Exam NEET AIIMS NEET AIIMS
 www.mtg.in | April 2017 | Pages 96 | ₹ 30
 BITSAT

CHEMISTRY MONTHLY FOR

CHEMISTRY

 Volume 26
 No. 4
 April 2017

Managing Editor Mahabir Singh

Editor Anil Ahlawat (BE, MBA)

Corporate Office:
Plot 99, Sector 44 Institutional area, Gurgaon -122 003 (HR). Tel: 0124-6601200 e-mail:info@mtg.in website:www.mtg.in Regd. Office:
406, Taj Apartment, Near Safdarjung Hospital, New Delhi - 110029.

Competition Edge

Chemistry Musing Problem Set 458
NEET Practice Paper 10
JEE Advanced Model Test Paper 19
JEE Advanced Practice Paper (Full length) 27
BITSAT Practice Paper 31
AIIMS Practice Paper 39
Chemistry Musing Solution Set 4458
Advanced Chemistry Bloc 59
Concept Booster 65
Crossword 89
Class 11
Concept Map 52
Monthly Practice Paper (MPP) 61
Class 12
Concept Map 53
Monthly Practice Paper (MPP) 54

Subscribe online at WWW.mtg.in							
Individual Subscription Rates				Combined Subscription Rates			
	1 yr.	2 yrs.	3 yrs.		1 yr.	2 yrs.	3 yrs.
Mathematics Today	330	600	775	PCM	900	1500	1900
Chemistry Today	330	600	775	PCB	900	1500	1900
Physics For You	330	600	775	PCMB	1000	1800	2300
Biology Today	330	600	775				

Send D.D/M. 0 in favour of MTG Learning Media (P) Ltd.
Payments should be made directly to : MTG Learning Media (P) Ltd,
Plot No. 99, Sector 44, Gurgaon - 122003 (Haryana)
We have not appointed any subscription agent.
Owned, Printed and Published by MTG Learning Media Pvt. Ltd. 406, Taj Apartment, New Delhi - 29 and printed by HT Media Ltd., B-2, Sector-63, Noida, UP-201307. Readers are adviced to make appropriate thorough enquiries before acting upon any advertisements published in this magazine. Focus/Infocus features are marketing incentives. MTG does not vouch or subscribe to the claims and representations made by advertisers. All disputes are subject to Delhi jurisdiction only. Editor : Anil Ahlawat
Copyright© MTG Learning Media (P) Ltd.
All rights reserved. Reproduction in any form is prohibited.

CHEMISTRY MUSING

Chemistry Musing was started from August '13 issue of Chemistry Today. The aim of Chemistry Musing is to augment the chances of bright students preparing for JEE (Main and Advanced) / NEET / AIIMS / PMTs with additional study material. In every issue of Chemistry Today, 10 challenging problems are proposed in various topics of JEE (Main and Advanced) / NEET. The detailed solutions of these problems will be published in net issue of Chemistry Today.
The readers who have solved five or more problems may send their solutions. The names of those who send atleast five correct solutions will be published in the net issue. We hope that our readers will enrich their problem solving sk Ils through "Chemistry Musing" and stand in better stead while facing the competitive ms.

JEE MAIN/NEET

1. A, B, C, D, E, F and G are amines, each one of which forms amine hydrochloride containing 32.42\% chlorine. What will be the molecular formula of amine?
(a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
(b) $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}_{2}$
(c) $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NH}_{2}$
(d) $\mathrm{CH}_{3} \mathrm{NH}_{2}$
2. It is required to make a buffer solution of $\mathrm{pH}=4$, using acetic acid and sodium acetate. How much sodium acetate is to be added to 1 L of $\mathrm{N} / 10$ acetic acid? (Dissociation constant of acetic acid $=1.8 \times 10^{-5}$)
(a) $0.018 \mathrm{~g} / \mathrm{L}$
(b) $1.476 \mathrm{~g} / \mathrm{L}$
(c) $1.081 \mathrm{~g} / \mathrm{L}$
(d) $1.232 \mathrm{~g} / \mathrm{L}$
3. Henry's law constant for CO_{2} in water is $1.67 \times 10^{8} \mathrm{~Pa}$ at 298 K . The quantity of CO_{2} in 500 mL of soda water when packed under $2.5 \mathrm{~atm} \mathrm{CO}_{2}$ pressure at 298 K is
(a) 2.78 g
(b) 1.85 g
(c) 3.12 g
(d) 0.12 g
4. If the relative rates of substitution of 1° and 2° hydrogens are in the ratio of $1: 3.8$. What will be the percentage of 2 -chlorobutane and 1 -chlorobutane respectively formed by chlorination of n-butane in the presence of light at 298 K ?
(a) $28 \%, 72 \%$
(b) $72 \%, 28 \%$
(c) $36 \%, 64 \%$
(d) $64 \%, 36 \%$
5. What will be the angular frequency of an electron occupying the second Bohr's orbit of He^{+}ion?
(a) $2.067 \times 10^{16} \mathrm{sec}^{-1}$
(b) $2.067 \times 10^{15} \mathrm{sec}^{-1}$
(c) $2.067 \times 10^{14} \mathrm{sec}^{-1}$
(d) $2.067 \times 10^{13} \mathrm{sec}^{-1}$

JEE ADVANCED

6. A constant current was flowing for 2 hours through a KI solution oxidising iodide ion to iodine $\left(2 I^{-} \rightarrow \mathrm{I}_{2}+2 e^{-}\right)$. At the end of the experiment, liberated iodine consumed 21.75 mL of 0.0831 M solution of sodium thiosulphate following the redox change $\mathrm{I}_{2}+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \rightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$. What was the average rate of current flown in ampere?
(a) 8.718 A
(b) 0.0242 A
(c) 1.807 A
(d) 4.123 A

COMPREHENSION

To obtain alkan-1-ol from alk-1-ene, the following procedure should be adopted. Alk-1-ene is treated first with diborane, the boron compound formed is then reacted with $\mathrm{H}_{2} \mathrm{O}_{2}$ to get the desired alcohol. This addition of borane followed by oxidation is known as Hydroborationoxidation reaction. Another convenient hydroborating agent is the borane-tetrahydrofuran $\left(\mathrm{BH}_{3}-\mathrm{THF}\right)$ complex.
7. For the following reaction,

predict the product.
(a)

(b)

(c)

(d)

8. In the following reaction,

$$
\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2} \xrightarrow[\text { (ii) } \mathrm{AgNO}_{3} / \mathrm{NaOH}]{\text { (i) } \mathrm{BH}_{3} / \mathrm{THF}} X
$$

product X is
(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(c) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$
(d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{BH}_{2}$

INTEGER VALUE

9. How many of the following compounds will evolve CO_{2} gas with NaHCO_{3} ?

10. While performing flame test, how many of the following metals show bluish green colour under uranium glass?
$\mathrm{Na}, \mathrm{K}, \mathrm{Ca}, \mathrm{Sr}, \mathrm{Ba}, \mathrm{Cu}$
$\diamond \diamond$

11. The volume strength of $1.5 \mathrm{~N} \mathrm{H}_{2} \mathrm{O}_{2}$ solution is
(a) 4.8
(b) 8.4
(c) 3.0
(d) 8.0
12. If the concentration of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ in blood is $0.9 \mathrm{~g} \mathrm{~L}^{-1}$, what will be the molarity of glucose in blood?
(a) 5 M
(b) 50 M
(c) 0.005 M
(d) 0.5 M
13. The ozone in the stratosphere is destroyed by
(a) ${ }^{\circ} \mathrm{Cl}$
(b) ${ }^{\circ} \mathrm{OH}$
(c) ${ }^{\circ} \mathrm{H}$
(d) ${ }^{\circ} \mathrm{ClO}$
14. If $\Delta_{\mathrm{o}}<P$, the correct electronic configuration for d^{4} system will be
(a) $t_{2 g}^{3} e_{g}^{1}$
(b) $t_{2 g}^{4} e_{g}^{0}$
(c) $t_{2 g}^{0} e_{g}^{4}$
(d) $t_{2 g}^{2} e_{g}^{2}$
15. Wavelength of high energy transition of H -atom is 91.2 nm . The corresponding wavelength of He^{+}is
(a) 91.2 nm
(b) 22.8 nm
(c) 54.5 nm
(d) 45.6 nm
16. Shape of $\mathrm{O}_{2} \mathrm{~F}_{2}$ is similar to that of
(a) $\mathrm{C}_{2} \mathrm{~F}_{2}$
(b) $\mathrm{H}_{2} \mathrm{O}_{2}$
(c) $\mathrm{H}_{2} \mathrm{~F}_{2}$
(d) $\mathrm{C}_{2} \mathrm{H}_{2}$
17. Formation of polyethylene from calcium carbide takes place as follows :
$\mathrm{CaC}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{2}$ $\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4}$
$n \mathrm{C}_{2} \mathrm{H}_{4} \longrightarrow\left(\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)_{n}$
The amount of polyethylene obtained from 64.0 kg of CaC_{2} is
(a) 7 kg
(b) 14 kg
(c) 21 kg
(d) 28 kg
18. When ammoniacal solution of MgSO_{4} is heated with $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ in presence of $\mathrm{NH}_{4} \mathrm{Cl}$, a white precipitate of \qquad is formed.
(a) $\mathrm{Mg}\left(\mathrm{NH}_{4}\right) \mathrm{PO}_{4}$
(b) $\mathrm{Mg}_{3}\left(\mathrm{PO}_{3}\right)_{2}$
(c) $\mathrm{MgSO}_{4} \cdot \mathrm{MgCl}_{2}$
(d) $\mathrm{MgSO}_{4} \cdot \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
19. Arrange the following complexes in the order of decreasing molar conductivity :
(P) $\mathrm{Mg}\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)\left(\mathrm{NO}_{2}\right)_{5}\right]$
(Q) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]_{2}$
(R) $\mathrm{K}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right]$
(S) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$
(a) $P>Q>R>S$
(b) $P>R>Q>S$
(c) $Q>P>R>S$
(d) $S>R>P>Q$
20. If heavy water is taken as solvent instead of normal water while performing Cannizzaro reaction, the products of the reaction are
(a) RCOO^{-}and $\mathrm{RCH}_{2} \mathrm{OH}$
(b) RCOO^{-}and $\mathrm{RCH}_{2} \mathrm{OD}$
(c) RCOOD and $R \mathrm{CD}_{2} \mathrm{OD}$
(d) RCOO^{-}and $\mathrm{RCD}_{2} \mathrm{OD}$
21. The correct IUPAC name of the following alkene

(a) Z-3-methyl-4-propyl-3-octene
(b) E-3-methyl-4-propyl-3-octene
(c) E-4-butyl-3-methyl-3-heptene
(d) E-2-ethyl-3-propyl-2-heptene.
22. Select the process that represents smelting.
(a) $\mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\Delta} 2 \mathrm{Al}(\mathrm{OH})_{3}$
(b) $\mathrm{ZnCO}_{3} \xrightarrow{\Delta} \mathrm{ZnO}+\mathrm{CO}_{2}$
(c) $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \xrightarrow{\Delta} 2 \mathrm{Fe}+3 \mathrm{CO}$
(d) $2 \mathrm{~Pb}+\mathrm{O}_{2} \xrightarrow{\Delta} 2 \mathrm{PbO}$
23. An energy of 24.6 eV is required to remove one of the electrons from a helium atom. The total energy required to remove both the electrons from helium atom is
(a) 38.2 eV
(b) 49.2 eV
(c) 51.8 eV
(d) 79.0 eV
24. A first order reaction is 15% completed in 20 minutes. How long will it take to complete 60% ?
(a) 123.3 minutes
(b) 112.7 minutes
(c) 145.2 minutes
(d) 138.8 minutes
25. Match the species in column I with the shapes in column II and select the correct option.

Column I

(A) $\mathrm{H}_{3} \mathrm{O}^{+}$
(B) $\mathrm{HC} \equiv \mathrm{CH}$
(C) ClO_{2}^{-}
(D) NH_{4}^{+}

Column II

(i) Linear
(ii) Angular
(iii) Tetrahedral
(iv) Pyramidal

$$
\begin{array}{llll}
\mathbf{A} & \mathbf{B} & \mathbf{C} & \mathbf{D}
\end{array}
$$

(a) (i) (ii) (iv) (iii)
(b) (iv) (i) (ii) (iii)
(c) (i) (ii) (iii) (iv)
(d) (iv) (ii) (i) (iii)
16. The correct set of reagents for the following conversion :

(a) $\mathrm{P}_{4} / \mathrm{I}_{2}, \mathrm{Na}$, dil $\mathrm{H}_{2} \mathrm{SO}_{4}$
(b) $\mathrm{P}_{2} \mathrm{O}_{5}, \mathrm{LiAlH}_{4}$
(c) $\mathrm{P}_{2} \mathrm{O}_{5} / \Delta, \mathrm{H}_{2} \mathrm{O}, \mathrm{P}_{4} / \mathrm{I}_{2}, \mathrm{Na}$
(d) $\mathrm{P}_{4} / \mathrm{I}_{2}, \mathrm{Na}, \mathrm{P}_{2} \mathrm{O}_{5} / \Delta$
17. Consider the following reduction reactions :
(i) $\mathrm{Sn}^{2+}+2 e^{-} \rightarrow \mathrm{Sn} \quad ; \quad E^{\circ}=-0.14 \mathrm{~V}$
(ii) $\mathrm{Sn}^{4+}+2 e^{-} \rightarrow \mathrm{Sn}^{2+} ; \quad E^{\circ}=0.13 \mathrm{~V}$

Match the column I with column II and choose the correct option.

Column I

(A) $E_{{ }_{S n}{ }^{4+} / \mathrm{Sn}}$
(B) Standard oxidation potential of Sn to Sn^{4+}
(C) Disproportionation of Sn^{2+}
(D) Oxidation of Sn to Sn^{4+}
$\begin{array}{llll}\text { A } & \text { B } & \text { C } & \text { D }\end{array}$
(a) (i) (iii) (ii) (iv)
(b) (ii) (i) (iv) (iii)
(c) (i) (ii) (iii) (iv)
(d) (ii) (iv) (i) (iii)
18. Consider three hypothetical ionic compounds $A B$, $A_{2} B$ and $A_{2} B_{3}$ where in all the compounds, B is in -2 oxidation state and A has variable oxidation states. What is the correct order of lattice energy of these compounds?

Column II

(i) +0.005 V
(ii) -0.005 V
(iii) Spontaneous
(iv) Non-spontaneous D
24. m-Bromoaniline can be prepared by
(a) $\mathrm{C}_{6} \mathrm{H}_{6} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{HNO}_{3}} \xrightarrow[\text { (ii) } \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}]{\text { (i) } \mathrm{Sn}-\mathrm{HCl}} \xrightarrow[\mathrm{H}_{2} \mathrm{O}]{\mathrm{Br}_{2}}$
(b) $\mathrm{C}_{6} \mathrm{H}_{6} \xrightarrow[\mathrm{FeBr}_{3}]{\mathrm{Br}_{2}} \xrightarrow[\mathrm{H}_{2} \mathrm{SO}_{4}]{\mathrm{HNO}_{3}} \xrightarrow[\mathrm{Pt}]{\mathrm{H}_{2}}$
(c) $m-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{COOH} \xrightarrow{\mathrm{SOCl}_{2}} \xrightarrow{\mathrm{NH}_{3}}$ $\xrightarrow{\mathrm{Br}_{2}, \mathrm{NaOH}}$
(d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2} \xrightarrow[\mathrm{Cu}_{2} \mathrm{Br}_{2}]{\mathrm{NaNO}_{2}, \mathrm{HCl}} \xrightarrow{\mathrm{NaNH}_{2}}$
25. In the following sequence of reactions,

B and C are respectively
(a)
 and

(b)
 and

(c)
 in both cases
(d)

26. The lattice enthalpy and hydration enthalpy of four compounds are given below :
Compounds

> Lattice enthalpy (in $\mathbf{k J ~ m o l}{ }^{-1}$)

P	+780
Q	+1012
R	+828
S	+632

Hydration enthalpy (in kJ mol ${ }^{-1}$)

- 920
- 812
-878
S
$+632$
- 600

The pair of compounds which is soluble in water is
(a) P and Q
(b) Q and R
(c) R and S
(d) P and R
27. In the following reaction,

A is
(a)

(b)

(c)

(d)

28. Picric acid can be obtained by path I or II from 2, 4-dinitrochlorobenzene.

Which is possible path?
(a) Path I
(b) Path II
(c) Both I and II
(d) Both are not possible
29. The equilibrium constant value for the equilibrium : $\mathrm{H}_{2(g)}+\mathrm{I}_{2(g)} \rightleftharpoons 2 \mathrm{HI}_{(g)}$ changes with
(a) total pressure
(b) temperature
(c) catalyst
(d) amount of H_{2} and I_{2} present.
30. What mass of slaked lime would be required to decompose completely 4 g of ammonium chloride?
(a) 2.766 g
(b) 2.113 g
(c) 3.518 g
(d) 5.532 g
31. Identify ' S ' in the following reaction sequence :

(a)

(b) Me CHO
(c)

(d) $\mathrm{Me} \sim_{\sim}^{\sim}$
32. The final product formed when boric acid is strongly heated is
(a) HBO_{2}
(b) $\mathrm{B}_{2} \mathrm{O}_{3}$
(c) $\mathrm{H}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}$
(d) $\mathrm{H}_{3} \mathrm{BO}_{4}$
33. Given :
$E^{\circ} \mathrm{Cr}^{3+} / \mathrm{Cr}=-0.74 \mathrm{~V}, \quad E^{\circ}{ }_{\mathrm{MnO}_{4}^{-} / \mathrm{Mn}^{2+}}=1.51 \mathrm{~V}$
$E_{\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-} / \mathrm{Cr}^{3+}=1.33 \mathrm{~V}, \quad E^{\circ} \mathrm{Cl}^{4} \mathrm{Cl}^{-}=1.36 \mathrm{~V} .}$
Based on the given data, strongest oxidising agent will be
(a) Cl^{-}
(b) Cr^{3+}
(c) Mn^{2+}
(d) MnO_{4}^{-}
34. Sulphur trioxide can be obtained by which of the following reaction?
(a) $\mathrm{CaSO}_{4}+\mathrm{C} \xrightarrow{\Delta}$
(b) $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \xrightarrow{\Delta}$
(c) $\mathrm{S}+\mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{\Delta}$
(d) $\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{PCl}_{5} \xrightarrow{\Delta}$
35. Which of the following statements is not true regarding (+)-lactose?
(a) (+)-Lactose contains 8 -OH groups.
(b) On hydrolysis (+)-lactose gives equal amounts of D-(+)-glucose and D-(+)-galactose.
(c) $(+)$-Lactose is a β-glycoside formed by the union of a molecule of D-(+)-glucose and a molecule of $\mathrm{D}-(+)$-galactose.
(d) $(+)$-Lactose is a reducing sugar and does not exhibit mutarotation.
36. The equilibrium constant (K) for the reaction, $\mathrm{H} A+B \rightleftharpoons B \mathrm{H}^{+}+A^{-}$is 100 . If the rate constant for the forward reaction is 10^{5}, then the rate constant for the reverse reaction will be
(a) 10^{7}
(b) 10^{-3}
(c) 10^{3}
(d) 10^{-5}
37. A mixture of ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ and ethene $\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)$ occupies 40 L at 1.00 atm and 400 K . The mixture reacts completely with 130 g of O_{2} to produce CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. Assuming ideal gas behaviour, the mole fraction of $\mathrm{C}_{2} \mathrm{H}_{4}$ in the mixture is
(a) 0.66
(b) 0.34
(c) 0.50
(d) 0.84
38. Two liquids X and Y form an ideal solution. The mixture has a vapour pressure of 400 mm at 300 K when mixed in the molar ratio of $1: 1$ and a vapour pressure of 350 mm when mixed in the molar ratio of $1: 2$ at the same temperature. The vapour pressures of the two pure liquids X and Y respectively are
(a) $250 \mathrm{~mm}, 550 \mathrm{~mm}$
(b) $350 \mathrm{~mm}, 450 \mathrm{~mm}$
(c) $350 \mathrm{~mm}, 700 \mathrm{~mm}$
(d) $550 \mathrm{~mm}, 250 \mathrm{~mm}$
39. $\mathrm{Li}_{2} \mathrm{O}$ is one of the most efficient absorbent for CO_{2} in spacecrafts, in terms of absorbing capacity per unit mass. If the reaction is $\mathrm{Li}_{2} \mathrm{O}+\mathrm{CO}_{2} \longrightarrow \mathrm{Li}_{2} \mathrm{CO}_{3}$, what is the absorption efficiency of pure $\mathrm{Li}_{2} \mathrm{O}$ (i.e., litres of CO_{2} per kg of $\mathrm{Li}_{2} \mathrm{O}$)?
(a) $746.66 \mathrm{~L} / \mathrm{kg}$
(b) $7466.6 \mathrm{~L} / \mathrm{kg}$
(c) $74.66 \mathrm{~L} / \mathrm{kg}$
(d) None of these
40. Due to inert pair effect,
(a) heavier p-block elements show lower oxidation state as stable oxidation state
(b) heavier p-block elements show higher oxidation state as stable oxidation state
(c) strong shielding effect by inner penultimate electrons is observed
(d) the oxidation state is equal to the valence shell electrons.
41. ΔH and ΔS for the reaction,

$$
\mathrm{Ag}_{2} \mathrm{O}_{(s)} \longrightarrow 2 \mathrm{Ag}_{(s)}+1 / 2 \mathrm{O}_{2(g)}
$$

are $30.56 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $66.00 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}$ respectively. The temperature at which the free energy change for the reaction will be zero is
(a) 463 K
(b) 35440 K
(c) 20 K
(d) 483 K
42. An organic compound ' X ' on treatment with hydrogen and platinum catalyst, absorbs 5 equivalents of hydrogen to give n-butylcyclohexane. When ' X ' is treated with silver nitrate in ethanol, a white precipitate is formed. The precipitate is found to be soluble in dilute acid. Treatment of ' X ' with an excess of ozone, followed by dimethylsulphide and water, gives following products,

Hence, compound X is
(a)

(b)

(c)

(d)

43. Determine the standard reduction potential for the half cell reaction, $\mathrm{Cl}_{2}+2 e^{-} \longrightarrow 2 \mathrm{Cl}^{-}$.
(Given : $\mathrm{Pt}^{2+}+2 \mathrm{Cl}^{-} \longrightarrow \mathrm{Pt}+\mathrm{Cl}_{2}, E_{\text {cell }}^{\circ}=-0.15 \mathrm{~V}$
$\left.\mathrm{Pt}^{2+}+2 e^{-} \longrightarrow \mathrm{Pt}, E^{\circ}=1.20 \mathrm{~V}\right)$
(a) 1.05 V
(b) -1.05 V
(c) -1.35 V
(d) 1.35 V
44. Among 2-chloropropanoic acid, 3-chloropropanoic acid, 2,2-dichloroacetic acid and propanoic acid, the K_{a} values will be in the order,
(a) 2,2-dichloroacetic acid $>$ 2-chloropropanoic acid >3-chloropropanoic acid $>$ propanoic acid
(b) 3-chloropropanoic acid >2-chloropropanoic acid $>2,2$-dichloroacetic acid $>$ propanoic acid
(c) 2,2-dichloroacetic acid >3-chloropropanoic acid >2-chloropropanoic acid $>$ propanoic acid
(d) 2,2-dichloroacetic acid $>$ propanoic acid $>$ 2-chloropropanoic acid >3-chloropropanoic acid
45. Which one of the following is employed as a tranquilizer?
(a) Naproxen
(b) Tetracycline
(c) Chlorpheniramine
(d) Equanil

SOLUTIONS

1. (b): The decomposition reaction of $\mathrm{H}_{2} \mathrm{O}_{2}$ is

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

Thus, 2 mol (or 4 equivalents) of $\mathrm{H}_{2} \mathrm{O}_{2}$ would give $1 \mathrm{~mol}\left(22.4 \mathrm{~L}\right.$ at STP) of $\mathrm{O}_{2} .1 \mathrm{~L}$ of 4 equivalents of $\mathrm{H}_{2} \mathrm{O}_{2}$ has a volume strength of 22.4. Thus,
1 L of 1.5 equivalents $(1.5 \mathrm{~N})$ of $\mathrm{H}_{2} \mathrm{O}_{2}=\frac{22.4 \times 1.5}{4}=8.4$
2. (c) : Molarity of glucose in blood

$$
=\frac{\text { No. of moles of glucose }}{\text { Volume of blood (in L) }}
$$

Wt. of glucose
$=\overline{\text { Mol. wt. of glucose } \times \text { Volume of blood (in } \mathrm{L} \text {) }}$
[Mol. mass of glucose $=180 \mathrm{~g} / \mathrm{mol}$]
$=\frac{0.9 \mathrm{~g}}{180 \mathrm{~g} / \mathrm{mol} \times 1 \mathrm{~L}}=5 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}=0.005 \mathrm{M}$
3. (a)
4. (a) : If $\Delta_{\mathrm{o}}<P$, then fourth electron will go to higher energy, e_{g} orbital. Hence, the configuration becomes $t_{2 g}^{3} e_{g}^{1}$.
5. (b) : For H -atom :

$$
\begin{equation*}
\frac{1}{\lambda_{\mathrm{H}}}=R_{\mathrm{H}}\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right] \tag{i}
\end{equation*}
$$

For He^{+}ion : $\frac{1}{\lambda_{\mathrm{He}^{+}}}=R_{\mathrm{H}} \times Z^{2}\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$
$\therefore \quad \lambda_{\mathrm{He}^{+}}=\lambda_{\mathrm{H}} \times \frac{1}{Z^{2}}=91.2 \times \frac{1}{2^{2}}=22.8 \mathrm{~nm}$

$$
\left(\because \lambda_{\mathrm{H}}=91.2 \mathrm{~nm}\right)
$$

6. (b): $\mathrm{O}_{2} \mathrm{~F}_{2}$ and $\mathrm{H}_{2} \mathrm{O}_{2}$, both have open book type structure.
In $\mathrm{O}_{2} \mathrm{~F}_{2}$, one $\mathrm{O}-\mathrm{O}$ bond and two $\mathrm{O}-\mathrm{F}$ bonds are lying in different planes, i.e., this molecule like $\mathrm{H}_{2} \mathrm{O}_{2}$ has non-linear and non-planar structure.
7. (d): Adding first two equations, we have,
$\underset{64 \mathrm{~g}}{\mathrm{CaC}_{2}}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\underset{28 \mathrm{~g}}{\mathrm{C}_{2} \mathrm{H}_{4}}$
i.e., 64 g of CaC_{2} gives 28 g of $\mathrm{C}_{2} \mathrm{H}_{4}$.

From $3^{\text {rd }}$ equation,
$n \mathrm{C}_{2} \mathrm{H}_{4} \rightarrow\left(\mathrm{CH}_{2}-\mathrm{CH}_{2}\right)_{n}$
$28 n \mathrm{~g}$ of $\mathrm{C}_{2} \mathrm{H}_{4}$ gives $28 n \mathrm{~g}$ of polythene i.e., 28 g of $\mathrm{C}_{2} \mathrm{H}_{4}$ gives 28 g of polythene.

Hence, 64 g of CaC_{2} will give 28 g of polythene or, 64 kg of CaC_{2} will give 28 kg of polythene.
8. (a): $\mathrm{Mg}^{2+}+\mathrm{NH}_{3}+\mathrm{HPO}_{4}^{2-} \longrightarrow \mathrm{Mg}\left(\mathrm{NH}_{4}\right) \mathrm{PO}_{4}$ White ppt.
9. (c) : Greater the number of ions and greater the charge on each ion, greater will be the conductivity. The given complexes ionise as,
(P) $\mathrm{Mg}\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)\left(\mathrm{NO}_{2}\right)_{5}\right] \rightleftharpoons$

$$
\mathrm{Mg}^{2+}+\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)\left(\mathrm{NO}_{2}\right)_{5}\right]^{2-}
$$

No. of ions $=2$
(Q) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]_{3}\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]_{2} \rightleftharpoons$

$$
3\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{2}\right)\right]^{2+}+2\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]^{3-}
$$

No. of ions $=5$
(R) $\mathrm{K}\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right] \rightleftharpoons$

$$
\mathrm{K}^{+}+\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}\left(\mathrm{NO}_{2}\right)_{4}\right]^{-}
$$

No. of ions $=2$
(S) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{NO}_{2}\right)_{3}\right]$ does not ionise,

No. of ions $=0$
Order of molar conductivity: $(S)<(R)<(P)<(Q)$ It may be noted that (P) and (R) have same number of ions but charges on ions in (P) is double than that on (R).
10. (b) :

11. (a)
12. (c): Smelting is the process of reduction using carbon as a reducing agent.
13. (d): Energy required for the removal of second electron from He -atom
$=+13.6 \frac{Z^{2}}{n^{2}}=13.6 \times \frac{2^{2}}{1^{2}}=54.4 \mathrm{eV}$
Hence, the total energy required for the removal of both the electrons $=24.6+54.4=79.0 \mathrm{eV}$
14. (b): For the first order reaction,

$$
k=\frac{2.303}{t} \log \frac{[A]_{0}}{[A]_{t}}
$$

If $[A]_{0}=a,[A]_{t}=a-\frac{a \times 15}{100}=0.85 a, t=20 \mathrm{~min}$
$k=\frac{2.303}{20} \log \frac{a}{0.85 a}=\frac{2.303}{20} \times 0.0706$

$$
=8.13 \times 10^{-3} \mathrm{~min}^{-1}
$$

In second case, if $[A]_{0}=a,[A]_{t}=a-\frac{a \times 60}{100}=0.40 a$ and time, $t=$?
Now, $t=\frac{2.303}{k} \log \frac{[A]_{0}}{[A]_{t}}=\frac{2.303}{8.13 \times 10^{-3}} \log \frac{a}{0.40 a}$

$$
=\frac{2.303}{8.13 \times 10^{-3}} \times 0.3979=112.7 \mathrm{~min}
$$

15. (b)
16. (d):

17. (b): (A) $\mathrm{Sn}^{2+}+2 e^{-} \longrightarrow \mathrm{Sn} ; E^{\circ}=-0.14 \mathrm{~V}$

$$
\begin{equation*}
\mathrm{Sn}^{4+}+2 e^{-} \longrightarrow \mathrm{Sn}^{2+} ; E^{\circ}=0.13 \mathrm{~V} \tag{i}
\end{equation*}
$$

On adding equations (i) and (ii),

$$
\begin{equation*}
\mathrm{Sn}^{4+}+4 e^{-} \longrightarrow \mathrm{Sn} ; \tag{ii}
\end{equation*}
$$

$$
E_{\mathrm{Sn}^{4+} / \mathrm{Sn}}^{\circ}=\frac{n_{1} E_{1}^{\circ}+n_{2} E_{2}^{\circ}}{n_{1}+n_{2}}=\frac{2 \times(-0.14)+2 \times 0.13}{4}
$$

$$
=-0.005 \mathrm{~V}
$$

(B) As, $E_{\mathrm{Sn}^{4+} / \mathrm{Sn}}^{\mathrm{o}}=-0.005 \mathrm{~V}$
$E_{\mathrm{Sn} / \mathrm{Sn}^{4+}}^{\circ}=-E_{\mathrm{Sn}^{4+} / \mathrm{Sn}}^{0}=+0.005 \mathrm{~V}$
(C) Disproportionation reaction :

$$
2 \mathrm{Sn}^{2+} \longrightarrow \mathrm{Sn}^{4+}+\mathrm{Sn}
$$

$E_{\text {cell }}^{0}=E_{\mathrm{Sn}^{2+} / \mathrm{Sn}}^{0}-E_{\mathrm{Sn}^{4+} / \mathrm{Sn}^{2+}}^{0}$
$=-0.14-0.13=-0.27 \mathrm{~V}$; the reaction is nonspontaneous.
(D) Since $E_{\mathrm{Sn} / \mathrm{Sn}^{4+}}^{\circ}>0$, oxidation of Sn to Sn^{4+} will be spontaneous.
18. (b): In the given ionic compounds, the oxidation states are

$$
\begin{array}{llll}
\stackrel{+2-2}{A-2} & \stackrel{+1-2}{ } \quad \text { and } & { }^{+3}-2 \\
A
\end{array}
$$

Higher the oxidation state of A ion, higher will be its lattice energy. Hence, the correct order is as follows :

$$
A_{2} B_{3}>A B>A_{2} B
$$

19. (c) : Z for $c c p$, i.e., $f c c=4$

$$
\begin{aligned}
d & =\frac{Z \times M}{N_{A} \times a^{3}} \\
d & =\frac{4 \times 100}{(400)^{3} \times 10^{-30} \times 6 \times 10^{23}}=\frac{4 \times 100 \times 10^{30}}{64 \times 10^{6} \times 6 \times 10^{23}} \\
& =\frac{1000}{96} \approx 10.42 \mathrm{~g} \mathrm{~cm}^{-3}
\end{aligned}
$$

20. (d):

(A)

$\mathrm{Br}_{2} / \mathrm{FeBr}_{3}$
(B)

(D)

(C)
21. (d)
22. (b): No. of oxide ions per unit cell

$$
=\frac{1}{8} \times 8+\frac{1}{2} \times 6=4
$$

Number of tetrahedral voids per unit cell $=2 \times 4=8$
Number of X^{2+} ions per unit cell $=\frac{20}{100} \times 8=\frac{8}{5}$
Number of octahedral voids per unit cell $=1 \times 4=4$
Number of Y^{3+} ions per unit cell $=\frac{50 \times 4}{100}=2$
Hence, formula is $X_{8 / 5} Y_{2} \mathrm{O}_{4}$ or $X_{4} Y_{5} \mathrm{O}_{10}$
23. (a): $p=\frac{n}{V} R T=\frac{w}{M} \frac{R T}{V}$
$p_{\mathrm{CH}_{4}}=\left(\frac{3.2}{16}\right) \times \frac{0.0821 \times 300}{9}=0.55 \mathrm{~atm}$
$P_{\mathrm{CO}_{2}}=\left(\frac{4.4}{44}\right) \times \frac{0.0821 \times 300}{9}=0.27 \mathrm{~atm}$
$P_{\text {Total }}=0.55+0.27=0.82 \mathrm{~atm}$
24. (c) :

m-Bromobenzoic acid
m-Bromobenzoyl chloride

m-Bromoaniline
25. (a)
26. (d): A compound is soluble if hydration enthalpy (released) is greater than lattice enthalpy.
27. (a) :

28. (a) : Path I is feasible since -OH group after I (a) and I (b) activate the benzene ring for nitration. -Cl and two $-\mathrm{NO}_{2}$ groups deactivate the ring in path II hence, nitration is not possible.

In path I , due to $-\mathrm{NO}_{2}$ group $\mathrm{C}-\mathrm{Cl}$ bond weakens which makes nucleophilic substitution reaction possible. Also $-\mathrm{NO}_{2}$ (deactivating group) prevents oxidation of 2,4-dinitrophenol when further nitrated.
29. (b) : The value of equilibrium constant of a reaction depends only on temperature and does not depend upon concentration, pressure or presence of catalyst.
30. (a) : The equation representing the decomposition of $\mathrm{NH}_{4} \mathrm{Cl}$ by slaked lime, i.e., $\mathrm{Ca}(\mathrm{OH})_{2}$ is

$$
\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{Cl} \longrightarrow \mathrm{CaCl}_{2}+2 \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O}
$$

$$
\begin{array}{lllll}
74 \mathrm{~g} & 107 \mathrm{~g} & 111 \mathrm{~g} & 34 \mathrm{~g} & 36 \mathrm{~g}
\end{array}
$$

From the above equation, 107 g of $\mathrm{NH}_{4} \mathrm{Cl}$ is decomposed by 74 g of $\mathrm{Ca}(\mathrm{OH})_{2}$.

MPP CLASS XII

ANSWER KEY

1. (b)
2. (c)
3. (d)
4. (d)
5. (d)
6. (c)
7. (d)
8. (c)
9. (c)
10. (a)
11. (d)
12. (c)
13. (a)
14. (b)
15. (c)
16. (c)
17. (d)
18. (b)
19. (c)
20. (c, d)
21. (b, c)
22. (a,, d$)$
23. (a, b, c, d)
24. (4)
25. (2)
26. (7)
27. (c)
28. (c)
29. (c)
30. (b)
$\therefore \quad 4 \mathrm{~g}$ of $\mathrm{NH}_{4} \mathrm{Cl}$ will be decomposed by

$$
\frac{74}{107} \times 4 \mathrm{~g}=2.766 \mathrm{~g} \text { of } \mathrm{Ca}(\mathrm{OH})_{2}
$$

Thus, the mass of slaked lime required $=2.766 \mathrm{~g}$
31. (c) :

(S)
32. (b) : The action of heat on boric acid is shown as :

33. (d): MnO_{4}^{-}is the strongest oxidising agent because it has the highest reduction potential value.
34. (b) : $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \xrightarrow{\text { Heat }} \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{SO}_{3}$
35. (d): (+)-Lactose is a reducing sugar and shows mutarotation.
36. (c) $: \mathrm{HA}+B \rightleftharpoons B \mathrm{H}^{+}+A^{-} ; K=100$

$$
K_{f}=10^{5}, K_{b}=?, K_{b}=\frac{K_{f}}{K}=\frac{10^{5}}{100}=10^{3}
$$

37. (b): For a gaseous mixture of $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$,

$$
P V=n R T
$$

$\therefore \quad 1 \times 40=n \times 0.082 \times 400 \Rightarrow n=1.2195$
$\therefore \quad$ Total moles of $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{2} \mathrm{H}_{4}=1.2195$
Let number of moles of $\mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$ be a and b respectively.

$$
\begin{align*}
& a+b=1.2195 \tag{i}\\
& \mathrm{C}_{2} \mathrm{H}_{6}+7 / 2 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
\end{align*}
$$

$\therefore \quad$ Number of moles of O_{2} needed for complete reaction of the mixture

$$
\begin{equation*}
=\frac{7 a}{2}+3 b=\frac{130}{32} \tag{ii}
\end{equation*}
$$

Solving eqs. (i) and (ii), we get, $a=0.808 ; b=0.4115$
$\therefore \quad$ Mole fraction of $\mathrm{C}_{2} \mathrm{H}_{6}=0.808 / 1.2195=0.66$
and mole fraction of $\mathrm{C}_{2} \mathrm{H}_{4}=\frac{0.4115}{1.2195}=0.34$
38. (d): $n_{X}=n_{Y}=1$ or $\frac{n_{X}}{n_{Y}}=1$
$x_{X}=\frac{1}{1+1}=\frac{1}{2}, x_{Y}=\frac{1}{1+1}=\frac{1}{2}$
$P=p_{X}^{\circ} \times x_{X}+p_{Y}^{\circ} \times x_{Y}=400 \mathrm{~mm}$
or $\quad \frac{1}{2} p_{X}^{\circ}+\frac{1}{2} p_{Y}^{\circ}=400 \mathrm{~mm}$
When $\frac{n_{X}^{\prime}}{n_{Y}^{\prime}}=\frac{1}{2}$ at the same temperature,
$x_{X}^{\prime}=\frac{1}{3}$ and $x_{Y}^{\prime}=\frac{2}{3}$
$\therefore \quad P^{\prime}=p_{X}^{\circ} \times x_{X}^{\prime}+p_{Y}^{\circ} \times x_{Y}^{\prime}=350 \mathrm{~mm}$
or $\frac{1}{3} p_{X}^{\circ}+\frac{2}{3} p_{Y}^{\circ}=350 \mathrm{~mm}$
Solving equations (i) and (ii), we get, $p_{X}^{\circ}=550 \mathrm{~mm}$, $p_{Y}^{\circ}=250 \mathrm{~mm}$
39. (a): $\mathrm{Li}_{2} \mathrm{O}$ reacts with CO_{2} as :
$\mathrm{Li}_{2} \mathrm{O}+\mathrm{CO}_{2} \longrightarrow \mathrm{Li}_{2} \mathrm{CO}_{3}$
i.e., 1 mole of $\mathrm{Li}_{2} \mathrm{O}\left(=30 \mathrm{~g} \mathrm{Li}_{2} \mathrm{O}\right)$ reacts with 22.4 L of CO_{2} at STP
or $1000 \mathrm{~g} \mathrm{Li}_{2} \mathrm{O}$ absorbs $=\frac{22.4 \times 1000}{30}$

$$
=746.66 \mathrm{~L} \text { of } \mathrm{CO}_{2}
$$

$\therefore \quad$ Absorption efficiency is $746.66 \mathrm{~L} / \mathrm{kg}$
40. (a) : Due to inert pair effect, heavier p-block elements show low (two units less) oxidation state as the most stable one.

Winners of March 2017 Crossword

- Jyoti Prakash

Winners of February 2017 Crossword

- Devjit Acharjee, West Bengal
- Lakshmi Narayanan, Kerala
- Mahima Kriti

Solution Senders of Chemistry Musing
Set-44

- Vijayraj S
- Aniruddha Bhattacharjee, West Bengal

41. (a) : According to Gibbs'-Helmholtz equation, $\Delta G=\Delta H-T \Delta S$
At equilibrium, $\Delta G=0$
$0=\Delta H-T \Delta S \quad$ or $\quad \Delta H=T \Delta S$ or $T=\frac{\Delta H}{\Delta S}$
Here, $\Delta H=30.56 \mathrm{~kJ} \mathrm{~mol}^{-1}=30560 \mathrm{~J} \mathrm{~mol}^{-1}$

$$
\begin{aligned}
& \Delta S=66.00 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \\
\therefore & T=\frac{30560}{66}=463 \mathrm{~K}
\end{aligned}
$$

42. (a) :

White ppt.
(It suggests terminal triple bond)
Hence, the product might be the compound given in option (a). This is confirmed by the following reaction sequence:

 Exam on $21^{\text {st }}$ May Advanced

MODEL TEST PAPER 2017

PAPAR-1

SECTION-I

(SINGLE CORRECT ANSWER TYPE)

This section contains 7 multiple choice questions. Each question has four choices (a), (b), (c) and (d) out of which ONLY ONE is correct. For correct answer 3 marks and for wrong answer -1 mark will be awarded.

1. $\mathrm{Cl}_{2(\mathrm{~g})}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow X_{(a q)}+\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{O}$
$X+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow Y+\mathrm{BaSO}_{4}$
$Y \xrightarrow[>365 \mathrm{~K}]{\Delta} \mathrm{Z}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
Compound Z can also be prepared by the action of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ on KClO_{3} or by passing dry Cl_{2} over AgClO_{3} heated to 363 K .
Y, Z respectively and magnetic behaviour exhibited by ' Z ' are
(a) $\mathrm{HClO}_{4}, \mathrm{ClO}_{2}$, diamagnetic
(b) $\mathrm{HClO}_{3}, \mathrm{ClO}_{2}$, paramagnetic
(c) $\mathrm{HClO}_{3}, \mathrm{Cl}_{2} \mathrm{O}$, diamagnetic
(d) $\mathrm{HClO}_{4}, \mathrm{Cl}_{2} \mathrm{O}_{7}$, paramagnetic.
2. An ideal mixture of liquids A and B with 2 moles of A and 2 moles of B has a total vapour pressure of 1 atm at a certain temperature. Another mixture with 1 mole of A and 3 moles of B has vapour pressure greater than 1 atm . When 4 moles of C are added to second mixture, the vapour pressure comes down to 1 atm . Vapour pressure of C in pure state $P_{C}^{\circ}=0.8 \mathrm{~atm}$ What will be the vapour pressures of pure A and pure B ?
(a) $P_{A}^{\circ}=1.2 \mathrm{~atm}, P_{B}^{\circ}=0.7 \mathrm{~atm}$
(b) $P_{A}^{\circ}=1.2 \mathrm{~atm}, P_{B}^{\circ}=0.6 \mathrm{~atm}$
(c) $P_{A}^{\circ}=1.4 \mathrm{~atm}, P_{B}^{\circ}=0.6 \mathrm{~atm}$
(d) $P_{A}^{\circ}=0.6 \mathrm{~atm}, P_{B}^{\circ}=1.4 \mathrm{~atm}$
3. Calculate the pH at which the following conversion (reaction) will be at equilibrium in basic medium.
$\mathrm{I}_{2(s)} \rightleftharpoons \mathrm{I}_{(a q)}^{-}+\mathrm{IO}_{3(a q)}^{-}$
(When the equilibrium concentrations at 300 K are $\left[\mathrm{I}^{-}\right]=0.10 \mathrm{M}$ and $\left[\mathrm{IO}_{3}^{-}\right]=0.10 \mathrm{M}$. Given :
$\Delta_{f} G^{\circ}\left(\mathrm{I}_{(a q)}^{-}\right)=-50 \mathrm{~kJ} /$ mole,
$\Delta_{f} G^{\circ}\left(\mathrm{IO}_{3(a q)}^{-}\right)=-123.5 \mathrm{~kJ} / \mathrm{mole}$,
$\Delta_{f} G^{\circ}\left(\mathrm{H}_{2} \mathrm{O}_{(l)}\right)=-233 \mathrm{~kJ} / \mathrm{mole}$,
$\Delta_{f} G^{\circ}\left(\mathrm{OH}_{(a q)}^{-}\right)=-150 \mathrm{~kJ} /$ mole,
$R=\frac{25}{3}, \log _{e}=2.3$)
(a) 2
(b) 4
(c) 6
(d) 8
4. Identify the Gabriel phthalimide synthesis reaction.
(a) $\mathrm{R}-\mathrm{NH}_{2}+\mathrm{CHCl}_{3}+3 \mathrm{KOH} \xrightarrow{\text { Heat }}$

$$
R-\mathrm{N} \xrightarrow{\mathrm{O}} \mathrm{C}+3 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O}
$$

(b)

Orange dye
(c)

(d)

$+2 \mathrm{KBr}+2 \mathrm{H}_{2} \mathrm{O}$
5. Compound ' X ' $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$, is insoluble in $\mathrm{H}_{2} \mathrm{O}$, dil. HCl and aq. NaHCO_{3} but dissolves in dil. NaOH . When ' X ' is treated with $\mathrm{Br}_{2} / \mathrm{H}_{2} \mathrm{O}$, it is converted rapidly into a compound of formula, $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{OBr}_{3}$. The compound ' X ' is
(a) o-cresol
(b) p-cresol
(c) m-cresol
(d) anisole.
6. 1.0 g of a monobasic acid HA in 100 g water lowers the freezing point by 0.385 K . If 0.3 g of same acid requires 25 mL of $\mathrm{N} / 5 \mathrm{NaOH}$ solution for complete neutralisation, then \% degree of ionisation of acid is (K_{f} of $\mathrm{H}_{2} \mathrm{O}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$)
(a) 18%
(b) 24%
(c) 42%
(d) 64%
7. Some physical properties of four elements L, M, Q and R are given below in the table:

Physical properties	\boldsymbol{L}	\boldsymbol{M}	\boldsymbol{Q}	\boldsymbol{R}
M.pt. $\left({ }^{\circ} \mathrm{C}\right)$	-7	63	-189	1083
B.pt. $\left({ }^{\circ} \mathrm{C}\right)$	58	766	-186	2582
Colour at STP	dark red	silvery	colour- less	browny -red
Density at STP $\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	3.1	0.86	1.7×10^{-3}	8.9

These elements in the order L, M, Q and R are from the following groups in the periodic table.

(a)	L	M	Q	R
	group 1	transition	group 17	group
		elements		zer
	group 17	group 1	group zero	transition
	group 17	transition elements	$\begin{aligned} & \text { group } \\ & \text { zero } \end{aligned}$	group 1
(d)	transition elements	group 1	group 17	group zero

SECTION-II

(MULTIPLE CORRECT ANSWER TYPE)

This section contains 4 multiple choice questions. Each question has four choices (a), (b), (c) and (d) out of which ONE or MORE may be correct. For correct answer 4 marks will be awarded, no negative marks in this section.
8.

The correct statement(s) regarding compounds
(A) and (B) is/are
(a) both are optically active in nature
(b) relation between (A) and (B) is diastereomers
(c) (A) and (B) are meso compounds
(d) out of (A) and (B), one is optically active and other is optically inactive.
9. Among the following, identify the correct statement(s) ?
(a) The number of atoms in 100 g of an $f c c$ crystal with density, $\left(\rho=10 \mathrm{~g} \mathrm{~cm}^{-3}\right)$ and cell edge 200 pm are 5×10^{24}.
(b) Sr-90 radioisotope ($t_{1 / 2}=27$ years) obtained as one of the fission products of Uranium-235. The time required for 1.00 g of the isotope to be reduced to 0.2 g by decay is ≈ 63 years.
(c) The rate of uncatalysed reaction at $127^{\circ} \mathrm{C}$ is equal to that of the catalysed reaction at $27^{\circ} \mathrm{C}$. The catalyst lowers the activation energy by 25%.
(d) Barium permanganate $\left[\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}\right]$ oxidises ferrous oxalate in dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and itself is reduced to MnSO_{4}. The volume of $0.1 \mathrm{M}\left[\mathrm{Ba}\left(\mathrm{MnO}_{4}\right)_{2}\right]$ is needed to oxidise 50 mL of 0.2 M ferrous oxalate in acidic medium is 30 mL .
10. Decomposition of $3 A_{(g)} \rightarrow 2 B_{(g)}+2 C_{(g)}$ follows first order kinetics, initially only A is present in the container. Pressures developed after 20 min and infinite time are 3.5 and 4 atm , respectively. Which one is correct?
(a) $t_{50 \%}=20 \mathrm{~min}$
(b) $t_{75 \%}=40 \mathrm{~min}$
(c) $t_{99 \%}=64 / 3 \mathrm{~min}$
(d) $t_{87.5 \%}=60 \mathrm{~min}$
11.

(a)

(b)

(c)

(d)

SECTION-III

(PARAGRAPH TYPE)
This section contains 2 paragraphs. Based upon one of the paragraphs, 2 multiple choice questions and based on the other paragraph, 3 multiple choice questions have to be answered. Each of these questions has four choices (a), (b), (c) and (d) out of which ONLY ONE is correct. For correct answer 3 marks and for wrong answer -1 mark will be awarded.
Paragraph for Q. No. 12 and 13
An average adult produces between 2 to 3 L of gastric juice daily. Gastric juice is a thin, acidic digestive fluid secreted by glands present in the stomach. It contains hydrochloric acid among other substances. The pH of gastric juice is about 1.5. The purpose of the highly acidic medium within the stomach is to digest food and to activate certain digestive enzymes. Eating stimulates H^{+}ion secretion. However, if the acid content is excessively high then the substances, which remove the excess acid and raise the pH to appropriate level in stomach, are called antacids.
Some common commercial antacid preparations:

Commercial name	Active ingredients
Alka-2	CaCO_{3}
Alka-seltzer	Aspirin, NaHCO_{3}, citric acid
Milk of magnesia	$\mathrm{Mg}(\mathrm{OH})_{2}$
Rolaids	Dihydroxy aluminium sodium carbonate

The reactions of active ingredients with stomach acid produce CO_{2} causing the person to belch. The fizzing that takes place when an alka-seltzer tablet dissolves in water is caused by CO_{2} which is released by the reaction between citric acid and NaHCO_{3}. In recent years, omeprazole and lansoprazole are also marketed as antacids. These prevent formation of acid in the stomach.

12. One mole of active ingredients in Rolaid can react with how many moles of HCl ?
(a) 2
(b) 4
(c) 3
(d) 6
13. During acidity, HCl concentration in stomach rises from a normal value of $8 \times 10^{-2} \mathrm{M}$ to 0.1 M HCl . One rolaid tablet contains 500 mg of active component. What percentage of tablet should be sufficient to return the molarity to normal value if stomach contains 500 mL of an acid?
(a) 100
(b) 72
(c) 25
(d) 88

Paragraph for Q . No. 14 to 16
Piperine, $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~N}$ is an alkaloid found in black pepper. It is soluble in water, dilute acids and dilute bases. When heated with alkali, it yields piperic acid, $\left(\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4}\right)$ and the cyclic secondary amine piperidine, $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{~N}$ (a hydrogenated product of pyridine). Piperic acid is insoluble in $\mathrm{H}_{2} \mathrm{O}$ but soluble in aq. NaOH and aq. NaHCO_{3}. It decolourises $\mathrm{Br}_{2} / \mathrm{CCl}_{4}$ and consumes four bromine atoms. On careful oxidation with KMnO_{4}, it gives oxalic acid, tartaric acid and piperonylic acid, $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{4}$. Its equivalent weight is 218. When piperonylic acid is heated with aq. HCl at $200^{\circ} \mathrm{C}$ it yields HCHO and protocatechuic acid, (3,4-dihydroxybenzoic acid).

Synthesis of piperine

Catechol $\xrightarrow[\mathrm{KOH}]{\mathrm{CHCl}_{3}} A\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{3}\right) \xrightarrow[\mathrm{NaOH}]{\mathrm{CH}_{2} \mathrm{I}_{2}} B\left(\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}_{3}\right)$
$\xrightarrow[\mathrm{NaOH}, \Delta]{\mathrm{CH}_{3} \mathrm{CHO}} C\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{3}\right) \xrightarrow[\mathrm{CH}_{3} \mathrm{COONa}, \Delta]{\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}}$
Piperic acid $\xrightarrow[\mathrm{SOCl}_{2}]{\mathrm{PCl}_{5} \text { or }} D\left(\mathrm{C}_{12} \mathrm{H}_{9} \mathrm{O}_{3} \mathrm{Cl}\right) \xrightarrow{\text { piperidine }}$
Piperine
14. The number of isomers and nature of stereoisomerism exhibited by piperic acid are
(a) 2, optical
(b) 4, geometrical
(c) 4, optical and geometrical
(d) 2, geometrical.
15. In the formation of piperic acid from catechol, the name reactions involving new carbon-carbon bond formation are
(a) Perkin, Reimer-Tiemann, Knoevenagel
(b) Claisen, Perkin, Cannizzaro
(c) Reimer-Tiemann, Claisen-Schmidt, Perkin
(d) Fries, Reimer-Tiemann, Perkin.
16. The structure of piperine is
(a)

(b)

(c)

(d)

SEGTION-IV
(INTEGER ANSWER TYPE)
This section contains 7 questions. The answer to each of the questions is a single-digit integer, ranging from 0 to 9. The bubble corresponding to the correct answer is to be darkened in the ORS. For correct answer 4 marks will be awarded, no negative marks in this section.
17. For a homogeneous gaseous phase reaction: $2 A \rightarrow 3 B+C$, the initial pressure of reactant was P° while pressure at time ' t ' was P. The pressure after time $2 t$ is $x P^{\circ}-\frac{\left(y P^{\circ}-P\right)^{z}}{P^{\circ}}$. Assume first order reaction. Find $x \times y \times z$.
18. In a gravimetric determination of P , an aqueous solution of dihydrogen phosphate ion $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$ is treated with a mixture of ammonium and magnesium ions to precipitate magnesium ammonium phosphate $\mathrm{Mg}\left(\mathrm{NH}_{4}\right) \mathrm{PO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. This is heated and decomposed to magnesium pyrophosphate, $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$, which is weighed. A solution of $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$yielded $111 / 120 \mathrm{~g}$ of $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$. What weight of $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ was present originally?
19. From the given species, how many are aromatic?

(V)

(VI)

(VII)

(VIII)
20. In the following reaction chain;

The isoelectric point of aspartic acid approximately is
21. The total number of reactions in which hydrogen gas is liberated, is
$\mathrm{LiH}+\mathrm{H}_{2} \mathrm{O} \rightarrow$
$\mathrm{LiH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow$
$\mathrm{LiH}+\mathrm{HC} \equiv \mathrm{CH} \rightarrow$
$\mathrm{LiH}+\mathrm{HCl} \rightarrow$
$\mathrm{LiH}+\mathrm{NH}_{3} \rightarrow$
$3 \mathrm{CaH}_{2}+\mathrm{N}_{2} \rightarrow$
$\mathrm{B}_{2} \mathrm{H}_{6}+2 \mathrm{NaH} \rightarrow$
22. On heating crystals of $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ with $\mathrm{H}_{2} \mathrm{SO}_{4}$ ' x ' mol of CO evolved per mol of $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$. Identify ' x '.
23. Consider the following reaction sequence,

How many times Michael addition reaction can take place?

SECTION-I

(SINGLE CORRECT ANSWER TYPE)
This section contains 8 multiple choice questions. Each question has four choices (a), (b), (c) and (d) for its answer, out of which ONLY ONE is correct. For correct answer 3 marks and for wrong answer $\mathbf{- 1}$ mark will be awarded.

1. One mole of an ideal gas is carried through the reversible cyclic process as shown in figure. The maximum temperature attained by the gas during the cycle is

(a) $\frac{7}{6 R}$
(b) $\frac{35}{7 R}$
(c) $\frac{49}{12 R}$
(d) $\frac{21}{15 R}$
2. x, y and z react in $1: 1: 1$ stoichiometric ratio. The concentration of x, y and z were found to vary with
time as shown in the graph. Which of the following equilibrium reaction may represent the correct variation of concentration with time ?

(a) $x_{(g)}+y_{(g)} \rightleftharpoons z_{(g)}$
(b) $x_{(g)}+y_{(s)} \rightleftharpoons z_{(g)}$
(c) $z_{(g)}+y_{(s)} \rightleftharpoons x_{(g)}$
(d) $z_{(g)}+x_{(g)} \rightleftharpoons y_{(g)}$
3. Cellulose upon acetylation with excess acetic anhydride/ $\mathrm{H}_{2} \mathrm{SO}_{4}$ (catalytic) gives cellulose triacetate whose structure is
(a)

b)

(c)

(d)

4. $\mathrm{As}_{2} \mathrm{~S}_{3}$ sol carries a negative charge. The maximum precipitating power for this sol is shown by
(a) $\mathrm{K}_{2} \mathrm{SO}_{4}$
(b) CaCl_{2}
(c) $\mathrm{Na}_{3} \mathrm{PO}_{4}$
(d) AlCl_{3}
5. The lysine
 glutamine

combined to give two dipeptides. Which of the following combinations represents dipeptides?
(I)

(II)

(III)

(IV)

(a) (I) and (II)
(b) (I) and (III)
(c) (I) and (IV)
(d) (II) and (III)
6. The rusting of iron takes place as follows:
$2 \mathrm{H}^{+}+2 e^{-}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(l)} ; E^{\circ}=+1.23 \mathrm{~V}$
$\mathrm{Fe}^{2+}+2 e^{-} \rightarrow \mathrm{Fe}_{(s)} ; E^{\circ}=-0.44 \mathrm{~V}$
Calculate ΔG° for the net process.
(a) $-322 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) $-161 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) $-152 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d) $-76 \mathrm{~kJ} \mathrm{~mol}^{-1}$
7. In a metal oxide, the oxide ions are arranged in corners as well as on the faces and metal cations occupy $2 / 3$ rd of octahedral voids, the formula of oxide is
(a) $M_{2} \mathrm{O}_{3}$
(b) MO
(c) $\mathrm{M}_{2} \mathrm{O}$
(d) MO_{2}
8. In 1886, an American student, Charles Hall devised a relatively inexpensive process to produce aluminium metal. This process (called the Hall-

Heroult process) is now employed to produce over 29 megatonnes of aluminium annually. The basic process may be summarised as follows:

Which of the following entries correctly summarises the reagents, electrodes and products of the process ?

	\boldsymbol{A}	\boldsymbol{B}	\boldsymbol{C}	\boldsymbol{D}
(a) NaOH	Al^{3+}	HF	$\mathrm{Na}_{3} \mathrm{AlF}_{6}$	cathode
(b) NaOH	NaAlO_{2}	CO_{2}	NaF	anode
(c) $\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$	NH_{3}	$\mathrm{Na}_{3} \mathrm{AlF}_{6}$	cathode
(d) NaOH	NaAlO_{2}	CO_{2}	$\mathrm{Na}_{3} \mathrm{AlF}_{6}$	cathode

Your favourite MTG Books/Magazines available in ANDHRA PRADESH at

- Padma Book Stall- Anakapalle Ph: 08554-223948, 247077
- Sri Gayatri Book Centre- Guntur Mob: 9177439700
- Sudhita Book Centre- Kakinada Ph: 0884-2368677; Mob: 9848241369
- Hanuman Book Centre- Khammam

Ph: 08842-230522; Mob: 9849374292, 8742230522

- New Venkatrama \& Co.- Nellore Ph: 0861-2323887
- Sri Manikanta Book Centre- Rajah Mundry Ph: 0883-2462507, 6662507; Mob: 9247404402
- Radiant Book Distributors- Secunderabad

Ph: 040-27952151, 65454663; Mob: 9885320781

- Shraddha Book Depot- Secunderabad

Ph: 040-27702686; Mob: 8008889379, 7032333364

- Shraddha Books \& Stationery- Secunderabad Ph: 66335996; Mob: 9849451558
- Aditya Book Centre- Tirupati Ph: 0877-2228653; Mob: 9490906115
- Sri Lakshmi Book Depot- Warangal

Ph: 08712-2447168, 5592013; Mob: 9989330297, 9866635127

- Gruhamitra Enterprise- Tirupati Mob: 9393632666,9290899991
- Yogaprabha Book Links- Tirupati Mob: 9966865329
- Sai Venkateshwara Book Depot- Vijayawada

Ph: 0866-2570309; Mob: 9848122879

- Ashok Book Centre- Vijayawada Ph: 0866-2472095; Mob: 9849082096
- Jayadurga Book Centre- Vijayawada Ph: 8121193761
- Sri Ganesh Book Centre- Vijayawada

Ph: 0866-2442024, 2442023; Mob: 9951412161, 9492682161

- Gupta Brothers Books- Vishakhapatnam

Ph: 0891-754454, 747580, 668338

- JBD Educational Pvt. Ltd. Ph: 0891-6645858, 6666064; Mob: 8916636669
- Sri Rajeshwari Books Links- Vishakhapatnam Ph: 0891-2541415, 6661718; Mob: 9848036014
- Himamsu Book Distributors- Vizianagaram Ph: 08922-225422, 231199

Visit "MTG IN YOUR CITY" on www.mtg.in to locate nearest book seller OR write to info@mtg.in OR call

0124-6601200 for further assistance.

SECTION-II

(MULTIPLE CORRECT ANSWER TYPE)
This section contains 4 multiple choice questions. Each question has four choices (a) , (b) , (c) and (d) out of which ONE or MORE may be correct. For correct answer 4 marks will be awarded, no negative marks in this section.
9. Choose the correct options :
(a) Kolbe electrolysis of potassium succinate gives CO_{2} and $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
(b) Ethyne is most acidic compound among ethane, ethene and ethyne.
(c) The nodal plane in the π-bond of ethene is located in the molecular plane.
(d) Alkynes are generally less reactive than alkenes towards electrophilic reactions.
10. Which of the following statements are not correct ?
(a) Tertiary butyl alcohol gives positive iodoform test.
(b)
 iodoform test.
(c) The carbon-carbon bond in
 be broken by the use of periodic acid and the product obtained are two aldehydes.
(d) The carbon-carbon bond in
 be broken by the use of periodic acid giving two aldehydes.
11. Decrease in atomic number is observed in
(a) α-emission
(b) β-emission
(c) positron emission
(d) electron capture.
12. Ammonia on reaction with hypochlorite ion can form
(a) NO
(b) $\mathrm{NH}_{4} \mathrm{Cl}$
(c) $\mathrm{N}_{2} \mathrm{H}_{4}$
(d) HNO_{2}

SECTION-III

(INTEGER ANSWER TYPE)

This section contains 6 questions. The answer to each of the questions is a single-digit integer, ranging from 0 to 9 . The bubble corresponding to the correct answer is to be darkened in the ORS. For correct answer 4 marks will be awarded, no negative marks in this section.
13. The relative reactivity of $1^{\circ}: 2^{\circ}: 3^{\circ}$ hydrogens for chlorination is $1: 3.8: 5$. The compound 2 -methyl butane is monochlorinated. The carbon atoms in this molecule are labelled as follows : [Treat C_{4} as different type of carbon from C_{1}]

The maximum and minimum percentages will occur at x and y carbon atoms respectively. Then $x+y$ is equal to
14. The highest boiling point is expected for which of the following compounds?
(0) Methane
(1) Ethane
(2) Propane
(3) n-Pentane
(4) n-Butane
(5) Iso-butane
(6) 2,2,3,3-Tetramethylbutane
(7) Iso-pentane
(8) n-Octane
(9) Iso-octane

SOLUTIONS OF MARCH 2017 CROSSWORD

15.

Possible number of elimination products including stereoisomers is
16. Choose the best reagent for the conversion of 1,2-dibromoethane into ethyne.
(0) Alcoholic KOH
(1) $\mathrm{Hg}\left(\mathrm{OOCCH}_{3}\right)_{2} / \mathrm{H}_{2} \mathrm{O}$ and NaBH_{4}
(2) ZnCl_{2} and conc. HCl
(3) $\mathrm{Zn} / \mathrm{CH}_{3} \mathrm{OH}$
(4) Red P and iodine
(5) Red P and HI
(6) $\mathrm{NH}_{2} \mathrm{NH}_{2}$ and KOH
(7) H_{2} and Ni
(8) Aqueous KOH followed by NaNH_{2}
(9) Alcoholic KOH followed by NaNH_{2}
17. In a constant volume calorimeter, 3.5 g of a gas with molecular weight 28 was burnt in excess at 298 K . The temperature of the calorimeter was found to increase from 298 K to 298.45 K due to the combustion process. Given that the heat capacity of the calorimeter is $2.5 \mathrm{~kJ} \mathrm{~K}^{-1}$. Calculate the numerical value for the enthalpy of combustion of the gas in $\mathrm{kJ} \mathrm{mol}^{-1}$.
18. Presence of which of the following compounds makes water hard ?
$\mathrm{Na}_{2} \mathrm{SO}_{4}, \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}, \mathrm{MgCl}_{2}, \mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CaSO}_{4}, \mathrm{KCl}$, $\mathrm{NaHCO} 3, \mathrm{MgSO}_{4}, \mathrm{CaCl}_{2}$

SEGTION-IV

(MATRIX-MATCH TYPE)

This section contains 3 questions. Each question contains statements given in 2 columns. Statements in the first column have to be matched with statements in the second column. The answers to these questions have to be appropriately bubbled in the ORS as per the instructions. For each question in this section, you will be awarded 8 marks if you darken all the bubbles corresponding only to the correct answer and 2 marks for each row. No negative mark will be awarded for an incorrectly bubbled answer.

19. Match the reactions in column I with nature of reactions and type of products in column II.

Column I

a. $\begin{aligned} \mathrm{AgNO}_{3(a q)}+ & \mathrm{I}_{2} \text { (excess) } \\ & +\mathrm{H}_{2} \mathrm{O} \rightarrow\end{aligned}$
b. $\mathrm{K}_{2} \mathrm{MnO}_{4(a q)}+\mathrm{CO}_{2(g)}$ q. Comproportionation
c. $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{C} \xrightarrow{\Delta}$ r. Redox
d. $\mathrm{CuCl}_{2(a q)}+\mathrm{Cu}_{(s)} \rightarrow$
s. One of the products is insoluble in water
20. Match the following:

Column I

a. $\mathrm{C}_{\text {graphite(s) }}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2(\mathrm{~g})}$
p. $\Delta H_{\text {combustion }}^{\circ}$
b. $\mathrm{C}_{\text {graphite(s) }} \rightarrow \mathrm{C}_{(\mathrm{g})}$
q. ΔH_{f}°
c. $\mathrm{CO}_{(g)}+\frac{1}{2} \mathrm{O}_{2(g)} \rightarrow \mathrm{CO}_{2(g)}$
r. $\Delta H_{\text {atomisation }}^{\circ}$
d. $\mathrm{CH}_{4(\mathrm{~g})} \rightarrow \mathrm{C}_{(\mathrm{g})}+4 \mathrm{H}_{(\mathrm{g})}$
s. $\Delta H_{\text {sublimation }}^{\circ}$
t. $\Delta S_{\text {system }}>0$

ANSWER
Paper-1

1. (b)
2. (d)
3. (d)
(c) 5. (c)
4. (b)
d)
5. (a, c, d)
6. (b)
7. (b)
8. (5)
9. (3)
10. (6)
11. (6)
12. (2)

Paper-2

For detailed solution to the Sample Paper, visit our website: www.vidyalankar.org

JEE ADVANCED : PRACTICE PAPER (Full length) READYSTEADY G주!!

PAPER-I

PHYSICS

SECTION 1 (Maximum Marks : 15)

- This section contains FIVE questions.
- Each question has FOUR options (a), (b), (c) and (d). ONLY ONE of these four options is correct.
- For each question, darken the bubble corresponding to the correct option in the ORS.
- For each question, marks will be awarded in one of the following categories:
Full Marks : +3 If only the bubble corresponding to the correct option is darkened.
Zero Marks : 0 If none of the bubbles is darkened.
Negative Marks :-1 In all other cases.

1. A photon collides with a stationary hydrogen atom in ground state inelastically. Energy of the colliding photon is 10.2 eV . After a time interval of the order of microsecond, another photon collides with same hydrogen atom inelastically with an energy of 15 eV . What will be observed by the detector?
(a) One photon of energy 10.2 eV and an electron of energy 1.4 eV .
(b) Two photons of energy 1.4 eV .
(c) Two photons of energy 10.2 eV .
(d) One photon of energy 10.2 eV and another photon of 1.4 eV .
2. One end of a uniform rod of length l and mass m is hinged at A. It is released from rest from horizontal position $A B$ as shown in figure. The force exerted by the rod on the hinge
 when it becomes vertical is
(a) $\frac{3}{2} m g$
(b) $\frac{5}{2} m g$
(c) 3 mg
(d) 5 mg
3. A circular ring of mass 6 kg and radius a is placed such that its centre lies at the origin. Two particles of masses 2 kg each are placed at the intersecting points of the circle with positive x-axis and positive y-axis. Then the angle made by the position vector of centre of mass of entire system with x-axis is
(a) 45°
(b) 60°
(c) $\tan ^{-1}(4 / 5)$
(d) 30°
4. To a man moving due north with a speed $5 \mathrm{~m} \mathrm{~s}^{-1}$, the rain appears to fall vertically. When the man doubles his speed, the rain appears to fall at 60°. Find the actual speed of the rain and its direction.
(a) $10 \mathrm{~m} \mathrm{~s}^{-1}, 120^{\circ}$
(b) $10 \mathrm{~m} \mathrm{~s}^{-1}, 180^{\circ}$
(c) $10 \mathrm{~m} \mathrm{~s}^{-1}, 90^{\circ}$
(d) $10 \mathrm{~m} \mathrm{~s}^{-1}, 60^{\circ}$
5. Magnetic field at the centre of a Bohr's hypothetical hydrogen atom in the $n^{\text {th }}$ orbit of the electron is
(a) directly proportional to charge of electron e
(b) directly proportional to e^{2}
(c) inversely proportional to n^{5}
(d) directly proportional to n^{5}

SECTION 2 (Maximum Marks : 32)

- This section contains EIGHT questions.
- Each question has FOUR options (a), (b), (c) and (d). ONE OR MORE THAN ONE of these four option(s) is(are) correct.
- For each question, darken the bubble(s) corresponding to all the correct option(s) in the ORS.
- For each question, marks will be awarded in one of the following categories:
Full Marks : +4 If only the bubble(s) corresponding to the correct option(s) is(are) darkened.
Partial Marks : +1 For darkening a bubble corresponding to each correct option, provided NO incorrect option is darkened.
Zero Marks: 0 If none of the bubbles is darkened.
Negative Marks : -2 In all other cases.
- For example, if (a), (c) and (d) are all the correct options for a question, darkening all these three will result in +4 marks; darkening only (a) and (d) will result in +2 marks; and darkening (a) and (b) will result in -2 marks, as a wrong option is also darkened.

6. Consider the motion of a positive point charge in a region where there are simultaneous uniform electric and magnetic fields $\vec{E}=E_{0} \hat{j}$ and $\vec{B}=B_{0} \hat{j}$. At time $t=0$, this charge has velocity \vec{v} in the $x-y$ plane, making an angle θ with the x-axis. Which of the following option(s) is (are) correct for time $t>0$?
(a) If $\theta=0^{\circ}$, the charge moves in a circular path in the $x-z$ plane.
(b) If $\theta=0^{\circ}$, the charge undergoes helical motion with constant pitch along the y-axis.
(c) If $\theta=10^{\circ}$, the charge undergoes helical motion with its pitch increasing with time, along the y-axis.
(d) If $\theta=90^{\circ}$, the charge undergoes linear but accelerated motion along the y-axis.
7. It is observed that only 0.39% of the original radioactive sample remains undecayed after eight hours. Hence
(a) the half-life of that substance is 1 hour.
(b) the mean life of the substance is $\frac{1}{\ln 2}$ hour.
(c) decay constant of the substance is $\ln 2$ per hour.
(d) if the number of radioactive nuclei of this substance at a given instant is 10^{8} then the number left after 30 min would be $\sqrt{2} \times 10^{7}$.
8. Three concentric spherical shells have radii $r, 2 r$ and $3 r$ with charges q_{1}, q_{2} and q_{3} respectively. Innermost and outermost shells are earthed. Then,
(a) $q_{1}+q_{3}=-q_{2}$
(b) $q_{1}=-\frac{q_{2}}{4}$
(c) $\frac{q_{3}}{q_{1}}=3$
(d) $\frac{q_{3}}{q_{2}}=-\frac{1}{3}$
9. A force $\vec{F}=\left(x^{2} y^{2} \hat{i}+x^{2} y^{2} \hat{j}\right) \mathrm{N}$ acts on a particle which moves in the $X Y$ plane. Choose the correct option(s).
(a) \vec{F} is a conservative force.
(b) Work done for path $A B C$ is $\frac{a^{5}}{3} \mathrm{~J}$.
(c) Work done for path $A D C$ is $\frac{a^{5}}{3} \mathrm{~J}$.
(d) Work done for path $A C$ is $\frac{2 a^{5}}{5} \mathrm{~J}$.
10. In the figure, the pulley P moves to the right with a constant speed u. The downward speed of A is v_{A} and the speed of B to
 the right is v_{B}. Then,
(a) $v_{A}=v_{B}$
(b) $v_{B}=u+v_{A}$
(c) $v_{B}+u=v_{A}$
(d) the two blocks have accelerations of the same magnitude.
11. Two springs A and B have force constants k_{1} and k_{2} respectively. The ratio of the work done on A to that done on B in increasing their lengths by the same amount is α and the ratio of the work done on A to that done on B when they are stretched with the same force is β. Then
(a) $\alpha=\frac{k_{1}}{k_{2}}$
(b) $\alpha=\frac{k_{2}}{k_{1}}$
(c) $\beta=\frac{k_{1}}{k_{2}}$
(d) $\beta=\frac{k_{2}}{k_{1}}$
12. A furnace has a two layered wall as shown in the figure. Each layer has the same area of cross section. The temperature T at the interface of two layers can
 be reduced by
(a) increasing the thermal conductivity of outer layer.
(b) decreasing the thermal conductivity of inner layer.
(c) by increasing the thickness of inner layer.
(d) by decreasing the thickness of outer layer.
13. A sound wave of angular frequency ω travels with a speed v in a medium of density ρ and bulk modulus B. Let k be the propagation constant. If P and A are the pressure amplitude and displacement amplitude respectively, then the intensity of sound wave is
(a) $\frac{1}{2} \omega B k A^{2}$
(b) $\frac{v P^{2}}{2 B}$
(c) $\frac{P^{2}}{2 \rho v}$
(d) $\frac{P^{2}}{2 \sqrt{\rho B}}$

SECTION 3 (Maximum Marks : 15)

- This section contains FIVE questions.
- The answer to each question is a SINGLE DIGIT INTEGER ranging from 0 to 9 , both inclusive.
- For each question, darken the bubble corresponding to the correct integer in the ORS.
- For each question, marks will be awarded in one of the following categories:
Full Marks : +3 If only the bubble corresponding to the correct answer is darkened.
Zero Marks: 0 In all other cases.

14. The diameter of a convex lens is d. An eye is placed at a distance $3 f(f$ being the focal length of the lens) to the right of the lens at a distance $d / 4$ normally below the optic axis so that the image of an object placed on the optic axis to the left of the lens is not visible for a distance greater than $d / 4$. The distance of the object is $n f$. Find the value of n.
15. A steady current I goes through a wire loop $P Q R$ having shape of a right angle triangle with $P Q=3 x, P R=4 x$ and $Q R=5 x$. If the magnitude of the magnetic field at P due to this loop is $k\left(\frac{\mu_{0} I}{48 \pi x}\right)$, find the value of k.
16. In a car race sound signals emitted by the two cars are detected by the detector on the straight track at the end point of the race. Frequency observed are 330 Hz and 360 Hz and the original frequency is 300 Hz of both cars. Race ends with the separation of 100 m between the cars. Assume both cars move with constant velocity and velocity of sound is $330 \mathrm{~m} \mathrm{~s}^{-1}$. Find the time (in second) taken by winning car.
17. A parallel plate capacitor is maintained at a certain potential difference. When a 3 mm thick slab is introduced between the plates, in order to maintain the same potential difference, the distance between the plates is increased by 2.4 mm . What is the dielectric constant of the slab?
18. A silver sphere of radius 1 cm and work function 4.7 eV is suspended from an insulating thread in free-space. It is under continuous illumination of 200 nm wavelength light. As photoelectrons are emitted, the sphere gets charged and acquires a potential. The maximum number of photoelectrons emitted from the sphere is $A \times 10^{Z}$ (where $1<A<10$). The value of Z is

CHEMISTRY

SECTION 1 (Maximum Marks : 15)

- This section contains FIVE questions.
- Each question has FOUR options (a), (b), (c) and (d). ONLY ONE of these four options is correct.
- For each question, darken the bubble corresponding to the correct option in the ORS.
- For each question, marks will be awarded in one of the following categories :
Full Marks : +3 If only the bubble corresponding to the correct option is darkened.
Zero Marks : 0 If none of the bubbles is darkened.
Negative Marks :-1 In all other cases.

19. Following is the graph between $(a-x)^{-1}$ and time ' t ' for a second order reaction.
($\left.\theta=\tan ^{-1}(0.5), O A=2 \mathrm{~L} \mathrm{~mol}^{-1}\right)$
Hence, rate at the start of the reaction is

(a) $1.25 \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$
(b) $0.5 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$
(c) $0.125 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$
(d) $1.25 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$
20. When a person is deprived of food, in which order does the body use the following sources to produce glucose?
I. Protein breaks down to amino acids used for gluconeogenesis
II. Conversion of glycogen to glucose
III. Catabolism of liquids
(a) I, II and III
(b) III, II and I
(c) II, I and III
(d) II, III and I
21. A gas expands isothermally against a constant external pressure of 1 atm from a volume of $10 \mathrm{dm}^{3}$ to a volume of $20 \mathrm{dm}^{3}$. It absorbs 800 J of thermal energy from its surroundings. The ΔU is
(a) -321 J
(b) +123 J
(c) -213 J
(d) +231 J
22. The edge length of unit cell of a metal, (having molecular weight $75 \mathrm{~g} / \mathrm{mol}$) which crystallises in cubic lattice, is $5 \AA$. If the density is $2 \mathrm{~g} / \mathrm{cc}$, then the radius of metal atom is $\left(N_{A}=6 \times 10^{23}\right)$
(a) $2.165 \AA$
(b) $2.865 \AA$
(c) $1.716 \AA$
(d) $3.121 \AA$
23. The given graph represents the plots of solubility (in $\mathrm{mg} / 100 \mathrm{~g}$) of different gases (P, Q, R, S) versus pressure. Predict the gas which has the highest value of Henry's law constant.

(a) P
(b) Q
(c) R
(d) S

SECTION 2 (Maximum Marks : 32)

- This section contains EIGHT questions.
- Each question has FOUR options (a), (b), (c) and (d). ONE OR MORE THAN ONE of these four option(s) is(are) correct.
- For each question, darken the bubble(s) corresponding to all the correct option(s) in the ORS.
- For each question, marks will be awarded in one of the following categories:
Full Marks : +4 If only the bubble(s) corresponding to the correct option(s) is(are) darkened.

Partial Marks : +1 For darkening a bubble corresponding to each correct option, provided NO incorrect option is darkened.
Zero Marks : 0 If none of the bubbles is darkened.
Negative Marks : -2 In all other cases.

- For example, if (a), (c) and (d) are all the correct options for a question, darkening all these three will result in +4 marks; darkening only (a) and (d) will result in +2 marks; and darkening (a) and (b) will result in -2 marks, as a wrong option is also darkened.

24. Select correct stereochemistry (chiral/achiral) of the reactants and products.
(a)

(b)

(c)

(d)

25. Which of the following statement(s) is (are) wrong?
(a) If the value of $l=0$, the electron distribution is spherical.
(b) The shape of the orbital is given by magnetic quantum number.
(c) Angular momentum of $1 s, 2 s, 3 s$ electrons are equal.
(d) In an atom, all electrons travel with the same velocity.
26. If equal volumes of 0.1 M HBr and 0.1 M KOH are mixed, then which of the following is/are correct about the resulting solution?
(a) $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=1.0 \times 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1}$
(b) $\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1}$
(c) $\left[\mathrm{K}^{+}\right]=0.05 \mathrm{~mol} \mathrm{~L}^{-1}$ (d) $\left[\mathrm{Br}^{-}\right]=0.05 \mathrm{~mol} \mathrm{~L}^{-1}$
27. Choose the correct sentence about the product(s) formed in the following reaction :

(a) A pair of meso compounds
(b) A pair of enantiomers
(c) A pair of diastereomers
(d) A pair of enantiomers and a meso compounds
28. When zeolite (which is hydrated sodium aluminium silicate) is treated with hard water, the sodium ions are exchanged with
(a) H^{+}ions
(b) Ca^{++}ions
(c) SO_{4}^{--}ions
(d) Mg^{++}ions.
29. Which of the following statements is (are) true regarding the following reaction?

(a) No reaction is possible because -Cl is present on benzene ring.
(b) A nucleophilic substitution will take place in which both -Cl will be replaced by two $-\mathrm{NH}_{2}$ groups.
(c) A nucleophilic substitution will take place in which only -Cl attached on C_{1} will be replaced by $-\mathrm{NH}_{2}$.
(d) A nucleophilic substitution will take place in which only -Cl attached on C_{4} will be replaced by $-\mathrm{NH}_{2}$.
30. A gas described by van der Waals' equation
(a) behaves similar to an ideal gas in the limit of large molar volumes
(b) behaves similar to an ideal gas in the limit of large pressures
(c) is characterised by van der Waals' coefficients that are dependent directly on identity of gas but are independent of temperature
(d) has the pressure that is lower than the pressure exerted by the same behaving ideally.
31. The thermal dissociation equilibrium of $\mathrm{CaCO}_{3(s)}$ is studied under different conditions :
$\mathrm{CaCO}_{3(s)} \rightleftharpoons \mathrm{CaO}_{(s)}+\mathrm{CO}_{2(g)}$
For this equilibrium, the correct statement(s) is (are)
(a) ΔH is dependent on T
(b) K is independent of the initial amount of CaCO_{3}
(c) K is dependent on the pressure of CO_{2} at a given T
(d) ΔH is independent of the catalyst, if any.

SECTION 3 (Maximum Marks : 15)

- This section contains FIVE questions.
- The answer to each question is a SINGLE DIGIT INTEGER ranging from 0 to 9 , both inclusive.
- For each question, darken the bubble corresponding to the correct integer in the ORS.
- For each question, marks will be awarded in one of the following categories:
Full Marks :+3 If only the bubble corresponding to the correct answer is darkened.
Zero Marks : 0 In all other cases.

32. The total number of molecules or ions having bond order 2.5 among $\mathrm{O}_{2}^{+}, \mathrm{CN}, \mathrm{NO}, \mathrm{N}_{2}^{+}, \mathrm{CO}^{+}, \mathrm{NO}^{+}, \mathrm{O}_{2}^{-}$, $\mathrm{CN}^{-}, \mathrm{N}_{2}$ is/are
33. The enthalpy change involved in the oxidation of glucose is $-2880 \mathrm{~kJ} \mathrm{~mol}^{-1} .25 \%$ of this energy is available for muscular work. If 100 kJ of muscular work is needed to walk one kilometre, what is the approximate distance (in km) that a person will be able to walk after eating 120 g of glucose?
34. The ratio of terminal to bridged CO groups in $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$ is $x: 1$, then the value of x is

PRACTICE PAPER

1. Find out the total number of voids in 0.5 mole of a compound forming hexagonal closed packed
structure.
(a) 9.034×10^{23}
(b) 6.023×10^{23}
(c) 18.069×10^{23}
(d) 3.011×10^{23}
2. How much energy will be required to ionise 1 mole of hydrogen atoms?
(a) 1350 kJ
(b) 1350 J
(c) 1312 kJ
(d) 1312 J
3. A_{1} and A_{2} are two ores of metal ' M '.
A_{1} on calcination gives black precipitate, CO_{2} and $\mathrm{H}_{2} \mathrm{O}$.
$A_{1} \xrightarrow{\text { Calcination }}$ Black ppt. $+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
While A_{2} on roasting gives metal and a gas.
$A_{2} \xrightarrow{\text { Roasting }}$ Metal + Gas
Gas $\xrightarrow{\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4}} P$ (Green coloured)
In the given sequence, A_{1} and A_{2} respectively are
(a) CuCO_{3} and $\mathrm{Cu}_{2} \mathrm{~S}$
(b) $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$ and $\mathrm{Cu}_{2} \mathrm{~S}$
(c) CuCO_{3} and $\mathrm{Cu}_{2} \mathrm{O}$
(d) $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$ and $\mathrm{Cu}_{2} \mathrm{O}$
4. The values of observed and calculated molecular weights of silver nitrate are 92.64 and 170 respectively. The degree of dissociation of silver nitrate will be
(a) 52.8%
(b) 83.5%
(c) 46.7%
(d) 60.2%
5. The total number of gas molecules in a room of capacity $25 \mathrm{~m}^{3}$ at a temperature of $27^{\circ} \mathrm{C}$ and 1 atm pressure will be
(a) 3.011×10^{23}
(b) 6.119×10^{23}
(c) 6.119×10^{26}
(d) 3.011×10^{26}
6. CaO and NaCl have the same crystal structure and approximately the same ionic radii. If U is the lattice energy of NaCl , the approximate lattice energy of CaO is
(a) $\frac{U}{2}$
(b) U
(c) $2 U$
(d) $4 U$
7. '925 fine silver' means
(a) $9.5 \% \mathrm{Ag}+90.5 \% \mathrm{Cu}$
(b) $92.5 \% \mathrm{Ag}+7.5 \% \mathrm{Cu}$
(c) $9.25 \% \mathrm{Cu}+90.75 \% \mathrm{Ag}$
(d) $7.5 \% \mathrm{Ag}+92.5 \% \mathrm{Cu}$
8. What is the product formed when the following reaction takes place?

(a)

(b)

(c)

(d)

9. The entropy change can be calculated by using the expression, $\Delta S=\frac{q_{\mathrm{rev}}}{T}$. When water freezes in a glass beaker what happens?
(a) ΔS (system) decreases but ΔS (surroundings) remains the same.
(b) ΔS (system) increases but ΔS (surroundings) decreases.
(c) ΔS (system) decreases but ΔS (surroundings) increases.
(d) ΔS (system) and ΔS (surroundings) both decrease.
10. Under which of the following reaction conditions, aniline gives p-nitro derivative as the major product?
(a) Acetyl chloride/pyridine followed by reaction with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}+$ conc. HNO_{3}
(b) Ethyl alcohol/pyridine followed by conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ + conc. HNO_{3}
(c) Dil. HCl followed by reaction with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ + conc. HNO_{3}
(d) Reaction with conc. $\mathrm{HNO}_{3}+$ conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
11. Which of the following statements is not true?
(a) Nascent hydrogen can be produced even at room temperature but atomic hydrogen is produced at elevated temperature.
(b) Nascent hydrogen can never be isolated but atomic hydrogen can be isolated.
(c) Reducing power of atomic hydrogen is much less than that of nascent hydrogen.
(d) Both nascent and atomic hydrogen are more reactive than ordinary hydrogen.
12. Amongst $\mathrm{TiF}_{6}^{2-}, \mathrm{CoF}_{6}^{3-}, \mathrm{Cu}_{2} \mathrm{Cl}_{2}$ and NiCl_{4}^{2-}, the colourless species are
(a) CoF_{6}^{3-} and NiCl_{4}^{2-}
(b) TiF_{6}^{2-} and CoF_{6}^{3-}
(c) $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ and NiCl_{4}^{2-}
(d) TiF_{6}^{2-} and $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$
13. The values of $K_{s p}$ of two sparingly soluble salts $\mathrm{Ni}(\mathrm{OH})_{2}$ and AgCN are 2×10^{-15} and 6×10^{-17} respectively. Which salt is more soluble?
(a) $\mathrm{Ni}(\mathrm{OH})_{2}$
(b) AgCN
(c) Both are equally soluble.
(d) Cannot be predicted.
14. In the following sequence of reactions:

Identify D.
(a)

(b)

(c)

(d)

15. Aniline is diazotised and the diazonium salt hydrolysed to yield phenol which is brominated to produce $\mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{Br}_{3}\right) \mathrm{OH}$. Calculate the mass of the final product obtained from 9.3 g of aniline if the yield in the two steps is 45% and 70% respectively. (Atomic mass of $\mathrm{Br}=80$)
(a) 1.04 g
(b) 10.43 g
(c) 14.89 g
(d) 23.17 g
16. A cylinder of gas is assumed to contain 11.2 kg of butane $\left(\mathrm{C}_{4} \mathrm{H}_{10}\right)$. If a normal family needs $20,000 \mathrm{~kJ}$ of energy per day, the cylinder will last in
(Given : ΔH for combustion of butane is -2658 kJ)
(a) 20 days
(b) 22 days
(c) 26 days
(d) 24 days.
17. An electric current is passed through an aqueous solution of a mixture of alanine (isoelectric point 6.0), glutamic acid (3.2) and arginine (10.7) buffered at pH 6 . What is the fate of the three acids?
(a) Glutamic acid migrates to anode at pH 6. Arginine present as a cation and migrates to the cathode. Alanine as a dipolar ion remains uniformly distributed in solution.
(b) Glutamic acid migrates to cathode and others remain uniformly distributed in solution.
(c) All these remain uniformly distributed in solution.
(d) All three move to cathode.
18. Oxidation states of X, Y, Z are $+2,+5$ and -2 respectively. Formula of the compound formed will be
(a) $X_{2} Y Z_{6}$
(b) $X Y_{2} Z_{6}$
(c) $X Y_{5} Z_{2}$
(d) $X_{3} Y Z_{4}$
19. Half-life time of a radioactive element X is same as the mean life time of another radioactive element Y. Initially both of them have same number of atoms, then
(a) X and Y have the same decay rate initially
(b) X and Y have the same decay rate always
(c) Y will decay at faster rate than X
(d) X will decay at faster rate than Y.
20. Consider the following sequence of reactions:

Identify E.
(a)

(b)

(c)

(d)

21. Based upon the following hypothetical equilibrium at 273 K
(i) $\mathrm{XCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}_{(s)} \rightleftharpoons \mathrm{XCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}_{(s)}+4 \mathrm{H}_{2} \mathrm{O}_{(g)}$;

$$
K_{p}=8.1 \times 10^{-11} \mathrm{~atm}^{4}
$$

(ii) $Y_{2} \mathrm{HPO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}_{(s)} \rightleftharpoons Y_{2} \mathrm{HPO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}_{(s)}+5 \mathrm{H}_{2} \mathrm{O}_{(g)}$; $K_{p}=3.2 \times 10^{-9} \mathrm{~atm}^{5}$
(iii) $\mathrm{Z}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}_{(s)} \rightleftharpoons \mathrm{Z}_{2} \mathrm{SO}_{4(s)}+10 \mathrm{H}_{2} \mathrm{O}_{(g)}$;
$K_{p}=1.0 \times 10^{-30} \mathrm{~atm}^{10}$
Which is the most effective dehydrating agent at 273 K ? (Aqueous tension at $273 \mathrm{~K}=6.0 \times 10^{-3} \mathrm{~atm}$)
(a) $\mathrm{XCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}_{(s)}$
(b) $Y_{2} \mathrm{HPO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}_{(s)}$
(c) $Z_{2} \mathrm{SO}_{4(s)}$
(d) $Z_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}_{(s)}$
22. The correct IUPAC name for

(a) 5-methyl-4-(1'-2'-dimethylpropyl)heptane
(b) 3-methyl-4-(1', 2'-dimethylpropyl)heptane
(c) 2,3,5-trimethyl-4-propylheptane
(d) 4-propyl-2, 3, 5-trimethylheptane.
23. Electrolysis of NaCl solution with inert electrodes for certain period of time gave $600 \mathrm{~cm}^{3}$ of 1.0 M NaOH in the electrolytic cell. During the same period, 31.80 g of copper was deposited in a copper voltameter in series with the electrolytic cell. What is the percentage of current efficiency in the electrolytic cell? (At. wt. of $\mathrm{Cu}=63.6$)
(a) 40
(b) 50
(c) 60
(d) 25
24. Aluminium displaces hydrogen from dilute HCl whereas silver does not. The emf of a cell prepared by combining $\mathrm{Al} / \mathrm{Al}^{3+}$ and $\mathrm{Ag} / \mathrm{Ag}^{+}$is 2.46 V . The reduction potential of silver electrode is +0.80 V . The reduction potential of aluminium electrode is
(a) +1.66 V
(b) -3.26 V
(c) +3.26 V
(d) -1.66 V
25. The hybridisation, oxidation number and shape of central metal ion of Wilkinson's catalyst are respectively
(a) $d s p^{2},+1$, square planar
(b) $s p^{3},+4$, tetrahedral
(c) $s p^{3} d,+2$, trigonal bipyramidal
(d) $d^{2} s p^{3},+6$, octahedral.
26. Consider the following reaction,

Here, A is
(a)

(b)

(c)

(d)

27. Consider the following reactions,
$A+B \underset{k_{-1}}{\stackrel{k_{1}}{\rightleftharpoons}} C, C+B \xrightarrow{k_{2}} D$
The rate in terms of $-\frac{d[B]}{d t}$ will be
(a) $k_{1}[A][B]-k_{-1}[C]$
(b) $k_{1}[A][B]-k_{1}[C]-k_{2}[C][B]$
(c) $k_{1}[A][B]-k_{2}[C][B]$
(d) $k_{1}[A][B]-k_{-1}[C]+k_{2}[C][B]$
28. Aluminium vessels should not be washed with materials containing washing soda since
(a) washing soda is expensive
(b) washing soda is easily decomposed
(c) washing soda reacts with Al to form soluble aluminate
(d) washing soda reacts with Al to form insoluble aluminium oxide.
29. When I_{2} is passed through $\mathrm{KCl}, \mathrm{KF}, \mathrm{KBr}$
(a) Cl_{2} and Br_{2} are evolved
(b) Cl_{2} is evolved
(c) $\mathrm{Cl}_{2}, \mathrm{Br}_{2}, \mathrm{~F}_{2}$ are evolved
(d) none of these.
30. Zeta potential (or electrokinetic potential) is the
(a) potential required to bring about coagulation of a colloidal sol
(b) potential required to give the particles a speed of $1 \mathrm{~cm} / \mathrm{sec}$ in the sol
(c) potential difference between fixed charged layer and the diffused layer having opposite charges
(d) potential energy of the colloidal particles.
31. Gadolinium belongs to $4 f$ series and its atomic number is 64 . Which of the following is the correct electronic configuration of gadolinium?
(a) $[\mathrm{Xe}] 4 f^{9} 5 s^{1}$
(b) $[\mathrm{Xe}] 4 f^{7} 5 d^{1} 6 s^{2}$
(c) $[\mathrm{Xe}] 4 f^{6} 5 d^{2} 6 s^{2}$
(d) $[\mathrm{Xe}] 4 f^{8} 5 d^{2}$
32. In the nuclear reaction, ${ }_{3}^{7} \mathrm{Li}+{ }_{1}^{1} \mathrm{H} \rightarrow 2{ }_{2}^{4} \mathrm{He}$, the mass loss is nearly 0.02 amu . Hence, the energy released (in million $\mathrm{kcal} / \mathrm{mol}$) in the process is approximately
(a) 428
(b) 200
(c) 100
(d) 50
33. Which of the following reactions will yield 2-propanol?
I.

II. $\mathrm{CH}_{3}-\mathrm{CHO} \xrightarrow[\text { (ii) } \mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}]{\text { (i) } \mathrm{CH}_{2} \mathrm{MgI}}$
III. $\mathrm{CH}_{2} \mathrm{O} \xrightarrow[\text { (ii) } \mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}]{\text { (i) } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgI}}$
IV. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{3} \xrightarrow{\text { Neutral } \mathrm{KMnO}_{4}}$
(a) I and II only
(b) II and III only
(c) I and III only
(d) II and IV only
34. Three separate samples of a solution of a single salt gave these results. One formed a white precipitate with excess ammonia solution, one formed a white precipitate with dil. NaCl solution and one formed a black precipitate with $\mathrm{H}_{2} \mathrm{~S}$. The salt could be
(a) AgNO_{3}
(b) $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
(c) $\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2}$
(d) MnSO_{4}
35. Which of the following has largest number of isomers?
(a) $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$
(b) $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$
(c) $\left[\operatorname{Ir}\left(\mathrm{P} R_{3}\right)_{2} \mathrm{H}(\mathrm{CO})\right]^{2+}$
(d) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right]^{2+}$
36. The first ionisation potential of $\mathrm{Na}, \mathrm{Mg}, \mathrm{Al}$ and Si are in the order
(a) $\mathrm{Na}<\mathrm{Mg}>\mathrm{Al}<\mathrm{Si}$
(b) $\mathrm{Na}>\mathrm{Mg}>\mathrm{Al}>\mathrm{Si}$
(c) $\mathrm{Na}<\mathrm{Mg}<\mathrm{Al}>\mathrm{Si}$
(d) $\mathrm{Na}>\mathrm{Mg}>\mathrm{Al}<\mathrm{Si}$
37. Softening of hard water is done using sodium aluminium silicate (zeolite). This causes
(a) adsorption of Ca^{2+} and Mg^{2+} ions of hard water replacing Na^{+}ions
(b) adsorption of Ca^{2+} and Mg^{2+} ions of hard water replacing Al^{3+} ions
(c) both are true
(d) none is true.
38. 1.25 g of a sample of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is dissolved in 250 mL solution. 25 mL of this solution neutralises 20 mL of $0.1 \mathrm{~N} \mathrm{H}_{2} \mathrm{SO}_{4}$. The $\%$ of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in this sample is
(a) 84.8%
(b) 8.48%
(c) 15.2%
(d) 42.4%
39. The reagents employed to carry out the following transformation are

(a) $\mathrm{LiAlH}_{4}, \mathrm{H}_{2} \mathrm{SO}_{4}$ /heat
(b) $\mathrm{PCC} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by HIO_{4}
(c) $\mathrm{NaBH}_{4} / \mathrm{CH}_{3} \mathrm{OH}$ followed by HIO_{4}
(d) O_{3} followed by $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$
40. Of the following statements about enzymes which ones are true?
(i) Enzymes lack in nucleophilic groups.
(ii) Enzymes are highly specific both in binding chiral substrates and in catalysing their reactions.
(iii) Enzymes catalyse chemical reactions by lowering the energy of activation.
(iv) Pepsin is a proteolytic enzyme.
(a) (i) and (iv) only
(b) (i) and (iii) only
(c) (ii), (iii) and (iv) only
(d) (i) only

SOLUTIONS

1. (a): In hexagonal closed packed structure, there are 6 atoms per unit cell.
$\therefore \quad$ Number of octahedral voids $=6$
$\therefore \quad$ Number of tetrahedral voids $=2 \times 6=12$
$\therefore \quad$ Total number of voids per atom $=\frac{18}{6}=3$
\therefore Total number of voids in 1 mole

$$
=3 \times 6.023 \times 10^{23}
$$

\therefore Total number of voids in 0.5 mole

$$
=3 \times 0.5 \times 6.023 \times 10^{23}=9.034 \times 10^{23}
$$

2. (c) : I.E. $=\frac{Z^{2}}{n^{2}} \times 2.178 \times 10^{-18} \mathrm{~J} /$ atom

For hydrogen, $Z=1, n=1$
$\therefore \quad I . E .=\frac{1^{2}}{1^{2}} \times 2.178 \times 10^{-18} \mathrm{~J} /$ atom
I.E. per mole $=2.178 \times 10^{-18} \times 6.023 \times 10^{23}$

$$
=1311809.4 \mathrm{~J} \simeq 1312 \mathrm{~kJ}
$$

3. (b) : A_{1}, on calcination gives black solid along with CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. So, A_{1} is basic copper carbonate $\left[\mathrm{Cu}(\mathrm{OH})_{2} \cdot \mathrm{CuCO}_{3}\right]$ while A_{2} on roasting gives metal and gas which upon oxidation gives green colour which partially indicates that A_{2} is $\mathrm{Cu}_{2} \mathrm{~S}$.
So, the confirmatory reactions are :

$\begin{array}{ll}\text { 4. } \\ \text { Initial } \\ (\mathrm{b}): & \mathrm{AgNO}_{3} \\ 1 \text { mole }\end{array} \rightarrow \underset{0}{\mathrm{Ag}^{+}}+\underset{0}{\mathrm{NO}_{3}^{-}}$
$\begin{array}{cccc}\text { After dissociation } & 1-\alpha & \alpha & \alpha\end{array}$
Total number of moles $=1+\alpha$

$$
\begin{align*}
& i=1+\alpha \text { or } \alpha=i-1 \\
& i=\frac{170}{92.64}=1.835, \alpha=i-1=0.835=83.5 \% \tag{i}
\end{align*}
$$

5. (c) : We know that, $P V=n R T$

Given : $P=1 \mathrm{~atm} ; V=25 \times 10^{3} \mathrm{~L} ; T=300 \mathrm{~K}$

$$
R=0.082 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
$$

Putting these values in equation (i), we get

$$
n=\frac{P V}{R T}=\frac{1 \times 25 \times 10^{3}}{0.082 \times 300}=1016 \mathrm{~mol}
$$

Number of molecules $=n \times 6.023 \times 10^{23}$
$=1016 \times 6.023 \times 10^{23}=6.119 \times 10^{26}$ molecules
6. (d): Lattice energy, $U=\frac{q_{1} q_{2}}{r^{2}}$

Since, interionic distances in CaO and NaCl are similar so, r is almost the same. Therefore, lattice energy depends only on charge.
Since, the magnitude of charge on Na^{+}and Cl^{-}ions is same i.e., unity and that on Ca^{2+} and O^{2-} ions is 2 each, therefore, the lattice energy of CaO is four times the lattice energy of NaCl , i.e., $4 U$.
7. (b): '925 fine silver' means 925 parts by weight of pure Ag present in $\mathrm{Ag}-\mathrm{Cu}$ alloy of 1000 parts by weight. Hence, $\mathrm{Ag}=92.5 \%, \mathrm{Cu}=7.5 \%$.
8. (b) :

9. (c) : When water freezes, the heat is transferred from system to the surroundings, thus entropy of system decreases but entropy of surroundings increases.
10. (a): $\mathrm{CH}_{3} \mathrm{COCl}$ forms acetanilide on reaction with aniline and thus, reduces the activity of $-\mathrm{NH}_{2}$ group. Hence, reaction with conc. HNO_{3} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ in presence of $\mathrm{CH}_{3} \mathrm{COCl}$ results in the formation of p-nitro derivative as major product. In the absence of $\mathrm{CH}_{3} \mathrm{COCl}, 2,4,6$-trisubstituted derivative of aniline will be formed as the major product.
11. (c) : Reducing power of atomic hydrogen is much greater than that of nascent hydrogen.
12. (d): Transition metal ions having outer electronic configuration as $3 d^{0}$ and $3 d^{10}$ will give colourless compounds due to absence of unpaired electrons.
In TiF_{6}^{2-}, Ti is in +4 oxidation state.
Electronic configuration of $\mathrm{Ti}^{4+}=[\mathrm{Ar}] 3 d^{0}$ In $\mathrm{Cu}_{2} \mathrm{Cl}_{2}, \mathrm{Cu}$ is in +1 oxidation state. Electronic configuration of $\mathrm{Cu}^{+}=[\mathrm{Ar}] 3 d^{10}$
Thus, both these compounds will be colourless.
13. (a) : $\mathrm{AgCN} \rightarrow \mathrm{Ag}^{+}+\mathrm{CN}^{-}$

$$
K_{s p}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{CN}^{-}\right]=s_{1}^{2}
$$

$s_{1}=\sqrt{K_{s p}}=\sqrt{6 \times 10^{-17}}=7.8 \times 10^{-9} \mathrm{M}$
$\mathrm{Ni}(\mathrm{OH})_{2} \rightarrow \mathrm{Ni}^{2+}+2 \mathrm{OH}^{-}$
$K_{s p}=\left[\mathrm{Ni}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}=s_{2}\left(2 s_{2}\right)^{2}=4 s_{2}^{3}$
$s_{2}=\left(\frac{2 \times 10^{-15}}{4}\right)^{1 / 3}=7.93 \times 10^{-6} \mathrm{M}$
Thus, $\mathrm{Ni}(\mathrm{OH})_{2}$ is more soluble.
14. (c) : At first, generation of electrophile (chloronium ion, Cl^{+}) takes place which attacks on benzene.

(A)
A on treatment with $\mathrm{NaNH}_{2} /$ liq. NH_{3} gives aniline (B).

Balz-Schiemann reaction :

(C)

(D)

Mole of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ formed $=\frac{9.3}{93} \times \frac{45}{100}=0.045$
Mole of $\mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{Br}_{3}\right) \mathrm{OH}=0.045 \times \frac{70}{100}=0.0315$
Mass of $\mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{Br}_{3}\right) \mathrm{OH}$ formed $=0.0315 \times 331$

$$
=10.43 \mathrm{~g}
$$

16. (c): Cylinder contains 11.2 kg or 193.10 moles butane. (\because Molecular mass of butane $=58$)
$\because \quad$ Energy released by 1 mole of butane $=-2658 \mathrm{~kJ}$
$\therefore \quad$ Energy released by 193.10 moles of butane

$$
=-2658 \times 193.10=-5.13 \times 10^{5} \mathrm{~kJ}
$$

$\therefore \quad$ Cylinder will last in $\frac{5.13 \times 10^{5}}{20000}=25.66$ or 26 days.
17. (a) : At $\mathrm{pH}=6$, glutamic acid exists as a dianionic species and migrates to anode while arginine exists as cationic species and moves to cathode. Alanine does not migrate to any electrode at its isoelectric point.
18. (b): The oxidation states of X, Y and Z are $+2,+5$ and -2 respectively.
In $X_{2} Y Z_{6}=2 \times 2+5+6(-2) \neq 0$
In $X Y_{2} Z_{6}=2+5 \times 2+6(-2)=0$
In $X Y_{5} Z_{2}=2+5 \times 5+2(-2) \neq 0$
In $X_{3} Y Z_{4}=3 \times 2+5+4(-2) \neq 0$
Hence, the formula of the compound is $X Y_{2} Z_{6}$.
19. (c) : $\left(t_{1 / 2}\right)_{X}=\left(t_{\text {mean }}\right)_{Y}$ or $\frac{0.693}{\lambda_{X}}=\frac{1}{\lambda_{Y}}$
or $\lambda_{X}=0.693 \lambda_{Y}$
Hence, $\lambda_{X}<\lambda_{Y}$. Therefore Y will decay at a faster rate than X.
20. (c) :

21. (c) : (i) $p_{\mathrm{H}_{2} \mathrm{O}}=K_{p}^{1 / 4}=\left(8.1 \times 10^{-11}\right)^{1 / 4}=3.0 \times 10^{-3} \mathrm{~atm}$
(ii) $p_{\mathrm{H}_{2} \mathrm{O}}=\left(K_{p}\right)^{1 / 5}=\left(3.2 \times 10^{-9}\right)^{1 / 5}=2.0 \times 10^{-2} \mathrm{~atm}$
(iii) $p_{\mathrm{H}_{2} \mathrm{O}}=\left(K_{p}\right)^{1 / 10}=\left(1.0 \times 10^{-30}\right)^{1 / 10}=1.0 \times 10^{-3} \mathrm{~atm}$ Smaller is the equilibrium $p_{\mathrm{H}_{2} \mathrm{O}}$, more effective will be the lower hydrate or anhydrous salt as dehydrating agent. Hence, $Z_{2} \mathrm{SO}_{4}$ is the most effective dehydrating agent.
22. (c): In the case where two or more chains are of equal length, then the chain with greater number of side chains is selected as the principal chain.

2, 3, 5-trimethyl-4-propylheptane
23. (c) : $\mathrm{NaCl}_{(a q)}$ (cathode) :
$2 \mathrm{H}_{2} \mathrm{O}_{(l)}+2 e^{-} \rightarrow \mathrm{H}_{2(g)}+2 \mathrm{OH}_{(a q)}^{-}$
$\mathrm{CuSO}_{4(a q)}$ (cathode) : $\mathrm{Cu}_{(a q)}^{2+}+2 e^{-} \rightarrow \mathrm{Cu}_{(s)}$
Equivalents of $\mathrm{OH}^{-}=$Moles of OH^{-}formed

$$
=\frac{600 \times 1}{1000}=0.6
$$

Equivalents of Cu deposited $=\frac{31.8}{63.5 / 2}=1.0$
Current efficiency $=\frac{0.6 \times 100}{1} \%=60 \%$
24. (d): Al is more reactive than Ag , i.e., cell reaction is

$$
\begin{aligned}
& \mathrm{Al}+3 \mathrm{Ag}^{+} \rightarrow \mathrm{Al}^{3+}+3 \mathrm{Ag} \\
& E_{\text {cell }}=E_{\text {cathode }}^{\circ}-E_{\text {anode }}^{\circ}=E_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\circ}-E_{\mathrm{Al}^{3+} / \mathrm{Al}}^{\circ} \\
& 2.46=0.80-E_{\mathrm{Al}^{3+} / \mathrm{Al}} \\
& E^{\circ} \mathrm{Al}^{3+} / \mathrm{Al}=-1.66 \mathrm{~V}
\end{aligned}
$$

25. (a): In Wilkinson's catalyst (a homogeneous catalyst), $\left[\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}\right], \mathrm{Rh}$ is $d s p^{2}$-hybridised, in +1 oxidation state and the complex has square planar shape.

FULLY LOADED \& COMPLETELY UPDATED

MTG's BITSAT Explorer is not only the most exhaustive prep-tool, but also the only book available at present, updated as per the latest BITSAT syllabus for students aspiring for top rank in BITSAT 2017.

> Get MTG's BITSAT Explorer today for a real-world feel of BITSAT. Find out what's different about the BITSAT test, including its pattern of examination and key success factors. Be it with chapter-wise MCQs or model test papers, check how good your chances are for glory in BITSAT 2017.

FEATURES:

- Covers all 5 subjects - Physics, Chemistry, Mathematics, English \& Logical Reasoning
- Chapterwise $1,000+$ MCQs in each section for practice
- 5 Model Test Papers with detailed solutions

Free interactive CD

Visit www.MTG.in to buy online. Or visit a leading bookseller near you. For more information, email info@mtg.in or call 180030023355 (toll-free).
26. (c)

27. (d): From $1^{\text {st }}$ reaction,

$$
-\frac{d[B]}{d t}=k_{1}[A][B]-k_{-1}[C]
$$

From $2^{\text {nd }}$ reaction, $-\frac{d[B]}{d t}=k_{2}[C][B]$
$\therefore \quad$ Total $-\frac{d[B]}{d t}=k_{1}[A][B]-k_{-1}[C]+k_{2}[C][B]$
28. (c) : $2 \mathrm{Al}+\mathrm{Na}_{2} \mathrm{CO}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaAlO}_{2}+\mathrm{CO}_{2}+3 \mathrm{H}_{2}$
29. (d): I_{2} being the weakest oxidising agent cannot displace stronger oxidising agents such as $\mathrm{F}_{2}, \mathrm{Cl}_{2}$ or Br_{2} from their salts.
30. (c)
31. (b): $\operatorname{Gd}(Z=64):[\mathrm{Xe}] 4 f^{7} 5 d^{1} 6 s^{2}$
32. (a) : Energy released $(\Delta E)=\Delta m \times 931.5 \mathrm{MeV}$
$=0.02 \times 931.5 \times \frac{1.6 \times 10^{-13}}{4.184} \times \frac{1}{1000} \times 6.023 \times 10^{23}$
$=428 \times 10^{6} \mathrm{kcal} / \mathrm{mole}=428 \mathrm{million} \mathrm{kcal} / \mathrm{mole}$
33. (a) : Reactions I and II give 2-propanol, i.e.,
I. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O} \xrightarrow[\text { Markovnikov's addition }]{\mathrm{H}^{+}}$

$$
\underset{\text { 2-Propanol }}{\mathrm{CH}_{3} \mathrm{CHOHCH}_{3}}
$$

II. $\mathrm{CH}_{3} \mathrm{CHO} \xrightarrow[\text { (ii) } \mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}]{\text { (i) } \mathrm{CH}_{3} \mathrm{MgI}} \mathrm{CH}_{3}-\underset{\text { 2-Propanol }}{\mathrm{CH}(\mathrm{OH})}-\mathrm{CH}_{3}$

In contrast, reaction III gives 1-propanol and IV gives 1,2-propanediol.
III. $\mathrm{CH}_{2} \mathrm{O} \xrightarrow[\text { (ii) } \mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}]{\text { (i) } \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{MgI}} \underset{\substack{\text { 1-Propanol }}}{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}}$

34. (b): The salt can be $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$. The reactions are,
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{Pb}(\mathrm{OH})_{2}+2 \mathrm{NH}_{4} \mathrm{NO}_{3}$
White ppt.
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NaCl} \longrightarrow \mathrm{PbCl}_{2}+2 \mathrm{NaNO}_{3}$
(dil.) White ppt.
$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{H}_{2} \mathrm{~S} \rightarrow \mathrm{PbS}+2 \mathrm{HNO}_{3}$ Black ppt.
35. (b): All given compounds have cis and trans isomers but only cis-isomer of $\left[\mathrm{Co}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$will also have optical isomers (d and l) due to presence of symmetrical didentate ligand, (en).
36. (a) : $I E_{1}$ of Mg is higher than that of Na because of increased nuclear charge and also than that of Al because in Mg an s-electron has to be removed while in Al it is the $3 p$-electron that has to be removed. Mg also has stable fully filled configuration. The $I E_{1}$ of Si is, however, higher than those of Mg and Al because of increased nuclear charge. Thus, the overall order is $\mathrm{Na}<\mathrm{Mg}>\mathrm{Al}<\mathrm{Si}$.
37. (a)
38. (a) : Let the amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ present in the mixture be $x \mathrm{~g}$. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ will not react with $\mathrm{H}_{2} \mathrm{SO}_{4}$. Then
$N_{1} V_{1}=N_{2} V_{2}$
$\underbrace{25 \times N_{1}}_{\text {(Solution) }}=\underbrace{0.1 \times 20}_{\mathrm{H}_{2} \mathrm{SO}_{4}}$
$N_{1}=2 / 25$
Normality $\left(\frac{2}{25}\right)=\frac{x / 53 \times 1000}{250}$
$\Rightarrow \quad x=\frac{2 \times 250 \times 53}{25 \times 1000}=1.06 \mathrm{~g}$
$\therefore \quad$ Percentage of $\mathrm{Na}_{2} \mathrm{CO}_{3}=\frac{1.06 \times 100}{1.25}=84.8 \%$
39. (c) :

40. (c)

1. The reaction, $\mathrm{SO}_{2} \mathrm{Cl}_{2} \longrightarrow \mathrm{SO}_{2}+\mathrm{Cl}_{2}$ is a first order reaction with $k=2.2 \times 10^{-5} \mathrm{~s}^{-1}$ at $320^{\circ} \mathrm{C}$. The percentage of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ that is decomposed on heating after 30 minutes will be
(a) 3.8%
(b) 65.4%
(c) 39.5%
(d) 48.5%
2. ICl_{4}^{-}is iso-structural with
(a) IBr_{2}^{-}
(b) BrO_{3}^{-}
(c) CH_{4}
(d) XeF_{4}
3. Analysis shows that a metal oxide has the empirical formula $M_{0.96} \mathrm{O}_{1.00}$. The percentage of M^{2+} ion in this crystal is
(a) 91.67
(b) 8.33
(c) 45.83
(d) 22.92
4. $\frac{1}{4}$ th of Avogadro number of atoms of an element absorb energy ' X ' kJ for ionisation, the ionisation energy (kJ) of an atom is
(a) $\frac{2 X}{N_{0}}$
(b) $\frac{4 X}{N_{0}}$
(c) $\frac{4 N_{0}}{X}$
(d) $\frac{N_{0}}{X}$
5. Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below,
$\frac{1}{2} \mathrm{Cl}_{2(g)} \xrightarrow{\frac{1}{2} \Delta_{\text {diss }} H^{\circ}} \mathrm{Cl}_{(\mathrm{g})} \xrightarrow{\Delta_{\text {eg }} H^{\circ}} \mathrm{Cl}_{(\mathrm{g})}^{-} \xrightarrow{\Delta_{\text {hyd }} H^{\circ}} \mathrm{Cl}_{(a q)}^{-}$ The energy involved in the conversion of $\frac{1}{2} \mathrm{Cl}_{2(g)}$ to
$\mathrm{Cl}_{(a q)}^{-}$(using data, $\Delta_{\text {diss. }} H^{\circ}=240 \mathrm{~kJ} \mathrm{~mol}^{-1}$,
$\left.\Delta_{\mathrm{eg}} H_{\mathrm{Cl}}^{\circ}=-349 \mathrm{~kJ} \mathrm{~mol}^{-1}, \Delta_{\text {hyd. }} H^{\circ}=-381 \mathrm{~kJ} \mathrm{~mol}^{-1}\right)$ will be
(a) $120 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) $150 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) $-610 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d) $-850 \mathrm{~kJ} \mathrm{~mol}^{-1}$
6. If NaCl is dopped with 10^{-4} mole percent of SrCl_{2}, the concentration of cation vacancies will be
(a) $6.023 \times 10^{16} \mathrm{~mol}^{-1}$
(b) $6.023 \times 10^{17} \mathrm{~mol}^{-1}$
(c) $6.023 \times 10^{14} \mathrm{~mol}^{-1}$
(d) $6.023 \times 10^{15} \mathrm{~mol}^{-1}$
7. Occluded hydrogen means
(a) dehydrogenation
(b) hardening of oils
(c) hydrogen adsorbed on metals
(d) hydrogen as fuel.
8. When conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ was added into an unknown salt present in a test tube, a brown gas (A) was evolved. This gas intensified when copper turnings were also added into this test tube. On cooling, the gas (A) changed into a colourless gas (B). Identify the gases A and B.
(a) NO_{2} and NO_{2}
(b) NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{3}$
(c) NO_{2} and NO
(d) NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$
9. Major product of the following reaction will be

(a)

(b)

(c) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
(d)

10. How many grams of concentrated nitric acid should be used to prepare 250 mL of $2.0 \mathrm{M} \mathrm{HNO}_{3}$? (The concentrated acid contains $70 \% \mathrm{HNO}_{3}$.)
(a) 70.0 g
(b) 54.0 g
(c) 45.0 g
(d) 90.0 g
11. What will be the mass of NaCl produced when $1.00 \mathrm{~mol} \mathrm{~L}^{-1}$ aqueous solution of sodium hydroxide is neutralised by 200 mL of $2.00 \mathrm{~mol} \mathrm{~L}^{-1}$ aqueous hydrochloric acid?
(a) 23.4 g
(b) 58.5 g
(c) 29.2 g
(d) 87.7 g
12. At equimolar concentration of Fe^{2+} and Fe^{3+}, what must be the $\left[\mathrm{Ag}^{+}\right]$so that the voltage of the galvanic cell made from $\mathrm{Ag}^{+} \mid \mathrm{Ag}$ and $\mathrm{Fe}^{3+} \mid \mathrm{Fe}^{2+}$ electrodes equals zero? The cell reaction is

$$
\mathrm{Fe}^{2+}+\mathrm{Ag}^{+} \rightleftharpoons \mathrm{Fe}^{3+}+\mathrm{Ag}
$$

$\left(\right.$ Given : $\left.E_{\mathrm{Ag}^{+} / \mathrm{Ag}}^{\circ}=0.799 \mathrm{~V}, E_{\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}}^{\circ}=0.771 \mathrm{~V}\right)$
(a) 0.474 M
(b) 2.98 M
(c) 0.335 M
(d) 0.670 M
13. Maximum enolisation takes place in
(a) $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
(b) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CHO}$
(c) $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COCH}_{3}$
(d)

14. Two labels sticked upon the two bottles containing conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ are shown below :
A : Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, (90% by volume),
Density $=1.98 \mathrm{~g} / \mathrm{mL}$
B : Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, (93% by volume), Density $=1.84 \mathrm{~g} / \mathrm{mL}$
Molalities of acids A and B respectively are
(a) $8.5,10.4$
(b) $10.4,8.5$
(c) $4.2,5.2$
(d) $5.2,4.2$
15. Major product ' B ' in the following reaction will be

(a)

(b)

(c)

(d)

16. How much KOH should be dissolved to prepare one litre of solution having a pH of 12 at $25^{\circ} \mathrm{C}$?
(a) 56 g
(b) 5.6 g
(c) 0.56 g
(d) 0.056 g
17. Which of the following statements is true?
(a) In aqueous medium, HF is a stronger acid than HCl .
(b) HClO_{4} is a weaker acid than HClO_{3}.
(c) HNO_{3} is a stronger acid than HNO_{2}.
(d) $\mathrm{H}_{3} \mathrm{PO}_{5}$ is a stronger acid than $\mathrm{H}_{2} \mathrm{SO}_{3}$.
18. Which of the following orders is correct for the ease of electrophilic addition on these alkenes?

I

(a) III $>$ II $>$ I
(b) I $>$ II $>$ III
(c) I $>$ III $>$ II
(d) III $>$ I $>$ II
19. Which of the following reactions are disproportionation reactions?
(i) $\mathrm{Cu}^{+} \longrightarrow \mathrm{Cu}^{2+}+\mathrm{Cu}$
(ii) $3 \mathrm{MnO}_{4}^{2-}+4 \mathrm{H}^{+} \longrightarrow 2 \mathrm{MnO}_{4}^{-}+\mathrm{MnO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(iii) $2 \mathrm{KMnO}_{4} \longrightarrow \mathrm{~K}_{2} \mathrm{MnO}_{4}+\mathrm{MnO}_{2}+\mathrm{O}_{2}$
(iv) $2 \mathrm{MnO}_{4}^{-}+3 \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 5 \mathrm{MnO}_{2}+4 \mathrm{H}^{+}$
(a) (i), (ii) only
(b) (i), (ii), (iii) only
(c) (ii), (iii), (iv) only
(d) (i), (iv) only
20. In the hardening stage of plaster of Paris, the compound formed is
(a) CaSO_{4}
(b) orthorhombic $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{CaSO}_{4} \cdot \mathrm{H}_{2} \mathrm{O}$
(d) monoclinic $\mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
21. The product obtained when tin is treated with dil. HNO_{3} is
(a) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
(b) $\mathrm{H}_{2} \mathrm{SnO}_{3}$
(c) $\mathrm{Sn}\left(\mathrm{NO}_{3}\right)_{2}$
(d) both (a) and (c).
22. In the given transformation, which of the following is the most appropriate reagent?

(a) $\mathrm{Zn}-\mathrm{Hg} / \mathrm{HCl}$
(b) Na , Liq. NH_{3}
(c) NaBH_{4}
(d) $\mathrm{NH}_{2} \mathrm{NH}_{2}, \mathrm{OH}^{-}$
23. For two gases, A and B with molecular masses M_{A} and M_{B}, it is observed that at a certain temperature T, the mean velocity of A is equal to the root mean square velocity of B. Thus, the mean velocity of A can be made equal to the mean velocity of B, if
(a) A is a temperature T, and B at $T^{\prime}, T>T^{\prime}$
(b) A is lowered to a temperature $T_{2}<T$ while B is at T
(c) both A and B are raised to a higher temperature
(d) both A and B are placed at lower temperature.
24. Carbon monoxide is more effective reducing agent than carbon below $T^{\circ} \mathrm{C}$ but above this temperature reverse is true. The value of T is
(a) 983
(b) 710
(c) 596
(d) 1133
25. The diketone
 on intramolecular aldol condensation gives the product
(a)

(b)

(c)

(d)

26. An iron cylinder contains helium at a pressure of 250 kPa at 300 K . The cylinder can withstand a pressure of $1 \times 10^{6} \mathrm{~Pa}$. The room in which cylinder is placed catches fire. If the melting point of cylinder is 1800 K , then the minimum temperature at which cylinder will burst is
(a) 800 K
(b) 1200 K
(c) 1800 K
(d) will not burst.
27. Consider the following sequence for extraction of Ag :
$(\mathrm{Ag}+\mathrm{Pb})$ alloy $\underset{\text { zinc is added }}{\text { Melt and }} \xrightarrow{(\mathrm{Ag}+\mathrm{Pb}+\mathrm{Zn}) \text { melt }}$
Cool
Layer X
Select the correct statement.
(a) Layer X contains Zn and Ag .
(b) Layer Y contains Pb and Ag but amount of Ag in this layer is smaller than in layer X.
(c) X and Y are immiscible layers.
(d) All are correct statements.
28. Which of the following is called Sandmeyer reaction?
(a)

(b)

(c)

(d)

29. The hypothetical complex triamminediaquachloro cobalt(III) chloride can be represented as
(a) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}\right] \mathrm{Cl}_{2}$
(b) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}_{3}\right]$
(c) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2} \mathrm{Cl}\right]$
(d) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \mathrm{Cl}_{3}$
30. For the given sequence of reaction :
 the final product (B) will be
(a) alanine
(b) pyruvic acid
(c) citric acid
(d) lactic acid.
31. Phenol associates in benzene to a certain extent to form a dimer. A solution containing $20 \times 10^{-3} \mathrm{~kg}$ of phenol in 1.0 kg of benzene has its freezing point depressed by 0.69 K . Calculate the fraction of phenol dimerised. (K_{f} for $\mathrm{C}_{6} \mathrm{H}_{6}=5.12 \mathrm{~K} \mathrm{~mol}^{-1} \mathrm{~kg}$)
(a) 73.4%
(b) 63.3%
(c) 36.7%
(d) 26.6%
32. During the process of digestion, the proteins present in food materials are hydrolysed to amino acids. The two enzymes involved in the process,
Proteins $\xrightarrow{\text { Enzyme }(A)}$ Polypeptides $\xrightarrow[\text { Amino acids }]{\text { Enzyme }(B)}$
A and B respectively are
(a) pepsin and trypsin
(b) invertase and zymase
(c) amylase and maltase
(d) diastase and lipase.
33. An optically active amine $\left(\mathrm{C}_{5} \mathrm{H}_{13} \mathrm{~N}\right)$ on treatment with aq. $\mathrm{NaNO}_{2} / \mathrm{HCl}$ forms an optically inactive alcohol $\left(\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}\right)$ with evolution of N_{2} gas. The amine is
(a) 1-pentanamine
(b) 2-pentanamine
(c) 3-pentanamine
(d) 2-methylbutanamine.
34. The IUPAC name of
(a) 4,4-dimethyl-5-5diethylpentane
(b) 5,5-diethyl-4,4-dimethylpentane
(c) 3-ethyl-4,4-dimethylheptane
(d) 1,1-diethyl-2,2-dimethylpentane.
35. Calculate the entropy change when 1 kg of water is heated from $27^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$ forming super-heated steam under constant pressure. Given : specific heat of water $=4180 \mathrm{~J} / \mathrm{kg}-\mathrm{K}$ and specific heat of steam $=1670+0.49 \mathrm{~T} \mathrm{~J} / \mathrm{kg}-\mathrm{K}$ (where T is absolute temperature) and latent heat of vaporisation $=23 \times 10^{5} \mathrm{~J} / \mathrm{kg}$.
(a) 7522.5 J
(b) 75.22 J
(c) 7.522 J
(d) 445.2 J
36. A compound of vanadium has a magnetic moment of 1.73 BM. Choose the correctelectronic configuration of the vanadium ion in the compound.
(a) $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6} 3 d^{2}$
(b) $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6} 3 d^{3}$
(c) $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6} 3 d^{1}$
(d) $1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6} 3 d^{0}$
37. Given the polymers, $A=$ Nylon-6, 6; $B=$ Buna-S; $C=$ Polythene.
Arrange these in increasing order of their intermolecular forces (lower to higher).
(a) $A<B<C$
(b) $C<A<B$
(c) $B<C<A$
(d) $A<C<B$
38. In the following reaction,

The major product is
(a)

(b)

(c)

(d)

39. For the preparation of a detergent ' A ' from benzene, the following steps are involved:
I. $\xrightarrow[\text { HF, Friedel-Crafts }]{\mathrm{RCH}=\mathrm{CH}_{2}} \quad$ II. $\xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{SO}_{3}}$

These steps should be in sequence
(a) I, II, III
(b) II, I, III
(c) II, III, I
(d) I, III, II
40. Observe the graph and identify the correct statement.

(a) T_{1} is melting point, T_{2} is boiling point.
(b) T_{1} is boiling point, T_{2} is melting point.
(c) $\Delta S_{\text {fus }}$ is more than $\Delta S_{\text {vap. }}$
(d) T_{2} is lower than T_{1}.

Directions: In the following questions (41-60), a statement of assertion is followed by a statement of reason. Mark the correct choice as :
(a) If both assertion and reason are true and reason is the correct explanation of assertion.
(b) If both assertion and reason are true but reason is not the correct explanation of assertion.
(c) If assertion is true but reason is false.
(d) If both assertion and reason are false.
41. Assertion : Standard heat enthalpy of diamond is taken as zero.
Reason : In most stable forms, the standard enthalpy of formation is taken as zero.
42. Assertion : Melting point of neopentane is higher than that of n-pentane but the boiling point of n-pentane is higher than that of neopentane.
Reason : Melting point depends upon packing of molecules in the crystal lattice while boiling point depends upon surface area of the molecule.
43. Assertion : But-1-ene and 2-methylprop-1-ene are position isomers.
Reason : Position isomers have same molecular formula but different arrangement of carbon atoms.
44. Assertion : p-Chlorobenzoic acid is stronger than benzoic acid.
Reason : Chlorine has electron donating resonance $(+R)$-effect.
45. Assertion : The micelle formed by sodium stearate in water has $-\mathrm{COO}^{-}$groups at the surface.
Reason : Surface tension of water is reduced by the addition of stearate.
46. Assertion : A solution of sucrose in water is dextrorotatory but on hydrolysis in presence of little hydrochloric acid, it becomes laevorotatory.
Reason : Sucrose on hydrolysis gives unequal amounts of glucose and fructose as a result of which change in sign of rotation is observed.
47. Assertion : $4^{\text {th }}$ period of periodic table has 8 elements. Reason: $4^{\text {th }}$ period is related with filling of $4 s$ and $4 p$.
48. Assertion : $\left(\mathrm{SiH}_{3}\right)_{3} \mathrm{~N}$ has planar shape while $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ is pyramidal.
Reason : Lone pair of N -atom is used in forming $p \pi-d \pi$ bond with Si atom while this bond is not possible with C -atom which does not have d-subshell in its valence shell.
49. Assertion: $0.1 \mathrm{MNH}_{4} \mathrm{OH}$ at $25^{\circ} \mathrm{C}$ has less conductance than at $50^{\circ} \mathrm{C}$.
Reason: Conductance of a weak electrolyte decreases with increase in temperature.
50. Assertion : Coagulating power of Al^{3+} is more than Na^{+}.
Reason: Greater the valency of the flocculating ion added, greater is its power to cause precipitation.
51. Assertion : If edge length of unit cell of LiCl having NaCl type structure is $5.14 \AA$, the ionic radius of Cl^{-}ion is $1.82 \AA$.
Reason : Anion-anion contact is retained in LiCl structure because anions constitute the lattice.
52. Assertion : The presence of CO reduces the amount of haemoglobin available in the blood for carrying oxygen to the body cells.
Reason : CO combines with haemoglobin about 200 times less easily than oxygen to form complex.
53. Assertion : In the reaction between potassium permanganate and potassium iodide, permanganate ions act as oxidising agent.
Reason : Oxidation state of manganese changes from +2 to +7 during the reaction.
54. Assertion : The radius of second orbit of He^{+}is equal to that of first orbit of hydrogen.
Reason : The radius of an orbit in hydrogen like species is directly proportional to n and inversely proportional to Z.
55. Assertion : CO_{2} molecule is linear.

Reason : Dipole moment of CO_{2} is zero.
56. Assertion : Superoxides of alkali metals are paramagnetic.
Reason : Superoxides contain the ion O_{2}^{-}which has one unpaired electron.
57. Assertion : Essential oils are purified by steam distillation.
Reason : Essential oils are volatile and are insoluble in water.
58. Assertion : All chemicals added to food items are called food additives.
Reason : All these chemicals increase the nutritive value of the food.
59. Assertion : In benzimidazole

Reason : Lone pair of electrons present on $N(I)$ is involved in delocalisation.
60. Assertion : In rate law, unlike in the expression for equilibrium constants, the exponents for concentrations do not necessarily match the stoichiometric coefficients.
Reason : It is the mechanism and not the balanced chemical equation for the overall change that governs the reaction rate.

SOLUTIONS

1. (a) $: k=\frac{2.303}{t} \log \frac{a}{a-x}$
$2.2 \times 10^{-5}=\frac{2.303}{30 \times 60} \log \frac{a}{a-x}$
$\log \frac{a}{a-x}=\frac{2.2 \times 10^{-5} \times 1800}{2.303}=0.01719$
$\frac{a}{a-x}=\operatorname{antilog}(0.01719)=1.040$
$a=1.040 a-1.040 x$
$0.040 a=1.040 x$
$\frac{x}{a}=\frac{0.040}{1.040}=0.038=3.8 \%$
2. (d) : ICl_{4}^{-}has four bond pairs and two lone pairs. Therefore, according to VSEPR theory it should be square planar. XeF_{4} is also square planar in shape.

3. (a) : 96 M atoms are associated with 100 O atoms. Out of $96 M$ atoms, suppose M present as $M^{2+}=x$ Then, the number of M^{3+} ions will be $=96-x$ Total charge on $x M^{2+}$ and $(96-x) M^{3+}$ should be equal to charge on $100 \mathrm{O}^{2-}$ ions.

$$
\begin{array}{ll}
\therefore \quad & 2 x+3(96-x)=100 \times 2 \\
& 2 x+288-3 x=200 \Rightarrow x=88
\end{array}
$$

Fraction of M present as $M^{2+}=\frac{88}{96} \times 100=91.67 \%$
Fraction of M present as $M^{3+}=\frac{(96-88)}{96} \times 100$

$$
=8.33 \%
$$

4. (b) : $\frac{1}{4} N_{0}$ (i.e., $\frac{1}{4}$ mole) atoms require energy $=' X$ ' kJ
$1 N_{0}$ (i.e., 1 mole) atoms require energy $=$ ' $4 X$ ' kJ
$\therefore \quad 1$ atom requires energy $=\frac{4 X}{N_{0}} \mathrm{~kJ}$
5. (c) : $\Delta H=\frac{1}{2} \Delta_{\text {diss. }} H^{\circ}+\Delta_{\text {eg }} H^{\circ}+\Delta_{\text {hyd. }} H^{\circ}$
$=\frac{240}{2}+(-349)+(-381)=-610 \mathrm{~kJ} \mathrm{~mol}^{-1}$
6. (b) : One Sr^{2+} creates one vacancy at site of Na^{+}. 100 moles of $\mathrm{Na}^{+}=10^{-4}$ mole vacancies

$$
\begin{aligned}
1 \mathrm{~mol} \text { of } \mathrm{Na}^{+} & =\frac{10^{-4}}{100} \times 6.023 \times 10^{23} \\
& =6.023 \times 10^{17} \mathrm{~mol}^{-1}
\end{aligned}
$$

7. (c)
8. (d) : $M \mathrm{NO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \xrightarrow{\text { Heat }} M \mathrm{HSO}_{4}+\mathrm{HNO}_{3}$

(A)
$\underset{\text { (Copper turnings) }}{\mathrm{Cu}}+4 \mathrm{HNO}_{3} \xrightarrow{\text { Heat }}$

$$
\underset{\substack{(A) \\
\text { (Brown gas) }}}{2 \mathrm{NO}_{2}} \stackrel{\stackrel{\mathrm{Cool}}{\rightleftharpoons}}{\stackrel{\text { Heat }}{\rightleftharpoons}} \underset{\begin{array}{c}
(B) \\
\text { (Colourless) }
\end{array}}{\mathrm{N}_{2} \mathrm{O}_{4}}
$$

Hence, $A=\mathrm{NO}_{2}, B=\mathrm{N}_{2} \mathrm{O}_{4}$
9. (b) : As sodium ethoxide is a very strong base, hence, elimination reaction predominates over substitution reaction. It is governed by the acidity of β-hydrogen to be eliminated (Hoffmann rule).

10. (c) : Molarity $=\frac{w}{M_{B}} \times \frac{1000}{V(\mathrm{in} \mathrm{mL})}$
$w=\frac{2 \times 63 \times 250}{1000}=\frac{63}{2} g$
$\because \quad 70 \mathrm{~g} \mathrm{HNO}_{3}$ is present in 100 g conc. solution.
$\therefore \quad \frac{63}{2} \mathrm{~g} \mathrm{HNO}_{3}$ is present in $\frac{100 \times 63}{70 \times 2}=45 \mathrm{~g}$ conc. HNO_{3} solution.
11. (a): Both NaOH and HCl are 1 : 1 type of electrolytes. So, the molarity equation is,
$M_{\mathrm{NaOH}} \times V_{\mathrm{NaOH}}=M_{\mathrm{HCl}} \times V_{\mathrm{HCl}}$
$1.00 \mathrm{~mol} \mathrm{~L}^{-1} \times V_{\mathrm{NaOH}}=2.00 \mathrm{~mol} \mathrm{~L}^{-1} \times 200 \mathrm{~mL}$
$V_{\mathrm{NaOH}}=\frac{2.00 \mathrm{~mol} \mathrm{~L}^{-1} \times 200 \mathrm{~mL}}{1.00 \mathrm{~mol} \mathrm{~L}^{-1}}=400 \mathrm{~mL}=0.4 \mathrm{~L}$
Amount of NaOH in the given solution

$$
=M \times V=1.00 \mathrm{~mol} \mathrm{~L}^{-1} \times 0.4 \mathrm{~L}=0.4 \mathrm{~mol}
$$

From the reaction stoichiometry,
$\underset{\substack{1 \mathrm{~mol} \\ 0.4 \mathrm{~mol}}}{\mathrm{NaOH}_{(a q)}}+\mathrm{HCl}_{(a q)} \xrightarrow[\substack{\text { and } \\ 23+35.5=58.5 \mathrm{~g} \\ 58.5 \times 0.4=23.4 \mathrm{~g}}]{\longrightarrow \mathrm{NaCl}_{(a q)}}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
In this reaction, 23.4 g of sodium chloride will be formed.
12. (c) $: \mathrm{Fe}^{2+}+\mathrm{Ag}^{+} \rightleftharpoons \mathrm{Fe}^{3+}+\mathrm{Ag}$
$E_{\text {cell }}=E_{\text {cell }}^{\circ}-\frac{0.059}{1} \log \frac{\left[\mathrm{Fe}^{3+}\right]}{\left[\mathrm{Fe}^{2+}\right]\left[\mathrm{Ag}^{+}\right]}$
$E_{\text {cell }}^{\circ}=E_{\left(\mathrm{Ag}^{+} \mid \mathrm{Ag}\right)}^{\circ}-E_{\left(\mathrm{Fe}^{3+} \mid \mathrm{Fe}^{2+}\right)}^{\circ}$

$$
=0.799-0.771=0.028 \mathrm{~V}
$$

For $E_{\text {cell }}=0,\left[\mathrm{Fe}^{2+}\right]=\left[\mathrm{Fe}^{3+}\right]$
$0=0.028-\frac{0.059}{1} \log \frac{1}{\left[\mathrm{Ag}^{+}\right]}$
$\therefore \quad\left[\mathrm{Ag}^{+}\right]=0.335 \mathrm{M}$
13. (d) :

After enolisation of $\=0$, an aromatic compound is formed which is most stable among the products formed in rest three. Hence, (d) shows maximum enolisation.
14. (a) : For acid A;
$w_{\text {acid }}=90 \mathrm{~g}, V_{\text {solution }}=100 \mathrm{~mL}$,
$d=1.98 \mathrm{~g} / \mathrm{mL}, W_{\text {solution }}=1.98 \times 100=198 \mathrm{~g}$
$\therefore \quad m=\frac{w_{\text {acid }}}{M_{\text {acid }}} \times \frac{1000}{W_{\text {water }(\mathrm{g})}}=\frac{90}{98} \times \frac{1000}{(198-90)}$

$$
=8.50 \mathrm{~m}
$$

For acid B;
$w_{\text {acid }}=93 \mathrm{~g}, V_{\text {solution }}=100 \mathrm{~mL}$,
$d=1.84 \mathrm{~g} / \mathrm{mL}, W_{\text {solution }}=1.84 \times 100=184 \mathrm{~g}$
$m=\frac{w_{\text {acid }}}{M_{\text {acid }}} \times \frac{1000}{W_{\text {water }(g)}}=\frac{93}{98} \times \frac{1000}{(184-93)}=10.4 \mathrm{~m}$
15. (c) : The given reaction is cyclic Williamson's ether synthesis involving $\mathrm{S}_{\mathrm{N}} 2$ reaction.

16. (c) : KOH is a strong alkali and is completely dissociated into the constituent ions,
$\mathrm{KOH}+\mathrm{H}_{2} \mathrm{O}$ (excess) $\longrightarrow \mathrm{K}_{(a q)}^{+}+\mathrm{OH}_{(a q)}^{-}$
In a solution having $\mathrm{pH}=12$, the hydrogen ion concentration is written by the equation,

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& 12=-\log \left[\mathrm{H}^{+}\right] \\
& {\left[\mathrm{H}^{+}\right]=10^{-12} \mathrm{~mol} \mathrm{~L}^{-1}}
\end{aligned}
$$

Since the ionic product of water should have a fixed value hence, at $25^{\circ} \mathrm{C} K_{w}=1.0 \times 10^{-14}$
So, $1.0 \times 10^{-14}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]$
This gives, $\left[\mathrm{OH}^{-}\right]=\frac{1.0 \times 10^{-14}}{10^{-12}}=1.0 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$
Since KOH is completely dissociated, hence
$\left[\mathrm{K}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1}$
Molar mass of $\mathrm{KOH}=(39+16+1) \mathrm{g} \mathrm{mol}^{-1}$

$$
\begin{aligned}
& =56 \mathrm{~g} \mathrm{~mol}^{-1} \\
\text { Then, conc. of } \mathrm{KOH} & =1.0 \times 10^{-2} \mathrm{~mol} \mathrm{~L}^{-1} \times 56 \mathrm{~g} \mathrm{~mol}^{-1} \\
& =0.56 \mathrm{~g} \mathrm{~L}^{-1}
\end{aligned}
$$

Thus, 0.56 g of KOH should be dissolved per litre of the solution to obtain a solution of pH 12 .
17. (c) : The order of acidic strength are :
$\mathrm{HCl}>\mathrm{HF} ; \mathrm{HClO}_{4}>\mathrm{HClO}_{3} ; \mathrm{HNO}_{3}>\mathrm{HNO}_{2} ;$

$$
\mathrm{H}_{2} \mathrm{SO}_{3}>\mathrm{H}_{3} \mathrm{PO}_{5}
$$

18. (c) : Electrophile approaches easily to electron releasing group, substituted π-electron cloud. Hence, electrophilic addition is carried out rapidly on that sight. Hence, correct order is I $>$ III $>$ II.
19. (a)
20. (d): The process of setting of plaster of Paris is described by the following reaction,

monoclinic dihydrate
21. (d) : $4 \mathrm{Sn}+\underset{\text { dil. }}{10 \mathrm{HNO}_{3}} \rightarrow 4 \mathrm{Sn}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NH}_{4} \mathrm{NO}_{3}+3 \mathrm{H}_{2} \mathrm{O}$ dil.
22. (d) : This is Wolff-Kishner reduction, is used when the carbonyl compound shows acidic character.

23. (b) : $\left(u_{\mathrm{av}}\right)_{A}=\sqrt{\frac{8 R T}{\pi M_{A}}} ;\left(u_{\mathrm{rms}}\right)_{B}=\sqrt{\frac{3 R T}{M_{B}}}$
$\therefore \quad \frac{8}{3 \pi}=\frac{M_{A}}{M_{B}}$
For $\left(u_{\mathrm{av}}\right)_{A}=\sqrt{\frac{8 R T_{2}}{\pi M_{A}}} ;\left(u_{\mathrm{av}}\right)_{B}=\sqrt{\frac{8 R T}{\pi M_{B}}}$
$\frac{T_{2}}{T}=\frac{M_{A}}{M_{B}}=\frac{8}{3 \pi}$
$\therefore \quad T_{2}=\frac{8}{3 \pi} . T$ or $T_{2}<T$
24. (b)
25. (c) :

CHEMISTRY TODAY | APRIL '17
26. (b) : According to Gay-Lussac's law,

$$
\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}
$$

Given that, $P_{1}=250 \mathrm{kPa} ; T_{1}=300 \mathrm{~K}$, $P_{2}=1 \times 10^{6} \mathrm{~Pa} ; T_{2}=$?
$\frac{250 \times 10^{3}}{300}=\frac{1 \times 10^{6}}{T_{2}} \Rightarrow T_{2}=1200 \mathrm{~K}$
Thus, cylinder will burst at 1200 K before it attains its melting point (1800 K).
27. (d): Ag is extracted from argentiferrous lead by Parke's process where Zn and Pb in molten state are immiscible and form separate layers, zinc being lighter forms upper layer $(X) . \mathrm{Ag}$ is soluble in both but more soluble in upper layer. So, all the statements are correct.
28. (b) : Sandmeyer reaction:

29. (a)
30. (a) : $\underset{\text { Propanoic acid }}{\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{COOH}} \frac{\mathrm{Br}_{2} / \operatorname{Red} \mathrm{P}}{\Delta} \underset{\mathrm{Br}}{\downarrow}$

31. (a) : For the depression in freezing point,

$$
\begin{aligned}
& \quad \Delta T_{f}=\frac{1000 \times K_{f} \times w}{W \times M_{\text {exp. }}} \\
& \therefore \quad 0.69=\frac{1000 \times 5.12 \times 20 \times 10^{-3}}{M_{\text {exp. }} \times 1} \\
& \therefore \quad M_{\text {exp }}=148.41 \quad\left(M_{\text {normal }} \text { of phenol }=94\right) \\
& \text { van't Hoff factor }(i)=\frac{M_{\text {nor. }}}{M_{\text {exp. }}}=1-\alpha+\frac{\alpha}{2} \\
& \frac{M_{\text {nor. }}}{M_{\text {exp. }}}=\frac{94}{148.41}=1-\alpha+\frac{\alpha}{2} \Rightarrow \alpha=0.734 \text { or } 73.4 \%
\end{aligned}
$$

32. (a)
33. (d) : Since the amine $\left(\mathrm{C}_{5} \mathrm{H}_{13} \mathrm{~N}\right)$ on treatment with aq. $\mathrm{NaNO}_{2} / \mathrm{HCl}$ evolves N_{2} gas, it must be a 1° amine. Since, the amine is optically active, the $-\mathrm{NH}_{2}$ group cannot be attached to a chiral centre because it will rapidly undergo racemisation due to nitrogen inversion. Therefore, the carbon skeleton must contain a chiral centre. In other words, the amine is 2-methylbutanamine. The reaction looks like,

34. (c)
35. (a) : $\Delta S_{p}=2.303 n \times C_{p} \times \log \frac{T_{2}}{T_{1}}$

Entropy change for heating water from $27^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$;
$\Delta S_{p}=2.303 \times \frac{1000}{18} \times \frac{4180 \times 18}{1000} \log \frac{373}{300}=910.55 \mathrm{~J}$
Entropy change for heating $1 \mathrm{~kg} \mathrm{H}_{2} \mathrm{O}$ to 1 kg steam at $100^{\circ} \mathrm{C}$;

$$
\Delta S=\frac{\Delta H_{v}}{T}=\frac{23 \times 10^{5}}{373}=6166.21 \mathrm{~J}
$$

Entropy change for heating 1 kg steam from 373 to 473 K ;
$\Delta S=\int_{373}^{473} \frac{n C_{p} \cdot d T}{T}=m \int_{373}^{473} \frac{(1670+0.49 T)}{T} d T$

$$
=396.73+49=445.73 \mathrm{~J} \text {, where } m=\text { mass in } \mathrm{kg}
$$

Total entropy change $=910.55+6166.21+445.73$

$$
=7522.50 \mathrm{~J}
$$

36. (c) : Magnetic moment $(\mu)=\sqrt{n(n+2)} B M$
($n=$ number of unpaired electrons)
Given that, $\mu=1.73$ BM.
$\therefore \quad 1.73=\sqrt{n(n+2)} \Rightarrow n^{2}+2 n-(1.73)^{2}=0$
On solving this equation we get, $n=1$
So, vanadium atom must have one unpaired electron and thus its configuration is

$$
{ }_{23} \mathrm{~V}^{4+}: 1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6} 3 d^{1}
$$

37. (c) : Buna-S is an elastomer, thus has weakest intermolecular forces. Nylon-6,6, is a example of fibres, thus has strong intermolecular forces like H-bonding. Polythene is a thermoplastic polymer, thus the intermolecular forces present in polythene are inbetween elastomer and fibres. Thus, the order of intermolecular forces of these polymers is Buna-S $<$ Polythene $<$ Nylon-6,6 i.e., $B<C<A$

MtG

The most Reliable and Featured 23 Years' AlIMS EXPLORER and AIIMS CHAPTERWISE SOLUTIONS in the market

HIGHLIGHTS:

- 23 years' (1994-2016) Solved Papers with Detailed Solutions
- 10 Model Test Papers
- 600+ General Knowledge Questions

Available at all leading book shops throughout the country. For more information or for help in placing your order: Call 0124-6601200 or email:info@mtg.in

- 1600+ Assertion Reason Questions

- 23 years' (1994-2016) Chapterwise Solutions
- Subjectwise distribution of 23 years' questions

Last date to apply online: 25 ${ }^{\text {th }}$ April 2017

Resident Indians, Non-Resident Indians (NRIs), holders of PIO or OCI cards issued by Government of India are eligible to apply for SRMJEEE.

The most comprehensive question bank books that you cannot afford to ignore

29 Years' Physics, Chemistry \& Biology contain not only chapterwise questions that have appeared over the last 29 years in CBSE's PMT/NEET, but also full solutions, that too by experts. Needless to say, these question banks are essential for any student to compete successfully in NEET.

HIGHLIGHTS:

- Chapterwise questions of last 29 years' (2016-1988) of CBSE-PMT/NEET
- Chapterwise segregation of questions to help you assess the level of effort required to succeed
- Fully solved questions of NEET (Phase -1 \& 2) 2016 included
- An unmatched question bank series with close to 1,000 pages having detailed solutions by experts

Scan now with your smartphone or tablet*
mtG

Learning Media

Available at all leading book shops throughout India. For more information or for help in placing your order: Call 0124-6601200 or email info@mtg.in
*Application to read QR codes required
38. (a) : $\mathrm{H}_{2} \stackrel{\text { ¢ }}{\mathrm{O}}+\mathrm{H}^{+} \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}$

${ }^{\circ}$ Carbocation) (less stable)

(Major product)
39. (a) :

40. (a) : T_{1} is melting point at which entropy change is entropy of fusion. T_{2} is boiling point at which entropy change is entropy of vaporisation.
41. (c) : Graphite is thermodynamically stable form of carbon at STP, so its standard enthalpy is zero, not of diamond.
42. (a)
43. (d) : But-1-ene and 2-methylprop-1-ene are chain isomers. Chain isomers have same molecular formula but different arrangement of carbon atoms.
44. (b) : Chlorine has both $+R$-effect and $-I$ effect but $-I$ effect outweighs $+R$-effect. $-I$ effect of chlorine atom disperses the -ve charge on the benzoate anion and thus, makes p-chlorobenzoate anion more stable. As a result, p-chlorobenzoic acid is a stronger acid than benzoic acid.
45. (b)
46. (c)
47. (d) : $4^{\text {th }}$ period has 18 elements. Filling of $4^{\text {th }}$ period is related with $4 s, 3 d$ and $4 p$.
48. (a)
49. (c) : Conductance increases with increasing temperature of a weak electrolyte.
50. (a)
51. (a) : If anion-anion contact retained, then according to the figure, Interionic distance of LiCl
$=\frac{a}{2}=\frac{5.14 \AA}{2}=2.57 \AA$

$B C=\sqrt{A B^{2}+A C^{2}}=\sqrt{(2.57)^{2}+(2.57)^{2}}=3.63 \AA$
Radius of Cl^{-}ion $=\frac{1}{2} B C=\frac{1}{2} \times 3.63=1.82 \AA$
52. (c)
53. (c) $: 2 \mathrm{KMnO}_{4}+6 \mathrm{KI} \longrightarrow 2 \mathrm{MnO}_{2}+3 \mathrm{I}_{2}+4 \mathrm{~K}_{2} \mathrm{O}$
54. (d) : The radius of second orbit of He^{+}is twice that of the first orbit of hydrogen. Bohr expression for radius of the electron in a particular orbit for hydrogen and hydrogen like species is

$$
r_{n}=\frac{n^{2} h^{2}}{4 \pi^{2} m Z e^{2}}
$$

 This shows that CO_{2} is a linear molecule.
56. (a)
57. (a)
58. (d) : Only those chemicals which are added to food to improve its storing qualities, appearance, taste, odour and food value are called food additives. Preservatives do not increase the nutritive value of food.
59. (d) : Both the nitrogens are not basic. Only the lone pair of electrons on $\mathrm{N}(\mathrm{II})$ are involved in delocalisation.
60. (a)

PERIODICITY IN PROPERTIES

iranchembook. ir/edtldbasic object of classification is to arrange the facts regarding

Ionic Radius

- Across a period : The ionic radii of ions having same charge decreases as atomic number increases.
- Down a group: Increases
$\mathrm{Li}^{+}<\mathrm{Na}^{+}<\mathrm{K}^{+}<\mathrm{Rb}^{+}<\mathrm{Cs}^{+}$(Cations) $\mathrm{F}^{-}<\mathrm{Cl}^{-}<\mathrm{Br}^{-}<\mathrm{I}^{-}$(Anions)
- Cationic radius $<$ Atomic radius $<$

Anionic radius (For isoelectronic species)

- Z/e ratio increases, size decreases and vice-versa.
 then increases.
$\mathrm{Li}, \mathrm{Be}, \mathrm{B}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{F}, \mathrm{Ne}$ $(\mathrm{cc} / \mathrm{mol}) 13 \quad 5 \quad 5 \quad 5 \quad 1411 \quad 15 \quad 17$
- Down a group: Increases

Li, Na, K
$\left(\begin{array}{llll}(\mathrm{cc} / \mathrm{mol}) & 13 & 24 & 46\end{array}\right.$

Density

- Across a period : First increases and then decreases.
$\mathrm{Na}, \mathrm{Mg}, \mathrm{Al}, \mathrm{Si}, \mathrm{P}, \mathrm{S}$ $\left(\begin{array}{lllllll}\left(\mathrm{g} / \mathrm{cm}^{3}\right) & 1.0 & 1.7 & 2.7 & 2.3 & 1.8 & 2.1\end{array}\right.$
- Down a group: Decreases

Be(1.8) , $\mathrm{Mg}(1.7)$

- Highest density solid: Os (22.6)
- Highest density liquid: $\mathrm{Hg}(13.6)$

Electron Gain Enthalpy

- Across a period: More negative
$\mathrm{Li}, \mathrm{Be}, \mathrm{B}, \mathrm{C}, \mathrm{N}$,
$(\mathrm{kJ} / \mathrm{mol})-60+66 \quad-83-122+31$
O, F
$-141-328$
- Down a group: Less negative
$\mathrm{H}, \mathrm{Li}, \mathrm{Na}, \mathrm{K}, \mathrm{Rb}, \mathrm{Cs}$
$(\mathrm{kJ} / \mathrm{mol})-73-60-53-48-47-46$

Atomic Radius

- Across a period: Decreases

Atomic radius $\propto 1 / Z_{\text {eff }}$
$\mathrm{Li}>\mathrm{Be}>\mathrm{B}>\mathrm{C}>\mathrm{N}>\mathrm{O}>\mathrm{F}$

- Down a group: Increases
$\mathrm{H}<\mathrm{Li}<\mathrm{Na}<\mathrm{K}<\mathrm{Rb}<\mathrm{Cs}$
- van der Waals' radius > Metallic radius $>$ Covalent radius

Electronegativity

- Across a period:Increases
$\mathrm{Li}<\mathrm{Be}<\mathrm{B}<\mathrm{C}<\mathrm{N}<\mathrm{O}<\mathrm{F}$
- Down a group: Decreases
$\mathrm{H}>\mathrm{Li}>\mathrm{Na}>\mathrm{K}=\mathrm{Rb}>\mathrm{Cs}$
- F is most electronegative element.

Ionic Character

- Across a period : First decreases and then increases.
- Down a group: Increases

Metallic Character
- Across a period: Decreases
- Down a group : Increases

Ionisation Enthalpy
- Across a period: Increases
$\mathrm{Li}<\mathrm{Be}>\mathrm{B}<\mathrm{C}<\mathrm{N}>\mathrm{O}<\mathrm{F}$
- Down a group $:$ Decreases
$\mathrm{H}>\mathrm{Li}>\mathrm{Na}>\mathrm{K}>\mathrm{Rb}>\mathrm{Cs}$

Valency

- Across a period: Increases $\mathrm{NaH}<\mathrm{MgH}_{2}<\mathrm{AlH}_{3}<\mathrm{SiH}_{4}$
- Down a group: Same

Reducing Nature

- Across a period : Decreases
- Down a group: Increases

Oxidising Nature

- Across a period: Increases
- Down a group: Decreases

Strength of Oxyacids
- Across a period: Increases
$\mathrm{H}_{3} \mathrm{BO}_{3}<\mathrm{H}_{2} \mathrm{CO}_{3}<\mathrm{HNO}_{3}$
- Down a group : Decreases
$\mathrm{HNO}_{3}>\mathrm{H}_{3} \mathrm{PO}_{4}>\mathrm{H}_{3} \mathrm{AsO}_{4}$

Acidity of Oxides

- Across a period: Increases
$\mathrm{Na}_{2} \mathrm{O}<\mathrm{MgO}<\mathrm{Al}_{2} \mathrm{O}_{3}<\mathrm{SiO}_{2}<\mathrm{P}_{2} \mathrm{O}_{5}$ $<\mathrm{SO}_{3}<\mathrm{Cl}_{2} \mathrm{O}_{7}$
- Down a group: Decreases
$\mathrm{N}_{2} \mathrm{O}_{3}>\mathrm{P}_{2} \mathrm{O}_{3}$

Acidity of Hydrides

- Across a period: Increases
$\mathrm{CH}_{4}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{HF}$
- Down a group: Increases
$\mathrm{HF}<\mathrm{HCl}<\mathrm{HBr}<\mathrm{HI}$

Melting and Boiling Points

- Across a period: M.pt. and B.pt. first increase and then decrease.

Element: $\mathrm{Na} \mathrm{Mg} \mathrm{Al} \mathrm{Si} \quad \mathrm{P} \quad \mathrm{S}$
M.pt. (K): $370.8 \quad 924 \quad 9331693 \quad 317 \quad 392$
B.pt. (K) : 1165139620752815557717.6

- Down a group : They do show regular gradation but pattern of variation is different in different groups.
Element: $\mathrm{Li} \quad \mathrm{Na} \quad \mathrm{K} \quad \mathrm{Rb} \quad \mathrm{Cs}$
M.pt. (K): $\begin{array}{llllll}454 & 370.8 & 335 & 312 & 302\end{array}$
B.pt. (K) : $1609 \quad 1165 \quad 1063 \quad 973 \quad 943$

HALOGEN DERIVATIVES

Class XII
compound with anaesthetic properties e.g., chloroform. Increasing the number of chlorine atoms in the compounds increases the depth of anaesthesia given but also increases toxicity. C-F bonds are very stable so their presence leads to non-flammable and unreactive properties. Organofluorine compounds find diverse applications from oil to water repellents to pharmaceuticals, refrigerants and reagents in catalysts.

When $\mathrm{C}-X$ carbon is $s p^{3}$ hybridised.
Halogen Derivatives
When $\mathrm{C}-X$ carbon is $s p^{2}$ hybridised.

		Halogen Deri		carbon is $s p^{2}$ hybridised.
O-	-	-		
Allylic $\mathrm{C}=\mathrm{C}-\mathrm{C}-\mathrm{X}$ e.g.,	Alkyl $\mathrm{C}_{n} \mathrm{H}_{2 n+1} \mathrm{X}$ e.g., $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	Benzylic $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{X}$ e.g., CH_{3} O CHCl	Vinylic $\mathrm{C}=\mathrm{C}-\mathrm{X}$ e.g., $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Cl}$	Aryl Halogen is directly attached to the carbon atom of aromatic ring, e.g., $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}$

Methods of Preparation

(i) Direct halogenation of alkanes:

Free radical mechanism :
$R-\mathrm{H}+\mathrm{X}_{2} \xrightarrow{h \nu} R-X+\mathrm{HX}$
Reactivity order:
Allylic $>3^{\circ}>2^{\circ}>1^{\circ}>\mathrm{CH}_{4}$
(ii) Addition of HX to alkenes:
$\mathrm{CH}_{2}=\mathrm{CH}_{2}+\mathrm{HBr} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Br}$

- Unsymmetrical alkenes follow Markovnikov's rule during electrophilic addition.
- If the addition occurs in presence of peroxide, the product will be opposite to Markovnikov's addition (free radical mechanism).
Reactivity order:
$\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}>\mathrm{HF}$
(iii) From alcohols :
$3 R-\mathrm{OH}+\mathrm{PX}_{3} \rightarrow 3 R-X+\mathrm{H}_{3} \mathrm{PO}_{3}$
$R-\mathrm{OH}+\mathrm{HX} \longrightarrow$
$R-\mathrm{OH}+\mathrm{SOCl}_{2} \longrightarrow$
$R-X+\mathrm{H}_{2} \mathrm{O}$
RCl$+\mathrm{SO}_{2} \uparrow+\mathrm{HCl} \uparrow$
\quad [Darzen's method]
(iv) Hunsdiecker reaction:
$\mathrm{RCOOAg}+\mathrm{Br}_{2} \xrightarrow[\text { reflux }]{\mathrm{CCl}_{4}}$

$$
R-\mathrm{Br}+\mathrm{CO}_{2}+\mathrm{AgBr}
$$

(v) Finkelstein reaction:
$R-X+\mathrm{NaI} \xrightarrow{\text { Dry acetone }} R-\mathrm{I}+\mathrm{NaX}$
(i) Dehydrohalogenation:
$\mathrm{R}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{X} \xrightarrow{\text { alc. } \mathrm{KOH}}$

$$
\mathrm{R}-\mathrm{CH}=\mathrm{CH}_{2}
$$

- Elimination follows the Saytzeff's rule.
- Ease of dehydrohalogenation:

Tertiary $>$ Secondary $>$ Primary
(ii) Action of heat :
$R-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{X} \xrightarrow{573 \mathrm{~K}} R-\mathrm{CH}=\mathrm{CH}_{2}$

Uses of Some Commercially

 Important Halogen Derivatives(i) Chloroform $\left(\mathrm{CHCl}_{3}\right)$:

- Earlier it was used as anaesthetic but due to its harmful effects it is no longer used for the purpose.
- Used for preparation of chloretone and chloropicrin.
- Used as a solvent for fats, waxes, rubber, resins, etc.
(ii) Iodoform $\left(\mathrm{CHI}_{3}\right)$:
- Used as disinfectant.
- Effective as chemical antiseptic.
(iii) Freons or chlorofluorocarbons:
- Used as refrigerants.
- Used as propellant in aerosols such as body spray, hair spray, cleansers, etc.
(iv) DDT :
- Used as a powerful insecticide.
- Effective against Anopheles mosquitoes which spread malaria.
(v) Teflon ($\left.-\mathrm{CF}_{2}-\mathrm{CF}_{2}\right)_{n}$:
- Used as non-stick coating for pans and other cookwares.
- Used in containers and pipework for corrosive chemicals.
(i) Reduction:
$R-X+2[\mathrm{H}] \xrightarrow{\mathrm{Ni} \text { or } \mathrm{Pd}} R-\mathrm{H}+\mathrm{HX}$
(ii) Wurtz reaction :
$2 R-X+2 \mathrm{Na} \xrightarrow{\text { Dry ether }} R-R+2 \mathrm{NaX}$
(iii) Reaction with metals:
$R-X+\mathrm{Mg} \xrightarrow{\text { Dry ether }} R-\mathrm{MgX}$ (Powder) (Grignard reagent)
$2 \mathrm{R}-\mathrm{X}+2 \mathrm{Zn} \xrightarrow{\text { Ether }} \mathrm{R}_{2} \mathrm{Zn}+\mathrm{ZnX} 2$
$4 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+4 \mathrm{~Pb} / \mathrm{Na} \xrightarrow{\text { Dry ether }}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4} \mathrm{~Pb}$
sod.lead alloy Tetraethyllead
$+4 \mathrm{NaBr}+3 \mathrm{~Pb}$
(iv) Corey-House reaction:
$R_{2} \mathrm{CuLi}+R^{\prime} X \longrightarrow R-R^{\prime}+R-\mathrm{Cu}+\mathrm{LiX}$
(This reaction can be used to prepare unsymmetrical alkanes.)
(v) Oxidation:

(I) Hydrolysis with alkalies:

$$
\begin{aligned}
& \mathrm{RX}+\underset{\text { (moist) }}{\mathrm{AgOH}} \longrightarrow \mathrm{ROH}+\mathrm{AgX} \\
& R-X \underset{\text { KOH }}{\mathrm{aq} .} R-\mathrm{OH}+\mathrm{KX}
\end{aligned}
$$

(ii) Williamson's synthesis:
$R-X+\mathrm{NaOR}^{\prime} \xrightarrow{\text { Heat }} \mathrm{OOR}^{\prime}+\mathrm{NaX}$
(iii) $R-X+\mathrm{KCN} \xrightarrow{\text { alc. }} \mathrm{KX}+\mathrm{RCN}$
(iv) $R-X+\mathrm{AgCN} \xrightarrow[\Delta]{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} / \mathrm{H}_{2} \mathrm{O}} R-\mathrm{N} \xlongequal{\Longrightarrow} \mathrm{C}$

$\frac{\mathrm{H}_{3} \mathrm{O}^{+}}{\text {conc. } \mathrm{HCl}}$	$\mathrm{RCONH}_{2} \xrightarrow[\text { conc. } \mathrm{HCl}]{\mathrm{H}_{3} \mathrm{O}^{+}}$
	$\mathrm{RCOOH}+\mathrm{NH}_{3}$
$\xrightarrow[\text { or } \mathrm{LiAlH}_{4}]{ }$ ($\mathrm{R}-\mathrm{CH}_{2} \mathrm{NH}_{2}$	
$\xrightarrow{\mathrm{SnCl}_{2} / \mathrm{HCl}} \mathrm{R}-\mathrm{CH}=\mathrm{NH} \cdot \mathrm{HCl}$	
	$\mathrm{H}_{3} \mathrm{O}^{+}$
	$R-\mathrm{CHO}+\mathrm{NH}_{4} \mathrm{Cl}$

Total Marks : 120
Time Taken : 60 Min.

NEET / AIIMS

Only One Option Correct Type

1. The Born Haber cycle for rubidium chloride (RbCl) is given below (the energies are in $\mathrm{kcal} / \mathrm{mol}^{-1}$)

What is the electron affinity of chlorine?
(a) $-105 \mathrm{kcal} / \mathrm{mol}$
(b) $-90.75 \mathrm{kcal} / \mathrm{mol}$
(c) $14.5 \mathrm{kcal} / \mathrm{mol}$
(d) $25.75 \mathrm{kcal} / \mathrm{mol}$
2. Which of the following is correct?
(a) Duralumin : $\mathrm{Al}+\mathrm{Cu}+\mathrm{Mg}+\mathrm{Ag}$
(b) German silver: $\mathrm{Cu}+\mathrm{Zn}+\mathrm{C}$
(c) Gun metal: $\mathrm{Cu}+\mathrm{Zn}+\mathrm{Sn}$
(d) Solder: $\mathrm{Pb}+\mathrm{Al}$
3. The most suitable reagent ' A ', for the reaction

is
(a) O_{3}
(b) $\mathrm{H}_{2} \mathrm{O}_{2}$
(c) $\mathrm{NaOH}-\mathrm{H}_{2} \mathrm{O}_{2}$
(d) $m-\mathrm{Cl}-\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COOOH}\right)$
4. An organic compound having molecular mass 60 is found to contain $\mathrm{C}=20 \%, \mathrm{H}=6.67 \%$ and $\mathrm{N}=46.67 \%$ while rest is oxygen. On heating, it gives NH_{3} along with a solid residue. The solid residue gives violet colour with alkaline copper sulphate solution. The compound is
(a) $\mathrm{CH}_{3} \mathrm{CONH}_{2}$
(b) $\mathrm{CH}_{3} \mathrm{NCO}$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}$
(d) $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
5. The cubic unit cell of Al (molar mass $=27 \mathrm{~g} \mathrm{~mol}^{-1}$) has an edge length of 405 pm and density $2.7 \mathrm{~g} \mathrm{~cm}^{-3}$. The cubic unit cell is
(a) body centred
(b) primitive
(c) edge centred
(d) face centred.
6. A reaction was observed for 15 days and the percentage of the reactant remaining after the days indicated was recorded in the following table :

Time (days)	\% Reactant remaining
0	100
2	50
4	39
6	25
8	21
10	18
12	15
14	12.5
15	10

Which one of the following best describes the order and half-life of the reaction?

Reaction order

(a) First
(b) First
(c) Second
(d) Zero

The number of possible enantiomeric pairs that can be produced during mono-chlorination of 2-methylbutane is
(a) 3
(b) 4
(c) 1
(d) 2
8. The degree of dissociation (α) of a weak electrolyte, $A_{x} B_{y}$ is related to van't Hoff factor (i) by the expression
(a) $\alpha=\frac{x+y-1}{i-1}$
(b) $\alpha=\frac{x+y+1}{i-1}$
(c) $\alpha=\frac{i-1}{(x+y-1)}$
(d) $\alpha=\frac{i-1}{x+y+1}$
9. The coagulation values in millimoles per litre of the electrolytes used for the coagulation of $\mathrm{As}_{2} \mathrm{~S}_{3}$ are given below :
I. $\mathrm{NaCl}=52$
II. $\mathrm{BaCl}_{2}=0.69$
III. $\mathrm{MgSO}_{4}=0.22$

The co rect order of their coagulating power is
(a) I $>$ II $>$ III
(b) II $>$ I $>$ III
(c) III $>$ II $>$ I
(d) III $>$ I $>$ II
10. In the following sequence of the reactions, identify the final product D.

$A \xrightarrow{\mathrm{HBr}} B \xrightarrow{\mathrm{Mg} \text {, ether }} C \xrightarrow[\mathrm{H}_{3} \mathrm{O}^{+}]{\mathrm{CH}_{3} \mathrm{CHO}} D$
(a)

(b)

(c)

(d)

11. Pick out the incorrect statements from the following.

1. Glucose exists in two different crystalline forms, $\alpha-D$-glucose and β - D-glucose.
2. $\alpha-D$-glucose and $\beta-D$-glucose are anomers.
3. α - D-glucose and β - D-glucose are enantiomers.
4. Cellulose is a straight chain polysaccharide made of only β - D-glucose units.
5. Starch is a mixture of amylose and amylopectin, both contain unbranched chain of α - D-glucose units.
(a) 1 and 2 only
(b) 2 and 3 only
(c) 3 and 4 only
(d) 3 and 5 only
6. When the imidazole ring of histidine is protonated, the tendency of nitrogen to be protonated (proton migrates from -COOH) is in the order

(a) $\beta>\gamma>\alpha$
(b) $\gamma>\beta>\alpha$
(c) $\gamma>\alpha>\beta$
(d) $\beta>\alpha>\gamma$

Assertion \& Reason Type

Directions : In the following questions, a statement of assertion is followed by a statement of reason. Mark the correct choice as :
(a) If both assertion and reason are true and reason is the correct explanation of assertion.
(b) If both assertion and reason are true but reason is not the correct explanation of assertion.
(c) If assertion is true but reason is false.
(d) If both assertion and reason are false.
13. Assertion : A mixture of 2-nitrophenol and 4-nitrophenol can be separated by steam distillation.
Reason : 2-Nitrophenol is intramolecularly H -bonded while 4-nitrophenol is intermolecularly H-bonded.
14. Assertion : Chloroform is stored in dark coloured bottles.
Reason: Chronic chloroform exposure may cause damage to liver and kidneys.
15. Assertion: Hydrometallurgy involves dissolving the ore in a suitable reagent followed by precipitation by a more electropositive metal.
Reason : Copper in bulk quantity is extracted by hydrometallurgy.

JEE MAIN / JEE ADVANCED / PETs

Only One Option Correct Type
16. 0.001 mol of cobalt complex having molecular formula represented by $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\left(\mathrm{NO}_{3}\right)\left(\mathrm{SO}_{4}\right)$ was passed through a cation exchanger $\left(\mathrm{RSO}_{3} \mathrm{H}\right)$ and the acid coming out of it, was titrated with 0.1 M NaOH solution. For complete neutralisation of acid coming out of cation exchanger, the volume of NaOH required was 20.00 mL . From the above data we can say that the complex can be represented as
(a) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5}\right]\left(\mathrm{NO}_{3}\right)\left(\mathrm{SO}_{4}\right)$
(b) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{NO}_{3}$
(c) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{NO}_{3}\right] \mathrm{SO}_{4}$
(d) none of the above.
17. What is the dominant intermolecular force or bond that must be overcome in converting liquid $\mathrm{CH}_{3} \mathrm{OH}$ to a gas?
(a) Dipole-dipole interactions
(b) Covalent bonds
(c) London-dispersion forces
(d) Hydrogen bonding
18. Calculate the amount of ice that will separate out on cooling a solution containing 50 g of ethylene glycol in 200 g of water to $-9.3^{\circ} \mathrm{C}$.
(K_{f} for water $=1.86 \mathrm{~K} \mathrm{~m}^{-1}$)
(a) 161.29 g
(b) 38.71 g
(c) 54.12 g
(d) 77.42 g
19. The incorrect statements among the following are
I. NCl_{5} does not exist while PCl_{5} does.
II. Lead prefers to form tetravalent compounds.
III. The three $\mathrm{C}-\mathrm{O}$ bonds are not equal in carbonate ion.
IV. Both O_{2}^{+}and NO are paramagnetic.
(a) I, III and IV only
(b) I and IV only
(c) II and III only
(d) I and III only

More than One Options Correct Type

20. The carbon based reduction method is not used for extraction of
(a) Sn from SnO_{2}
(b) Fe from $\mathrm{Fe}_{2} \mathrm{O}_{3}$
(c) Al from $\mathrm{Al}_{2} \mathrm{O}_{3}$
(d) Mg from $\mathrm{MgCO}_{3} \cdot \mathrm{CaCO}_{3}$
21. For the cell, $\mathrm{Tl}\left|\mathrm{Tl}^{+}(0.001 \mathrm{M}) \| \mathrm{Cu}^{2+}(0.1 \mathrm{M})\right| \mathrm{Cu}$, $E_{\text {cell }}$ at $25^{\circ} \mathrm{C}$ is 0.826 V . The EMF can be increased
(a) by increasing $\left[\mathrm{Tl}^{+}\right]$
(b) by decreasing $\left[\mathrm{Tl}^{+}\right]$
(c) by increasing $\left[\mathrm{Cu}^{2+}\right]$
(d) by decreasing $\left[\mathrm{Cu}^{2+}\right]$.
22. Which of the following reagents can be used to oxidise primary alcohols to aldehydes?
(a) CrO_{3} in anhydrous medium
(b) KMnO_{4} in acidic medium
(c) Pyridinium chlorochromate
(d) Heat in the presence of Cu at 573 K
23. In a hypothetical reaction $X \longrightarrow Y$, the activation energy for the forward and the backward reactions are 15 and $9 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. The potential energy of X is $10 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Then
(a) threshold energy of the reaction is 25 kJ
(b) the potential energy of Y is 16 kJ
(c) heat of reaction is 6 kJ
(d) the reaction is endothermic.

Integer Answer Type

24. The maximum covalency shown by Be is
25. For the $\mathrm{Mg}-\mathrm{Ag}$ cell, how many times the difference between the EMF of the cell and its standard EMF will change if concentration of Mg^{2+} ions is changed from 0.1 M to 0.01 M and that of Ag^{+}ions is changed from 0.5 M to 0.25 M ?

EXAM DATES 2017	
SRMJEEE	$1^{\text {st }}$ April to $30^{\text {th }}$ April (Online)
JEE MAIN	$2^{\text {nd }}$ April (Offline)
	$8^{\text {th }}$ \& $9^{\text {th }}$ April (Online)
VITEEE	$5^{\text {th }}$ April to $16^{\text {th }}$ April (Online)
NATA	$16^{\text {th }}$ April
WBJEE	$23^{\text {rd }}$ April
Kerala PET	$24^{\text {th }}$ April (Physics \& Chemistry)
	$25^{\text {th }}$ April (Mathematics)
AMU (Engg.)	$30^{\text {th }}$ April
Karnataka CET	$2^{\text {nd }}$ May (Biology \& Mathematics)
	$3^{\text {rd }}$ May (Physics \& Chemistry)
NEET	$7^{\text {th }}$ May
MHT CET	$11^{\text {th }}$ May
COMEDK (Engg.)	$14^{\text {th }}$ May
BITSAT	$16^{\text {th }}$ May to $30^{\text {th }}$ May (Online)
JEE Advanced	$21^{\text {st }}$ May
J \& K CET	$27^{\text {th }}$ May to $28^{\text {th }}$ May
Allms	$28^{\text {th }}$ May
JIPMER	$4^{\text {th }}$ June

26. In a fcc lattice of X and Y, X atoms are present at the corners while Y atoms are present at the face centres. If one of the X atom from a corner is replaced by monovalent Z atom, then the formula of compound is given as $X_{a} Y_{b} Z$. Here a is

Comprehension Type

Understand carefully the following two reactions and answer the questions given below :
Reaction (i)

Reaction (ii)

27. Which of the steps is common in the two reactions?
(a) 1st step
(b) 2nd step
(c) Both the steps
(d) None of the steps
28. Which of the final products are medicinally important?
(a) Product from reaction (i)
(b) Product from reaction (ii)
(c) Product from both reactions
(d) None of the above

Matrix Match Type

29. Match the compounds given in Column I with their shapes in Column II.

Column I

(A) XeO_{3}
(B) XeOF_{4}
(C) BO_{3}^{3-}
(D) $\mathrm{I}_{3(a q)}^{-}$

Column II

(P) Trigonal pyramidal
(Q) Linear
(R) Square pyramidal
(S) Trigonal planar

	A	B	C
(a) P	D		
(b) S	P	R	S
(c) P	R	S	R
(d) P	S	R	Q

30. Match the reactions given in Column I with the steps involved in mechanism in Column II.

Column I

(A) Benzaldehyde reacts with methanal in presence of NaOH to give benzyl alcohol and sodium methanoate.
(B)

Propanone reacts with $\mathrm{Ba}(\mathrm{OH})_{2}$ to form 4-hydroxy-4-methylpentan-2-one.
(C) Iodoform is produced when butanone is treated with NaOI .
(D) Carboxylic acids containing
(S) Nucleophilic addition
α-hydrogen(s) on treatment with Br_{2} in presence of red P give α-haloacids.

A	B	C	D
(a) Q, R	P, Q	R, S	P, R
(b) Q, S	P, S	$\mathrm{P}, \mathrm{R}, \mathrm{S}$	P, R
(c) Q, S	$\mathrm{P}, \mathrm{R}, \mathrm{S}$	P, R	P, S
(d) P, Q	Q, R	R, S	P, S

Keys are published in this issue. Search now! ©

SELFCHECK

No. of questions attempted
No. of questions correct
Marks scored in percentage

Check your score! If your score is

$>\mathbf{9 0} \%$	EXCELLENT WORK!	You are well prepared to take the challenge of final exam.
$\mathbf{9 0 - 7 5 \%}$	GOOD WORK !	You can score good in the final exam.
$74-60 \%$	SATISFACTORY !	You need to score more next time.
$<\mathbf{6 0 \%}$	NOT SATISFACTORY!	Revise thoroughly and strengthen your concepts.

CHEMISTRY MUSING

SOLUTION SET 44

1. (d) : Bond energy per molecule of $\mathrm{I}_{2}=\frac{240 \times 1000}{6.022 \times 10^{23}} \mathrm{~J}$

$$
=3.985 \times 10^{-19} \mathrm{~J}
$$

Energy absorbed $=\frac{h c}{\lambda}=\frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{4500 \times 10^{-10}}$

$$
=4.417 \times 10^{-19} \mathrm{~J}
$$

\therefore K.E. of one I_{2} molecule $=\left(4.417 \times 10^{-19}-3.985 \times 10^{-19}\right) \mathrm{J}$

$$
=4.32 \times 10^{-20} \mathrm{~J}
$$

K.E. of one I atom $=\frac{4.32 \times 10^{-20}}{2}=2.16 \times 10^{-20} \mathrm{~J}$
2. (d) : Nucleophilic addition reaction to carbonyl compound takes place followed by intramolecular nucleophilic substitution reaction.

3. (b) : The colourless inorganic salt (A) is ammonium nitrate.
$\mathrm{NH}_{4} \mathrm{NO}_{3} \xrightarrow{\Delta} \mathrm{~N}_{2} \mathrm{O}+2 \mathrm{H}_{2} \mathrm{O}$
(A)
(B)
(C)

Product (B) $\mathrm{N}_{2} \mathrm{O}$ is a neutral gas, product (C) $\mathrm{H}_{2} \mathrm{O}$ is liquid and neutral to litmus.
$10 \mathrm{~N}_{2} \mathrm{O}+\mathrm{P}_{4} \longrightarrow \mathrm{P}_{4} \mathrm{O}_{10}+10 \mathrm{~N}_{2}$
(Dehydrating agent)
4. (a) : $\stackrel{\mathrm{CO} \backslash}{\mathrm{CO}-} \mathrm{NH} \xrightarrow[\text { (Hydrolysis) }]{\mathrm{NaOH}}\left[\begin{array}{l}\mathrm{COOH} \\ \mathrm{CONH}_{2}\end{array}\right.$

Succinimide
(I)

5. (d) : $\mathrm{Pb}^{2+}+2 \mathrm{HCl} \longrightarrow \mathrm{PbCl}_{2} \downarrow \xrightarrow{\mathrm{H}_{2} \mathrm{~S}} \mathrm{PbS} \downarrow+2 \mathrm{HCl}$ White ppt. Black ppt.
(dissolves on boiling)
6. (c) : Either octahedral voids $\left(\frac{r_{1}}{r_{2}}=0.414\right)$ or tetrahedral voids $\left(\frac{r_{1}}{r_{2}}=0.225\right)$ are occupied by
[where r_{1} is radius of the interstitial site (void) and r_{2} is radius of atoms arranged in $f c c$]
interstitial sites in $f c c$.
Since in $f c c$, atoms along face diagonal are touching, thus, $4 r_{2}=\sqrt{2} a$
Required diameter of interstitial sites $=2 r_{1}$

$$
\begin{aligned}
& =2 \times 0.414 r_{2}=\frac{2 \times 0.414 \times \sqrt{2} a}{4} \\
& =\frac{2 \times 0.414 \times \sqrt{2} \times 400}{4}=117.1 \mathrm{pm}
\end{aligned}
$$

7. (b) : $\mathrm{SnO}_{2}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{SnO}_{3}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{SnO}_{2}+\mathrm{SnO}_{3}^{2-} \longrightarrow\left[\mathrm{SnO}_{2}\right]: \mathrm{SnO}_{3}^{2-}$
As they form negatively charged particles, they are easily coagulated by AlCl_{3} in which Al^{3+} cation carries maximum positive charge.
8. (c) : 50 mL of gold for protection requires

$$
=0.1 \mathrm{~g}=100 \mathrm{mg} \text { of starch }
$$

$\therefore \quad 10 \mathrm{~mL}$ of gold will require $=20 \mathrm{mg}$ of starch
$\therefore \quad$ Thus, gold number of starch $=20$
9. (5) : We know, $\frac{p^{o}-p}{p^{o}}=\frac{n_{2}}{n_{1}+n_{2}}$

Given that: $p^{o}=640 \mathrm{~mm} \mathrm{Hg}, p=600 \mathrm{~mm} \mathrm{Hg}$
Let M be the molecular weight of the solute.
Molar mass of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)=6 \times 12+6$ $=78 \mathrm{~g} \mathrm{~mol}^{-1}$
$n_{2}=\frac{2.175}{M} ; n_{1}=\frac{39}{78}$
$\therefore \quad \frac{640-600}{640}=\frac{2.175 / M}{\frac{2.175}{M}+0.5} ; M=65.25$

$$
60+x \times 1.05=65.25
$$

$\therefore \quad x=5$
10. (7) : Acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{CuSO}_{4}, \mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Cl}_{2}, \mathrm{O}_{3}$, FeCl_{3} and HNO_{3} oxidise iodide to iodine. Alkaline KMnO_{4} oxidises aqueous iodide to IO_{3}^{-}ion. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is a strong reducing agent which on reaction with I_{2} produces I^{-}ion.
$2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \longrightarrow 2 \mathrm{NaI}+\mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}$

MPP CLASS XI

ANSWER KEY

1. (c)
2. (b)
3. (a)
4. (d) 5. (d)
5. (c)
6. (c)
7. (d)
8. (a)
9. (c)
10. (b)
11. (c)
12. (c)
13. (c)
14. (c)
15. (d)
16. (a)
17. (d)
18. (d)
19. (a, b, c)
20. (c,d)
21. (a,b, c, d)
22. (b,d)
23. (3)
24. (4)
25. (2)
26. (a)
27. (a)
28. (a)
29. (a)

Mk C R ay, O ids

SECOND LAW OF THERMODYNAMICS

All non-equilibrium situations tend to shift towards equilibrium situations on their own or in a natural way, but a change from an equilibrium state of a system to a non-equilibrium state cannot occur without an external help to the system from the surroundings.

A system approaching an equilibrium state can be made to do work, for example, as your mobile battery is approaching towards equilibrium (getting discharged) it is made to do work that is to run the phone.

It is clear from laws of thermodynamics, $(\Delta U=\Delta q+\Delta w)$, complete conversion of heat into work is possible in a non-cyclic isothermal process. But a continuously operating machine must use a cyclic process and for such process, efficiencies cannot be 100%. Efficiency (E) is defined as :

$$
E=\frac{|w|}{\left|q_{1}\right|}
$$

$|w|$ and $\left|q_{1}\right|$ are the modulus of work done and heat absorbed.
By Carnot theorem, it can be shown that

$$
E=1-\frac{T_{2}}{T_{1}}
$$

T_{2} is temperature of sink and T_{1} that of source. The efficiency becomes more and more as temperature of sink approaches to ' 0 ' K .
Since it is impossible to reach ' 0 ' kelvin in finite number of steps (this is also an alternative statement of third law), 100% efficiency is never achievable.

Entropy

Change in functions ΔU and ΔH are insufficient to indicate the feasibility of a process. It was, therefore, necessary to search out new additional state functions which could help us to predict the feasibility of a process. Second law, introduced two new functions entropy (S) and free energy (G) in this context.

Without going much into the reason and the source of the equation, let's move straight to calculation (which you generally found in questions) :

$$
\Delta S=\int_{1}^{2} \frac{d q_{\mathrm{rev}}}{T}
$$

But calculation is always carried out with $q_{\text {rev }}$ never with $q_{\text {irrev }}$.
For different processes,
O Reversible phase change at constant temperature and pressure (such as boiling of water at boiling point) :

$$
\Delta S=\frac{\Delta H}{T}
$$

- Perfect gas change of state :

$$
\Delta S=n C_{V} \ln \frac{T_{2}}{T_{1}}+n R \ln \frac{V_{2}}{V_{1}}
$$

O Entropy of mixing for ideal gases at constant T and P :
$\Delta S_{\text {mix }}=-n_{1} R \ln x_{1}-n_{2} R \ln x_{2}$
(considering two components where x_{1} and x_{2} are the mole fractions.)
The second law in its most useful form of practical applications is :

$$
d S \geq \frac{d q}{T}
$$

Thus, we conclude,

$$
\begin{aligned}
& \Delta S>0(\text { irreversible, isolated }) \\
& \Delta S=0 \text { (reversible, isolated })
\end{aligned}
$$

Thus, when a natural process occurs in an isolated system, the entropy increases spontaneously until the equilibrium is reached.

As far as questions are concerned, you must remember :

O Isothermal reversible expansion :
$\Delta S_{\text {sys }}>0, \Delta S_{\text {sur }}<0$
$\Delta S_{\text {total }}=0$
O Adiabatic reversible expansion :
$\Delta S_{\text {sys }}=0, \Delta S_{\text {sur }}=0$
$\Delta S_{\text {total }}=0$
O Adiabatic irreversible expansion :
$\Delta S_{\text {sys }}>0, \Delta S_{\text {sur }}=0$
$\Delta S_{\text {total }}=0$
O Isothermal irreversible compression :
$\Delta S_{\text {sys }}<0, \Delta S_{\text {sur }}>0$
$\Delta S_{\text {total }}<0$
And we conclude that since all natural processes are irreversible the entropy of the universe increases. This is another statement of second law.

Notes :

- The entropies of all perfectly crystalline material approaches zero as temperature approaches zero kelvin, this is third law.
- Few substances have residual entropies even at zero kelvin like $\mathrm{CO}, \mathrm{NO}, \mathrm{N}_{2} \mathrm{O}$, even H_{2}.
- For bigger molecules, standard entropy value is higher .
- For $\mathrm{H}_{(a q)}^{+}$, standard entropy is zero.
- The increase in temperature results in increase in entropy.

Free energy
At constant T and P the equilibrium condition is the minimisation of Gibb's free energy (G).
The greatest advantage of Gibb's free energy is that it can predict the spontaneity of the process by looking into the system only (unlike entropy which considers
 both system and surroundings).

$$
\Delta G_{\text {sys }}(\text { const. } T \text { and } P)<0
$$

is the criteria of spontaneity.
Also, $-\Delta G=w_{\text {net }}$
For a reversible process at constant T and P, the decrease in Gibb's energy corresponds to maximum work done by the system excluding $P-V$ work.

ATTENTION COACHING INSTITUTES:

a great offer from MTG
Coffers "Classroom
JEE (Main \& Advanced), NEET and
FOUNDATION MATERIAL for Class 7, 8,9,
10, $11 \& 12$ with YOUR BRAND NAME \&
COVER DESIGN.
This study material will save you lots of money spent on teachers, typing, proof-reading and printing. Also, you will save enormous time. Normally, a good study material takes 2 years to
 develop. But you can have the material printed with your logo delivered at your doorstep.
Profit from associating with MTG Brand - the most popular name in educational publishing for JEE (Main \& Advanced)/NEET/PMT....
Order sample chapters on Phone/Fax/e-mail.
Phone: 0124-6601200 09312680856
e-mail : sales@mtg.in | www.mtg.in

CLASSROOM STUDY MATERIAL

MPP м м mantiticeray

This specially designed column enables students to self analyse their extent of understanding of complete syllabus. Give yourself four marks for correct answer and deduct one mark for wrong answer. Self check table given at the end will help you to check your readiness.

Total Marks : 120
Time Taken : 60 Min.

NEET / AIIMS

Only One Option Correct Type

1. At the same temperature calculate the ratio of average velocity of SO_{2} to CH_{4}.
(a) $2: 3$
(b) $3: 4$
(c) $1: 2$
(d) $1: 6$
2. In which of the following the oxidation number of oxygen has been arranged in increasing order?
(a) $\mathrm{OF}_{2}<\mathrm{KO}_{2}<\mathrm{BaO}_{2}<\mathrm{O}_{3}$
(b) $\mathrm{BaO}_{2}<\mathrm{KO}_{2}<\mathrm{O}_{3}<\mathrm{OF}_{2}$
(c) $\mathrm{BaO}_{2}<\mathrm{O}_{3}<\mathrm{OF}_{2}<\mathrm{KO}_{2}$
(d) $\mathrm{OF}_{2}<\mathrm{O}_{3}<\mathrm{KO}_{2}<\mathrm{BaO}_{2}$
3. For an indicator, HIn

$$
\underset{A}{\mathrm{HIn}} \rightleftharpoons \mathrm{H}^{+}+\mathrm{In}_{B}^{-}
$$

as the pH changes from $\mathrm{p} K_{\mathrm{In}}-1$ to $\mathrm{p} K_{\mathrm{In}}+1, \frac{[B]}{[A]}$
(a) will vary from 0.1 to 10
(b) will vary from 10 to 0.1
(c) will vary from 1 to 10
(d) will vary from 10 to 1 .
4. If 30 mL of H_{2} and 20 mL of O_{2} react to form water, what is left at the end of the reaction?
(a) 10 mL of H_{2}
(b) 5 mL of H_{2}
(c) 10 mL of O_{2}
(d) 5 mL of O_{2}
5. The enthalpy of hydrogenation of cyclohexene is $-119.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$. If resonance energy of benzene is $-150.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$, its enthalpy of hydrogenation would be
(a) $-269.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) $-358.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) $-508.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d) $-208.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$
6. Borate salts when heated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ produce characteristic green colouration on flame due to the formation of a volatile compound
(a) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{~B}$
(b) $\mathrm{B}_{2} \mathrm{H}_{6}$
(c) $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{3} \mathrm{BO}_{3}$
(d) $\mathrm{B}_{2} \mathrm{O}_{3}$
7. In diborane $\left(\mathrm{B}_{2} \mathrm{H}_{6}\right)$ there are
(a) three $3 c-2 e^{-}$bonds and three $2 c-2 e^{-}$bonds
(b) four $3 c-2 e^{-}$bonds and two $2 c-2 e^{-}$bonds
(c) two $3 c-2 e^{-}$bonds and four $2 c-2 e^{-}$bonds
(d) none of the above.
8. Cl_{2} and SO_{2} are pollutants but used in bleaching of textiles. Bleaching action of Cl_{2} and SO_{2} is due to

$\mathbf{C l}_{\mathbf{2}}$	$\mathbf{S O}_{\mathbf{2}}$
(a) oxidation	oxidation
(b) reduction	reduction
(c) reduction	oxidation
(d) oxidation	reduction

9. The correct IUPAC name of

(a) 2-carboxypropane-1, 3-dioic acid
(b) 2-carboxymalonic acid
(c) 1,1,1-tricarboxymethane
(d) propane-1, 2, 3-tricarboxylic acid.
10. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}=\mathrm{CH}_{2}$ changes to A, B and C by using

(A)
(B)

(a) $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}, \mathrm{BH}_{3} \cdot \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}_{2} \cdot \mathrm{NaOH}$, $\mathrm{Hg}(\mathrm{OAc})_{2} / \mathrm{NaBH}_{4} \cdot \mathrm{NaOH}$
(b) $\mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}, \mathrm{Hg}(\mathrm{OAc})_{2} / \mathrm{NaBH}_{4} \cdot \mathrm{NaOH}$, $\mathrm{BH}_{3} \cdot \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}_{2} \cdot \mathrm{NaOH}$
(c) $\mathrm{BH}_{3} \cdot \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}_{2} \cdot \mathrm{NaOH}$, $\mathrm{Hg}(\mathrm{OAc})_{2} / \mathrm{NaBH}_{4} \cdot \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}$
(d) $\mathrm{BH}_{3} \cdot \mathrm{THF} / \mathrm{H}_{2} \mathrm{O}_{2} \cdot \mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O} / \mathrm{H}^{+}$, $\mathrm{Hg}(\mathrm{OAc})_{2} / \mathrm{NaBH}_{4} \cdot \mathrm{NaOH}$
11. The number of electrons involved in the reduction of nitrate ion to hydrazine is
(a) 8
(b) 7
(c) 5
(d) 3
12. A certain mass of gas occupies a volume of 300 cc at $27^{\circ} \mathrm{C}$ and 620 mm pressure. The volume of this gas at $47^{\circ} \mathrm{C}$ and 640 mm pressure will be
(a) 400 cc
(b) 510 cc
(c) 312 cc
(d) 350 cc

Assertion \& Reason Type

Directions : In the following questions, a statement of assertion is followed by a statement of reason. Mark the correct choice as :
(a) If both assertion and reason are true and reason is the correct explanation of assertion.
(b) If both assertion and reason are true but reason is not the correct explanation of assertion.
(c) If assertion is true but reason is false.
(d) If both assertion and reason are false.
13. Assertion : It is impossible to determine the exact position and exact momentum of an electron simultaneously.
Reason : The path of an electron in an atom is clearly defined.
14. Assertion : Kjeldahl method is not applicable to nitro compound, azo compound and pyridine.
Reason : Kjeldahl method is used for halogen estimation.
15. Assertion : Bromobenzene upon reaction with $\mathrm{Br}_{2} / \mathrm{Fe}$ gives 1, 4-dibromobenzene as the major product.
Reason : In bromobenzene, the inductive effect of the bromo group is more dominant than the mesomeric effect in directing the incoming electrophile.

JEE MAIN / JEE ADVANCED / PETs

Only One Option Correct Type
16. An inorganic compound (X) which produces brick red colouration as flame. When (X) dissolves in water produces alkaline solution and a combustible gas $(Y) .(X)$ and (Y) are respectively.
(a) $\mathrm{CaO}, \mathrm{O}_{2}$
(b) $\mathrm{Ca}_{3} \mathrm{~N}_{2}, \mathrm{NH}_{3}$
(c) $\mathrm{CaCO}_{3}, \mathrm{CO}_{2}$
(d) $\mathrm{CaH}_{2}, \mathrm{H}_{2}$
17. The correct order of acidic strength is
(a) $\mathrm{Cl}_{2} \mathrm{O}_{7}>\mathrm{SO}_{2}>\mathrm{P}_{4} \mathrm{O}_{10}$
(b) $\mathrm{K}_{2} \mathrm{O}>\mathrm{CaO}>\mathrm{MgO}$
(c) $\mathrm{CO}_{2}>\mathrm{N}_{2} \mathrm{O}_{5}>\mathrm{SO}_{3}$
(d) $\mathrm{Na}_{2} \mathrm{O}>\mathrm{MgO}>\mathrm{Al}_{2} \mathrm{O}_{3}$
18. The degree of dissociation of dinitrogen tetraoxide, $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \longrightarrow 2 \mathrm{NO}_{2(g)}$ at temperature T and total pressure P is α. Which one of the following is the correct expression for the equilibrium constant $\left(K_{p}\right)$ at this temperature?
(a) $\frac{2 \alpha}{(1-\alpha)^{2}}$
(b) $\frac{\alpha^{2} P}{(1-\alpha)}$
(c) $\frac{4 \alpha^{2}}{\left(1-\alpha^{2}\right)}$
(d) $\frac{4 \alpha^{2} P}{\left(1-\alpha^{2}\right)}$
19. The configuration of 2, 3-dichloropentane whose structure is shown, is

(a) $2 R, 3 R$
(b) $2 R, 3 S$
(c) $2 S, 3 R$
(d) $2 S, 3 S$

More than One Options Correct Type

20. Which of the following are wrong statements?
(a) NO is more harmful than NO_{2}.
(b) SO_{2} is more harmful than SO_{3}.
(c) Acid rain contains mainly HNO_{3}.
(d) Acid rain contains mainly $\mathrm{H}_{2} \mathrm{SO}_{4}$ and lesser concentrations of HNO_{3} and HCl .
21. 22.44 kJ energy is required to convert 8 g of gaseous atom of metal M to $M_{(g)}^{+}$if I.E. ${ }_{1}$ of metal $M=374 \mathrm{~kJ} / \mathrm{mol}$. Select correct statement for metal M.
(a) 0.6 mole gaseous ion $\left(M^{+}\right)$are formed.
(b) Same energy can convert all $M_{(g)}^{+}$to $M_{(g)}^{2+}$.
(c) Atomic mass of metal $=133.33 \mathrm{~g} \mathrm{~mol}^{-1}$.
(d) 3.613×10^{22} atoms of M are converted to $M_{(g)}^{+}$.

JEE (ADVANCED)

Dry runs are here!

FEATURES:

- 16 years solved papers with detailed solutions
- 10 Model Test Papers
- Chapter-wise indexing of questions

Now, create your own pre-JEE. Just like pre-boards. With previous years' papers and model test papers for JEE (Advanced), complete with detailed solutions, identify your areas of weakness and work on addressing them in time. Multiple test papers ensure you do your dry runs again and again, till such time you feel confident of taking on the best. For it will indeed be the best you compete with in JEE (Advanced). So what are you waiting for? Order MTG's JEE Advanced Explorer today.

Available at all leading book shops throughout India. To buy online visit www.mtg.in.

Scan now with your smartphone or tablet
Application to read
QR codes required

For more information or for help in placing your order, call 0124-6601200 or email:info@mtg.in
22. H_{2} can be obtained from
(a) the reaction of water with ionic hydrides
(b) water gas by oxidation of CO into CO_{2} (by steam) which can be easily removed by dissolving in $\mathrm{H}_{2} \mathrm{O}$
(c) electrolysis of water
(d) reaction of NaOH with Zn .
23. Isotones of ${ }_{32}^{76} \mathrm{Ge}$ are
(a) ${ }_{32}^{77} \mathrm{Ge}$
(b) ${ }_{33}^{77} \mathrm{As}$
(c) ${ }_{34}^{77} \mathrm{Se}$
(d) ${ }_{34}^{78} \mathrm{Se}$

Integer Answer Type

24. $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH} \xrightarrow[\text { 2. } \mathrm{D}_{3} \mathrm{O}^{+}]{\text {1. } \mathrm{NaNH}_{2}} A \xrightarrow[\text { Pd-BaSO }]{\mathrm{D}} \mathrm{D}_{2}{ }^{2}$

Total number of deuterium atoms in the final product is
25. How many of the following metals liberate dihydrogen from water either at room temperature or on heating?

$$
\mathrm{Zn}, \mathrm{Mg}, \mathrm{Na}, \mathrm{Al}, \mathrm{Ti}, \mathrm{Cr}, \mathrm{~W}
$$

26. The equilibrium constant $K_{s p}$ for the given reaction is found to be $x \times 10^{-10}$.
$\mathrm{AgCl}_{(s)} \rightleftharpoons \mathrm{Ag}_{(a q)}^{+}+\mathrm{Cl}_{(a q)}^{-}$
Using the data $\Delta G^{\circ}{ }_{f}(\mathrm{AgCl})=-109.4 \mathrm{~kJ}$,
$\Delta G_{f}^{\circ}\left(\mathrm{Ag}^{+}\right)=77.1 \mathrm{~kJ}$ and $\Delta G^{\circ}{ }_{f}\left(\mathrm{Cl}^{-}\right)=-131.2 \mathrm{~kJ}$.
The value of x is

Comprehension Type

BeO and $\mathrm{Be}(\mathrm{OH})_{2}$ are amphoteric while the oxides and hydroxides of other alkaline earth metals are basic. The solubility of hydroxides increases as we move down the group from Be to Ba but the solubility of sulphates and carbonates decreases in that order. The thermal stability of carbonates and sulphates of alkaline earth metals increases from Be to Ba as we move from top to bottom in the group.
27. Which of the following metal carbonates decomposes on heating?
(a) MgCO_{3}
(b) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(c) $\mathrm{K}_{2} \mathrm{CO}_{3}$
(d) $\mathrm{Rb}_{2} \mathrm{CO}_{3}$
28. The solubility in water of sulphates down the Be group is $\mathrm{Be}>\mathrm{Mg}>\mathrm{Ca}>\mathrm{Sr}>\mathrm{Ba}$. This is due to
(a) high heat of solvation for smaller ions like Be^{2+}
(b) increasing molecular weight
(c) decreasing lattice energy
(d) increase in melting points.

Matrix Match Type

29. Match the molecules given in Column I with their characteristics given in Column II.

Column I
 Column II

(A) $\mathrm{O}_{2}^{-} \quad$ (P) Bond order 2.5 and paramagnetic
(B) N_{2}
(Q) Bond order 1.5 and paramagnetic
(C) N_{2}^{+}
(R) Bond order 1 and paramagnetic
(D) B_{2}
(S) Bond order 3 and diamagnetic

	A	B	C
(a) Q	S	P	R
(b) P	S	R	Q
(c) R	P	Q	S
(d) Q	S	R	P

30. Match the terms given in Column I with the compounds given in Column II.

Column I

(A) Markovnikov product
(P)
Column II
$\mathrm{CH}_{3}-\mathrm{CH}=\xrightarrow[\mathrm{H}_{2} \mathrm{O}_{2}, h v]{\mathrm{CH}_{2} \mathrm{HBr}}$
(B) Anti-

Markovnikov
product
(Q)

(C) Peroxide effect

(S) $\mathrm{CF}_{3}-\mathrm{CH}=\mathrm{CH}_{2} \xrightarrow{\mathrm{HBr}}$
(D) Mixture of stereoisomers

	A	B	C	D
(a) R	P, S	P	Q, R	
(b) P	P, S	Q, R	R	
(c) R	P, S	Q	R	
(d) Q, R	P, S	R	Q	

Keys are published in this issue. Search now! \cdot

SELFCHECK

No. of questions attempted

Check your score! If your score is

$>\mathbf{9 0 \%}$	EXCELLENT WORK!	You are well prepared to take the challenge of final exam.
$\mathbf{9 0 - 7 5 \%}$	GOOD WORK!	You can score good in the final exam.
$\mathbf{7 4 - 6 0 \%}$	SATISFACTORY !	You need to score more next time.
$<\mathbf{6 0 \%}$	NOT SATISFACTORY!	Revise thoroughly and strengthen your concepts.

Dear students, hope you all are fine. As I have always told, your learning process becomes abortive if it is not accompanied with practice. Make regular habit of practicing problems. This article 'Problems on Hydrocarbons' will help you for that. Always set timer before solving a problem, then only you can get fruitful results. Regards your very own.
*Arunava Sarkar

1. Give the number of isomers including stereoisomers obtained after the monochlorination of isopentane.
(a) 2
(b) 3
(c) 4
(d) None of these
2. Which one is dehydrohalogenated most easily?
(I)

(II)

(III)

(IV)

(a) I
(b) II
(c) III
(d) IV
3.

(a)

(b)

(c)

(d)

4.

(a)

(b)

(c)

(d) None of these
5.

Identify the major product.
(a)

(b)

(c)

(d) None of these
6.

(a)

(b)

(c)

(d) None of these
7. Predict the product for the following case,

(a)

(b)

(c)

(d) None of these
8.

(a)

(b)

(c)

(d) None of these
9.

This species is
(a) aromatic
(b) non-aromatic
(c) anti-aromatic
(d) heterocyclic.
10.

(a)

(b)

(c)

(d)

11.

Naphthalene
(a) $A=$

(b) $A=$

(c) Both will be

(d) Both will be

SOLUTIONS

1. (d): Isopentane is

(b)

Substitution at $1^{\circ}(\mathrm{a})$ or $1^{\circ}(\mathrm{b})$ carbon will give the same product. It will be :

1-chloro-2-methylbutane

Substitution at 1° (c) carbon will give a different product.

Substitution at 2° carbon will give different product.

(2-chloro-3-methylbutane)
Substitution at 3° carbon will give different product.
(Z)

(W) has chiral carbon;

Two optically active isomers are possible.
(X) doesn't have any chiral carbon.
(Y) has chiral carbon;

Two optically active isomers are possible.
(Z) doesn't have any chiral carbon.
$W+X+Y+Z$
$\downarrow \downarrow \downarrow \downarrow \quad \downarrow$
$2+1+2+1=6$ isomers
(including stereoisomers)
2. (b): Idea is, after dehydrohalogenation who gives the most stable product.

So, correct option is (b), (II).
3. (d): There will be the formation of a six membered ring through Diels-Alder reaction.

\therefore Correct option is (d).
4. (c) :

\therefore Correct option is (c).
5. (a) : $\mathrm{H}_{2}+\mathrm{Pd}$ will reduce double bond as well as $-\mathrm{NO}_{2}$ group.
\therefore Correct option is (a).
6. (d):

7. (d): Cyclopropane is under severe strain. Therefore, it is always ready to undergo ring opening reactions.

\therefore Option (d) is correct.
Remember, when a carbanionic centre attached with two chlorine atoms, substitution reaction takes place. Also remember, in presence of sunlight ring opening and substitution takes place via free radical path.
8. (a) : Under vigorous conditions, $\mathrm{Ni} / \mathrm{H}_{2}$ will destroy the double bonds of benzene.
\therefore Option (a) will be the correct option.
9. (b): System is not conjugated. So, it is nonaromatic.
\therefore Option (b) is correct.
10. (a) : Nitration will take place at o - or p-positions of the aromatic ring if $+I$-effect group is attached to the benzene ring. Hence, option (a) is correct. Lower temperature prevents polynitration.
11. (a) : While electrophilic substitution reaction takes place in naphthalene there are two positions where it can take place, α and β.

Now, understand a very simple thing, for α-attack there are two structures whereas for β-attack there is only one structure which is aromatic. For α-attack the aromatic structures are I and II and for β-attack the aromatic structure is VI.

So, intermediates for α-attack are more stable than that for β-attack. So, α-product must be kinetically controlled product and at low temperature this becomes irreversible in nature and the exclusive product. α-product is thermodynamically less stable than β-product due to steric reason.

This is why at higher temperature reaction occurs to give thermodynamically more stable β-product. At higher temperature reaction is also reversible in nature. At higher temperature the readily formed α-product desulfonates and gives β-product.

Contd. from Page no. 30
35. A vessel contains $A_{(g)}$ and $B_{(g)}$ at 2 atm and 4 atm respectively at $T \mathrm{~K}$, the mixture is allowed to attain equilibrium at $T \mathrm{~K}$, according to the reaction,

At equilibrium, $\left(\frac{n_{A}}{n_{B}}\right)_{\text {eq. }}=\left(\frac{n_{B}}{n_{A}}\right)_{\text {initial }}$
Find the value of y if $K_{c}=2^{y}$.
36. How many chiral centres are present in the following molecule?

Cholesterol
MATHEMATICS

SECTION 1 (Maximum Marks : 15)

- This section contains FIVE questions.
- Each question has FOUR options (a), (b), (c) and (d). ONLY ONE of these four options is correct.
- For each question, darken the bubble corresponding to the correct option in the ORS.
- For each question, marks will be awarded in one of the following categories:
Full Marks : +3 If only the bubble corresponding to the correct option is darkened.
Zero Marks : 0 If none of the bubbles is darkened.
Negative Marks : -1 In all other cases.

37. The number of integral solutions of $x+y+z=0$ with $x \geq-5, y \geq-5, z \geq-5$ is
(a) 135
(b) 136
(c) 455
(d) 105
38. A survey of people in a given region showed that 20% were smokers. The probability of death due to lung cancer, given that a person smoked, was 10 times the probability of death due to lung cancer, given that a person did not smoke. If the probability of death due to lung cancer in the region is 0.006 , what is the probability of death due to lung cancer given that a person is a smoker?
(a) $1 / 140$
(b) $1 / 70$
(c) $3 / 140$
(d) $1 / 10$
39. The number of non-zero diagonal matrices of order 4 satisfying $A^{2}=A$ is
(a) 2
(b) 4
(c) 16
(d) 15
40. If $\sin x+\operatorname{cosec} x=2$, then $\sin ^{n} x+\operatorname{cosec}^{n} x$ is equal to
(a) 2
(b) 2^{n}
(c) 2^{n-1}
(d) 2^{n-2}
41. If $g(x)$ is a polynomial satisfying $g(x) g(y)=g(x)+$ $g(y)+g(x y)-2$ for all real x and y and $g(2)=5$, then $\lim _{x \rightarrow 3} g(x)$ is
(a) 9
(b) 10
(c) 25
(d) 20

SECTION 2 (Maximum Marks : 32)

- This section contains EIGHT questions.
- Each question has FOUR options (a), (b), (c) and (d). ONE OR MORE THAN ONE of these four option(s) is(are) correct.
- For each question, darken the bubble(s) corresponding to all the correct option(s) in the ORS.
- For each question, marks will be awarded in one of the following categories:
Full Marks : +4 If only the bubble(s) corresponding to all the correct option(s) is(are) darkened.
Partial Marks : +1 For darkening a bubble corresponding to each correct option, provided NO incorrect option is darkened. Zero Marks : 0 If none of the bubbles is darkened.

Negative Marks : -2 In all other cases.

- For example, if (a), (c) and (d) are all the correct options for a question, darkening all these three will result in +4 marks; darkening only (a) and (d) will result in +2 marks; and darkening (a) and (b) will result in -2 marks, as a wrong option is also darkened.

42. On the ellipse $4 x^{2}+9 y^{2}=1$, the points at which the tangents are parallel to the line $8 x=9 y$ are
(a) $\left(\frac{2}{5}, \frac{1}{5}\right)$
(b) $\left(-\frac{2}{5}, \frac{1}{5}\right)$
(c) $\left(-\frac{2}{5},-\frac{1}{5}\right)$
(d) $\left(\frac{2}{5},-\frac{1}{5}\right)$
43. Let $S_{n}=\sum_{k=1}^{n} \frac{n}{n^{2}+k n+k^{2}}$ and $T_{n}=\sum_{k=0}^{n-1} \frac{n}{n^{2}+k n+k^{2}}$, for $n=1,2,3, \ldots$. Then,
(a) $S_{n}<\frac{\pi}{3 \sqrt{3}}$
(b) $S_{n}>\frac{\pi}{3 \sqrt{3}}$
(c) $T_{n}<\frac{\pi}{3 \sqrt{3}}$
(d) $T_{n}>\frac{\pi}{3 \sqrt{3}}$
44. If the parabola $x^{2}=a y$ makes an intercept of length $\sqrt{40}$ units on the line $y-2 x=1$ then a is equal to
(a) 1
(b) -2
(c) -1
(d) 2
45. If $y(x)$ satisfies the differential equation $y^{\prime}-y \tan x=2 x \sec x$ and $y(0)=0$, then
(a) $y\left(\frac{\pi}{4}\right)=\frac{\pi^{2}}{8 \sqrt{2}}$
(b) $y^{\prime}\left(\frac{\pi}{4}\right)=\frac{\pi^{2}}{18}$
(c) $y\left(\frac{\pi}{3}\right)=\frac{\pi^{2}}{9}$
(d) $y^{\prime}\left(\frac{\pi}{3}\right)=\frac{4 \pi}{3}+\frac{2 \pi^{2}}{3 \sqrt{3}}$
46. If the first and the $(2 n-1)^{\text {th }}$ terms of an A.P., G.P. and H.P. are equal and their $n^{\text {th }}$ terms are respectively a, b, c then always
(a) $a=b=c$
(b) $a \geq b \geq c$
(c) $a+c=b$
(d) $a c-b^{2}=0$
47. In R^{3}, let L be a straight line passing through the origin. Suppose that all the points on L are at a constant distance from the two planes $P_{1}: x+2 y-z$ $+1=0$ and $P_{2}: 2 x-y+z-1=0$. Let M be the locus of the feet of the perpendiculars drawn from the points on L to the plane P_{1}. Which of the following points lie(s) on M ?
(a) $\left(0,-\frac{5}{6},-\frac{2}{3}\right)$
(b) $\left(-\frac{1}{6},-\frac{1}{3}, \frac{1}{6}\right)$
(c) $\left(-\frac{5}{6}, 0, \frac{1}{6}\right)$
(d) $\left(-\frac{1}{3}, 0, \frac{2}{3}\right)$
48. In a triangle $P Q R, P$ is the largest angle and $\cos P=\frac{1}{3}$. Further the incircle of the triangle touches the sides $P Q, Q R$ and $R P$ at N, L and M respectively, such that the lengths of $P N, Q L$ and $R M$ are consecutive even integers. Then possible length(s) of the side(s) of the triangle is (are)
(a) 16
(b) 18
(c) 24
(d) 22
49. Consider the system of equations:
$x+y+z=0, \alpha x+\beta y+\gamma z=0, \alpha^{2} x+\beta^{2} y+\gamma^{2} z=0$
Then the system of equations has
(a) a unique solution for all values of α, β, γ
(b) infinite number of solutions if any two of α, β, γ are equal
(c) a unique solution if α, β, γ are distinct
(d) more than one, but finite number of solutions depending on values of α, β, γ

SECTION 3 (Maximum Marks : 15)

- This section contains FIVE questions.
- The answer to each question is a SINGLE DIGIT INTEGER ranging from 0 to 9 , both inclusive.
- For each question, darken the bubble corresponding to the correct integer in the ORS.
- For each question, marks will be awarded in one of the following categories:
Full Marks :+3 If only the bubble corresponding to the correct answer is darkened.
Zero Marks : 0 In all other cases.

50. The expression
$\frac{1}{\sqrt{(3 x+1)}}\left[\left(\frac{1+\sqrt{3 x+1}}{2}\right)^{7}-\left(\frac{1-\sqrt{3 x+1}}{2}\right)^{7}\right]$
is a polynomial in x of degree
51. If the matrix $A=\left[\begin{array}{cccc}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & \alpha\end{array}\right]$ is of the rank 3, then
52. $\lim _{x \rightarrow 0} \frac{e^{5 x}-e^{4 x}}{x}=$
53. If $[x]$ denotes the greatest integer less than or equal to x, then the value of $\int_{0}^{2}(|x-2|+[x]) d x$ is equal to
54. Let $f(x)=\left\{\begin{array}{cc}\frac{x^{3}+x^{2}-16 x+20}{(x-2)^{2}}, & \text { if } x \neq 2 \\ b, & \text { if } x=2\end{array}\right.$ If $f(x)$ is continuous for all x, then b is equal to

PAPER-II

PHYSICS

SECTION 1 (Maximum Marks : 18)

- This section contains SIX questions.
- Each question has FOUR options (a), (b), (c) and (d). ONLY ONE of these four options is correct.
- For each question, darken the bubble corresponding to the correct option in the ORS.
- For each question, marks will be awarded in one of the following categories:
Full Marks : +3 If only the bubble corresponding to the correct option is darkened.
Zero Marks : 0 If none of the bubbles is darkened.
Negative Marks :-1 In all other cases.

1. Two circular rings A and B, each of radius $a=130 \mathrm{~cm}$ are placed co-axially with their axes horizontal in a uniform electric field $E=10^{5} \mathrm{~N} \mathrm{C}^{-1}$ directed
 vertically upward as shown in figure. Distance between centres of these rings A and B is $h=40 \mathrm{~cm}$. Ring A has a positive charge of $q_{1}=10 \mu \mathrm{C}$ and ring B has a negative charge of $q_{2}=-20 \mu \mathrm{C}$. A particle of mass 100 g and carrying a positive charge $q=10 \mu \mathrm{C}$ is released from rest at the centre of ring A. Calculate its velocity when it reaches to the centre of ring B.

NEET/PET के Entrance Exam में हिंदी माध्यम छात्रों के लिए Triple धमाका

NCERT Textbook पर Based भौतिकी, रसायन और जीव विज्ञान की Objective पुस्तकें

NCERT पाठ्यक्रम पर आधारित और हमारे Subject Experts द्वारा निर्मित 10,000 से अधिक Objective Type प्रश्नों का अभ्यास कर इन तीनों विषयों पर अपनी महारत हासिल कर परीक्षाओं में अधिकतम सफलता प्राप्त करें और विजयी बनें।

ये तीनों पुस्तकें ही क्यों पढ़नी जरूरी हैं?

- प्रश्नों को शीघ्रता और सरलता से हल करने के लिए CHAPTERWISE SYNOPSIS (मुख्य बिंदु)
- छात्रों की प्रगति जाँचने के लिए TOPICWISE Objective प्रश्न
- NCERT Exemplar (प्रश्न प्रदर्शिका) के प्रश्न विस्तृत उत्तरों के साथ
- सभी राष्ट्रीय एवं राज्य स्तरीय प्रतियोगिताओं के लिए अत्यंत उपयोगी, सरल एवं महत्त्वपूर्ण पुस्तकें
- AIIMS $\mid J E E$ की तैयारी हेतु अभिकथन एवं तर्क प्रारूप प्रश्न
- स्वमूल्यांकन हेतु पाँच अभ्यास प्रश्न पत्र
$m \neq G$
$0 \cdot$ MTG Learning Media (P) Ltd.
Plot \#99, Sector 44, Gurgaon - 122003 (HR)

ये पुस्तकें देश के सभी शीर्ष पुस्तक विक्रेताओं के पास उपलब्ध हैं। अधिक जानकारी हेतु कृप्या संपर्क करें:
0124-6601200 or e-mail:info@mtg.in
(a) $6 \sqrt{2} \mathrm{~m} \mathrm{~s}^{-1}$
(b) $4 \sqrt{2} \mathrm{~m} \mathrm{~s}^{-1}$
(c) $7 \mathrm{~m} \mathrm{~s}^{-1}$
(d) $32 \mathrm{~m} \mathrm{~s}^{-1}$
2. A rod of mass M and length L is hung from a support. A spring of constant K fixed to a support on the left as shown is attached to the rod at a point distance x from the pivot. The frequency
 of the oscillation is
(a) $\frac{1}{2 \pi} \sqrt{\frac{K}{(M+2 m)}}$
(b) $\frac{1}{2 \pi} \sqrt{\frac{K}{\left(\frac{M}{3}+2 m\right)}}$
(c) $2 \pi \sqrt{\frac{K}{\left(\frac{M}{3}+2 m\right)}}$
(d) $2 \pi \sqrt{\frac{M+2 m}{K}}$
3. When a body is placed in surroundings at a constant temperature of $20^{\circ} \mathrm{C}$ and heated by a 10 W heater, its temperature remains constant at $40^{\circ} \mathrm{C}$. If the temperature of the body is now raised from $20^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ in 5 min at a uniform rate, the total heat it will lose to the surroundings will be
(a) 3000 J
(b) 3600 J
(c) 4500 J
(d) 5400 J
4. A tank is filled with water upto a height of 3 m from the bottom. A hole is made in the wall at a height of 52.5 cm from the bottom of the tank. If the ratio of area of the hole to area of the cross-section of the tank is 0.1 , then velocity of water coming out of the hole is
(a) $6 \mathrm{~m} \mathrm{~s}^{-1}$
(b) $7 \mathrm{~m} \mathrm{~s}^{-1}$
(c) $5 \mathrm{~m} \mathrm{~s}^{-1}$
(d) $4 \mathrm{~m} \mathrm{~s}^{-1}$
5. A conducting ring of mass 2 kg and radius 0.5 m is placed on a smooth horizontal plane. The ring
 carries a current $I=4 \mathrm{~A}$.
A horizontal magnetic field $B=10 \mathrm{~T}$ is switched on at time $t=0$ as shown in figure. The initial angular acceleration of the ring will be
(a) $40 \pi \mathrm{rad} \mathrm{s}^{-2}$
(b) $20 \pi \mathrm{rad} \mathrm{s}^{-2}$
(c) $5 \pi \mathrm{rad} \mathrm{s}^{-2}$
(d) $15 \pi \mathrm{rad} \mathrm{s}^{-2}$
6. Monochromatic light of wavelengths 400 nm and 560 nm are incident simultaneously and normally on double slit apparatus whose slit separation is 0.1 mm and screen distance is 1 m . Distance between areas of total darkness will be
(a) 4 mm
(b) 5.6 mm
(c) 14 mm
(d) 28 mm

SECTION 2 (Maximum Marks : 32)

- This section contains EIGHT questions.
- Each question has FOUR options (a), (b), (c) and (d). ONE OR MORE THAN ONE of these four option(s) is(are) correct.
- For each question, darken the bubble(s) corresponding to all the correct option(s) in the ORS.
- For each question, marks will be awarded in one of the following categories:
Full Marks : +4 If only the bubble(s) corresponding to all the correct option(s) is(are) darkened.
Partial Marks :+1 For darkening a bubble corresponding to each correct option, provided NO incorrect option is darkened.
Zero Marks : 0 If none of the bubbles is darkened.
Negative Marks :-2 In all other cases.
- For example, if (a), (c) and (d) are all the correct options for a question, darkening all these three will result in +4 marks; darkening only (a) and (d) will result in +2 marks; and darkening (a) and (b) will result in -2 marks, as a wrong option is also darkened.

7. $A O$ is a plane surface of angle of inclination of 30°. It has a smooth section of length $O X$ $=1 \mathrm{~m}$ and a massless spring S over the rough
 section $X A$ of the inclined plane as shown in figure. A block P of mass 5 kg slides from rest at O and compresses the spring by 10 cm before it is stopped and then the block ascends a length of 0.70 m from X before it slides back again. Then during this whole motion, $\left(g=10 \mathrm{~m} \mathrm{~s}^{-2}\right)$
(a) the work done against frictional force is zero
(b) the work done against frictional force is 7.5 J
(c) the gravitational potential energy transferred to the spring during its compression is 2.5 J
(d) the gravitational potential energy transferred to the spring during its compression is 23.75 J .
8. A wave equation which gives the displacement along the y-direction is given by $y=10^{-4} \sin (60 t+2 x)$ where x and y are in metre and t in second. This represents a wave
(a) travelling with a velocity of $30 \mathrm{~m} \mathrm{~s}^{-1}$ in the negative x-direction
(b) of wavelength $\pi \mathrm{m}$
(c) of frequency $(30 / \pi)$ hertz
(d) of amplitude $10^{-4} \mathrm{~m}$ travelling along the negative x-direction.
9. From an inclined plane two particles are projected with same speed at same angle θ,
 one up and other down the plane as shown in figure. Which of the following statement(s) is/are correct?
(a) The particles will collide the plane with same speed
(b) The time of flight of each particle are same
(c) Both particles strike the plane perpendicularly
(d) The particles will collide in mid air if projected simultaneously and time of flight of each particle is less than the time of collision
10. A capacitor is charged to a potential of V_{0}. It is connected with an inductor through a switch S. The switch is closed at time $t=0$. Which of the following statement(s) is/are correct?

(a) The maximum current in the circuit is $V_{0} \sqrt{\frac{C}{L}}$
(b) Potential across capacitor becomes zero for the first time at $t=\pi \sqrt{L C}$
(c) Energy stored in the inductor at time $t=\frac{\pi}{2} \sqrt{L C}$ is $\frac{1}{4} C V_{0}^{2}$
(d) Maximum energy stored in the inductor is $\frac{1}{2} C V_{0}^{2}$
11. $\mathrm{H}^{+}, \mathrm{He}^{+}$and O^{+}all having the same kinetic energy pass through a region in which there is a uniform magnetic field perpendicular to their velocities. The masses of $\mathrm{H}^{+}, \mathrm{He}^{+}$and O^{+}are $1 \mathrm{amu}, 4 \mathrm{amu}$ and 16 amu respectively. The
(a) H^{+}will be deflected most
(b) O^{+}will be deflected most
(c) He^{+}and O^{+}will be deflected equally
(d) all will be deflected equally.
12. In the two cases shown, the coefficient of kinetic friction between the block and the surface is the same and both the identical blocks are moving with the same uniform speed. If $\sin \theta=m g / 4 F_{2}$, then

(a) $F_{1}=F_{2}$
(b) $F_{1}<F_{2}$
(c) $F_{1}>F_{2}$
(d) $F_{1}=2 F_{2}$
13. The tension in a stretched string fixed at both ends is changed by 2%, the fundamental frequency is found to get changed by 15 Hz . Select the correct statement(s)

(a) Wavelength of the string of fundamental frequency does not change.
(b) Velocity of propagation of wave changes by 2%.
(c) Velocity of propagation of wave changes by 1%
(d) Original frequency is 1500 Hz .
14. A charged particle with velocity $\vec{v}=x \hat{i}+y \hat{j}$ moves in a magnetic field $\vec{B}=y \hat{i}+x \hat{j}$. The magnitude of magnetic force acting on the particle is F. Which one of the following statement(s) is/are correct?
(a) No force will act on particle, if $x=y$.
(b) $F \propto\left(x^{2}-y^{2}\right)$ if $x>y$.
(c) The force will act along z-axis, if $x>y$.
(d) The force will act along y-axis, if $y>x$.

SECTION 3 (Maximum Marks : 12)

- This section contains TWO paragraphs.
- Based on each paragraph, there are TWO questions.
- Each question has FOUR options (a), (b), (c) and (d). ONLY ONE of these four options is correct.
- For each question, darken the bubble corresponding to the correct option in the ORS.
- For each question, marks will be awarded in one of the following categories:
Full Marks : +3 If only the bubble corresponding to the correct option is darkened.
Zero Marks: 0 In all other cases.

PARAGRAPH 1

A rod of length 1 m is rigidly clamped at its midpoint. Longitudinal stationary waves are set up in such a manner that there are two nodes on either side of the midpoint. The amplitude of antinode is $2 \mu \mathrm{~m}$.
15. What is the frequency of the rod if Young's modulus of the rod is $2 \times 10^{11} \mathrm{~N} \mathrm{~m}^{-2}$ and the density of rod is $8000 \mathrm{~kg} \mathrm{~m}^{-3}$?
(a) 3125 Hz
(b) 6250 Hz
(c) 12500 Hz
(d) 25000 Hz
16. Write the equation of motion at a point 2 cm from its midpoint.
(a) $2 \times 10^{-6} \cos 2.6 \pi \sin 25000 \pi t$
(b) $10^{-6} \cos 1.3 \pi \sin 25000 \pi t$
(c) $10^{-6} \cos 1.3 \pi \sin 12500 \pi t$
(d) $2 \times 10^{-6} \cos 1.3 \pi \sin 12500 \pi t$

PARAGRAPH 2

An object at rest remains at rest and an object in motion will continue its motion with a constant velocity unless it experiences a net external force. But the magnitude of force given by Newton's $2^{\text {nd }}$ law and $3^{\text {rd }}$ law represents or gives the information about the nature of force. The second law gave a specific way of determining how the velocity changes under different influences called forces. There are so many forces calculated by Newton's law such as normal force,
tension, viscous force, weight but Newton's laws are not applicable, when velocity of an object comparable to the velocity of light and microscopic particle. If the system contains large number of particles, then if we apply the Newton's laws, concept of centre of mass is included.
17. Pulley and strings are massless. The force acting on the block of mass m

(a) $2 F$
(b) F
(c) $\frac{F}{2}$
(d) $4 F$
18. A particle of mass m moves along a circle of radius R. The modulus of average value of force acting on particle over the distance equal to a quarter of circle, if the particle moves uniformly with velocity v is
(a) $\sqrt{2} m v^{2} / \pi r$
(b) $2 \sqrt{2} m v^{2} / \pi r^{2}$
(c) $2 \sqrt{2} m v^{2} / \pi r$
(d) $m v^{2} / \pi r$

CHEMISTRY

SECTION 1 (Maximum Marks : 18)

- This section contains SIX questions.
- Each question has FOUR options (a), (b), (c) and (d). ONLY ONE of these four options is correct.
- For each question, darken the bubble corresponding to the correct option in the ORS.
- For each question, marks will be awarded in one of the following categories:
Full Marks :+3 lf only the bubble corresponding to the correct option is darkened.
Zero Marks : 0 If none of the bubbles is darkened.
Negative Marks:-1 In all other cases.

19. In the button cell widely used in watches and other devices, the following reaction takes place :
$\mathrm{Zn}_{(s)}+\mathrm{Ag}_{2} \mathrm{O}_{(s)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \longrightarrow \mathrm{Zn}_{(a q)}^{2+}+2 \mathrm{Ag}_{(s)}+$ $2 \mathrm{OH}_{(a q)}^{-}$
What will be the value of $\Delta_{r} G^{\circ}$ for the reaction?
(Given : $\mathrm{Zn}^{2+}+2 e^{-} \longrightarrow \mathrm{Zn}, E^{\circ}=-0.76 \mathrm{~V}$;
$\mathrm{Ag}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O}+2 e^{-} \longrightarrow 2 \mathrm{Ag}+2 \mathrm{OH}^{-}, E^{\circ}=0.344 \mathrm{~V}$)
(a) $-8.02 \times 10^{4} \mathrm{~J}$
(b) $1.60 \times 10^{5} \mathrm{~J}$
(c) $-2.13 \times 10^{5} \mathrm{~J}$
(d) $4.26 \times 10^{5} \mathrm{~J}$
20. Consider the following reaction,

' A ' is
(a)

(b)

(c)

(d)

21. End product of the following sequence of reactions,

is
(a)

(b) $\mathrm{CH}_{2}(\mathrm{COOH})_{2}$
(c)

(d)

22. When
 undergoes dehydration reaction in presence of concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ then what will be the major product?
(a)

(b)

(c)

(d)

23. Which of the following statements is not correct from the view point of molecular orbital theory?
(a) Be_{2} is not a stable molecule.
(b) He_{2} is not stable but He_{2}^{+}is expected to exist.
(c) Bond strength of N_{2} is maximum amongst the homonuclear diatomic molecules belonging to the second period.
(d) The order of energies of molecular orbitals in N_{2} molecule is $\sigma 2 s<\sigma^{*} 2 s<\sigma 2 p_{z}<\pi 2 p_{x}$ $=\pi 2 p_{y}<\pi^{\star} 2 p_{x}=\pi^{\star} 2 p_{y}<\sigma^{\star} 2 p_{z}$.
24. In the reaction,

the structure of the product T is
(a)

(c)

(d)

SECTION 2 (Maximum Marks : 32)

- This section contains EIGHT questions.
- Each question has FOUR options (a), (b), (c) and (d). ONE OR MORE THAN ONE of these four option(s) is(are) correct.
- For each question, darken the bubble(s) corresponding to all the correct option(s) in the ORS.
- For each question, marks will be awarded in one of the following categories:
Full Marks : +4 If only the bubble(s) corresponding to all the correct option(s) is(are) darkened.
Partial Marks : +1 For darkening a bubble corresponding to each correct option, provided NO incorrect option is darkened.
Zero Marks: 0 If none of the bubbles is darkened.
Negative Marks :-2 In all other cases.
- For example, if (a), (c) and (d) are all the correct options for a question, darkening all these three will result in +4 marks; darkening only (a) and (d) will result in +2 marks; and darkening (a) and (b) will result in -2 marks, as a wrong option is also darkened.

25. Some oxidation reactions of methane are given below. Which of them is/are controlled oxidation reactions?
(a) $\mathrm{CH}_{4(g)}+2 \mathrm{O}_{2(g)} \longrightarrow \mathrm{CO}_{2(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}$
(b) $\mathrm{CH}_{4(g)}+\mathrm{O}_{2(g)} \longrightarrow \mathrm{C}_{(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}$
(c) $\mathrm{CH}_{4(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \xrightarrow{\mathrm{Mo}_{2} \mathrm{O}_{3}} \mathrm{HCHO}+\mathrm{H}_{2} \mathrm{O}$
(d) $2 \mathrm{CH}_{4(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})} \xrightarrow{\mathrm{Cu} / 523 \mathrm{~K} / 100 \mathrm{~atm}} 2 \mathrm{CH}_{3} \mathrm{OH}$
26. Which of the following conditions show the polluted environment?
(a) pH of rain water is 5.6
(b) Amount of carbon dioxide in the atmosphere is 0.03\%
(c) Biochemical oxygen demand is 10 ppm
(d) Eutrophication
27. Which of the following compounds give(s) colour due to charge transfer transitions?
(a) $\mathrm{Cu}_{2} \mathrm{O}$
(b) $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}\right] \mathrm{SO}_{4}$
(c) Ni-dmg complex
(d) $\mathrm{NiSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
28. The correct functional group X and the reagent/ reaction conditions Y in the following reaction are

(a) $X=\mathrm{COOCH}_{3}, Y=\mathrm{H}_{2} / \mathrm{Ni} /$ heat
(b) $X=\mathrm{CONH}_{2}, Y=\mathrm{H}_{2} / \mathrm{Ni} /$ heat
(c) $X=\mathrm{CONH}_{2}, Y=\mathrm{Br}_{2} / \mathrm{NaOH}$
(d) $X=\mathrm{CN}, Y=\mathrm{H}_{2} / \mathrm{Ni} /$ heat
29. How many α - and β-particles will be emitted respectively when ${ }_{90}^{232} \mathrm{Th}$ converts into ${ }_{82}^{208} \mathrm{~Pb}$?
(a) 6,4
(b) 4,6
(c) 5,5
(d) 3,6
30. Select the correct statements.
(a) In the decomposition of an oxide into metal, entropy increases.
(b) To make ΔG negative, $T \Delta S>\Delta H$.
(c) Ellingham diagram represents change in free energy with temperature.
(d) Reduction of an oxide with aluminium is called van Arkel process.
31. Which reagent does not give oxygen as one of the products during oxidation with ozone?
(a) SO_{2}
(b) $\mathrm{SnCl}_{2} / \mathrm{HCl}$
(c) $\mathrm{H}_{2} \mathrm{~S}$
(d) PbS
32. Which of the following statements is/are correct when a mixture of NaCl and $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is gently warmed with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$?
(a) Deep red vapours are evolved.
(b) Vapours when passed into NaOH solution gives a yellow solution of $\mathrm{Na}_{2} \mathrm{CrO}_{4}$.
(c) Chlorine gas is evolved.
(d) Chromyl chloride is formed.

SECTION 3 (Maximum Marks : 12)

- This section contains TWO paragraphs.
- Based on each paragraph, there are TWO questions.
- Each question has FOUR options (a), (b), (c) and (d). ONLY ONE of these four options is correct.
- For each question, darken the bubble corresponding to the correct option in the ORS.
- For each question, marks will be awarded in one of the following categories:
Full Marks: +3 If only the bubble corresponding to the correct option is darkened.
Zero Marks : 0 In all other cases.

PARAGRAPH 1

During the detection of elements by Lassaigne's test, the covalent compounds are converted into ionic compounds by fusion with metallic sodium. The nitrogen, sulphur and halogens present in the organic compound are converted into cyanides, sulphides and halides respectively which are then detected by their usual tests.
33. An organic compound containing N, S and O as extra elements is fused with sodium metal and then extracted with water. The species which is not present in the solution of extract is
(a) CN^{-}
(b) CNS^{-}
(c) NO_{3}^{-}
(d) S^{2-}
34. Which of the following compounds will give blood red colour in Lassaigne's test?
(a)

(b) $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}$
(c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{SO}_{3} \mathrm{H}$
(d) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$

PARAGRAPH 2

In stereoisomerism, the isomers differ only in the spatial arrangement of groups about the central metal atom. It is of two types: (i) Geometrical isomerism, this isomerism arises in heteroleptic complexes due to the difference in geometrical complexes and geometrical arrangement of the ligands around the central atom. (ii) Optical isomerism, this isomerism is shown by chiral molecules, i.e., the molecules which do not have plane of symmetry.
35. The number of isomers exhibited by $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$ is
(a) 2
(b) 3
(c) 4
(d) 5
36. Which of the following will exhibit optical isomerism?
(a) $\left[\mathrm{Cr}(e n)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{3+}$
(b) $\left[\mathrm{Cr}(e n)_{3}\right]^{3+}$
(c) trans- $\left[\mathrm{Cr}(\text { en }) \mathrm{Cl}_{2}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$
(d) trans- $\left[\mathrm{Cr}(e n)_{2} \mathrm{Cl}_{2}\right]^{+}$

MATHEMATICS

SECTION 1 (Maximum Marks : 18)

- This section contains SIX questions.
- Each question has FOUR options (a), (b), (c) and (d). ONLY ONE of these four options is correct.
- For each question, darken the bubble corresponding to the correct option in the ORS.
- For each question, marks will be awarded in one of the following categories:
Full Marks : +3 If only the bubble corresponding to the correct option is darkened.
Zero Marks : 0 If none of the bubbles is darkened. Negative Marks :-1 In all other cases.

37. $\lim _{x \rightarrow 1}\left(\frac{1+x}{2+x}\right)^{\left(\frac{1-\sqrt{x}}{1-x}\right)}$
(a) is 1
(b) does not exist
(c) is $\sqrt{\frac{2}{3}}$
(d) is $\ln 2$
38. If $I=\int_{0}^{1} \frac{d x}{1+x^{\pi / 2}}$, then
(a) $\log _{e} 2<I<\pi / 4$
(b) $\log _{e} 2>I$
(c) $I=\pi / 4$
(d) $I=\log _{e} 2$
39. If the angle between the curves $y=2^{x}$ and $y=3^{x}$ is α, then the value of $\tan \alpha$ is equal to
(a) $\frac{\log (3 / 2)}{1+(\log 2)(\log 3)}$
(b) $\frac{6}{7}$
(c) $\frac{1}{7}$
(d) $\frac{\log (6)}{1+(\log 2)(\log 3)}$
40. The solution of the differential equation $y \sin (x / y) d x=(x \sin (x / y)-y) d y$ satisfying $y(\pi / 4)=1$ is
(a) $\cos \frac{x}{y}=\log _{e} y+\frac{1}{\sqrt{2}}$ (b) $\sin \frac{x}{y}=\log _{e} y+\frac{1}{\sqrt{2}}$
(c) $\sin \frac{x}{y}=\log _{e} x-\frac{1}{\sqrt{2}}$
(d) $\cos \frac{x}{y}=-\log _{e} x-\frac{1}{\sqrt{2}}$
41. Let α, β be two distinct roots of $a \cos \theta+b \sin \theta=c$, where a, b and c are three real constants and $\theta \in[0,2 \pi]$. Then $\alpha+\beta$ is also a root of the same equation, if
(a) $a+b=c$
(b) $b+c=a$
(c) $c+a=b$
(d) $c=a$
42. If $x_{1}, x_{2}, \ldots, x_{18}$ are observations such that $\sum_{j=1}^{18}\left(x_{j}-8\right)=9$ and $\sum_{j=1}^{18}\left(x_{j}-8\right)^{2}=45$, then the standard deviation of these observations is
(a) $\sqrt{\frac{81}{34}}$
(b) 5
(c) $\sqrt{5}$
(d) $3 / 2$

SECTION 2 (Maximum Marks : 32)

- This section contains EIGHT questions.
- Each question has FOUR options (a), (b), (c) and (d). ONE OR MORE THAN ONE of these four option(s) is(are) correct.
- For each question, darken the bubble(s) corresponding to all the correct option(s) in the ORS.
- For each question, marks will be awarded in one of the following categories:
Full Marks : +4 If only the bubble(s) corresponding to all the correct option(s) is(are) darkened.
Partial Marks :+1 For darkening a bubble corresponding to each correct option, provided NO incorrect option is darkened.
Zero Marks : 0 If none of the bubbles is darkened.
Negative Marks :-2 In all other cases.
- For example, if (a), (c) and (d) are all the correct options for a question, darkening all these three will result in +4 marks; darkening only (a) and (d) will result in +2 marks; and darkening (a) and (b) will result in -2 marks, as a wrong option is also darkened.

43. Let $P Q R$ be a triangle. Let $\vec{a}=\overrightarrow{Q R}, \vec{b}=\overrightarrow{R P}$ and $\vec{c}=\overrightarrow{P Q}$. If $|\vec{a}|=12,|\vec{b}|=4 \sqrt{3}$ and $\vec{b} \cdot \vec{c}=24$, then which of the following is (are) true?
(a) $\frac{|\vec{c}|^{2}}{2}-|\vec{a}|=12$
(b) $\frac{|\vec{c}|^{2}}{2}+|\vec{a}|=30$
(c) $|\vec{a} \times \vec{b}+\vec{c} \times \vec{a}|=48 \sqrt{3}$
(d) $\vec{a} \cdot \vec{b}=-72$
44. The tangent $P T$ and the normal $P N$ to the parabola $y^{2}=4 a x$ at a point P on it meet its axis at points T and N, respectively. The locus of the centroid of the triangle PTN is a parabola whose
(a) vertex is $\left(\frac{2 a}{3}, 0\right)$
(b) directrix is $x=0$
(c) latus rectum is $\frac{2 a}{3}$
(d) focus is $(a, 0)$
45. Let $f: R \rightarrow R$ be such that $f(2 x-1)=f(x)$ for all $x \in R$. If f is continuous at $x=1$ and $f(1)=1$, then
(a) $f(2)=1$
(b) $f(2)=2$
(c) fis continuous only at $x=1$
(d) f is continuous at all points
46. The angle of intersection between the curves $y=[|\sin x|+|\cos x|]$ and $x^{2}+y^{2}=10$, where $[x]$ denotes the greatest integer $\leq x$, is
(a) $\tan ^{-1}(3)$
(b) $\tan ^{-1}(-3)$
(c) $\tan ^{-1}(\sqrt{3})$
(d) $\tan ^{-1}(1 / \sqrt{3})$
47. If the equation $x^{2}+y^{2}-10 x+21=0$ has real roots $x=\alpha$ and $y=\beta$ then
(a) $3 \leq x \leq 7$
(b) $3 \leq y \leq 7$
(c) $-2 \leq y \leq 2$
(d) $-2 \leq x \leq 2$
48. If $[x]$ denotes the greatest integer $\leq x$, then the value of $\lim _{x \rightarrow 0}|x|^{[\cos x]}$ is
(a) 0
(b) 1
(c) -1
(d) does not exist
49. If A, B are two events such that $P(A \cup B) \geq \frac{3}{4}$ and $\frac{1}{8} \leq P(A \cap B) \leq \frac{3}{8}$ then
(a) $P(A)+P(B) \leq \frac{11}{8}$
(b) $P(A) \cdot P(B) \leq \frac{3}{8}$
(c) $P(A)+P(B) \geq \frac{7}{8}$
(d) None of these
50. If $\cos x$ and $\sin x$ are solutions of the differential equation $a_{0} \frac{d^{2} y}{d x^{2}}+a_{1} \frac{d y}{d x}+a_{2} y=0$, where a_{0}, a_{1}, a_{2}
are real constants then which of the following is/are always true?
(a) $A \cos x+B \sin x$ is a solution, where A and B are real constants.
(b) $A \cos \left(x+\frac{\pi}{4}\right)$ is a solution, where A is a real constant.
(c) $A \cos x \sin x$ is a solution, where A is real constant.
(d) $A \cos \left(x+\frac{\pi}{4}\right)+B \sin \left(x-\frac{\pi}{4}\right)$ is a solution, where A and B are real constants.

SECTION 3 (MAXIMUM MARKS : 12)

- This section contains TWO paragraphs.
- Based on each paragraph, there are TWO questions.
- Each question has FOUR options (a), (b), (c) and (d). ONLY ONE of these four options is correct.
- For each question, darken the bubble corresponding to the correct option in the ORS.
- For each question, marks will be awarded in one of the following categories:
Full Marks : +3 If only the bubble corresponding to the correct option is darkened.
Zero Marks : 0 In all other cases.

PARAGRAPH 1

Consider the circle $x^{2}+y^{2}=9$ and the parabola $y^{2}=8 x$. They intersect at P and Q in the first and the fourth quadrants, respectively. Tangents to the circle at P and Q intersect the x-axis at R and tangents to the parabola at P and Q intersect the x-axis at S.
51. The ratio of the areas of the triangles $P Q S$ and $P Q R$ is
(a) $1: \sqrt{2}$
(b) $1: 2$
(c) $1: 4$
(d) $1: 8$
52. The radius of the circumcircle of the triangle $P R S$ is
(a) 5
(b) $3 \sqrt{3}$
(c) $3 \sqrt{2}$
(d) $2 \sqrt{3}$

PARAGRAPH 2

A fär die is tossd re ed ly untila six is obta nd. Le X de oted hen umbe of tosse rq uird.
53. The probability that $X \geq 3$ equals
(a) $\frac{125}{216}$
(b) $\frac{25}{36}$
(c) $\frac{5}{36}$
(d) $\frac{25}{216}$
54. The conditional probability that $X \geq 6$ given $X>3$ equals
(a) $\frac{125}{216}$
(b) $\frac{25}{216}$
(c) $\frac{5}{36}$
(d) $\frac{25}{36}$

SOLUTIONS

PAPER-I

1. (a): The photon of energy 10.2 eV excites the electron from $n=1$ to $n=2$ as
$E_{2}-E_{1}=-3.4 \mathrm{eV}-(-13.6 \mathrm{eV})=10.2 \mathrm{eV}$
The electron returns to the ground state in less than a microsecond and releases a photon of energy 10.2 eV . As the ionisation energy is 13.6 eV , the second photon of 15 eV energy ionises the atom by ejecting an electron and the balance of energy ($15 \mathrm{eV}-13.6 \mathrm{eV}=1.4 \mathrm{eV}$) is retained by the ejected electron.
2. (b): The rod will rotate about A. Therefore, from conservation of mechanical energy, Decrease in gravitational potential energy $=$ increase in rotational kinetic energy about A
 or $\quad m g \frac{l}{2}=\frac{1}{2} I_{A} \omega^{2}$ or $m g \frac{l}{2}=\frac{1}{2}\left(\frac{m l^{2}}{3}\right) \omega^{2}$
$\therefore \quad \omega^{2}=\frac{3 g}{l}$
Centripetal force of COM of rod in this position is
$m \frac{l}{2} \omega^{2}=\frac{3 m g}{2}$
(towards A)
Let F be the force exerted by the hinge on the rod upwards. Then
$F-m g=\frac{3 m g}{2} \quad \therefore \quad F=\frac{5}{2} m g$
or force exerted by the rod on the hinge is $\frac{5}{2} m g$
downwards.
3. (a) : It is clear from figure that coordinates of centre of mass C,
$X_{C M}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}}$

$$
=\frac{6 \times 0+2 \times 0+2 \times a}{6+2+2}=\frac{a}{5}
$$

$\therefore \quad\left(X_{C M}, Y_{C M}\right)=\left(\frac{a}{5}, \frac{a}{5}\right)$
Hence $\overrightarrow{O C}=\frac{a}{5} \hat{i}+\frac{a}{5} \hat{j}$
$\therefore \quad$ Angle made by $\overrightarrow{O C}$ with x-axis
$=\tan ^{-1}\left(\frac{y}{x}\right)=\tan ^{-1}\left(\frac{a / 5}{a / 5}\right)=45^{\circ}$
4. (a) : Let $\vec{v}_{r}=v_{r x} \hat{i}+v_{r y} \hat{j}$ and $\vec{v}_{m}=5 \hat{i}$ (in $1^{\text {st }}$ case)

$$
\vec{v}_{r m}=\left(v_{r x}-v_{m}\right) \hat{i}+v_{r y} \hat{j}
$$

Case (i) : $\tan 90^{\circ}=\frac{v_{r y}}{v_{r x}-5}$ or $v_{r x}=5 \mathrm{~m} \mathrm{~s}^{-1}$
Case (ii): $\vec{v}_{r m}=(5 \hat{i}-10 \hat{i})+v_{r y} \hat{j} \quad\left(\because \quad \vec{v}_{m}=10 \hat{i}\right)$

$$
\begin{aligned}
& \tan 60^{\circ}=\frac{v_{r y}}{5-10} \text { or } v_{r y}=-5 \sqrt{3} \\
& \vec{v}_{r}=5 \hat{i}-5 \sqrt{3} \hat{j} \Rightarrow\left|\vec{v}_{r}\right|=10 \mathrm{~m} \mathrm{~s}^{-1} \\
& \angle \phi=\tan ^{-1}\left(\frac{-5 \sqrt{3}}{5}\right) \text { or } \phi=120^{\circ}
\end{aligned}
$$

5. (c)
6. (c, d) : Here, $\vec{E}=E_{0} \hat{j}, \vec{B}=B_{0} \hat{j}$ If $\theta=0^{\circ}$, then due to magnetic force path is circular but due to electric force $q E_{0}(\uparrow) q$ will have accelerated motion along y-axis.

So combined path of q will be a helical path with variable pitch. So (a) and (b) are wrong.
If $\theta=10^{\circ}$ then due to $v \cos \theta$, path is circular and due to $q E_{0}$ and $v \sin \theta, q$ has accelerated motion along y-axis so combined path is a helical path with variable pitch. So (c) is correct.
If $\theta=90^{\circ}$ then $F_{B}=0$ and due to $q E_{0}$ motion is accelerated along y-axis. So (d) is correct.
7. (a, b, c) : Here, $t=8$ hours

As $N=N_{0} e^{-\lambda t} \quad$ or $\quad \frac{N}{N_{0}}=e^{-\lambda t}$
$0.0039=e^{-\lambda 8} \quad$ or $e^{\lambda 8}=\frac{1}{0.0039}$
$e^{\lambda 8}=256$ or $e^{\lambda 8}=2^{8}$
Taking natural logarithm on both sides, we get
$8 \lambda=8 \ln 2 \quad$ or $\quad \lambda=\ln 2$ per hour
Option (c) is correct.
$T_{1 / 2}=\frac{\ln 2}{\lambda}=1$ hour
Option (a) is correct.
Mean time, $\tau=\frac{1}{\lambda}=\frac{1}{\ln 2}$ hour
Option (b) is correct.
$N=(10)^{8}\left(\frac{1}{2}\right)^{\left(\frac{1}{2}\right)}=\frac{1}{\sqrt{2}} \times 10^{8}=N=5 \sqrt{2} \times 10^{7}$
Option (d) is incorrect.
8. (a, b, c)
9. (b, c, d)
10. (b, d)

11. $(\mathrm{a}, \mathrm{d}): \mathrm{As}, F_{1}=k_{1} x, F_{2}=k_{2} x$.

Work done $W_{1}=\frac{1}{2} k_{1} x^{2}$ and $W_{2}=\frac{1}{2} k_{2} x^{2}$
or $\quad \alpha=\frac{W_{1}}{W_{2}}=\frac{k_{1}}{k_{2}}$
When the springs are stretched by the same force F, the extensions in springs A and B are x_{1} and x_{2} respectively which are given by
$F=k_{1} x_{1}=k_{2} x_{2}$ or $\frac{x_{1}}{x_{2}}=\frac{k_{2}}{k_{1}}$
Work done $W_{1}^{\prime}=\frac{1}{2} k_{1} x_{1}^{2}$ and $W_{2}^{\prime}=\frac{1}{2} k_{2} x_{2}^{2}$
$\therefore \quad \frac{W_{1}^{\prime}}{W_{2}^{\prime}}=\frac{k_{1}}{k_{2}} \cdot \frac{x_{1}^{2}}{x_{2}^{2}}$
Using (i) and (ii) we get
$\beta=\frac{W_{1}^{\prime}}{W_{2}^{\prime}}=\frac{k_{1}}{k_{2}} \cdot \frac{k_{2}^{2}}{k_{1}^{2}}=\frac{k_{2}}{k_{1}}$
12. $(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d})$: Rate of heat flow $H=\frac{800-80}{\left(\frac{l_{i}}{K_{i} A}\right)+\left(\frac{l_{o}}{K_{o} A}\right)}$
which is also equal to $\frac{800-T}{\left(\frac{l_{i}}{K_{i} A}\right)}$. Using these two
relations we get, $T=800-\frac{720}{1+\left(\frac{K_{i}}{K_{o}}\right)\left(\frac{l_{o}}{l_{i}}\right)}$. Thus one can reduce the temperature at the interface by any of the four options given.
13. (a, b, c, d) : Intensity, by definition, is the energy flowing per unit area per unit time.
The intensity is related to the displacement amplitude A of the sound wave by

$$
I=\frac{1}{2} \rho v \omega^{2} A^{2}
$$

The displacement amplitude is given by $A=\frac{P}{B k}$, where $k\left(=\frac{\omega}{v}\right)$ is the propagation constant.
The speed is given by $v=\sqrt{\frac{B}{\rho}}$.
Use these relations to get the required expressions.
14. (2)

From similar triangles $A O B$ and $B D C$
$\frac{O B}{B D}=\frac{A O}{C D}$ or $\frac{x_{1}}{x_{2}}=\frac{(d / 2)}{(d / 4)}$
or $\quad x_{1}=2 x_{2}$
As $x_{1}+x_{2}=3 f, 2 x_{2}+x_{2}=3 f$ or $x_{2}=f$
i.e. $x_{1}=2 f$
$\therefore \quad n=2$.
15. (7)
16. (4): Let the velocities of car 1 and car 2 be $v_{1} \mathrm{~m} \mathrm{~s}^{-1}$ and $v_{2} \mathrm{~m} \mathrm{~s}^{-1}$.
$\therefore \quad$ Apparent frequencies of sound emitted by car 1 and car 2 as detected at end point are
$v_{1}=\frac{v_{0} v}{v-v_{1}}$ and $v_{2}=\frac{v_{0} v}{v-v_{2}}$
$\therefore \quad 330=\frac{300 \times 330}{330-v_{1}}$ or $v_{1}=30 \mathrm{~m} \mathrm{~s}^{-1}$
and $360=\frac{300 \times 330}{330-v_{2}}$ or $v_{2}=55 \mathrm{~m} \mathrm{~s}^{-1}$

The distance between both the cars just when the $2^{\text {nd }}$ car reaches point B (as shown in figure) is
$100 \mathrm{~m}=v_{2} t-v_{1} t$

$$
t=\frac{100}{v_{2}-v_{1}}=\frac{100}{55-30}=4 \mathrm{~s}
$$

17. (5): The capacitance of a parallel plate capacitor in air is given by

$$
\begin{equation*}
C=\frac{\varepsilon_{0} A}{d} \tag{i}
\end{equation*}
$$

By introducing a slab of thickness t, the new capacitance C^{\prime} becomes

$$
\begin{equation*}
C^{\prime}=\frac{\varepsilon_{0} A}{d^{\prime}-t\left(1-\frac{1}{K}\right)} \tag{ii}
\end{equation*}
$$

The charge $(Q=C V)$ remains the same in both the cases.
Hence

$$
\begin{aligned}
\frac{\varepsilon_{0} A}{d} & =\frac{\varepsilon_{0} A}{d^{\prime}-t\left(1-\frac{1}{K}\right)} \\
\text { or } \quad d & =d^{\prime}-t\left(1-\frac{1}{K}\right)
\end{aligned}
$$

Here, $d^{\prime}=d+2.4 \times 10^{-3} \mathrm{~m}, t=3 \mathrm{~mm}=3 \times 10^{-3} \mathrm{~m}$
Substituting these values, we get
$d=d+\left(2.4 \times 10^{-3}\right)-3 \times 10^{-3}\left(1-\frac{1}{K}\right)$
or $\left(2.4 \times 10^{-3}\right)=3 \times 10^{-3}\left(1-\frac{1}{K}\right)$
Solving it, we get $K=5$
18. (7)
19. (c) : $k=\frac{1}{t}\left[\frac{1}{a-x}-\frac{1}{a}\right]$ for second order reaction.
$\therefore \quad \frac{1}{a-x}=k t+\frac{1}{a}$
\because The given graph between $(a-x)^{-1}$ and time ' t ' is linear.
\therefore slope $=k=\tan \theta=0.5 \mathrm{~L} \mathrm{~mol}^{-1} \mathrm{~min}^{-1}$

$$
O A=\frac{1}{a}=2 \mathrm{~L} \mathrm{~mol}^{-1}
$$

$\therefore a=0.5 \mathrm{~mol} \mathrm{~L}^{-1}$
For second order reaction, rate of reaction is proportional to the square of concentration.
Rate $=k(a)^{2}=0.5 \times 0.5 \times 0.5=0.125 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$
20. (c)
21. (c) : $w=-p \Delta V=-p\left(V_{2}-V_{1}\right)=-1(20-10) \mathrm{atm} \mathrm{dm}^{3}$ $=-10 \mathrm{~atm} \mathrm{dm}{ }^{3}=-10 \times 101.27 \mathrm{~J}=-1012.7 \mathrm{~J}$ $\Delta U=q+w=800-1012.7=-212.7 \mathrm{~J} \approx-213 \mathrm{~J}$
22. (a) : $d=\frac{Z \times M}{a^{3} \times N_{A}}$ or $Z=\frac{d \times a^{3} \times N_{A}}{M}$

$$
Z=\frac{\left(2 \mathrm{~g} \mathrm{~cm}^{-3}\right)\left(5 \times 10^{-8} \mathrm{~cm}\right)^{3}\left(6 \times 10^{23} \mathrm{~mol}^{-1}\right)}{75 \mathrm{~g} \mathrm{~mol}^{-1}}=2
$$

Since, the number of atoms per unit cell is 2 . It indicates that the metal has body centred cubic ($b c c$) lattice.
For $b c c$ lattice, body diagonal of the unit cell, $4 \times$ atomic radius $(r)=\sqrt{3} \times$ edge length (a)
$\therefore 4 r=\sqrt{3} \times 5 \AA$ or $r=\frac{\sqrt{3}}{4} \times 5 \AA=2.165 \AA$
23. (a): The graph reveals that the solubility of gas P is lowest. Thus, the value of K_{H} for gas P is highest because higher the value of K_{H}, lower is the solubility of the gas.
24. ($\mathrm{a}, \mathrm{b}, \mathrm{c}$)
25. (b, d)
26. $(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}): \mathrm{HBr}+\mathrm{KOH} \longrightarrow \mathrm{KBr}+\mathrm{H}_{2} \mathrm{O}$;
volume of the resulting solution will be doubled and the solution will be neutral ($\mathrm{pH}=7$).

Hence, $\left[\mathrm{K}^{+}\right]=\left[\mathrm{Br}^{-}\right]=\frac{0.1}{2}=0.05 \mathrm{~mol} \mathrm{~L}^{-1}$
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{OH}^{-}\right]=1.0 \times 10^{-7} \mathrm{~mol} \mathrm{~L}^{-1}$
27. (b): Bridged ion would generate a pair of enantiomers.

28. (b,d): When hard water is passed through zeolite, Ca^{2+} and Mg^{2+} react with sodium zeolite and form calcium and magnesium zeolites.

$$
\begin{aligned}
& \mathrm{Na}_{2} \mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{8} \cdot x \mathrm{H}_{2} \mathrm{O}+\mathrm{Ca}^{2+} \rightarrow \mathrm{CaAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8} \cdot x \mathrm{H}_{2} \mathrm{O} \\
&+ 2 \mathrm{Na}^{+} \\
& \mathrm{Na}_{2} \mathrm{Al}_{2} \mathrm{Si}_{2} \mathrm{O}_{8} \cdot x \mathrm{H}_{2} \mathrm{O}+\mathrm{Mg}^{2+} \rightarrow \mathrm{MgAl}_{2} \mathrm{Si}_{2} \mathrm{O}_{8} \cdot x \mathrm{H}_{2} \mathrm{O} \\
&+2 \mathrm{Na}^{+}
\end{aligned}
$$

29. (c) : -Cl group present at o - or p-positions to the electron withdrawing group is activated towards nucleophilic substitution reaction. Hence, only -Cl present at the o - or p-position to the $-\mathrm{NO}_{2}$ group will be replaced by $-\mathrm{NH}_{2}$ group.
30. (a, c, d)
31. (a,b, c, d)
32. (5) : $\mathrm{O}_{2}^{+}, \mathrm{CN}, \mathrm{NO}, \mathrm{N}_{2}^{+}$and CO^{+}have bond order of 2.5.
33. (5): Mass of glucose $=120 \mathrm{~g}$

No. of moles of glucose $=\frac{120}{180}=0.67$
Heat produced after eating 0.67 mol of glucose

$$
=0.67 \times 2880=1929.6 \mathrm{~kJ}
$$

Energy available for muscular work

$$
=1929.6 \times \frac{25}{100}=482.4 \mathrm{~kJ}
$$

Approximate distance that a person will walk

$$
=\frac{482.4}{100}=4.824 \mathrm{~km} \approx 5 \mathrm{~km}
$$

34. (3) : $\left[\mathrm{Co}_{2}(\mathrm{CO})_{8}\right]$ has six terminal and two bridged

CO groups

the ratio is $6: 2$
i.e., $3: 1$. Hence, the value of x is 3 .
35. (8) :

Initial no. of moles :
No. of moles at eq. :

Given that, at equilibrium,

$$
\begin{aligned}
& \left(\frac{n_{A}}{n_{B}}\right)_{\text {eq. }}=\left(\frac{n_{B}}{n_{A}}\right)_{\text {initial }} \\
& \frac{\frac{2 V}{R T}+x}{\frac{4 V}{R T}-x}=\frac{\frac{4 V}{R T}}{\frac{2 V}{R T}} \\
\therefore \quad & x=\frac{2 V}{R T} \\
\therefore \quad & K_{c}=\frac{\left(\frac{4 V}{R T}\right)^{8}}{\left(\frac{2 V}{R T}\right)^{8}}=2^{8}=2^{y} \\
\therefore \quad & y=8
\end{aligned}
$$

36. (8) :

37. (b): $x+y+z=0, x \geq-5, y \geq-5, z \geq-5$

Let $x=\alpha-5, \alpha \geq 0, y=\beta-5, \beta \geq 0, z=\gamma-5, \gamma \geq 0$
Now, $(\alpha-5+\beta-5+\gamma-5)=0 \Rightarrow \alpha+\beta+\gamma=15$
No. of integral solution $={ }^{15+3-1} C_{3-1}={ }^{17} C_{2}=136$.
38. (c) : Let $S=$ smoker, $S^{\prime}=$ Non-smoker, $D=$ death by cancer
Using conditional probability, we can write
$P(D)=P(S) P(D \mid S)$ or $P\left(S^{\prime}\right) P\left(D \mid S^{\prime}\right)$
$0.006=\frac{20}{100} \cdot P(D \mid S)+\frac{80}{100} \cdot P\left(D \mid S^{\prime}\right)=\frac{1}{5} \cdot x+\frac{4}{5} \cdot \frac{x}{10}$
[Let $P(D \mid S)=x$ and given $\left.P(D \mid S)=10 \cdot P\left(D \mid S^{\prime}\right)\right]$
$\Rightarrow \quad x=\frac{3}{140}$
39. (d) : Let $A=\left[\begin{array}{llll}d_{1} & 0 & 0 & 0 \\ 0 & d_{2} & 0 & 0 \\ 0 & 0 & d_{3} & 0 \\ 0 & 0 & 0 & d_{4}\end{array}\right]$
$A^{2}=A \cdot A=\left[\begin{array}{llll}d_{1}^{2} & 0 & 0 & 0 \\ 0 & d_{2}^{2} & 0 & 0 \\ 0 & 0 & d_{3}^{2} & 0 \\ 0 & 0 & 0 & d_{4}^{2}\end{array}\right]$
Given, $A^{2}=A$
$\begin{array}{ll}\therefore & d_{i}^{2}=d_{i}(i=1,2,3,4) \quad \text { or } \quad d_{i}\left(d_{i}-1\right)=0 \\ \Rightarrow & d_{i}=0 \text { or } 1 \text { for } i=1,2,3,4\end{array}$
$\therefore \quad$ Each diagonal elements can be chosen in 2 ways (either 0 or 1). As there are 4 diagonal elements.
$\therefore \quad$ No. of ways $=2 \times 2 \times 2 \times 2=16$
$\therefore \quad$ No. of non-zero diagonal matrices
$=16-1=15 \quad[\because$ One of them is zero matrix $]$
40. (a) : $\sin x+\operatorname{cosec} x=2$ (given)

Squaring both sides, we get
$\sin ^{2} x+\operatorname{cosec}^{2} x+2=4$ or $\sin ^{2} x+\operatorname{cosec}^{2} x=2$
$\therefore \quad$ For $n=2, \sin ^{n} x+\operatorname{cosec}^{n} x=2$
On cubing, equation (i) gives

$$
\sin ^{3} x+\operatorname{cosec}^{3} x+3(2)=8
$$

or $\sin ^{3} x+\operatorname{cosec}^{3} x=8-6=2$
$\therefore \quad$ For $n=3, \sin ^{n} x+\operatorname{cosec}^{n} x=2$
For $n=4,(\sin x+\operatorname{cosec} x)^{4}=16$
$\Rightarrow \quad\left(\sin ^{2} x+\operatorname{cosec}^{2} x+2\right)^{2}=16$
$\Rightarrow \sin ^{4} x+\operatorname{cosec}^{4} x+4+2+4(2)=16$
$\Rightarrow \sin ^{4} x+\operatorname{cosec}^{4} x=16-14=2$
Proceeding in the same way, we find that

$$
\sin ^{n} x+\operatorname{cosec}^{n} x=2 \forall n \in N
$$

41. (b): Since, $g(x) g(y)=g(x)+g(y)+g(x y)-2$

Now, at $x=0, y=2$, we get $g(0) g(2)=g(0)+g(2)$

$$
+g(0)-2
$$

$\Rightarrow 5 g(0)=5+2 g(0)-2 \Rightarrow 3 g(0)=3 \Rightarrow g(0)=1$
$g(x)$ is given in a polynomial and by the given relation $g(x)$ can not be linear.
Let $g(x)=x^{2}+k \Rightarrow g(x)=x^{2}+1[\because g(0)=1]$
$\therefore \quad\left(x^{2}+1\right)\left(y^{2}+1\right)=x^{2}+1+y^{2}+1+x^{2} y^{2}+1-2$
$\therefore \quad \lim _{x \rightarrow 3} g(x)=g(3)=3^{2}+1=10$
42. (b, d) : We have, $4 x^{2}+9 y^{2}=1$...(i) \& $8 x=9 y$...(ii)

Differentiating (i) w.r.t. x, we get
$8 x+18 y \frac{d y}{d x}=0 \Rightarrow \frac{d y}{d x}=-\frac{4 x}{9 y}$
\Rightarrow slope of tangent $=\frac{-4 x}{9 y}$.
Also, slope of line (ii) $=\frac{8}{9}$
Since line (ii) is parallel to the tangent.
$\therefore \quad \frac{-4 x}{9 y}=\frac{8}{9} \Rightarrow x=-2 y$
From (i), $4\left(4 y^{2}\right)+9 y^{2}=1 \Rightarrow y^{2}=\frac{1}{25} \Rightarrow y= \pm \frac{1}{5}$
When $y=\frac{1}{5}, x=-\frac{2}{5}$; when $y=-\frac{1}{5}, x=\frac{2}{5}$
$\therefore \quad$ Points are $\left(-\frac{2}{5}, \frac{1}{5}\right)$ and $\left(\frac{2}{5},-\frac{1}{5}\right)$
43. (a, d)
44. $(\mathbf{a}, \mathrm{b}):$ Let $\left.A\left(x_{1}, y_{1}\right), B\left(x_{2}, y_{2}\right)\right)$ be the points of intersection.
On solving, $x^{2}=a(2 x+1)$
$\Rightarrow x^{2}-2 a x-a=0$
$\therefore \quad x_{1}+x_{2}=2 a, x_{1} x_{2}=-a$

Now, $A B=\sqrt{40} \Rightarrow \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}=\sqrt{40}$
$\Rightarrow \quad \sqrt{\left(x_{2}-x_{1}\right)^{2}+\left\{2\left(x_{2}-x_{1}\right)\right\}^{2}}=\sqrt{40}$
$\Rightarrow \quad 5\left\{\left(x_{2}-x_{1}\right)^{2}\right\}=40 \Rightarrow\left(x_{1}+x_{2}\right)^{2}-4 x_{1} x_{2}=8$
$\Rightarrow 4 a^{2}+4 a=8 \Rightarrow a^{2}+a-2=0 \Rightarrow a=1,-2$
45. (a, d) : $\frac{d y}{d x}-y \tan x=2 x \sec x$

It is a linear differential equation.
$\therefore \quad$ I.F. $=e^{-\int \tan x d x}=e^{-\operatorname{In}(\sec x)}=\cos x$
The solution is $y \cdot \cos x=\int 2 x \sec x \cos x d x=x^{2}+c$ We have $y(0)=0 \Rightarrow c=0 \quad \therefore y=x^{2} \sec x$
$y\left(\frac{\pi}{4}\right)=\frac{\pi^{2}}{16} \cdot \sqrt{2}=\frac{\pi^{2}}{8 \sqrt{2}} \Rightarrow y^{\prime}=2 x \sec x+x^{2} \sec x \tan x$
$y^{\prime}\left(\frac{\pi}{3}\right)=2 \cdot \frac{\pi}{3} \cdot 2+\frac{\pi^{2}}{9} 2 \cdot \sqrt{3}=\frac{4 \pi}{3}+\frac{2 \pi^{2}}{3 \sqrt{3}}$
46. (b, d) : In any series of $(2 n-1)$ terms, the middle term is t_{n}. According to problem, t_{n} of A.P., G.P. and H.P. are a, b, c respectively. Hence, a, b, c are A.M., G.M. and H.M. respectively.
$\because \quad$ A.M. \geq G.M. \geq H.M. $\quad \Rightarrow \quad a \geq b \geq c$
Further, (G.M. $)^{2}=($ A.M. $) \times($ H.M. $)$
$\therefore \quad b^{2}=a c \quad \Rightarrow \quad a c-b^{2}=0$
47. (a, b) : By geometrical condition, line L is parallel to the line of intersection of P_{1} and P_{2}.
A vector along L is $(\hat{i}+2 \hat{j}-\hat{k}) \times(2 \hat{i}-\hat{j}+\hat{k})$ $=\hat{i}-3 \hat{j}-5 \hat{k}$
Any point on L is $A(\lambda,-3 \lambda,-5 \lambda)$
The foot of perpendicular from A to plane P_{1} is
$\frac{\alpha-\lambda}{1}=\frac{\beta+3 \lambda}{2}=\frac{\gamma+5 \lambda}{-1}=-\frac{\lambda-6 \lambda+5 \lambda+1}{1+4+1}=-\frac{1}{6}$
\therefore The foot of perpendicular is

$$
\left(\lambda-\frac{1}{6},-3 \lambda-\frac{1}{3},-5 \lambda+\frac{1}{6}\right)
$$

48. (b, d) : Let $P N=2 \lambda-2$,
$Q L=2 \lambda$ and $M R=2 \lambda+2$
So $P Q=4 \lambda-2$,
$Q R=4 \lambda+2, R P=4 \lambda$

Since, $\cos P=\frac{1}{3}$
$\Rightarrow 3\left[(4 \lambda)^{2}+(4 \lambda-2)^{2}-(4 \lambda+2)^{2}\right]=2 \cdot 4 \lambda(4 \lambda-2)$
$\Rightarrow 3\left\{16 \lambda^{2}-32 \lambda\right\}=8 \lambda(4 \lambda-2) \Rightarrow 16 \lambda^{2}=80 \lambda$
$\therefore \quad \lambda=5$
The sides are 18, 20 and 22.
49. (b, c) : $D=\left|\begin{array}{ccc}1 & 1 & 1 \\ \alpha & \beta & \gamma \\ \alpha^{2} & \beta^{2} & \gamma^{2}\end{array}\right|=\left|\begin{array}{ccc}1 & 0 & 0 \\ \alpha & \beta-\alpha & \gamma-\alpha \\ \alpha^{2} & \beta^{2}-\alpha^{2} & \gamma^{2}-\alpha^{2}\end{array}\right|$
$\left(C_{2} \rightarrow C_{2}-C_{1}, C_{3} \rightarrow C_{3}-C_{1}\right)$
$=(\beta-\alpha)(\gamma-\alpha)(\gamma-\beta)=(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)$
$\because D=0 \Rightarrow$ trivial as well as non-trivial solution and so the number of solutions will be infinite.
$\because D \neq 0 \Rightarrow$ system has only trivial solution.
50. (3) : $\frac{1}{\sqrt{(3 x+1)}}\left[\left(\frac{1+\sqrt{3 x+1}}{2}\right)^{7}-\left(\frac{1-\sqrt{3 x+1}}{2}\right)^{7}\right]$
$=\frac{1}{2^{7} \sqrt{(3 x+1)}}\left[(1+\sqrt{3 x+1})^{7}-(1-\sqrt{3 x+1})^{7}\right]$.
Now, $(1+\sqrt{3 x+1})^{7}-(1-\sqrt{3 x+1})^{7}$

$$
\begin{aligned}
& =2\left[{ }^{7} C_{1}(\sqrt{3 x+1})+{ }^{7} C_{3}(\sqrt{3 x+1})^{3}\right. \\
& \left.\quad+{ }^{7} C_{5}(\sqrt{3 x+1})^{5}+{ }^{7} C_{7}(\sqrt{3 x+1})^{7}\right] \\
& =2 \sqrt{3 x+1} \times\left[7+35(3 x+1)+21(3 x+1)^{2}+(3 x+1)^{3}\right]
\end{aligned}
$$

Now, putting above value in (i), so the given expression becomes
$\frac{1}{2^{6}}\left[42+105 x+21(3 x+1)^{2}+(3 x+1)^{3}\right]$
So, degree of given expression is 3 .
51. (5): $\because A$ has rank 3
$\therefore \quad|A|=0 \Rightarrow \alpha=5$
52. (1) $\lim _{x \rightarrow 0} \frac{e^{5 x}-e^{4 x}}{x}$
$\left.=\lim _{x \rightarrow 0} \frac{\left(1+5 x+\frac{(5 x)^{2}}{\underline{2}}+\ldots \infty\right)-\left(1+4 x+\frac{(4 x)^{2}}{\underline{2}}\right.}{+\ldots \infty}\right) ~\left(\begin{array}{c}x \rightarrow 0 \\ x\end{array}\right.$
$=\lim _{x \rightarrow 0} \frac{x+x^{2}\left(\frac{25}{2}-\frac{16}{2}\right)+\ldots \infty}{x}=1$
53. (3) : $\int_{0}^{2}(|x-2|+[x]) d x=\int_{0}^{2}|x-2| d x+\int_{0}^{2}[x] \cdot d x$
$=\int_{0}^{2}-(x-2) d x+\int_{0}^{1}[x] d x+\int_{1}^{2}[x] d x$
$=\left[2 x-\frac{x^{2}}{2}\right]_{0}^{2}+0+\int_{1}^{2} 1 d x=(4-2)+(2-1)=3$
54. (7) : $f(x)=\left\{\begin{array}{cc}\frac{x^{3}+x^{2}-16 x+20}{(x-2)^{2}}, & \text { if } x \neq 2 \\ b, & \text { if } x=2\end{array}\right.$
$\therefore \lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{x^{3}+x^{2}-16 x+20}{(x-2)^{2}}$
$=\lim _{x \rightarrow 2} \frac{(x-2)(x+5)(x-2)}{(x-2)^{2}}=\lim _{x \rightarrow 2}(x+5)=2+5=7$
$\because \quad f(x)$ is continuous for all x.
$\therefore f(2)=\lim _{x \rightarrow 2} f(x) \Rightarrow b=7$

PAPER-II

1. (a): $F_{e}=q E=10 \times 10^{-6} \times 10^{5}=1 \mathrm{~N}$
$m g=100 \times 10^{-3} \times 10=1 \mathrm{~N}$
This means weight of particle is balanced by electrostatic force.
Net force on the particle is due to charge on rings only.
Potential energy of particle at centre of ring A
$U_{i}=U_{0}+\frac{1}{4 \pi \varepsilon_{0}} \frac{q q_{1}}{a}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\left(-q q_{2}\right)}{\sqrt{a^{2}+h^{2}}}$

(where $U_{0}=$ potential energy due to electric field E) Potential energy of particle at centre of ring B
$U_{f}=U_{0}+\frac{1}{4 \pi \varepsilon_{0}} \frac{q q_{1}}{\sqrt{a^{2}+h^{2}}}+\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\left(-q q_{2}\right)}{a}$
Applying conservation of energy
Increase in kinetic energy of particle at centre of ring $B=$ Loss of potential energy
$\frac{1}{2} m v^{2}=U_{i}-U_{f}$
Substituting the values and evaluating we get $v=6 \sqrt{2} \mathrm{~m} \mathrm{~s}^{-1}$
2. (b)
3. (c)
4. (b) : Let a_{1} be the area of cross section of tank and a_{2} be the area of hole, v_{2} be velocity of water coming out of the hole (velocity of efflux)

Let v_{1} be the speed at which the level decreases in the tank.
Using the equation of continuity, we get
$a_{1} v_{1}=a_{2} v_{2}$

Given, $\frac{a_{2}}{a_{1}}=0.1$
$\therefore \quad v_{2}=\frac{a_{1}}{a_{2}} v_{1}=10 v_{1}$
Using the Bernoulli's theorem, we get
$P_{0}+\rho g h+\frac{1}{2} \rho v_{1}^{2}=P_{0}+\frac{1}{2} \rho v_{2}^{2}$
$v_{2}^{2}-v_{1}^{2}=2 g h \Rightarrow v_{1}^{2} \propto\left(10^{2}-1\right)=2 g h$
$v_{1}^{2}=\sqrt{\frac{2 \times 9.8 \times 2.475}{99}}=0.7 \mathrm{~m} \mathrm{~s}^{-1}$
Velocity of water coming out of the hole $v=10 v_{1}=7 \mathrm{~m} \mathrm{~s}^{-1}$
5. (a)
6. (d) : At the area of total darkness, in double slit apparatus, minima will occur for both the wavelengths which are incident simultaneously and normally.
$\therefore \frac{(2 n+1) \lambda_{1}}{2}=\frac{(2 m+1) \lambda_{2}}{2}$ or $\frac{2 n+1}{2 m+1}=\frac{\lambda_{2}}{\lambda_{1}}$
or $\frac{2 n+1}{2 m+1}=\frac{560}{400}=\frac{7}{5} \quad$ or $\quad 10 n=14 m+2$
By inspection, the two solutions are
(i) if $m_{1}=2, n_{1}=3$
(ii) if $m_{2}=7, n_{2}=10$
$\therefore \quad$ Distance between areas correspond to these points.
\therefore Distance $\Delta S=\frac{D \lambda_{1}}{d}\left[\frac{\left(2 n_{2}+1\right)-\left(2 n_{1}+1\right)}{2}\right]$
Put $n_{2}=10$ and $n_{1}=3$,
$\Delta S=\frac{1 \times\left(400 \times 10^{-9}\right)}{0.1 \times 10^{-3}}\left[\frac{21-7}{2}\right]$
or $\Delta S=4 \times 7 \times 10^{-3} \mathrm{~m}$ or $\Delta S=28 \mathrm{~mm}$.
7. (b, d) : Work is done against friction in the rough section during compression in both ascent and descent of the mass. This results in energy loss from the gravitational potential energy. Hence work done against frictional force is the difference in gravitational potential energy of the mass at its highest points.
The vertical difference x in heights
$=(1.0-0.7) \sin 30^{\circ}=0.15 \mathrm{~m}$

Hence, work done against friction $=m g x$
$=5 \times 10 \times 0.15=7.5 \mathrm{~J}$
The gravitational potential energy transferred to the spring is the energy of the spring at its maximum compression.
Since equal work is done against friction during descent as well as ascent.
Work done against friction during descent $=\frac{7.5}{2}=3.75 \mathrm{~J}$
Hence, gravitational potential energy transferred to the spring
$=\left[5 \times 10 \times\left(1.10 \sin 30^{\circ}\right)-3.75\right]=[27.5-3.75]=23.75 \mathrm{~J}$
8. (a, b, c, d)
9. (b, d) :

Time of flight of P is

$$
\begin{equation*}
T_{1}=\frac{2 u \sin (2 \theta-\theta)}{g \cos \theta}=\frac{2 u \tan \theta}{g} \tag{i}
\end{equation*}
$$

and time of flight of Q is
$T_{2}=\frac{2 u \sin \theta}{g \cos \theta}=\frac{2 u \tan \theta}{g}$
From equations (i) and (ii)

$$
\therefore \quad T_{1}=T_{2}
$$

Further acceleration of both the particles is g downwards. Therefore, relative acceleration between the two is zero or relative motion between the two is uniform. Now relative velocity of P with respect to Q is towards $P Q$. Therefore, collision will take place between the two in mid air.
10. (a, d) : This is a $L-C$ circuit. Therefore, $q=q_{0} \cos \omega t$ and $V=V_{0} \cos \omega t$ where $\omega=\frac{1}{\sqrt{L C}}$ or $T=2 \pi \sqrt{L C}$ $i=\frac{d q}{d t}=-q_{0} \omega \sin (\omega t)$
(a) maximum current in the circuit is

$$
i_{\max }=q_{0} \omega=C V_{0} \frac{1}{\sqrt{L C}}=V_{0} \sqrt{\frac{C}{L}}
$$

(b) potential across capacitor becomes zero after time

$$
t=\frac{T}{4}=\frac{\pi}{2} \sqrt{L C}
$$

(c) at time $t=\frac{\pi}{2} \sqrt{L C}$ or $\frac{T}{4}$ energy stored in the capacitor is zero. Thus, the energy $\frac{1}{2} C V_{0}^{2}$ will be stored in the inductor.
(d) the maximum energy stored in the inductor will be $\frac{1}{2} C V_{0}^{2}$
11. (a, c) : Magnetic force on a charged particle provides the necessary centripetal force required for circular motion of the charged particle, when a uniform magnetic field is imposed perpendicular to its velocity.
$\therefore q v B=\frac{m v^{2}}{r}$ or $r=\frac{m v}{q B}$
Kinetic energy $=\frac{1}{2} m v^{2}$
or $K=\frac{1}{2} m v^{2}$ or $v=\sqrt{\frac{2 K}{m}}$
$\therefore r=\frac{m}{q B} \times \sqrt{\frac{2 K}{m}}$, from (i) and (ii).
or $r=\frac{\sqrt{2 K m}}{q B} \therefore$ For $\mathrm{H}^{+}, r_{1}=\frac{\sqrt{2 K \times 1}}{e B}=\frac{\sqrt{2 K}}{e B}$
For $\mathrm{He}^{+}, r_{2}=\frac{\sqrt{2 K \times 4}}{(e) B}=\frac{\sqrt{8 K}}{e B}=2 r_{1}$
For $\mathrm{O}^{++}, r_{3}=\frac{\sqrt{2 K \times 16}}{(2 e) B}=\frac{\sqrt{8 K}}{e B}=2 r_{1}$
(a) H^{+}will be deflected most as its radius is least.
(c) He^{+}and O^{+}will be deflected equally.
12. (c, d) : If θ is the angle made by the direction of force with the horizontal, we have
$F_{1} \cos \theta=\mu\left(m g+F_{1} \sin \theta\right)$ and
$F_{2} \cos \theta=\mu\left(m g-F_{2} \sin \theta\right)$.
Clearly $F_{1}>F_{2}$ so that option (c) is correct.
If $\sin \theta=\frac{m g}{4 F_{2}}$, two relations written above becomes
$F_{1} \cos \theta=\mu\left(m g+\frac{m g F_{1}}{4 F_{2}}\right)$ and
$F_{2} \cos \theta=\mu\left(m g-\frac{m g F_{2}}{4 F_{2}}\right)$.
Thus, $\frac{F_{1}}{F_{2}}=\frac{1+\left(F_{1} / 4 F_{2}\right)}{(3 / 4)} \Rightarrow F_{1}=2 F_{2}$
13. (a, c, d) : Wavelength depends on length which is fixed. Thus, wavelength does not change.
Further $v=\sqrt{T / m}$ or $v \propto T^{1 / 2}$
$\therefore \quad$ percentage change in $v=\frac{1}{2}$
\times percentage change in T

$$
=\frac{1}{2}(2)=1 \%
$$

i.e. Speed and hence frequency will change by 1%.

Change in frequency is 15 Hz which is 1% of 1500 Hz .
Therefore, original frequency should be 1500 Hz .
14. $(\mathrm{a}, \mathrm{b}, \mathrm{c})$: Here $\vec{v}=x \hat{i}+y \hat{j}$
$\vec{B}=y \hat{i}+x \hat{j}$
If $x=y$ then $\vec{v} \| \vec{B}$ i.e.; $\vec{F}=0$
Hence, option (a) is correct
As $\vec{F}=q(\vec{v} \times \vec{B})=q[(x \hat{i}+y \hat{j}) \times(y \hat{i}+x \hat{j})]$
$=\left(x^{2}-y^{2}\right) \hat{k}$
Now, if $x>y, F \propto x^{2}-y^{2}$ and force is along z-axis. But if $y>x$, force will be along negative z-axis.
\therefore Option (b) and (c) are also correct.
15. (c)
16. (a)
17. (c): Equation of motion for pulley,
$F-2 T=m_{P} \times a$
Since pulley is massless i.e., $m_{P}=0$
$F=2 T, \quad \therefore \quad T=\frac{F}{2}$
18. (c) : $F=\frac{d p}{d t}=\frac{m \Delta v}{\Delta t}$

For quarter of a circle,
$\Delta v=v \sqrt{2}$ and $\quad \Delta t=\frac{\pi r}{2 v} \quad \therefore \quad F=\frac{2 \sqrt{2} m v^{2}}{\pi r}$
19. (c) : In this cell, zinc acts as anode and silver acts as cathode.
$E_{\text {cell }}^{\circ}=E_{\mathrm{Ag}_{2} \mathrm{O} / \mathrm{Ag}}^{\circ}-E_{\mathrm{Zn}^{2+} / \mathrm{Zn}}^{\circ}=0.344-(-0.76)=1.104 \mathrm{~V}$
$\Delta_{r} G^{\circ}=-n F E_{\text {cell }}^{\circ}=-2 \times 96500 \times 1.104=-2.13 \times 10^{5} \mathrm{~J}$
20. (c)
21. (b) : $\mathrm{HC} \equiv \mathrm{CH} \xrightarrow[-\mathrm{CH}_{4}]{\mathrm{CH}_{3} \mathrm{MgBr}} \mathrm{HC} \equiv \mathrm{CMgBr} \xrightarrow[\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{+}]{\text {(i) } \mathrm{CO}_{2}}$

22. (d):

23. (d): For N_{2} molecule, order of energies of the molecular orbitals is :
$\sigma 2 s<\sigma^{\star} 2 s<\pi 2 p_{x}=\pi 2 p_{y}<\sigma 2 p_{z}<\left(\pi^{\star} 2 p_{x}=\pi^{\star} 2 p_{y}\right)$ $<\sigma^{\star} 2 p_{z}$
24. (d):

25. (c, d) : Reactions (c) and (d) in which CH_{4} does not undergo complete combustion to give CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ are controlled oxidation reactions. Whereas reaction (b) is an example of incomplete combustion.
26. (c,d)
27. (a, b, c)
28. (b,c,d) : Condensation polymers are formed by condensation of diols or diamines with dicarboxylic acids.
(a)

(b)

(c)

(d)

29. (a) : Let number of α-particles emitted be m and number of β-particles emitted be n.
Hence, ${ }_{90}^{232} \mathrm{Th} \longrightarrow{ }_{82}^{208} \mathrm{~Pb}+m{ }_{2}^{4} \mathrm{He}+n_{-1}^{0} e$
On equalising mass numbers on both sides of eq. (i), we get
$232=208+(m \times 4)+n \times 0 \Rightarrow 4 m=232-208$
$m=\frac{24}{4}=6 \quad$ (number of α-particles emitted)
Similarly, on equalising atomic numbers on both sides of eq. (i), we get

$$
90=82+(m \times 2)+[n \times(-1)]=82+2 m-n
$$

or, $\quad 2 m-n=90-82=8$
or, $n=2 m-8=2 \times 6-8=4$
(number of β-particles emitted)
30. (a, b, c)
31. (a, b) : $\mathrm{H}_{2} \mathrm{~S}+\mathrm{O}_{3} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{S}+\mathrm{O}_{2}$
$\mathrm{PbS}+4 \mathrm{O}_{3} \longrightarrow \mathrm{PbSO}_{4}+4 \mathrm{O}_{2}$
32. (a, b, d)
33. (c)
34. (a)
35. (a): $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}\right]$ gives two geometrical isomers facial (fac) and meridional (mer).
36. (b): When an octahedral complex contains all the three bidentate ligands, it shows optical isomerism because it lacks plane of symmetry.
37. (c) : $\lim _{x \rightarrow 1}\left(\frac{1+x}{2+x}\right)^{\frac{(1-\sqrt{x})}{(1+\sqrt{x})(1-\sqrt{x})}}=\lim _{x \rightarrow 1}\left(\frac{1+x}{2+x}\right)^{\frac{1}{1+\sqrt{x}}}=\sqrt{\frac{2}{3}}$
38. (a): If $0<x<1$, then

$$
\begin{aligned}
& x^{1}>x^{\pi / 2}>x^{2} \quad\left[\because \frac{\pi}{2}=1.57(\text { app.) }]\right. \\
& \Rightarrow \quad 1+x>1+x^{\pi / 2}>1+x^{2} \\
& \Rightarrow \frac{1}{1+x}<\frac{1}{1+x^{\pi / 2}}<\frac{1}{1+x^{2}} \\
& \Rightarrow \int_{0}^{1} \frac{d x}{1+x}<\int_{0}^{1} \frac{d x}{1+x^{\pi / 2}}<\int_{0}^{1} \frac{d x}{1+x^{2}} \\
& \Rightarrow[\log (1+x)]_{0}^{1}<I<\left[\tan ^{-1} x\right]_{0}^{1} \Rightarrow \log 2<I<\frac{\pi}{4}
\end{aligned}
$$

39. (a): $y=2^{x} \quad$... (i) $\quad y=3^{x}$
$m_{1}=\frac{d y}{d x}=2^{x} \log 2^{\prime} m_{2}=\frac{d y}{d x}=3^{x} \log 3$
$(0,1)$ is the point of intersection of the two curves.
$\therefore \quad m_{1}=\left(\frac{d y}{d x}\right)_{(0,1)}=\log 2, m_{2}=\left(\frac{d y}{d x}\right)_{(0,1)}=\log 3$
$\therefore \quad \tan \alpha=\frac{\log 3-\log 2}{1+\log 2 \times \log 3}=\frac{\log \frac{3}{2}}{1+(\log 2)(\log 3)}$
40. (a) : $\sin \left(\frac{x}{y}\right)(x d y-y d x)=y d y$

$$
\Rightarrow \quad-\sin \left(\frac{x}{y}\right)\left(\frac{y d x-x d y}{y^{2}}\right)=\frac{d y}{y}
$$

On integrating, $\cos \left(\frac{x}{y}\right)=\log _{e} y+C$
$\because y\left(\frac{\pi}{4}\right)=1$ (given)
$\therefore \cos \frac{\pi}{4}=\log _{e} 1+C \quad \Rightarrow C=\frac{1}{\sqrt{2}}$
$\therefore \cos \left(\frac{x}{y}\right)=\log _{e} y+\frac{1}{\sqrt{2}}$
41. (d): $\because \alpha, \beta$ are roots of $a \cos \theta+b \sin \theta=c$
$\therefore \quad a \cos \alpha+b \sin \alpha=c$
$a \cos \beta+b \sin \beta=c$
(iii) - (ii) gives

$$
\begin{align*}
& a \cdot 2 \sin \left(\frac{\alpha+\beta}{2}\right) \sin \left(\frac{\alpha-\beta}{2}\right) \\
& \Rightarrow \tan \left(\frac{\alpha+\beta}{2}\right)=\frac{b}{a}
\end{align*}
$$

If $\alpha+\beta$ is also a root of (i) then

$$
a \cos (\alpha+\beta)+b \sin (\alpha+\beta)=c
$$

$\Rightarrow \frac{a\left\{1-\left(\frac{b}{a}\right)^{2}\right\}}{1+\left(\frac{b}{a}\right)^{2}}+\frac{b \cdot 2\left(\frac{b}{a}\right)}{1+\left(\frac{b}{a}\right)^{2}}=c$ [using (iv)]
$\Rightarrow \frac{a\left(a^{2}-b^{2}\right)+2 b^{2} a}{a^{2}+b^{2}}=c \Rightarrow a=c$.
42. (d)
43. (a, c, d) : As $\vec{a}+\vec{b}+\vec{c}=0$

$$
\begin{aligned}
& \Rightarrow \quad a^{2}=b^{2}+c^{2}+2 \vec{b} \cdot \vec{c} \\
& \Rightarrow \quad 144=48+c^{2}+48 \Rightarrow c^{2}=48 \Rightarrow c=4 \sqrt{3}
\end{aligned}
$$

Again, $c^{2}=a^{2}+b^{2}+2 \vec{a} \cdot \vec{b}$
$\Rightarrow \vec{a} \cdot \vec{b}=\frac{48-144-48}{2}=-72$
$|\vec{a} \times \vec{b}+\vec{c} \times \vec{a}|=|\vec{a} \times \vec{b}+\vec{a} \times \vec{b}|=2|\vec{a} \times \vec{b}|$
$=2 \sqrt{a^{2} b^{2}-(\vec{a} \cdot \vec{b})^{2}}=2 \sqrt{12^{2} \cdot 48-(-72)^{2}}=48 \sqrt{3}$
44. (a, d) : Let centroid of the triangle PTN is (α, β)
$\Rightarrow \alpha=\frac{a t^{2}+\left(-a t^{2}\right)+2 a+a t^{2}}{3}$ and $\beta=\frac{2 a t}{3}$
Eliminating ' t ' we get,

$$
3 \alpha=a\left[\frac{9 \beta^{2}}{4 a^{2}}+2\right]
$$

The locus of (α, β) is

$3 x=\frac{9 y^{2}}{4 a}+2 a \Rightarrow y^{2}=\frac{4 a}{3}\left(x-\frac{2 a^{2}}{3}\right)$
$\therefore \quad$ vertex $\left(\frac{2 a}{3}, 0\right)$, focus $(a, 0)$
45. (a, d)
46. (a, b) : $|\sin x|+|\cos x|=\sqrt{1+|\sin 2 x|}$

So, $\quad 1<|\sin x|+|\cos x| \leq \sqrt{2}$. $y=[|\sin x|+|\cos x|]=1$.

$$
\begin{aligned}
& x^{2}+y^{2}=10 \\
\Rightarrow \quad & 2 x+2 y \frac{d y}{d x}=0
\end{aligned}
$$

So, angle is either $\tan ^{-1}(-3)$ or $\tan ^{-1}(3)$.
47. $(\mathrm{a}, \mathrm{c}): x^{2}+y^{2}-10 x+21=0$
$x^{2}-10 x+\left(y^{2}+21\right)=0$
It has real roots if $D \geq 0 \Rightarrow 100-4\left(y^{2}+21\right) \geq 0$
$\Rightarrow y^{2}+21 \leq 25 \Rightarrow y^{2} \leq 4 \Rightarrow-2 \leq y \leq 2$
Also, $y^{2}+\left(x^{2}-10 x+21\right)=0$ will have real roots if $D \geq 0 \Rightarrow 0-4\left(x^{2}-10 x+21\right) \geq 0 \Rightarrow(x-3)(x-7) \leq 0$ $\Rightarrow 3 \leq x \leq 7$
48. (b): We have, $\lim _{x \rightarrow 0}|x|^{[\cos x]}$

When $x \rightarrow 0$, then $0 \leq \cos x \leq 1 \Rightarrow[\cos x]=0$ when $x \neq 0$
From (i), we have $\lim _{x \rightarrow 0}|x|^{0}=\lim _{x \rightarrow 0} 1=1$
49. $(\mathrm{a}, \mathrm{c}): P(A \cup B) \geq \frac{3}{4}$ and $\frac{1}{8} \leq P(A \cap B) \leq \frac{3}{8}$

Let $P(A)+P(B)$ be x.
$\therefore \quad x-P(A \cap B) \geq \frac{3}{4}$
$\Rightarrow \quad x-\frac{3}{4} \geq P(A \cap B) \geq \frac{1}{8} \Rightarrow x \geq \frac{7}{8} \because P(A \cup B) \leq 1$
$\Rightarrow x-P(A \cap B) \leq 1$
$\Rightarrow \quad x-1 \leq P(A \cap B) \leq \frac{3}{8} \Rightarrow x \leq \frac{11}{8}$
50. (a, b, d)
51. (c) : Area of $\triangle P Q R=\frac{1}{2} \times 4 \sqrt{2} \times 8=16 \sqrt{2}$ sq units Area of $\triangle P Q S=\frac{1}{2} \times 2 \times 4 \sqrt{2}=4 \sqrt{2}$ sq units $\frac{\operatorname{ar} \triangle P Q S}{\operatorname{ar} \triangle P Q R}=\frac{1}{4}$
52. (b) : Equation of perpendicular bisector of $S R$ is $x=4$

Equation of perpendicular bisector of $P S$ is
$y-\sqrt{2}=\frac{-1}{\sqrt{2}}(x-0)$ or $\sqrt{2} y+x=2$
Circumcentre is point of intersection of (i) and (ii),
$x=4, y=-\sqrt{2} \quad \therefore \quad C(4,-\sqrt{2})$
$\therefore \quad$ radius $=P C=\sqrt{(3)^{2}+(3 \sqrt{2})^{2}}=3 \sqrt{3}$ units
53. (b): $P(X \geq 3)=1-P(X \leq 2)$
$=1-\{P(X=1)+P(X=2)\}$
$=1-\left\{P(6)+P\left(6^{\prime} 6\right)\right\}=1-P(6)-P\left(6^{\prime}\right) P(6)$
$=1-\frac{1}{6}-\frac{5}{6} \times \frac{1}{6}=1-\frac{1}{6}-\frac{5}{36}=\frac{36-6-5}{36}=\frac{25}{36}$
54. (d): Required probability

$$
\begin{aligned}
& P\left(\frac{X \geq 6}{X>3}\right)=\frac{P(X \geq 6)}{1-P(X \leq 3)}=\frac{1-P(X \leq 5)}{1-P(X \leq 3)} \\
& =\frac{1-\{P(X=1)+P(X=2)+\ldots . .+P(X=5)\}}{1-\{P(X=1)+P(X=2)+P(X=3)\}} \\
& =\frac{1-\left\{\frac{1}{6}+\frac{5}{6} \cdot \frac{1}{6}+\left(\frac{5}{6}\right)^{2} \cdot \frac{1}{6}+\ldots+\left(\frac{5}{6}\right)^{4} \cdot \frac{1}{6}\right\}}{1-\left\{\frac{1}{6}+\frac{5}{6} \cdot \frac{1}{6}+\left(\frac{5}{6}\right)^{2} \cdot \frac{1}{6}\right\}} \\
& =\frac{1-\left\{\frac{1}{6} \cdot \frac{1-(5 / 6)^{5}}{1-(5 / 6)}\right\}}{1-\left\{\frac{1}{6} \cdot \frac{1-(5 / 6)^{3}}{1-(5 / 6)}\right\}}=\left(\frac{5}{6}\right)^{2}=\frac{25}{36}
\end{aligned}
$$

Readers can send their responses at editor@mtg.in or post us with complete address by $25^{\text {th }}$ of every month to win exciting prizes. Winners' name with their valuable feedback will be published in next issue.

ACROSS

4. A polymeric form of galactose found in hemicellulose. (8)
5. Gas used for filling incandescent metal filament electric bulbs. (5)
6. Notation for a stereochemical arrangement where all of the higher priority substituents are located on the same side of the double bond. (8)
7. A mixture of concentrated oxide ore and aluminium powder. (8)
8. A process in which RBC will shrink in hypertonic solution. (9)
9. Movement of gas molecules through a small opening. (8)
10. Reciprocal of the coefficient of viscosity. (8)
11. Important anti-cancer drug originally isolated from Pacific yew trees. (5)
12. A cyclic diester formed from α-hydroxyacids. (7)
13. The correctness of a measurement. (8)
14. Metal which gives a blue colour (in cold conditions) in oxidising flame in borax bead test. (6)
15. Particles evolved in artificial radioactive element when n / p ratio is lower than the required value for nuclear stability. (9)
16. The scientist who suggested an approach to electronegativity based on ionisation energy and electron affinity of an atom. (8)
DOWN
17. The yellow pigment present in egg yolk. (11)
18. The separation of colloidal sol into two liquid phases. (12)
19. Alternative name for acetaldehyde. (7)
20. Energy of a single wavelength of light. (13)
21. Orderly arrangement of micelles. (9)
22. A salt which is prepared from sodium dithionite and formaldehyde, is used as a reducing agent for vat dyeing. (9)

23. Element which is known as duckbill platypus. (8)
24. Industrial name of sodium peroxide. (5)
25. A graph of entropy of a substance against temperature. (10)
26. The number of milligrams of KOH required to neutralise the free acid present in one gram of the oil or fat. (9)
27. Another name for solid carbon dioxide. (7)
28. Chlorofluorocarbon compound of methane and ethane. (5)
29. Most impure form of iron. (8)
30. The form of carbon obtained by burning wood, cellulose or any other carbonous matter in a limited supply of air. (8)
31. Naturally occurring sodium carbonate, $\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{NaHCO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ formed by evaporation of soda lakes. (5)
32. Unit of frequency. (5)
33. The diamide of carbonic acid. (4)
$\diamond \diamond$

Now, Rs 2,020

Subscribe to MTG magazines today.
Our 2017 offers are here. Pick the combo best suited for your needs. Fill-in the Subscription Form at the bottom and mail it to us today. If in a rush, log on to www.mtg.in now to subscribe online.
*On cover price of ₹ $30 /$ - each.

About MTG's Magazines

Perfect for students who like to prepare at a steady pace, MTG's magazines-Physics For You, Chemistry Today, Mathematics Today \& Biology Today-ensure you practice bit by bit, month by month, to build all-round command over key subjects. Did you know these magazines are the only source for solved test papers of all national and state level engineering and medical college entrance exams?

Trust of over 1 Crore readers since 1982.

- Practice steadily, paced month by comprising experts and members month, with very-similar \& model test papers
- Self-assessment tests for you to evaluate your readiness and confidence for the big exams
- Content put together by a team
from MTG's well-experienced Editorial Board
- Stay up-to-date with important information such as examination dates, trends \& changes in syllabi
- All-round skill enhancement -
confidence-building exercises, new studying techniques, time management, even advice from past JEE/PMT toppers
- Bonus: Exposure to competition at a global level, with questions from Intl. Olympiads \& Contests

SUBSCRIPTION FORM

Please accept my subscription to:
Note: Magazines are despatthed by Book-Post on $4^{\text {ti }}$ o f every month (each magazine separately).

PCMB combo

$\begin{array}{r} 1 \text { yr: ₹ } 1,000 \\ \text { (save } ₹ 440 \text {) } \end{array}$	$\begin{aligned} & 2 \text { yr: ₹ } 1,800 \\ & \text { (save ₹ } 1,080 \text {) } \end{aligned}$	$\begin{aligned} & 3 \text { yr: ₹ } 2,300 \\ & \text { (save ₹ } 2,020 \text {) } \end{aligned}$
PCM combo		
$\begin{array}{r} -1 \text { yr: ₹ } 900 \\ \text { (save₹ } 180 \text {) } \end{array}$		$\begin{aligned} & -3 \text { yr: } ₹ 1,900 \\ & \text { (save } ₹ 1,340 \text {) } \end{aligned}$
PCB combo		
$\xrightarrow[\text { (save ₹ } 180 \text {) }]{1 \text { yr: })}$	$\begin{gathered} 2 \mathrm{yr}: ₹ 1,500 \\ \text { (save₹ } 660 \text {) } \end{gathered}$	$\begin{aligned} & 3 \text { yr: } ₹ 1,900 \\ & \text { (save } ₹ 1,340 \text {) } \end{aligned}$

Individual magazines

\square Physics	\square Chemistry	\square Mathematics	\square Biology
$\xrightarrow[\text { (save } ₹ 30 \text {) }]{1 \mathrm{yr}: ₹ 330}$		$\begin{aligned} & \text { ₹ } 600 \\ & \text { ₹ } 120 \text {) } \end{aligned}$	ل 3 yr: ₹ 775 (save ₹ 305)

[^0]Want the magazines by courier; add the courier charges given below:

Email

[^1]
[^0]: Enclose Demand Draft favouring MTG Learning Media (P) Ltd, payable at New Delhi. You can also pay via Money Orders. Mail this Subscription Form to Subscription Dept., MTC Learning Media (P) Ltd, Plot 99, Sector 44, Gurgaon - 122003 (HR).

[^1]: E-mail subscription@mtg.in. Visit www.mtg.in to subscribe online. Call (0)8800255334/5 for more info.

