transport
properties of α-AgI as a solid electrolyte.

The structure ofAgI varies at different temperatures and pressures. The stable
form of AgI below 409 K, γ -AgI, has the zinc blende (cubic ZnS) structure. On
the other hand, β-AgI, with the wurtzite (hexagonal ZnS) structure, is the stable
form between 409 and 419 K. Above 419 K, β-AgI undergoes a phase change
to cubic α-AgI. Under high pressure, AgI adopts the NaCl structure. Below
room temperature, γ -AgI obtained from precipitation from an aqueous solution
exhibits prominent covalent bond character, with a low electrical conductivity
of about 3.4× 10−4 ohm−1cm−1. When the temperature is raised, it undergoes
a phase change toα-AgI, and the electrical conductivity increases ten-thousand-
fold to 1.3 ohm−1cm−1. Compoundα-AgI is the prototype of an important class
of ionic conductors with Ag+ functioning as the carrier.

The transformation of β-AgI to α-AgI is accompanied by a dramatic increase
in the ionic electrical conductivity of the solid, which leaps by a factor of nearly
4000 from 3.4× 10−4 to 1.3 ohm−1cm−1. This arises because in β-AgI the Ag
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Fig. 10.3.2.
Structure of α-AgI. 12(d) 24(h) body-center6(b)

atoms have tetrahedral coordination, in which covalent bonding is the dominant
factor, but ionic bonding becomes important in α-AgI.

The reaction of AgI with RbI forms RbAg4I5, which has been found
to have the highest specific electrolytic conductivity at room temperature
(0.27 ohm−1cm−1) among known solids, and this property is retained at low
temperature.

The AgI-type superionic solids are important inorganic materials. Sev-
eral generalizations on the relationship between the conductivity of solid
electrolytes and their structures can be made:

(a) Almost all solid electrolytes of any kind have a network of passageways
formed from the face-sharing of anionic polyhedra.

(b) In structures in which the sites available to the current carriers are not
crystallographically equivalent, the distribution of carriers over different
sites is markedly non-uniform.

(c) The conductivity is associated with the nature of the passageways: more
open channels lead to higher conductivity. In general, three-dimensional
networks exhibit higher average conductivities than two-dimensional net-
works. A larger number of available sites and/or a larger crystal volume
available to the conduction passageways tends to give higher conductivities.

(d) The stability of the Ag+ ions in both four- and three-coordination and their
univalent character account for the fact that they constitute the mobile phase
in most good solid electrolytes.

10.3.3 Structure of CsCl and related compounds

The cesium chloride structure may be regarded as derived from the two equiv-
alent atoms of the cubic bcp unit cell by changing one to Cs+ and the other to
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Cr

Al(a) (b)

Fig. 10.3.3.
Unit cell of (a) CsCl and (b) Cr2Al.

Cl−. The lattice type is reduced from face-centered cubic to primitive cubic,
and the space group of CsCl is O1

h − Pm3̄m. Figure 10.3.3(a) shows a unit cell
in the crystal structure of CsCl.

In the CsCl structure, the coordination number of either kind of ion is eight,
and the interionic distance is [ 1

2 (3)1/2]a. Two principal kinds of compounds
crystallize with the CsCl structure. In one group are the halides of the largest
univalent ions, and in the other are intermetallic compounds. Some examples
are listed in Table 10.3.3.

Table 10.3.3. Compounds of CsCl structure type and their unit-cell parameters

Compound a (pm) Compound a (pm) Compound a (pm)

AgCd 333 CsBr 428.6 MgTl 362.8
AgCe 373.1 CsCl 412.3 NH4Cl 386
AgLa 376.0 CsI 456.67 NH4Br 405.94
AgMg 328 CuPd 298.8 NH4I 437
AgZn 315.6 CuZn 294.5 NiAl 288.1
AuMg 325.9 FeTi 297.6 NiIn 309.9
AuZn 319 LiAg 316.8 NiTi 301
BeCo 260.6 LiHg 328.7 SrTl 402.4
BeCu 269.8 LiTl 342.4 TlBi 398
BePd 281.3 MgCe 389.8 TlBr 397
CaTl 384.7 MgHg 344 TlCl 383.40
CoAl 286.2 MgLa 396.5 TlI 419.8
CoTi 298.6 MgSr 390.0 TlSb 384

The structures of some intermetallic compounds are formed from the stacking
of blocks, each resembling a unit cell of the CsCl type. For example, the unit cell
of Cr2Al may be regarded as a stack of three blocks, as shown in Fig. 10.3.3(b).

10.4 Perovskite and related compounds

10.4.1 Structure of perovskite

The mineral CaTiO3 is named perovskite, the structure of which is related to a
vast number of inorganic crystals, and it plays a central role in the development
of the inorganic functional materials.
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Fig. 10.4.1.
(a) A-type and (b) B-type unit cells of
perovskite (large black circles, Ca2+;
small black circles, Ti4+; white circles,
O2−).

(a) (b)

Perovskite crystallizes in the cubic space group O1
h − Pm3̄m. The Ti4+ ions

are located at the corners of the unit cell, a Ca2+ ion at the body center, and
O2− ions at the mid-points of the edges; this so-called A-type cell is shown in
Fig. 10.4.1(a). When the origin of the cubic unit cell is taken at the Ca2+ ion,
the Ti4+ ion occupies the body center and the O2− ions are located at the face
centers; this B-type unit cell is shown in Fig. 10.4.1(b).

Each Ca2+ is thus twelve-coordinated and each Ti4+ six-coordinated by
oxygen neighbors, while each O2− is linked to four Ca2+ and two Ti4+ ions. As
expected, it is the larger metal ion that occupies the site of higher coordination.
Geometrically the structure can be regarded as a ccp of (O2− and Ca2+) ions,
with the Ti4+ ions orderly occupying 1/4 of the octahedral interstices.

The basic perovskite structure ABX3 forms the prototype for a wide range of
other structures related to it by combinations of topological distortions, substi-
tution of the A, B and X ions, and intergrowth with other structure types. These
compounds exhibit a range of magnetic, electrical, optical, and catalytic prop-
erties of potential application in solid state physics, chemistry, and materials
science.

Many ABX3 compounds have true cubic symmetry, whereas some owing
to strain or to small departures from perfect cubic symmetry have appreciably
distorted atomic arrangements. In the idealized structure, a simple relationship
exists between the radii of the component ions,

rA + rX = (2)1/2(rB + rX),

where A is the larger cation. It is found that, in practice, the real structure
conforms to the condition

rA + rX = t(2)1/2(rB + rX),

where t is a “factor of tolerance” which lies within the approximate limiting
range of 0.7–1.0. If t lies outside this range, other structures are obtained.
Table 10.4.1 lists some compounds with the perovskite structure.

Only a small fraction of the enormous number of perovskite-type compounds
is listed in Table 10.4.1. For instance, substitution of the lanthanide element
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Table 10.4.1. Some compounds with the perovskite structure

Compound a (pm) Compound a (pm) Compound a (pm)

AgZnF3 398 KIO3 441.0 RbMnF3 425.0
BaCeO3 439.7 KMgF3 397.3 SmAlO3 373.4
BaFeO3 401.2 KMnF3 419.0 SmCoO3 375
BaMoO3 404.04 KNbO3 400.7 SmCrO3 381.2
BaPbO3 427.3 KTaO3 398.85 SmFeO3 384.5
BaSnO3 411.68 LaCoO3 382.4 SmVO3 389
BaTiO3 401.18 LaCrO3 387.4 SrFeO3 386.9
BaZrO3 419.29 LaFeO3 392.0 SrHfO3 406.9
CaSnO3 392 LaGaO3 387.5 SrMoO3 397.51
CaTiO3 384 LaVO3 399 SrSnO3 403.34
CaVO3 376 LiBaF3 399.6 SrTiO3 390.51
CaZrO3 402.0 LiBaH3 402.3 SrZrO3 410.1
CsCaF3 452.2 LiWO3 372 TaSnO3 388.0
CsCdF3 520 MgCNi3 381.2 TlCoF3 413.8
CsPbBr3 587.4 NaAlO3 373 TlIO3 451.0
EuTiO3 390.5 NaNbO3 391.5 YCrO3 376.8
KCdF3 429.3 NaWO3 386.22 YFeO3 378.5
KCoF3 406.9 RbCaF3 445.2
KFeF3 412.2 RbCoF3 406.2

La for Sm will generate another isostructural series. In view of the common
occurrence of perovskite-type compounds, it is worthwhile to elaborate their
structural characteristics and important trends.

(1) Relative sizes of ion A and ion B in ABX3

In all the perovskite compounds, the A ions are large and comparable in size to
the oxygen or fluoride ion. The B ions must have a radius for six-coordination
by oxygen (or fluorine). Thus, the radii of A and B ions must lie within the
ranges 100 to 140 pm and 45 to 75 pm, respectively.

(2) Valences of A and B cations
Oxides with the perovskite structure must have a pair of cations of valences +1
and +5 (e.g. KNbO3), +2 and +4 (e.g. CaTiO3), or +3 and +3 (e.g. LaCrO3).
Sometimes, the A and/or B sites are not all occupied by atoms of the same
kind, as in (K0.5La0.5)TiO3, Sr(Ga0.5Nb0.5)O3, (Ba0.5K0.5)(Ti0.5Nb0.5)O3. The
components of these compounds need to satisfy overall charge neutrality.

(3) Perovskite as a complex oxide
Despite the resemblance between the empirical formulas CaCO3 and CaTiO3,
these two compounds are structurally entirely distinct. While CaCO3 is a salt
that contains the anion CO2−

3 , CaTiO3 has no discrete TiO2−
3 species in its

crystal structure, in which each Ti4+ ion is coordinated symmetrically by six
O2−. Thus CaTiO3 should more properly be regarded as a complex oxide.

(4) Perovskite compounds are not limited to oxides and fluorides
The compound MgCNi3 has the perovskite structure, as determined by neutron
diffraction, and is a superconducting material with TC = 8 K.
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Table 10.4.2. Structure and properties of BaTiO3 in different temperature ranges

Temperature > 393 K 278–393 K 193–278 K < 193 K

System cubic tetragonal orthorhombic hexagonal
Space group O1

h − Pm3̄m C1
4v − P4mm C14

2v − Amm2 D4
6h − P63/mmc

Parameters
of unit cell
(pm)

a = 401.18 a = 399.47
c = 403.36

a = 399.0
b = 566.9
c = 568.2

a = 573.5
c = 1405

Atomic
coordinates

Ba: 1(a)
0,0,0
Ti: 1(b)
1
2 , 1

2 , 1
2

O: 3(d)
1
2 , 1

2 , 0

Ba: 1(a)

0,0,0
Ti: 1(b)
1
2 , 1

2 , 0.512
O(1): 1(b)
1
2 , 1

2 , 0.023

Ba: 2(a) 0,0,z
(z = 0)
Ti: 2(b) 1

2 ,0,z
(z = 0.510)

Ba(1): 2(b) 0,0, 1
4

Ba(2):
4(f ) 1

3 , 2
3 z

(z = 0.097)

O(1): 2(a)

0,0,z
(z = 0.490)

Ti(1): 2(a) 0,0,0
Ti(2): 4(f ) 1

3 , 2
3 , z

(z = 0.845)
O(1):(6h) x,2x, 1

4
(x = 0.522)

O(2): 2(c)
1
2 , 0, 0.486

O(2): 4(e)
1
2 , y,z
(y = 0.253,
z = 0.237)

O(2): 12(k)x, 2x, z
(x = 0.836,
z = 0.076)

Ferroelectric
property

no yes yes no

Structure in
Fig.10.4.2

(a) (b) (c) (d)

10.4.2 Crystal structure of BaTiO3

Mixed solid solutions of the general formula (Ba,Sr,Pb,Ca)(Ti,Zr,Sn)O3 are the
most commonly used ferroelectric materials.

In different temperature ranges, barium titanate BaTiO3 exists in several sta-
ble phases. Table 10.4.2 lists the crystal data and properties of the polymorphic
forms of BaTiO3, and Fig. 10.4.2 shows their structures.

Above 393 K, BaTiO3 has the perovskite structure, as shown in Fig. 10.4.2(a).
This cubic crystal has a center of symmetry and does not exhibit ferroelectric
properties.

In the temperature range 278–393 K, the BaTiO3 lattice is transformed to the
tetragonal system with local C4v symmetry. The tetragonal unit cell has axial
ratio c/a = 1.01. The Ti4+ ion departs from the center and moves toward the
upper face; the O2− ions are divided into two sets, one moving downward and
other moving upward, as shown in Fig. 10.4.2(b). The arrows in the figure indi-
cate the direction of the movement. The TiO6 octahedra are no longer regular,
which is the result of spontaneous polarization, the strength of which depends
on temperature (thermoelectric effect) and pressure (piezoelectric effect).

In the temperature range 193–278 K, the atoms in the BaTiO3 crystal undergo
further shifts, and the lattice symmetry is reduced to the orthorhombic system
and C2v point group, as shown in Fig. 10.4.2(c). This crystalline modification
has spontaneous polarization with ferroelectric properties.
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Fig. 10.4.2.
Structure of BaTiO3: (a) cubic, (b)
tetragonal, (c) orthorhombic, (d)
hexagonal (white circles, O2−; large
black circles, Ba2+; small black circles,
Ti4+).

When the temperature is below 193 K, the orthorhomic form further trans-
forms to the hexagonal system in space group D4

6h − P63/mmc. The O2− and
Ba2+ ions together form close packed layers and stack in the sequenceABCACB
and the Ti4+ ions occupy the octahedral interstices composed only of O2−

anions. In this layer stacked structure, the A layers have horizontal mirror sym-
metry as shown in Fig. 10.4.2(d). Two-thirds of the TiO6 octahedra share faces
to form the Ti2O9 group, in which the Ti–Ti distance is 267 pm, as represented
by a line. This centrosymmetrical crystal is non-ferroelectric.

10.4.3 Superconductors of perovskite structure type

The crystal structure of many oxide superconductors can be regarded as based
on the perovskite structure, which can be modified by atomic replacements,
displacements, vacancies, and changes in the order of stacking layers.

(a) Structure of La2CuO4

The first-discovered oxide superconductor is La2CuO4 and it has the K2NiF4
structure type, as shown in Fig. 10.4.3(a). This structure can be derived from
one B-type unit cell of the perovskite structure in combination with two A-
type unit cells, each with one layer removed. In this manner, a tetragonal unit
cell with c ∼ 3a is generated. The resulting structure belongs to space group
D17

4h − I4/mmm, in which the Cu atom has octahedral coordination and the
La atom has nine-coordination. The CuO6 octahedra share vertices and form
infinite layers.
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Fig. 10.4.3.
Structures of three oxide
superconductors with perovskite
structure type: (a) La2CuO4, (b)
YBa2Cu3O6, (c) YBa2Cu3O7 (small
white circles, O; small black circles, Cu;
large black and open circles, M).

(b) Structure of YBa2Cu3O6 and YBa2Cu3O7

These two compounds are both high-temperature superconductors with similar
structures, as shown in Figs. 10.4.3(b) and (c). YBa2Cu3O6 belongs to the
tetragonal system in space group D1

4h − P4/mmm, with a = 385.70 pm and
c = 1181.94 pm. The crystals of YBa2Cu3O7 are orthorhombic, space group
D1

2h−Pmmm, with a = 381.98 pm, b = 388.49 pm, and c = 1167.62 pm. These
two structures are conveniently described as oxygen-deficient perovskites with
tripleA-type unit cells owing to Ba–Y ordering along the c axis. In YBa2Cu3O7,
one set of Cu atoms from linear chains of corner-linked squares orientated along
the b axis, and the other set of Cu atoms form layers of corner-shared square
pyramids. The structure of YBa2Cu3O6 is derived from that of YBa2Cu3O7 by
removal of the oxygen atoms at the base. The coordination geometry of the Cu
atom at the origin then becomes linear two-coordinate, but the square-pyramidal
environment of the other Cu atoms remains unchanged. In these two crystals,
the Cu and O atoms that constitute the basal components of a square-pyramidal
Cu–O layer are not coplanar.

10.4.4 ReO3 and related compounds

(1) Structure of ReO3

The rhenium trioxide ReO3 structure consists of regular octahedra sharing ver-
tices to form a large unoccupied interstice surrounded by 12 O atoms, as shown
in Fig. 10.4.4(a). The structure of ReO3 can also be regarded as derived from the
perovskite structure by deleting all Ca2+ ions and keeping the TiO3 framework.
It belongs to space group O1

h − Pm3̄m, the same one for perovskite.
Some trivalent metal fluorides, hexavalent metal oxides, and copper(I) nitride

adopt the ReO3 structure:

MoF3, a = 389.85 pm; TaF3, a = 390.12 pm; NbF3, a = 390.3 pm;

UO3, a = 415.6 pm; ReO3, a = 373.4 pm; Cu3N, a = 380.7 pm.
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Re
(a) (b)

O

W

O

Fig. 10.4.4.
Crystal structure of (a) ReO3, and (b)
NaxWO3(central large circle, Na+ of
fractional site occupancy).

(2) Structure of NaxWO3

The structure of WO3 is of the ReO3 type, as shown in Fig. 10.4.4(a). The
tungsten bronzes of the formula MxWO3 (0 < x < 1) are derived from the three-
dimensional network of WO3, in which the W atoms adopt variable valence
states, and the large unoccupied interstices conveniently accommodate other
cationic species. When a portion of the W6+ cations is converted to W5+, the
requisite cations M (normally Na or K; but also Ca, Sr, Ba, Al, In, Tl, Sn, Pb,
Cu, Ag, Cd, lanthanides, H+, and NH+

4 ) are incorporated into the structure to
maintain electrical neutrality. The additional cations M are partially located at
the centers of the unit cells to give the perovskite structure type, as shown in
Fig. 10.4.4(b).

The name “tungsten bronzes” originates from their characteristic properties:
intense color, metallic luster, metallic conductivity or semiconductivity, a range
of variable composition, and resistance to attack by non-oxidizing acids. The
bronzes NaxWO3 exhibit colors that change with the occupancy factor x as
follows:

0.0 0.2 0.4 0.6 0.8 1.0

WO3 NaWO3

pale deep pale

yellow-green

deep grey

dark blue

pale blue

violet

lateritic red

orange golden yellow

yellow

x

10.5 Hard magnetic materials

10.5.1 Survey of magnetic materials

There are four different classes of hard magnetic materials:

(a) Steel and iron-based alloys, such as carbon steel and the alnicos;
(b) Transition metal oxides, such as Fe3O4, γ -Fe2O3, and M-type ferrites

[MO·6Fe2O3 (M = Ba, Sr, Pb)];
(c) Rare-earth intermetallics, such as SmCo5, Sm2Co17, and Nd2Fe14B; and
(d) Metal complexes containing organic ligands, such as V(TCNE)x ·

y(CH2Cl2).
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Table 10.5.1. Trends in [BH]max at 300 K of hard magnetic materials

Years Materials [BH]max (kJ m−3)

1960s Magnetic materials of transition metals oxides:
Ba-ferrite (anis.) 70

Sr-ferrite (anis.) 80
Iron-based alloys: alnico 8, 9 100

1970s Rare-earth intermetallics:
First generation: SmCo5 150
Second generation: Sm(Co, Cu, Fe, Zr)7.4 250

1980s Third generation: Nd2Fe14B 300
1990s Improved third generations: Nd2Fe14B 400

Organic ferromagnets: V(TCNE)x·y(CH2Cl2) ∼ 5

For many centuries, carbon steels were the only synthetic permanent
magnetic materials superior to loadstone. Starting in about 1890, improved
understanding of the metallurgy of alloy steels, and later, control of solid state
precipitation in iron-based alloys via heat treatment led to substantial advances.
Today the alnicos (Fe–Co–Ni–Al–Cu alloys) corner a large fraction of the mar-
ket on magnets. However, increasing availability of rare-earth metals has led
to a new development path based on compounds containing 3d (transition) and
4f (rare-earth) metals. The trend in the maximum energy product [BH]max at
300 K for different classes of hard magnetic materials that have been studied
over the past four decades is displayed in Table 10.5.1.

Transition metal oxides having the spinel structure are typical magnetic mate-
rials. In a magnetic solid, the spin interaction between neighboring cations
through oxygen as a bridging element plays a major role in determining the
magnitude of the magnetic moment. This spin interaction is most effective
when the adjacent cations and bridging oxygens are in a straight line. In spinel
AB2O4, the A(tetrahedral cation)–O–B(octahedral cation) angle is 125◦, while
the angles for A–O–A and B–O–B are 79◦ and 90◦, respectively. Since the
A–B interaction is the most effective, the magnetic properties of spinel struc-
tures can be fine-tuned by controlling the normal and inverse structures through
composition changes and heat treatment.

The alnicos are a very important group of permanent magnetic alloys, which
are used in a wide range of applications. They are essentially heat-treated alloys
of variable Fe–Co–Ni–Al–Cu composition:

Alnico-5 (wt %): Ni 12–15, Al 7.8–8.5, Co 23–25, Cu 2–4, Ti 4–8, Nb 0–1, Fe
as remainder

Alnico-9 (wt %): Ni 14–16, Al 7–8, Co 32–36, Cu 3–4, Nb 0–1, S 0.3, Fe as
remainder

The alnicos are polycrystalline solids, in which very complex structural disor-
der generally occurs, due to the wide variety of deviations from periodicity that
may be present. Physical disorder corresponds to the displacement of atoms,
and/or the presence of amorphous regions and non-uniform crystallite sizes,
while chemical disorder corresponds to site occupation by impurity atoms,
and/or the presence of vacancies accompanied by variable valence states of
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metal ions. The compositions and heat treatment history have dominating effects
on the properties of magnetic materials.

10.5.2 Structure of SmCo5 and Sm2Co17

Most of the permanent magnets based on cobalt-rare-earth alloys exhibit several
times higher magnetic energy than conventional magnets such as alnicos and
hard ferrites. They also exhibit very high stability of magnetic flux density
even at elevated temperatures, a property unattainable with any other existing
permanent-magnet materials.

Among the rare-earths, samarium is the most commonly used because it
provides the best permanent-magnet property. Other rare-earth elements are
sometimes employed in combination with samarium to meet special require-
ments. The compounds SmCo5 and Sm2Co17 are the most important magnetic
materials among the cobalt-lanthanide alloys.

Compound SmCo5 belongs to the hexagonal system, space group P6/mmm,
with a = 498.9 pm and c = 398.1 pm. Its crystal structure, as shown in
Fig. 10.5.1, consists of two different layers of atoms. One layer is composed
of two kinds of atoms in the ratio of 1:2 for samarium to cobalt, with the Sm
atoms arranged in a closed packed layer and the Co atoms at the center of each
triangular interstice. This layer alternates with another layer consisting of only
cobalt atoms.

The crystal structure of Sm2Co17 is closely related to the SmCo5 structure.
One Sm atom is substituted by a pair of Co atoms at one-third of the Sm sites in
the SmCo5 structure. This pair of Co atoms lie along the c axis. The positions
of the substitution in the neighboring (but similar) layer are different. The order
of the substitution can be either (a) ABABAB… or (b) ABCABC… along the
c-axis, as shown in Fig. 10.5.2.

In the substitution order ABABAB…, Sm2Co17 forms a hexagonal structure,
with a = 836.0 pm and c = 851.5 pm [Fig. 10.5.2(a)]. The substitution order
ABCABC… yields a rhombohedral form of Sm2Co17 with a = 837.9 pm and
c = 1221.2 pm [Fig. 10.5.2(b)].

10.5.3 Structure of Nd2Fe14B

Permanent magnets based on the Nd2Fe14B phase were introduced in 1983 and
are currently the strongest magnets available.

Fig. 10.5.1.
Crystal structure of SmCo5.
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Fig. 10.5.2.
Crystal structure of Sm2Co17: (a)
hexagonal form and (b) rhombohedral
form.

A

A

A

C

B

B

(a) (b)

The Nd2Fe14B crystal is tetragonal, with space group P42/mnm, unit cell
a = 880 pm, c = 1220 pm, and Z = 4. There is a six-layer stacking sequence
along the c axis. The first and fourth layers are mirror planes that contain Fe, Nd,
and B atoms, and the other layers are puckered nets containing only Fe atoms.
Each B atom is at the center of a trigonal prism formed by six Fe atoms, three
above and three below the Fe–Nd–B planes. Figure 10.5.3 shows the structure
of Nd2Fe14B.

Fig. 10.5.3.
Crystal structure of Nd2Fe14B (large
black circles, Nd; small black circles, B;
open circles, Fe).

An effective strategy of modifying the magnetic properties of iron-rich rare-
earth intermetallics is to incorporate small interstitial atoms into the crystal
lattice. Besides hydrogen, only boron, carbon, and nitrogen atoms are small
enough to enter the structure in this way, and they preferentially occupy intersti-
tial sites surrounded by the largest number of rare-earth atoms. For example, in
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Sm2Fe17(iso-structural to Sm2Co17) there are three octahedral interstitial sites
which may be filled by nitrogen atoms to form Sm2Fe17N3. The effect of inter-
stitial atoms on the intrinsic magnetic properties of iron-based intermetallics
can be further exploited in materials design.
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IIIStructural Chemistry of
Selected Elements

Part III comprises a succinct account of the structural chemistry of the
elements in the Periodic Table.

In general, each chemical element or group has its own characteristic struc-
tural chemistry. In Part III, seven chapters are devoted to discussing the
structural chemistry of hydrogen, alkali, and alkaline-earth metals, and the
elements in Group 13 to Group 18. These chapters are followed by one chapter
each on the rare-earth elements, transition metal clusters, and supramolecu-
lar structural chemistry. The compounds described include organometallics,
metal–metal bonded systems, coordination polymers, host–guest compounds,
and supramolecular assemblies. Basic organic crystal structures are discussed in
Chapter 14 under the chemistry of carbon. The structural chemistry of bioinor-
ganic compounds is not covered here as, in the writers’ opinion, the subject
would be better taught in a separate course on “Bioinorganic Chemistry,” for
which several excellent texts are available.

The presentation in Part III attempts to convey the message that inorganic
synthesis is inherently less organized than organic synthesis, and serendipitous
discoveries are being made from time to time. Selected examples illustrating
interesting aspects of structure and bonding, generalizations of structural pat-
terns, and highlights from the current literature are discussed in the light of the
theoretical principles presented in Parts I and II. The most up-to-date resources
and references are used in the compilation of tables of structural data. It is hoped
that the immense impact of chemical crystallography in the development of
modern chemistry comes through naturally to the reader.
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11Structural Chemistry of
Hydrogen

11.1 The bonding types of hydrogen

Hydrogen is the third most abundant element (after oxygen and silicon in terms
of the number of atoms) in the earth’s crust and oceans. Hydrogen atom exists
as three isotopes: 1H (ordinary hydrogen, protium, H), 2H (deuterium, D) and
3H (tritium, T). Some of the important physical properties of the isotopes of
hydrogen are listed in Table 11.1.1. Hydrogen forms more compounds than any
other element, including carbon. This fact is a consequence of the electronic
structure of the hydrogen atom.

Hydrogen is the smallest atom with only one electron and one valence orbital,
and its ground configuration is 1s1. Removal of the lone electron from the neutral
atom produces the H+ ion, which bears some similarity with an alkali metal
cation, while adding one electron produces the H− ion, which is analogous to a
halide anion. Hydrogen may thus be placed logically at the top of either Group 1
or Group 17 in the Periodic Table. The hydrogen atom forms many bonding
types in a wide variety of compounds, as described below.

(1) Covalent bond

The hydrogen atom can use its 1s orbital to overlap with a valence orbital of
another atom to form a covalent bond, as in the molecules listed in Table 11.1.2.
The covalent radius of hydrogen is 37 pm.

Table 11.1.1. Properties of hydrogen, deuterium, and tritium

Property H D T

Abundance (%) 99.985 0.015 ∼10−16

Relative atomic mass 1.007825 2.014102 3.016049
Nuclear spin 1/2 1 1/2
Nuclear magnetic moment (µN) 2.79270 0.85738 2.9788
NMR frequency (at 2.35 T) (MHz) 100.56 15.360 104.68

Properties of diatomic molecules H2 D2 T2
mp (K) 13.957 18.73 20.62
bp (K) 20.30 23.67 25.04
Tc (K) 33.19 38.35 40.6 (calc.)
Enthalpy of dissociation (kJ mol−1) 435.88 443.35 446.9
Zero point energy (kJ mol−1) 25.9 18.5 15.1
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Table 11.1.2. Molecules containing covalently bonded hydrogen

Molecules H2 HCl H2O NH3 CH4
Bond H–H H–Cl H–O H–N H–C
Bond lengths (pm) 74.14 147.44 95.72 101.7 109.1

(2) Ionic bond

(a) Hydrogen present as H−

The hydrogen atom can gain an electron to form the hydride ion H− with the
helium electronic configuration

H + e− → H− 'H = 72.8 kJ mol−1.

With the exception of beryllium, all the elements of Groups 1 and 2 react
spontaneously when heated in hydrogen gas to give white solid hydrides MIH
or MIIH2.All MH hydrides have the sodium chloride structure, while MgH2 has
the rutile structure and CaH2, SrH2, and BaH2 have the structure of distorted
PbCl2. The chemical and physical properties of these solid hydrides indicate
that they are ionic compounds.

The hydride anion H− is expected to be very polarizable, and its size changes
with the partner in the MH or MH2 compounds. The experimental values of the
radius of H− cover a rather wide range:

Compounds LiH NaH KH RbH CsH MgH2
r(H−) (pm) 137 142 152 154 152 130

From NaH, which has the NaCl structure with cubic unit-cell parameter a =
488 pm, the radius of H− has been calculated as 142 pm.

(b) Hydrogen present as H+

The loss of an electron from a H atom to form H+ is an endothermic process:

H(g) → H+(g) + e− 'H = 1312.0 kJ mol−1 = 13.59 eV.

In reality H+, a bare proton, cannot exist alone except in isolation inside a high
vacuum. The radius of H+ is about 1.5× 10−15 m, which is 105 times smaller
than other atoms. When H+ approaches another atom or molecule, it can distort
the electron cloud of the latter. Therefore, other than in a gaseous ionic beam,
H+ must be attached to another atom or molecule that possesses a lone pair of
electrons. The proton as an acceptor can be stabilized as in pyramidal hydronium
(or hydroxonium) ion H3O+, tetrahedral NH+

4 , and linear H2F+. These cations
generally combine with various anions through ionic bonding to form salts.

The total hydration enthalpy of H+ is highly exothermic and much larger
than those of other simple charged cations:

H+(g) + nH2O(2)→ H3O+(aq) 'H = −1090 kJ mol−1
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(3) Metallic bond

At ultrahigh pressure and low temperature, such as 250 GPa and 77 K, solid
molecular hydrogen transforms to a metallic phase, in which the atoms are
held together by the metallic bond, which arises from a band-overlap mechan-
ism. Under such extreme conditions, the H2 molecules are converted into a
linear chain of hydrogen atoms (or a three-dimensional network). This poly-
meric Hn structure with a partially filled band (conduction band) is expected to
exhibit metallic behavior. Schematically, the band-overlap mechanism may be
represented in the following manner:

        H—H         H—H         H—H —H—H—H—H—H—H—

n

The physical properties of Hn are most interesting. This material has a nearly
opaque appearance and exhibits metallic conduction, and has been suggested
to be present in several planets.

(4) The hydrogen bond

The hydrogen bond is usually represented as X–H· · ·Y, where X and Y are
highly electronegative atoms such as F, O, N, Cl, and C. Note that the description
of “donor” and “acceptor” in a hydrogen bond refers to the proton; in the
hydrogen bond X–H· · ·Y, the X–H group acts as a hydrogen donor to acceptor
atom Y. In contrast, in a coordination bond the donor atom is the one that bears
the electron pair.

Hydrogen bonding can be either intermolecular or intramolecular. For an
intramolecular X–H· · ·Y hydrogen bond to occur, X and Y must be in favorable
spatial configuration in the same molecule. This type of hydrogen bond will be
further elaborated in Section 11.2.

(5) Multicenter hydrogen bridged bonds

(a) B–H–B bridged bond

Boranes, carboranes, and metallocarboranes are electron-deficient compounds
in which B–H–B three-center two-electron (3c-2e) bridged bonds are found.
The B–H–B bond results from the overlap of two boron sp3 hybrid orbitals and
the 1s orbital of the hydrogen atom, which will be discussed in Chapter 13.

(b) M–H–M and M–H–B bridged bonds

The 3c-2e hydrogen bridged bonds of type M–H–M and M–H–B can be formed
with main-group metals (such as Be, Mg and Al) and transition metals (such as
Cr, W, Fe, Ta, and Zr). Some examples are shown in Fig. 11.1.1.
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Fig. 11.1.1.
Structures containing multiple hydrogen
bridged bonds: (a) B2H6, (b) Al(BH4)3,
(c) [(CO)5Cr–H–Cr(CO)5]−,
(d) H3Ni4Cp4.

(a) (b)

(c) (d)
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(c) Triply bridged (µ3-H)M3 bond

In this bond type, a H atom is covalently bonded simultaneously to three metal
atoms, as shown in Fig. 11.1.1(d).

(6) Hydride coordinate bond

The hydride ion H− as a ligand can donate a pair of electrons to a metal to
form a metal hydride. The crystal structures of many metal hydride complexes,
such as Mg2NiH4, Mg2FeH6, and K2ReH9, have been determined. In these
compounds, the M–H bonds are covalent σ coordinate bonds.

(7) Molecular hydrogen coordinate bond

Molecular hydrogen can coordinate to a transition metal as an intact ligand. The
bonding of the H2 molecule to the transition metal atom appears to involve the
transfer of σ bonding electrons of H2 to a vacant metal d orbital, coupled with
synergistic back donation of metal d electrons to the vacant σ ∗ antibonding
orbital of the H2 molecule. This type of coordinate bond formation weakens
the H–H covalent bond of the H2 ligand and, in the limit, leads to its cleavage
to two H atoms.

(8) Agostic bond

The existence of the agostic bond C–H⇀M has been firmly established by
X-ray and neutron diffraction methods. The symbolic representation C–H⇀M
indicates formal donor interaction of a C–H bond with an electron-deficient
metal atom M. As in all 3c-2e bridging systems involving only three valence
orbitals, the bonded C–H⇀M fragment is bent. The agostic bond will be further
discussed in Section 11.5.3.
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11.2 Hydrogen bond

11.2.1 Nature and geometry of the hydrogen bond

In a typical hydrogen bonding system, X–H· · ·Y, the electron cloud is greatly
distorted toward the highly electronegative X atom, so that the thinly shielded,
positively charged hydrogen nucleus becomes strongly attracted by the elec-
tronegative atom Y. The double- and triple-bonded carbon atoms, which have
high electronegativity, can also form hydrogen bonds. Some examples are given
below:

C H O

C H O

C H N

C H N

and

  and

............

............

............

............
R

H
r2r1

θ
X Y

Fig. 11.2.1.
Geometry of the hydrogen bond.

The geometry of the hydrogen bond can be described by the parameters
R, r1, r2, and θ , as shown in Fig. 11.2.1. Numerous experimental studies
have established the following generalizations about the geometry of hydrogen
bonds:

(a) Most hydrogen bonds X–H· · ·Y are unsymmetric; that is, the hydrogen
atom is much closer to X than to Y. A typical example of hydrogen bond-
ing is the interaction between H2O molecules in ice-Ih. The data shown
below are derived from a neutron diffraction study of deuterated ice-Ih at
100 K.

O

H

H

H

O

H

H

H
H

104°
101 pm 175 pm

...............

(b) Hydrogen bonds X–H· · ·Y may be linear or bent, though the linear form is
energetically more favorable. However, in the crystalline state the packing
of molecules is the deciding factor.

(c) The distance between atoms X and Y is taken as the bond length of the
hydrogen bond X–H· · ·Y. Similar to all other chemical bonds, the shorter
the bond length, the stronger the hydrogen bond. As the bond length X· · ·Y
shortens, the X–H distance is lengthened. In the limit there is a symmetrical
hydrogen bond, in which the H atom lies at the mid-point of the X· · ·Y line.
This is the strongest type of hydrogen bond and occurs only for both X and
Y equal to F or O (see Section 11.2.3).

(d) The experimental hydrogen bond length is in general much shorter than
the sum of the X–H covalent bond length and van der Waals radii of H
and Y atoms. For example, the average O–H· · · O hydrogen bond length is
270 pm, which is shorter than the sum (369 pm) of the O–H covalent bond
length (109 pm) and van der Waals contact distance of H· · · O (120 pm
+ 140 pm). Table 11.2.1 compares the experimental X–H· · ·Y hydrogen
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Table 11.2.1. Experimental hydrogen bond lengths and calculated values

Hydrogen bond Experimental bond length (pm) Calculated value (pm)

F–H· · · F 240 360
O–H· · · F 270 360
O–H· · · O 270 369
O–H· · · N 278 375
O–H· · · Cl 310 405
N–H· · · F 280 360
N–H· · · O 290 370
N–H· · · N 300 375
N–H· · · Cl 320 410
C–H· · · O 320 340

bond lengths and the calculated values by summing the X–H covalent bond
length and van der Waals radii of H and Y atoms.

(e) The valence angle α formed between the H· · ·Y line and the Y–R bond
usually varies between 100◦ and 140◦:

X H Y
Rα

.....

(f) Normally the H atom in a hydrogen bond is two-coordinate, but there are
a fair number of examples of hydrogen bonds with three-coordinate and
four-coordinate H atoms. From a survey of 1509 NH· · · O=C hydrogen
bonds observed by X-ray and neutron diffraction in 889 organic crystal
structures, 304 (about 20%) are found to be three-coordinate and only six
are four-coordinate:

N H

Three-coordinate hydrogen bond Four-coordinate hydrogen bond

O C

O C

.................

.......
......

N H

O C

O C

.................

.....
.....

.....
...

O C................

(g) In most hydrogen bonds only one hydrogen atom is directed toward a lone
pair of Y, but there are many excepts. For example, in crystalline ammonia
each N lone pair accepts three hydrogen atoms, as shown in Fig. 11.2.2(a).
The carbonyl O atom in the tetragonal phase of urea forms four accep-
tor hydrogen bonds. In the inclusion compound [(C2H5)4N+]2· CO2−

3 ·
7(NH2)2CS, the carbonate ion proves to be the most prolific hydrogen-bond
acceptor, being surrounded by twelve convergent NH donor groups from
six thiourea molecules to form a hydrogen-bonded aggregate shaped like
two concave three-leaved propellers sharing a common core, as illustrated
in Fig. 11.2.2(b).
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(a) (b)

Fig. 11.2.2.
(a) Interaction between lone pair of NH3
molecule with three neighbors in
crystalline ammonia. (b) Carbonate ion
forming twelve acceptor hydrogen bonds
with six thiourea molecules.

Organic compounds generally conform to the following generalized rules in
regard to hydrogen bonding:

(a) All good proton donors and acceptors are utilized in hydrogen bonding.
(b) If intramolecular hydrogen bonds can form a six-membered ring, they will

usually do so in preference to the formation of intermolecular hydrogen
bonds.

(c) After the formation of intramolecular hydrogen bonds, the remaining set
of best proton donors and acceptors tend to form intermolecular hydrogen
bonds with one another.

11.2.2 The strength of hydrogen bonds

The strongest hydrogen bonds resemble covalent bonds, the weakest ones are
like van der Waals interactions, and the majority have energies lying between
these two extremes.The strength of a hydrogen bond corresponds to the enthalpy
of dissociation of the reaction:

X–H · · ·Y→ X–H + Y.

Strong and weak hydrogen bonds obviously have very different properties.
Table 11.2.2 lists the properties observed for different types of hydrogen bonds.

In ice-Ih, the O–H· · · O bond energy is 25 kJ mol−1, which results from the
following interactions:

(a) Electrostatic attraction: this effect reduces the distance between the atoms
of H· · · O.

Oδ−−−−−Hδ+ · · · Oδ−.

(b) Delocalization or covalent bonding: the valence orbitals of H and O atoms
overlap with each other, so that the bonding effect involves all three atoms.

(c) Electron cloud repulsion: the sum of the van der Waals radii of hydrogen
and oxygen is 260 pm, and in a hydrogen bond the H· · · O distance often
approaches to within 180 pm. Thus the normal electron–electron repulsive
forces will occur.
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Table 11.2.2. Properties of very strong, strong, and weak hydrogen bonds

Property Very strong Strong Weak

X–H· · ·Y interaction mostly covalent mostly electrostatic electrostatic
Bond lengths X–H <H–Y X–H < H· · ·Y X–H << H· · ·Y
H· · ·Y (pm) 120–150 150–220 220–320
X· · ·Y (pm) 220–250 250–320 320–400
Bond angles 175◦–180◦ 130◦–180◦ 90◦–150◦
Bond energy (kJ mol−1) >50 15–50 <15
Relative IR νs vibration >25% 10 ∼25% <10%
shift (cm−1)∗
1H NMR chemical shift
downfield (ppm)

14 ∼22 <14 –

Examples Acid salts, acids,
proton sponges,
HF complexes

Acids, alcohols,
hydrates, phenols,
biological molecules

Weak base,
basic salts
C–H· · · O/N
O/N–H· · ·π

∗Observed νs relative to νs for a non-hydrogen bonded X–H.

(d) Van der Waals forces: as in all intermolecular interactions these forces
contribute to the bonding, but their combined effect is relatively small.

The results of a molecular orbital calculation of the energies involved in the
O–H· · · O system are tabulated in Table 11.2.3.

Table 11.2.3. The energy contributions in a O–H· · · O hydrogen bond

Type of energy contribution Energy (kJ mol−1)

(a) Electrostatic −33.4
(b) Delocalization −34.1
(c) Repulsion 41.2
(d) van der Waals energy −1.0
Total energy −27.3
Experimental −25.0

11.2.3 Symmetrical hydrogen bond

The strongest hydrogen bond occurs in symmetrical O–H–O and F–H–F sys-
tems. The linear HF−2 ion has the H atom located midway between the two F
atoms:

113 pm 113 pm
F –––––– H–––––– F

This symmetrical hydrogen bond is highly covalent, which may be viewed
as a 3c-4e system. If the molecular axis is taken along the z direction, the 1s
orbital of the H atom overlaps with the two 2pz orbitals of the F atoms (A and
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FA(2pz) FB(2pz)

H

(a) (b)

1s

2pz

H(1s)

+ + +– –

(F–H–F)– (2F)–

σ *

σ

n

Fig. 11.2.3.
Bonding in HF−2 : (a) orbital overlap; (b) qualitative MO energy level diagram.

B), as shown in Fig. 11.2.3(a), to form three molecular orbitals:

ψ1(σ ) = N1[2pz(A) + 2pz(B) + c1s]
ψ2(n) = N2[2pz(A)− 2pz(B)]
ψ3(σ

∗) = N3[2pz(A) + 2pz(B)− c1s],

where c is a weighting coefficient and N1, N2, N3 are normalization constants.
The ordering of the molecular orbitals is shown qualitatively in Fig. 11.2.3(b).
Since there are four valence electrons, the bonding (ψ1) and nonbonding (ψ2)

molecular orbitals are both occupied to yield a 3c-4e bond. The bond order
and force constant of each F–H link in HF−2 can be compared with those in the
HF molecule:

Molecule Bond order d (pm) k (N m−1)
HF 1 93 890
HF−2 0.5 113 230

In the {[(NH2)2CO]2H}(SiF6) crystal, there are symmetrical hydrogen bonds
of the type O–H–O, with bond lengths 242.4 and 244.3 pm in two independent
{[(NH2)2CO]2H}+ cations. Figure 11.2.4 shows the structure of the cation.

H

N

C O

24
2.

4 
pm

Fig. 11.2.4.
Structure of {[(NH2)2CO]2H}+.
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Fig. 11.2.5.
The hydrogen bond W–C≡O· · · H–O in
crystalline
W(CO)3(PiPr3)2(H2O)(THF).

W

W

Ow

P

O

O

11.2.4 Hydrogen bonds in organometallic compounds

In transition metal carbonyls, the M–C=O group acts as a proton acceptor,
which interacts with appropriate donor groups to form one or more C=O· · · H–
X (X is O or N) hydrogen bonds. The CO ligand can function in different
µ1, µ2, and µ3 modes, corresponding to a formal C–O bond order of 3, 2,
and 1, respectively. Examples of hydrogen bonding formed by metal carbonyl
complexes are shown below:

C

M

O

...
...

..

M M

H

X

........

X

H

C

O
...

...
..

M M

H

X

........

X

H

C

M

µ1 µ2 µ3

O

...
...

.. H

X

........

X

H

When the M atom has a strong back-donation to the CO π∗ orbital, the basic
property of CO increases, and the O· · · H distance shortens. These results are
consistent with the sequence of shortened distances from terminal µ1 to µ3

coordinated forms. In such hydrogen bonds, the bond angles of C–O· · · X are
all about 140◦. Figure 11.2.5 shows the hydrogen bond W–C≡O· · · H–O in
the crystal of W(CO)3(PiPr3)2(H2O)(THF), in which the O· · · O bond length is
279.2 pm. Note that the aqua ligand also forms a donor hydrogen with a THF
molecule.

In organometallic compounds, the µ3-CH and µ2-CH2 ligands can act as
proton donors to form hydrogen bonds, as shown below:

C

M

H

M M

Y

C

H

M M

Y
H

Since the acidity of µ3-CH is stronger than that of µ2-CH2, the length of a
µ3-CH hydrogen bond is shorter than that of µ2-CH2.
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Mn

Mn

Fig. 11.2.6.
C–H· · · O hydrogen bonds between
µ2-CH2 and Mn–CO groups in
[CpMn(CO)2]2(µ2-CH2).

Neutron diffraction studies have shown that the –CH ligand in the cluster
[Co(CO)3]3(µ3-CH) forms three hydrogen bonds, with H· · · O distances of
250, 253, and 262 pm. In the compound [CpMn(CO)2]2(µ2-CH2), the µ2-CH2
group forms hydrogen bonds with the O atoms of Mn–CO groups, as shown in
Fig. 11.2.6.

11.2.5 The universality and importance of hydrogen bonds

Hydrogen bonds exist in numerous compounds. The reasons for its universal
appearance are as follows:

(a) The abundance of H, O, N, C and halogen elements: Many compounds are
composed of H, O, N, C, and halogens, such as water, HX, oxyacids, and
organic compounds. These compounds generally contain functional group
such as –OH, –NH2, and >C=O, which readily form hydrogen bonds.

(b) Geometrical requirement of hydrogen bonding: A hydrogen bond does not
require rigorous conditions for its formation as in the case for covalent
bonding. The bond lengths and group orientations allow for more flexibility
and adaptability.

(c) Small bond energy: The hydrogen bond is intermediate in strength between
the covalent bond and van der Waals interaction. The small bond energy
of the hydrogen bond requires low activation energy in its formation and
cleavage. Its relative weakness permits reversibility in reactions involving
its formation and a greater subtlety of interaction than is possible with
normal covalent bonds.

(d) Intermolecular and intramolecular bonding modes: Hydrogen bonds can
form between molecules, within the same molecule, or in a combina-
tion of both varieties. In liquids, hydrogen bonds are continuously being
broken and reformed at random. Figures 11.2.7 and 11.2.8, respectively, dis-
play some structures featuring intermolecular and intramolecular hydrogen
bonds.

Hydrogen bonds are important because of the effects they produce:

(a) Hydrogen bonds, especially the intramolecular variety, dictate many
chemical properties, influence the conformation of molecules, and often
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Fig. 11.2.7.
Examples of intermolecular hydrogen
bonds.
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Fig. 11.2.8.
Examples of intramolecular hydrogen
bonds.
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play a critical role in determining reaction rates. Hydrogen bonds are
responsible for stabilization of the three-dimensional architecture of
proteins and nucleic acids.

(b) Hydrogen bonds affect IR and Raman frequencies. The ν(X–H) stretching
frequency shifts to a lower energy (caused by weakening the X–H bond) but
increases in width and intensity. For N–H· · · F, the change of frequency is
less than 1000 cm−1. For O–H· · · O and F–H· · · F, the change of frequency
is in the range 1500–2000 cm−1. The ν(X–H) bending frequency shifts to
higher wavenumbers.

(c) Intermolecular hydrogen bonding in a compound raises the boiling point
and frequently the melting point.

(d) If hydrogen bonding is possible between solute and solvent, solubility is
greatly increased and often results in infinite solubility. The complete mis-
cibility of two liquids, for example water and ethanol, can be attributed to
intermolecular hydrogen bonding.

11.3 Non-conventional hydrogen bonds

The conventional hydrogen bond X–H· · ·Y is formed by the proton donor X–H
with a proton acceptor Y, which is an atom with a lone pair (X and Y are all
highly electronegative atoms such as F, O, N, and Cl). Some non-conventional
hydrogen bonds that do not conform to this condition are discussed below:

11.3.1 X–H· · · π hydrogen bond

In a X–H· · ·π hydrogen bond, π bonding electrons interact with the proton
to form a weakly bonded system. The phenyl ring and delocalized π system
as proton acceptors interact with X–H to form X–H· · ·π hydrogen bonds. The
phenyl group is by far the most important among π -acceptors, and the X–
H· · · Ph hydrogen bond is termed an “aromatic hydrogen bond.” The N–H
and phenyl groups together form aromatic hydrogen bonds which stabilize the
conformation of polypeptide chains. Calculations show that the bond energy
of a N–H· · · Ph bond is about 12 kJ mol−1. Two major types of N–H· · · Ph
hydrogen bonds generally occur in the polypeptide chains of biomolecules:

RHC

H
N

C

C

N H

CH
CH2 CH2

HN HN

O
O

............ RHC

N

C
CH

O

............H

Figures 11.3.1(a) and 11.3.1(b) show the structures and hydrogen bonding
distances of 2-butyne·HCl and 2-butyne·2HCl, respectively. In 2-butyne·HCl,
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Fig. 11.3.1.
The Cl–H· · ·π hydrogen bonds in (a)
2-butyne·HCl and (b) 2-butyne·2HCl.

236 pm

241 pm 110 pm 243 pm

243 pm

118 pm

H HCl Cl

(a) (b)

the distance from Cl to the center of the C≡C bond is 340 pm. In 2-butyne·2HCl,
the distance from Cl to the center of the C≡C bond is 347 pm.

The Cl–H· · ·π hydrogen bond in the crystal structure of toluene·2HCl has
been characterized. In this case the π bonding electrons of the aromatic ring
of toluene serve as the proton acceptor. The distance of the H atom to the ring
center is 232 pm, as shown in Fig. 11.3.2.

232 pm

H

Cl

Fig. 11.3.2.
Cl–H· · ·π hydrogen bonds in the crystal
of toluene·2HCl.

In addition to N–H· · ·π and Cl–H· · ·π hydrogen bonds, there are also
O–H· · ·π and C–H· · ·π hydrogen bonds in many compounds. Two exam-
ples are shown in Figs. 11.3.3(a) and (b). A neutron diffraction study of the
crystal structure of 2-acetylenyl-2-hydroxyl adamatane [Fig. 11.3.3(c)] has
shown that intermolecular O–H· · · O and C–H· · · O hydrogen bonds co-exist
[Fig. 11.3.3(d)] with the O–H· · ·π hydrogen bonds [Fig. 11.3.3(e)].

11.3.2 Transition metal hydrogen bond X–H· · · M

The X–H· · · M hydrogen bond is analogous to a conventional hydrogen bond
and involves an electron-rich transition metal M as the proton acceptor in a
3c-4e interaction. Several criteria that serve to characterize a 3c-4e X–H· · · M
hydrogen bond are as follows:

(a) The bridging hydrogen is covalently bonded to a highly electronegative
atom X and is protonic in nature, enhancing the electrostatic component of
the interaction.

(b) The metal atom involved is electron-rich, i.e., typically a late transition
metal, with filled d-orbitals that can facilitate the 3c-4e interaction involving
the H atom.

(c) The 1H NMR chemical shift of the bridging H atom is downfield of TMS
and shifted downfield relative to the free ligand.

(d) Intermolecular X–H· · · M interactions have an approximately linear geom-
etry.

(e) Electronically saturated metal complexes (e.g., with 18-electron metal
centers) can form such interactions.

Two compounds with 3c-4e X–H· · · M hydrogen bonds are shown in Fig. 11.3.4.
The dianion {(PtCl4) · cis-[PtCl2(NH2Me)2]}2− consists of two square-planar
d8-Pt centers held together by short intermolecular N–H· · · Pt and N–H· · · Cl
hydrogen bonds: H· · · Pt 226.2 pm, H· · · Cl 231.8 pm. The N–H· · · Pt bond
angle is 167.1◦. The presence of the filled Pt dz2 orbital oriented towards
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Fig. 11.3.3.
Some compounds containing O–H· · ·π and C–H· · ·π hydrogen bonds.

the amine N–H group favors a 3c-4e interaction. Figure 11.3.4(a) shows
the structure of this dianion. Figure 11.3.4(b) shows the molecular struc-
ture of PtBr(1-C10H6NMe2)(1-C10H5NHMe2) with Pt· · · N = 328 pm and
Pt· · · H–N = 168◦.

Pt

Br

N
Me

Me

N

Me
Me

H

Pt

Cl
Cl

Cl
Cl

H

N H

Pt

Cl
Cl

(a) (b)

N

H

H

H
H

H

H

HH

Fig. 11.3.4.
Molecular structures of compounds with
X–H· · · M hydrogen bond:
(a) {(PtCl4) ·cis− [PtCl2(NH2Me)2]}2−,
(b) PtBr(1-C10H6NMe2)(1-
C10H5NHMe2).

11.3.3 Dihydrogen bond X–H· · · H–E

Conventional hydrogen bonds are formed between a proton donor, such as an
O–H or N–H group and a proton acceptor, such as oxygen or nitrogen lone pair.
In all such cases a nonbonding electron pair acts as the weak base component.

A wide variety of E–H σ bonds (E = boron or transition metal) act unex-
pectedly as efficient hydrogen bond acceptors toward conventional proton
donors, such as O–H and N–H groups. The resulting X–H· · · H–E systems
have close H· · · H contacts (175-190 pm) and are termed “dihydrogen bonds.”
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Fig. 11.3.5.
Structure of compounds containing
X–H· · · H–E bonds: (a)
H3N–BH3 · · · H3N–BH3,
(b) ReH5(PPh3)3·indole, and
(c) ReH5(PPh3)2(imidazole).

221.2

182

168

199

B

B

N

(a)

(b) (c)

N

100˚

Re
Re

P

173.4

Their enthalpies of formation are substantial, 13–30 kJ mol−1, and lie in the
range for conventional H bonds. Some examples are listed below.

(1) N–H· · · H–B bond

A comparison of the melting points of the isoelectronic species H3C–CH3
(−181◦C), H3C–F (−141◦C) and H3N–BH3 (104 ◦C) suggests the possibil-
ity that unusually strong intermolecular interactions are present in H3N–BH3.
As compared to the H3C–F molecule, the less polar H3N–BH3 molecule has
a smaller dipole-dipole interaction, and both slack a lone pair to form a con-
ventional hydrogen bond. The abnormally high melting point of H3N–BH3
originates from the presence of N–H· · · H–B bonding in the crystalline state.

Many close intermolecular N–H· · · H–B contacts in the range 170-220 pm
have been found in various crystal structures. In these dihydrogen bonds,
the (NH)· · · H–B angle is strongly bent, falling in the range 95−120◦.
Figure 11.3.5(a) shows the (NH)· · · H–B bond between H3N–BH3 molecules.

(2) X–H· · · H–M bonds

X-Ray and neutron diffraction studies have established the presence of tran-
sition metal N–H· · · H–M and O–H· · · H–M dihydrogen bonds, in which the
hydride ligand acts as a proton acceptor. Figure 11.3.5(b) shows the dihydro-
gen bond N–H· · · H–Re in the crystal structure of ReH5(PPh3)3·indole·C6H6.
The H· · · H distances are 173.4 and 221.2 pm. Figure 11.3.5(c) shows a similar
dihydrogen bond with measured H· · · H distances of 168 and 199 pm in the
crystal structure of ReH5(PPh3)2(imidazole).

In the crystal structure of [K(1,10-diaza-18-crown-6)][IrH4(P iPr3)2], the two
kinds of ions form an infinite chain held together by N–H· · · H–Ir bonds, as
shown schematically in Fig. 11.3.6. The observed distance of H· · · H is 207
pm, and the observed N–H bond length of 77 pm is likely to be less than
the true value. The corrected N–H and H· · · H distances are 100 and 185 pm,
respectively.
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185
168
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P
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P
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100
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Fig. 11.3.6.
Chain structure of [K(1,10-diaza-18-crown-6)][IrH4(PiPr3)2] and relevant dihydrogen bond lengths in pm. PiPr3C and H atoms and
non-essential crown H atoms have been omitted for clarity.

The X–H· · · H–M systems generally tend to lose H2 readily, and indeed such
H· · · H bonded intermediates may be involved whenever a hydride undergoes
protonation.

11.3.4 Inverse hydrogen bond

In the normal hydrogen bond X–H· · ·Y, the H atom plays the role of electron
acceptor, while the Y atom is the electron donor. The interaction is of the kind

X H Y.....
e

.

In the inverse hydrogen bond, the H atom plays the role of electron donor,
while the Y atom becomes the electron acceptor, and the interaction is of the
kind

X H Y.....
e

.

Some examples of inverse hydrogen bonds are presented below:

(1) The so-called “lithium hydrogen bond,” Li–H· · · Li–H, occurs in the hypo-
thetical linear (LiH)2 dimer. The inner Li atom is electron-deficient, and
the inner H atom is sufficiently electron-rich to act as a donor in the for-
mation of an inverse hydrogen bond. The calculated bond lengths (in pm)
and electron donor–acceptor relationship are illustrated below:

Li H Li........
e

H
158.7 164.4 pm175.6 .

The distance H· · · Li is shorter than the sum of the atomic van der Waals
radii of H and Li, and the linkage of Li–H· · · Li is almost linear.
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Fig. 11.3.7.
Structure of the adduct
Nb2(hpp)4·2NaEt3BH.
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(2) The dihydrogen bond X–H· · · H–M may be formally regarded as a normal
hydrogen bond

X H Y.....
e

.

where Y stands for the hydridic H atom as the electron donor, or an inverse
hydrogen bond

M H Y.....
e

.

where Y is the H atom bonded to X.
(3) The inverse hydrogen bond B−–H· · · Na+ is found in the adduct of

Na(Et3BH) and Nb2(hpp)4, where hpp is the anion of 1,3,4,6,7,8-
hexahydro-2H -pyrimido-[1,2-a]-pyrimidine (Hhpp). Figure 11.3.7 shows
the B−–H· · · Na+interaction in the compound Nb2(hpp)4·2NaEt3BH.

The concept of inverse hydrogen bond is a relatively recent development,
and additional varieties of this novel type of interaction may be uncovered in
the future.

11.4 Hydride complexes

Hydrogen combines with many metals to form binary hydrides MHx. The
hydride ion H− has two electrons with the noble gas configuration of He. Binary
metal hydrides have the following characteristics:

(1) Most of these hydrides are non-stoichiometric, and their composition and
properties depend on the purity of the metals used in the preparation.

(2) Many of the hydride phases exhibit metallic properties such as high
electrical conductivity and metallic luster.

(3) They are usually produced by the reaction of metal with hydrogen. Besides
the formation of true hydride phases, hydrogen also dissolves in the metal
to give a solid solution.
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Fig. 11.4.1.
Crystal structure of CaMgNiH4 (large
circles represent Ca, small circles
represent Mg, and tetrahedral groups
represent NiH4).

Metal hydrides may be divided into two types: covalent and interstitial. They
are discussed in the following two sections.

11.4.1 Covalent metal hydride complexes

In recent years, many crystal structures of transition metal hydride com-
plexes have been determined. In compounds such as CaMgNiH4, Mg2NiH4,
Mg2FeH6, and K2ReH9, H− behaves as an electron-pair donor covalently
bonded to the transition metals. The transition metal in the NiH 2−

4 , FeH 4−
6 ,

and ReH 2−
9 anions generally has the favored noble gas electronic configura-

tion with 18 valence electrons. Figure 11.4.1 shows the crystal structure of
CaMgNiH4.

172 pm

H

167 pm

Re

Fig. 11.4.2.
Structure of ReH 2−

9 .

The anion ReH 2−
9 is a rare example of a central metal atom forming nine 2c-

2e bonds, which are directed toward the vertices of a tricapped trigonal prism.
Figure 11.4.2 shows the structure of ReH 2−

9 , and Table 11.4.1 lists the structures
of a number of transition metal hydride complexes. In these complex anions,
the distances of transition metal to hydrogen are in the range 150–160 pm for
3d metals and 170–180 pm for 4d and 5d metals, except for Pd (160–170 pm)
and Pt (158–167 pm).

Low-temperature neutron diffraction analysis of H4Co4(C5Me4Et)4 shows
that the molecule consists of four face-bridging hydrides attached to a
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Table 11.4.1. Structures of transition metal hydrides

Geometry Example Bond length∗ (pm)

Tricapped trigonal-
prismatic

K2ReH9
ReH2−

9 : Re(1)–H (3×)172,(6×) 167
Re(2)–H (3×)161,(6×) 170

Octahedral
Na3RhH6
Mg2FeH6
Mg3RuH6

RhH3−
6 : Rh–H 163 – 168

FeH4−
6 : Fe–H 156

RuH6−
6 : Ru–H (4×) 167, (2×) 173

Square-pyramidal
Mg2CoH5
Eu2IrH5

CoH4−
5 : Co–H (4×) 152, (1×) 159

IrH4−
5 : Ir–H (6×, disorder) 167

Square-planar
Na2PtH4
Li2RhH4

PtH2−
4 : Pt–H (4×) 164

RhH3−
4 : Rh–H (2×) 179, (2×) 175

Tetrahedral Mg2NiH4 NiH4−
4 : Ni–H 154–157

Saddle Mg2RuH4 RuH4−
4 : Ru–H (2×) 167, (2×) 168

T-shaped Mg3RuH3 RuH6−
3 : Ru–H 171

Linear
Na2PdH2
MgRhH1−x

PdH2−
2 : Pd–H (2×) 168

Rh4H8−
4 : Rh–H (2×) 171

∗The bond lengths are determined by neutron diffraction for M–D.

tetrahedral cobalt metal core, as shown in Fig. 11.4.3. The average distances
(in pm) and angles in the core of the molecule are as follows:

Co–Co 257.1 Co–H 174.9 Co–C 215.8

H · · · H 236.6 Co–H–Co 94.6◦ H–Co–H 85.1◦

The hydride ligands are located off the Co–Co–Co planes by an average distance
of 92.3 pm.

Polynuclear platinum and palladium carbonyl clusters containing the bulky
tri-tert-butylphosphine ligand are inherently electron-deficient at the metal cen-
ters. The trigonal bipyramidal cluster [Pt3Re2(CO)6(P tBu3)3], as shown in
Fig. 11.4.4(a), is electronically unsaturated with a deficit of 10 valence elec-
trons, as it needs 72 valence electrons to satisfy an 18-electron configuration at
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H

C

Co

Fig. 11.4.3.
Molecular structure of H4Co4(C5Me4Et)4 by neutron diffraction analysis at 20 K.

each metal vertex.The cluster reacts with 3 equivalents of molecular hydrogen at
room temperature to give the addition product [Pt3Re2(CO)6(PtBu3)3(µ-H)6] in
90% yield. Single-crystal X-ray analysis showed that the hexahydrido complex
has a similar trigonal bipyramidal structure with one hydrido ligand bridging
each of the six Pt–Re edges of the cluster core, as illustrated in Fig. 11.4.4(b).
The Pt–Pt bond lengths are almost the same in both complexes (average values
272.25 pm versus 271.27 pm), but the Pt–Re bonds are much lengthened in the
hexahydrido complex (average values 264.83 pm versus 290.92 pm). The Pt–H
bonds are significantly shorter than the Re–H bonds (average values 160 pm
versus 189 pm).

Re Re

Re
H

H

H

H
H

H
Re

Pt Pt
Pt

Pt
Pt

Pt PtBu3 PtBu3

O
CC

O

(a) (b)

C
O

C
O

C
OC
O

tBu3P tBu3P

tBu3PtBu3P

O
CC

O C
O

C
O

C
OC
O

Fig. 11.4.4.
Molecular structure of
(a) [Pt3Re2(CO)6(PtBu3)3] and its
hydrogen adduct (b)
[Pt3Re2(CO)6(PtBu3)3(µ-H)6]. From
R. D. Adams and B. Captain, Angew.
Chem. Int. Ed. 44, 2531–3 (2005).

11.4.2 Interstitial and high-coordinate hydride complexes

Most interstitial metal hydrides have variable composition, for example, PdHx
with x < 1. The hydrogen atoms are assumed to have lost their electrons to the d
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Table 11.4.2. Some hydrogen storage systems

Storage medium Hydrogen percent by weight Hydrogen density (kg dm−1)

MgH2 7.6 0.101
Mg2NiH4 3.16 0.081
VH2 2.07 0.095
FeTiH1.95 1.75 0.096
LaNi5H6 1.37 0.089
Liquid H2 100 0.070
Gaseous H2 (10 MPa) 100 0.008

orbitals of the metal atoms and behave as mobile protons. This model accounts
for the mobility of hydrogen in PdHx, the fact that the magnetic susceptibil-
ity of palladium falls as hydrogen is added, and that if an electric potential
is applied across a filament of PdHx, hydrogen migrates toward the negative
electrode.

A striking property of many interstitial metal hydrides is the high rate of
hydrogen diffusion through the solid at slightly elevated temperatures. This
mobility is utilized in the ultra-purification of H2 by diffusion through a
palladium-silver alloy tube.

Hydrogen has the potential to be an important fuel because it has an extremely
high energy density per unit weight. It is also a non-polluting fuel, the main
combustion product being water. The metallic hydrides, which decompose
reversibly to give hydrogen gas and the metals, can be used for hydrogen stor-
age. Table 11.4.2 lists the capacities of some hydrogen storage systems. It is
possible to store more hydrogen in the form of these hydrides than in the same
volume of liquid hydrogen.

Mg2+

H–

Fig. 11.4.5.
Crystal structure of MgH2.

The crystal structure of MgH2 has been determined by neutron diffraction.
It has the rutile structure, space group P42/mnm, with a = 450.25 pm, c =
301.23 pm, as shown in Fig. 11.4.5. The Mg2+ ion is surrounded octahedrally
by six H− anions at 194.8 pm. Taking the radius of Mg2+ as 72 pm (six-
coordinate, Table 4.2.2), the radius of H− (three-coordinate) is calculated to
be 123 pm.

Figure 11.4.6 shows the pressure (P) versus composition (x) isotherms for
the hydrogen–iron–titanium system. This system is an example of the formation
of a ternary hydride from an intermetallic compound.

In the majority of its metal complexes, the hydride ligand normally func-
tions in the µ1 (terminal), µ2(edge-bridging), and µ3 (triangular face-capping)
modes. Research efforts in recent years have led to the syntheses of an increasing
number of high-coordinate (µ4, µ5, and µ6) hydride complexes.

The compounds [Li8(H){N(2-Py)Ph}6]+[Li(Me2AltBu2)2]− and Li7(H)[N(2-
Py)Ph]6 are examples of molecular species that contain a µ6-hydride ligand
surrounded by an assembly of main-group metal ions. The cation [Li8(H){N(2-
Py)Ph}6]+ encapsulates a H− ion within an octahedron composed of Li atoms,
the average Li–H distance being 201.5 pm, as shown in Fig. 11.4.7(a). In
molecular Li7(H)[N(2-Py)Ph]6, the H− ion is enclosed in a distorted octahe-
dral coordination shell, as shown in Fig. 11.4.7(b). The average Li–H distance
is 206 pm. The seventh Li atom is located at a much longer Li· · · H distance
of 249 pm.
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Fig. 11.4.6.
P−x isotherms for the FeTiHx alloy. The
upper curve corresponds to the
equilibrium pressure as hydrogen is
added stepwise to the alloy; the lower
curve corresponds to the equilibrium
pressure as hydrogen is removed
stepwise from the hydride.

Neutron diffraction analysis of the hydrido cluster complex [H2Rh13(CO)24]3−

at low temperature has revealed a hexagonal close-packed metal skeleton in
which each surface Rh atom is coordinated by one terminal and two bridging
carbonyls. The two hydride ligands occupy two of the six square-pyramidal
sites on the surface, each being slightly displaced from the plane of four basal
Rh atoms toward the central Rh atom of the Rh13 cluster core (Fig. 11.4.8(a)).
For either µ5-hydride, the axial Rh(central)–H distance is shorter (average 184
pm) than the four Rh(surface)–H distances (average 197 pm).

Li

N

Li

N
H–

H–

(a) (b)

Fig. 11.4.7.
Structure of main-group metal hydride complexes: (a) [Li8(H){N(2-Py)Ph}6]+, (b) Li7(H)[N(2-Py)Ph]6; the broken line indicates a weak
interaction.

DFT calculations, as well as X-ray and neutron diffraction studies, have
established the first existence of a four-coordinate interstitial hydride lig-
and. In the isomorphous tetranuclear lanthanide polyhydride complexes
[C5Me4(SiMe3)]4Ln4H8 (Ln = Lu, Y), the tetrahedral Ln4H8 cluster core
adopts a pseudo C3v configuration with a body-centered µ4, one face-capping
µ3, and six edge-bridging µ2 hydride ligands. The molecular structure of the
yttrium(III) complex is shown in Fig. 11.4.8(b).
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Fig. 11.4.8.
(a) Molecular structure of
[H2Rh13(CO)24]3−; the carbonyl groups
are omitted for clarity. (b) Molecular
structure of [C5Me4(SiMe3)]4Y4H8; the
C5Me4(SiMe3)− ligands, each capping
a metal center, are omitted for clarity. H

Y

Y
Y

Y

H
H

H

H

(a) (b)

H

H
H

11.5 Molecular hydrogen (H2) coordination compounds
and σ -bond complexes

11.5.1 Structure and bonding of H2 coordination compounds

The activation of hydrogen by a metal center is one of the most important chem-
ical reactions. The H–H bond is strong (436 kJ mol−1), so that H2 addition to
unsaturated organic and other compounds must be mediated by metal centers
whose roles constitute the basis of catalytic hydrogenation. In catalytic mech-
anisms, hydride complexes formed by the cleavage of H2 are regarded as key
intermediates.

Fig. 11.5.1.
Molecular structure of
W(CO)3[P(CHMe2)3]2(H2). O

P

H

W

C

The first isolable transition metal complex containing a coordinated H2
molecule is W(CO)3[P(CHMe2)3]2(H2). X-ray and neutron diffraction stud-
ies and a variety of spectroscopic methods have confirmed that it possesses a
η2-H2 ligand, as shown in Fig. 11.5.1.

The resulting geometry about the W atom is that of a regular octahedron.
The H2 molecule is symmetrically coordinated in an η2 mode with an average
W–H distance of 185 pm (X-ray) and 175 pm (neutron) at −100 ◦C. The H–H
distance is 75 pm (X-ray) and 82 pm (neutron), slightly longer than that of the
free H2 molecule (74 pm).

The side-on bonding of H2 to the metal involves the transfer of σ bonding
electrons of H2 to a vacant metal d orbital (or hybrid orbital), together with the
transfer of electrons from a filled metal d orbital into the empty σ ∗ orbital of H2,
as shown in Fig. 11.5.2. This synergistic (mutually assisting) bonding mode is
similar to that of CO and ethylene with metal atoms. The π back donation from
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H

H
d
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++
+

+

+ +–

–

–

–
– Fig. 11.5.2.

Bonding in M-η2-H2. Arrow indicates
direction of donation.

metal to σ ∗ orbital on H2 is consistent with the fact that H–H bond cleavage is
facilitated by electron-rich metals.

Table 11.5.1. H· · · H bond distances (dHH) determined by
neutron diffraction for H2 coordination compounds

H2 Coordination compound d∗HH (pm)

Mo(Co)(dppe)2(H2) 73.6 (84)
[FeH(H2)(dppe)2]+ 81.6
W(CO)3(PiPr3)2(H2) 82
[RuH(H2)(dppe)2]+ 82 (94)
FeH2(H2)(PEtPh2)3 82.1
[OsH(H2)(dppe)2]+ 97
[Cp∗OsH2(H2)(PPh3)]+ 101
[Cp∗OsH2(H2)(AsPh3)]+ 108
[Cp∗Ru(dppm)(H2)]+ 108 (110)
cis-IrCl2H(H2)(PiPr3)2] 111
trans-[OsCl(H2)(dppe)2]+ 122
[Cp∗OsH2(H2)(PCy3)]+ 131
[Os(en)2(H2)(acetate)]+ 134
ReH5(H2)(P(p-tolyl)3]2 135.7
[OsH3(H2)(PPhMe2)3]+ 149

∗ Uncorrected for effects of vibrational motion; the corrected
values are given in parentheses.

The structure of trans-[Fe(η2-H2)(H)(PPh2CH2CH2PPh2)]BPh4 has been
determined by neutron diffraction at 20 K. The coordination environment about
the Fe atom is shown in Fig. 11.5.3. This is the first conclusive demonstration of
the expected difference between a hydride and a H2 molecule in coordination
to the same metal center. The H–H bond distance is 81.6 pm and the H–Fe
bond length is 161.6 pm, which is longer than the terminal H–Fe distance
of 153.5 pm.

H

P

Fe

H

H

P

Fig. 11.5.3.
Coordination of the Fe atom in
trans-[Fe(η2-
H2)(H)(PPh2CH2CH2PPh2)]BPh4.Alarge number of H2 coordination compounds have been identified and char-

acterized. Table 11.5.1 lists the H· · · H distances (dHH) determined by neutron
diffraction for some of these complexes. The H· · · H distances ranges from 82 to
160 pm, beyond which a complex is generally regarded to be a classical hydride.
A “true” dihydrogen complex can be considered to have dHH < 100 pm, and
the complexes with dHH > 100 pm are more hydride-like in their properties
and have highly delocalized bonding.
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The H2 molecule can act as an electron donor in combination with a proton
to yield a H+

3 species:

+ H+
H

H
H+

H

H

H

H H

+

The existence of H+
3 has been firmly established by its mass spectrum: H+

3 has
a relative molecular mass of 3.0235, which differs from those of HD (3.0219)
and T (3.0160). The H+

3 species has the shape of an equilateral triangle and is
stabilized by a 3c-2e bond.

The higher homologs H+
5 , H+

7 , and H+
9 have also been identified by mass

spectroscopy. These species are 102 to 103 times more abundant than the even-
member species H+

2n (n = 2, 3, 4, . . .) in mass spectral measurements. The
structures of H+

5 , H+
7 , and H+

9 are shown below:

H5
+(C2v) H7

+(C2v) H9
+(C3h)

11.5.2 X–H σ -bond coordination metal complexes

By analogy to the well characterized η2-H2 complexes, methane and silane can
coordinate to the metal in an µ2-fashion via a C–H σ bond and a Si-H σ bond:

LnM LnM LnM

H

H

CH3 SiH3

H H

Transition metal complexes with a variety of σ -coordinated silane ligands
have been extensively investigated. The molecular structure of Mo(η2-H-
SiH2Ph)(CO)(Et2PCH2CH2PEt2)2, as shown in Fig. 11.5.4(a), exhibits η2-
coordination of the Si–H bond at a coordination site cis to the CO ligand. The
distances (in pm) and angles of the Si–H coordinate bond are Si–H 177, Mo–H
170, Mo–Si 250.1, Mo–H–Si 92◦, and Mo–Si–H 42.6◦. The SiH2Ph2 ana-
log, Mo(η2-H–SiHPh2)(CO)(Et2PCH2CH2PEt2)2, as shown in Fig. 11.5.4(b),
exhibits a similar structure with Si–H 166, Mo–H 204, and Mo–Si 256.4.

Two molecules can be combined to form an ion-pair through a σ coordination
bond, in which one molecule provides its X–H (X = B, C, N, O, Si) σ bonding
electrons to a transition metal atom (such as Zr) of another molecule. A good
example is [(C5Me5)2Zr+Me][B−Me(C6F5)3], whose structure is shown in
Fig. 11.5.5. This bonding type is called an intermolecular pseudo-agostic (IPA)
interaction.
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Si Si

177250.1 256.4

170

(a) (b)

Mo Mo
H

H

O
O 204

166

C
C

P

P

Fig. 11.5.4.
Structure of (a) Mo(η2-H–
SiH2Ph)(CO)(Et2PCH2CH2PEt2)2 and
(b) Mo(η2-H–
SiHPh2)(CO)(Et2PCH2CH2PEt2)2(bond
lengths in pm).

11.5.3 Agostic bond

The agostic bond is an intramolecular 3c-2e C–H⇀M bond, with the vacant
metal orbital accepting an electron pair from the C–H σ bonding orbital. The
term “agostic” denotes the intramolecular coordination of C–H bonds to tran-
sition metals and is derived from a Greek word meaning “to clasp, to draw
toward, to hold to oneself.” The term “agostic” should not be used to describe
external ligand binding solely through a σ bond, which is best referred to as
σ -bonded coordinate binding. Agostic bonds may be broadly understood in the
following way. Many transition-metal compounds have less than an 18-electron
count at the metal center, and thus are formally unsaturated. One way in which
this deficiency may be alleviated is to increase the coordination number at the
transition metal by clasping a H atom of a coordinated organic ligand. There-
fore, the agostic bond generally occurs between carbon–hydrogen groups and
transition-metal centers in organometallic compounds, in which a H atom is
covalently bonded simultaneously to both a C atom and to a transition-metal
atom. An agostic bond is generally written as C–H⇀M, where the “half arrow”

B

C

H

F

Zr

Fig. 11.5.5.
Structure of
[(C5Me5)2Zr+Me][B−Me(C6F5)3].

indicates formal donation of two electrons from the C–H bond to the M vacant
orbital. As in all 3c-2e bridging systems involving only three valence orbitals,
the C–H⇀M fragment is bent and the agostic bond can be more accurately
represented by

M
C

H .
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The agostic C–H distance is in the range 113–19 pm, about 5-10% longer than
a non-bridging C–H bond; the M–H distance is also elongated by 10–20%
relative to a normal terminal M–H bond. Usually NMR spectroscopy can be
used for the diagnosis of static agostic systems which exhibit low J (C–Hα)
values owing to the reduced C–Hα bond order. Typical values of J (C–Hα) are
in the range of 60–90 Hz, which are significantly lower than those (120–30 Hz)
expected for C(sp3)–H bonds.

The C–H⇀M agostic bond is analogous to a X–H· · ·Y hydrogen bond, in
the sense that the strength of the M–H linkage, as measured by its internu-
clear distance, is variable, and correlates with the changes in C–H distance on
the ligand. There are, however, two important differences. Firstly, in a hydro-
gen bond the H atom is attracted by an electronegative acceptor atom, but the
strength of an agostic bond is stronger for more electropositive metals. Sec-
ondly, the hydrogen bond is a 3c-4e system, but the agostic bond is a 3c-2e
system.

The agostic interaction is considered to be important in such reactions as α
elimination, β-hydrogen elimination, and orthometalation. For example, in a β-
hydrogen elimination, a H atom on the β-C atom of an alkyl group is transferred
to the metal atom and an alkene is eliminated. This reaction proceeds through
an agostic-bond intermediate, as shown below:

Pd

C2H5

H

PH3 Pd Pd

CH2

CH2

CH2

H

PH3 PH3 PH3

H2
C

H

H

H

H2C

PdH

H

H2C+

The discovery of agostic bonding has led to renewed interest in the ligand
behavior of simple organic functional groups, such as the methyl group. The
C–H group used to be regarded as an inert spectator, but now C–H contain-
ing hydrocarbon ligand systems are recognized as being capable of playing
important roles in complex stereochemical reactions.

Agostic bonding has been extended to include general X–H⇀M systems, in
which X may be B, N, Si, as well as C. The principal types of compounds with
agostic bonds are shown in Fig. 11.5.6.

Figure 11.5.7 shows the molecular structures of some transition metal
complexes in which agostic bonding has been characterized by either X-
ray or neutron diffraction. Structural data for these compounds are listed in
Table 11.5.2.

Many complexes containing P-, N-, or O-containing ligands can also form
agostic bonds:

M

(C)n

E H (E # P, N, O)

Agostic interactions involving phosphines are quite significant because they
possess residual binding sites for other small molecules such as H2, and phos-
phine groups play crucial roles in many homogeneous catalysts. Figure 11.5.8(a)
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C               H
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α β γ remote

ylidene-yl ene-yl enyl-yl dieneyl-yl dienyl-yl
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Fig. 11.5.6.
Structural types of agostic alkyl and unsaturated hydrocarbonyl complexes.

(a) (b) (c)

(d) (e)

211.9

17
5.

3

P

Fe
213

Pd

Ta

S

Cl

Ru

163 B
156.9

Mn Si

FO

Fig. 11.5.7.
Molecular structures of some complexes
with agostic bonds: (a) Half of the
dimeric molecule
[Ta(CHCMe3)(PMe3)Cl3]2 containing a
pair of bridging chloro ligands,
(b) [HFe4(η2-CH)(CO)12],
(c) [Pd(H)(PH3)(C2H5)],
(d) {RuCl[S2(CH2CH2)·C2B9H10](PPh3)2}·
Me2CO, (e)
[Mn(HSiFPh2)(η5-C5H4Me)(CO)2].

Table 11.5.2. Structural data of some agostic-bonded X–H⇀M compounds

Compound M–X (pm) X–H (pm) M–H (pm) X–H–M(◦) Fig. 11.5.7

[Ta(CHCMe3)(PMe3)Cl3]2 Ta–C
189.8

C–H
113.1

Ta–H
211.9

C–H–Ta
84.8

(a)

[HFe4(η2-CH)(CO)12] Fe–C
182.7–194.9

C–H
119.1

Fe–H
175.3

C–H–Fe
79.4

(b)

[Pd(H)(PH3)(C2H5)] Pd–C
208.5

C–H
113

Pd–H
213

C–H–Pd
88

(c)

{RuCl[S2(CH2CH2) ·
C2B9H10]-
(PPh3)2} · Me2CO

B–H
121

Ru–H
163

(d)

[Mn(HSiFPh2)(η5-
C5H4Me)(CO)2]

Mn–Si
235.2

Si–H
180.2

Mn–H
156.9

(e)
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Fig. 11.5.8.
Structure of (a) W(CO)3(PCy3)2 and
(b) [IrH(η2-C6H4PtBu2)(PtBu2Ph)]+.

W
224.0 pm

O

H 203.2 pm

P

Ir

P
C

HC

P

shows the structure of W(CO)3(PCy3)2, in which the W↼H distance is 224.0
pm and the W· · · C distance is 288.4 pm. Figure 11.5.8(b) shows the structure
of [IrH(η2-C6H4P tBu2)(P tBu2Ph)]+ in its [BAr4]− salt, in which the Ir↼H
distance is 203.2 pm and the Ir· · · C distance is 274.5 pm.

11.5.4 Structure and bonding of σ complexes

Recent studies have established the following generalizations regarding σ
(sigma-bond) complexes:

(1) The X–H (X = B, C, Si) bonds in some ligand molecules, like the
H–H bond in H2, provide their σ bonding electron pairs to bind the ligands to
metal centers. They form intermolecular coordination compounds (i.e., sigma-
bond complexes) or intramolecular coordination compounds (i.e., agostic-bond
complexes). All such compounds involve non-classical 3c-2e bonding and are
collectively termed σ complexes.

M
H

H
M

X

H
M

X

H
M

X

H

dihydrogen complex (X = B, C, Si)

σ complex

agostic complex

(2) An understanding of the bonding nature in the σ complexes has extended
the coordination concept to complement the classical Werner-typer donation of
a lone pair and the π -electron donation of unsaturated ligands.

H

Werner-type complex π complex σ complex

HN

H
M

C
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M
X
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M
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Fig. 11.5.9.
Electron donation in (a) π complexes
and (b) σ complexes. The filled orbitals
are shaded.

(3) In σ complexes, the σ ligand is side-on (η2 mode) bonded to the metal
(M) to form a 3c-2e bond. The electron donation in σ complexes is analogous to
that in π complexes. The transition metals can uniquely stabilize the σ ligands
andπ ligands due to back donation from their d orbitals, as shown in Fig. 11.5.9.
The main-group metals, lacking electrons in their outer d orbitals, do not form
stable σ complexes.

(4) H–H and X–H are the strong covalent bonds. These bonds can be weak-
ened and even broken by σ coordination to the transition metal and back
donation from the metal to the σ ∗ orbitals. The lengthening and eventual cleav-
age of a σ bond by binding it to M are dependent on the electronic character
of M, which is influenced by the other ligands on M. In the σ complexes, the
H· · · H and X· · · H distances can vary greatly. The gradual conversion of a metal
dihydrogen σ complex to a dihydride is indicated by the following scheme:

H

H

H2 molecule
74 pm

‘‘true’’ H2 σ molecule
80–90 pm

elongated H2 complex 
100–120 pm            130–150 pm

hydride
> 160 pm

H

H
M

H

H
M

H

H
M

H

H
M

M

(5) There are two completely different pathways for the cleavage of H–H
bonds: oxidative addition and heterolytic cleavage. Both pathways have been
identified in catalytic hydrogenation and may also be applicable to other types
of X–H σ bond activation such as C–H cleavage.

Back donation in the σ complexes is the crucial component in both aiding
the binding of H2 to M and activating the H–H bond toward cleavage. If the
back donation becomes too strong, the σ bond breaks to form a dihydride due to
over-population of the H2 antibonding orbital. It is notable that back donation
controls σ -bond activation toward cleavage and a σ bond cannot be broken
solely by sharing its electron pair with a vacant metal d orbital. Although σ
interaction is generally the predominant bonding component in a σ complex, it
is unlikely to be stable at room temperature without at least a small amount of
back donation.

iranchembook.ir/edu

https://iranchembook.ir/edu


430 Structural Chemistry of Selected Elements

heterolytic cleavage σ complex                       oxidative addition

[M X] + H
X

H
M

X

H

M

σ*

− +

 electrophilic M nucleophilic M

weak σ                     stable σ               strong σ, elongated X–H                     metal hydride

σ donation

back donation

X–H distance
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12 Structural Chemistry of
Alkali and Alkaline-Earth
Metals

12.1 Survey of the alkali metals

The alkali metals — lithium, sodium, potassium, rubidium, cesium, and fran-
cium — are members of Group 1 of the Periodic Table, and each has a single
ns1 valence electron outside a rare gas core in its ground state. Some important
properties of alkali metals are given in Table 12.1.1.

With increasing atomic number, the alkali metal atoms become larger and
the strength of metallic bonding, enthalpy of atomization ('Hat), melting point
(mp), standard enthalpy of fusion ('Hfus) and boiling point (bp) all progres-
sively decrease. The elements show a regular gradation in physical properties
down the group.

The radii of the metals increase with increasing atomic number and their
atomic sizes are the largest in their respective periods. Such features lead to
relatively small first ionization energy (I1) for the atoms. Thus the alkali metals
are highly reactive and form M+ ions in the vast majority of their compounds.
The very high second ionization energy (I2) prohibits formation of the M2+

ions. Even though the electron affinities (Y ) indicate only mild exothermicity,
M− ions can be produced for all the alkali metals (except Li) under carefully
controlled conditions.

Table 12.1.1. Some properties of alkali metals∗

Property Li Na K Rb Cs

Atomic number, Z 3 11 19 37 55
Electronic configuration [He]2s1 [Ne]3s1 [Ar]4s1 [Kr]5s1 [Xe]6s1

'H 0
at (kJ mol−1) 159 107 89 81 76

mp (K) 454 371 337 312 302
'H 0

fus (kJ mol−1) 3.0 2.6 2.3 2.2 2.1
bp (K) 1620 1156 1047 961 952
rM (CN = 8) (pm) 152 186 227 248 265
rM (CN = 6) (pm) 76 102 138 152 167
I1 (kJ mol−1) 520.3 495.8 418.9 403.0 375.7
I2 (kJ mol−1) 7298 4562 3051 2633 2230
Electron affinity (Y ) (kJ mol−1) 59.8 52.7 48.3 46.9 45.5
Electronegativity (χs) 0.91 0.87 0.73 0.71 0.66

∗ Data are not available for francium, of which only artificial isotopes are known.

iranchembook.ir/edu

https://iranchembook.ir/edu


Alkali and Alkaline-Earth Metals 433

The chemistry of the alkali metals has in the past attracted little attention as
the metals have a fairly restricted coordination chemistry. However, interesting
and systematic study has blossomed over the past 25 years, largely prompted
by two major developments: the growing importance of lithium in organic syn-
thesis and materials science, and the exploitation of macrocyclic ligands in the
formation of complexed cations. Section 12.4 deals with the use of complexed
cations in the generation of alkalides and electrides.

12.2 Structure and bonding in inorganic alkali metal
compounds

12.2.1 Alkali metal oxides

The following types of binary compounds of alkali metals (M) and oxygen are
known:

(a) Oxides: M2O;
(b) Peroxides: M2O2;
(c) Superoxides: MO2 (LiO2 is stable only in matrix at 15 K);
(d) Ozonides: MO3 (except Li);
(e) Suboxides (low-valent oxides): Rb6O, Rb9O2, Cs3O, Cs4O, Cs7O, and

Cs11O3; and
(f) Sesquioxides: M2O3: These are probably mixed peroxide–superoxides in

the form of M2O2·2MO2.

The structures and properties of the alkali metal oxides are summarized in
Table 12.2.1.

Suboxides exist for the larger alkali metals. The crystal structures of all binary
suboxides (except Cs3O) as well as the structures of Cs11O3Rb, Cs11O3Rb2,
and Cs11O3Rb7 have been determined by single-crystal X-ray analysis. The
structural data are listed in Table 12.2.2. All structures conform to the following
rules:

(a) Each O atom occupies the center of an octahedron composed of Rb or Cs
atoms.

(b) Face sharing of two such octahedra results in the cluster Rb9O2, and three
equivalent octahedra form the cluster Cs11O3, as shown in Fig. 12.2.1.

(c) The O–M distances are near the values expected for M+ and O2− ions. The
ionic character of the M atoms is reflected by the short intracluster M–M
distances.

(d) The intercluster M–M distances are comparable to the distances in metallic
Rb and Cs.

(e) The Rb9O2 or Cs11O3 clusters and additional alkali metals atoms form com-
pounds of new stoichiometries. Some crystal structures have the intercluster
space filled by metal atoms of the same kind, such as (Cs11O3)Cs10 shown
in Fig. 12.2.2(a), or by metal atoms of a different kind, such as (Cs11O3)Rb
and (Cs11O3)Rb7 illustrated in Figs. 12.2.2(b) and (c), respectively.

The bonding within the alkali metal suboxides is illustrated by comparing
the interatomic distances in the compounds Rb9O2 and Cs11O3 with those in
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Table 12.2.1. Structures and properties of alkali metal oxides

Li Na K Rb Cs

Oxides
M2O

Colorless
mp 1843 K
anti-CaF2
structure

Colorless
mp 1193 K
anti-CaF2
structure

Pale-yellow
mp > 763 K
anti-CaF2
structure

Yellow
mp > 840 K
anti-CaF2
structure

Orange
mp 763 K
anti-CdCl2
structure

Peroxides
M2O2

Colorless
dec. > 473
K

Pale yellow
dec. ≈ 948 K

Yellow
dec. ≈ 763 K

Yellow
dec. ≈ 843 K

Yellow
dec. ≈ 863 K

Superoxides
MO2

— Orange
dec. ≈573 K
NaCl-structure

Orange
mp 653 K
dec. ≈ 673 K
CaC2
structure

Orange
mp 685 K
CaC2 struc-
ture

Orange
mp 705 K
CaC2 structure

Ozonides
MO3

— Red
dec.<room
temp.

Dark red
dec. at room
temp.
CsCl structure

Dark red
dec. ≈ room
temp.
CsCl structure

Dark red
dec. > 323 K
CsCl structure

Suboxides — — — Rb6O
Bronze color
dec. 266 K
Rb9O2
Copper color
mp 313 K

Cs3O
Blue green
dec. 439 K
Cs4O
Red-violet
dec. 284 K
Cs7O
Bronze
mp 277 K
Cs11O3
Violet
mp 326 K

the “normal” oxides and in metallic Rb and Cs. The M–O distances nearly
match the sum of ionic radii. The large intercluster M–M distances corre-
spond to the distances in elemental M (Rb and Cs). Therefore, the formulations
(Rb+)9(O2−)2(e−)5 and (Cs+)11(O2−)3(e−)5, where e− denotes an electron,
represent a rather realistic description of the bonding in these clusters. Their

Fig. 12.2.1.
Clusters in alkali suboxides: (a) Rb9O2
and (b) Cs11O3. The shared faces are
shaded.

(a) (b)

stability is attributable to consolidation by strong O–M and weak M–M bonds.
All the alkali metal suboxides exhibit metallic luster and are good conductors.
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a

a

(a) (b)

(c)

b

b

a

b

Fig. 12.2.2.
Unit-cell projections showing the atomic
arrangements in some low-valent alkali
metal oxides: (a) (Cs11O3)Cs10,
(b) (Cs11O3)Rb, (c) (Cs11O3)Rb7. The
open, blackened, and shaded circles
represent Cs, O, and Rb atoms,
respectively.

Thus the electrons in M–M bonding states do not stay localized within the
clusters but are delocalized throughout the crystal due to the close contacts
between the clusters.

12.2.2 Lithium nitride

Among the alkali metals, only lithium reacts with N2 at room temperature
and normal atmospheric pressure to give red-brown, moisture-sensitive lithium
nitride Li3N (α-form), which has a high ionic conductivity.

Table 12.2.2. Structural data of alkali metal suboxides

Compounds Space group Structural feature

Rb9O2 P21/m Rb9O2 cluster, Fig. 12.1.1(a)
Rb6O P63/m (Rb9O2)Rb3; three Rb atoms per Rb9O2 cluster
Cs11O3 P21/c Cs11O3 cluster, Fig. 12.1.1(b)
Cs4O Pna21 (Cs11O3)Cs; one Cs atom per Cs11O3 cluster
Cs7O P6m2 (Cs11O3)Cs10; ten Cs atoms per Cs11O3 cluster, Fig. 12.2.2(a)
Cs11O3Rb Pmn21 One Rb atom per Cs11O3 cluster, Fig. 12.2.2(b)
Cs11O3Rb2 P21/c Two Rb atoms per Cs11O3 cluster
Cs11O3Rb7 P212121 Seven Rb atoms per Cs11O3 cluster, Fig. 12.2.2(c)

The α form of Li3N is made up of planar Li2N layers, in which the Li
atoms form a simple hexagonal arrangement, as in the case of the carbon
layer in graphite, with a nitrogen atom at the center of each ring, as shown
in Fig. 12.2.3(a). These layers are stacked and are linked by additional Li atoms
midway between the N atoms of adjacent overlapping layers. Figure 12.2.3(b)
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Fig. 12.2.3.
Crystal structure of Li3N: (a) Li2N layer,
(b) the unit cell. The small black circle
and large open circle represent Li and N
atoms, respectively. (a) (b)

shows a hexagonal unit cell, with a = 364.8 pm, c = 387.5 pm. The Li–N
distance is 213 pm within a layer, and 194 pm between layers.
α-Li3N is an ionic compound, in which the N3− ion has a much greater size

than the Li+ ion [rN3− 146 pm, rLi+ 59 pm (CN = 4)]. The crystal structure
is very loosely packed, and conductivity arises from Li+ vacancies within the
Li2N layers. The interaction between the carrier ions (Li+) and the fixed ions
(N3−) is relatively weak, so that ion migration is quite effective.

12.2.3 Inorganic alkali metal complexes

(1) Structural features of alkali metal complexes
A growing number of alkali metal complexes (MX·xL)n (M = Li, Na, K; X =
halogens, OR, NR2, · · · ; L = neutral molecules) are known. It is now generally
recognized that the M–X bonds in these complexes are essentially ionic or
have a high degree of ionic character. This bonding character accounts for the
following features of these complexes:

(a) Most alkali metal complexes have an inner ionic core, and at the same
time frequently form molecular species. The ionic interaction leads to large
energies of association that stabilize the formation of complexes. The outer
molecular fragments prevent the continuous growth of MX to form an ionic
lattice. This characteristic has been rationalized in terms of the relatively
large size and low charge of the cations M+. According to this view, the
stability of alkali metal complexes should diminish in the sequence Li >

Na > K > Rb > Cs, and this is frequently observed.
(b) The electrostatic association favors the formation of the M+X− ion pairs,

and it is inevitable that such ion pairs will associate, so as to delocalize
the electronic charges. The most efficient way of accomplishing this is by
ring formation. If the X− groups are relatively small and for the most part
coplanar with the ring, then stacking of rings can occur. For example, two
dimers are connected to give a cubane-like tetramer, and two trimers lead
to a hexagonal prismatic hexamer.

(c) In the ring structures, the bond angles at X−are acute. Hence the forma-
tion of larger rings would reduce repulsion between X−ions and between
M+ ions.

(d) Since the alkali metal complexes are mostly discrete molecules with an
ionic core surrounded by organic peripheral groups, they have relatively low
melting points and good solubility in weakly polar organic solvents. These
properties have led to some practical applications; for example, lithium
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(a) (b)

Li

Li

Li
R

O

O O

R

THF

(c)

(d) (e)

Li

O
Li

O

C

C

THF

Fig. 12.2.4.
Core structures of some lithium
alkoxides and aryloxides:
(a) [Li(THF)2OC(NMe2)(c-2,4,6-
C7H6)]2,
(b) [Li(THF)OC(CHtBu)OMe]4,
(c) [LiOC(CH2)tBu]6,
(d) (LiOPh)2(18-crown-6), and
(e) [(LiOPh)2(15-crown-5)]2.

complexes are used as low-energy electrolytic sources of metals, in the
construction of portable batteries, and as halogenating agents and specific
reagents in organic syntheses.

(2) Lithium alkoxides and aryloxides
Anionic oxygen donors display a strong attraction for Li+ ions and usually
adopt typical structures of their aggregation state, as shown in Figs 12.2.4(a)-(c).
Figure 12.2.4(a) shows the dimeric structure of [Li(THF)2OC(NMe2)(c-2,4,6-
C7H6)]2, in which Li+ is four-coordinated by the oxygen atoms from two
THF ligands and two alkoxides OC(NMe2)(c-2,4,6-C7H6). The Li–O dis-
tances are 188 and 192 pm for the bridging oxygen of the enolate, and 199
pm for THF. Figure 12.2.4(b) shows the tetrameric cubane-type structure of
[Li(THF)OC(CHtBu)OMe]4. The Li–O distances are 196 pm (enolate) and
193 pm (THF). Figure 12.2.4(c) shows the hexagonal-prismatic structure of
[LiOC(CH2)

tBu]6. The Li–O distances are 190 pm (av.) in the six-membered
ring of one stack, and 195 pm (av.) between the six-membered rings.

Figures 12.2.4(d) and (e) show the structures of (LiOPh)2(18-crown-6) and
[(LiOPh)2(15-crown-5)]2. In the former, there is a central dimeric (Li–O)2
unit. Owing to its larger size, 18-crown-6 can coordinate both Li+ ions, each
through three oxygen atoms (Li–O 215 pm, av.). These Li+ ions are bridged
by phenoxide groups (Li–O 188 pm). The structure of the latter has a very
similar (LiOPh)2 core (Li–O 187 and 190 pm). Each Li+ ion is coordinated to
another –OPh group as well as one ether oxygen from a 15-crown-5 donor. This
ether oxygen atom also connected to a further Li+ ion whose coordination is
completed by the remaining four oxygen donors of the 15-crown-5 ligands.
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Fig. 12.2.5.
Core structures of some lithium amides
and imides: (a) (LiTMP)4,
(b) Li4(TMEDA)2[c-N(CH2)4],
(c) [Li{c-N(CH2)6}]6,
(d) [{LiN(SiMe3)}3SiR]2,
(e) [LiNHtBu]8, and
(f) [Li12O2Cl2(ImN)8(THF)4]·8(THF).

(a)
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Li

N
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N

Li
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N

NLi
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Si
(d) (e)

Im = 1,3-dimethylimidazol-2-ylidene

THF = tetrahydrofuran

Im

Im

Im

Im

Im

Im

Im

Im

N

Li
Cl

O

THF

THF

THF

THF

(3) Lithium amides
The structures of lithium amides are characterized by a strong tendency for
association. Monomeric structures are observed only in the presence of very
bulky groups at nitrogen and/or donor molecules that coordinate strongly to
lithium. In the dimeric lithium amides, the Li+ ion is usually simultaneously
coordinated by N atoms and other atoms. The trimer [LiN(SiMe3)2]3 has a
planar cyclic arrangement of its Li3N3 core. The Li–N bonds are 200 pm long
with internal angles of 148◦ at Li and 92◦ at N (average values). Figure 12.2.5
shows the structures of some higher aggregates of lithium amides.

(a) The tetramer (LiTMP)4 (TMP= 2,2,6,6-tetramethylpiperidinide) has a pla-
nar Li4N4 core with a nearly linear angle (168.5◦) at Li and an internal
angle of 101.5◦ at N. The average Li–N distance is 200 pm, as shown in
Fig. 12.2.5(a).

(b) The tetrameric molecule Li4(TMEDA)2[c-N(CH2)4] (TMEDA = N ,N ′-
tetramethylenediamine) has a ladder structure in which adjacent Li2N2 rings
share edges with further aggregation blocked by TMEDA coordination, as
shown in Fig. 12.2.5(b).

(c) The hexameric [Li{c-N(CH2)6}]6 has a stacked structure, as shown in
Fig. 12.2.5(c). This involves the association of two [Li-c-N(CH2)6]3 units
to form a hexagonal-prismatic Li6N6 unit, in which all N atoms have the
relatively rare coordination number of five.

(d) The basic framework in [{LiN(SiMe3)}3SiR]2 (R = Me, tBu and Ph) is
derived from the dimerization of a trisamidosilane. It exhibits molecular
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D3d symmetry, as shown in Fig. 12.2.5(d). Each of the three Li+ ions in
a monomeric unit is coordinated by two N atoms in a chelating fashion,
and linkage of units occurs through single Li–N contacts. This causes all
N atoms to be five-coordinate, which leads to weakening of the Li–N and
Si–N bonds.

(e) Figure 12.2.5(e) shows the core structure of [LiNHtBu]8, in which planar
Li2N2 ring units are connected to form a discrete prismatic ladder molecule.

(f) Figure 12.2.5(f) shows the centrosymmetric core structure of [Li12O2Cl2
(ImN)8(THF)4]·8(THF), which consists of a folded Li4N2O2 ladder in
which the central O2−

2 ion is connected to two Li centers. The two adjacent
Li4ClN3 ladders are connected with the central Li4N2O2 unit via Li–O,
Li–Cl and Li–N interactions. The bond distances are

Li–N 195.3–218.3 pm, Li–O 191.7–259.3 pm,

Li–Cl 238.5–239.6 pm, O–O 154.4 pm.

In this structure, Li atoms are four-coordinated, and N atoms are four- or
five-coordinated.

(4) Lithium halide complexes
In view of the very high lattice energy of LiF, there is as yet no known complex
that contains LiF and a Lewis base donor ligand. However, a range of crystalline
fluorosilyl-amide and -phosphide complexes that feature significant Li· · · F con-
tacts have been synthesized and characterized. For example, {[tBu2Si(F)]2N}Li
·2THF has a heteroatomic ladder core, as shown in Fig. 12.2.6(a), and dimeric
[tBu2SiP(Ph)(F)Li)·2THF]2 contains an eight-membered heteroatomic ring.

A large number of complexes containing the halide salts LiX (X = Cl, Br,
and I) have been characterized in the solid state. The structures of some of these
complexes are shown in Figs. 12.2.6(b)-(f).

In the center of the cubane complex [LiCl·HMPA]4 (HMPAis (Me2N)3P=O),
each Li+ is bonded to three Cl− and one oxygen of HMPA, as shown
in Fig. 12.2.6(b). The complex (LiCl)6(TMEDA)2 has a complicated poly-
meric structure based on a (LiCl)6 core, as shown in Fig. 12.2.6(c).
Tetrameric [LiBr]4·6[2,6-Me2Py] has a staggered ladder structure, as shown

(a)

Li

F

Si

Li

Cl

N

(b) (c)

Li

Cl

(d) (e)

Li Li

Br Br

(f)

Li

Br

Fig. 12.2.6.
Structures of some lithium halide
complexes: (a) {[tBu2Si(F)]2N}Li
·2THF, (b) [LiCl·HMPA]4,
(c) (LiCl)6(TMEDA)2,
(d) [LiBr]4·6[2,6-Me2Py],
(e) [Li6Br4(Et2O)10]2+, and
(f) [LiBr·THF]n.
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in Fig. 12.2.6(d). In the complex [Li6Br4(Et2O)10]2+·2[Ag3Li2Ph6]−, the
hexametallic dication contains a Li6Br4 unit which can be regarded as two
three-rung ladders sharing their terminal Br anions, as shown in Fig. 12.2.6(e).
The structure of oligomeric [LiBr·THF]n is that of a unique corrugated ladder,
in which [LiBr]2 units are linked together by µ3-Br bridges, as shown in Fig.
12.2.6(f). Polymeric ladder structures have also been observed for a variety of
other alkali metal organometallic derivatives.

(5) Lithium salts of heavier heteroatom compounds
Lithium can be coordinated by heavier main-group elements, such as S, Se, Te,
Si, and P atoms, to form complexes. In the complex [Li2(THF)2Cp*TaS3]2, the
monomeric unit consists of a pair of four-membered Ta–S–Li–S rings sharing a
common Ta–S edge. Dimerization occurs through further Li–S linkages, afford-
ing a hexagonal-prismatic skeleton, as shown in Figure 12.2.7(a). The bond
lengths are Li–S 248 pm(av.) and Ta–S 228 pm(av.). Figure 12.2.7(b) shows
the core structure of Li(THF)3SeMes* (Mes* = 2,4,6-C6H2R3, where R is a
bulky group such as But) which has Li–Se bond length 257 pm. Figure 12.2.7(c)
shows the core structure of the dimeric complex [Li(THF)2TeSi(SiMe3)3]2, in
which the distances of bridging Li–Te bonds are 282 and 288 pm.

Some lithium silicide complexes have been characterized. The complex
Li(THF)3SiPh3 displays a terminal Li–Si bond that has a length of 267 pm,
which is the same as that in Li(THF)3Si(SiMe3). Figure 12.2.7(d) shows the
core structure of Li(THF)3SiPh3. There is no interaction between Li and the
phenyl rings. The C–Si–C bond angles are smaller (101.3◦ av.) than the ideal
tetrahedral value, while the Li–Si–C angles are correspondingly larger (116.8◦

av.). This indicates the existence of a lone pair on silicon.

Fig. 12.2.7.
Core structures of some lithium
complexes bearing heavier heteroatom
ligands: (a) [Li2(THF)2Cp*TaS3]2,
(b) Li(THF)3SeMes*,
(c) [Li(THF)2TeSi(SiMe3)3]2,
(d) Li(THF)3SiPh3,
(e) Li(Et2O)2(P tBu)2(Ga t

2 Bu3),
(f) [Li(Et2O)PPh2]n,
(g) [LiP(SiMe3)2]4(THF)2.
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Figures 12.2.7(e)–(g) show the core structures of three lithium phosphide
complexes. Li(Et2O)2(PtBu)2(Gat

2Bu3) has a puckered Ga2P2 four-membered
ring, in which one Ga atom is four- and the other three-coordinated, as shown
in Fig. 12.2.7(e). The Li–P bond length is 266 pm(av.).

The polymeric complex [Li(Et2O)PPh2]n has a backbone of alternating Li
and P chain, as shown in Fig. 12.2.7(f). The bond length of Li–P is 248 pm
(av.) and Li–O is 194 pm (av.). Figure 12.2.7(g) shows the core structure of
[LiP(SiMe3)2]4(THF)2, which has a ladder structure with Li–P bond length
253 pm(av.).

(6) Sodium coordination complexes
Recent development in the coordination chemistry of Group 1 elements has
extended our knowledge of their chemical behavior and provided many inter-
esting new structural types. Three examples among known sodium coordination
complexes are presented below:

(a) A rare example of a bimetallic imido complex is the triple-stacked
Li4Na2[N=C(Ph)(tBu)]6. This molecule has six metal atoms in a triple-
layered stack of four-membered M2N2 rings, with the outer rings con-
taining lithium and the central ring containing sodium. In the structure,
lithium is three-coordinated and sodium is four-coordinated, as shown in
Fig. 12.2.8(a).

(b) The large aggregate [Na8(OCH2CH2OCH2CH2OMe)6(SiH3)2] has been
prepared and characterized. The eight sodium atoms form a cube, the
faces of which are capped by the alkoxo oxygen atoms of the six
(OCH2CH2OCH2CH2OMe) ligands, which are each bound to four sodium
atoms with Na–O distances in the range 230–242 pm. The sodium and
oxygen atoms constitute the vertices of an approximate rhombododecahe-
dron. Six of eight sodium atoms are five-coordinated by oxygen atoms,
and each of the other two Na atoms is bonded by a SiH−3 group, which has
inverted C3v symmetry with Na–Si–H bond angles of 58◦–62◦, as shown in
Fig. 12.2.8(b).

(a) (b)
Si

H

Na

Na

H
O

Si

N

Li

Na

Fig. 12.2.8.
Structures of
(a) Li4Na2[N=C(Ph)(tBu)]6 (the
Ph and tBu groups are not shown), and (b)
[Na8(OCH2CH2OCH2CH2OMe)6(SiH3)2].
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Fig. 12.2.9.
Structure of [Na11(OtBu)10(OH)].

Bu
O

Na

H

Despite the strange appearance of the SiH−3 configuration in this com-
plex, ab initio calculations conducted on the simplified model compound
(NaOH)3NaSiH3 indicate that the form with inverted hydrogens is 6 kJ
mol−1 lower in energy than the un-inverted form. The results suggest that
electrostatic interaction, rather than agostic interaction between the SiH3
group and its three adjacent Na neighbors, stabilizes the inverted form.

(c) The complex [Na11(OtBu)10(OH)] is obtained from the reaction of sodium
tert-butanolate with sodium hydroxide. Its structure features a 21-vertex
cage constructed from eleven sodium cations and ten tert-butanolate anions,
with an encapsulated hydroxide ion in its interior, as shown in Fig. 12.2.9. In
the lower part of the cage, eight sodium atoms constitute a square antiprism,
and four of the lower triangular faces are each capped by a µ3-OtBu group.
The Na4 square face at the bottom is capped by a µ4-OtBu group, and the
upper Na4 square face is capped in an inverted fashion by the µ4-OH−

group. Thus the OH− group resides within a Na8-core, and it also forms an
O–H· · · O hydrogen bond of length 297.5 pm. The Na–O distances in the
21-vertex cage are in the range of 219–43 pm.

12.3 Structure and bonding in organic alkali metal
compounds

12.3.1 Methyllithium and related compounds

Lithium readily interacts with hydrocarbon π systems such as olefins, arenes,
and acetylenes at various sites simultaneously. Lithium reacts with organic
halides to give alkyllithium or aryllithium derivatives in high yield. Therefore,
a wide variety of organolithium reagents can be made. These organolithium
compounds are typically covalent species, which can be sublimed, distilled in
a vacuum, and dissolved in many organic solvents. The Li–C bond is a strong
polarized covalent bond, so that organolithium compounds serve as sources
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(a)

CH3

H
C

Li
Li

(b)

Fig. 12.3.1.
Molecular structure of (a) methyllithium
tetramer (Li4Me4) (H atoms have been
omitted); and (b) vinyllithium·THF
tetramer (LiHC=CH2·THF)4 (THF
ligands have been omitted).

of anionic carbon, which can be replaced by Si, Ge, Sn, Pb, Sb, or Bi. When
Sn(C6H5)3 or Sb(C6H11)2 groups are used to replace CH3, CMe3 or C(SiMe3)3
in organolithium compounds, new species containing Li–Sn or Li–Sb bonds are
formed.

Methyllithium, the simplest organolithium compound, is tetrameric. The
Li4(CH3)4 molecule with Td symmetry may be described as a tetrahedral array
of four Li atoms with a methyl C atom located above each face of the tetrahe-
dron, as shown in Fig. 12.3.1(a). The bond lengths are Li–Li 268 pm and Li–C
231 pm, and the bond angle Li–C–Li is 68.3◦.

Vinyllithium, LiHC=CH2, has a similar tetrameric structure in the crystalline
state with a THF ligand attached to each lithium atom [Fig. 12.3.1(b)]. In THF
solution vinyllithium is tetrameric as well. The internuclear Li–H distances are
in agreement with those calculated from the two-dimensional NMR 6Li, 1H
HOSEY spectra.

When steric hindrance is minimal, organolithium compounds tend to form
tetrameric aggregates with a tetrahedral Li4 core. Figures 12.3.2(a)–(d) show
the structures of some examples: (a) (LiBr)2·(CH2CH2CHLi)2·4Et2O, (b)
(PhLi·Et2O)3·LiBr, (c) [C6H4CH2N(CH3)2Li]4, and (d) (tBuC≡CLi)4(THF)4.
In these complexes, the Li–C bond lengths range from 219 to 253 pm, with an
average value of 229 pm, while the Li–Li distances lie in the range 242–263
pm (average 256 pm). The Li–C bond lengths are slightly longer than those
for the terminally bonded organolithium compounds. This difference may be
attributed to multicenter bonding in the tetrameric structures.

12.3.2 π -Complexes of lithium

The interactions between Li atom and diverse π systems yield many types
of lithium π complexes. Figures 12.3.3(a)–(c) show the schematic representa-
tion of the core structures of some π complexes of lithium, and Fig. 12.3.3(d)
shows the molecular structure of [C2P2(SiMe3)2]2−·2[Li+(DME)] (DME =
dimethoxyethane).

(a) Li[Me2N(CH2)2NMe2]·[C5H2(SiMe3)3]: In the cyclopentadienyllithium
complex, the Li atom is coordinated by the planar Cp ring and by one
chelating TMEDA ligand. The Li–C distances are 226 to 229 pm (average
value 227 pm).

(b) Li2[Me2N(CH2)2NMe2]·C10H8: In the naphthalene–lithium complex,
each Li atom is coordinated by one η6 six-membered ring and a chelat-
ing TEMDA ligand. The two Li atoms are not situated directly opposite to
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Fig. 12.3.2.
Structures of some organolithium
complexes:
(a) (LiBr)2·(CH2CH2CHLi)2·4Et2O,
(b) (PhLi·Et2O)3·LiBr,
(c) [C6H4CH2N(CH3)2Li]4, and
(d) (tBuC≡CLi)4(THF)4.

(a)

Li

O

(b)

LiBr

O

(c)

Li(CH3)2N

Li

O

(d)

Br

Fig. 12.3.3.
Structures of some lithium π complexes:
(a) Li[Me2N(CH2)2NMe2]·[C5H2(SiMe3)3],
(b) Li2[Me2N(CH2)2NMe2]·C10H8,
(c) Li2[Me2N(CH2)2NMe2][H2C=CH–
CH=CH–CH=CH2], and
(d) [C2P2(SiMe3)2]2−·2[Li+(DME)].

(a) (b)

(c) (d)

O
Li

Li

Li

Li

Si

P

each other. The Li–C distances are in the range 226–66 pm; the average
value is 242 pm.

(c) Li2[Me2N(CH2)2NMe2][H2C=CH–CH=CH–CH=CH2]: In this complex,
each Li atom is coordinated by the bridging bistetrahaptotriene and by one
chelating TMEDA ligand. The Li–C distances are 221 to 240 pm (average
value 228 pm).
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(a)

Na(1)

Na(2)

(b) (c)

K
Na

Fig. 12.3.4.
Structures of some π complexes of
sodium and potassium:
(a) Na2[Ph2C=CPh2]·2Et2O,
(b) Na(C5H5)(en), and (c)
K[C5H4(SiMe3)].

(d) [C2P2(SiMe3)2]2−·2[Li+(DME)]: In this complex, the C2P2 unit forms a
planar four-membered ring, which exhibits aromatic properties with six π
electrons. The two Li atoms are each coordinated to the central η4-C2P2
ring. The distances of Li–C and Li–P are 239.1 and 245.8 pm, respectively.
Each Li atom is also coordinated by one chelating DME ligand.

12.3.3 π -Complexes of sodium and potassium

Many π complexes of sodium and potassium have been characterized. The
Na and K atoms of these complexes are polyhapto-bonded to the ring π
systems, and frequently attached to two or more rings to give infinite chain
structures. Figure 12.3.4 shows the structures of some π complexes of sodium
and potassium.

In the structure of Na2[Ph2C=CPh2]·2Et2O, the two halves of the
[Ph2C=CPh2]2− dianion twist through 56◦ relative to each other, and the cen-
tral C=C bond is lengthened to 149 pm as compared to 136 pm in Ph2C=CPh2.
The coordination of Na(1) involves the >C=C< π bond and two adjacent π
bonds. The two Et2O ligands are also coordinated to it. The Na(2) is sand-
wiched between two phenyl rings in a bent fashion, and further interacts
with a π bond in the third ring, as shown in Fig. 12.3.4(a). The Na(1)–C
and Na(2)–C distances lie in the ranges 270–282 pm and 276–309 pm,
respectively.

Figure 12.3.4(b)–(c) show the structures of Na(C5H5)(en) and K[C5H4
(SiMe3)], respectively. In these complexes, each metal (Na or K) atom is cen-
trally positioned between two bridging cyclopentadienyl rings, leading to a bent
sandwich polymeric zigzag chain structure. The sodium atom is further coor-
dinated by an ethylenediamine ligand, and the potassium atom interacts with
an additional Cp ring of a neighboring chain.

iranchembook.ir/edu

https://iranchembook.ir/edu


446 Structural Chemistry of Selected Elements

12.4 Alkalides and electrides

12.4.1 Alkalides

The alkali metals can be dissolved in liquid ammonia, and also in other solvents
such as ethers and organic amines. Solutions of the alkali metals (except Li)
contain solvated M− anions as well as solvated M+ cations:

2M(s)⇀↽ M+(solv) + M−(solv).

Successful isolation of stable solids containing these alkalide anions depends
on driving the equilibrium to the right and then on protecting the anion from
the polarizing effects of the cation. Both goals have been realized by using
macrocyclic ethers (crown ethers and cryptands). The oxa-based cryptands such
as 2.2.2-crypt (also written as C222) are particularly effective in encapsulating
M+ cations.

Alkalides are crystalline compounds that contain the alkali metal anions, M−

(Na−, K−, Rb−, or Cs−). The first alkalide compound Na+(C222)·Na− was
synthesized and characterized by Dye in 1974.

Elemental sodium dissolves only very slightly (∼ 10−6 mol L−1) in ethy-
lamine, but when C222 is added, the solubility increases dramatically to 0.2
mol L−1, according to the equation

2Na(s) + C(222) −→ Na+(C222) + Na−.

When cooled to –15 ◦C or below, the solution deposits shiny, gold-colored thin
hexagonal crystals of [Na+(C222)]·Na−. Single-crystal X-ray analysis shows
that two sodium atoms are in very different environments in the crystal. One
is located inside the cryptand at distances from the nitrogen and oxygen atoms
characteristic of a trapped Na+ cation. The other is a sodium anion (natride),
Na−, which is located far away from all other atoms. Figure 12.4.1 shows the
cryptated sodium cation with its six nearest natrides in the crystals. The close
analogy of the natride ion with an iodide ion is brought out clearly by comparing
[Na+(C222)]·Na− with [Na+(C222)]·I−.

Fig. 12.4.1.
The cryptated sodium cation surrounded
by six natride anions in crystalline
[Na+(C222)]·Na−.

Na–

N

Na+

C

O
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Table 12.4.1. Radii of alkali metal anions from structure of alkalides and alkali metals∗

Compound rM−(min) (pm) rM−(av) (pm) datom (pm) rM+ (pm) rM− (pm)

Na metal — — 372 95 277
K+(C222)·Na− 255 273 (14)
Cs+(18C6)·Na− 234 264 (16)
Rb+(15C5)2·Na− 260 289 (16)
K+(HMHCY)·Na− 248 277 (10)
Cs+(HMHCY)·Na− 235 279 (8)
K metal — — 463 133 330
K+(C222)·K− 294 312 (10)
Cs+(15C5)2·K− 277 314 (16)
Rb metal — — 485 148 337
Rb+(C222)·Rb− 300 321 (14)
Rb+(18C6)·Rb− 299 323 (9)
Rb+(15C5)2·Rb− 264 306 (16)
Cs metal — — 527 167 360
Cs+(C222)·Cs− 317 350 (15)
Cs+(18C6)2·Cs− 309 346 (15)

∗ HMHCY stands for hexamethyl hexacyclen, which is the common name of 1,4,7,10,13,16-hexaaza-
1,4,7,10,13,16-hexamethyl cyclooctadecane. Here rM−(min) is the distance between an anion and its
nearest hydrogen atoms minus the van der Waals radius of hydrogen (120 pm), while rM−(av) is the
average radius over the nearest hydrogen atoms; the numbers in the brackets are the numbers of hydro-
gen atoms for averaging. Similarly, datom is the interatomic distance in the metal; rM− is equal to datom
minus rM+ .

More than 40 alkalide compounds that contain the anions Na−, K−, Rb−, or
Cs− have been synthesized, and their crystal structures have been determined.
Table 12.4.1 lists the calculated radii of alkali metal anions from structures of
alkalides and alkali metals. The values of rM−(av) derived from alkalides and
rM− from the alkali metals are in good agreement.

12.4.2 Electrides

The counterparts to alkalides are electrides, which are crystalline compounds
with the same type of complexed M+cations, but the M−anions are replaced by
entrapped electrons that usually occupy the same sites. The crystal structures
of several electrides are known: Li+(C211)e−, K+(C222)e−, Rb+(C222)e−,
Cs+(18C6)2e−, Cs+(15C5)2e−, and [Cs+(18C6)(15C5)e−]6(18C6). Compar-
ison of the structures of the complexed cation in the natride Li+(C211)Na−

and the electride Li+(C211)e− shows that the geometric parameters are vir-
tually identical, as shown in Fig. 12.4.2, supporting the assumption that the
“excess” electron density in the electride does not penetrate substantially into
the cryptand cage. In Cs+(18C6)2Na− and Cs+(18C6)2e−, not only are the
complexed cation geometries the same, but the crystal structures are also
very similar, the major difference being a slightly larger anionic site for Na−

than for e−.
Electrides made with crown ethers and oxa-based cryptands are gen-

erally unstable above −40 ◦C, since the ether linkages are vulnerable to
electron capture and reductive cleavage. Using a specifically designed
pentacyclic tripiperazine cryptand TripPip222 [molecular structure displayed
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Fig. 12.4.2.
Comparison of the structures of the
complexed cation in (a) Li+(C211)Na−
and (b) Li+(C211)e−.
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N

(a) (b)

in Fig. 12.4.3(a)], the pair of isomorphous compounds Na+(TripPip222)Na−

and Na+(TripPip222)e− have been synthesized and fully characterized. This
air-sensitive electride is stable up to about 40 ◦C before it begins to decompose
into a mixture of the sodide and the free complexant.

While the trapped electron could be viewed as the simplest possible anion,
there is a significant difference between alkalides and electrides. Whereas the
large alkali metal anions are confined to the cavities, only the probability density
of a trapped electron can be defined. The electronic wavefunction can extend
into all regions of space, and electron density tends to seek out the void spaces
provided by the cavities and by intercavity channels.

Fig. 12.4.3.
(a) Structural formula of the complexant
1,4,7,10,13,16,21,24-octaazapentacyclo
[8.8.8.24,7.213,16.221,24]dotriacontane
(TriPip222). (b) The “ladder-like” zigzag
chain of cavities S and channels A and B,
along the a direction (horizontal), in the
crystal structure of electride
Rb+(C222)e−. Connection along b (near
perpendicular to the plane of the figure)
between chains involves channel C (not
labeled). The c axis is in the plane at 72◦
to the horizontal.
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Figure 12.4.3(b) displays the cavity-channel geometry in the crystal struc-
ture of Rb+(C222)e−, in which the dominant void space consists of parallel
zigzag chains of cavities S and large channels A (diameter 260 pm) along the
a-direction, which are connected at the “corners” by narrower channel B of
diameter 115 pm to form “ladder-like” one-dimensional chains along a. Adja-
cent chains are connected along b by channels C of diameter 104 pm and along
c by channels with diameter of 72 pm. Thus the void space in the crystal com-
prises a three-dimensional network of cavities and channels. The inter-electron
coupling in adjacent cavities depends on the extent of overlap of the electronic
wavefunction. The dimensionalities, diameters, and lengths of the channels that
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connect the cavities play major roles. These structural features are consistent
with the nature of wave–particle duality of the electron.

Removal of enclathrated oxygen ions from the cavities in a single crystal of
12CaO·7Al2O3 leads to the formation of the thermally and chemically stable
electride [Ca24Al28O64]4+(e−)4.

12.5 Survey of the alkaline-earth metals

Beryllium, magnesium, calcium, strontium, barium, and radium constitute
Group 2 in the Periodic Table. These elements (or simply the Ca, Sr, and Ba
triad) are often called alkaline-earth metals. Some important properties of group
2 elements are summarized in Table 12.5.1.

All group 2 elements are metals, but an abrupt change in properties between
Be and Mg occurs as Be shows anomalous behavior in forming mainly covalent
compounds. Beryllium most frequently displays a coordination number of four,
usually tetrahedral, in which the radius of Be2+ is 27 pm. The chemical behavior
of magnesium is intermediate between that of Be and the heavier elements, and
it also has some tendency for covalent bond formation.

With increasing atomic number, the group 2 metals follow a general trend
in decreasing values of I1 and I2 except for Ra, whose relatively high I1 and I2
are attributable to the 6s inert pair effect. Also, high I3 values for all members
of the group preclude the formation of the +3 oxidation state.

As the atomic number increases, the electronegativity decreases. In the
organic compounds of group 2 elements, the polarity of the M–C bond increases
in the order

BeR2 < MgR2 < CaR2 < SrR2 < BaR2 < RaR2

This is due to the increasing difference between theχs of carbon (2.54) and those
of the metals. The tendency of these compounds to aggregate also increases in
the same order. The BeR2 and MgR2 compounds are linked in the solid phase

Table 12.5.1. Properties of group 2 elements

Property Be Mg Ca Sr Ba Ra

Atomic number, Z 4 12 20 38 56 88
Electronic configuration [He]2s2 [Ne]3s2 [Ar]4s2 [Kr]5s2 [Xe]6s2 [Rn]7s2

'H 0
at (kJ mol−1) 309 129 150 139 151 130

mp (K) 1551 922 1112 1042 1002 973
'Hfuse(mp) (kJ mol−1) 7.9 8.5 8.5 7.4 7.1 —
bp (K) 3243 1363 1757 1657 1910 1413
rM(CN = 12) (pm) 112 160 197 215 224 —
rM2+ (CN = 6) (pm) 45 72 100 118 135 148
I1 (kJ mol−1) 899.5 737.3 589.8 549.5 502.8 509.3
I2 (kJ mol−1) 1757 1451 1145 1064 965.2 979.0
I3 (kJ mol−1) 14850 7733 4912 4138 3619 3300
χs 1.58 1.29 1.03 0.96 0.88 —
mp of MCl2 (K) 703 981 1045 1146 1236 —
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via M–C–M 3c-2e covalent bonds to form polymeric chains, while CaR2 to
RaR2 form three-dimensional network structures in which the M–C bonds are
largely ionic.

All the M2+ ions are smaller and considerably less polarizable than the iso-
electronic M+ ions, as the higher effective nuclear charge binds the remaining
electrons tightly. Thus the effect of polarization of cations on the properties of
their salts are less important. Ca, Sr, Ba, and Ra form a closely allied series in
which the properties of the elements and their compounds vary systematically
with increasing size in much the same manner as in the alkali metals.

The melting points of group 2 metal chlorides MCl2 increase steadily, and this
trend is in sharp contrast to the alkali metal chlorides: LiCl (883 K), NaCl (1074
K), KCl (1045 K), RbCl (990 K), and CsCl (918 K). This is due to several subtle
factors: (a) the nature of bonding varies from covalent (Be) to ionic (Ba); (b)
from Be to Ra the coordination number increases, so the Madelung constants,
the lattice energies, and the melting points also increase; (c) the radius of Cl−

is large (181 pm), whereas the radii of M2+ are small, and in the case of
metal coordination, an increase in the radius of M2+ reduces the Cl− · · · Cl−

repulsion.

12.6 Structure of compounds of alkaline-earth metals

12.6.1 Group 2 metal complexes

The coordination compounds of the alkaline-earth metals are becoming increas-
ingly important to many branches of chemistry and biology. A considerable
degree of structural diversity exists in these compounds, and monomers up to
nonametallic clusters and polymeric species are known.

Beryllium, in view of its small size and simple set of valence orbitals,
almost invariably exhibits tetrahedral four-coordination in its compounds.
Figure 12.6.1(a) shows the structure of Be4O(NO3)6. The central oxygen atom
is tetrahedrally surrounded by four Be atoms, and each Be atom is in turn
tetrahedrally surrounded by four O atoms. The six nitrate groups are attached
symmetrically to the six edges of the tetrahedron. This type of structure also
appears in Be4O(CH3COO)6.

Magnesium shows a great tendency to form complexes with ligands which
have oxygen and nitrogen donor atoms, often displaying six-coordination, and
its compounds are more polar than those of beryllium. The structure of hexam-
eric [MgPSitBu3]6 is based on a Mg6P6 hexagonal drum, with Mg–P distances
varying between 247 and 251 pm in the six-membered Mg3P3 ring, and 250
and 260 pm between the two rings, as shown in Fig. 12.6.1(b).

Calcium, strontium, and barium form compounds of increasing ionic charac-
ter with higher coordination numbers, of which six to eight are particularly
common. The complex Ca9(OCH2CH2OMe)18(HOCH2CH2OMe)2 has an
interesting structure: the central Ca9(µ3-O)8(µ2-O)8O20 skeleton is composed
of three six-coordinate Ca atoms and six seven-coordinate Ca atoms that can
be viewed as filling the octahedral holes in two close-packed oxygen layers,
as shown in Fig. 12.6.1(c). The distances of Ca–O are Ca–(µ3-O) 239 pm,
Ca–(µ2-O) 229 pm and Ca–Oether 260 pm.
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(a) (b)

(c) (d)

I

Ba

THF

O
C

Ca

O

N

O

Be

SiBu3

Mg

P

Fig. 12.6.1.
Structures of some coordination compounds of alkaline-earth metals: (a) Be4O(NO3)6, (b) [MgPSitBu3]6,
(c) Ca9(OCH2CH2OMe)18(HOCH2CH2OMe)2 and (d) [BaI(BHT)(THF)3]2.

In the dimeric complex [BaI(BHT)(THF)3]2 [BHT = 2,6-di-t-butyl-4-
methylphenol, C6H2MetBu2(OH)], the coordination geometry around the Ba
atom is distorted octahedral, with the two bridging iodides, the BHT, and a THF
ligand in one plane, and two additional THF molecules lying above and below
the plane, as shown in Fig. 12.6.1(d). The bond distances are Ba–I 344 pm,
Ba–OAr 241 pm (av).

Many interesting coordination compounds of Group 2 elements have been
synthesized in recent years. For example, the cation [Ba(NH3)n]2+ is gener-
ated in the course of reducing the fullerenes C60 and C70 with barium in liquid
ammonia. In the [Ba(NH3)7]C60·NH3 crystal, the Ba2+cation is surrounded
by seven NH3ligands at the vertices of a monocapped trigonal antiprism, and
the C60 dianion is well ordered. In the [Ba(NH3)9]C70·7NH3 crystal, the coor-
dination geometry around Ba2+ is a distorted tricapped trigonal prism, with
Ba–N distances in the range 289–297 pm; the fullerene C70 units are linked
into slightly zigzag linear chains by single C–C bonds with length 153 pm.

12.6.2 Group 2 metal nitrides

The crystals of M[Be2N2] (M = Mg, Ca, Sr) are composed of complex anion
layers with covalent bonds between Be and N atoms. For example, Mg[Be2N2]
contains puckered six-membered rings in the chair conformation. These rings
are condensed into single nets and are further connected to form double layers,
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Fig. 12.6.2.
Crystal structures of (a) Mg[Be2N2] and
(b) Ca[Be2N2]. Small circles represent
Be, large circles N, while circles between
layers are either Mg or Ca. (a) (b)

in which the Be and N atoms are alternately linked. In this way, each beryllium
atom is tetrahedrally coordinated by nitrogens, while each nitrogen occupies
the apex of a trigonal pyramid whose base is made of three Be atoms, and a
fourth Be atom is placed below the base. Thus the nitrogen atoms are each
coordinated by an inverse tetrahedron of Be atoms and occupy positions at
the outer boundaries of a double layer, as shown in Fig. 12.6.2(a). The Be–
N bond lengths are 178.4 pm (3×) and 176.0 pm. The magnesium atoms are
located between the anionic double layers, and each metal center is octahedrally
surrounded by nitrogens with Mg–N 220.9 pm.

The ternary nitrides Ca[Be2N2] and Sr[Be2N2] are isostructural. The crystal
structure contains planar layers which consist of four- and eight-membered
rings in the ratio of 1:2. The layers are stacked with successive slight rotation
of each about the common normal, forming octagonal prismatic voids in the
interlayer region. The eight-coordinated Ca2+ ions are accommodated in the
void space, as shown in Fig. 12.6.2(b). The Be–N bond lengths within the layers
are 163.2 pm (2×) and 165.7 pm. The Ca–N distance is 268.9 pm.

12.6.3 Group 2 low-valent oxides and nitrides

(1) (Ba2O)Na
Similar to the alkali metals, the alkaline-earth metals can also form low-valent
oxides. The first crystalline compound of this type is (Ba2O)Na, which belongs
to space group Cmma with a = 659.1, b = 1532.7, c = 693.9 pm, and Z = 4.
In the crystal structure, the O atom is located inside a Ba4 tetrahedron. Such
[Ba4O] units share trans edges to form an infinite chain running parallel to the
a axis. The [Ba4/2O]∞ chains are in parallel alignment and separated by the Na
atoms, as illustrated in Fig. 12.6.3. Within each chain, the Ba–O bond length is
252 pm, being shorter than the corresponding distance of 277 pm in crystalline
barium oxide. The interatomic distances between Ba and Na atoms lie in the
range 421–433 pm, which are comparable with the values in the binary alloys
BaNa and BaNa2 (427 and 432 pm, respectively).

(2) [Ba6N] cluster and related compounds
When metallic barium is dissolved in liquid sodium or K/Na alloy in an
inert atmosphere of nitrogen, an extensive class of mixed alkali metal–barium
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b

c

Fig. 12.6.3.
Crystal structure of (Ba2O)Na. The
[Ba4/2O]∞ chains are seen end-on.

subnitrides can be prepared. They contain [Ba6N] octahedra that exist either as
discrete entities or are condensed into finite clusters and infinite arrays.

Discrete [Ba6N] clusters are found in the crystal structure of (Ba6N)Na16,
as shown in Fig. 12.6.4. (Ba6N)Na16 crystallizes in space group Im3̄m with
a = 1252.7 pm and Z = 2. The Na atoms are located between the cluster units,
in a manner analogous to that in the low-valent alkali metal suboxides.

The series of barium subnitrides Ba3N, (Ba3N)Na, and (Ba3N)Na5 are
characterized by parallel infinite (Ba6/2N)∞ chains each composed of trans
face-sharing octahedral [Ba6N] clusters. Figure 12.6.5(a) shows the crystal
structure of Ba3N projected along a sixfold axis. In the crystal structure of
(Ba3N)Na, the sodium atoms are located in between the (Ba6/2N)∞ chains,
as shown in Fig. 12.6.5(b). In contrast, since (Ba3N)Na5 has a much higher
sodium content, the (Ba6/2N)∞ chains are widely separated from one another
by the additional Na atoms, as illustrated in Fig. 12.6.5(c).

Fig. 12.6.4.
Arrangement of the (Ba6N) clusters in
the crystal structure of (Ba6N)Na16.

(3) [Ba14CaN6] cluster and related compounds
The [Ba14CaN6] cluster can be considered as a Ca-centered Ba8 cube with each
face capped by a Ba atom, and the six N atoms are each located inside a Ba5
tetragonal pyramid, as shown in Fig. 12.6.6. The structure can be viewed alter-
natively as a cluster composed of the fusion of six N-centered Ba5Ca octahedra
sharing a common Ca vertex. In the synthesis of this type of cluster compounds,
variation of the atomic ratio of the Na/K binary alloy system leads to a series of
compounds of variable stoichiometry: [Ba14CaN6]Nax with x = 7, 8, 14, 17, 21
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Fig. 12.6.5.
Crystal structures of (a) Ba3N,
(b) (Ba3N)Na and (c) (Ba3N)Na5.
The (Ba6/2N)∞ chains are seen
end-on.

(a)

(b)

(c)

and 22. This class of compounds can be considered as composed of an ionically
bonded [Ba2+

8 Ca2+N3−
6 ] nucleus surrounded by Ba6Nax units, which interact

with the nucleus mainly via metallic bonding.

Fig. 12.6.6.
Structure of the [Ba14CaN6] cluster.

12.7 Organometallic compounds of group 2 elements

There are numerous organometallic compounds of Group 2 elements, and in
this section only the following three typical species are described.

12.7.1 Polymeric chains

Dimethylberyllium, Be(CH3)2, is a polymeric white solid containing infinite
chains, as shown in Fig. 12.7.1(a). Each Be center is tetrahedrally coordinated
and can be considered to be sp3 hybridized. As the CH3 group only contributes
one orbital and one electron to the bonding, there are insufficient electrons to
form normal 2c-2e bonds between the Be and C atoms. In this electron-deficient
system, the BeCBe bridges are 3c-2e bonds involving sp3 hybrid atomic orbitals
from two Be atoms and one C atom, as shown in Fig. 12.7.1(b).

The polymeric structures of BeH2 and BeCl2 are similar to that of Be(CH3)2.
The 3c-2e bonding in BeH2 is analogous to that in Be(CH3)2. But in BeCl2
there are sufficient valence electrons to form normal 2c-2e Be–Cl bonds.

12.7.2 Grignard reagents

Grignard reagents are widely used in organic chemistry. They are prepared by
the interaction of magnesium with an organic halide in ethers. Grignard reagents
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(a) (b)

+

+

+

+

+

+

Fig. 12.7.1.
(a) Linear structure of Be(CH3)2; (b) its
BeCBe 3c-2e bonding in the polymer.

Mg

Br

O C

Fig. 12.7.2.
Molecular structure of Grignard reagent
(C2H5)MgBr·2(C2H5)2O.

are normally assigned the simple formula RMgX, but this is an oversimpli-
fication as solvation is important. The isolation and structural determination
of several crystalline RMgX compounds have demonstrated that the essen-
tial structure is RMgX·(solvent)n. Figure 12.7.2 shows the molecular structure
of (C2H5)MgBr·2(C2H5)2O, in which the central Mg atom is surrounded by
one ethyl group, one bromine atom, and two diethyl ether molecules in a
distorted tetrahedral configuration. The bond distances are Mg–C 215 pm,
Mg–Br 248 pm, and Mg–O 204 pm. The latter is among the shortest Mg–O
distances known.

In a Grignard compound the carbon atom bonded to the electropositive Mg
atom carries a partial negative charge. Consequently a Grignard reagent is an
extremely strong base, with its carbanion-like alkyl or aryl portion acting as a
nucleophile.

12.7.3 Alkaline-earth metallocenes

The alkaline-earth metallocenes exhibit various structures, depending on the
sizes of the metal atoms. In Cp2Be, the Be2+ ion is η5/η1 coordinated between
two Cp rings, as shown in Fig. 12.7.3(a). The mean Be–C distances are 193 and
183 pm for η5 and η1 Cp rings, respectively. In contrast, Cp2Mg adopts a typical
sandwich structure, as shown in Fig. 12.7.3(b). The mean Mg–C distance is 230
pm. In the crystalline state, the two parallel rings have a staggered conformation.

The compounds Cp2Ca, Cp∗Sr and Cp∗Ba exhibit a different coordination
mode, as the two Cp rings are not aligned in a parallel fashion like Cp2Mg, but
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Fig. 12.7.3.
Structures of some alkaline-earth
metallocenes: (a) Cp2Be, (b) Cp2Mg, (c)
Cp2Ca, (d) Sr[C5H3(SiMe3)2]2·THF,
(e) Ba2(COT) [C5H(CHMe2)4]2.

(a) (b)

Be Mg

(c) (d)

SrCa

(e)

Ba

are bent with respect to each other making a Cp(centroid)–M–Cp(centroid) angle
of 147◦–154◦. The positive charge of the M2+ ion is not only shared by two
η5-bound Cp rings, but also by other ligands. In Cp2Ca, apart from the twoη5-Cp
ligands, there are significant Ca–C contacts to η3- and η1-Cp rings, as shown in
Figure 12.7.3(c). In Sr[C5H3(SiMe3)2]2·THF, apart from the two η5-Cp rings,
a THF ligand is coordinated to the Sr2+ ion , as shown in Fig. 12.7.3(d). The
Ba2+ ion has the largest size among the alkaline-earth metals, and accordingly it
can be coordinated by a planar COT (C8H8) ring bearing two negative charges.
Figure 12.7.3(e) shows the structure of a triple-decker sandwich complex of
barium, Ba2(COT)[C5H(CHMe2)4]2, in which the mean Ba–C distances are
296 and 300 pm for the η5-Cp ring and η8-COT ring, respectively.

12.8 Alkali and alkaline-earth metal complexes with
inverse crown structures

The term “inverse crown ether” refers to a metal complex in which the roles
of the central metal core and the surrounding ether oxygen ligand sites in a
conventional crown ether complex are reversed. An example of an inverse
crown ether is the organosodium-zinc complex Na2Zn2{N(SiMe3)2}4(O)
shown in Fig. 12.8.1(a). The general term “inverse crown” is used when
the central core of this type of complex comprises non-oxygen atoms, or
more than just a single O atom. Two related inverse crowns with cationic
(Na–N–Mg–N–)2 rings that encapsulate peroxide and alkoxide groups, respec-
tively, are shown in Figs. 12.8.1(b) and (c). The octagonal macrocycle in
Na2Mg2{N(SiMe3)2}4(OOctn)2 takes the chair form with the Na–OOctn

groups displaced on either side of the plane defined by the N and Mg atoms. Each
alkoxide O atom interacts with both Mg atoms to produce a perfectly planar
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Fig. 12.8.1.
Examples of some inverse crown compounds:
(a) Na2Zn2{N(SiMe3)2}4(O),
(b) Na2Mg2{N(SiMe3)2}4(O2),
(c) Na2Mg2{N(SiMe3)2}4(OOctn)2,
(d) cluster core of {(THF)NaMg(Pri

2N)(O)}6; the THF ligand attached to each Na atom and the isopropyl groups are omitted for clarity.

(MgO)2 ring. The Mg–O and Na–Osyn bond lengths are 202.7(2)-203.0(2) and
256.6(1)-247.2(2) pm, respectively; the non-bonded Na· · · Oanti distances lie
in the range 310.4(1)-320.4(2) pm.

Figure 12.8.1(d) shows the structure of a hexameric “super” inverse crown
ether {(THF)NaMg(Pri

2N)(O)}6, which consists of a S6-symmetric hexagonal
prismatic Mg6O6 cluster with six external four-membered rings constructed
with Na–THF and Pri

2N appendages.

Table 12.8.1. Compositions of some inverse crowns containing organic guest
species

Group 1 metal Group 2 metal Amide ion Core moiety Host ring size

4Na 2Mg 6TMP C6H3Me2− 12
4Na 2Mg 6TMP C6H2−

4 12 [Fig. 2.7.5(a)]
6K 6Mg 12TMP 6C6H−5 24
6K 6Mg 12TMP 6C6H4Me− 24
4Na 4Mg 8Pri

2N Fe(C5H3)4−
2 12 [Fig. 2.7.5(b)]

A remarkable series of inverse crown compounds featuring organic
guest moieties encapsulated within host-like macrocyclic rings composed of
sodium/potassium and magnesium ions together with anionic amide groups,
such as TMP− (TMPH = 2,2,6,6-tetramethylpiperidine) and Pri

2N− (Pri
2NH =

diisopropylamine), have been synthesized and characterized. Table 12.8.1 lists
some examples of this class of inverse crown molecules.

Figure 12.8.2(a) shows the molecular structure of Na4Mg2(TMP)6(C6H4),
in which the N atom of each tetramethylpiperidinide is bonded to two metal
atoms to form a cationic 12-membered (Na–N–Na–N–Mg–N–)2 ring. The
mixed metal macrocyclic amide acts as a host that completely encloses a 1,4-
deprotonated benzenediide guest species whose naked carbon atoms are each
stabilized by a covalent Mg–C bond and a pair of Na· · · C π interactions.
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Na
N

Mg

Fe

(a) (b)

Fig. 12.8.2.
Molecular structures of two centrosymmetric inverse crown molecules containing organic cores:
(a) Na4Mg2(TMP)6(C6H4),
(b) Na4Mg4(iPr2N)8[Fe(C5H3)2].
The Na· · ·C π interactions are indicated by broken lines.

Figure 12.8.2(b) shows the molecular structure of Na4Mg4(Pri
2N)8

[Fe(C5H3)2]. Each amido N atom is bound to one Na and one Mg atom to
form a 16-membered macrocyclic ring, which accommodates the ferrocene-
1,1’,3,3’-tetrayl residue at its center. The deprotonated 1,3-positions of each
cyclopentadienyl ring of the ferrocene moiety are each bound to a pair of Mg
atoms by Mg–C covalent bonds, and the 1,2,3-positions further interact with
three Na atoms via three different kinds of Na· · · C π bonds.
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13 Structural Chemistry of
Group 13 Elements

13.1 Survey of the group 13 elements

Boron, aluminum, gallium, indium, and thallium are members of group 13 of
the Periodic Table. Some important properties of these elements are given in
Table 13.1.1.

From Table 13.1.1, it is seen that the inner electronic configurations of the
group 13 elements are not identical. The ns2np1 electrons of B andAl lie outside
a rare gas configuration, while the ns2np1 electrons of Ga and In are outside
the d10 subshell, and those of Tl lie outside the 4f 145d10 core. The increasing
effective nuclear charge and size contraction, which occur during successive
filling of d and f orbitals, combine to make the outer s and p electrons of Ga,
In, and Tl more strongly held than expected by simple extrapolation from B to
Al. Thus there is a small increase in ionization energy between Al and Ga, and
between In and Tl. The drop in ionization energy between Ga and In mainly

Table 13.1.1. Table 13.1.1 Some properties of group 13 elements

Property B Al Ga In Tl

Atomic number, Z 5 13 31 49 81
Electronic configuration [He]2s22p1 [Ne]3s23p1 [Ar]3d104s24p1 [Kr]4d105s25p1 [Xe]4f 145d106s26p1

'Hθ
at (kJ mol−1) 582 330 277 243 182

mp (K) 2453∗ 933 303 430 577
'Hθ

fuse (kJ mol−1) 50.2 10.7 5.6 3.3 4.1
bp (K) 4273 2792 2477 2355 1730
I1 (kJ mol−1) 800.6 577.5 578.8 558.3 589.4
I2 (kJ mol−1) 2427 1817 1979 1821 1971
I3 (kJ mol−1) 3660 2745 2963 2704 2878
I1 + I2 + I3 (kJ mol−1) 6888 5140 5521 5083 5438
χs 2.05 1.61 1.76 1.66 1.79
rM (pm) — 143 153 167 171
rcov (pm) 88 130 122 150 155
rion, M3+ (pm) — 54 62 80 89
rion, M+ (pm) — — 113 132 140
D0, M–F (in MF3) (kJ mol−1) 613 583 469 444 439 (in TlF)
D0, M–Cl (in MCl3) (kJ mol−1) 456 421 354 328 364 (in TlCl)

∗ For β-rhombohedral boron
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reflects the fact that both elements have a completely filled inner shell and the
outer electrons of In are further from the nucleus.

The +3 oxidation state is characteristic of group 13 elements. However, as
in the later elements of this groups, the trend in I2 and I3 shows increases at Ga
and Tl, leading to a marked increase in stability of their +1 oxidation state. In
the case of Tl, this is termed the 6s inert-pair effect. Similar effects are observed
for Pb (group 14) and Bi (group 15), for which the most stable oxidation states
are +2 and +3, respectively, rather than +4 and +5.

Because of the 6s inert-pair effect, many Tl+ compounds are found to be more
stable than the corresponding Tl3+ compounds. The progressive weakening of
M3+–X bonds from B to Tl partly accounts for this. Furthermore, the relativistic
effect (as described in Section 2.4.3) is another factor which contributes to the
inert-pair effect.

13.2 Elemental Boron

The uniqueness of structure and properties of boron is a consequence of its
electronic configuration. The small number of valence electrons (three) avail-
able for covalent bond formation leads to “electron deficiency,” which has a
dominant effect on boron chemistry.

Boron is notable for the complexity of its elemental crystalline forms. There
are many reported allotropes, but most are actually boron-rich borides. Only
two have been completely elucidated by X-ray diffraction, namely α-R12 and
β-R105; here R indicates the rhombohedral system, and the numeral gives the
number of atoms in the primitive unit cell. In addition, α-T50 boron (T denotes
the tetragonal system) has been reformulated as a carbide or nitride, B50C2 or
B50N2, and β-T192 boron is still not completely elucidated. These structures
all contain icosahedral B12 units, which in most cases are accompanied by other
boron atoms lying outside the icosahedral cages, and the linkage generates a
three-dimensional framework.

The α-R12 allotrope consists of an approximately cubic closest packing
arrangement of icosahedral B12 units bound to each other by covalent bonds.
The parameters of the rhombohedral unit cell are a = 505.7 pm, α = 58.06◦

(60◦ for regular ccp). In space group R3̄m, the unit cell contains one B12 icosahe-
dron. A layer of interlinked icosahedra perpendicular to the threefold symmetry
axis is illustrated in Fig. 13.2.1. There are 12 neighboring icosahedra for each
icosahedron: six in the same layer, and three others in each of the upper and
lower layers, as shown in Fig. 9.6.21(b).

The B12 icosahedron is a regular polyhedron with 12 vertices, 30 edges, and
20 equilateral triangular faces, with B atoms located at the vertices, as shown
in Fig. 13.2.2. The B12 icosahedron is a basic structural unit in all isomorphic
forms of boron and in some polyhedral boranes such as B12H2−

12 . It has 36
valence electrons; note that each line joining two B atoms (mean B–B distance
177 pm) in Fig. 13.2.2 does not represent a normal two-center two-electron
(2c-2e) covalent bond.

When the total number of valence electrons in a molecular skeleton is less
than the number of valence orbitals, the formation of normal 2c-2e covalent
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Fig. 13.2.1.
A close-packed layer of interlinked
icosahedra in the crystal structure of
α-rhomobohedral boron. The lines
meeting at a node (not a B atom)
represents a BBB 3c-2e bond linking
three B12 icosahedra.

bonds is not feasible. In this type of electron-deficient compound, three-center
two-electron (3c-2e) bonds generally occur, in which three atoms share an
electron pair. Thus one 3c-2e bond serves to compensate for the shortfall of
four electrons and corresponds to a bond valence value of 2, as illustrated for a
BBB bond in Fig. 13.2.3.

Fig. 13.2.2.
From left to right, perspective view of
the B12 icosahedron along one of its (a)
6 fivefold, (b) 10 threefold, and (c) 15
twofold axes.

 (a)  (b)  (c)

In a closo-Bn skeleton, there are only three 2c-2e covalent bonds and (n−2)

BBB 3c-2e bonds. (This will be derived in Section 13.4.) For an icosahedral
B12 unit, there are three B–B 2c-2e bonds and ten BBB 3c-2e bonds, as shown
in Fig. 13.2.4.

Fig. 13.2.3.
The BBB 3c-2e bond: (a) three atoms
share an electron pair, and (b) simplified
representation of 3c-2e bond.

B B

B
+

+ +
– –

–
(a) (b)

The 36 electrons in the B12 unit may be partitioned as follow: 26 elec-
trons are used to form bonds within an icosahedron, and the remaining ten
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Fig. 13.2.4.
Chemical bonds in the B12 icosahedron
(one of many possible canonical forms):
three 2c-2e bonds between 1–10, 3–12,
and 5–11; ten BBB 3c-2e bonds between
1–2–7, 2–3–7, 3–4–9, . . ..

(a) (b)

Fig. 13.2.5.
Structure of β-R105 boron:
(a) perspective view of the B84 unit
[B12a@B12@B60]. Black circles
represent the central B12a icosahedron,
shaded circles represent the B atoms
connecting the surface 60 B atoms to the
central B12a unit; (b) each vertex of
inner B12a is connected to a pentagonal
pyramidal B6 unit (only two adjoining
B6 units are shown).

electrons to form the intericosahedral bonds. In the structure of α-R12 boron,
each icosahedron is surrounded by six icosahedra in the same layer and forms
six 3c-2e bonds [see Fig. 9.6.21(b)], in which every B atom contributes 2/3
electron, so each icosahedron uses 6 × 2/3 = 4 electrons. Each icosahedron
is bonded by normal 2c-2e B–B bonds to six icosahedra in the upper and
lower layers, which need six electrons. The number of bonding electrons in
an icosahedron of α-R12 boron is therefore 26 + 4 + 6 = 36.

The β-R105 boron allotrope has a much more complex structure with 105
B atoms in the unit cell (space group R3̄m, a = 1014.5 pm, α = 65.28◦). A
basic building unit in the crystal structure is the B84 cluster illustrated in Fig.
13.2.5(a); it can be considered as a central B12a icosahedron linked radially to
12 B6 half-icosahedra (or pentagonal pyramids), each attached like an inverted
umbrella to an icosahedral vertex, as shown in Fig. 13.2.5(b).

The basal B atoms of adjacent pentagonal pyramids are interconnected to
form a B60 icosahedron that resembles fullerene-C60. The large B60 icosahedron
encloses the B12a icosahedron, and the resulting B84 cluster can be formulated
as B12a@B12@B60. Additionally, a six-coordinate B atom lies at the center of
symmetry between two adjacent B10 condensed units, and the crystal structure
is an intricate coordination network resulting from the linkage of B10–B–B10
units and B84 clusters, such that all 105 atoms in the unit cell except one are
the vertices of fused icosahedra. Further details and the electronic structure of
β-R105 boron are described in Section 13.4.6.
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13.3 Borides

Solid borides have high melting points, exceptionally high hardness, excellent
wear resistance, and good immunity to chemical attack, which make them indus-
trially important with uses as refractory materials and in rocket cones and turbine
blades. Some metal borides have been found to exhibit superconductivity.

13.3.1 Metal borides

A large number of metal borides have been prepared and characterized. Several
hundred binary metal borides MxBy are known. With increasing boron content,
the number of B–B bonds increases. In this manner, isolated B atoms, B–B
pairs, fragments of boron chains, single chains, double chains, branched chains,
and hexagonal networks are formed, as illustrated in Fig. 13.3.1. Table 13.3.1
summarizes the stoichiometric formulas and structures of metal borides.

In boron-rich compounds, the structure can often be described in terms of a
three-dimensional network of boron clusters (octahedra, icosahedra, and cubo-
octahedra), which are linked to one another directly or via non-cluster atoms.

Fig. 13.3.1.
Idealized patterns of boron catenation in
metal-rich borides: (a) isolated boron
atoms, (b) B–B pairs, (c) single chain,
(d) branched chain, (e) double chain,
(f) hexagonal net in MB2.

(a) (b) (c) (d) (e) (f)

Table 13.3.1. Stoichiometric formulas and structure of metal borides

Formula Example Catenation of boron and figure showing structure

M4B Mn4B, Cr4B
M3B Ni3B, Co3B
M5B2 Pd5B2 isolated B atom, Fig. 13.3.1(a)
M7B3 Ru7B3, Re7B3
M2B Be2B, Ta2B
M3B2 V3B2, Nb3B2 B2 pairs, Fig. 13.3.1(b)
MB FeB, CoB single chains, Fig. 13.3.1(c)
M11B8 Ru11B8 branched chains, Fig. 13.3.1(d)
M3B4 Ta3B4, Cr3B4 double chains, Fig. 13.3.1(e)
MB2 MgB2, AlB2 hexagonal net, Fig. 13.3.1(f) and Fig. 13.3.2
MB4 LaB4, ThB4 B6 octahedra and B2 Fig. 13.3.3(a)
MB6 CaB6 B6 octahedra, Fig. 13.3.3(b)
MB12 YB12, ZrB12 B12 cubooctahedra, Fig. 13.3.4(a)
MB15 NaB15 B12 icosahedra, Fig. 13.3.4(b) and B3 unit
MB66 YB66 B12 ⊂ (B12)12 giant cluster
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Fig. 13.3.2.
Crystal structure of MgB2.

The metal atoms are accommodated in cages between the octahedra or icosa-
hedra, thereby providing external bonding electrons to the electron-deficient
boron network.

The structures of some metal borides in Table 13.3.1 are discussed below.

(1) MgB2 and AlB2

Magnesium boride MgB2 was discovered in 2001 to behave as a superconductor
at Tc = 39 K, and its physical properties are similar to those of Nb3Sn used in
the construction of high-field superconducting magnets in NMR spectrometers.
MgB2 crystallizes in the hexagonal space group P6/mmm with a = 308.6,
c = 352.4 pm, and Z = 1. The Mg atoms are arranged in a close-packed
layer, and the B atoms form a graphite-like layer with a B–B bond length of
a/(3)1/2 = 178.2 pm. These two kinds of layers are interleaved along the c
axis, as shown in Fig. 13.3.1(f). In the resulting crystal structure, each B atom is
located inside a Mg6 trigonal prism, and each Mg atom is sandwiched between
two planar hexagons of B atoms that constitute a B12 hexagonal prism, as
illustrated in Fig. 13.3.2. AlB2 has the same crystal structure with a B–B bond
length of 175 pm.

(2) LaB4

Figure 13.3.3(a) shows a projection of the tetragonal structure of LaB4 along
the c axis. The chains of B6 octahedra are directly linked along the c axis and
joined laterally by pairs of B2 atoms in the ab plane to form a three-dimensional
skeleton. In addition, tunnels accommodating the La atoms run along the c axis.

(3) CaB6

The cubic hexaboride CaB6 consists of B6 octahedra, which are linked directly
in all six orthogonal directions to give a rigid but open framework, and the Ca
atoms occupy cages each surrounded by 24 B atoms, as shown in Fig. 13.3.3(b).

The number of valence electrons for a B6 unit can be counted as follows: six
electrons are used to form six B–B bonds between the B6 units, and the closo-B6
skeleton is held by three B–B 2c-2e bonds and four BBB 3c-2e bonds, which
require 14 electrons. The total number is 6+14 = 20 electrons per B6 unit. Thus
in the CaB6 structure each B6 unit requires the transfer of two electrons from
metal atoms. However, the complete transfer of 2e per B6 unit is not mandatory
for a three-dimensional crystal structure, and theoretical calculations for MB6
(M = Ca, Sr, Ba) indicate a net transfer of only 0.9e to 1.0e. This also explains
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Fig. 13.3.3.
Structures of (a) LaB4 and (b) CaB6.

(a) (b)

Fig. 13.3.4.
Structures of (a) cubo-octahedral B12
unit and (b) icosahedral B12 unit. These
two units can be interconverted by the
displacements of atoms. The arrows
indicate shift directions of three pairs of
atoms to form additional linkages (and
triangular faces) during conversion from
(a) to (b), and concurrent shifts of the
remaining atoms are omitted for clarity.

(a) (b)

why metal-deficient phases M1−xB6 remain stable and why the alkali metal K
can also form a hexaboride.

(4) High boron-rich metal borides
In high boron-rich metal borides, there are two types of B12 units in their
crystal structures: one is cubo-octahedral B12 found in YB12, as shown in Fig.
13.3.4(a); the other is icosahedral B12 in NaB12, as shown in Fig. 13.3.4(b).
These two structural types can be interconverted by small displacements of the
B atoms. The arrows shown in Fig. 13.3.4(a) represent the directions of the
displacements.

(5) Rare-earth metal borides
The ionic radii of the rare-earth metals have a dominant effect on the structure
types of their crystalline borides, as shown in Table 13.3.2.

The “radius” of the 24-coordinate metal site in MB6 is too large (M–B dis-
tances are in the range of 215-25 pm) to be comfortably occupied by the later
(smaller) lanthanide elements Ho, Er, Tm, and Lu, and these elements form
MB4 compounds instead, where the M–B distances vary within the range of
185-200 pm.

YB66 crystallizes in space group Fm3̄c with a = 2344 pm and Z = 24.
The basic structural unit is a thirteen-icosahedra B156 giant cluster in which a
central B12 icosahedron is surrounded by twelve B12 icosahedra; the B–B bond
distances within the icosahedra are 171.9–185.5 pm, and the intericosahedra
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Table 13.3.2. Variation of structural types with the ionic radii of rare-earth metals

Cation radii (pm) Structural type

YB12 AlB2 YB66 ThB4 CaB6

Eu2+ 130 +
La3+ 116.0 + +
Ce3+ 114.3 + +
Pr3+ 112.6 + +
Nd3+ 110.9 + + +
Sm3+ 107.9 + + +
Gd3+ 105.3 + + + +
Tb3+ 104.0 + + + +
Dy3+ 102.7 + + + +
Y3+ 101.9 + + + +
Ho3+ 101.5 + + + +
Er3+ 100.4 + + + +
Tm3+ 99.4 + + + +
Yb3+ 98.5 + + + +
Lu3+ 97.7 + + + +

distances vary between 162.4 and 182.3 pm. Packing of the eight B12 ⊂ (B12)12
giant clusters in the unit cell generates channels and non-icosahedral bulges
that accommodate the remaining 336 boron atoms in a statistical distribution.
The yttrium atom is coordinated by twelve boron atoms belonging to four
icosahedral faces and up to eight boron atoms located within a bulge.

13.3.2 Non-metal borides

Boron forms a large number of non-metal borides with oxygen and other non-
metallic elements. The principal oxide of boron is boric oxide, B2O3. Fused
B2O3 readily dissolves many metal oxides to give borate glasses. Its major
application is in the glass industry, where borosilicate glasses find extensive use
because of their small coefficient of thermal expansion and easy workability.
Borosilicate glasses include Pyrex glass, which is used to manufacture most
laboratory glassware. The chemistry of borates and related oxo complexes will
be discussed in Section 13.5.

(1) Boron carbides and related compounds
The potential usefulness of boron carbides has prompted intensive studies of
the system B1−xCx with 0.1 ≤ x ≤ 0.2. The carbides of composition B13C2
and B4C, as well as the related compounds B12P2 and B12As2, all crystallize
in the rhombohedral space group R3̄m. The structure of B13C2 is derived from
α-R12 boron with the addition of a linear C–B–C linking group along the [111]
direction, as shown in Fig. 13.3.5. The structure of B4C (a = 520 pm, α =
66◦) has been shown to be B11C(CBC) rather than B12(CCC), with statistical
distribution of a C atom over the vertices of the B11C icosahedron. For boron
phosphide and boron arsenide, a two-atom P–P or As–As link replaces the
three-atom chain in the carbides.
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Fig. 13.3.5.
Structure of B13C2. The small dark
circles represent B atoms and large
circles represent C atoms.

B

C

(2) Boron nitrides
The common form of BN has an ordered layer structure containing hexagonal
rings, as shown in Fig. 13.3.6(a). The layers are arranged so that a B atom in one
layer lies directly over a N atom in the next, and vice versa. The B–N distance
within a layer is 145 pm, which is shorter than the distance of 157 pm for a
B–N single bond, implying the presence of π -bonding. The interlayer distance
of 330 pm is consistent with van der Waals interactions. Boron nitride is a good
lubricant that resembles graphite. However, unlike graphite, BN is white and an
electrical insulator. This difference can be interpreted in terms of band theory,
as the band gap in boron nitride is considerably greater than that in graphite
because of the polarity of the B–N bond.

Fig. 13.3.6.
Structures of BN: (a) graphite-like;
(b) diamond-like (borazon).

(a) (b)

Heating the layered form of BN at ∼2000 K and >50 kbar pressure in the
presence of a catalytic amount of Li3N or Mg3N2 converts it into a more dense
polymorph with the zinc blende structure, as shown in Fig. 13.3.6(b). This
cubic form of BN is called borazon, which has a hardness almost equal to that
of diamond and is used as an abrasive.

As the BN unit is isoelectronic with a C2 fragment, replacement of the latter by
the former in various organic compounds leads to azaborane structural analogs.
Some examples are shown below. Planar borazine (or borazole) B3N3H6 is
stabilized byπ -delocalization, but it is much more reactive than benzene in view
of the partial positive and negative charges on the N and B atoms, respectively.
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(3) Boron halides
Boron forms numerous binary halides, of which the monomeric trihalides BX3
are volatile and highly reactive. These planar molecules differ from aluminum
halides, which form Al2X6 dimers with a complete valence octet on Al. The
difference between BX3 and Al2X6 is due to the smallness of the B atom. The
B atom uses its sp2 hybrid orbitals to form σ bonds with the X atoms, leaving
the remaining empty 2pz orbital to overlap with three filled pz orbitals of the
X atoms. This generates delocalized π orbitals, three of which are filled with
electrons. Thus there is some double-bond character in the B–X bonding that
stabilizes the planar monomer. Table 13.3.3 lists some physical properties of
BX3 molecules. The energy of the B–F bond in BF3 is 645 kJ mol−1, which is
consistent with its multiple-bond character.

All BX3 compounds behave as Lewis acids, the strength of which is deter-
mined by the strength of the aforementioned delocalizedπ bonding; the stronger
it is, the molecule more easily retains its planar configuration and the acid
strength is weaker. Because of the steadily weakening of π bonding in going
from BF3 to BI3, BF3 is a weaker acid and BI3 is stronger. This order is the
reverse of that predicated when the electronegativity and size of the halogens
are considered: the high electronegativity of fluorine could be expected to
make BF3 more receptive to receiving a lone pair from a Lewis base, and
the small size of fluorine would least inhibit the donor’s approach to the
boron atom.

Salts of tetrafluoroborate, BF−4 , are readily formed by adding a suitable metal
fluoride to BF3. There is a significant lengthening of the B–F bond from 130
pm in planar BF3 to 145 pm in tetrahedral BF−4 .

Fig. 13.3.7.
Molecular structure of B4Cl4

Among the boron halides, B4Cl4 is of interest as both B4H4 and B4H2−
4 do

not exist. Figure 13.3.7 shows the molecular structure of B4Cl4, which has a
tetrahedral B4 core consolidated by four terminal B–Cl 2c-2e bonds and four
BBB 3c-2e bonds on four faces. This structure is further stabilized by σ–π
interactions between the lonepairs of Cl atoms and BBB 3c-2e bonds. The

Table 13.3.3. Some physical properties of BX3

Molecule B–X
bond length (pm)

(rB + rX)∗
(pm)

Bond energy
(kJ mol−1)

mp (K) bp (K)

BF3 130 152 645 146 173
BCl3 175 187 444 166 286
BBr3 187 202 368 227 364
BI3 210 221 267 323 483

∗Quantities rB and rX represent the covalent radii of B and X atoms, respectively.

iranchembook.ir/edu

https://iranchembook.ir/edu


470 Structural Chemistry of Selected Elements

bond length of B–Cl is 170 pm, corresponding to a single bond, and the bond
length of B–B is also 170 pm.

13.4 Boranes and carboranes

13.4.1 Molecular structure and bonding

Boranes and carboranes are electron-deficient compounds with interesting
molecular geometries and characteristic bonding features.

(1) Molecular structure of boranes and carboranes
Figures 13.4.1 and 13.4.2 show the structures of some boranes and carbo-
ranes, respectively, that have been established by X-ray and electron diffraction
methods.

(a) (b) (c)

(d) (e) (f)

119.2
97º

132.9

122º

Fig. 13.4.1.
Structures of boranes: (a) B2H6, (b) B4H10, (c) B5H9, (d) B6H10, (e) B8H12, (f) B10H14.

Fig. 13.4.2.
Structures of carboranes:
(a) 1,5-C2B3H5, (b) 1,2-C2B4H6,
(c) 1,6-C2B4H6, (d) 2,4-C2B5H7,
(e)–(g) three isomers of C2B10H12
(H atoms are omitted for clarity).

(a) (b) (c) (d)

(e) (f) (g)
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Fig. 13.4.3.
The 3c-2e BHB bond: (a) orbitals
overlap, (b) relative energies, and
(c) simple representation.

(2) Bonding in boranes
In simple covalent bonding theory, there are four bonding types in boranes:
(a) normal 2c-2e B–B bond, (b) normal 2c-2e B–H bond, (c) 3c-2e BBB bond
(described in Fig. 13.2.4), and (d) 3c-2e BHB bond.

The 3c-2e BHB bond is constructed from two orbitals of B1 and B2 atoms
(ψB1 and ψB2 , which are spx hybrids) and ψH (1s orbital) of the H atom. The
combinations of these three atomic orbitals result in three molecular orbitals:

ψ1 = 1
2
ψB1 + 1

2
ψB2 + 1

(2)1/2ψH

ψ2 = 1
(2)1/2 (ψB1 − ψB2)

ψ3 = 1
2
ψB1 + 1

2
ψB2 −

1
(2)1/2ψH.

The orbital overlaps and relative energies are illustrated in Fig. 13.4.3. Note that
ψ1, ψ2, and ψ3 are bonding, nonbonding, and antibonding molecular orbitals,
respectively. For the 3c-2e BHB bond, only ψ1 is filled with electrons.

(3) Topological description of boranes
The overall bonding in borane molecules or anions is sometimes represented
by a 4-digit code introduced by Lipscomb, the so-called styx number, where

s is the number of 3c-2e BHB bonds,

t is the number of 3c-2e BBB bonds,

y is the number of normal B–B bonds, and

x is the number of BH2 groups.

H

B B

B

B B
t

B
H H

x

B B

ys

The molecular structural formulas of some boranes and their styx codes are
shown in Fig. 13.4.4.
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Fig. 13.4.4.
Molecular structural formulas and styx
codes of some boranes.
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The following simple rules must hold for the borane structures:

(a) Each B atom has at least a terminal H atom attached to it.
(b) Every pair of boron atoms which are geometric neighbors must be

connected by a B–B, BHB, or BBB bond.
(c) Every boron atom uses four valence orbitals in bonding to achieve an octet

configuration.
(d) No two boron atoms may be bonded together by both 2c-2e B–B and 3c-2e

BBB bonds, or by both 2c-2e B–B and 3c-2e BHB bonds.

13.4.2 Bond valence in molecular skeletons

The geometry of a molecule is related to the number of valence electrons
in it. According to the valence bond theory, organic and borane molecules
composed of main-group elements owe their stability to the filling of all four
valence orbitals (ns and np) of each atom, with eight valence electrons pro-
vided by the atom and those bonded to it. Likewise, transition-metal compounds
achieve stability by filling the nine valence orbitals [(n–1)d, ns, and np] of each
transition-metal atom with 18 electrons provided by the metal atom and the sur-
rounding ligands. In molecular orbital language, the octet and 18-electron rules
are rationalized in terms of the filling of all bonding and nonbonding molecular
orbitals and the existence of a large HOMO-LUMO energy gap.

Consider a molecular skeleton composed of n main-group atoms, Mn, which
takes the form of a chain, ring, cage, or framework. Let g be the total number of
valence electrons of the molecular skeleton. When a covalent bond is formed
between two M atoms, each of them effectively gains one electron in its valence
shell. In order to satisfy the octet rule for the whole skeleton, 1

2 (8n−g) electron
pairs must be involved in bonding between the M atoms. The number of these
bonding electron pairs is defined as the “bond valence” b of the molecular
skeleton:

b = 1
2 (8n− g). (13.4.1)

iranchembook.ir/edu

https://iranchembook.ir/edu


Group 13 Elements 473

When the total number of valence electrons in a molecular skeleton is less
than the number of valence orbitals, the formation of normal 2c-2e covalent
bonds is insufficient to compensate for the lack of electrons. In this type of
electron-deficient compound there are usually found 3c-2e bonds, in which
three atoms share an electron pair. Thus one 3c-2e bond serves to compensate
for the lack of four electrons and corresponds to a bond valence value of 2, as
discussed in 13.2.

There is an enormous number of compounds that possess metal–metal bonds.
A metal cluster may be defined as a polynuclear compound in which there are
substantial and directed bonds between the metal atoms. The metal atoms of
a cluster are also referred to as skeletal atoms, and the remaining non-metal
atoms and groups are considered as ligands.

According to the 18-electron rule, the bond valence of a transition metal
cluster is

b = 1
2 (18n− g). (13.4.2)

If the bond valence b calculated from (13.4.1) and (13.4.2) for a cluster Mn
matches the number of connecting lines drawn between pairs of adjacent
atoms in a conventional valence bond structural formula, the cluster is termed
“electron-precise.”

For a molecular skeleton consists of n1 transition-metal atoms and n2 main-
group atoms, such as transition-metal carboranes, its bond valence is

b = 1
2 (18n1 + 8n2 − g). (13.4.3)

The bond valence b of a molecular skeleton can be calculated from expres-
sions (13.4.1) to (13.4.3), in which g represents the total number of valence
electrons in the system. The g value is the sum of:

(1) the number of valence electrons of the n atoms that constitute the molecular
skeleton Mn,

(2) the number of electrons donated by the ligands to Mn, and
(3) the number of net positive or negative charges carried by Mn, if any.

The simplest way to count the g value is to start from uncharged skeletal
atoms and uncharged ligands. Ligands such as NH3, PR3, and CO each sup-
ply two electrons. Non-bridging halogen atoms, H atom, and CR3 and SiR3
groups are one-electron donors. A µ2-bridging halogen atom contributes three
electrons, and a µ3bridging halogen atom donates five electrons. Table 13.4.1
lists the number of electrons contributed by various ligands, depending on their
coordination modes.

13.4.3 Wade’s rules

For boranes and carboranes, the terms closo, nido, arachno, and hypho are used
to describe their molecular skeletons with reference to a series of increasingly
open deltahedra. Boranes of the nido, arachno, and hypho types are compounds
based on formulas BnHn+4, BnHn+6, and BnHn+8, respectively. The structures
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Table 13.4.1. Number of electrons supplied by ligands to a molecular skeleton

Ligand Coordinate
mode∗

No. of
electrons

Ligand Coordinate
mode∗

No. of
electrons

H µ1, µ2, µ3 1 NR3, PR3 µ1 2
B int 3 NCR µ1 2
CO µ1, µ2, µ3 2 NO µ1 3
CR µ3, µ4 3 OR, SR µ1 1
CR2 µ1 2 OR, SR µ2 3
CR3, SiR3 µ1, µ2 1 O, S, Se, Te µ2 2
η2–C2R2 µ1 2 O, S, Se, Te µ3 4
η2–C2R4 µ1 2 O, S int 6
η5–C5R5 µ1 5 F, Cl, Br, I µ1 1
η6–C6R6 µ1 6 F, Cl, Br, I µ2 3
C, Si int 4 Cl, Br, I µ3 5
N, P, As, Sb int 5 PR µ3, µ4 4

The skeletal atoms are considered to be uncharged.
∗µ1 = terminal ligand, µ2 = ligand bridging two atoms, µ3 = ligand bridging three
atoms, int = interstitial atom.

of nido-boranes are analogous to the corresponding closo compounds with
the exception that one vertex is missing. For example, in B5H9, five B atoms
are located at the vertices of an octahedron whereas the sixth vertex is empty.
Likewise, the arrangement of n skeletal atoms of arachno compounds is referred
to a deltahedron having (n + 2) vertices; for instance, the B atoms in B4H10
lie at four vertices of an octahedron in which two adjacent vertices are not
occupied. For hypothetical BnHn+8 and its isoelectronic equivalent BnH 2−

n+6 ,
the cluster skeleton is a n-vertex deltahedron with three missing vertices.

Fig. 13.4.5.
Structural relationship between (a)
closo-B7H2−

7 , (b) nido-B6H10 and (c)
arachno-B5H11.

(a) (b) (c)

Figure 13.4.5 shows the relations between (a) closo-B7H 2−
7 , (b) nido-B6H10,

and (c) arachno-B5H11. The structure of closo-B7H 2−
7 is a pentagonal bipyra-

mid. In nido-B6H10, the B atoms are located at six vertices of the pentagonal
bipyramid, and one vertex on the C5 axis is not occupied. In arachno-B5H11,
two vertices of the pentagonal bipyramid, one axial and one equatorial, are not
occupied.

Historically, a scheme of skeletal electron-counting was developed to ratio-
nalize the structures of boranes and their derivatives, to which the following
Wade’s rules are applicable.
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Fig. 13.4.6.
Molecular structures of some hypho cluster systems: (a) B5H9(PMe3)2; (b) (NCCH2)C3B6H−12; (c) [µ2-{C(CN)2}2]C2B7H−12. In carboranes
(b) and (c), for clarity only bridging and extra H atoms are included, and all exo H atoms attached to the vertices are omitted.

(1) A closo-deltahedral cluster with n vertices is held together by (n + 1)

bonding electron pairs.
(2) Anido-deltahedral cluster with n vertices is held together by (n+2) bonding

electron pairs.
(3) An arachno-deltahedral cluster with n vertices is held together by (n + 3)

bonding electron pairs.
(4) A hypho-deltahedral cluster with n vertices is held together by (n + 4)

bonding electron pairs.

Boranes and carboranes of the hypho type are quite rare. The prototype
hypho-borane B5H 2−

11 has been isolated, and its proposed structure is anal-
ogous to that of the isoelectronic analog B5H9(PMe3)2 (Fig. 13.4.6(a)), which
was established by X-ray crystallography. The 9-vertex hypho tricarbaborane
cluster anion (NCCH2)-1,2,5-C3B6H −

12 shown in Fig. 13.4.6(b) has 13 skeletal
pairs, and accordingly it may be considered as derived from an icosahedron with
three missing vertices. Similarly, in endo-6-endo-7-[µ2-{C(CN)2}2]-arachno-
6,8-C2B7H −

12 [Fig. 13.4.6(c)], the C2B7-fragment of the cluster anion can be
viewed as a 13-electron pair, 9-vertex hypo system with an exo-polyhedral
TCNE substituent bridging a C atom and a B atom at the open side.

13.4.4 Chemical bonding in closo-boranes

Boranes of the general formula BnH 2−
n and isoelectronic carboranes such as

CBn−1H −
n and C2Bn−2Hn have closo structures, in which n skeletal B and C

atoms are located at the vertices of a polyhedron bounded by trianglular faces
(deltahedron). For the BnH 2−

n closo-boranes

b = 1
2 [8n− (4n + 2)] = 2n− 1. (13.4.4)

From the geometrical structures of closo-boranes, s and x of the styx code
are both equal to 0. Each 3c–2e BBB bond has a bond valence value of 2.
Thus,

b = 2t + y. (13.4.5)
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Combining expressions (13.4.4) and (13.4.5) leads to

2t + y = 2n− 1. (13.4.6)

When the number of electron pairs of the molecular skeleton is counted,
one gets

t + y = n + 1. (13.4.7)

Hence from (13.4.6) and (13.4.7),

t = n− 2, (13.4.8)

y = 3, (13.4.9)

so that each closo-borane BnH 2−
n has exactly three B–B bonds in its valence

bond structural formula.

Table 13.4.2. Bond valence and other parameters for BnH 2−
n

n in BnH 2−
n styx

code
Bond valence

b
No. of
edges = 3t

No. of
faces = 2t

t + y (No. of
skeletal electron pairs)

5 0330 9 9 6 6
6 0430 11 12 8 7
7 0530 13 15 10 8
8 0630 15 18 12 9
9 0730 17 21 14 10

10 0830 19 24 16 11
11 0930 21 27 18 12
12 0,10,3,0 23 30 20 13

Table 13.4.2 lists the bond valence of BnH 2−
n and other parameters; n starts

from 5, not from 4, as B4H 2−
4 would need t = 2 and y = 3, which cannot

satisfy rule (d) for a tetrahedron. Figure 13.4.7 shows the localized bonding

Fig. 13.4.7.
The B–B and BBB bonds in (a) B5H 2−

5 ,

(b) B6H 2−
6 , and (c) B10H 2−

10 ; for each
molecule both the front and back sides of
a canonical structure are displayed. The
molecular skeleton of B12H 2−

12 is
shown in Fig.13.2.2, and the bonding is
shown in Fig.13.2.4.

 B5H5
2–

 B6H6
2–

 B10H10
2–

1

5

3

4

1

2

3

4

1

4

3

52
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description (in one canonical form) for some closo-boranes. The charge of −2
in BnH 2−

n is required for consolidating the n BH units into a deltahedron. Except
for B5H 2−

5 , the bond valence b is always smaller than the number of edges of
the polyhedron.

In the Bn skeleton of closo-boranes, there are (n− 2) 3c-2e BBB bonds and
three normal B–B bonds, which amounts to (n− 2)+ 3 = n + 1 electron pairs.

Some isoelectronic species of C2B10H12, such as CB11H −
12 , NB11H12, and

their derivatives, are known. Since they have the same number of skeletal atoms
and the same bond valence, these compounds are isostructural.

13.4.5 Chemical bonding in nido- and arachno-boranes

Using the styx code and bond valence to describe the structures of nido-boranes
or carboranes, the bond valence b is equal to

b = 1
2 [8n− (4n + 4)] = 2n− 2, (13.4.10)

b = s + 2t + y. (13.4.11)

Combining expressions (13.4.10) and (13.4.11) leads to

s + 2t + y = 2n− 2. (13.4.12)

The number of valence electron pairs for nido BnHn+4 is equal to 1
2 (4n+4) =

2n + 2, in which n + 4 pairs are used to form B–H bonds and the remaining
electron pairs used to form 2c–2e B–B bonds (y) and 3c–2e BBB bonds (t).
Thus,

t + y = (2n + 2)− (n + 4) = n− 2. (13.4.13)

The number of each bond type in nido-BnHn+4 are obtained from expressions
(13.4.12) and (13.4.13):

t = n− s, (13.4.14)

y = s− 2, (13.4.15)

x + s = 4. (13.4.16)

The stability of a molecular species with open skeleton may be strengthened
by forming 3c-2e bond(s). In a stable nido-borane, neighboring H–B–H and
B–H groups always tend to be converted into the H–BHB–H system:

B B

H H
H

B B
H H

H
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Table 13.4.3. The styx codes of some nido-boranes

Borane

B4H8 B5H9 B6H10 B7H11 B8H12 B9H13 B10H14

s 4 4 4 4 4 4 4
t 0 1 2 3 4 5 6
y 2 2 2 2 2 2 2
x 0 0 0 0 0 0 0

b = s + 2t + y 6 8 10 12 14 16 18

Thus, in nido-borane, x = 0, s = 4, and

t = n− 4 (13.4.17)

y = 2. (13.4.18)

Table 13.4.3 lists the styx code and bond valence of some nido-boranes, and
Fig. 13.4.8 shows the chemical bonding in their skeletons.

Fig. 13.4.8.
Chemical bonding in the skeletons of
some nido-boranes (large circles
represent BH group, small circles
represent H atoms in BHB bonds):
(a) B4H8 (4020), (b) B5H9 (4120),
(c) B6H10 (4220), (d) B8H12 (4420),
(e) B10H14 (4620).

(a) (b) (c)

(d) (e)

For the arachno-boranes, BnHn+6, the relations between styx code and n are
as follows:

t = n− s (13.4.19)

y = s− 3 (13.4.20)

x + s = 6. (13.4.21)

According to the octet and 18-electron rules, when one C atom replaces one
BH group in a borane, the g value and b value are unchanged, and the structure
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(a) (b) (c)

(d) (e) (f)

Ir

P

Fig. 13.4.9.
Structures of corresponding boranes,
carboranes, and metalloboranes having
the same bond valence: (a) B5H9,
(b) CB4H8, and (c) B3H7[Fe(CO)3]2,
b = 8; (d) B6H10, (e) CB5H9, and
(f) B5H8Ir(CO)(PPh3)2, b = 10.

of the carborane is the same as that of the borane. Likewise, when one transition-
metal atom replaces one BH group, the bond valence counting of (13.4.3) also
remains unchanged. Figure 13.4.9 shows two series of compounds, which have
the same b value in each series.

13.4.6 Electron-counting scheme for macropolyhedral boranes: mno rule

A generalized electron-counting scheme, known as the mno rule, is applicable
to a wide range of polycondensed polyhedral boranes and heteroboranes, metal-
laboranes, metallocenes, and any of their combinations. According to this mno
rule, the number of electron pairs N necessary for a macropolyhedral system
to be stable is

N = m + n + o + p− q,

where

m = the number of polyhedra,
n = the number of vertices,
o = the number of single-vertex-sharing connections,
p = the number of missing vertices, and
q = the number of capping vertices.

For a closo macropolyhedral borane cluster, the rule giving the required
number of electron pairs is N = m + n.

Some examples illustrating the application of the mno rule are given in
Table 13.4.4, which makes reference to the structures of compounds shown
in Fig. 13.4.10.

B20H16 is composed of two polyhedra sharing four atoms. The (m + n)

electron pair count is 2 + 20 = 22, which is appropriate for a closo structure
stabilized by 22 skeletal electron pairs (16 from 16 BH groups and 6 from four B
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Table 13.4.4. Application of the mno rule for electron counting in some condensed polyhedral
boranes and related compounds∗

Formula Structure in
Fig. 3.4.10

m n o p q N BH B CH Hb α β x

B20H16 (a) 2 20 0 0 0 22 16 6 0 0 0 0 0
(C2B10H11)2 (b) 2 24 0 0 0 26 18 2 6 0 0 0 0
[(C2B9H11)2Al]− (c) 2 23 1 0 0 26 18 0 6 0 1.5 0 0.5
[B21H18]− (d) 2 21 0 0 0 23 18 4.5 0 0 0 0 0.5
Cp2Fe (e) 2 11 1 2 0 16 0 0 15 0 1 0 0
Cp∗IrB18H20 (f) 3 24 1 3 0 31 15 4.5 7.5 2.5 1.5 0 0
[Cp∗IrB18H19S]− (g) 3 25 1 3 0 32 16 3 7.5 1.5 1.5 2 0.5
Cp∗2Rh2S2B15H14(OH) (h) 4 29 2 5 0 40 13 3 15 2 3 4 0
(CpCo)3B4H4 (i) 4 22 3 3 1 31 4 0 22.5 0 4.5 0 0

∗BH = number of electron pairs from BH groups, B = number of electron pairs from B atoms, CH =
number of electron pairs from CH groups, α= number of electron pairs from metal center(s), β = number
of electron pairs from main-group hetero atom, Hb = number of electron pairs from bridging hydrogen
atoms, x = number of electron pairs from the charge. Also, BH (or CH) can be replaced by BR (or CR).

atoms). In (C2B10H11)2, which consists of two icosahedral units connected by a
B–B single bond, the electron count is simply twice that of a single polyhedron.
The 26 skeletal electron pairs are provided by 18 BH groups (18 pairs), 2 B
atoms (2 pairs, B–B bond not involved in cluster bonding), and 4 CH groups (6
pairs, 3 electrons from each CH group). The structure of [(C2B9H11)2Al]− is
constructed from condensation of two icosahedra through a common vertex.The
required skeletal electron pairs are contributed by 18 BH groups (18 pairs), 4 CH
groups (6 pairs), the Al atom (1.5 pairs), and the anionic charge (0.5 pair). The
polyhedral borane anion B21H −

18 has a shared triangular face. Its 18 BH groups,
3 B atoms, and the negative charge provide 18 + 4.5 + 0.5 = 23 skeletal pairs,
which fit the mno rule with m+n = 2+21. For ferrocene, which has 16 electron
pairs (15 from 10 CH groups and 1 from Fe), the mno rule suggests a molecular
skeleton with two open (nido) faces (m + n + o + p = 2 + 11 + 1 + 2 = 16).
The metalloborane [Cp∗IrB18H20] is condensed from three nido units. The
mno rule gives 31 electron pairs, and the molecular skeleton is stabilized by
electron pairs from 15 BH groups (15), 5 CH groups (7.5), 3 shared B atoms
(4.5), 5 bridging H atoms (2.5), and the Ir atom [ 1

2 (9 − 6)] = 1.5; 6 electrons
occupying 3 nonbonding metal orbitals]. Addition of a sulfur atom as a vertex
to the above cluster leads to [Cp∗IrB18H19S]−, which requires 32 electron
pairs. The electrons are supplied by the S atom (4 electrons, as the other 2
valence electrons occupy an exo-cluster orbital), 16 BH groups, 2 shared B
atoms, 3 bridging H atoms, the Ir atom, and the negative charge. The cluster
compound [Cp∗2Rh2S2B15H14(OH)] contains a nido {RhSB8H7} unit and an
arachno {RhSB9H8(OH)} unit conjoined by a common B–B edge. The mno
rule leads to 40 electron pairs, which are supplied by 13 BH groups (13), 2 B
atoms (3), 10 CH groups (15), 4 bridging H atoms (2), 2 Rh atoms (3), and 2
S atoms (4). In the structure of (CpCo)3B4H4, 1 B atom caps the Co3 face of a
Co3B3 octahedron, and the 31 electron pairs are supplied by 4 BH groups (4),
15 CH groups (22.5), and 3 Co atoms (4.5).
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(a) (b)

(c) (d) (e)

(f) (g)

(h) (i)C

OH

Rh
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C

Ir

Al

Co

Ir S

Fe

Fig. 13.4.10.
Structure of condensed polyhedral
boranes, metallaboranes, and ferrocene
listed in Table 13.4.4: (a) B20H16, (b)
(C2B10H11)2, (c) [(C2B9H11)2Al]−,
(d) [B21H18]−, (e) Cp∗2Fe, (f)
Cp∗IrB18H20, (g) [Cp∗IrB18H19S]−,
(h) Cp∗2Rh2S2B15H14(OH), and (i)
(CpCo)3B4H4. (The Me group of Cp∗
and H atoms is not shown.)

13.4.7 Electronic structure of β -rhombohedral boron

In Section 13.2 and Fig. 13.2.5, the structure of β-R105 boron is described in
terms of large B84 (B12a@B12@B60) clusters and B10–B–B10 units. Each B10
unit of C3v symmetry is fused with three B6 half-icosahedra from three adjacent
B84 clusters, forming a B28 cluster composed of four fused icosahedra, as shown
in Fig. 13.4.11(a). A pair of such B28 clusters are connected by a six-coordinate
B atom to form a B57 (B28–B–B28) unit.

To understand the subtlety and electronic structure of the complex covalent
network of β-R105 boron, it is useful to view the contents of the unit cell [Fig.
13.4.11(b)] as assembled from B12a (at the center of a B84 cluster) and B57
(lying on a C3 axis) fragments connected by 2c-2e bonds.

The electronic requirement of the B57 unit can be assessed by saturating
the dangling valencies with hydrogen atoms, yielding the molecule B57H36.
According to the mno rule, 8 + 57 + 1 = 66 electron pairs are required for
stability, but the number available is 67.5 [36 (from 36 BH) + (21 × 3)/2
(from 21B)]. Thus the B57H36 polyhedral skeleton needs to get rid of three
electrons to achieve stability, whereas the B12aH12 skeleton requires two addi-
tional electrons for sufficiency. As the unit cell contains four B12a and one B57
fragments, the idealized structure of β-rhombohedral boron has a net deficiency
of five electrons.
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(a) (b)

B28 unit

B12 unit

B atom

hole

(b)

Fig. 13.4.11.
Structure of β-R105 boron. (a) Three half-icosahedra of adjacent B84 clusters fuse with a B10 unit to form a B28 unit. (b) Unit cell depicting the
B12 units at the vertices and edge centers, leaving the B28–B–B28 unit along the main body diagonal. Holes of three different types are also
indicated.

X-ray studies have established that β-R105 boron has a very porous (only
36% of space is filled in the idealized model) and defective structure with the
presence of interstitial atoms and partial occupancies. The B57 fragment can
dispose of excess electrons by removal of some vertices to form nido or arachno
structures, and individual B12a units can gain electrons by incorporating capping
vertices that are accommodated in interstitial holes (see Fig. 13.4.11(b)).

13.4.8 Persubstituted derivatives of icosahedral borane B12H 2−
12

The compound Cs8[B12(BSe3)6] is prepared from the solid-state reaction
between Cs2Se, Se, and B at high temperature. In the anion [B12(BSe3)6]8−,
each trigonal planar BSe3 unit is bonded to a pair of neighboring B atom in the
B12 skeleton, as shown in Fig. 13.4.12. It is the first example of bonding between
a chalcogen and an icosahedral B12 core. The point group of [B12(BSe3)6]8−

is D3d.
Icosahedral B12H 2−

12 can be converted to [B12(OH)12]2−, in which the 12
hydroxy groups can be substituted to form carboxylic acid esters [B12(O2
CMe)12]2−, [B12(O2CPh)12]2−, and [B12(OCH2Ph)12]2−. The sequential two-
electron oxidation of [B12(OCH2Ph)12]2− with Fe3+ in ethanol affords hyper
closo-B12(OCH2Ph)12 as a dark-orange crystal. An X-ray diffraction study of
hypercloso-B12(OCH2Ph)12 revealed that themoleculehasdistorted icosahedral
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Fig. 13.4.12.
Structure of [B12(BSe3)6]8−.

geometry (D3d). The term hypercloso refers to an n-vertex polyhedral structure
having fewer skeletal electron pairs than (n + 1) as required by Wade’s rule.

13.4.9 Boranes and carboranes as ligands

Many boranes and carboranes can act as very effective polyhapto ligands to
form metallaboranes and metallacarboranes. Metallaboranes are borane cages
containing one or more metal atoms in the skeletal framework. Metallacarbo-
ranes have both metal and carbon atoms in the cage skeleton. In contrast to the
metallaboranes, syntheses of metallacarboranes via low- or room-temperature
metal insertion into carborane anions in solution are more controllable, usually
occurring at a well-defined C2Bn open face to yield a single isomer.

–BH +2e–

o-C2B10H12

+4e–

nido-C2B9H11
2– nido-C2B10H12

2– arachno-C2B10H12
4–

Fig. 13.4.13.
Conversion of icosahedral carborane
o-C2B10H12 to nido-C2B9H 2−

11 ,

nido-C2B10H 2−
12 , and

arachno-C2B10H 4−
12 .

The icosahedral carborane cage C2B10H12 can be converted to the nido-
C2B9H 2−

11 , nido-C2B10H 2−
12 , or arachno-C2B10H 4−

12 anions, as shown in
Fig. 13.4.13. Nido-C2B9H 2−

11 has a planar five-membered C2B3 ring with
delocalized π orbitals, which is similar to the cyclopentadienyl ring. Likewise,
nido-C2B10H 2−

12 has a nearly planar C2B4 six-membered ring and delocalized
π orbitals, which is analogous to benzene. Arachno-C2B10H 4−

12 has a boat-like
C2B5 bonding face in which the five B atoms are coplanar and the two C atoms
lie approximately 60 pm above this plane.
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The similarity between the C2B3 open face in nido-C2B9H 2−
11 and the C5H −

5
anion implies that the dicarbollide ion can act as an η5-coordinated ligand
to form sandwich complexes with metal atoms, which are analogous to the
metallocenes. Likewise, the C2B4 open face in nido-C2B10H 2−

12 is analogous
to benzene and it may be expected to function as an η6-ligand.

Alarge number of metallacarboranes and polyhedral metallaboranes of s-, p-,
d-, and f-block elements are known. In these compounds, the carboranes and
boranes act as polyhapto ligands. The domain of metallaboranes and metal-
lacarboranes has grown enormously and engenders a rich structural chemistry.
Some new advances in the chemistry of metallacarboranes of f-block elements
are described below.

The full-sandwich lanthanacarborane [Na(THF)2][(η5-C2B9H11)2La(THF)2]
has been prepared by direct salt metathesis between Na2[C2B9H11] and LaCl3
in THF. The structure of the anion is shown in Fig. 13.4.14(a). The average La-
cage atom distance is 280.4 pm, and the ring centroid–La–ring centroid angle
is 132.7◦.

The structure of samaracarborane [η5:η6-Me2Si(C5H4)(C2B10H11)]
Sm(THF)2 is shown in Fig. 13.4.14(b), in which the Sm3+ ion is surrounded by
an η5-cyclopentadienyl ring, η6-hexagonal C2B4 face of the C2B10H11 cage,
and two THF molecules in a distorted tetrahedral manner. The ring centroid–
Sm–ring centroid angle is 125.1◦ and the average Sm–cage atom and Sm–C(C5
ring) distances are 280.3 and 270.6 pm, respectively.

Figure 13.4.14(c) shows the coordination environment of the Er atom in the
{η7-[(C6H5CH2)2(C2B10H10)]Er(THF)}2·{Na(THF)3}2·2THF. The Er atom
is coordinated by η7-[arachno-(C6H5CH2)2C2B10H10]4− and σ -bonded to two

Fig. 13.4.14.
Structure of some metallacarboranes of
f-block elements:
(a) [η5-C2B9H11]2La(THF)2]−,
(b) [η5:η6-
Me2Si(C5H4)(C2B10H11)]Sm(THF)2,
(c) {[η7-
C2B10H10(CH2C6H5)2]Er(THF)−},
(d) [(η7-C2B10H12)(η6-
C2B10H12)U] 4−

2 .

(b)(a)

O

La Si

Er

H
O

U

H

Sm O

O

(c) (d)
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B–H groups from a neighboring [arachno-(C6H5CH2)2C2B10H10]4− ligand
and one THF molecule. The average Er–B(cage) distance is 266.5 pm, and that
for the Er–C(cage) is 236.6 pm.

The compound [{(η7-C2B10H12)(η
6-C2B10H12)U}2{K2(THF)5}]2 has been

prepared from the reaction of o-C2B10H12 with excess K metal in THF, followed
by treatment with a THF suspension of UCl4. In this structure each U4+ ion is
bonded to η6-nido-C2B10H 2−

12 and η7-arachno-C2B10H 4−
12 , and coordinated

by two B–H groups from the C2B5 bonding face of a neighboring arachno-
C2B10H 4−

12 ligand, as shown in Fig. 13.4.14(d). This is the first example of an
actinacarborane bearing a η6- C2B10H 2−

12 ligand.

13.4.10 Carborane skeletons beyond the icosahedron

Recent synthetic studies have shown that carborane skeletons larger than the
icosahedron can be constructed by the insertion of additional BH units. The reac-
tion scheme and structure motifs of these carborane species are shown in Fig.
13.4.15. Treatment of 1,2-(CH2)3-1,2-C2B10H10 (1) with excess lithium metal
in THF at room temperature gave {[(CH2)3-1,2-C2B10H10][Li4(THF)5]} 2 (2)
in 85% yield. X-ray analysis showed that, in the crystalline state, both the hexag-
onal and pentagonal faces of the “carbon-atoms-adjacent” arachno-carborane
tetra-anion in 2 are capped by lithium ions, which may in principle be substituted
by BH groups.

The reaction of 2 with 5.0 equivalents of HBBr2·SMe2 in toluene at−78 ◦C
to 25 ◦C yielded a mixture of a 13-vertex closo-carborane (CH2)3C2B11H11
(3, 32%), a 14-vertex closo-carborane (CH2)3C2B12H12 (4, 7%); 1 (2%).
Closo-carboranes 3 and 4 can be converted through reduction reaction
into their nido-carborane salts {[(CH2)3C2B11H11][Na2(THF)4]}n (5) and
{[(CH2)3C2B12H12][Na2(THF)4]}n (6), respectively. Compound 4 can also
be prepared from the reaction of 5 with HBBr2·SMe2, whose cage skeleton is
a bicapped hexagonal antiprism.

Quite different from the planar open faces in nido-C2B9H 2−
11 and nido-

C2B10H 2−
12 , the open faces of the 13- and 14-vertex nido cages in 5 and 6 are

excess Li

THF toluene

1 2 3

4

HBBr2·SMe2

6

excess Na

THF

5

toluene

HBBr2
.SMe2

excess Na
THF

[Li4(THF)5]

[Na2(THF)4] [Na2(THF)4]

Fig. 13.4.15.
Synthesis of “carbon-atoms-adjacent” 13- and 14-vertex closo-carboranes and nido-carborane anions. From L. Deng, H.-S. Chan and Z. Xie,
Angew. Chem. Int. Ed. 44, 2128–31 (2005).
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(a)

P(1)
Ni Ru Ru

(b) (c)

Fig. 13.4.16.
Structure of some metallacarboranes with 14 and 15 vertices:
(a) [η5-(CH2)3C2B11H11]Ni(dppe); (b) [η6-(CH2)3C2B11H11]Ru(p-cymene);
(c) [η6-(CH2)3C2B12H12]Ru(p-cymene). From L. Deng, H.-S. Chan and Z. Xie, J. Am. Chem.
Soc. 128, 5219–30 (2006); and L. Deng, J. Zhang, H.-S. Chan and Z. Xie, Angew. Chem. Int. Ed.
45, 4309–13 (2006).

bent five-membered rings. Despite this, they can be capped by metal atoms to
give metallacarboranes with 14 and 15 vertices, respectively. Figure 13.4.16
shows some examples of these novel metallacarboranes.

The complexes [η5-(CH2)3C2B11H11]Ni(dppe) and [η6-(CH2)3C2B11H11]
Ru(p-cymene) were prepared by the reactions of 5 with (dppe)NiCl2 and
[(p-cymene)RuCl2]2, respectively. Although both of them are 14-vertex
metallacarboranes having a similar bicapped hexagonal antiprismatic cage
geometry, the coordination modes of their carborane anions are quite different:
the carborane anion [(CH2)3C2B11H11]2− is η5-bound to the Ni atom in the
nickelacarborane [Fig. 13.4.16(a)], whereas an η6-bonding fashion is observed
in the ruthenacarborane with an average Ru-cage atom distance of 226.6 pm
[Fig. 13.4.16(b)].

Figure 13.4.16(c) shows the structure of a 15-vertex ruthenacarborane,
[(CH2)3C2B12H12]Ru(p-cymene), which was synthesized by the reaction of
6 with [(p-cymene)RuCl2]2. Similar to that in the above-mentioned 14-vertex
ruthenacarborane, the carborane moiety [(CH2)3C2B12H12]2− in this 15-vertex
ruthenacarborane is also η6-bound to the Ru atom, forming a hexacosahedral
structure. The distances of Ru–arene(cent) and Ru–CB5(cent) are 178 and 141
pm, respectively. This 15-vertex ruthenacarborane has the largest vertex number
in the metallacarborane family known at present.

13.5 Boric acid and borates

13.5.1 Boric acid

Boric acid, B(OH)3, is the archetype and primary source of oxo-boron com-
pounds. It is also the normal end product of hydrolysis of most boron
compounds. It forms flaky, white and transparent crystals, in which the BO3
units are joined to form planar layers by O–H· · · O hydrogen bonds, as shown
in Fig. 13.5.1.

Fig. 13.5.1.
Structure of layer of B(OH)3 (B–O 136.1
pm, O–H· · · O 272 pm).

Boric acid is a very weak monobasic acid (pKa = 9.25). It generally behaves
not as a Brønsted acid with the formation of the conjugate-base [BO(OH)2]−,
but rather as a Lewis acid by accepting an electron pair from an OH− anion to
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form the tetrahedral species [B(OH)4]−:

(HO)3B +
[sp2+p(unoccupied)]

: OH− −→ B(OH) −4
sp3

.

Thus this reaction is analogous to the acceptor–donor interaction between BF3
and NH3:

F3B +
[sp2+p(unoccupied)]

: NH3 −→ F3B
sp3

← NH3.

In the above two reactions, the hybridization of the B atom changes from
sp2(reactant) to sp3(product).

Partial dehydration of B(OH)3 above 373 K yields metaboric acid, HBO2,
which consists of trimeric units B3O3(OH)3. Orthorhombic metaboric acid is
built of discrete molecules B3O3(OH)3, which are linked into layers by O–
H· · · O bonds, as shown in Fig. 13.5.2.

Fig. 13.5.2.
Structure of layer of orthorhombic
metaboric acid.

In dilute aqueous solution, there is an equilibrium between B(OH)3 and
B(OH)−4 :

B(OH)3 + 2H2O⇀↽ H3O+ + B(OH) −4 .

At concentrations above 0.1 M, secondary equilibria involving condensation
reactions of the two dominant monomeric species give rise to oligomers such as
the triborate monoanion [B3O3(OH)4]−, the triborate dianion [B3O3(OH)5]2−,
the tetraborate [B4O5(OH)4]2−, and the pentaborate [B5O6(OH)4]−.

In (Et4N)2[BO(OH)2]2·B(OH)3·5H2O, the conjugate acid–base pair B(OH)3
and dihydrogen borate [BO(OH)2]− coexist in the crystalline state. In the crystal
structure of the inclusion compound Me4N+[BO(OH)2]− · 2(NH2)2CO·H2O,
the BO(OH) −2 , (NH2)2CO, and H2O molecules are linked by N–H· · · O and
O–H· · · O bonds to form a host lattice featuring a system of parallel channels,
which accommodate the guest Me4N+ cations (see Section 20.4.4 for further
details). The measured dimensions of the [BO(OH)2]− anion, which has crys-
tallographically imposed symmetry m, show that the valence tautomeric form
I with a formal B=O double bond makes a more important contribution than II
to its electronic structure (Fig. 13.5.3).

13.5.2 Structure of borates

(1) Structural units in borates
The many structural components that occur in borates consist of planar trian-
gular BO3 units and/or tetrahedral BO4 units with vertex-sharing linkage, and
may be divided into three kinds. Some examples are given below:

B

O

OHHO
B

O

OHHO

I

–

–

II

B–Ο 132.3(5) pm O–B–OH    124.3(2)°
B–OH 139.5(3) pm HO–B–OH 111.3(3)°

Fig. 13.5.3.
Valence-bond structural formulas for the
dihydrogen borate ion, [BO(OH)2]−,
and its measured dimensions in
[(CH3)4N]+[BO(OH)2]− ·
2(NH2)2CO·H2O.
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[BO3]3–

[B2O5]4– [(BO2)–]n [B3O6]3–

[BO4]5– B(OH)4
– [B2O(OH)6]2– [B2(O2)2(OH)4]2–

[B5O6(OH)4]– [B3O3(OH)5]2– [B4O5(OH)4]2–

(a)

(b)

(c)

Fig. 13.5.3.
Structural units in borates.

(a) Units containing B in planar BO3 coordination only [structures show in
Fig. 13.5.3(a)]:
BO 3−

3 : Mg3(BO3)2, LaBO3
[B2O5]4−: Mg2B2O5, Fe2B2O5
[B3O6]3−: K3B3O6, Ba3(B3O6)2 ≡BaB2O4 (BBO)
[(BO2)

−]n: Ca(BO2)2

(b) Units containing B in tetrahedral BO4 coordination only [structure shown
in Fig. 13.5.3(b)]:
BO 5−

4 : TaBO4
B(OH) −4 : Na2[B(OH)4Cl]
[B2O(OH)6]2−: Mg[B2O(OH)6]
[B2(O2)2(OH)4]2−: Na2[B2(O2)2(OH)4]·6H2O

(c) Units containing B in both BO3 and BO4 coordination [Structure shown in
Fig. 13.5.3(c)]:
[B5O6(OH)4]−: K[B5O6(OH)4]·2H2O
[B3O3(OH)5]2−: Ca[B3O3(OH)5]·H2O
[B4O5(OH)4)2−: Na2[B4O5(OH)4]·8H2O
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(a) (b)

(c)

146.4
143.9

137.1

137.4

136.3

148.5150.0

Fig. 13.5.4.
Structure of borax: (a) bond lengths in
[B4O5(OH)4]2− (in pm), (b) perspective
view of the anion, and
(c) [B4O5(OH)2−

4 ]n chain.

(2) Structure of borax
The main source of boron comes from borax, which is used in the man-
ufacture of borosilicate glass, borate fertilizers, borate-based detergents,
and flame-retardants. The crystal structure of borax was determined by X-
ray diffraction in 1956, and by neutron diffraction in 1978. It consists of
B4O5(OH)2−

4 , Na+ ions, and water molecules, so that its chemical formula is
Na2[B4O5(OH)4]·8H2O, not Na2B4O7·10H2O as given in many older books.
The structure of [B4O5(OH)4]2− is shown in Figs. 13.5.4(a) and (b). In the
crystal, the anions are linked by O–H· · · O hydrogen bonds to form an infinite
chain, as shown in Fig. 13.5.4(c). The sodium ions are octahedrally coordi-
nated by water molecules, and the octahedra share edges to form another chain.
These two kinds of chains are linked by weaker hydrogen bonds between the
OH groups of [B4O5(OH)4]2− anions and the aqua ligands, and this accounts
for the softness of borax.

(3) Structural principles for borates
Several general principles have been formulated in connection with the
structural chemistry of borates:

(a) In borates, boron combines with oxygen either in trigonal planar or tetrahe-
dral coordination. In addition to the mononuclear anions BO3−

3 and BO5−
4

and their partially or fully protonated forms, there exists an extensive series
of polynuclear anions formed by corner-sharing of BO3 and BO4 units. The
polyanions may form separate boron–oxygen complexes, rings, chains,
layers, and frameworks.

(b) In boron–oxygen polynuclear anions, most of the oxygen atoms are linked
to one or two boron atoms, and a few can bridge three boron atoms.

(c) In borates, the hydrogen atoms do not attach to boron atoms directly, but
always to oxygens not shared by two borons, thereby generating OH groups.

(d) Most boron–oxygen rings are six-membered, comprising three B atoms
and three oxygen atoms.

(e) In a borate crystal there may be two or more different boron–oxygen units.
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13.6 Organometallic compounds of group 13 elements

13.6.1 Compounds with bridged structure

The compounds Al2(CH3)6, (CH3)2Al(µ-C6H5)2Al(CH3)2, and (C6H5)2Al(µ-
C6H5)2Al(C6H5)2 all have bridged structures, as shown in Figs. 13.6.1 (a), (b)
and (c) respectively. The bond distances and angles are listed in Table 13.6.1.

The bonding in the Al–C–Al bridges involves a 3c-2e molecular orbital
formed from essentially sp3 orbitals of the C and Al atoms. This type of 3c-2e
interaction in the bridge necessarily results in an acute Al–C–Al angle (75◦ to
78◦), which is consistent with the experimental data. This orientation is steri-
cally favored and places each ipso-carbon atom in an approximately tetrahedral
configuration.

In the structure of Me2Ga(µ–C≡C–Ph)2GaMe2 [Fig. 13.6.1(d)], each
alkynyl bridge leans over toward one of the Ga centers. The organic ligand

Fig. 13.6.1.
Structure of some group 13
organometallic compounds:
(a) Al2(Me)6, (b) Al2(Me)4(Ph)2,
(c) Al2(Ph)6, (d) Ga2Me4(C2Ph)2, and
(e) In(Me)3 tetramer.

(a) (b) (c)

(d) (e)

Ga

In

AlAlAl

Table 13.6.1. Structural parameters found in some carbon-bridged organoalu-
minum compounds

Compound Distance (pm) Angle (◦)

Al–Cb Al–Ct Al · · · Al Al–C–Al C–Al–C
(internal)

C–Al–C
(external)

Al2Me6 214 197 260 74.7 105.3 123.1
Al2Me4Ph2 214 197 269 77.5 101.3 115.4
Al2Ph6 218 196 270 76.5 103.5 121.5
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forms an Ga–C σ bond and interacts with the second Ga center by using its
C≡C π bond. Thus each alkynyl group is able to provide three electrons for
bridge bonding, in contrast to one electron as normally supplied by an alkyl or
aryl group.

Compounds In(Me)3 and Tl(Me)3 are monomeric in solution and the gas
phase. In the solid state, they also exist as monomers essentially, but close
intermolecular contacts become important. In crystalline In(Me)3, significant
In· · ·C intermolecular interactions are observed, suggesting that the structure
can be described in terms of cyclic tetramers, as shown in Fig. 13.6.1(e), with
interatomic distances of In–C 218 pm and In· · ·C 308 pm. The corresponding
bond distances in isostructuralTl(Me)3 areTl–C = 230 pm andTl· · · C = 316 pm.

13.6.2 Compounds with π bonding

Many organometallic compounds of group 13 are formed by π bonds. The π
ligands commonly used are olefins, cyclopentadiene, or their derivatives.

The structure of the dimer [ClAl(Me–C=C–Me)AlCl]2 is of interest. There
are 3c-2e π bonds between the Al atoms and the C=C bonds, as shown in
Fig. 13.6.2(a). The Al–C distances in the Al-olefin units are relatively long,
approximately 235 pm, but the sum of the four interactions lead to remarkable
stability of the dimer. The energy gained through each Al–olefin interaction is
calculated to be about 25 to 40 kJ mol−1.

The [Al(η5-Cp*)2]+ (Cp* = C5Me5) ion is at present the smallest sandwich
metallocene of any main-group element. The Al–C bond length is 215.5 pm.
Figure 13.6.2(b) shows the structure of this ion.

The molecular structure of Al4Cp∗4 in the crystal is shown in Fig. 13.6.2(c).
The central Al4 tetrahedron has Al–Al bond length 276.9 pm, which is shorter

(a) (b) (c)

(d) (e) (f)

A1

Cl

A1

A1

In

Ga

Fig. 13.6.2.
Structure of some organometallic compounds formed by π bonds: (a) [ClAl(Me–C=C–Me)AlCl]2, (b) [Al(Cp∗)2]+, (c) Al4Cp∗4, (d) GaCp∗,
and (e) InCp(or TlCp).
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than those in Al metal (286 pm). Each Cp∗ ring is η5-coordinated to an Al
atom, whereby the planes of the Cp∗ rings are parallel to the opposite base of
the tetrahedron. The average Al–C distances is 233.4 pm.

The half-sandwich structure of GaCp∗ in the gas phase, as determined by
electron diffraction, is shown in Fig. 13.6.2(d). This compound has a pentagonal
pyramidal structure with an η5-C5 ring. The Ga–C distance is 240.5 pm.

Both CpIn and CpTl are monomeric in the gas phase, but in the solid they
possess a polymeric zigzag chain structure, in which the In (or Tl) atoms and
Cp rings alternate, as shown in Fig. 13.6.2(e).

13.6.3 Compounds containing M–M bonds

The compounds R2Al–AlR2, R2Ga–GaR2, and R2In–InR2 [R=CH(SiMe3)2]
have been prepared and characterized. The bond lengths in these compounds are
Al–Al 266.0 pm, Ga–Ga 254.1 pm, and In–In 282.8 pm; the M2C4 frameworks
are planar as shown in Fig. 13.6.3(a). In Al2(C6H2

iPr3)4, Ga2(C6H2
iPr3)4,

and In2[C6H2(CF3)3]4, the bond lengths are Al–Al 265 pm, Ga–Ga 251.5 pm,
and In–In 274.4 pm, and here the M2C4 framework are nonplanar, as shown
in Fig. 13.6.3(b). In these structures the Ga–Ga bond lengths are shorter than
the Al–Al bond lengths. The anomalous behavior of gallium among Group 13
elements is due to the insertion of electrons into the d orbitals of the preceding
3d elements in the Periodic Table and the associated contraction of the atomic
radius.

(a) (b) (c)
K

Ga

(d) (e) (f)

AlAl

SiMe3

Ga

Fig. 13.6.3.
Structures of some compounds containing M–M bonds: (a) planar M2R4 (M = Al, Ga, In), (b) nonplanar M2R4 (M = Al, Ga, In), (c) K2Ga3 core
of K2[Ga3(C6H3Mes2)3], (d) [GaC(SiMe3)3]4, (e) (AlMe)8(CCH2Ph)5(C≡C–Ph), and (f) icosahedral Al12 core in K2[Al i

12Bu12].
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The structures of compounds Na2[Ga3(C6H3Mes2)3] and K2[Ga3(C6H3
Mes2)3] are worthy of note. In these compounds, the Na2Ga3and K2Ga3 cores
have trigonal bipyramidal geometry, as shown in Fig. 13.6.3(c). The bond
lengths are Ga–Ga 244.1 pm (Na salt), 242.6 pm (K salt), Ga–Na 322.9 pm,
and Ga–K 355.4 pm. The planarity of the Ga3 ring and the very short Ga–Ga
bonds implies electron delocalization in the three-membered ring, the requisite
two π electrons being provided by the two K (or Na) atoms (one electron each)
to the empty pz orbitals of the three sp2-hybridized Ga atoms.

Figures 13.6.3(d)–(f) show the structures of three compounds which contain
metallic polyhedral cores. In [GaC(SiMe3)3]4, the Ga–Ga bond length is 268.8
pm, in (AlMe)8(CCH2Ph)5(C≡C–Ph) the Al–Al bond lengths are observed to
be close to two average values: 260.9 and 282.9 pm, and in K2[Al i

12 Bu12] the
Al–Al bond length is 268.5 pm.

Al50Cp∗12(or Al50C120H180) is a giant molecule, whose crystal structure
shows a distorted square-antiprismatic Al8 moiety at its center, as shown in
Fig. 13.6.4. This Al8 core is surrounded by 30 Al atoms that form an icosido-
decahedron with 12 pentagonal faces and 20 trigonal faces. Each pentagonal
faces is capped by an AlCp* unit, and the set of 12 Al atoms forms a very
regular icosahedron, in which the Al· · ·Al average distance is 570.2 pm. Each
of the peripheral 12 Al atoms is coordinated by 10 atoms (5 Al and 5 C) in
the form of a staggered “mixed sandwich.” In the molecule, the average Al–Al
bond length is 277.0 pm (257.8–287.7 pm). The 60 CH3 groups of the 12 Cp∗

ligands at the surface exhibits a topology resembling that of the carbon atoms
in fullerene-C60. The average distance between a pair of nearest methyl groups
of neighboring Cp* ligands (386 pm) is approximately twice the van der Waals
radius of a methyl group (195 pm). The entireAl50Cp*12 molecule has a volume
which is about five times large than that of a C60 molecule.

Fig. 13.6.4.
Molecular structure of Al50Cp∗12
(Cp∗ = pentamethylcyclopentadienide).
For clarity, the Cp∗ units are omitted,
and only the bonds from the outer 12 Al
atoms toward the ring centers are shown.
The shaded atoms represent the central
distorted square-antiprismatic Al8
moiety.
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Ga

Ga

PEt3

I
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Ga

PEt3
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I

PEt3I
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InR2R2In

InR2

R = 2,4,6-iPr3C6H2

In

In

In

I

N
N

N
N

N
N

In

In

In

I

N
N

N
N

N
N

N

N
=

N
ArAr

N

_

Ar = 2,6-iPr2C6H3

(a) (b) (c)

Fig. 13.6.5.
Structural formulas of some open-chain homocatenated compounds of heavier group 13 elements.

13.6.4 Linear catenation in heavier group 13 elements

For the heavier congeners of boron, the occurrence of well-characterized
compounds possessing a linear extended skeleton containing two or more
unsupported two-electron E–E bonds is quite rare. Some discrete molecules
exhibiting this feature include the open-chain trigallium subhalide complex
I2(PEt3)Ga–GaI(PEt3)–GaI2(PEt3) (Fig. 13.6.5(a)) and the trigonal tetranuclear
indium complex {In[In(2,4,6-iPr3C6H2)2]3} (Fig. 13.6.5(b)).

Using a chelating ligand of the β-diketiminate class, a novel linear homo-
catenated hexanuclear indium compound has been synthesized (Fig. 13.6.5(c)).
The four internal indium atoms are in the +1 oxidation state, and the terminal
indium atoms, each carrying an iodo ligand, are both divalent. The coordination
geometry at each indium center is distorted tetrahedral.As shown in Fig. 13.6.6,
the mixed-valent molecule has a pseudo C2 axis with a β-diketiminate ligand
chelated to each metal center, and its zigzag backbone is held together by five
unsupported In–In single bonds constructed from sp3 hybrid orbitals.

Fig. 13.6.6.
Molecular structure of a linear
homocatenated compound containing six
indium centers. The 3,5-dimethylphenyl
groups of the β-diketiminate ligands
have been omitted for clarity. Bond
lengths (pm): In(1)–In(2) 281.2,
In(2)–In(3) 283.5, In(3)–In(4) 285.4,
In(4)–In(5) 284.1, In(5)–In(6) 282.2;
In(1)–I(1) 279.8, In(6)–I(2) 278.0;
standard deviation 0.1 pm. Average
In–In–In bond angle at In(2) to In(5) is
139.4◦.

N(1) I(1)
N(6)

In(3)

N(5) In(4)
In(6)

I(2)

In(2)

N(4) N(8)
N(11)

N(12)

N(9)
N(10)

N(7) In(5)

In(1)

N(2)
N(3)

13.7 Structure of naked anionic metalloid clusters

The term metalloid cluster is used to describe a multinuclear molecular species
in which the metal atoms exhibit closest packing (and hence delocalized inter-
metallic interactions) like that in bulk metal, and the metal–metal contacts
outnumber the peripheral metal–ligand contacts. Most examples are found in
the field of precious-metal cluster chemistry. In recent years, an increasing num-
ber of cluster species of group 13 elements have been synthesized with cores
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(a)

(b)

(c)

(d)

Fig. 13.7.1.
Structure of Ga84[N(SiMe3)2]204− [the
larger circles (shaded and unshaded)
represent Ga atom, and the small circles
represent N atoms]: (a) central Ga2 unit,
(b) Ga32 shell, (c) a “belt” of 30 Ga
atoms, and (d) the front of
Ga84[N(SiMe3)2]204−. The Ga2 and N
atoms at the back are not shown, the
Ga32 shell is emphasized by the broken
lines, the “belt” of 30 Ga atoms are
shaded, and for the ligands N(SiMe3)2
only the N atoms directly bonded to the
Ga atoms are shown.

consisting of Aln (n = 7, 12, 14, 50, 69) and Gam (m = 9, 10, 19, 22, 24, 26, 84)
atoms, for example [Al77{N(SiMe3)2}20]2− and [Ga84{N(SiMe3)2}20]4−.

13.7.1 Structure of Ga84[N(SiMe3)2] 4−
20

The largest metalloid cluster characterized to date is Ga84[N(SiMe3)2]4−
20 , the

structure of which is illustrated in Fig. 13.7.1. It comprises four parts: a Ga2
unit, a Ga32 shell, a Ga30“belt,” and 20 Ga[N(SiMe3)2] groups. The Ga2 unit
[as shown in (a)] is located at the center of the 64 naked Ga atoms; the Ga–Ga
bond distance is 235 pm, which is almost as short as the “normal” triple Ga–Ga
bond (232 pm). The Ga2 unit is encapsulated by a Ga32 shell in the form of
a football with icosahedral caps, as shown in (b). The Ga2@Ga32 aggregate
is surrounded by a belt of 30 Ga atoms that are also naked, as shown in (c).
Finally the entire Ga64 framework is protected by 20 Ga[N(SiMe3)2] groups
to form Ga84[N(SiMe3)2] 4−

20 , as shown in (d). This large anionic cluster has a
diameter of nearly 2 nm.

13.7.2 Structure of NaTl

The structure of sodium thallide NaTl can be understood as a diamond-like
framework of Tl atoms, whose vacant sites are completely filled with Na atoms.
Figure 13.7.2(a) shows the structure of NaTl, in which the Tl–Tl covalent bonds
are represented by solid lines. The Tl atom has three valence electrons, which
are insufficient for the construction of a stable diamond framework. The deficit
can be partially compensated by the introduction of Na atoms. The effective
radius of the Na atom is considerably smaller than that in pure metallic sodium.

iranchembook.ir/edu

https://iranchembook.ir/edu


496 Structural Chemistry of Selected Elements

Fig. 13.7.2.
Structure of (a) NaTl and (b) Li2AlSi. (a) (b)

Si

Li
AlTl

Na

Therefore, the chemical bonding in NaTl is expected to be a mixture of covalent,
ionic, and metallic interactions.

The NaTl-type structure is the prototype for Zintl phases, which are inter-
metallic compounds which crystallize in typical “non-metal” crystal structures.
Binary AB compounds LiAl, LiGa, LiIn and NaIn are both isoelectronic
(isovalent) and isostructural with NaTl. In the Li2AlSi ternary compound, Al
and Si form a diamond-like framework, in which the octahedral vacant sites of
the Al sublattice are filled by Li atoms, as shown in Fig. 13.7.2(b).

From the crystal structure, physical measurements, and theoretical calcula-
tions, the nature of the chemical bond in the NaTl-type compound AB can be
understood in the following terms:

(a) Strong covalent bonds exist between the B atoms (Al, Ga, In, Tl, Si).
(b) The alkali atoms (A) are not in bonding contact.
(c) The chemical bond between the A and B framework is metallic with a small

ionic component.
(d) For the upper valence/conduction electron states a partial metal-like charge

distribution can be identified.

13.7.3 Naked Tlm−n anion clusters

The heavier elements of Group 13, in particular thallium, are able to form
discrete naked clusters with alkali metals. Table 13.7.1 lists some examples of
Tlm−n naked anion clusters, and Fig. 13.7.3 shows their structures.

The bonding in these Tl m−
n anion clusters is similar to that in boranes. For

example, the bond valences (b) of Tl 7−
5 and centered Tl 11−

13 clusters are equal
to those of B5H 2−

5 and B12H 2−
12 , respectively. Note that, in Tl 11−

13 , the central
Tl atom contributes all three valence electrons to cluster bonding, so that the
total number of bonding electrons is (3 + 12 × 1 + 11) = 26. This cluster is
thus consolidated by ten Tl–Tl–Tl 3c-2e and three Tl–Tl 2c-2e bonds. The Tl 9−

9
cluster has 36 valence electrons, and its bond valence b is 18. The cluster is
stabilized by three Tl–Tl–Tl 3c-2e bonds, as labeled by the three shaded faces in
Fig. 13.7.3(e), and the remaining twelve edges represent 12 Tl–Tl 2c-2e bonds.
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Table 13.7.1. Some examples of Tlm−n anion clusters

Composition Anion Structure in
Fig. 13.7.3

Cluster
symmetry

Bond
valence (b)

Bonding

Na2Tl Tl 8−
4 (a) Td 6 6 Tl–Tl 2c-2e bonds

Na2K21Tl19 2Tl 7−
5 (b) D3h 9

{

3Tl–Tl–Tl 3c-2e bonds
3Tl–Tl 2c-2e bonds

Tl 9−
9 (e) defective Ih 18

{

3Tl–Tl–Tl 3c-2e bonds
12Tl–Tl 2c-2e bonds

KTl Tl 6−
6 (c) D4h 12 12 Tl–Tl 2c-2e bonds

K10Tl7 Tl 7−
7 , 3e− (d) ∼ D5h 14

{

5Tl–Tl–Tl 3c-2e bonds
4Tl–Tl 2c-2e bonds

K8Tl11 Tl 7−
11 , e− (f) ∼ D3h 24

{

3Tl–Tl–Tl 3c-2e bonds
18Tl–Tl 2c-2e bonds

Na3K8Tl13 Tl 11−
13 (g) Centered ∼ Ih 23

{

10Tl–Tl–Tl 3c-2e bonds
3Tl–Tl 2c-2e bonds

The compound K10Tl7 is composed of ten K+, a Tl 7−
7 and three delocalized

electrons per formula unit and exhibits metallic properties. The Tl 7−
7 cluster is

an axially compressed pentagonal bipyramid conforming closely to D5h sym-
metry [Fig. 13.7.3(d)]. The apex–apex bond distance of 346.2 pm is slightly
longer than the bonds in the pentagonal waist (318.3–324.7 pm). Comparison
between the structures of Tl 7−

7 and B7H 2−
7 [Fig. 13.4.6(a)] shows that both

are pentagonal bipyramidal but Tl 7−
7 is compressed along the C5 axis for the

formation of a coaxial 2c-2e Tl–Tl bond, so the bond valences of Tl 7−
7 and

B7H 2−
7 are 14 and 13, respectively.

(a) (b) (c) (d)

(e) (f) (g)

Fig. 13.7.3.
Structures of some Tl m−

n anion clusters:
(a) Tl 8−

4 , (b) Tl 7−
5 , (c) Tl 6−

6 , (d) Tl 7−
7 ,

(e) Tl 9−
9 (shaded faces represent three

Tl–Tl–Tl 3c-2e bonds), (f) Tl 7−
11 , (g)

Tl 11−
13 .
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14 Structural Chemistry of
Group 14 Elements

14.1 Allotropic modifications of carbon

With the exception of the gaseous low-carbon molecules: C1, C2, C3, C4, C5, . . .,
the carbon element exists in the diamond, graphite, fullerene, and amorphous
allotropic forms.

14.1.1 Diamond

Diamond forms beautiful, transparent, and highly refractive crystals, and has
been used as a noble gem since antiquity. It consists of a three-dimensional
network of carbon atoms, each of which is bonded tetrahedrally by covalent
C–C single bonds to four others, so that the whole diamond crystal is essentially
a “giant molecule.” Nearly all naturally occurring diamonds exist in the cubic
form, space group Fd3̄m (no. 227), with a = 356.688 pm and Z = 8. The C–C
bond length is 154.45 pm, and the C–C–C bond angle is 109.47◦. In the crystal
structure, the carbon atoms form six-membered rings that take the all-chair
conformation [Fig. 14.1.1(a)]. The mid-point of every C–C bond is located
at an inversion center, so that the six nearest carbon atoms about it are in a
staggered arrangement, which is the most stable conformation.

In addition to cubic diamond, there is a metastable hexagonal form, which
has been found in aerorite and can be prepared from graphite at 13 GPa above
1300 K. Hexagonal diamond crystallizes in space group P63/mmc (no. 194)
with a = 251 pm, c = 412 pm and Z = 4, as shown in Fig. 14.1.1(b). The bond
type and the C–C bond length are the same as in cubic diamond. The differ-
ence between the two forms is the orientation of two sets of tetrahedral bonds
about neighboring carbon atoms: cubic diamond has the staggered arrangement

Fig. 14.1.1.
Crystal structure of diamond: (a) cubic
form and (b) hexagonal form.

(a) (b)
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about each C–C bond at an inversion center, but in hexagonal diamond some
bonds take the eclipsed arrangement related by mirror symmetry. As repul-
sion between nonbonded atoms in the eclipsed arrangement is greater than that
in the staggered arrangement, hexagonal diamond is much rarer than cubic
diamond.

Diamond is the hardest natural solid known and has the highest melting point,
4400 ± 100 K (12.4 GPa). It is an insulator in its pure form. Since the density
of diamond (3.51 g cm−3) far exceeds that of graphite (2.27 g cm−3), high
pressures can be used to convert graphite into diamond even though graphite is
thermodynamically more stable by 2.9 kJ mol−1. To attain commercially viable
rates for the pressure-induced conversion of graphite to diamond, a transition-
metal catalyst such as iron, nickel, or chromium is generally used. Recently, the
method has been employed to deposit thin films of diamond onto a metallic or
other material surface. The extreme hardness and high thermal conductivity of
diamond find applications in numerous areas, notably the hardening of surfaces
of electronic devices and as cutting and/or grinding materials.

Elemental silicon, germanium, and tin have the cubic diamond structure with
unit-cell edge a = 543.072, 565.754, and 649.12 pm (α-Sn), respectively.

14.1.2 Graphite

Graphite is the common modification of carbon that is stable under normal con-
ditions. Its crystal structure consists of planar layers of hexagonal carbon rings.
Within the layer each carbon atom is bonded covalently to three neighboring
carbon atoms at 141.8 pm. The σ bonds between neighbors within a layer are
formed from the overlap of sp2 hybrids, and overlap involving the remaining
electron and perpendicular pz orbital on every atom generates a network of π
bonds that are delocalized over the entire layer. The relatively free movement
of π electrons in the layers leads to abnormally high electrical conductivity for
a non-metallic substance.

The layers are stacked in a staggered manner with half of the atoms of one
layer situated exactly above atoms of the layer below, and the other half over
the rings centers. There are two crystalline forms that differ in the sequence of
layer stacking.

(1) Hexagonal graphite or α-graphite: The layers are arranged in the sequence
…ABAB…, as shown in Fig. 14.1.2(a). The space group is P63/mmc

(b)(a)

Fig. 14.1.2.
Structure of graphite: (a) α-graphite and
(b) β-graphite.
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(no. 194), and the unit cell has dimensions of a = 245.6 pm and c = 669.4
pm, so that the interlayer distance is c/2 = 334.7 pm.

(2) Rhombohedral graphite or β-graphite: The layers are arranged in the
sequence …ABCABC…, as shown in Fig. 14.1.2(b). The space group
is R3̄m (no. 166), and the unit cell has dimensions of a = 246.1 pm and
c = 1006.4 pm. The interlayer separation c/3 = 335.5 pm is similar to that
of α-graphite.

The enthalpy difference between hexagonal and rhombohedral graphite is
only 0.59 ± 0.17 kJ mol−1. The two forms are interconvertible by grinding
(hexagonal → rhombohedral) or heating above 1025 ◦C (rhombohedral →
hexagonal). Partial conversion leads to an increase in the average spacing
between layers; this reaches a maximum of 344 pm for turbostratic graphite
in which the stacking sequence of the parallel layers is completely random.

In graphite the layers are held together by van der Waals forces. The relative
weak binding between layers is consistent with its softness and lubricity, as
adjacent layers are able to easily slide by each other. Graphite mixed with clay
constitutes pencil “lead,” which should not be confused with metallic lead or
dark-gray lead sulfide.

14.1.3 Fullerenes

The third allotropic modification of carbon, the fullerenes, consists of a series
of discrete molecules of closed cage structure bounded by planar faces, whose
vertices are made up of carbon atoms. If the molecular cage consists of pen-
tagons and hexagons only, the number of pentagons must always be equal to
12, while the number of hexagons may vary. Fullerenes are discrete globular
molecules that are soluble in organic solvents, and their structure and properties
are different from those of diamond and graphite.

Fullerenes can be obtained by passing an electric arc between two graphite
electrodes in a controlled atmosphere of helium, or by controlling the
helium/oxygen ratio in the incomplete combustion of benzene, followed by
evaporation of the carbon vapor and re-crystallization from benzene. The main
product of the preparation is fullerene-C60, and the next abundant product is
fullerene-C70.

The structure of C60 has been determined by single-crystal neutron diffraction
and electron diffraction in the gas phase. It has icosahedral (Ih) symmetry with
60 vertices, 90 edges, 12 pentagons, and 20 hexagons. The C–C bond lengths
are 139 pm for 6/6 bonds (fusion of two six-membered rings) and 144 pm for 6/5
bonds (fusion between five- and six-membered rings). The 60 carbon atoms all
lie within a shell of mean diameter 700 pm. Figure 14.1.3(a) shows the soccer-
ball shape of the C60 molecule. Each carbon atom forms three σ bonds with
three neighbors, and the remaining orbitals and electrons of the 60 C atoms
form delocalized π bonds. This structure may be formulated by the valence-
bond formula shown in Fig. 14.1.3(b). The C60 molecule can be chemically
functionalized, and an unambiguous atom-numbering scheme is required for
systematic nomenclature of its derivatives. Figure 14.1.3(c) shows the planar
formula with carbon atom-numbering scheme of the C60 molecule.

In the C60 molecule, the sum of the σ bond angles at each C atom is 348◦(=
120◦+120◦+108◦), and the mean C–C–C angle is 116◦. The π atomic orbital
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(a) (b) (c)

Fig. 14.1.3.
Structure of fullerene-C60: (a) molecular shape, (b) valence-bond formula, and (c) planar formula with carbon atom-numbering scheme.

lies normal to the convex surface, the angle between the σ and π orbitals being
101.64◦. It may be approximately calculated that eachσ orbital has s component
30.5% and p 69.5%, and each π orbital has s 8.5% and p 91.5%.

Table 14.1.1. Some physical properties of fullerene-C60

Density (g cm−3) 1.65
Bulk modulus (GPa) 18
Refractive index (630 nm) 2.2
Heat of combustion (crystalline C60) (kJ mol−1) 2280
Electron affinity (eV) 2.6–2.8
First ionization energy (eV) 7.6
Band gap (eV) 1.9
Solubility (303 K) (g dm−3)

CS2 5.16
Toluene 2.15
Benzene 1.44
CCl4 0.45
Hexane 0.04

Fullerene-C60 is a brown-black crystal, in which the nearly spherical
molecules rotate continuously at room temperature. The structure of the crys-
tal can be considered as a stacking of spheres of diameter 1000 pm in cubic
closest packing (a = 1420 pm) or hexagonal closest packing (a = 1002 pm,
c = 1639 pm). Figure 14.1.4 shows the crystal structure of fullerene-C60.

Fig. 14.1.4.
The cubic face-centered structure of
fullerene-C60.

Below 249 K, the molecules are orientated in an ordered fashion, and the
symmetry of the crystal is reduced from a face-centered cubic lattice to a primi-
tive cubic lattice. At 5 K, the crystal structure determined by neutron diffraction
yielded the following data: space group Pa3̄ (no. 205), a = 1404.08(1) pm; C–C
bond lengths: (6/6) 139.1 pm, (6/5) 144.4 pm, and 146.6 pm (mean 145.5 pm).

In the C60 molecule, the mean distance from the center to every C vertex is 350
pm, so the molecule has a spherical skeleton with diameter 700 pm. Allowing
for the van der Waals radius of the C atom (170 pm), the C60 molecule has a
central cavity of diameter 360 pm, which can accommodate a foreign atom.
Some physical properties of C60 are summarized in Table 14.1.1.
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Fig. 14.1.5.
Structures of some fullerenes. Note that
(b) shows the carbon skeleton of
C50Cl10, whose ten equatorial chloro
substituents have been omitted.

(a) C20 (Ih) (b) C50 (D5h) (c) C70 (D5h)

(d) C78 (C2v) (e) C78 (D3)

In addition to C60, many other higher homologs have been prepared and
characterized. Several synthetic routes to fullerenes have yielded gram quanti-
ties of pure C60 and C70, whereas C76, C78, C80, C82, C84 and other fullerenes
have been isolated as minor products. Figure 14.1.5 shows the structures of the
following fullerenes: C20, C50, C70, and two C78-isomers.

In general, the polyhedral closed cages of fullerenes are made up entirely of
n three-coordinate carbon atoms that constitute 12 pentagonal and (n/2 − 10)
hexagonal faces. The larger fullerenes synthesized so far do faithfully satisfy the
isolated pentagon rule (IPR), which governs the stability of fullerenes compris-
ing hexagons and exactly 12 pentagons. On the other hand, smaller fullerenes
do not obey the IPR, and are so labile that their properties and reactivity have
only been studied in the gas phase. The smallest fullerene that can exist theoret-
ically is C20. It has been synthesized from dodecahedrane C20H20 by replacing
the hydrogen atoms with relatively weakly bound bromine atoms to form a
triene precursor of average composition [C20HBr13], which was then subjected
to debromination in the gas phase. The bowl isomer of C20 is likewise gen-
erated by gas-phase debromination of a [C20HBr9] precursor prepared from
bromination of corannulene C20H10. Identification of the two C20 isomers was
achieved by mass-selective anion-photoelectron spectroscopy. Figure 14.1.5(a)
shows the molecular structure of fullerene C20.

 
Dodecahedrane C20H20

Corannulene C20H10 Bowl isomer of C20

Fullerene C20 

[C20HBr9]

[C20HBr13]

[From H. Prinzbach, A. Weiler, P. Landenberger, F. Wahl, J. Worth, L. T. Scott, M. Gelmont,
D. Olevano and B. v. Issendorff, Nature 407, 60–3 (2000).]
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Fullerene-C50 has been trapped as its perchloro adduct C50Cl10, which was
obtained in milligram quantity from the addition of CCl4 to the usual graphite
arc-discharge process for the synthesis of C60 and larger fullerenes. The D5h
structure of C50Cl10, with all chlorine atoms lying in the equatorial plane and
attached to sp3 carbon atoms, was established by mass spectrometry, 13C NMR,
and other spectroscopic methods. The idealized structure of C50 is displayed in
Fig. 14.1.5(b).

The fullerene-C70 molecule has D5h symmetry and an approximately ellip-
soidal shape, as shown in Fig. 14.1.5(c). As in C60, the 12 five-membered rings
in C70 are not adjacent to one another. In contrast to C60, C70 has an equatorial
phenylene belt comprising 15 fused hexagons and two polar caps, each assem-
bled from a pentagon that shares its edges with 5 hexagons. The curvature at the
polar region is very similar to that of C60. There are five sets of geometrically
distinct carbon atoms, and the observed 13C NMR signals have the intensity
ratios of 1:1:2:2:1. The measured carbon–carbon bond lengths (Fig. 14.1.6) in
the crystal structure of the complex (η2-C70)Ir(CO)Cl(PPh3)2 suggest that two
equivalent lowest-energy Kekulé structures per equatorial hexagon are required
to describe the structure and reactivity properties of C70.

a b
c d

ef
g
h

a = 146.2 pm
b = 142.3
c = 144.1
d = 143.2
e = 137.2
f  = 145.3
g = 138.1
h = 146.3

Fig. 14.1.6.
Two equivalent valence bond structures
of C70 and measured bond lengths of the
polyhedral cage in
(η2-C70)Ir(CO)Cl(PPh3)2.

The structures of two geometric isomers of fullerene-C78 have been elu-
cidated by 13C NMR spectroscopy: one has C2v symmetry, as shown in
Fig. 14.1.5(d); the other has D3 symmetry, as shown in Fig. 14.1.5(e). Struc-
tural assignments with qualities ranging from reliable to absolutely certain have
also been made for C74(D3h), C76(D2), C78′ [a new isomer of C2v symmetry,
which has a more spherical shape compared to the C78(C2v) isomer shown in
Fig. 14.1.5(d)], C80(D2), C82(C2), C84(D2), and C84(D2d).

In addition to the single globular species, fullerenes can be formed by joining
two or more carbon cages, as found for the dimer C120 shown in Fig. 14.1.7. X-
ray diffraction showed that the dimer is connected by a pair of C–C bonds linking
the edges of hexagonal faces (6/6 bonds) in two C60 units to form a central four-
membered ring, in which the bond lengths are 157.5 pm (connecting the two
cages) and 158.1 pm (6/6 bonds).

Fig. 14.1.7.
Molecular structure of the dimer [C60]2.
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Fullerene-C60 was selected as ‘Molecule of the Year 1991’by the journal Sci-
ence (Washington). Discovery of this modification of carbon in the mid-1980s
created a great excitement in the scientific community and popular press. Some
of this interest undoubtedly stemmed from the fact that carbon is a common
element that had been studied since ancient times, but still an entirely new
field of fullerene chemistry suddenly emerged with great potential for exciting
research and practical applications.

14.1.4 Amorphous carbon

Amorphous carbon is a general term that covers non-crystalline forms of carbon
such as coal, coke, charcoal, carbon black (soot), activated carbon, vitreous
carbon, glassy carbon, carbon fiber, carbon nanotubes, and carbon onions,
which are important materials and widely used in industry. The arrangements
of the carbon atoms in amorphous carbon are different from those in diamond,
graphite, and fullerenes, but the bond types of carbon atoms are the same as in
these three crystalline allotropes. Most forms of amorphous carbon consist of
graphite scraps in irregularly packing.

Coal is by far the world’s most abundant fossil fuel, with a total recoverable
resource of about 1000 billion (1012) tons. It is a complex mixture of many
compounds that contain a high percentage of carbon and hydrogen, but many
other elements are also present as impurities. The composition of coal varies
considerably depending on its age and location. A typical bituminous coal has
the approximate composition 80% C, 5% H, 8% O, 3% S, and 2% N. The
manifold structures of coal are very complex and not clearly defined.

The high-temperature carbonization of coal yields coke, which is a soft,
poorly graphitized form of carbon, most of which is used in steel manufacture.

Activated carbon is a finely divided form of amorphous carbon manufactured
from the carbonization of an organic precursor, which possesses a microporous
structure with a large internal surface area. The ability of the hydrophobic
surface to adsorb small molecules accounts for the widespread applications of
activated carbon as gas filters, decoloring agents in the sugar industry, water
purification agents, and heterogeneous catalysts.

Carbon black (soot) is made by the incomplete combustion of liquid hydro-
carbons or natural gas. The particle size of carbon black is exceedingly small,
only 0.02 to 0.3 µm, and its principal application is in the rubber industry where
it is used to strengthen and reinforce natural rubber.

Carbon fibers are filaments consisting of non-graphitic carbon obtained by
carbonization of natural or synthetic organic fibers, or fibers drawn from organic
precursors such as resins or pitches, and subsequently heat-treated up to tem-
peratures of about 300 ◦C. Carbon fibers are light and exceeding strong, so
that they are now important industrial materials that have gained increasing
applications ranging from sport equipment to aerospace strategic uses.

From observations in transmission electron micrography (TEM), carbon soot
particles are found to have an idealized onion-like shelled structure, as shown
in Fig. 14.1.8. Carbon onions varying from 3 to 1000 nm in diameter have been
observed experimentally. In an idealized model of a carbon onion, the first
shell is a C60 core of Ih symmetry, the second shell is C240 (comprising 22× 60
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5 nm

Fig. 14.1.8.
Section of a carbon onion.

atoms), and in general the number of carbon atom in the nth shell is n2× 60.
The molecular formula of a carbon onion is C60@C240@C540@C960@. . ., and
the intershell distance is always ∼350 pm.

Recent work based on HRTEM (high-resolution transmission electron
microscopy) and simulations has established that carbon onions are spheri-
cal rather than polyhedral, and the intershell spacing increases gradually from
a value well below that of graphite at the center to the expected value at the
outermost pair. The individual shells are not aligned in any regular fashion
and do not rotate relative to each other. The innermost core can be a smaller
fullerene (e.g. C28) or a diamond fragment varying in size from 2 to 4.5 nm,
and the internal cavity can be as large as 2 nm in diameter.

14.1.5 Carbon nanotubes

Carbon nanotubes were discovered in 1991 and consist of elongated cages
bounded by cylindrical walls constructed from rolled graphene (graphite-like)
sheets. In contrast to the fullerenes, nanotubes possess a network of fused
six-membered rings, and each terminal of the long tube is closed by a half-
fullerene cap. Single-walled carbon nanotubes (SWNTs) with diameters in
the range 0.4 to 3.0 nm have been observed experimentally; most of them lie
within the range 0.6 to 2.0 nm, and those with diameter 0.7, 0.5 and 0.4 nm
correspond to the fullerenes C60, C36 and C20, respectively. Electron micro-
graphs of the smallest 0.4 nm nanotubes prepared by the arc-discharge method
showed that each is capped by half of a C20 dodecahedron and has an antichiral
structure.

A carbon SWNT can be visualized as a hollow cylinder formed by
rolling a planar sheet of hexagonal graphite (unit-cell parameters a = 0.246,
c = 0.669 nm). It can be uniquely described by a vector C = na1 + ma2, where
a1 and a2 are reference unit vectors as defined in Fig. 14.1.9. The SWNT is
generated by rolling up the sheet such that the two end-points of the vector C
are superimposed. The tube is denoted as (n, m) with n≥m, and its diameter D
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O

Armchair 
(m, m)  

Chiral 
(8, 4)

Zigzag 
 (n, 0)

a2

a1

C

 

Fig. 14.1.9.
Generation of the chiral (8,4) carbon nanotube by rolling a graphite sheet along the vector C = na1 + ma2, and definition of the chiral angle θ .
The reference unit vectors a1 and a2 are shown, and the broken lines indicate the directions for generating achiral zigzag and armchair nanotubes.

is given by

D = |C|/π = a(n2 + nm + m2)
1
2 /π

The tubes with m = n are called “armchair” and those with m = 0 are referred to
as “zigzag.” All others are chiral with the chiral angle θ defined as that between
the vectors C and a1; θ can be calculated from the equation

θ = tan−1[3 1
2 m/(m + 2n)].

Fig. 14.1.10.
Lateral view of three kinds of carbon
nanotubes with end caps: (a) armchair
(5,5) capped by one-half of C60, (b)
zigzag (9,0) capped by one-half of C60,
and (c) an enantiomorphic pair of chiral
SWNTs each capped by a hemisphere of
icosahedral fullerene C140.

armchair (5,5)

zigzag (9, 0)

chiral (15, –5) chiral (10, 5)

The values of θ lies between 0◦ (for a zigzag tube) and 30◦ (for an armchair
tube). Note that the mirror image of a chiral (n, m) nanotube is specified by
(n + m, −m). The three types of SWNTs are illustrated in Fig. 14.1.10.

There are multiwalled carbon nanotubes (MWNTs), each consisting of ten
inner tubes or more. In a carbon MWNT, the spacing between two adjacent coax-
ial zigzag tubes (n1, 0) and (n2, 0) is 'd/2 = (0.123/π)(n2 − n1). However,
this cannot be made to be close to c/2 = 0.335 nm (the interlayer separation
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Fig. 14.1.11.
A helical multi-walled carbon nanotube.

in graphite) by any reasonable combination of n2 and n1, and hence no zigzag
nanotube can exist as a component of a MWNT. On the other hand, a MWNT
can be constructed for all armchair tubes (5m, 5m) with m = 1, 2, 3, etc., for
which the intertube spacing is (0.123/π )31/2(5) = 0.339 nm, which satisfies
the requirement.

In practice, defect-free coaxial nanotubes rarely occur in experimental prepa-
rations. The observed structures include the capped, bent, and toroidal SWNTs,
as well as the capped and bent, branched, and helical MWNTs. Figure 14.1.11
shows the HRTEM micrograph of a helical multiwalled carbon nanotube
which incorporates a small number of five- and seven-membered rings into
the graphene sheets of the nanotube surfaces.

14.2 Compounds of carbon

More than twenty million compounds containing carbon atoms are now known,
the majority of which are organic compounds that contain carbon–carbon bonds.

From the perspective of structural chemistry, the modes of bonding, coor-
dination, and the bond parameters of a particular element in its allotropic
modifications may be further extended to its compounds. Thus organic com-
pounds can be conveniently divided into three families that originate from their
prototypes: aliphatic compounds from diamond, aromatic compounds from
graphite, and fullerenic compounds from fullerenes.

14.2.1 Aliphatic compounds

Aliphatic compounds comprise hydrocarbons and their derivatives in which
the molecular skeletons consist of tetrahedral carbon atoms connected by C–C
single bonds. These tetrahedral carbon atoms can be arranged as chains, rings, or
finite frameworks, and often with an array of functional groups as substituents
on various sites. The alkanes CnH2n+2 and their derivatives are typical examples
of aliphatic compounds.

Some frameworks of alicyclic compounds are derived from fragments of
diamond, as shown in Fig. 14.2.1. In these molecules, all six-membered car-
bon rings have the chair conformation. Diamantane C14H20 is also named
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Fig. 14.2.1.
Some frameworks of alicyclic
compounds as fragments of diamond.

Adamantane, Td Diamantane (congressane), D3d Triamantane, C2v

Isotetramantane, Cs anti-Tetramantane, C2h skew-Tetramantane, C2

congressane as it was chosen as the logo of the XIXth Conference of IUPAC in
London in 1963 as a challenging target for the participants; the successful syn-
thesis was accomplished two years later. There are three structural isomers of
tetramantane C22H28. X-ray analysis of anti-tetramantane has revealed an inter-
esting bond-length progression: CH–CH2 = 152.4 pm, C–CH2 = 152.8 pm,
CH–CH = 153.7 pm, and C–CH = 154.2 pm, approaching the limit of 154.45
pm in diamond as the number of bonded H atoms decreases.

14.2.2 Aromatic compounds

Graphite typifies the basic structural unit present in aromatic compounds, in
which the planar carbon skeletons of these molecules and their derivatives can
be considered as fragments of graphite, each consisting of carbon atoms which
use their sp2 hybrids to form σ bonds to one another, and overlap between the
remaining parallel pz orbitals gives rise to delocalized π bonding. The aromatic
compounds may be divided into the following four classes.

(1) Benzene and benzene derivatives
Up to six hydrogen atoms in benzene can be mono- or poly-substituted
by other atoms or groups to give a wide variety of derivatives. Up to
six sterically bulky groups such as SiMe3 and ferrocenyl (C5H5FeC5H4,
Fc) groups can be substituted into a benzene ring. Hexaferrocenylbenzene,
C6Fc6, is of structural interest as a supercrowded arene, a metalated hex-
akis(cyclopentadienylidene)radialene, and the core for the construction of
“Ferris wheel” supermolecules. In the crystalline solvate C6Fc6·C6H6, the
C6Fc6 molecule adopts a propeller-like configuration with alternating up and
down Fc groups around the central benzene ring. Perferrocenylation causes
the benzene ring to take a chair conformation with alternating C–C–C–C
dihedral angles of ±14◦, and the elongated C–C bonds exhibit noticeable
bond alternation averaging 142.7/141.1 pm. The Car–CFc bonds average
146.9(5) pm.
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Pyrene

Perylene

Azulene

Triphenylene Coronene Acenaphthylene

Chrysene

Biphenylene

Pentacene

(a) (b) 

Fig. 14.2.2.
Carbon skeletons of some polycyclic aromatic compounds of the (a) benzenoid type and (b) non-benzenoid type.

(2) Polycyclic benzenoid aromatic compounds
These compounds consist of two or more benzene rings fused together, and
the number of delocalized π electrons conforms to the Hückel (4n + 2) rule
for aromaticity. Figure 14.2.2(a) shows the carbon skeletons of some typical
examples.

(3) Non-benzenoid aromatic compounds
Many aromatic compounds have considerable resonance stabilization but do
not possess a benzene nucleus, or in the case of a fused polycyclic system,
the molecular skeleton contains at least one ring that is not a benzene ring. The
cyclopentadienyl anion C5H−5 , the cycloheptatrienyl cation C7H+

7 , the aromatic
annulenes (except for [6]annulene, which is benzene), azulene, biphenylene and
acenaphthylene (see Fig. 14.2.2(b)) are common examples of non-benzenoid
aromatic hydrocarbons. The cyclic oxocarbon dianions CnO2−

n (n = 3, 4, 5, 6)
constitute a class of non-benzenoid aromatic compounds stabilized by two
delocalized π electrons. Further details are given in Section 20.4.4.

(4) Heterocyclic aromatic compounds
In many cyclic aromatic compounds an element other than carbon (commonly
N, O, or S) is also present in the ring. These compounds are called heterocycles.
Figure 14.2.3 shows some nitrogen heterocycles commonly used as ligands,
as well as planar, sunflower-like octathio[8]circulene, C16S8, which can be
regarded as a novel form of carbon sulfide.

14.2.3 Fullerenic compounds

The derivatives of fullerenes are called fullerenic compounds, which are now
mainly prepared from C60 and, to a lesser extent, from C70 and C84.

Since efficient methods for the synthesis and purification of gram quantities
of C60 and C70 became available in the early 1990s, fullerene chemistry has
developed at a phenomenal pace. There are many reactions which can generate
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Fig. 14.2.3.
Some commonly used heterocyclic
nitrogen ligands: (a) pyrazole,
(b) imidazole, (c) pyridine-2-thiol,
(d) pyrazine, (e) 4,4’-bipyridine,
(f) quinoline, (g) 4,4’-bipyrimidine, (h)
1,8-naphthyridine,
(i) 1,10-phenanthroline. Compounds
(a), (b), and (c) occur in metal complexes
in the anionic (deprontonated) form with
delocalization of the negative charge.
(j) Octathio[8]circulene has a highly
symmetric planar structure.
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Fig. 14.2.4.
The principal reactions of C60.
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fullerenic compounds, as shown in Fig. 14.2.4. Unlike the aromatics, fullerenes
have no hydrogen atoms or other groups attached, and so are unable to undergo
substitution reactions. However, the globular fullerene carbon skeleton gives
rise to an unprecedented diversity of derivatives. This unique feature leads to a
vast number of products that may arise from addition of just one reagent. Sub-
stitution reactions can take place on derivatives, once these have been formed
by addition. Some fullerenic compounds are briefly described below.
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(a)  (b)  (c) 

Fig. 14.2.5.
Fullerenes bonded to non-metallic
elements: (a) C60O, (b) C60Br6, and
(c) C60[OsO4(pyBu)2].

(1) Fullerenes bonded to non-metallic elements
This class of compounds consists of fullerene adducts with covalent bonds
formed between the fullerene carbon atoms and non-metallic elements. Since
all carbon atoms lie on the globular fullerene surface, the number of sites,
as well as their positions, where additions take place vary from case to case.
Examples of these compounds include C60O, C60(CH2), C60(CMe3), C60Br6,
C60Br8, C60Br24, C50Cl10, and C60[OsO4(pyBu)2]. In the first two examples,
the oxygen atom and the methylene carbon atom are each bonded to two carbon
atoms on a (6/6) edge in the fullerene skeleton. The structure of C60O is shown
in Fig. 14.2.5(a). In the next five examples, the C atom of CMe3, as well as Br
and Cl, is each bonded to only one carbon atom of fullerene. The structure of
C60Br6 is displayed in Fig. 14.2.5(b). In the final example, the six-coordinate
osmium(VI) moiety OsO4(pyBu)2 is linked to C60 through the formation of a
pair of O–C single bonds with two neighboring carbon atoms in the fullerene
skeleton, as shown in Fig. 14.2.5(c).

(2) Coordination compounds of fullerene
This class of coordination compounds features direct covalent bonds between
complexed metal groups and the carbon atoms of fullerene systems.
Monoadducts such as C60Pt(PPh3)2 each have only one group bonded to a
fullerene, as shown in Fig. 14.2.6(a). Multiple adducts are formed when sev-
eral groups are attached to the same fullerene nucleus. Typical examples are
C60[Pt(PPh3)2]6 and C70[Pt(PPh3)2]4, whose structures are displayed in Figs.
14.2.6(b) and 14.2.6(c), respectively.

(3) Fullerenes as π-ligands
In this class of metal complexes, there is delocalized π bonding between
fullerene and the metal atom. The structures of (η5-C5H5)Fe(η5-C60Me5) and
(η5-C5H5)Fe(η5-C70Me3), each containing a fused ferrocene moiety, are shown
in Fig. 14.2.7. The shared pentagonal carbon ring of the C60 (or C70) skeleton
acts as a 6π -electron donor ligand to the Fe(II) atom of the Fe(C5H5) fragment.
In (η5-C5H5)Fe(η5-C60Me5), the five methyl groups attached to five sp3 car-
bon atoms protrude outward at an angle of 42◦ relative to the symmetry axis
of the molecule. The C5H5 group and cyclopentadienide in Fe(C60Me5) are
arranged in a staggered manner; the C–C bond lengths are 141.1 pm (averaged

iranchembook.ir/edu

https://iranchembook.ir/edu


514 Structural Chemistry of Selected Elements

for C5H5) and 142.5 pm (averaged for C60Me5). The Fe–C distances are
203.3 pm for C5H5 and 208.9 pm for C60Me5, which are comparable to those
in known ferrocene derivatives. The structural features of (η5-C5H5)Fe(η5-
C70Me3) are similar to those of (η5-C5H5)Fe(η5-C60Me5). The C–C bond
lengths in the shared pentagon are 141–3 pm. The Fe–C bond distances are
205.4 pm (averaged for C5H5) and 208.3 pm (averaged for C70Me3).

Fig. 14.2.6.
Molecular structure of (a) C60Pt(PPh3)2,
(b) C60[Pt(PPh3)2]6, and
(c) C70[Pt(PPh3)2]4.

(a)

(b) (c)

2.253

102.4º

109.2º

2.303
107.1º

41.3º

2.145

2.115

(4) Metal fullerides
Fullerenes exhibit an electron-accepting nature and react with strong reducing
agents, such as the alkali metals, to yield metal fulleride salts. The compounds
Li12C60, Na11C60, M6C60 (M = K, Rb, Cs), K4C60 and M3C60 (M3 = K3,
Rb3, RbCs2) have been prepared.

Fig. 14.2.7.
Structure of
(a) (η5-C5H5)Fe(η5-C60Me5) and
(b) (η5-C5H5)Fe(η5-C70Me3).

(a) (b)
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The M3C60 compounds are particularly interesting as they become super-
conducting materials at low temperature, with transition temperatures (Tc) of
19 K for K3C60, 28 K for Rb3C60, and 33 K for RbCs2C60.

Fulleride K3C60 is a face-centered cubic crystal, space group Fm3m, with
a = 1424(1) pm and Z = 4. The C60

3− ions form a ccp structure with K+ ions
filling all the tetrahedral interstices (radius 112 pm) and octahedral interstices
(radius 206 pm), as shown in Fig. 14.2.8.

Fig. 14.2.8.
Crystal structure of K3C60 (large circles
represent C60 and small circles
represent K).

Both K4C60 and Rb4C60 are tetragonal, and the structure of M6C60 at
room temperature is body-centered cubic. These metal fullerides are all
insulators.

(5) Fullerenic supramolecular adducts

K

K
314 pm

Fig. 14.2.9.
A part of the structure of
[K(18C6)]3·C60·(C6H5CH3)3.

Fullerenes C60 and C70 form supramolecular adducts with a variety of
molecules, such as crown ethers, ferrocene, calixarene, and hydroquinone. In
the solid state, the intermolecular interactions may involve ionic interaction,
hydrogen bonding, and van der Waals forces. Figure 14.2.9 shows a part of
the structure of [K(18C6)]3·C60·(C6H5CH3)3, in which C3−

60 is surrounded by
a pair of [K+(18C6)] complexed cations.

(6) Fullerene oligomers and polymers
This class of compounds contain two or more fullerenes and they may be further
divided into the following three categories.

(a) Dimers and polymers containing two or more fullerenes are linked together
through C–C covalent bonds formed by the carbon atoms on the globular
surface. Figure 14.2.10(a) shows the structure of dimeric [C60(

tBu)]2. In
addition, chain-like polymeric fullerenes with the following structure have
been proposed, although none has yet been prepared:

—[ C60H2—C60H2—C60H2 ]—n

(b) Two or more fullerenes are linked together through the formation of C–C
covalent bonds with an organic functional group. Figure 14.2.10(b) shows
the structure of [C60]3(C14H14), in which three fullerenes form an adduct
through C-C linkage with the central C14H14 unit.

(a) (b)

Fig. 14.2.10.
Structures of (a) [C60(tBu)]2 and (b)
[C60]3(C14H14).
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(c) Fullerenes are linked as pendants at regular intervals to a skeleton of a
polymeric chain, such as:

CH–CR=CH–CH2 CH–CR=CH–CH2

C60H C60H

(7) Heterofullerenes
Heterofullerenes are fullerenes in which one or more carbon atoms in the cage
are replaced by other main-group atoms. Compounds containing boron, such
as C59B, C58B2, C69B, and C68B2, have been detected in the mass spectra
of the products obtained using boron/graphite rods in arc discharge synthesis.
Since nitrogen has one more electron than carbon, the azafullerenes are radicals
(C59N·, C69N·), which can either dimerise to give (C59N)2 and (C69N)2, or take
up hydrogen to give C59NH.

(8) Endohedral fullerenes (incar-fullerenes)
Fullerenes can encapsulate various atoms within the cages, and these com-
pounds have been referred to as endohedral fullerenes. For example, the
symbolic representations La@C60 and La2@C80 indicate that the fullerene
cage encapsulates one and two lanthanum atom(s), respectively. The IUPAC
description refers to these fullerenes species as incar-fullerenes, and the formu-
las are written as iLaC60 and iLa2C80, (i is derived from incarcerane). Some
metal endohedral fullerenes are listed in Table 14.2.1. The endohedral fullerenes
are expected to have interesting and potentially very useful bulk properties as
well as a fascinating chemistry. Some non-metallic elements, such as N, P,
and noble gases, can be incarcerated into fullerenes to form N@C60, P@C60,
N@C70, Sc3N@C80, Ar@C60, etc.

Table 14.2.1. Endohedral fullerenes

Fullerene Metallic atom Fullerene Metallic atom

C36 U C56 U2
C44 K, La, U C60 Y2, La2, U2
C48 Cs C66 Sc2
C50 U, La C74 Sc2
C60 Li, Na, K, Rb, Cs, Ca, Ba, Co, C76 La2

Y, La, Ce, Pr, Nd, Sm, Eu, Gd, C79N La2
Tb, Dy, Ho, Lu, U C80 La2, Ce2, Pr2

C70 Li, Ca, Y, Ba, La, Ce, Gd, Lu, U C82 Er2, Sc2, Y2, La2, Lu2,
C72 U Sc2C2
C74 Ca, Sc, La, Gd, Lu C84 Sc2, La2, Sc2C2
C76 La C68 Sc3N
C80 Ca, Sr, Ba C78 Sc3N
C81N La C80 Sc3N, ErSc2N, Sc2LaN,
C82 Ca, Sr, Ba, Sc, Y, La, Ce, Pr, ScLa2N, La3N

Nd, Sm, Eu, Gd, Tb, Dy, Ho, C82 Sc3
Er, Tm, Yb, Lu C84 Sc3

C84 Ca, Sr, Ba, Sc, La C82 Sc4
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(a) (b)

(c) (d)

Fig. 14.2.11.
Structures of some endofullerenes: (a)
N@C60, (b) Ca@C60, (c) Sc3N@C78
and (d) Sc2C2@C84.

Theoretical and experimental studies of the structures and electronic proper-
ties of endohedral fullerenes have yielded many interesting results.The enclosed
N and P atoms of N@C60 and P@C60 retain their atomic ground state configura-
tion and are localized at the center of the fullerenes, as shown in Fig. 14.2.11(a).
The atoms are almost freely suspended inside the respective molecular cages
and exhibit properties resembling those of ions in electromagnetic traps. In
Ca@C60, the Ca atom lies at an off-center position by 70 pm, as shown in
Fig. 14.2.11(b). The symmetry of Ca@C60 is predicted to be C5v, implying
that the Ca atom lies on a fivefold rotation axis of the C60 cage. The predicted
distances between the Ca atom and the first and second set of nearest C atoms
are 279 and 293 pm, respectively.

A single-crystal X-ray diffraction study of [Sc3N@C78]·[Co(OEP)]
·1.5(C6H6)·0.3(CHCl3) (OEP is the dianion of octaethylporphyrin) showed
that the fullerene is embraced by the eight ethyl groups of the porphyrin macro-
cycle. The structure of [Sc3N@C78] is shown in Fig. 14.2.11(c). The N–Sc
distances range from 198 to 212 pm, and the shortest C–Sc distances fall within
a narrow range of 202–11 pm. The flat Sc3N unit is oriented so that it lies near
the equatorial mirror plane of the C78 cage.

A synchrotron X-ray powder diffraction study of (Sc2C2)@C84 showed that
the lozenge-shaped Sc2C2 unit is encapsulated by the D2d-C84 fullerene, as
shown in Fig. 14.2.11(d). The Sc–Sc, Sc–C and C–C distances in the Sc2C2
unit are 429, 226 and 142 pm, respectively.

14.3 Bonding in carbon compounds

14.3.1 Types of bonds formed by the carbon atom

The capacity of the carbon atom to form various types of covalent bonds is
attributable to its unique characteristics as an element in the Periodic Table.
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Table 14.3.1. Hybridization schemes of carbon atom

sp sp2 sp3

Number of orbitals 2 3 4
Interorbital angle 180◦ 120◦ 109.47◦
Geometry Linear Trigonal Tetrahedral
% s character 50 33 25
% p character 50 67 75
Electronegativity of carbon 3.29 2.75 2.48
Remaining p orbitals 2 1 0

The electronegativity of the carbon atom is 2.5, which means that the carbon
atom cannot easily gain or lose electrons to form an anion or cation. As the
number of valence orbitals is exactly equal to the number of valence electrons,
the carbon atom cannot easily form a lone pair or electron-deficient bonds.
Carbon has a small atomic radius, so its orbitals can overlap effectively with
the orbitals of neighbor atoms in a molecule.

For simplicity, we use the conventional concept of hybridization to describe
the bond types, but bonding is frequently more subtle and more extended than
implied by this localized description. The parameters of typical hybridization
schemes of the carbon atom are listed in Table 14.3.1.

The hybrid orbitals of carbon always overlap with orbitals of other atoms in a
molecule to form σ bonds. The remaining p orbitals can then be used to form π
bonds, which can be classified into two categories: localized and delocalized.
The localized π bonds of carbon form double and triple bonds as illustrated
below:

The carbon atom can also form σ and π bonds to metal atoms in various
fashions. For example:

(a) C M single bond

(b) C

M     M
,

C

M      M
M

,    polycenter metal-carbon bonds

(c) C M double bond

(d) C M triple bond
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A particularly interesting example is the tungsten complex

P

P
Me2

Me2

W

C
R

CHR

CH2R
, R = CMe3

which contains C≡W, C=W, and C–W bonds with lengths 179, 194, and 226
pm, respectively.

The delocalized π bonds involve three or more carbon atoms or heteroatoms.
For instance:

An enormous variety of π -bonded systems, whether they be neutral or ionic,
cyclic or linear, odd or even in the number of carbon atoms, serve as ligands
that coordinate to transition metals. Figure 14.3.1 shows some representatives of
the innumerable organometallic coordination compounds stabilized by metal-π
bonding.

Larger aromatic rings and polycyclic aromatic hydrocarbons can also func-
tion as π ligands in forming sandwich-type metal complexes. For example,
the planar cyclooctatetraenyl dianion C8H8

2− functions as a η8-ligand to
form the sandwich compound uranocene, U(C8H8)2, which takes the eclipsed
configuration.

Recently the “sandwich” motif has been extended to the case of two cyclic
aromatic ligands flanking a small planar aggregate of metal atoms. In [Pd3(η7-
C7H7)2Cl3](PPh4), a triangular unit of palladium(0) atoms each coordinated by

Fig. 14.3.1.
Some examples of organometallic
compounds formed with π bonding
ligands.
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Pd Pd

Pd
Cl

Cl
Cl

+

+

Pd Pd Pd
PdPd

2+(a) (b) (c)

Fig. 14.3.2.
(a) Molecular geometry and (b) structural formula of the [Pd3(η7-C7H7)2Cl3]− ion; the Pd–C and Pd· · ·C bond lengths are in the ranges
215–47 and 253–61 pm, respectively. (c) Structure of the [Pd5(C18H12)2(C7H8)]2+ ion; coordination of an electronically delocalized C3
fragment to a Pd center is represented by a broken line.

a terminal chloride ligand is sandwiched between two planar cycloheptatrienyl
C7H7

+ rings, as shown in Figs. 14.3.2(a, b). The measured Pd–Pd (274.5 to
278.9 pm) and Pd–Cl (244.2 to 247.1 pm) bonds are within the normal ranges.

In [Pd5(naphthacene)2(toluene)][B(Arf )4]2·3toluene, where Arf = 3,5-
(CF3)2C6H3, the sheet-like pentapalladium(0) core is composed of a triangle
sharing an edge with a trapezoid; the innermost Pd–Pd distance (291.6 pm) is
relatively long. This metal monolayer is sandwiched between two naphthacene
radical cations, each of which coordinates to the Pd5 sheet through 12 carbons
via the µ5–η2:η2:η2:η3:η3 mode, as illustrated in Fig. 14.3.2(c). One of the
four independent toluene molecules in the unit cell is located near the apex Pd
atom at a closest contact of 252 pm, but its coordination mode (either η2 or η1)

cannot be definitively assigned owing to disorder.

14.3.2 Coordination numbers of carbon

Carbon is known with all coordination numbers from 0 to 8. Some typical
examples are given in Table 14.3.2, and their structures are shown in Fig. 14.3.3.
In these examples, the compounds with the high coordination numbers, such
as ≥ 5, do not belong to the class of hypervalent compounds, but rather to
electron-deficient systems. Hypervalent molecules usually have a central atom
which requires the presence of more than an octet of electrons to form more
than four 2c-2e bonds, such as the S atom in SF6.

14.3.3 Bond lengths of C–C and C–X bonds

The bond lengths of carbon–carbon bonds are listed in Table 14.3.3. The bond
lengths of some important bond types of carbon–heteroatom bonds are given
in Table 14.3.4. The values given here are average values from experimental
determinations and do not necessarily exactly apply to a particular compound.

14.3.4 Factors influencing bond lengths

The measured bond lengths in a molecule provide valuable information on
its structure and properties. Some factors that influence the bond lengths are
discussed below.
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Table 14.3.2. Coordination numbers of carbon

Coordination number Examples Structure in Fig. 14.3.2

0 C atoms, gas phase
1 CO, stable gas (a)
2 CO2, stable gas (b) Linear
2 HCN, stable gas (c) Linear
2 :CX2 (carbene), X = H, F, OH (d) Bent
3 C=OXY (oxohalides, ketones) (e) Planar
3 CH3

−, CPh3
− (f) Pyramidal

3 Ta(=CHCMe3)2(Me3C6H2)(PMe3)2 (g) T-shaped∗
4 CX4 (X = H, F, Cl) (h) Tetrahedral
4 Fe4C(CO)13 (i) C capping Fe4
5 Al2Me6 (j) Bridged dimer
5 (Ph3PAu)5C+ · BF4

− (k) Trigonal bipyramidal
6 [Ph3PAu]6C2+ (l) Octahedral
6 C2B10H12 (m) Pentagonal pyramidal
7 [LiMe]4 crystal (n) †

8 [(Co8C(CO)18]2− (o) Cubic

∗ The unique H is equatorial and angle Ta=C–CMe3 is 169◦.
† The distance of intramolecular C–Li is 231 pm, (a C atom caps 3 Li atoms in each face of the Li4
tetrahedron), C–H is 96 pm, and intermolecular C–Li is 236 pm.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

Fig. 14.3.3.
Coordination numbers of carbon in its
compounds.

(1) Bonds between atoms of different electronegativities
It is generally found that the greater the difference in electronegativity between
the bonding atoms, the greater the deviation from the predicted bond distance
based on covalent radii or the mean values given in Tables 14.3.3 and 14.3.4.
Empirical methods for the adjustment of covalent bond lengths by a factor
dependent on the electronegativity differences between the atoms have been
proposed.
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Table 14.3.3. Bond lengths (in pm) of carbon–carbon bonds

Bond Bond length Example

C–C
sp3–sp3 153 Ethane (H3C–CH3)

sp3–sp2 151 Propene (H3C–CH=CH2)

sp3–sp 147 Propyne (H3C–C≡CH)
sp2–sp2 148 Butadiene (H2C=CH–CH=CH2)

sp2–sp 143 Vinylacetylene (H2C=CH–C≡CH)
sp–sp 138 Butadiyne (HC≡C–C≡CH)

C=C
sp2–sp2 132 Ethylene (H2C=CH2)

sp2–sp 131 Allene (H2C=C=CH2)

sp–sp 128 Butatriene (H2C=C=C=CH2)

C≡C
sp–sp 118 Acetylene (HC≡CH)

Table 14.3.4. Bond lengths (in pm) of C–X bonds

C–N C–S
C–H sp3–N 147 sp3–S 182

sp3–H 109 sp2–N 138 sp2–S 175
sp2–H 108 C=N sp–S 168
sp–H 108 sp2–N 128 C=S

C–O C≡N sp2–S 167
sp3–O 143 sp–N 114 C–Si
sp2–O 134 C–P sp3–Si 189

C=O sp3–P 185 C=Si
sp3–O 121 C=P sp2–Si 170
sp2–O 116 sp2–P 166

C≡P
sp–P 154

C–X X = F Cl Br I
sp3–X 140 179 197 216
sp2–X 134 173 188 210
sp–X 127 163 179 199

(2) Steric strain
Steric strain exists in a molecule when bonds are forced to make abnormal
angles. There are in general two kinds of structural features that result in
sterically-caused abnormal bond angles. One of these is common to small ring
compounds, where the bond angles must be less than those resulting from nor-
mal orbital overlap. Such strain is called small-angle strain. The other arises
when nonbonded atoms are forced into close proximity by the geometry of the
molecule. This effect is known as steric overcrowding.

Steric strain generally leads to elongated bond lengths as compared to the
expected values given in Tables 14.3.3 and 14.3.4.
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(3) Conjugation
A hybrid atomic orbital of higher s content has a smaller size and lies closer
to the nucleus. Accordingly, carbon–carbon bonds are shortened by increasing
s character of the overlapping hybrid orbitals. The C(sp3)–C(sp3) single bond
is generally longer than other single bonds involving sp2 and sp carbon atoms.
This general rule arises mainly from conjugation between the bonded atoms.
When mean values are used to estimate bond lengths, the conjugation factor
must be taken into account. For example, the C–C bond length in benzene is
139.8 pm, which is virtually equal to the mean value of the C(sp2)–C(sp2)

and C=C bond lengths: 1
2 (148 + 132) = 140 pm. Hence the conjugation of

alternating single and double bonds in benzene can be expressed as resonance
between two limiting valence bond (canonical) structures:

(4) Hyperconjugation
The overlap of a C–H σ orbital with the π (or p) orbital on a directly bonded
carbon atom is termed hyperconjugation. This interaction has a shortening effect
on the C–C bond length, a good example being the structure of the tert-butyl
cation [C(CH3)3]+.

(a) (b)

Fig. 14.3.4.
Hyperconjugation in [C(CH3)3]+:
(a) structure of [C(CH3)3]+ and
(b) hyperconjugation between central
carbon atom C(1) and one of the C–H σ
bonds.

The structure of [C(CH3)3]+ in the crystalline salt [C(CH3)3]Sb2F11 is shown
in Fig. 14.3.4(a). The carbon skeleton is planar with an average C–C bond length
of 144.2 pm and approximate D3h molecular symmetry. The experimental C–C
bond length is shorter by 6.8 pm than the normal C(sp3)-C(sp2) bond length of
151 pm. This is due to hyperconjugative interaction between three filled C–H
σ bond orbitals and the empty p orbital on the central carbon atom that leads
to partial C–C π bonding, as shown in Fig. 14.3.4 (b).

(5) Surroundings of bonding atoms
The geometry and connected groups of bonding atoms usually influence the
bond lengths. For example, an analysis of C–OR bond distances in more than
2000 ethers and carboxylic esters (all with sp3 carbon) showed that this distance
increases with increasing electron-withdrawing power of the R group, and also
when the C atom changes from primary through secondary to tertiary. For such
compounds mean C–O bond lengths range from 141.8 to 147.5 pm.
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As an illustrative example taken from the current literature, consider the
variation of C–C and C–O bond lengths in the deltate species C3O2−

3 held within
a dinuclear organometallic uranium(IV) complex. In a remarkable synthesis,
this cyclic aromatic oxocarbon dianion is generated by the metal-mediated
reductive cyclotrimerization of carbon monoxide, as indicated in the reaction
scheme

R

R

U
O

U

O

O

O

U

R

R

UCl3
(i) KCp*, THF

(ii) K2[COT(1,4-SiiPr3)], THF

CO, pentane

–78 25 C

R

R

R = SiiPr3

A strongly reducing organouranium(III) complex stabilized by η5-
cyclopentadienide andη8-cyclooctatetraenediide ligands, together with tetrahy-
drofuran, is used to crack the robust C≡O triple bond at room temperature
and ambient pressure. Low-temperature X-ray analysis revealed the presence
of a reductively homologated CO trimer, C3O3

2−, as a η1:η2 bridging lig-
and between two organouranium(IV) centers. The measured dimensions of the
central molecular skeleton are shown below:

α
β
γ

α β
γ

= 58.5º
= 58.7º
= 62.8º

218.3(3) pm 130.3(5)
137.7(6)

138.1(6)

143.6(7)

127.7(5)

126.2(5)

248.4(3)
265.4(4)

251.6(3)
267.0(4)

The noticeable distortion of the C3 ring and measured C–C, C–O and U–
O bond lengths reflect the conjugation effect, the chemical environment of
individual atoms, steric congestion around the respective uranium centers, and
variation caused by experimental errors.

14.3.5 Abnormal carbon–carbon single bonds

(1) Unusually long C–C bonds
Figure 14.3.5 shows some organic molecules which have abnormally long C–C
bonds. Rationalization of these unusual structures is discussed below.

(a) Oxalic acid, HOOC–COOH

In the oxalic acid molecule, there is a O==C−−C==O system which satisfies the
condition for conjugation, and the existence of delocalized π bonding has been
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(a) (b) (c)

(d) (e)

Fig. 14.3.5.
Some molecules with abnormally long
C–C bonds (lengths in pm): (a) oxalic
acid, (b) cubane, (c) skeleton of Dewar
benzene derivative,
(d) 1-cyano-tetracyclodecane, and
(e) paracyclophane.

substantiated by deformation density studies. The central C(sp2)–C(sp2) bond
has a length of 156.8 pm. A MNDO computation showed that the four fully
occupied π MOs are alternately bonding and antibonding orbitals between the
two C atoms. Thus the π MOs contribute little to bonding. The σ bond order
is less than unity mainly because each carbon atom is bonded to two highly
electronegative oxygen atoms, leading to a reduction of charge density on the
carbon atom. The bond order in the C–C bond is made up of a σ component
of 0.815 and a π component of only 0.015. The strongly reducing properties
of oxalic acid are associated with its relatively weak C–C bond which easily
cleaves during a reaction, and the resulting fragments are then oxidized to
carbon dioxide.

(b) Cubane, C8H8

Several cubane structures have been determined. The mean C–C bond length
is 155.6 pm from 42 independent measurements of the edges. This long bond
length can be understood by considering the lesser overlap of endocyclic orbitals
that are richer in p character than the typical sp3 hybrid.

(c) Dewar benzene derivatives
In derivatives of Dewar benzene, the bond length of the bridging C–C bond is
found to lie in the range 156–159 pm. The elongation of bond length is mainly
due to the strain caused by the fusion of two four-membered rings.

(d) 1-Cyano-tetracyclodecane, C10H13CN
In this molecule, the pair of bridgehead atoms each has all four bonds directed
to the same side as its partner atom, and the central bond length is 164.3 pm.
Thus the bridgehead atoms have an “inverted” bond configuration and serious
C–C bond strain.

(e) [2.2]Paracyclophane, C16H16

In the cyclophanes, the bridging bond lengths are generally the longest and
in some instances have been found to be near or greater than 160 pm. The
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Fig. 14.3.6.
Molecules containing very long C–C
single bonds. The bond lengths are
shown in pm.

X

X

Ph
Ph

Ph
Ph

173.3(6) (X = I)
171.0(2) (X = Cl)

CAr3 CAr3

Ar =

t-Bu

t-Bu

167(3)

164.8(3)

(a)

(d)

(e)

(b) (c)

Ph

Ph

Ph

Ph

t-Bu

t-Bu

Ph

Ph

Ph

Ph

t-Bu

t-Bu

Ph

Ph

Ph

Ph

t-Bu

t-Bu

154.0(5) 147.1(5)

140.1(5)

140.1(5)

141.7(5)

141.3(5)

Ia Ib

132.9(3) 140.7(2)

142.0(4) 138.1(2)

149.4(3)

149.0(3) 134.8(2)

IIa IIb

elongation of the C–C single bond in the bridging –CH2–CH2– group of
[2.2]paracyclophane is attributable to the inherent steric strain.

Further examples of organic molecules containing very long carbon–carbon
single bonds have been reported in recent years. The extended C(sp3)–C(sp3)

bond in the hexaarylethane shown in Fig. 14.3.6(a) is caused by severe steric
repulsion between the bulky substituted phenyl groups. In the bi(anthracene-
9,10-dimethylene) photodimer shown in Fig. 14.3.6(b), the bridge bond of the
cyclobutane ring has a length longer than the rest. Extremely long C(sp3)–
C(sp3) bonds have been shown to exist in the naphthocyclobutenes shown in
Fig. 14.3.6(c).

The bond length variation in the substituted benzodicyclobutadiene shown in
Fig. 14.3.6(d), as determined from X-ray analysis, can be fairly well accounted
for by resonance between the canonical formulas Ia and Ib. The central six-
membered ring contains a pair of extremely long C(sp2)–C(sp2) bonds at
154.0(5) pm, which significantly exceed the reference bond distance of 149.0(3)
pm observed for tris(benzocyclobutadieno)benzene [Fig. 14.3.6(e)]. The bond
length pattern in the latter compound indicates that its structure is better
described by the radiallene formula IIa in preference to formula IIb, which
contains anti-aromatic cyclobutadiene moieties.

(2) Unusually short bonds between tetracoordinate carbon atoms
Figure 14.3.7 shows some organic molecules containing abnormally short single
bonds between two four-coordinate carbon atoms.
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SO2SiMe3

SiMe3

SiMe3 SiMe3

SiMe3 SiMe3

143.6(3)

145.8(8)

O H

Me

O2S

SO2

R R

140.8(2) (R = Me)
144.4(3) (R = Ph)

(CH2)n

COOCH3 144.0  (n = 2)
144.5  (n = 3)

(CH2)n

H3COOC

(a) (b) (c)

(d)

(e)

d = 147.5(6); 149.5(6)

Fig. 14.3.7.
Molecules containing very short C–C
single bonds. The bond lengths are
shown in pm. Values are given for two
independent molecules of compound (e).

The bond between two bridgehead carbon atoms in bicyclo[1.1.0]butane
exhibits the properties of a carbon–carbon multiple bond, although it is for-
mally a single bond. The dihedral angle δ between the three-membered rings
in 1,5-dimethyltricyclo[2.1.0.0]pentan-3-one is made small by the short span
of the carbonyl linkage, as shown in Fig. 14.3.7(a). The bridgehead bond has
a pronounced π character with a length of 140.8(2) pm. In the 1,5-diphenyl
analog, the two aromatic rings are oriented almost perpendicular (at 93.6◦ and
93.6◦) to the plane bisecting the angle δ. There is optimal conjugation between
the phenyl groups via the π -population of the bridge bond, and the conjuga-
tion effect leads to its lengthening of the latter to 144.4(3) pm. The central
exocyclic C(sp3)–C(sp3) bond connecting two bicyclobutane moieties is quite
short [Fig. 14.3.7(b)], as are the related linkages in bicubyl [Fig. 14.3.7(c)] and
hexakis(trimethylsilyl)bitetrahedryl [Fig. 14.3.7(d)]. The calculated s charac-
ter of the linking C–C bond in the bitetrahedryl molecule is sp1.53, which is
consistent with its significant shortening.

In the crystal structure of the in-isomer of the methylcyclophane shown in
Fig. 14.3.7(e), there are two independent molecules with measured C–Me bond
distances of 147.5(6) and 149.5(6) pm. The inward-pointing methyl group is
forced into close contact with the basal aromatic ring, and the steric congestion
accounts for compression of the C–Me bond.

14.3.6 Complexes containing a naked carbon atom

In the realm of all-carbon ligands in the formation of transition-metal com-
plexes, the naked carbon atom holds a special position. Based on the geometry
of metal–carbon interaction, these compounds can be divided into four classes:
terminal carbide (I), 1,3-dimetallaallene (II), C-metalated carbyne (III), and
carbido cluster (IV):

:C M CM M C MM C@Mn

(I) (II) (III) (IV)
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Fig. 14.3.8.
Complexes containing a metal–terminal
carbon triple bond.

Ru C

L

L

Cl

Cl
Mo

C

Ar(R)N N(R)Ar

N(R)Ar

_

_. .

:

There are two well-characterized examples of a naked carbon atom bound
by a triple bond to a metal center (Fig 14.3.8). The molybdenum carbide
anion

[

CMo{N(R)Ar}3
]− (R = C(CD3)2(CH3), Ar = C6H3Me2-3,5), an

isoelectronic analog of NMo{N(R)Ar}3, can be prepared in a multistep pro-
cedure via deprotonation of the d0 methylidyne complex HCMo{N(R)Ar}3.
The Mo≡C distance of 171.3(9) pm is at the low end of the known range for
molybdenum–carbon multiple bonds. In the diamagnetic, air-stable terminal
ruthenium carbide complex Ru(≡C:)Cl2(LL′)(L = L′ = PCy3, or L = PCy3
and L′ = 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene), the measured Ru–C
distance of 165.0(2) pm is consistent with the existence of a very short Ru≡C
triple bond.

Many complexes containing a M–C–M′ bridge have been reported. The
earliest know example of a 1,3-dimetallallene complex, {Fe(tpp)}2C (tpp =
tetraphenylporphyrin), was synthesized by the reaction of Fe(tpp) with CI4,
CCl3SiMe3, CH2Cl2 and BuLi. The single carbon atom bridges the two
Fe(tpp) moieties with Fe–C 167.5(1) pm in the linear Fe–C–Fe unit. Thermal
decomposition of the olefin metathesis catalyst (IMesH2)(PCy3)(Cl)2Ru=CH2
(IMesH2 = 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene) results in the forma-
tion of a C-bridged dinuclear ruthenium complex, as shown in the following
scheme. The Ru≡C–Ru bond angle is 160.3(2)◦. The measured Ru≡C bond
distance of 169.8(4) pm is slightly longer than those in reported µ-carbide
ruthenium complexes such as (PCy3)2(Cl)2Ru≡C–Pd(Cl)2(SMe2) (166.2(2)
pm), and the Ru–C distance of 187.5(4) pm is much shorter than the usual R–C
single bonds in ruthenium complexes such as (Me3CO)3W≡C–Ru(CO)2(Cp)
(209(2) pm).

N N

Ru CH2

Cy3P Cl

Cl

0.023 M

C6H6

55 oC

N N

Ru Cl
Cl

Cl

CRu

HN

N

Mes

Mes
  +   CH3PCy3 +  Cl–

The carbide-centered polynuclear transition-metal carbonyl clusters exhibit
a rich variety of structures. A common feature to this class of carbide com-
plexes is that the naked carbon is wholly or partially enclosed in a metal cage
composed of homo/hetero metal atoms, and there is also a subclass that can be
considered as tetra-metal-substituted methanes. The earliest known compound
of this kind is Fe5C(CO)15, in which the carbon atom is located at the center
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Fig. 14.3.9.
Molecular structures of some
transition-metal clusters containing a
naked carbon atom.

of the base of a square pyramid with Fe(CO)3 groups occupying its five ver-
tices. Carbido carbonyl clusters of Ru and Os are well documented. Octahedral
Ru6C(CO)17 is composed of four Ru(CO)3 and two cis-Ru(CO)2 fragments,
the latter being bridged by a carbonyl group [Fig. 14.3.9(a)]. Os10C(CO)24 is
built of an octahedral arrangement of Os(CO)2 groups with four of its eight
faces each capped by an Os(CO)3 group, as shown in Fig. 14.3.9(b). The
exposed carbon atom in Fe4C(CO)13 shows the greatest chemical activity, and
the Fe4C system serves as a plausible model for a surface carbon atom in het-
erogeneous catalytic processes [Fig. 14.3.9(c)].Addition of Co3(µ3-CCl)(CO)9
to a solution of (PPh4)2[Fe3(µ-CCO)(CO)9] (CCO is the ketenylidene group
C=C=O) in CH2Cl2, in the presence of thallium salt, generates the species
[{Co3(CO)9}C{Fe3(CO)9(µ-CCO)}]− containing a single carbon atom linking
two different trimetallic clusters; subsequent addition of ethanol yielded the
complex [{Co3(CO)9}C{Fe3(CO)9(µ-C–CO2Et)}]2−. The structures of these
two hexanuclear hetereometallic anions are shown in Fig. 14.3.9(d).

The reaction of AlMe3 with (t-Bu3PN)2TiMe2 leads to the formation of
two Ti complexes, of which [(µ2-t-Bu3PN)Ti(µ-Me)(µ4-C)(AlMe2)2]2 is the
major product. Single-crystal X-ray analysis revealed that it has a saddle-like
structure, with two phosphinimide ligands lying on one side and four AlMe2
groups on the other [Fig. 14.3.9(e)]. The Ti and carbide C atoms in the central
Ti2C2 ring both exhibit distorted tetrahedral coordination geometry.

14.3.7 Complexes containing naked dicarbon ligands

There is an interesting series of heterobinuclear complexes in which the Ru and
Zr centers are connected by three different types of C2 bridges: C–C, C=C,
and C≡C.

iranchembook.ir/edu

https://iranchembook.ir/edu


530 Structural Chemistry of Selected Elements

Cp(Me3P)2RuC CH
[Cp2Zr(Cl)(NMe2)]

Cp(Me3P)2Ru C C ZrCp2Cl
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H

ZrCp2Cl

Cp(Me3P)2Ru
C

H

C

ZrCp2Cl

H2

H

[Cp2Zr(Cl)(H)]

[Cp2Zr(Cl)(H)]

In polynuclear metal complexes bearing a naked C2 species, multiple metal–
carbon interactions generally occur, and the measured carbon–carbon bond
distances indicate that the C2 ligand may be considered to originate from fully
deprotonated ethane, ethylene, or acetylene, which is stabilized in a “permetal-
lated” coordination environment. Singly and doubly bonded dicarbon moieties
are found in some polynuclear transition-metal carbonyl complexes (carbon–
carbon bond length in pm): Rh12(C2)(CO)25, 148(2); [Co6Ni2(C2)2(CO)16]2−,
149(1); Fe2Ru6(µ6-C2)2(µ-CO)3(CO)14Cp2, 133.4(8) and 135.4(7); Ru6(µ6-
C2)(µ-SMe2)2(µ-PPh2)2(CO)14, 138.1(8). The following discussion is con-
cerned only with anionic species derived from acetylene.

Acetylene is a Brønsted acid (pKa∼25). Its chemistry is associated with its
triple-bond character and the labile hydrogen atoms. It can easily lose one proton
to form the acetylide monoanion HC≡C−(IUPAC name acetylenide) or release
two to give the acetylide dianion −C≡C− (C2

2−, IUPAC name acetylenedi-
ide). The acetylenide H–C≡C− and substituted derivatives R–C≡C− form
organometallic compounds with the alkali metals. In these compounds, the
interactions of the π orbitals of the C≡C fragment with metal orbitals may lead
to many structural types, e.g.,

R–C≡C–Li

Li–C C–R≡

The acetylenediide C2−
2 can combine with alkali and alkaline-earth metals to

form ionic salts, which are readily decomposed by water. Four modifications
of CaC2 (commonly known as calcium carbide) are known: room-temperature
tetragonal CaC2 I, high-temperature cubic CaC2 IV (in which the C2−

2 dianion
exhibits orientational disorder), low-temperature CaC2 II, and a fourth modi-
fication CaC2 III (Fig. 14.3.10). MgC2, SrC2, and BaC2 adopt the tetragonal
CaC2 I structure, which consists of a packing of Ca2+ and discrete C2−

2 ions
in a distorted NaCl lattice, with the C2−

2 dumbbell (bond length 119.1 pm from
neutron powder diffraction) aligned parallel to the c axis.

Ternary metal acetylenediides of composition AMIC2 (A = Li to Cs and
MI = Ag(I), Au(I); or A = Na to Cs and MI = Cu(I)) have been prepared;
NaAgC2, KAgC2, and RbAgC2 are isomorphous [Fig. 14.3.11(a)], but LiAgC2
[Fig. 14.3.11(b)] and CsAgC2 [Fig. 14.3.11(c)] belong to different structural
types. The ternary acetylenediides A2MC2 (A = Na to Cs, M = Pd, Pt) crystal-
lize in the same structure type, which is characterized by [M(C2)2/2

2−]∞ chains
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a

c
b a

b

c
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b

c c

ba

(a) (b) (c) (d)

Fig. 14.3.10.
Crystal structure of (a) tetragonal CaC2 I
(I4/mmm, Z = 2); (b) cubic CaC2 IV
(Fm3̄m, Z = 4), the C2

2−dumbbell
exhibits orientational disorder; (c)
low-temperature CaC2 II (C2/c, Z = 4);
(d) meta-stable CaC2 III (C2/m, Z = 4).

separated by alkali metal ions [Fig. 14.3.11(d)]. The ternary alkaline-earth
acetylenediide Ba3Ge4C2 can be synthesized from the elements or by the reac-
tion of BaC2 with BaGe2 at 1530 K; it consists of slightly compressed tetrahedral
[Ge4]4− anions inserted into a twisted octahedral Ba6/2 three-dimensional
framework. The Ba6 octahedra are centered by C2

2− dumbbells (C–C bond
length 120(6) pm), which are statistically oriented in two directions.

a

c
b

a

cb

a

c
b

a

c
b

(a) (b) (c) (d)

Fig. 14.3.11.
Crystal structure of (a) KAgC2
(P4/mmm, Z = 1); (b) LiAgC2 (P6̄m2,
Z = 1); (c) CsAgCz2 (P42/mmc, Z = 2);
(d) Na2PdC2 (P3̄m1, Z = 1).

The group 11 (Cu2C2, Ag2C2, and Au2C2) and group 12 (ZnC2, CdC2
and Hg2C2·H2O, and Hg2C2) acetylenediides exhibit properties characteristic
of covalent polymeric solids, but their tendency to detonate upon mechani-
cal shock and insolubility in common solvents present serious difficulties in
structural characterization. The earliest known and most studied non-ionic
acetylenediide is Ag2C2 (commonly known as silver acetylide or silver car-
bide), which forms a series of double salts of the general formulaAg2C2 ·mAgX,
where X− = Cl−, I−, NO−3 , H2AsO−4 , or 1

2 EO2−
4 (E = S, Se, Cr, or W), and

m is the molar ratio. From 1998 onward, systematic studies have yielded a
wide range of double, triple, and quadruple salts of silver(I) containing sil-
ver acetylenediide as a component, e.g., Ag2C2 · mAgNO3 (m = 1, 5, 5.5,
and 6), Ag2C2·8AgF, Ag2C2·2AgClO4·2H2O, Ag2C2·AgF·4AgCF3SO3·RCN
(R = CH3, C2H5) and 2Ag2C2·3AgCN·15AgCF3CO2·2AgBF4·9H2O.Astruc-
tural feature common to these compounds is that the C2

2− species is fully
encapsulated inside a polyhedron with Ag(I) at each vertex, which may be
represented as C2@Agn. Note that each C2@Agn cage carries a charge of
(n−2)+, and such cages are linked by anionic (and co-existing neutral) ligands
to form a two- or three-dimensional coordination network. Some polyhedral
Agn cages with encapsulated C2

2− species found in various silver(I) dou-
ble salts are shown in Fig. 14.3.12. In Ag2C2·6AgNO3, the dumbbell-like
C2

2− moiety is located inside a rhombohedral silver cage whose edges lie
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Fig. 14.3.12.
Polyhedral Agn (n = 6-9) cages with
encapsulated C2

2− species found in
various silver(I) double salts:
(a) Ag2C2·2AgClO4·2H2O;
(b) Ag2C2·AgNO3;
(c) Ag2C2·5.5AgNO3·0.5H2O;
(d) Ag2C2·5AgNO3;
(e) Ag2C2·6AgNO3 (the C2

2−group is
shown in one of its three possible
orientations); (f) Ag2C2·8AgF. Other
ligands bonded to the silver vertices are
not shown.
The dotted lines represent polyhedral
edges that exceed 340 pm (twice the van
der Waals radius of the Ag atom).

C2@Ag6

(a) (b) (c)

C2@Ag6 C2@Ag7

C2@Ag7 C2@Ag8 C2@Ag9

(d) (e) (f)

in the range of 295–305 pm, but it exhibits orientational disorder about a
crystallographic threefold axis [Fig. 14.3.12(e)]. The utilization of C2@Agn
polyhedra as building blocks for the supramolecular assembly of new coor-
dination frameworks has resulted in a series of discrete, 1-D, 2-D, and 3-D
complexes bearing interesting structural motifs; further details are presented in
Section 20.4.5.

Fig. 14.3.13.
Structure of the tetranuclear molecular
cation in (a) [Cu4(µ-η1 : η2-C≡C)(µ-
dppm)4](BF4)2 and
(b) [Cu4(µ-Ph2Ppypz)4(µ-
η1: η2-C≡C)](ClO4)2·3CH2Cl2.
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To date, there are only two well-characterized copper(I) acetylenediide com-
plexes. In [Cu4(µ-η1:η2-C≡C)(µ-dppm)4](BF4)2 (dppm = Ph2PCH2PPh2),
the cation contains a saddle-like Cu4(µ-dppm)4 system, with the C2 unit sur-
rounded by a distorted rectangular Cu4 array and interacting with the Cu atoms
in η1 and η2 modes [Fig. 14.3.13(a)]. In comparison, the tetranuclear, C2-
symmetric cation of [Cu4(µ-Ph2Ppypz)4(µ-η1:η2-C≡C)](ClO4)2·3CH2Cl2
[Ph2Ppypz = 2-(diphenylphosphino-6-pyrazolyl)pyridine] consists of a
butterfly-shaped Cu4C2 core in which the acetylenediide anion bridges a pair of
Cu2 subunits in both η1 and η2 bonding modes; the C≡C bond length is 126(1)
pm [Fig. 14.3.13(b)].
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14.4 Structural chemistry of silicon

After oxygen (approx 45.5 wt%), silicon is the next most abundant element in
the earth’s crust (approx 27 wt%). Elemental Si does not occur naturally, but it
combines with oxygen to form a large number of silicate minerals.

14.4.1 Comparison of silicon and carbon

Silicon and carbon command dominant positions in inorganic chemistry (sili-
cates) and organic chemistry (hydrocarbons and their derivatives), respectively.
Although they have similar valence electronic configurations, [He]2s22p2 for
C and [Ne]3s23p2 for Si, their properties are not similar. The reasons for the
difference between the chemistry of the two elements are elaborated below.

(1) Electronegativity
The electronegativity of C is 2.54, as compared with 1.92 for Si. Carbon is
strictly nonmetallic whereas Si is essentially a non-metallic element with some
metalloid properties.

(2) Configuration of valence shell and multiplicity of bonding
Unlike carbon, the valence shell of the silicon atom has available d orbitals. In
many silicon compounds, the d orbitals of Si contribute to the hybrid orbitals
and Si forms more than four 2c-2e covalent bonds. For example, SiF5

− uses
sp3d hybrid orbitals to form five Si–F bonds, and SiF6

2− uses sp3d2 hydrid
orbitals to form six Si–F bonds.

Furthermore, silicon can use its d orbitals to form dπ–pπ multiple bonds,
whereas carbon only uses its p orbitals to form pπ–pπ multiple bonds. Trisi-
lylamines such as N(SiH3)3 is a planar molecule, as shown in Fig. 14.4.1(a),
which differs from the pyramidal N(CH3)3 molecule as shown in Fig. 14.4.1(b).
In the planar configuration of N(SiH3)3, the central N atom uses trigonal planar
spxpy hybrid orbitals to form N–Si bonds, with the nonbonding electron pair of
N residing in the 2pz orbital. Silicon has empty, relatively low-lying 3d orbitals
able to interact appreciably with the 2pz orbital of the N atom. This additional
delocalized pπ–dπ interaction shown in Fig 14.4.1(c) enhances the strength of
the bonding that causes the NSi3 skeleton to adopt a planar configuration.

(a) (b) (c)

Fig. 14.4.1.
(a) Structure of planar N(SiH3)3, (b) pyramidal N(CH3)3, and (c) the dπ–pπ bonding in N(SiH3)3. The occupied 2pz orbital of the N atom is
shaded, and only one Si 3dxz orbital is shown for clarity.
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Table 14.4.1. Comparison of chemical bonds formed by C and Si

Bond Bond length (pm) Bond energy (kJ mol−1)

C–C 154 356
C–H 109 413
C–O 143 336
Si–Si 235 226
Si–H 148 318
Si–O 166 452

(3) Catenation and silanes
The term catenation is used to describe the tendency for covalent bond forma-
tion between atoms of a given element to form chains, cycles, layers, or 3D
frameworks. Catenation is common in carbon compounds, but it only occurs to
a limited extent in silicon chemistry. The reason can be deduced from the data
listed in Table 14.4.1.

Inspection of Table 14.4.1 shows that E(C–C) > E(Si–Si), E(C–H) > E(Si–
H) and E(C–C) > E(C–O), but E(Si–Si) << E(Si–O). Thus alkanes are much
more stable than silanes, and silanes react readily with oxygen to convert the
Si–Si bonds to stronger Si–O bonds. Although silanes do not exist in nature,
some compounds with Si–Si and Si=Si bonds have been synthesized in the
absence of air and in non-aqueous solvents. The silanes SinH2n+2 (n = 1− 8),
cyclic silanes SinH2n (n = 5, 6), and some polyhedral silanes are known. The
structures of tetrahedral Si4(SitBu3)4, trigonal-prismatic Si6(2,6-iPrC6H3)6,
and cubane-like Si8(2,6-Et2C6H3)8 are shown below:

Si4(SitBu3)4

endocyclic Si–Si 232–4 pm
exocyclic Si–Si 236–7 pm

Si6(2,6-iPr2C6H3)6

Si–Si 237–9 pm
Si–C 190–2 pm

Si8(2,6-Et2C6H3)8

Si–Si 238–41 pm
Si–C 190–2 pm

The structures of other examples of oligocyclosilanes are shown in
Fig. 14.4.2. The adamantane-like cluster (SiMe2)6(Si–SiMe3)4 with pendant
methyl and trimethylsilyl groups was prepared in 2005.

14.4.2 Metal silicides

There exist a number of metal silicides, in which silicon anions formally occur.
The structural types of the silicides in the solid state are diverse:

(1) Isolated units

(a) Si4−: Examples are found in Mg2Si, Ca2Si, Sr2Si, Ba2Si.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 14.4.2.
The structures of the molecular skeletons
of some oligocyclosilanes:
(a) Si4tBu2(2,6-Et2C6H3)4,
(b) Si5H2

tBu4(2,4,6-tBuiPr2C6H2)2,
(c) Si6iPr10, (d) Si7Me12, (e) Si8Me14,
(f) Si10Me18, (g) Si8iPr12,
(h) Si10Me16.

(b) Si2 units: The Si26− ion occurs in U3Si2 (Si–Si distance is 230 pm) and
in the series Ca5Si3, Sr5Si3 and Ba5Si3 [as (M2+)5(Si2)6−(Si)4−].

(c) Si4 units: The Si46− ion has a butterfly structure; examples are found
in Ba3Si4, as shown in Fig. 14.4.3(a). On the other hand, Si44− is
tetrahedral and examples are found in NaSi, KSi, CsSi, BaSi2, as shown
in Fig. 14.4.3(b). Finally, in K7LiSi8, pairs of Si4 units are connected by
Li+, as shown in Fig. 14.4.3(c), with additional interactions involving
K+ ions.

(a) (b) (c) Li

(d) (e) Fig. 14.4.3.
Structure of silicon anions in metal
silicides: (a) Si46−, (b) Si44−,
(c) [LiSi8]7−, (d) [Si2−]n, (e) [Si−]n.

(2) Sin chains: Polymeric unit [Si2−]n has a planar zigzag shape. Examples are
found in USi and CaSi, as shown in Fig. 14.4.3(d). The Si–Si distances are
236 (USi) and 247 pm (CaSi).

(3) Sin layers: Polymeric unit [Si−]n in CaSi2 consists of corrugated layers
of six-membered rings, as shown in Fig. 14.4.3(e). In β-ThSi2, the [Si−]n
units form planar hexagonal nets, which are similar to the Bn layers in AlB2
[Fig. 13.3.1(f)].

(4) Sin three-dimensional networks: Examples are SrSi2, α–USi2, in which
[Si−]n constitutes a network with metal cations occupying the interstitial
sites.

14.4.3 Stereochemistry of silicon

(1) Silicon molecular compounds with coordination numbers from
three to six

The compounds formed by one Si atom and one to two other non-metallic
atoms, such as SiX or SiX2 (X = H, F, O, and Cl), are not stable species.
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Fig. 14.4.4.
Structure of silylium ion (mes)3Si+.

Si

A number of silenes (R2Si=CR2) and disilenes (R2Si=SiR2) containing
double bonds, where each Si atom is three-coordinated, are known.

The structure of the free silylium ion (mes)3Si+ has been characterized by X-
ray analysis of [(mes)3Si][HCB11Me5Br6]·C6H6. The (mes)3Si+ cation is well
separated from the carborane anion and benzene solvate molecule. As shown
in Fig. 14.4.4, the Si atom has trigonal planar coordination geometry expected
of a sp2 silylium center, with Si–C bond length 181.7 pm (av.), and the mesityl
groups have a propeller-like arrangement around the Si center with an averaged
twist angle τ = 49.2◦.

In the vast majority of its compounds, Si is tetrahedrally coordinated, which
include SiH4, SiX4, SiR4, SiO2, and silicates. Five-coordinate Si can be either
trigonal bipyramidal or square pyramidal, the former being more stable than the
latter. In [Et4N][SiF5] the anion SiF−5 is trigonal bipyramidal with Si–F(ax) 165
pm and Si–F(eq) 159 pm (av).Among the stable compounds of penta-coordinate
silicon, the most studied are the silatranes, an example of which is shown
below:

N

OO

SiO

R

In this molecule, the axial nitrogen atom is linked through three (CH2)2 tethers
to oxygen atoms at the triangular base. The tetradentate tripodal ligand occupies
four coordination positions around the central Si atom, forming an intramolec-
ular transannular dative bond of the type N→Si. The observed N→Si bond
distances in about 50 silatranes containing three condensed rings vary within
the range 200–40 pm. The longer the N→Si bond, the more planar the config-
uration of the NC3 moiety, and the structure of the RSiO3 fragment approaches
tetrahedral.

Numerous compounds of octahedral hexa-coordinate Si are known. Some
examples are shown below.
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In the salt [C(NH2)3]2[SiF6], the Si–F bond length in octahedral SiF6
2− is

168 pm, which is longer than the Si–F bonds in SiF5
−.

(2) Structure of Si(IV) compounds with SiO5 and SiO6 skeletons
The chemistry of silicon oxygen compounds with SiO5 and SiO6 skeletons in
aqueous solution is of special interest. It has been speculated that such Si(IV)
complexes with ligands derived from organic hydroxy compounds (such as
pyrocatechol derivatives, hydroxycarboxylic acids, and carbohydrates) may
play a significant role in silicon biochemistry by controlling the transport of
silicon.

Several zwitterionic neutral compounds and anionic species with the
SiO5 skeleton have been synthesized and characterized by X-ray diffrac-
tion. The Si coordination polyhedra of these compounds are typically dis-
torted trigonal bipyramids, with the carboxylate oxygen atoms of the two
bidentate ligands in the axial positions. Figure 14.4.5 shows the struc-
tures of (a) Si[C2O3(Me)2]2[O(CH2)2NHMe2] with Si-O(ax) 177.3 and 179.8
pm, and Si–O(eq) 164.3 to 165.9 pm, and (b) the anion in crystalline
[Si(C2O3Ph2)2(OH)]−[H3NPh]+, where Si–O(ax) 179.8 pm and Si–O(eq) 165.0
to 166.0 pm.

Some neutral compounds, cationic species, and anionic species with distorted
octahedral SiO6 skeletons have been established. Figure 14.4.6 shows the struc-
tures of (a) Si[C2O3Ph2][C3HO2Ph2]2 in which the Si–O bond lengths are 169.3
to 182.1 pm, and (b) the dianion in [Si(C2O4)3]2− [HO(CH2)2NH(CH2)4

+]2,
in which the Si–O bond lengths vary from 176.7 to 178.8 pm.

(3) Structural features of Si=Si double bond in disilenes
The first reported disilene is (mes)2Si=Si(mes)2, which was isolated and char-
acterized in 1981. The characteristic structural features of disilenes are the

Si
Si

O
O

C

N

(a) (b)

H

Fig. 14.4.5.
Structures of (a)
Si[C2O3Me2]2[O(CH2)2NHMe2] and
(b) [Si(C2O3Ph2)2(OH)]−.
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Fig. 14.4.6.
Structures of
(a) Si[C2O3Ph2][C3HO2Ph2]2 and
(b) [Si(C2O4)3]2−.

(a) (b)

Si
SiO

O

length of the Si=Si double bond d , the twist angle τ , and the trans-bent angle
θ , as shown below.

Si Si Si Si Si
ud

τ

In contrast to the C=C double bond of sterically crowded alkenes, in which
variations of the bond lengths are small, the Si=Si bond lengths of dis-
ilenes vary between 214 and 229 pm. The twist angle τ of the two SiR2
planes varies between 0◦ and 25◦. A further peculiarity of the disilenes, not
observed in alkenes, is the possibility of trans-bending of the substituents,
which is described by the trans-bent angle θ between the SiR2 planes and
the Si=Si vector. The θ values can reach up to 34◦. These differences can be

Fig. 14.4.7.
Double-bond formation from two triplet
carbenes and singlet silylenes.

(c)

(d) repulsion

Si Si(e)

(b)

(a) C

C

C C CC

Si

Si Si

Si

p

sp2

rationalized as follows: carbenes have either a triplet ground state (T), as shown
in Fig. 14.4.7(a), or a singlet ground state (S), as shown in Fig. 14.4.7(b),
with relatively low S→T transition energies. The familiar picture of a C=C
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double-bond results from the approach of two triplet carbenes [Fig. 14.4.7(c)].
In contrast, silylenes have singlet ground states with a relative large S→T
excitation energy. Approach of two singlet silylenes should usually result in
repulsion rather than bond formation [Fig. 14.4.7(d)]. However, if the two
silylene molecules are tilted with respect to each other, interaction between
the doubly occupied sp2-type orbitals and the vacant p orbitals can form a
double donor–acceptor bond. This is accompanied by a trans-bending of the
substituents about the Si=Si vector, as illustrated in Fig. 14.4.7(e).

(4) Stable silyl radicals
Silyl radicals stabilized with bulky trialkylsilyl groups can be isolated in crys-
talline form. X-ray analysis showed that the (tBu2MeSi)3Si· radical has trigonal
planar geometry about the central sp2 Si atom, with an averaged Si–Si bond
length of 242(1) pm. Interestingly, all the methyl substituents at the α-Si atoms
lie in the plane of the polysilane skeleton so that steric hindrance is mini-
mized. Reaction of this radical with lithium metal in hexane at room temperature
afforded [(tBu2MeSi)3Si]Li, the crystal structure of which showed a planar con-
figuration (sum of Si–Si–Si angles = 119.7◦ for the central anionic Si atom)
and an averaged Si–Si bond length of 236(1) pm.

Crystal structure analysis of the disilene (tBu2MeSi)2Si=Si(SiMetBu2)2 has
revealed a highly twisted configuration about the central Si=Si double bond,
as shown in Fig. 14.4.8(a). The Si(1) and Si(2) atoms forming the double bond
are both sp2 hybridized, and the twist angle τ has an exceptionally large value
of 54.5◦ (see Fig. 14.4.8(b)). The disilene reacts with tBuLi to produce the
[Li(THF)4]+ salt of the silyl anion radical (tBu2MeSi)2Si−–Si·(SiMetBu2)2,
in which the anionic Si(1)− atom has flattened pyramidal geometry (sum of bond
angles = 352.7◦) whereas the radical Si(2)· atom retains its sp2 configuration.
The mean planes of the Si(3)–Si(1)–Si(4) and Si(5)–Si(2)–Si(6) fragments are
nearly orthogonal, with a τ angle of 88◦ about the central Si–Si single bond, as
illustrated in Fig. 14.4.8(c).

Si(2)

Si(6)

Si(4) Si(6)

Si(3) Si(5)

Si(2)Si(1)

Si(4)

Si(1)

Si(4) Si(5)

Si(3)

Si(1)

Si(5)Si(6)

Si(2)

Si(3)

(a) (b) (c)

Fig. 14.4.8.
(a) Molecular structure of disilene (tBu2MeSi)2Si=Si(SiMetBu2)2. Si(m)–Si(n) bond lengths (in
pm): 1–2, 226.0(1);1–3, 241.6(2);1–4, 241.9(2); 2–5, 241.3(2); 2–6, 242.3(2). (b) Twisted
configuration of the Si2Si=SiSi2 skeleton. (c) Nearly orthogonal configuration of the silyl anion
radical (tBu2MeSi)2Si−–Si·(SiMetBu2)2. Bond lengths Si(m)–Si(n) (in pm): 1–2, 234.1(5); 1–3,
239.0(5);1–4, 239.2(5); 2–5, 241.2(1); 2–6, 240.1(1).
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14.4.4 Silicates

(1) Classification of silicates
Silicates constitute the largest part of the earth’s crust and mantle. They play a
dominant role as raw materials as well as products in technological processes,
such as building materials, cements, glasses, ceramics, and refractory materials.

In the silicates, the tetrahedral SiO4 units are either isolated or share corners
with other tetrahedra, giving rise to an enormous variety of structures. In many
silicates, silicon may be replaced to a certain extent by other elements, such
as aluminium, so the structures of silicates are further extended to cover cases
where such partial substitution occurs.

Table 14.4.2. Classification of natural silicates

Number of shared O atoms
in SiO4 unit Structure Name

0 (no O atom shared) Discrete SiO4 unit Neso-silicates
1 Discrete Si2O7 unit Soro-silicates
2 Cyclic (SiO3)n structures Cyclo-silicates
2 Infinite chains or ribbons Ino-silicates
3 Infinite layers Phyllo-silicates
4 Infinite 3D frameworks Tecto-silicates

The kind and the degree of linkage of SiO4 tetrahedra constitute a basis for
the classification of natural silicates, as shown in Table 14.4.2.

(a) Silicates containing discrete SiO4
4− or Si2O7

6−

The discrete SiO4
4− anion [as shown in Fig. 14.4.9(a)] occurs in the

orthosilicates, such as phenacite Be2SiO4, olivine (Mg,Fe,Mn)2SiO4, and
zircon ZrSiO4. Another important group of orthosilicates is the garnets,

Fig. 14.4.9.
Structures of some silicates: (a) SiO4

4−,
(b) Si2O7

6−, (c) cyclic [Si3O9]6−,
(d) cyclic [Si6O18]12−, (e) single chain
[SiO3]n

2n−, (f) double chain
[Si4O11]n

6n−, (g) layer [Si2O5]n
2n−.

Si

(a)

(e)

(f) (g)

(b) (c) (d)

= Si

= O
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MII
3 MIII

2 (SiO4)3, in which MII are eight-coordinate (e.g. Ca, Mg, Fe) and MIII

are six-coordinate (e.g., Al, Cr, Fe). Orthosilicates are also vital components
of Portland cements: β-Ca2SiO4 has a discrete [SiO4] group with Ca in six- or
eight-coordination.

An example of a disilicate containing the discrete Si2O7
6− ion [as shown in

Fig. 14.4.9(b)] is the mineral thortveitite Sc2Si2O7, in which ScIII is octahedral
and Si–O–Si is linear with staggered conformation. There is also a series of
lanthanoid disilicates Ln2Si2O7, in which the Si–O–Si angle decreases pro-
gressively from 180◦ to 133◦, and the coordination number of Ln increases
from 6 through 7 to 8 as the size of Ln increases from six-coordinated
LuIII to eight-coordinated NdIII. In the Zn mineral hemimorphite the angle
is 150◦, but the conformation of the two tetrahedra is eclipsed rather than
staggered.

Discrete chains of three or four linked SiO4 tetrahedra are extremely rare, but
they exist in aminoffite Ca3(BeOH)2[Si3O10], kinoite Cu2Ca2[Si3O10]·2H2O,
and vermilion Ag10[Si4O13].

(b) Silicates containing cyclic [SiO3]n
2n−ion

Cyclic [SiO3]n
2n− having 3, 4, 6 or 8 linked tetrahedra are known, though 3 and

6 [as shown in Figs 14.4.9(c)–(d)] are the most common. These anions are exem-
plified by the minerals benitoite BaTi[Si3O9], catapleite Na2Zr[Si3O9]·2H2O,
beryl Be3Al2[Si6O18], tourmaline (Na,Ca)(Li,Al)3Al6(OH)4(BO3)3[Si6O18],
and murite Ba10(Ca,Mn,Ti)4[Si8O24](Cl,OH,O)12·4H2O.

(c) Silicates with infinite chain or ribbon structure
Single chains formed by tetrahedral SiO4 groups sharing two vertices adopt
various configurations in the crystal. There are different numbers of tetrahedra in
the repeat unit for different minerals; for example, both diopside CaMg[SiO3]2
and enstatite MgSiO3 have two repeat units, as shown in Fig. 14.4.9(e).

In the double chains or ribbons, there are different kinds of tetrahedra sharing
two and three vertices. The most numerous amphiboles and asbestos minerals,
such as tremolite, Ca2Mg5(Si4O11)2(OH)2, adopt the [Si4O11]n

6n−double chain
structure, as shown in Fig. 14.4.9(f).

(d) Silicates with layer structures
Silicates with layer structures include clay minerals, micas, asbestos, and talc.
The simplest single layer has composition [Si2O5]n

2n−, in which each SiO4
tetrahedron shares three vertices with three others, as shown in Fig. 14.4.9(g).
Muscovite KAl2[AlSi3O10](OH)2 is a layer silicate of the mica group. There
are many and complex variations of structure based on one or more of the
layer types. The vertices of the tetrahedra can form part of a hydroxide-like
layer. Their bases can either be directly opposed, or can be fitted to hydroxyl
or water layers. When layers of different types succeed each other with more
or less regularity, the changes in stacking these layers together occur in an
endless variety of ways. This irregularity of structure is no doubt related to
their capacity to take up or lose water and mediate ion exchange. In many cases
the structures swell or contract in different stages of hydration, and can take up
replaceable ions.

iranchembook.ir/edu

https://iranchembook.ir/edu


542 Structural Chemistry of Selected Elements

(e) Silicates with framework structures
In silicates, the most important and widespread substitution is that of Al for Si
in tetrahedral coordination to form (Si, Al)O4 tetrahedra, so that most of the
“silicates” that occur in nature are in fact aluminosilicates. This substitution
must be accompanied by the incorporation of cations to balance the charge on
the Si–O framework.

Sharing of all vertices of each (Si,Al)O4 tetrahedron leads to infinite 3D
framework aluminosilicates, such as felspars, ultramarines, and zeolites. The
felspars are the most abundant of all minerals and comprise about 60% of
the earth’s crust, and are subdivided into two groups according to the sym-
metry of their structures. Typical members of the groups are: (a) orthoclase
KAlSi3O8 and celsian BaAl2Si2O8, and (b) the plagioclase felspar: albite
NaAlSi3O8 and anorthite CaAl2Si2O8. Examples of ultramarine are sodalite
Na8Cl2[Al6Si6O24] and ultramarine Na8(S2)[Al6Si6O24].

(2) Zeolites
Zeolites are crystalline, hydrated aluminosilicates that possess framework struc-
tures containing regular channels and/or polyhedral cavities. Zeolites generally
contain loosely held water, which can be removed by heating the crystals and
subsequently regained on exposure to a moist atmosphere.When occluded water
is removed, it can be replaced by other small molecules. There is a close rela-
tionship between the size of molecules that can diffuse through the framework
and the dimensions of the aperture or “bottle-neck” connecting one cavity to
the next. This capacity of zeolites to admit molecules below a certain limiting
size, while blocking passage to larger molecules, has led to their being termed
“molecular sieves.”

There are more than 40 natural zeolites and over 100 synthesized zeolites.
Table 14.4.3 lists the ideal composition and the member of rings of some zeo-
lites. Figure 14.4.10(a) shows the construction of a truncated cubo-octahedron
(β-cage) formed from 24 linked (Si,Al)O4 tetrahedra, and Fig. 14.4.10(b) shows
a simplified representation of this cavity formed by joining the Si(Al) atom
positions. Several other types of polyhedra have also been observed.

Zeolite A is a synthetic zeolite that has not been found in nature. In the frame-
work structure of dehydrated zeolite 4A, Na12[Al12Si12O48], cubo-octahedra
lie at the corners of the unit cell, generating small cubes at the centers of the cell
edges and eight-membered rings at the face centers.Access through these eight-
membered rings to a very large cavity (truncated cubo-octahedron, α-cage) at

Table 14.4.3. Ideal composition and member of rings in some zeolites

Zeolite Ideal composition Member of rings

Zeolite A Na12[Al12Si12O48]·27H2O 4,6,8
Faujasite (Zeolite X and Y) Na58[Al58Si134O384]·240H2O 4,6,12
Zeolite ZSM-5 Na3[Al3Si93O192]·16H2O 4,5,6,7,8,10
Chabazite Na4Ca8[Al20Si52O144]·56H2O 4,5,6,8,10
Mordenite Na8[Al8Si40O96]·24H2O 4,5,6,8,12
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(a) (b)

Fig. 14.4.10.
Structure of cubo-octahedral cage
(β-cage): (a) arrangement of (Si,Al)O4
(black circles represent Si and Al),
(b) simplified representation of the
polyhedral cavity.

the center of the unit cell is facilitated. Figure 14.4.11(a) shows the structure of
zeolite A framework.

Faujasite or zeolite X and Y exists in nature. Its framework can be formed as
follows. The cubo-octahedra are placed at the positions of the carbon atoms in
the diamond structure, and they are joined by hexagonal prisms through four of
the eight hexagonal faces of each cubo-octahedron, as shown in Fig. 14.4.11(b).

(a) (b)

Fig. 14.4.11.
Structure of the framework of (a) zeolite
A and (b) faujasite.

(3) General rules governing the structures of natural silicates
The structures of natural silicates obey the following general rules:

(a) With some exceptions, such as stishovite, the Si atoms form SiO4 tetrahedra
with little deviation of bond lengths and bond angles from the mean values:
Si–O = 162 pm, O–Si–O = 109.5◦.

(b) The most important and widespread substitution is that of Al for Si in
tetrahedral coordination, which is accompanied by the incorporation of
cations to balance the charge. The mean Al–O bond length in AlO4 is 176
pm. In almost all silicates that occur as minerals, the anions are tetrahe-
dral (Si,Al)O4 groups. The Al atoms also occupy positions of octahedral
coordination in aluminosilicates.

(c) The (Si,Al)O4 tetrahedra are linked to one another by sharing common cor-
ners rather than edges or faces. Since two Si–O–Al groups have a lower

iranchembook.ir/edu

https://iranchembook.ir/edu


544 Structural Chemistry of Selected Elements

energy content than one Al–O–Al plus one Si–O–Si group, the AlO4 tetra-
hedra do not share corners in tetrahedral framework structures if this can
be avoided.

(d) One oxygen atom can belong to no more than two SiO4 tetrahedra.
(e) If s is the number of oxygen atoms of a SiO4 tetrahedron shared with other

SiO4 tetrahedra, then for a given silicate anion the difference between the
s values of all SiO4 tetrahedra tends to be small.

14.5 Structures of halides and oxides of heavier
group 14 elements

14.5.1 Subvalent halides

Subvalent halides of heavier group 14 elements MX2 (M = Ge, Sn, and Pb; X
= F, Cl, Br, and I) and their complexes exhibit the following structural features
and properties.

(1) Stereochemically active lone pair
In the dihalides of Ge, Sn, and Pb and their complexes, the metal atom always
has one lone pair. The discrete, bent MX2 molecules are only present in the gas
phase with bond angles less than 120◦. Figure 14.5.1(a) shows the structure of
SnCl2, which has bond angle 95◦ and bond distance 242 pm.

In the crystalline state, the coordination numbers of metal atoms are
usually increased to three or four. Because of the existence of the lone
pair, the MX3

− or MX4
2− units all adopt the trigonal pyramidal or

square-pyramidal configuration, as shown in Figs. 14.5.1(b) to 14.5.1(d).
Figure 14.5.1(b) shows the structure of Sn2F5

− in NaSn2F5, in which each
Sn is trigonal pyramidal with two close Ft (Sn–Ft207 and 208 pm) and
one Fb (Sn–Fb 222 pm). Figure 14.5.1(c) shows the structure of (SnCl2F)−

in [Co(en)3](SnCl2F)[Sn2F5]Cl. Figure 14.5.1(d) shows the structure of
(SnF3

−)∞ in KSnF3 · 1
2 H2O. In this compound, the Sn atoms are square pyra-

midal and each bridging F atom is connected to two Sn atoms to give an infinite
chain with Sn–Fb 227 pm and Sn–Ft 201 and 204 pm.

(2) Oligomers and polymers
The structural chemistry of MX2 is complex, partly because of the stereochem-
ical activity (or nonactivity) of the lone pair of electrons and partly because of

Fig. 14.5.1.
Structure of subhalides of tin: (a) SnCl2,
(b) (Sn2F5)− in NaSn2F5,
(c) (SnCl2F)− in
[Co(en)3][SnCl2F][Sn2F5]Cl, and
(d) (SnF3

−)∞ in KSnF3 · 1
2 H2O.

Sn

(a) (b)

(c) (d)

Cl

F
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the propensity of MII to increase its coordination numbers by polymerization
into larger structural units, such as rings, chains or layers. The MII center rarely
adopts structures typical of spherically symmetrical ions because the lone pair
of electrons, which is ns2 in the free gaseous ion, is readily distorted in the
condensed phase. This can be described in terms of ligand-field distortions or
the adoption of some p-orbital character. The lone pair can act as a donor to
vacant orbitals, and the vacant np orbitals and nd orbitals can act as acceptors
in forming extra covalent bonds.

In the solid state, GeF2 has a unique structure in which trigonal pyramidal
GeF3 units share two F atoms to form an infinite spiral chain. Reaction between
GeF2 and F− gives GeF3

−, which is a trigonal pyramidal ion.
Crystalline SnF2 is composed of Sn4F8 tetramers, which are puckered eight-

membered rings of alternating Sn and F atoms, with Sn–Fb 218 pm and Sn–Ft
205 pm. The tetramers are interlinked by weaker Sn–F interactions. Bridge
formation is observed in Na(Sn2F5), Na4(Sn3F10), and other salts such as
[Co(en)3][SnCl2F][Sn2F5]Cl.

The structure of SnCl2 is shown in Fig. 14.5.1(a). In the crystalline state it has
a layer structure with chains of corner-shared, trigonal-pyramidal SnCl3 units.
The commercially available solid hydrate SnCl2·2H2O also has a puckered-
layer structure.

The dihalides PbX2 is much more stable thermally and chemically than PbX4.
Structurally, α-PbF2, PbCl2 and PbBr2 all form colorless orthorhombic crystals
in which PbII is surrounded by nine X ligands (seven closer and two farther
away) at the corners of a tricapped trigonal prism.

(3) Stability
The stability of the dihalides of Ge, Sn, and Pb steady increases in the sequence
GeX2 < SnX2 < PbX2. Thus PbX2 is more stable than PbX4, whereas GeX4
is more stable than GeX2. At 978 K, SnF4 sublimes to give a vapor containing
SnF4 molecules, which is thermally stable, but PbF4 (prepared by the action of
F2 on Pb compounds) decomposes into PbF2 and F2 when heated.

The preference for the +2 over +4 oxidation state increases down the group,
the change being due to relativistic effects that make an important contribution
to the inert pair. The “inert pair” concept holds only for the lead ion Pb2+(aq),
which could have a 6s2 configuration. In more covalent PbII compounds and
most SnII compounds there are stereochemically active lone pairs. In some
MX2 (M = Ge or Sn) compounds Ge and Sn can act as donor ligands.

(4) Mixed halides and mixed-valence complexes
Many mixed halides are known, such as all ten trihalogenostannate(II) anions
[SnClxBryIz]− (xyz = 300, 210, 201, 120, 102, 111, 021, 012, 030, 003), have
been observed and characterized by 119Sn NMR spectroscopy. An example
(SnCl2F)− is shown in Fig. 14.5.1(c).

Many mixed halides of PbII have also been characterized, including PbFCl,
PbFBr, PbFI, and PbX2·4PbF2. Of these, PbFCl has an important tetragonal
layer structure, which is frequently adopted by large cations in the presence of
two anions of differing size; its sparing solubility in water forms the basis of a
gravimetric method for the determination of F.
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Some mixed-valence halide complexes are known, such as Ge5F12 =
(GeIIF2)4(GeIVF4), α-Sn2F6 = SnIISnIVF6, and Sn3F8 = SnII

2 SnIVF8. In
these compounds, the MII–X bond distances are longer than the corresponding
MIV–X bond distances.

The coordination geometries of MIV in compounds or mixed-valence com-
plexes, in contrast to MII, tend to exhibit high symmetries; the MX4 molecules
are tetrahedral and [MX6]2− units adopt the octahedral (or slightly distorted)
configuration.

14.5.2 Oxides of Ge, Sn, and Pb

(1) Subvalent oxides
Both SnO and PbO exist in several modifications. The most common blue-black
modification of SnO and red PbO (litharge) have a tetragonal layer structure, in
which the MII (SnII and PbII) atom is bonded to four oxygen atoms arranged in a
square to one side of it, with the lone pair of electrons presumably occupying the
apex of the tetragonal pyramid (Sn–O 221 pm and Pb–O 230 pm). Each oxygen
atom is surrounded tetrahedrally by four MII atoms. Figure 14.5.2 shows the
crystal structure of SnO (and PbO).

Dark-brown crystalline GeO is obtained when germanium powder and
GeO2 are heated or Ge(OH)2 is dehydrated, but this compound is not well
characterized.

(2) Dioxides
Germanium dioxide, GeO2, closely resembles SiO2 and exists in both α-quartz
and tetragonal rutile (Fig. 10.2.6) forms. In the latter, GeIV is octahederally
coordinated with Ge–O 188 pm (mean). SnO2 occurs naturally as cassi-
terite, adopting the rutile structure with Sn–O 209 pm (mean). There are two
modifications of PbO2: the tetragonal maroon form has the rutile structure
with Pb–O 218 pm (mean), whereas α-PbO2 is an orthorhombic black form
whose structure is derived from hcp layers with half of the octahedral sites
filled.

(3) Mixed-valence oxides
Pb3O4 (PbII

2 PbIVO4) and Pb2O3 (PbIIPbIVO3) are the two well-known mixed-
valence oxides of lead. Red lead Pb3O4 is important commercially as a pigment
and primer. Its tetragonal crystal structure consists of chains of PbIVO6 octahe-
dra sharing opposite edges (mean PbIV−O 214 pm). These chains are aligned

Fig. 14.5.2.
Crystal structure of SnO (and PbO):
(a)viewed from the side of a part of one
layer, (b) the arrangement of bonds and
lone pair at a metal atom.

(a) (b)

Sn
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parallel to the c axis and linked by the PbII atoms, each being pyramidally coor-
dinated by three oxygen atoms (PbIIO3 unit, PbII–O two at 218 pm and one at
213 pm). Figure 14.5.3 shows a portion of the tetragonal unit cell of Pb3O4.

Fig. 14.5.3.
Crystal structure of Pb3O4 (large circles
represent Pb atom, white PbIV and
shaded PbII; small circles represent
O atom).

The sesquioxide Pb2O3 is a black monoclinic crystal, which consists of
PbIVO6 octahedra (PbIV–O 218 pm, mean) and very irregular six-coordinate
PbIIO6 units (PbII–O 231, 243, 244, 264, 291 and 300 pm). The PbII atoms are
situated between layers of distorted PbIVO6 octahedra.

Among the various mixed-valence oxides of tin that have been reported,
the best characterized is Sn3O4, i.e., SnII

2 SnIVO4, the structure of which is
similar to that of Pb3O4. Mixed oxides of PbIV (or PbII) with other metals find
numerous applications in technology and industry. Specifically, MIIPbIVO3 and
MIIPbIVO4 (MII = Ca, Sr, Ba) have important uses; for example, CaPbO3 is
a priming pigment to protect steel corrosion by salt water. Mixed oxides of
PbII are also important. PbTiO3, PbZrO3, PbHfO3, PbNb2O6 and PbTi2O6 are
ferroelectric materials. The high Curie temperature of many PbII ferroelectrics
makes them particularly useful for high-temperature applications.

14.6 Polyatomic anions of Ge, Sn, and Pb

Germanium, tin, and lead dissolve in liquid ammonia in the presence of alkali
metals to give highly colored anions, which are identified as polyatomic species
(e.g., Sn5

2−, Pb5
2−, Sn9

4−, Pb9
4−, and Ge10

2−) in salts containing cryptated
cations, e.g., [Na(C222)]2Pb5, [Na(C222)]4Sn9, and [K(C222)]3Ge9.

In an unusual synthesis, the compound [K(C222)]2Pb10 was obtained by
oxidation of a solution of Pb9

4− ions in ethylenediamine with AuI in the form
of [P(C6H5)3AuCl] as the oxidizing agent:

2Pb9
4− + 6Au+ → Pb10

2− + 8Pb0 ↓ + 6Au0.

A single-crystal X-ray structure analysis revealed that the intensely brown
colored Pb10

2− anion has a bicapped square-antiprismatic structure of nearly
perfect D4d symmetry.

Since the homopolyatomic anions and cations (Zintl ions) are devoid of
ligand attachment, they are sometimes referred to as “naked” clusters. The
structures of some naked anionic clusters are shown in Fig. 14.6.1: (a) tetrahe-
dral Ge4

4−, Sn4
4−, Pb4

4−, Pb2Sb2
2−; (b) trigonal bipyramidal Sn5

2−, Pb5
2−;

(c) octahedral Sn6
2−; (d) tricapped-trigonal prismatic Ge9

2− and paramagnetic
Ge9

3−, Sn9
3−; (e) monocapped square-antiprismatic Ge9

4−, Sn9
4−, Pb9

4−; (f)
bicapped square-antiprismatic Ge10

2−, Pb10
2−, Sn9Tl3−.

The bonding in these polyatomic anions is delocalized, and for the dia-
magnetic species the bond valence method (see Section 13.4) can be used to
rationalize the observed structures. This method is to be applied according to
the following rules:

(a) Each pair of neighbor M atoms is connected by a M–M 2c-2e bond or
MMM 3c-2e bond to form the cluster.

(b) Each M atom use its four valence orbitals to form chemical bonds to attain
the octet configuration.
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Fig. 14.6.1.
Structure of polyatomic anions of Ge,
Sn, and Pb: (a) Ge4

4−, Sn4
4−, Pb4

4−,
and Pb2Sb2

2−; (b) Sn5
2−, Pb5

2−; (c)
Sn6

2−; (d) Ge9
2−; (e) Ge9

4−, Sn9
4−,

Pb9
4−; (f) Ge10

2−, Pb10
2−, Sn9Tl3−.

(b) (c)(a)

(e) (f)(d)

(c) Two M atoms cannot participate in forming both a M–M 2c-2e bond and a
MMM 3c-2e bond.

For example, the bond valence (b) of Ge9
4− is b = 1

2 (8n − g) = 1
2 [9 × 8 −

(9×4+4)] = 16, and the monocapped square-antiprismatic anion is stabilized
by six MMM 3c-2e bonds and four M–M 2c-2e bonds. Bonding within the
polyhedron involves a resonance hybrid of several canonical forms of the type
shown in Fig. 14.6.2. The structures of the polyatomic anions are summarized
in Table 14.6.1.

1(a) (b) (c)

2
3

4
5

6

78

9

1

2
3

4

6

78

1

4
5

2

8

96

Fig. 14.6.2.
(a) Structure and atom numbering of Ge9

4−. Bonding in Ge9
4−: (b) front view of a canonical structure, in which a M–M 2c-2e bond is

represented by a solid line joining two atoms, and a MMM 3c-2e bond by three solid lines connecting atoms to the bond center; (c) rear view of
the canonical structure.

The polystannide cluster Sn9
4− (or the related Pb9

4−) reacts with
Cr(CO)3(mes) to form a bicapped square-antiprismatic cluster [Sn9Cr(CO)3]4−;

Cr(CO)3(mes) + K4Sn9 + 4 C222
en/toluene−→ [K(C222)]4[Sn9Cr(CO)3].

The nonastannide cluster is slightly distorted to accommodate the chromium
carbonyl fragment at the open face. Figure 14.6.3 shows the structure of
[M9Cr(CO)3]4− (M = Sn, Pb).
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Table 14.6.1. Structure of polyatomic anions

Anion Polyhedron b Bonding

Ge4
4−, Sn4

4−, Pb4
4−, Pb2Sb2

2− Tetrahedral 6 6[M–M 2c-2e]
Ge5

2−, Pb5
2−, Sn5

2− Trigonal bipyramidal 9 9[M–M 2c-2e]
Sn6

2− Octahedral 11 4[MMM 3c-2e]
3[M–M 2c-2e]

Ge9
2− (Sn9

3−, Ge9
3−) Tricapped-trigonal prismatic 17 7[MMM 3c-2e]

3[M–M 2c-2e]
Ge9

4−, Pb9
4−, Sn9

4− ∗ Monocapped 16 6[MMM 3c-2e]
Square-antiprismatic 4[M–M 2c-2e]

Ge10
2−, Pb10

2−, Sn9Tl3− Bicapped 19 8[MMM 3c-2e]
Square-antiprismatic 3[M–M 2c-2e]

∗The cation Bi95+ is isoelectronic and isostructural with these anions, and has the same kind of bonding.

The bond valence (b) in the ten-atom cluster [Sn9Cr(CO)3]4− is

b = 1
2
[8n1 + 18n2 − g]

= 1
2
[8× 9 + 18− (9× 4 + 6 + 6 + 4)]

= 19.

This anion has eight MMM 3c–2e bonds and three M–M 2c–2e bonds, just as
in B10H2−

10 , and the scheme is illustrated in Fig. 13.4.5(c).

Sn

Cr

Fig. 14.6.3.
Structure of [M9Cr(CO)3]4−(M = Sn,
Pb).

14.7 Organometallic compounds of heavier
group 14 elements

Elements Ge, Sn, and Pb form many interesting varieties of organometallic
compounds, some of which are important commercial products. For exam-
ple, Et4Pb is an anti-knock agent, and organotin compounds are employed as
polyvinylchloride (PVC) stabilizers against degradation by light and heat. Some
examples and advances are discussed in the present section.

14.7.1 Cyclopentadienyl complexes

Cyclopentadienyl complexes of Ge, Sn, and Pb exist in a wide variety of compo-
sition and structure, such as half-sandwiches CpM and CpMX, bent and parallel
sandwiches Cp2M, and polymeric (Cp2M)x.

(1) (η5-C5Me5)Ge+ and (η5-C5Me5)GeCl
In crystalline [η5-(C5Me5)Ge]+ [BF4]− the cation has a half-sandwich struc-
ture, as shown in Fig. 14.7.1(a). In the chloride (η5-C5Me5)GeCl, the Ge atom
is bonded to the Cl atom in a bent configuration, as shown in Fig. 14.7.1(b).

(2) (η5-C5R5)2M (R=H, Me, Ph)
The compounds (η5-C5H5)2M (M = Ge, Sn and Pb) are angular molecules in
the gas phase, as shown in Fig. 14.7.1(c). The ring centroid-M-ring centroid
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Sn

(a)

(c) (d) (e)

(b)

Ge

M

Cl

Ge

Pb

Fig. 14.7.1.
Structures of some cyclopentadienyl complexes: (a) (η5-C5Me5)Ge+, (b) (η5- C5Me5)GeCl, (c) (η5-C5H5)2M, (M=Ge, Sn and Pb), (d)
(η5-C5Ph5)2Sn (only one C atom of each phenyl group is shown), and (e) [(η5-C5H5)2Pb]x chain.

angles of (η5-C5H5)2M are –Ge– 130◦, –Sn– 134◦, and –Pb– 135◦. However,
as the H atoms in Cp is substituted by other groups, the angles will be changed.
For example, the angle in (η5-C5Me5)2 Pb is 151◦. For (η5-C5Ph5)2Sn, the two
planar C5 rings are exactly parallel and staggered, as shown in Fig. 14.7.1(d),
and the opposite canting of the phenyl rings with respect to the C5 rings results
in overall S10 molecular symmetry.

(3) Polymeric [(η5-C5H5)2Pb]x

There are three known crystalline modifications of (η5-C5H5)2Pb. When crys-
tals are grown by sublimation, the structure features a zigzag chain with
alternating bridging and nonbridging C5H5 groups; however, crystallization
from toluene results in modification of the conformation of the polymeric
chain [as shown in Fig. 14.7.1(e)], and also cyclization into a hexamer
[(η5-C5H5)2Pb]6.

14.7.2 Sila- and germa-aromatic compounds

Sila- and germa-aromatic compounds are Si- and Ge-containing (4n + 2)
π electron ring systems that represent the heavier congeners of carbocyclic
aromatic compounds. Several kinds of sila- and germa-aromatic compounds
bearing a bulky hydrophobic 2,4,6-tris[bis(trimethylsilyl)methyl]phenyl group
[Tbt = 2,4,6,-(CH(SiMe3)2)3C6H2] on the sp2 Si or Ge atom have been
prepared and isolated as stable crystalline solids, as shown in Figs. 14.7.2(a)–(e).

X-ray diffraction analyses showed that all these compounds have an almost
planar aromatic ring, and the geometry around the central Si or Ge atom is
completely trigonal planar. The measured bond lengths of Si–C or Ge–C are
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Tbt

Tbt

Tbt

Tbt

Tbt

Tbt

Si

Si
Si

Ge
Ge

Ge

Cr

O

(a) (b) (c)

(d) (e) (f)

Fig. 14.7.2.
Structure of some sila- and
germa-aromatic compounds:
(a) silabenzene, (b) 2-silanaphthalene,
(c) 9-silaanthracene, (d) germabenzene,
(e) 2-germanaphthalene, and (f) a part of
(η6-C5H5GeTbt)Cr(CO)3.

almost equal, the average values being Si–C 175.4 pm and Ge–C 182.9 pm,
which lie between those of typical double and single bonds.

The germabenzene shown in Fig. 14.7.2(d) serves as an η6-arene ligand in
reacting with [M(CH3CN)3(CO)3] (M = Cr, Mo, W) to form sandwich com-
plexes [(η6-C5H5GeTbt)M(CO)3]. Figure 14.7.2(f) shows a part of the structure
of [(η6-C5H5GeTbt)Cr(CO)3]. This complexation of germa-aromatic com-
pounds indicates that sila- and germa-benzenes have a π electron delocalized
structure with considerable aromaticity.

14.7.3 Cluster complexes of Ge, Sn, and Pb

Extensive research over the past decade has greatly increased the number of
cluster complexes of Ge, Sn, and Pb. The properties of M–M bonds and struc-
tures of these compounds are similar to the C–C bonds and carbon skeletons
in organic compounds. Table 14.7.1 lists some of these cluster compounds that
have been synthesized, isolated, and characterized by X-ray crystallography. In

Table 14.7.1. Cluster complexes of Ge and Sn

Compound Bond length / pm Bond valence Fig. 14.7.3

[Ge(SitBu3)]3
+[BPh4]− Ge --- Ge, 232.6 12/3 (a)

[Ge(SiMe3)3]2SnCl2 Ge—Sn, 263.1 1 (b)
[Ge(Cl)Si(SiMe3)3]4 Ge—Ge, 253.4 1 (c)
Ge4(SitBu3)4 Ge—Ge, 244 1 (d)
Ge6[CH(SiMe3)2]6 Ge—Ge, 256 1 (e)
[Sn(Ph2)]6 Sn—Sn, 277.5 1 (f)
Sn5(2,6-Et2C6H3)6 Sn—Sn, 285.8 1 (g)

Sn---Sn, 336.7
Sn7(2,6-Et2C6H3)8 Sn—Sn, 284.5 1 (h)

Sn---Sn, 334.8
Ge8(CMeEt2)8 Ge—Ge, 249.0 1 (i)
Ge8

tBu8Br2 Ge—Ge, 248.4 1 (j)
Sn10(2,6-Et2C6H3)10 Sn—Sn, 285.6 1 (k)
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Fig. 14.7.3.
Structures of metallic cluster complexs
of Ge and Sn (for clarity only the metal
and halogen atoms are shown, and the
organic groups have been omitted):
(a) [Ge(SitBu3)]3

+,
(b) [Ge(SiMe3)3]2SnCl2,
(c) [Ge(Cl)Si(SiMe3)3]4,
(d) Ge4(SitBu3)4,
(e) Ge6[CH(SiMe3)2]6, (f) [SnPh2]6,
(g) Sn5(2,6-Et2C6H3)6,
(h) Sn7(2,6-Et2C6H3)8,
(i) Ge8(CMeEt2)8, (j) Ge8

tBu8Br2,
(k) Sn10(2,6-Et2C6H3)10.
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Ge Br

Cl Cl
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the table, the bond lengths are average values. The b value of Mn is calculated
according to formula (13.4.1), and the bond valence per M–M bond is listed
for each compound.

In [GeSitBu3]+3 [BPh4]−, the cyclotrigermanium cation has a π delocalized
bond π2

3 similar to that of the carbon analog, the cyclopropenium ion. The
Ge–Ge bond in this cation has bond valence 5/3. Figure 14.7.3(a) shows the
structure of the cluster.

The mixed-metal compound [Ge(SiMe3)3]2SnCl2 is a bent molecule [as
shown in Fig. 14.7.3(b)], which forms two Ge–Sn bonds with bond lengths
263.6 and 262.6 pm.

The tetramer [Ge(Cl)Si(SiMe3)3]4 forms a four-membered ring with Ge–
Ge bond lengths 255.8 and 250.9 pm [as shown in Fig. 14.7.3(c)], while
Ge4(SitBu3)4 is the first molecular germanium compound with a Ge4 tetra-
hedron, as shown in Fig. 14.7.3(d).

The hexamer Ge6[CH(SiMe3)2]6 has a prismane structure as shown in
Fig. 14.7.3(e). The Ge–Ge distances within the two triangular faces are 258
pm, being longer than those in the quadrilateral edges, which are 252 pm. On
the other hand, the hexamer (SnPh2)6 exists in the chair conformation, (as
shown in Fig. 14.7.3(f)) with Sn–Sn distances 277 to 278 pm.

Both Sn5(2,6-Et2C6H3)6 and Sn7(2,6-Et2C6H3)8 have a pentastanna[1.1.1]
propellane structure, which consists of three fused three-membered rings, as
shown in Figs. 14.7.3(g) and (h). In these two compounds, the bridgehead
Sn atoms each have all four bonds directed to one side of the relevant atom,
thus forming “inverted configuration” Sn· · · Sn bonds, the distances of which

iranchembook.ir/edu

https://iranchembook.ir/edu


Group 14 Elements 553

are 336.7 and 334.8 pm, respectively. These distances far exceed the longest
known Sn–Sn single-bond length of 280 pm. These structures are also similar to
that of 1-cyanotetracyclo-decane [Fig. 14.3.5(d)], in which the two bridgehead
C atoms form a very long (164.3 pm) C–C bond.

The octagermacubanes Ge8(CMeEt2)8 and Ge8(2,6-Et2C6H3)8 have a cubic
structure, as shown in Fig. 14.7.3(i), with Ge–Ge bond lengths 247.8 to 250.3
pm, with a mean value of 249.0 pm. The polycyclic octagermane Ge8

tBu8Br2
forms a chiral C2 symmetric skeleton, as shown in Fig. 14.7.3(j). The average
Ge–Ge bond length is 248.4 pm.

The pentaprismane skeleton of Sn10(2,6-Et2C6H3)10 is composed of five
four-membered rings and two five-membered rings, as shown in Fig. 14.7.3(k).
The average Sn–Sn bond length is 285.6 pm.
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R
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R R

R

R

[Sn8R6]2-; R = Si(SiMe3)3 [Sn9R3]; R = C6H3(C6H2
iPr3-2,4,6)2-2,6

[Sn10R3]− Sn@[Sn14Z6]

[Si8R6];R = SitBu3

(a) (b) (c)

(d) (e) (f)

Sn8R4; R = C6H3(C6H2Me3-2,4,6)2-2,6

Z = N(2,6-iPr2C6H3)(SiMe2X); X = Me, PhR = C6H3(C6H2Me3-2,4,6)2-2,6

Z Z

Z

Z

Z Z

Fig. 14.7.4.
Structures of some metalloid clusters of tin and the isoleptic compound Si8(SitBu3)6.

14.7.4 Metalloid clusters of Sn

Literature information is available for high-nuclearity metalloid clusters
[SnxRy] (x > y), including [Sn8R4], [Sn8R6]2−, [Sn9R3], and [Sn10R3]−, in
which R represents a bulky aryl or silyl ligand, and their structures are displayed
in Figs. 14.7.4(a)–(d), respectively.

The largest tin clusters known to date are the pair of isoleptic amido
complexes [Sn15Z6] (Z = N(2,6-iPr2C6H3)(SiMe2X); X = Me, Ph). Both
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possess a common polyhedral core consisting of fourteen tin atoms that fully
encapsulates a central tin atom. The eight ligand-free peripheral tin atoms con-
stitute the corners of a distorted cube, with each of its six faces capped by a
Sn{N(2,6-iPr2C6H3)(SiMe2X)} moiety, as shown in Fig. 14.7.4(e). The edges
of the Sn14 polyhedron have an average length of 302 pm. The Sn(central)–
Sn bonds in this high-nuclearity Sn@Sn14 metalloid cluster have an average
length of 315 pm, which is close to the corresponding value of 310 pm in
gray tin (α-Sn, diamond lattice) but considerably longer than that in white tin
(β-Sn).

Interestingly, the isoleptic compound Si8R6 (R = SitBu3; “supersilyl”) does
not exhibit a cubanoid cluster skeleton, but instead contains an unsubstituted
Si2 dumbbell with a short Si–Si single bond of 229(1) pm, which is sandwiched
between two almost parallel Si3R3 rings, as illustrated in Fig. 14.7.4(f). Each
terminal of the Si2 dumbbell acts as a bridgehead with an “inverted” tetrahedral
bond configuration analogous to that found in 1-cyano-tetracyclodecane (see
Section 14.3.5), forming two normal Si–Si bonds of 233 pm to one Si3R3 ring
and a longer one of 257 pm to the other. In the crystal structure, the atoms of
the Si2 dumbbell are disordered over six sites.

An intermetalloid cluster is a metalloid cluster composed of more than one
metal, for example [Ni2@Sn17]4−. Known intermetalloid clusters involving
other Group 14 elements and various transition metals include [Pd2@Ge18]4−,
[Ni(Ni@Ge9)2]4−, [Ni@Pb10]2−, and [Pt@Pb12]2−; in the latter complex, the
Pt atom is encapsulated by a Pb12 icosahedron (see Fig. 9.6.18).

14.7.5 Donor–acceptor complexes of Ge, Sn and Pb

The system R2Sn→SnCl2, with R = CH(SiMe3)C9H6N), provides the first
example of a stable donor–acceptor complex between two tin centers, as shown
in Fig. 14.7.5. The alkyl ligand R is bonded in a C, N -chelating fashion to a
Sn atom which adopts a pentacoordinate square-pyramidal geometry. This Sn
atom is bonded directly to the other Sn atom of the SnCl2 fragment with a Sn–
Sn distance of 296.1 pm, which is significantly longer than the similar distance
of 276.8 pm in R2Sn = SnR2 [R = CH(SiMe3)2], and much shorter than the
similar distance of 363.9 pm in Ar2Sn–SnAr2 [Ar = 2,4,6-(CF3)3C6H2]. The
fold angle defined as the angle between the Sn–Sn vector and the SnCl2 plane
is 83.3◦.

Some donor–acceptor complexes containing Ge–Ge and Sn–Sn bonds are
listed in Table 14.7.2.

The compounds listed in Table 14.7.2 have the formal formula: which indicate
the presence of a M=M double bond, but the measured M–M bond lengths vary
over a wide range. The M2C4 (or M2Si4) skeleton is not planar, in contrast with
that of an olefin. Thus the properties of the formal M=M bonds are diverse and
interesting. Two examples listed in this table are discussed below.

As reference data, the “normal” values M–M single-bond lengths are cal-
culated from the covalent radii (Table 3.4.3) and the “normal” bond lengths
of M=M double bonds are estimated as 0.9 × (single-bond lengths). Thus the
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Fig. 14.7.5.
Structure of the R2Sn→SnCl2 (R =
CH(SiMe3)C9H6N). (a) Molecular
structure (the SiMe3 groups have been
omitted for clarity), (b) the lone pair
forming a donor–acceptor bond.

“normal” bond lengths are

Ge–Ge 244 pm, Ge = Ge 220 pm,

Sn–Sn 280 pm, Sn = Sn 252 pm.

Compound A in Table 14.7.2, (Me3SiN=PPh2)2C=Ge→Ge=C(Ph2P=
NSiMe3)2, comprises two germavinylidene units Ge=C(Ph2P=NSiMe3)2
bonded together in a head-to-head manner. The molecule is asymmetrical with

Table 14.7.2. Some donor–acceptor complexes with Ge–Ge and Sn–Sn bonds

Compound∗ M–M bond length (pm)

[Ge(2,6-Et2C6H3)2]2 Ge–Ge, 221.3
[Ge(2,6-i-C3H7)2C6H3]{2,4,6-Me3C6H2}2 Ge–Ge, 230.1
[Ge{CH(SiMe3)2}2]2 Ge–Ge, 234.7
A Ge–Ge, 248.3
[Sn{CH(SiMe3)2}2]2 Sn–Sn, 276.8
[Sn{Si(SiMe3)3}2]2 Sn–Sn, 282.5
[Sn(4,5,6-Me3-2-tBuC6H)2]2 Sn–Sn, 291.0
B Sn–Sn, 300.9
C Sn–Sn, 308.7
[Sn{2,4,6-(CF3)3C6H2}2]2 Sn–Sn, 363.9
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Fig. 14.7.6.
Sn–Sn bonding model in
[Sn{CH(SiMe3)2}2]2: (a) overlap of
atomic orbitals, (b) representation of the
donor–acceptor bonding.
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two different Ge environments: four-coordinate Ge and two-coordinate Ge, and
shows trans linkage of the C=Ge–Ge=C skeleton, the torsion angle about the
Ge–Ge axis being 43.9◦. The Ge–Ge bond distance of 248.3 pm is consistent
with a single bond, and both observed Ge–C bond lengths 190.5 and 190.8 pm
are between those of standard Ge–C and Ge=C bonds. Therefore, the Ge–Ge
bond in compound A is more approximately described as a donor–acceptor
interaction similar to that of R2Sn→SnCl2 (as shown in Fig. 14.7.5), and the
four-coordinate Ge behaves as the donor and the two-coordinate Ge as a Lewis
acid center.

The compound [Sn{CH(SiMe3)2}2]2 does not possess a planar Sn2C4 frame-
work, and the Sn–Sn bond length (276.8 pm) is too long to be consistent with a
“normal” double bond. A bonding model involving overlap of filled sp2 hybrids
and vacant 5p atomic orbitals has been suggested, as shown in Fig. 14.7.6. The
structure is similar to that in Fig. 14.4.7(e), but the trans-bent angle is larger.

The digermanium alkyne analog 2,6-Dipp2H3C6Ge≡GeC6H3-2,6-Dipp2
(Dipp = C6H3-2,6-iPr2) was synthesized by the reaction of Ge(Cl)C6H3-2,6-
Dipp2 with potassium in THF or benzene. It was isolated as orange-red crystals
and fully characterized by spectroscopic methods and X-ray crystallography.
The digermyne molecule is centrosymmetric with a planar trans-bent C(ipso)–
Ge–Ge–C(ipso) skeleton, and the central aryl ring of the terphenyl ligand is
virtually coplanar with the molecular skeleton, each flanking aryl ring being
oriented at ∼82◦ with respect to it. The structural parameters are C–Ge, 199.6
pm; Ge–Ge, 228.5 pm (considerably shorter than the Ge–Ge single-bond dis-
tance of approx. 244 pm); C–Ge–Ge, 128.67◦. The measured Ge–Ge distance
lies on the short side of the known range (221–46 pm) for digermenes, the
digermanium analogs of alkenes.

Fig. 14.7.7.
Ge–Ge bonding model in Ar′Ge≡GeAr′
(Ar′ =2,6-(C6H3-2,6-iPr2)2C6H3):
(a) overlap of atomic orbitals, showing
that donor–acceptor σ bonding occurs in
the molecular plane, and (b)
representation of the multiple bonding.
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By analogy to the model used to describe a Sn=Sn double bond, the observed
geometry of the digermyne molecule and its multiple bonding character can be
rationalized as shown in Fig. 14.7.7. Each germanium atom is considered to be
sp hybridized in the C–Ge–Ge–C plane; a singly filled sp hybrid orbital is used
to form a covalent bond with the terphenyl ligand, and the other sp hybrid is
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completely filled and forms a donor bond with an empty in-plane 4p orbital on
the other germanium atom. Two half-filled 4pz orbitals, one on each germanium
atom and lying perpendicular to the molecular skeleton, then overlap to form
a much weaker π bond. This simplified bonding description is consistent with
the trans-bent molecular geometry and the fact that the formal Ge≡Ge bond
length is not much shorter than that of the Ge=Ge bond.

The distannyne Ar′SnSnAr′ and diplumbyne Ar∗PbPbAr∗ (Ar∗ = 2,4,6-
(C6H3-2,6-iPr2)3C6H2) have also been synthesized as crystalline solids and
fully characterized. They are isostructural with digermyne, and their struc-
tural parameters are Sn–Sn, 266.75 pm; C–Sn–Sn, 125.24◦; Pb–Pb, 318.81
pm; C–Pb–Pb, 94.26◦. Recent studies of the chemical reactivities of digermynes
showed that it has considerable diradical character, which can be represented by
a canonical form with an unpaired electron on each germanium atom, i.e., neg-
ligible overlap between the half-filled 4pz orbitals. The reactivity of the alkyne
analogs decreases in the order Ge> Sn > Pb. In the diplumbyne, the Pb–Pb bond
length is significantly longer than the value of approximately 290 pm normally
found in organometallic lead–lead bonded species, e.g., Me3PbPbMe3. This
suggests that a lone pair resides in the 6s orbital of each lead atom in the dilead
compound, and a single σ bond results from head-to-head overlap of 6p orbitals.

In summary, it is noted that multiple bonding between the heavier Group 14
elements E (Ge, Sn, Pb) differs in nature in comparison with the conventional σ
andπ covalent bonds in alkenes and alkynes. In an E=E bond, both components
are of the donor–acceptor type, and a formal E≡E bond involves two donor–
acceptor components plus a p–p π bond. There is also the complication that the
bond order may be lowered when each E atom bears an unpaired electron or
a lone pair. The simple bonding models provide a reasonable rationale for the
marked difference in molecular geometries, as well as the gradation of bond
properties in formally single, double and triple bonds, in compounds of carbon
versus those of its heavier congeners.
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15Structural Chemistry of
Group 15 Elements

15.1 The N2 molecule, all-nitrogen ions and dinitrogen
complexes

15.1.1 The N2 molecule

Nitrogen is the most abundant uncombined element in the earth’s surface. It is
one of the four essential elements (C, H, O, N) that support all forms of life. It
constitutes, on the average, about 15% by weight in proteins. The industrial fix-
ation of nitrogen in the production of agricultural fertilizers and other chemical
products is now carried out on a vast scale.

The formation of a triple bond, N≡N, comprising one σ and two π com-
ponents with bond length 109.7 pm, accounts for the extraordinary stability
of the dinitrogen molecule N2; the energy level diagram for N2 is shown in
Fig. 3.3.3(a). Gaseous N2 is rather inert at room temperature mainly because
of the great strength of the N≡N bond and the large energy gap between the
HOMO and LUMO (∼8.6 eV), as well as the absence of bond polarity. The
high bond dissociation energy of the N2 molecule, 945 kJ mol−1, accounts for
the following phenomena:

(a) Molecular nitrogen constitutes 78.1% by volume (about 75.5% by weight)
of the earth’s atmosphere.

(b) It is difficult to “fix” nitrogen, i.e., to convert molecular nitrogen into other
nitrogen compounds by means of chemical reactions.

(c) Chemical reactions that release N2 as a product are highly exothermic and
often explosive.

15.1.2 Nitrogen ions and catenation of nitrogen

There are three molecular ions which consist of nitrogen atoms only.

(1) Nitride ion N3−

The N3− ion exists in salt-like nitrides of the types M3N and M3N2. In M3N
compounds, M is an element of group 1 (Li) or Group 11 (Cu, Ag). In M3N2
compounds, M is an element of group 2 (Be, Mg, Ca, Sr, Ba) or Group 12 (Zn,
Cd, Hg). In these compounds, the bonding interactions between N and M atoms
are essentially ionic, and the radius of N3− is 146 pm. Nitride Li3N exhibits
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high ionic conductivity with Li+ as the current carrier. The crystal structure of
Li3N has been discussed in Section 12.2.

(2) Azide N−3
The azide ion N−3 is a symmetrical linear group that can be formed by neutral-
ization of hydrogen azide HN3 with alkalis. The bent configuration of HN3 is
shown below:

124 pm

98 pm

113 pm

114˚
H

N N N

The Group 1 and 2 azides NaN3, KN3, Sr(N3)2 and Ba(N3)2 are well-
characterized colorless crystalline salts which can be melted with little decom-
position. The corresponding Group 11 and 12 metal azides such as AgN3,
Cu(N3)2 and Pb(N3)2, are shock-sensitive and detonate readily, and they are
far less ionic with more complex structures. The salt (PPh4)

+(N3HN3)
− has

been synthesized from the reaction of Me3SiN3 with (PPh4)(N3) in ethanol;
the (N3HN3)

− anion has a nonplanar bent structure consisting of distinct N−3
and HN3 units connected by a hydrogen bond, as shown in Fig. 15.1.1(a). In
Cu2(N3)2(PPh3)4 and [Pd2(N3)6]2−, N−3 acts either as a terminal or a bridging
ligand, as shown in Figs. 15.1.1(b) and (c), respectively. The azide ion N−3 can
also be combined with a metalloid ion such as As5+ to form [As(N3)6]−, as
shown in Fig. 15.1.1(d). Table 15.1.1 lists the coordination modes of N−3 in
its metal complexes; the highest-ligation µ-1,1,1,3,3,3 mode (h) was found to
exist in the double salt AgN3·2AgNO3.

The uranium(IV) heptaazide anion U(N3)
3−
7 has been synthesized as the

n-tetrabutylammonium salt. This is the first homoleptic azide of an actinide

Fig. 15.1.1.
Structures of some azide compounds:
(a) (N3HN3)−, (b) Cu(N3)2(PPh3)4, (c)
[Pd2(N3)6]2−, and (d) [As(N3)6]−.

272 pm
Cu

Ph3P

Ph3P NNN

NNN

Cu

PPh3

PPh3

118 pm

Pd Pd

NNN

NNN

N

N

N

NNN

NNN

N
N

N

122 pm

114 pm

As
N

2– –

(a) (b)

(c) (d)
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Table 15.1.1. Coordination modes of N−3 in metal complexes

M N N N M N N N M N N N
M M

N
M

M
N N M N

M

M
N N M N

M

M
N N

M

M

N
M

M
N N MM N

M

M
N N MM

M

M

(a)                                       (b)                                       (c)

(d)                                      (e)                                         (f)

(g)                                              (h)

as well as the first structurally characterized heptaazide. Two polymorphs of
(Bu4N)3[U(N3)7] were obtained from crystallization in CH3CN/CFCl3 (form
A) or CH3CH2CN (form B). FormAbelongs to space group Pa3̄ with Z = 8, and
hence the U atom and one of the three independent azide groups are located
on a crystallographic 3-axis. This results in a 1:3:3 monocapped octahedral
arrangement of the azide ligands around the central uranium atom, as illustrated
in Fig. 15.1.2(a). Form B crystallizes in space group P21/c with Z = 4, and the
azide ligands exhibit a distorted 1:5:1 pentagonal-bipyramidal coordination
mode, as shown in Fig. 15.1.2(b). The U–Nα bond lengths range from 232 to
243 pm.

Two isomeric polymorphs of [(C5Me5)2U(µ-N)U(µ-N3)(C5Me5)2]4 have
been synthesized and structurally characterized by X-ray crystallography. In
the tetrameric macrocycle, eight (η5-C5Me5)2U2+ units are charge-balanced
by four N−3 (azide) ligands and four formally N3− (nitride) ligands. Isomer A
has a (UNUN3)4 ring in a pseudo-crown (or chair) conformation, whereas that
of isomer B exhibits a pseudo-saddle (or boat) geometry, as shown in Fig. 15.1.3.
The observed U–N(azide) bond distances in the range 246.7-252.5 pm are longer
than typical U(IV)–N single bonds. The U–N(nitride) bond lengths in the range

(a) (b)

Fig. 15.1.2.
Molecular structure of U(N3)3−

7 in (a)
form A and (b) form B of the Bu4N+
salt. [Ref. M.-J. Crawford, A. Ellern and
P. Meyer, Angew. Chem. Int. Ed. 44,
7874–78 (2005).]
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Fig. 15.1.3.
Molecular skeleton of the (UNUN3)4
ring in two crystalline polymorphs of
[(C5Me5)2U(µ-N)U(µ-
N3)(C5Me5)2]4: pseudo-crown
conformation observed for isomeric form
A and pseudo-saddle observed for form
B. The pair of η5-C5Me5 groups bonded
to each uranium(IV) atom is not shown.
From W. J. Evans, S. A. Kozimor and J.
W. Ziller, Science 309, 1835–8 (2005). A B

204.7-209.0 pm are consistent with a bond order of 2 in a symmetrical bonding
scheme for each UNU segment, rather than an alternating single-triple-bond
pattern, as shown below:

UNU UNU UNU

symmetrical nitride bridging asymmetrical nitride bridging

(3) Pentanitrogen cation N5
+

The pentanitrogen cation N+
5 was first synthesized in 1999 as the white solid

N5
+AsF6

−, which is not very soluble in anhydrous HF but stable at −78◦C.
The N+

5 cation has a closed-shell singlet ground state, and its C2v symmetry was
characterized by Raman spectroscopy and NMR of 14N and 15N nuclei. A series
of 1:1 salts of N+

5 have also been prepared with the monoanions HF−2 (as the
adduct N+

5 HF−2 · nHF), BF−4 , PF−6 , SO3F−, (Sb2F11)
−, B(N3)

−
4 and P(N3)

−
6 .

A determination of the crystal structure of N+
5 (Sb2F11)

−, which is stable at
room temperature, yielded the structural parameters shown in Fig. 15.1.4. Note
that each terminal N–N–N segment in N+

5 deviates from exact linearity. A
description of the bonding in this cation is given in Chapter 5, Section 5.8.3.

The catenation of nitrogen refers to the tendency of N atoms to be connected
to each other, and is far lower than those of C and P. This is because the repulsion
of lone pairs on adjacent N atoms weakens the N–N single bond, and the lone
pairs can easily react with electrophilic species. The structures and examples of
known compounds that contain chains and rings of N atoms are listed in Table
15.1.2. Note that none of these has a linear configuration of nitrogen atoms.

Fig. 15.1.4.
Molecular dimensions of the
pentanitrogen cation N+

5 from crystal
structure analysis.

130 pm

111 pm

168˚

111˚

+

15.1.3 Dinitrogen complexes

Molecular nitrogen can react directly with some transition-metal compounds
to form dinitrogen complexes, the structure and properties of which are of
considerable interest because they may serve as models for biological nitrogen
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Table 15.1.2. Species containing catenated N atoms

Number of N atoms Chain or ring Example

3 [N–N–N]+ [H2NNMe2NH2]Cl
3 N–N=N MeHN–N=NH
4 N–N=N–N H2N–N=N–NH2, Me2N–N=N–NMe2
4 N–N–N–N (CF3)2N–N(CF3)–N(CF3)–N(CF3)2
5 N=N–N–N=N PhN=N–N(Me)–N=NPh
6 N=N–N–N–N=N PhN=N–N(Ph)–N(Ph)–N=NPh
8 N=N–N–N=N–N–N=N PhN=N–N(Ph)–N=N–N(Ph)–N=NPh

5
N

NN

N N
N

NN

N N
Ph

fixation and as intermediates in synthetic applications. The known coordination
modes of dinitrogen are discussed below and summarized in Table 15.1.3. The
skeletal views of dinitrogen coordination modes in some metal complexes are
shown in Fig. 15.1.5.

(1) η1-N2

The first complex containing molecular nitrogen as a ligand, [Ru(NH3)5(N2)]Cl2,
was synthesized and identified in 1965 [Fig. 15.1.5(a)]. The complex
(Et2PCH2CH2PEt2)2Fe(N2) exhibits trigonal bipyramidal coordination geom-
etry, with N2 lying in the equatorial plane, as shown in Fig. 15.1.5(a′). Most
examples of stable dinitrogen complexes have been found to belong to the η1–
N2 category, in which the dinitrogen ligand binds in a linear, end-on mode with
only a slightly elongated N–N bond length (112–24 pm) as compared to that
in gaseous dinitrogen (109.7 pm). The stable monomeric titanocene complexes
{(PhMe2Si)C5H4}2TiX (X = N2, CO) are isomorphous, with a crystallographic
C2 axis passing through the Ti atom and the η1–X ligand. The measured bond
distances (in pm) are Ti–N = 201.6(1), N–N = 111.9(2) for the dinitrogen
complex, and Ti–C = 197.9(2), C–O = 115.1(2) for the carbonyl complex.

(2) µ-(bis-η1)-N2

As a bridging ligand in dinuclear systems, dinitrogen may formally be classified
into three types.

(a) M–N≡N–M: This dinitrogen ligand corresponds to a neutral N2 molecule,
which uses its lone pairs to coordinate to two M atoms. Complexes
of this type show a relatively short N–N distance of 112–20 pm. In
[(η5-C5Me5)2Ti]2(N2), the binuclear molecular skeleton consists of two
(η5-C5Me5)2Ti moieties bridged by the N2 ligand in an essentially linear
Ti–N≡N–Ti arrangement, as shown in Fig. 15.1.5(b). The N–N distance is
116 pm (av.).

(b) M=N=N=M: This dinitrogen ligand corresponds to diazenido(-2). The
(N2)

2− anion coordinates to two M atoms. In (Mes)3Mo(N2)Mo(Mes)3
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(where Mes = 2,4,6-Me3C6H2), Mo=N=N=Mo forms a linear chain. The
length of the N–N distance is 124.3 pm.

(c) M≡N–N≡M: This dinitrogen ligand corresponds to hydrazido(-4). The
(N2)

4− anion coordinates to two M atoms. In [PhP(CH2SiMe2NPh2)2NbCl]2

(N2), the Nb      N–N      Nb moiety is linear, and the distance of N–N is 123.7
pm.

(3) µ3-η1: η1: η2-N2

In the [(C10H8)(C5H5)2Ti2](µ3–N2)[(C5H4)(C5H5)3Ti2] complex, the dinitro-
gen ligand is coordinated simultaneously to three Ti atoms, as shown in Fig.
15.1.5(c). The N–N distance is 130.1 pm.

(4) µ3-η1: η1: η1-N2

In the mixed-metal complex [WCl(py)(PMePh)3(µ3-N2)]2(AlCl2)2, both
WNN linkages are essentially linear, and the four metal atoms and two µ3–N2
ligands almost lie in the same plane, as shown in Fig. 15.1.5(d).

(5) µ-(η1: η2)-N2

In [PhP(CH2SiMe2NPh)2]2Ta2(µ-H)2(N2), the dinitrogen moiety is end-on
bound to one Ta atom and side-on bound to the other, as shown in Fig. 15.1.5(e).
The N–N distance of 131.9 pm is consistent with a formal assignment of the
bridging dinitrogen moiety as (N2)

4−. The shortest distance of the end-on Ta–
N bond is 188.7 pm, which is consistent with its considerable double-bond
character.

(6) µ-(bis-η2)-N2 (planar)
Figure 15.1.5(f) shows a planar, side-on bonded N2 ligand between two Zr
atoms in the compound [Cp′′2Zr]2(N2) [Cp′′ = 1,3-(SiMe2)2C5H3]. The N–N
bond length is 147 pm. Side-on coordination of the dinitrogen ligand appears
to be important for its reduction.

(7) µ-(bis-η2)-N2 (nonplanar)
In the compound Li{[(SiMe3)2N]2Ti(N2)}2, each Ti atom is side-on bound to
two N2 molecules, as shown in Fig. 15.1.5(g). The N–N distance is 137.9 pm.

(8) µ4-η1: η1: η2: η2-N2

In [Ph2C(C4H3N)2Sm]4(N2), the N2 moiety is end-on bound to two Sm atoms
and side-on bound to the other two, as shown in Fig. 15.1.5(h). The bond lengths
are: N–N 141.2 pm, Sm(terminal)–N 217.7 pm and Sm(bridging)–N 232.7 pm.

(9) µ5-η1: η1: η2: η2: η2-N2

In {[(–CH2–)5]4calixtetrapyrrole}2Sm3Li2 (N2)[Li(THF)2]·(THF), the N2
moiety is end-on bound to two Li atoms and side-on bound to three Sm atoms,
as shown in Fig. 15.1.5(i). The bond lengths are N–N 150.2 pm, Sm–N 233.3
pm(av.), and Li–N 191.0 pm(av.).

iranchembook.ir/edu

https://iranchembook.ir/edu


Group 15 Elements 567

Table 15.1.3. Coordination modes of dinitrogen

Coordination mode Example dN−N (pm) Structure in Fig.15.1.5

[Ru(NH3)5(N2)]2+ 112 (a)

(depe)2Fe(N2) 113.9 (a′)

[(C5Me5)2Ti]2(N2) 116 (av.) (b)

(Mes)3Mo(N2)Mo(Mes)3 124.3
[PhP(CH2SiMe2NPh2)2NbCl]2(N2) 123.7

[(C10H8)(C5H5)2Ti2]- 130.1 (c)
[(C5H4)(C5H5)3Ti2](N2)

[WCl(py)(PMePh)3(N2)]2(AlCl2)2 125 (d)

[PhP(CH2SiMe2NPh)2]2Ta2(µ-H)2(N2) 131.9 (e)

[Cp′′2Zr]2(N2) 147 (f)

Li{[(SiMe3)2N]2Ti(N2)}2 137.9 (g)

[Ph2C(C4H3N)2Sm]4(N2) 141.2 (h)

{[(–CH2–)5]4calixtetrapyrrole}2Sm3Li2(N2) 150.2 (i)

[(THF)2Li(OEPG)Sm]2Li4(N2) 152.5 ( j)
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Fig. 15.1.5.
Dinitrogen coordination modes in metal complexes.

(10) µ6-η1: η1: η2: η2: η2: η2-N2

In [(THF)2Li(OEPG)Sm]2Li4(N2) (OEPG = octaethylporphyrinogen), the N2
moiety is end-on bound to two Li atoms and side-on bound to two Sm atoms
and two Li atoms, as shown in Fig. 15.1.5(j). The bond lengths are N–N 152.5
pm, Sm–N 235.0 pm (av.), and Li–N 195.5 pm(av.).

The bonding of dinitrogen to transition metals may be divided into the “end-
on” and “side-on” categories. In the end-on arrangement, the coordination of
the N2 ligand is accomplished by a σ bond between the 2σg orbital of the
nitrogen molecule and a hybrid orbital of the metal, and by π back-bonding
from a doubly degenerate metal dπ orbitals (dxz , dyz) to the vacant 1π∗g orbitals
(π∗xz , π∗yz) of the nitrogen molecule, as shown in Fig. 15.1.6.

In the side-on arrangement, the bonding is considered to arise from two
interdependent components. In the first part, σ overlap between the filled π
orbital of N2 and a suitably directed vacant hybrid metal orbital forms a donor
bond. In the second part, the M atom and N2 molecule are involved in two
back-bonding interactions, one having π symmetry as shown in Fig. 15.1.7(a),
and the other with δ symmetry as shown in Fig. 15.1.7(b). These π and δ-back
bonds synergically reinforce the σ bond.
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M NN

x

z

y

dxz π*xz

Fig. 15.1.6.
Orbital interactions of N2 and
transition-metal M in end-on coordinated
dinitrogen complexes. The dπ-1π*g
overlap shown here also occurs in the yz
plane.

Since the overlap of a δ bond should be less effective than that of a π bond,
the end-on mode is generally preferred over the side-on form.

The transition-metal dinitrogen complexes have been investigated theoreti-
cally, and the results lead to the following generalizations:

(a) Both σ donation and π or δ back donation are related to the formation of the
metal-nitrogen bond, the former interaction being more important.

(b) The N–N bond of the side-on complex is appreciably weakened by electron
donation from the bonding π and σ orbitals of the N2 ligand to the vacant
orbitals of the metal.

(c) The end-on coordination mode takes precedence over the side-on one. The
weak N–N bond in the side-on complex indicates that the N2 ligand in
this type of compound is fairly reactive. The reduction of the coordinated
nitrogen molecule may proceed through this activated form.

M
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N

N N
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+

+ +

+
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σ and π δ

+

–
Fig. 15.1.7.
Orbital interactions of N2 and
transition-metal M in side-on coordinate
dinitrogen complexes.

15.2 Compounds of nitrogen

15.2.1 Molecular nitrogen oxides

Nitrogen displays nine oxidation states ranging from −3 to +5. Since it is less
electronegative than oxygen, nitrogen forms oxides and oxidized compounds
with an oxidation number between +1 and +5. Eight oxides of nitrogen, N2O,
NO, N2O2, N2O3, NO2, N2O4, N2O5 and N4O, are known, and the ninth,
NO3, exists as an unstable intermediate in various reactions involving nitrogen
oxides. Their structures and some properties are presented in Table 15.2.1 and
Fig. 15.2.1.

All nitrogen oxides have planar structures. Nitrogen displays all its positive
oxidation states in these compounds, and in N2O, N2O3 and N4O the N atoms in
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Table 15.2.1. Structure and properties of the nitrogen oxides

Formula Name Oxidation
number

Structure
(in Fig.15.2.1)

'H 0
f (kJ mol−1) Properties

N2O Dinitrogen monoxide
(dinitrogen oxide,
nitrous oxide,
laughing gas)

+1 or (0,+2) (a) linear
C∞v

82.0 mp 182.4 K, bp 184.7 K,
colorless gas, fairly unreactive
with pleasuring odor and
sweet taste

NO Nitrogen oxide (nitric
oxide, nitrogen
monoxide)

+2 (b) linear
C∞v

90.2 mp 109 K, bp 121.4 K,
colorless, paramagnetic gas

(NO)2 Dimer of nitrogen
oxide

+2 (c), (d) — —

N2O3 Dinitrogen trioxide +3 or (+2,+4) (e) planar
Cs

80.2 mp 172.6 K, dec. 276.7 K, dark
blue liquid, pale blue solid,
reversibly dissociates to NO
and NO2

NO2 Nitrogen dioxide +4 (f) C2v 33.2 orange brown, paramagnetic
gas, reactive

N2O4 Dinitrogen tetroxide +4 (g) planar
D2h

9.16 mp 262.0 K, bp 294.3 K,
colorless liquid, reversibly
dissociates to NO2

N2O5 Dinitrogen pentoxide +5 (h) planar
C2v

11.3 (gas)
−43.1 (cryst.)

sublimes at 305.4 K, colorless,
volatile solid consisting of
NO+

2 and NO−3 ; exists as
N2O5 in gaseous state

N4O Nitrosyl azide ∗ (i) planar
Cs

−297.3 pale yellow solid (188 K)

∗ The assignment of an oxidation number is not appropriate as only one of the four nitrogen atoms is bonded to the oxygen atom in the N4O
molecule.

molecule have different oxidation states. In the gaseous state, six stable nitrogen
oxides exist, each with a positive heat of formation primarily because the N≡N
bond is so strong. The structure and properties of nitrogen oxides are presented
in Table 15.2.1.

Fig. 15.2.1.
Structure of nitrogen oxides (bond length
in pm): (a) N2O, (b) NO, (c) N2O2 (in
crystal), (d) N2O2 (in gas), (e) N2O3, (f)
NO2, (g) N2O4, (h) N2O5, (i) N4O.
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(1) N2O
Dinitrogen oxide (nitrous oxide), N2O, is a linear unsymmetrical molecule with
a structure similar to its isoelectronic analog CO2:

−
N ←

+
N = O ←→ N ≡ +

N−
−
O .

Dinitrogen oxide is unstable and undergoes dissociation when heated to about
870 K:

N2O −→ N2 + 1/2O2.

The activation energy for this process is high (∼520 kJ mol−1), so N2O is
relatively unreactive at room temperature. Dinitrogen oxide has a pleasant odor
and sweet taste, and its past use as an anaesthetic with undesirable side effect
accounts for its common name as “laughing gas.”

(2) NO and (NO)2

The simplest thermally stable odd-electron molecule known is nitrogen monox-
ide, NO, which is discussed in the next section. High-purity nitrogen monoxide
partially dimerizes when it liquefies to give a colorless liquid. The heat of
dissociation of the dimer is 15.5 kJ mol−1. The structure of the (NO)2 dimer
in the crystalline and vapor states are shown in Figs. 15.2.1(c) and 15.2.1(d),
respectively. The (NO)2 dimer adopts the cis arrangement with C2v symmetry.
In the crystalline state, the N–N distance is 218 pm (223.7 pm in the gas phase),
and the O· · ·O distance is 262 pm. The very long N–N distance has not been
accounted for satisfactorily in bonding models.

(3) N2O3

Dinitrogen trioxide is formed by the reaction of stoichiometric quantities of NO
and O2:

2NO + 1/2O2 → N2O3.

At temperatures below 172.6 K, N2O3 crystallizes as a pale blue solid. On
melting it forms an intensely blue liquid which, as the temperature is raised, is
increasingly dissociated into NO and an equilibrium mixture of NO2 and N2O4.
This dissociation occurs significantly above 243 K and the liquid assumes a
greenish hue resulting from the brown color of NO2 mixed with the blue. The
N–N distance of the N2O3 molecule, 186.9 pm, is considerably longer than the
typical N–N single bond (145 pm) in hydrazine, H2N–NH2.

(4) NO2 and N2O4

Nitrogen dioxide and dinitrogen tetroxide are in rapid equilibrium that is highly
dependent on temperature. Below the melting point (262.0 K) the oxide con-
sists entirely of colorless, diamagnetic N2O4 molecules. As the temperature is
raised to the boiling point (294.3 K), the liquid changes to an intense red-brown
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colored, highly paramagnetic phase containing 0.1% NO2. At 373 K, the pro-
portion of NO2 increases to 90%. The configuration, bond distances, and bond
angles of NO2 and N2O4 are given in Figs. 15.2.1(f) and 15.2.1(g). In view
of the large bond angle of NO2 and its tendency for dimerization, bonding in
the molecule can be described in terms of resonance between the following
canonical structures:

N N N N
O O O O O O OO

The N–N distance in planar N2O4 is 175 pm, with a rotation barrier of about
9.6 kJ mol−1. Although the N–N bond is of the σ type, it is lengthened because
the bonding electron pair is delocalized over the entire N2O4 molecule with a
large repulsion between the doubly occupied MOs on the two N atoms.

(5) N2O5 and NO3

Nitrogen pentoxide, N2O5, is a colorless, light- and heat-sensitive crystalline
compound that consists of linear NO+

2 cations (N–O 115.4 pm) and planar NO−3
anions (N–O 124 pm). In the gas phase N2O5 is molecular but its configuration
and dimensions have not been reliably measured. Also, N2O5 is the anhydride
of nitric acid and can be obtained by carefully dehydrating the concentrated
acid with P4O10 at low temperatures:

4HNO3 + P4O10
−10◦C−−−→ 2N2O5 + 4HPO3.

The existence of the fugitive, paramagnetic trioxide NO3 is also implicated
in the N2O5-catalyzed decomposition of ozone, and its concentration is suffi-
ciently high for its absorption spectrum to be recorded. It has not been isolated
as a pure compound, but probably has a symmetrical planar structure like that
of NO−3 .

(6) N4O
Nitrosyl azide, N4O, is a pale yellow solid formed by the reaction of activated,
anhydrous NaN3 and NOCl, followed by low-temperature vacuum sublimation.
The Raman spectrum and ab initio calculation characterized the structure of
N4O as that shown in Fig. 15.2.1(i). The bonding in the N4O molecule can be
represented by the following resonance structures:

N N N

N
O N N N

N
O N N N

N
O

+–

... . . .

. . . .
– ++ –

..
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(7) Molecule of the year for 1992: nitric oxide
Nitric oxide, NO, was named molecule of the year for 1992 by the journal
Science. It is one of the most extensively investigated molecules in inorganic
and bioinorganic chemistry.

Nitric oxide is biosynthesized in animal species, and its polarity and small
molecular dimensions allow it to readily diffuse through cell walls, acting as
a messenger molecule in biological systems. It plays an important role in the
normal maintenance of many important physiological functions, including neu-
rotransmission, blood clotting, regulation of blood pressure, muscle relaxation,
and annihilation of cancer cells.

The valence shell electron configuration of NO in its ground state is
(1σ)2(1σ∗)2(1π)4(2σ)2(1π∗)1, which accounts for the following properties:

(a) The NO molecule has a net bond order of 2.5, bond energy 627.5 kJ mol−1,
bond length 115 pm, and an infrared stretching frequency of 1840 cm−1.

(b) The molecule is paramagnetic in view of its unpaired π∗ electron.
(c) NO has a much lower ionization energy (891 kJ mol−1 or 9.23 eV) than

N2 (15.6 eV) or O2 (12.1 eV).
(d) NO has a dipole moment of 0.554× 10−30 C m, or 0.166 Debye.
(e) Employing its lone-pair electrons, NO serves as a terminal or bridging

ligand in forming numerous coordination compounds.
(f) NO is thermodynamically unstable ('Go = 86.57 kJ mol−1, 'So =

217.32 kJ mol−1 K−1) and decomposes to N2 and O2 at high temperature.
It is capable of undergoing a variety of redox reactions. The electrochem-
ical oxidation of NO around 1.0 V has been used to devise NO-selective
amperometric microprobe electrodes to detect its release in biological
tissues.

As a result of its unique structure and properties, the NO molecule exhibits a
wide variety of reactions with various chemical species. In particular, it readily
releases an electron in the antibonding π∗ orbital to form the stable nitrosyl
cation NO+, increasing the bond order from 2.5 to 3.0, so that the bond distance
decreases by 9 pm. The NO species in an aqueous solution of nitrous acid,
HONO, is NO+:

HONO + H+ −→ NO+ + H2O.

There are many nitrosyl salts, including (NO)HSO4, (NO)ClO4, (NO)BF4,
(NO)FeCl4, (NO)AsF6, (NO)PtF6, (NO)PtCl6, and (NO)N3.

Nitrosyl halides are formed when NO reacts with F2, Cl2, and Br2, and they
all have a bent structure:

N O

X

X = F, X–N 152 pm, N=O 114 pm, X–N=O 110◦

X = Cl, X–N 197 pm, N=O 114 pm, X–N=O 113◦

X = Br, X–N 213 pm, N=O 114 pm, X–N=O 117◦
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Because of its close resemblance to O2 and its paramagnetism, NO has been
used extensively as an O2 surrogate to probe the metal environment of var-
ious metalloproteins. In particular, NO has been shown to bind to Fe2+ in
heme-containing oxygen-transporting proteins, in a fashion nearly identical
to O2, with the important consequence of rendering the complex paramag-
netic and thus detectable by EPR spectroscopy. Since the unpaired electron
assumes appreciable iron d-orbital character, analysis of the EPR characteris-
tics of hemo–protein nitrosyl complexes yields valuable information on both
the ligand-binding environment around the heme and on the conformational
state of the protein.

Nitric oxide can bind to metals in both terminal and bridging modes to
give metal nitrosyl complexes. Depending upon the stereochemistry of the
complexes, NO may exhibit within one given complex either NO+ or NO−

character, as illustrated in Table 15.2.2.
Nitric oxide contains one more electron than CO and generally behaves as a

three-electron donor in metal nitrosyl complexes. Formally this may be regarded
as the transfer of one electron to the metal atom, thereby reducing its oxidation
state by one, followed by coordination of the resulting NO+ to the metal atom
as a two-electron donor. This is in accordance with the general rule that three
terminal CO groups in a metal carbonyl compound may be replaced by two
NO groups. In this type of bonding the M–N–O bond angle would formally
be 180◦. However, in many instances this bond angle is somewhat less than
180◦, and slight bent M–N–O groups with angles in the range 165◦ to 180◦ are
frequently found.

In a second type of bonding in nitrosyl coordination compounds, the M–N–O
bond angle lies in the range of 120◦ to 140◦ and the NO molecule acts as a one-
electron donor. Here the situation is analogous to XNO compounds and the
M–N bond order is one.

It should be emphasized that the NO+ and NO− “character” of NO and the
linear or bent angle in a nitrosyl complex do not necessarily imply that NO
would be released from the complex in the free form NO or as NO+ or NO−.

Table 15.2.2. Two types of MNO coordination geometry.

M–N–O NM
O

Bond angle 165◦ – 180◦ 120◦ – 140◦
M–N distance ∼ 160 pm > 180 pm
NO frequency 1650 – 1985 cm−1 1525 – 1590 cm−1

Chemical properties Electrophilic; Nucleophilic;
NO+ similar to CO: NO− similar to O2:

–
M =

+
N = O NM

O
Ligand behavior three-electron donor one-electron donor
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Table 15.2.3. Oxo-acids of nitrogen

Formula Name Properties Structure

HON=NOH Hyponitrous acid Weak acid; salts are known trans form,
Fig. 15.2.3 (a)

H2NNO2 Nitramide Isomeric with hyponitrous acid Fig. 15.2.2 (a)
HNO Nitroxyl Reactive intermediate; salt known Fig. 15.2.2 (b)
H2N2O3 Hyponitric acid Known only in solution and as salts
HNO2 Nitrous acid Unstable, weak acid Fig. 15.2.2 (c)
HNO3 Nitric acid Stable, strong acid Fig. 15.2.2 (d)
H3NO4 Orthonitric acid Acid unknown; Na3NO4 and K3NO4 have

been prepared
Tetrahedral

NO3−
4 ,

Fig. 15.2.3(f)

15.2.2 Oxo-acids and oxo-ions of nitrogen

The oxo-acids of nitrogen known either as the free acids or in the form of their
salts are listed in Tables 15.2.3 and 15.2.4. The structures of these species are
shown in Figs. 15.2.2 and 15.2.3.

(1) Hyponitrous acid, H2N2O2

Spectroscopic data indicate that hyponitrous acid, HON=NOH, has the planar
trans configuration. Its structural isomer nitramide, H2N–NO2, is a weak acid.
The structure of nitramide is shown in Fig. 15.2.2(a); in this molecule, the angle
between the NNO2 plane and the H2N plane is 52◦. Both trans and cis forms of
the hyponitrite ion, (ONNO)2−, are known. The trans isomer, as illustrated in
Fig. 15.2.3(a), is the stable form with considerable π bonding over the molecular
skeleton; in the cis isomer, the N=N and N–O bond lengths are 120 and 140
pm, respectively.

(2) Nitroxyl, HNO
This is a transient species whose structure is shown in Fig. 15.2.2(b). The exis-
tence of the NO− anion has been established by single-crystal X-ray analysis
of (Et4N)5[(NO)(V12O32)], in which the NO− group lies inside the cage of

Table 15.2.4. The nitrogen oxo-ions

Oxiation
number

Formula Name Structure (Fig. 15.2.3) Properties

+1 N2O2−
2 Hyponitrite trans, C2h, (a) Reducing agent

cis, C2v (not shown)
+2 N2O2−

3 Hyponitrate trans, Cs, (b) Reducing agent
cis, Cs, (c)

+3 NO−2 Nitrite Bent,C2v, (d), bond angle 115◦ Oxidizing or reducing
agent

+5 NO−3 Nitrate Planar, D3h, (e) Oxidizing agent

+5 NO3−
4 Orthonitrate Tetrahedral, Td, (f) Oxidizing agent

+3 NO+ Nitrosonium C∞v, (g) Oxidizing agent
+5 NO+

2 Nitronium D∞v, (h) Oxidizing agent
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Fig. 15.2.2.
Structures of two amides and two
oxo-acids of nitrogen: (a) H2N2O2, (b)
HNO, (c) HNO2, and (d) HNO3.

N N

H
H

O

O

(a)

143

100

115˚ 118
130˚

108.6˚

N O

H

(b)
121.2

106.3

O N

O

H

143.3
102.1˚

95.4

117.7

(c)

O N

O

H

140.6

102˚
96

121

116˚

O

121
130˚

(d)

110.7˚

(V12O32)
4−. The bond length of NO− is 119.8 pm, which is longer than that of

the neutral molecule NO, 115.0 pm.

(3) Hyponitric acid, H2N2O3

Hyponitric acid has not been isolated in pure form, but its salts are known.
In the hyponitrate anion N2O2−

3 , both N atoms each bears a lone pair

O N N
O

O . The structure of the anion adopts a non-planar configura-
tion, which can exist in both cis and trans forms, as shown in Figs. 15.2.3(b)
and 15.2.3(c).

Fig. 15.2.3.
Structure of nitrogen oxo-ions (bond
lengths in pm): (a) trans-(ON=NO)2−,
(b) cis-N2O2−

3 , (c) trans-N2O2−
3 , (d)

NO−2 , (e) NO−3 , (f) NO3−
4 , (g) NO+, (h)

NO+
2 .

(a) (b) (c)

(d) (e)

(g) (h)

(f)

123.7

124

106 115

1+

122

115˚

138.0

2– 2– 2–

3–

139
1–

1+

1–

(4) Nitrous acid, HNO2

Although nitrous acid has never been isolated as a pure compound, its aqueous
solution is a widely used reagent. Nitrous acid is a moderately weak acid with
pKa = 3.35 at 291 K. In the gaseous state, it adopts the trans-planar structure,
as shown in Fig. 15.2.2(c).
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The nitrite ion, NO−2 is bent with C2v symmetry, and its structure can be
represented by two simple resonance formulas:

O
N

O O
N

O

....

– –

Many stable metal nitrites (Li+, Na+, K+, Rb+, Cs+, Ag+, Tl+, Ba2+, NH+
4 )

contain the bent (O–N–O)− anion with N–O bond length in the range of 113-123
pm, and the angle 116◦–132◦, as shown in Fig. 15.2.3(d).

(5) Nitric acid, HNO3

Nitric acid is one of the three major inorganic acids in the chemical indus-
try. Its structural parameters in the gaseous state are shown in Fig. 15.2.2(d).
The crystals of nitric acid monohydrate consist of H3O+ and NO−3 , which are
connected by strong hydrogen bonds. In the acid salts, HNO3 molecules are
bound to nitrate ions by strong hydrogen bonds. For example, the structures
of [H(NO3)2]− in K[H(NO3)2] and [H2(NO3)3]− in (NH4)H2(NO3)3 are as
follows:

O

N
O O

H
O

N

O

O

129 pm

245 pm
ON

O

O

H O
N

O

O H O N

O

O

122 pm

134 pm 126 pm
121 pm

124 pm

260 pm

−
−

The nitrate ion NO−3 has D3h symmetry, as shown in Fig. 15.2.3(e), and its
bonding can be represented by the following resonance structures:

O

N
O O

−
+

O

N
O O

O

N
O O

++

−

−

−

− −

(6) Orthonitric acid, H3NO4

Orthonitric acid is still unknown, but its salts Na3NO4 and K3NO4 have been
characterized by X-ray crystallography. The NO3−

4 ion has regular Td symmetry,
and its bonding can be represented by resonance structures:

O
N

O

O

O
O

N

O

O

O
O

N

O

O

O
O

N

O

O

O

(7) Oxo-cations, NO+ and NO+
2

The nitrosonium NO+ and nitronium NO+
2 ions, which have been mentioned in

previous sections, have C∞v and D∞h symmetry, respectively. Their structures
shown in Figs. 15.2.3(g) and 15.2.3(h) can be represented by the familiar Lewis
structures: N≡O+ and O=N+ = O.
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15.2.3 Nitrogen hydrides

(1) Ammonia, NH3

The most important nitrogen hydride is ammonia, which is a colorless, alkaline
gas with a unique odor. Its melting point is 195 K. Its boiling point 240 K is
far higher than that of PH3 (185.4 K). This is due to the strong hydrogen bonds
between molecules in liquid ammonia. Liquid ammonia is an excellent solvent
and a valuable medium for chemical reactions, as its high heat of vaporization
(23.35 kJ mol−1) makes it relatively easy to handle. As its dielectric constant
(ε = 22 at 239 K) and self-ionization are both lower than those of water, liquid
ammonia is a poorer ionizing solvent but a better one for organic compounds.
The self-ionization of ammonia is represented as

2NH3 " NH+
4 + NH−2 , K = 10−33 (223 K),

and ammonium compounds behave as Lewis acids while amides are bases.
Ammonia is an important industrial chemical used principally (over 80%) as

fertilizers in various forms, and is employed in the production of many other
compounds such as urea, nitric acid, and explosives.

(2) Hydrazine, H2NNH2

Hydrazine is an oily, colorless liquid in which nitrogen has an oxidation number
of−2. The length of the N–N bond is 145 pm, and there is a lone pair on each N
atom. Its most stable conformer is the gauche form, rather than the trans or cis
form. The rotational barrier through the trans or staggered position is 15.5 kJ
mol−1, and through the cis or eclipsed position is 49.7 kJ mol−1. These numbers
reflect the modest repulsion of the nonbonding electrons for a neighboring bond
pair and the significantly greater repulsion of the nonbonding pairs for each
other in the cis arrangement. The melting point of hydrazine is 275 K, and the
boiling point is 387 K. The very high exothermicity of its combustion makes it
a valuable rocket fuel.

(3) Diazene, HN=NH
Diazene (or diimide) is a yellow crystalline compound that is unstable above
93 K. In the molecule, each N atom uses two sp2 hybrids for σ bonding with
the neighboring N and H atoms, and the lone pair occupies the remaining sp2

orbital. The molecule adopts the trans configuration:

H
N N

H..
..

(4) Hydroxylamine, NH2OH
Anhydrous NH2OH is a colorless, thermally unstable hygroscopic compound
which is usually handled as an aqueous solution or in the form of its salts.
Pure hydroxylamine melts at 305 K and has a very high dielectric constant
(77.6–77.9). Aqueous solutions are less basic than either ammonia or hydrazine:

NH2OH(aq) + H2O # NH3OH+ + OH−, K = 6.6× 10−9 (298 K).
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Hydroxylamine can exist as two configurational isomers (cis and trans) and in
numerous intermediate gauche conformations. In the crystalline form, hydrogen
bonding tends to favor packing in the trans conformation. The N–O bond length
is 147 pm, consistent with its formulation as a single bond. Above room tem-
perature the compound decomposes by internal oxidation–reduction reactions
into a mixture of N2, NH3, N2O, and H2O. Aqueous solutions are much more
stable, particularly acid solutions in which the protonated species [NH3(OH)]+

is generally used as a reducing agent.

15.3 Structure and bonding of elemental phosphorus and
Pn groups

Homonuclear aggregates of phosphorus atoms exist in many forms: discrete
molecules, covalent networks in crystals, polyphosphide anions, and phospho-
rus fragments in molecular compounds.

15.3.1 Elemental phosphorus

(1) P4 and P2 molecules
Elemental phosphorus is known in several allotropic forms. All forms melt to
give the same liquid which consists of tetrahedral P4 molecules, as shown in
Fig. 15.3.1(a). The same molecular entity exists in the gas phase, the P–P bond
length being 221 pm. At high temperature (> 800◦C) and low pressure P4 is in
equilibrium with P2 molecules, in which the P≡P bond length is 189.5 pm.

The bonding between phosphorous atoms in the P4 molecule can be described
by a simple bent bond model, which is formed by the overlap of sp3 hybrids
of the P atoms. Maximum overlap of each pair of sp3 orbitals does not occur
along an edge of the tetrahedron. Instead, the P–P bonds are bent, as shown in
Fig. 15.3.1(b). In a more elaborate model, the P4 molecule is further stabilized
by the d orbitals of P atoms which also participate in the bonding.

(2) White phosphorus
White phosphorus (or yellow phosphorus when impure) is formed by conden-
sation of phosphorus vapor. Composed of P4 molecules, it is a soft, waxy,
translucent solid, and is soluble in many organic solvents. It oxidizes sponta-
neously in air, often bursting into flame. It is a strong poison and as little as 50
mg can be fatal to humans.

P
P

P

(a) (b)

P

Fig. 15.3.1.
(a) Structure of P4 molecule; (b) bent
bonds in P4 molecule.
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At normal temperature, white phosphorus exists in the cubic α-form, which
is stable from –77◦C to its melting point (44.1◦C). The crystal data of α-white
phosphorus are a = 1.851 nm, Z = 56 (P4), and D = 1.83 g cm−3, but its
crystal structure is still unknown. At –77◦C the cubic α-form transforms to a
hexagonal β-form with a density of 1.88 g cm−3.

(3) Black phosphorus
Black phosphorus is thermodynamically the most stable form of the element and
exists in three known crystalline modifications: orthorhombic, rhombohedral,
and cubic, as well as in an amorphous form. Unlike white phosphorus, the
black forms are all highly polymeric, insoluble, and practically non-flammable,
and have comparatively low vapor pressures. The black phosphorus varieties
represent the densest and chemically the least reactive of all known forms of
the element.

Under high pressure, orthorhombic black phosphorus undergoes reversible
transitions to produce denser rhombohedral and cubic forms. In the rhombohe-
dral form the simple hexagonal layers are not as folded as in the orthorhombic
form, and in the cubic form each atom has an octahedral environment, as shown
in Figs. 15.3.2(a)–(c).

(4) Violet phosphorus
Violet phosphorus (Hittorf’s phosphorus) is a complex three-dimensional poly-
mer in which each P atom has a pyramidal arrangement of three bonds linking
it to neighboring P atoms to form a series of interconnected tubes, as shown in
Fig. 15.3.3. These tubes lie parallel to each other, forming double layers, and
in the crystal structure one layer has its tubes packed at right angles to those in
adjacent layers.

Fig. 15.3.2.
Structure of black phosphorus: (a)
orthorhombic, (b) rhombohedral, and (c)
cubic black phosphorus.

(a)

(b) (c)
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Fig. 15.3.3.
Structure of the tube in violet phosphorus

(5) Red phosphorus
Red phosphorus is a term used to describe a variety of different forms, some of
which are crystalline and all are more or less red in color. They show a range of
densities from 2.0 to 2.4 g cm−3 with melting points in the range of 585–610◦C.
Red phosphorus is a very insoluble species. It behaves as a high polymer that
is inflammable and almost non-toxic.

15.3.2 Polyphosphide anions

Almost all metals form phosphides, and over 200 different binary compounds
are now known. In addition, there are many ternary mixed-metal phosphides.
These phosphides consist of metal cations and phosphide anions. In addition
to some simple anions (P3−, P4−

2 , P5−
3 ), there are many polyphosphide anions

that exist in the form of rings, cages, and chains, as shown in Fig. 15.3.4.
In some metal phosphides, the polyphosphide anions constitute infinite chains

and sheets, as shown in Fig. 15.3.5.

15.3.3 Structure of Pn groups in transition-metal complexes

Transition-metal complexes with phosphorus bonded to metal atoms have been
investigated extensively. They include single P atoms encapsulated in cages
of metal atoms, and various Pn groups where n = 2 to at least 12. These Pn
groups can be chains, rings, or fragments which are structurally related to their
valence electron numbers. Figure 15.3.6 shows some skeletal structures of the
transition-metal complexes with Pn groups.

Fig. 15.3.6(a) shows the coordination of a pair of P2 groups to metal cen-
ters in the dinuclear complex (Cp′′Co)2(P2)2. In Figs. 15.3.6(b), (f), (j), and
(n), the Pn groups P3, P4, P5, and P6 form planar three-, four-, five-, and six-
membered rings, respectively. They can be considered as isoelectronic species
of planar (CH)3, (CH)4, (CH)5, and (CH)6 molecules. The [(P5)2Ti]2− anion
[Fig. 15.3.6( j)] is the first entirely inorganic metallocene, the structure of which
has a pair of parallel and planar P5 rings symmetrically positioned about the
central Ti atom. The average P–P bond distance is 215.4 pm, being intermediate
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i)

Fig. 15.3.4.
The structures of some polyphosphide anions: (a) P4−

6 in [Cp”Th(P6)ThCp”] (Cp”=1,3-Bu+
2 C5H3), (b) P3−

7 in Li3P7, (c) P6−
10 in Cu4SnP10, (d)

P3−
11 in Na3P11, (e) P3−

11 in [Cp3(CO)4Fe3]P11, (f) P2−
16 in (Ph4P)2P16, (g) P3−

19 in Li3P19, (h) P3−
21 in K4P21I, and (i) P4−

26 .

Fig. 15.3.5.
Infinite chain and sheet structures of
polyphosphide anions: (a) [P4−

6 ]n in

BaP3, (b) [P−7 ]n in RbP7, (c) [P5−
7 ]n in

Ag3SnP7, (d) [P−15]n in KP15, and (e)

[P4−
8 ]n in CuP2.

(a)

(b) (e)

(c)

(d)

between those of P–P single (221 pm) and P=P double (202 pm) bonds. The
average Ti–P distance is 256 pm. The Ti–P5 (center) distance is 179.7 pm.

The Pn groups in the complexes shown in Figs. 15.3.6(e), (k), and (o) are
four-, five- and six-membered rings, respectively. Open chains P4 and P5 as
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (i)

(k) (i) (m) (n)

(o) (p) (q) (r)

(s) (i) (u) (v)

Fig. 15.3.6.
Structure of Pn groups bonded to metal
atoms in transition-metal complexes: (a)
(Cp”Co)2(P2)2, (b) (Cp2Th)2P3, (c)
W(CO)3(PCy3)2P4, (d) RhCl(PPh3)2P4,
(e) [Cp*Co(CO)]2P4, (f)
Cp*Nb(CO)2P4, (g) [Ni(CO)2Cp]2P4,
(h) (CpFe)2P4, (i) [(Cp*Ni)3P]P4, (j)
[Ti(P5)2][K(18-C-6)], (k)
[Cp*Fe]P5[Cp*Ir(CO)2], (l)
[Cp*Fe]P5[TaCp”], (m)
[Cp*Fe]P5[TaCp”]2, (n) Cp*Mo2P6, (o)
(Cp*Ti)2P6, (p) (Cp’2Th)2P6, (q)
[Cp′′′Co(CO)2]3P8, (r)
[Cp*Ir(CO)]2P8[Cr(CO)5]3, (s)
(Cp′Rh)4P10, (t) [CpCr(CO)2]5P10,
(u) CpPrFe(CO)2]P11[CpPrFe(CO)]2,
and (v) [CpCo(CO)2]3P12.

multidentate ligands are exemplified by the structures shown in Figs. 15.3.6(g),
(h), (l), and (m). Metal complexes containing bi- and tricyclic Pn rings are shown
in Figs. 15.3.6(d) and (p), respectively. The skeletons of metal complexes of
polyphosphorus Pn ligands with n > 6 are shown in Figs. 15.3.6(q) to (v).

The reaction of Cp*FeP5 with CuCl in CH2Cl2/CH3CN solvent leads to
the formation of [Cp*FeP5]12(CuCl)10(Cu2Cl3)5{Cu(CH3CN)2}5. In this large
molecule, the cyclo-P5 rings of Cp*FeP5 are surrounded by six-membered
P4Cu2 rings that result from the coordination of each of the P atomic lone
pairs to CuCl metal centers, which are further coordinated by P atoms of
other cyclo-P5 rings. Thus five- and six-membered rings are fused in a man-
ner reminiscent of the formation of the fullerene-C60 molecule. Figure 15.3.7
shows the structure of a hemisphere of this globular molecule. The two
hemispheres are joined by [Cu2Cl3]− as well as by [Cu(CH3CN)2]+ units,
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Fig. 15.3.7.
Structure of a hemisphere of
[Cp*FeP5]12(CuCl)10(Cu2Cl3)5[Cu(CH3CN)2]5.
The central Fe atom is omitted for clarity.

Fe
P

C
Cl

Cu

and this inorganic fullerene-like molecule has an inner diameter of 1.25 nm
and an outer diameter of 2.13 nm, making it about three times as large
as C60.

15.3.4 Bond valence in Pn species

The bonding in Pn species can be expressed by their bond valence b, which
corresponds to the number of P–P bonds. Let g be the total number of valence
electrons in Pn. When a covalent bond is formed between two P atoms, each of
them gains one electron in its valence shell. In order to satisfy the octet rule for
Pn, 1

2 (8n− g) electron pairs must be involved in bonding between the P atoms.
The number of these bonding electron pairs is defined as the bond valence b of
the Pn species:

b = 1
2 (8n− g).

Applying this simple formula:

P4 : b= 1
2 (4× 8–4× 5) = 6, 6P–P bonds;

P3−
7 : b= 1

2 [7× 8–(7× 5 + 3)] = 9, 9P–P bonds;

P3−
11 : b= 1

2 [11× 8–(11× 5 + 3)] = 15, 15P–P bonds;

P2−
16 : b= 1

2 [16× 8–(16× 5 + 2)] = 23, 23P–P bonds.

In these Pn species, the b value is exactly equal to the bond number in the
structural formula, as shown in Figs. 15.3.1, 15.3.4, and 15.3.5. But for the
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planar ring P6 [Fig. 15.3.6(n)],

b = 1
2 [6× 8− (6× 5)] = 9,

which implies the existence of three P–P bonds and three P=P bonds, and hence
aromatic behavior as in the benzene molecule.

g = 20, b = 6 g = 20, b = 6 g = 20, b = 6 g = 22, b = 5

g = 22, b = 5 g = 24, b = 4 g = 28, b = 2 g = 32, b = 0

(a)  (b) (c)

OC

OC

CO

CO

CO

CO

Co

Co

Nb

Cp*

Cp*

Cp*

Cp
Cp

Cp

Cp

Cp

Ni

Cp*

Cp

Cp*

Rh

Rh

P
P

P

Ni

(d)

(e)  (f) (g) (h)

Fig. 15.3.8.
Structure of P4 group in some transition-metal complexes (large circle represents P atom and arrow→ represents dative bond): (a) P4 molecule,
(b) (P4)Ni(PPh2CH2)3CCH3, (c) (P4)Nb(CO)2Cp∗, (d) (P4)Rh2(CO)(Cp)(Cp∗), (e) (P4)Co(CO)Cp∗, (f) (P4)[Co(CO)Cp∗]2, (g)
(P2)2Rh2(Cp)2, and (h) (P)4(NiCp)4.

(a) (b)

(c) (d)

Cr

P

P

Mo

As

NiNi
Sb

Fig. 15.3.9.
Structure of transition-metal complexes
of P3−

7 , As3−
7 , and Sb3−

7 : (a)
[P7Cr(CO)3]3−, (b) [As7Mo(CO)3]3−,
(c) [P7Ni(CO)]3−, and
(d) [Sb7Ni3(CO)3]3−.
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The bond valence of a Pn group changes with its number of valence electrons.
The P4 species is a good example, as shown in Fig. 15.3.8. In these structures,
each transition metal atom also conforms to the 18-electron rule.

The bonding structure of transition-metal complexes with Pn group can be
classified into four types:

(1) Covalent P–M σ bond: each atom donates one electron to bonding and the
g value of Pn increases by one, as shown in Fig. 15.3.8(e).

(2) P→ M dative bond: the g value of Pn species does not change, as shown
in Fig. 15.3.8(b).

(3)
P

P
→M π dative bond: the g value of Pn species also does not change, as

shown in Fig. 15.3.8 (c).
(4) (ηn–Pn) → M dative bond: the Pn ring (n = 3–6) donates its delocalized
π electrons to the M atom, and the g value of Pn group does not change.

Some molecular transition-metal complexes of P3−
7 , As3−

7 , and Sb3−
7 have

been isolated as salts of cryptated alkali metal ions. The structures of the com-
plex anions are shown in Fig. 15.3.9. The bond valence b and bond number of
these complex anions are as follows:

(a) [P7Cr(CO)3]3− in [Rb·crypt]3[P7Cr(CO)3]: b = 12, eight P–P and four
P–Cr bonds.

(b) [As7Mo(CO)3]3− in [Rb·crypt]3[As7Mo(CO)3]: b = 12, eight As–As and
four As–Mo bonds.

(c) [P7Ni(CO)]3− in [Rb·crypt]3[P7Ni(CO)]: b = 12, eight P–P and four P–Ni
bonds.

(d) [Sb7Ni3(CO)3]3− in [K·crypt]3[Sb7Ni3(CO)3]: b = 18, four Sb–Sb, five
SbSbNi 3c-2e, and two SbNiNi 3c-2e bonds.

15.4 Bonding type and coordination geometry
of phosphorus

15.4.1 Potential bonding types of phosphorus

To illustrate the potential diversity of structure and bonding of phosphorus, the
classic Lewis representations for each possible coordination number one to six
are shown in Fig. 15.4.1. Many of these bonding types have been observed in
stable compounds, which are discussed in the following sections.

Fig. 15.4.1.
Potential bond types of phosphorus.

P.. P
+.. P

–
..

.. P...
. P

+
P
+

P

(a) (b) (c) (d) (e) (f) (g)
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..
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+..

P
–

..

..
P.. P+ P

–.. P

(h) (i) (j) (k) (l) (m) (n)

P+ P P
–

P
–

P
2–

P P

(o) (p) (q) (r) (s) (t) (u)
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Phosphines are classical Lewis bases or ligands in transition-metal com-
plexes, but the cationic species shown in Fig. 15.4.1(i) are likely to exhibit
Lewis acidity by virtue of the positive charge. Despite their electron-rich
nature, an extensive coordination chemistry has been developed for Lewis
acidic phosphorus. For example, the compound shown below has a coordi-
natively unsaturated Ga(I) ligand bonded to a phosphenium cation; it can be
considered as a counter-example of the traditional coordinate bond since the
metal center (Ga) behaves as a Lewis donor (ligand) and the non-metal center
(P) behaves as a Lewis acceptor.

Ph P Ph

Ga OTf
N N DippDipp

OTf = OTeF5
–

Dipp = (2,6-iC3H7)C6H3

15.4.2 Coordination geometries of phosphorus

Phosphorus forms various compounds with all elements except Sb, Bi, and
the inert gases for the binary compounds. The stereochemistry and bonding of
phosphorus are very varied. Some typical coordination geometries are summa-
rized in Table 15.4.1 and illustrated in Fig. 15.4.2. Many of these compounds
will be discussed below.

Table 15.4.1. Coordination geometries of phosphorus atoms in compounds

CN Coordination geometry Example Structure (in Fig. 15.4.1)

1 Linear P≡N, F–C≡P (a)
2 Bent [P(CN)2]− (b)
3 Pyramidal PX3(X = H, F, Cl, Br, I) (c)

Planar PhP{Mn(C5H5)(CO)2}2 (d)
4 Tetrahedral P4O10 (e)

Square [P{Zr(H)Cp2}4]+ (f)
5 Square pyramidal Os5(CO)15(µ4–POMe) (g)

Trigonal bipyramidal PF5 (h)
6 Octahedral PCl−6 (i)

Trigonal prismatic (µ6–P)[Os(CO)3] −6 (j)
7 Monocapped trigonal prismatic Ta2P (k)
8 Cubic Ir2P (l)

Bicapped trigonal prismatic Hf2P (m)
9 Monocapped square antiprismatic [Rh9(CO)21P]2− (n)

Tricapped trigonal prismatic Cr3P (o)
10 Bicapped square antiprismatic [Rh10(CO)22P]3− (p)

(1) Coordination number 1
Coordination number 1 is represented by the compounds P≡N, P≡C–H, P≡C–
X (X = F, Cl), and P≡C–Ar (Ar =tBu3C6H2). In these compounds, the P atom
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Fig. 15.4.2.
Coordination geometries of the phosphorus atom in some compounds (black circles represent P, open circles represent other atoms): (a) P≡N,
(b) [P(CN)2]−, (c) PX3, (d) PhP{Mn(C5H5)(CO)2}2, (e) P4O10, (f) [P{Zr(H)Cp2}4]+, (g) Os5(CO)15(µ4–POMe), (h) PF5, (i) [PCl6]−,
(j) [Os(CO)3]6P, (k) Ta2P, (l) Ir2P, (m) Hf2P, (n) [Rh9(CO)21P]2−, (o) Cr3P, and (p) [Rh10(CO)22P]3−.

forms a triple bond with the N or C atom. The bond length are P≡N 149 pm,
P≡C 154 pm.

(2) Coordination number 2
Compounds of this coordination number have three bond types:

P

P(CN)2
–

P

R2N–P     NR

P+

P+

S

= C
N

Et

2

In P(CN)−2 , the bond length P–C is 173 pm, C≡N is 116 pm, and bond angle
C–P–C is 95◦.
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(3) Coordination number 3
In compounds of this coordination number, the pyramidal configuration is the
most common type, and the planar one is much less favored. In pyramidal PX3,
the three X groups are either the same or different, X = F, Cl, Br, I, H, OR,
OPh, Ph, tBu, etc. The observed data of some PX3 compounds are listed below:

PX3 PH3 PF3 PCl3 PBr3 PI3

P–X bond length (pm) 144 157 204 222 252
X–P–X bond angle 94◦ 96◦ 100◦ 101◦ 102◦

Since PX3 has a lone pair at the P atom and the X groups can be varied,
the molecules PX3 are important ligands. The strength of the coordinate bond
X3P→M is influenced by different X groups in three aspects:

(a) σ P→M bonding
The stability of the σ P→M interaction, which uses the lone pair of electrons
on P atom and a vacant orbital on M atom, is influenced by different X groups
in the sequence:

PtBu3 > P(OR)3 > PR3 ≈ PPh3 > PH3 > PF3 > P(OPh)3.

(b) π back donation
The possibility of synergic π back donation from a nonbonding dπ pair of
electrons on M into a vacant 3dπ orbital on P varies in the sequence:

PF3 > P(OPh)3 > PH3 > P(OR)3 > PPh3 ≈ PR3 > P tBu3.

(c) Steric interference
The stability of the P–M bonds are influenced by steric interference of the X
groups, in accordance with the sequence:

P tBu3 > PPh3 > P(OPh)3 > PMe3 > P(OR)3 > PF3 > PH3.

In the PhP{Mn(C5H5)(CO)2}2 molecule, the P atom is bonded to two Mn
atoms and one phenyl C atom by single bonds in a planar configuration, as
shown in Fig. 15.4.2(d). The bond angle Mn–P–Mn is 138◦.

(4) Coordination number 4
This very common coordination number usually leads to a tetrahedral configu-
ration for phosphoric acid, phosphates, and many phosphorus(V) compounds.
In these compounds, the P(V) atom forms one double bond and three single
bonds with other atoms. Figure 15.4.2(e) shows the structure of P4O10, whose
symmetry is Td. The length of the terminal P=O bond is 143 pm, and the
bridging P–O bond is 160 pm. The bond angle O–P–O is 102◦, and P–O–P
is 123◦.

The compound P4O10, known as “phosphorus pentoxide,” is the most com-
mon and most important oxide of phosphorus. This compound exists in three
modifications. When phosphorus burns in air and condenses rapidly from the
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vapor, the common hexagonal (H) form of P4O10 is obtained. The H form is
metastable and can be transformed into a metastable orthorhombic (O) form by
heating for 2 h at 400◦C, and into a stable orthorhombic (O′) form by heating
for 24 h at 450◦C. All three modifications undergo hydrolysis in cold water to
give phosphoric acid, H3PO4.

Square-planar geometry of the P atom occurs in the compound
[P{Zr(H)Cp2}4][BPh4]. Figure 15.4.2(f) shows the structure of P{Zr(H)Cp2}+

4 ,
in which the Zr–P–Zr angles are very close to 90◦, and the bridging hydrogens
and the Zr atoms form a nearly planar eight-membered ring that encircles the
central P atom.

(5) Coordination number 5
Figure 15.4.2(g) shows the structure of Os5(CO)15(µ4-POMe), in which five
Os atoms constitute a square-pyramidal cluster. Each Os atom is coordinated
by three CO ligands, and only the four basal Os atoms are bonded to the apical
P atom.

Various structures have been found for phosphorus pentahalides:

(a) The molecular structure of PF5 is trigonal bipyramidal, as shown in
Fig. 15.4.2(h). The axial P–F bond length is 158 pm, which is longer than
the equatorial P–F bond length of 153 pm.

(b) In the gaseous phase, PCl5 is trigonal bipyramidal with axial P–Clax bond
length 214 pm and equatorial P–Cleq bond length 202 pm. In the crystalline
phase, PCl5 consists of a packing of tetrahedral [PCl4]+ and octahedral
[PCl6]− ions; in the latter anion shown in Fig. 15.4.2(i), the P–Cl bond
length is 208 pm.

(c) In the crystalline phase, PBr5 consist of a packing of [PBr4]+ and Br−.
Owing to steric overcrowding, [PBr6]− cannot be formed by grouping six
bulky Br atoms surrounding a relatively small P atom.

(d) There is as yet no evidence for the existence of PI5.

(6) Coordination number ≥ 6
In each of the structures shown in Figs. 15.4.2(j)–(p), the transition-metal atoms
form a polyhedron around the P atom, which donates five valence electrons to
stabilize the metal cluster.

15.5 Structure and bonding in phosphorus–nitrogen
and phosphorus–carbon compounds

15.5.1 Types of P–N bonds

When phosphorus and nitrogen atoms are directly bonded, they form one of
the most intriguing and chemically diverse linkages in inorganic chemistry.
A convenient classification of phosphorus–nitrogen compounds can be made
on the basis of formal bonding. Azaphosphorus compounds containing the
P–N group are known as phosphazanes, those containing the P=N group are
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Table 15.5.1. The common types of phosphorus-nitrogen bonds∗

Phosphazanes Phosphazenes Phosphazenes

P N

P N

(sp2) σ2, λ2

(sp3) σ3, λ3

(sp2) σ2, λ3
P N σ1, λ3

P N (sp3) σ4, λ4

P N (sp3) σ4, λ5

P N (sp3d) σ5, λ5

P N (sp3d) σ5, λ5

P N (sp3) σ4, λ5
P N (sp2) σ3, λ5

P N (sp3) σ4, λ5
N

P N (sp3) σ4, λ5
N

P N

P N (sp3d2) σ6, λ6
P N (sp2) σ3, λ5

N

PV

PIII

+

+

∗ The hybridization of the P atom is enclosed in parentheses. The symbols σ and λ represent the coordination
number and bonding number of P atoms.

phosphazenes, and those with the P≡N group are phosphazynes. The common
types of phosphorus–nitrogen bonds of these three classes of compounds are
displayed in Table 15.5.1.

Phosphazynes are rare. The bond length of the diatomic molecule P≡N
is 149 pm. The first stable compound containing the P≡N group is [P≡N–
R]+[AlCl4]−, [R = C6H2(2,4,6-tBu3)], in which the length of the P≡N bond is
147.5 pm.

15.5.2 Phosphazanes

Some examples of phosphazanes are described below according to the types of
P–N bonds.

(1) P N+
..

In this bonding type, the P atom uses its sp2 hybrid orbitals, one of
which accommodates a lone pair. A bent molecular structure of this type
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is found for (tPr2N)2P+:

P
R2N NR2

P
R2N NR2

P
R2N NR2

+

+ +

..
..

..
..

.
..

.
..

The bond length of P–N is 161.2 pm, shorter than the standard P–N single-
bond distance of 177 pm observed in H3N–PO3, which does not have a lone
pair on the N atom. The bond angle N–P–N is 115◦, smaller than idealized 120◦,
due to the repulsion of the lone pairs.

(2) P N
..

The configuration of most R2P–NR2 compounds is represented by F2P–NMe2,
which features a short P–N distance (162.8 pm) and trigonal planar arrangement
(sp2 hybridization) at the N atom. The plane defined by the C2N unit bisects
the F–P–F angle. This configuration minimizes steric repulsion between the
substituents on P and N and also orients the lone pairs on the P and N atoms at
a dihedral angle of about 90◦, as shown in Fig. 15.5.1(a).

The geometry of the molecule and the short P–N distance indicate that there
is π bonding between the P and N atoms. In the molecule, the z axis is per-
pendicular to the PNC2 plane and the x axis lies parallel to the P–N bond. The
pz(N) orbital with a lone pair and the empty dxz(P) orbital overlap to form a π
bond, as shown in Fig. 15.5.1(b).

The structure of F2PNH2 resembles that of F2PNMe2 with a P–NH2 bond
distance of 166 pm.

(3) P N
+

Many compounds contain formally a single-bonded P–N group, such as
the cation [PCl2(NMe2)2]+ in crystalline [PCl2(NMe2)2](SbCl6), the cation
[P(NH2)4]+, and the anion [P(NR)4]3−. The bond length of P–N in [P(NH2)4]+

is 160 pm, and that in [P(NR)4]3− is 164.5 pm.

(4) P N

An important group of compounds such as (Me2N)2POCl, (Me2N)POCl2, and
(R2N)3PO possess this bonding type. For example, (Me2N)3PO is a colorless

P

F

N
116˚

124˚

90˚

Me

162.8

161.0

y

x

z

x

(a) (b)

Fig. 15.5.1.
(a) Molecular structure of F2P–NMe2, (b) overlap between the dxz orbital of the P atom and the pz orbital of the N atom.
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mobile liquid which is miscible with water in all proportions. It forms an adduct
with HCCl3, dissolves ionic compounds, and can dissolve alkali metals to give
blue paramagnetic solutions which are strong reducing agents.

(5) P N

The compound F4P–NEt2 has this bonding type, in which the P atom uses sp3d
hybrid orbitals.

(6) P
+

N

The phosphatranes that have this bonding type are analogs
of silatranes. The cage molecule shown on the right is a
trigonal bipyramidal five-coordinated phosphazane with
a rather long P–N bond.

+

(7) P N

The adduct F5P←NH3 is an octahedral six-coordinated phosphanane, in which

the P–N bond length is 184.2 pm. In another example, Cl5P N N, the P–N

bond length is 202.1 pm, which is longer than the former. This difference is due
to the high electronegativity of F, which renders the F5P group a better acceptor
as compared to Cl5P.

15.5.3 Phosphazenes

Phosphazenes, formerly known as phosphonitrilic compounds, are character-
ized by the presence of the group P=N. Known compounds, particularly those
containing the P N group, are very numerous and they have important

potential applications.

(1) Bonding types of phosphazenes
(a) Containing –P=N– bonding type
In this bonding type, the P atom uses sp2 hybrid orbitals, one of which contains
the lone-pair electrons. This type of phosphazene compounds exists in a bent
configuration. For example, the structure of (SiMe3)2NPN(SiMe3) is shown
below:

(Me3Si)2N P
N SiMe3108o

167.4 pm
154.5 pm
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(b) Containing P N bonding type

The compound (Me3Si)2N–P(NSiMe3)2 belongs to this type, as shown below:

Me3SiN

P

Me3SiN

N(SiMe3)2

113o

164.6 pm150.3 pm

(c) Containing P N bonding type

The simplest compound of this type is iminophosphorane, H3P=NH, whose
derivatives are very numerous, including R3P=NR′, Cl3P=NR, (RO)3P=NR′,
and Ph3P=NR. In these compounds the P atom uses its sp3 hybrid orbitals to
form four σ bonds, and is also strengthened by dπ−pπ overlap with N and
other atoms.

(2) Structure and bonding of cyclic phosphazenes
The main products of refluxing a mixture of PCl5 and NH4Cl using tetra-
chloroethane as solvent are the cyclic trimer (PNCl2)3 and tetramer (PNCl2)4,
which are stable white crystalline compounds that can be isolated and purified
by recrystallization from nonpolar solvents.

The trimer (PNCl2)3 has a planar six-membered ring structure of D3h sym-
metry with the six Cl atoms disposed symmetrically above and below the plane
of the ring. The P–N bonds within the ring are of the same length, 158 pm, and
the interior angles are all close to 120◦. The Cl–P–Cl planes are perpendicular
to the plane of the central ring, and the Cl–P–Cl angle is 120◦. Figure 15.5.2
shows the structures of (PNCl2)3 and chair-like (PNCl2)4.

The shortness and equality of the P–N bond lengths in (PNCl2)3 arise from
electron delocalization involving the d orbitals of the P atoms and the p orbitals
of the N atoms. In such a system, the σ bonds formed from phosphorus sp3

orbitals overlapping with the nitrogen sp2 orbitals are enhanced by π bonding
between the nitrogen pz orbitals and the phosphorus d orbitals.

In (PNCl2)3, the π bonding occurs over the entire ring. Firstly, dπ−pπ
overlap occurs between the nitrogen pz orbital (z axis perpendicular to the ring
plane) and the dxz orbital of phosphorus. Figure 15.5.3(a) shows the orientation
of one dxz orbital of the P atom and two pz orbitals of neighbor N atoms.
Figure 15.5.3(b) shows a projection of the overlap of dxz with the pz orbitals.
Secondly, “in-plane” electron delocalization probably arises from overlap of the

Fig. 15.5.2.
Structure of (a) (PNCl2)3 and
(b) (PNCl2)4 (circles of decreasing sizes
represent Cl, P, and N atoms,
respectively).

(a) (b)
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dxz dxz

dxz

pz

pz

pz

z
y

y

x

dx2-y2

x

(a) (b)

(c) (d)

Fig. 15.5.3.
dπ–pπ Bonding in the ring of (PNCl2)3:
(a) orientation of dxz of P atom and pz of
N atom; (b) overlap of dxz and pz ;
(c) overlap of dx2−y2 of P atom and lone

pair (sp2) of N atom; (d) possible
mismatch of the dxz orbital of P atom
and pz orbital of the N atom.

lone-pair orbitals on nitrogen with the dx2−y2 orbitals on phosphorus, forming
additional π ′ bonds in the plane of the ring. Fig. 15.5.3(c) shows the dx2−y2 of P
overlapping with the lone-pair (sp2) orbitals of two adjacent N atoms. Thirdly,
the dz2 orbitals of P atoms overlap with the p orbitals of the exocyclic Cl atoms.
Fig. 15.5.3(d) shows that electron delocalization around the ring is hindered by
a mismatch of orbital symmetry. A simplified description of the bonding in this
molecule based on the group-theoretic method is given in Chapter 7.

The geometric disposition of the d orbitals in dπ–pπ systems allows puck-
ering and accounts for the variety of ring conformations found among larger
cyclic phosphazene compounds, such as (PNCl2)4.

Of the five binary phosphorus–nitrogen molecules described in the
literature, namely P4N4, P(N3)3, P(N3)5, the anion in the ionic compound
(N5)

+[P(N3)6]−, and the phosphazene derivative [PN(N3)2]3, only the last
has been fully structurally characterized. These compounds are difficult to iso-
late and handle owing to their highly endothermic character and extremely low
energy barriers, which often lead to uncontrollable explosive decomposition.
Single-crystal X-ray analysis of [PN(N3)2]3 conducted in 2006 showed that
it is a structural analog of [PNCl2]3, with three azide groups oriented nearly
parallel to the phosphazene ring and the other three nearly perpendicular to the
ring.

A hybrid borazine-phosphazine ring system
has been found in

[ClBNMePCl2NPCl2NMe](GaCl4);

-- --

an X-ray study revealed that the 6π aromatic
cation (structural formula shown on the right)
is virtually planar with B–N bond lengths of
143.6(9) and 142.2(10) pm, which are close to
those found in borazines (143 pm).

N

P

N

P

N

B MeMe

Cl Cl
Cl Cl

Cl +
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All phosphazenes, whether cyclic or chain-like, contain the formally unsat-
urated group P=N with four-coordinate P and two-coordinate N atoms. Based
on available experimental data, the following generalizations may be made in
regard to their structure and properties:

(a) The rings and chains are very stable.
(b) The skeletal interatomic distances are equal within the ring or along the

chain, unless there is different substitution at various P atoms.
(c) The P–N distances are shorter than expected for a covalent single bond

(∼177 pm) and are usually in the range 158±2 pm.
(d) The N–P–N angles are usually in the range 120±2◦; but the P–N–P angles

in various compounds span the range 120◦–148◦.
(e) Skeletal N atoms are weakly basic and can coordinate to metals or be

protonated, especially when the P atoms carry electron-releasing groups.
(f) Unlike many aromatic systems, the phosphazene skeleton is difficult to

reduce electrochemically.
(g) Spectral effects associated with organic π systems are not exhibited.

15.5.4 Bonding types in phosphorus–carbon compounds

Phosphorus and carbon are diagonal relatives in the PeriodicTable.The diagonal
analogy stresses the electronegativity of the element (C 2.5 vs P 2.2) which
governs its ability to release or accept electrons. This property controls the
reactivity of any species containing the element. This section covers the types
of phosphorus–carbon bonds and the structures of representative species.

(1) Phosphinidenes and phosphinidene complexes, C P

Phosphinidenes (recommended IUPAC name: phosphanylidenes) are unstable
species and analogous to the carbenes. The parent compound H–P is a six-
electron species that is still unknown, but its organic derivatives can give rise
to seven different types of complexes, as listed in Table 15.5.2.

(2) Phosphaalkenes, R1R2C=PR3

Phosphaalkenes are tervalent phosphorus derivatives with a double bond
between carbon and phosphorus. The observed P=C bond lengths range from
161 to 171 pm (average 167 pm), appreciably shorter than the single P–C bond
length of 185 pm.

Phosphaalkenes may coordinate to transition-metal fragments in various
ways:

(a) η1 mode via the lone pair on P atom. An example is

C

Ph

Ph

P

Mes

Cr(CO)5

P C 167.9 pm
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Table 15.5.2. Types of phosphinidene complexes

Types Structure and properties

Two-electron complexes
P

R
M

..

η1-bent, electrophilic

P
R

M
..

η1-bent, nucleophilic∗

P
R

M

M
..

µ2-pyramidal

Four-electron complexes R P M η1-linear†

R P

M

M

µ2-planar

R

P
M

M
M

µ3-tetrahedral

R P

M

M M

M
µ4-bipyramidal

∗ In the complex Mes–P=Mo(Cp)2, P=Mo 237.0 pm, Mo –P –C 115.8◦.
† In the complex Mes–P≡WCl2(CO)(PMePh2), P≡W 216.9 pm, C–P–W
168.2◦.

(b) η2 mode via the π bond electrons. An example is

C

Tms

P

Cp*

Ni(PEt3)2
Cp*

In η2 complexes the P–C bond length is longer than that in η1 complexes
or the free ligands.

154.0 147.3

153.9 P

154.8

Fig. 15.5.4.
Structure of tBu–C≡P (bond lengths in
pm).

(c) η1, η2 mode via both the lone pair and π bond electrons. An example is

H2C P

Mes*

Fe(CO)4
Fe(CO)4

P C 173.7 pm

(3) Phosphaalkynes, RC≡P
Phosphaalkynes are compounds of tervalent phosphorus which contain a P≡C
triple bond. Figure 15.5.4 shows the structure of tBu–C≡P, whose P≡C bond
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Table 15.5.3. Coordination modes of phosphaalkynes

Coordination mode Example and structure

η1 R C P M
[tBu–C≡P–Fe(H)(dppe)2][BPh4]

C≡P 151.2 pm

η2

R C P

M

C P

Pt(PR3)

tBu

η1, η2
R C P

M

M C P

Pt(Ph2PCH2CH2PPh2)

Cr(CO)5
tBu

4e R C P

M

M

tBuCP[Fe2(CO)5(PPh2CH2PPh2)]

[Fig. 15.5.5(a)]

6e R C P

M

M

M
tBuCP[W(CO)5][Co2(CO)6]

[Fig. 15.5.5(b)]

is very short (154.8 pm), and the electronic ionization energies [I1(πMO) =
9.61 eV, I2(P lone pair) = 11.44 eV] are low, suggesting that it may have a
chemistry closely related to that of the alkynes.

Phosphaalkynes have a rich coordination chemistry, in which both the
triple bond and the lone pair of the P atom can participate. Table 15.5.3 lists
the coordination modes of phosphaalkynes, and two structures are shown in
Fig. 15.5.5.

Fig. 15.5.5.
Structure of
(a) tBu-CP[Fe2(CO)5(PPh2CH2PPh2)]
and (b) tBu-CP[W(CO)5][Co2(CO)6].

Fe(CO)2

(a) (b)

P

Co(CO)3

W(CO)3

PPh2

Some oligomers of the phosphaalkynes tBuCP have been characterized. The
phosphaalkyne cyclotetramer exists in several isomeric forms, whose structures
are shown in Fig. 15.5.6(a) to Fig. 15.5.6(e). In cubane-like P4C4

tBu4, the P–C
bond lengths are all identical (188 pm), and are typical for single bonds. The
angle at P is reduced from the idealized 90◦ to 85.6◦, while that at C is widened
to 94.4◦.

The phosphaalkyne pentamer P5C5
tBu5 has the cage structure shown in

Fig. 15.5.6(f), which can be derived from the tetramer by replacing one corner
C atom of the “cube” by a C2P triangular fragment.
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(a) (b) (c) (d)

(e) (f) (g)

Fig. 15.5.6.
Structure of oligomers of
phosphaalkyne: (a)–(e) cyclotetramer,
(f) pentamer, (g) hexamer.

The phosphaalkyne hexamer P6C6
tBu6 consists of a lantern-like cage con-

structed from the linkage of a chair-like P4C2 ring with a pair of C2P rings
above and below it, as shown in Fig. 15.5.6(g).

P4

P2

P1

P5

P4
P5

P2P3

P1

P3

Ph
(a) (b)

Ph

Ph

Ph
Ph

Ph

Ph
Ph

Ph

Ph

Ph
Ph

Ph

Ph

Ph

Ru

H

C

SiPh3

Ru

H

C

Fig. 15.5.7.
Molecular structures and bond lengths
(pm) of (a) [RuH(dppe)2(Ph3SiC≡P)]+,
C≡P1 153.0(3), Ru–P1 224.85(8),
Ru–P2 238.11(7), Ru–P3 237.21(7),
Ru–P4 235.59(7), Ru–P5 236.94(7);
(b) [RuH(dppe)2(C≡P)], C≡P1
157.3(2), Ru–C 205.7(2), Ru–P2
233.42(5), Ru–P3 233.15(5), Ru–P4
232.22(5), Ru–P5 233.96(4).

(4) Cyaphide P≡C−

The quest for cyaphide, the phosphorus homolog of cyanide, as a ligand in
a stable metal complex came to a satisfactory conclusion in 2006. The pair
of related complexes [RuH(dppe)2(Ph3SiC≡P)]OTf and [RuH(dppe)2(C≡P)]
were obtained via a new synthetic route and structurally characterized by X-
ray crystallography. Their molecular geometries are displayed in Fig. 15.5.7.
As expected, the Si–C≡P and P≡C− ligands are P- and C-coordinated to
the Ru(II) center, respectively. The long C≡P bond in the cyaphide com-
plex likely arises from back donation from Ru to the π∗ orbitals of the
ligand.
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Table 15.5.4. Coordination modes of diphosphenes

Coordination mode Example and structure

Mo2P2 in a butterfly
configuration

Fe2P2 in a tetrahedral
configuration

15.5.5 π -Coordination complexes of phosphorus–carbon compounds

(1) Diphosphenes (R–P==P–R)
Diphosphenes contain the –P==P– group, the majority of which adopt a trans-
configuration. For example, the stable compound

P P
Ar

Ar

.. ..
(Ar = 2, 4, 6- t Bu3C6H2)

exhibits the trans form with a P==P bond length of 203.4 pm.
Various coordination modes of diphosphenes toward transition metals

involve σ and π interaction with the metal center, as listed in Table 15.5.4.
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(2) η3-Phosphaallyl and η3-phosphirenes

The phosphaallyl anions (
P

C
P

) and the phosphirenes which contain

the group ( P ) are η3−ligands that can form complexes with transition

metals. Some examples are shown below:

P H

H H

Co(CO)3

P

H
C

C
H

CH2

Mes*O

(OC)3Cr MoCp(CO)2

tBu

tBu

tBu

P
P P

P

Ni

(3) η4-Phosphadienes and diphosphacyclobutadienes

Phosphadienes, P C C C or C P C C , are η4-ligands

that can form complexes with transition metals, for example:

P

OMe
C CMe

HC CH3

W(CO)4
Ph

(CO)5W

C
H

H
C P

HC CHMe2
Ph

W(CO)5

Fe(CO)3

Many metal complexes containing the 1,2 or 1,3-diphosphacyclobutadiene
ring have been characterized, and Fig. 15.5.8 shows the structures of some
examples.

Interestingly, it has proved impossible to displace the η4-ligated (P2C2
tBu2)

rings from any of the above complexes, in contrast with the behavior of the
analogous η4-ligated cyclobutadiene ring complexes. This may be attributed to
the significantly stronger π interaction between the metal and the phosphorus-
containing ring system.

(4) η5-Phospholyl complexes
The phospholyl unit, which contains one to five P atoms, is an analog of
the cyclopentadienyl ligand. Figures 15.5.9(a) to 15.5.9(f) show some phos-
phametallocenes, including sandwich, half-sandwich, and tilted structures.
Figures 15.5.9(g) to 15.5.9(j) show some complex phosphametallocenes, in
which only essential parts of the structure are displayed. Figure 15.5.9(k)
shows the supramolecular structure of [Sm(η5-PC4Me4)2(η1-PC4Me4)K(η6-
C6H5Me)]Cl.
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(a)

P

(b) (c)

(d) (e) (f)

Fig. 15.5.8.
Structure of diphosphacyclobutadiene complexes: (a) Fe(CO)3[η4-P2C2

tBu2], (b) Ni[η4-P2C2
tBu2]2, (c) Mo[η4-P2C2

tBu2]3,
(d) Ti(η4-P2C2

tBu2)(η8-COT), (e) Co(η4-P2C2
tBu2)(η5-P2C3

tBu3), and (f) Rh(η4-P2C2
tBu2)(η5-C2B9H11).

(5) η6-Phosphinine complexes
The phosphinine rings (PC5R5, P2C4R4,. . . P6) are analogs of benzene and form
sandwich structures with the transition metals. In η6-phosphinine complexes,
the phosphinine rings are all planar.

15.6 Structural chemistry of As, Sb, and Bi

15.6.1 Stereochemistry of As, Sb, and Bi

The series As, Sb, and Bi show a gradation of properties from non-metallic to
metallic, but the discrete molecules and ions of these elements exhibit similar
stereochemistry, as listed in Table 15.6.1 and shown in Fig. 15.6.1. The presence
of a lone pair (denoted by E in the table) in these atoms implies MIII; otherwise
it is MV.

Many compounds of the MX3E type have been prepared, and all 12 trihalides
of As, Sb, and Bi are well known and available commercially. In either the
gaseous or solid state, the lone pair causes the bond angles to be less than the
ideal tetrahedral angle in every case. For example, SbCl3 in the gas phase has
bond length 233 pm and bond angle 97.1◦, and in the crystal it has three short
Sb–Cl 236 pm and three long Sb· · · Cl≥ 350 pm, and the bond angle Cl–Sb–Cl
is 95◦. The cations of MX+

4 are all tetrahedral. The anion SbF−4 is known in the
monomeric form and has the MX4E type disphenoidal geometry. In the dimer
Sb2F−7 both Sb atoms have a disphenoidal geometry with the bridging fluorine
in one axial position.
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(a) (b) (c) (d)

(g) (h)

M M M

M

Mo Mo

Fe

P

Sm

Cl
K

Rh

Cr

Cr

M Sn
P

(k)

(i) (j)

(e) (f)

Fig. 15.5.9.
Structure of phospholyl π complexes: (a)–(e) sandwich-type phosphametallocenes, (f) Sn[η5-PC4(TMS)2Cp2]2,
(g) (η3-C9H7)Mo(CO)2(η5-P2C3

tBu3), (h) (η3-P2C3
tBu3)Mo(CO)2(η5-Cp∗), (i) [(η5-Cp∗)(CO)]Rh[η5-P3C2

tBu2]Fe(η5-Cp),
(j) (η5-Cp∗)Cr(η5-P5)Cr(η5-Cp∗), (k) [Sm(η5-PC4Me4)2(η1-PC4Me4)K(η6-C6H5Me)]Cl.

Table 15.6.1. Stereochemistry of As, Sb, and Bi

Total number of electron pairs General formula* Geometry Example (refer to Fig. 15.6.1)

4 MX3E Trigonal pyramidal AsCl3, SbCl3, BiCl3 (a)

4 MX4 Tetrahedral AsCl+4 , SbCl+4 (b)

5 MX4E Disphenoidal SbF−4 (c)

5 MX5 Trigonal bipyramidal AsF5, SbCl5, BiF5 (d)

5 MX5 Square pyramidal Sb(C6H5)5, Bi(C6H5)5 (e)

6 MX5E Square pyramidal SbCl2−5 (f)

6 MX6 Octahedral SbBr−6 (g)

7 MX6E Octahedral SbBr3−
6 , BiBr3−

6 (g)

∗M = As, Sb, or Bi, X = ligand atom or group, E = lone pair.
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Fig. 15.6.1.
Stereochemistry of As, Sb, and Bi:
(a) AsCl3, (b) AsCl+4 , (c) SbF−4 , (d)

SbCl5, (e) Bi(C6H5)5, (f) SbCl2−5 , and

(g) SbBr3−
6 and BiBr3−

6 .

(a) (b) (c)

(e) (f) (g)

(d)

Compounds of the MX5 type exhibit two geometries, trigonal bipyramidal
(more common) and square pyramidal. In the trigonal bipyramidal molecules,
the axial bonds are longer than the equatorial bonds. If there are different ligands,
the more electronegative ones usually occupy the axial positions. The com-
pounds Bi(C6H5)5 and Sb(C6H5)5 have a square-pyramidal shape, as shown
in Fig. 15.6.1(e), for which the bond lengths and bond angles are as follows:

Bi(C6H5)5: Bi–Cax 222.1 pm Bi–Cba 233.6 pm Cax–Bi–Cba 101.6◦

Sb(C6H5)5: Sb–Cax211.5 pm Sb–Cba 221.6 pm Cax–Sb–Cba105.4◦

The molecules of MX5E type, such as SbF2−
5 , BiCl2−5 , and some oligolymeric

anions (SbF4)
4−
4 and (BiCl4)2−

2 , have square-pyramidal geometry at each M
atom. In these cases, the four ligands in the base of the square pyramid lie in a
plane slightly above the central M atom, and the bond angles are all less than
90◦ caused by the greater lone-pair repulsions.

The anions of the type MX6, such as SbF−6 , SbBr−6 , and Sb(OH)−6 , have the
expected octahedral geometry. The anions of the type MX6E, such as SbBr3−

6
and BiBr3−

6 , frequently also have a regular octahedral structure. The undistorted
nature of the SbBr3−

6 octahedral suggests that the lonepair is predominantly
5s2, but in a sense it is still stereochemically active since the Sb–Br distance in
SbIIIBr3−

6 is 279.5 pm, which is longer than the distance 256.4 pm in SbVBr−6 .
The bismuthonium ylide 4,4-dimethyl-2,6-dioxo-1-triphenylbismuthonio-

cyclohexane exhibits a distorted tetrahedral geometry with a Bi–Cylide bond
length of 215.6 pm, Bi–CPh bond lengths in the range 221–2 pm, and a weak
Bi· · ·O interaction of 301.9 pm with one of the carbonyl oxygen atoms (the
other Bi· · ·O separation is 335.2 pm). The X-ray data are consistent with the
expectation that the negative charge resides mainly on a deprotonated eno-
lic oxygen atom rather than on the ylidic carbon atom, whose 2p orbital does
not overlap effectively with the 6d orbital of bismuth. Accordingly, formula I
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is a faithful representation of the structure in preference to II, III, and IV, as
displayed below:

O OO

I II III IV

O

Bi Bi Bi Bi Bi

Ph Ph
Ph
Ph Ph

Ph
Ph Ph

Ph
Ph Ph Ph

Ph
Ph

Ph
+

_
O O

+

_O O

+

_
O O

+

_

From 1995 onward, studies have led to the synthesis and structural char-
acterization of stable tungsten complexes with a heavier Group 15 element
functioning as a triple-bonded terminal ligand. In the series of complexes
[(CH2CH2NSiMe3)3N]W≡E (E = P, As, Sb), the tungsten atom exhibits a
distorted trigonal bipyramidal coordination geometry with three equatorial N
atoms and one N atom and the E atom occupying the axial positions. The
molecular structure and W≡E bond distances are shown below:

E

W
N

N
N

N

R
RR

R = SiMe3

W P       216.2(4) pm
W As     229.0(1) pm 
W Sb     252.6(2) pm

15.6.2 Metal–metal bonds and clusters

Many compounds containing M–M bonds or stable rings and clusters of
Group 15 elements are known. Figures 15.6.2(a) to 15.6.2(c) show the struc-
tures of some organometallic compounds of As, Sb, and Bi, which contain
M–M bonds, and Figs. 15.6.2(d) to 15.6.2(e) show the structures of naked
cluster cations Bim+

n , which are the components of some complex salts of bis-
muth. The structure of As6(C6H5)6 illustrates the typical trigonal pyramidal
environment of the As atom; the As–As bond length is 246 pm, in which
the As6 ring adopts a chair conformation. In Sb4(η1-C5Me4)4, Sb4 forms a
twisted ring, with Sb–Sb 284 pm, and all Sb–Sb–Sb bond angles are acute.
Tetrameric bis(trimethylsilyl)methylbismuthine [(Me3Si)2CHBi]4 contains a
folded four-membered metallacycle with fold angles of 112.6◦ and 112.9◦,
Bi–Bi bond lengths in the range 297.0–304.4 pm, and Bi–Bi–Bi angles in the
range 79.0–79.9◦. The discrete moleculesAs2Ph4, Sb2Ph4, and Bi2Ph4 all adopt
the staggered conformation, and the bond lengths are As–As 246 pm, Sb–Sb
286 pm, and Bi–Bi 299 pm.

Dibismuthenes of the general formula LBi=BiL can be synthesized
when L is a bulky aryl ligand. The LBi=BiL molecule is centrosym-
metric and therefore exists in the trans configuration. For L = 2,4,
6-tris[bis(trimethylsilyl)methyl]phenyl, X-ray analysis of the dibismuthene
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Fig. 15.6.2.
Structures of (a) As6(C6H5)6,
(b) Sb4(η1-C5Me4)4, (c) Bi2(C6H5)4,
(d) Bi3+

5 , (e) Bi2+
8 , and (f) Bi5+

9 . In
(a)–(c) the phenyl ligands are represented
by C atoms bonded to the metal skeleton.

(a)

(d) (e) (f)

(b) (c)

SbAs

Bi

yielded a Bi=Bi double-bond length of 282.1 pm and a Bi==Bi–C angle of
100.5◦.

The structures of cationic bismuth clusters Bi3+
5 ,Bi2+

8 , and Bi5+
9 are listed in

Table 15.6.2.

Table 15.6.2. Cationic bismuth clusters

Cation Crystal Structure Symmetry

Bi3+
5 Bi5(AlCl4)3 Trigonal bipyramidal D3h

Bi2+
8 Bi8(AlCl4)2 Square antiprism D4h

Bi5+
9 Bi24Cl28, or Tricapped trigonal prism C3h(∼D3h)

(Bi5+
9 )2(BiCl2−5 )4(Bi2Cl2−8 )

Metalloid and intermetalloid clusters of Group 13 and 14 elements have been
described in the two preceding chapters. For Group 15 elements, the ligand-
free intermetalloid clusters [As@Ni12@As20]3− and [Zn@Zn8Bi4@Bi7]5− are
known. In [As@Ni12@As20]3−, a central As atom is located inside a Ni12
icosahedron, which is in turn enclosed by a As20 pentagonal dodecahedron, as
shown in Fig. 15.6.3(a).

The first example of an intermetalloid cluster that almagamates 11 Bi
and 9 Zn atoms has been found in the complex [K(2.2.2-crypt)]5[Zn9Bi11]·
2en·toluene (2.2.2-crypt = 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo[8.8.8]
hexacosane). The naked [Zn@Zn8Bi4@Bi7]5− cluster consists of a central Zn
atom trapped inside a distorted icosahedron whose vertices are 8 Zn atoms and
4 Bi atoms, with 7 of the 20 triangular faces each capped by a Bi atom, as shown
in Fig. 15.6.3(b).

Asimplified model may be used to rationalize the bonding in the heteroatomic
species [Zn@Zn8Bi4@Bi7]5−. According to the electron counting theory pro-
posed by Wade, the formation of a closo deltahedra of 12 vertices is stabilized
by 13 skeletal electron pairs. The total of 26 electrons required for skeletal
bonding may be considered to be provided as follows: 2 from the interstitial Zn
atom, (8×0+4×3 = 12) from the Zn8Bi4 icosahedral unit (each vertex atom
carries an exo lone pair or bond pair), 7 from the capping Bi atoms, and 5 from
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(a) (b)

Fig. 15.6.3.
(a) Structure of the [As@Ni12@As20]3− cluster; the solid and open circles represent Ni and As
atoms, respectively. (b) Structure of the [Zn@Zn8Bi4@Bi7]5− cluster; the shaded and open
circles represent Zn and Bi atoms, respectively. Interatomic distrances: Zncent–Znico
283.2(2)–359.4(3), Zncent–Biico 282.2(2)–292.8(2), Znico–Biico 287.6(2)–375.5(2), Biico–Biico
320.5(1), Znico–Znico 289.4(2)–376.2(2), Bicap–Znico 259.8(1)–276.8(1), Bicap–Biico
310.7(1)–331.2(1) pm; the subscripts cent, ico, and cap denote atoms occupying the central,
icosahedral, and capping sites, respectively.

the negative charges. Note that each vertex Bi atom is considered to retain one
lone pair, whereas each capping Bi atom withholds two lone pairs.

15.6.3 Intermolecular interactions in organoantimony and
organobismuth compounds

Intermolecular interactions have long been known to exist in inorganic com-
pounds of antimony and bismuth. For example, SbCl3 has three Sb–Cl bonds
of length 234 pm and five Sb· · · Cl distances in the range 346–74 pm, thus
enlarging the coordination sphere from trigonal pyramidal to (3 + 5) bicapped
trigonal prismatic geometry.

The organoantimony and organobismuth compounds in oxidation states
I–III also exhibit strong intermolecular interactions, which lead to sec-
ondary bonds between molecules in forming chain-like, layer-type, and three-
dimensional supramolecular structures. Figure 15.6.4 shows the structures of
three organometallic compounds of Sb and Bi.

(1) MeSbCl2
Crystalline MeSbCl2 contains alternating layers, each consisting of double
chains of MeSbCl2 molecules. Along a MeSbCl2 chain, the bond lengths
and angles are Sb–Cl, 236.8 and 243.0 pm; Sb· · · Cl, 333.7 and 386.5 pm;
Sb–Cl· · · Sb (within chain), 102.9◦.

(2) Me2SbI
In the Me2SbI chain, the bond lengths are Sb–I 279.9 pm and Sb· · · I 366.6 pm,
so that the short and long Sb–I bonds are clearly different. The chain atoms lie
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Fig. 15.6.4.
Structures of organometallic compounds
of Sb and Bi: (a) MeSbCl2, (b) Me2SbI,
(c) MesBiBr2(Mes = mesityl).

(b)

(c)

Sb

Sb
I

Br

Bi

(a)

almost in a plane, while the methyl groups are directed to one side of this plane.
The reverse side is exposed to neighboring chains with very weak interchain
Sb· · · I contacts (402.4–416.7 pm) close to the van der Waals separation. This
type of chain packing leads to the formation of double layers.

(3) MesBiBr2

In the chain structure of MesBiBr2, the Bi and bridging Br atoms constitute a
zigzag chain, with the nonbridging Br atoms lying on one side and the mesityl
groups on the other side of the plane as defined by the positions of the chain
atoms. The structure is stabilized by π interaction between the Bi atom and the
noncoordinated mesityl group. The bond lengths are Bi–Br, 261.9 and 281.8 pm;
Bi· · · Bi, 301.7 and 302.2 pm; Bi– mesityl ring centroid, 319.5 and 330.1 pm.
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16 Structural Chemistry of
Group 16 Elements

16.1 Dioxygen and ozone

Oxygen is the most abundant element on the earth’s surface. It occurs both in
the free state and as a component in innumerable compounds. The common
allotrope of oxygen is dioxygen (O2) or oxygen gas; the other allotrope is
ozone (O3).

16.1.1 Structure and properties of dioxygen

Molecular oxygen (or dioxygen) O2 and related species are involved in
many chemical reactions. The valence molecular orbitals and electronic con-
figurations of the homonuclear diatomic species O2 and O−2 are shown in
Fig. 16.1.1.

In the ground state of O2, the outermost two electrons occupy a doubly
degenerate set of antibonding π∗ orbitals with parallel spins. Dioxygen is thus
a paramagnetic molecule with a triplet ground state (3<), and its formal double
bond has a length of 120.752 pm.

The first electronic excited state (1') is 94 kJ mol−1 above the ground
state and is a singlet with no unpaired electrons. This very reactive species,
commonly called singlet oxygen, has a half-life of 2 µs in water. Its bond length
is 121.563 pm. Another singlet (1<) species, with paired electrons in the πg
orbitals, is higher in energy than the ground state by 158 kJ mol−1, and its bond
length is 122.688 pm. Of the two singlet states only the lower 1' survives long
enough to participate in chemical reactions. The higher 1< state is deactivated
to the O2 (1') state so rapidly that it has no significant chemistry.

Simple reduction of dioxygen to the superoxide ion, O−2 , is thermodynami-
cally unfavorable as it involves adding an electron to a half-filled antibonding
orbital. Reduction to the peroxide ion, O2−

2 , however, is favorable from either
superoxide or dioxygen. Owing to the increased population of antibonding
orbitals in the reduced O2 species (O−2 and O2−

2 ), both the bond order and
O–O IR stretching frequency decrease, while the O–O distance increases.
Table 16.1.1 lists relevant data on the bond properties of dioxygen species.

Owing to its nonpolar nature, O2 is more soluble in organic solvents than
in H2O. Since the 3< ground state of dioxygen is a spin triplet, concerted
oxygenation reaction is subject to spin restriction. As a result, many types
of dioxygen reactions proceed slowly, even in cases where such reactions are
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2p σu

Molecular O2 O2
–

Orbital 3 1 1

2p πg

2p πu

2p σg

2s σu

2s σg
Fig. 16.1.1.
MO diagrams for O2 and O−2 .

strongly favored thermodynamically, such as a mixture of O2 and H2. The reac-
tivity of dioxygen with singlet molecules can be increased by exciting it to its 1'

singlet state, thereby removing the spin restriction. This energy corresponds to
an infrared wavelength of 1270 nm.As singlet oxygen in solution deactivates by
transferring its electronic energy to vibration of solvent molecules, its lifetime
depends strongly on the medium. Solvents with high vibrational frequencies
provide the most efficient relaxation. For this reason, the lifetime (about 2–4
µs) is shortest in water, which has a strong OH vibration near 3600 cm−1. Sol-
vents with CH groups (≈ 3000 cm−1) are the next most efficient, with lifetime
in the range of 30–100 µs.

Table 16.1.1. Bond properties of dioxygen species

Species Compound Bond order O–O (pm) Bond energy ν(O–O) (cm−1)
(kJ mol−1)

Oxygenyl O+
2 O2[AsF6] 2.5 112.3 625.1 1858

Triplet O2(3<) O2(g) 2 120.752 490.4 1554.7
Singlet O2(1') O2(g) 2 121.563 396.2 1483.5
Singlet O2(1<) O2(g) 2 122.688 — —
Superoxide O−2 KO2 1.5 128 — 1145
Peroxide O2−

2 Na2O2 1 149 204.2 842
—O–O— H2O2(cryst.) 1 145.8 213 882

There are two major sources of singlet oxygen O2 (1'):

(1) Photochemical sources. One of the most common sources of singlet oxy-
gen is energy transfer from an excited “sensitizer” (Sens), such as a dye
or natural pigment, to the ground state of the oxygen molecule. The role
of the sensitizer is to absorb irradiation and be converted to an electroni-
cally excited state (Sens∗). This state, normally a triplet, then transfers its
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energy to the oxygen molecule, producing singlet oxygen and regenerating
the sensitizer, as indicated below:

Sens
hν−→ Sens∗

O2−→ Sens + O2(
1').

(2) Chemical sources. An early chemical source is the reaction of HOCl with
H2O2, which produces singlet O2(

1') in nearly quantitative yield:

H2O2 + HOCl → O2(
1') + H2O + HCl.

Another source is derived from phosphite ozonides as in the reaction

RO P

RO

RO

+ O3
–78oC RO P

RO

RO

O

O

O RO P

RO

RO

O + O2(1
∆)

In addition to the above sources, a number of other chemical reactions have
been suggested for the production of singlet oxygen.

Singlet oxygen O2(
1') is a useful synthetic reagent, which allows stereospe-

cific and regiospecific introduction of O2 into organic substrates. Since singlet
oxygen O2(

1') has a vacant πg orbital, similar to the frontier MO of ethylene,
it behaves as an electrophilic reagent, with a reactivity pattern reminiscent of
that exhibited by ethylene with electronegative substituents. For example, it
undergoes [4 + 2] cycloadditions with 1,3-dienes, and [2 + 2] cycloadditions
and ene reactions with isolated double bonds. Some examples are given below:

+O2 (
1∆)

O

O

+O2 (
1∆)

O

O

Ph

Ph

Ph

Ph

+O2 (
1∆)

Ph

Ph
O

O

Ph

Ph

16.1.2 Crystalline phases of solid oxygen

X-ray studies of solid oxygen began in the 1920s, and at present six distinct
crystallographic forms have been unequivocally identified. The α, β, and γ
phases exist at ambient pressure and low temperature. At T = 295 K, oxygen
solidifies to form the β phase at 5.4 GPa, which transforms into the orange δ
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Fig. 16.1.2.
Molecular packing in the crystal
structure of ε-oxygen; the solid and open
lines indicate covalent and weak bonds,
respectively. (a) C-centered layer of
(O2)4 clusters viewed along the c axis;
(b) the same layer viewed along the b
axis. Symmetry codes: A x̄, y, z̄; B x, ȳ, z;
C x̄, ȳ, z̄.

phase at 9.6 GPa, which in turn is converted to the red ε phase at 10 GPa. Above
96 GPa, the ε phase undergoes transformation to the metallic ς phase.

The monoclinic α, rhombohedral β, and orthorhombic γ phases all have
layered structures composed of O2 molecules. Recently, single-crystal X-
ray analysis has established that in the crystal structure of the ε phase at
13.2–17.6 GPa (space group C2/m with Z = 8), four O2 molecules associate
into a rhombohedral (O2)4 cluster by serving as the short, parallel edges of a
rhombic prism located at a site of symmetry 2/m, which is held together by
weak chemical bonds. The layer-type crystal structure is shown in Fig. 16.1.2.
The O· · · O· · · O angles at the rhombic face O2–O3–O1A–O3B are 84.5◦ and
95.8◦. The two independently measured O–O bond lengths are 120 and 121
pm, which are in agreement with that in the gas phase. The shortest intra-
cluster, intercluster, and interlayer O· · · O contacts are 218, 259, and 250 pm,
respectively.

16.1.3 Dioxygen-related species and hydrogen peroxide

The oxygenyl cation, O+
2 , is well characterized in both the gas phase and in salts

with non-oxidizable anions. Removal of one of the antibonding πg electrons
from O2 gives O+

2 with a bond order of 2.5 and, consequently, a shorter bond
length of 112.3 pm. The chemistry of O+

2 is quite limited in scope because of
the high ionization potential of O2 (1163 kJ mol−1).

The superoxide ion O−2 is formed by adding one electron into the antibonding
orbital πg of O2, thereby reducing the bond order to 1.5 and increasing the bond
length to 128 pm, as shown in Table 16.1.1.

The peroxide ion, O2−
2 , has two more electrons than neutral dioxygen, and

these additional electrons completely fill the πg MO, resulting in a diamagnetic
molecule with an O–O bond order of 1. The single-bond character is evident
from the longer bond length (about 149 pm) and from the lower rotational
barrier of the peroxide bond. The peroxide anion is found in ionic salts with the
alkali metals and heavier alkaline-earth metals such as calcium, strontium, and
barium. These ionic peroxides are powerful oxidants, and hydrogen peroxide,
H2O2, is formed when they are dissolved in water. Figure 16.1.3 shows the
molecular structure of H2O2.
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Fig. 16.1.3.
Molecular structure of H2O2: (a) in the
crystal and (b) in the gas phase (bond
lengths in pm).

O O

H

H

98.8
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90.2o
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H

95.0
147.5

94.8o

111.5o

(a) (b)

Table 16.1.2 lists the values of the dihedral angle of H2O2 in some crystalline
phases (a value of 180◦ corresponds to a planar trans configuration). This large
range of values indicates that the rotational barrier is low and the molecular
configuration of H2O2 is very sensitive to its surroundings.

Table 16.1.2. Dihedral angle of H2O2 in some crystalline phases

Compound Dihedral angle Compound Dihedral angle

H2O2 (s) 90.2◦ Li2C2O4·H2O2 180◦
K2C2O4·H2O2 101.6◦ Na2C2O4·H2O2 180◦
Rb2C2O4·H2O2 103.4◦ NH4F·H2O2 180◦
H2O2·2H2O 129◦ theoretical 90◦ – 120◦

Hydrogen peroxide has a rich and varied chemistry which arises from its
versatility:

(a) It can act either as an oxidizing or a reducing agent in both acid and alkaline
media.

(b) It undergoes proton acid/base reactions to form peroxonium salts
(H2OOH)+, hydroperoxides (OOH)−, and peroxides (O2−

2 ).
(c) It gives rise to peroxometal complexes and peroxoacid anions.
(d) It can form crystalline addition compounds with other molecules

through hydrogen bonding, such as Na2C2O4·H2O2, NH4F·H2O2, and
H2O2·2H2O.

The O–O bond length of 134 pm for the superoxide ion, O−2 , was determined
accurately for the first time in its [1,3-(Me3N)2C6H4][O2]2·3NH3 salt. Orien-
tational disorder of the O−2 ion that often occurs in crystals is avoided by using
the bulky, nonspherical organic counter cation, which imposes order on the
anionic sites.

16.1.4 Ozone

Ozone is a diamagnetic gas with a distinctive strong odor. The O3 molecule
[Fig. 16.1.4(a)] is angular, with an O–O bond length of 127.8 pm, which is
longer than that of O2 (120.8 pm); the bond energy of 297 kJ mol−1 is lesser
than that of O2 (490 kJ mol−1). The central O atom uses its sp2 hybrid orbitals
to form σ bonds with the terminal O atoms and to accommodate a lone pair,
leaving the remaining p orbital for π bonding, as shown in Fig. 16.1.4(b). Each
O–O bond has a bond order of 1.5. Ozone has a measured dipole moment of
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1.73 × 10−30 C·m (0.52 Debye) due to the uneven electron distribution over
the central and terminal O atoms.

O
O

O O
O

O O
O

O
127.8pm

116.8o

(a) (b)

Fig. 16.1.4.
The O3 molecule: (a) geometry and
(b) bonding.

The deep red ozonide ion O−3 has a bent structure, and sodium ozonide is
isostructural with sodium nitrite (NaNO2). The X-ray structural data of the
alkali metal ozonides show that an increase in cationic size corresponds to a
decrease in O–O bond length and an increase in O–O–O angle, as summarized
in the following table:

MO3 O–O (pm) O–O–O(◦)
NaO3 135.3(3) 113.0(2)
KO3 134.6(2) 113.5(1)
RbO3 134.3(7) 113.7(5)
CsO3 133.3(9) 114.6(6)

Since the additional electron enters an antibonding π∗ orbital, the bond order
of O–O in O−3 is 1.25 and the bond length increases. Ionic ozonides such as
KO3 are thermodynamically metastable and extremely sensitive to moisture
and carbon dioxide.

Ozone is a major atmospheric pollutant in urban areas. In addition to its dam-
aging effect on lung tissue and even on exposed skin surfaces, ozone attacks
the rubber of tires, causing them to become brittle and crack. But in the strato-
sphere, where ozone absorbs much of the short-wavelength UV radiation from
the sun, it provides a vital protective shield for life forms on earth.

Ozone has proven to be useful as a reagent to oxygenate organic com-
pounds, a good example being the conversion of olefins to cleaved carbonyl
products (Fig. 16.1.5). When O3 reacts with olefins, the first product formed

O
O O

C C
C C

O

O O

C O
O

+
_ +O3 + C O 1/2 O2C O

H2O2

ozonide

H2O

2

C O2

+

+

molozonide
aldehyde/ketone carbonyl  oxide

Fig. 16.1.5.
Mechanism of reaction between O3 and an olefin.
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Fig. 16.1.6.
Structure of the molecule
FC(O)OOOC(O)F showing (a) its C2
symmetry axis and (b) left-handed chiral
conformation.

(a)
F

C

O

(b)

is a molozonide which in turn undergoes an O–O bond cleavage to give an
aldehyde or a ketone plus a carbonyl oxide. The carbonyl oxide then decom-
poses to yield the products. But under appropriate conditions, the aldehyde or
ketone will recombine with the carbonyl oxide to generate an ozonide, which
then decomposes in the presence of H2O to give two carbonyl compounds and
hydrogen peroxide.

There exist only a few compounds which contain a linear chain of three
oxygen atoms. The unstable compound bis(fluoroformyl)trioxide, F–C(O)–O–
O–O–C(O)–F, exists as the trans-syn-syn rotamer with C2 symmetry in the
crystalline state (with respect to the central O3 fragment, the C–O bonds are
trans and both C=O bonds are cis). The C–O–O–O torsion angle and O–O–O
bond angle are 99.0(1)◦ and 104.0(1)◦, respectively, as shown in Fig. 16.1.6.
In the stable molecule bis(trifluoromethyl)trioxide F3C–O–O–O–CF3, the
corresponding values are 95.9(8) and 106.4(1)◦, respectively.

16.2 Oxygen and dioxygen metal complexes

16.2.1 Coordination modes of oxygen in metal–oxo complexes

The structures of inorganic crystals are usually described by the packing of
anions and metal coordination geometries. In this section, we place particular
emphasis on the coordination environment of the oxygen atom. The oxygen
atom (oxo ligand) exhibits various ligation modes in binding to metal centers,
as shown in Table 16.2.1.

16.2.2 Ligation modes of dioxygen in metal complexes

In general, dioxygen metal complexes can be classified in terms of their mode
of binding. With nonbridging O2 ligands, both η1 (superoxo) and η2 (peroxo)
complexes are known. Bridging dioxygen groups can adopt η1 : η1, η1 : η2, and
η2 : η2 configurations. Figure 16.2.1 shows the observed coordination modes
in dioxygen metal complexes.

Another commonly adopted classification of dioxygen metal complexes is
based on O–O bond lengths (referring to Table 16.2.2): superoxo complexes
of types Ia and Ib, in which the O–O distance is roughly constant and close
to the value reported for the superoxide anion (∼130 pm); and types IIa and
IIb, in which the O–O distance is close to the values reported for H2O2 and
O2−

2 (∼148 pm). The a or b classification distinguishes complexes in which
the dioxygen is bound to one metal atom (type a) or bridging two metal atoms
(type b).
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Table 16.2.1. Coordination geometry of oxo ligand

Coordination geometry Examples and notes

M O

M O M

O
M M

O M O M O

M

O
M M

M

O
M M

M

M

O

M

M M

M

O

M

M

M

M

M

O

M
M

M

M

M

[VO]2+, V=O bond length (155 to 168 pm) has partial
triple-bond character.

Linear, ReO3: Re–O–Re forms the edges of cubic unit cell.

Bent, Cr2O2−
7 : Cr–O bond length 177 pm, Cr–O–Cr bond

angle 123◦.

Linear (in the presence of strong π bonding) and bent: these
types exist in the compounds of Re and Tc; bond length M=O
165 to 170 pm, and M–O 190 to 192 pm.

Pyramidal, as in H3O+ and [O(HgCl)3]+.
Trigonal planar, as in [Fe3(µ3-O)(O2CCMe3)6(MeOH)3]+.

Tetrahedral, as in Cu2O and Be4(µ4-O)(O2CMe)6.

Square planar, as in [Fe8(µ4-O)(µ3-O)4(OAc)8(tren)4]6+.

Trigonal bipyramidal, as in [Fe5(µ5-O)(O2CMe)12]+.

Octahedral, as in [Fe6(µ6-O)(µ2-OMe)12(OMe)6]2−.

(a) (b) (c)

(d)

M O

(e) (f)

(g) (h) (i)

Fig. 16.2.1.
Coordination modes of dioxygen metal
complexes: (a) η1-superoxo,
(b) η2-superoxo, (c) µ-η2 : η2 peroxo,
symmetric, (d) µ-η1-superoxo,
symmetrical, (e) µ-η1 : η2 peroxo,
(f) µ-η1 : η2-peroxo, centrosymmetric,
(g) trans µ-η1 : η1, superoxo or peroxo,
(h) cis µ-η1 : η1, superoxo or peroxo,
(i) µ-η2 : η2 peroxo, unsymmetric.
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Table 16.2.2. Structural data of dioxygen metal complexes

Complex Type O2:M Structure O–O (pm) ν(O–O) (cm−1)

ratio (normal range) (normal range)

Superoxo Ia 1:1 O
OM

O
M O

M

M

O

O

O
M O

M

125 – 135 1130 – 1195

Superoxo Ib 1:2 126 – 136 1075 – 1122

Peroxo IIa 1:1 130 – 155 800 – 932

Peroxo IIb 1:2 144 – 149 790 – 884

The stretching frequencies attributed to the O–O vibration are closely related
to the structural type. Type I complexes show O–O stretching vibrations around
1125 cm−1 and type II around 860 cm−1. This sharp difference enables the O–
O stretching frequency as measured by infrared or Raman spectroscopy to be
used for structure type classification. Table 16.2.2 lists the structural data of
dioxygen metal complexes.

16.2.3 Biological dioxygen carriers

The proteins hemoglobin (Hb) and myoglobin (Mb) serve to transport and to
store oxygen, respectively, in all vertebrates. The active site in both proteins
is a planar heme group (Fig. 16.2.2). Myoglobin is composed of one globin
(globular protein molecule) and one heme group. Hemoglobin consists of four
myoglobin-like subunits, two α and two β. In each subunit, the heme group is
partially embedded in the globin, and an oxygen molecule can bond to the iron
atom on the side of the porphyrin opposite the proximal histidine, thus forming
a hexa-coordinate iron complex, as shown in Fig. 16.2.3.

Myoglobin contains Fe2+(d6 configuration) in a high-spin state, which has
a radius of about 78 pm in a pseudo-octahedral environment. The Fe2+ ion is
too large to fit into the central cavity of the porphyrin ring, and lies some 42 pm
above the plane of the N donor atoms. When a dioxygen molecule binds to
Fe2+, the Fe2+ becomes low-spin d6 with a shrunken radius of only 61 pm,
which enables it to slip into the porphyrin cavity.

N

N N

N

Fe

CH3H3C

CH3

HC CH3
CH3

H
C

H2C

(CH2)2 (CH2)2

CO2
– CO2

–

Fig. 16.2.2.
The heme group.

In hemoglobin, O2 binding to Fe2+ does not oxidize it to Fe3+, as it is
protected by protein units around the heme group. A nonaqueous environment
is required for reversible O2 binding.

The O2(
3<) and the high-spin Fe2+ atom of the heme combine to form a

spin-paired diamagnetic system. The resulting Fe–O–O is bent, with a bond
angle varying from 115◦ to 153◦. The stronger σ interaction is between the
dz2 (Fe) and πg(O2) orbitals, and the weak π interaction is between dxz(Fe)
and π∗g (O2). The increased ligand effect results in pairing of electrons and a
weakened O–O bond.
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Fig. 16.2.3.
The binding of dioxygen by heme.

Oxygen enters the blood in the lungs, where the partial pressure of O2 is
relatively high (2.1× 104 Pa) under ideal conditions; in the lungs with mix-
ing of inhaled and nonexhaled gases, the O2 partial pressure is ∼1.3× 104 Pa.
It is then carried by red blood cells to the tissues where the O2 partial pres-
sure is lowered to ∼4× 103 Pa. The reactions that occur are represented
as follows:

Lungs: Hb + 4O2 → Hb(O2)4
Tissues: Hb(O2)4 + 4Mb→ 4Mb(O2) + Hb.

The four subunits (2α + 2β) of hemoglobin function cooperatively. When
one O2 is bound to one heme group, the conformation of Hb subtly changes to
make binding of additional oxygen molecules easier. Thus the four irons can
each carry one O2 with steadily increasing equilibrium constants. As a result, as
soon as some O2 has been bound to the molecule, all four irons readily become
oxygenated (oxyHb). In a similar fashion, initial removal of oxygen triggers the
release of the remainder, and the entire load of O2 is delivered at the required
site. This effect is also facilitated by pH changes caused by increased CO2
concentration in the capillaries. As the CO2 concentration increases, the pH
decreases due to formation of HCO−3 , and the increased acidity favors release
of O2 from oxyHb. This is known as the Bohr effect.

Hemoglobin carries oxygen via the circulatory system from the lungs to body
tissues. There the oxygen can be transferred to myoglobin, where it is stored
for oxidation of foodstuffs. The properties of Hb and Mb can be represented by
the oxygen-binding curves of Fig. 16.2.4. At high oxygen concentrations, Hb
and Mb bind O2 with approximately equal affinity. However, at low oxygen
concentrations, such as in muscle tissue during or immediately after muscular
activity, Hb is a poor oxygen binder and therefore can deliver its oxygen to
Mb. The difference in O2-binding ability between Mb and Hb is accentuated
at low pH values; hence the transfer from Hb to Mb has a great driving force
where it is most needed, viz., in tissues where oxygen has been converted
to CO2.

16.3 Structure of water and ices

Water is the most common substance on the earth’s surface, and it constitutes
about 70% of the human body and the food it consumes. It is also the smallest
molecule with the greatest potential for hydrogen bonding. Water is the most
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Fig. 16.2.4.
The oxygen binding curves for Mb and
Hb, showing the pH dependence for the
latter.
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important species in chemistry because a majority of chemical reactions can be
carried out in its presence.

16.3.1 Water in the gas phase

The H2O molecule has a bent structure, with O–H bond length 95.72 pm and
bond angle H–O–H 104.52◦; the O–H bonds and the lone pairs form a tetrahedral
configuration, as shown in Fig. 16.3.1(a). They are capable of forming donor O–
H· · · X and acceptor O· · · H–X hydrogen bonds (X is a highly electronegative
atom).

Fig. 16.3.1.
Structures of (a) gaseous H2O molecule
and (b) water dimer (bond length in pm). (a)

95.72
104.52º

296 pm

55º

(b)

In the gas phase, the adducts of H2O with HF, HCl, HBr, HCN, HC≡CH,
and NH3 have been studied by microwave spectroscopy to determine the rela-
tionship of hydrogen-bond donor and acceptor. The structures of the adducts
are H2O:· · · H–F, H2O:· · · H–Cl, and H2O:· · · H–CN. Only with NH3 is water
a H donor: H3N:· · · H–OH.

Water forms a hydrogen-bonded dimer, the structure of which has been
determined by microwave spectroscopy, as shown in Fig. 16.3.1(b). The exper-
imental value of the binding energy of this dimeric system is 22.6 kJ mol−1.

16.3.2 Water in the solid phase: ices

Solid H2O has 11 known crystalline forms, as listed in Table 16.3.1.
Ordinary hexagonal ice Ih and cubic ice Ic are formed at normal pressures,

the latter being stable below −120◦ C. Their hydrogen bonding patterns are
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Table 16.3.1. Crystal structures of ice polymorphs

Ice Space Parameters of Z Hydrogen Density Coordination Hydrogen bond Nearest
group unit cell (pm) positions (g cm−3) number∗ distance (pm) nonbonding

distance (pm)

Ih (273 K) P63/mmc
(no. 194)

a = 451.35(14)

c = 735.21(12)

4 Disordered 0.92 4 275.2–276.5 450

I (5 K) Cmc21
(no. 36)

a = 450.19(5)

b = 779.78(8)

c = 732.80(2)

12 Ordered 0.93 4 273.7 450

Ic (143 K) Fd3̄m
(no. 227)

a = 635.0(8) 8 Disordered 0.93 4 275.0 450

II R3̄
(no. 148)

a = 779(1)

α = 113.1(2)◦
12 Ordered 1.18 4 275–84 324

III P41212
(no. 92)

a = 673(1)

c = 683(1)

12 Disordered 1.16 4 276–80 343

IV R3̄c
(no. 167)

a = 760(1)

α = 70.1(2)◦
16 Disordered 1.27 4 279–92 314

V A2/a
(no. 15)

a = 922(2)

b = 754(1)

c = 1035(2)

β = 109.2(2)◦

28 Disordered 1.23 4 276–87 328

VI P42/nmc
(no. 137)

a = 627
c = 579

10 Disordered 1.31 4 280–2 351

VII Pn3̄m
(no. 224)

a = 343 2 Disordered 1.49 8 295 295

VIII I41/amd
(no. 141)

a = 467.79(5)

c = 680.29(10)

8 Ordered 1.49 6 280–96 280

IX P41212
(no. 92)

a = 673(1)

c = 683(1)

12 Ordered 1.16 4 276–80 351

∗No. of nearest neighbors closer than 300 pm.

very similar, and only the arrangements of the oxygen atoms differ. In Ic, the
oxygens are arranged like the carbon atoms in cubic diamond, whereas in Ih the
atomic arrangement corresponds to that in hexagonal diamond. Figure 16.3.2
shows the structure of Ih.

In both Ih and Ic, the hydrogen-bonded systems contain cyclohexane-like
buckled hexagonal ring motifs: chair form in Ic and boat form in Ih.An important
distinction is that in Ic all four hydrogen bonds are equivalent by symmetry. In
Ih, the hydrogen bond in the direction of the hexagonal axis can be differentiated
from the other three.

Aneutron diffraction analysis of H2O and D2O ice Ih at different temperatures
has shown that, in addition to the disordered hydrogens, the oxygen atoms are
also disordered about sites 6 pm off the hexagonal axis.

In the high-pressure ices the hydrogen-bonding patterns become progres-
sively more complex with increasing pressure until the ultra-high-pressure ice
polymorphs VII and VIII are formed. Ice II contains nearly planar hexago-
nal rings of hydrogen-bond O atoms arranged in columns. The O· · · O· · · O
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Fig. 16.3.2.
Structure of ice Ih. (Large
circle represents O atom, small black
circle represents H atom, and broken line
represents a disordered hydrogen bond,
for which only one of the two
arrangements, O–H· · · O and O· · · H–O,
is shown).

angles are greatly distorted from tetrahedral, with some close nonbonded O· · · O
separation of 324 pm.

Ice III is composed mainly from hydrogen-bonded pentagons with some
heptagons, but with no hexagonal rings. Ice IX has the same structure as ice
III, except that the hydrogen atoms are ordered in IX and disordered in III. The
transformation III→ IX occurs between 208 and 165 K.

Ice IV, which is metastable, is even more distorted with O· · · O· · · O angles
between 88◦ and 128◦ and a large number of non-hydrogen-bonded O· · · O
contacts between 314 and 329 pm. Some oxygen atoms lie at the centers of
hexagonal rings. Ice V contains quadrilaterals, pentagons, and hexagons, in
which respect it resembles some of the clathrate hydrate host frameworks.

It is of interest to note that ice VI is the first of the ice structures composed
of two independent interpenetrating hydrogen-bonded frameworks (e.g., it is a
self-clathrate).

Ice VII and VIII are constructed from much more regular interpenetrating
frameworks, each with the Ic structure with little distortion from tetrahedral
bonding configuration. In ice VII, each oxygen has eight nearest neigh-
bors, four hydrogen-bonded at O· · · O = 288 pm, and four nonbonded at
a shorter distance of 274 pm, demonstrating that it is easier to compress
a van der Waals O· · · O distance than a O–H· · · O distance. Until the for-
mation of interpenetrating frameworks, the principal effect of increasing
pressure is to produce more complex hydrogen-bond patterns with large
departures from tetrahedral coordination around the oxygen atoms; with
the interpenetrating hydrogen bond frameworks, the patterns become much
simpler.

A very-high-pressure form, ice X, which was predicated to have a H atom
located midway between every pair of hydrogen-bonded O atoms, was identified
by infrared spectroscopy with a transition at 44 GPa.

In addition to the various forms of ice, there are a large number of ice-like
structures with four-coordinated water molecules that constitute a host frame-
work, which are only stable when voids in the host framework are occupied by
other guest molecules. Such compounds are known as clathrate hydrates.
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16.3.3 Structural model of liquid water

Water is a unique substance in view of its unusual physical and chemical
properties:

(a) The density of liquid water reaches a maximum at 4 ◦C.
(b) Water has a high dielectric constant associated with the distortion or

breaking of hydrogen bonds.
(c) Water has relatively high electrical conductivity associated with the transfer

of H3O+ and OH− ions through the hydrogen-bonded structure.
(d) Water can be super-cooled and its fluidity increases under pressure.
(e) Water is an essential chemical for all life processes.

Many models for the structure of liquid water have been proposed. One of
the most useful is the polyhedral model.

In liquid water, the thermal motions of molecules are perpetual, and the
relative positions of the molecules are changing all the time. Although the
structure of liquid water has no definite pattern, the hydrogen bonds between
molecules still exist in large numbers. Thus liquid water is a dynamic system in
which the H2O molecules self-assemble in perfect, imperfect, isolated, linked
and fused polyhedra (Fig. 16.3.3), among which the pentagonal dodecahedron
takes precedence.

The ideal process of the melting of ice may be visualized as a partial (∼15%)
breakage of hydrogen bonds to form “ice fragments,” which are then converted
into a polyhedral system, as indicated in Fig. 16.3.4.

The polyhedral model is useful for understanding the properties of liquid
water.

(1) Hydrogen bonds in liquid water
The geometry of a pentagonal dodecahedron is well suited to the formation of
hydrogen bonds between molecules. The interior angle of a five-membered ring

(a) (b) (c)

Fig. 16.3.3.
Structures of some polyhedra for liquid
water: (a) pentagonal dodecahedron
(512), (b) 14-hedron (51262), and
(c) 15-hedron (51263).

ice crystal "ice fragment" dodecahedron

Fig. 16.3.4.
Schematic diagram for melting of ice to
form water.
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Fig. 16.3.5.
The “g(r) vs r” diagrams of ice Ih (top)
and liquid water at 277 K (bottom).
[Here g(r) represents the oxygen
atom-pair correlation function and r
represents the distance of an oxygen
atom-pair; taken from A. H. Narten,
C. A. Venkatesh and S. A. Rice, J. Chem
Phys. 64, 1106 (1976).]
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(108◦) is close to the H–O–H bond angle (104.5◦) of the water molecule and
its tetrahedral charge distribution.

(2) Density of water
When “ice fragments” convert to the dodecahedral form, the packing of
molecules becomes compact, so liquid water is denser than solid ice. In other
circumstances, the density of water decreases when the temperature is raised.
Water has its highest density at 4 ◦C.

(3) X-ray diffraction of liquid water
The “g(r) vs r” diagrams from X-ray diffraction of ice and liquid water are
shown in Fig. 16.3.5, in which g(r) represents the oxygen atom-pair correla-
tion function and r represents the distance between an oxygen atom-pair. The
diagram of liquid water shows that the strongest peak occurs at r = 280 pm,
which corresponds to the distance of the hydrogen bond in the dodecahedral
system. The next peak is at 450 pm, and the others lie in the range of 640 to
780 pm. There is no peak in the ranges of 280–450 pm and 450–640 pm. In the
pentagonal dodecahedron the distances between a vertex and its neighbors are
1 (length of the edge, which is taken as the unit length), τ , (2)

1/2τ , τ 2, (3)
1/2τ ,

with τ = 1.618. The calculated distances of oxygen atom-pairs are 280, 450,
640, 730, and 780 pm, which fit the X-ray diffraction data of liquid water.

The diagram of ice Ih has a distinct peak at r = 520 pm, which does not
occur in liquid water. At 77 K, the “g(r) vs r” diagrams of amorphous water
solid and liquid water are very similar to each other.
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(4) Thermal properties
The relations between the thermal properties of ice, liquid water, and steam are
indicated below:

ice water Steam
mp(273K), high bp(373K), high

Heat of sublimation 51 kJ mol–1(273K), large

Heat of fusion 6 kJ  mol–1, small Heat of vaporization 40.6 kJ  mol–1, large

Specific heat 76 J mol–1 K–1, large

These properties show that in liquid water there still exist a large number
of intermolecular hydrogen bonds, thus lending support to the polyhedral
model.

(5) Formation of clathrate hydrates
Many gases, such as Ar, Kr, Xe, N2, O2, Cl2, CH4 and CO, can be crystallized
with water to form ice-like clathrate hydrates. The basic structural components
of these hydrates are the (H2O)20 pentagonal dodecahedron and other larger
polyhedra bounded by five- and six-membered hydrogen-bonded rings, which
can accommodate the small neutral molecules. The inclusion properties of water
imply that such polyhedra are likely to be present in liquid water as its structural
components.

Recently there have been extensive studies on the structure and property
of water. In December, 2004, upon assessing the major achievements of
the past twelve months, Science declared that the study of water as one of
the Breakthroughs of the Year. (Specifically, it was listed as No. 8.)

In the structural study of gaseous protonated water clusters, H+(H2O)n, with
n = 6−27, it was found that the mass peak with n = 21 is particularly intense,
signifying a “magic number” in the spectrum. Furthermore, infrared spectro-
scopic studies revealed that this cluster resembles the pentagonal dodecahedral
cage that encapsulates a methane molecule in a Type I clathrate hydrate. In the
H+(H2O)21 cluster, the hydronium ion H3O+ can either occupy the (methane)
position inside the clathrate cage or take up a site on the cage’s surface, thereby
pushing a neutral water molecule to the center of the cage.

Another ongoing debate is concerned with the structure of liquid water. In the
conventional century-old picture, liquid water is simply an extended network
where each water molecule is linked (or hydrogen-bonded) to four others in a
tetrahedral pattern. Contrary to this, there are recent synchrotron X-ray results
which suggest that many water molecules are linked to only two neighbors. Yet
there are also more-recent X-ray data which support the “original” structure, and
so this controversy is by no means resolved. Water clearly plays indispensable
roles in essentially all fields of science, most notably in chemistry and the life
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sciences. These roles will be better understood once the structure of liquid water
is unequivocally determined.

16.3.4 Protonated water species, H3O+ and H5O+
2

The oxonium (or hydronium) ion H3O+ is a stable entity with a pyramidal
structure, in which the O–H bond has the same length as that in ice, and the
apical angle lies between 110◦ and 115◦. Figure 16.3.6(a) shows the structure
of H3O+.

The H5O+
2 ion is a well-documented chemical entity in many crystal struc-

tures. Some relevant data are listed in Table 16.3.2. The common characteristic
of these compounds is a very short O–H· · · O hydrogen bond (240–5 pm).
Figure 16.3.6(b) shows the structure of H5O+

2 in the crystalline dihydrate of
hydrochloric acid H5O+

2 ·Cl−.
Besides H3O+ and H5O+

2 , several other hydronium ion complexes have
been proposed, for example H7O+

3 , H9O+
4 , H13O+

6 and H14O2+
6 . If 245 pm

is taken as the upper limit for the O–H· · · O distance within a hydronium ion,
longer O–H· · · O distances represent hydrogen bonds between a hydronium ion
and neighboring water molecules. According to this criterion, reasonable and
unambiguous structural formulas can be assigned to many acid hydrates, as
listed in Table 16.3.3.

Fig. 16.3.6.
Structure of (a) H3O+ and (b) H5O+

2 .

(a) (b)

Table 16.3.2. Some compounds containing the H5O+
2 ion

Compound Diffraction
method

O· · · O (pm) Geometry of
hydrogen bond

(H5O2)Cl · H2O X-ray 243.4
(H5O2)ClO4 X-ray 242.4
(H5O2)Br Neutron 240 117 122

O  H  O
          174.7 °

Centered

112.8     1 31.0
O  H  O
           175°

120.1     121.9
O  H  O

(H5O2)2SO4 · 2H2O X-ray 243
(H5O2)[trans-Co(en)2Cl2]2 Neutron 243.1
(H5O2)[C6H2(NO2)3SO3] · 2H2O Neutron 243.6

(H5O2)[C6H4(COOH)SO3] · H2O X-ray, neutron 241.4

(H5O2)[PW12O40] X-ray, neutron 241.4 Centered
(H5O2)[Mn(H2O)2(SO4)2] X-ray 242.6 Centered
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Table 16.3.3. Structural formulas for some acid hydrates

Acid hydrate Empirical formula Structural formula

HNO3·3H2O (H7O3)NO3 (H3O)NO3·2H2O
HClO4· 3H2 O (H7 O3) ClO4 (H3O)ClO4·2H2O
HCl·3H2O (H7O3)Cl (H5O2)Cl·H2O
HSbCl6·3H2O (H7O3)SbCl6 (H5O2)SbCl6·H2O
HCl·6H2O (H9O4)Cl·2H2O (H3O)Cl·5H2O
CF3SO3H·4H2O (H9O4)CF3SO3 (H3O)(CF3SO3)·3H2O
2[HBr·4H2O] (H9O4)(H7O3)Br2·H2O 2[(H3O)Br·3H2O]
[(C9H18)3(NH)2Cl] · Cl · HCl· 6H2O [(C9H18)3(NH)2Cl] · H13O6 · Cl2 [(C9H18)3(NH)2Cl · (H5O2) · Cl2 · 4H2O]
HSbCl6 · 3H2O (H14O6)0.5(SbCl6) (H5O2)(SbCl6) · H2O

16.4 Allotropes of sulfur and polyatomic sulfur species

16.4.1 Allotropes of sulfur

The allotropy of sulfur is far more extensive and complex than that of any other
element. This arises from the following factors.

(1) A great variety of molecules can be generated by –S–S– catenation. This
becomes evident by comparing the experimental bond enthalpies of O2 and
S2, which are 498 and 431 kJ mol−1, respectively. On the other hand, the S–S
single-bond enthalpy, 263 kJ mol−1, is much greater than the value of 142 kJ
mol−1 for the O–O single bond. In view of the difference in atomic size, the
repulsion energies of lone pairs on two O atoms are larger than that on two
S atoms. Thus elemental sulfur readily forms rings or chains with S–S single
bonds, whereas oxygen exists primarily as a diatomic molecule.

(2) The S–S bonds are very variable and flexible, generating large Sn
molecules or extended structures, and hence the relevant compounds are solids
at room temperature. The interatomic distances cover the range of 198 to
218 pm, depending mainly on the extent of multiple bonding. Bond angles
S–S–S are in the range 101◦ to 111◦ and the dihedral angles S–S–S–S vary
from 74◦ to 100◦.

(3) The Sn molecules can be packed in numerous ways in the crystal lattice.

All allotropic forms of sulfur that occur at room temperature consist of Sn
rings, with n = 6 to 20 (Table 16.4.1). Many homocyclic sulfur allotropes have
been characterized by X-ray crystallography: S6, S7 (two modifications), S8
(three modifications), S9, S10, S6·S10, S11, S12, S13, S14, S18 (two forms), S20,
and polymer chain S∞. Their structural data are listed in Table 16.4.2, and the
molecular structures are shown in Fig. 16.4.1.

The most common allotrope of sulfur is orthorhombic α-S8.At about 95.3◦C,
α-S8 transforms to monoclinic β-S8, such that the packing of S8 molecules
is altered and their orientation becomes partly disordered. This leads to a
lower density of 1.94 to 2.01 g cm−3, but the dimensions of S8 rings in
the two allotropes are very similar. Monoclinic γ -S8 also comprises cyclo-
S8 molecules, but the packing is more efficient and leads to a higher density of
2.19 g cm−3. It reverts slowly to α-S8 at room temperature, but rapid heating
gives a melting point of 106.8◦C.
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Table 16.4.1. Some properties of sulfur allotropes

Allotrope Color Density (g cm)−3 mp or dp (◦C)

S2(g) Blue-violet — Very stable at high temperature
S3(g) Cherry-red — Stable at high temperature
S6 Orange-red 2.209 dp > 50
S7 Yellow 2.182(−110◦ C) dp > 39
S8 (α) Yellow 2.069 112.8
S8 (β) Yellow 1.94–2.01 119.6
S8 (γ ) Light-yellow 2.19 106.8
S9 Intense yellow — Stable below room temp.
S10 Pale yellow green 2.103 (−110◦ C) dp > 0
S11 — — —
S12 Pale yellow 2.036 148
S14 Yellow — 113
S18 Lemon yellow 2.090 mp 128 (dec)
S20 Pale yellow 2.016 mp 124 (dec)
Sx Yellow 2.01 104 (dec)

mp = melting point; dp = decomposition temperature; dec = with decomposition

Allotrope S7 is known in four crystalline modifications, one of which (δ
form) is obtained by crystallization from CS2 at −78◦C. It features one long
bond (bond S6–S7 in Fig. 16.4.1) of 218.1 pm, which probably arises from
the virtually coplanar set of atoms S4–S6–S7–S5, which leads to maximum
repulsion between nonbonding lone pairs on adjacent S atoms. As a result of
this weakening of the S6–S7 bond, the adjacent S4–S6 and S5–S7 bonds are
strengthened (199.5 pm), and there are further alternations of bond lengths
(210.2 and 205.2 pm) throughout the molecule.

Table 16.4.2. Structural data of Sn molecules in the sulfur allotropes

Molecule Bond length (pm) Bond angle (◦) Torsion angle (◦)

S2 (matrix at 20 K) 188.9 — —
S6 206.8 102.6 73.8
γ−S7 199.8 – 217.5 101.9 – 107.4 0.4 – 108.8
δ−S7 199.5 – 218.2 101.5 – 107.5 0.3 – 108.0
α−S8 204.6 – 205.2 107.3 – 109.0 98.5
β−S8 204.7 – 205.7 105.8 – 108.3 96.4 – 101.3
γ−S8 202.3 – 206.0 106.8 – 108.5 97.9 – 100.1
α−S9 203.2 – 206.9 103.7 – 109.7 59.7 – 115.6
S10 203.3 – 207.8 103.3 – 110.2 75.4 – 123.7
S11 203.2 – 211.0 103.3 – 108.6 69.3 – 140.5
S12 204.8 – 205.7 105.4 – 107.4 86.0 – 89.4
S13 197.8 – 211.3 102.8 – 111.1 29.5 – 116.3
S14 204.7 – 206.1 104.0 – 109.3 72.5 – 101.7
α−S18 204.4 – 206.7 103.8 – 108.3 79.5 – 89.0
β−S18 205.3 – 210.3 104.2 – 109.3 66.5 – 87.8
S20 202.3 – 210.4 104.6 – 107.7 66.3 – 89.9
catena-Sx 206.6 106.0 85.3

cyclo-S9 crystallizes in two allotropic forms: α and β. α-S9 belongs to space
group P21/n with two independent molecules of similar structure in the unit
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Fig. 16.4.1.
Structures of Sn molecules.

cell, but the molecular symmetry is approximately C2, as shown in Fig. 16.4.1.
The bond lengths lie between 203.2 and 206.9 pm. The bond angles vary in the
range of 103.7◦ to 109.7◦, and torsion angles in the range of 59.7 to 115.6◦.
The conformation of a sulfur homocycle is best described by its “motif”, i.e.,
the order of the signs of the torsion angles around the ring. The motif of α-S9
is + +−−+ +−+−.

A new allotrope of sulfur, cyclo-S14, has been isolated as yellow rod-like
crystals (mp 113◦C) from the reaction of [(tmeda)ZnS6] (tmeda = N,N,N

′
,N

′
-

tetra-methylethylenediamine) with S8Cl2. The bond distances vary from 204.7
to 206.1 pm, the bond angles from 104.0◦ to 109.3◦, and the torsion angles in the
range 72.5◦ to 101.7◦. The motif of cyclo-S14 is ++−−++−−++−−+−,
in which the first twelve signs are the same as those of cyclo-S12, as shown in
Fig. 16.4.1. Hence the structure of S14 can be obtained by opening a bond in
S12 and inserting an S2 fragment (i.e., atoms S9 and S10 in the figure).

Solid polycatena sulfur comes in many forms as described by their names:
rubbery S, plastic S, lamina S, fibrous S, polymeric S, and insoluble S which
is also termed Sµ or Sω. Fibrous S consists of parallel helical chains of sulfur
atoms whose axes are arranged on a hexagonal close-packed net 463 pm apart.
The structure contains both left- and right-handed helices of radius 95 pm
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(Fig. 16.4.1, S∞) with a repeat distance of 1380 pm comprising 10 S atoms
in three turns. Within each helix the metric parameters are bond distance S–S
206.6 pm, bond angle S–S–S 106.0◦, and dihedral angle S–S–S–S 85.3◦

Fig. 16.4.2.
Structures of polyatomic sulfur cations.

S4
2+

S8
2+

283 pm

S19
2+

16.4.2 Polyatomic sulfur ions

(1) Cations
Sulfur may be oxidized by different oxidizing agents to yield a variety of poly-
atomic cations. The currently known species that have been characterized by
X-ray diffraction are S2+

4 , S2+
8 , and S2+

19 , the structures of which are shown in
Fig. 16.4.2.

In crystalline (S2+
4 )(S7I+)4(AsF−6 )6, the cation S2+

4 takes the form of a
square-planar ring of edge 198 pm. As this is significantly shorter than a typi-
cal S–S single bond (206 pm), the S–S bonds in S2+

4 have some double-bond
character.

In the salt (S2+
8 )(AsF−6 )2, the eight-membered ring of S2+

8 has an exo-endo
conformation and a rather long transannular bond of 283 pm. This structure may
be regarded as being halfway between those of the cage molecule S4N4 and
the crown-shaped ring of S8. Since S4N4 has two electrons less than S2+

8 and
is isoelectronic with the unknown S4+

8 , it is conceivable that, as two electrons
are removed from S8, one end folds up to generate a transannular bond. Then,
with the removal of two more electrons, the other end also folds up and another
bond is formed to give the S4N4 structure, as shown in Fig. 16.4.3.

In crystalline (S2+
19 )(AsF−6 )2, the S2+

19 cation consists of two seven-membered
rings joined by a five-atom chain. One of the rings has a boat conformation while
the other is disordered, existing as a 4:1 mixture of chair and boat conformations.
The S–S distances vary greatly from 187 to 239 pm, and S–S–S angles from
91.9◦ to 127.6◦.

Fig. 16.4.3.
Relationship between the structure of S8,
S2+

8 and S4N4. S8 (D4d) S8
2+ (Cs)

–2e –2e N

S S

S S

S4N4 (D2d)
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S2
2– S3

2– S4
2–

S5
2– S6

2–
Fig. 16.4.4.
Structures of S2−

n .

(2) Anions
The majority of polysulfide anions have acyclic structures. The configurations
of S2−

n species are in accord with their bond valence (b):

b = 1
2
(8n− g)

= 1
2
[8n− (6n + 2)]

= n− 1.

Figure 16.4.4 shows the puckered chain motifs of some S2−
n species, and their

structural data are listed in Table 16.4.3.

Table 16.4.3. Structural data of S2−
n

S2−
n Compound Bond length (pm) Bond angle (central) Symmetry

S2−
2 pyrites 208 – 215 — D∞h

S2−
3 BaS3 207.6 144.9◦ C2v

S2−
4 Na2S4 206.1 – 207.4 109.8◦ C2

S2−
5 K2S5 203.7 – 207.4 106.4◦ C2

S2−
6 Cs2S6 201 – 211 108.8◦ C2

16.5 Sulfide anions as ligands in metal complexes

Sulfur has an extensive coordination chemistry involving the S2− and S2−
n

anions, which exhibit an extremely versatile variety of coordination modes.

16.5.1 Monosulfide S2−

Ligands in which S acts as a donor atom are usually classified as soft Lewis
bases, in contrast to oxygen donor-atom ligands which tend to be hard Lewis
bases.The large size of the S atom and its easily deformed electron cloud account
for this difference, and the participation of metal dπ orbitals in bonding to sulfur
is well established. The monosulfide dianion S2− can act either as a terminal
or a bridging ligand. As a terminal ligand, S2− donates a pair of electron to its
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Fig. 16.5.1.
Coordination modes of S2− (open
circle): (a) (µ2-S)[Au(PEt3)]2,
(b) (µ2-S)[Pt(PPh3)2]2,
(c) (µ2-S)2Mo(S)2Fe(SPh)2]2−,
(d) (µ2-S)2Fe2(NO)4]2−,
(e) (µ3-S)[Au(PPh3)]3,
(f) (µ3-S)[Co(CO)3]3,
(g) (µ3-S)2(CoCp)3,
(h) (µ3-S)4[Fe(NO)]4,
(i) (µ4-S)[Zn4(S2AsMe2)6], and
(j) (µ4-S)2Co4(CO)10.

(a) (b) (c)

(e) (f) (g)

(d)

(h)

(i) (j)

bonded atom. In the µ2 bridging mode S is usually regarded as a two-electron
donor.

Figures 16.5.1(a) to Fig. 16.5.1(d) shows four µ2 bridging modes. In the µ3
triply bridging mode S can be regarded as a four-electron donor, using both its
two unpaired electrons and one lone pair. The pseudo-cubane structure adopted
by some of the µ3-S compounds is a crucial structural unit in many biologically
important systems, e.g., the [(RS)MS]4 (M = Mo, Fe) units which cross-link
the polypeptide chains in nitrogenase and ferredoxins. Figures 16.5.1(e) to
Fig. 16.5.1(h) shows four µ3 bridging modes. In the µ4 bridging mode S can
be regarded as a four- or six-electron donor, depending on the geometry of the
mode. Figures 16.5.1(i) to Fig. 16.5.1(j) show two µ4 bridging modes. As yet
there is no molecular compound in which S bridges six or eight metal atoms,
but interstitial sulfur is well known.

16.5.2 Disulfide S2
2−

The coordination modes of disulfide S2
2− in some representative com-

pounds are listed in Table 16.5.1. Their molecular structures are shown in
Fig. 16.5.2.

16.5.3 Polysulfides Sn
2−

The S2−
n (n = 3− 9) anions generally have a chain structure. The average S–S

bond length is smaller in S2−
n ions (n > 2) than in S2−

2 , and the length of the
S–S terminal bond decreases from S2−

3 (215 pm) to S2−
7 (199.2 pm). These data

indicate that the negative charge (filling a π∗ antibonding MO) is delocalized
over the entire chain, but the delocalization along the chain is less in higher
polysulfides. These considerations are important in comparing the S–S bond
lengths of the free ions with those of their metal complexes. Fig. 16.5.3 shows
the structures of some polysulfide coordination compounds.
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(a)

O O

Mn

Ru
Co

S Co

Mo

(b)

(c) (d)

(e) (f)
Fig. 16.5.2.
Structure of S2−

2 coordination
compounds: (a) [Mo2O2S2(S2)2]2−,
(b) Mn4(CO)15(S2)2,
(c) [Ru2(NH3)10S2]4+,
(d) Co4Cp4(µ3-S)2(µ3-S2)2,
(e) [S(Co3(CO)7]2S2, and
(f) [Mo2(S2)6]2−.

(a)

Re

Mo

Hg

Pt

Au

Ag

(b)

(c) (d)

(e) (f)
Fig. 16.5.3.
Structures of some S2−

n coordination
compounds: (a) [Re4(µ3-S)4(S3)6]4−,
(b) [Mo2(S)2(µ-S)2(η2-S2)(η2-S4)]2−,
(c) [Pt(η2-S5)3]2−, (d) [Hg(η2-S6)2]2−,
(e) [Au(η2-S9)]−, and (f) [Ag(η2-S9)]−.
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Table 16.5.1. Types of disulfide coordination compounds

Type Example d(S–S) (pm) Structure in
Fig. 16.5.2

Ia
S

S

M

[Mo2O2S2(S2)2]2− 208 (a)

Ib
S

S

M

M

[Mo4(NO)4(S2)5(S)3]4− 204.8 —

Ic
S

S

M

M

M Mn4(CO)15(S2)2 207 (b)

Id
S

S

M

M

M

M Mo4(CO)15(S2)2 209 (b)

IIa

S

S

M

M

[Ru2(NH3)10S2]4+ 201.4 (c)

IIb

S

S

M

MM

Co4Cp4(µ3-S)2(µ3-S2)2 201.3 (d)

IIc

S

S

M

MM

M [SCo3(CO)7]2S2 204.2 (e)

III
S

M

S

M

[Mo2(S2)6]2− 204.3 (f)

16.6 Oxides and oxoacids of sulfur

16.6.1 Oxides of sulfur

More than ten oxides of sulfur are known, and the most important industrially
are SO2 and SO3. The six homocyclic polysulfur monoxides SnO (5 ≤ n ≤ 10)
are prepared by oxidizing the appropriate cyclo-Sn with trifluoroperoxoacetic
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 16.6.1.
Coordination modes of SO2 to metal
atoms (shaded circles).

acid, CF3C(O)OOH, at −30◦C. The dioxides S7O2 and S6O2 are also known.
In addition, there are the thermally unstable acylclic oxides S2O, S2O2, SO and
the elusive species SOO and SO4. The S2O molecule has a bent structure with
Cs symmetry, and its structural parameters are S=O bond length 145.6 pm, S=S
188.4 pm, and bond angle S–S–O is 117.9◦.

(1) Sulfur dioxide, SO2

When sulfide ores (such as pyrite), sulfur-rich organic compounds, and fossil
fuels (such as coal) are burned in air, the sulfur therein is mostly converted
to SO2.

Sulfur dioxide is a colorless, toxic gas with a choking odor. Gaseous SO2
neither burns nor supports combustion. It is readily soluble in water (3927 cm3

SO2 in 100 g H2O at 20◦C) and forms “sulfurous acid.”
Sulfur dioxide is a component of air pollutants, and is capable of causing

severe damage to human and other animal lungs, particularly in the sulfate
form. It is also an important precursor to acid rain. The SO2 molecule sur-
vives for a few days in the atmosphere before it is oxidized to SO3. The direct
reaction

2SO2(g) + O2(g)→ 2SO3(g)

is very slow, but it speeds up markedly in the presence of metal cations such
as Fe3+.

Sulfur dioxide is a bent molecule with C2v symmetry; the bond angle is 119◦,
and the bond length is 143.1 pm, which is shorter than the expected value of a
single S–O (176 pm) or S=O double bond (154 pm) calculated from the sum of
covalent radii. The S–O bond energy in SO2 is 548 kJ mol−1, which is larger
than that of the unstable molecule SO (524 kJ mol−1). These data indicate that
the S–O bond order in SO2 exceeds 2, a consequence of the participation of the
3d orbitals of S in bonding. Sulfur dioxide is homologous with O3. In the bent
molecule O3 the O–O bond length is 127.8 pm, which is longer than that in O2
(120.7 pm).

There are lone pairs in the S and O atoms of SO2 molecule, which as a ligand
forms many coordination modes with metal atoms, as shown in Fig. 16.6.1.
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Fig. 16.6.2.
Structures of SO3: (a) SO3(g),
(b) γ –SO3, and (c) β–SO3.

142 pm

(a) (b)

162.6 pm 143 pm

137 pm

161 pm

141 pm

(c)

(2) Sulfur trioxide, SO3

Sulfur trioxide is made on a huge scale by the catalytic oxidation of SO2. It is
usually not isolated but is immediately converted to H2SO4.

In the gas phase, monomeric SO3 has a D3h planar structure with bond length
S–O 142 pm, as shown in Fig. 16.6.2(a). The cyclic trimer (SO3)3 occurs
in colorless orthorhombic γ -SO3 (mp 16.9◦C), and its structure is shown in
Fig. 16.6.2(b). The helical chain structure of β-SO3 is shown in Fig. 16.6.2(c).
A third and still more stable form, α-SO3 (mp 62◦C), involves cross-linkage
between the chains to give a complex layer structure. The standard enthalpies
of formation of the four forms of SO3 at 298 K are listed below:

SO3(g) α-SO3 β-SO3 γ -SO3
'H 0

f / kJ mol−1 −395.2 −462.4 −449.6 −447.4

Sulfur trioxide reacts vigorously and extremely exothermically with water
to give H2SO4. Anhydrous H2SO4 has an unusually high dielectric constant,
and also a very high electrical conductivity which results from the ionic self-
dissociation of the compound coupled with a proton-switch mechanism for the
rapid conduction of current through the viscous hydrogen-bonded liquid:

2H2SO4 ⇀↽ H3SO−4 + HSO−4 .

Photolysis of SO3 and O3 mixtures yields monomeric SO4, which can be
isolated by inert-gas matrix techniques at low temperatures (15 to 78 K). Vibra-
tion spectroscopy indicates a sulfuryl group together with either an open SOO
branch (Cs structure) or a closed three-membered peroxo ring (C2v structure),
the latter being preferred on the basis of the infrared absorption bands. The
structures of these two species are illustrated pictorially below.

S
O O

O
O

S
O O

O
O

Cs (planar), or C1 (non-planar) C2v
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(a) (b) (c)

(d) (e)

Fig. 16.6.3.
Molecular structure of oxides of cyclic
poly-sulfur: (a) S6O, (b) S7O, (c) S8O,
(d) S7O2, (e) S12O2.

(3) Oxides of cyclic poly-sulfur, SnO and SnO2

When cyclo-S8, −S9, and −S10 are dissolved in CS2 and oxidized by freshly
prepared CF3C(O)O2H at temperatures below−10◦C, modest yields (10–20%)
of the corresponding crystalline monoxides SnO are obtained. Of these com-
pounds, S5O has not yet been isolated, but it has been prepared in solution by the
same method. On the other hand, S6O has two crystalline modifications: orange
α-S6O with mp 39◦C (dec) and dark orange β-S6O with mp 34◦C (dec), and
its molecular structure is shown in Fig. 16.6.3(a). Also, S7O is a orange crystal
with mp 55◦C (dec), and its molecular structure is shown in Fig. 16.6.3(b).
Finally, S8O is a orange-yellow crystal with mp 78◦C (dec), and its structure is
shown in Fig. 16.6.3(c).

In the SnO2 compounds, S7O2 is a dark orange crystal which decomposes
above room temperature. Its molecular structure is shown in Fig. 16.6.3(d). The
structure of S12O2 as determined from the orange adduct S12O2·2SbCl5·3CS2
is shown in Fig. 16.6.3(e).

16.6.2 Oxoacids of sulfur

Sulfur forms many oxoacids, though few of them can be isolated in pure form.
Most are prepared in aqueous solution or as crystalline salts of the corresponding
oxoacid anions. Table 16.6.1 lists the common oxoacids of sulfur.

(1) Sulfuric acid and disulfuric acid
Sulfuric acid is the most important chemical of all sulfur compounds.Anhydrous
sulfuric acid is a dense, viscous liquid which is readily miscible with water in
all proportions. Sulfuric acid forms hydrogen sulfate (also known as bisulfate,
HSO−4 ) and sulfate (SO2−

4 ) salts with many metals, which are frequently very
stable and are important mineral compounds. Figures 16.6.4(a)–(c) shows the
molecular structures of H2SO4, HSO−4 , and SO2−

4 .
The crystal structure of sulfuric acid consists of layers of O2S(OH)2 tetrahe-

dra connected via hydrogen bonds involving the donor OH groups and acceptor
O atoms. Figure 16.6.5 shows a layer of hydrogen-bonded H2SO4 molecules.
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Table 16.6.1. The common oxoacids of sulfur

Formula Name Oxidation Schematic structure Salt
state of S

H2SO4 Sulfuric 6

O
S

O

OH

OH

O
S

O

O

OH

S

O

O

OH

O
S

S

OH

OH

O
S

O

OOH

OH

O
S

O

O

OH

O
S

O

O

OH

O
S

O

OH

S

O

O

OH

O
S

O

(S)

OH

S

O

O

OH
n

O

S
OH

OH

O
S

O

OH

S
O

OH

O

S

OH

S
O

OH

Sulfate SO2−
4

H2S2O7 Disulfuric 6 Disulfate O3SOSO2−
3

H2S2O3 Thiosulfuric 6, −2 Thiosulfate S2O2−
3

H2SO5 Peroxo-
monosulfuric

6 Peroxo-monosulfate
OOSO2−

3

H2S2O8 Peroxo-disulfuric 6 Peroxo-disulfate
O3SOOSO2−

3

H2S2O6 Dithionic∗ 5 Dithionate O3SSO2−
3

H2Sn+2O6 Polythionic 5, 0 Polythionate O3S(S)nSO2−
3

H2SO3 Sulfurous∗ 4 Sulfite SO2−
3

H2S2O5 Disulfurous∗ 5, 3 Disulfite O3SSO2−
2

H2S2O4 Dithionous∗ 3 Dithionite O2SSO2

∗ Acids only exist as salts.
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S–O 142.6 pm
S–OH 153.7 pm

(a) (b) (c) (d)

<S–O> 145.6 pm
S–OH 155.8 pm <S–Ot> 144 pm

S–O–S 124º pm

S–Om 164.5 pmS–O 149 pm

Fig. 16.6.4.
Molecular structure of (a) H2SO4,
(b) HSO−4 , (c) SO2−

4 and (d) S2O2−
7 .

The O–H· · · O hydrogen bond length is 264.8 pm and the bond angle O–H· · · O
is 170◦.

The hydrogen sulfate (or bisulfate) anion HSO−4 exists in crystalline salts
such as (H3O)(HSO4), K(HSO4) and Na(HSO4). The bond lengths of HSO−4
in (H3O)(HSO4) are S–O = 145.6 pm and S–OH = 155.8 pm.

Disulfuric acid (also known as pyrosulfuric acid), H2S2O7, which is the
major constituent of “fuming sulfuric acid”, is formed from sulfur trioxide and
sulfuric acid:

SO3 + H2SO4 → H2S2O7.

Figure 16.6.4(d) shows the structure of the S2O2−
7 anion.

0

H

Y

O2

O1

X

S

Fig. 16.6.5.
A layer of hydrogen-bonded H2SO4
molecules.

(2) Sulfurous acid and disulfurous acid
Sulfurous acid, H2SO3, and disulfurous acid, H2S2O5, are examples of sulfur
oxoacids that do not exist in the free state, although numerous salts derived
from them containing the HSO−3 , SO2−

3 , HS2O−5 , and S2O2−
5 anions are stable
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Fig. 16.6.6.
Structure of (a) SO2−

3 , (b) S2O2−
5 , and

(c) S2O2−
4 (bond lengths in pm).

151 150
217

145

151 239

solids. An aqueous solution of SO2, though acidic, contain negligible quantities
of the free acid H2SO3. The apparent hexahydrate H2SO3·6H2O is actually the
gas hydrate 6SO2·46H2O, in which the SO2 molecules are enclosed in cages
within a host framework constructed from hydrogen-bonded water molecules.
Figure 16.6.6 shows the structures of the anions SO2−

3 , S2O2−
5 , and S2O2−

4 . The
hydrogen sulfite (bisulfite) ion HSO−3 has been found to exist in two isomeric
forms: HO–SO−2 and H–SO−3 .

(3) Thiosulfate, SSO2−
3

In the thiosulfate ion, a terminal S atom replaces an O atom of the sulfate ion. The
S–S bond length is 201.3 pm, which indicates essentially single-bond character,
while the mean S–O bond length is 146.8 pm, which indicates considerable π
bonding between the S and O atoms.

Single-crystal X-ray analysis has shown that the structure of SeSO2−
3 is

isostructural with the S2O2−
3 ion with a Se–S bond length of 217.5(1) pm.

The thiosulfate ion, in which the terminal S and O atoms can function as
ligand sites, is a polyfunctional species in various coordination modes with
metal atoms. Figure 16.6.7 shows the coordination modes of S2O2−

3 .

Fig. 16.6.7.
The coordination modes of S2O2−

3 .

S M

O
S

(4) Peroxoacids of sulfur
The peroxoacids of sulfur and their salts all contain the –O–O– group. The
salts of S2O2−

8 , such as K2S2O8, are very convenient and powerful oxidizing
agents. Peroxomonosulfuric acid (Caro’s acid), H2SO5, is a colorless, explosive
solid (mp 45◦C), and salts of HSO−5 are known. In HSO−5 and S2O2−

8 , the S–O
(peroxo) and S–O (terminal) bond distances are different. The S–O (peroxo)
bond length is about 160 pm, which corresponds to a single bond, and the S–O
(terminal) bond length is about 145 pm, which corresponds to a double bond.
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The structural formulas of HSO−5 and S2O2−
8 are shown below:

S

OHO

O O

O

S

O

O O

S

O

O O

OO

HSO5
– S2O8

2–

16.7 Sulfur–nitrogen compounds

Sulfur and nitrogen are diagonally related elements in the Periodic Table and
might therefore be expected to have similar electronic charge densities for simi-
lar coordination numbers, and to form cyclic, acyclic, and polycyclic molecules
through extensive covalent bonding. Some sulfur–nitrogen compounds exhibit
interesting chemical bonding and have unusual properties, as discussed below.

16.7.1 Tetrasulfur tetranitride, S4N4

Nitride S4N4 is an air-stable compound that can be prepared by passing NH3
gas into a warm solution of S2Cl2 in CCl4 or benzene. It is a thermochromic
crystal: colorless at 83 K, pale yellow at 243 K, orange at room temperature,
and deep red above 373 K.

The D2d molecular structure of S4N4 is shown in Fig. 16.7.1(a). The atoms
of S4N4 are arranged so that the electropositive S atoms occupy the vertices
of a tetrahedron, while the electronegative N atoms constitute a square that
intersects the tetrahedron. All the S–N distances are equal; for gaseous S4N4
they are 162.3 pm, which is intermediate between the distances of the S–N
single bond (174 pm) and S==N double bond (154 pm). The N–S–N bond
angle is 105.3◦, S–N–S is 114.2◦, and S–S–N is 88.4◦. A peculiarity of the
S4N4 structure is the short distance between the two S atoms connected by a
broken line in Fig. 16.7.1(a); at 258 pm, it lies between the S–S single-bond
length (208 pm) and van der Waals contacting distance S· · · S 360 pm. This may
imply that the S atom uses two electrons for two σ S–N bonds, one electron for
delocalized π bonding, and one electron for S· · · S weak bonding.

Tetraselenium tetranitride, Se4N4, forms red, hygroscopic crystals and is
highly explosive. The structure of Se4N4 resembles that of S4N4 with Se–N
bond length of 180 pm and cross-cage Se· · · Se distance of 276 pm (note that
2rcov(Se) = 2× 117pm = 234pm).

258 pm 249 pm

(a) (b)

223 pm

As

S

S

N

162 pm
Fig. 16.7.1.
Molecular structure of (a) S4N4 and
(b) As4S4.
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Fig. 16.7.2.
Structure of (a) S2N2 and (b) polymeric
chains in one layer of (SN)x and the
important structural parameters (bond
lengths in pm).

(a)

(b)
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S

N
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N

N

N

N

N

N

N

N

N

N

NN

NN

N

N

N

N

N

N

N

N

165 N

310

286

159.3

162.8

348

106º120º
N

The homolog realgar, As4S4, has an analogous but different structure with
the electronegative S atoms at the vertices of a square and the electropositive As
atoms at the vertices of a tetrahedron. The As atoms are linked by normal single
bonds, as shown by the solid lines between them in Fig. 16.7.1(b). The As–As
distance is 249 pm, which is nearly equal to the calculated value of 244 pm
(Table 3.4.3).

16.7.2 S2N2 and (SN)x

When the heated vapor of S4N4 is passed over silver wool at 520 to 570 K, the
unstable cyclic dimer S2N2 is obtained. It forms large colorless crystals which
are insoluble in water but soluble in many organic solvents.

The molecular structure of S2N2, as shown in Fig. 16.7.2(a), is a D2h square-
planar ring with S–N edge 165 pm, somewhat analogous to the isoelectronic
cation S2+

4 (Fig. 16.4.2). The valence-bond representations of the S2N2
molecule are as follows:

S NS

N S N S N S N S

N S N S NS

N S

N

When colorless S2N2 crystals are allowed to stand at room temperature,
golden (SN)x crystals are gradually formed. The (SN)x chain can conceivably
be generated from adjacent square-planar S2N2 molecules, and a free radi-
cal mechanism has been proposed. Since polymerization can take place with
only minor movements of the atoms, the starting material and product are
pseudomorphs without alteration of the crystallinity. Figure 16.7.2 shows the
configuration of the (SN)x chains and the packing of the chains in the crystal.

Polymeric (SN)x has some unusual properties. For example, it has a bronze
color and metallic luster, and its electrical conductivity is about that of mercury
metal. Values of the conductivity of (SN)x depend on the purity and crystallinity
of the polymer and on the direction of measurement, being much greater along
the fibers than across them. A conjugated single-bond/double-bond system can
be formulated, in which every S–N unit has one antibonding π∗ electron. The
half-filled overlapping π∗ orbitals combine to form a half-filled conduction
band, in much the same way as the half-filled ns orbitals of alkali metal atoms
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S4N2

S3N2
2+

S3N3
– S4N– S4N5

–

S11N2S5N6

S4N5
+ S5N5

–

Fig. 16.7.3.
Structure of some cyclic sulfur–nitrogen
compounds (large circle represents S
atom and small circle represents N atom).

form a conduction band. However, in (SN)x, the conduction band lies only in
the direction of the (SN)x fibers, so the polymer behaves as an “one-dimensional
metal”.

N S

N S

N S

N S

16.7.3 Cyclic sulfur–nitrogen compounds

Many cyclic sulfur–nitrogen compounds are known, some of which are shown
in Fig. 16.7.3. The general structural features of sulfur–nitrogen compounds
are formulated as follows:

(a) The S atom has the ability to form various types of S–S and S–N bonds,
some of which contain catenated –S–S– chains that can insert into the cyclic
chains as a fragment in molecules. For example, the S11N2 molecule has two
S5 chain fragments, and S4N2 and S4N− each has one S3 chain fragment.
The S· · · S interactions can vary in strength: 314 pm in S4N− as compared to
271–5 pm in S4N−5 .

(b) The S–N bond distances are in the range of 155 to 165 pm, which are
shorter than the calculated single-bond length, so the S–N bonds have some
double-bond character. The bond angles vary over a large range: for example,
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in S5N+
5 the bond angles are between 138◦ and 151◦. The wide variations of

bond distances and angles indicate that the bond types are quite complex.
(c) Normally the S and N atoms are each bonded to two adjacent atoms,

but in some cases they are also three-connected to form polycyclic molecules.
Some examples are as S5N6, S11N2, S4N+

5 and S4N−5 , the structures of which
are shown in Fig. 16.7.3.

(d) The conformations of the cyclic S–N molecules exhibit diversity. For
example, S3N2+

2 and S3N−3 adopt planar conformations which are stabilized
by delocalized π bonding, while the majority of these cyclic molecules are
nonplanar, in which the d orbitals of S atoms also participate in bonding.

16.8 Structural chemistry of selenium and tellurium

16.8.1 Allotropes of selenium and tellurium

Selenium forms several allotropes but tellurium forms only one. The thermo-
dynamically stable form of selenium (α-selenium or gray selenium) and the
crystalline form of tellurium are isostructural. In both Te and gray Se, the atoms
form infinite, helical chains having three atoms in every turn, the axes of which
lie parallel to each other in the crystal, as shown in Fig. 16.8.1.

The distance of two adjacent atoms within the chain are Se–Se 237 pm and
Te–Te 283 pm. Each atom has four adjacent atoms from three different chains
at an average distance of Se· · · Se 344 pm, Te· · · Te 350 pm. The interchain
distance is significantly shorter than expected from the van der Waals separation
(380 pm for Se and 412 pm for Te).

Red monoclinic selenium exists in three forms, each containing Se8 rings
with the crown conformation of S8 (Fig. 16.4.1). Vitreous black selenium, the
ordinary commercial form of the element, comprises an extremely complex and
irregular structure of large polymeric rings.

16.8.2 Polyatomic cations and anions of selenium and tellurium

Like their sulfur congener, selenium and tellurium can form polyatomic cations
and anions in many compounds.

Fig. 16.8.1.
Structure of α-selenium (or tellurium):
(a) side view of Sex (or Tex) helical
chain; (b) viewed along the helices; the
hexagonal unit cell and the coordination
environment about one atom is indicated.

(a) (b)
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

(j) (k) (l) (m)

Fig. 16.8.2.
Structures of some polyatomic cations of
Se and Te. (a) Se2+

4 in Se4(H2S2O7)2;

Te2+
4 in Te4(AsF6)2; (b) Te2+

6 in

Te6(MOCl4)2 (M = Nb, W); (c) Te4+
6 in

Te6(AsF6)4·2AsF3; (d) Te2+
8 in

Te8(ReCl6)2; Se2+
8 in Se8(AlCl4)2;

(e) Te2+
8 in Te8(WCl6)2; (f) Te2+

8 in

(Te6)(Te8)(WCl6)4; (g) Te4+
8 in

(Te8)(VOCl4)2; (h) Se2+
10 in

Se10(SbF6)2; (i) Se2+
17 in Se17(NbCl6)2;

(j) Se2+
19 in Se19(SbF6)2; (k) (Te2Se4)2+

in (Te2Se4)(SbF6)2; (l) (Te2Se6)2+ in
(Te2Se6)(Te2Se8)(AsF6)4;
(m) (Te2Se8)2+ in (Te2Se8)(AsF6)2.

(1) Polyatomic cations
Figure 16.8.2 show the structures of some polyatomic cations of Se and Te that
exist in crystalline salts. Figure 16.8.2(a) shows the square-planar geometry of
the Se2+

4 and Te2+
4 cations. In Se4(HS2O7)2 the Se–Se distance is 228 pm, and

in Te4(AsF6)2 the Te–Te distance is 266 pm. These two distances are shorter
than those in the respective elemental forms, 237 and 284 pm, respectively,
being consistent with the effect of some multiple bonding.
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Fig. 16.8.3.
Molecular orbitals in Te4+

6 .

The structure of Te4+
6 is shown in Fig. 16.8.2(c). In this trigonal prismatic

cation, the average Te–Te bond length within a triangular face is 268 pm, and
the average Te· · · Te distance between the parallel triangular faces is 313 pm.
The Te4+

6 cation can be considered as a dimer of two Te2+
3 units consolidated

by a π∗ −π∗ 6c-4e bonding interaction. As shown in Fig. 16.8.3, the tellurium
5pz orbitals give rise to six molecular orbitals of a′1,e′, a′′2 , and e′′ symmetry, the
first three being used to accommodate eight valence electrons. The e′ orbitals
are nonbonding within the individual Te2+

3 units but form bonding interaction
between them, and the bonding a′1 and antibonding a′′2 orbitals cancel each
other. The formal bond order along each prism edge is therefore 2/3.

Formal addition of two electrons to Te4+
6 gives Te2+

6 , which takes the shape
of a boat-shaped six-membered ring, as shown in Fig. 16.8.2(b). The average
length of the pair of weak transannular interactions is 329 pm, which indicates
that the two positive charges are delocalized over all four Te atoms in the
rectangular base.
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Figure 16.8.2(d) shows the conformation of and weak central transannular
interaction in the Se2+

8 and Te2+
8 cations, which are isostructural with S2+

8 . Their
common bicyclic structure can be regarded as being derived from a crown-
shaped eight-membered ring by flipping one atom from an exo to an endo
position, with the formally positively charged atoms interacting in transannular
linkage. In Te8(ReCl6)2, the Te–Te bond length indicates a normal single bond,
and the Te· · · Te distance is 315 pm. In Se8(AlCl4)2, the Se–Se bond lengths
lie in the range 229-36 pm, and Se· · · Se is 284 pm.

Figures 16.8.2(e) and (f) show two other isomeric forms of Te2+
8 . In

Te8(WCl6)2, the Te2+
8 cation is composed of two five-membered rings, each

taking an envelope conformation, with an average Te–Te bond length of
275 pm and a relatively short transannular Te· · ·Te bond of 295 pm. In
(Te6)(Te8)(WCl6)4, Te2+

8 exhibits a bicyclo[2.2.2]octane geometry with two
bridge-head Te atoms.

Figure 16.8.2(g) shows the structure of Te4+
8 ; this 44 valence electron cluster

takes a cube shape with two cleaved edges, the positive charges being located
on four three-coordinate Te atoms. The Te4+

8 cation can be viewed as two
planar Te2+

4 ions that have dimerized via the formation of a pair of Te–Te
bonds with simultaneous loss of electronic delocalization and distortion from
planarity.

Figures 16.8.2(h), (i), and (j) show the structures of Se2+
10 , Se2+

17 , and Se2+
19 ,

respectively. They all consist of seven- or eight-membered rings connected
by short chains. Each homopolyatomic cation has two three-coordinate atoms
that formally carry the positive charges. Se2+

10 has a bicyclo[2.2.4]decane
geometry. The Se–Se bond distances vary between 225 and 240 pm, and the
Se–Se–Se angles range from 97◦ to 106◦. Se2+

17 and Se2+
19 comprise a pair of

seven-membered rings connected by a three- and four-atom chain, respectively.
Figures 16.8.2(k), (l), and (m) show the structures of (Te2Se4)

2+, (Te2Se6)
2+

and (Te2Se8)
2+, respectively. In these heteropolyatomic cations, the heavier Te

atoms generally have a higher coordination number of three and serve as posi-
tive charge bearers, which is consistent with the lower electronegativity of Te
compared to Se. As expected and confirmed by experiment, a weak transannu-
lar Te· · · Te bond exists in the boat-shaped (Te2Se4)

2+ cation. The (Te2Se6)
2+

and (Te2Se8)
2+ cations have bicyclo[2.2.2]octane and bicyclo[2.2.4]decane

geometries, respectively, with the Te atoms located at the bridge-head positions.
Figure 16.8.4 shows the structures of some polymeric cations of Se and Te.

In most of these systems, the Te–Te bonds link the Te atoms to form an infinite
polymeric chain. The coordination numbers of the Te atoms are normally two or
three, but some may attain the value of four in forming hypervalent structures.
Various polymeric cations contain four-, five-, or six-membered rings. The
four-membered ring is planar, but the larger rings are nonplanar. The rings are
directly connected or linked by short fragments of one, two, three atoms. In
the heteroatom polymeric cations, the Te atoms invariably occupy the three-
coordinate sites.

Figures 16.8.4(a) and (j) show the structures of the coexisting (Te2+
4 )∞ and

(Te2+
10 )∞ in (Te4)(Te10)(Bi4Cl16). (Te2+

4 )∞ is composed of planar squares of
Te atoms connected by Te–Te bonds to form an infinite zigzag chain. There are
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(a) (b)

(e) (f)

(g) (h)

(i) (j)

(c) (d)

Fig. 16.8.4.
Structures of some polymeric cations of
Se and Te. (a) (Te2+

4 )∞ in

(Te4)(Te10)(Bi4Cl16), (b) (Te2+
6 )∞ in

(Te6)(HfCl6), (c) (Te2+
7 )∞ in

(Te7)(AsF6)2, (d) (Te2+
8 )∞ in

(Te8)(U2Br10), (e) (Te2+
8 )∞ in

(Te8)(Bi4Cl14), (f) (Te3.15Se2+
4.85)∞ in

(Te3.15Se4.85)(WOCl4)2,
(g) (Te3Se2+

4 )∞ in (Te3Se4)(WOCl4)2,

(h) (Te2+
7 )∞ in (Te7)(Bi2Cl6),

(i) (Te2+
7 )∞ in (Te7)(NbOCl4)2, and

(j) (Te2+
10 )∞ in (Te4)(Te10)(Bi4Cl16).

equal numbers of two- and three-coordinate Te atoms, so that the latter carry the
positive charges. The bond lengths within each square ring are 275 and 281 pm,
and the interring bond distance is 297 pm.

Figures 16.8.4(b) to (e) show the structures of (Te2+
6 )∞ in (Te6)(HfCl6),

(Te2+
7 )∞ in (Te7)(AsF6)2, and (Te2+

8 )∞ in (Te8)(U2Br10) and (Te8)(Bi4Cl14),
respectively. These polymeric zigzag chains are composed of five- or six-
membered rings linked by one or two atoms.

Figures 16.8.4(f) and (g) show the structures of two related heteroatom poly-
meric cationic chains composed of Te and Se. In (Te3.15Se4.85)(WOCl4)2, the
non-stoichiometric, disordered (Te3.15Se2+

4.85)∞ cationic chains are constructed
from the linkage of five-membered rings by nonlinear three-atom fragments. In
(Te3Se4)(WOCl4)2, the (Te3Se2+

4 )∞ chain is composed of planar Te2Se2 rings
connected by nonlinear Se–Te–Se fragments.

Figures 16.8.4(h) to (j) show the structures of polymeric cations that
contain hypervalent Te atoms. Two kinds of (Te2+

7 )∞ chains are found
separately in (Te7)(Bi2Cl6) and (Te7)(NbOCl4)2, and (Te2+

10 )∞ exists in
(Te4)(Te10)(Bi4Cl16). In these polymeric cations, the hypervalent Te atoms
each exhibits square-planar coordination to form a TeTe4 unit with Te–Te bond
lengths in the range 292–7 pm. In (Te2+

7 )∞, the TeTe4 unit and a pair of termi-
nal Te atoms constitute an enlarged Te7 unit composed of two planar squares
sharing a common vertex. In (Te2+

10 )∞, the basic Te10 structural unit consists
of a linear arrangement of three corner-sharing planar squares, and such Te10
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Fig. 16.8.5.
Structures of some dianions Se2−

x . For
Se2−

9 , the longest bond is represented by
a broken line.

Se4
2– Se5

2– Se6
2–

Se7
2– Se9

2– Se11
2–

units are laterally connected by Te–Te bonds to generate a corrugated polymeric
ribbon that also contain chair-like six-membered rings.

(2) Polyatomic anions
The chemistry of polyselenides, polytellurides, and their metal complexes is
very well established. Typical structures of polyselenide dianions are shown in
Fig. 16.8.5. In these species, the Se–Se bond distances vary from 227 to 236 pm,
and the bond angles from 103◦ to 110◦. The tethered monocyclic structure of
Se2−

9 in the complex Sr(15-C5)2(Se9) has a three-connected Se atom forming
two long and one normal Se–Se bonds at 295, 247, and 231 pm (anticlockwise
in Fig. 16.8.5, with the longest bond represented by a broken line). The other
Se–Se bonds are in the range 227–39 pm.

Fig. 16.8.6.
Structures of some dianions Te2−

x .

Te3
2– Te4

2– Te5
2–

Te7
2– Te8

2–

The dianion Se2−
11 has a centrosymmetric spiro-bicyclic structure involving a

central square-planar Se atom common to the two chair-shaped rings.The shared
atom forms four long Se–Se bonds of length 266–8 pm, and the structure may
be described as a central Se2+ chelated by two η2-Se2−

5 ligands.
Some typical structures of polytelluride dianions, Te2−

x , are shown in
Fig. 16.8.6. In these species, the Te–Te bond distances vary from 265 to 284 pm.
In the bicyclic polytellurides Te2−

7 and Te2−
8 , the central Te atom each has four

long bonds with bond lengths from 292 to 311 pm.
The Se2−

x and Te2−
x are effective chelating ligands for both main group

and transition metals, giving rise to complexes such as Sn(η2-Se4)
2−
3 , [M(η2-

Se4)2]2− (M = Zn, Cd, Hg, Ni, Pb), Ti(η5-C5H5)2(η2-Se5), [Hg(η3-Te7)]2−,
and M2(µ2-Te4)(η2-Te4)2 (M = Cu, Ag).
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16.8.3 Stereochemistry of selenium and tellurium

Selenium and tellurium exhibit a great variety of molecular geometries as a
consequence of the number of stable oxidation states. Various observed struc-
tures are summarized in Table 16.8.1, in which A is a central Se or Te atom, X
is an atom bonded to A, and E represents a lone pair.

Table 16.8.1. Molecular geometries of Se and Te

Type Molecular geometry Example (structure in Fig. 16.8.7)

AX2E Bent SeO2
AX2E2 Bent SeCl2, Se(CH3)2, TeCl2, Te(CH3)2
AX3 Trigonal planar SeO3, TeO3
AX3E Trigonal

pyramidal
(SeO2)x (a), OSeF2 (b)

AX3E2 T-shaped [SeC(NH2)2]2+
3 (c), C6H5TeBr(SC3N2H6) (d)

AX4 Tetrahedral O2SeF2, (SeO3)4
AX4E Disphenoidal Se(C6H5)2Cl2, Se(C6H5)2Br2, Te(CH3)2Cl2, Te(C6H5)2Br2
AX5E Square pyramidal TeF−5 (e), (TeF4)x (f)
AX6 Octahedral SeF6, TeF6, (TeO3)x , F5TeOTeF5 (g)
AX6E Octahedral SeCl2−6 , TeCl2−6
AX7 Pentagonal

bipyramidal
TeF−7 (h)

With reference to Table 16.8.1, the stereochemistries of Se and Te compounds
are briefly described below.

(1) AX2E type
The SeO2 molecule in the vapor phase has a bent configuration with Se–O
160.7 pm and O–Se–O 114◦. Crystalline SeO2 is built of infinite chains, in
which each Se atom is bonded to three oxygen atoms (AX3E type) in a trigonal
pyramidal configuration. The bond lengths are Se–Ob 178 pm, Se–Ot 173 pm,
as shown in Fig. 16.8.7(a).

(2) AX2E2 type
Many AX2E2 type molecules, such as Se(CH3)2, SeCl2, Te(CH3)2, and TeBr2,
all exhibit a bent configuration, in which repulsion of lone pairs makes the
interbond angles smaller than the ideal tetrahedral angle:

Se(CH3)2 SeCl2 Te(CH3)2 TeCl2
A–X (pm) 194.5 215.7 214.2 232.9
X–A–X 96.3◦ 99.6◦ 94◦ 97◦

(3) AX3 type
Monomeric selenium trioxide (SeO3) and tellurium trioxide (TeO3) have a
trigonal planar structure in the gas phase. In the solid state, SeO3 forms cyclic
tetramers (SeO3)4, in which each Se atom connects two bridging O atoms and
two terminal O atoms, with Se–Ob 177 pm and Se–Ot 155 pm (AX4 type).
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Fig. 16.8.7.
Stereochemistry of Se and Te
compounds.

(a) (b)

Se

O

Se

N

S Te Br

C

NH2

(c)

(e) (f)

(h)(g)

Te F

Te

F

Te
F

O

Te

(d)

Se

F

O

The solid-state structure of TeO3 is a three-dimensional framework, in which
Te(VI) forms TeO6 octahedra (AX6 type) sharing all vertices.

(4) AX3E type
Pyramidal molecule SeOF2 has bond lengths Se=O 158 pm and Se–F 173 pm,
bond angles F–Se–F 92◦ and F–Se–O 105◦, as shown in Fig. 16.8.7(b). Its
dipole moment (2.62 D in benzene) and dielectric constant (46.2 at 20◦C) are
both high, and accordingly it is a useful solvent.

(5) AX3E2 type
The cation [SeC(NH2)2]2+

3 adopts T-shaped geometry, as shown in
Fig. 16.8.7(c). In this structure, the central Se atom must bear a formal negative
charge to have two lone pairs at the equatorial positions of a trigonal bipyramid.
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The valence-bond structural formula of this cation is given below:

SeSe Se

C

C

C
H2NNH2

H2N

NH2

NH2

H2N

+

–

+ +

In the molecule C6H5TeBr(SC3N2H6), the Te atom has a similar T-shaped
configuration, as shown in Fig. 16.8.7(d). Bonding can be described in terms
of resonance between a pair of valence-bond structures:

H2C

H2C

N
H

C

NH

S Te

C6H5

Br

+

−

H2C

H2C

N
H

C

NH

S Te

C6H5

Br+ −

(6) AX4 type
The molecule SeO2F2 and analogous compounds have tetrahedral geometry
with three different bond angles: O–Se–O 126.2◦, O–Se–F 108.0◦, and F–Se–F
94.1◦.

(7) AX4E type
The molecules Se(C6H5)2Cl2, Se(C6H5)2Br2,Te(CH3)2Cl2, andTe(C6H5)2Br2
constitute this structure type. In all these molecules, the halogen atoms occupy
the axial positions, as shown below:

Te
C6H5

C6H5

X

X

(8) AX5E type
The anion TeF−5 and polymeric (TeF4)x belong to the AX5E type with square-
pyramidal configuration. In TeF−5 , the bonds in the square base (196 pm) are
longer than the axial bond (185 pm), and the bond angles (79◦) are smaller than
90◦, as shown in Fig. 16.8.7(e). Crystalline (TeF4)x has a chain structure, in
which TeF5 groups are linked by bridging F atoms in such a way that alternate
pyramids are oriented in opposite directions, as shown in Fig. 16.8.7(f).

(9) AX6 type
The hexafluorides SeF6 and TeF6 have the expected regular octahedral configu-
ration. In F5SeOSeF5 and F5TeOTeF5, the Se and Te atoms take the octahedral
configuration, and the four equatorial bonds in each case are bent away from
the bridging O atom, as shown in Fig. 16.8.7(g).

iranchembook.ir/edu

https://iranchembook.ir/edu


652 Structural Chemistry of Selected Elements

(10) AX6E type
The anions SeX2−

6 and TeX2−
6 (X = Cl, Br) adopt regular octahedral geometry,

apparently indicating that the lone pair in the valence shell is stereochemically
inactive. The observed result can be explained as follows.

(a) With increasing size of the central atom the tendency for the lone pair to
spread around the core is enhanced. It is drawn inside the valence shell,
behaving like an s-type orbital and effectively becoming the outer shell of
the core.

(b) This tendency is also enhanced by the presence of six bonding pairs in the
valence shell, which leaves rather little space for the lone pair.

(c) With the addition of the nonbonding electron pair, the core size increases
and the core charge decreases from +6 to +4, with the result that the
bond pairs move farther from the central nucleus, thus increasing the bond
lengths. In accordance with this, the observed bond lengths of SeX2−

6 ,
TeX2−

6 , and SbX2−
6 (X = Cl, Br) ions are considerably longer than those

expected from the sum of the covalent radii by about 20-5 pm.

(11) AX7 type
The TeF−7 ion, an isoelectronic and isostructural analog of IF7, has a pentagonal
bipyramidal structure with Te–Fax 179 pm and Te–Feq 183-90 pm, as shown in
Fig. 16.8.5(h). The equatorial F atoms deviate slightly from the mean equatorial
plane.
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17 Structural Chemistry of
Group 17 and Group 18
Elements

17.1 Elemental halogens

17.1.1 Crystal structures of the elemental halogens

The halogens are diatomic molecules, whose color increases steadily with
atomic number. Fluorine (F2) is a pale yellow gas, bp 85.0 K. Chlorine (Cl2)
is a greenish-yellow gas, bp 239.1 K. Bromine (Br2) is a dark-red liquid, bp
331.9 K. Iodine (I2) is a lustrous black crystalline solid, mp 386.7 K, which
sublimes and boils readily at 458.3 K. Actually solid iodine has a vapor pres-
sure of 41 Pa at 298 K and 1.2× 104 Pa at the melting point. In the solid state,
the halogen molecules are aligned to give a layer structure. Fluorine exists in
two crystalline modifications: a low-temperature α-form and a higher temper-
ature β-form, neither of which resembles the orthorhombic layer structure of
the isostructural chlorine, bromine, and iodine crystals. Figure 17.1.1 shows
the crystal structure of iodine. Table 17.1.1 gives the interatomic distances in
gaseous and crystalline halogens.

The molecules F2, Cl2, and Br2 in the crystalline state have intramolecular
distances (X–X) which are nearly the same as those in the gaseous state. In
crystalline iodine, the intramolecular I–I bond distance is longer than that in
a gaseous molecule, and the lowering of the bond order is offset by the inter-
molecular bonding within each layer. The closest interatomic distance between
neighboring I2 molecules is 350 pm, which is considerably shorter than twice
the van der Waals radius (430 pm). It therefore seems that appreciable sec-
ondary bonding interactions occur between the iodine molecules, giving rise
to the semiconducting properties and metallic luster; under very high pressure
iodine becomes a metallic conductor. The distance between layers in the iodine
crystal (427 and 434 pm) corresponds to the van der Waals distance.

17.1.2 Homopolyatomic halogen anions

The homopolyhalogen anions are formed mainly by iodine, which exhibits the
highest tendency to form stable catenated anionic species. Numerous examples
of small polyiodides, such as I−3 , I2−

4 and I−5 , and extended discrete oligomeric
anionic polyiodides, such as I−7 , I2−

8 , I−9 , I2−
12 , I2−

16 , I4−
16 , I4−

22 and I3−
29 , and poly-

meric (I−7 )n networks have been reported. These polyiodides are all formed by
the relatively loose association of several I2 molecules with several I− and/or I−3
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434 pm

272 pm

427 pm

350 pm

350 pm
Fig. 17.1.1.
Crystal structure of iodine.

anions. In order to assess the association of such species, the following equation
between the bond length (d) and bond order (n) has been proposed:

d = do − c log n = 267 pm − (85 pm) log n.

In this equation, the reference I–I single-bond length do is taken to be 267 pm;
when the distance d between two iodine atoms is ≤ 293 pm, corresponding to
bond order n ≥ 0.50, there is a relatively strong bond between them, which is
represented by a solid line. The distance d between 293 and 352 pm corresponds
to bond order n between 0.50 and 0.10, indicating a relatively weak bond, which
is represented by a broken line. When the distance is longer than 352 pm, there
is only van der Waals interaction between the two molecular/ionic species, and
no discrete polyiodide is formed.

Table 17.1.1. Interatomic distances in gaseous and crystalline halogens

X
X–X (pm) X· · · X (pm)

Ratio
X· · ·X (Shortest)

Gas Solid Within layer Between layers X-X (Solid)

F 143.5 149 324 284 1.91
Cl 198.8 198 332 374 1.68
Br 228.4 227 331 399 1.46
I 266.6 272 350 427 1.29

Figure 17.1.2 shows some polyiodides, which have been characterized struc-
turally. All polyiodine anions consist of units of I−, I2, and I−3 . The bond length
of the structural components of the polyiodides are often characteristic: 267 to
285 pm in I2 molecular fragments, whereas those of symmetrical triiodide I−3
are about 292 pm.

The formation and stability of an extended polyiodide species are dependent
on the size, shape, and charge of its accompanying cation. In the solid state, the
polyiodide species are assembled around a central cation to form a discrete or
one-, two-, or three-dimensional structure.
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Fig. 17.1.2.
Structures of some polyiodides: (a) I−3
(symmetric) in Ph4AsI3, (b) I−3
(asymmetric) in CsI3, (c) I2−

4 in
Cu(NH3)4I4, (d) I−5 in Fe(S2CNEt2)3I5,

(e) I−7 in Ph4PI7, (f) I2−
8 in [(CH2)6 N4

Me]2I8, (g) I−9 in Me4NI9, (h) I4−
16 in

[(C7H8N4O2)H]4I16, (i) I2−
16 in

(Cp*2Cr2I3)2I16, and ( j) (I−7 )n network
in a unit cell of the {Ag[18]aneS6}I7
complex. Bond lengths are in pm.
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17.1.3 Homopolyatomic halogen cations

The structures of the following homopolyatomic halogen cations have been
determined by X-ray analysis:

X+
2 : Br+2 and I+2 (in Br+2 [Sb3F16]− and I+2 [Sb2F11]−)

X+
3 : Cl+3 , Br+3 and I+3 (in X3AsF6)

X2+
4 : I2+

4 (in I2+
4 [Sb3F16]−[SbF6]−)

X+
5 : Br+5 and I+5 (in X5AsF6)

X+
15: I+15 (in I15AsF6)

X+
2 : The bond lengths of Br+2 and I+2 , with a formal bond order of 11/2, are

215 and 258 pm, respectively, which are shorter than the bond lengths of
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molecular Br2(228 pm) and I2(267 pm). This is consistent with the loss
of an electron from an antibonding orbital.

X+
3 : These cations have a bent structure (Fig. 17.1.3(a)). The X–X bond

lengths are similar to those in gaseous X2, being consistent with their
single-bond character. The bond angles are between the 101◦ and 104◦.

X2+
4 : Compound I4[Sb3F16][SbF6] contains an I2+

4 cation, which has the shape
of a planar rectangle with I–I bond lengths of 258 and 326 pm, as shown
in Fig. 17.1.3(b).

X+
5 : Cations Br+5 and I+5 are iso-structural, as shown in Fig. 17.1.3(c).

X+
15: Compound I15AsF6contains an I+15 cation, which has the shape of a

centrosymmetric zigzag chain. This cation may be considered to be a
finite zigzag chain composed of three connected I−5 units, as shown in
Fig. 17.1.3(d).

266 267

326

258
290

265

(c)

270
290

292 267

342

268290

i

(b)

(d)

(a)

Fig. 17.1.3.
Structures of some polyiodine cations:
(a) I+3 , (b) I2+

4 , (c) I+5 and (d) I+15. Bond
lengths are in pm. Both I+5 and I+15 are
centrosymmetric.

17.2 Interhalogen compounds and ions

The halogens form many compounds and ions that are binary or ternary combi-
nations of halogen atoms. There are three basic types: (a) neutral interhalogen
compounds, (b) interhalogen cations, and (c) interhalogen anions.

17.2.1 Neutral interhalogen compounds

The halogens react with each other to form binary interhalogen compounds XY,
XY3, XY5 and XY7, where X is the heavier halogen. A few ternary compounds
are also known, e.g., IFCl2 and IF2Cl. All interhalogen compounds contain an
even number of halogen atoms. Table 17.2.1 lists the physical properties of
some XYn compounds.

XY: All six possible diatomic interhalogen compounds between F, Cl, Br
and I are known, but IF is unstable, and BrCl cannot be isolated free from Br2
and Cl2. In general, the diatomic interhalogens exhibit properties intermediate
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Table 17.2.1. Physical properties of some interhalogen compounds

Compound Appearance at 298 K mp (K) bp(K) Bond length*(pm)

ClF Colorless gas 117 173 163
BrF Pale brown gas 240 293 176
BrCl Red brown gas — — 214
ICl (α) Ruby red crystal 300 ∼ 373 237, 244
ICl (β) Brownish red crystal 287 — 235, 244
IBr Black crystal 314 ∼ 389 249
ClF3 Colorless gas 197 285 160 (eq) 170 (ax)
BrF3 Yellow liquid 282 399 172 (eq) 181 (ax)
IF3 Yellow solid 245 (dec) — —
(ICl3)2 Orange solid 337 (sub) — 238 (t) 268 (b)
ClF5 Colorless gas 170 260 172 (ba) 162 (ap)
BrF5 Colorless liquid 212.5 314 172 (ba) 168 (ap)
IF5 Colorless liquid 282.5 378 189 (ba) 186 (ap)
IF7 Colorless gas 278 (sub) — 186 (eq) 179 (ax)

* The XY3 molecule has a T-shaped structure: axial (ax), equatorial (eq); (ICl3)2 is a dimer: bridging
(b), terminal (t); XY5 forms a square-based pyramid: apical (ap), basal (ba); XY7 has the shape of a
pentagonal bipyramid: equatorial (eq), axial (ax).

between their parent halogens. However, the electronegativities of X and Y
differ significantly, so the X–Y bond is stronger than the mean of the X–X and
Y–Y bond strengths, and the X–Y bond lengths are shorter than the mean of
d (X–X) and d (Y–Y). The dipole moments for polar XY molecules in the gas
phase are ClF 0.88 D, BrF 1.29 D, BrCl 0.57 D, ICl 0.65 D, and IBr 1.21 D.

Iodine monochloride ICl is unusual in forming two modifications: the stable
α-form and the unstableβ-form, both of which have infinite chain structures and
significant I· · ·Cl intermolecular interactions of 294 to 308 pm. Figure 17.2.1(a)
shows the chain structure of β-ICl.

XY3: Both ClF3 and BrF3 have a T-shaped structure, being consistent with
the presence of 10 electrons in the valence shell of the central atom, as shown
in Fig. 17.2.1(b). The relative bond lengths of d (X–Yax) > d (X–Yeq) and the
bond angle of Yax–X–Yeq < 90◦ (ClF3 87.5◦ and BrF386◦) reflect the greater
electronic repulsion of the nonbonding pair of electrons in the equatorial plane
of the molecule.

Iodine trichloride is a fluffy orange powder that is unstable above room
temperature. Its dimer (ICl3)2 has a planar structure, as shown in Fig. 17.2.1(c),
that contains two I–Cl–I bridges (I–Cl distances in the range of 268–272 pm)
and four terminal I–Cl bonds (238–9 pm).

XY5: The three fluorides ClF5, BrF5, and IF5 are the only known interhalo-
gens of the XY5 type, and they are extremely vigorous fluorinating reagents.
All three compounds occur as a colorless gas or liquid at room temperature.
Their structure has been shown to be square pyramidal with the central atom
slightly below the plane of the four basal F atoms [Fig. 17.2.1(d)]. The bond
angles F(ap)–X–F(ba) are ∼90◦ (ClF5), 85◦ (BrF5) and 81◦ (IF5).

XY7: IF7 is the sole representative of this structural type. Its structure,
as shown in Fig. 17.2.1(e), exhibits a slight deformation from pentagonal
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F

Fig. 17.2.1.
Structures of some interhalogen
molecules: (a) β-ICl, (b) ClF3, (c) I2Cl6,
(d) IF5, and (e) IF7.

bipyramidal D5h symmetry due to a 7.5◦ puckering and a 4.5◦ axial bending
displacement. Bond length I–F(eq) is 185.5 pm and I–F(ax) is 178.6 pm.

17.2.2 Interhalogen ions

These ions have the general formulas XY+
n and XY−n , where n can be 2, 4, 5,

6, and 8, and the central halogen X is usually heavier than Y. Table 17.2.2 lists
many of the known interhalogen ions.

Table 17.2.2. Some interhalogen ions

XY2 XY4 XY5 XY6 XY8

Cations ClF+
2 I2Cl+ ClF+

4 — ClF+
6 —

Cl2F+ IBr+2 BrF+
4 BrF+

6
BrF+

2 I2Br+ IF+
4 IF+

6
IF+

2 IBrCl+ I3Cl+2
ICl+2

Anions BrCl−2 ClICl− ClF−4 I2Cl−3 IF2−
5 ClF−6 IF−8

Br2Cl− ClIBr− BrF−4 I2BrCl−2 BrF−6
I2Cl− BrIBr− IF−4 I2Br2Cl− IF−6
FClF− ICl3F− I2Br−3
FIBr− ICl−4 I4Cl−

IBrCl−3

The structures of these ions normally conform to those predicted by the
VSEPR theory, as shown in Fig. 17.2.2. Since the anion XY−n has two more
electrons than the cation XY+

n , they have very different shapes. The anion
IF2−

5 is planar with lone pairs occupying the axial positions of a pentagonal
bipyramid. In [Me4N](IF6), IF−6 is a distorted octahedron (C3v symmetry) with
a sterically active lone pair, whereas both BrF−6 and ClF−6 are octahedral. The
anion IF−8 has the expected square antiprismatic structure.
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Fig. 17.2.2.
Structures of some interhalogen ions. The
number of electrons in the valence shell
of the central atom is given for each ion.

I2Cl+
8 electrons

IF4
+

10 electrons

IF4
–

12 electrons
IF5

2–

14 electrons
IF6

–

14 electrons
IF8

–

16 electrons

IF6
+

12 electrons
I2Cl– 

10 electrons

17.3 Charge-transfer complexes of halogens

A charge-transfer (or donor–acceptor) complex is one in which a donor and an
acceptor species interact weakly with some net transfer of electronic charge,
usually facilitated by the acceptor. The diatomic halogen molecule X2 has
HOMO π∗ and LUMO σ ∗ molecular orbitals, and the σ* orbital is antibonding
and acts as an acceptor. If the X2 molecule is dissolved in a solvent such as
ROH, H2O, pyridine, or CH3CN that contains N, O, S, Se, or π electron pairs,
the solvent molecule can function as a donor through the interaction of one of its
σ or π electron pairs with the σ ∗ orbital of X2. This donor–acceptor interaction
leads to the formation of a charge-transfer complex between the solvent (donor)
and X2 (acceptor) and alters the optical transition energy of X2, as shown in
Fig. 17.3.1.

Let us take I2 as an example. The normal violet color of gaseous iodine
is attributable to the allowed π∗ → σ ∗ transition. When iodine is dissolved
in a solvent, the interaction of I2 with a donor solvent molecule causes an
increase in the energy separation of the π∗ to σ ∗ orbitals from E1 to E2, as
shown in Fig. 17.3.1. The color of this solution is then changed to brown. (The
absorption maximum for the violet solution occurs at 520 to 540 nm, and that
of a typical brown solution at 460 to 480 nm.) The electron transition in these
I2· solvent complexes is called a charge-transfer transition. However, the most
direct evidence for the formation of a charge-transfer complex in solution comes
from the appearance of an intense new charge-transfer band occurring in the
near ultraviolet spectrum in the range 230–330 nm.

The structures of many charge-transfer complexes have been determined.
All the examples shown in Fig. 17.3.2 share the following common structural
characteristics:
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X2   solvent
complex

solvent

σ or π

σ*

π*

E2

E1

X2
Fig. 17.3.1.
Interaction between the σ∗ orbital of X2
and a donor orbital of solvent.

(a) The donor atom (D) or π orbital (π) and X2 molecule are essentially linear:
D · · · X–X or π · · · X–X.

(b) The bond lengths of the X–X groups in the complexes are all longer
than those in the corresponding free X2 molecules; the D· · · X distance
is invariably shorter than the sum of their van der Waals radii.

(c) Each X2 molecule in an infinite chain structure is engaged by donors (D)
at both ends, and the D · · · X–X · · · D unit is essentially linear, as expected
for a σ -type acceptor orbital.

H
N Br

Br

233

336 228

X
O

(c)

284

(d)

(e)

283327

N I

Se

376
I

291(a)

(b) Fig. 17.3.2.
Structures of some charge-transfer
complexes (bond lengths in pm). (a)
(H3CCN)2·Br2, (b) C6H6·Br2, (c)
C4H8O2·X2 (X = Cl, Br, X–X distance:
202 pm for X = Cl and 231 pm for X =
Br), (d) C4H8Se·I2, and (e) Me3N·I2.

In the extreme case, complete transfer of charge may occur, as in the formation
of [I(py)2]+:

2I2 + 2 N N NI
+ _

+ I3
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17.4 Halogen oxides and oxo compounds

17.4.1 Binary halogen oxides

The structures of some binary halogen oxides are listed in Table 17.4.1.

(1) X2O molecules
(a) Since fluorine is more electronegative than oxygen, the binary compounds

of F2 and O2 are named oxygen fluorides, rather than fluorine oxides.
F2O is a colorless, highly toxic, and explosive gas. The molecule has C2v
symmetry, as expected for a molecule with 20 valence electrons and two
normal single bonds.

(b) Dichlorine monoxide Cl2O is a yellow-brown gas that is stable at room
temperature. There are two linkage isomers, Cl–Cl–O and Cl–O–Cl, but

Table 17.4.1. Structure of halogen oxides

X2O O
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O

O
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only the latter is stable. The stable form Cl–O–Cl is bent (111◦) with Cl–O
169 pm.

(c) Dibromine monoxide Br2O is a dark-brown crystalline solid stable at 213 K
(mp 255.6 K with decomposition). The molecule has C2v symmetry in both
the solid and vapor phases with Br–O 185 pm and angle Br–O–Br 112◦.

(2) X2O2 molecules
Only F2O2 is known. This is a yellow-orange solid (mp 119 K) that decomposes
above 223 K. Its molecular shape resembles that of H2O2, although the inter-
nal dihedral angel is smaller (87◦). The long O–F bond (157.5 pm) and short
O–O bond (121.7 pm) in F2O2 can be rationalized by resonance involving the
following valence bond representations:

+O

F F–

O O

–F F

O+

(3) XO2 molecule
Only ClO2 is known. Chlorine dioxide is an odd-electron molecule. Theoret-
ical calculations suggest that the odd electron is delocalized throughout the
molecule, and this probably accounts for the fact that there is no evidence of
dimerization in solution, or even in the liquid or solid phase. Its important Lewis
structures are shown below:

Cl
O O

Cl
O O

Cl
O O

(4) X2O3 molecules
(a) Cl2O3 is a dark-brown solid which explodes even below 273 K. Its structure

has not been determined.
(b) Br2O3 is an orange crystalline solid and has been shown by X-ray analysis

to be syn-BrOBrO2 with BrI–O 184.5 pm, BrV–O 161.3 pm, and angle
Br–O–Br 111.6◦. It is thus, formally, the anhydride of hypobromous and
bromic acid.

(5) X2O4 molecules
(a) Chlorine perchlorate, Cl2O4, is most likely ClOClO3. Little is known

of the structure and properties of this pale-yellow liquid; it is even
less stable than ClO2 and decomposes at room temperature to Cl2, O2,
and Cl2O6.

(b) Br2O4 is a pale yellow crystalline solid, whose structure has been shown
by EXAFS to be bromine perbromate, BrOBrO3, with BrI–O 186.2 pm,
BrVII–O 160.5 pm and angle Br–O–Br 110◦.
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(6) X2O5 molecules
(a) Ozonization of Br2 generates Br2O3 and eventually Br2O5:

52
K195,O

32
K195,O

2 OBrOBrBr 33  → →
brown orange colorless

The end product can be crystallized from propionitrile as Br2O5·EtCN, and
crystal structure analysis has shown that Br2O5 is O2BrOBrO2 with each Br
atom pyramidally surrounded by three O atoms, and the terminal O atoms
are eclipsed with respect to each other.

(b) I2O5 is the most stable oxide of the halogens. Crystal structure analysis has
shown that the molecule consists of two pyramidal IO3 groups sharing a
common oxygen. The terminal O atoms have a staggered conformation, as
shown in Table 17.4.1.

(7) X2O6 molecule
Cl2O6 is actually a mixed-valence ionic compound ClO+

2 ClO−4 , in which the
angular ClO+

2 and tetrahedral ClO−4 ions are arranged in a distorted CsCl-type
crystal structure. Cation ClO+

2 has Cl–O 141 pm, angle O–Cl–O 119◦; ClO−4
has Cl–O(av) 144 pm.

(8) X2O7 molecule
Cl2O7 is a colorless liquid at room temperature. The molecule has C2 symmetry
in both gaseous and crystalline states, the ClO3 groups being twisted from the
staggered (C2v) configuration, with Cl–O(bridge) 172.3 pm and Cl–O(terminal)
141.6 pm.

In addition to the compounds mentioned above, other unstable binary halogen
oxides are known. The structures of the short-lived gaseous XO radicals have
been determined. For ClO, the interatomic distance d = 156.9 pm, dipole
moment µ = 1.24 D, and bond dissociation energy Do = 264.9 kJ mol−1. For
BrO, d = 172.1 pm, µ = 1.55 D, and Do = 125.8 kJ mol−1. For IO, d = 186.7
pm and Do = 175 kJ mol−1.

The structures of the less stable oxides I4O9 and I2O4 are still unknown, but
I4O9 has been formulated as I3+(I5+O3)3, and I2O4 as (IO)+(IO3)

−.

17.4.2 Ternary halogen oxides

The ternary halogen oxides are mainly compounds in which a heavier X atom
(Cl, Br, I) is bonded to both O and F. These compounds are called halogen
oxide fluorides. The structures of the ternary halogen oxides are summarized
in Fig. 17.4.1.

The geometries of these molecules are consistent with the VSEPR model.
(a) FClO is bent with Cs symmetry (two lone pairs). (b) FXO2 is pyramidal
with Cs symmetry (one lone pair). (c) FXO3 has C3v symmetry. (d) F3XO is an
incomplete trigonal bipyramid with F, O, and a lone pair in the equatorial plane,
having Cs symmetry. (e) F3ClO2 is a trigonal bipyramid with one fluorine and
both oxygens in the equatorial plane; owing to the strong repulsion from two
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O
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F

97.2 o 172.5

186.3
181.7

I
O

F

F

F

O
I

O

F

F

F

O174

179194

184

(X = F, Br, I)
C4v C2h Cs

(f) (g) (h)

Fig. 17.4.1.
Structures of ternary halogen oxides. The
bond lengths are in pm. For (c), X = Cl,
a = 162 pm, b = 140 pm; X = Br, a =
171 pm, b = 158 pm.

Cl=O double bonds in the equatorial plane, the axial Cl–F bonds are longer than
the equatorial Cl–F bonds, as confirmed by experimental data. (f) F5IO has C4v
symmetry, in which the bond lengths are I–Fax 186.3 pm, I–Feq 181.7 pm, and
I=O 172.5 pm. Also, the I atom lies above the plane of four equatorial F atoms,
and bond angle O–I–Feq is 97.2◦. (g) F3IO2 forms oligomeric species, and the
dimer (F3IO2)2 has C2h symmetry. (h) O3ClOX are “halogen perchlorate salts”.

A variety of cations and anions are derived from some of the above neutral
molecules by gaining or losing one F−, as shown in Fig. 17.4.2. Their structures
are again in accord with predictions by the VSEPR model.

X
O

O
F

F

_
X

+

O
F

F
Cl

+

O
O

F

F

(a) F2XO2
–

(X = Cl , Br, I)

C2v

(b) F2XO+

(X = Cl , Br)

Cs

(c) F2ClO2
+

C2v

X

O

F F

F F_ I

F

F
F

O

F

F

F

_

(d) F4XO–

(X = Cl, Br, I)

C4v

(e) F6IO–

C5v

I=O 176 pm

I–F(ax) 182 pm

I–F(eq) 188 pm

Fig. 17.4.2.
Structures of cations and anions of
ternary halogen oxides.
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Table 17.4.2. Halogen oxoacids

Generic name Fluorine Chlorine Bromine Iodine

Hypohalous acids HOF* HOCl HOBr HOI
Halous acids — HOClO — —
Halic acids — HOClO2 HOBrO2 HOIO2*
Perhalic acids — HOClO3* HOBrO3 HOIO3*, (HO)5IO*

∗ Isolated as pure compounds; others are stable only in aqueous solutions.

17.4.3 Halogen oxoacids and anions

Numerous halogen oxoacids are known, though most of them cannot be isolated
as pure species and are stable only in aqueous solution or in the form of their
salts. Anhydrous hypofluorous acid (HOF), perchloric acid (HClO4), iodic acid
(HIO3), orthoperiodic acid (H3IO6), and metaperiodic acid (HIO4) have been
isolated as pure compounds. Table 17.4.2 lists the halogen oxoacids.

(1) Hypofluorous and other hypohalous acids
At room temperature hypofluorous acid HOF is a gas. Its colorless solid (mp =
156 K) melts to a pale yellow liquid. In the crystal structure, O–F = 144.2 pm,
angle H–O–F = 101◦, and the HOF molecules are linked by O–H· · · O hydrogen
bonds (bond length 289.5 pm and bond angle O–H· · · O 163◦) to form a planar
zigzag chain, as shown below:

O
H

F

O

F

H
O

H

F

O

F

H
O

H

F

In general, fluorine has a formal oxidation state of−1, but in HOF and other
hypohalous acids HOX, the formal oxidation state of F and X is +1.

Hypochlorous acid HOCl is more stable than HOBr and HOI, with Cl–O
169.3 pm and angle H–O–Cl 103◦ in the gas phase.

(2) Chlorous acid HOClO and chlorite ion ClO−2
Chlorous acid, HOClO, is the least stable of the oxoacids of chlorine. It cannot
be isolated in pure form, but exists in dilute aqueous solution. Likewise, HOBrO
and HOIO are even less stable, showing only a transient existence in aqueous
solution.

The chlorite ion (ClO−2 ) in NaClO2 and other salts has a bent structure (C2v
symmetry) with Cl–O 156 pm, O–Cl–O 111◦.

Cl
O O

Cl
O O– –

(3) Halic acids HOXO2 and halate ions XO−3
Iodic acid, HIO3, is a stable white solid at room temperature. In the crystal struc-
ture, trigonal HIO3 molecules are connected by extensive hydrogen bonding
with I–O 181 pm, I–OH 189 pm, angle O–I–O 101◦, O–I–(OH) 97◦.
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Halate ions are trigonal pyramidal, with C3v symmetry, as shown below:

X
O

O
O

– X = Cl, Cl–O 149 pm

X = Br, Br–O 165 pm

X = I, I–O 184 pm

Angles O–X–O 106º to 107º

Note that in the solid state, some metal halates do not consist of discrete ions. For
example, in the iodates there are three short I–O distances 177–90 pm and three
longer distances 251–300 pm, leading to distorted pseudo-sixfold coordination
and piezoelectric properties.

(4) Perchloric acid HClO4 and perhalates XO−4
Perchloric acid is the only oxoacid of chlorine that can be isolated. The crystal
structure of HClO4 at 113 K exhibits three Cl–O distances of 142 pm and a
Cl–OH distance of 161 pm. The structure of HClO4, as determined by electron
diffraction in the gas phase, shows Cl–O 141 pm, Cl–OH 163.5 pm, and angles
O–Cl–(OH) 106◦, O–Cl–O 113◦.

The hydrates of perchloric acid exist in at least six crystalline forms. The
monohydrate is composed of H3O+ and ClO−4 connected by hydrogen bonds.

All perhalate ions XO−4 are tetrahedral, with Td symmetry, as shown below:

X
O O

O

O

–
X = Cl, Cl–O 144 pm
X = Br, Br–O 161 pm
X = I, I–O 179 pm

(5) Periodic acids and periodates
Several different periodic acids and periodates are known.

(a) Metaperiodic acid HIO4

Acid HIO4 consists of one-dimensional infinite chains built up of distorted cis-
edge-sharing IO6 octahedra, as shown in Fig. 17.4.3. Until now no discrete
HIO4 molecule has been found.

(b) Orthoperiodic (or paraperiodic) acid (HO)5IO
The crystal structure of orthoperiodic acid, commonly written as H5IO6,
consists of axially distorted octahedral (HO)5IO molecules linked into a three-
dimensional array by O–H · · · O hydrogen bonds (10 for each molecule,

I–(OH) 184 pm

I–O(bridge) 201 pm

I–O(terminal) 191 pm Fig. 17.4.3.
Structure of metaperiodic aicd.
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Fig. 17.4.4.
Structures of periodates (a) to (d) and
hydrogen periodates (e) to (f); small
shaded circles represent OH group.
(a) IO−4 in NaIO4, (b) IO3−

5 in K3IO5,

(c) IO5−
6 in K5IO6, (d) I2O4−

9 in
K4I2O9, (e) [IO3(OH)3]2− in
(NH4)2IO3(OH)3, and (f)
[I2O8(OH)2]4− in
K4[I2O8(OH)2]·8H2O.

(a)

(e) (f)

(b) (c) (d)

178 pm

177 pm

178 pm
185 pm

201 pm

198 pm

195 pm

OH

I
O 181 pm200 pm

186 pm

O
I

177 pm
I I

I

95º

260–78 pm). The (HO)5IO molecule has the maximum number of –OH groups
surrounding the I(+7) atom and hence it is called orthoperiodic acid:

OHHO

OH
HO

O

OH
I I=O 178 pm

I–OH 189 pm

The structure of H7I3O14 does not show any new type of catenation, because
this compound exists in the solid state as a stoichiometric phase containing
orthoperiodic and metaperiodic acids according to the formula (HO)5IO·2HIO4.

The structures of several periodates and hydrogen periodates are shown in
Fig. 17.4.4.

17.4.4 Structural features of polycoordinate iodine compounds

Iodine differs in many aspects from the other halogens. Because of the large
atomic size and the relatively low ionization energy, it can easily form stable
polycoordinate, multivalent compounds. Interest in polyvalent organic iodine
compounds arises from several factors: (a) the similarity of the chemical proper-
ties and reactivity of I(III) species to those of Hg(+2), Tl(+3), and Pb(+4), but
without the toxic and environmental problems of these heavy metal congeners;
(b) the recognition of similarities between organic transition-metal complexes
and polyvalent main-group compounds such as organoiodine species; and
(c) the commercial availability of key precursors, such as PhI(OAc)2.

Six structural types of polyvalent iodine species are commonly encountered,
as shown below:

I
LL

+ IL

L

L

I
L

L

L

L

+
I

L
L L

L

L
I

L
L

L
L

O

L I
LL

LL

L

LL

(a) (b) (c) (d) (e) (f)
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The first two types, (a) and (b), called iodanes, are conventionally considered
as derivatives of trivalent iodine I(+3). The next two, (c) and (d), periodanes,
represent the most typical structural types of pentavalent iodine I(+5). The
structural types (e) and (f) are typical of heptavalent iodine I(+7).

The most important structural features of polyvalent iodine compounds may
be summarized as follows:

(1) The iodonium ion (type a) generally has a distance of 260–80 pm
between iodine and the nearest anion, and may be considered as having
pseudotetrahedral geometry about the central iodine atom.

(2) Species of type (b) has an approximately T-shaped structure with a collinear
arrangement of the most electronegative ligands. Including the nonbonding
electron pairs, the geometry about iodine is a distorted trigonal bipyramid
with the most electronegative groups occupying the axial positions and the
least electronegative group and both electron pairs residing in equatorial
positions.

(3) The I–C bond lengths in both iodonium salts (type a) and iodoso derivatives
(type b) are approximately equal to the sum of the covalent radii of I and
C atoms, ranging generally from 200 to 210 pm.

(4) For type (b) species with two heteroligands of the same electronegativity,
both I–L bonds are longer than the sum of the appropriate covalent radii,
but shorter than purely ionic bonds. For example, the I–Cl bond lengths
in PhICl2 are 245 pm, whereas the sum of the covalent radii of I and Cl is
232 pm. Also, the I–O bond lengths in PhI(OAc)2 are 215–16 pm, whereas
the sum of the covalent radii of I and O is 199 pm.

I ClCl CC
OO

I OO
CH3H3C

(5) The geometry of the structural types (c) and (d) can be square pyramidal,
pesudo-trigonal bipyramidal, and pesudo-octahedral. The bonding in I(+5)
compounds IL5 with a square-pyramidal structure may be described in
terms of a normal covalent bond between iodine and the ligand in the apical
position, and two orthogonal, hypervalent 3c-4e bonds accommodating four
ligands. The carbon ligand and unshared electron pair in this case should
occupy the apical positions, with the most electronegative ligands residing
at equatorial positions.

(6) The typical structures of I(+7) involve a distorted octahedral configuration
(type e) about iodine in most periodates and oxyfluoride, IOF5, and the
heptacoordinated, pentagonal bipyramidal species (type f) for the IF7 and
IOF−6 anions. The pentagonal bipyramidal structure can be described as
two covalent collinear axial bonds between iodine and ligands in the api-
cal positions and a coplanar, hypervalent 6c-10e bond system for the five
equatorial bonds.
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17.5 Structural chemistry of noble gas compounds

17.5.1 General survey

All the Group 18 elements (He, Ne, Ar, Kr, Xe, and Rn; rare gases or noble
gases) have the very stable electronic configurations (1s2 or ns2np6) and are
monoatomic gases. The nonpolar, spherical nature of the atoms leads to phy-
sical properties that vary regularly with atomic number. The only interatomic
interactions are weak van der Waals forces, which increase in magnitude as the
polarizabilities of the atoms increase and the ionization energies decrease. In
other words, interatomic interactions increase with atomic size.

In Section 5.8, we have encountered the noble gas compound HArF and com-
plexes NgMX. The discussion there is mainly concerned with the electronic
structures of these linear triatomic species. In recent years, the use of matrix-
isolation techniques has led to the generation of a wide range of compounds
of the general formula HNgY, where Ng = Kr or Xe, and Y is an electroneg-
ative atom or group such as H, halides, pseudohalides, OH, SH, C≡CH, and
C≡C–C≡CH. These molecules can be easily detected by the extremely strong
intensity of the H–Ng stretching vibration. The observed ν(H–Ng) values for
some HXeY molecules are Y = H, 1166, 1181; Y = Cl, 1648; Y = Br, 1504;
Y = I, 1193; Y = CN, 1623.8, Y = NC, 1851.0 cm−1. The electronic structure
of HNgY is best described in terms of the ion pair HNg+Y−, in which the HNg
fragment is held by a covalent bond, and the interaction between Ng and Y is
mostly ionic.

In this section, we turn our attention to the structural chemistry of those noble
gas compounds that can be isolated in bulk quantities.

Xenon compounds with direct bonds to the electronegative main-group ele-
ments F, O, N, C, and Cl are well established. The first noble gas compound,
a yellow-orange solid formulated as XePtF6, was prepared by Neil Bartlett in
1962. Noting that the first ionization energy of Xe (1170 kJ mol−1) is very sim-
ilar to that of O2 (1175 kJ mol−1), and that PtF6 and O2 can combine to form
O2PtF6, Bartlett replaced O2 by a molar quantity of Xe in the reaction with PtF6
and produced XePtF6. It is now established that the initial product he obtained
was a mixture containing diamagnetic XeIIPtIVF6 as the major product, which
is most likely a XeF+ salt of (PtF−5 )n with a polymeric chain structure, as
illustrated below, by analogy with the known crystal structure of XeCrF6.

Xe

F

Pt

213 pm

193 pm
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O

U Ne

Ar
C

Fig. 17.5.1.
Structures of CUO(Ne)4−n(Ar)n (n = 0,
1, 2, 3, 4).

If xenon is mixed with a large excess of PtF6vapor, further reactions proceed
as follows:

XePtF6 + PtF6 → XeF+PtF−6 + PtF5(non-crystalline)

XeF+PtF−6 + PtF5(warmed ≥ 60◦C)→ XeF+Pt2F−11(orange− red solid).

Evidently the Xe(I) oxidation state is not a viable one, and Xe(II) is clearly
favored.

Until now, no compound of helium has been discovered, and as radon has
intense α-radioactivity, information about its chemistry is very limited. Com-
pounds of the other rare gas elements, Ne, Ar, Kr, and Xe, have been reported.
For example, experimental investigation of CUO(Ng)n (Ng = Ar, Kr, Xe; n =
1, 2, 3, 4) complexes in solid neon have provided evidence of their formation.
The computed structures of CUO(Ne)4−n(Ar)n (n = 0, 1, 2, 3, 4) complexes
are illustrated in Fig.17.5.1.

17.5.2 Stereochemistry of xenon

Xenon reacts directly with fluorine to form fluorides. Other compounds of Xe
can be prepared by reactions using xenon fluorides as starting materials, which
fall into four main types:

(1) In combination with F− acceptors, yielding fluorocations of xenon, as in
the formation of (XeF5)(AsF6) and (XeF5)(PtF6);

(2) In combination with F− donors, yielding fluoroanions of xenon, as in the
formation of Cs(XeF7) and (NO2)(XeF8);

(3) F/H metathesis between XeF2 and an anhydrous acid, such as

XeF2 + HOClO3 → F–Xe–OClO3 + HF;

(4) Hydrolysis, yielding oxofluorides, oxides, and xenates, such as

XeF6 + H2O → XeOF4 + 2HF.

Xenon exhibits a rich variety of stereochemistry. Some of the more important
compounds of xenon are listed in Table 17.5.1, and their structures are shown in
Fig. 17.5.2. The structural description of these compounds depends on whether

iranchembook.ir/edu

https://iranchembook.ir/edu


672 Structural Chemistry of Selected Elements

Table 17.5.1. Structures of some compounds of xenon with fluorine and oxygen

Compound Geometry/
symmetry

Xe–F
(pm)

Xe–O
(pm)

Arrangement in the
bonded and
nonbonded electron
pairs in Fig. 17.5.2

XeF2 Linear, D∞h 200 Trigonal
bipyramidal

(a)

XeO3 Pyramidal, C3v 176 Tetrahedral (b)
XeF+

3 in
(XeF3)(SbF5)

T-shaped, C2v 184–91 Trigonal
bipyramidal

(c)

XeOF2 T-shaped, C2v Trigonal
bipyramidal

(d)

XeF4 Square planar,
D4h

193 Octahedral (e)

XeO4 Tetrahedral, Td 174 Tetrahedral (f)
XeO2F2 See-saw, C2v 190 171 Trigonal

bipyramidal
(g)

XeOF4 Square pyramidal,
C4v

190 170 Octahedral (h)

XeO3F2 Trigonal
bipyramidal, D3h

Trigonal
bipyramidal

(i)

XeF+
5 in

(XeF5)(PtF6)

Square pyramidal,
C4v

179–85 Octahedral (j)

XeF−5 in
(NMe4)(XeF5)

Pentagonal planar,
D5h

189–203 Pentagonal
bipyramidal

(k)

XeF6 Distorted
octahedral, C3v

189(av) Capped octahedral (l)

XeO4−
6 in

K4XeO6·9H2O
Octahedral, Oh 186 Octahedral (m)

XeF−7 in
CsXeF7

Capped
octahedral, Cs

193–210 Capped octahedral (n)

XeF2−
8 in

(NO)2XeF8

Square
antiprismatic,
D4d

196–208 Square
antiprismatic

(o)

only nearest neighbor atoms are considered or whether the electron lone pairs
are also taken into consideration.

Figure 17.5.2 shows that the known formal oxidation state of xenon ranges
from +2 (XeF2) to +8 (XeO4, XeO3F2 and XeO4−

6 ), and the structures of the
xenon compounds are all consistent with the VSEPR model.

17.5.3 Chemical bonding in xenon f luorides

(1) Xenon difluoride and xenon tetrafluoride
The XeF2 molecule is linear. A simple bonding description takes the 5pz AO
of the xenon atom and the 2pz AO of each fluorine atom to construct the MOs
of XeF2: bonding (σ ), nonbonding (σ n), and antibonding (σ*), as shown in
Fig. 17.5.3. The four valence electrons fill σ and σ n, forming a 3c-4e σ bond
extending over the entire F–Xe–F system. Hence the formal bond order of the
Xe–F bond can be taken as 0.5. The remaining 5s, 5px and 5py AOs of the Xe
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(a)

F
O

(b) (c) (d) (e)

(f) (g) (h) (i) (j)

(k) (l) (m) (n) (o)

a

Fig. 17.5.2.
Structures of xenon compounds (small
shaded circles represent the O atoms):
(a) XeF2, (b) XeO3, (c) XeF+

3 , (d)
XeOF2, (e) XeF4, (f) XeO4, (g)
XeO2F2, (h) XeOF4, (i) XeO3F2, ( j)
XeF+

5 , (k) XeF−5 , (l) XeF6, (m) XeO4−
6 ,

(n) XeF−7 , and (o) XeF2−
8 . The electron

lone pairs in XeF−7 and XeF2−
8 are not

shown in the figure. The XeF6 molecule
(l) has no static structure but is
continually interchanging between eight
possible C3vstructures in which the lone
pair caps a triangular face of the
octahedron, but in the figure the lone pair
is shown in only one possible position.
Also, connecting these C3vstructures are
the transition states with C2v symmetry
in which the lone pair pokes out from an
edge of the octahedron.

atom are hybridized to form sp2 hybrid orbitals to accommodate the three lone
pairs, as shown in Fig. 17.5.2(a).

Asimilar treatment, involving two 3c-4e bonds located in X and Y directions,
accounts satisfactorily for the planar structure of XeF4. The remaining 5s and
5pz AOs of Xe are hybridized to form sp hybrid orbitals that accommodate
the two lone-pair electrons, as shown in Fig. 17.5.2(e). The crystal structure of
XeF2 is analogous to that of α-KrF2, which is illustrated in Fig. 17.5.8(a) (see
below).

F(2pz) Xe(5pz) Xe

σ σ

σn
σn

σ*
σ*

XeF2 2FF(2pz)

– – –

––

– – –

+

+

+

+ +

+

+ +

Fig. 17.5.3.
Molecular orbitals of the 3c-4e F–Xe–F
σ bond of XeF2: (a) the possible
combinations of the AOs of Xe and F
atoms, and (b) the schematic energy
levels of XeF2 molecule.

(2) Xenon hexafluoride
There are two possible theoretical models for the isolated XeF6 molecule:
(i) regular octahedral (Oh symmetry), with three 3c-4e bonds and a sterically
inactive lone pair of electrons occupying a spherically symmetric s orbital, or
(ii) distorted octahedral (C3v symmetry), where the lone pair is sterically active
and lies above the center of one face, but the molecule is readily converted
into other configurations. All known experimental data are consistent with the
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following nonrigid model. Starting from the C3v structure, the electron pair
can move across an edge between two F atoms (C2v symmetry for the inter-
mediate configuration) to an equivalent position surrounded by three F atoms.
This continuous molecular rearrangement, designated as a C3v → C2v → C3v
transformation, involves only modest changes in bond angles and virtually no
change in bond lengths.

(3) Perfluoroxenates XeF2−
8 and XeF−7

There are nine electron pairs in XeF2−
8 , which are to be accommodated around

the Xe atom. From experimental data, the XeF2−
8 ion has a square antiprismatic

structure [Fig. 17.5.2(o)] showing no distortion that could reveal a possible
position for the nonbonding pair of electrons. The lone pair presumably resides
in the spherical 5s orbital.

There are eight electron pairs to be placed around the Xe atom in XeF−7 . Six
F atoms are arranged octahedrally around the central Xe atom. The approach
of the seventh F atom [labelled “a” for this F atom in Fig. 17.5.2(n)] towards
the midpoint of one of the faces causes severe distortion of the basic octahe-
dral shape. Such a distortion could easily mask similar effects arising from a
nonspherical, sterically active lone pair. The bond between Xe atom and the
capping fluorine atom F(a) has the length Xe–F(a) 210 pm, or about 17 pm
longer than the other Xe–F bonds, which might suggest some influence of a
lone pair in the F(a) direction.

17.5.4 Structures of some inorganic xenon compounds

The structure and bonding of the [AuXe4]2+ cation in (AuXe4)(Sb2F11)2
have been discussed in Section 2.4.3. Some other interesting inorganic xenon
compounds are described below.

(1) Xe2Sb4F21

Although the Xe+
2 cation is known to exist from Raman spectroscopy, with

ν(Xe–Xe) = 123 cm−1, its bond length was only determined in 1997 from the
crystal structure of Xe2Sb4F21. The Xe–Xe bond length is 309 pm, the longest
recorded homonuclear bond between main-group elements.

(2) Complexes of xenon fluorides
The pentafluoride molecules, such as AsF5 and RuF5, act essentially as fluoride
ion acceptors, so that their complexes with xenon fluorides can be formulated
as salts containing cationic xenon species, e.g., [XeF][AsF6], [XeF][RuF6],
[Xe2F3][AsF6], [XeF3][Sb2F11], and [XeF5][AgF4].

In a number of adducts of XeF2 with metal complexes, the configuration at
the Xe atom remains virtually linear, with one F atom lying in the coordina-
tion sphere of the metal atom. The ion Xe–F+ does not ordinarily occur as a
discrete ion, but rather is attached covalently to a fluorine atom on the anion.
Figure 17.5.4(a) shows the structure of [XeF][RuF6]. The terminal Xe–F(t) bond
is appreciably shorter than that in XeF2 (200 pm), while the bridging Xe–F(b)

bond is longer. Table 17.5.2 lists the Xe–F bond lengths in some adducts of
this type.
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Ru

Xe 218.2 pm

187.2 pm

(a) (b)

F

221 pm

235 pm

251 pm

Ni

Xe

F
Fig. 17.5.4.
Structure of (a) [XeF][RuF6] and (b)
[Xe2F11]2[NiF6].

In the crystal structure of [XeF3][Sb2F11], the T-shaped XeF+
3 cation is nearly

coplanar with a F atom of a Sb2F−11 group in a close Xe· · · F contact, as shown
below. The terminal Sb–F bond lengths of the anion lie in the range 183–9 pm.

Xe204

201
190

188

183

189

Sb

F
250 pm

The crystal structure of [XeF5][AgF4] consists of alternate stacks of dou-
ble layers of square-pyramidal XeF+

5 cations and approximately square-planar
AgF−4 anions (site symmetry D2h, Ag–F = 190.2 pm). The XeF+

5 ion has C4v
symmetry with Xe–F(ax) = 185.2, Xe–F(eq) = 182.6 pm, and F(ax)–Xe–
F(eq) = 77.7◦. Each cation lying on a 4-axis interacts with one bridging F
ligand of each of four anions at 263.7 pm, as illustrated below:

Xe

F(ax)

F(eq)

Table 17.5.2. Xe–F bond lengths in some complexes containing XeF+

Compound Xe–F(t) (pm) Xe–F(b) (pm)

F–Xe–FAsF5 187 214
F–Xe–FRuF5 187 218
F–Xe–FWOF4 189 204
F–Xe–Sb2F10 184 235
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The [Xe2F3]+ cation in [Xe2F3][AsF6] is V-shaped, as shown below:

F

Xe Xe

FF

151˚180˚ 214 pm

190 pm

The [Xe2F11]+ cation can be considered as [F5Xe · · · F · · · XeF5]+ by ana-
logy to [Xe2F3]+. The compounds [Xe2F+

11]2 [NiF2−
6 ] and [Xe2F+

11] [AuF−6 ]
contain Ni(IV) and Au(V), respectively. Figure 17.5.4(b) shows the structure
of [Xe2F11]2[NiF6].

(3) FXeOSO2F
When XeF2 reacts with an anhydrous acid, such as HOSO2F, elimination of HF
occurs to yield FXeOSO2F, which contains a linear F–Xe–O group, as shown
in Fig. 17.5.5(a).

(4) FXeN(SO2F)2

This compound is produced by the replacement of a F atom in XeF2 by a
N(SO2F)2 group from HN(SO2F)2. Its molecular structure has a linear F–Xe–N
fragment and a planar configuration at the N atom, as shown in Fig. 17.5.5(b).

(5) Cs2(XeO3Cl2)
This salt is obtained from the reaction of XeO3 with CsCl in aqueous HCl
solution, and contains an anionic infinite chain. Figure 17.5.5(c) shows the
structure of the chain [Xe2O6Cl4]4n−

n .

(6) M(CO)5E (M = Cr, Mo, W; E = Ar (W only), Kr, Xe)
These complexes are transient species generated from photolysis of M(CO)6 in
supercritical noble gas solution at room temperature. Their octahedral structure
(symmetry C4v) has been characterized by IR spectroscopy and solution NMR.
The noble gas atom E can be formally considered as a neutral two-electron donor
ligand, and the bonding involves interactions between the p orbitals of E and
orbitals on the equatorial CO groups.The stabilities of the complexes decrease in
the order W> Mo∼Cr and Xe > Kr >Ar. Organometallic noble gas complexes

220 pm

194 pm

F

216 pm

177.5˚

Xe

NOO

S
S

Xe

Cl
Xe

O
n

4n–

197 pm

178.1º

Fig. 17.5.5.
Structures of some inorganic xenon compounds: (a) FXeOSO2F, (b) FXeN(SO2F)2, and (c) [Xe2O6Cl4]4n−

n .
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that can be generated using matrix isolation techniques include Fe(CO)4Xe,
Rh(η5-C5R5)(CO)E (R = H, Me; E = Kr, Xe), M(η5-C5R5)(CO)2E (M = Mn,
Re; R = H, Me, Et (Mn only); E = Ar (only with Re and C5H5), Kr, Xe), and
M(η5-C5H5)(CO)3Xe (M = Nb, Ta).

17.5.5 Structures of some organoxenon compounds

More than ten organoxenon compounds which contain Xe–C bonds have been
prepared and characterized. The first structural characterization of a Xe–C bond
was performed on [MeCN–Xe–C6H5]+[(C6H5)2BF2]−· MeCN. The structure
of the cation [MeCN–Xe–C6H5]+is shown in Fig. 2.4.4. The Xe–C bond length
is 209.2 pm, and the Xe–N bond length is 268.1 pm, with the Xe atom in a linear
environment. This compound has no significant fluorine bridge between cation
and anion, as the shortest intermolecular Xe · · · F distance is 313.5 pm.

Other examples of compounds containing Xe–C bonds are shown in
Fig. 17.5.6 and described below.

(1) Xe(C6F5)2

This is the first reported homoleptic organoxenon(II) compound with two Xe–C
bonds of length 239 and 235 pm, longer than the corresponding bond in other
compounds by about 30 pm. The C–Xe–C unit is almost linear (angle 178◦)
and the two C6F5 rings are twisted by 72.5◦ with respect to each other.

(2) [(C6F5Xe)2Cl][AsF6]
This is the first isolated and unambiguously characterized xenon(II) chlorine
compound. The cation [(C6F5Xe)2Cl]+ consists of two C6F5Xe fragments
bridged through a chloride ion. Each linear C–Xe–Cl linkage can be consid-
ered to involve an asymmetric hypervalent 3c-4e bond. Thus a shorter Xe–C
distance (mean value 211.3 pm) occurs and is accompanied by a longer Xe–Cl
distance (mean value 281.6 pm). The Xe–Cl–Xe angle is 117◦.

   (a) (b)

(c) (d)

239 pm 235 pm

211.6 pm

Xe

Cl
278.4 pm 284.7 pm

279 pm
209 pm209 pm 269.5 pm

Xe
N

F Xe

H

B

F

Xe

211.1 pm

Fig. 17.5.6.
Structures of some organoxenon
compounds: (a) Xe(C6F5)2, (b) the
cation [(C6F5Xe)2Cl]+, (c) the cation
(2,6-F2H3C5N–Xe–C6F5)+, and (d)
2,6-F2H3C6–Xe–FBF3.
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(3) [2,6-F2H3C5N–Xe–C6F5][AsF6]
In the structure of the cation (2,6-F2H3C5N–Xe–C6F5)

+, the Xe atom is
(exactly) linearly bonded to C and N atoms; the bond lengths are Xe–C 208.7 pm
and Xe–N 269.5 pm.

(4) 2,6-F2H3C6–Xe–FBF3

In this compound the Xe atom is linearly bonded to C and F atoms; bond
lengths are Xe–C 209.0 pm and Xe–F 279.36 pm and the bond angle C–Xe–F
is 167.8◦.

The structural data of three other organoxenon compounds are listed below:

Compound Xe–C (pm) Xe–E (pm) C–Xe–E

(C6F5–Xe)(AsF6) (1) 207.9 271.4 170.5◦

O|| (2) 208.2 267.2 174.2◦

(C6F5–Xe)(OCC6 F5 ) 212.2 236.7 178.1◦

(F2H3C6–Xe)(OSO2CF3) (1) 207.4 268.7 173.0◦

(2) 209.2 282.9 165.1◦

In the known organoxenon compounds, the C–Xe–E angle (E = F, O, N,
Cl) deviates only slightly from 180◦, indicating a hypervalent 3c-4e bond in
all cases. The Xe–C bond lengths, except in the compound Xe(C6F5)2, vary
within the range 208–12 pm. All Xe· · · E contacts are significantly shorter than
the sum of the van der Waals radii of Xe and E, indicating at least a weak
secondary Xe· · · E interaction.

17.5.6 Gold–xenon complexes

Xenon can act as a complex ligand to form M–Xe bonds, especially with gold,
which exhibits significant relativistic effects in view of its electronic structure,
as discussed in Section 2.4.3. Some gold–xenon complexes have been prepared
and characterized, and their structures are shown in Fig. 17.5.7.

The compound [AuXe2+
4 ][Sb2F−11]2 is mentioned in Section 2.4.3 in the con-

text of relativistic effects. In fact it exists in two crystallographically distinct
modifications: triclinic and tetragonal. The cation [AuXe4]2+ is square planar
with Au–Xe bond lengths ranging from 267.0 to 277.8 pm (Fig. 17.5.7(a)).
Around the gold atom, there are three weak Au· · · F contacts of 267.1 to
315.3 pm for the triclinic modification, and two contacts of Au· · · F 292.8 pm
for the tetragonal modification.

Figures 17.5.7(b) and (c) compare the structure of trans-[AuXe2][SbF6]2
with that of the trans-[AuXe2F][SbF6] moiety in crystalline [AuXe2F][SbF6]
[Sb2F11]. Each Au atom resides in a square-planar environment, with two Xe
atoms and two F atoms bonded to it. The Au–Xe bond length is 270.9 pm for
the former and 259.3 to 261.9 pm for the latter.

Figure 17.5.7(d) shows the structure of [AuXe2][Sb2F11]2. The Au–Xe
distances of 265.8 and 267.1 pm are slightly shorter than those in the
[AuXe4]2+ ion.
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(a)

Xe

Au

(b) (c)

(d) (e)

F

Sb

Fig. 17.5.7.
Structures of some gold–xenon
complexes: (a) [AuXe4]2+,
(b) AuXe2(SbF6)2, (c) (AuXe2F)(SbF6),
(d) (AuXe2)(Sb2F11)2, and (e)
(Au2Xe2F)3+ and its immediate anion
environment in [Au2Xe2F][SbF6]3.

Figure 17.5.7(e) shows the structure of the Z-shaped binuclear [Xe–Au–F–
Au–Xe]3+ ion and its immediate anion environment in [Au2Xe2F][SbF6]3. The
Au atom is coordinated by one Xe atom and three F atoms in a square-planar
configuration, with Au–Xe bond length 264.7 pm.

17.5.7 Krypton compounds

The known compounds of krypton are limited to the +2 oxidation state, and
the list includes the following:

(a) KrF2
(b) Salts of KrF+ and Kr2F+

3 :
[KrF][MF6] (M = P, As, Sb, Bi, Au, Pt, Ta, Ru)
[KrF][M2F11] (M = Sb, Ta, Nb)
[Kr2F3][MF6] (M = As, Sb, Ta)
[KrF][AsF6]·[Kr2F3][AsF6]

(c) Molecular adducts:
KrF2·MOF4 (M = Cr, Mo, W)
KrF2 · nMoOF (n = 2, 3)
KrF2·VF5
KrF2·MnF4
KrF2·[Kr2F3][SbF5]2
KrF2·[Kr2F3][SbF6]

(d) Other types
salts of [RCN–KrF]+ (R = H, CF3, C2F5, nC3F7)

Kr(OTeF5)2

(1) Structure of KrF2

Krypton difluoride KrF2 exists in two forms in the solid state: α-KrF2 and β-
KrF2, whose crystal structures are shown in Fig. 17.5.8. Specifically, α-KrF2
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Fig. 17.5.8.
Crystal structure of (a) α-KrF2 and
(b) β-KrF2.

189.4 pm

(a) (b)

271 pm

271 pm

189 pm

Kr

F

crystallizes in a body-centered tetragonal lattice, with space group I4/mmm,
and all the KrF2 molecules are aligned parallel to the c axis. In contrast, β-
KrF2 belongs to tetragonal space group P42/mnm, in which the KrF2 molecules
located at the corners of the unit cell all lie in the ab plane and are rotated by
45◦ with respect to the a axis. The central KrF2 molecule also lies in the ab
plane, but its molecular axis is orientated perpendicular to those of the corner
KrF2 molecules.

The Kr–F bond length in α-KrF2 is 189.4 pm and is in excellent agreement
with those determined for β-KrF2, 189 pm, by X-ray diffraction and for gaseous
KrF2 by electron diffraction, 188.9 pm. The interatomic F· · · F distance between
collinearly orientated KrF2 molecules is 271 pm in both structures.

(2) Structures of [KrF][MF6] (M = As, Sb, Bi)
These three compounds form an isomorphous series, in which the [KrF]+

cation strongly interacts with the anion by forming a fluorine bridge with the
pseudo-octahedral anion bent about Fb, as shown in Fig. 17.5.9. The terminal
Kr–Ft bond lengths in these salts (176.5 pm for [KrF][AsF6] and [KrF][SbF6],
177.4 pm for [KrF][BiF6]) are shorter, and the Kr–Fb bridge bond lengths
(213.1 pm for [KrF][AsF6], 214.0 pm for [KrF][SbF6], and 209.0 pm for
[KrF][BiF6]) are longer, than the Kr–F bonds of α-KrF2 (189.4 pm).

The Kr–Fb–M bridge bond angles (133.7◦ for [KrF][AsF6], 139.2◦ for
[KrF][SbF6], and 138.3◦ for [KrF][BiF6]) are consistent with the bent geome-
try predicted by the VSEPR arrangements at their respective Fb atoms, but are
more open than the ideal tetrahedral angle.

Kr

F

M = As, Sb, Bi

M

Fig. 17.5.9.
Structure of [KrF][MF6] (M = AS,
Sb, Bi).

References
1. N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, 2nd edn.,

Butterworth-Heinemann, Oxford, 1997.
2. A. G. Massey, Main Group Chemistry, 2nd edn., Wiley, Chichester, 2000.

iranchembook.ir/edu

https://iranchembook.ir/edu


Group 17 and Group 18 Elements 681

3. C. E. Housecroft and A. G. Sharpe, Inorganic Chemistry, 2nd edn., Prentice-Hall,
Harlow, 2004.

4. D. F. Shriver, P. W. Atkins, T. L. Overton, J. P. Rourke, M. T. Weller and F. A.
Armstrong, Inorganic Chemistry, 4th edn., Oxford University Press, Oxford, 2006.

5. G. Meyer, D. Naumann and L. Wesemann (eds.), Inorganic Chemistry Highlights,
Wiley–VCH, Weimheim, 2002.

6. M. Pettersson, L. Khriachtchev, J. Lundell and M. Räsänen, Noble gas hydride
compounds. In G. Meyer, D. Naumann and L. Wesemann (eds.), Inorganic
Chemistry in Focus II, Wiley–VCH,Weinheim, 2005, pp. 15–34.

7. N. Bartlett (ed.), The Oxidation of Oxygen and Related Chemistry: Selected Papers
of Neil Bartlett, World Scientific, Singapore, 2001.

8. K. Akiba (ed.), Chemistry of Hypervalent Compounds, Wiley–VCH, New York,
1999.

9. A. J. Blake, F. A. Devillanova, R. O. Gould, W.-S. Li, V. Lippolis, S. Parsons,
C. Radek and M. Schröder, Template self-assembly of polyiodide networks. Chem.
Soc. Rev. 27, 195–205 (1998).

10. J. Li, S. Irle, and W. H. E. Schwarz, Electronic structure and properties of trihalogen
X+

3 and XY+
2 . Inorg. Chem. 35, 100–9 (1996).

11. D. B. Morse, T. B. Rauchfuss and S. R. Wilson, Main-group-organotransition
metal chemistry: the cyclopentadienylchromium polyiodides including
[(C5Me5)2Cr2I+3 ]2[I2−

16 ]. J. Am. Chem. Soc. 112, 1860–4 (1990).
12. T. Kraft and M. Jansen, Crystal structure determination of metaperiodic acid, HIO4,

with combined X-ray and neutron diffraction. Angew. Chem. Int. Ed. 36,1753–4
(1997).

13. M. Jansen and T. Kraft, The structural chemistry of binary halogen oxides in the
solid state. Chem. Ber, 130, 307–15 (1997).

14. J. H. Holloway and E. G. Hope, Recent advances in noble-gas chemistry. Adv. Inorg.
Chem. 46, 51–100 (1999).

15. T. Drews and K. Seppelt, The Xe+
2 ion – preparation and structure. Angew. Chem.

Int. Ed. 36, 273–4 (1997).
16. O. S. Jina, X. Z. Sun and M. W. George, Do early and late transition metal noble

gas complexes react by different mechanisms? A room temperature time-resolved
infrared study of (η5-C5H5)Rh(CO)2 (R = H or Me) in supercritical noble gas
solution at room temperature. Dalton Trans., 1773–8 (2003).

17. H. Bock, D. Hinz-Hübner, U. Ruschewitz and D. Naumann, Structure of
bis(pentafluorophenyl)xenon, Xe(C6F5)2. Angew. Chem. Int. Ed. 41, 448–50
(2002).

18. J. F. Lehmann, D. A. Dixon and G. J. Schrobilgen, X-ray crystal struc-
tures of α-KrF2, [KrF][MF6] (M = As, Sb, Bi), [Kr2F3][SbF6]·KrF2,
[Kr2F3]2[SbF6]2·KrF2, and [Kr2F3][AsF6]·[KrF][AsF6]; Synthesis and charac-
terization of [Kr2F3][PF6]·nKrF2; and theoretical studies of KrF2, KrF+, Kr2F+

3 ,
and the [KrF][MF6] (M = P,As, Sb, Bi) ion pairs. Inorg. Chem. 40, 3002–17 (2001).

19. T. Drews, S. Seidal and K. Seppelt, Gold–xenon complexes. Angew. Chem. Int. Ed.
41, 454–6 (2002).

20. B. Liang, L,Andrews, J. Li and B. E. Bursten, On the noble-gas-induced intersystem
crossing for the CUO molecule. Inorg. Chem. 43, 882–94 (2004).

iranchembook.ir/edu

https://iranchembook.ir/edu


18 Structural Chemistry of
Rare-Earth Elements

18.1 Chemistry of rare-earth metals

The lanthanides (Ln) include lanthanum (La) and the following fourteen
elements—Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu—
in which the 4f orbitals are progressively filled. These fifteen elements together
with scandium (Sc) and yttrium (Y) are termed the rare-earth metals. The desig-
nation of rare earths arises from the fact that these elements were first found in
rare minerals and were isolated as oxides (called earths in the early literature).
In fact, their occurrence in nature is quite abundant, especially in China, as
reserves have been estimated to exceed 84×106 tons. In a broader sense, even
the actinides (the 5f elements) are sometimes included in the rare-earth family.

The rare-earth metals are of rapidly growing importance, and their availability
at quite inexpensive prices facilitates their use in chemistry and other applica-
tions. Much recent progress has been achieved in the coordination chemistry
of rare-earth metals, in the use of lanthanide-based reagents or catalysts, and in
the preparation and study of new materials. Some of the important properties of
rare-earth metals are summarized in Table 18.1.1. In this table, rM is the atomic
radius in the metallic state and rM3+ is the radius of the lanthanide(III) ion in
an eight-coordinate environment.

18.1.1 Trends in metallic and ionic radii: lanthanide contraction

The term lanthanide contraction refers to the phenomenon of a steady decrease
in the radii of the Ln3+ ions with increasing atomic number, from La3+ to Lu3+,
amounting overall to 18 pm (Table 18.1.1). A similar contraction occurs for the
metallic radii and is reflected in many smooth and systematic changes, but
there are marked breaks at Eu and Yb. Lanthanide contraction arises because
the 4f orbitals lying inside the 4d, 5s, and 5p orbitals provide only incomplete
shielding of the outer electrons from the steadily increasing nuclear charge.
Therefore the outer electron cloud as a whole steadily shrinks as the 4f subshell
is filled. In recent years, theoretical work suggests that relativistic effects also
plays a significant role. Further details are given in Section 2.4.3.

The spectacular irregularity in the metallic radii of Eu and Yb occurs because
they have only two valence electrons in the conduction band, whereas the other
lanthanide metals have three valence electrons in the 5d/6s conduction band.
Therefore, lanthanide contraction is not manifested by Eu and Yb in the metallic
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Table 18.1.1. Properties of the rare-earth metals

Symbol name Electronic configuration rM (pm) rM3+ (pm) Crystal Lattice parameters

Metal M3+ (CN = 12) (CN = 8) structure
a (pm) c (pm)

Sc Scandium [Ar]3d14s2 [Ar] 164.1 87.1 hcp 330.9 526.8
Y Yttrium [Kr]4d15s2 [Kr] 180.1 101.9 hcp 364.8 573.2
La Lanthanum [Xe]5d16s2 [Xe] 187.9 116.0 dhcp 377.4 1217.1
Ce Cerium [Xe]4f15d16s2 [Xe]4f1 182.5 114.3 ccp 516.1 —
Pr Praseodymium [Xe]4f36s2 [Xe]4f2 182.8 112.6 dhcp 367.2 1183.3
Nd Neodymium [Xe]4f46s2 [Xe]4f3 182.1 110.9 dhcp 365.8 1179.7
Pm Promethium [Xe]4f56s2 [Xe]4f4 (181.0) (109.5) dhcp 365.0 1165
Sm Samarium [Xe]4f66s2 [Xe]4f5 180.4 107.9 rhom 362.9 2620.7
Eu Europium [Xe]4f76s2 [Xe]4f6 204.2 106.6 bcp 458.3 —
Gd Gadolinium [Xe]4f75d16s2 [Xe]4f7 180.1 105.3 hcp 363.4 578.1
Tb Terbium [Xe]4f96s2 [Xe]4f8 178.3 104.0 hcp 360.6 569.7
Dy Dysprosium [Xe]4f106s2 [Xe]4f9 177.4 102.7 hcp 359.2 565.0
Ho Holmium [Xe]4f116s2 [Xe]4f10 176.6 101.5 hcp 357.8 561.8
Er Erbium [Xe]4f126s2 [Xe]4f11 175.7 100.4 hcp 355.9 558.5
Tm Thulium [Xe]4f136s2 [Xe]4f12 174.6 99.4 hcp 353.8 555.4
Yb Ytterbium [Xe]4f146s2 [Xe]4f13 193.9 98.5 ccp 548.5 —
Lu Lutetium [Xe]4f145d16s2 [Xe]4f14 173.5 97.7 hcp 350.5 554.9

state or in some compounds such as the hexaborides, where the lower valence
of these two elements is evident from the large radii compared with those of
neighboring elements.

Lanthanide contraction has important consequences for the chemistry of the
third-row transition metals. The reduction in radius caused by the poor shielding
ability of the 4f electrons means that the third-row transition metals are approx-
imately the same size as their second-row congeners, and consequently exhibit
similar chemical behavior. For instance, it has been shown that the covalent
radius of gold (125 pm) is less than that of silver (133 pm).

18.1.2 Crystal structures of the rare-earth metals

The 17 rare-earth metals are known to adopt five crystalline forms. At room
temperature, nine exist in the hexagonal closest packed structure, four in the
double c-axis hcp (dhcp) structure, two in the cubic closest packed structure
and one in each of the body-centered cubic packed and rhombic (Sm-type)
structures, as listed in Table 18.1.1. This distribution changes with temperature
and pressure as many of the elements go through a number of structural phase
transitions. All of the crystal structures, with the exception of bcp, are closest
packed, which can be defined by the stacking sequence of the layers of close-
packed atoms, and are labeled in Fig. 18.1.1.

hcp: AB· · · dhcp: ABAC· · ·
ccp: ABC· · · Sm-type: ABABCBCAC· · ·
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Fig. 18.1.1.
Structure types of rare-earth metals. ccp bcp Sm-type
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If Ce, Eu, and Yb are excluded, then the remaining 14 rare-earth metals can
be divided into two major subgroups:

(a) The heavy rare-earth metals Gd to Lu, with the exception of Yb and the
addition of Sc and Y—these metals adopt the hcp structure.

(b) The light rare-earth metals La to Sm, with the exception of Ce and Eu—
these metals adopt the dhcp structure. (The Sm-type structure can be viewed
as a mixture of one part of ccp and two parts of hcp.)

Within each group, the chemical properties of the elements are very similar, so
that they invariably occur together in mineral deposits.

18.1.3 Oxidation states

Because of stability of the half-filled and filled 4f subshell, the electronic
configuration of the Ln atom is either [Xe]4fn5d06s2 or [Xe]4fn5d16s2.

The most stable and common oxidation state of Ln is +3. The principal reason
is that the fourth ionization energy I4 of a rare-earth atom is greater than the sum
of the first three ionization energies (I1 + I2 + I3), as listed in Table 18.1.2. The
energy required to remove the fourth electron is so great that in most cases it
cannot be compensated by chemical bond formation, and thus the +4 oxidation
state rarely occurs.

Although the +3 oxidation state dominates lanthanide chemistry, other oxi-
dation states are accessible, especially if a 4f0, 4f7 or 4f14 configuration is
generated. The most common 2+ ions are Eu2+ (4f7) and Yb2+ (4f14), and the
most common 4+ ions are Ce4+ (4f0) and Tb4+ (4f7). Of the five lanthanides
that exhibit tetravalent chemistry, Nd4+ and Dy4+ are confined to solid-state
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Table 18.1.2. Ionization energies of rare-earth elements (kJ mol−1)

Element I1 I2 I3 (I1 + I2 + I3) I4

Sc 633 1235 2389 4257 7091
Y 616 1181 1980 3777 5963
La 538 1067 1850 3455 4819
Ce 527 1047 1949 3523 3547
Pr 523 1018 2086 3627 3761
Nd 530 1035 2130 3695 3899
Pm 536 1052 2150 3738 3970
Sm 543 1068 2260 3871 3990
Eu 547 1085 2404 4036 4110
Gd 593 1167 1990 3750 4250
Tb 565 1112 2114 3791 3839
Dy 572 1126 2200 3898 4001
Ho 581 1139 2204 3924 4100
Er 589 1151 2194 3934 4115
Tm 597 1163 2285 4045 4119
Yb 603 1176 2415 4194 4220
Lu 524 1340 2022 3886 4360

fluoride complexes, while Pr4+ (4f1) and Tb4+ also form the tetrafluoride and
dioxide. The most extensive lanthanide(IV) chemistry is that of Ce4+, for which
a variety of tetravalent compounds and salts are known (e.g., CeO2, CeF4·H2O).
The common occurrence of Ce4+ is attributable to the high energy of the 4f
orbitals at the start of the lanthanide series, such that Ce3+ is not sufficiently
stable to prevent the loss of an electron.

The crystallographic ionic radii of the rare-earth elements in oxidation states
+2 (CN = 6), +3 (CN = 6), and +4 (CN = 6) are presented in Table 18.1.3.
The data provide a set of conventional size parameters for the calculation of
hydration energies. It should be noted that in most lanthanide(III) complexes
the Ln3+ center is surrounded by eight or more ligands, and that in aqueous
solution the primary coordination sphere has eight and nine aqua ligands for
light and heavy Ln3+ ions, respectively. The crystal radii of Ln3+ ions with
CN = 8 are listed in Table 18.1.1.

18.1.4 Term symbols and electronic spectroscopy

Atomic and ionic energy levels are characterized by a term symbol of the general
form 2S+1LJ . The values of S, L, and J of lanthanide ions Ln3+ in the ground
state can be deduced from the arrangement of the electrons in the 4f subshell,
which are determined by Hund’s rules and listed in Table 18.1.4.

Three types of electronic transition can occur for lanthanide compounds.
These are f→f transition, nf → (n + 1)d transition and ligand → metal f
charge-transfer transition.

In Ln3+ ions, the 4f orbitals are radially much more contracted than the
d orbitals of transition metals, to the extent that the filled 5s and 5p orbitals
largely shield the 4f electrons from the ligands. The result is that vibronic cou-
pling is much weaker in Ln3+ compounds than in transition-metal compounds,
and hence the intensities of electronic transitions are much lower. As many of
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Table 18.1.3. Crystallographic ionic radii (pm) and hydration entropies (kJ mol−1) of the rare-
earth elements in oxidation states +2, +3 and +4

Element rM2+
(CN = 6)

−'hydH◦

(M2+)

rM3+
(CN = 6)

−'hydH◦

(M3+)

rM4+
(CN = 8)

−'hydH◦

(M4+)

Sc — — 74.5 — — —
Y — — 90.0 3640 — —
La 130.4 — 103.2 3372 — —
Ce 127.8 — 101.0 3420 96.7 6390
Pr 125.3 1438 99.0 3453 94.9 6469
Nd 122.5 1459 98.3 3484 93.6 6528
Pm 120.6 1474 97.0 3520 92.5 6579
Sm 118.3 1493 95.8 3544 91.2 6639
Eu 116.6 1507 94.7 3575 90.3 6682
Gd 114.0 — 93.8 3597 89.4 6726
Tb 111.9 1546 92.1 3631 88.6 6765
Dy 109.6 1566 91.2 3661 87.4 6824
Ho 107.5 1585 90.1 3692 86.4 6875
Er 105.6 1602 89.0 3718 85.4 6926
Tm 103.8 1619 88.0 3742 84.4 6978
Yb 102.6 1631 86.8 3764 83.5 7026
Lu — — 86.1 3777 82.7 7069

these electronic transitions lie in the visible region of the electromagnetic spec-
trum, the colors of Ln3+ compounds are typically less intense than those of
the transition metals. The colors of the Ln3+ ions in hydrated salts are given in
Table 18.1.4. The lack of 4f orbital and ligand interaction means that the f→f

Table 18.1.4. Electronic configuration, ground state term symbol, and magnetic
properties of Ln3+ ions

Ln3+ 4f electronic
configuration

Ground state
term symbol

Color of Ln3+ Magnetic moment,
µ(298 K)/µB

Calculated Observed

La3+ 4f 0 1S0 Colorless 0 0
Ce3+ 4f1 2F5/2 Colorless 2.54 2.3–2.5
Pr3+ 4f2 3H4 Green 3.58 3.4–3.6
Nd3+ 4f 3 3I9/2 Lilac 3.62 3.5–3.6
Pm3+ 4f 4 5I4 Pink 2.68 2.7
Sm3+ 4f 5 6H5/2 Pale yellow 0.85 1.5–1.6
Eu3+ 4f6 7F0 Colorless 0 3.4–3.6
Gd3+ 4f7 8S7/2 Colorless 7.94 7.8–8.0
Tb3+ 4f8 7F6 Very pale pink 9.72 9.4–9.6
Dy3+ 4f 9 6H15/2 Pale yellow 10.65 10.4–10.5
Ho3+ 4f10 5I8 Yellow 10.60 10.3–10.5
Er3+ 4f 11 4I15/2 Pink 9.58 9.4–9.6
Tm3+ 4f12 3H6 Pale green 7.56 7.1–7.4
Yb3+ 4f 13 2F7/2 Colorless 4.54 4.4–4.9
Lu3+ 4f14 1S0 Colorless 0 0

transition energies for a given Ln3+ change little between compounds, and
hence the colors of Ln3+ are often characteristic. In view of the small interaction
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of the Ln3+ 4f orbitals with the surrounding ligands, the f→f transition energies
in Ln3+ compounds are well defined, and thus the bands in their electronic
absorption spectra are much sharper.

Since f→d transitions are Laporte allowed, they have much higher inten-
sity than f→f transitions. Ligand-to-metal charge-transfer transitions are also
Laporte allowed and also have high intensity. These two types of transitions
generally fall in the ultraviolet region, so they do not affect the colors of Ln3+

compounds. For easily reduced Ln3+ (Eu and Yb), they are at lower energy
than the f→d transitions, and for easily oxidized ligands they may tail into
the visible region of the spectrum, giving rise to much more intensely colored
complexes.

The Ln2+ ions are often highly colored. This arises because the 4f orbitals
in Ln2+ are destabilized with respect to those in Ln3+, and hence lie closer
in energy to the 5d orbitals. This change in orbital energy separation causes
the f→d transitions to shift from the ultraviolet into the visible region of the
spectrum.

The fluorescence which arises from f→f transitions within the Ln3+ ion is
employed in color television sets, the screens of which contain three phosphor
emitters. The red emitter is Eu3+ in Y2O2S or Eu3+:Y2O3. The main emissions
for Eu3+ are between the 5Do → 7Fn (n = 4 to 0) levels. The green emitter is
Tb3+ in Tb3+:La2O2S. The main emissions for Tb3+ are between the 5D4 and
7Fn (n = 6 to 0) levels. The best blue emitter is Ag, Al:ZnS, which has no Ln3+

component.

18.1.5 Magnetic properties

The paramagnetism of Ln3+ ions arises from their unpaired 4f electrons which
interact little with the surrounding ligands in Ln3+ compounds. The magnetic
properties of these compounds are similar to those of the free Ln3+ ions. For
most Ln3+ the magnitude of the spin–orbital interaction in f orbital is suffi-
ciently large, so that the excited levels are thermally inaccessible, and hence
the magnetic behavior is determined entirely by the ground level. The effective
magnetic moment µeff of this level is given by the equation

µeff = gJ

√

J (J + 1),

where

gJ = 3
2

+ S(S + 1)− L(L + 1)

2J (J + 1)
.

The calculated µeff and observed values from experiments are listed in
Table 18.1.4 and shown in Fig. 18.1.2. There is good agreement in all cases
except for Sm3+ and Eu3+, both of which have low-lying excited states
(6H31/2 for Sm3+, and 7F1 and 7F2 for Eu3+) which are appreciably populated
at room temperature.

iranchembook.ir/edu

https://iranchembook.ir/edu


688 Structural Chemistry of Selected Elements

Fig. 18.1.2.
Measured and calculated effective
magnetic moments (µeff ) of Ln3+ ions
at 300 K (broken lines represents the
calculated values). number of unpaired electrons
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18.2 Structure of oxides and halides of rare-earth
elements

The bonding in the oxides and halides of rare-earth elements is essentially ionic.
Their structures are determined almost entirely by steric factors and gradual
variation across the series, and can be correlated with changes in ionic radii.

Fig. 18.2.1.
(a) Structure of La2O3 and (b) the two
coordination environments of Y3+ in the
Y2O3 structure.

La
Y

(a) (b)

18.2.1 Oxides

The sesquioxides M2O3 are the stable oxides for all rare-earth elements except
Ce, Pr, and Tb, and are the final product of calcination of many salts such
as oxalates, carbonates, and nitrates. The sesquioxides M2O3 adopt three
structural types:

The type-A (hexagonal) structure consists of MO7 units which approximate
to capped octahedral geometry, and is favored by the lightest lanthanides (La,
Ce, Pr, and Nd). Figure 18.2.1(a) shows the structure of La2O3.

The type-B (monoclinic) structure is related to type-A, but is more complex
as it contains three kinds of non-equivalent M atoms, some with octahedral and
the remainder with monocapped trigonal prismatic coordination. In the latter
type of coordination geometry, the capping O atom is appreciably more distant
than those at the vertices of the prism. For example, in Sm2O3, the seventh
atom is at 273 pm (mean) and the others are at 239 pm (mean). This type is
favored by the middle lanthanides (Sm, Eu, Gd, Tb, and Dy).

The type-C (cubic) structure is related to the fluorite structure (Fig. 10.1.6),
but with one-quarter of the anions removed in such a way as to reduce the
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metal coordination number from 8 to 6, resulting in two different coordination
geometries, as shown in Fig. 18.2.1(b). This type is favored by Sc, Y, and heavy
lanthanides from Nd to Lu.

The dioxides CeO2 and PrO2 adopt the fluorite structure with cubic unit-cell
parameters a = 541.1 and 539.2 pm, respectively, and Tb4O7 is closely related
to fluorite.

18.2.2 Halides

(1) Fluorides
Trifluorides are known for all the rare-earth elements. The structure of ScF3 is
close to the cubic ReO3 structure [Fig. 10.4.4(a)], in which Sc3+ has octahe-
dral coordination. The YF3 structure has a nine-coordinate Y3+ in a distorted
tricapped trigonal prism, eight F− at approximately 230 pm, and the ninth
at 260 pm. The YF3 structure type is adopted by the 4f trifluorides from
SmF3 to LuF3.

The early light trifluorides from LaF3 to HoF3 adopt the LaF3 structure, in
which the La3+ is 11-coordinate with a fully capped, distorted trigonal prismatic
coordination geometry. The neighbors of La3+ are seven F− at 242-8 pm, two
F− at 264 pm, and a further two F− at 300 pm.

Tetrafluorides LnF4 are known for Ce, Pr, and Tb. In the structure for LnF4,
the Ln4+ ion is surrounded by eight F− forming a slightly distorted square
antiprism, which shares its vertices with eight others.

(2) Chlorides
Chlorides ScCl3, YCl3, and later LnCl3 (from DyCl3 to LuCl3) adopt the YCl3
layer structure, in which the small M3+ ion is surrounded by an octahedron
of Cl− neighbors. The early trichlorides (from LaCl3 to GdCl3) adopt the
LaCl3 structure, in which the large La3+ ion is surrounded by nine approxi-
mately equidistant Cl− neighbors in a tricapped trigonal prismatic arrangement.
Figure 18.2.2 shows the structure of LaCl3.

Chlorides are also known in oxidation state +2 for Nd, Sm, Eu, Dy,
and Tm. The structure of the sesquichloride Gd2Cl3 is best formulated as

(a) (b)

La

Cl

Fig. 18.2.2.
Crystal structures of LaCl3: (a) viewed along the c axis, and (b) coordination geometry of La3+.
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Gd

(a) (b)

Gd

Cl
Cl

Fig. 18.2.3.
Structure of Gd2Cl3: (a) perspective view of a chain aligned along the b axis, and (b) view perpendicular to the b axis.

[Gd4]6+[Cl−]6 and is made up of infinitive chains of Gd6 octahedra sharing
opposite edges, with chlorine atoms capping the triangular faces, as shown in
Fig. 18.2.3.

(3) Bromides and iodides
The trihalides MBr3 and MI3 are known for all the lanthanide elements. The
early lanthanide tribromide (La to Pr) adopt the LaCl3 structure, while the later
tribromides (from Nd to Lu) and the early triiodides (from La to Nd) form a
layer structure with eight-coordinate lanthanide ions.

Ionic dibromides and diiodides are known for Nd, Sm, Eu, Dy, Tm, and
Yb. SmI2, EuI2, and YbI2 are useful starting materials for organometallic com-
pounds of these elements in their +2 oxidation states. Iodide SmI2 is a popular
one-electron reducing agent for organic synthesis. The diiodides of La, Ce, Pr,
and Gd exhibit metallic properties and are best formulated as Ln3+(I−)2e− with
delocalized electrons. The reduction chemistry of lanthanide(II) compounds
will be discussed in Section 18.5.

(4) Oxohalides
Many oxohalides of rare-earth elements have been characterized. The crystal of
γ -LaOF has a tetragonal unit cell with a = 409.1 pm and c = 583.6 pm, space
group P4/nmm. In this structure, each La3+ is coordinated by four O2− and
four F− anions, forming a distorted cube, as shown in Fig. 18.2.4. The distance
of La–O is 261.3 pm and La–F 242.3 pm.

18.3 Coordination geometry of rare-earth cations

In lanthanide complexes, the Ln ions are hard Lewis acids, which prefer to coor-
dinate hard bases, such as F, O, N ligands. The f-orbitals are not involved to a
significant extent in M–L bonds, so their interaction with ligands is almost elec-
trostatic in nature. Table 18.3.1 lists some examples of the various coordination
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La

O

F
Fig. 18.2.4.
Structure of γ -LaOF.

Table 18.3.1. Coordination number and geometry of rare-earth cations

Oxidation
state

CN Coordination geometry∗ Example (structure)

+2 6 Octahedral Yb(PPh2)2(THF)4, SmO, EuTe
7 Pentagonal bipyramidal SmI2(THF)5
8 Cubic SmF2

+3 3 Pyramidal La[N(SiMe3)2]3 [Fig. 18.3.1(a)]
4 Tetrahedral [LutBu4]−
5 Trigonal bipyramidal Nd[N(SiHMe2)2]3(THF)2
6 Octahedral GdCl4(THF)−2 , ScCl3, YCl3, LnCl3 (Dy–Lu)
6 Trigonal prismatic Pr[S2P(C6H11)2]3
7 Monocapped trigonal prismatic Gd2S3, Y(acac)3·H2O
7 Monocapped octahedral La2O3 [Fig. 18.2.1(a)]
8 Square antiprismatic Nd(CH3CN)(CF3SO3)3L† [Fig. 18.3.1(b)]
8 Dodecahedral Lu(S2CNEt2)−4
8 Cubic [La(bipyO2)4]3+
8 Bicapped trigonal prismatic Gd2S3
9 Tricapped trigonal prismatic Nd(H2O)3+

9 , LaCl3 [Fig. 18.2.2]
9 Capped square antiprismatic LaCl3(18C6) [Fig. 18.3.1(c)]

10 Bicapped dodecahedral Lu(NO3)2−
5 [Fig. 18.3.1(d)]

10 Irregular Eu(NO3)3(12C4)
11 Fully capped trigonal prismatic LaF3
11 Irregular La(NO3)3(15C5) [Fig. 18.3.1(e)]
12 Icosahedral La(NO3)3−

6 [Fig. 18.3.1(f)]
+4 6 Octahedral Cs2CeCl6

8 Square antiprismatic Ce(acac)4
8 Cubic CeO2

10 Irregular Ce(NO3)4(OPPh3)2
12 Icosahedral [Ce(NO3)6]2−

∗ The polyhedron may exhibit regular or distorted geometry.
† L = 1-methyl-1,4,7,10-tetraazacyclododecane

numbers and geometries of rare-earth cations, which are determined by three
factors:

(1) Steric bulk. The ligands are packed around the metal ion in such a way as
to minimize interligand repulsion, and the coordination number is determined
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(a) (b)

(c) (d)

(e) (f)

Nd

La
N Si

CF3

S

N

Lu

La

La

N

O

N

O

N

O

ClO
La

Fig. 18.3.1.
Structures of some lanthanide complexes: (a) La[N(SiMe3)2]3, CN = 3;

(b) Nd(CH3CN)(CF3SO3·)3[CH3−−N−−(CH2−−CH2−−NH)3−−CH2−−CH2], CN = 8;
(c) LaCl3(18C6), CN = 9; (d) [Lu(NO3)5]2−, CN = 10; (e) La(15C5)(NO3)3, CN = 11;
(f) [La(NO3)6]3−, CN = 12.

-- --

by the steric bulk of the ligands. The coordination number varies over a wide
range from 3 to 12, and lower coordination numbers can be achieved with
very bulky ligand such as hexamethyldisilylamide. In La[N(SiMe3)2]3, the
coordination number is only three, as shown in Fig. 18.3.1(a).

(2) Ionic size. The large sizes of lanthanide ions lead to high coordination
numbers; eight or nine is very common, and several complexes are known with
coordination number 12. For example the NO−3 ligand, which has a small bite
angle, forms a 12-coordinate La3+ complex. Figures 18.3.1(b) to 18.3.1(f) show
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the structures of Ln3+ complexes with coordination numbers ranging from 8 to
12, respectively. The coordination geometries of high coordination complexes
are often irregular.

(3) Chelate effect. Higher coordination numbers are usually achieved with
chelating ligands, such as crown ethers, EDTA and NO−3 or CO2−

3 . Cations
Ln3+ form a range of complexes with crown ethers. In the crystal structure of
La(18C6)(NO3)3, the La3+ ion is coplanar with the six O-donors of the crown
ether. The flexibility of 18C6 allows it to pucker and bind effectively to the
smaller later lanthanides. Dibenzo-18C6 is much less flexible than 18C6, and
can only form complexes with large early Ln3+ ions (La to Nd) in the presence
of the strongly coordinating bidentate NO−3 counterion. Complexes of Ln3+

with 15C5 or 12C4 are known for La–Lu with NO−3 counterions. The larger
Ln3+ ion cannot fit within the cavity of these ligands, so that it sits above the
plane of the macrocycle.

In the coordination chemistry of rare-earth metals, compounds containing
M–M bonds are very rare, but the complexes often exist as dimers or oligomers
linked by bridging ligands. Figure 18.3.2 shows the structures of some
dimeric and oligomeric coordination compounds: (a) in Rb5Nd2(NO3)11·H2O,
one NO−3 ligand bridges two Nd atoms to form the dimeric anion
Nd2(NO3)

5−
11 ; (b) in the complex [Y(η5: η1-C5Me4SiMe2NtBu)(µ-C4H3S)]2,

a pair of µ-C4H3S ligands bridge two Y atoms; (c) in Yb2(OC6H3Ph2-
2,6)4(PhMe)1.5, two OC6H3Ph2-2,6 ligands bridge two Yb atoms; and (d) in
K+(THF)6{[MePhC(C4H3N)2]Sm}5 (µ5-I−), the pentameric anion is formed

(a) (b)

(c) (d)

S Y

N

Si

Ph
Me

N
N

N

N N N
N

N
N

I

N

O

O
N

Nd

O
O

O

Ar

Yb

Me

Me

Me

Me

Ph

Ph

Ph

Ph

Sm

Fig. 18.3.2.
Structures of some dimeric and oligomeric coordination compound of rare-earth metals: (a) [Nd2(NO3)11]5−, (b) [Y( η5:
η1-C5Me4SiMe2NtBu)(µ-C4H3S)]2, (c) Yb2(2,6-Ph2C6H3O)4, OAr = (2,6-Ph2C6H3O); (d) {[MePhC(C4H3N)2]Sm}5(µ5-I−).
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by five bridging [MePhC(C4H3N)2] ligands and consolidated by a central
µ5-I− anion.

The lanthanide complexes exhibit a number of characteristic features in their
structures and properties:

(a) There is a wide range of coordination numbers, generally 6 to 12, but 3 to 5
are known, as listed in Table 18.3.1.

(b) Coordination geometries are determined by ligand steric factors rather than
crystal field effects. For example, the donor oxygen atoms in different
ligands coordinate to the La3+ ions in different geometries: monocapped
octahedral (CN = 7), irregular (CN = 11), and icosahedral (CN = 12).

(c) The lanthanides prefer anionic ligands with hard donor atoms of rather
high electronegativity (e.g., oxygen and fluorine) and generally form labile
“ionic” complexes that undergo facile ligand exchange.

(d) The lanthanides do not form Ln=O or Ln≡N multiple bonds of the type
known for many transition metals and certain actinides.

(e) The 4f orbitals in the Ln3+ ions do not participate directly in bonding. Their
spectroscopic and magnetic properties are thus largely unaffected by the
ligands.

18.4 Organometallic compounds of rare-earth elements

In contrast to the extensive carbonyl chemistry of the d-transition metals, lan-
thanide metals do not form complexes with CO under normal conditions. All
organolanthanide compounds are highly sensitive to oxygen and moisture, and
in some cases they are also thermally unstable.

Organolanthanide chemistry has mainly been developed using the cyclopen-
tadienyl C5H5(Cp) group and its substituted derivatives, such as C5Me5 (Cp*),
largely because their size allows some steric protection of the large metal center.

18.4.1 Cyclopentadienyl rare-earth complexes

The properties of cyclopentadienyl lanthanide compounds are influenced
markedly by the relationship between the size of the lanthanide atoms and
the steric demand of the Cp group. The former varies from La to Lu according
to lanthanide contraction, while the latter varies from the least bulky Cp to
highly substituted Cp*, which is appreciably larger. The Sc and Y complexes
are very similar to those of lanthanides with proper allowance for the relative
atomic sizes.

(1) Triscyclopentadienyl complexes
In LaCp3, the coordination requirements of the large La3+ ion are satisfied by
formation of a polymer, where each La atom is coordinated to three η5-C5H5
ligands with an additional η2-C5H5 interaction, as shown in Fig. 18.4.1(a). The
intermediate-size Sm atom forms a simple Sm(η5-C5H5)3 monomeric species,
as shown in Fig. 18.4.1(b). The smallest lanthanide, Lu, is unable to accommo-
date three η5-C5H5 ligands, so that LuCp3 adopts a polymeric structure with
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(a)

(b)

(c)

La

Lu Lu

La

Sm

La

Fig. 18.4.1.
Structural formulas and geometries of LnCp3 complexes: (a) LaCp3, (b) SmCp3, and (c) LuCp3.

each Lu coordinated to two η5-C5H5 ligands and two µ2-Cp ligands, as shown
in Fig. 18.4.1(c).

Pr

(a) (b)

Sm

Cl
C N

Fig. 18.4.2.
Structure of (a) Cp3Pr(CNC6H11) and (b) [Cp3SmClSmCp3]−.

Many adducts of LnCp3 with neutral Lewis bases (such as THF, esters,
phosphines, pyridines, and isocyanides) have been prepared and characterized.
These complexes usually exhibit pseudo-tetrahedral geometry. Figure 18.4.2(a)
shows the structure of Cp3Pr(CNC6H11) and Fig. 18.4.2(b) shows the struc-
ture of the anion of [Li(DME)3]+[Cp3SmClSmCp3]−, in which two Cp3Ln
fragments are bridged by one anionic ligand.
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Fig. 18.4.3.
Structures of some biscyclopentadienyl
rare-earth complexes: (a) (Cp2ScCl)2,
(b) Cp∗2Yb(MeBeCp∗), (c)
Cp2LuCl(THF), and (d) (Cp∗2Yb)2Te2.

Sc

Cl

Cl

Lu

Yb
Te

BeH
C

Yb

O

(a)

(c) (d)

(b)

18.4.2 Biscyclopentadienyl complexes

Many crystal structures of the biscyclopentadienyl rare-earth compounds have
been determined; four examples are shown in Fig. 18.4.3.

(a) (Cp2LnCl)2

The configuration of dimers of this type is dependent on the relative impor-
tance of the steric interaction of the Cp rings with the halide bridge versus the
interaction between the Cp rings on both metal centers. In (Cp2ScCl)2, the Cp
ring is relatively small in comparison with the halide ligand; accordingly all Cp
centroids lie in one plane, and the Sc2Cl2 plane is perpendicular to it, as shown
in Fig. 18.4.3(a).

(b) Cp∗2Yb(MeBeCp∗)
The Cp∗2Yb unit can be coordinated by saturated hydrocarbons, as in MeBeCp∗.
The positions of the hydrogens on the bridging methyl group show that this
is not a methyl bridge having a 3c-2e bond between Yb–C–Be, as shown in
Fig. 18.4.3(b).

(c) Cp2LuCl(THF)
This adduct is monomeric with one coordinated THF, forming a pseudo-
tetrahedral arrangement (each Cp− ligand is considered to be tridentate), as
shown in Fig. 18.4.3(c).

(d) (Cp∗2Yb)2Te2

In the chalcogenide complex Cp∗2Yb(Te2)YbCp∗2, the Te2 unit serves as a
bridging ligand, as shown in Fig. 18.4.3(d).
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Er
Cl

O

Fig. 18.4.4.
Structure of CpErCl2(THF)3.

(3) Monocyclopentadienyl complexes
Since monocyclopentadienyl rare-earth complexes require four to six σ -donor
ligands to reach the stable coordination numbers 7 to 9, monomeric com-
plexes must bind several neutral donor molecules. Generally, some of these
donor molecules are easily lost, and dinuclear and polynuclear complexes are
formed. This accounts for the fact that monocyclopentadienyl rare-earth com-
plexes exhibit rich structural complexity. Figure 18.4.4 shows the structure of
CpErCl2(THF)3.

18.4.3 Benzene and cyclooctatetraenyl rare-earth complexes

All the lanthanides and Y are able to bind two substituted benzene rings, such
as Gd(η6-C6H3

tBu3)2 and Y(η6-C6H6)2. Figure 18.4.5(a) shows the sandwich
structure of Gd(η6-C6H3

tBu3)2. In this complex, the Gd center is zero-valent.
The large lanthanide ions are able to bind a planar cyclooctate-

traene dianion ligand, as shown in Fig. 18.4.5(b) to Fig. 18.4.5(d).
In [(C8H8)2Ce]K[CH3O(CH2CH2O)2CH3], Ce(III) is sandwiched by two
(η8-C8H8) dianions, as shown in Fig. 18.4.5(b). The structure of
(C8H8)3Nd2(THF)2 shows a [(C8H8)2Nd]− anion coordinating to the
[(C8H8)Nd(THF)2]+ cation via two carbon atoms of the C8H2−

8 ligand, as
shown in Fig. 18.4.5(c).

In the sandwich complex (C8H8)Lu(Cp∗), as shown in Fig. 18.4.5(d), the
molecular structure is slightly bent with a ring centroid–Lu–ring centroid angle
of 173◦. The methyl groups of Cp∗ are bent away from the Lu center by 0.7◦-2.3◦

from the idealized planar configuration. The averaged Lu–C bond distances for
the C8H2−

8 and Cp∗− ligands are 243.3 and 253.6 pm, respectively.

18.4.4 Rare-earth complexes with other organic ligands

A variety of “open” π complexes, such as allyl complexes, are known. Gener-
ally, the allyl group is η3-bound to the rare-earth center. Figure 18.4.6(a) shows
the structure of the anion in [Li2(µ-C3H5)(THF)3]+[Ce(η3-C3H5)4]−.

Using bulky ligands or chelating ligands to saturate the complexes coor-
dinatively or sterically, the rare-earth complexes without π ligands have been
obtained and characterized. The La and Sm complexes with bulky alkyl ligands
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Gd

(a) (b)

(c) (d)

K

Ce

O

Nd
Lu

O

Fig. 18.4.5.
Structures of (a) Gd(η6-C6H3

tBu3)2, (b) [(C8H8)2Ce]K[CH3O(CH2CH2O)2CH3], (c) (C8H8)3Nd2(THF)2, and (d) (C8H8)Lu(Cp∗).

Ce

(a) (b) (c)

Sm Si Lu

Fig. 18.4.6.
Structures of some rare-earth complexes: (a) [Ce(η3-C3H5)4]−, (b) Sm[CH(SiMe3)2]3, and (c) [Lu(tBu)4]−.
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[CH(SiMe3)2] are pyramidal, being stabilized by agostic interactions of methyl
groups with the highly Lewis acidic metal center, as shown in Fig. 18.4.6(b).

The second half of the lanthanide series react with the more bulky
tBuLi reagent to form tetrahedrally coordinated complexes, such as
[Li(TMEDA)2]+[Lu(tBu)4]−. Figure 18.4.6(c) shows the structure of the anion
[Lu(tBu)4]−.

18.5 Reduction chemistry in oxidation state +2

Only the elements samarium, europium, and ytterbium have significant “nor-
mal” chemistry based on true Ln2+ ions, although SmCl2 and EuCl2 are
well-characterized and have been known for over a century. The compounds of
Pr, Nd, Dy, Ho, and Tm in oxidation state +2 are unstable in aqueous solution.
Lanthanide(II) compounds are of current interest as reductants and coupling
agents in organic and main-group chemistry.

18.5.1 Samarium(II) iodide

SmI2, which can be prepared conveniently from samarium powder and 1,2-
diiodoethane in THF, finds application as a versatile one-electron reducing
agent in organic synthesis. Two typical synthetic procedures mediated by SmI2
are the pinacol coupling of aldehydes and the Barbier reaction, as shown in the
following schemes:

O

R H
2 O

R H

SmI2

O

R H

SmI2

+
2  SmI2 O

R

SmI2

O

R

SmI2
HO

R

OH

R

pinacol coupling

O

R1 R2 +    RX

O

R1 R2

2 SmI2

SmI2X  +   [R  ]

OH

R1 R2

R

SmI2

Barbier reaction

R-SmI2
SmI2

SmI2 reacts with a variety of donor solvents to form crystalline solvates.
SmI2(Me3CCN)2 is an iodo-bridged polymeric solid containing six-coordinate
Sm2+ centers. In contrast, SmI2(HMPA)4, where HMPA is (Me3N)3P=O, is a
discrete six-coordinate molecule with a linear I–Sm–I unit. The diglyme solvate
SmI2[O(CH2CH2OMe)2]2 exhibits eight-coordination.
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18.5.2 Decamethylsamarocene

The organosamarium(II) complex Sm(η5-C5Me5)2 has the bent-metallocene
structure, which can be attributed to polarization effects; its THF solvate
Sm(η5-C5Me5)2(THF)2 exhibits the expected pseudo-tetrahedral coordination
geometry. [Sm(η5-C5Me5)2] is a very powerful reductant, and its notable reac-
tions include the reduction of aromatic hydrocarbons such as anthracene and
of dinitrogen, as illustrated in the following scheme:

Sm

Sm
(Cp* = C5Me5)

Cp*2Sm
N

N
SmSm

Cp*

Cp*

Cp*

Cp*

Cp*

 Cp*

Cp*

Cp*
N2

The N–N distance in the dinuclear N2 complex is 129.9 pm, as compared
with the bond length of 109.7 pm in dinitrogen, and is indicative of a con-
siderable decrease in bond order. An analogous planar system comprising a
side-on bonded µ-(bis-η2)-N2 ligand between two metal centers, with a much
longer N–N bond length of 147 pm, occurs in [Cp′′2Zr]2(N2), as described in
Section 15.1.3.

(1) Diiodides of thulium, dysprosium, and neodymium
The molecular structures of LnI2(DME)3 (Ln = Tm, Dy; DME = dimethoxy-
ethane) are shown in Fig. 18.5.1(a) and (b). The larger ionic size of Dy2+

compared with Tm2+ accounts for the fact that the thulium(II) complex is
seven-coordinate, whereas the dysprosium(II) complex is eight-coordinate.
The complex NdI2(THF)5 has pentagonal bipyramidal geometry with the iodo
ligands occupying the axial positions.

Thulium(II) complexes are stabilized by phospholyl or arsolyl ligands that
can be regarded as derived from the cyclopentadienyl group by replacing one
CH group by a P or As atom. Their decreased π -donor capacity relative to the
parent cyclopentadienyl system enhances the stability of the Tm(II) center, and
stable complexes of the bent-sandwiched type have been isolated.

Fig. 18.5.1.
Comparison of the molecular structures
of (a) hepta-coordinate TmI2(DME)3
and (b) octa-coordinate DyI2(DME)3.

I

C(a) (b)

Tm

O

I

C

O

Dy
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TmI2(THF)n + 2  K+

Z

Me Me

Me3Si SiMe3

Et2O

Z = P, As 

Z
Tm THF

Z

The LnI2 (Ln = Tm, Dy, Nd) species have been used in a wide range of
reactions in organic and organometallic syntheses, including the reduction of
aromatic hydrocarbons and the remarkable reductive coupling of MeCN to form
a tripodal N3-ligand, as shown in the following schemes:

LnI2 (Ln = Tm, Dy)
MeCN

NH2

Me
MeMe

NHHN

Ln(NCMe)6

3+

I–
3

TmI2

TmI
THF

THF
Tm

I

THF
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19Metal–Metal Bonds and
Transition-Metal Clusters

19.1 Bond valence and bond number of transition-metal
clusters

A dinuclear transition-metal complex contains two transition-metal atoms each
surrounded by a number of ligands. A transition-metal cluster has a core of
three or more metal atoms directly bonded with each other to form a discrete
molecule containing metal–metal (M–M) bonds. The first organometallic com-
plex reported to possess a M–M bond was Fe2(CO)9. Since this Fe–Fe bond is
supported by three bridging CO ligands, as shown in Fig. 19.1.1(a), it cannot
be taken as definitive proof of direct metal–metal interaction. In contrast, the
complexes Re2(CO)10, Mn2(CO)10, and [MoCp(CO)3]2, with no bridging lig-
ands, provide unequivocal examples of unsupported M–M bonding. In these
species the metal atoms are considered to be bonded through a single bond of
the 2c-2e type. Figure 19.1.1(b) shows the molecular structure of Mn2(CO)10.

Since polynuclear complexes and cluster compounds are in general rather
complicated species, the application of quantitative methods for describing
bonding is not only difficult but also impractical. Qualitative approaches and
empirical rules often play an important role in treating such cases. We have used
the octet rule and bond valence to describe the structure and bonding of boranes
and their derivatives (Sections 13.3 and 13.4). Now we use the 18-electron
rule and bond valence to discuss the bonding and structure of polynuclear
transition-metal complexes and clusters.

The metal atoms in most transition-metal complexes and clusters obey the
18-electron rule. The bond valence, b, of the skeleton of complex [MnLp]q−

can be calculated from the formula

b = 1/2(18n− g),

where g is the total number of valence electrons in the skeleton of the complex,
which is the sum of the following three parts:

(a) n times the number of valence electrons of metal atom M;
(b) p times the number of valence electrons donated to the metal atoms by

ligand L; and
(c) q electrons from the net charge of the complex.
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Fe

(a) (b)

Mn
C

O

Fig. 19.1.1.
Structure of dinuclear transition metal complexes: (a) Fe2(CO)9 and (b) Mn2(CO)10.

The bond valence b of the skeleton of a complex or cluster corresponds to the
sum of the bond numbers of the metal–metal bonds. For a M–M single bond,
the bond number is equal to 1; similarly, the bond number is 2 for a M=M
double bond, 3 for a M≡M triple bond, 4 for a M==M quadruple bond, and 2
for a 3c-2e MMM bond.

The majority of cluster compounds have carbonyl ligands coordinated to the
metal atoms. Some clusters bear NO, CNR, PR3, and H ligands, while others
contain interstitial C, N, and H atoms. The compounds can be either neutral or
anionic, and the common structural metal building blocks are triangles, tetrahe-
dra, octahedra, and condensed clusters derived from them. The carbonyl ligand
has two special features. First, the carbonyl ligand functions as a two-electron
donor in the terminal-, edge-, or face-bridging mode, and neither changes the
valence of the metal skeleton nor requires the involvement of additional ligand
electrons. In contrast, the Cl ligand may change from a one- (terminal) to a
three- (edge-bridging) or five- (face-bridging) electron donor. Second, the syn-
ergic bonding effects which operate in the alternative bridging modes of the
carbonyl ligand lead to comparable stabilization energies and therefore readily
favor the formation of transition-metal cluster compounds.

As mentioned in Sections 13.3 and 13.4, the structures of most known boranes
and carboranes are based on the regular deltahedron and divided into three types:
closo, nido, and arachno. In a closo-structure the skeletal B and C atoms occupy
all the vertices of the polyhedron. In the cases of nido- and arachno-structures,
one and two of the vertices of the appropriate polyhedron remain unoccupied,
respectively. On each skeletal B and C atom, there is always a H atom (or
some other simple terminal ligand such as halide) that points away from the
center of the polyhedron and is also linked to the skeleton by a radial 2c-2e
single bond. In a polyhedron of n vertices, there are 4n atomic orbitals. Among
them, n orbitals are used up for n terminal B–H bonds, the remaining 3n atomic
orbitals being available for skeletal bonding. In the skeleton of closo-borane
BnH2−

n , there are 4n + 2 valence electrons (n B atoms contribute 3n electrons,
n H atoms donate n electrons, and the charge accounts for 2 electrons), and hence
2n+2 electrons or n+1 electron pairs are available for skeletal bonding. These
numbers are definite. For the transition-metal cluster compounds, however, the
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electron counts vary with different bonding types. For example, octahedral M6
clusters of different compounds form various structures and bond types. Some
examples are discussed below and shown in Fig 19.1.2.

Figure 19.1.2(a) shows the structure of [Mo6(µ3-Cl)8Cl6]2−. In this structure,
eight µ3-Cl and six terminal Cl atoms are coordinated to the Mo6 cluster. Each
µ3-Cl donates five electrons and each terminal Cl donates one electron. Thus
the g value is

g = 6× 6 + (8× 5 + 6× 1) + 2 = 84.

The bond valence of the Mo6 cluster is

b = 1/2(6× 18− 84) = 12.

The bond valence b precisely matches 12 2c-2e Mo–Mo bonds, as shown
in the front and back views of the Mo6 cluster on the right side of
Fig. 19.1.2(a).

Figure 19.1.2(b) shows the structure of [Nb6(µ2-Cl)12Cl6]4−. In this struc-
ture, there are 12 µ2-Cl atoms each donating 3 electrons, plus six terminal µ1-Cl
atoms, each donating one electron, to the Nb cluster. The g value is

g = 6× 5 + (12× 3 + 6× 1) + 4 = 76.

The bond valence of the Nb6 cluster is

b = 1/2(6× 18− 76) = 16.

In this Nb6 cluster, each edge is involved in bonding with a µ2-Cl ligand, so
the edges do not correspond to 2c-2e Nb–Nb bonds. Each face of the Nb6
cluster forms a 3c-2e NbNbNb bond, and has bond number 2. The sum of bond
number, 16, is just equal to the bond valence of 16, as shown in the front and
back views of the Nb cluster in Fig. 19.1.2(b).

Figure 19.1.2(c) shows the structure of Rh6(µ3-CO)4(CO)12. The CO group
as a ligand always donates two electrons to the Mn cluster. The g value and
bond valence of the Rh6 cluster are

b = 1/2(6× 18− 86) = 11

The b value of Rh6 is 11, which just matches the b value of B6H2−
6 . The Rh6

cluster is stabilized by four 3c-2e RhRhRh bonds and three 2c-2e Rh-Rh bonds.
Various bond formulas can be written for the Rh6 cluster, one of which is shown
on the right side of Fig. 19.1.2(c). These formulas are equivalent by resonance
and the octahedron has overall Oh symmetry.

19.2 Dinuclear complexes containing metal–metal bonds

Studies on dinuclear transition-metal compounds containing metal–metal bonds
have deeply enriched our understanding of chemical bonding. The nature and
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Fig. 19.1.2.
Structure and bonding of three octahedral clusters: (a) [Mo6(µ3-Cl)8Cl6]2−; (b) [Nb6(µ2-Cl)12Cl6]4−; and (c) Rh6(µ3-CO)4(CO)12.

implication of M–M bonds are richer and more varied than the covalent bonds of
the second-period representative elements. The following points may be noted.

(a) The d atomic orbitals of transition metals are available for bonding, in
addition to the s and p atomic orbitals.

(b) The number of valence orbitals increases from 4 for the second-period
elements to 9 for the transition-metal atoms. Thus the octet rule suits the
former and eighteen-electron rule applies to the latter.

(c) The use of d-orbitals for bonding leads to the possible formation of a quadru-
ple bond (and even a quintuple bond) between two metal atoms, in addition
to the familiar single, double, and triple bonds.
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(d) The transition-metal atoms interact with a large number of ligands in coor-
dination compounds. The various geometries and electronic factors have
significant effects on the properties of metal–metal bonds. The 18-electron
rule is not strictly valid, thus leading to varied M–M bond types.

19.2.1 Dinuclear transition-metal complexes conforming to the 18-electron
rule

When the structure of a dinuclear complex has been determined, the structural
data may be used to enumerate the number of valence electrons available in the
complex, to determine its bond valence, and to understand the properties of the
metal–metal bond. For a dinuclear complex, the bond valence b = 1/2(18×2−
g). Table 19.2.1 lists the data for some dinuclear complexes.

In the complex Ni2(Cp)2(µ2-PPh2)2, with two bridging ligands (µ2-PPh2)
linking the Ni atoms, the bond valence equals zero, indicating that there is no
bonding interaction between them.

Mn2(CO)10 is one of the simplest dimeric compounds containing a metal–
metal single bond unsupported by bridging ligands, and its diamagnetic
behavior is accounted for in compliance with the 18-electron rule. The struc-
tures of Tc2(CO)10, Re2(CO)10, and MnRe(CO)10, which are isomorphous with
Mn2(CO)10, have also been determined. The measured M–M bond lengths (pm)
are Tc–Tc 303.6, Re–Re 304.1, and Mn–Re 290.9. The structure of Fe2(CO)9,
shown in Fig. 19.1.1(a), has an Fe–Fe single bond of 252.3 pm, which is further
stabilized by the bridging carbonyl ligands.

Many dinuclear complexes have a M=M double bond. Some examples are

Co2(CO)2Cp∗2, Co=Co 233.8pm;

Fe2(NO)2Cp2, Fe=Fe 232.6pm;

Re2(µ-Cl)2Cl4(dppm)2, Re=Re 261.6pm;

Mo2(OR)8 (R = iPr, tBu), Mo=Mo 252.3pm.

Most compounds with triple and quadruple bonds are formed by Re, Cr, Mo, and
W. The ligands in such compounds are in general relatively hard Lewis bases
such as halides, carboxylic acids, and amines. Nevertheless, in some cases
π-acceptor ligands such as carbonyl, phosphines and nitrile are also present.

Table 19.2.1. Dinuclear complexes

Complex g b M–M(pm) Bond properties

Ni2(Cp)2(µ2-PPh2)2 36 0 336 Ni· · · Ni, no bonding
(CO)5Mn2(CO)5 34 1 289.5 Mn–Mn, single bond
Co2(µ2-CH2) (µ2-CO)(Cp∗)2 32 2 232.0 Co=Co, double bond
Cr2(CO)4(Cp)2 30 3 222 Cr≡Cr, triple bond
[Mo2(µ2-O2CMe)2 (MeCN)6]2+ 28 4 213.6 Mo==Mo, quadruple bond
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19.2.2 Quadruple bonds

The recognition and understanding of the quadruple bond is one of the most
important highlights in modern inorganic chemistry. The overlap of d atomic
orbitals can generate three types of molecular orbitals: σ, π, and δ. These molec-
ular orbitals can be used to form a quadruple bond between two transition-metal
atoms under appropriate conditions. In a given compound, however, not all of
these orbitals are always available for multiple metal–metal bonding. Thus the
18-electron rule does not always hold for the dinuclear complexes and needs
to be modified according to their structures.

The most interesting aspect of the crystal structure of K2[Re2Cl8]·2H2O is
the presence of the dianion Re2Cl2−8 (Fig. 19.2.1), which possesses an extremely
short Re–Re bond distance of 224.1 pm, as compared with an average Re–Re
distance of 275 pm in rhenium metal. Another unusual feature is the eclipsed
configuration of the Cl atoms with a Cl· · · Cl separation of 332 pm.As the sum of
van derWaals radii of two Cl atoms is 360 pm, the staggered configuration would
normally be expected for Re2Cl2−8 . These two features are both attributable to
the formation of a Re==Re quadruple bond.

The bonding in the skeleton of the [Re2Cl8]2− ion can be formulated as
follows: each Re atom uses its square-planar set of dsp2 (dx2−y2 , s, px, py)
hybrid orbitals to overlap with ligand Cl p orbitals to form Re–Cl bonds. The
pz atomic orbital of Re is not available for bonding. The remaining dz2 , dxz ,
dyz , and dxy atomic orbitals on each Re atom overlap with the corresponding
orbitals on the other Re atom to generate the following MOs:

dz2 ± dz2 → σ and σ∗ MO

dxz ± dxz → π and π∗ MO

dyz ± dyz → π and π∗ MO

dxy ± dxy → δ and δ∗ MO

Figure 19.2.2 shows the pairing up of d AO’s of two Re atoms to form
MO’s and the ordering of the energy levels. In the [Re2Cl8]2− ion, the two Re
atoms have 16 valence electrons including two from the negative charge. Eight
valence electrons are utilized to form eight Re–Cl bonds, and the remaining
eight occupy four metal–metal bonding orbitals to form a quadruple bond: one
σ bond, two π bonds, and one δ bond, leading to the σ2π4δ2 configuration.

Fig. 19.2.1.
Structure of [Re2Cl8]2−.
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Fig. 19.2.2.
Overlap of d orbitals leading to the
formation of a quadruple bond between
two metal atoms. Note that the z axis of
each metal atom is taken to point toward
the other, such that if a right-handed
coordinate system is used for the atom on
the left, a left-handed coordinate system
must be used for the atom on the right.

The structures of two transition-metal complexes that contain a
Mo==Mo quadruple bond are shown in Fig. 19.2.3. In the compound
[Mo2(O2CMe)2(NCMe)6](BF4)2, each Mo atom is six-coordinate, and all nine
valence AO’s are used for bonding according to the 18-electron rule. In the
cation [Mo2(O2CMe)2(NCMe)6]2+,

g = 2× 6 + 2× 3 + 6× 2− 2 = 28,

and

b = 1/2(2× 18− 28) = 4.

The Mo–Mo bond distance of 213.6 pm is in accord with the quadruple Mo==Mo
bond. In the molecule Mo2(O2CMe)4, each Mo atom is five-coordinate and has
one empty AO(pz) which is not used for bonding. It obeys the 16-electron rule
with g = 2 × 6 + 4 × 3 = 24 and b = 1/2(2 × 16 − 24) = 4. The observed
Mo–Mo distance of 209.3 pm is consistent with that expected of a quadruple
bond.

A large number of dinuclear complexes containing a M==M quadruple bond
formed by the Group 16 and 17 metals Cr, Mo, W, Re, and Tc have been reported
in the literature. Selected examples are listed in Table 19.2.2.
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Table 19.2.2. Compounds containing a M≡M quadruple bond

Compound M==M Distance(pm) Rule g

Cr2(2-MeO-5-Me-C6H3)4 Cr==Cr 182.8 16e 24
Cr2[MeNC(Ph)NMe]4 Cr==Cr 184.3 16e 24
Cr2(O2CMe)4 Cr==Cr 228.8 16e 24
Cr2(O2CMe)4(H2O)2 Cr==Cr 236.2 18e 28
Mo2(hpp)4

∗ Mo==Mo 206.7 16e 24
K4[Mo2(SO4)4]·2H2O Mo==Mo 211.0 18e 28
[Mo2(O2CCH2NH3)4]Cl4 · 3H2O Mo==Mo 211.2 16e 24
Mo2[O2P(OPh)2]4 Mo==Mo 214.1 16e 24
W2(hpp)4 · 2NaHBEt3 W==W 216.1 16e 24
W2(O2CPh)4(THF)2 W==W 219.6 18e 28
W2(O2CCF3)4 W==W 222.1 16e 24
W2Cl4(PBun

3)4· C7H8 W==W 226.7 16e 24
(Bu4N)2Tc2Cl8 Tc==Tc 214.7 16e 24
K2[Tc2(SO4)4]·2H2O Tc==Tc 215.5 16e 24
Tc2(O2CCMe3)4Cl2 Tc==Tc 219.2 18e 28
(Bu4N)2Re2F8· 2Et2O Re==Re 218.8 16e 24
Na2[Re2(SO4)4(H2O)2]· 6H2O Re==Re 221.4 18e 28
[Re2(O2CMe)2Cl4(µ-pyz)]n Re==Re 223.6 18e 28

∗ hpp is the anion of 1,3,4,6,7,8-hexahydro-2H -pyrimido-[1,2-a]-pyrimidine (Hhpp); pyz is
pyrazine.

The quadruple bond can undergo a variety of interesting reactions, as outlined
in Fig. 19.2.4.

(1) There is a rich chemistry in which ligands are exchangable, and virtually
every type of ligand can be used except the strong π acceptors.

(2) Addition of a mononuclear species to an M==M bond can yield a trinuclear
cluster.

(3) Two quadruple bonds can combine to form a metallacyclobutadiyne ring.
(4) Oxidative addition of acids to generate a M≡M bond (particularly W≡W)

is a key part of molybdenum and tungsten chemistry.
(5) Phosphines can act as reducing agents as well as ligands to give products

with triple bonds of the σ2π4δ2δ∗2 type, as in Re2Cl4(PEt3)4.
(6) Photo excitation by the δ→ δ∗ transition can lead to reactive species which

are potentially useful in photosensitizing various reactions, including the
splitting of water.

213.6 209.3
Mo

(a) (b)

Mo

N

O O

Fig. 19.2.3.
Structure of (a) [Mo2(O2CMe)2(NCMe)6]2+ and (b) Mo2(O2CMe)4.
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Mononuclear
complexes

Coordination chemistry
substitution reactions

CO, NO,
RNC

M

(2)

(4)
H+(6)

(5) PR3

(7)

hv

±e

(8) (1)

(3)

M M
M
σ3π4δ2

M
M M

M

MM

H

Lower
bond
order

Reactive
excited

state
M2X4(PR3)4
σ2π4δ2δ*2

M M

MM

Fig. 19.2.4.
Some reaction types of dimetal
compounds containing a M≡M
quadruple bond.

(7) Electrochemical oxidation or reduction reduces the bond order and gener-
ates reactive intermediates.

(8) With π-acceptor ligands, the M==M bonds are usually cleaved to give
mononuclear products, which are sometimes inaccessible by any other
synthetic route.

19.2.3 Bond valence of metal–metal bond

In dinuclear complexes, the bond valence of the metal–metal (M–M) bond can
be calculated from its number of bonding electrons, gM. A simple procedure
for counting the metal–metal bond valence is as follows:

(a) Calculate the g value in the usual manner.
(b) Calculate the number of valence electron used for M–L bonds, g

L
.

(c) Calculate the number of valence electron used for M–M bonds, g
M

=
g − g

L
.

(d) Assign the g
M

electrons to the following orbitals according to the energy
sequence: σ, (πx, πy), δ, δ∗, (π∗x , π∗y ), and σ∗, as shown in Fig. 19.2.2.

Some examples are presented below:

(1) Mo2(O2CMe)4

g = 2× 6 + 4× 3 = 24, gL = 8× 2 = 16, gM = g − gL = 24− 16 = 8.

The electronic configuration is σ2π4δ2, and the bond order is 4; i.e., the
bond valence is 4. For this Mo==Mo bond, the bond length is 209.3 pm.

(2) Mo2(O2CMe)2(MeCN)6]2+

g = 2× 6 + 2× 3 + 6× 2− 2 = 28, g
L

= 2× 5× 2 = 20,

g
M

= 28− 20 = 8.

The electronic configuration is σ2π4δ2, and the bond valence is 4. So again
this is a Mo==Mo bond, and the bond length is 213.6 pm.
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Fig. 19.2.5.
Structure of (a) Re2Cl4(PEt3)4 and (b)
Mo2(CH2SiMe3)6

Cl

P

Re Mo

C

223.2 pm

(a) (b)

216.7 pm

(3) Re2Cl4(PEt3)4

g = 2× 7 + 4× 1 + 4× 2 = 26, gL = 8× 2 = 16, gM = 26− 16 = 10.

The structure of the molecule is shown in Fig. 19.2.5(a). The electronic
configuration is σ2π4δ2δ*2. The bond valence is 3, indicating a Re≡Re
triple bond, and the bond length is 223.2 pm.

(4) Mo2(CH2SiMe3)6
The molecule has D3d symmetry, as shown in Fig. 19.2.5(b).

g = 2× 6 + 6× 1 = 18, g
L

= 6× 2 = 12, g
M

= 18− 12 = 6.

The electronic configuration is σ2π4. The length of the Mo≡Mo triple bond
is 216.7 pm.

(5) Mo2(OR)8, (R = iPr, tBu)

g = 2× 6 + 8× 1 = 20, g
L

= 8× 2 = 16, g
M

= 20− 16 = 4.

The electronic configuration is σ2π1
xπ

1
y , indicating a Mo=Mo double

bond. The experimental bond distance is 252.3 pm, and the molecule is
a paramagnetic species.

19.2.4 Quintuple bonding in a dimetal complex

Recently, structural evidence for the first quintuple bond between two metal
atoms was found in the dichromium(I) complex Ar′CrCrAr′ (where Ar′ is
the sterically encumbering monovalent 2,6-bis[(2,6-diisopropyl)phenyl]phenyl
ligand). This complex exists as air- and moisture-sensitive dark-red crystals
that remain stable up to 200◦C. X-ray diffraction revealed a centrosymmet-
ric molecule with a planar trans-bent C–Cr–Cr–C backbone with measured
structural parameters Cr–Cr 183.51(4) pm, Cr–C 213.1(1) pm, and C–Cr–Cr
102.78(3)◦. Characterization of the compound is further substantiated by mag-
netic and spectroscopic data, as well as theoretical computations. Figure 19.2.6
shows the molecular geometry and structural formula of Ar′CrCrAr′.

In principle, a homodinuclear transition-metal species can form up to six
bonds using the ns and five (n-1)d valence orbitals. In a simplified bonding
description ofAr′CrCrAr′, the planar C–Cr–Cr–C skeleton has idealized molec-
ular symmetry C2h with reference to a conventional z axis lying perpendicular
to it. For each chromium atom, a local z axis is chosen to be directed toward
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Cr Cr
iPr

iPr

iPriPr

iPr
iPr

iPr

iPr

Fig. 19.2.6.
Molecular geometry and structural
formula of the dinuclear complex
Ar′CrCrAr′ (Ar′ =
C6H3-2,6(C6H3-2,6-iPr2)2.

the other chromium atom, and the local x axis to lie in the skeletal plane. Each
chromium atom (electronic configuration 3d54s1) uses it 4s orbital to overlap
with a sp2 hybrid orbital on the ipso carbon atom of the terphenyl ligand to
form a Cr–C σ bond. That leaves five d orbitals at each Cr(I) center for the
formation of a fivefold (i.e., quintuple) metal–metal bond, which has one σ
(dz2 +dz2 ; symmetry species Ag), two π (dyz +dyz , dxz +dxz; Au, Bu) and two δ
(dx2−y2 + dx2−y2 , dxy + dxy; Ag, Bg) components. The situation is actually more
complex as mixing of the chromium 4s, 3dz2 and 3dx2−y2 orbitals (all belonging
to Ag) can occur. In an alternative bonding scheme, each chromium atom may
be considered to be dz2 s hybridized. The outward-extended (s − dz2 ) hybrid
orbital is used to form a Cr–C σ bond. Note that this type of overlap results in
a C–Cr–Cr angle of 90◦ and allows free rotation of the C–Cr bond about the
Cr–Cr axis, and it is the steric repulsion between the pair of bulky Ar′ ligands
that accounts for the obtuse C–Cr–Cr bond angle and the trans-bent geometry
of the central C–Cr–Cr–C core. The pair of chromium (s + dz2) hybrid orbitals
aligned along the common local z axis overlap to form the metal–metal σ bond,
while the π and δ bonds are formed in the manner described above. In either
bonding description, there is a formal bond order of 5 between the chromium(I)
centers.

19.3 Clusters with three or four transition-metal atoms

19.3.1 Trinuclear clusters

Table 19.3.1 lists the structural data and bond valences of some trinuclear clus-
ters. In Os3(CO)9(µ3-S)2, the Os3 unit is in a bent configuration with two Os–Os
bonds of average length 281.3 pm, and the other Os· · · Os distance (366.2 pm)
is significantly longer. The cluster (CO)5Mn–Fe(CO)4–Mn(CO)5 adopts a lin-
ear configuration. The other clusters are all triangular. The Fe3 skeleton of
Fe3(CO)12 has 48 valence electrons, and the Fe3 unit contains three Fe–Fe sin-
gle bonds. The Os3 skeleton of Os3H2(CO)10, a 46-electron triangular cluster,
has one Os=Os double bond and two Os–Os single bonds. The length of the
Os=Os double bond is 268.0 pm, and the Os–Os single bonds are 281.8 and
281.2 pm.

The remaining three clusters [Mo3(µ3-S)2(µ2-Cl)3Cl6]3−, [Mo3(µ3-O)
(µ2-O)3F9]5−, and Re3(µ2-Cl)3(CH2SiMe3)6 all have nearly equilateral M3
skeletons. According to the calculated bond valences of 5, 6, and 9 for the
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Table 19.3.1. Some trinuclear clusters

Cluster g b M–M(pm) Figure

Os3(CO)9(µ3-S)2 50 2 Os–Os, 281.3 (a)
Mn2Fe(CO)14 50 2 Mn–Fe, 281.5 (b)
Fe3(CO)12 48 3 Fe–Fe, 281.5 (c)
Os3H2(CO)10 46 4 two Os–Os, 281.5 (d)

Os=Os, 268.0
[Mo3(µ3-S)2(µ2-Cl)3Cl6]3− 44 5 Mo- - -Mo, 261.7∗ (e)
[Mo3(µ3-O)(µ2-O)3F9]5− 42 6 Mo=Mo, 250.2 (f)
Re3(µ2-Cl)3(CH2SiMe3)6 36 9 Re≡Re, 238.7 (g)

(a) (b) (c) (d) (e) (f) (g)
OsOs

Os

Os Os

Os

Os
Mn MnFe

Fe Mo

Mo Mo Mo Mo

Mo Re

Re ReFe Fe

∗ Bond order of 1 2
3 .

Table 19.3.2. Some tetranuclear clusters

Cluster g b M–M(pm) Figure

Re4(µ3-H)4(CO)12 56 8 6 Re- - -Re, 291∗ (a)
Ir4(CO)12 60 6 6 Ir–Ir, 268 (b)
Re4(CO)16

2− 62 5 5 Re–Re, 299 (c)
Fe4(CO)13C 62 5 5 Fe–Fe, 263 (d)
Co4(CO)10(µ4-S)2 64 4 4 Co–Co, 254 (e)
Re4H4(CO)15

2− 64 4 4 Re–Re, 302 (f)
Co4(µ4-Te)2(CO)11 66 3 3 Co–Co, 262 (g)
Co4(CO)4(µ-SEt)8 68 2 2 Co–Co, 250 (h)

(a) (b) (c) (d) (e) (f) (g) (h)

∗ Bond order of 1 1
3 .

metal–metal bonds in these compounds, the bond types are Mo- - -Mo (bond
order 1 2

3 ), Mo=Mo, and Re≡Re, respectively.

19.3.2 Tetranuclear clusters

Table 19.3.2 lists the bond valence and structural data of some tetranuclear
clusters.

The bond valence of Re4(µ3-H)4(CO)12 is 8, and the tetrahedral Re4 skeleton
can be described in two ways: (I) resonance between valence-bond structures,
leading to a formal bond order of 1 1

3 , and (II) four 3c-2e ReReRe bonds.
Since there are already four µ3-H capping the faces, description (II) is not as
good as (I).

iranchembook.ir/edu

https://iranchembook.ir/edu


Metal–Metal Bonds 715

(I)

(II)

3

3 3

2 2 2

1 1 1

4 4
4

In other examples listed in Table 19.3.2, the calculated bond valence b is just
equal to the number of edges of the corresponding metal skeleton, signifying
2c-2e M–M single bonds.

19.4 Clusters with more than four transition-metal atoms

19.4.1 Pentanuclear clusters

Selected examples of pentanuclear metal clusters are listed in Table 19.4.1.
In these examples, the calculated bond valence b is exactly the same as the
number of edges of the metal skeleton, indicating 2c-2e M–M bonds. In general,
electron-rich species have lower bond valence and more open structures than
the electron-deficient ones.

The structures and skeletal bond valences of Os5(CO)16 and B5H5
2− are sim-

ilar as a pair, as are also Fe5C(CO)15 and B5H9. But the bonding types in the
boranes and the metal clusters are not the same. Since every B atom in a poly-
hedral borane has three AO’s for bonding of the Bn skeleton, any vertex more
than three-connected must involve multicenter bonds. In the transition-metal
skeleton, the Mn atoms form either 2c-2e single bonds or 3c-2e multicenter
bonds.

Some clusters have 76 valence electrons based on a trigonal bipyramidal
skeleton, such as [Ni5(CO)12]2−, [Ni3Mo2(CO)16]2−, Co5(CO)11(PMe2)3, and
[FeRh4(CO)15]2−, which are not shown in Table 19.4.1. The additional four
valence electrons compared to Os5(CO)16 have a significant effect on its geom-
etry, and the bond lengths to the apical metal atoms are increased, and the bond
valence b is decreased.

The cluster [Os5C(CO)14(O2CMe)I] has 78 valence electrons, which is not
shown in Table 19.4.1, and its bond valence is equal to 6: [b = 1

2 (5×18−78) =
6]. This cluster has a deformed trigonal bipyramidal geometry with no bonding
in the equatorial plane of the bipyramid.

19.4.2 Hexanuclear clusters

Table 19.4.2 lists the bond valence and structural data of some selected examples
of hexanuclear clusters. The first three clusters have different b values, yet they
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Table 19.4.1. Some pentanuclear clusters

Cluster g b No. of edges Figure

Os5(CO)16 72 9 9 (a)
Fe5C(CO)15 74 8 8 (b)
Os5H2(CO)16 74 8 8 (c)
Ru5C(CO)15H2 76 7 7 (d)
Os5(CO)18 76 7 7 (e)
Os5(CO)19 78 6 6 (f)
Re2Os3H2(CO)20 80 5 5 (g)

(a) (b) (c) (d) (e) (f) (g)

are all octahedral with 12 edges. There are three stable types of bonding schemes
for an octahedron, as shown in Fig. 19.1.2:

(a) Mo6Cl14
2−, g = 84, b = 12; in this cluster there are 12 2c-2e bonds at the

12 edges.
(b) Nb6Cl18

4−, g = 76, b = 16; in this cluster there are eight 3c-2e bonds on
the eight faces of an octahedron.

(c) Rh6(CO)16, g = 86, b = 11; in this cluster there are four 3c-2e bonds on
four faces and three 2c-2e bonds at three edges, as in the case of B6H2−

6 .

Table 19.4.2. Some hexanuclear clusters

Cluster g b No. of edges Figure

Mo6(µ3-Cl)8Cl2−6 84 12 12 (a)
Nb6(µ2-Cl)12Cl4−6 76 16 12 (a)
Rh6(CO)16 86 11 12 (a)
Os6(CO)18 84 12 12 (b)
Os6(CO)18H2 86 11 11 (c)
Os6C(CO)16(MeC≡CMe) 88 10 10 (d)
Ru6C(CO)2−

15 90 9 9 (e)
Os6(CO)20[P(OMe)3] 90 9 9 (f)
Co6(µ2-C2)(µ4-S)(CO)14 92 8 8 (g)

(a) (b) (c) (d) (e) (f) (g)

Other clusters listed in Table 19.4.2 have the property that their b value equals
the number of edges of their Mn skeletons.
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19.4.3 Clusters with seven or more transition-metal atoms

Table 19.4.3 listed the bond valence and structural data of some selected
examples of high-nuclearity clusters, each consisting of seven or more
transition-metal atoms. The skeletal structures of these clusters are shown in
Fig. 19.4.1.

Table 19.4.3. Clusters with more than six transition metal atoms

Cluster g b Structure
(Fig. 19.4.1)

Remark

Os7(CO)21 98 14 (a) Capped octahedron
[Os8(CO)22]2− 110 17 (b) Para-bicapped octahedron
[Rh9P(CO)21] 2− 130 16 (c) Capped square antiprism;

iso-bond valence with B9H13
[Rh10P(CO)22]− 142 19 (d) Bicapped square antiprism;

iso-bond valence with B10H2−
10

[Rh11(CO)23]3− 148 25 (e) Three face-sharing octahedra
[Rh12Sb(CO)27]3− 170 23 (f) Icosahedron; iso-bond valence

with B12H2−
12

When the number of metal atoms in a cluster increases, the geometries of the
clusters become more complex, and some are often structurally better described
in terms of capped or decapped polyhedra and condensed polyhedra. For exam-
ple, the first and second clusters listed in Table 19.4.3 are a capped octahedron
and a bicapped octahedron, respectively. Consequently, capping or decapping
with a transition-metal fragment to a deltapolyhedral cluster leads to an increase
or decrease in the cluster valence electron count of 12. When a transition-metal
atom caps a triangular face of the cluster, it forms three M–M bonds with the
vertex atoms, so according to the 18-electron rule, the cluster needs an addi-
tional 18 − 6 = 12 electrons. The parent octahedron of [Os6(CO)18]2− has
g = 86, the monocapped octahedron Os7(CO)21 has g = 98, and the bicapped
octahedron [Os8(CO)22]2− has g = 110.

(a) (b) (c)

(d) (e) (f)

Fig. 19.4.1.
Structures of some transition-metal
clusters: (a) Os7(CO)21,
(b) [Os8(CO)22]2−, (c)
[Rh9P(CO)21]2−, (d) [Rh10P(CO)22]−,
(e) [Rh11(CO)23]3−, and
(f) [Rh12Sb(CO)27]3−.
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The metal cluster of [Rh10P(CO)22]− forms a deltapolyhedron, which has
g = 142, as shown in Fig. 19.4.1(d). The skeleton of [Rh9P(CO)21]2− is
obtained by removal of a vertex transition-metal fragment. The skeletal valence
electron count of [Rh9P(CO)21]2− gives g = 142− 12 = 130.

The metal cluster of [Rh11(CO)23]3− is composed of three face-sharing octa-
hedra, as shown in Fig. 19.4.1(e). The metal cluster of [Rh12Sb(CO)27]3−

consists of an icosahedron with an encapsulated Sb atom at its center.
Generally, capped or decapped deltapolyhedral clusters are characterized by

the number of skeletal valence electrons g

g = (14n + 2) ± 12m,

where n is the number of M atoms in the parent deltapolyhedron and m is the
number of capped (+) or decapped (−) metal fragments.

A classical example of correlation of structure with valence electron count of
transition-metal clusters is shown in Fig. 19.4.2. There the structures of a series
of osmium clusters are systematized by applying the capping and decapping
procedures.

19.4.4 Anionic carbonyl clusters with interstitial main-group atoms

There is much interest in transition-metal carbonyl clusters containing inter-
stitial (or semi-interstitial) atoms in view of the fact that insertion of the
encapsulated atom inside the metallic cage increases the number of valence
electrons but leaves the molecular geometry essentially unperturbed. The clus-
ters are generally anionic, and the most common interstitial heteroatoms are
carbon, nitrogen, and phosphorus. Some representative examples are displayed
in Fig. 19.4.3.

The core of the anionic carbonyl cluster [Co6Ni2(C)2(CO)16]2− consists of
two trigonal prisms sharing a rectangular face [Fig. 19.4.3(a)]. All four vertical
edges and two horizontal edges, one on the top face and the other on the bottom
face, are each bridged by a carbonyl group. Each of the two Co∗ atoms has two
terminal carbonyl groups, and each of the Ni and Co atoms has one.

The [Os18Hg3(C)2(CO)42]2− cluster is composed of two tricapped octahedral
Os9(C)(CO)21units sandwiching a Hg3 triangle (Fig. 19.4.3(b)). Each corner
Os atom in the top and bottom faces has three terminal carbonyl groups, and
the remaining Os atoms each have two.

The core of the [Fe6Ni6(N)2(CO)24]2− cluster comprises a central Ni6 octa-
hedron that shares a pair of opposite faces with two Ni3Fe3 octahedra, as shown
in Fig. 19.4.3(c). The interstitial N atoms occupy the centers of the Ni3Fe3
octahedra. Each Fe atom has two terminal carbonyl groups, and each Ni atom
has one.

The metallic core of the [Rh28(N)4(CO)41Hx]4− cluster is composed of three
layers of Rh atoms in a close-packedABC sequence, as shown in Fig. 19.4.3(d).
Four N and an unknown number of H atoms occupy the octahedral holes.

The metal atoms in [Ru8(P)(CO)22]− constitute a square antiprismatic assem-
bly [Fig. 19.4.3(e)]. Two opposite slant edges are each bridged by a carbonyl
group. Each Ru bridged atoms has two terminal carbonyl groups, and each
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octahedron

monocapped

bicapped

tricapped

tetracapped

134e

(122e) (110e)

(98e)

Os10C(CO)2–

+ 12e

+ 12e

+ 12e

+ 12e

24

110e
[Os8(CO)22]

98e
Os7H2(CO)20

86e
Os6(CO)18(py)

74e
H2Os5(CO)16

86e
H2Os6(CO)18

98e
Os7(CO)21

86e
[Os6(CO)21]2–

74e
[Os5C(CO)15

62e
[Os4N(CO)12]–

120e or 122e
[Os9(CO)21R]5–

110e
[Os8H(CO)22]–

closo- nido- arachno-–12e –12e

Fig. 19.4.2.
The structures of osmium carbonyl
compounds vary with an increase or
decrease of the valence electrons.

of the remaining four has three. Comparison of this cluster core with those
of [Rh9(P)(CO)21]2− [Fig. 19.4.3(f)] and [Rh10(S)(CO)22]2− [Fig. 19.4.3(g)]
shows that the latter two are derived from successive capping of the rectangular
faces of the square antiprism.

19.5 Iso-bond valence and iso-structural series

For a cluster consisting of n1 transition-metal atoms and n2 main-group atoms,
the bond valence b is evaluated as

b = 1
2 (18n1 + 8n2 − g),

iranchembook.ir/edu

https://iranchembook.ir/edu


720 Structural Chemistry of Selected Elements

(a) (b)

(c) (d)

(e) (f) (g)

Co Ni

Ni
Co

Co

Co*

Co

Co*

Os

OsOs

Os Os
Os Os

Os
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Hg

OsOs
OsOs

Os

Os

Hg
Hg
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Ni

NiNi

FeFe
Fe

NiNi

Fe

Ni

FeFe

C
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C
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C

C

C
B

B

B B

B

B

B

B

B

B

B

B

A

A

A A

A

A

Ru

Ru

Ru

Ru

Ru
Ru

Ru Ru
Rh

Rh

Rh

Rh

Rh

Rh
Rh

Rh Rh

Rh

Rh

Rh

Rh

Rh

Rh

Rh
Rh

Rh Rh

Fig. 19.4.3.
Molecular structure of some carbonyl cluster anions containing encapsulated heteroatoms; all terminal CO groups are omitted for clarity;
(a) [Co6Ni2(C)2(CO)16]2−; only the bridging CO groups are shown; (b) [Os18Hg3(C)2(CO)42]2−; (c) [Fe6Ni6(N)2(CO)24]2−;
(d) [Rh28(N)4(CO)41Hx]4−; to avoid clutter, not all Rh–Rh bonds are included; (e) [Ru8(P)(CO)22]−; (f) [Rh9(P)(CO)21]2−;
(g) [Rh10(S)(CO)22]2−.

where g is the number of valence electrons of the skeleton formed by the n1
transition-metals and n2 main-group atoms.

When a BH group of the octahedral cluster (BH)2−
6 is replaced by a CH+

group, both g and b retain their values and the structure of the cluster anion
(BH)5CH− remains octahedral. On the other hand, when a BH group of (BH)2−

6
is replaced by a Ru(CO)3 group, the b value still remains the same. But g

iranchembook.ir/edu

https://iranchembook.ir/edu


Metal–Metal Bonds 721

BH

CH

Ru(CO)3

(BH)6
2– [Ru(CO)3]6

2–(BH)4(CH)2 [Ru(CO)3]4(CH)2

g = 26, b = 11 g = 26, b = 11 g = 66, b = 11 g = 86, b = 11

Fig. 19.5.1.
Iso-bond valence and iso-structural series of B6H2−

6 .

increases its value by 10, as a BH group contributes 4 electrons to the skele-
ton, while a Ru(CO)3 group contributes 14 (8 from Ru and 2 from each CO).
Therefore, replacement of one or more BH groups in (BH)2−

6 by either CH+

or Ru(CO)3 groups results in a series of iso-bond valence and iso-structural
clusters. The structures of some members of this series, (BH)2−

6 , (BH)4(CH)2,
[Ru(CO)3]4(CH)2, and [Ru(CO)3]2−

6 , are shown in Fig. 19.5.1. Similar substi-
tutions by either transition-metal or representative-element groups give rise to a
variety of cluster compounds, and five iso-structural series of clusters contain-
ing both transition-metal and main-group element components are displayed in
Fig. 19.5.2.

Clearly the structure of a given cluster depends on electronic, geometric, and
other factors. Hence the structure of a compound cannot be predicted until it
has been determined experimentally. Still, based on the bond valence and struc-
tural principle illustrated above, an educated guess on the structure of a cluster
becomes feasible. In addition, the bond valence concept provides a useful link
between apparently dissimilar clusters such as (BH)2−

6 and [Ru(CO)3]4(CH)2.

19.6 Selected topics in metal–metal interactions

Since the 1980s, studies on metal clusters and metal string complexes have
revealed unusual interactions between metal atoms, some of which are discussed
in this section.

19.6.1 Aurophilicity

The term aurophilicity (or aurophilic attraction) refers to the formally non-
bonding but attractive interaction between gold(I) atoms in gold cluster
compounds. The Au(I) atom has a closed-shell electronic configuration: [Xe]
4f145d106s0. Normally, repulsion exists between the nonbonding homoatoms.
However, there is extensive crystallographic evidence of attractive interac-
tion between gold(I) cations. Figure 19.6.1 shows the structures of three Au(I)
compounds.

(1) O[AuP(o-tol)3]+3 (o-tol = C6H4Me-2): In O[AuP(o-tol)3]3(BF4), the
O atom forms covalent bonds with three Au atoms in a OAu3 pyrami-
dal configuration, as shown in Fig. 19.6.1(a). The Au atoms are linearly
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Fe4(CO)13H– 

62

Ir4(CO)12 
60

Fe5C(CO)15 
74

Os5(CO)16 
72

Os4S(CO)12 
62

Fe4(PPh)2 
(CO)11

Fe3(CO)9S2 
54

OS3(SEt)(CO)10H 
52

Co3(CO)9(CR) 
50

Fe2(SR)2(CO)6 
42

Co2(CO)6(CR)2 
40

Fe2(CO)6B3H7 
44

Fe3As2(CO)9 
52

Fe(CO)3 
B5H3(CO)2

Co(CO)3(CR)3 
30

CoCpB4H8 
34

P3[Co(triphos)]2
3+ 

42

B5H9 
24

C2B3H5 
22

C2B4H6Co3Cp3B3H5 Co2Cp2B4H5 

Mn(CO)4B3H8 
32

B4H10 
22

(CR)4 
20

Rh6(CO)16 Os5S(CO)15

86g =

g =

g =

g =

g =

b = 11

b = 9

b = 8

b = 6

b = 5

76 66 56 46 36 26

Fig. 19.5.2.
Iso-structural series of transition-metal and main-group clusters.

coordinated by O and P atoms. In this structure, the mean Au· · ·Au dis-
tance is 308.6 pm, which is shorter than the sum of van der Waals radii,
2× 166 = 332 pm.

(2) S[AuP(o-tol)3]2+
4 : In S[AuP(o-tol)3]4(ClO4)2, the SAu4 unit takes a square-

pyramidal configuration, as shown in Fig. 19.6.1(b). The Au atoms are near
linearly coordinated by S and P atoms. The Au· · ·Au distances lie in the
range of 288.3 to 293.8 pm, and the mean distance is 293.0 pm. The distance
of the S atom to the center of the Au4 basal plane is 130 pm.

(3) Au11I3[P(p-C6FH4)3]7: The structure of the molecule is shown in
Fig. 19.6.1(c). In the Au11 cluster, the central Au atom is surrounded by ten
Au atoms, which form an incomplete icosahedron (lacking two vertices)
with each vertex carrying one terminal iodo ligand or P(p-C6FH4)3 group.
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(a)

(c)

Au

S

Au

I

P

P

Au

P

O
(b)

Fig. 19.6.1.
Molecular structure of gold cluster
compounds: (a) O[AuP(o-tol)3]+3 , (b)

S[AuP(o-tol)3]2+
4 , (c)

Au11I3[P(p-C6FH4)3]7.

The meanAu· · ·Au distance from the central atom to the surrounding atoms
is 268 pm, and the mean distance between the ten Au vertices is 298 pm.

In other gold(I) cluster compounds, such as tetrahedral [(AuL)4(µ4-N)]
and [(AuL)4(µ4-O)]2+, trigonal-bipyramidal [(AuL)5(µ5-C)]+, [(AuL)5(µ5-
N)]2+ and [(AuL)5(µ5-P)]2+, and octahedral [(AuL)6(µ6-C)]2+ and [(AuL)6
(µ6-N)]3+ (L = PPh3 or PR3), the Au· · ·Au distances lie in the range 270 to
330 pm. These data substantiate that aurophilicity is a common phenomenon
among gold cluster complexes.

mes
N

Au
Au

O
Cl

Au

(a) (b) (c)

Fig. 19.6.2.
Structure of some gold oligomeric
aggregate molecules: (a) Au5(mes)5
(mes = C6H3Me3-2,4,6); (b) [LAuCl]4,

L = HN(CH2)4CH2; and
(c) [O(AuPPh3)3]2.

-- --

Aurophilicity presumably arises from relativistic modification of the gold
valence AOs energies, which brings the 5d and 6s orbitals into close proxim-
ity in the energy level diagram. In more recent theoretical studies, the effect
is primarily attributed to electron correlation, which takes precedence over
6s/5d hybridization. To date, the origin of the aurophilicity has not yet been
unambiguously established.

Making use of the concept of aurophilicity, simple gold compounds can be
combined to yield complicated oligomeric aggregates in designed synthesis.
Figure 19.6.2 shows the structures of three oligomeric molecules.
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Fig. 19.6.3.
Some mixed Au and Ag metal complexes
(filled circle, Au; open circle, Ag): (a)
[Au(CH2PPh2)2]2[Ag(OClO3)2]2,
(b) [Au(C6F5)]2[Ag(C6H6)]2, and
(c) [Au(C6F5)]2[Ag(COMe2)]2.

L

L L

L

Ag

Au

R

R

(a) (b) (c)

R R’

R’ R’

R’ R’’ R’’

L’’

L’’

R’’ R’’
L’

L’

L’ L’

Ag

Au Au

Ag

R

19.6.2 Argentophilicity and mixed metal complexes

By analogy to aurophilicity, argentophilicity has been demonstrated to exist
in silver cluster complexes. In the crystal structures of a variety of silver(I)
double and multiple salts containing a fully encapsulated acetylide dianion
C2−

2 (IUPAC name acetylenediide) in different polyhedral silver cages (see
Fig. 14.3.11), there exist many Ag· · ·Ag contacts shorter than twice the van
der Waals radius of silver (2 × 170 = 340 pm). Further details are given in
Chapter 20.

Taking advantage of both aurophilicity and argentophilicity, tetranuclear
mixed-metal complexes which contain pairs of Au and Ag atoms have been
prepared, as shown in Fig. 19.6.3. In the preparation of mixed gold/silver
polynuclear complexes, aurophilicity and argentophilicity have been utilized
to promote cluster formation. Figure 19.6.4 shows the cores of several mixed
gold-silver clusters.

The [Au13Ag12] molecular skeletons (a) and (b) of [(Ph3P)10Au13Ag12Br8]
SbF6 and [(p-tol3P)10Au13Ag12Br8]Br, respectively, can each be considered as
two centered icosahedra sharing a common vertex. In an alternative descrip-
tion, the 25 metal atoms constitute three fused icosahedra, with a common
pentagon shared between an adjacent pair of fused icosahedra. Structure (a)
adopts the ses (staggered-eclipsed-staggered) configuration, and the sequence
of relative positioning of atoms isABBA. Structure (b) adopts the sss (staggered-
staggered-staggered) configuration, and the sequence is ABAB. The structure
of (c) consists of the three centered icosahedra, each of which uses one edge to
form a central triangle, with an additional Ag atom lying above and below it.
The structure of (d) consists of six Au atoms that form a planar six-membered
ring, with one Ag atom located at the center; each edge of the Au6 hexagon is
bridged by a bridging C atom, with three C atoms lying above the plane and
three below it.

19.6.3 Metal string molecules

A metal string molecule contains a linear metal-atom chain in its structure. In a
molecule of this type, all or a part of the neighboring metal atoms are involved
in metal–metal bonding interactions. A general strategy of synthesizing metal
string molecules is to design bridging ligands possessing multiple donor sites
arranged in a linear sequence such that they can coordinate simultaneously to
metal centers.
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  (a)  (b)

  (c)  (d)

A

B

B

B

A

B

A

s s

s

s

e

s

A

Fig. 19.6.4.
Skeletal structure of some mixed Au/Ag
clusters (filled circle, Au; open circle,
Ag): (a) [Au13Ag12] in
[(Ph3P)10Au13Ag12Br8]SbF6,
(b) [Au13Ag12] in
[(p-tol3P)10Au13Ag12Br8]Br,
(c) [Au18Ag20] in
[(p-tol3P)12Au18Ag20Cl14], and
(d) [AgAu6C6] in
[Ag(AuC6H2(CHMe2)3)6CF3SO3.

(1) Metal string molecules constructed with oligo(α-pyridyl)amido
ligand

The common formula of a series of polypyridylamines is shown below:

N N N N N

H H n

n = 0, Hdpa

n = 1, H2tpda

n = 2, H3teptra

n = 3, H4peptea

Four fully deprotonated polypyridylamines, or oligo(α-pyridyl)amido lig-
ands, can coordinate simultaneously to metal atoms from the upper, lower,
front, and back directions to form a metal string molecule:

4N N N N N
M

n
M M MM XX

n M (II)
0 Cr, Ru, Co, Rh, Ni, Cu
1 Cr, Co, Ni
2 Cr, Ni
3 Cr, Ni

As an oligo(α-pyridyl)amido ligand has an odd number of donor sites, the
corresponding metal string molecule has the same number of metal atoms.

From the reactions of Ni(II) salts with polypyridylamines, a series of metal
string molecules, in which the number of nickel atom varies from 3 (i.e., n =
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0) to 9 (i.e., n = 3), have been prepared. The structures of these molecules
are very similar. Figure 19.6.5 shows the structure of [Ni9(µ9-peptea)4Cl2],
(H4peptea = pentapyridyltetramine). The nine Ni atoms are in a straight line,
and the distances between atoms are approximately equal. Every N atom in
the four (α-pyridyl)amido ligands coordinates to one Ni atom. Each Ni atom
is coordinated by four N atoms to form a square oriented perpendicular to the
metal string. Because of steric repulsion between H atoms of the neighboring
pyridine rings, the (α-pyridyl)amido ligands are helically distributed around
the string axis, as shown in Fig. 19.6.5.

Fig. 19.6.5.
Structure of [Ni9(µ9-peptea)4Cl2] (filled circle, Ni; large open circle, Cl; small open circle, N; and small filled circle, C).

The Ni–Ni and Ni–N distances in a family of related metal string molecules,
in which the numbers of Ni atoms are 3, 5, 7, and 9, are shown in Fig. 19.6.6.
The Ni–Ni distances increase from the center toward each terminal, and the
Ni–N distances are nearly equal except for the outermost ones. These effects

(a) (b)

(c)

(d)

244.3 238.3 230.5

190 190

190193193

222.0230.7237.9

238.6 229.9 225.4 224.0

193 192 192 192 211

211

211

189 210

Fig. 19.6.6.
Bond lengths in metal string molecules (in pm): (a) Ni3(µ3-dpa)4Cl2, (b) Ni5(µ5-tpda)4Cl2, (c) Ni7(µ7-teptra)4Cl2, and
(d) Ni9(µ9-peptea)4Cl2.
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are attributable to the fact that, unlike the inner metal atoms, each terminal
metal atom has square-pyramidal coordination.

The metal string molecule [Cr5(tpda)4Cl2]· 2Et2O·4CHCl3 contains alter-
nately long and short metal–metal distances, as shown in Fig. 19.6.7. The short
Cr–Cr distances are 187.2 and 196.3 pm, which correspond to the quadruple
bond Cr==Cr. The long Cr· · · Cr distances are 259.8 and 260.9 pm, which are
indicative of nonbonding interaction.

196.3 260.9 187.2 259.8

Fig. 19.6.7.
Structure of Cr5(tpda)4Cl2 (bond length
in pm) (large filled circle, Cr; small filled
circle, C; large open circle, Cl; small
open circle, N).

(2) Hexanuclear metal string cationic complexes
Modification of the H2tpda ligand by substitution of the central pyridyl
group with a naphthyridyl group gives rise to the new ligand 2,7-bis
(α-pyridylamino)-1,8-naphthyridine (H2bpyany), which has been used to gen-
erate a series of hexanuclear metal string complexes of the general formula
[M6(µ6-bpyany)4X2]Yn (M=Co, Ni; X− = terminal monoanionic ligand;
Y− = counter monoanion; n = 1, 2). All compounds contain a linear hex-
anuclear cation helically supported by four bpyany2− ligands and conforms
approximately to idealized D4 molecular symmetry if the axial terminal ligands
are ignored. The structure of a representative example is shown in Fig. 19.6.8.

N N
H

N N N
H

N

 H2bpyany

Fig. 19.6.8.
Structural formula of the H2bpyany
ligand and molecular geometry of the
hexanuclear monocation in crystalline
[Co6(µ6-bpyany)4Cl2]PF6.

The averaged metal–metal bond lengths in the series of linear M12+
6

(M = Co, Ni) complexes and their M11+
6 one-electron reduction products are

Table 19.6.1. Hexanuclear metal string complexes and average M–M bond distances

M X Y n Bond distance (pm) averaged for D4 symmetry
Outermost Mid-way Innermost

Co NCS PF6 2 231.3(1) 225.5(1) 224.5(1)
Co NCS PF6 1 231.3(1) 227.3(1) 225.6(1)
Co CF3SO3 CF3SO3 2 228.3(1) 224.3(1) 226.7(1)
Co CF3SO3 CF3SO3 1 228.4(1) 224.9(1) 225.1(1)
Ni NCS BPh4 2 240.3(1) 231.4(1) 229.6(1)
Ni Cl PF6 1 241.1(3) 228.5(3) 220.2(3)
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tabulated in Table 19.6.1. In all complexes the outermost M–M distance is in
general slightly longer than the inner bond distances, but neither the nature of
the axial ligands nor the addition of one electron to the Co12+

6 system results
in significant structural changes. In contrast, the innermost Ni–Ni bond shows
a substantial decrease of 9.4(3) pm upon one-electron reduction of the Ni12+

6
system. The crystallographic data are consistent with the proposed model of a
delocalized electronic structure for the Con+

6 (n = 11, 12) complexes, whereas
the extra electron in the Ni12+

6 system partakes in a δ bond constructed from
dx2−y2 orbitals of the naphthyridyl-coordinated nickel atoms.

(3) Mixed-valence metal string complexes of gold
The structures of two gold metal string molecules are shown in Fig. 19.6.9. The
formula of molecule (a) in this figure is:

R Au Au Au Au Au R

+

(AuR4)–, R = C6F5

R

R

P

PP

P
Ph2

Ph2 Ph2

Ph2

From the Au–Au bond lengths shown and related theoretical calcu-
lations, the valence states of the Au atoms are in the sequence of
Au(III)–Au(I)–Au(I)–Au(I)–Au(III). The molecular cation is composed of
the central unit [Au(C6F5)2]− and two outer dinuclear gold cations
[Au2{(CH2)2(PPh2)}2C6F5]+, with the central unit donating electrons to the
outer units.

The formula of molecule (b) in Fig. 19.6.9 is

R Au Au Au Au R

P

PP

P
Ph2

Ph2 Ph2

Ph2

Au Au

P

P
Ph2

Ph2

2+

(ClO4
–)2, R = C6F3H2

Fig. 19.6.9.
Structures of two mixed-valence metal
string molecules (large filled circle, Au;
large open circle, R group; small filled
circle, C; small open circle, P; bond
lengths in pm).

275.5 264.0

283.8 273.7 265.4

(a)

(b)
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From theAu–Au bond lengths shown and theoretical calculations, the valence
states of the Au atoms are identified as Au(III)–Au(I)–Au(I)–Au(I)–Au(I)–
Au(III).

Rh

N

C Fig. 19.6.10.
Structure of a section of the infinite
rhodium chain, [Rh(CH3CN)1.5+

4 ]∞.

19.6.4 Metal-based infinite chains and networks

Infinite metal-based chains are expected to be much more promising as con-
ducting inorganic “molecular wires” than short-chain oligomers. The infinite
rhodium chain, [Rh(CH3CN)1.5+

4 ]∞, consists of alternating Rh–Rh distances of
284.42 and 292.77 pm, and is a semiconductor. Figure 19.6.10 shows a section
of the infinite cationic chain in the polymer [{Rh(CH3CN)4}(BF4)1.5]∞.

A series of polymeric complexes featuring the metallophilic interaction
between gold(I) and thallium(I) has been synthesized employing acid–base
strategy. For example, the treatment of Bu4N[Au(C6Cl5)2] with TlPF6 in THF
gave [AuTl(C6Cl5)2]n, which consists of an infinite linear (Tl· · ·Au· · · )∞
chain consolidated by unsupported AuI · · · TlI interactions, as shown in
Fig. 19.6.11(a).

In the presence of triphenylphosphine oxide, and also depending on the nature
of the pentahalophenyl group employed, similar synthetic reactions afforded
[AuTl(C6F5)2(Ph3P=O)2]n and [AuTl(C6Cl5)2(Ph3P=O)2(THF)]n with the

Au Tl Au Tl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

300.44pm 297.26
Au Tl Au Tl

F(b)(a)

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

F

308.62 pm 303.58

Ph3P Ph3P

Ph3PPh3P

O O

O O

Fig. 19.6.11.
Structure of (a) [AuTl(C6Cl5)2]n and (b) [AuTl(C6F5)2(Ph3P=O)2]n.
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Au

Cl

Cl
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Cl
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Cl
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Tl

Ph3P O

Au

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl
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Cl
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Cl

Cl

Cl

Cl

Cl

Cl

Cl

Cl

Tl'

PPh3O
THF

316.30

314.52
332.05

305.29pm

Fig. 19.6.12.
Structure of [AuTl(C6Cl5)2(Ph3P=O)2(THF)]n.

phosphine oxide incorporated into their polymeric structures. In the pentafluo-
rophenyl complex, thallium(I) adopts a distorted trigonal-bipyramidal geometry
with one equatorial coordination site filled by a stereochemically active lone
pair, forming a linear (Tl· · ·Au· · · )∞ chain, as shown in Fig. 19.6.11(b).
In contrast, the pentachlorophenyl complex comprises an infinite zigzag
(Tl· · ·Au· · · Tl′ · · ·Au· · · )∞ chain constructed from two kinds of thallium(I)
centers with distorted trigonal-pyramidal and pseudo-tetrahedral geometries for
Tl and Tl′ (each possessing a stereochemically active lone pair), respectively,
as shown in Fig. 19.6.12.

Tl Au Au Tl

C6F5 C6F5

C6F5 C6F5

C6F5 C6F5

C6F5 C6F5

C6F5 C6F5

C6F5 C6F5

C6F5 C6F5

C6F5 C6F5

C6F5 C6F5

C6F5 C6F5

C6F5 C6F5

C6F5 C6F5

C6F5 C6F5

C6F5 C6F5

Tl Au Au Tl

Tl Au Au Tl

Tl Au Au Tl

Tl Au Au Tl Tl Au Au Tl

Tl Au Au Tl

TlTl

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

N

301.61

340.92 pm

N

N

Fig. 19.6.13.
Layer structure of [AuTl(C6F5)2(bipy)]n. The bridging 4,4’-bypyridine ligand is represented by a thick rod joining its two terminal N atoms.
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Fig. 19.6.14.
Layer structure of [Au2Tl2(C6Cl5)4(bipy)1.5(THF)]n. Atom Tl is shown in boldface type to distinguish it from atom Tl′. Each bridging
4,4’-bypyridine ligand is represented by a thick rod joining the terminal N atoms.

Similar acid–base reactions with the introduction of the exo-bidentate
bridging ligand 4,4′-bipyridine led to the formation of [AuTl(C6F5)2(bipy)]n
and [Au2Tl2(C6Cl5)4(bipy)1.5(THF)]n, which exhibit higher-dimensional poly-
meric structures. In the pentafluorophenyl complex, linear tetranuclear
Tl· · ·Au· · ·Au· · · Tl units are linked through bipyridine bridges to form a
honeycomb-like network, as shown in Fig. 19.6.13.

The pentachlorophenyl complex contains two kinds of thallium(I) centers:
atom Tl is coordinated by two bipyridyl N atoms, whereas atom Tl′ is bound to
a THF ligand and a bipyridyl N atom, as shown in Fig. 19.6.14. The asymmetric
unit contains two non-equivalent bridging 4,4′-bipyridine ligands, one of which
occupies a 1̄ site in the unit cell and necessarily exists in the planar configuration.
Hetero-metallophilic interaction generates infinite (Tl· · ·Au· · · Tl′ · · ·Au· · · )∞
zigzag chains linked by the first kind of bridging bipyridine ligand (located in
a general position and nonplanar) across Tl and Tl′ to form a brick-like layer.
The centrosymmetric bipyridine, which is bound to Tl and represented by a
dangling rod in the figure, connects the Tl atoms in adjacent layers to form a
double layer.
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20Supramolecular Structural
Chemistry

20.1 Introduction

Supramolecular chemistry is a highly interdisciplinary field of science cov-
ering the chemical, physical, and biological features of molecular assemblies
that are organized and held together by intermolecular interactions. The basic
concepts and terminology were introduced by J.-M. Lehn, who together with
D. J. Cram and C. J. Pedersen were awarded the 1987 Nobel Prize in Chemistry.
In the words of Lehn, supramolecular chemistry may be defined as chemistry
beyond the molecule, i.e., the study of organized entities of higher complexity
(supermolecule) resulting from the association of two or more chemical species
consolidated by intermolecular forces. The relationship of supermolecules to
molecules and intermolecular binding is analogous to that of molecules to atoms
and covalent bonds (Fig. 20.1.1).

A clarification about vocabulary in the chemical literature: the prefix in the
word supermolecule (a noun) is derived from the Latin super, meaning “more
than” or “above”; it should not be used interchangeably with the prefix supra in
the word supramolecular (an adjective), which means “beyond” or “at a higher
level than.”

20.1.1 Intermolecular interactions

Intermolecular interactions constitute the core of supramolecular chemistry. The
design of supermolecules requires a clear understanding of the nature, strength,
and spatial attributes of intermolecular bonding, which is a generic term that
includes ion pairing (Coulombic), hydrophobic and hydrophilic interactions,
hydrogen bonding, host–guest complementarity, π–π stacking, and van der
Waals interactions. For inorganic systems, coordination bonding is included in
this list if the metal acts as an attachment template. Intermolecular interactions
in organic compounds can be classified as (a) isotropic, medium-range forces
that define molecular shape, size, and close packing and (b) anisotropic, long-
range forces, which are electrostatic and involve heteroatom interactions. In
general, isotropic forces (van der Waals interactions) usually mean dispersive
and repulsive forces, including C · · · C, C · · · H, and H · · · H interactions, while
most interactions involving heteroatoms (N, O, Cl, Br, I, P, S, Se, etc.) with
one another or with carbon and hydrogen are anisotropic in character, includ-
ing ionic forces, strongly directional hydrogen bonds (O–H · · · O, N–H · · · O),
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RECEPTOR

SUBSTRATE

MOLECULAR and
SUPRAMOLECULAR

DEVICES
SUPERMOLECULE

A, B, C, D,...
SYNTHESIS

covalent bonds

COMPLEXATION

intermolecular
interaction

recognition

transformation

translocation

organized
assemblies

MOLECULAR SUPRAMOLECULAR POLYMOLECULAR

functional
components

Fig. 20.1.1.
Conceptual development from molecular to supramolecular chemistry: molecules, supermolecules, molecular devices, and supramolecular
devices.

weakly directional hydrogen bonds (C–H · · · O, C–H · · · N, C–H · · · X, where
X is a halogen, and O–H · · ·π), and other weak forces such as halogen · · ·
halogen, nitrogen · · · nitrogen, and sulfur · · · halogen interactions. In a crys-
tal, various strong and weak intermolecular interactions coexist (sometimes in
delicate balance, as is demonstrated by the phenomenon of polymorphism) and
consolidate the three-dimensional scaffolding of the molecules.

Fig. 20.1.2.
Molecular recognition through hydrogen
bonding of (a) adenine in a cleft, and
(b) barbituric acid in a macrocyclic
receptor (right).
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20.1.2 Molecular recognition

The concept of molecular recognition has its origin in effective and selective bio-
logical functions, such as substrate binding to a receptor protein, enzyme reac-
tions, assembly of protein–DNA complexes, immunological antigen–antibody
association, reading of the genetic code, signal induction by neurotransmitters,
and cellular recognition. Many of these functions can be performed by artificial
receptors, whose design requires an optimal match of the steric and electronic
features of the non-covalent intermolecular forces between substrate and recep-
tor. Some of the recognition processes that have been well studied by chemists
include spherical recognition of metal cations by cryptates, tetrahedral recogni-
tion by macrotricyclic cryptands, recognition of specific anions, and the binding
and recognition of neutral molecules through Coulombic, donor–acceptor, and
in particular hydrogen-bonding interactions (see Fig. 20.1.2).
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Fig. 20.1.3.
Aspects of supramolecular hierarchy in
increasing superstructural complexity.

Molecular recognition studies are typically carried out in solution, and
the effects of intermolecular interactions are often probed by spectroscopic
methods.

20.1.3 Self-assembly

The term “self-assembly” is used to designate the evolution toward spatial con-
finement through spontaneous connection of molecular components, resulting
in the formation of discrete or extended entities at either the molecular or the
supramolecular level. Molecular self-assembly yields covalent structures, while
in supramolecular self-assembly several molecules spontaneously associate into
a single, highly structured supramolecular aggregate. In practice, self-assembly
can be achieved if the molecular components are loaded with recognition fea-
tures that are mutually complementary; i.e., they contain two or more interaction
sites for establishing multiple connections. Thus well-defined molecular and
supramolecular architectures can be spontaneously generated from specifically
“engineered” building blocks. For example, self-assembly occurs with inter-
locking of molecular components using π–π interactions (Fig. 20.1.3) and the
formation of capsules with some curved molecules bearing complementary
hydrogen bonding sites (Fig. 20.1.4).

The cyclic octapeptide cyclo-[–(D-Ala–L-Glu–D-Ala–L-Gln)2–] has been
designed by Ghadiri and co-workers to generate a hydrogen-bonded
organic nanotube having an internal diameter of approximately 0.7–0.8 nm
(Fig. 20.1.5).

20.1.4 Crystal engineering

Structural chemists and crystallographers rightfully regard an organic crystal
as the “supermolecule par excellence,” being composed of Avogadro’s num-
ber of molecules self-assembled by mutual recognition at an amazing level
of precision. In contrast to a molecule, which is constructed by connecting
atoms with covalent bonds, a molecular crystal (solid-state supermolecule) is
built by connecting molecules with intermolecular interactions. The process of
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Fig. 20.1.5.
(a) Structural formula of cyclo-[–(d-Ala–l-Glu–d-Ala–l-Gln)2–]; Ala = alanine, Glu = glutamic acid, Gln = glutamine, d or l indicates
chirality at the carbon atom. (b) Perspective view of the backbone of the flat, ring-shaped octapeptide. (c) Tubular architecture generated from a
stack of octapeptide molecules held by intermolecular hydrogen bonding.
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Table 20.1.1. Comparison of crystal engineering and molecular recognition

Crystal engineering Molecular recognition

(1) Concerned with the solid state Concerned mainly with solution phase
(2) Considers both convergent and divergent binding of

molecules
Most cases only focus on convergent binding of
molecules

(3) Intermolecular interaction are examined directly in terms
of their geometrical features obtained from X-ray crys-
tallography

Intermolecular interactions are studied indirectly in
terms of association constants obtained from various
spectroscopic (NMR, UV, etc.) methods

(4) Design strategies involve the control of the three-
dimensional arrangement of molecules in the crystal;
such an arrangement ideally results in desired chemical
and physical properties

Design strategies are confined to the mutual recognition
of generally two species: the substrate and the
receptor; such recognition is expected to mimic some
biological functionality

(5) Both strong and weak interactions are considered inde-
pendently or jointly in the design strategy

Only strong interactions such as hydrogen bonding are
generally used for the recognition event

(6) The design may involve either single-component species
or multicomponent species; a single-component molecu-
lar crystal is a prime example of self-recognition

The design usually involves two distinct species: the
substrate and the receptor; ideas concerning
self-recognition are poorly developed

(7) In host–guest complexes, the host cavity is composed of
several molecules whose synthesis may be fairly simple;
the geometry and functionality of the guest molecules are
often of significance in the complexation

In host–guest complexes, the host cavity is often a
single macrocyclic molecule whose synthesis is
generally tedious; the host framework rather than the
guest molecule plays a critical role in the complexation

(8) Systematic retrosynthetic pathways may be deduced with
the Cambridge Structural Database (CSD) to design
new recognition patterns using both strong and weak
interactions

There is no systematic set of protocols for the
identification of new recognition patterns; much
depends on individual style and preferences

crystallization is one of the most precise and spectacular examples of molecular
recognition.

The determination of crystal structures by X-ray crystallography provides
precise and unambiguous data on intermolecular interactions. Crystal engi-
neering has been defined by Desiraju as “the understanding of intermolecular
interactions in the context of crystal packing and in the utilization of such
knowledge in the design of new solids with desired physical and chemical
properties.”

Crystal engineering and molecular recognition are twin tenets of supramolec-
ular chemistry that depend on multiple matching of functionalities among
molecular components. Historically, crystal engineering has been developed
by structural and physical chemists with a view to design new materials
and solid-state reactions, whereas molecular recognition has been developed
by physical organic chemists interested in mimicking biological processes.
The methodologies and goals of these two related fields are summarized in
Table 20.1.1.

20.1.5 Supramolecular synthon

In the context of organic synthesis, the term “synthon” was introduced by Corey
in 1967 to refer to “structural units within molecules which can be formed and/or
assembled by known or conceivable synthetic operations.” This general defini-
tion was modified by Desiraju for supramolecular chemistry: “Supramolecular
synthons are structural units within supermolcules which can be formed and/or
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assembled by known or conceivable synthetic operations involving intermolec-
ular interactions.” The goal of crystal engineering is to recognize and design
synthons sufficiently robust to be carried over from one network structure to
another, which ensures generality and predictability. Some common examples
of supramolecular synthons are shown in Fig. 20.1.6.

It should be emphasized that supramolecular synthons are derived from
designed combinations of interactions and are not identical to the interactions.
Asupramolecular synthon incorporates both chemical and geometrical recogni-
tion features of two or more molecular fragments, i.e., both explicit and implicit
involvement of intermolecular interactions. However, in the simplest cases, a
single interaction may be regarded as a synthon, for instance Cl · · · Cl, I · · · I or
N · · · Br [Figs. 20.1.6(23–25)]. Besides the strong hydrogen bonds (N–H · · · O
and O–H · · · O), which are expected to be frequently involved in supramolecular
synthons [Figs. 20.1.6(1–5)], weak hydrogen bonds of the C–H· · ·X variety and
π–π interactions may also be significant. Although such weaker interactions
have low energies in the range of 2 to 20 kJ mol−1, their cumulative effects
on molecular association and crystal structure and packing are just about as
predictable as the effects of conventional hydrogen bonding.

The nature of the X · · · X interaction in trimer synthon 44 is illustrated in
Fig. 20.1.7. The C–X bond in a halo-substituted phenyl ring is polarized, so
that there are regions of positive and negative electrostatic potentials around
the X atom. The cyclic interaction of three C–X groups optimizes electrostatic
potential overlap in the halogen trimer system.

20.2 Hydrogen-bond directed assembly

Hydrogen bonding is an indispensable tool for designing molecular aggre-
gates within the fields of supramolecular chemistry, molecular recognition,
and crystal engineering. It is well recognized that in organic crystals certain
building blocks or supramolecular synthons have a clear pattern preference,
and molecules that contain these building blocks tend to crystallize in spe-
cific arrangements with efficient close packing. As already mentioned in
Section 11.2.1, three important rules are generally applicable to the for-
mation of hydrogen bonds between functional groups in neutral organic
molecules:

(a) all strong donor and acceptor sites are fully utilized;
(b) intramolecular hydrogen bonds giving rise to a six-membered ring will

form in preference to intermolecular hydrogen bonds; and
(c) the remaining proton donors and acceptors not used in (b) will form

intermolecular hydrogen bonds to one another.

For additional rules and a full discussion the reader is referred to the papers of
Etter [Acc. Chem. Res. 23, 120–6 (1990); J. Phys. Chem. 95, 4601–10 (1991)].
Figure 20.2.1 shows a hydrogen-bonded polar sheet where 3,5-dinitrobenzoic
acid and 4-aminobenzoic acid are co-crystallized.
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Representative supramolecular synthons. Synthon Nos. 1–35 are taken from G. R. Desiraju, Angew. Chem. Int. Ed. 34, 2311 (1995). Nos. 33:
known as EF (edge-to-face). and 34, OFF (offset face-to-face) phenyl-phenyl interactions from, M. L. Scudder and I. G. Dance, Chem. Eur. J. 8,
5456 (2002); I. Dance, Supramolecular inorganic chemistry, in G. R. Desiraju (ed.), The Crystal as a Supramolecular Entity, Perspectives in
Supramolecular Chemistry, vol. 2, Wiley, New York, 1996, pp. 137–233; 36 from T. Steiner, Angew. Chem. Int. Ed. 41, 48 (2002); 37 from
A. Nangia, CrystEngComm 17, 1 (2002); 38 from P. Vishweshwar, A. Nangia and V. M. Lynch, CrystEngComm 5, 164 (2003); 39 from
F. H. Allen, W. D. S. Motherwell, P. R. Raithby, G. P. Shields and R. Taylor, New J. Chem., 25 (1999); 40 from R. K. Castellano, V. Gramlich and
F. Diederich, Chem. Eur. J. 8, 118 (2002); 41 from C.-K. Lam and T. C. W. Mak, Angew. Chem. Int. Ed. 40, 3453 (2001); 42 from
M. D. Hollingsworth, M. L. Peterson, K. L. Pate, B. D. Dinkelmeyer and M. E. Brown, J. Am. Chem. Soc. 124, 2094 (2002); 43, observed in
classical hydroquinone clathrates and phenolic compounds, from T. C. W. Mak and B. R. F. Bracke, Hydroquinone clathrates and diamondoid
host lattices, in D. D. MacNicol, F. Toda and R. Bishop (eds.), Comprehensive Supramolecular Chemistry, vol. 6, Pergamon Press, New York,
1996, pp. 23–60; 44 from C. K. Broder, J. A. K. Howard, D. A. Keen, C. C. Wilson, F. H. Allen, R. K. R. Jetti, A. Nangia and G. R. Desiraju, Acta
Crystallogr. B56, 1080 (2000); 45 from D. S. Reddy, D. C. Craig and G. R. Desiraju, J. Am. Chem. Soc. 118, 4090 (1996); 46 from B. Goldfuss,
P. v. R. Schleyer and F. Hampel, J. Am. Chem. Soc. 119, 1072 (1997); 47 from P. J. Langley, J. Hulliger, R. Thaimattam and G. R. Desiraju, New
J. Chem., 307 (1998); 48 from B. Moulton and M. J. Zaworotko, Chem. Rev. 101, 1629 (2001).

20.2.1 Supramolecular architectures based on the carboxylic acid
dimer synthon

Carboxylic acids are commonly used as pattern-controlling functional groups
for the purpose of crystal engineering. The most prevalent hydrogen bonding
patterns formed by carboxylic acids are the dimer and the catemer. Carboxylic
acids containing small substituent groups (formic acid, acetic acid) form the
catemer motif, while most others (especially aromatic carboxylic acids) form
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Fig. 20.1.7.
(a) Areas of positive and negative
electrostatic potentials at the halogen
substituent of a phenyl ring and
(b) stabilization of the X · · · X trimer
supramolecular synthon 44.

dimers, although not exclusively. In the case of di- and polycarboxylic acids,
terephthalic acid, and isophthalic acid form linear and zigzag ribbons (or tapes),
respectively, trimesic acid (1,3,5-benzenetricarboxylic acid) with its threefold
molecular symmetry forms a hydrogen-bonded sheet, and adamantane-1,3,5,
7-tetracarboxylic acid forms a diamondoid network (Fig. 20.2.2).
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Fig. 20.2.1.
Polar sheet formed by 3,5-dinitrobenzoic
acid and 4-aminobenzoic acid using the
nitro-amine and carboxylic acid dimer
motif.

If a bulky hydrophobic group is introduced at the 5-position of isoph-
thalic acid, a cyclic hexamer (rosette) is generated. In the crystal structure of
trimesic acid, the voids are filled through interpenetration of two honeycomb
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Fig. 20.2.2.
(a) One-dimensional linear tape and
(b) crinkled (or zigzag) tape,
(c) two-dimensional sheet (or layer), and
(d) three-dimensional network (or
framework) held together by the
carboxylic acid dimer synthon.
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networks with additional stabilization by π–π stacking interactions. In the host
lattice of adamantane-1,3,5,7-tetracarboxylic acid, the large voids are filled by
interpenetration and small guest molecules.

20.2.2 Graph-set encoding of hydrogen-bonding pattern

The robust intermolecular motifs found in organic systems can be used to direct
the synthesis of supramolecular complexes in crystal engineering. In the interest
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Some examples of graph-set descriptors of hydrogen-bonded structural motifs.

of adopting a systematic notation for the topology of hydrogen-bonded motifs
and networks, a graph-set approach has been suggested by Etter and Ward. This
provides a description of hydrogen-bonding schemes in terms of four pattern
designators (G), i.e., infinite chain (C), ring (R), discrete complex (D), and
intramolecular (self-associating) ring (S), which together with the degree of the
pattern (n, the number of atoms comprising the pattern), the number of donors
(d ), and the number of acceptors (a) are combined to form the quantitative
graph-set descriptor Ga

d (n). Examples of the use of these quantitative descriptors
are given in Fig. 20.2.3.

Preferable hydrogen-bonding patterns of a series of related compounds con-
taining a particular type of functional group can be obtained by graph-set
analysis. For example, most primary amides prefer forming cyclic dimers and
chains with a common hydrogen-bonding pattern C(4)[R1

2(6)]. Furthermore,
important insights may be gained by graph-set analysis of two seemingly unre-
lated organic crystals, which may lead to similar hydrogen-bonding patterns
involving different functional groups. Some of the most common supramolec-
ular synthons found in the Cambridge Structure Database are illustrated
below:
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The same set of hydrogen bond donors and acceptors may be connected
in alternate ways to generate distinguishable motifs, giving rise to different
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Fig. 20.2.4.
Patterns of hydrogen bonding found in
three polymorphic forms of
5,5-diethylbarbituric acid. The graph-set
descriptors are (a) C(6)[R2

2(8)R2
4(12)],

(b) C(10)[R2
2(8)], and

(c) C(6)[R2
2(8)R4

4(16)].

O O O

O

(a) (c)

(b)

O O

NN NNH H
H H

Et Et

Et Et

O

O O

O

O O

NN

NN

H H

H H

Et Et

Et Et

O

O O

O

O O

NN

NN

H H

H H

Et Et

Et Et

O O O

OO O

NN NNH H
H H

Et Et

Et Et

polymorphic forms. A good example is 5,5-diethylbarbituric acid, for which
three crystalline polymorphs that exhibit polymeric ribbon structures are shown
in Fig. 20.2.4.

20.2.3 Supramolecular construction based on complementary hydrogen
bonding between heterocycles

The simple heterocyclic compounds melamine and cyanuric acid possess
perfectly matched sets of donor/acceptor sites, 6/3 and 3/6 respectively, for com-
plementary hydrogen bonding to form a planar hexagonal network (Fig. 20.2.5).
Three distinct structural motifs can be recognized in this extended array: (a) lin-
ear tape,, (b) crinkled tape and (c) cyclic hexameric aggregate (rosette). Using
barbituric acid derivatives and 2,4,6-triaminopyrimidine derivatives, the group
of Whitesides has successfully synthesized all three preconceived systems. The
conceptual design involves disruption of N–H · · · O and N–H · · · N hydrogen
bonding in specific directions by introducing suitable hydrophobic bulky groups
(Fig. 20.2.6).

The group of Reinhoudt has reported the construction of a D3 hydrogen-
bonded assembly of three calix[4]arene bismelamine and six barbituric acid
derivatives (Fig. 20.2.7).

20.2.4 Hydrogen-bonded networks exhibiting the supramolecular
rosette pattern

Ward has shown that the self-assembly of cations and anions in a guanidinium
sulfonate salt, through precise matching of donor and acceptor sites, gives rise to
a layer structure displaying the rosette motif, which is not planar but corrugated
since the configuration at the S atom is tetrahedral (Fig. 20.2.8). If the sulfonate
R group is small, a bilayer structure with interdigitated substituents is formed
[structural motif (a)]. When R is large, a single layer structure with substituents
alternating on opposite sides of the hydrogen-bonded layer is obtained [motif
(b)]. Alternatively, the use of disulfonates provides covalent linkage between
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Fig. 20.2.5.
Hexagonal layer structure of the 1:1 complex of melamine and cyanuric acid. Three kinds of assembly in lower dimensions are possible:
(a) linear tape, (b) crinkled tape, and (c) rosette.

adjacent layers to generate a pillared three-dimensional network, which may
enclose a variety of guest species G [motif (c)].

The design and construction of hydrogen-bonded “supramolecular rosettes”
from guanidinium/organic sulfonate, trimesic acid, or cyanuric acid/melamine
depend on utilization of their topological equivalence, i.e., equal numbers of
donor and acceptor hydrogen bonding sites and C3 symmetry of the component
moieties.As a modification of this strategy, a new kind of “fused-rosette ribbon”
can be constructed with the guanidinium cation (GM+) and hydrogen carbonate
dimer (HC−)2 in the ratio of 1:1 (Fig. 20.2.9).

Each supramolecular rosette comprises a quasi-hexagonal assembly of
two GM+ and four HC− units connected by strong NGM–H · · · OHC and
OHC–H · · · OHC hydrogen bonds. The (HC−)2 dimer is shared as a common
edge of adjacent rosettes and makes full use of its remaining acceptor sites in
linking with GM+. On the other hand, each GM+ in the resulting linear rib-
bon (or tape) still possesses a pair of free donor sites, and it is anticipated that
some “molecular linker” with suitable acceptor sites may be used to bridge an
array of parallel ribbons to form a sheet-like network. This design objective has
been realized in the synthesis and characterization of the inclusion compound
5[C(NH2)+3 ]·4(HCO−3 )·3[(n-Bu)4N+]·2[1,4-C6H4-(COO−)2]·2H2O with the
terephthalate (TPA2−) anion functioning as a linker.
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Fig. 20.2.6.
(a) Linear tape and (b) rosette 1:1 complexes constructed with barbituric acid derivatives and 2,4,6-triaminopyrimidine derivatives.

As shown in Fig. 20.2.10, each HC− provides one donor and one accep-
tor site to form a planar dimer motif [A, R2

2(8)]. The remaining eight acceptor
sites of each (HC−)2 dimer are topologically complemented by four GM+

units, such that each GM+ connects two (HC−)2 dimers through two pairs
of N–Hsyn · · · O hydrogen bonds [B, R2

2(8)]. Thus two GM+ units and two
(HC−)2 dimers constitute a planar, pseudo-centrosymmetric, quasi-hexagonal
supramolecular rosette [C, R4

6(12)] with inner and outer diameters of approxi-
mately 0.55 and 0.95 nm, respectively. In the resulting fused-rosette ribbon, the
remaining two exo-orientated donor sites of each GM+ unit form a pair of N–
Hanti · · · O hydrogen bonds [D, R2

2(8)] with a TPA2− carboxylate group. Thus
two types of ladders are developed: type (I) [TPA2− composed of C(10) to C(17)
and O(13) to O(16)] is consolidated by two independent water molecules that
alternately bridge carboxylate oxygen atoms of neighboring steps by pairs of
donor Ow–H· · · O hydrogen bonds, generating a centrosymmetric ring motif [E,
R4

4(22)] and pentagon pattern [F, R3
6(12)]; in the type (II) ladder [TPA2− com-

posed of C(18) to C(25) and O(17) to O(20)], carboxylate oxygen atoms O(18)′
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(c), which are formed depending on the
size of R and the nature of the sulfonate
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Fig. 20.2.9.
Design of supramolecular rosette tape
and linker. From T. C. W. Mak and
F. Xue, J. Am. Chem. Soc. 122, 9860–1
(2000).
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and O(19) belonging to adjacent steps are connected by the remaining GM+

ions, which are not involved in rosette formation, via two pairs of donor hydro-
gen bonds [G, R1

2(6)] (Fig. 20.2.11(a)). The remaining two donor sites of each
free GM+ ion are linked to a carboxylate oxygen atom and a water molecule
of TPA2− column (I) of an adjacent layer to form a pentagon motif [H, R2

3(8)],
thus yielding a three-dimensional pillared layer structure (Fig. 20.2.11(b)). The
large voids in the pillar region generate nanoscale channels extending along the
[100] direction. The dimensions of the cross section of each channel are approx-
imately 0.8× 2.2 nm, within which three independent [(n-Bu)4N]+ cations are
aligned in separate columns in a well-ordered manner.

O O O O

N

N N

H H

O O O OH HO

HH H

HH G G

 

2.2 nm

0.8 nm 

= TPA2– = Rosette = GM+

(a) (b)

Fig. 20.2.11.
(a) Hydrogen-bonding motifs G and H involving linkage of the free guanidinium ion to neighboring rosette ribbon-terephthalate layers.
(b) Schematic presentation of the pillared layer structure.

Drawing upon the above successful design of a linear “fused-rosette ribbon”
assembled from the (HC−)2 dimer and GM+ in 1:1 molar ratio, it would be
challenging to attempt the hydrogen-bond mediated construction of two pre-
meditated anionic rosette-layer architectures using guanidinium and ubiquitous
C3-symmetric oxo-anions that carry unequal charges, namely guanidinium-
carbonate I and guanidinium-trimesate II, as illustrated in Fig. 20.2.12.

In principle, the negatively charged, presumably planar network I can be
combined with one molar equivalent of tetraalkylammonium ion R4N+ of
the right size as interlayer template to yield a crystalline inclusion compound
of stoichiometric formula (R4N+)[C(NH2)+3 ]CO2−

3 that is reminiscent of the
graphite intercalates. Anionic network II, on the other hand, needs twice
as many monovalent cations for charge balance, and furthermore possesses
honeycomb-like host cavities of diameter ∼700 pm that must be filled by
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Fig. 20.2.12.
Design of supramolecular rosette layers.
From C.-K. Lam and T. C. W. Mak,
J. Am. Chem. Soc. 127, 11536–7 (2005).
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suitable guest species. The expected formula of the corresponding inclusion
compound is (R4N+)2[C(NH2)+3 ] [1,3,5-C6H3(COO−)3] · G, where G is an
entrapped guest moiety with multiple hydrogen-bond donor sites to match
the nearly planar set of six carboxylate oxygens that line the inner rim of
each cavity.

Crystallization of (R4N+)[C(NH2)+3 ]CO2−
3 by variation of R, based on con-

ceptual network I, was not successful. Taking into account the fact that the
guanidinium ion can function as a pillar between layers and the carbonate ion is
capable of forming up to twelve acceptor hydrogen bonds, as observed in crys-
talline bis(guanidinium) carbonate and [(C2H5)4N+]2·CO2−

3 · 7(NH2)2CS [see
Fig. 11.2.2(b)], the synthetic strategy was modified by incorporating a second
guanidinium salt [C(NH2)3]X as an extra component. After much experimenta-
tion with various combinations of R and X, the targeted construction of network
I, albeit in undulating form, was realized through the isolation of crystalline
4[(C2H5)4N+] · 8[C(NH2)+3 ] · 3(CO3)2− · 3(C2O4)2− · 2H2O (1).

In the asymmetric unit of (1), there are two independent carbonate anions
and five independent guanidinium cations, which are henceforth conveniently
referred to by their carbon atom labels in bold type. Carbonate C(1) and
guanidinium C(3) each has one bond lying in a crystallographic mirror plane;
together with carbonate C(2) and guanidinium C(4), they form a nonplanar
zigzag ribbon running parallel to the b axis, neighboring units being con-
nected by a pair of strong N+–H· · · O− hydrogen bonds (Fig. 20.2.13).Adjacent
anti-parallel {[C(NH2)3]+· CO2−

3 }∞ ribbons are further cross-linked by strong
N+–H· · · O− hydrogen bonds to generate a highly corrugated rosette layer,
which is folded into a plane-wave pattern by guanidinium C(5) (Fig. 20.2.14).
Guanidinium C(6) and C(7) protruding away from carbonate C(1) and C(2)
are hydrogen-bonded to the twofold disordered oxalate ion containing C(8) and
C(9) (Fig. 20.2.14), forming a pouch that cradles the disordered (C2H5)4N+ ion.
The carbonate ions C(1) and C(2) each form eleven acceptor hydrogen bonds,
only one fewer than the maximum number. The resulting composite hydrogen-
bonded layers at x = 1/4 and 3/4 are interconnected by [(C2O2−

4 · (H2O)2]∞

Fig. 20.2.13.
Projection diagram showing a portion of
the nonplanar anionic rosette network I
concentrated at a = 1/4 in the crystal
structure of (1). The atom types are
differentiated by size and shading, and
hydrogen bonds are indicated by dotted
lines. Adjacent antiparallel
{[C(NH2)3]+· CO2−

3 }∞ ribbons run
parallel to the b axis. Symmetry
transformations: A (1/2 − x, 1− y,
1/2 + z); B (1/2 − x, y − 1/2, z − 1/2).
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C9 C7

C6

Oxalate-water
chain Fig. 20.2.14.

Perspective view of the crystal structure
of (1) along [001]. The undulating
guanidinium-carbonate rosette network I
appears as a sinusoidal cross section.
Adjacent composite hydrogen-bonded
layers are interconnected by a
[C2O2−

4 · (H2O)2]∞ chain. The
disordered oxalate is shown in one
possible orientation, and the two
different types of disordered Et4N+ ions
(represented by large semi-transparent
spheres) are included in the pouches and
the zigzag channels running parallel to
the [010] direction, respectively.

chains derived from centrosymmetric oxalate C(10) and water molecules O1w
and O2w via strong +N–H· · · O− hydrogen bonds to generate a complex
three-dimensonal host framework, within which the second kind of disor-
dered (C2H5)4N+ ions are accommodated in a zigzag fashion within channels
extending along the [010] direction.

The predicted assembly of guanidinium-trimesate network II was
achieved through the crystallization of [(C2H5)4N+]2 · [C(NH2)

+
3 ] · [1,3,

5-C3H3(COO−)3] · 6H2O (2). The guanidinium and trimesate ions are con-
nected together by pairs of strong charge-assisted +N–H· · · O− hydrogen bonds
to generate an essentially planar rosette layer with large honeycomb cavities
[Fig. 20.2.15 (left)]. Three independent water molecules constitute a cyclic
(H2O)6 cluster of symmetry 2, which is tightly fitted into each host cavity
by adopting a flattened-chair configuration in an out-of-plane orientaion, with
O· · · O distances comparable to 275.9 pm in deuterated ice Ih. Each water
molecule has its ordered hydrogen atom pointing outward to form a strong
O–H· · · O− hydrogen bond with a carboxylate oxygen on the inner rim of the
cavity. The well-ordered (C2H5)4N+ guests, represented by large spheres, are
sandwiched between anionic rosette host layers with an interlayer spacing of
∼7.5 Å [Fig. 20.2.15 (right)].
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Fig. 20.2.15.
(Left) Projection diagram showing the hydrogen-bonding scheme in the infinite rosette layer II of (2). Only one of the two cyclic arrangements
of disordered H atoms lying on the edges of each (H2O)6 ring is displayed. Symmetry transformation: A (1− x, y, 1/2 − z). (Right)
Sandwich-like crystal structure of (2) viewed along the b axis.

The malleability of guanidinium-carbonate network I, rendered possible
by the prolific hydrogen-bond accepting capacity of its carbonate building
block, opens up opportunities for further exploration of supramolecular assem-
bly. The flattened-chair (H2O)6 guest species, filling the cavity within robust
guanidinium-trimesate layer II and being comparable to that in the host lattice
of bimesityl-3,3′-dicarboxylic acid, may conceivably be replaced by appro-
priate hydrogen-bond donor molecules. The present anionic rosette networks
are unlike previously reported neutral honeycomb lattices of the same (6,3)
topology, thus expanding the scope of de novo engineering of charge-assisted
hydrogen-bonded networks using ionic modular components, from which
discrete molecular aggregates bearing the rosette motif may be derived.

20.3 Supramolecular chemistry of the coordination bond

The predictable coordination geometry of transition metals and the directional
characteristics of interacting sites in a designed ligand provide the blueprint
(or programmed instructions) for the rational synthesis of a wide variety of
supramolecular inorganic and organometallic systems. Current research is con-
centrated in two major areas: (a) the construction of novel supermolecules from
the intermolecular association of a few components and (b) the spontaneous
organization (or self-assembly) of molecular units into one-, two-, and three-
dimensional arrays. In the solid state, the supermolecules and supramolecular
arrays can further associate with one another to yield gigantic macroscopic
conglomerates, i.e., supramolecular structures of higher order.

20.3.1 Principal types of supermolecules

The supermolecules that have been synthesized include large metallocyclic
rings, helices, host–guest complexes, and interlocked structures such as
catenanes, rotaxanes, and knots.
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[2]rotaxane [2]catenanepolyrotaxane polycatenane

molecular necklace topomers of a trefoil knot Borromean link

Fig. 20.3.1.
Catenanes, rotaxanes, molecular
necklace, knots, and Borromean link.

The simplest catenane is [2]catenane which contains two interlocked rings. A
polycatenane has three or more rings interlocked in a one-to-one linear fashion.
A rotaxane has a ring component (or a bead) threaded by a linear component (or
a string) with a stopper at each end. A polyrotaxane has several rings threaded
onto the same string.Amolecular necklace is a cyclic oligorotaxane with several
rings threaded by a closed loop. There are two topological isomers for a trefoil
knot. The Borromean link is composed of three interlocked rings such that the
scission of any one ring unlocks the other two. These topologies are shown in
Fig. 20.3.1.

20.3.2 Some examples of inorganic supermolecules

(1) Ferric wheel
The best known example of a large metallocyclic ring is the “ferric wheel”
[Fe(OMe)2(O2CCH2Cl)]10 prepared from the reaction of oxo-centered trinu-
clear [Fe3O(O2CCH2Cl)6(H2O)3](NO3) and Fe(NO3)3·9H2O in methanol. An
X-ray analysis showed that it is a decameric wheel having a diameter of about
1.2 nm with a small and unoccupied hole in the middle (Fig. 20.3.2). Each pair
of iron(III) centers are bridged by two methoxides and one O, O′-chloroacetate
group.

(2) Hemicarceplex
A carcerand is a closed-surface, globular host molecule with a hollow interior
that can enclose guest species such as small organic molecules and inorganic
ions to form a carceplex. A hemicarcerand is a carcerand that contains portals
large enough for the imprisoned guest molecule to escape at high tempera-
tures, but otherwise remains stable under normal laboratory conditions. The
hemicarcerand host molecule designed by Cram shown in Fig. 20.3.3 has
idealized D4h symmetry with its fourfold axis roughly coincident with the
long axis of the ferrocene guest, which lies at an inversion center and hence
adopts a fully staggered D5d conformation. The 1,3-diiminobenzene groups
connecting the northern and southern hemispheres of the hemicarceplex are
arranged like paddles in a paddle wheel around the circumference of the central
cavity.
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Fig. 20.3.2.
Molecular structure of the ferric wheel.

Cl

C

O
Fe

(3) [2]Catenane Pt(II) complex
The coordination bond between a pyridyl N atom and Pt(II) is normally quite
stable, but it becomes labile in a highly polar medium at high concentration.
Figure 20.3.4 shows the overall one-way transformation of a binuclear cyclic
Pt(II) complex into a dimeric [2]catenane framework, which can be isolated as
its nitrate salt upon cooling.

Fig. 20.3.3.
A hemicarceplex consisting of a
hemicarcerand host molecule enclosing a
ferrocene guest molecule.
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(4) Helicate
In a helicate the polytopic ligand winds around a linear array of metal ions lying
on the helical axis, so that its ligation sites match the coordination requirements
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Fig. 20.3.4.
Self-assembly of a [2]catenane Pt(II)
complex.

of the metal centers. The two enantiomers of a helicate are designated P- for a
right-handed helix and M - for a left-handed helix [Fig. 20.3.5(a)]. An example
of a M -type Cu(I) double helicate is shown in Fig. 20.3.5(b). Double helicates
containing up to five Cu(I) centers and triple helicates involving the wrapping
of oligobidentate ligands around octahedral Co(II) and Ni(II) centers have been
synthesized.

helical axis

ligation site Cu

Cu

Cu

spacer

oligobidentate
ligand

Fig. 20.3.5.
(a) Structural features of a M -type
helicate (only one strand is shown). (b) A
Cu(I) double helicate containing an
oligopyridine ligand.

(5) Molecular trefoil knot
The first molecular trefoil knot was successfully synthesized by Dietrich-
Buchecker and Sauvage according to the scheme shown in Fig. 20.3.6. A spe-
cially designed ligand consisting of two diphenolic 1,10-phenanthroline units
tied together by a tetramethylene tether was reacted with [Cu(MeCN)4]BF4 to
give a dinuclear double helix. This precursor was then treated under high dilu-
tion conditions with two equivalents of the diiodo derivative of hexaethylene
glycol in the presence of Cs2CO3 to form the cyclized complex in low yield.
Finally, demetallation of this helical dicopper complex yielded the desired free
trefoil knot with retention of topological chirality. It should be noted that in the
crucial cyclization step, the double helical precursor is in equilibrium with a
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Fig. 20.3.6.
Synthetic scheme for dicopper and free trefoil knots. From C. O. Dietrich-Buchecker, J. Guilhem, C. Pascard and J.-P. Sauvage, Angew. Chem.
Int. Ed. 29, 1154–6 (1990).

non-helical species, which leads to an unknotted dicopper complex consisting
of two 43-membered rings arranged around two Cu(I) centers in a face-to-face
manner (Fig. 20.3.7).

(6) Molecular Borromean link
The connection between chemistry and topology is exemplified by the elegant
construction of a molecular Borromean link that consists of three identical
interlocked rings. In the designed synthesis, each component ring comprises
two short and two long segments. The programmed, one-step self-assembly
process is indicated by the scheme illustrated in Fig. 20.3.8.

Self-assembly of the molecular Borromean link (a dodecacation BR12+) is
achieved by a template-directed cooperative process that results in over 90%
yield. Each of the three component rings (L) in BR12+ is constructed from
[2+2] macrocyclization involving two DFP (2,6-diformylpyridine) and two
DAB (diamine containing a 2,2′-bipyridyl group) molecules. Kinetically labile
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2
+2 –2cyclize

cyclize

Fig. 20.3.7.
Template synthesis of a free trefoil knot and an unknotted product.

zinc(II) ions serve efficiently as templates in multiple molecular recognition
that results in precise interlocking of three macrocyclic ligands:

6DFB + 6[DABH4](CF3CO2)4 + 9Zn(CF3CO2)2
CH3OH−→ [L3(ZnCF3CO2)6] · 3[Zn(CF3CO2)4] + 12H2O

|||
[BR(CF3CO2)6] · 3[Zn(CF3CO2)4]

An X-ray analysis of [BR(CF3CO2)6]·3[Zn(CF3CO2)4] revealed that the
hexacation [BR(CF3CO2)6]6+ has S6 symmetry with each macrocyclic ligand
L adopting a chair-like conformation (Fig. 20.3.8). The interlocked rings are
consolidated by six Zn(II) ions, each being coordinated in a slightly distorted
octahedral geometry by the endo-tridentate diiminopyridyl group of one ring,
the exo-bidentate bipyridyl group of another ring, and an oxygen atom of a
CF3CO−2 ligand. Each bipyridyl group is sandwiched unsymmetrically between
a pair of phenolic rings at π–π stacking distance of 361 and 366 pm in different
directions.

In the crystal packing, the [BR(CF3CO2)6]6+ ions are arranged in hexag-
onal arrays with intermolecular π–π stacking interactions of 331 pm and
C–H· · · O=C hydrogen bonds (H· · · O 252 pm), generating columns along c
that accommodate the [Zn(CF3CO2)4]2− counterions.

20.3.3 Synthetic strategies for inorganic supermolecules and coordination
polymers

Two basic approaches for the synthesis of inorganic supermolecules and one-,
two-, and three-dimensional coordination polymers have been developed:
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Fig. 20.3.8.
Synthetic scheme for one-step supramolecular assembly of the molecular Borromean link [L3Zn6]12+ ≡ BR12+; its three component
interlocked rings are differentiated by different degrees of shading. Each octahedral zinc(II) ion is coordinated by an endo-N3 ligand set and a
chelating bipyridyl group belonging to a different ring, the monodentate acetate ligand being omitted for clarity. From K. S. Chichak,
S. J. Cantrill, A. R. Pease, S.-H. Chiu, G. W. V. Cave, J. L. Atwood and J. F. Stoddart, Science (Washington) 304, 1308–12 (2004).

(1) Transition-metal ions are employed as nodes and bifunctional ligands
as spacers. Commonly used spacer ligands are pseudohalides such as
cyanide, thiocyanate, and azide, and N-donor ligands such as pyrazine, 4,4′-
bipyridine, and 2,2′-bipyrimidine. Besides discrete supermolecules, some
one-, two-, and three-dimensional architectural motifs generated from this
strategy are shown in Fig. 20.3.9.

If all nodes at the boundary of a portion of a motif are bound by ter-
minal ligands, a discrete molecule will be formed. An example is the
square grid shown in Fig. 20.3.10. Reaction of the tritopic ligand 6,6′-
bis[2-(6-methylpyridyl)]-3,3′-bipyridazine (Me2bpbpz) with silver triflate
in 2:3 molar ratio in nitromethane results in self-assembly of a complex
of the formula [Ag9(Me2bpbpz)6](CF3SO3)9. X-ray analysis showed that
the [Ag9(Me2bpbpz)6]9+ cation is in the form of a 3 × 3 square grid,
with two sets of Me2bpbpz ligands positioned above and below the mean
plane of the silver centers, as shown in Fig. 20.3.10(a), so that each Ag(I)
atom is in a distorted tetrahedral environment. The grid is actually distorted
into a diamond-like shape due to the curved nature of the ligand, and the

iranchembook.ir/edu

https://iranchembook.ir/edu


Supramolecular Structural Chemistry 759

(a)

(h) (i) (j)

(k) (l)

(m) (n) (o)

(b) (c) (d) (e) (f)

One-dimensional

Two-dimensional

Three-dimensional

(g)

Fig. 20.3.9.
Schematic representation of the motifs generated from the connection of transition metals by bifunctional spacer ligands. One-dimensional:
(a) linear chain, (b) zigzag chain, (c) double chain, (d) helical chain, (e) fishbone, (f) ladder, and (g) railroad. Two-dimensional: (h) square grid,
(i) honeycomb, (j) brick wall, (k) herringbone, and (l) bilayer. Three-dimensional: (m) six-connected network, (n) four-connected diamondoid
network, and (o) four-connected ice-Ih network.
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Fig. 20.3.10.
The 3× 3 square molecular grid
[Ag9(Me2bpbpz)6]9+: (a) structural
formula and (b) molecular structure.
From [P. N. W. Baxter, J-M. Lehn,
J. Fischer and M-T. Youinou. Angew.
Chem. Int. Ed. 33, 2284–7 (1994).
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N
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Me

Me

(a) (b)

Ag N C

angle between the mean planes of the two sets of ligands is about 72◦

(Fig. 20.3.10(b)).
(2) Exodentate multitopic ligands are used to link transition metal ions

into building blocks. Some examples of such ligands are 2,4,6-tris(4-
pyridyl)-1,3,5-triazine, oligopyridines, and 3- and 4-pyridyl-substituted
porphyrins.

In the following sections, selected examples from the recent literature are
used to illustrate the creative research activities in transition-metal supramolec-
ular chemistry.

20.3.4 Molecular polygons and tubes

(1) Nickel wheel
The reaction of hydrated nickel acetate with excess 6-chloro-2-pyridone
(Hchp) produces in 60% yield a dodecanuclear nickel complex, which
can be recrystallized from tetrahydrofuran as a solvate of stoichiometry
[Ni12(O2CMe)12(chp)12(H2O)6(THF)6]. X-ray structure analysis revealed that
this wheel-like molecule (Fig. 20.3.11) lies on a crystallographic threefold axis.
There are two kinds of nickel atoms in distorted octahedral coordination: Ni(1)
is bound to three O atoms from acetate groups, two O atoms from chp ligands,
and an aqua ligand, whereas Ni(2) is surrounded by two acetate O atoms, two
chp O atoms, an aqua ligand, and the terminal THF ligand. All ligands, other
than THF, are involved in bridging pairs of adjacent nickel atoms. The struc-
ture of this nickel metallocycle resembles that of the decanuclear “ferric wheel”
[Fe(OMe)2(O2CCH2Cl)]10 (see Fig. 20.3.2). Both complexes feature a closed
chain of intersecting M2O2 rings, with each ring additionally bridged by an
acetate ligand. They differ in that in the ferric wheel the carboxylate ligands are
all exterior to the ring, whereas in the nickel wheel half of the acetate ligands
lie within the central cavity.

iranchembook.ir/edu

https://iranchembook.ir/edu


Supramolecular Structural Chemistry 761

N
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OCl NCl OH

Hchp

Fig. 20.3.11.
Molecular structure of the nickel wheel. The bridging pyridone and terminal THF ligands point alternately above and below the mean plane of
the twelve nickel atoms. From A. J. Blake, C. M. Grant, S. Parsons, J. M. Rawson and R. E. P. Winpenny. Chem. Commun., 2363–4 (1994).

(2) Nano-sized tubular section
The ligand 2,4,6-tris[(4-pyridyl)methylsulfanyl]-1,3,5-triazine (tpst) possesses
nine possible binding sites to transition metals for the assembly of supramolec-
ular systems. Its reaction with AgNO3 in a 1:2 molar ratio in DMF/MeOH
followed by addition of AgClO4 produces Ag7(tpst)4(ClO4)2(NO3)5(DMF)2.
In the crystal structure, two tpst ligands coordinate to three silver(I) ions to form
a bicyclic ring. Two such rings are fitted together by Ag–N and Ag–S bonds
involving a pair of bridging silver ions to generate a nano-sized tubular section
[Ag7(tpst)4] with dimensions of 1.34 × 0.96 × 0.89 nm, which encloses two
perchlorate ions and two DMF molecules (Fig. 20.3.12). The tubular sections
are further linked by additional Ag–N and Ag–S bonds to form an infinite chain.
The nitrate ions are located near the silver ions and imbedded in between the
linear polymers.

The two independent tpst ligands are each bound to four silver atoms but
in different coordination modes: three pyridyl N plus one thioether S, or three
pyridyl N plus one triazine N. The silver atoms exhibit two kinds of coordination
modes: normal linear AgN2 and a very unusual AgN2S2 mode of distorted
square-planar geometry.

(3) Infinite square tube
The reaction of 2-aminopyrimidine (apym), Na[N(CN)2], and M(NO3)2.6H2O
(M = Co, Ni) gives M[N(CN)2]2(apym), which consists of a packing of infinite
molecular tubes of square cross section. In each tube, the metal atoms constitute
the edges and three connecting N(CN)−2 (dicyanamide) ligands form the sides
(Fig. 20.3.13). The octahedral coordination of the metal atoms is completed
by chains of two-connecting ligands (with the amide nitrogen uncoordinated)
which occupy the outside of each edge, as well as monodentate apym ligands.
The length of a side of the molecular tube is 486.4 pm for M = Co and 482.1
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Fig. 20.3.12.
(a) Formation and structure of the nano-sized tubular section [Ag7(tpst)4]. Bonds formed by bridging silver ions are indicated by broken lines.
(b) Linkage of tubular sections to form a linear polymer. From M. Hong, Y. Zhao, W. Su, R. Cao, M. Fujita, Z. Zhou and A. S. C. Chan. Angew.
Chem. Int. Ed. 39, 2468–70 (2000).

pm for M = Ni. In the crystal structure extensive hydrogen bonding between
the tubes occurs via the terminal apym ligands.

Fig. 20.3.13.
Structure of a square molecular tube in
M[N(CN)2]2(apym) (M=Co, Ni). From
P. Jensen, S. R. Batten, B. Moubaraki
and K. S. Murray, Chem. Commun.,
793–4 (2000).
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20.3.5 Molecular polyhedra

(1) Tetrahedral iron(II) host–guest complex
The structural unit M(tripod)n+ (tripod = CH3C(CH2PPh2)3) has been used
as a template for the construction of many supramolecular complexes.
For example, the host–guest complex [BF4 ⊂ {(tripod)3Fe}4(trans-
NCCH=CHCN)6(BF4)4](BF4)3 has been synthesized from the reaction of tri-
pod, Fe(BF4)3·6H2O, and fumaronitrile in a 4:4:6 molar ratio in CH2Cl2/EtOH
at 20◦C. The tetranuclear Fe(II) complex has idealized symmetry T , with a
crystallographic twofold axis passing through the midpoints of a pair of edges
of the Fe4 tetrahedron (Fig. 20.3.14). The B–F bonds of the encapsulated BF−4
ion point toward the corner iron atoms. Each face of the Fe4 tetrahedron is
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Fig. 20.3.14.
Molecular structure of the tetrahedral
Fe(II) host–guest complex cation. The
capping BF−4 groups and the phenyl rings
of the tripod ligands have been omitted
for clarity. From S. Mann, G. Huttner,
L. Zsolnai and K. Heinze, Angew. Chem.
Int. Ed. 35, 2808–9 (1996).

capped by a BF−4 group, and the remaining three are located in voids between
the complex cations.

(2) Cubic molecular box
The cyanometalate box {Cs ⊂ [Cp*Rh(CN)3]4[Mo(CO)3]4}3− is formed
in low yield from the reaction of [Cp*Rh(CN)3]− (Cp* = C5Me5) and
(η6-C6H3Me3)Mo(CO)3 in the presence of cesium ions, and it can be crys-
tallized as a Et4N+ salt. The Cs+ ion serves as a template in the self-assembly
of the anionic molecular box, which has a cubic Rh4Mo4(µ-CN)12 core with
three exterior carbonyl ligands attached to each Mo and a Cp* group to each Rh.
The encapsulated Cs+ ion has a formal coordination number of 12 if interaction
with the centers of cyano groups is considered (Fig. 20.3.15).

(3) Lanthanum square antiprism
A tris-bidentate pyrazolone ligand, 4-(1,3,5-benzenetricarbonyl)-tris(3-methyl-
1-phenyl-2-pyrazoline-5-one (H3L), has been designed and synthesized. When
this rigid C3-symmetric ligand was reacted with La(acac)3 in dimethylsufoxide
(DMSO), the complex La8L8(DMSO)24 was obtained in 81% yield. An X-ray
analysis revealed a square-antiprismatic structure with idealized D4d symmetry,
with each L3− ligand occupying one of the eight triangular faces (Fig. 20.3.16).
In the coordination sphere of the La3+ ion, six sites are filled by O atoms from
three L3− ligands and the remaining three by DMSO molecules which point
into the central cavity. It was found that the DMSO ligands could be replaced
partially by methanol in recrystallization.
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Fig. 20.3.15.
Structure of the molecular cube that
encloses a Cs+ ion. From
K. K. Klausmeyer, S. R. Wilson and
T. B. Rauchfuss. J. Am. Chem. Soc. 121,
2705–11 (1999).
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Fig. 20.3.16.
Synthesis and structure of the La8L8 cluster. Only one L3− ligand is shown, and the coordinating DMSO moleclues have been omitted for
clarity. From K. N. Raymond and J. Xu. Angew. Chem. Int. Ed. 39, 2745–7 (2000).
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PS
O

Ag
Fig. 20.3.17.
The super-adamantoid core of the
[Ag6(triphos)4(CF3SO−3 )4]2+ cage. The
broken lines indicate one of the two
adamantane cores formed by silver ions
and triflate ligands, whose F atoms have
been omitted for clarity. From
S. L. James, D. M. P. Mingos, A. J. P.
White and D. Williams, Chem Commun.,
2323–4 (2000).

(4) Super-adamantoid cage
A 2:3 molar mixture of MeC(CH2PPh2)3 (triphos) and silver triflate gives
[Ag6(triphos)4(CF3SO3)4](CF3SO3)2 in high yield. The inorganic “super-
adamantoid” cage [Ag6(triphos)4(CF3SO3)4]2+ exhibiting approximate T
molecular symmetry is formed with the CF3SO−3 ion as a template. In the
cage structure (Fig. 20.3.17), an octahedron of silver(I) ions is bound by two
sets of tritopic triphos and triflate ligands, each occupying four alternating faces
of the octahedron. Thus six silver ions and four triphos ligands constitute one
adamantane core, and likewise the silver ions and triflate ligands form a sec-
ond adamantane core. A novel feature in this structure is the “endo-methyl”
conformation of the triphos ligand, leaving only a small cavity at the center.

(5) Chemical reaction in a coordination cage
Flat panel-like ligands with multiple interacting sites have been used for metal-
directed self-assembly of many fascinating supramolecular 3D structures. A
simple triangular “molecular panel” is 2,4,6-tris(4-pyridyl)-1,3,5-triazine (L),
which has been employed by Fujita to assemble a discrete [{Pt(bipy)}6L4]12+

(bipy = 2,2′-bipyridine) coordination cage in quantitative yield by treating
Pt(bipy)(NO3)2 with L in a 3:2 molar ratio. In this complex cation, the Pt(II)
atoms constitute an octahedron, and the triangular panels (L ligands) are located
at four of the eight faces (Fig. 20.3.18). The Pt(bipy)2+ fragment thus serves
as a cis-protected coordination block, each linking a pair of molecular panels.
The nano-sized central cavity with a diameter of ∼1 nm is large enough to
accommodate several guest molecules. Different types of guest species such
as adamantane, adamantane carboxylate, o-carborane, and anisole have been
used. In particular, C-shaped molecules such as cis-azobenzene and cis-stilbene
derivatives can be encapsulated in the cavity as a dimer stabilized by the
“phenyl-embrace” interaction.
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Fig. 20.3.18.
Self-assembly of [{Pt(bipy)}6L4]12+
cage.
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Useful chemical reactions have been carried out in the nano-sized cavity, as
illustrated by the in situ isolation of a labile cyclic siloxane trimer (Fig. 20.3.19).
In the first step, three to four molecules of phenyltrimethoxysilane enter the
cage and are hydrolyzed to siloxane molecules. Next, condensation takes place
in the confined environment to generate the cyclic trimer {SiPh(OH)O–}3,
which is trapped and stabilized in a pure form. The overall reaction yields an
inclusion complex [{SiPh(OH)O–}3 ⊂ {Pt(bipy)}6L4](NO3)12·7H2O, which
can be crystallized from aqueous solution in 92% yield. The all-cis configuration
of the cyclic siloxane trimer and the structure of the inclusion complex have
been determined by NMR and ESI-MS.

(6) Nanoscale dodecahedron
The dodecahedron is a Platonic solid that contains 12 fused pentagons formed
from 20 vertices and 30 edges. An organic molecule of this exceptionally
high icosahedral (Ih) symmetry is the hydrocarbon dodecahedrane C20H20,
which was first synthesized by Paquette in 1982. Recently an inorganic ana-
log has been obtained from edge-directed self-assembly of a metallocyclic
structure (Fig. 20.3.20) in a remarkably high 99% yield. The tridentate lig-
and at each vertex is tris(4′-pyridyl)methanol, and the linear bidentate subunit
at each edge is bis[4,4′-(trans-Pt(PEt3)2(CF3SO3))]benzene. The dodecahe-
dral molecule carries 60 positive charges and encloses 60 CF3SO−3 anions,
and its estimated diameter d along the threefold axis is about 5.5 nm. Using
bis[4,4′-(trans-Pt(PPh3)2(CF3SO3))]biphenyl as a longer linear linker, d for
the resulting enlarged dodecahedron increases to about 7.5 nm.

iranchembook.ir/edu

https://iranchembook.ir/edu


Supramolecular Structural Chemistry 767

OMe

OH OH
OHHO

O O
O

Si
Si l SiOH

OH

OMe

OMe

D2O D2O

n

n

Si

Si+ Fig. 20.3.19.
Generation and stabilization of cyclic
siloxane trimer in a self-assembled
coordination cage. From M. Yoshizawa,
T. Kusukawa, M. Fujita, and
K. Yamaguchi. J. Am. Chem. Soc. 122,
6311–12, (2000).
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Fig. 20.3.20.
Self-assembly of a nanoscale dodecahedron. The OH group attached to each quaternary C atom of the tris(4′-pyridyl)methanol molecule has
been omitted for clarity. From B. Olenyuk, M. D. Levin, J. A. Whiteford, J. E. Shield and P. J. Stang, J. Am. Chem. Soc. 121, 10434–5 (2000).
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Fig. 20.3.21.
The [Mn9(µ-CN)30Mo6] core of the
high-spin cluster. From J. Larionova,
M. Gross, M. Pilkington, H. Andres, H.
Stoeckli-Evans,
H. U. Güdel and S. Decurtins, Angew.
Chem. Int. Ed. 39, 1605–9 (2000).
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(7) High-spin rhombic dodecahedron
The cluster [MnII{MnII(MeOH)3}8(µ-CN)30{Mo(CN)3}6]·5MeOH.2H2O has
a pentadecanuclear core of idealized Oh symmetry, as shown in Fig. 20.3.21.The
nine Mn(II) ions constitute a body-centered cube, the six Mo(V) ions define
an octahedron, and the two polyhedra interpenetrate each other so that the
peripheral atoms exhibit the geometry of a rhombic dodecahedron. Each pair
of adjacent metal centers is linked by a µ-cyano ligand with Mo bonded to C and
Mn bonded to N. Each outer Mn(II) atom is surrounded by three methanol lig-
ands, leading to octahedral coordination. Similarly, three terminal cyano ligands
are bound to each Mo(V) to establish an eight-coordination environment.

Actually the cluster has a lower symmetry with a crystallographic C2 axis
passing through the central Mn atom and the midpoints of two opposite
Mo· · · Mo edges. The resulting neutral cluster has a high-spin ground state
with S = 251/2. [Note that S = 21/2 for Mn(II) and 1/2 for Mo(V); thus the total
spin of the system is 9× 21/2 + 6× 1/2 = 251/2.]

20.4 Selected examples in crystal engineering

Examples from the recent literature that illustrate various approaches in the
rational design of novel crystalline materials are given in this section.

20.4.1 Diamondoid networks

The three-dimensional network structure of diamond can be considered as con-
structed from the linkage of nodes (C atoms) with rods (C–C bonds) in a
tetrahedral pattern. From the viewpoint of crystal engineering, in a diamon-
doid network the node can be any group with tetrahedral connectivity, and the
linking rods (or linker) can be all kinds of bonding interactions (ionic, covalent,
coordination, hydrogen bond, and weak interactions) or molecular fragment.

The molecular skeletons of adamantane, (CH2)6(CH)4, and hexamethyl-
enetetramine, (CH2)6N4 (Fig. 20.4.1) constitute the characteristic structural
units of diamondoid networks containing one and two kinds of four-connected
nodes, respectively. If the rod is long, the resulting diamondoid network
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(a) (b)

Fig. 20.4.1.
Molecular structure of (a) adamantane
and (b) hexamethylenetetramine.

becomes quite porous, and stability can only be achieved by interpenetration.
If two diamondoid networks interpenetrate to form the crystal structure, the
degree of interpenetration ρ is equal to 2. Examples in which ρ ranges from 2
to 9 are known.

Some crystalline compounds that exhibit diamondoid structures are listed in
Table 20.4.1. The rod linking a pair of nodes can be either linear or nonlinear.

In the crystal structure of Cu2O, each O atom is surrounded tetrahedrally by
four Cu atoms, and each Cu atom is connected to two O atoms in a linear fashion.
Hence the node is the O atom, and the rod is O–Cu–O. Figure 20.4.2 shows a
single Cu2O diamondoid network, and the crystal structure is composed of two
interpenetrating networks.

In the crystal structure of ice-VII, which is formed under high pressure, the
node is the O atom, and the rod is a hydrogen bond. Since the H atoms are disor-
dered, the hydrogen bond is written as O· · · H· · · O in Table 20.4.1, indicating
equal population of O–H· · · O and O· · · H–O. The degree of interpenetration is
two, as shown in Fig. 20.4.3.

Figures 20.4.4(a) and 20.4.4(b) illustrate the crystal structure of the 1:1
complex of tetraphenylmethane and carbon tetrabromide. The nodes comprise
C(C6H5)4 and CBr4 molecules, and the each linking rod is the weak interac-
tion between a Br atom and a phenyl group. The hexamethylenetetramine-like
structural unit is outlined by broken lines. Figures 20.4.4(c) and 20.4.4(d) show
the crystal structure of tetrakis(4-bromophenyl)methane, which has a distorted
diamondoid network based on the hexamethylenetetramine building unit. If the
synthon composed of the aggregation of four Br atoms is considered as a node,
then two kinds of nodes (Br4 synthon and quatenary C atom) are connected by
rods consisting of p-phenylene moeities.

Figure 20.4.5 shows the crystal structure of [Cu{1,4-C6H4(CN)2}2]BF4. The
nodes are the four-connected Cu atoms, each being coordinated tetrahedrally
by N≡C–C6H4–C≡N ligands as rods. The adamantane-like structure unit is
shown in Fig. 20.4.5(a), and repetition of such units along a twofold axis leads
to fivefold interpenetration. The remaining space is filled by the BF−4 ions.

Figure 20.4.6 shows the crystal structure of C(C6H4C2C5NH4O)·
8C2H5COOH. The whole C(C6H4C2C5NH4O)4 molecule serves as a node, and
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Table 20.4.1. Diamondoid networks

Compound Node Linking rod Bond type
between nodes

Degree of
interpenetration ρ

Remarks

Diamond C C–C Covalent None
M2O
(M = Cu, Ag, Pb)

O O–M–O Ionic/covalent Two Fig. 20.4.2

Ice-VII O O· · · H· · · O H bond Two H atom
disordered
Fig. 20.4.3

KH2PO4 H2PO−4 O–H· · · O H bond Two K+ in channel

Methane-
tetraacetic acid

C(CH2COOH)4 Cyclic
dimeric
H bond

Three
C

O H

O

C

OH

O
(CH2)6N4·CBr4 (CH2)6N4,

CBr4

N· · · Br N· · · Br
interaction

Two Fig. 20.4.4(a)
Fig. 20.4.4(b)

C(C6H5)4·CBr4 C(C6H5)4,
CBr4

Br· · · phenyl
interaction

None

Br

C(4-C6H4Br)4 C(C6H4)4 unit,
Br4 synthon

C–Br Covalent Three Tetrahedral Br4
synthon consol-
idated by weak
Br· · · Br inter-
action
Fig. 20.4.4(c)
Fig. 20.4.4(d)

M(CN)2
(M = Zn, Cd)

M M←C≡N→M Coordination Two

[Cu(L)2]BF4
(L = p-C6H4(CN)2)

Cu Ag←NCC6H4CN→Ag Coordination Five BF−4 in channel
Fig. 20.4.5

C(C6H4C2C5NH4O)4
·8CH3CH2COOH

C(C6H4C2C5NH4O)4 Double N–H· · · O Cyclic
dimeric H
bond

Seven Fig. 20.4.6

[Ag(L)2]XF6
(L = 4, 4′-NCC6H4–
C6H4CN,
X = P, As, Sb)

Ag Ag←NCC6H4−
C6H4CN→Ag

Coordination Nine XF−6 in channel

[Ag(L)]BF4 · xPhNO2
(L = C(4-C6H4mCN )4)

Ag,
C(4-C6H4CN)4

CN→Ag Coordination None BF−4 and
PhNO2 guest
species in cavity

[Mn(CO)3(µ-OH)]4·
(H2NCH2CH2NH2)

[Mn(CO)3–(µ-OH)]4 O–H· · · NH2CH2–
CH2NH2 · ··H–O

H bond Three

Fig. 20.4.2.
Crystal structure of Cu2O: (a) single
diamondoid network and (b) two
interpenetrating networks.

(a) (b)
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Fig. 20.4.3.
(Left) Two interpenetrating networks in
the crystal structure of ice-VII. (Right)
Two views of an adamantane-like
structural unit.

(a) (b)

(c) (d)

Fig. 20.4.4.
(a) Crystal structure and (b) diamondoid
network of C(C6H5)4·CBr4. (c) Crystal
structure and (d) distorted diamondoid
network of C(4-C6H4Br).

(a) (b)

Fig. 20.4.5.
(a) Single diamond network of
[Cu{1,4-C6H4(CN)2}2] and (b) fivefold
interpenetration in the crystal structure.
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N
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O
H

N

O

O

O

H
N

H
N

H
N O

H N

O

Fig. 20.4.6.
Crystal structure of C(C6H4C2C5NH4O)4·8CH3CH2COOH. The structure of the host molecule is shown in the upper right and the pairwise
linkage of pyridone groups is shown at the lower right.

such nodes are connected by rods each comprising a pair of N–H· · · O hydro-
gen bonds between pyridine groups. As the resulting diamondoid network is
quite open, sevenfold interpenetration occurs, and the remaining space is used
to accommodate the ethanol guest molecules.

In the crystal structure of [Ag{C(4-C6H4CN)4}]BF4 ·xPhNO2, the structural
unit is of the hexamethylenetetramine type (Fig. 20.4.7). The nodes areAg atoms
and C(4-C6H4CN)4 molecules, and the rods are CN→Ag coordination bonds.
The void space is filled by the nitrobenzene guest molecules and BF−4 ions.

20.4.2 Interlocked structures constructed from cucurbituril

Cucurbituril is a hexameric macrocyclic compound with the formula
(C6H6N4O2)6 shaped like a pumpkin which belongs to the botanical family
Cucurbitaceae. This macrocyclic cavitand has idealized symmetry D6h with
a hydrophobic internal cavity of about 0.55 nm. The two portals, which are
each laced by six hydrophilic carbonyl groups, have a diameter of 0.4 nm
[Fig. 20.4.8(a)].

Like a molecular bead, cucurbituril can be threaded with a linear diammo-
nium ion to form an inclusion complex [Fig. 20.4.8(b)]. This is stabilized by the
fact that each protonated amino N atom forms hydrogen bonds to three of the
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Fig. 20.4.7.
Hexamethylenetetramine-like structure
unit in the diamondoid network of
[Ag{C(4-C6H4CN)4}]BF4.

six carbonyl groups at its adjacent portal. Since each rotaxane unit has two ter-
minal pyridyl groups, it can serve as an exo-bidentate ligand to link up transition
metals to form a polyrotaxane which may take the form of a linear coordination
polymer, a zigzag polymer, a molecular necklace, or a puckered layer network
[Fig. 20.4.8(c)]. The structures of the linear and zigzag polyrotaxane polymers
are shown in Fig. 20.4.9.

The two-dimensional network is constructed from the fusion of chair-like
hexagons with Ag(I) ions at the corners and rotaxane units forming the edges.
The nitrate ions lie above and below the puckered layer such that each Ag(I)
ion is coordinated by three rotaxanes and a nitrate ion in a distorted tetrahedral
geometry. In the crystal structure, two sets of parallel two-dimensional net-
works stacked in different directions make a dihedral angle of 69◦, and they
interpenetrate in such a way that a hexagon belonging to one set interlocks with
four hexagons of the other set, and vice versa.

The rotaxane building unit can be modified by replacing the 4-pyridyl group
by another functional group such as 3-cyanobenzyl. When a rotaxane unit built
in this way is treated with Tb(NO3)3 under hydrothermal conditions, the cyano
group is converted to the carboxylate group to generate a three-dimensional
coordination polymeric network. The basic building block of the framework
consists of a binuclear Tb3+ center and two types of rotaxane units: type I
having bridging 3-phenylcarboxylate terminals and type II having chelating
carboxylate terminals (Fig. 20.4.10).

The binuclear terbium centers and type I rotaxanes form a two-dimensional
layer. Stacked layers are further interconnected via type II rotaxanes to form
a three-dimensional polyrotaxane network, which has an inclined α-polonium
topology with the binuclear terbium centers behaving as six-connected nodes
(Fig. 20.4.10). The void space in the crystal packing is filled by a free rotaxane
unit, NO−3 and OH− counter ions, and water molecules.
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Fig. 20.4.8.
(a) Molecular structure of cucurbituril and its representation as a molecular bead or barrel, (b) cucurbituril threaded with a linear diammonium
ion to form an inclusion complex, and (c) rotaxane building unit obtained by threading cucurbituril with diprotonated
N,N′-bis(4-pyridylmethyl)-1,4-diaminobutane, and its subsequent reactions to yield linear polymers, a puckered layer, and a molecular triangle.
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(a)

(b)

Fig. 20.4.9.
Structure of (a) a linear polyrotaxane and (b) a zigzag polyrotaxane.

Type II

Type I

O1

O2

O5

O3
O4

O6

N3

N2

N1
O1W

TbA

Tb2

Tb

O2W

Fig. 20.4.10.
(a) Coordination geometry around the centrosymmetric binuclear terbium center. (b) Unit cell (top) and schematic representation (bottom) of the
α-polonium-type network. Two contacting black circles stand for a binuclear terbium center, and the solid and open rods represent type I and
type II rotaxane, respectively. From E. Lee, J. Heo and K. Kim, Angew. Chem. Int. Ed. 39, 2699–701 (2000).
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Fig. 20.4.11.
Domain model for hydrogen bonding
involving metal complexes. Here D and
A represent donor and acceptor atom,
respectively. Note that both M–H and
D–H units remain intact.

D

D
D

L

L

L

D

M

H

H

A

A

H

H

H

DH

AA

20.4.3 Inorganic crystal engineering using hydrogen bonds

The utilization of hydrogen bonding in inorganic crystal design has gained
prominence in recent years. A conceptual framework for understanding
supramolecular chemistry involving metals and metal complexes is provided
by the domain model according to Dance and Brammer (Fig. 20.4.11).

The central metal domain of a metal complex consists of the metal atom
M, a metal hydride group, or a number of metal atoms if a metal cluster com-
plex is considered. The ligand domain is composed of ligand atoms L directly
bonded with the metal center(s). The periphery domain is the outmost part of
the complex, consisting of those parts of the ligand not strongly influenced by
electronic interaction with the metal center.

Hydrogen bonding arising from donor groups (M)O–H and (M)N–H is
commonly observed. The σ -type coordinated ligands are hydroxy (OH), aqua
(OH2), alcohol (ROH), and amines (NH3, NRH2, NR2H). Acceptors include
halide-type (M–X with X = F, Cl, Br, I), hydride-type (D–H· · · H–M and
D–H· · · H–E with E = B, Al, Ga) and carbonyl-type (D–H· · · OC–M).

Some examples of the coordination polymers consolidated by hydrogen
bonding are discussed below.

(1) Chains
In the crystal structure of Fe[η5-CpCOOH]2, a hydrogen-bonded chain with car-
boxyl groups interacting via the R2

2(8) dimer synthon is formed [Fig. 20.4.12(a)].
The complex [Ag(nicotinamide)2]CF3SO3 has a ladder structure propagated via
the N–H· · · O catemer with rungs comprising R2

2(8) amide dimer interactions
[Fig. 20.4.12(b)]. Two CF3SO−3 ions (not shown) lie inside each centrosym-
metric macrocyclic ring, and their O atoms form N–H· · · O–S–O· · · H–N
hydrogen-bonded and weak Ag· · · O· · ·Ag bridges. The crystal structure of
[Ru(η5-Cp)(η5-1-p-tolyl-2-hydroxyindenyl)] features a zigzag chain linked by
O–H· · ·π(Cp) hydrogen bonds [Fig. 20.4.12(c)].

The crystal structures of [Pt(NCN–OH)Cl] and [Pt(SO2)(NCN–OH)Cl],
where NCN is the tridentate pincer ligand {C6H2-4-(OH)-2,6-(CH2NMe2)2}−,
are compared in Fig. 20.4.13. The colorless complex [Pt(NCN–OH)Cl]

iranchembook.ir/edu

https://iranchembook.ir/edu


Supramolecular Structural Chemistry 777

(a)

Fe
O H

C

N

O

Ag

T

(b)
T

(c)
T

Ru
C

O

H

T

Fig. 20.4.12.
Hydrogen-bonded chain in (a) Fe[η5-CpCOOH]2, (b) [Ag(nicotinamide)2]+, and (c) [Ru(η5-Cp)(η5-1-p-tolyl-2-hydroxyindenyl)] (T stands for
p-tolyl group).

consists of a sheet-like array of parallel zigzag chains connected via O–
H· · · Cl(Pt) hydrogen bonds. Reversible uptake of SO2 is accompanied by
a color change, resulting in an orange complex [Pt(SO2)(NCN–OH)Cl] in
which the coordinated SO2 ligand is involved in a donor–acceptor S· · · Cl
interaction.

(2) Two-dimensional networks
The O–H· · · O− hydrogen-bonded square grid found in [Pt(L2)(HL)2]·2H2O
(HL = isonicotinic acid) is shown in Fig. 20.4.14(a). Water molecules (not
shown) occupy channels in the threefold interpenetrated network. The crys-
tal structure of [Zn(SC(NH2)NHNH2)2(OH)2][1,4-O2CC6H4CO2]·2H2O has
a brick-wall sheet structure [Fig. 20.4.14(b)]. Each N ,S-chelating thiosemicar-
bazide ligand forms two donor hydrogen bonds with one carboxylate group
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Fig. 20.4.13.
(a) Zigzag chain of [Pt(NCN–OH)Cl]
held by O–H· · · Cl hydrogen bonds. (b)
Two-dimensional network of
[Pt(SO2)(NCN–OH)Cl] consolidated by
additional S· · · Cl donor–acceptor
interactions.

H
O

Pt
N Cl

Cl
PtN

H

S

of a terephthalate ion and one donor hydrogen bond with another terephtha-
late ion. The layers are linked via N–H· · · O and O–H· · · O hydrogen bonds
to the water molecules (not shown). The complex [Ag(nicotinamide)2]PF6
has a cationic herringbone layer constructed from amide N–H· · · O hydrogen
bonds [Fig. 20.4.14(c)]. Such layers are further cross-linked by N–H· · · F and
C–H· · · F hydrogen bonds involving the PF−6 ions (not shown).

(3) Three-dimensional networks
In the complex [Cu(L)4]PF6 (L = 3-cyano-6-methylpyrid-2(1H)-one), the
hydrogen-bonded linkage involves the amido R2

2(8) supramolecular synthon
[Fig. 20.4.15(a)]. Each Cu(I) center serves as a tetrahedral node in a fourfold
interpenetrated cationic diamondoid network. The tetrahedral metal cluster
[Mn(µ3-OH)(CO)3]4 can be used to construct a diamondoid network with the
linear 4,4′-bipyridine spacers [Fig. 20.4.15(b)].
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Fig. 20.4.14.
(a) Square grid in [Pt(L2)(HL)2]·2H2O
(HL = isonicotinic acid). (b) Brick-wall
sheet in
[Zn(thiosemicarbazide)(OH)2](terephthate)·2H2
(c) Cationic layer structure of
[Ag(nicotinamide)2]PF6.

iranchembook.ir/edu

https://iranchembook.ir/edu


780 Structural Chemistry of Selected Elements

Cu

Mn(CO)3

O

O OH HN N

N
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(a) (b)

Fig. 20.4.15.
(a) Part of the cationic diamondoid network in [Cu(L)4]PF6 (L = pyridone ligand). (b) Molecular components and linkage mode of the
diamondoid network in [Mn(µ3-OH)(CO)3]4·2(bipy)·2CH3CN.

20.4.4 Generation and stabilization of unstable inorganic/organic anions in
urea/thiourea complexes

Urea, thiourea, or their derivatives are often employed as useful building
blocks for supramolecular architectures because they contain amido functional
group which can form moderately strong N–H· · · X hydrogen bonds with rather
well-defined and predictable hydrogen-bonding patterns. Furthermore, in the
presence of anions, the hydrogen bond is strengthened by two to three times
(40 to 190 kJ mol−1) compared with the bond strength involving uncharged
molecular species (10 to 65 kJ mol−1). Hence, making use of this kind of charge-
assisted N–H· · · X− hydrogen bonding interactions and bulky tetraalkyl-
ammonium cations as guest templates, some unstable organic anions A− can
be generated in situ and stabilized in urea/thiourea-anion host frameworks. A
series of inclusion compounds of the type R4N+A− · m(NH2)2CX (where X =
O or S) with novel topological features has been characterized.

(1) Dihydrogen borate
As mentioned in Section 13.5.1, the transient species [BO(OH)2]−

has been stabilized by hydrogen-bonding interactions with the near-
est urea molecules in the host framework of the inclusion compound
[(CH3)4N]+[BO(OH)2]−·2(NH2)2CO·H2O. A perspective view of the crystal
structure along the [010] direction is presented in Fig. 20.4.16. The host lat-
tice consists of a parallel arrangement of unidirectional channels whose cross
section has the shape of a peanut. The diameter of each spheroidal half is about
704 pm, and the separation between two opposite walls at the waist of the
channel is about 585 pm. The well-ordered tetramethylammonium cations are
accommodated in double columns within each channel.
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o
b c

a

Fig. 20.4.16.
Crystal structure of
[(CH3)4N]+[BO(OH)2]−·2(NH2)2CO·H2O
showing the channels extending parallel
to the b axis and the enclosed cations.
Broken lines represent hydrogen bonds,
and the atoms are shown as points for
clarity. From Q. Li, F. Xue and T. C. W.
Mak, Inorg. Chem. 38, 4142–5 (1999).

(2) Allophanate and 3-thioallophanate
Allophanate esters H2NCONHCOOR are among the oldest organic compounds
recorded in the literature. The parent allophanic acid, H2NCONHCOOH, is not
known in the free state, whereas inorganic allophanate salts are unstable and
readily hydrolyzed by water to carbon dioxide, urea, and carbonate. However,
the elusive allophanate anion can be generated in situ and stabilized in the
following three inclusion compounds:

[(CH3)4N]+[NH2CONHCO2]−·5(NH2)2CO
[(n-C3H7)4N]+[NH2CONHCO2]−·3(NH2)2CO
[(CH3)3N+CH2CH2OH][NH2CONHCO2]−·(NH2)2CO

A part of the host framework in [(CH3)4N]+[NH2CONHCO2]−·5(NH2)2CO
is shown in Fig. 20.4.17. Two neighboring allophanate anions are arranged in a
head-to-tail fashion and bridged by a urea molecule with N–H· · · O and charge-
assisted N–H· · · O− hydrogen bonds to generate a zigzag ribbon. This ribbon
is further joined to another ribbon related to it by an inversion center via pairs
of N–H· · · O− hydrogen bonds to form a double ribbon.

The hitherto unknown 3-thioallophanate anion has been trapped in the host
lattice of [(n-C4H9)4N]+[H2NCSNHCO2]−·(NH2)2CS. The cyclic structure
and molecular dimensions of the allophanate and 3-thioallophanate ions are
compared in Fig. 20.4.18.As expected, the C–O bond involved in intramolecular
hydrogen bonding in the 3-thioallophanate anion is longer than that in the
allophanate anion.

(3) Valence tautomers of the rhodizonate dianion
The rhodizonate dianion C6O2−

6 (Fig. 20.4.19) is a member of a series of pla-
nar monocyclic oxocarbon dianions CnO2−

n (n = 3, deltate; n = 4, squarate;
n = 5, croconate; n = 6; rhodizonate) which have been recognized as
nonbenzenoid aromatic compounds. However, this six-membered ring species
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Fig. 20.4.17.
Part of the host framework in
[(CH3)4N]+[H2NCONHCO2]−·5(NH2)2CO
showing the double ribbon constructed
by allophanate anions and one of the
independent urea molecules. From T. C.
W. Mak, W.-H. Yip and Q. Li, J. Am.
Chem. Soc. 117, 11995–6 (1995).

O N
H

C

is not stable in aqueous solution as it readily undergoes oxidative ring con-
traction reaction to the croconate dianion, and the decomposition is catalyzed
by alkalis. Recently, this relatively unstable species has been generated in situ
and stabilized by hydrogen bonding in two novel inclusion compounds [(n-
C4H9)4N+]2C6O2−

6 ·2(m-OHC6H4NHCONH2)·2H2O (Fig. 20.4.20) and [(n-
C4H9)4N+]2C6O2−

6 ·2(NH2CONHCH2CH2NHCONH2)·3H2O (Fig. 20.4.21),
respectively.

Fig. 20.4.18.
Bond lengths (pm) of the (a) allophanate
and (b) 3-thioallophanate anion. From
C.-K. Lam, T.-L. Chan and T. C. W.
Mak, CrystEngComm. 6, 290–2 (2004).
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The measured dimensions of the C6O2−
6 species in [(n-C4H9)4N+]2C6O2−

6
·2(m-OHC6H4NHCONH2)·2H2O and [(n-C4H9)4N+]2C6O2−

6 ·2(NH2CON
HCH2CH2NHCONH2)·3H2O nearly conform to idealized D6h and C2v
molecular symmetry, corresponding to distinct valence tautomeric structures
that manifest nonbenzenoid aromatic and enediolate character, respectively
(Fig. 20.4.22).

Fig. 20.4.19.
Structural formulas of cyclic oxocarbon
dianions.
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Occurrence of the charge-localized structure of C6O2−
6 in [(n-

C4H9)4N+]2C6O2−
6 ·2(NH2CONHCH2CH2NHCONH2)·3H2O, as well as its
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o
a

c

Fig. 20.4.20.
Projection along the b axis showing
extensive hydrogen-bonding interactions
around the centrosymmetric rhodizonate
dianion in the host lattice of
[(n-C4H9)4N+]2C6O2−

6 ·2(m-
OHC6H4NHCONH2)·2H2O. From
C.-K. Lam and T. C. W. Mak, Angew.
Chem. Int. Ed. 40, 3453–5 (2001).

noticeable deviation from idealized C2v molecular symmetry, can be attributed
to unequal hydrogen-bonding interaction with its two neighboring bisurea
donors and a pair of water molecules (Fig. 20.4.21).

o

a

c

Fig. 20.4.21.
Projection along the b axis showing the
hydrogen-bonding interactions within
the puckered rhodizonate-bisurea-water
layer of [(n-
C4H9)4N+]2C6O2−

6 ·2(NH2CONHCH2CH2
NHCONH2)·3H2O. From C.-K. Lam
and T. C. W. Mak, Angew. Chem. Int. Ed.
40, 3453–5 (2001).

(4) Valence tautomers of the croconate dianion
In the host lattice of [(n-C3H7)4N+]2C5O2−

5 ·3(NH2)2CO·8H2O, the cro-
conate anion resides in a rather symmetrical hydrogen-bonding environment
(Fig. 20.4.23) and thus its measured dimensions are consistent with its
expected charge-delocalized D5h structure in the ground state, as shown in
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Fig. 20.4.22.
Bond lengths (pm) of (a) D6h (note that
in this case the dianion is located at a site
of symmetry) and (b) C2v valence
tautomers of the rhodizonate dianion.
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Fig. 20.4.24(a). In the host lattice of [(C2H5)4N+]2C5O2−
5 ·3(CH3NH)2CO, the

croconate dianion resides on a twofold axis, being directly linked to three 1,3-
dimethylurea molecules through pairs of N–H· · · O hydrogen bonds to form a
semi-circular structural unit (Fig. 20.4.25). In particular, each type O1 oxygen
atom forms two strong acceptor hydrogen bonds with the N–H donors from a
pair of 1,3-dimethylurea molecules, while each type O2 oxygen atom forms only
one N–H· · · O hydrogen bond. In contrast, the solitary type O3 oxygen atom
is stabilized by two weak C–H· · · O hydrogen bonds with neighboring tetra-n-
butylammonium cations. Such a highly unsymmetrical environment engenders
a sharp gradient of hydrogen-bonding donor strength around the croconate ion,
which is conducive to stabilization of its C2v valence tautomer with signifi-
cantly different C–C and C–O bond lengths around the cyclic system, as shown
in Fig. 20.4.24(b).

A
B

C

E
D

DCEDCE...

ABAB...

o
C

N

H

Fig. 20.4.23.
Projection diagram on the (11̄0) plane showing the hydrogen-bonding scheme for a portion of the host lattice in
[(n-C3H7)4N+]2C5O2−

5 ·3(NH2)2CO·8H2O. The slanted vertical (urea dimer–croconate–urea)∞ chain constitutes a side wall of the [110]
channel system. The parallel [urea dimer–(H2O)2]∞ ABAB… and [croconate–urea–(H2O)4]∞ DCEDCE… ribbons define the channel system
in the c direction. From C.-K. Lam, M.-F. Cheng, C.-L. Li J.-P. Zhang, X.-M. Chen, W.-K. Li and T. C. W. Mak, Chem. Commun., 448–9 (2004).

The examples given in this section show that crystal engineering provides
a viable route to breaking the degeneracy of canonical forms of a molecu-
lar species, and an elusive anion can be generated in situ and stabilized in a
crystalline inclusion compound through hydrogen-bonding interactions with
neighboring hydrogen-bond donors, such as urea/thiourea or their derivatives,
which can function as supramolecular stabilizing agents.
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Fig. 20.4.24.
Bond lengths (pm) and angles (◦) of D5h
(a) and C2v (b) valence tautomers of the
croconate dianion.

Fig. 20.4.25.
Hydrogen-bonding environment of the
croconate dianion in the crystal structure
of [(C2H5)4N+]2C5O2−

5 ·3(CH3NH)2CO.

20.4.5 Supramolecular assembly of silver(I) polyhedra with embedded
acetylenediide dianion

Since 1998, a wide range of double, triple, and quadruple salts containingAg2C2
(IUPAC name silver acetylenediide, commonly known as silver acetylide or sil-
ver carbide in the older literature) as a component have been synthesized and
characterized (see Section 14.3.7 and the comprehensive review by Bruce and
Low cited at the end of this chapter). Such Ag2C2-containing double, triple,
and quadruple salts can be formulated as Ag2C2 · nAgX, Ag2C2 · mAgX·nAgY,
and Ag2C2 · lAgX·mAgY·nAgZ, respectively. The accumulated experimental
data indicate that the acetylenediide dianion C2−

2 preferentially resides inside
a silver(I) polyhedron of the type C2@Agn (n = 6-10), which is jointly
stabilized by ionic, covalent (σ , π , and mixed), and argentophilic interactions
(see Section 19.6.2). However, the C2@Agn cage is quite labile and its formation
can be influenced by various factors such as solvent, reaction temperature, and
the coexistence of anions, crown ethers, tetraaza macrocycles, organic cations,
neutral ancillary ligands, and exo-bidentate bridging ligands, so that cage size
and geometry are in general unpredictable.
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(a) (b) (c)

Fig. 20.4.26.
(a) Crown-sandwiched structure of the discrete molecule in
[Ag2C2·5CF3CO2Ag·2(15C5)·H2O]·3H2O. The F and H atoms have been omitted for clarity. (b)
Space-filling drawing of the discrete supermolecule in
[Ag14(C2)2(CF3CO2)14(dabcoH)4(H2O)1.5] · H2O. (dabco = 1,4-diazabicyclo[2.2.2]octane).
The trifluoroacetate and aqua ligands have been omitted for clarity. (c) Space-filling drawing of
the discrete supermolecule [Ag8(C2)(CF3CO2)6(L1)6] viewed along its 3 symmetry axis
(L1 = 4-hydroxyquinoline). The trifluoroacetate ligands have been omitted for clarity. From
Q.-M. Wang and T. C. W. Mak, Angew. Chem. Int. Ed. 40, 1130–3 (2001); Q.-M. Wang and T. C.
W. Mak, Inorg. Chem. 42, 1637–43 (2003); X.-L. Zhao, Q.-M. Wang and T. C. W. Mak, Inorg.
Chem. 42, 7872–6 (2003).

(1) Discrete molecules
To obtain discrete molecules, one effective strategy is to install protective cor-
dons around the C2@Agn moiety with neutral, multidentate ligands that can
function as blocking groups or terminal stoppers.

Small crown ethers have been introduced as structure-directing agents into
the Ag2C2-containing system to prevent catenation and interlinkage of silver
polyhedra. Judging from the rather poor host–guest complementarity of Ag(I)
(soft cation) with a crown ether (hard O ligand sites), the latter is expected not
to affect the formation of C2@Agn, but to act as a capping ligand to an apex of
the polyhedral silver cage.

[Ag2C2·5CF3CO2Ag·2(15C5)·H2O]·3H2O (15C5 = [15]crown-5) can
be obtained from an aqueous solution containing silver acetylenedi-
ide, silver trifluoroacetate, and 15C5. The discrete C2@Ag7 moiety in
[Ag2C2·5CF3CO2Ag·2(15C5)·H2O]·3H2O is a pentagonal bipyramid, with
four equatorial edges bridged by CF3CO−2 groups while the two apical Ag
atoms are each attached to a 15C5, as shown in Fig. 20.4.26(a). In this discrete
molecule, one equatorialAg atom is coordinated by a monodentate CF3CO−2 and
the other by an aqua ligand.

In [Ag14(C2)2(CF3CO2)14(dabcoH)4(H2O)1.5] · H2O, the core is a Ag14
double cage constructed from edge-sharing of two triangulated dodecahedra.
Apart from trifluoroacetate and aqua ligands, there are four monoprotonated
dabco ligands surrounding the core unit, each being terminally coordinated to
a silver(I) vertex, as shown in Fig. 20.4.26(b).

For the discrete molecule [Ag8(C2)(CF3CO2)6(L1)6] (L1 = 4-hydro-
xyquinoline) of 3 symmetry displayed in Fig. 20.4.26(c), the encapsulated
acetylenediide dianion in the rhombohedralAg8 core is disordered about a crys-
tallographic threefold axis that bisects the C≡C bond and passes through two
opposite corners of the rhombohedron. Apart from the µ2-O,O′ trifluoroacetate
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liagnds, there are six keto-L1 ligands surrounding the polynuclear core, each
bridging an edge in the µ-O mode.

In the structures shown in Fig. 20.4.26, the hydrophobic tails of perfluorocar-
boxylates, together with the bulky ancillary ligands, successfully prevent link-
age between adjacent silver polyhedra, thus leading to discrete supermolecules.

(2) Chains and columns
Free betaines are zwitterions bearing a carboxylate group and a quaternary
ammonium group, and the prototype of this series is the trimethylammo-
nio derivative commonly called betaine (Me3N+CH2COO−, IUPAC name
trimethylammonioacetate, hereafter abbreviated as Me3bet). Owing to their
permanent bipolarity and overall charge neutrality, betaine and its derivatives
(considered as carboxylate-type ligands) have distinct advantages over most
carboxylates as ligands in the formation of coordination polymers:

(1) synthetic access to water-soluble metal carboxylates;
(2) generation of new structural varieties, such as complexes with metal cen-

ters bearing additional anionic ligands, and those with variable metal to
carboxylate molar ratios; and

(3) easy synthetic modification of ligand property by varying the substituents
on the quaternary nitrogen atom or the backbone between the two polar
terminals.

The introduction of such ligands into the Ag2C2-containing system has led
to isolation of supramolecular complexes showing chain-like or columnar
structures.

[(Ag2C2)2(AgCF3CO2)9(L2)3] has a columnar structure composed of fused
silver(I) double cages: a triangulated dodecahedron and a bicapped trigonal
prism, each encapsulating an acetylenediide dianion. Such a neutral column is
coated by a hydrophobic sheath composed of trifluoroacetate and L2 ligands,
as shown in Fig. 20.4.27(a).

The core in [(Ag2C2)2(AgCF3CO2)10(L3)3]·H2O is a double cage generated
from edge-sharing of a square-antiprism and a distorted bicapped trigonal-
prism, with each single cage encapsulating an acetylenediide dianion. Double
cages of this type are fused together to form a helical column, which is
surrounded by a hydrophobic sheath composed of trifluoroacetate and L3

ligands, as shown in Fig. 20.4.27(b).
The building unit in [(Ag2C2)(AgC2F5CO2)6(L4)2] is a centrosymmetric

double cage, in which each half encapsulates an acetylenediide dianion. Each
single cage is an irregular monocapped trigonal prism with one appended atom.
The L4 ligand acting in the µ2-O, O′ coordination mode links a pair of double
cages to form an infinite chain, as shown in Fig. 20.4.27(c).

In [(Ag2C2)(AgCF3CO2)7(L5)2(H2O)], the basic building unit is a distorted
monocapped cube. The trifluoroacetate and L5 ligands act as µ3-bridges across
adjacent single cage blocks to form a bead-like chain [Fig, 20.4.27(d)].

(3) Two-dimensional structures
The incorporation of ancillary N , N ′- and N ,O-donor ligands into the Ag2C2-
containing system has led to a series of two-dimensional structures.
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Fig. 20.4.27.
(a) Projection along an infinite silver(I) column with enclosed C2−

2 species and hydrophobic sheath in [(Ag2C2)2(AgCF3CO2)9(L2)3]. (b)

Perspective view of the infinite silver(I) helical column with C2−
2 species embedded in its inner core and an exterior coat comprising anionic and

zwitterionic carboxylates in [(Ag2C2)2(AgCF3CO2)10(L3)3]·H2O. (c) Infinite chain generated from the linkage of (C2)2@Ag16 double cages
by µ2 − O,O′ L4 ligands in [(Ag2C2)(AgC2F5CO2)6(L4)2]. (d) Infinite chain constructed from C2@Ag9 polyhedra connected by L5 and
trifluoroacetate bridges in [(Ag2C2)(AgCF3CO2)7(L5)2(H2O)]. From X.-L. Zhao, Q-M, Wang and T. C. W. Mak, Chem. Eur. J. 11, 2094–102
(2005).

In the synthesis of [(Ag2C2)(AgCF3CO2)4(L6)(H2O)]·H2O under hydrother-
mal reaction condition, the starting ligand 4-cyanopyridine undergoes hydroly-
sis to form 4-pyridine-carboxamide (L6). The basic building unit is a C2@Ag8
single cage in the shape of a distorted triangulated dodecahedron. Such dodec-
ahedra share edges to form a zigzag composite chain, which are further linked
via L6 to generate a two-dimensional network Fig. 20.4.28(a).

The L1 ligand, H3O+ species, and the anionic polymeric sys-
tem {[Ag11(C2)2(C2F5CO2)9(H2O)2]2−}∞ comprise (L1·H3O)2[Ag11(C2)2
(C2F5CO2)9(H2O)2]·H2O. The basic building unit in the latter is a Ag12 dou-
ble cage composed of two irregular monocapped trigonal antiprisms sharing
an edge. The double cages are fused together to generate an infinite, sinuous
anionic column. The oxygen atoms of L1 and the water molecule are bridged
by a proton to give the cationic aggregate L1·H3O+, which links the columns
into a layer structure via hydrogen bonds with the pentafluoropropionate groups
(Fig. 20.4.28(b)).

[Ag8(C2)(CF3CO2)8(H2O)2]·(H2O)4·(L7H2) represents a rare example of a
hydrogen-bonded layer-type host structure containing C2@Agn that features
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the inclusion of organic guest species. The core is a centrosymmetric C2@Ag8
single cage in the shape of a slightly distorted cube. The trifluoroacetate ligands
functioning in the µ3-coordination mode further interlink the single cages into
an infinite zigzag silver(I) chain. Of the three independent water molecules,
one forms an acceptor hydrogen bond with a terminal of the L7H2 dication, the
other serves as an aqua ligand bonded to a silver atom, and the third lying on a
two fold axis functions as a bridge between aqua ligands belonging to adjacent
silver(I) chains. The centrosymmetric L7H2 ions each hydrogen-bonded to a
pair of terminal water molecules are accommodated between adjacent layers,
forming an inclusion complex, as shown in Fig. 20.4.28(c).

(4) Three-dimensional structures
The strategy of using C2@Agn polyhedra as building blocks for the assembly
of new coordination frameworks via introduction of potentially exo-bidentate
nitrogen/oxygen-donor bridging ligands between agglomerated components
has led to the isolation of three-dimensional supramolecular complexes
exhibiting interesting crystal structures.

In (Ag2C2)(AgCF3CO2)8(L8)2(H2O)4, square-antiprismatic C2@Ag8 cores
are linked by trifluoroacetate groups to generate a columnar structure. Hydrogen
bonds with the amino group of L8 and aqua ligands serving as donors and the
oxygen atoms of the trifluoroacetate group as acceptors further connect the
columns into a three-dimensional scaffold [Fig. 20.4.29(a)].

N

L6 L1 L7

CONH2

N

OH

N
N

 L1

(a) (b) (c)

Fig. 20.4.28.
(a) Ball-and-stick drawing of the two-dimensional structure in [(Ag2C2)(AgCF3CO2)4(L6)(H2O)]·H2O. (b) Schematic showing of the layer
structure in (L1·H3O)2[Ag11(C2)2(C2F5CO2)9(H2O)2]·H2O. (c) Two-dimensional host layer structure of
[Ag8(C2)(CF3CO2)8(H2O)2]·(H2O)4·(L7H2) constructed from hydrogen bonds linking the silver(I) chains, with hydrogen-bonded
(bpeH2·2H2O)2+ moieties being accommodated between the host layers. From X.-L. Zhao and T. C. W. Mak, Dalton Trans., 3212–7 (2004);
X.-L. Zhao, Q.-M. Wang and T. C. W. Mak, Inorg. Chem., 42, 7872–6 (2003); X.-L. Zhao, and T. C. W. Mak, Polyhedron 24, 940–8 (2005).
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(a)

N

CONH2

NHN CN
OH

O

(L8) (L9) (L10)

(b) (c)

Fig. 20.4.29.
(a) Three-dimensional architecture of (Ag2C2)(AgCF3CO2)8(L8)2(H2O)4 resulting from the linkage of silver columns via hydrogen bonds. (b)
Three-dimensional architecture in (L9H)3·[Ag8(C2)(CF3CO2)9]·H2O generated from covalent silver chains linked by hydrogen bonds. (c) The
(3,6) covalent network in [Ag7(C2)(CF3CO2)2(L10)3] constructed by the linkage of L10 with silver(I) columns. From X.-L.Zhao and T. C. W.
Mak, Dalton Trans. 3212-7 (2004); X.-L. Zhao and T. C. W. Mak, Polyhedron 25, 975–82 (2006).

The building block in (L9H)3·[Ag8(C2)(CF3CO2)9]·H2O is a C2@Ag8 single
cage in the shape of triangulated dodecahedron located on a twofold axis. Silver
cages of such type are connected by µ3−O,O,O′ trifluoroacetate ligands to form
a zigzag anionic silver(I) column along the adirection. All three independent
L9 molecules are protonated to satisfy the overall charge balance in the crystal
structure. Notably, the resulting L9H cations play a key role in the construction
of the three-dimensional architecture. As shown in Fig. 20.4.29(b), the silver(I)
columns are interconnected by hydrogen bonding with the protonated L9 serving
as donors and O, F atoms of trifluoroacetate ligands as acceptors to form the
three-dimensional network.

In [Ag7(C2)(CF3CO2)2(L10)3], the basic building block is a centrosymmet-
ric (C2)2@Ag14 double cage, with each half taking the shape of a distorted
bicapped trigonal prism. Such double cages are fused together to form an infinite
column. Each silver(I) column is linked to six other radiative silver(I) columns
via L10, and every three neighboring silver columns encircle a triangular hole,
thus resulting in a (3,6) (or 36) topology, as displayed in Fig. 20.4.29(c).

(5) Mixed-valent silver(I,II) compounds containing Ag2C2

To investigate the effect of coexisting metal ions on the assembly of
polyhedral silver(I) cages, macrocyclic N -donor ligand 1,4,8,11-tetramethyl-
1,4,8,11-tetraazacyclotetradecane (tmc) has been used for in situ generation
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of [AgII(tmc)]. Mixed-valent silver complexes [AgII(tmc)(BF4)][AgI
6(C2)

(CF3CO2)5(H2O)]· H2O and [AgII(tmc)][AgII(tmc)(H2O)]2[AgI
11(C2)

(CF3CO2)12(H2O)4]2 have been isolated and structurally characterized.
In [AgII(tmc)(BF4)][AgI

6(C2)(CF3CO2)5(H2O)]· H2O, the addition of tmc
leads to disproportionation of silver(I) to give elemental silver and complexed
silver(II), the latter being stabilized by tmc to form [AgII(tmc)]2+. Weak axial
interactions of the d9 silver(II) center with adjacent BF4

− serve to link the
complexed Ag(II) cations into a [AgII(tmc)(BF4)]+1

∞ column, which further
induces the assembly of a novel anionic zigzag chain constructed from edge-
sharing of silver(I) triangulated dodecahedra, each enclosing a C2−

2 species
(Fig. 20.4.30(a)).

In [AgII(tmc)][AgII(tmc)(H2O)]2[AgI
11(C2)(CF3CO2)12(H2O)4]2, which

lacks the participation of BF−4 ions, the cations do not line up in a
one-dimensional array and instead a dimeric supramolecular cluster anion is
generated [Fig. 20.4.30(b)].

(6) Ligand-induced disruption of polyhedral C2@Agn cage assembly
Attempts to interfere with the assembly process to open the C2@Agn cage or
construct a large single cage for holding two or more C2−

2 species were carried
out via the incorporation of the multidentate ligand pyzCONH2 (pyrazine-2-
carboxamide) into the reaction system. Pyrazine-2-carboxamide was selected
as a structure-directing component by virtue of its very short spacer length and
chelating capacity, and the introduction of the amide functionality could con-
ceivably disrupt the assembly of C2@Agn via the formation of hydrogen bonds.
The ensuing study yielded two silver(I) complexes Ag12(C2)2(CF3CO2)8(2-
pyzCONH2)3and Ag20(C2)4(C2F5CO2)8(2-pyzCOO)4(2-pyzCONH2)(H2O)2
exhibiting novel C2@Agn motifs.

The basic structural unit ofAg12(C2)2(CF3CO2)8(2-pyzCONH2)3comprises
the fusion of a distorted triangulated dodecahedral Ag8 cage contain-
ing an embedded C2−

2 dianion and an open fish-like Ag6(µ6-C2) motif

(a) (b)

Fig. 20.4.30.
(a) Crystal structure of [AgII(tmc)(BF4)][AgI

6(C2)(CF3CO2)5(H2O)]· H2O. (b) Perspective
view of the structure of the dimeric supramolecular anion in
[AgII(tmc)][AgII(tmc)(H2O)]2[AgI

11(C2)(CF3CO2)12(H2O)4]2. The F atoms of the
CF3CO−2 ligands and some CF3CO2 are omitted for clarity. From Q.-M. Wang and T. C. W. Mak,
Chem. Commun., 807-8 (2001); Q.-M. Wang, H. K. Lee and T. C. W. Mak, New J. Chem. 26,
513-5 (2002).
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(a) (b) (c)

Fig. 20.4.31.
(a) Basic building unit in Ag12(C2)2(CF3CO2)8(2-pyzCONH2)3. (b) Open fish-like Ag6(µ6-C2)

motif coordinated by four pyrazine-2-carboxamide ligands in
Ag12(C2)2(CF3CO2)8(2-pyzCONH2)3. (c) The (C2)2@Ag13 in
Ag20(C2)4(C2F5CO2)8(2-pyzCOO)4(2-pyzCONH2)(H2O)2. From X.-L. Zhao and T. C. W.
Mak, Organometallics 24, 4497–9 (2005).

[Fig. 20.4.31(a)]. In the Ag6(µ6-C2) motif, one carbon atom is embraced by
four silver atoms in a butterfly arrangement and the other bonds to two sil-
ver atoms. Its existence can be rationalized by the fact that it is stabilized by
four surrounding pyrazine-2-carboxamide ligands so that steric overcrowding
obstructs the aggregation of silver(I) into a closed cage [Fig. 20.4.31(b)].

The basic building block in Ag20(C2)4(C2F5CO2)8(2-pyz
COO)4(2-pyzCONH2)(H2O)2 is an aggregate composed of three polyhedral
units: an unprecedented partially opened cage (C2)2@Ag13 [Fig.20.4.31(c)]
and two similar distorted C2@Ag6 trigonal prisms. A pair of C2−

2 dianions are
completely encapsulated in the Ag13 cage. For simplicity, this single cage can
be visualized as composed of two distorted cubes sharing a common face, with
cleavage of four of the edges and capping of a lateral face. The two embedded
C2−

2 dianions retain their triple-bond character with similar C–C bond lengths
of 118(2) pm.

20.4.6 Supramolecular assembly with the silver(I)-ethynide synthon

In 2004, the silver carbide (Ag2C4) was synthesized as a light gray pow-
der, which behaves like its lower homologue Ag2C2, being insoluble in most
solvents and highly explosive in the dry state when subjected to heating or
mechanical shock. Using Ag2C4 and the crude polymeric silver ethynide com-
plexes [R–(C≡CAg)m]∞ (R = aryl; m = 1 or 2) as starting materials, a variety
of double and triple silver(I) salts containing 1,3-butadiynediide and related
carbon-rich ethynide ligands have been synthesized. Investigation of the coordi-
nation modes of the ethynide moiety in these compounds led to the recognition
of a new class of supramolecular synthons R–C≡C⊃Agn (n = 4, 5), which
can be utilized to assemble a series of one-, two-, and three-dimensional net-
works together with argentophilic interactions, π–π stacking, silver-aromatic
interactions and hydrogen bonding.
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Fig. 20.4.32.
Observed µ8-coordination modes of C2−

4 dianion. (a) Symmetrical mode with two butterfly-shaped baskets in Ag2C4·6AgNO3 · nH2O (n = 2,
3). From L. Zhao and T. C. W. Mak, J. Am. Chem. Soc. 126, 6852-3 (2004). (b) Symmetrical mode only with Ag−C σ bonds in
Ag2C4·16AgC2F5CO2·6CH3CN·8H2O. (c) Barb-like µ8-coordination mode with two linearly coordinated C≡C−Ag bonds in triple salt
Ag2C4·AgF·3AgNO3· 0.5H2O. (d) Symmetrical mode with two parallel planar Ag4 aggregates in Ag2C4· 16AgC2F5CO2·24H2O. (e)
Unsymmetrical µ8-coordination mode with one butterfly-shaped Ag4 basket and one planar Ag4 aggregate in Ag2C4·6AgCF3CO2·7H2O. (f)
Unsymmetrical µ8-coordination mode with two butterfly-shaped Ag4 baskets in quadruple salt Ag2C4·4AgNO3·Ag3PO4 · AgPF2O2.

(1) Silver(I) complexes containing the C2−
4 dianion

In all of its silver(I) complexes, the linear −C≡C–C≡C− dianion exhibits
an unprecedented µ8-coordination mode, each terminal being capped by four
silver(I) atoms (Fig. 20.4.32). However, theσ - andπ -type silver–ethynide inter-
actions play different roles in symmetrical and unsymmetrical µ8-coordination.
Furthermore, coexisting ancillary anionic ligands, nitrile groups, and aqua
molecules also influence the coordination environment around each terminal
ethynide, which takes the form of a butterfly-shaped, barb-like, or planar Ag4
basket. The carbon–carbon triple- and single-bond lengths in C2−

4 are in good
agreement with those observed in transition-metal 1,3-butadiyne-1,4-diyl com-
plexes. The Ag· · ·Ag distances within the Ag4 baskets are all shorter than 340
pm, suggesting the existence of significant Ag· · ·Ag interactions.

The [Ag4C4Ag4] aggregates vide supra can be further linked by other anionic
ligands such as nitrate and perfluorocarboxylate groups, and/or water molecules,
to produce various two- or three-dimensional coordination networks. In the
structure of Ag2C4· 6AgNO3· 2H2O, the [Ag4C4Ag4] aggregates arranged in
a pseudo-hexagonal array are connected by one nitrate group acting in the
µ3-O,O′,O′′ plus O,O′ -chelating mode to form a thick layer normal to [100]
[Fig. 20.4.33(a)]. Linkage of adjacent layers by the remaining two independent
nitrate groups, abetted by O–H· · · O(nitrate) hydrogen bonding involving the
aqua ligand, then generates a three-dimensional network.

In the crystal structure of Ag2C4·16AgC2F5CO2·24H2O, each [Ag4C4Ag4]
unit connects with eight such units by eight [Ag2(µ-O2CC2F5)4] bridging
ligands to form a (4,4) coordination network [Fig. 20.4.33(b)]. Through the
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Fig. 20.4.33.
Some examples of two- and three-dimensional coordination networks of Ag2C4: (a) pseudohexagonal array of [Ag4C4Ag4] aggregates linked
by an independent nitrate group in Ag2C4·6AgNO3·2H2O: (b) (4,4) network in ab plane of Ag2C4·16AgC2F5CO2·24H2O, which is composed
of [Ag4C4Ag4] aggregates connected by bridging [Ag2(µ-O2CC2F5)4] groups: (c) three-dimensional coordination network in
Ag2C4·AgF·3AgNO3·0.5H2O through the coordination of µ3-fluoride ligands, (d) Rosette layer in Ag2C4·10AgCF3CO2·2[(Et4N)CF3CO2]
·4(CH3)3CCN composed of [Ag4C4Ag4] aggregates linked by one external silver atom and two trifluoroacetate groups.

linkage of the C4 carbon chains perpendicular to this network, an infinite chan-
nel is aligned along the [001] direction, and each accommodates a large number
of pentafluoroethyl groups.

In the crystal structure of Ag2C4·AgF·3AgNO3·0.5H2O, [Ag4C4Ag4] aggre-
gates are mutually connected through the linkage of nitrate groups and sharing
of some silver atoms to form a silver column. The fluoride ions bridge these sil-
ver columns in the µ3-mode to produce a structurally robust three-dimensional
coordination network [(Fig. 20.4.33(c)]). With an external silver atom and two
carboxylato oxygen atoms as bridging groups, the [Ag4C4Ag4] aggregates
in Ag2C4·10AgCF3CO2·2[(Et4N)CF3CO2]·4(CH3)3CCN are linked to form
a two-dimensional rosette layer, in which the C2−

4 dianion acts as the shared
border of two metallacycles [Fig. 20.4.33(d)].

(2) Silver(I) complexes of isomeric phenylenediethynides with the
supramolecular synthons Agn⊂ C2−x-C6H4−C2⊃Agn (x = p, m, o;
n = 4, 5)

The above study of silver(I) 1,3-butadiynediide complexes suggests that
the Ag4⊂C2−R−C2⊃Ag4 moiety may be conceived as a synthon for the
assembly of coordination networks, by analogy to the plethora of well-
known supramolecular synthons that involve hydrogen bonding and other
weak intermolecular interactions (see Section 20.1.5). With reference to 1,3-
butadiynediide as a standard, the p-phenylene ring was introduced as the
bridging R group in the supramolecular synthon Agn⊂C2−R−C2⊃Agn with a
lengthened linear π -conjugated backbone, and the aromatic ring of the result-
ing p-phenylenediethynide dianion could presumably partake in π–π stacking
and silver–aromatic interaction. The isomeric m- and o-phenylenediethynides
were also investigated in order to probe the influence of varying the relative
orientation of the pair of terminal ethynide groups.

In 2[Ag2(p-C≡CC6H4C≡C)]·11AgCF3CO2·4CH3CN·2CH3CH2CN, the p-
phenylenediethynide ligand exhibits the highest ligation number reported to
date for the ethynide moiety by adopting an unprecedented µ5-η1 mode.
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(a) (b) (c) (d)

Fig. 20.4.34.
(a) Broken silver(I) double chain in 2[Ag2(pC≡CC6H4C≡C)]·11AgCF3CO2· 4CH3CN·2CH3CH2CN stabilized by continuous π–π stacking
between parallel p-phenylene rings. (b) Silver double chain in Ag2(m-C≡CC6H4C≡C)·6AgCF3CO2·3CH3CN·2.5H2O assembled by
argentophilic interaction and π–π interaction between adjacent pairs of m-phenylene rings. (c) Widened silver chain in
3[Ag2(o-C≡CC6H4C≡C)]·14AgCF3CO2·2CH3CN·9H2O constructed through the cross-linkage of two narrow silver chains by bridging silver
atoms with pairwise π–π interaction between the o-phenylene rings. (d) Broken silver(I) double chain in
Ag2(m-C≡CC6H4C≡C)]·5AgNO3·3H2O stabilized by continuous π−π stacking between parallel m-phenylene rings. From L. Zhao and T. C.
W. Mak, J. Am. Chem. Soc. 127, 14966–7 (2005).

The Ag14 aggregate, being constructed essentially from two independent
Agn⊂C2−(p-C6H4)−C2⊃Agn (n = 4, 5) synthons through argentophilic inter-
action and continuousπ–π stacking, is connected to its symmetry equivalents to
form a broken silver(I) double chain along the a-axis. Adjacent Ag14 segments
within a single chain are bridged by the oxygen atoms of two independent tri-
fluoroacetate groups, and the pair of single chains are arranged in interdigitated
fashion [Fig. 20.4.34(a)].

In contrast to the popularµ1,µ1-coordination mode of m-phenylenediethynide
in most transition-metal complexes, this ligand exhibits two different terminal
ethynide bonding modes, namely, µ4-η1,η1,η1,η1 and µ4-η1,η1,η1,η2, in the
crystal structure of Ag2(m-C≡CC6H4C≡C)·6AgCF3CO2·3CH3CN·2.5H2O.
Through inversion centers located between successive pairs of m-phenylene
rings, the Agn⊂C2−(m-C6H4)−C2⊃Agn (n = 4) synthon is extended along
the a direction by Ag· · ·Ag interactions to form a silver double chain
[Fig. 20.4.34(b)], which are further consolidated by π −π interaction between
adjacent m-phenylene rings protruding alternatively on either side.

In the crystal structure of 3[Ag2(o-C≡CC6H4C≡C)]·14AgCF3CO2
·2CH3CN·9H2O, the ethynide moieties bond to silver atoms via three different
coordination modes: µ4-η1,η1,η1,η2, µ4-η1,η1,η2,η2, and µ5-η1,η1,η1,η1,η2

[Fig. 20.4.34(c)]. The two independent Agn⊂C2−(o-C6H4)−C2⊃Agn (n = 4,
5) synthons mutually associate to generate an undulating silver chain con-
solidated by argentophilic interaction, pairwise π–π interaction between the
o-phenylene rings, and linkage by silver atoms Ag3 and Ag9 across two silver
single chains. Bridged by silver atom Ag10 through Ag· · ·Ag interaction and
three oxygen atoms (O2W, O4, O8), the silver columns are linked to form a
wave-like layer with o-phenylene groups protruding on both sides.
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Fig. 20.4.35.
Schematic diagram showing the
structural relationship between the
supramolecular synthons
Ag4⊂C2—C2⊃Ag4, Agn⊂
C2—R—C2⊃Agn (R = p-, m-, o-C6H4;
n = 4, 5), and C2@Agn (n = 6–10). The
circular arc represents a Agn (n = 4, 5)
basket.

Carbon-chain

Variation of relative
orientation of ethynide
groups

Conceptual
contraction

elongation

----
-

The decreasing separation of the pair of ethynide groups in the above three
complexes is accompanied by strengthened argentophilic interaction at the
expense of weakened π–π stacking, yielding a broken double chain, a double
chain and a silver layer, respectively. When the pair of ethynide vectors make
an angle of 60◦, sharing of a common silver atom for the Agn caps occurs in
the o-phenylenediethynide complex.

The crystal structure of Ag2(m-C≡CC6H4C≡C)]·5AgNO3·3H2O features a
broken silver(I) double chain analogous to that of the p-phenylenediethynide
complex [see Fig. 20.4.34(a). However, the single chains containing the Ag14
aggregates are arranged in parallel fashion, each matching Ag14 pair being
connected by two m-phenylenediethynide ligands [Fig. 20.4.34(d)]. Linkage
of a series of Agn⊂C2−(m-C6H4)−C2⊃Agn (n = 4) fragments by intrachain
bridging nitrate groups with continuous π–π interaction between adjacent m-
phenylene rings engenders the broken silver(I) double chain.

The structural correlation between various silver–ethynide supramolecular
synthons affords a rationale for the preponderant existence of C2@Agn (n =
6−10) polyhedra inAg2C2 complexes (see Section 20.4.5). If the linear−C≡C–
C≡C− chain were contracted to a C2−

2 dumbbell, further overlap between atoms
of the terminal Agn caps would conceivably yield a closed cage with 6–10
vertices (Fig. 20.4.35).

(3) Silver(I) arylethynide complexes containing R-C2⊃Agn (R = C6H5,
C6H4Me-4, C6H4Me-3, C6H4Me-2, C6Ht

4Bu-4; n = 4, 5)
π–π Stacking or π–π interactions are important noncovalent intermolecular
interactions, which contribute much to self-assembly when extended structures
are formed from building blocks with aromatic moieties. In relation to the
rich variety of π–π stacking in the crystal structure of silver(I) complexes
of phenylenediethynide, related silver complexes of phenylethynide and its
homologues with different substituents (–CH3, –C(CH3)3) or the –CH3 group
in different positions (o-, m-, p-) are investigated.

In the crystal structure of 2AgC≡CC6H5·6AgC2F5CO2·5CH3CN, the
ethynide group composed of C1 and C2 is capped by a square-pyramidal
Ag5 basket in an unprecedented µ5-η1,η1,η1,η1,η2 coordination mode and the
other one comprising C9 and C10 by a butterfly-shaped Ag4 basket in a µ4-
η1,η1,η1,η2 coordination mode, as shown in Fig. 20.4.36(a). With an inversion
center located at the center of the Ag1· · ·Ag1A bond, two Ag5 baskets share an
edge to engender a Ag8 aggregate, whereas another Ag8 aggregate results from
fusion of a pair of inversion-related Ag4 baskets. Two adjacent Ag8 agregates
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(a) (b)

Fig. 20.4.36.
(a) Coordination modes of the independent phenylethynide ligands in 2AgC≡CC6H5·6AgC2F5CO2·5CH3CN. (b) Coordination mode of the
C6H5C≡C− ligand in AgC≡CC6H5·3AgCF3CO2·CH3CN. The silver column is connected by edge-sharing between adjacent
square-pyramidal Ag5 aggregates, and continuous π–π stacking of phenyl rings occurs on one side of the column. From L. Zhao, W.-Y. Wong
and T. C. W. Mak, Chem. Eur. J. 12, 4865–72 (2006).

are linked by two pentafluoropropionate groups via µ3-O, O′, O′ and µ2-O,
O′ coordination modes, respectively, to generate an infinite column along the
[111] direction. No π–π interaction is observed in this complex.

An infinite array of parallel phenyl rings stabilized by π–π stacking (center-
to-center distance 418.9 pm) occurs in the complex AgC≡CC6H5·3AgCF3CO2
·CH3CN [Fig. 20.4.36(b)]. The capping square-planar Ag5 baskets are fused
through argentophilic interactions via edge-sharing to form an infinite coor-
dination column along the [100] direction, with continuous π–π stacking of
phenyl rings lying on the same side of the column.

When substituents are introduced into the phenyl group, the π–π
stacking between consecutive aromatic rings is affected by the size of
the substituted groups and their positions. In the crystal structure of
2AgC≡CC6H4Me-4·6AgCF3CO2·1.5CH3CN [Fig. 20.4.37(a)], the methyl
group has a little influence on the formation of a silver column stabilized
by π–π stacking, which is almost totally identical with the structure of
AgC≡CC6H5·3AgCF3CO2·CH3CN [see Fig. 20.4.36(b)]. However, when a
more bulky tert-butyl group is employed, the π–π stacking system is inter-
rupted despite the formation of a similar silver chain [Fig. 20.4.37(b)]. The entire
C6Ht

4Bu-4 moiety rotates around the C(tBu)–C(phenyl) single bond to generate
a highly disordered structure. On the other hand, putting a meta-methyl group
on the phenyl ring can form C−H· · ·π interaction, but the constitution of the
silver chain is changed from edge-sharing to vertex-sharing [Fig. 20.4.37(c)].
Finally, use of the 2-methyl-substituted phenyl ligand entirely destroys the π–π
stacking and even breaks the Ag· · ·Ag interactions between Agn caps to form
a silver chain connected by trifluoroacetate groups [Fig. 20.4.37(d)].

20.4.7 Self-assembly of nanocapsules with pyrogallol[4]arene
macrocycles

Recent studies have shown that the bowl-shaped C-alkyl substituted pyrogal-
lol[4]arene macrocycles readily self-assemble to form a gobular hexameric
cage, which is structurally robust and remains stable even in aqueous media
(Fig. 20.4.38). Slow evaporation of a solution of C-heptylpyrogallol[4]arene
in ethyl acetate gives crystalline [(C-heptylpyrogallol[4]arene)6(EtOAc)6
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Fig. 20.4.37.
(a) Silver column in 2AgC≡CC6H4Me-4 ·6AgCF3CO2·1.5CH3CN connected by the fusion of square-pyramidal Ag5baskets and stabilized by
continuous π–π stacking of phenyl rings. (b) Similar silver column in AgC≡CC6Ht

4Bu-4·3AgCF3CO2·CH3CN connected only by
argentophilic interaction. (c) Silver chain in AgC≡CC6H4Me-3·2AgCF3SO3 through atom sharing. (d) Silver chain in
AgC≡CC6H4Me-2·4AgCF3CO2·H2O through the connection of trifluoroacetate groups.

(H2O)]·6EtOAc, and X-ray analysis revealed that the large spheroidal super-
molecule is stabilized by a total of 72 O–H· · · O hydrogen bonds (four
intramolecular and eight intermolecular per macrocycle building block). The
nano-sized molecular capsule, having an internal cavity volume of about 1.2
nm3, contains six ethyl acetate molecules and one water molecule; the methyl
terminal of each encapsulated ethyl acetate guest molecule is orientated toward
a bulge on the surface, and the single guest water molecule resides at the cen-
ter of the capsule. In the crystal structure, the external ethyl acetate solvate
molecules are embedded within the lower rim alkyl legs at the base of each of the
macrocycles, and the nanocapsules are arranged in hexagonal closest packing.
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Fig. 20.4.38.
Assembly of six C-heptylpyrogallol[4]arene molecules by intra- and intermolecular hydrogen bonds to form a globular supermolecule with a
host cavity of volume ∼ 1.2 nm3. H atoms are omitted for clarity, and hydrogen bonds are represented by dotted lines. From G. V. C. Cave, J.
Antesberger, L. J. Barbour, R. M. McKinley and J. L. Atwood, Angew. Chem. Int. Ed. 43, 5263-6 (2004).

With reference to the unique architecture of this hydrogen-bonded hexam-
eric capsule I [Fig. 20.4.39(a)], it was noted that the pyrogallol[4]arene building
block has the potential of serving as a multidentate ligand through deprotona-
tion of some of the upper rim phenolic groups. As envisaged, treatment of
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capsule I capsule II

(a) (b)

Fig. 20.4.39.
Hydrogen-bonded supramolecular
capsule I compared with coordination
capsule II. The external aliphatic groups
are omitted for clarity. Note that a pair of
intermolecular O–H· · · O hydrogen
bonds is replaced by four square-planar
Cu–O coordination bonds in the
metal-ion insertion process that
generates the isostructural inorganic
analog. From R. M. McKinley, G. V. C.
Cave and J. L. Atwood, Proc. Nat. Acad.
Sci. 102, 5944-8 (2005).

C-propan-3-ol pyrogallol[4]arene with four equivalents of Cu(NO3)2·3H2O in
a mixture of acetone and water yielded a large neutral coordination capsule
II [Cu24(H2O)x(C40H40O16)6 (acetone)n] where x ≥ 24 and n = 1–6. Single-
crystal X-ray analysis established that retro-insertion of 24 Cu(II) metal centers
into the hexameric framework results in substitution of 48 of the 72 phenolic
protons, leaving the remaining 24 intact for intramolecular hydrogen bonding
(O· · · O 0.2400–0.2488 nm). As shown in Fig. 20.4.39(b), the large coordina-
tion capsule II may be viewed as an octahedron with the six 16-membered
macrocylic rings located at its corners, and each of its eight faces is capped by a
planar cyclic [Cu3O3] unit of dimensions Cu–O 0.1911 to 0.1980 nm, O–Cu–O
85.67◦ to 98.23◦, and Cu–O–Cu 140.96◦ to 144.78◦.

Definitive location of all guest molecules inside the cavity is somewhat
ambiguous owing to inexact stoichiometry and disorder. However, the (+)-
MALDI mass spectra of II indicate that each individual capsule encloses
different mixtures of water and acetone. In particular, two peaks implicated
the presence of 24 entrapped water molecules that occupy axial coordination
sites orientated toward the center of the cavity.

The pair of supramolecular capsules I and II represents a landmark in the
construction of large coordination cages using multicomponent ligands. This
elegant blueprint approach is facilitated by the robustness of the hydrogen-
bonded assembly I, which serves as a template for metal-ion insertion at
specific sites with conservation of structural integrity. Notably, capsule size
is virtually unchanged as the center-to-corner distance of the four phenolic
O atoms belonging to the eight-membered intermolecular hydrogen-bonded
ring (0.1883–0.1976 nm) in I closely matches the Cu–O bond distance of
0.1913–0.1978 nm in II.

20.4.8 Reticular design and synthesis of porous metal–organic
frameworks

The design and synthesis of metal–organic frameworks (MOFs) has yielded a
large number of solids that possess useful gas and liquid adsorption properties.
In particular, highly porous structures constructures constructed from discrete
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Fig. 20.4.40.
Crystal structure of MOF-5. (a) Zn4O
tetrahedra joined by
benzenedicarboxylate linkers. H atoms
are omitted for clarity. (b) The topology
of the framework (primitive cubic net)
shown as an assembly of (Zn4O)O12
clusters (represented as truncated
tetrahedra) and p-phenylene (–C6H4–)
links (represented by rods). From O. M.
Yaghi, M. O’Keeffe, N. W. Ockwig, H.
K. Chae, M. Eddaoudi, and J. Kim,
Nature 423, 705-14 (2003).

(b)(a)

metal–carboxylate clusters and organic links have been demonstrated to be
amenable to systematic variation in pore size and functionality.

Consider the structure of the discrete tetranuclear Zn4O(CH3CO2)6
molecule, which is isostructural with Be4O(CH3CO2)6, the structure of which is
shown in Fig. 9.5.2. Replacement of each acetate ligand by one half of a linear
dicarboxylate produces a molecular entity that can conceivably be intercon-
nected to identical entities to generate an infinite coordination network.An illus-
trative example is Zn4O(BDC)6, referred to as MOF-5, which is prepared from
Zn(II) and benzene-1,4-dicarboxylic acid (H2BDC) under solvothermal condi-
tions. In the crystal structure, a Zn4O(CO2)6 fragment comprising four fused
ZnO4 tetrahedra sharing a common vertex and six carboxylate C atoms consti-
tute a “secondary building unit” (SBU). Connection of such octahedral SBUs by
mutually perpendicular p-phenylene (−C6H4−) links leads to an infinite prim-
itive cubic network, as shown in Fig. 20.4.40. Alternatively, the smaller Zn4O
fragment (an oxo-centered Zn4 tetrahedron) can be regarded as the SBU and the
corresponding organic linker is the whole benzene-1,4-dicarboxylate dianion.

The resulting MOF-5 structure has exceptional stability and porosity as both
the SBU and organic link are relatively large and inherently rigid. This reticular
[which means ‘having the form of a (usually periodic) net] design strategy,
based on the concept of discrete SBUs of different shapes (triangles, squares,
tetrahedra, octahedra, etc.) considered as “joints” and organic links considered
as “struts”, has been applied to the synthesis and utilization of a vast number of
MOF structures exhibiting varying geometries and network topologies. Based
on the Zn4O(CO2)6 SBU in the prototype MOF-5 (also designated as IRMOF-
1), a family of isoreticular and isostructural cubic frameworks with diverse pore
sizes and functionalities has been constructed, including IRMOF-6, IRMOF-8,
IRMOF-11, and IRMOF-16, which are illustrated in Fig. 20.4.41.

An example of a porous framework that is isoreticular, but not isostruc-
tural, with MOF-5 is MOF-177, which incorporates the extended organic
linker 1,3,5-benzenetribenzoate (BTB). The framework of crystalline MOF-
177, Zn4O(BTB)2· (DEF)15(H2O)3, where DEF = diethyl formamide, has an
ordered structure with an estimated surface area of 4,500 m2 g−1, which greatly
exceeds those of zeolite Y (904 m2g−1) and carbon (2,030 m2 g−1).
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IRMOF-1 (≡ MOF-5)

IRMOF-11

IRMOF-6

IRMOF-8

IRMOF-16

Fig. 20.4.41.
Comparison of cubic fragments in the
respective three-dimensional extended
structures of IRMOF-1 (≡MOF-5),
IRMOF-6, IRMOF-8, IRMOF-11, and
IRMOF-16. From M. Eddaoudi, J. Kim,
N. Rosi, D. Vodak, J. Wachter,
M. O’Keeffe and O. M. Yaghi, Science
295, 469-72 (2004).

As shown in Fig. 20.4.42, the underlying topology of MOF-177 is a (6,3)-
net with the center of the octahedral Zn4O(CO2)6 cluster as the six-connected
node and the center of the BTB unit as the three-connected node. Its excep-
tionally large pores are capable of accommodating polycyclic organic guest
molecules such as bromobenzene, 1-bromonaphthalene, 2-bromonaphthalene,
9-bromoanthracene, C60, and the polycyclic dyes Astrazon Orange R and
Nile Red.

Furthermore, the ability to prepare these kinds of MOFs in high yield and
with adjustable pore size, shape, and functionality has led to their exploration as
gas storage materials. Thermal gravimetric and gas sorption experiments have
shown that IRMOF-6, bearing a fused hydrophobic unit C2H4 in its organic
link, has the optimal pore aperture and rigidity requisite for maximum uptake
of methane. Activation of the porous framework was achieved by exchanging
the included guest molecules with chloroform, which was then removed by
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Fig. 20.4.42.
Crystal structure of MOF-177. (a) A
central Zn4O unit coordinated by six
BTB ligands. (b) The structure viewed
down [001]. From H. K. Chae, D. Y.
Siberio-Pérez, J. Kim, Y. B. Go, M.
Eddaoudi, A. J. Matzger, M. O’Keeffe
and O. M. Yaghi, Nature 427, 523-7
(2004).

(a) (b)

gradual heating to 800◦C under an inert atmosphere. The evacuated framework
has a stability range of 100-400◦C, and the methane sorption isotherm measured
in the range 0-40 atm at room temperature has an uptake of 240 cm3(STP)/g
[155 cm3(STP)/cm3] at 298 K and 36 atm. On a volume-to-volume basis, the
amount of methane sorbed by IRMOF-6 at 36 atm amounts to 70% of that
stored in compressed methane cylinders at∼205 atm. As compared to IRMOF-
6, IRMOF-1 under the same conditions has a smaller methane uptake of 135
cm3(STP)/g.

The isoreticular MOFs based on the Zn4O(CO2)6 SBU also possesses favor-
able sorption properties for the storage of molecular hydrogen. At 77 K,
microgravimetric sorption measurements gave H2 (mg/g) values of 13.2, 15.0,
16.0, and 12.5 for IRMOF-1, IRMOF-8, IRMOF-11, and MOF-177, respec-
tively. At the highest pressures attained in the measurements, the maximum
uptake values for these frameworks are 5.0, 6.9, 9.3, and 7.1 molecules of H2
per Zn4OLx unit where L stands for a linear dicarboxylate.

MOF-177 has been demonstrated to act like a super sponge in capturing vast
quantities of carbon dioxide at room temperature. At moderate pressure (about
35 bar), its voluminous pores result in a gravimetric CO2 uptake capacity of
33.5 mmol/g, which far exceeds those of the benchmark adsorbents zeolite
13X (7.4 mmol/g at 32 bar) and activated carbon MAXSORB (25 mmol/g at
35 bar). In terms of volume capacity, a container filled with MOF-177 can hold
about twice the amount of CO2 versus the benchmark materials, and 9 times
the amount of CO2 stored in an empty container under the same conditions of
temperature and pressure.

The previous structural and sorption studies of MOFs are all based on the dis-
crete Zn4O(CO2)6 SBU. Recent development has demonstrated that rod-shaped
metal–carboxylate SBUs can also give rise to a variety of stable solid-state
architectures and permanent porosity. Three illustrative examples are presented
below.

In the crystal structure of Zn3(OH)2(BPDC)2·(DEF)4(H2O)2 where BPDC
= 4,4’-biphenyldicarboxylate (MOF-69A), there are tetrahedral and octahedral
Zn(II) centers coordinated by four and two carboxylate groups, respectively,
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in the syn,syn mode, with each µ3-hydroxide ion bridging three metal cen-
ters [Fig. 20.4.43(a)]. The infinite Zn–O–C rods are aligned in parallel fashion
and laterally connected to give a three-dimensional network [Fig. 20.4.43(b)],
forming rhombic channels of edge 1.22 nm and 1.66 nm along the longer
diagonal, into which the DMF and water guest molecules are fitted.

(a) (b)

Fig. 20.4.43.
Channel structure of MOF-69A: (a) ball-and-stick representation of inorganic SBU; (b) SBUs connected by biphenyl links. The DEF and water
molecules have been omitted for clarity. From N. L. Rosi, J. Kim, M. Eddaoudi, B. Chen, M. O’Keeffe and O. M. Yaghi, J. Am. Chem. Soc. 127,
1504–18 (2005).

The Mn–O–C rods in MOF-73, Mn3(BDC)3·(DEF)2, are constructed from
a pair of linked six-coordinate Mn(II) centers [Fig. 20.4.44(a)]. One metal
center is bound by two carboxylate groups acting in the syn,syn mode, one
in the bidentate chelating mode, and a fourth one in the syn,anti mode. The
other metal center has four carboxylates bound in the syn,syn mode and
two in the syn,anti mode. Each rod is built of corner-linked and edge-linked

(a) (b)

Fig. 20.4.44.
Channel structure of MOF-73: (a)
ball-and-stick representation of inorganic
SBU; (b) SBUs connected by
p-phenylene links. The DEF molecules
have been omitted for clarity. From N. L.
Rosi, J. Kim, M. Eddaoudi, B. Chen,
M. O’Keeffe and O. M. Yaghi, J. Am.
Chem. Soc. 127, 1504–18 (2005).
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MnO6 octahedra, and is connected to four neighboring rods by p-phenylene
links. The resulting three-dimensional host framework [Fig. 20.4.44(b)] has
rhombic channels of dimensions 1.12 × 0.59 nm filled by the DEF guest
molecules.

The structure of MOF-75, Tb(TDC)·(NO3)(DMF)2 where TDC = 2,5-
thiophenedicarboxylate, contains eight-coordinate Tb(III) bound by four car-
boxylate groups all acting in the syn,syn mode, one bidentate nitrate ligand, and
two terminal DMF ligands [Fig. 20.4.45(a)]. The Tb–O–C rod orientated in the
a direction consists of linked TbO8 bisdisphenoids with the carboxyl carbon
atoms forming a twisted ladder. Lateral linkage of rods in the b and c directions
by the thiophene units generate rhombic channels measuring 0.97 × 0.67 nm,
as illustrated in Fig. 20.4.45(b), which accommodate the DMF guest molecules
and nitrate ions.

20.4.9 One-pot synthesis of nanocontainer molecule

Dynamic covalent chemistry has been used in an atom-efficient self-assembly
process to achieve a nearly quantitative one-pot synthesis of a nanoscale
molecular container with an inner cavity of approximately 1.7 nm3.

In a thermodynamically driven, trifluoroacetic acid catalyzed reaction in
chloroform, six cavitands 1 and twelve ethylenediamine linkers condense to
generate an octahedral nanocontainer 2, as shown in Fig. 20.4.46. Each cavi-
tand has 4 formyl groups on its rim, and these react with the 24 amino groups
of the linkers to form 24 imine bonds. After reduction of all the imine bonds
with NaBH4, the hexameric nanocontainer can be isolated via reversed-phase
HPLC as the trifluoroacetate salt 2·24CF3COOH in 63% yield based on 1. Ele-
mental analysis of the white solid corresponds to the stoichiometric formula
2·24CF3COOH·9H2O. The simplified 1H and 13C NMR spectra of 2 and
2·24CF3COOH are consistent with their octahedral symmetry.

If the same reaction is carried out with either 1,3-diaminopropane or 1,4-
diaminobutane in place of ethylenediamine, the product is an octaimino
hemicarcerand composed of two face-to-face cavitands connected by four
diamino bridging units.

20.4.10 Filled carbon nanotubes

Much research has been devoted to the insertion of different kinds of crystalline
and non crystalline material into the hollow interior of carbon nanotubes. The
encapsulated species include fullerenes, clusters, one-dimensional (1D) metal
nanowires, binary metal halides, metal oxides, and organic molecules.

The left side of Fig. 20.4.47 illustrates the van der Waals surfaces of the
(10,10) and (12,12) armchair SWNTs with diameters of 1.36 and 1.63 nm and
corresponding internal diameters of approximately 1.0 and 1.3 nm, respectively,
as specified by the van der Waals radii of the sp2 carbon atoms forming the
walls. The (10,10) tube has the right size to accommodate a linear array of C60
molecules, as shown by the HRTEM images marked (a) and (b) on the right
side of Fig. 20.4.47. Parts (c) and (d) show the HRTEM image and modeling
of an interface between four fullerene molecules and a 1D FeI2 crystal.
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(a) (b)

Fig. 20.4.45.
Channel structure of MOF-75: (a)
ball-and-stick representation of inorganic
SBU; (b) SBUs connected by thiophene
links. The DMF molecules and nitrate
ions have been omitted for clarity. From
N. L. Rosi, J. Kim, M. Eddaoudi,
B. Chen, M. O’Keeffe and O. M. Yaghi,
J. Am. Chem. Soc. 127, 1504–18 (2005).
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Fig. 20.4.46.
Reaction scheme showing the thermodynamically controlled condensation of tetraformylcavitand 1 with ethylenediamine to form an octahedral
nanocontainer 2, which undergoes reduction to yield the trifluoroacetate salt 2·24CF3COOH.
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(10,10) (12,12)

1.63nm~1.45nm~1.2nm~1.36nm

0.17nm 0.17nm

(a)

(b)

(c)

(d)

Fig. 20.4.47.
Left: Schematic representations of the van der Waals surfaces of (10,10) and (12,12) armchair SWNTs. Right: (a) HRTEM image showing a
(10,10) SWNT filled with C60 molecules. (b) Second image from the same specimen as in (a), showing a cross-sectional view of an ordered
bundle of SWNTs, some of which are filled with fullerene molecules. (c) HRTEM image (scale bar = 1.5 nm) of a filled SWNT showing an
interface between four C60 molecules (a possible fifth molecule is obscured at the left) and a 1D FeI2 crystal. (d) Schematic structural
representation of (c) (Fe atoms = small spheres; I atoms = large spheres). Courtesy of Professor M. L. H. Green.

The formation of an ordered 2× 2 KI crystal column within a (10,10) SWNT
with D ∼ 1.4 nm is shown in Fig. 20.4.48. The structural model is illustrated
in (a), and a cross-sectional view is shown in (b). The coordination numbers
of the cation and anion are changed from 6:6 in bulk KI to 4:4 in the 2 × 2
column. Each dark spot in the HRTEM image (c) represents an overlapping I–K
or K–I arrangement viewed in projection, which matches the simulated image
(d). The spacing between spots along the SWNT is∼0.35 nm, corresponding to
the {200} spacing in bulk KI, whereas across the SWNT capillary the spacing
increases to ∼0.4 nm, representing a ∼17% tetragonal expansion.

The incorporation of a 3 × 3 KI crystal in a wider SWNT (D ∼ 1.6 nm) is
depicted in Fig. 20.4.49. In this case, three different coordination types (6:6,
5:5, and 4:4) are exhibited by atoms forming the central, face, and corner · · · I–
K–I–K· · · rows of the 3 × 3 column, respectively, along the tube axis. The
<110> projection shows the K+ and I− sublattices as pure element columns,
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0.35nm(a)

(b)

:C :I :K

1.36nm

0.4nm

0.4nm (c)

(d)

Fig. 20.4.48.
A 2× 2 KI crystal column filling a
(10,10) SWNT. (a) Cutaway structural
representation of composite model used
in the simulation calculations. (b)
End-on view of the model, showing an
increased lattice spacing of 0.4 nm
across the capillary in two directions
(assuming a symmetrical distortion). (c)
HRTEM image. (d) Simulated Image.
Courtesy of Professor M. L. H. Green.
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Fig. 20.4.49.
(a) Reconstructed HRTEM image (averaged along the tube axis) of the <110> projection of a 3 × 3 KI crystal in a D ∼1.6 nm diameter SWNT.
Note that the contrast in this image is reversed so that regions of high electron density appear bright and low electron density appear dark. (b)
Structural model derived from (a). Courtesy of Professor M. L. H. Green.
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Fig. 20.4.50.
(a) An isolated DWNT filled with KI. (b)
Reconstructed image of the KI@DWNT
composite; the marked area was
structurally analyzed in detail. (c)
Crystal model showing the distortions
imposed and the three subsections
considered for its construction. (d)
Structural model of the marked section in
(b). (e) Reconstructed versus simulated
image of the three sections. Courtesy of
Professor M. L. H. Green.
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which are distinguishable by their scattering powers. The iodine atoms located
along <110> all show a slight inward displacement relative to their positions
in bulk KI, whereas the K atoms located along the same cell diagonal exhibit a
small expansion.

It was found that KI can also be used to fill a DWNT, as shown in Fig. 20.4.50.
The HRTEM image (a) and reconstructed image (b) of the KIDWNT composite
was analysed using a model composed of an inner (11, 22) SWNT(D ∼2.23 nm)
and an outer (18, 26) SWNT (D ∼ 3.04 nm). The measured averaged spacings
between the atomic columns gave values of 0.37 nm across the DWNT axis
and 0.36 nm along it, which agree well with the {200} d-spacing of rock-salt
KI (0.352 nm). In the simulation calculation, the encapsulated fragment was
divided into three sections in order to model the lattice defects such as plane
shear and plane rotation.
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ab initio methods, 142
acentric crystal classes, 304
acetylenediide, 530
acetylenediide, alkaline-earth, 530
acetylenediide, copper(I) complex, 532
acetylenediide, ternary metal, 530
acetylenide, 530
acid hydrates, 626
active space, 146
adamantane, disordered cubic form, 357, 361
adamantane, ordered tetragonal form, 358, 361
adamantane-1,3,5,7-tetracarboxylic acid, 741
adamantane-like cage compounds, 358, 362
adamantane-like molecular skeleton, 174
agostic bond, 402, 425
agostic-bond complexes, 428
alkali metal complexes, 436
alkali metal oxides, 433
alkali metal suboxides, 433
alkalides, 447
alkaline-earth metallocenes, 455
alkaline-earth oxides, 367
allophanate, 781
alnicos, 392
alums, MIMIII(XO4)2·12H2O, 353, 356
ammonia, 578
amorphous carbon, 506
angular correlation, 47
angular momentum quantum number, 31, 55
angular momentum, orbital, 55
angular momentum, spin, 55
angular momentum, total, 56
angular wavefunction, 30, 31, 33
anionic carbonyl cluster, 718
antibonding effect, 83
antibonding molecular orbital, 85, 89
argentophilic interaction, 785, 792, 795,

796, 797
argentophilicity (argentophilic attraction), 724
asymmetric molecule, 170
asymmetric unit, 319, 323
atomic orbital, 8
atomic orbitals, 31
atomic orbitals, energies of, 55
atomic units, 42
aurophilicity (or aurophilic attraction), 721
axial ratios, 301

azide ion, coordination modes, 562
azide ion, N−3 , 562
azides, 562

band gap, 130
bands d–d, 271, 292
band theory, 128
barium titanate, BaTiO3, 388
basic beryllium acetate, Be4O(CH3COO)6,

336, 338
basis set, 142
benzene, supercrowded, 510
benzene-1,4-dicarboxylic acid, 800
benzenetribenzoate, 1,3,5-, 800
beryl, Be3Al2[Si6O18], 351, 353
betaine, 787
binaphthyl, 1,1′-, 345
binaphthyl, 1,1’-, 347
biphenyl, 333, 336, 337
bismuth-bismuth double bond, 606
bismuthine, tetrameric, 605
bismuthonium ylide, 604
body-centered cubic packing (bcp), 381
Bohr radius, 7, 34
boiling points of metallic elements, 133
Boltzmann weighting factor, 135
bond order, 94
bond valence, 703
bond valence of metal-metal bond, 711
bond-angle relationships for Td molecules, 175
bonding effect, 111
bonding molecular orbital, 84
boranes, 470
boranes, macropolyhedral, 479
boranes, metalla, 483
boranes, topological description, 471
boranes, arachno, 474
boranes, hypercloso, 483
boranes, hypho, 473, 475
boranes, closo, 477
boranes, nido, 474
borate, dihydrogen, 487
borates, structural principles, 489
borates, structural units, 487
borax, 489
borazine, 468
boric acid, 486
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borides, metal, 464
borides, non-metal, 467
borides, rare-earth metal, 466
Born-Landé equation, 124
Born-Mayer equation, 124
boron carbides, 467
boron halides, 469
boron nitrides, 468
boron, α-R12, 461
boron, α-rhombohedral, 350, 352
boron, β-R105, 463
boron, β-R105 electronic structure, 481
boron, B12 icosahedron, 461
Borromean link, 753
Bravais lattices, 306, 309
butadiene, cyclization, 113
butadiene, equilibrium bond length, 113
butadiynediide, 792

cadmium iodide, CdI2, 377
calcium carbide (Form I), CaC2, 346, 348
calcium carbide, CaC2, 369
calcium carbide, modifications, 530
calcium nitridoberyllate, Ca[Be2N2], 346, 348
calix[4]arene bismelamine, 744
calomel, Hg2Cl2, 346, 348
carbide complex, terminal, 528
carbide-centered carbonyl clusters, 528
carbon atom, naked, 527
carbon black (soot), 506
carbon bridgehead, inverted bond

configuration, 525
carbon fibers, 506
carbon nanotube, double-walled (DWNT), 807
carbon nanotube, filled, 804
carbon nanotube, multi-walled (MWNT), 508
carbon nanotube, single-walled (SWNT),

507, 804
carbon onions, 506
carbon, activated, 506
carbon, bond lengths, 520
carbon, coordination numbers, 520
carbon, covalent bond types, 517
carbon, hybridization schemes, 518
carbon-carbon bonds, abnormally long, 524
carbon-carbon single bonds, abnormally

short, 526
carbonyl stretching modes in metal

complexes, 246
carborane, actina, 485
carboranes, 470
carboranes, metalla, 483
carboxylic acid dimer synthon, 740
carcerand, 753
catenane, 753
cavitand, 804

centrifugal distortion constant, 159
cesium chloride, CsCl, 384
cesium iron fluoride, Cs3Fe2F9, 352, 354
character tables, 180, 183
charge transfer transitions, 271
charge transfer, L→M, 291
charge transfer, M→L, 291
chelating β-diketiminate ligand, 494
cisplatin, 340, 342
clathrate hydrate, type I, 6GL·2GS ·46H2O,

361, 365
clathrate hydrate, type II, 8GL·16GS ·136H2O,

360, 363
clathrate hydrates, 625
cluster complexes, of Ge, Sn and Pb, 551
cluster compounds, 703
coal, 506
coke, 506
color center, 20
color center, or F-center, 368
complete basis set (CBS) methods, 151
complexes containing naked carbon atom, 527
composite methods, 151
concerted reactions, 113
condensed phase, 139
conduction band, 129
configuration energy, 67
configuration interaction (CI), 145
conglomerate, 338, 340
conrotatory process, 114
conservation of orbital symmetry, 113
coordinates of equipoints, 313, 317
coordination compounds of Group 2

elements, 451
coordination polymer, 757, 776
correlation energy, 145
corundum, α-Al2O3, 379
coulomb integral, 52
coupled cluster (CC) method, 146
coupled cluster singles and doubles

(CCSD) method, 146
coupling, L–S, 56
coupling, j–j, 62
covalent radii, 99, 109
crinkled tape, 744
croconate, 783
crystal classes (crystallographic point

groups), 301
crystal engineering, 737
crystal field theory (CFT), 261
crystal form, 300
crystal radii of ions, 121
crystal system, 307, 310
cubane, 349, 351
cubane-like molecular skeleton, 174
cubic closest packing (ccp), 364
cubic groups, 177
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cubic molecular box, 763
cucurbituril, 772
cyanuric acid, 744
cyaphide, 599
cyclic conjugated polyenes, 221
cycloheptatrienyl ligand, 520
cyclopentadienyl complexes, of Ge, Sn and

Pb, 549

de Broglie wavelength, 4
degenerate states, 19
degree of interpenetration, 769
degrees of freedom, 236
deltate, C3O2−

3 , 524
density functional theory (DFT), 142
density of states function, 129
depolarization ratio, 238
depolarized vibrational band, 239
determinantal wavefunction, 48
Dewar benzene derivative, C18H14, 344, 346
diamond, cubic, 500
diamond, hexagonal, 500
diamondoid network, 768
diatomic molecules, 91
diazene (or diimide), 578
dibismuthene, 605
diethylbarbituric acid, 5,5-, 744
diffuse functions, 144
dihydrogen bond, X–H· · · H–E, 413
dihydrogen borate, 780
diiodides of Tm, Dy and Nd, 700
dinitrogen complex of samarium, 700
dinitrogen complexes, 564
dinitrogen, bonding to transition metals, 568
dinitrogen, oordination modes, 566
dinuclear complexes, 707
dioxygen carriers, 618
dioxygen metal complexes, 616
dioxygen species, 610
direct product, 185
disilene, 539
disilenes, 537
dispersion energy, 136
disrotatory process, 114
dissymmetric molecule, 171
disulfide, coordination modes, 632
dodecahedron, pentagonal, 177
dodecahedron, triangulated, 177
donor-acceptor complexes, of Ge, Sn

and Pb, 554
double cage, 787
double group, 281
double zeta basis set, 143
dual nature of matter, 4

effective ionic radii, 122
effective nuclear charge, 54, 67

eigenfunction, 9
eigenvalue, 9
eighteen-electron rule, 288
electrical conductivity, 128
electrides, 447
electron affinity, 64, 66
electron cloud, 8
electron correlation, 47, 144
electronegativities, 133
electronegativity, 64, 67
electronic configuration, 48, 64
electronic configuration, equivalent, 60
electronic configuration, ground, 72
electronic spectra of some metal

complexes, 274
electronic spectra of square planar

complexes, 289
electronic transition, 53
electronic wavefunction, 6
electrostatic interaction, 135
enantiomorphous pairs, 314, 318
energy level diagram for octahedral

complex, 268
energy level diagram for square planar

complex, 291
energy states, 129
enthalpies of atomization of metallic

elements, 133
equipoint (equivalent position), 318, 322
equivalent position, special, 319, 322
equivalent positions, assignment of atoms and

groups to, 333, 336
equivalent positions, general, 318, 321
exchange integral, 52
excited-state chemistry, 113
exodentate multitopic ligand, 760
expectation value, 9

face-centered cubic (fcc), 364
Fermi energy, 129
ferric wheel, 753
f orbitals, cubic set, 296
f orbitals, general set, 295
f orbitals, nodal characteristics, 296
f orbitals, shapes, 295
ferrocene, 336, 337
first-order crystal field interactions, 270
fluorite, CaF2, 370
form symbol, 301
fractional coordinates, 313, 317
free-electron model, 16
Friedel’s law, 321, 323
frontier orbital theory, 113
frozen core approximation, 148
fullerene adducts, 513
fullerene coordination compounds, 513
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fullerene oligomers and polymers, 515
fullerene supramolecular adducts, 515
fullerene-C50, 505
fullerene-C60, 502
fullerene-C70, 505
fullerene-C78, geometric isomers, 505
fullerenes, 502
fullerenes, as π-ligands, 513
fullerenes, endohedral, 516
fullerenes, hetero, 516
fullerenic compounds, 511
fulleride salts, 514

Gaussian functions, 143
Gaussian-n (Gn) methods, 151
glide plane, axial, 309, 313
glide plane, diagonal, 309, 313
glide plane, diamond, 309, 313
glide plane, double, 310, 313
gold clusters, 721
gold(I)-thallium(I) interaction, 729
gold-xenon complexes, 678
graph-set descriptor, 743
graphical symbols for symmetry elements,

310, 313
graphite, hexagonal, 501
graphite, rhombohedral, 502
Grignard reagents, 454
ground-state chemistry, 113
guanidinium sulfonate, 744
guanidinium-carbonate, 749
guanidinium-trimesate, 749
guidance, N ′′-cyano-N , N -diisopropyl,

341, 344

Hückel molecular orbital theory, 110
Hückel theory for cyclic conjugated polyenes,

221, 228
halite, NaCl, 366
halogen anions, homopolyatomic, 654
halogen oxides, binary, 662
halogen oxides, ternary, 664
halogen oxoacids, 666
halogen, charge-transfer complex, 660
halogens, 654
Hamiltonian operator, 9
helicate, 754
hemicarcerand, 753, 804
hemoglobin, 618
Hermann-Mauguin notation, 301
heteronuclear diatomic molecules, 96
hexachlorocyclophosphazene, (PNCl3)2,

344, 346
hexaferrocenylbenzene, 510
hexagonal closest packing (hcp), 375

hexamethylbenzene, 340, 341
hexamethylenetetramine N -oxide, 359, 362
hexamethylenetetramine, (CH2)6N4, 355, 358
hexamethylenetetramine, quaternized

derivatives, 359, 363
hexanuclear clusters, 715
hexanuclear metal string cationic

complexes, 727
hexatriene, cyclization, 114
high spin complexes, 264
high-nuclearity clusters, 717
homonuclear diatomic molecules, 92, 94
Hund’s rule, 60
hybrid orbitals, 100
hybrid orbitals, construction of, 232
hybridization schemes, 99, 232
hybridization schemes involving

d orbitals, 234
hydrazine, 578
hydride complex, covalent metal, 417
hydride complex, high coordinate, 420
hydride complex, interstitial metal, 419
hydride complex, lanthanide, 421
hydride ion, 400
hydride ligand, five coordinate, 421
hydride ligand, four coordinate, 421
hydrido cluster complex, rhodium, 421
hydrogen bond, 401
hydrogen bond, geometry, 403
hydrogen bond, inverse, 415
hydrogen bond, non-conventional, 411
hydrogen bond, symmetrical, 406
hydrogen bond, X–H· · · H–M, 414
hydrogen bond, X–H· · · M, 412
hydrogen bond, X–H· · ·π , 411
hydrogen bonding, generalized rules, 405
hydrogen bonding, universality and

importance, 409
hydrogen bonds in organometallic

compounds, 408
hydrogen bridged bond, 401
hydrogen carbonate dimer, 745
hydrogen molecular ion, 79, 82
hydrogen peroxide, 614
hydrogen, isotopes, 399
hydrogen, polymeric, 401
hydrogenic orbitals, 39
hydronium, 626
hydronium (or hydroxonium), 400
hydroxylamine, 578
hyperconjugation, 523

ices, high-pressure, 621
icosahedral groups, 177
identity element, 170
improper rotation axis, 169
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induction interaction, 136
infinite square tube, 761
infrared (IR) activity, 237
inorganic supermolecule, 757
interfacial angles, 300
interhalogen compounds, 657
interhalogen ions, 659
intermetalloid cluster, 554
intermetalloid clusters of As and Bi, 606
intermolecular energy, 137
intermolecular interaction, 138, 733
interstitial heteroatoms, 718
intrinsic semiconductors, 130
inverse crown compounds, 457
inverse crown ether, 456
inversion axis, n-fold, 301
inversion center, 169
iodine compounds, polyvalent organic, 668
ionic bond, 121
ionic liquid, 126
ionic radii, 121
ionic size, 121
ionization energy, 64
iron(II) phthalocyanine, 341, 344
iron-sulfur cluster [Fe4S4(SC6H5)4]2−,

344, 345
irreducible representation, 180
iso-bond valence, 721
iso-structural clusters, 721

Kapustinskii equation, 125
Keesom energy, 135
kinetic energy operator, 12
Koch cluster, 368
krypton compounds, 679

lanthanide complexes, cyclopentadienyl, 694
lanthanide complexes, structures and

properties, 694
lanthanide compounds, magnetic

properties, 687
lanthanide contraction, 682
lanthanide(II) reduction chemistry, 699
lanthanides, 682
lanthanides, oxidation states, 684
lanthanides, term symbols, 685
lanthanum square antiprism, 763
Laplacian operator, 30
Laporte’s rule, 188
lattice (or space lattice), 305, 307
lattice energy, 124, 126
Laue groups (Laue classes), 325, 329
lead icosahedron, [Pt@Pb12]2−, 348, 350
Lennard-Jones 12-6 potential, 138
linear catenation, 494
linear combination of atomic orbitals, 77

linear combinations of ligand orbitals, AL4
molecule with Td symmetry, 228

linear homocatenated hexanuclear indium
compound, 494

linear tape, 744
linear triatomic molecules, 99
lithium π complexes, 443
lithium alkoxides and aryloxides, 437
lithium amides, 438
lithium halide complexes, 439
lithium nitride, 435
lithium phosphide complexes, 441
lithium silicide complexes, 440
local spin density approximation (LSDA), 147
localized orbitals, 101
low spin complexes, 264
low-valent oxides and nitrides, 452

Madelung constant, 124
magnetic materials, 391
magnetic quantum number, 42
magnets, permanent, 393
many-electron atoms, 53
melamine, 744
melting points of chlorides salts, 127
melting points of metallic elements, 134
metaboric acid, 487
metal complex, X–H σ -bond coordination, 424
metal hydride, binary, 416
metal string molecules, 724
metal–metal bonds, 119
metal-based infinite chains and networks, 729
metal-metal bonds, 133
metal-organic framework (MOF), 799
metal-oxo complexes, 616
metallacarboranes with 14 and 15 vertices, 486
metallic bonds, 134
metallic radii, 132
metalloid cluster, 494
metalloid cluster, high-nuclearity, 553
methyllithium, (CH3Li)4, 357, 360
microstate, 58
Miller indices, 301
minimal basis set, 142
mixed gold-silver clusters, 724
mixed-valent silver(I,II) compound, 790
molecular Borromean link, 756
molecular capsule, 798
molecular container, 804
molecular hydrogen, coordinate bond, 402
molecular hydrogen, coordination

compound, 422
molecular metal, 120
molecular necklace, 773
molecular orbital, 8
molecular orbital theory, 85
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molecular orbital theory for octahedral
complexes, 283

molecular orbital theory for square planar
complexes, 289

molecular orbital theory, applications, 213
molecular orbital theory, essentials, 84
molecular panel, 765
molecular point group, 170
molecular polyhedra, 762
molecular recognition, 734
molecular skeleton, bond valence, 472
molecular term symbols, 189
molecular trefoil knot, 755
molecular vibrations, applications, 236
molecular wires, inorganic, 729
molten salt, 126
multi-configuration self-consistent field, 145
multiple bonding, between heavier Group 14

elements, 557
multiplicity, 318, 322
myoglobin, 618

nano-sized tubular section, 761
nanocapsule, 797, 798
nanocontainer, 804
nanoscale dodecahedron, 766
naphthacene radical cation, 520
naphthalene, 335, 337, 341, 343
nickel asenide, NiAs, 376
nickel wheel, 760
niobium monoxide, NbO, 368
nitric oxide, 573
nitride ion, N3−, 561
nitrogen, catenation of, 564
noble gas complexes, organometallic, 676
nitrogen oxides, 569
nitrosyl complexes, 574
nitrosyl halides, 573
nitrosyl salts, 573
noble gas atom, as donor ligand, 676
noble gas compounds, structural

chemistry, 670
node, 758
non-benzenoid aromatic compound, 781
non-benzenoid aromatic compounds, 511
nonbonding molecular orbital, 84
normal modes, 236
normal vibration, 236
normalization constant, 8
normalization integral, 80

octahedral complexes, π bonding , 285
octahedral complexes,σ bonding, 283
octathio[8]circulene, C16S8, 511
oligo(α-pyridyl)amido ligand, 725

orbital energy level diagram, 97
order of the group, 184
organoaluminum compounds, 490
organoantimony compounds , 607
organobismuth compounds, 607
organolithium compounds, 443
organometallic compounds of Group 2

elements, 454
organometallic compounds, Group 13, 491
organometallic compounds, Group 13

containing M–M bonds, 492
organometallic compounds, of heavier Group

14 elements, 549
organouranium(IV) complex, dinuclear, 524
organoxenon compounds, 677
Orgel diagrams, 268
orthogonality, 8
orthonormality, 8
overlap integral, 80
oxide superconductors, 389
oxides of cyclic poly-sulfur, 637
oxides of sulfur, 634
oxides, of Ge, Sn and Pb, 546
oxo ligand, 616
oxo-acids of nitrogen, 575
oxo-centered Zn4 tetrahedron, 800
oxoacids of sulfur, 637
oxocarbon dianions, 781
oxoniobates, 369
oxonium, 626
oxygen, crystalline phases, 612
oxygen, singlet , 611
oxygenyl, 613
ozone, 614

Pn group, bond valence, 586
Pn groups, in metal complexes, 581
paramagnetic species, 95
particle in a one-dimensional box, 13
particle in a ring, 21
particle in a three-dimensional box, 17
particle in a triangle, 23
Pauli Exclusion Principle, 42
pentanitrogen cation, N+

5 , 564
pentanuclear metal clusters, 715
perovskite, CaTiO3, 385
peroxide, 610
perturbation methods, 146
phenylenediethynides, 794
phosphaalkenes, 596
phosphaalkynes, coordination modes, 597
phosphazanes, 591
phosphazenes, cyclic, 594
phosphazenes (phosphonitrilic

compounds), 593
phosphazenes, generalizations, 596
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phosphinidenes (phosphanylidenes), 596
phosphorus bonding types, 586
phosphorus, allotropic forms, 579
phosphorus, orthorhombic black, 344, 346
phosphorus, stereochemistry and bonding, 587
phosphorus–nitrogen compounds, 590
phosphorus-carbon compounds, 596
phosphorus-carbon compounds,

π -coordination complexes , 600
physical properties of non-centrosymmetric

materials, 304
Planck’s constant, 4
point group, 170
point group identification, flow chart, 178
point group identification, projection

diagrams, 178
polarization functions, 143
polyatomic anions, of Ge, Sn and Pb, 547
polyiodides, 654
polyphosphide anions, 581
polypyridylamine, 725
polyrotaxane, 753, 773
polyselenides, 648
polysulfide, coordination compounds, 632
polysulfides, 631
polytellurides, 648
potassium octachlorodirhenate dihydrate,

K2[Re2Cl8]·2H2O, 341, 344
potential energy curves, 82
potential energy operator, 12
principal quantum number, 34
probability, 5, 39
probability density function, 6, 35
proper rotation, 167
pyrogallol[4]arene, 797

quadratic configuration interaction (QCI)
method, 147

quadruple bond, 708
quantum mechanical operator, 15
quintuple bond, 712

racemic crystal, 338, 340
radial correlation, 47
radial equation, 42
radial function, 30, 33, 34
radial probability distribution function, 39
Raman (R) activity, 238
rare-earth cations, coordination

geometries, 691
rare-earth metals, 682
rare-earth metals, crystalline forms, 683
rare-earth metals, halides, 689
rare-earth metals, organometallic

compounds, 694

rare-earth metals, oxides, 688
rational indices, 301
reductive cyclotrimerization of CO, 524
relativistic effects, 64, 71, 72, 75, 133
resonance integral, 88
reticular design, 799
rhenium trioxide, ReO3, 390
rhodizonate, 781
rhombic dodecahedron, 768
rhombohedral lattice, obverse setting, 306, 309
rhombohedral lattice, reverse setting, 306, 309
rings and clusters of Group 15 elements, 605
rock salt, NaCl, 366
rosette, 744
rosette ribbon, 745
rotation axis, 167
rotation-reflectionaxis, 169
rotaxane, 753
rule of mutual exclusion, 238
Russell-Saunders coupling, 56
Russell-Saunders terms, 56
rutile, TiO2, 380

samarocene, decamethyl, 700
sandwich compound, metal monolayer, 520
Schönflies notaion, 301
Schrödinger equation, 18
Schrödinger equation for hydrogen atom, 29
screw axis, 309, 312
second-order crystal field interactions, 270
secondary building unit (SBU), 800
secular determinant, 90
secular equations, 90
selection rules in spectroscopy, 187
selenium allotropes, 644
selenium polyatomic cations, 644
selenium polymeric cations, 646
selenium stereochemistry, 649
self-consistent field (SCF) method, 54
semiconductors n-type, 130
semiconductors p-type, 130
semi-empirical methods, 142
separation constants, 30
sigma complexes, generalizations, 428
sigma-bond complexes, 428
silanes, 534
silatranes, 536
silicates, 540
silicates, general structural rules, 543
silicides, 534
silicon bridgehead, inverted tetrahedral bond

configuration, 554
silicon dumbbell, unsubstituted, 554
silicon, octahedral hexa-coordinate, 536
silicon, stereochemistry, 535
silicon, structural chemistry, 533
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silver acetylenediide, 531, 785
silver acetylide, 531, 785
silver carbide, 531
silver ethynide complexes, 792
silver iodide, AgI, 383
silver(I) arylethynide complexes, 796
silver(I) polyhedron, 785
silver-ethynide supramolecular synthons, 796
silyl anion radical, 539
silyl radical, 539
site of symmetry, 333
Slater-type orbital (STO), 143
sodium and potassium, π complexes, 445
sodium coordination complexes, 441
sodium thallide, 495
space group, polar, 376
space groups, 308, 312
space groups, commonly occurring, 319, 323
space groups, from systematic absences, 332
space groups, occurrence in crystals, 338, 340
space groups, symmetry diagrams, 317, 321
space-group diagrams, 316, 320
space-group symbol, Hermann-Mauguin

nomenclature, 317, 321
space-group symbol, Schönflies notation,

317, 321
space-group symbols, 310, 316
space-group symmetry, application in crystal

structure determination, 339, 341
spacer ligand, 758
spectrochemical series, 264
spectroscopic terms, 56, 60
spherical harmonics, 31
spin function, 48
spin multiplicity, 57
spin variable, 49
spin-orbit (L–S) coupling, 273
spin-orbit interaction, 62
spin-orbit interaction, first-order, 273
spin-orbit interaction, second-order, 273
spinel, inverse, 374
spinel, MgAl2O4, 359, 363, 373
split valence basis set, 143
splitting pattern of d orbitals in square planar

complex, 266
splitting pattern of d orbitals in tetragonally

distorted octahedral complex, 265
splitting pattern of f orbitals in tetrahedral

crystal field, 298
splitting pattern of d orbitals in octahedral

complex, 262
splitting pattern of d orbitals in tetrahedral

complex, 262
splitting pattern of f orbitals in octahedral

crystal field , 298
stacking, π–π , 796
standing wave, 10

stereochemistry of As, Sb and Bi, 602
stereographic projection, 303
steric strain, 522
strong crystal field, 279
strong field ligands, 266
structure-property correlation, 118
subnitrides, 453
subvalent halides, of heavier Group 14

elements, 544
sucrose, 340, 343
sulfide, coordination modes, 631
sulfur allotropes, 627
sulfur oxides, 635
sulfur, oxoacids, 637
sulfur, polyatomic cations, 630
sulfur-nitrogen compounds, 641
super inverse crown ether, 457
super-adamantoid cage, 765
supermolecule, 733
superoxide, 610
supramolecular capsule, 799
supramolecular chemistry, 733
supramolecular rosette, 745
supramolecular self-assembly, 735
supramolecular synthon, 737
symmetries and activities of the normal

modes, 236
symmetry elements, 167
symmetry operations, 167
symmetry plane, 168
synthon X · · · X trimer, 738
systemic absences, 328, 329

Tanabe–Sugano diagrams, 274
tellurium polyatomic cations, 644
tellurium polymeric cations, 646
tellurium stereochemistry, 649
term symbols, 56
tetrahedral iron(II) host–guest

complex, 762
tetranuclear clusters, 714
tetraphenylporphinato)iron(II),meso-,

347, 350
thallium naked anion clusters, 496
thermochemical radii, 126
thioallophanate, 3-, 781
tin metalloid cluster, high-nuclearity, 554
torsion angle, 315, 317
total wavefunctions of atomic orbitals with

n = 1−4, 35
totally symmetric representation, 181
transition-metal clusters, 703
transitions d–d, 271
trefoil knot, 753
triazine, -s, 350, 349, 351
trimethylaluminum, Al2Me6, 343, 344
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trinuclear clusters, 713
triple zeta basis set, 143

Uncertainty Principle, 16
unit cell, 306–308
unit cell transformation, 307, 310
unstable inorganic/organic anions,

stabilization of, 780
unsupported In-In single bonds, 494
uranocene, 341, 343, 519
urea, 345, 347
urea, non-stoichiometric inclusion compounds,

350, 352
urea/thiourea complexes, 780

valence band, 129, 130
valence bond theory, 86, 100
valence tautomer, 782
van der Waals forces, 135
van der Waals interaction, 135
van der Waals interactions, 135
van der Waals radii, 139
variational method, 46, 86
vector sum, 57
vertical detachment energies (VDEs), 155
vibrational spectra of benzene, 254
vibrational spectra of five-atom molecules, 244

vibrational spectra of linear molecules, 252
vibronic interaction in transition metal

complexes, 294
virial theorem, 13

Wade’s rules, 474
water, 620
water, liquid, 623
wave equation, 6
weak crystal field, 279
weak field ligands, 266
Weizmann-n (Wn) methods, 152
Woodward–Hoffmann rules, 113
Wyckoff notation, 318, 322

xenon difluoride, XeF2, 346, 348
xenon fluorides, bonding description, 672
xenon fluorides, complexes of, 674
xenon, stereochemistry, 671

zeolites, 542
zinc sulfide, cubic form, zinc blende,

sphalerite, 371
zinc sulfide, hexagonal form, wurtzite, 376
Zintl phases, 496
zircon, ZrO2, 371
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