

SHAFILLMHEEN
 ADVANCED sonven priprerait
www.mtg.in |July 2017 | Pages 92 |₹ 30
NETHEE
Class XI-XII ESSENTIALS

## CHEMISTRY

 CHEMSTRY MONTHLY FORMONTHLY
PRACTICE
PROBLEMS
(XI \& XII)
CHEMISTRY
MUSING

## CONCEPT BOOSTER

## CONCEPT MAP




10 वीं एवं 12 वीं कक्षा पास हिन्दी माध्यम के विद्यार्थी भी JEE (Main + Advanced) की तैयारी के लिए प्रवेश प्राप्त कर सकते है।


Registered Office: A-14(A), Road No.1, Indraprastha Industrial Area, Kota - 324005. | Tel.: 0744-2428664, 2428666, 2423406, 2425407| For DLP : 7340042900 | Fax : 0744-2423405 Branch Office : Hindaun Heights, 57 , Shri Gopal Nagar, Near Mahesh Nagar Thana, Gopalpura Bypass, Jaipur | Tel.: 0141-2502255, 2503355, 7073277745, 7073277746 | E-mail: jaipur@vibrantacademy.com Website : www.vibrantacademy.com | E-mail : admin@vibrantacademy.com | Follow us on: $f$ © 8

Integrated PUC, $+1 \&+2$ | NEET | 1 IIT-JEE | AIIMS |JIPMER|EAMGET

## EXGEI ACADAMIGS

Bengaluru
IIT-Main \& Advanced | NEET | EAMCET | BITS | AIIMS | JIPMER | CET | COMED-K

## RECISTRATION OPEN for PUC $/ 12^{\text {th }} /+2$ Passed Students ONE YEAR LONG TERM MEDICAL COURSE

 (PCB) (Repeaters Course)
## 

The only Institute in INDIA successfully conducting "Daily Test"
for NEET(Medical) aspirants.
Features of One Year LongTerm Medical Programme
© Substantial Medical Entrance Coaching at EXCEL ACADAMICS done by the eminent faculty those who are Medical Guru's in India.
© Starting with very basics and Strengthening them at Fundamentals during coaching.
ब6 Maintaining high end competent atmosphere.
© Timely completion of Syllabus and perfect revision.
© Special focus on Physics Numerical questions.

© Exclusive A.C. Campus with LCD projectors for One Year Long Term Medical Programme.
© Daily 6 (Six) hours PCB teaching followed by counselling hours and doubt clarification session.
© Targeting for practicing 3 (Three) Lakh MCQ's Physics, Chemistry \& Biology in this programme.
© Separate Weekend Examination for NEET, JIPMER and AIIMS.
© Updating to the parents through SMS/email regarding student's attendance, rank and their performance on regular basis.
© Coaching at Excel Acadamics will be helpful to attend All National Medical Entrance Examinations like NEET, AIIMS, JIPMER etc... along with CET, EAMCET, Kerala PMT, MHCET and COMED-K.
© $24 \times 7$ Library facility with PCB Medical Entrance Study Materials and Magazines.
(6) Brand new high security hostel facility for Boys and Girls.
© Periodical Parent, Teacher, Student Meeting.
© Semi-residential facility.
© Lowest fee structure including all taxes.


Registration Started for Integrated PUC, CET, NEET and IIT-JEE coaching


EXCEL ACADAMICS, Opp: Peoples Tree Hospital, Sector A, Yalahanka New Town, Bangalore - 560064, KARNATAKA
*** Contact : 9535656277, 9880155284, 9036357499 ***

## 国 Separate Deluxe Hostel for Boys and Girls 気

## Presenting India's No. 1 NEET Guides



MTG's Complete NEET Guides are India's best selling PMT books!! Rich in theoretical knowledge with a vast question bank comprising a wide variety of problems and exercises, these guidebooks ensure students are ready to compete in the toughest of medical entrance tests. $100 \%$ NCERT based, the guidebooks have been updated to match the syllabus and the exam pattern for medical entrance exams. No wonder these guidebooks emerged as the bestsellers in a short period of time.

## HIGHLIGHTS:

- $100 \%$ NCERT based
- Comprehensive Chapterwise theory complemented with concept maps, flowcharts and easy-to-understand illustrations
- Last 10 years' questions (2008-2017) of AIPMT/NEET
- Chapterwise Topicwise MCQs with detailed explanations and solutions
- NEET 2017 Solved Paper included


Scan now with your smartphone or tablet*

- Over $50 \%$ of questions that appeared in NEET 2017 were from MTG's Complete NEET Guides


Available at all leading book shops throughout India.
For more information or for help in placing your order:
Call 0124-6601200 or e-mail:info@mtg.in
*Application to read QR codes required

Visit www.mtg.in for latest offers and to buy online!


ALL INDIA RANKS IN TOP 100
9 STUDENTS

## from classroom programs



SHASHANK KUMAR
Roll $\mathrm{No}$.151725999
Classioom sudent since class XI


SHIVAM GOYAL



NISARG BHATT Roll No. 1515.5942
ssroom student since class XI


ARPIT MENARIA $\xrightarrow{\text { Roll }}$ No. 13405464


YASH JAIN

 RITIK ROONGTA Roll No. 15102234
RI

The only institute from Kota to deliver highest no. of girl student's selections (351)
from classroom programs.


ADMISSIONS OPEN (FOR 2017-18) for Classes: V to XII \& XII+

- JEE (MAIN+ADVANCED) • JEE (MAIN) • PRE - MEDICAL • BOARD / IJSO / OLYMPIADS / NTSE / KVPY

Corporate Office: CG Tower, A-46 \& 52, IPIA, Near City Mall, Jhalawar Road, Kota (Rajasthan)- 324005 Registered Office: J-2, Jawahar Nagar Main Road, Kota (Rajasthan)- 324005 Tel. No.: 0744-3012100, 301२2२2, 6635555 | CIN: U80302RJ2007PLCO24029



## MrtG Team Applauds



## Cracking the v를 Advanced EXAM

## Shafil Maheen

66 It gives us immense pleasure to felicitate the achievement of our reader Shafil Maheen (MTG Subscription Code PCM-98104). We feel proud that we could lay a brick for the foundation of his success. We are sharing his success story here so that it can inspire others to ace in exams. 99

- MTG : How many hours in a day did you study to prepare for the examination?
Shafil : On working days, I study about 7 hours a day. On holidays 11 or 12 hrs. But it varies from day to day. There have been days when I could barely study for 2 hours.
- MTG: On which topics and chapters you laid more stress in each subject?
Shafil : I laid emphasis on studying Inorganic Chemistry and Semiconductor Electronics as I was not too good at it. I also focussed more on Integration which I think is the most difficult topic in Maths.
- MTG : How much time does one require for serious preparation for this exam?
Shafil : I think 2 years of hard work is sufficient.
- MTG : Any extra coaching?

Shafil : I studied in RAYS Public School which is also an entrance coaching center. I got guidance from there. During my plus two, I was put in the repeaters' batch of RAYS although I was not a repeater.

- MTG : Which Subjects/Topics you were strong/ weak at?

Shafil : I am strong in Mathematics and was slightly weak in Chemistry.

- MTG: Which Books/Magazines you read?

Shafil : I used Pradeep's objective books for JEE. I also used MTG monthly magazines.

- MTG : In your words what are the components of an ideal preparation plan?

Shafil : You must analyse your test results to find your areas of improvement and focus on them. In the morning, make a rough note of what you plan to study for the day.

- MTG : What role did the following play in your success?
(a) Parents
(b) Teachers
(c) School

Shafil : My parents support was very important. My school is a school cum entrance coaching center. It is a big advantage because you don't have to go elsewhere for coaching. My teachers conducted regular mock tests which were very helpful to me.

- MTG: Your family background?

Shafil : My father is Niyasi K A, lecturer in Polytechnic College and my mother is Dr. Shamjitha, medical officer in primary health center. I am the only child of my parents.

- MTG : What mistake you think you shouldn't have made?
Shafil : I used some books which do not give detailed solutions to questions. I think that was a mistake. Always use books that have solutions in them.
- MTG : How have MTG magazines helped you in your preparation?
Shafil: MTG magazines contain a lot of new types of problems which keep you updated. Also, all the necessary concepts are presented in just a few pages. But, I wasn't able to use them at the initial stage because the chapters presented in each edition are random and I wasn't familiar with many chapters at that time.
- MTG : Was this your first attempt?

Shafil : Yes, it was my first attempt.

- MTG : What do you think is the secret of your success?

Shafil : Hard work and determination are the keys. Also my parents' support was imperative because they shifted house and stayed with me which was a big moral booster and gave me immense confidence.

- MTG : How did you de-stress yourself during the preparation? What are your hobbies? How often could you pursue them?
Shafil : I play computer games for entertainment. Usually 1 hour per day on working days and 2 hrs per day on holidays.
- MTG : What do you feel is lacking in our education/ examination system? Is the examination system fair to the student?
Shafil : I think this exam is as fair as it can get. I also feel a continuous evaluation considering a lot of variety of tests may give a plenty of opportunities. But, perhaps that is not possible.
- MTG : Had you not been selected then what would have been your future plan?
Shafil : I was sure that I could get admission with AIR 41 in KVPY. That was even before JEE main. Chennai mathematical institute was my second choice if I had not got the admission in IISc.
- MTG : What advice would you like to give our readers who are JEE aspirants?
Shafil : I advise everyone to study hard for their exams not only for a good rank, but to serve our country and society better. Our country's future depends on us. Don't take it lightly.

All the Best! ${ }^{(-)}$


# NEET|JEE ESSENTIIALS 

Maximise your chance of success, and high rank in NEET, JEE (Main and Advanced) by reading this column. This specially designed column is updated year after year by a panel of highly qualified teaching experts well-tuned to the requirements of these Entrance Tests.

## Unit

## SOME BASIC CONGEPTS OF

 GHEMISTRY / STRUCTURE OF ATOM
## SOME BASIC CONGEPTS OF CHEMISTRY

## Introduction

- Chemistry is the branch of science which deals with the study of composition, structure and properties of matter and the changes which the matter undergoes under different conditions and the laws which govern these changes.



## Physical Quantities and their Measurements

| Measure | Unit |
| :--- | :--- |
| Length $(l)$ | Metre $(\mathrm{m})$ |
| Mass $(m)$ | Kilogram $(\mathrm{kg})$ |
| Time $(t)$ | Second $(\mathrm{s})$ |
| Temperature $(T)$ | Kelvin $(\mathrm{K})$ |


| Electric current $(i)$ | Ampere (A) |
| :--- | :--- |
| Intensity $\left(I_{v}\right)$ | Candela (Cd) |
| Amount of substance $(n)$ | Mole $(\mathrm{mol})$ |


| Measure | Derivation |
| :---: | :---: |
| Volume (V) | Length $\times$ Height $\times$ Breadth $=\mathrm{m} \times \mathrm{m} \times \mathrm{m}=\mathrm{m}^{3}$ |
| Density (d) | $\frac{\text { Mass }}{\text { Volume }}=\frac{\mathrm{kg}}{\mathrm{~m}^{3}}=\mathrm{kg} \mathrm{~m}^{-3}$ |
| Velocity ( $v$ ) | $\frac{\text { Distance }}{\text { Time }}=\frac{\mathrm{m}}{\mathrm{~s}}=\mathrm{m} \mathrm{~s}^{-1}$ |
| Force (F) | $\begin{aligned} & \text { Mass } \times \text { Acceleration }=m \times a \\ & =\mathrm{kg} \mathrm{~m} \mathrm{~s}^{-2}=\text { Newton }(\mathrm{N}) \end{aligned}$ |
| Work (W) | $\begin{aligned} & \text { Force } \times \text { Displacement }=F \times d \\ & =\mathrm{kg} \mathrm{~m}^{2} \mathrm{~s}^{-2}=\text { Joule } \end{aligned}$ |
| Temperature ( $T$ ) | $\mathrm{K}={ }^{\circ} \mathrm{C}+273.15$ |

## Uncertainty in Measurement

## Precision \& Accuracy

- If the average value of different measurements is close to the correct value, the measurement is said to be accurate. If the value of different measurements are close to each other and hence close to their average value, the measurement is said to be precise.


## Significant Figures

- Significant figures in a number are all the certain digits plus one uncertain digit.


## Rules to determine significant numbers

- All non-zero digits as well as the zeros present between the non-zero digits are significant.
- Zeros to the LHS of the first non-zero digit in a given number are not significant figures.
- In a number ending with zeros, if the zeros are present at right of the decimal point then these zeros are significant figures.
- Zeros at the end of a number without a decimal are not counted as significant figures.
- The result of division or multiplication must be reported to the same number of significant figures as possessed by the least precise term.
- The result of subtraction or addition must be reported to the same number of significant figures as possessed by the least precise term.


## Matter

- Anything which has mass and occupies space is known as matter.


## Classification of Matter



## Laws of Chemical Combinations

| Law of Conservation of Mass (Lavoisier) Matter can neither be created nor destroyed. | Law of Constant Composition o Definite Proportions (Proust) A given compound always contain exactly the same proportion elements by weight. |
| :---: | :---: |
| Laws of Chemical Combinations | of Reciprocal Proportions ichter) <br> ratio of the masses of two ments $A$ and $B$ which combine arately with a fixed mass of the rd element $C$ is either the same or me simple multiple of the ratio of : masses in which $A$ and $B$ combine ectly with each other. |

## Law of Multiple Proportions (Dalton)

If two elements can combine to form more than one compound, the masses of one element that combine with a fixed mass of the other element, are in the ratio of small whole numbers.

Gay Lussac's Law of Gaseous Volumes
When gases combine or are produced in a chemical reaction they do so in a simple ratio by volume provided all gases are at same temperature and pressure.

## Avogadro's Law

Equal volumes of gases at the same temperature and pressure should contain equal number of molecules.

## Dalton's Atomic Theory

- All substances are made up of tiny, indivisible particles, called atoms. The word atom was derived from the Greek word atomos (meaning - indivisible.)
- Atoms cannot be created, divided or destroyed during any chemical or physical change (the law of conservation of mass.)
- Each element is composed of its own kind of atoms.
- The atoms of a given element are alike, and have the same mass. The atoms of different elements differ in mass and properties.
- The atoms combine with each other in simple whole number ratios to form a compound.


## Atomic Mass

- The atomic mass of an element is the average relative mass of its atoms as compared with an atom of carbon-12 isotope taken as 12 .


## Molecular Mass

- The molecular mass of a substance is the average relative mass of its molecules as compared with an atom of carbon-12 isotope taken as 12 .


## Mole Concept



## Mole Concept in Solutions

- It is an expression to represent the amount of solute in a given quantity of solvent.


Determination of Empirical Formula and Molecular Formula

$\begin{aligned} \text { Molecular formula } & =n \times \text { Empirical formula } \\ & n \text { is integer such as } 1,2,3 \ldots \text { etc } .\end{aligned}$

## Mass-energy conservation!

The place where conservation of mass routinely falls down in nuclear fusion and fission, where large amounts of matter are converted to energy. Sunshine and starlight are the most visible examples. The sun converts about 5 million tons of mass to energy every second. In the process of fusing, 700 million tons of hydrogen convert to helium. It can go on at that rate for billions of years.

STRUCTURE OF ATOM

Sub-Atomic Particles

|  | Electron $\left(\boldsymbol{e}^{-}\right)$ | Proton $(\boldsymbol{p})$ | Neutron $(\boldsymbol{n})$ |
| :--- | :--- | :--- | :--- |
| Position | Moves around <br> the nucleus | Constituent <br> of nucleus | Constituent <br> of nucleus |
| Charge | $-1 \cdot 6 \times 10^{-19} \mathrm{C}$ | $+1 \cdot 6 \times 10^{-19} \mathrm{C}$ | neutral |


| Absolute <br> mass (kg) | $9.1 \times 10^{-31}$ | $1.67 \times 10^{-27}$ | $1.67 \times 10^{-27}$ |
| :--- | :--- | :--- | :--- |
| Relative <br> mass | $1 / 1836$ | 1 | 1 |
| Discovery | J. J. Thomson | E. Goldstein | J. Chadwick |

## Atomic Models

## Rutherford's Model

 The positive charge is concentrated in extremely small region called nucleus.Electrons move around the nucleus in circular path called orbits.


Elements having same atomic number but different atomic mass are called isotopes.

Elements having same mass number but different atomic number are called isobars.

Elements having same number of neutrons are called isotones.

Symbol of elements ${ }_{Z}^{A} X$

## Developments Leading to the Bohr's Model of Атом

## Electromagnetic Radiations :

J.C Maxwell proposed that light and other forms of radiations propagate through space in the form of waves. These waves have electric and magnetic fields associated with them and are therefore called electromagnetic radiations.


Electromagnetic spectrum : It is the arrangement of components of different types of electromagnetic radiations in increasing order of wavelength or decreasing order of frequency.

Cosmic $\gamma$ - X- UV Visible IR Micro- Radiorays rays rays : waves waves Increasing wavelength or decreasing frequency

- Different types of spectra:



## Planck's Quantum Theory :

- Definite amount of radiant energy is emitted or absorbed discontinuously in the form of small packets, called quanta.
- Amount of energy associated with quantum of radiation, is proportional to frequency of light i.e. $E \propto v, E=h v, E=\frac{h c}{\lambda}$
$h=$ planck's constant $\left(6.626 \times 10^{-34} \mathrm{Js}\right)$


## Black Body

## Radiation

An ideal body which emits and absorbs radiations of all wavelengths or frequencies.

## Photoelectric Effect

When a beam of light of suitable wavelength falls on a clean metal plate in vacuum, electrons are emitted from the surface of metal. This phenomenon is known as photoelectric effect
$h \nu=h v_{0}+1 / 2 m v^{2}$; $h v_{0}=$ Minimum energy required to eject an electron $=$ work function ( $w$ )

## How old is hydrogen in our body!

Every hydrogen in your body is likely to be 13.5 billion years old, since they were created during the birth of the universe. All the other elements formed by fusing hydrogen into helium, which then fused into carbon and so on.

## Atomic Spectra of Hydrogen

- Radiations emitted by hydrogen in discharge tube experiment when passed through prism gives six series of lines named after the researchers.

|  | Name of <br> series | Wavelength | $n_{1}$ | $n_{2}$ | Region |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1. | Lyman | $\frac{1}{\lambda}=R_{\mathrm{H}}\left[\frac{1}{1^{2}}-\frac{1}{n^{2}}\right]$ | 1 | $n>1$ | UV |
| 2. | Balmer | $\frac{1}{\lambda}=R_{\mathrm{H}}\left[\frac{1}{2^{2}}-\frac{1}{n^{2}}\right]$ | 2 | $n>2$ | Visible |
| 3. | Paschen | $\frac{1}{\lambda}=R_{\mathrm{H}}\left[\frac{1}{3^{2}}-\frac{1}{n^{2}}\right]$ | 3 | $n>3$ | IR |
| 4. | Brackett | $\frac{1}{\lambda}=R_{\mathrm{H}}\left[\frac{1}{4^{2}}-\frac{1}{n^{2}}\right]$ | 4 | $n>4$ | IR |
| 5. | Pfund | $\frac{1}{\lambda}=R_{\mathrm{H}}\left[\frac{1}{5^{2}}-\frac{1}{n^{2}}\right]$ | 5 | $n>5$ | far IR |
| 6. | Humphrey | $\frac{1}{\lambda}=R_{\mathrm{H}}\left[\frac{1}{6^{2}}-\frac{1}{n^{2}}\right]$ | 6 | $n>6$ | far-far |

- Rydberg formula : $\bar{v}=\frac{1}{\lambda}=R_{\mathrm{H}}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) Z^{2}$ where, $R_{\mathrm{H}}$ is Rydberg constant and has a value equal to $109,677 \mathrm{~cm}^{-1}$.


## Bohr’s Atomic Model for Hydrogen

- Around the nucleus there are circular regions called orbits or shells.
Energy shell $K \quad L \quad M \quad N \quad O \ldots$ $\begin{array}{llllll}n & 1 & 2 & 3 & 4 & 5 \ldots .\end{array}$
Energy and distance from nucleus increase from $K$ onwards
- Every orbit has a fixed amount of energy so, it is also referred to as an energy level.
- An electron revolves around the nucleus without any loss of energy in a particular orbit of definite energy that is why orbit is called stationary state also.
- Angular momentum (mvr) in each orbit is quantised, $m v r=n \frac{h}{2 \pi}=n \hbar$ here, $h$ is Planck's constant.

| $n:$ | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| $m v r:$ | $\frac{h}{2 \pi}$ | $\frac{h}{\pi}$ | $1.5 \frac{h}{\pi}$ | $2 \frac{h}{\pi}$ |

- When electron changes its orbit, energy change occurs in quanta.
$\Delta E=E_{2}-E_{1}=h v \quad$ or $=\frac{h c}{\lambda}$
$E_{2}-E_{1}>E_{3}-E_{2}>E_{4}-E_{3}>E_{5}-E_{4}$ and so on.
- Derived Formulae of Bohr's Theory (for $n^{\text {th }}$ orbit)

|  | For hydrogen | For H- like <br> particles |
| :--- | :--- | :---: |
| Energy $\left(E_{n}\right)$ | $\frac{-1312}{n^{2}} \mathrm{~kJ} / \mathrm{mol}$ | $\frac{-1312 Z^{2}}{n^{2}} \mathrm{~kJ} / \mathrm{mol}$ |
| Radius $\left(r_{n}\right)$ | $0.529 \times n^{2} \AA$ | $\frac{0.529 n^{2}}{Z} \AA$ |
| Speed $\left(v_{n}\right)$ | $\frac{2.18 \times 10^{8}}{n}$ | $\frac{2.18 \times 10^{8}}{n} \times Z$ |
|  | $\mathrm{~cm} \mathrm{~s}^{-1}$ | $\mathrm{~cm} \mathrm{~s}^{-1}$ |

## Limitations of Bohr's Model

- Mathematically, Bohr's model explains only monoelectronic atoms and fails to explain repulsion in multielectronic atoms.
- It does not explain the distribution of electrons in orbits.
- It does not provide mathematical support to assumption, $m v r=n \times \frac{h}{2 \pi}$
- It is against de Broglie and Heisenberg's principles.
- It does not explain the splitting of spectral lines under the influence of electric field (Stark effect) and magnetic field (Zeeman effect).


## Dual Nature of Radiation

- de Broglie has suggested that light can behave as a wave as well as like a particle. In 1924, de Broglie suggested that all microscopic particles such as electron, proton and atoms, etc. also have dual character.
de Broglie wavelength, $\lambda=\frac{h}{m v}=\frac{h}{p}$
- Relation between Kinetic energy and wavelength,

$$
\lambda=\frac{h}{\sqrt{2 \times K E \times m}}
$$

## Heisenberg's Uncertainty Principle

- According to this principle, it is impossible to determine simultaneously, the exact position and exact momentum (or velocity) of an electron. If the value of one is determined with certainty, the accuracy in determining the other value is compromised.

$$
\begin{aligned}
& \Delta x \cdot \Delta p \geq \frac{h}{4 \pi} \\
& \Delta x \cdot m \Delta v \geq \frac{h}{4 \pi}
\end{aligned}
$$

Here, $\Delta x=$ uncertainty in position

$$
\Delta v=\text { uncertainty in velocity }
$$

## Quantum Mechanical Model of Atom

## Schrodinger Wave Equation

$\frac{d^{2} \psi}{d x^{2}}+\frac{d^{2} \psi}{d y^{2}}+\frac{d^{2} \psi}{d z^{2}}+\frac{8 \pi^{2} m}{h^{2}}(E-V) \psi=0$
$\psi=$ amplitude of wave
$E=$ total energy of electron
$V=$ potential energy
$m=$ mass of electron

## Significance of $\psi$ and $\psi^{2}$

- $\psi$ : It has no physical significance. It represents amplitude of electron-wave or boundary surface of an orbital.
- $\psi^{2}$ : It is the probable electron density or it is the probability of finding electrons in any region (three dimensional space around the nucleus). If $\psi^{2}$ is positive, electrons are present and if $\psi^{2}$ is zero electrons are absent.


## Orbitals and Quantum Numbers

- Orbital : An orbital is a variably shaped, three dimensional region around the nucleus within which the probability of finding an electron is maximum.
- Quantum numbers : It is a set of four numbers which give complete information about all the electrons in an atom.

| Quantum <br> Numbers | Values | Information Given |
| :--- | :--- | :--- |
| Principal <br> quantum <br> number | $n=1,2,3 \ldots$ | Energy of main shell. <br> Maximum number <br> of electrons present <br> in $n^{\text {th }}$ shell $=2 n^{2}$ |


| Azimuthal quantum number ( $l$ ) | For a given value of $n, l=0$ to $n-1$. For $s$ subshell, $l=0$ <br> For $p$ subshell, $l=1$ <br> For $d$ subshell, $l=2$ <br> For $f$ subshell, $l=3$ | - It determines number of subshells. <br> - Shape of subshell. <br> - Angular momentum of the electron $=\sqrt{l(l+1)} \frac{h}{2 \pi}$ |
| :---: | :---: | :---: |
| Magnetic quantum number ( $m$ or $m_{l}$ ) | For a given value of $l, m=-l$ to $+l$ possible values of $m_{l}=(2 l+1)$ | - It determines number of orbitals present in one subshell $=(2 l+1)$. <br> - Number of orientations of each orbital. |
| Spin <br> quantum <br> number <br> ( $s$ or $m_{s}$ ) | $s=+1 / 2$ or $-1 / 2$ | - It tells about direction of electron spin, i.e., clockwise or anticlockwise. |

Node : It represents the region where probability of finding an electron is zero, (i.e., $\psi$ and $\psi^{2}=0$.)
Calculation of Nodes :


Aufbau Principle : The principle states that electrons are added progressively to the various orbitals in the order of increasing energies. The increasing order of energies of various orbitals is
$1 s 2 s 2 p 3 s 3 p 4 s 3 d 4 p 5 s 4 d 5 p 6 s 4 f 5 d 6 p 7 s \ldots$

Hund's Rule : This rule states that the pairing of electrons in the orbital of a particular subshell ( $p, d$, or $f$ ) does not take place until all the orbitals of the subshell are singly filled.

## Pauli Exclusion Principle:

 No two electrons in an atom can have the same set of four quantum numbers or only two electrons may exist in the same orbital and these electrons must have opposite spin.
## SPEED PPRRACTICE

1. How many moles of magnesium phosphate, $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ will contain 0.25 mole of oxygen atoms?
(a) 0.02
(b) $3.125 \times 10^{-2}$
(c) $1.25 \times 10^{-2}$
(d) $2.5 \times 10^{-2}$
2. The radius of the second Bohr orbit for hydrogen atom is
(Planck's constant $(h)=6.6262 \times 10^{3} \quad \mathrm{~J} \mathrm{~s}$; mass of electron $=9.1091 \times 10^{7} \mathrm{~kg}$; charge of electron $=1.60210 \times 10^{ \pm} \mathrm{C}$; permittivity of vacuum
$\left.\left(\varepsilon_{0}\right)=8.854185 \times 10^{ \pm} \quad \mathrm{kg}^{1} \mathrm{~m}^{3} \quad \mathrm{~A}^{2}\right)$
(a) $0.529 \AA$
(b) $2.12 \AA$
(c) $1.65 \AA$
(d) $4.76 \AA$
(JEE Main 2017)
3. To neutralise completely 20 mL of 0.1 M aqueous solution of phosphorous acid, the volume of 0.1 M aqueous KOH solution required is
(a) 10 mL
(b) 40 mL
(c) 60 mL
(d) 80 mL
4. Graph of wave function $v s$ distance from the nucleus is given for an orbital :


The number of nodal sphere of this orbital is
(a) 1
(b) 2
(c) 3
(d) 4
5. Which one is the wrong statement?
(a) The uncertainty principle is $\Delta E \times \Delta t \geq \frac{h}{4 \pi}$.
(b) Half filled and fully filled orbitals have greater stability due to greater exchange energy, greater symmetry and more balanced arrangement.
(c) The energy of $2 s$-orbital is less than the energy of $2 p$-orbital in case of hydrogen like atoms.
(d) de-Broglie's wavelength is given by $\lambda=\frac{h}{m v}$, where $m=$ mass of the particle, $v=$ group velocity of the particle.
(NEET 2017)
6. Energy of H -atom in the ground state is -13.6 eV , hence energy in the second excited state is
(a) -6.8 eV
(b) -3.4 eV
(c) -1.51 eV
(d) -4.53 eV
7. How many moles of ferric alum,
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \cdot 24 \mathrm{H}_{2} \mathrm{O}$ can be made from the sample of Fe containing 0.0056 g of it?
(a) $10^{-4} \mathrm{~mol}$
(b) $0.5 \times 10^{-4} \mathrm{~mol}$
(c) $0.33 \times 10^{-4} \mathrm{~mol}$
(d) $2 \times 10^{-4} \mathrm{~mol}$
8. An isotone of ${ }_{32}^{76} \mathrm{Ge}$ is
(i) ${ }_{32}^{77} \mathrm{Ge}$
(ii) ${ }_{33}^{77} \mathrm{As}$
(iii) ${ }_{34}^{77} \mathrm{Se}$
(iv) ${ }_{34}^{78} \mathrm{Se}$
(a) Only (i) and (ii)
(b) Only (ii) and (iii)
(c) Only (ii) and (iv)
(d) Only (ii), (iii) and (iv)
9. On analysis a certain compound was found to contain 254 g of iodine and 80 g of oxygen. The atomic mass of iodine is 127 and that of oxygen is 16 . What is the formula of the compound?
(a) IO
(b) $\mathrm{I}_{2} \mathrm{O}$
(c) $\mathrm{I}_{5} \mathrm{O}_{2}$
(d) $\mathrm{I}_{2} \mathrm{O}_{5}$
10. 1 gram of a carbonate $\left(M_{2} \mathrm{CO}_{3}\right)$ on treatment with excess HCl produces 0.01186 mole of $\mathrm{CO}_{2}$. The molar mass of $M_{2} \mathrm{CO}_{3}\left(\mathrm{in} \mathrm{g} \mathrm{mol}^{+}\right)$is
(a) 118.6
(b) 11.86
(c) 1186
(d) 84.3
(JEE Main 2017)
11. Minimum number of photons of light of wavelength $4000 \AA$ which provide 1 J energy is
(a) $2 \times 10^{18}$
(b) $2 \times 10^{9}$
(c) $2 \times 10^{20}$
(d) $2 \times 10^{10}$
12. If 0.5 g of a mixture of two metals $A$ and $B$ with respective equivalent weights 12 and 9 displace 560 mL of $\mathrm{H}_{2}$ at STP from an acid, the composition of the mixture is
(a) $40 \% A, 60 \% B$
(b) $60 \% A, 40 \% B$
(c) $30 \% A, 70 \% B$
(d) $70 \% A, 30 \% B$
13. Arrange the electrons represented by the following set of quantum numbers in the decreasing order of energy
(i) $n=4, l=0, m=0, s=+1 / 2$
(ii) $n=3, l=1, m=1, s=-1 / 2$
(iii) $n=3, l=2, m=0, s=+1 / 2$
(iv) $n=3, l=0, m=0, s=-1 / 2$
(a) (i) $>$ (ii) $>$ (iii) $>$ (iv)
(b) (iv) $>$ (iii) $>$ (ii) $>$ (i)
(c) (iii) $>$ (i) $>$ (ii) $>$ (iv)
(d) (i) $>$ (iii) $>$ (ii) $>$ (iv)
14. Rutherford's experiment, which established the nuclear model of the atom, used a beam of
(a) $\beta$-particles, which impringed on a metal foil and got absorbed
(b) $\gamma$-rays, which impringed on a metal foil and ejected electrons
(c) helium atoms, which impringed on a metal foil and got scattered
(d) helium nuclei, which impinged on a metal foil and got scattered.
15. In compound $A, 1.00 \mathrm{~g}$ nitrogen combines with 0.57 g oxygen. In compound $B, 2.00 \mathrm{~g}$ nitrogen combines with 2.24 g oxygen. In compound $C, 3.00 \mathrm{~g}$ nitrogen combines with 5.11 g oxygen. Which of the following laws is obeyed these results?
(a) Law of constant proportion
(b) Law of multiple proportion
(c) Law of reciprocal proportion
(d) Dalton's law of partial pressure
16. If Hund's rule is not followed, magnetic moment of $\mathrm{Fe}^{2+}, \mathrm{Mn}^{+}$and Cr all having 24 electrons will be in order
(a) $\mathrm{Fe}^{2+}<\mathrm{Mn}^{+}<\mathrm{Cr}$
(b) $\mathrm{Fe}^{2+}=\mathrm{Cr}<\mathrm{Mn}^{+}$
(c) $\mathrm{Fe}^{2+}=\mathrm{Mn}^{+}<\mathrm{Cr}$
(d) $\mathrm{Mn}^{2+}=\mathrm{Cr}<\mathrm{Fe}^{2+}$
17. 3 g of activated charcoal was added to 50 mL of acetic acid solution $(0.06 \mathrm{~N})$ in a flask. After an hour, it was filtered and the strength of the filtrate was found to be 0.042 N . The amount of acetic acid adsorbed (per gram of charcoal) is
(a) 42 mg
(b) 54 mg
(c) 18 mg
(d) 36 mg
(JEE Main 2015)
18. The maximum probability of finding electron in the $d_{x y}$ orbital is
(a) along the $x$-axis
(b) along the $y$-axis
(c) at an angle of $45^{\circ}$ from the $x$ - and $y$-axes
(d) at an angle of $90^{\circ}$ from the $x$ - and $y$-axes.
19. The angular momentum of an electron in a Bohr's orbit of H -atom is $4.2178 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-1}$. The
wavelength of spectral line emitted when electron falls from this level to next lower level, is
(a) $1.0 \times 10^{-4} \mathrm{~cm}$
(b) $1.8 \times 10^{-4} \mathrm{~cm}$
(c) $3.6 \times 10^{-4} \mathrm{~cm}$
(d) $5.4 \times 10^{-4} \mathrm{~cm}$
20. Suppose the elements $X$ and $Y$ combine to form two compounds $X Y_{2}$ and $X_{3} Y_{2}$. When 0.1 mole of $X Y_{2}$ weighs 10 g and 0.05 mole of $X_{3} Y_{2}$ weighs 9 g , the atomic weights of $X$ and $Y$ are
(a) 40,30
(b) 60,40
(c) 20,30
(d) 30,20
(NEET 2016 Phase-II)
21. The molar masses of oxygen and sulphur dioxide are 32 and 64 respectively. If 1 L of oxygen at $25^{\circ} \mathrm{C}$ and 750 mm Hg pressure contains $N$ molecules, then the number of molecules in 2 L sulphur dioxide under same conditions of temperature and pressure is
(a) $N / 2$
(b) $3 N / 2$
(c) $2 N$
(d) 6 N
22. If the shortest wavelength in Lyman series of hydrogen atom is $A$, then the longest wavelength in Paschen series of $\mathrm{He}^{+}$is
(a) $\frac{5 A}{9}$
(b) $\frac{36 A}{5}$
(c) $\frac{36 A}{7}$
(d) $\frac{9 A}{5}$
(JEE Main Online 2017)
23. The ratio of masses of oxygen and nitrogen in a particular gaseous mixture is $1: 4$. The ratio of number of their molecules is
(a) $3: 16$
(b) $1: 4$
(c) $7: 32$
(d) $1: 8$
24. 10 mL of 0.2 N HCl and 30 mL of 0.1 N HCl together exactly neutralise 40 mL of solution of NaOH , which is also exactly neutralised by a solution of 0.61 g of an organic acid in water. What is the equivalent weight of the organic acid?
(a) 61
(b) 91.5
(c) 122
(d) 183
25. The electron in the hydrogen atom undergoes transition from higher orbitals to orbital of radius 211.6 pm . This transition is associated with
(a) Paschen series
(b) Brackett series
(c) Lyman series
(d) Balmer series.
(JEE Main Online 2017)
26. For a precious stone, 'carat' is used for specifying its mass. If 1 carat $=3.168$ grain (a unit of mass) and 1 gram $=15.4$ grains. Find the total mass of the ring
that contains a 0.500 carat diamond and 7.00 gram gold.
(a) 7.103 kg
(b) $7.103 \times 10^{-3} \mathrm{~kg}$
(c) $0.103 \times 10^{-3} \mathrm{~kg}$
(d) 0.103 kg
27. The number of radial and angular nodes in $3 p$-orbital are respectively
(a) 1,0
(b) 2,1
(c) 1,1
(d) 2,0
28. How many electrons can fit in the orbital for which $n=3$ and $l=1$ ?
(a) 2
(b) 6
(c) 10
(d) 14
(NEET 2016 Phase-II)
29. If $n=6$, the correct sequence for filling of electrons will be
(a) $n s \rightarrow(n-2) f \rightarrow(n-1) d \rightarrow n p$
(b) $n s \rightarrow(n-1) d \rightarrow(n-2) f \rightarrow n p$
(c) $n s \rightarrow(n-2) f \rightarrow n p \rightarrow(n-1) d$
(d) $n s \rightarrow n p \rightarrow(n-1) d \rightarrow(n-2) f$
30. The result of the following calculation with the appropriate number of significant figures will be $943 \times 0.00345+101$
(a) 104.2
(b) 104.253
(c) 104.25
(d) 104

## SOLUTIONS

1. (b) : 8 mol of $\mathrm{O} \equiv 1 \mathrm{~mol} \mathrm{Mg} 3\left(\mathrm{PO}_{4}\right)_{2}$
$0.25 \mathrm{~mol} \mathrm{O}=\frac{1 \times 0.25}{8} \mathrm{~mol}$ of $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$

$$
=3.125 \times 10^{-2} \mathrm{~mol} \text { of } \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}
$$

2. (b): Radius of $n^{\text {th }}$ orbit for H -atom is
$r=\frac{n^{2} a_{0}}{Z} \AA$
$r=\frac{(2)^{2} \times 0.529}{1} \AA[\because n=2$, for second orbit $]$
$r=2.12 \AA$
3. (b): $\mathrm{H}_{3} \mathrm{PO}_{3}$ is a dibasic acid (containing two ionisable protons attached to oxygen directly).
$\mathrm{H}_{3} \mathrm{PO}_{3} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{HPO}_{4}^{2-}$
$0.1 \mathrm{M} \mathrm{H}_{3} \mathrm{PO}_{3}=0.2 \mathrm{~N} \mathrm{H}_{3} \mathrm{PO}_{3}$
$0.1 \mathrm{M} \mathrm{KOH}=0.1 \mathrm{~N} \mathrm{KOH}$
$N_{1} V_{1}=N_{2} V_{2}$
(KOH) $\left(\mathrm{H}_{3} \mathrm{PO}_{3}\right)$
$0.1 \times V_{1}=0.2 \times 20$
$V_{1}=40 \mathrm{~mL}$
4. (a)
5. (c) : In case of hydrogen like atoms, energy depends on the principal quantum number only. Hence, $2 s$-orbital will have energy equal to $2 p$-orbital.
6. (c) : $E_{n}=\frac{-13.6}{n^{2}} \mathrm{eV}$

For second excited state $n=3$,
$E_{3}=-\frac{13.6}{9}=-1.51 \mathrm{eV}$
7. (b): Moles of $\mathrm{Fe}=\frac{0.0056}{56}=10^{-4}$

1 mol of alum $=2 \mathrm{~mol}$ of Fe
2 mol of $\mathrm{Fe}=1 \mathrm{~mol}$ of alum
$10^{-4} \mathrm{~mol}$ of $\mathrm{Fe}=\frac{1}{2} \times 10^{-4} \mathrm{~mol}$ of alum

$$
=0.5 \times 10^{-4} \mathrm{~mol} \text { of alum }
$$

8. (c) : Isotones have same number of neutrons.
${ }_{32}^{76} \mathrm{Ge}: n=76-32=44$
(i) ${ }_{32}^{77} \mathrm{Ge}: n=77-32=45$
(ii) ${ }_{33}^{77} \mathrm{As}: n=77-33=44$
(iii) ${ }_{34}^{77} \mathrm{Se}: n=77-34=43$
(iv) ${ }_{34}^{78} \mathrm{Se}: n=78-34=44$
9. (d): Mole of iodine $=\frac{254}{127}=2$;

$$
\text { Mole of oxygen }=\frac{80}{16}=5
$$

$\therefore$ Molecular formula of compound is $\mathrm{I}_{2} \mathrm{O}_{5}$.
10. (d): According to the question,
$M_{2} \mathrm{CO}_{3}+2 \mathrm{HCl} \longrightarrow 2 \mathrm{MCl}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
In this equation, number of moles of $M_{2} \mathrm{CO}_{3}$ is equal to that of $\mathrm{CO}_{2}$.
i.e., $n_{M_{2} \mathrm{CO}_{3}}=n_{\mathrm{CO}_{2}}$
$\frac{\text { wt. of } M_{2} \mathrm{CO}_{3}}{\text { molar mass of } M_{2} \mathrm{CO}_{3}}=n_{\mathrm{CO}_{2}}$
$\frac{1 \mathrm{~g}}{\text { Molar mass of } \mathrm{M}_{2} \mathrm{CO}_{3}}=0.01186 \mathrm{~mol}$
Molar mass of $M_{2} \mathrm{CO}_{3}=\frac{1}{0.01186} \approx 84.3 \mathrm{~g} \mathrm{~mol}^{-1}$
11. (a): $E=n h v=\frac{n h c}{\lambda}$
$1=\frac{n \times 6.63 \times 10^{-34} \times 3 \times 10^{8}}{4000 \times 10^{-10}}$
$n=0.201 \times 10^{19}=2.0 \times 10^{18}$
12. (a) : 1 mol of $\mathrm{H}_{2}=22400 \mathrm{~mL}=2 \mathrm{Eq}$. of H

1 Eq. of $\mathrm{H}=11200 \mathrm{~mL}$
Eq. of $\mathrm{H}=\frac{560}{11200}=\frac{1}{20} \mathrm{Eq}$.
Let the weight of $A$ be $x \mathrm{~g}$;
$\therefore \quad$ weight of $B=0.5-x \mathrm{~g}$
Eq. of $A+$ Eq. of $B=$ Eq. of H
$\frac{x}{12}+\frac{0.5-x}{9}=\frac{1}{20}$
$\therefore \quad x=0.2$
$\%$ of $A=\frac{0.2 \times 100}{0.5}=40 \%$
$\%$ of $B=60 \%$
13. (c) : The orbitals described by these sets of quantum numbers are:
(i) $4 s$
(ii) $3 p$
(iii) $3 d$
(iv) $3 s$

The energy of these orbitals follows the order :

$$
3 d>4 s>3 p>3 s
$$

(iii) (i) (ii) (iv)
14. (d): Rutherford's experiment used a beam of $\alpha$-particles $\left({ }_{2}^{4} \mathrm{He}\right)$.
15. (b)
16. (b): If Hund's rule is not followed :
$\mathrm{Fe}^{2+}:[\mathrm{Ar}] 3 d^{6}$; unpaired electrons $=0$
$\mathrm{Mn}^{+}:[\mathrm{Ar}] 3 d^{5} 4 s^{1}$; unpaired electrons $=2$
$\mathrm{Cr}:[\mathrm{Ar}] 3 d^{4} 4 s^{2}$; unpaired electrons $=0$
17. (c) : No. of milliequivalents of acetic acid initially taken $=(0.06 \mathrm{~N}) \times(50 \mathrm{~mL})=3 \mathrm{meq}$
No. of milliequivalents of acetic acid left in the filtrate $=(0.042 \mathrm{~N}) \times(50 \mathrm{~mL})=2.1 \mathrm{meq}$
No. of milliequivalents of acetic acid adsorbed by activated charcoal $=(3-2.1)=0.9 \mathrm{meq}$
Amount of acetic acid adsorbed by 3 g of activated charcoal $=0.9 \times 60=54 \mathrm{mg}$
Amount of acetic acid adsorbed by 1 g of activated charcoal $=\frac{54}{3}=18 \mathrm{mg}$
18. (c) : $d_{x y}$ orbital lies at $45^{\circ}$ angle in between $x$ and $y$-axes.
19. (b) : According to Bohr's theory,

$$
m v r=\frac{n h}{2 \pi}
$$

$$
\frac{n h}{2 \pi}=4.2178 \times 10^{-34}
$$

or $n=\frac{4.2178 \times 10^{-34} \times 2 \times 3.14}{6.625 \times 10^{-34}}=4$
Thus, electron falls from $n=4$ level to $n=3$ level.
$\frac{1}{\lambda}=R_{H}\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]=109677 \times\left[\frac{1}{3^{2}}-\frac{1}{4^{2}}\right]$
$\lambda \approx 1.8 \times 10^{-4} \mathrm{~cm}$
20. (a) : Let atomic weight of element $X$ be $x$ and that of element $Y$ be $y$.
For $X Y_{2}, n=\frac{w}{\text { Mol. wt. }}$
$0.1=\frac{10}{x+2 y} \Rightarrow x+2 y=\frac{10}{0.1}=100$
For $X_{3} Y_{2}, n=\frac{w}{\text { Mol. wt. }}$
$0.05=\frac{9}{3 x+2 y} \Rightarrow 3 x+2 y=\frac{9}{0.05}=180$
On solving equations (i) and (ii), we get $y=30$
$x+2(30)=100 \Rightarrow x=100-60=40$
21. (c) : 1 L of oxygen at $25^{\circ} \mathrm{C}$ and 750 mm Hg contains
$=N$ molecules
$\therefore 2 \mathrm{~L}$ of oxygen at $25^{\circ} \mathrm{C}$ and 750 mm Hg will contain $=2 \mathrm{~N}$ molecules
$\therefore 2 \mathrm{~L}$ of sulphur dioxide at $25^{\circ} \mathrm{C}$ and 750 mm Hg contains 2 N molecules.
22. (c) : The shortest wavelength of hydrogen atom in Lyman series is from $n_{1}=1$ to $n_{2}=\infty$

$$
\begin{aligned}
\frac{1}{\lambda} & =R Z^{2}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) \\
\frac{1}{\lambda_{1}} & =\frac{1}{A}=R\left(\frac{1}{1^{2}}-\frac{1}{\infty^{2}}\right)=R \\
\Rightarrow R & =\frac{1}{A}
\end{aligned}
$$

The longest wavelength in Paschen series of $\mathrm{He}^{+}$is from $n_{1}=3$ to $n_{2}=4$

$$
\begin{aligned}
\frac{1}{\lambda_{2}} & =R Z^{2}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right) \\
\frac{1}{\lambda_{2}} & =\frac{1}{A}(2)^{2}\left(\frac{1}{3^{2}}-\frac{1}{4^{2}}\right)=\frac{4}{A} \times \frac{7}{16 \times 9}=\frac{7}{36 A} \\
\therefore \quad \lambda_{2} & =\frac{36 A}{7}
\end{aligned}
$$

23. (c) : Ratio of masses of $\mathrm{O}_{2}$ and $\mathrm{N}_{2}=1: 4$

Ratio of moles of $\mathrm{O}_{2}$ and $\mathrm{N}_{2}=\frac{1}{32}: \frac{4}{28}$

$$
=7: 32
$$

$\therefore$ Ratio of molecules of $\mathrm{O}_{2}$ and $\mathrm{N}_{2}=7: 32$
24. (c) : 10 mL of $0.2 \mathrm{~N} \mathrm{HCl}+30 \mathrm{~mL}$ of 0.1 N HCl $\equiv 40 \mathrm{~mL}$ of NaOH ( $\equiv 0.61 \mathrm{~g}$ of organic acid in water) meq of $\mathrm{HCl} \equiv$ meq of $\mathrm{NaOH} \equiv$ meq of organic acid
$10 \times 0.2+30 \times 0.1 \equiv \frac{0.61}{E} \times 1000$
$5=\frac{0.61 \times 1000}{E}, E=\frac{610}{5}=122$
25. (d): $r=211.6 \mathrm{pm}=2.11 \AA$
$r=0.529 \times \frac{n^{2}}{Z}=2.11 \AA(Z=1)$
$\therefore \quad n^{2} \approx 4 \Rightarrow n=2$
In Balmer series, transition of electron occurs from higher orbitals to orbital having value $n=2$.
26. (b): Mass of diamond in the ring $=0.500$ carat
0.500 carat $=0.500$ carat $\times \frac{3.168 \text { grain }}{1 \text { carat }}$

$$
=1.584 \text { grain }=\frac{1.584 \text { grain }}{15.4 \text { grain } / \mathrm{g}}=0.103 \mathrm{~g}
$$

So, total mass of the ring $=7.00 \mathrm{~g}+0.103 \mathrm{~g}=7.103 \mathrm{~g}$

$$
=7.103 \times 10^{-3} \mathrm{~kg}
$$

27. (c) : Radial nodes $=n-l-1=3-1-1=1$

Angular nodes $=l=1$
28. (a) : For $n=3$ and $l=1$, the subshell is $3 p$ and a particular $3 p$ orbital can accommodate only 2 electrons.
29. (a): For $n=6$
$6 s \rightarrow 4 f \rightarrow 5 d \rightarrow 6 p$
30. (d): $943 \times 0.00345=3.25335=3.25$

As answer should be reported up to three significant numbers.
$3.25+101=104.25=104$
As answer should be reported to zero place of decimal.


## EXAMiNER'S MiND Cusel



The questions given in this column have been prepared strictly on the basis of NCERT Chemistry for Class XI. This year JEE (Main \& Advanced)/NEET/AIIMS have drawn their papers heavily from NCERT books.

| Section - I | Q. 1 to 10 Only One Option Correct Type MCQs. |
| :--- | :--- |
| Section - II | Q. 11 to 13 More than One Options Correct Type MCQs. |
| Section - III | Q. 14 to 17 Paragraph Type MCQs having Only One Option Correct. |
| Section - IV | Q. 18 \& 19 Matching List Type MCQs having Only One Option Correct. |
| Section - V | Q. 20 to 22 Assertion Reason Type MCQs having Only One Option Correct. Mark the correct choice as : <br> (a) If both assertion and reason are true and reason is the correct explanation of assertion. <br> (b) If both assertion and reason are e rue but reason is not the correct explanation of assertion. <br> (c) If assertion is true but reason is false. <br> (d) If both assertion and reason are false. |
| Section - VI | Q. 23 to 25 Integer Value Correct Type Questions having Single Digit Integer Answer, ranging from <br> 0 to 9 (both inclusive). |

## SOME BASIC CONCEPTS OF CHEMISTRY

## Only One Option Correct Type

1. 112.0 mL of $\mathrm{NO}_{2}$ at STP was liquefied, the density of the liquid being $1.15 \mathrm{~g} \mathrm{~mL}^{-1}$. The volume of the liquid and the number of molecules in the liquid $\mathrm{NO}_{2}$ respectively are
(a) 0.10 mL and $3.01 \times 10^{22}$
(b) 0.20 mL and $3.01 \times 10^{21}$
(c) 0.20 mL and $6.02 \times 10^{23}$
(d) 0.40 mL and $6.02 \times 10^{21}$
2. A mixture of CO and $\mathrm{CO}_{2}$ having a volume of 20 mL is mixed with $x \mathrm{~mL}$ of oxygen and electrically sparked. The volume after explosion is $(16+x) \mathrm{mL}$ under the same conditions. What would be the residual volume if 30 mL of the original mixture is treated with aqueous NaOH ?
(a) 12 mL
(b) 10 mL
(c) 9 mL
(d) 8 mL
3. 50 litres of water containing $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ when converted into soft water required $22.2 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}$. The amount of $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ present per litre of hard water is
(a) $0.220 \mathrm{~g} \mathrm{~L}^{-1}$
(b) $1.431 \mathrm{~g} \mathrm{~L}^{-1}$
(c) $0.972 \mathrm{~g} \mathrm{~L}^{-1}$
(d) $1.241 \mathrm{~g} \mathrm{~L}^{-1}$
4. In the reaction,
$4 \mathrm{NH}_{3(g)}+5 \mathrm{O}_{2(g)} \longrightarrow 4 \mathrm{NO}_{(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(l)}$
when 1 mol of ammonia and 1 mol of $\mathrm{O}_{2}$ are made to react to completion then
(a) 1.0 mol of $\mathrm{H}_{2} \mathrm{O}$ will be produced
(b) 1.0 mol of NO will be produced
(c) all the ammonia will be consumed
(d) all the oxygen will be consumed.
5. Concentrated aqueous sulphuric acid is $98 \% \mathrm{H}_{2} \mathrm{SO}_{4}$ by mass and has a density of $1.80 \mathrm{~g} \mathrm{~mL}^{-1}$. Volume of acid required to make one litre of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution is
(a) 11.10 mL
(b) 16.65 mL
(c) 22.20 mL
(d) 5.55 mL
6. The balancing of chemical equations is based upon the law of
(a) combining volumes
(b) multiple proportions
(c) conservation of mass
(d) definite proportions.
7. The density of a liquid is $1.2 \mathrm{~g} / \mathrm{mL}$. There are 35 drops in 2 mL . The number of molecules in one drop are (molar mass of liquid $=70$ )
(a) $\left(\frac{1.2}{35}\right) N_{A}$
(b) $\left(\frac{1}{35}\right)^{2} N_{A}$
(c) $\frac{1.2}{(35)^{2}} N_{A}$
(d) $1.2 N_{A}$
8. Chlorophyll, the green colouring matter of plants responsible for photosynthesis, contains $2.68 \%$ of magnesium by mass, then number of magnesium atoms in 2.00 g of chlorophyll is
(a) $2.345 \times 10^{21}$ atoms of Mg
(b) $2.924 \times 10^{21}$ atoms of Mg
(c) $1.942 \times 10^{21}$ atoms of Mg
(d) $1.343 \times 10^{21}$ atoms of Mg .
9. 250 mL of $x \mathrm{M}$ solution and 500 mL of $y \mathrm{M}$ solution of a solute are mixed and diluted to 2 L to produce a solution having concentration 1.6 M . If $x: y=5: 4$, then $x+y$ is
(a) 8.06
(b) 8.86
(c) 9.8
(d) 12.6
10. The vapour density of a mixture containing $\mathrm{NO}_{2}$ and $\mathrm{N}_{2} \mathrm{O}_{4}$ is 38.3 at 300 K . The number of moles of $\mathrm{NO}_{2}$ in 100 g of the mixture is approximately
(a) 0.44
(b) 4.4
(c) 33.4
(d) 3.34

## SECTION - II <br> More than One Options Correct Type

11. A solution contains $25 \%$ water, $25 \%$ ethanol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ and $50 \%$ acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ by mass. The mole fraction of
(a) Water $=0.502$
(b) Ethanol $=0.302$
(c) Acetic acid $=0.196$
(d) Ethanol + acetic acid $=0.497$
12. In $\mathrm{MgSO}_{4}$ (At. mass: $\mathrm{Mg}=24, \mathrm{~S}=32, \mathrm{O}=16$ ), the mass percentage of
(a) $\mathrm{Mg}=80 \%$
(b) $\mathrm{Mg}=20 \%$
(c) $\mathrm{S}=26.7 \%$
(d) $\mathrm{S}=53.3 \%$
13. The following substances are present in different containers
(i) one gram atom of nitrogen
(ii) one mole of calcium
(iii) one atom of silver
(iv) one mole of oxygen molecules
(v) $10^{23}$ atoms of carbon
(vi) One gram of iron.

The correct order of increasing masses (in grams) is/are
(a) (iii) < (iv) < (i) < (v)
(b) (iii) < (vi) < (iv) < (ii)
(c) (vi) $<$ (v) $<$ (i) $<$ (iv)
(d) (iii) $<$ (ii) $<$ (v) $<$ (iv)

## SECTION - III <br> Paragraph Type

## Paragraph for Questions 14 and 15

A crystalline hydrated salt on being rendered anhydrous loses $45.6 \%$ of its weight.
The percentage composition of anhydrous salt is :
$\mathrm{Al}=10.5 \%, \mathrm{~K}=15.1 \%, \mathrm{~S}=24.8 \%$ and oxygen $=49.6 \%$
[Molar mass : $\mathrm{Al}=27, \mathrm{~K}=39, \mathrm{~S}=32$ ]
14. What is the empirical formula of the salt?
(a) $\mathrm{K}_{2} \mathrm{AlSO}_{7}$
(b) $\mathrm{K}_{2} \mathrm{Al}_{2} \mathrm{SO}_{7}$
(c) $\mathrm{KAlS}_{2} \mathrm{O}_{8}$
(d) $\mathrm{K}_{3} \mathrm{AlS}_{2} \mathrm{O}_{12}$
15. What is the empirical formula of the hydrated salt?
(a) $\mathrm{K}_{2} \mathrm{AlSO}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{K}_{2} \mathrm{Al}_{2} \mathrm{~S}_{2} \mathrm{O}_{7} \cdot 16 \mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{K}_{3} \mathrm{AlS}_{2} \mathrm{O}_{12} \cdot 8 \mathrm{H}_{2} \mathrm{O}$
(d) $\mathrm{KAlS}_{2} \mathrm{O}_{8} \cdot 12 \mathrm{H}_{2} \mathrm{O}$

## Paragraph for Questions 16 and 17

25 g of the explosive TNT is detonated in an evacuated 5 litre container, as follows :
$2 \mathrm{C}_{7} \mathrm{H}_{5}\left(\mathrm{NO}_{2}\right)_{3(s)} \longrightarrow 12 \mathrm{CO}_{(g)}+2 \mathrm{C}_{(s)}+5 \mathrm{H}_{2(\mathrm{~g})}+3 \mathrm{~N}_{2(\mathrm{~g})}$
16. The mass of carbon deposited is
(a) 0.32 g
(b) 1.42 g
(c) 2.32 g
(d) 1.32 g
17. The final pressure (in atm) of the system at $230^{\circ} \mathrm{C}$ is
(a) 8.4
(b) 9.1
(c) 10.0
(d) 7.6

## SECTION - IV

## Matching List Type

18. Match the physical quantity given in List I with the units given in List II and select the correct answer using the codes given below the lists :

## List I

(P) Force
(Q) Energy
(R) Frequency
(S) Work
$\begin{array}{llll}\mathbf{P} & \mathbf{Q} & \mathbf{R} & \mathbf{S}\end{array}$
(a) $4 \quad 1,3 \quad 2 \quad 1,3$
(b) $3 \quad 4 \quad 1 \quad 2$
(c) $3 \quad 4 \quad 2 \quad 1$
(d) $3 \quad 2 \quad 1 \quad 4$
19. Match the List I with List II and select the correct answer using the codes given below the lists :

## List I

(P) Molality
(Q) Molarity
(R) Mole fraction
(S) Normality

|  | $\mathbf{P}$ | $\mathbf{Q}$ | $\mathbf{R}$ | $\mathbf{S}$ |
| :---: | :---: | :---: | :---: | :---: |
| (a) 2,4 | 3,4 | 1,4 | 3 |  |
| (b) | 1,4 | 2,4 | 1,4 | 2 |
| (c) 3,4 | 1,4 | 2,4 | 3 |  |
| (d) 1,4 | 2 | 1 | 3 |  |

## SECTION - V

Assertion Reason Type
20. Assertion : The empirical and molecular formula of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is same.
Reason : $\mathrm{Na}_{2} \mathrm{CO}_{3}$ does not form hydrate.
21. Assertion : Atomic mass of potassium is 39 .

Reason : An atom of potassium is 39 times heavier than $1 / 12^{\text {th }}$ of the mass of carbon atom $\left(\mathrm{C}^{12}\right)$.
22. Assertion : Both 138 g of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and 12 g of carbon have same number of carbon atoms.
Reason : Both contain 1 g atom of carbon which contains $6.022 \times 10^{23}$ carbon atoms.

## SECTION - VI

Integer Value Correct Type
23. The number of significant figures up to which the result of the following may be expressed is

$$
\frac{(29.4-21.4)\left(1.86 \times 10^{3}\right)}{1.78}
$$

24. Haemoglobin contains $0.334 \%$ of iron by weight. The molecular weight of haemoglobin is approximately 67200. The number of iron atom (at. wt. of Fe is 56) present in one molecule of haemoglobin are
25. The equivalent weight of a metal is 4.5 and the molecular weight of its chloride is 80 . The atomic weight of the metal is

## CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES

## SECTION - I

## Only One Option Correct Type

1. Electronic configurations of four elements $A, B, C$ and $D$ are given below :
(A) $1 s^{2} 2 s^{2} 2 p^{6}$
(B) $1 s^{2} 2 s^{2} 2 p^{4}$
(C) $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
(D) $1 s^{2} 2 s^{2} 2 p^{5}$

Which of the following is the correct order of increasing tendency to gain electron?
(a) $A<C<B<D$
(b) $A<B<C<D$
(c) $D<B<C<A$
(d) $D<A<B<C$
2. Few elements are matched with their successive ionisation energies. Identify the elements.

| Element | $\left.\boldsymbol{I E}_{\mathbf{1}} \mathbf{( k J / m o l}\right)$ | $\left.\mathbf{I E}_{\mathbf{2}} \mathbf{( k J / m o l}\right)$ |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $X$ | 2372 | 5251 |  |  |
| $Y$ | 520 | 7297 |  |  |
| $Z$ | 900 | 1758 |  |  |
| $X$ |  | $\boldsymbol{Z}$ |  | $\boldsymbol{Z}$ |

(a) A noble gas
(b) Alkali metal
(c) Alkaline earth metal
(d) Alkali metal

Alkali metal
A noble gas

Alkali metal
Alkaline A noble gas earth metal
3. The statement that is not correct for periodic classification of elements is
(a) the properties of elements are periodic function of their atomic numbers
(b) non-metallic elements are less in number than metallic elements
(c) for transition elements, the $3 d$-orbitals are filled with electrons after $3 p$-orbitals and before $4 s$-orbitals
(d) the first ionisation enthalpies of elements generally increase with increase in atomic number as we go along a period.
4. Predict the formula of stable compound formed by an element ' $A$ ' with atomic number 114 and fluorine.
(a) $\mathrm{AF}_{3}$
(b) $A F_{2}$
(c) $A F$
(d) $A F_{4}$
5. Which among the following factors is the most important in making fluorine the strongest oxidising halogen?
(a) Electron affinity
(b) Bond dissociation energy
(c) Hydration enthalpy
(d) Ionisation enthalpy
6. Which of the following is a favourable factor for cation formation?
(a) High electronegativity
(b) High electron affinity
(c) Low ionisation potential
(d) Smaller atomic size
7. How much energy must be needed to convert all the atoms of sodium to sodium ions present in 2.3 mg of sodium vapours? Ionisation enthalpy of sodium is $495 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (At. mass of $\mathrm{Na}=23$ ).
(a) 47.5 J
(b) 39.5 J
(c) 48.0 J
(d) 49.5 J
8. In the given graph, a periodic property ( $R$ ) is plotted against atomic numbers $(Z)$ of the elements. Which property is shown in the graph and how is it correlated with reactivity of the elements?

(a) Ionisation enthalpy in a group, reactivity decreases from $a \rightarrow e$.
(b) Ionisation enthalpy in a group, reactivity increases from $a \rightarrow e$.
(c) Atomic radius in a group, reactivity decreases from $a \rightarrow e$.
(d) Metallic character in a group, reactivity increases from $a \rightarrow e$.
9. Fill in the blanks with appropriate option.

The ability of an atom to attract shared electrons to itself is called (i) . It is generally measured on the _(ii) scale. An arbitrary value of _(iii)__ is assigned to fluorine (have greatest ability to attract electrons). It generally _(iv) across a period and (v) down a group.

| (i) | (ii) | (iii) | (iv) | (v) |
| :---: | :---: | :---: | :---: | :---: |
| (a) polarity | Pauling | 2.0 | decreases | increases |
| (b) electronegativity | Pauling | 4.0 | increases | decreases |
| (c) valency | Mulliken | 1.0 | decreases | increases |
| (d) electron | Mulliken | 2.0 | increases | increases |
| affinity |  |  |  |  |

10. A neutral atom $(A)$ is converted to $\left(A^{3+}\right)$ by the following process :
$A \xrightarrow[-e^{-}]{E_{1}} A^{+} \xrightarrow[-e^{-}]{E_{2}} A^{2+} \xrightarrow[-e^{-}]{E_{3}} A^{3+}$
The correct order of $E_{1}, E_{2}$ and $E_{3}$ energies is
(a) $E_{1}<E_{2}<E_{3}$
(b) $E_{1}>E_{2}>E_{3}$
(c) $E_{1}=E_{2}=E_{3}$
(d) $E_{1}>E_{2}<E_{3}$

## SECTION - II

More than One Options Correct Type
11. Among the following identify the correct statements .
(a) Amongst isoelectronic species, smaller the positive charge on the cation, smaller is the ionic radius.
(b) Amongst isoelectronic species, greater the negative charge on the anion, larger is the ionic radius.
(c) Atomic radius of the elements increases on moving down the firstgroup ofthe periodic table.
(d) Atomic radius of the elements decreases on moving across the period of the periodic table.
12. Which of the following sets contain only isoelectronic ions?
(a) $\mathrm{P}^{3-}, \mathrm{S}^{2-}, \mathrm{Cl}^{-}, \mathrm{K}^{+}$
(b) $\mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Cl}^{-}, \mathrm{F}^{-}$
(c) $\mathrm{Ti}^{4+}, \mathrm{Sc}^{3+}, \mathrm{Cl}^{-}, \mathrm{Ar}$
(d) $\mathrm{O}^{2-}, \mathrm{Na}^{2+}, \mathrm{F}^{-}, \mathrm{Ar}$
13. Which of the following statements are not correct?
(a) Germanium was earlier called eka-silicon.
(b) Moseley introduced the concept of atomic number as the basis of modern periodic law.
(c) 14 elements of $5^{\text {th }}$ period are called lanthanoids.
(d) $4^{\text {th }}$ period begins with rubidium.

## SECTION - III

## Paragraph Type

Paragraph for Questions 14 and 15
The amount of energy released when a neutral isolated gaseous atom accepts an electron to form gaseous anion is called electron affinity.

$$
\begin{align*}
& \mathrm{O}_{(g)}+e^{-} \xrightarrow{\text { Exothermic }} \mathrm{O}_{(g)}^{-} \\
& \mathrm{O}_{(\mathrm{g})}^{-}+e^{-} \xrightarrow{\text { Endothermic }} \mathrm{O}_{(\mathrm{g})}^{2-} \tag{ii}
\end{align*}
$$

In (ii), the energy has to be supplied for addition of second electron due to repulsion between an anion and extra electron. The members of third period have higher electron affinity value than members of second period.
14. Considering the elements $\mathrm{F}, \mathrm{Cl}, \mathrm{O}$ and S correct order of their electron affinity value is
(a) $\mathrm{F}>\mathrm{Cl}>\mathrm{O}>\mathrm{S}$
(b) F $>\mathrm{O}>\mathrm{Cl}>\mathrm{S}$
(c) $\mathrm{Cl}>$ F $>$ S $>$ O
(d) $\mathrm{O}>\mathrm{F}>\mathrm{S}>\mathrm{Cl}$
15. Which process involves maximum release of energy?
(a) $\mathrm{O}_{(g)}+e^{-} \longrightarrow \mathrm{O}_{(g)}^{-}$
(b) $\mathrm{S}_{(g)}+e^{-} \longrightarrow \mathrm{S}_{(g)}^{-}$
(c) $\mathrm{F}_{(g)}+e^{-} \longrightarrow \mathrm{F}_{(g)}^{-}$
(d) $\mathrm{Cl}_{(g)}+e^{-} \longrightarrow \mathrm{Cl}_{(g)}^{-}$

## Paragraph for Questions 16 and 17

The first $\left(\Delta_{i} H_{1}\right)$ and second $\left(\Delta_{i} H_{2}\right)$ ionisation enthalpies (in $\mathrm{kJ} \mathrm{mol}^{-1}$ ) and the electron gain enthalpy (in $\mathrm{kJ} \mathrm{mol}{ }^{-1}$ ) of few elements are given below :

| Elements | $\boldsymbol{\Delta}_{\boldsymbol{i}} \boldsymbol{H}_{\mathbf{1}}$ | $\boldsymbol{\Delta}_{\boldsymbol{i}} \boldsymbol{H}_{\mathbf{2}}$ | $\boldsymbol{\Delta}_{\boldsymbol{e g}} \boldsymbol{H}$ |
| :---: | :--- | :--- | :--- |
| $A$ | 520 | 7300 | -60 |
| $B$ | 419 | 3051 | -48 |
| $C$ | 1681 | 3374 | -328 |
| $D$ | 1008 | 1846 | -295 |
| $E$ | 2372 | 5251 | +48 |
| $F$ | 738 | 1451 | -40 |

16. Which one of the given elements is most reactive non-metal?
(a) $C$
(b) $D$
(c) $E$
(d) $A$
17. The metal which can form predominantly stable covalent halide of the formula $M X(X=$ halogen $)$ is
(a) $F$
(b) $B$
(c) $D$
(d) $A$

## SECTION - IV

Matching List Type
18. Match the entries of List I with appropriate entries of List II and select the correct answer using the codes given below the lists:

## List I

(P) Rutherfordium
$(A t$. No. $=104)$
(Q) Roentgenium (At. No. = 111)
(R) Thorium (At. No. = 90)
(S) Neptunium (At. No. = 93)

## List II

1. Period number $=7$
2. Group number $=4$
3. $d$-block elements
4. f-block elements
$\begin{array}{llll}\text { (a) } 3 & 2,4 & 2,3 & 1,2,3\end{array}$
(b) 1,2,3 $\begin{array}{llll}1,3 & 1,4 & 1,4\end{array}$
(c) $1,2 \quad 2,1 \quad 4,3 \quad 3,1$
$\begin{array}{llll}\text { (d) } 3,1 & 1,3 & 2,4 & 4,1,2\end{array}$
5. Match the entries of List I with appropriate entries of List II and select the correct answer using the codes given below the lists :

## List I

(P) A reactive, pale yellow gas; the atom has a large negative electron affinity
(Q) A soft metal that reacts with water to produce hydrogen
(R) A metal that forms an oxide of formula, $M_{2} \mathrm{O}_{3}$

## List II

1. Oxygen
2. Gallium
3. Barium
(S) A colourless gas; the atom has moderately large negative electron affinity

|  | $\mathbf{P}$ | $\mathbf{Q}$ | $\mathbf{R}$ | $\mathbf{S}$ |
| :--- | :--- | :--- | :--- | :--- |
| (a) 4 | 3 | 2 | 1 |  |
| (b) 3 | 4 | 1 | 2 |  |
| (c) 2 | 1 | 4 | 3 |  |
| (d) 3 | 1 | 2 | 4 |  |

## SECTION - V

## Assertion Reason Type

20. Assertion : Generally, ionisation enthalpy increases from left to right in a period.
Reason : When successive electrons are added to the orbitals in the same principal quantum number, the shielding effect of inner core of electrons does not increase very much to compensate for the increased attraction of the electron to the nucleus.
21. Assertion : Boron has smaller first ionisation enthalpy than beryllium.
Reason : The penetration of a $2 s$ electron to the nucleus is more than the $2 p$ electron hence $2 p$ electron is more shielded by the inner core of electrons than the $2 s$ electrons.
22. Assertion : The elements having $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$ and $1 s^{2} 2 s^{2}$ configuration belong to same group.
Reason : These have same number of valence electrons.

## SECTION - VI

Integer Value Correct Type
23. How many of the following elements are lanthanoids?
$\mathrm{Cs}, \mathrm{Ra}, \mathrm{Sn}, \mathrm{Sm}, \mathrm{Pb}, \mathrm{Er}, \mathrm{Se}, \mathrm{Gd}$
24. The element with atomic number 25 will be found in group $\qquad$ —.
25. $I E$ and $E A$ values of an element are 13.0 eV and 3.8 eV respectively. Its electronegativity on pauling scale is

## SOLUTIONS

## SOME BASIC CONCEPTS OF CHEMISTRY

1. (b): Mass of $\mathrm{NO}_{2}$ gas $=\frac{46}{22400} \times 112=0.23 \mathrm{~g}$
$\therefore \quad$ Volume of liquid $=\frac{0.23}{1.15}=0.20 \mathrm{~mL}$

Now, number of molecules in $\mathrm{NO}_{2}$ liquid
$=$ Number of moles $\times$ Avogadro's number

$$
=\frac{0.23}{46} \times 6.023 \times 10^{23} \approx 3.01 \times 10^{21}
$$

2. (a): $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}$
$\mathrm{CO}_{2}+\mathrm{O}_{2} \longrightarrow$ No reaction
Let $a \mathrm{mLCO}$ and $b \mathrm{mLCO} \mathrm{CO}_{2}$ be present in the mixture.
So, $a+b=20$
After the explosion $a \mathrm{~mL}$ of $\mathrm{CO}_{2}$ is formed so,

$$
a+b+\frac{x}{2}=16+x
$$

or $2 a+2 b-x=32$
From eqs. (i) and (ii), we get

$$
x=8 \mathrm{~mL}
$$

Therefore, volume of CO in the mixture $=8 \mathrm{~mL}$
$\therefore$ Volume of $\mathrm{CO}_{2}=20-8=12 \mathrm{~mL}$

$$
\mathrm{CO}_{2}+2 \mathrm{NaOH} \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\mathrm{CO}+\mathrm{NaOH} \longrightarrow \text { No reaction }
$$

If 30 mL original mixture is used then
volume of $\mathrm{CO}_{2}$ in the mixture $=\frac{12}{20} \times 30=18 \mathrm{~mL}$
and volume of CO left unreacted $=30-18=12 \mathrm{~mL}$
3. (c) : $\underset{162 \mathrm{~g}}{\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}}+\underset{74 \mathrm{~g}}{\mathrm{Ca}(\mathrm{OH})_{2}} \rightarrow 2 \mathrm{CaCO}_{3}+2 \mathrm{H}_{2} \mathrm{O}$
$74 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}$ reacts with 162 g of $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
$\therefore \quad 22.2 \mathrm{~g}$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ will react with $=\frac{162 \times 22.2}{74}$

$$
=48.6 \mathrm{~g} \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}
$$

50 L water contains $=48.6 \mathrm{~g} \mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
1 L water contains $=\frac{48.6}{50}=0.972 \mathrm{~g} \mathrm{~L}^{-1}$
4. (d): According to stoichiometry, they should react as follows :

$$
\begin{array}{cccc}
4 \mathrm{NH}_{3(g)}+5 \mathrm{O}_{2(g)} & 4 \mathrm{NO}_{(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(l)} \\
4 \mathrm{~mol} & 5 \mathrm{~mol} & 4 \mathrm{~mol} & 6 \mathrm{~mol} \\
0.8 \mathrm{~mol} & 1 \mathrm{~mol} & 0.8 \mathrm{~mol} & 1.2 \mathrm{~mol}
\end{array}
$$

In this reaction, 1 mole of $\mathrm{O}_{2}$ and 0.8 mole of $\mathrm{NH}_{3}$ are consumed thereby indicating complete consumption of $\mathrm{O}_{2}$.
5. (d): $\mathrm{H}_{2} \mathrm{SO}_{4}$ is $98 \%$ by weight.

Weight of $\mathrm{H}_{2} \mathrm{SO}_{4}=98 \mathrm{~g}$
Weight of solution $=100 \mathrm{~g}$
Volume of solution $=\frac{\text { Mass }}{\text { Density }}=\frac{100}{1.80} \mathrm{~mL}$

$$
=55.55 \mathrm{~mL}=0.0555 \mathrm{~L}
$$

Molarity of solution $=\frac{98}{98 \times 0.0555} \approx 18.02 \mathrm{M}$
Let $V \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ be used to prepare one litre of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.

$$
V \times 18.02=1000 \times 0.1
$$

$V=\frac{1000 \times 0.1}{18.02}=5.55 \mathrm{~mL}$
6. (c) : In balancing of chemical equations, mass on both the sides of the reaction should be conserved. Hence, it is based on law of conservation of mass.
7. (c) : 70 g ( 1 mole) of the liquid has $N_{A}$ molecules.

$$
\equiv-
$$

- has $N_{A}$ molecules.

2 mL (or 35 drops) will have

$$
=\underline{N_{A}} \times \quad \times=\underline{ } \times N_{A}
$$

Then 1 drop will have $=\frac{N_{A} \times}{\times}=\frac{\times N_{A}}{}$
8. (d): 100 g chlorophyll contains 2.68 g Mg

$$
=\frac{2.68}{24} \text { mole of } \mathrm{Mg}
$$

2 g chlorophyll contains $=\frac{2.68 \times 2}{24 \times 100}$ mole of Mg

$$
=2.23 \times 10^{-3} \mathrm{~mole} \text { of } \mathrm{Mg}
$$

No. of Mg atoms $=2.23 \times 10^{-3} \times 6.023 \times 10^{23}$

$$
=1.343 \times 10^{21} \text { atoms of } \mathrm{Mg}
$$

9. (b): $250 x+500 y=1.6 \times 2000$

$$
\frac{x}{y}=\frac{5}{4}
$$

$x=4.92, y=3.94$ (approx.) Thus, $x+y=8.86$
10. (a): Molecular weight of the mixture $=38.3 \times 2$

$$
=76.6
$$

Let mass of $\mathrm{NO}_{2}$ in mixture be $x \mathrm{~g}$.
Then, mass of $\mathrm{N}_{2} \mathrm{O}_{4}=(100-x) \mathrm{g}$
Number of moles of $\mathrm{NO}_{2}=\frac{x}{46}$
Number of moles of $\mathrm{N}_{2} \mathrm{O}_{4}=\frac{100-x}{92}$
(Molecular weight of $\mathrm{NO}_{2}=46$, molecular weight of $\mathrm{N}_{2} \mathrm{O}_{4}=92$ )

$$
\frac{\text { Weight }}{\text { Number of moles }}=\text { Molecular weight }
$$

$\frac{x+(100-x)}{\frac{x}{46}+\frac{(100-x)}{92}}=76.6 \Rightarrow \frac{x}{46}+\frac{(100-x)}{92}=\frac{100}{76.6}$
$\therefore \quad x=20.1$
Number of moles of $\mathrm{NO}_{2}=\frac{20.1}{46}=0.437 \approx 0.44$
11. $(\mathrm{a}, \mathrm{d}):$ Moles of water $=\frac{25}{18}=1.388$

Moles of ethanol $=\frac{25}{46}=0.543$
Moles of acetic acid $=\frac{50}{60}=0.833$
Total moles $=1.388+0.543+0.833=2.764$
$x_{\text {(water) }}=\frac{1.388}{2.764}=0.502$
$x_{\text {(ethanol) }}=0.196$
$x_{\text {(acetic acid) }}=0.301$
$x_{\text {(ethanol) }}+x_{\text {(acetic acid) }}=0.497$
12. $(\mathrm{b}, \mathrm{c}):$ Molar mass $\mathrm{MgSO}_{4}=24+32+4 \times 16=120$

Mass \% of $\mathrm{Mg}=\frac{24}{120} \times 100=20 \%$
Mass $\%$ of $S=\frac{32}{120} \times 100=26.7 \%$
13. (b, c) : (i) 14 g
(ii) 40 g
(iii) $\frac{108}{6.022 \times 10^{23}}=1.79 \times 10^{-22} \mathrm{~g}$
(iv) 32 g
(v) 1.99 g
(vi) 1 g

Hence, the correct order of increasing masses is (iii) $<$ (vi) $<$ (v) $<$ (i) $<$ (iv) $<$ (ii)
14. (c) :

| Element | $\%$ | $\frac{\text { percentage mass }}{\text { At. mass }}$ | Simplest <br> ratio |
| :---: | :---: | :---: | :---: |
| Al | 10.5 | $\frac{10.5}{27}=0.388$ | 1 |
| K | 15.1 | $\frac{15.1}{39}=0.387$ | 1 |
| S | 24.8 | $\frac{24.8}{32}=0.775$ | 2 |
| O | 49.6 | $\frac{49.6}{16}=3.1$ | 8 |

$\therefore \quad$ Empirical formula $=\mathrm{KAlS}_{2} \mathrm{O}_{8}$
Assume molecular formula of hydrated salt

$$
=\mathrm{KAlS}_{2} \mathrm{O}_{8} \cdot x \mathrm{H}_{2} \mathrm{O} \text { then }
$$

$\frac{18 x}{39+27+64+128+18 x} \times 100=45.6 \quad \Rightarrow \quad x=12$
$\therefore$ The empirical formula of salt is $\mathrm{KAlS}_{2} \mathrm{O}_{8} \cdot 12 \mathrm{H}_{2} \mathrm{O}$
15. (d)
16. (d): $2 \mathrm{C}_{7} \mathrm{H}_{5}\left(\mathrm{NO}_{2}\right)_{3(s)} \longrightarrow 12 \mathrm{CO}_{(\mathrm{g})}+2 \mathrm{C}_{(\mathrm{s})}$

$$
2 \times 227 \mathrm{~g} \quad 12 \times 28 \mathrm{~g} \quad 2 \times 12 \mathrm{~g}
$$

$$
\begin{array}{rl}
+5 \mathrm{H}_{2(\mathrm{~g})} & +3 \mathrm{~N}_{2(\mathrm{~g})} \\
5 \times 2 \mathrm{~g} & 3 \times 28 \mathrm{~g}
\end{array}
$$

Mass of carbon deposited from 25 g TNT

$$
=\frac{2 \times 12}{2 \times 227} \times 25=1.32 \mathrm{~g}
$$

17. (b): Moles of TNT $=\frac{25}{227}=0.11$ mole

Total moles of gaseous substance

$$
=\frac{20}{2} \times 0.11=1.1 \mathrm{~mole}
$$

$\therefore$ Total pressure, $P=\frac{n R T}{V}$

$$
=\frac{1.1}{5} \times 0.0821 \times(230+273) \approx 9.1 \mathrm{~atm}
$$

18. (a)
19. (d)
20. (c)
21. (a)
22. (a): $138 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}=1 \mathrm{~mol} \equiv 1 \mathrm{~g}$ atom of C
$12 \mathrm{~g} \mathrm{C}=1 \mathrm{~g}$ atom of C
23. (2): Up to 2 significant figures because the difference of (29.4-21.4) i.e., 8.0 contains 2 significant figures.
24. (4) : Percentage of iron in haemoglobin $=0.334 \%$; Molecular wt. of haemoglobin $=67200$
Atomic weight of iron $=56$
Number of Fe atoms

$$
\begin{aligned}
& =\frac{\text { Mol. wt. of haemoglobin } \times \% \text { of iron }}{100 \times \text { Atomic weight of iron }} \\
& =\frac{67200 \times 0.334}{100 \times 56}=4
\end{aligned}
$$

25. (9) : Let metal chloride be $M \mathrm{Cl}_{x}$ (Suppose metal is $x$ valent), then molecular weight of $M \mathrm{Cl}_{x}$
$=$ Equivalent weight of metal $\times x+x \times 35.5=80$ $4.5 x+35.5 x=80 \quad \therefore \quad x=2$
$\therefore \quad$ Atomic weight of metal $=4.5 \times 2=9$

## CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES

1. (a) : $A-1 s^{2} 2 s^{2} 2 p^{6}$ - Noble gas configuration
$B-1 s^{2} 2 s^{2} 2 p^{4}-2$ electrons short of noble gas configuration
$C-1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$ - Requires one electron to complete $s$-orbital.
$D-1 s^{2} 2 s^{2} 2 p^{5}$-Requires one electron to attain noble gas configuration.
Hence, the tendency to gain electron is in the order : $A<C<B<D$.
2. (a) : $X$ has highest $I E_{1}$ and $I E_{2}$ hence, it is a noble gas. $Y$ has low $I E_{1}$, but very high $I E_{2}$ hence, it is an alkali metal.
$Z$ has low $I E_{1}$ than $I E_{2}$ and $I E_{2}$ is even lower than $I E_{2}$ of alkali metal hence, it is an alkaline earth metal.
3. (c) : In case of transition elements (or any elements), the order in which the energies of orbitals increase is $3 p<4 s<3 d$. Thus, $3 d$ orbitals are filled when $4 s$ orbital gets completely filled.
4. (d) : Atomic number 114 falls in the carbon family, hence it will be tetravalent. Therefore, the formula will be $A F_{4}$.
5. (c): $\mathrm{F}_{2}$ has low bond dissociation energy ( $158.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ).
$\mathrm{F}^{-}$has high hydration enthalpy ( $-513 \mathrm{~kJ} \mathrm{~mol}^{-1}$ ) due to smaller size of $\mathrm{F}^{-}$. A very large negative enthalpy of hydration of $\mathrm{F}^{-}$is the most important parameter in making fluorine the strongest oxidising agent.
6. (c) : The tendency to lose electron is higher with elements having lower ionisation potential.
7. (d): According to the definition of ionisation enthalpy,
$\mathrm{Na}_{(g)}+I . E . \longrightarrow \mathrm{Na}_{(g)}^{+}+e_{(g)}^{-} ; \quad$ I.E. $=495 \mathrm{~kJ} \mathrm{~mol}^{-1}$ The amount of energy needed to ionise 1 mole of sodium vapours $=495 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Moles of sodium vapours present in the given sample $=\frac{2.3 \times 10^{-3}}{23}=1 \times 10^{-4} \mathrm{~mol}$
$\therefore \quad$ Amount of energy needed to ionise $1 \times 10^{-4} \mathrm{~mol}$ of sodium vapours $=495 \times 1 \times 10^{-4}=0.0495 \mathrm{~kJ}$ or 49.5 J
8. (b): I.E. in a group decreases and reactivity increases.
9. (b): Electronegativity is measured on Pauling scale. Fluorine, the most electronegative element is given
the value 4.0. Electronegativity increases from left to right across a period while decreases down a group.
10. (a): For a particular atom the successive ionisation potential always increases. Thus, $E_{1}<E_{2}<E_{3}$.
11. (b,c,d)
12. $(\mathrm{a}, \mathrm{c})$
13. $(c, d): 14$ elements of $6^{\text {th }}$ period are called lanthanoids and $4^{\text {th }}$ period begins with potassium.
14. (c)
15. (d): Chlorine possesses highest value of electron affinity.
16. (a): The element ( $C$ ) would be most reactive non-metal as it has high negative value of electron gain enthalpy. Probably it is a halogen.
17. (d): The element (A) has low first ionisation enthalpy but very high second ionisation enthalpy. It would be least reactive alkali metal, i.e., lithium which forms covalent $M X$.
18. (b): ( $\mathrm{P} \rightarrow \mathbf{1}, 2,3$ )
$\operatorname{Rf}(Z=104):[R n] 5 f^{14} 6 d^{2} 7 s^{2}$
Period no. 7, $d$-block element, group no. 4.
( $\mathrm{Q} \rightarrow \mathbf{1}, \mathbf{3}$ )
$\operatorname{Rg}(Z=111):[R n] 5 f^{14} 6 d^{10} 7 s^{1}$
Period no. 7, group no. 11, $d$-block element.
( $\mathrm{R} \rightarrow \mathbf{1}, 4$ )
$\operatorname{Th}(Z=90):[R n] 5 f^{0} 6 d^{2} 7 s^{2}$
Period no. 7, group no. 3 , $f$-block element.
( $\mathrm{S} \rightarrow \mathbf{1}, 4$ )
$\mathrm{Np}(Z=93):[\mathrm{Rn}] 5 f^{4} 6 d^{1} 7 s^{2}$
Period no. 7, group no 3, $f$-block element.
19. (a)
20. (a)
21. (a)
22. (a)
23. (3): Sm, Er and Gd are three elements which are lanthanoids.
24. (7): The E.C. of element $=[\operatorname{Ar}] 3 d^{5} 4 s^{2} ;$ Group $=7^{\text {th }}$
25. (3) : $\chi_{\text {pauling }}=\frac{\chi_{\text {Mulliken }}}{2.8}=\frac{I . E .+E A}{2 \times 2.8}$

$$
=\frac{13.0+3.8}{2 \times 2.8}=3.0
$$



## CHAPTERWISE PRAGTICE PAPER : SOME BASIC GONGEPTS OF CHEMISTRY \| STRUCTURE OF ATOM

Time Allowed : 3 hours
Maximum Marks : 70

## GENERAL INSTRUCTIONS

(i) All questions a ecompulsory.
(ii) Q.no. 1 to 5 ev ery short a swe que tions a d ca ry 1 m a ka h .


(v) Q.no.23 sav bubo a d que tiona d ca rie 4 m a ks.
(vi) Q.no. 24 of d ong a swe que tions a d ca ry 5 m a kse h .
(vii) Usd og tb le if ne e sa y,u seo fch cula ors is not hawd.

1. What will be the mass of one atom of $\mathrm{C}-12$ in gram?
2. Arrange the following type of radiations in increasing order of frequency.
(i) Radiation from microwave oven
(ii) Amber light from traffic signal
(iii) Radiation from FM radio
(iv) Cosmic rays from outer space
(v) X-rays
3. Is the following reaction exothermic or endothermic? $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(l)}+3 \mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{CO}_{2(\mathrm{~g})}+3 \mathrm{H}_{2} \mathrm{O}_{(l)}+1368 \mathrm{~kJ}$ Give reason.
4. State Heisenberg's uncertainty principle.
5. What are the four quantum numbers of $19^{\text {th }}$ electron of chromium (at. no. 24)?
6. Calculate the percentage of N in $\mathrm{NH}_{3}$ molecule.
7. A gas absorbs a photon of 355 nm and emits two wavelengths. If one of the emissions is at 680 nm , at what place the other is?
8. A 0.005 cm thick coating of copper is deposited on a plate of $0.5 \mathrm{~m}^{2}$ total area. Calculate the number of copper atoms deposited on the plate. (Density of copper $=7.2 \mathrm{~g} \mathrm{~cm}^{-3}$, atomic mass $=63.5$ )
9. Calculate the ratio of the radius of $2^{\text {nd }}$ orbit and $3^{\text {rd }}$ orbit of H -atom.
10. Calculate the number of significant figures in the following values:
(i) Planck's constant $=6.626 \times 10^{-34} \mathrm{~J} \mathrm{~s}$
(ii) Avogadro number $=6.023 \times 10^{23}$
(iii) Velocity of light $=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
(iv) Electronic charge $=1.602 \times 10^{-19} \mathrm{C}$

## OR

Calculate to proper significant figures :
(i) $12.6 \times 11.2$
(ii) $108 / 7.2$
11. Methane burns in oxygen to form carbon dioxide and water. Write the balanced chemical equation for this reaction. From the above reaction, calculate the mass of oxygen required for burning 1.6 g of methane. $(\mathrm{C}=12, \mathrm{O}=16, \mathrm{H}=1)$
12. An electron is moving with a kinetic energy of $4.55 \times 10^{-25} \mathrm{~J}$. Calculate the de Broglie wavelength for it. (Mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$; Planck's constant $(h)=6.6 \times 10^{-34} \mathrm{~kg} \mathrm{~m}^{-2} \mathrm{~s}^{-1}$ )
13. Answer the following :
(i) What will be the maximum number of electrons present in an atom having $(n+l)=4$ ?
(ii) What are the values of $n, l$ and $m_{l}$ for $3 p$-orbitals?
(iii) What is the value of orbital angular momentum for an electron in $2 s$-orbital?
14. Two oxides of a metal contain $27.6 \%$ and $30 \%$ of oxygen respectively. If the formula of the first compound is $M_{3} \mathrm{O}_{4}$, find the formula of the second compound.
15. (a) Based on Bohr Bury's rules arrange the following orbitals in the increasing order of energy.
(i) $1 s, 2 s, 3 s, 2 p$
(ii) $4 s, 3 s, 3 p, 4 d$
(iii) $5 p, 4 d, 5 d, 4 f, 6 s$
(iv) $5 f, 6 d, 7 s, 7 p$
(b) Answer the following questions:
(i) Which of the following orbitals has the lowest energy? $4 d, 4 f, 5 s, 5 p$
(ii) Which of the following orbitals has the highest energy? $5 p, 5 d, 5 f, 6 s, 6 p$

## OR

What is Aufbau Principle? Using the Aufbau principle, write the electronic configuration for the ground state of the following atoms :
Aluminium $(Z=13)$, Chlorine $(Z=17)$, Calcium ( $Z=20$ ), Rubidium ( $Z=37$ )
16. (a) Calculate the gram molecular mass of sugar having molecular formula $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}$.
(b) Calculate
(i) the mass of 0.5 gram molecule of sugar.
(ii) gram molecule of sugar in 547.2 g .
17. Find out the following:
(a) Calculate velocity of electron in first Bohr orbit of hydrogen atom $\left(r=a_{0}\right)$.
(b) Find de-Broglie wavelength of the electron in first Bohr orbit of H -atom.
(c) Find the orbital angular momentum of $2 p$-orbital in terms of $\frac{h}{2 \pi}$ unit.
18. Calculate :
(i) Mole fractions of $A$ and $B$ in a mixture in which $6.023 \times 10^{23}$ molecules of $A$ and $10.4 \times 10^{23}$ molecules of $B$ are present.
(ii) Mole fractions of $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ in a mixture made by adding $20.0 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ in 60.0 g $\mathrm{H}_{2} \mathrm{O}$.
(iii) Mole fractions of $\mathrm{He}, \mathrm{N}_{2}$ and $\mathrm{O}_{2}$ containing 2 mole $\mathrm{He}, 5$ mole $\mathrm{N}_{2}$ and $3.5 \mathrm{~mole}_{2}$.
19. Dinitrogen and dihydrogen react with each other to produce ammonia according to the following chemical equation :

$$
\mathrm{N}_{2(g)}+\mathrm{H}_{2(g)} \rightarrow 2 \mathrm{NH}_{3(g)}
$$

(i) Calculate the mass of ammonia produced if $2.00 \times 10^{3} \mathrm{~g}$ dinitrogen reacts with $1.00 \times 10^{3} \mathrm{~g}$ of dihydrogen.
(ii) Will any of the two reactants remain unreacted?
(iii) If yes, which one and what would be its mass?
20. How many molecules and atoms of oxygen are present in 5.6 litres of oxygen $\left(\mathrm{O}_{2}\right)$ at NTP?
21. Yellow light emitted from a sodium lamp has a wavelength $(\lambda)$ of 580 nm . Calculate the frequency $(v)$ and wavenumber ( $\bar{v}$ ) of the yellow light.
22. A chloride of an element contains $49.5 \%$ chlorine. The specific heat of the element is 0.056 . Calculate the equivalent mass, valency and atomic mass of the element.
23. Shalu, a student of science, one day saw that rainbow appears in the sky after raining. Another day, when she was drying her hairs in the sunlight, she found the same combination of colour, on watching the sunlight through her hairs. She was very surprised but confused also. She asked about this from her science teacher who satisfied her by telling about the composition of light (white light) and its splitting into different colours when passed through different mediums.
(i) Give the composition of white light.
(ii) Can you guess why she saw a phenomenon similar to formation of rainbow when light passed through her hairs?
(iii) Applying Bohr's model when electron in H-atom comes from $n=4$ to $n=2$, calculate the wavelength of the line.
$\left(R_{\mathrm{H}}=2.18 \times 10^{-18} \mathrm{~J}, h=6.63 \times 10^{-34} \mathrm{~J}\right)$
(iv) What values are associated with Shalu's teacher?
24. (a) Define:
(i) Molarity
(ii) Normality
(b) Commercially available concentrated hydrochloric acid contains $38 \% \mathrm{HCl}$ by mass.
(i) What is the molarity of this solution? The density is $1.19 \mathrm{~g} \mathrm{~cm}^{-3}$.
(ii) What volume of concentrated hydrochloric acid is required to make 1.00 L of 0.10 M HCl ?

## OR

(a) A crystalline salt when heated becomes anhydrous and loses $51.2 \%$ of its weight. The anhydrous salt on analysis gave the percentage composition as: $\mathrm{Mg}=20.0 \% ; \mathrm{S}=26.66 \%$ and $\mathrm{O}=53.33 \%$.
Calculate the molecular formula of the anhydrous salt and the crystalline salt. Molecular mass of the anhydrous salt is 120 .
(b) Butyric acid contains only $\mathrm{C}, \mathrm{H}$ and O . A 4.24 mg sample of butyric acid is completely burned. It gives 8.45 mg of $\mathrm{CO}_{2}$ and 3.46 mg of $\mathrm{H}_{2} \mathrm{O}$. The molecular mass of butyric acid was determined by experiment to be 88 amu . What is molecular formula?
25. (a) Define:
(i) black body radiation (ii) photoelectric effect
(b) The work function for caesium atom is 1.9 eV . Calculate
(i) the threshold frequency.
(ii) the threshold wavelength of the radiation.
(iii) the kinetic energy if the caesium element is irradiated with a wavelength 500 nm .

## OR

(i) Calculate the maximum number of emission lines when the excited electron of a H atom in $n=6$ drops to the ground state.
(ii) Calculate the ionisation energy of $\mathrm{Li}^{2+}$ ion if the ionisation energy of H atom is 13.6 eV .
(iii) Calculate the energy of the first stationary state of $\mathrm{Li}^{2+}$ if the ionisation energy of $\mathrm{He}^{+}$is $19.6 \times 10^{-18} \mathrm{~J} \mathrm{atom}^{-1}$.
(iv) Calculate the shortest wavelength in H spectrum of Lyman series when $R_{\mathrm{H}}=109678 \mathrm{~cm}^{-1}$.
(v) A spectral line in the spectrum of H atom has a wavenumber of $15222.22 \mathrm{~cm}^{-1}$. What will be the transition responsible for the radiation (Rydberg constant $R_{\mathrm{H}}=109677 \mathrm{~cm}^{-1}$ )?
26. (a) Define:
(i) Gram atomic mass
(ii) Gram molecular mass
(b) Magnesium carbide reacts with water to give propyne and magnesium hydroxide. Write the balanced chemical reaction.

OR
(a) Write the main postulates of Dalton's atomic theory.
(b) A box contains some identical red coloured balls, labelled as $A$, each weighing 2 grams. Another box contains identical blue coloured balls, labelled as $B$, each weighing 5 grams. Consider the combinations $A B, A B_{2}, A_{2} B$ and $A_{2} B_{3}$ and show that law of multiple proportions is applicable.

## SOLUTIONS

1. Mass of 1 atom of ${ }^{12} \mathrm{C}$

$$
\begin{aligned}
=\frac{\text { Atomic mass of } \mathrm{C}}{\text { Avogadro's number }} & =\frac{12 \mathrm{~g}}{6.022 \times 10^{23}} \\
& =1.9927 \times 10^{-23} \mathrm{~g}
\end{aligned}
$$

2. The order of frequency of radiations is FM radio < microwave < amber colour < X-rays < cosmic rays.
3. Exothermic, as the energy is getting released.
4. Heisenberg's uncertainty principle states that, it is not possible to determine precisely both the position and the momentum of a micro particle.
5. $19^{\text {th }}$ electron in chromium is $4 s^{1}$ electron; $n=4, l=0, m=0, s=1 / 2$ or $-1 / 2$
6. Molar mass of $\mathrm{NH}_{3}=14+1 \times 3=17 \mathrm{~g} \mathrm{~mol}^{-1}$

$$
\begin{aligned}
\text { Percentage of } \mathrm{N} & =\frac{\text { mass of } \mathrm{N} \text { in } \mathrm{NH}_{3}}{\text { molar mass of } \mathrm{NH}_{3}} \times 100 \\
& =\frac{14}{17} \times 100=82.35 \%
\end{aligned}
$$

7. The wavelength of absorbed radiation is related to those of emitted radiation as

$$
\frac{1}{\lambda_{\text {absorbed }}}=\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}
$$

Therefore, $\frac{1}{355}=\frac{1}{680}+\frac{1}{\lambda_{2}} \Rightarrow \frac{1}{\lambda_{2}}=\frac{1}{355}-\frac{1}{680}$
On solving, we get $\lambda_{2}=743 \mathrm{~nm}$.
8. Area of plate $=0.5 \mathrm{~m}^{2}=0.5 \times 10^{4} \mathrm{~cm}^{2}$

Thickness of coating $=0.005 \mathrm{~cm}$
Volume of copper deposited $=0.5 \times 10^{4} \times 0.005$

$$
=25 \mathrm{~cm}^{3}
$$

Mass of copper deposited $=25 \times 7.2=180 \mathrm{~g}$
Now, 63.5 g of copper contains atoms $=6.022 \times 10^{23}$
$\therefore 180 \mathrm{~g}$ of copper will contain atoms
$=\frac{6.022 \times 10^{23}}{63.5} \times 180=1.71 \times 10^{24}$ atoms
9. The radius of $n$th orbit $\left(r_{n}\right)$ of hydrogen atom is given as:

$$
r_{n}=\frac{n^{2} h^{2}}{4 \pi^{2} m e^{2}} ; \quad r_{n} \propto n^{2}
$$

Radius of second orbit $r_{2} \propto 2^{2}$ or 4
Radius of third orbit, $r_{3} \propto 3^{2}$ or 9
$\therefore \quad \frac{r_{2}}{r_{3}}=\frac{4}{9}$
10. (i) $6.626 \times 10^{-34} \mathrm{Js}=4$ significant figures
(ii) $6.023 \times 10^{23}=4$ significant figures
(iii) $3.0 \times 10^{8} \mathrm{~ms}^{-1}=2$ significant figures
(iv) $1.602 \times 10^{-19} \mathrm{C}=4$ significant figures

## OR

(i) $12.6 \times 11.2=141.12$

Correct answer $=141$ (upto 3 significant figures)
(ii) $\frac{108}{7.2}=15$

Correct answer $=15$ (upto 2 significant figures as in 7.2)
11. The balanced equation for the reaction is,

$$
\begin{aligned}
& \mathrm{CH}_{4}+\quad 2 \mathrm{O}_{2} \quad \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \\
& (1 \times 12.0+4 \times 1.0) \mathrm{g} \quad 2 \times(2 \times 16.0) \mathrm{g} \\
& (12+4) \mathrm{g} \quad 64.0 \mathrm{~g} \\
& 16.0 \mathrm{~g} \\
& 16.0 \mathrm{~g} \text { of methane requires }=64.0 \mathrm{~g} \text { oxygen } \\
& 1 \mathrm{~g} \text { of methane requires }=\frac{64.0}{16} \mathrm{~g} \text { oxygen } \\
& 1.6 \mathrm{~g} \text { of methane requires }=\frac{64.0 \times 1.6}{16} \mathrm{~g} \text { oxygen } \\
& =6.4 \mathrm{~g} \text { oxygen }
\end{aligned}
$$

12. Kinetic energy of electron $=4.55 \times 10^{-25} \mathrm{~J}$

$$
\begin{aligned}
\frac{1}{2} m v^{2} & =4.55 \times 10^{-25} \mathrm{~J} \\
\text { or } \quad v & =\sqrt{\frac{2 \times 4.55 \times 10^{-25}}{m}}
\end{aligned}
$$

Substituting the value of $m$, one can write

$$
v=\sqrt{\frac{2 \times 4.55 \times 10^{-25}}{9.1 \times 10^{-31}}}=10^{3} \mathrm{~m} \mathrm{~s}^{-1}
$$

From de Broglie equation, we have,

$$
\begin{aligned}
\lambda & =\frac{h}{m v}=\frac{6.6 \times 10^{-34}}{9.1 \times 10^{-31} \times 10^{3}} \\
& =7.25 \times 10^{-7} \mathrm{~m}
\end{aligned}
$$

13. (i) The subshells which can have $(n+l)=4$ are $4 s(4+0)$ and $3 p(3+1)$. Therefore, these will accommodate maximum of $2+6=8$ electrons.
(ii) For 3p-orbital,
$n=3, l=1, m_{l}$ can have any of three values $-1,0,+1$
(iii) Angular momentum is given as $\frac{h}{2 \pi} \sqrt{l(l+1)}$

Since for $2 s$ orbital, $l=0$
$\therefore$ Angular momentum $=0$
14. First oxide

Second oxide
Oxygen $=27.6 \%$
Oxygen $=30 \%$
Metal $=72.4 \%$
Metal $=70 \%$
Formula of first oxide $=M_{3} \mathrm{O}_{4}$
Suppose the atomic weight of metal $=x$ Percentage of metal in the compound $M_{3} \mathrm{O}_{4}$

$$
=\frac{3 x}{3 x+64} \times 100
$$

$\therefore \frac{3 x}{3 x+64} \times 100=72.4$
or $\quad 300 x=217.2 x+4633.6$
or $82.8 x=4633.6$ or $x=56$
Now in the second oxide, metal and oxygen are 70\% and $30 \%$ respectively. Therefore, their atomic ratio will be

$$
\begin{aligned}
& \text { M : O } \\
& \frac{70}{56}: \frac{30}{16} \\
& 1.25: 1.875 \\
& \text { or } \quad 1: 1.5 \\
& \text { or } \quad 2: 3
\end{aligned}
$$

Therefore, formula of the compound $=M_{2} \mathrm{O}_{3}$
15. (a) (i) $1 s<2 s<2 p<3 s$
(ii) $3 s<3 p<4 s<4 d$
(iii) $4 d<5 p<6 s<4 f<5 d$
(iv) $7 s<5 f<6 d<7 p$
(b) (i) $5 s$ has lowest energy.
(ii) $5 f$ has highest energy.

## OR

Aufbau Principle : Electrons first occupy the lowest energy orbital available to them and enter into higher energy orbitals only after the lower energy orbitals are filled.
$\mathrm{Al}(Z=13)=1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{1}$
$\mathrm{Cl}(Z=17)=1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{5}$
$\mathrm{Ca}(Z=20)=1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6}, 4 s^{2}$
$\operatorname{Rb}(Z=37)=1 s^{2}, 2 s^{2} 2 p^{6}, 3 s^{2} 3 p^{6} 3 d^{10}, 4 s^{2} 4 p^{6}, 5 s^{1}$
16. (a) Molecular mass of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$
$=12 \times$ at. mass of $\mathrm{C}+22 \times$ at. mass of H $+11 \times$ at. mass of O
$=12 \times 12+22 \times 1+11 \times 16=342$
$\therefore$ Gram molecular mass of sugar $=342 \mathrm{~g}$
(b) (i) 1 gram molecule of sugar $=342 \mathrm{~g}$
$\therefore 0.5$ gram molecule of sugar $=342 \times 0.5=171 \mathrm{~g}$
(ii) 342 g of sugar $=1$ gram molecule
$\therefore 547.2$ g of sugar $=\frac{1}{342} \times 547.2=1.6$ gram molecules
17. (a) Using Bohr's assumption,

$$
\begin{aligned}
& m v r=\frac{n h}{2 \pi} \text { or } \quad v=\frac{n h}{2 \pi m r} \\
& \left(\because n=1, r=a_{0}=0.529 \times 10^{-10} \mathrm{~m}, m=9.1 \times 10^{-31} \mathrm{~kg}\right) \\
& v=\frac{1 \times 6.626 \times 10^{-34}}{2 \times 3.14 \times 9.1 \times 10^{-31} \times 0.529 \times 10^{-10}} \\
& \quad=2.19 \times 10^{6} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(b) Using de-Broglie equation,

$$
\begin{aligned}
\lambda & =\frac{h}{m v}=\frac{6.626 \times 10^{-34}}{9.1 \times 10^{-31} \times 2.19 \times 10^{6}} \\
& =3.32 \times 10^{-10} \mathrm{~m}=3.32 \AA
\end{aligned}
$$

(c) Orbital angular momentum for $2 p$-orbital $(l=1)$

$$
=\sqrt{l(l+1)} \cdot \frac{h}{2 \pi}=\frac{h}{2 \pi} \sqrt{1(1+1)}=\sqrt{2}\left[\frac{h}{2 \pi}\right]
$$

18. Mole fraction $(x)=\frac{n}{\Sigma n}$
(i) Total moles $(\Sigma n)=\left(n_{A}+n_{B}\right)$

$$
\begin{aligned}
& =\frac{6.023 \times 10^{23}}{6.023 \times 10^{23}}+\frac{10.4 \times 10^{23}}{6.023 \times 10^{23}}=1+1.73 \\
& =2.73 \text { mole }
\end{aligned}
$$

Thus $x_{A}=\frac{n_{A}}{\Sigma n}=\frac{1}{2.73}=0.37$

$$
x_{B}=1-0.37=0.63
$$

(ii) Total moles, $(\Sigma n)=\left(n_{\mathrm{H}_{2} \mathrm{O}}+n_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}\right)$
$=\frac{60.0}{18}+\frac{20.0}{46}=3.33+0.43=3.76$ mole
$x_{\mathrm{H}_{2} \mathrm{O}}=\frac{3.33}{3.76}=0.885 ; \quad x_{\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}=1-0.885=0.115$
(iii) Total moles, $(\Sigma n)=2+5+3.5=10.5$ mole
$x_{\mathrm{He}}=\frac{2}{10.5}=0.19, x_{\mathrm{N}_{2}}=\frac{5}{10.5}=0.48$,
$x_{\mathrm{O}_{2}}=\frac{3.5}{10.5}=0.33$
19. The balanced chemical equation is
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$
(i) Moles of $\mathrm{N}_{2}=\frac{2.00 \times 10^{3}}{28}=71.43$,

Moles of $\mathrm{H}_{2}=\frac{1.00 \times 10^{3}}{2}=500$
1 mole of $\mathrm{N}_{2}$ reacts with 3 moles of $\mathrm{H}_{2}$ to form $\mathrm{NH}_{3}$

$$
=2 \text { moles }
$$

71.43 moles of $\mathrm{N}_{2}$ react with 500 moles of $\mathrm{H}_{2}$ to form $\mathrm{NH}_{3}=\frac{2}{1} \times 71.43=142.86$ moles
Mass of $\mathrm{NH}_{3}$ produced $=142.86 \times 17=2428.62 \mathrm{~g}$
(ii) 1 mole of $\mathrm{N}_{2}$ required 3 moles of $\mathrm{H}_{2}$ from above equation.
$\therefore \quad 71.43$ moles of $\mathrm{N}_{2}$ will require $3 \times 71.43$

$$
=214.29 \text { moles of } \mathrm{H}_{2}
$$

But moles of $\mathrm{H}_{2}$ actually present $=500$ moles
Thus, $\mathrm{H}_{2}$ is in excess and will remain unreacted and $\mathrm{N}_{2}$ is limiting reagent.
(iii) Moles of $\mathrm{H}_{2}$ remain unreacted

$$
=500-214.29=285.71 \text { moles }
$$

Mass of $\mathrm{H}_{2}$ left unreacted $=285.71 \times 2=571.42 \mathrm{~g}$
20. We know that, 22.4 litres of oxygen at NTP contain $6.023 \times 10^{23}$ molecules of oxygen.
So, 5.6 litres of oxygen at NTP contain
$=\frac{5.6}{22.4} \times 6.023 \times 10^{23}$ molecules
$=1.505 \times 10^{23}$ molecules
1 molecule of oxygen contains $=2$ atoms of oxygen So, $1.505 \times 10^{23}$ molecules of oxygen contain $=2 \times 1.505 \times 10^{23}$ atoms $=3.01 \times 10^{23}$ atoms.
21. Wavelength of yellow light $=580 \mathrm{~nm}$
$=580 \times 10^{-9} \mathrm{~m} \quad\left[\because 1 \mathrm{~nm}=10^{-9} \mathrm{~m}\right]$
Frequency $(v)=\frac{c}{\lambda}$
where $c=$ velocity of light $=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$
$\lambda$ = wavelength of sodium lamp
$\therefore \quad v=\frac{3.0 \times 10^{8}}{580 \times 10^{-9}}=5.17 \times 10^{14} \mathrm{~s}^{-1}$
Again, wavenumber $(\bar{v})=\frac{1}{\lambda}=\frac{1}{580 \times 10^{-9} \mathrm{~m}}$

$$
=1.724 \times 10^{6} \mathrm{~m}^{-1}
$$

22. Mass of chlorine in the metal chloride $=49.5 \%$

Mass of metal $=(100-49.5)=50.5$
Equivalent mass of the metal
$=\frac{\text { Mass of metal }}{\text { Mass of chlorine }} \times 35.5=\frac{50.5}{49.5} \times 35.5=36.21$

According to Dulong-Petit's law,
Approximate atomic mass of the metal
$=\frac{6.4}{\text { Specific heat }}=\frac{6.4}{0.056}=114.3$
Valency $=\frac{\text { Approximate atomic mass }}{\text { Equivalent mass }}=\frac{114.3}{36.21}=3.1 \approx 3$
Hence, exact atomic mass $=36.21 \times 3=108.63$
23. (i) White light (sunlight) is a combination of seven colours namely violet, indigo, blue, green, yellow, orange, red.
(ii) This is because of the splitting of light into series of colour bands.
(iii) $E=\frac{h c}{\lambda}=R_{H} Z^{2}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$

For H -atom, $\mathrm{Z}=1, n_{1}=2$ and $n_{2}=4$
$\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{\lambda}$

$$
\left.\begin{array}{rlrl} 
& & & =2.18 \times 10^{-18} \times(1)^{2}\left(\frac{1}{(2)^{2}}-\frac{1}{(4)^{2}}\right) \\
\text { or } & \frac{1}{\lambda} & =\frac{2.18 \times 10^{-18}}{6.63 \times 10^{-34} \times 3 \times 10^{8}}\left(\frac{3}{16}\right) \\
& =1.096 \times 10^{7}\left(\frac{3}{16}\right) \mathrm{m}^{-1} \\
\therefore & & \lambda & =\frac{16 \times 10^{-7}}{1.096 \times 3}=4.86 \times 10^{-7} \mathrm{~m} \\
& \text { or } & & \lambda
\end{array}\right)=486 \times 10^{-9} \mathrm{~m}=486 \mathrm{~nm}
$$

(iv) The values associated with Shalu's teacher are intelligency, care about his student, knowledge and helpful nature.
24. (a) (i) Molarity : The number of moles of the solute dissolved per litre of the solution.
$\operatorname{Molarity}(M)=\frac{\text { Moles of solute }}{\text { Volume of solution }(\mathrm{mL})} \times 1000$
(ii) Normality : The number of gram equivalents of the solute dissolved per litre of the solution.
Normality $(N)=\frac{\text { Number of gram equiv. }}{\text { Volume of solution }(\mathrm{mL})} \times 1000$
(b) (i) $38 \% \mathrm{HCl}$ by mass means that 38 g of HCl are present in 100 g of the solution.
Volume of 100 g of the solution
$=\frac{\text { Mass }}{\text { Density }}=\frac{100 \mathrm{~g}}{1.19 \mathrm{~g} \mathrm{~cm}^{-3}}=84.03 \mathrm{~cm}^{3}=0.0840 \mathrm{~L}$

Molar mass of $\mathrm{HCl}=36.5 \mathrm{~g} \mathrm{~mol}^{-1}$
$\therefore \quad 38 \mathrm{~g} \mathrm{HCl}=\frac{38}{36.5}$ moles $=1.04$ moles
$\therefore \quad$ Molarity of solution $=\frac{1.04 \mathrm{moles}}{0.0840 \mathrm{~L}}$

$$
=12.38 \mathrm{~mol} \mathrm{~L}^{-1}=12.38 \mathrm{M}
$$

(ii) Applying molarity equation, we have

| $M_{1} \times V_{1}$ <br> (conc. HCl ) | $=$ | $M_{2} \times V_{2}$ |
| :---: | :---: | :---: |
| $12.38 \times V_{1}$ | $=$ | $0.10 \times 1.0$ |

$$
12.38 \times V_{1}=0.10 \times 1.0
$$

or $\quad V_{1}=\frac{0.1}{12.38} \mathrm{~L}=\frac{0.1}{12.38} \times 1000 \mathrm{~cm}^{3}=8.1 \mathrm{~cm}^{3}$
OR
(a)

| Element | Percentage | Atomic <br> mass | Relative <br> number <br> of atoms | Simplest <br> ratio |
| :--- | :---: | :---: | :---: | :---: |
| Magnesium | 20.0 | 24 | 0.833 | $\frac{0.833}{0.833}=1$ |
| Sulphur | 26.66 | 32 | 0.833 | $\frac{0.833}{0.833}=1$ |
| Oxygen | 53.33 | 16 | 3.33 | $\frac{3.33}{0.833}=4$ |

Hence formula $\mathrm{MgSO}_{4}$.
E.F. mass $=120, n=1$, Mol. mass $=120$

Hence, molecular formula $=\mathrm{MgSO}_{4}$
As crystalline salt on becoming anhydrous loses $51.2 \%$ by mass, this means
48.8 g of anhydrous salt contains $\mathrm{H}_{2} \mathrm{O}=51.2 \mathrm{~g}$
$\therefore 120 \mathrm{~g}$ of anhydrous salt contains $\mathrm{H}_{2} \mathrm{O}$

$$
\begin{aligned}
& =\frac{51.2}{48.8} \times 120 \mathrm{~g}=126 \mathrm{~g} \\
& =\frac{126}{18} \text { molecules }=7 \text { molecules }
\end{aligned}
$$

Hence, molecular formula of crystalline salt
$=\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$.

## MPP-3 CLASS XI ANSWER KEY

1. $(a)$
2. (b)
3. (c)
4. (a)
5. (c)
6. (a)
7. (a)
8. (c)
9. (b)
10. (b)
11. (c)
12. (b)
13. (c)
14. (c)
15. (d)
16. (d)
17. (b)
18. (a)
19. (a)
20. $(a, b)$
21. $(\mathrm{a}, \mathrm{b})$
22. $(a, b, c, d)$
23. $(\mathrm{a}, \mathrm{d})$
24. (5)
25. (2)
26. (1)
27. (b)
28. (a)
29. (c)
30. (b)
(b) $\%$ of C in compound

$$
\begin{aligned}
& =\frac{12}{44} \times \frac{\text { Mass of } \mathrm{CO}_{2}}{\text { Mass of compound }} \times 100 \\
& =\frac{12}{44} \times \frac{8.45}{4.24} \times 100=54.4 \%
\end{aligned}
$$

Similarly, \% of $\mathrm{H}=\frac{2}{18} \times \frac{\text { Mass of } \mathrm{H}_{2} \mathrm{O}}{\text { Mass of compound }} \times 100$

$$
=\frac{2}{18} \times \frac{3.46}{4.24} \times 100=9.1 \%
$$

$$
\therefore \quad \% \text { of } \mathrm{O}=100-(54.4+9.1)=36.5 \%
$$

| Element | percentage | Atomic <br> mass | Relative <br> number <br> of atoms | Simplest <br> whole <br> number ratio |
| :---: | :---: | :---: | :---: | :---: |
| C | 54.4 | 12 | 4.53 | $\frac{4.53}{2.28}=2$ |
| H | 9.1 | 1 | 9.1 | $\frac{9.1}{2.28}=4$ |
| O | 36.5 | 16 | 2.28 | $\frac{2.28}{2.28}=1$ |

Hence empirical formula $=\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$
E.F. mass $=44 \mathrm{u}$, Mol. mass $=88 \mathrm{u}$

Hence, $n=$ Mol. mass/E.F. mass $=2$
$\therefore$ Mol. formula $=2 \times$ E.F. $=\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
25. (a) (i) The ideal body, which emits and absorbs radiations of all frequencies is called a black body and the radiation emitted by such a body is called black body radiation.
(ii) The emission of electrons from a metallic surface when it is illuminated by light or UV radiation is called photoelectric effect.
(b) (i) Work function $=h v_{0}=1.9 \mathrm{eV}$
=900 ${ }^{-19} \mathrm{~J}$ - $\mathrm{ADO}^{-19} \mathrm{~J}$
Threshold frequency,

$$
\left(v_{0}\right)=\frac{3.04 \times 10^{-19}}{6.626 \times 10^{-34}}=\quad 14 \mathrm{se}^{-1}
$$

(ii) Threshold wavelength,

$$
\begin{aligned}
& \left(\lambda_{0}\right)=\frac{c}{v_{0}}=\frac{3 \times 10^{8}}{4.59 \times 10^{14}}=-60 \quad \mathrm{~m}^{-7} \\
\text { or } & 654 \times 10^{-9} \mathrm{~m} \text { or } 654 \mathrm{~nm}
\end{aligned}
$$

(iii) Now, energy of light
$(E)=\frac{h c}{\lambda}=\frac{6.626 \times 10^{-34} \times 3 \times 10^{8}}{500 \times 10^{-9}}=90 \quad-19 \mathrm{~J}$
Kinetic energy of ejected electron

$$
=3.98 \times 10^{-19}-3.04 \times 10^{-19}=9.4 \times 10^{-20} \mathrm{~J}
$$

OR
(i) The number of lines produced when an electron from the $n$th shell drops to the ground state is $\frac{n(n-1)}{2}$.
So the required number of emission lines is
$\frac{6(6-1)}{2}=15$
(ii) $E_{1}$ for $\mathrm{Li}^{2+}=E_{1}$ for $\mathrm{H} \times Z^{2}$ [for $\mathrm{Li}, Z=3$ ]

$$
=13.6 \times 9=122.4 \mathrm{eV}
$$

(iii) $E_{1}$ for $\mathrm{Li}^{2+}=E_{1}$ for $\mathrm{H} \times Z^{2}=E_{1}$ for $\mathrm{H} \times 9$
$E_{1}$ for $\mathrm{He}^{+}=E_{1}$ for $\mathrm{H} \times Z_{\mathrm{He}}^{2}=E_{1}$ for $\mathrm{H} \times 4$ or $E_{1}$ for $\mathrm{Li}^{2+}=\frac{9}{4} E_{1}$ for $\mathrm{He}^{+}=19.6 \times 10^{-18} \times \frac{9}{4}$

$$
=44.10 \times 10^{-18} \mathrm{~J} \mathrm{atom}^{-1}
$$

(iv) For Lyman series, $n_{1}=1$

For shortest wavelength of Lyman series, the energy difference in two levels showing transition should be maximum (i.e., $n_{2}=\infty$ ).
$\frac{1}{\lambda}=R_{H}\left[\frac{1}{1^{2}}-\frac{1}{\infty^{2}}\right] \Rightarrow \lambda=\frac{1}{109678}$
$=911.7 \times 10^{-8} \mathrm{~cm}==911.7 \AA$
(v) $\lambda=\frac{1}{\bar{v}}=\frac{1}{15222.22}=6.569 \times 10^{-5} \mathrm{~cm}=6569 \AA$ (Visible light wavelength)
Clearly, it lies in the visible region i.e., in Balmer series. Hence, $n_{1}=2$. Using the relation for wavenumber for H atom.

$$
\bar{v}=\frac{1}{\lambda}=R_{\mathrm{H}} Z^{2}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

$15222.22=109677\left(\frac{1}{2^{2}}-\frac{1}{n_{2}^{2}}\right)$

$$
n_{2}=3
$$

The required transition is $3 \rightarrow 2$.
26. (a) (i) The atomic mass of an element expressed in grams is called gram atomic mass. It is also called one gram atom.
e.g., atomic mass of sodium $=23 \mathrm{amu}$
gram atomic mass or one gram atom of sodium $=23 \mathrm{~g}$
(ii) The molecular mass of a compound expressed in grams is called gram molecular mass. The amount of the compound is also called one gram molecule, e.g., gram molecular mass of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ or one gram molecule of $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}=180.162 \mathrm{~g}$.
(b) The skeleton equation is:

$$
\left.\begin{array}{rl}
\mathrm{Mg}_{2} \mathrm{C}_{3(s)}+ & \mathrm{H}_{2} \mathrm{O}_{(l)} \longrightarrow
\end{array} \mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}_{(\mathrm{g})}\right)
$$

Order of selection of atoms for balancing $\Rightarrow \mathrm{Mg}, \mathrm{O}, \mathrm{H}$ and C .
To equalise the number of Mg atoms on both sides, multiply the molecule of $\mathrm{Mg}(\mathrm{OH})_{2}$ by 2 .

$$
\begin{aligned}
\mathrm{Mg}_{2} \mathrm{C}_{3(s)}+\mathrm{H}_{2} \mathrm{O}_{(l)} \longrightarrow \mathrm{CH}_{3}-\mathrm{C} \equiv & \mathrm{CH}_{(g)} \\
& +2 \mathrm{Mg}(\mathrm{OH})_{2(s)}
\end{aligned}
$$

To equalise the number of O atoms on both sides, multiply the molecule of $\mathrm{H}_{2} \mathrm{O}$ by 4 .

$$
\begin{aligned}
\mathrm{Mg}_{2} \mathrm{C}_{3(s)}+4 \mathrm{H}_{2} \mathrm{O}_{(l)} \longrightarrow \mathrm{CH}_{3}-\mathrm{C} \equiv & \mathrm{CH}_{(g)} \\
& +2 \mathrm{Mg}(\mathrm{OH})_{2(s)}
\end{aligned}
$$

It is a balanced equation.
OR
(a) The main postulates of Dalton's atomic theory are as follow :
(i) Elements consist of minute, indivisible, indestructible particles called atoms.
(ii) Atoms of an element are identical to each other. They have the same mass and size.
(iii) Atoms of different elements differ in properties and have different masses and sizes.
(iv) Compounds are formed when atoms of different elements combine with each other in simple numerical ratios such as one-to-one, one-to-two, two-to-three and so on.
(v) Atoms cannot be created or destroyed in a chemical reaction.
(vi) The relative numbers and kind of atoms are always the same in a given compound.
(b)

| Combination | $A B$ | $A B_{2}$ | $A_{2} B$ | $A_{2} B_{3}$ |
| :--- | :---: | :---: | :---: | :---: |
| Mass of $A(\mathrm{~g})$ | 2 | 2 | 4 | 4 |
| Mass of $B(\mathrm{~g})$ | 5 | 10 | 5 | 15 |

Let us fix the mass of $A$ say 1 g . Masses of $B$ which combine with fixed mass of $A$ are $\frac{5}{2} g, \frac{10}{2} g, \frac{5}{4} g$ and $\frac{15}{4} \mathrm{~g}$.
Ratio is $\frac{5}{2}: \frac{10}{2}: \frac{5}{4}: \frac{15}{4}=2: 4: 1: 3$
which is a simple whole number ratio. Hence, the law of multiple proportions is applicable.

## AVAILABLE BOUND VOLUMES



## mtG

## Mad about rehearsing?



Tune. Fine tune. Reach the peak of your readiness for JEE with MTG's $40+16$ Years Chapterwise Solutions. It is undoubtedly the most comprehensive 'real' question bank, complete with detailed solutions by experts.

Studies have shown that successful JEE aspirants begin by familiarising themselves with the problems that have appeared in past JEEs as early as 2 years in advance. Making it one of the key ingredients for their success. How about you then? Get $40+16$ Years Chapterwise Solutions to start your rehearsals early. Visit www.mtg.in to order online.


# MPP-3 момт 

This specially designed column enables students to self analyse their extent of understanding of specified chapter. Give yourself four marks for correct answer and deduct one mark for wrong answer. Self check table given at the end will help you to check your readiness.

## Chemical Bonding and Molecular Structure

Total Marks : 120
Time Taken : 60 Min .

## NEET / AIIMS

## Only One Option Correct Type

1. Polarisation is the distortion of the shape of an anion by the cation. Which of the following statements is correct?
(a) Maximum polarisation is done by a cation of high charge.
(b) A large cation is likely to bring large degree of polarisation.
(c) A smaller anion is likely to undergo a high degree of polarisation.
(d) Minimum polarisation is done by a cation of small size.
2. Which of the following leads to bonding?
(a)

(b)

(c)

(d)

3. Sulphur reacts with chlorine in $1: 2$ ratio to form $X$. Hydrolysis of $X$ gives a sulphur compound $Y$. What is the structure and hybridisation of anion of $Y$ ?
(a) Tetrahedral, $s p^{3}$
(b) Linear, $s p$
(c) Pyramidal, $s p^{3}$
(d) Trigonal planar, $s p^{2}$
4. Peroxide ion
(i) has five completely filled antibonding molecular orbitals
(ii) is diamagnetic
(iii) has bond order one
(iv) is isoelectronic with neon.

Which of these are correct?
(a) (ii) and (iii) only
(b) (i), (ii) and (iv) only
(c) (i), (ii) and (iii) only
(d) (i) and (iv) only
5. A square planar complex is formed by hybridisation of the following atomic orbitals
(a) $s, p_{x}, p_{y}, p_{z}$
(b) $s, p_{x}, p_{y}, p_{z}, d_{x^{2}-y^{2}}$
(c) $d_{x^{2}-y^{2}}, s, p_{x}, p_{y}$
(d) $s, p_{x}, p_{y}, p_{z}, d_{z^{2}}$
6. If the molecule of HCl is considered as totally polar, the expected value of dipole moment is 6.12 D but the experimental value of dipole moment is 1.03 D . What is the percentage ionic character in HCl ?
(a) 17
(b) 83
(c) 50
(d) 90
7. Amongst $\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{H}_{2} \mathrm{Se}$ and $\mathrm{H}_{2} \mathrm{Te}$, the one with the highest boiling point is
(a) $\mathrm{H}_{2} \mathrm{O}$, because of hydrogen bonding
(b) $\mathrm{H}_{2} \mathrm{Te}$, because of higher molecular weight
(c) $\mathrm{H}_{2} \mathrm{~S}$, because of hydrogen bonding
(d) $\mathrm{H}_{2} \mathrm{Se}$, because of lower molecular weight.
8. Which one of the following conversions involve change in both hybridisation and shape?
(a) $\mathrm{CH}_{4} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}$
(b) $\mathrm{NH}_{3} \rightarrow \mathrm{NH}_{4}^{+}$
(c) $\mathrm{BF}_{3} \rightarrow \mathrm{BF}_{4}^{-}$
(d) $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}$
9. In the given compound,

$\sigma$ and $\pi$ bonds respectively are
(a) 19 and 10
(b) 19 and 11
(c) 17 and 11
(d) 17 and 10 .
10. In which of the following pairs, the two species are not isostructural?
(a) $\mathrm{PCl}_{4}^{+}$and $\mathrm{SiCl}_{4}$
(b) $\mathrm{PF}_{5}$ and $\mathrm{BrF}_{5}$
(c) $\mathrm{AlF}_{6}^{3-}$ and $\mathrm{SF}_{6}$
(d) $\mathrm{CO}_{3}^{2-}$ and $\mathrm{NO}_{3}^{-}$
11. The order of resultant dipole moment in $\mathrm{CO}_{2}, \mathrm{NF}_{3}$ and $\mathrm{CHCl}_{3}$ is
(a) $\mathrm{NF}_{3}<\mathrm{CO}_{2}<\mathrm{CHCl}_{3}$
(b) $\mathrm{CHCl}_{3}<\mathrm{CO}_{2}<\mathrm{NF}_{3}$
(c) $\mathrm{CO}_{2}<\mathrm{NF}_{3}<\mathrm{CHCl}_{3}$
(d) $\mathrm{CO}_{2}<\mathrm{CHCl}_{3}<\mathrm{NF}_{3}$
12.
 has dipole moment $x$ Debye. Which of the following is correctly matched for its dipole moment?
(a)

(b)

(c)

(d)


## Assertion \& Reason Type

Directions : In the following questions, a statement of assertion is followed by a statement of reason. Mark the correct choice as :
(a) If both assertion and reason are true and reason is the correct explanation of assertion.
(b) If both assertion and reason are true but reason is not the correct explanation of assertion.
(c) If assertion is true but reason is false.
(d) If both assertion and reason are false.
13. Assertion : Among the two $\mathrm{O}-\mathrm{H}$ bonds in $\mathrm{H}_{2} \mathrm{O}$ molecule, the energy required to break the first $\mathrm{O}-\mathrm{H}$ bond and the other $\mathrm{O}-\mathrm{H}$ bond is the same.
Reason : This is because the electronic environment around oxygen is the same even after breakage of one $\mathrm{O}-\mathrm{H}$ bond.
14. Assertion : Nitrogen is unreactive at room temperature but becomes reactive at elevated temperature or in the presence of catalysts.
Reason : In nitrogen molecule, there is extensive delocalisation of electrons.
15. Assertion : $\mathrm{SF}_{4}$ is a non-polar molecule.

Reason: $\mathrm{SF}_{4}$ has regular tetrahedral geometry.

## JEE MAIN / JEE ADVANCED

Only One Option Correct Type
16. The MO electronic configuration of $X_{2}$ is represented as follows :
Which of the given conclusions are correct from the given MO diagram?
(i) It is excited state electronic configuration of $X_{2}$.
(ii) It is more stable state than the ground state of $X_{2}$ molecule.

(iii) Bond order of $X_{2}$ in excited state is one.
(iv) $X_{2}$ is more likely to dissociate into two $X$-atoms in ground state than that in excited state.
(a) (i) and (ii) only
(b) (ii), (iii) and (iv) only
(c) (i), (iii) and (iv) only
(d) All of these
17. Of the following sets which one does not contain isoelectronic species?
(a) $\mathrm{BO}_{3}^{3-}, \mathrm{CO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$
(b) $\mathrm{SO}_{3}^{2-}, \mathrm{CO}_{3}^{2-}, \mathrm{NO}_{3}^{-}$
(c) $\mathrm{CN}^{-}, \mathrm{N}_{2}, \mathrm{C}_{2}^{2-}$
(d) $\mathrm{PO}_{4}^{3-}, \mathrm{SO}_{4}^{2-}, \mathrm{ClO}_{4}^{-}$
18. $\mathrm{O}-\mathrm{O}$ bond lengths in $\mathrm{O}_{2}, \mathrm{O}_{2}\left(\mathrm{AsF}_{6}\right)$ and $\mathrm{KO}_{2}$ in increasing order are
(a) $\mathrm{O}_{2}\left(\mathrm{AsF}_{6}\right)<\mathrm{O}_{2}<\mathrm{KO}_{2}$
(b) $\mathrm{KO}_{2}<\mathrm{O}_{2}\left(\mathrm{AsF}_{6}\right)<\mathrm{O}_{2}$
(c) $\mathrm{O}_{2}<\mathrm{KO}_{2}<\mathrm{O}_{2}\left(\mathrm{AsF}_{6}\right)$
(d) $\mathrm{O}_{2}<\mathrm{KO}_{2}=\mathrm{O}_{2}\left(\mathrm{AsF}_{6}\right)$
19. The correct order of the lattice energies for the following ionic compounds is
(a) $\mathrm{Al}_{2} \mathrm{O}_{3}>\mathrm{CaO}>\mathrm{MgBr}_{2}>\mathrm{NaCl}$
(b) $\mathrm{MgBr}_{2}>\mathrm{Al}_{2} \mathrm{O}_{3}>\mathrm{CaO}>\mathrm{NaCl}$
(c) $\mathrm{Al}_{2} \mathrm{O}_{3}>\mathrm{MgBr}_{2}>\mathrm{CaO}>\mathrm{NaCl}$
(d) $\mathrm{NaCl}>\mathrm{MgBr}_{2}>\mathrm{CaO}>\mathrm{Al}_{2} \mathrm{O}_{3}$

## More than One Options Correct Type

20. In which of the following molecules octet rule is not obeyed?
(a) $\mathrm{BF}_{3}$
(b) $\mathrm{SF}_{4}$
(c) $\mathrm{NF}_{3}$
(d) $\mathrm{H}_{2} \mathrm{O}_{2}$
21. Which of the following statements are not correct?
(a) NaCl being an ionic compound is a good conductor of electricity in the solid state.
(b) In canonical structures there is a difference in the arrangement of atoms.
(c) Hybrid orbitals form stronger bonds than pure orbitals.
(d) VSEPR theory can explain the square planar geometry of $\mathrm{XeF}_{4}$.
22. Which of the following are diamagnetic?
(a) $\mathrm{C}_{2}$
(b) $\mathrm{He}_{2}$
(c) $\mathrm{Li}_{2}$
(d) $\mathrm{N}_{2}$
23. Mark out the incorrect match of molecule with its shape.
(a) $\mathrm{XeOF}_{2}$ - Trigonal planar
(b) $\mathrm{ICl}_{4}^{-}$- Square planar
(c) $\left[\mathrm{SbF}_{5}\right]^{2-}$ - Square pyramidal
(d) $\mathrm{NH}_{2}^{-}$- Pyramidal

## Integer Answer Type

24. Dipole moment of certain diatomic molecule $X-Y$ is 0.38 D . If the $X-Y$ distance is 158 pm , the percentage of electronic charge developed on $X$-atom is
25. Number of lone pair-bond pair repulsion at $90^{\circ}$ is $(P)$ in $\mathrm{I}_{3}^{-}$. Number of lone pair-bond pair repulsion at $90^{\circ}$ is $(Q)$ in $\mathrm{ICl}_{4}^{-}$. Then the value of $Q-P$ will be
26. The formal charge on the central oxygen atom in $\mathrm{O}_{3}$ molecule is

## Comprehension Type

The bonding in a molecule can be described by using molecular orbital theory. In this theory, electrons in a molecule are distributed amongst its molecular orbitals which are built as a linear combination of atomic orbitals of the constituent atoms of the molecule. Electrons are distributed by using Aufbau principle, Hund's rule and Pauling exclusion principle.
27. In oxygen molecule, $\sigma 2 p$ molecular orbital has lower energy than $\pi 2 p$ orbitals. This is due to
(a) mixing of $s p$ orbitals of the two oxygen atoms
(b) non-mixing of $2 s-2 p$ orbitals of the two oxygen atoms
(c) the inclusion of $d$-orbitals in the molecular orbitals
(d) electronic repulsion between the electrons of the two atoms.
28. The addition of one electron in $\mathrm{O}_{2}$ gives $\mathrm{O}_{2}^{-}$while the removal of one electron gives $\mathrm{O}_{2}^{+}$. Which of the following facts is correct for $\mathrm{O}_{2}^{+}$and $\mathrm{O}_{2}^{-}$species relative to $\mathrm{O}_{2}$ molecule?
(a) Bond order increases in $\mathrm{O}_{2}^{+}$and decreases in $\mathrm{O}_{2}^{-}$.
(b) Bond order decreases in $\mathrm{O}_{2}^{+}$and increases in $\mathrm{O}_{2}^{-}$.
(c) Bond order decreases in both $\mathrm{O}_{2}^{+}$and $\mathrm{O}_{2}^{-}$.
(d) Bond order increases in both $\mathrm{O}_{2}^{+}$and $\mathrm{O}_{2}^{-}$.

## Matrix Match Type

29. Match the Column I with Column II and mark the appropriate option.

## Column I

(A)

(B)

(c)
(D)

(2) $d-d \sigma$ bonding

## Column II

(1) $p-d \pi$ antibonding
(3) $p-d \pi$ bonding
(4) $d-d \sigma$ antibonding

|  | A | B | C | D |
| :--- | :--- | :--- | :--- | :--- |
| (a) | 2 | 1 | 3 | 4 |
| (b) | 4 | 3 | 1 | 2 |
| (c) | 2 | 3 | 1 | 4 |
| (d) | 4 | 1 | 3 | 2 |

30. Match the Column I with Column II and mark the appropriate option.

Column I
(Compounds)
(A) $\mathrm{CS}_{2}$
(B) $\mathrm{SO}_{2}$
(C) $\mathrm{BF}_{3}$
(D) $\mathrm{NH}_{3}$

|  | A | B | C | D |
| :--- | :--- | :--- | :--- | :--- |
| (a) | 1 | 2 | 4 | 5 |
| (b) | 2 | 1 | 3 | 5 |
| (c) | 1 | 2 | 5 | 4 |
| (d) | 2 | 1 | 5 | 4 |

## Column II

(Structures)
(1) Bent
(2) Linear
(3) Trigonal planar
(4) Tetrahedral
(5) Trigonal pyramidal

Keys are published in this issue. Search now! ©


# NEET|JEE ESSENTIALS 

## Class

 XII

Maximise your chance of success, and high rank in NEET, JEE (Main and Advanced) by reading this column. This specially designed column is updated year after year by a panel of highly qualified teaching experts well-tuned to the requirements of these Entrance Tests.

## THE SOLID STATE SOLUTIONS

## THE SOLID STATE

## General Properties

- Solid is the state of matter in which constituent particles are firmly bound due to strong forces.
- Solids have a definite shape, mass and volume.
- Solids are almost incompressible, rigid and have high mechanical strength.
- Solids have high density and very slow diffusion rate.


## Classification of Solios

| Crystalline Solids | Amorphous Solids |
| :---: | :---: |
| - Definite geometry <br> - Sharp melting points and definite heat of fusion. <br> - Generate plain and smooth surface on cutting. <br> - These show anisotropy. <br> - True solid | - Constituents are not arranged in ordered manner. <br> - Neither have sharp melting point nor definite heat of fusion. <br> - Have irregular surface. <br> - These show isotropy. <br> - Pseudo solids or supercooled liquids |

## Classification of Crystalline Solids

| S. <br> No. | Characteristics | Molecular solids | Ionic solids | Metallic solids | Covalent solids |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1. | Constituent <br> particles present <br> in lattice sites | molecules (polar or <br> non-polar) | positive and <br> negative ions | positive ions in a sea of <br> delocalised electrons | non-metal atoms |
| 2. | Bonding forces | weak van der Waals <br> forces, hydrogen <br> bonding, dispersion <br> forces | electrostatic <br> attraction <br> between ions | electrostatic attraction <br> between cations and sea of <br> electrons (metallic bonds) | strong covalent <br> bonds |


| 3. | Hardness | very soft | hard | variable (hard or soft) | very hard, <br> except graphite <br> which is soft |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 4. | Brittleness | low | brittle | very low | medium |
| 5. | Melting point | low | high | moderate to high | very high |
| 6. | Electrical <br> conductivity | bad conductors | insulator (in <br> solid state) <br> (conductors in | good conductors | bad conductors <br> except graphite <br> molten state <br> or in aqueous <br> solutions) |

Crystal system/Unit cell : A unit cell is the smallest repeating structural unit of a crystalline solid. These are of seven types :

| Crystal System | Axial lengths | Axial angles | Examples |
| :--- | :---: | :--- | :--- |
| Cubic | $a=b=c$ | $\alpha=\beta=\gamma=90^{\circ}$ | $\mathrm{Pb}, \mathrm{Cu}, \mathrm{KCl}, \mathrm{CsCl}, \mathrm{Cu}_{2} \mathrm{O}, \mathrm{CaF}_{2}$, alum, diamond |
| Tetragonal | $a=b \neq c$ | $\alpha=\beta=\gamma=90^{\circ}$ | $\mathrm{SnO}_{2}, \mathrm{TiO}_{2}, \mathrm{ZnSO}_{4}$ |
| Orthorhombic or Rhombic | $a \neq b \neq c$ | $\alpha=\beta=\gamma=90^{\circ}$ | $\mathrm{KNO}_{3}, \mathrm{~K}_{2} \mathrm{SO}_{4}, \mathrm{BaSO}_{4}$ |
| Rhombohedral or Trigonal | $a=b=c$ | $\alpha=\beta=\gamma \neq 90^{\circ}$ | $\mathrm{NaNO}_{3}, \mathrm{CaCO}_{3}, \mathrm{As}, \mathrm{Sb}$ |
| Hexagonal | $a=b \neq c$ | $\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$ | $\mathrm{ZnO}_{3} \mathrm{PbS}, \mathrm{CdS}$, graphite, ice |
| Monoclinic | $a \neq b \neq c$ | $\alpha=\gamma=90^{\circ}, \beta \neq 90^{\circ}$ | $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$, monoclinic sulphur |
| Triclinic | $a \neq b \neq c$ | $\alpha \neq \beta \neq \gamma \neq 90^{\circ}$ | $\mathrm{CaSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}, \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{H}_{3} \mathrm{BO}_{3}$ |

Crystal lattice :

| Unit cell | No. of atoms and their contribution per unit cell |  |  | Total no. of atoms per unit cell |
| :---: | :---: | :---: | :---: | :---: |
|  | at corners | at faces | in centre |  |
| Simple cubic (Primitive unit cell) | $8 \times \frac{1}{8}=1$ | 0 | 0 | 1 |
| Body-centred cubic unit cell ( $b c c$ ) | $8 \times \frac{1}{8}=1$ | 0 | 1 | $1+1=2$ |
| Face-centred cubic unit cell ( $f c c$ ) | $8 \times \frac{1}{8}=1$ | $6 \times \frac{1}{2}=3$ | 0 | $1+3=4$ |


| Application of solid state! |
| :--- |
| Recently, a new process used on the surface of $\mathrm{TiO}_{2}$ films, is photoinduced |
| superhydrophilicity. In photoinduced hydrophilicity, absorption of UV photons |
| results in the generation of electrons in the conduction band and holes in the |
| valence band. While electrons reduce $\mathrm{Ti}(\mathrm{IV})$ cations to $\mathrm{Ti}(\mathrm{III})$, holes migrate to |
| the $\mathrm{TiO}_{2}$ surface where they oxidise the bridging $\mathrm{O}^{2-}$ anions. The latter reaction |
| leads to the expulsion of an O atom followed by the adsorption of water molecules |
| at the resulting vacancy site, thereby producing new OH groups and increasing the |
| hydrophilicity of the surface. |

Packing in Solids


## Dimensions of Unit Cells

| Simple cubic unit cell | Face-centred cubic or cubic close packing unit cell | Body-centred cubic unit cell |
| :--- | :--- | :--- |
| $Z=1$ | $Z=4$ | $Z=2$ |
| $d=a=2 r, r=\frac{a}{2}$ | $d=2 r=\frac{a}{\sqrt{2}}, r=\frac{a}{2 \sqrt{2}}$ | $d=2 r=\frac{\sqrt{3} a}{2}, r=\frac{\sqrt{3} a}{4}$ |
| Packing efficiency $=52.4 \%$ | Packing efficiency $=74 \%$ | Packing efficiency $=68 \%$ |
| Coordination No. $=6$ | Coordination No. $=12$ | Coordination No. $=8$ |

where, $r$ = radius of the atom, $a=$ edge length of the unit cell, $d=$ nearest neighbouring distance

## Density of Unit Cells

$\rho=\frac{Z \times M}{a^{3} \times N_{A}} \mathrm{~kg} \mathrm{~m}^{-3}$
where, $Z=$ Number of atoms per unit cell
$M=$ Molar mass ( $\mathrm{kg} / \mathrm{mol}$ )
$a=$ Edge length (metres)
$\rho=$ Density of solid
$N_{A}=$ Avogadro's number
It ' $a$ ' is taken in cm and ' $M$ ' in $\mathrm{g} / \mathrm{mol}$ then
$\rho=\frac{Z \times M}{a^{3} \times N_{A}} \mathrm{~g} / \mathrm{cm}^{3}$

Radius Ratio and Coordination Number

| Radius ratio | $0.155-$ <br> 0.225 | $0.225-$ <br> 0.414 | $0.414-$ <br> 0.732 | $0.732-$ <br> 1 |
| :--- | :---: | :---: | :---: | :---: |
| Coordination <br> number | 3 | 4 | 6 | 8 |
| Structural <br> arrangement | Planar <br> triangular | Tetrahedral | Octahedral | Cubic |
| Example | $\mathrm{B}_{2} \mathrm{O}_{3}$ | ZnS, HgS, <br> CuI | NaCl <br> (Rock salt) | CsCl, <br> $\mathrm{NH}_{4} \mathrm{Br}$ |

## Defects in Solids

Any departure from perfectly ordered arrangement of constituent particles is called defect or imperfection.


## Schottky Defect

- It is due to equal number of cations and anions missing from lattice sites.
- It results in decrease in density of crystal.
- This is found in the highly ionic
compounds having cation and anion of same size, e.g., $\mathrm{NaCl}, \mathrm{CsCl}$, etc.


## Frenkel Defect

- It is due to missing of ions (usually cations) from the lattice sites and these occupy interstitial sites.
- It has no effect on the density of crystal.
- This is found in crystal with low coordination number e.g., AgI, ZnS , etc.


Types of Defects

## Electrical Properties of Solids



## Magnetic Properties of Solids



- Solution is a homogeneous mixture of two or more chemically non-reacting substances whose composition can be varied within certain limits.


## Types of Solutions

| Solute | Solvent | Types of solution | Examples |
| :---: | :---: | :---: | :---: |
| Solid solutions |  |  |  |
| Solid | Solid | Solid in solid | All alloys like brass $(\mathrm{Cu}+\mathrm{Zn})$, bronze $(\mathrm{Cu}+\mathrm{Sn})$, German silver $(\mathrm{Cu}+\mathrm{Zn}+\mathrm{Ni})$, etc. |
| Liquid | Solid | Liquid in solid | Amalgam of mercury with $\mathrm{Na}, \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}, \mathrm{FeSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ |
| Gas | Solid | Gas in solid | Solution of $\mathrm{H}_{2}$ in Pd , dissolved gases in minerals. |
| Liquid solutions |  |  |  |
| Solid | Liquid | Solid in liquid | Sugar solution, salt solution, $\mathrm{I}_{2}$ in $\mathrm{CCl}_{4}$. |
| Liquid | Liquid | Liquid in liquid | Benzene in toluene, alcohol in water |
| Gas | Liquid | Gas in liquid | $\mathrm{CO}_{2}$ in water, $\mathrm{NH}_{3}$ in water, aerated drinks, etc. |
| Gaseous solutions |  |  |  |
| Solid | Gas | Solid in gas | Iodine vapours in air, camphor vapours in $\mathrm{N}_{2}$. |
| Liquid | Gas | Liquid in gas | Water vapours in air, $\mathrm{CHCl}_{3}$ vapours in $\mathrm{N}_{2}$. |
| Gas | Gas | Gas in gas | Air $\left(\mathrm{O}_{2}+\mathrm{N}_{2}\right)$ |
| Purifying water ! <br> A new way to recover almost 100 percent of the water from highly concentrated salt solutions has been developed. The system will alleviate water shortages in arid regions and reduce concerns surrounding high salinity brine disposal, such as hydraulic fracturing waste. It involves the development of a carbon nanotube-based heating element that will vastly improve the recovery of fresh water during membrane distillation processes. |  |  |  |

THERMODYNAMIC PROCESSES
State of a thermodynamic system can be changed by interacting with its surroundings through work and heat. When this change occurs in a system, it is said that the system is undergoing a process. Most processes of interest to pyrometallurgists can be idealised as operating at constant temperature (isothermal) or constant pressure (isobaric).

SUBSTITUTION REACTIONS

Process
A process in which temperature remains constant i.e., $\Delta T=0$ $\Delta U=0$ $q=-w$ pressure, etc.


## Adiabatic Process

A process in which the system does not exchange heat with the surroundings, i.e., $q=0 ; \Delta U=w_{a d}$ Work done in adiabatic process, $w=\left(P_{1} V_{1}-P_{2} V_{2}\right) / \gamma-1$ For an adiabatic process, $P V^{\gamma}=$ constant where $\gamma=C_{p} / C_{v}$

## Monoatomic gas

Diatomicgas Triatomic gas $\begin{array}{cc}C_{v} & C_{p} \\ 3 / 2 R & 5 / 2 R \\ 5 / 2 R & 7 / 2 R\end{array}$



## Reversibl

## Process

A process in which the direction may be reversed at any stage by merely a small change in a variable like temperature,

For isothermal reversible process:


## Process

A process which is not reversible is called an irreversible process. All the natural processes are irreversible For isothermal irreversible process

$$
\left.\begin{array}{rl}
\text { r isothermal irreversible } \\
q=-w=P_{e x}\left(V_{f}-V_{i}\right) \\
q
\end{array}\right)
$$

Note : (i) If gas expands $V_{f}>V_{i}, w$ is
negative.
negative.
(ii) If gas contracts, $V_{f}<V_{i}, w$ is
positive. pressure

?


A process in which the pressure
$P=$ constant, $\Delta U=q-w$
$w=P \Delta V=n R \Delta T, \Delta U=n C_{v} \Delta T$
$q_{p}=\Delta U+w=n C_{v} \Delta T+n R \Delta T$
$=n\left(C_{v}+R\right) \Delta T=n C_{p} \Delta T$
$C_{p}=C_{v}+R=$ molar specific heat at constant pressure
$C_{v}=$ molar specific heat at constant volume

## Important Points

- Sign conventions :

Heat absorbed by the system $=+q$
Heat evolved by the system $=-q$
Work done on the system $=+w$
Work done by the system $=-w$

- Free expansion : Expansion of a gas in vacuum $\left(P_{e x}=0\right)$ is called free expansion. No work is done during free expansion of an ideal gas whether the © process is reversible or irreversible
$q($ at constant volume $)=\Delta U$
$q($ at constant pressure $)=\Delta H$
$\Delta H=\Delta U+P \Delta V$
or $\Delta H=\Delta U+\Delta n_{g} R T$

In Aliphatic Compounds
Nucleophilic Substitution Reactions

## This substitution is carried out by nucleophile.

Free Radical Substitution Reactions
Due to homolysis of bond

## Mechanism :

- Initiation step
$\mathrm{Cl}_{2} \xrightarrow[\text { heat }]{h \stackrel{\text { or }}{\longrightarrow}} 2 \mathrm{Cl}^{\circ}$
- Propagation step
$\mathrm{CH}_{4}+\mathrm{Cl}^{\circ} \rightarrow \mathrm{CH}_{3}^{\circ}+\mathrm{HCl}$
$\mathrm{Cl}_{2}+\mathrm{CH}_{3} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{Cl}^{-}$
- Termination step :
$\mathrm{Cl}^{+}+\mathrm{Cl}^{-} \rightarrow \mathrm{Cl}_{2}$
$\mathrm{CH}_{3}^{+}+\mathrm{Cl}^{\bullet} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}$
$\mathrm{CH}_{3}^{+}+\mathrm{CH}_{3}^{+} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{3}$



## This substituti

electrophile.
Electrophilic substitution is very rare in aliphatic compounds. Some examples are:

- Replacement of metal atom in an organometallic compound by hydrogen.
$R-M+\mathrm{H}_{2} \rightarrow R-\mathrm{H}+M \mathrm{H}$
- Decarboxylation of silver salt of carboxylic acid.

$\mathrm{R}_{3} \mathrm{C}-\mathrm{Br}+\mathrm{CO}_{2}+\mathrm{AgBr} \longleftarrow$


## Important Points

- Nucleophile approaches the substrate from rear side opposite to the departing group. Thus, configuration gets inverted.
- Reactivity order

Methyl $>1^{\circ}>2^{\circ}>3^{\circ}>$ Allyl $>$

Substituted benzene molecules have tremendous importance in industrial chemical applications. They are commonly used as solvent and they are often important intermediates in many syntheses, including those of powerful pharmaceutical agents.

CONCEPT
MAP

In Aromatic Compounds
Electrophilicic Susustitution Reactions
Arene system is electron rich Arene system is electron rich hence, prefer to
titution by electrophiles.
titution by electrophiles.
Mechanism : It is a two step Mechani
reaction.
Step 1 : Rate determining step,



Nucleophilic Substitution Reactions
Benzene ring is unreactive towards nucleophilic substitution, the presence of elietron with group can activat thering

(O) $\xrightarrow{\mathrm{OH}^{-}}$No reaction

$\mathrm{S}_{\mathrm{N}}$ i stands for Substitution Nucleophilic Internal. The difference between $S_{N} 1$ and $S_{N} i$ is actually that the ion pair is not completely dissociated and therefore, unlike $\mathrm{S}_{\mathrm{N}} 1$, no real carbocation participates in $S_{\mathrm{N}} \mathrm{i}$.

$\mathrm{S}_{\mathrm{N}} 2$ stands for Substitution Nucleophilic Bimolecular.
$\mathrm{Nu}^{-}+R-\mathrm{LG} \rightarrow R-\mathrm{Nu}+\mathrm{LG}$
$\mathrm{Nu}+R-\mathrm{LG} \rightarrow R-\mathrm{Nu}$
Rate $=k[R-\mathrm{LG}]\left[\mathrm{Nu}^{-}\right]$
Mechanism:The $\mathrm{S}_{\mathrm{N}} 2$ mechanism is a single step process without intermediate


Susstitution wia Benyne Mechanism
It is basically an elimination -
addition process.
$\xrightarrow[(-)]{\substack{\mathrm{NH}_{3(l)}}}$
The aromatic substrate loses a molecule of HBr in presence of very strong base to give a benzyne intermediate.


Cine substitution:In this, entering
Cine substitution: In this, enterion adjacent to the leaving group.


## Solubility of Gases

Solubility of gases is the volume of the gas dissolved per unit volume of solvent at 1 atm pressure and specific temperature.
Solubility depends on :

- Temperature
- Nature of gas
- Nature of solvent
- Pressure of the gas

Henry's law : "The solubility of a gas in a liquid at a particular temperature is directly proportional to the pressure of the gas in equilibrium with the liquid at that temperature." i.e., $p \propto x, p=K_{H} x, x=$ mole fraction (solubility of gas is expressed in mole fraction).

## Raoult's Law

## Raoult's law

For a solution of volatile liquids, the partial vapour pressure of each component of the solution is directly proportional to its mole fraction present in the solution

## For volatile solute

The total vapoure pressure $P$ of a solution containing two components $A$ and $B$ is

$$
\begin{aligned}
p_{A} & =p_{A}^{\circ} \times x_{A} ; p_{B}=p_{B}^{\circ} \times x_{B} \\
P & =p_{A}+p_{B}=p_{A}^{\circ} x_{A}+p_{B}^{\circ} x_{B}\left(\because x_{A}=1-x_{B}\right) \\
& =\left(p_{B}^{\circ}-p_{A}^{\circ}\right) x_{B}+p_{A}^{\circ}
\end{aligned}
$$

| For non-volatile solute |
| :--- |
| Relative lowering of vapour pressure of a solution |
| containing a non-volatile solute is equal to the mole |
| fraction of solute in the solution. |
| Relative lowering of V.P. $=\frac{P^{\circ}-P_{S}}{P^{\circ}}=\frac{n_{B}}{n_{A}+n_{B}}=x_{B}$ |

## For non-volatile solute

Relative lowering of vapour pressure of a solution containing a non-volatile solute is equal to the mole fraction of solute in the solution.
Relative lowering of V.P. $=\frac{P^{\circ}-P_{S}}{P^{\circ}}=\frac{n_{B}}{n_{A}+n_{B}}=x_{B}$

## Ideal and Non-ideal Solutions

| Ideal solutions | Non-ideal solutions |
| :--- | :--- |
| Obey Raoult's law at all temperatures and concentrations. | Do not obey Raoult's law at all temperatures and <br> concentrations. |
| $p_{1}=x_{1} p_{1}^{\circ} ; p_{2}=x_{2} p_{2}^{\circ}$ | $p_{1} \neq x_{1} p_{1}^{\circ} ; p_{2} \neq x_{2} p_{2}^{\circ}$ |
| $\Delta H_{\text {mix }}=0, \Delta V_{\text {mix }}=0$ | $\Delta H_{\text {mix }} \neq 0, \Delta V_{\text {mix }} \neq 0$ |
| $A-B$ interactions $\approx A-A$ and $B-B$ interactions | $A-B$ interactions $\neq A-A$ and $B-B$ interactions. |
| Do not form azeotropes (constant boiling mixtures). | Form azeotropes. |

## Azeotropes

Binary mixtures that have same composition in liquid and vapour phase and boil at constant temperature and their composition can not change on distillation are known as azeotropic mixtures.

| Maximum boiling azeotropes |  |  |
| :---: | :---: | :---: |
| The non-ideal binary solutions which show <br> negative deviation from Raoult's law. | Azeotropes | Minimum boiling azeotropes <br> The non-ideal binary solutions which show <br> positive deviation from Raoult's law. |

## Non-ideal Solutions showing Positive and Negative Deviations from Raoult's Law

| Solutions showing positive deviation | Solutions showing negative deviation |
| :---: | :---: |
| When total vapour pressure is more than expected by Raoult's law. | When vapour pressure is less than expected by Raoult's law. |
| $A-B \ll A-A$ or $B-B$ interactions | $A-B \gg A-A$ or $B-B$ interactions. |
| $\Delta$ | 0 |
| $p_{1}>p_{1}^{\circ} x_{1} ; p_{2}>p_{2}^{\circ} x_{2}$ | $p_{1}<p_{1} x_{1}, p_{2}<p_{2} x_{2}$ |
| Examples : Ethanol and acetone, Carbon disulphide and acetone, Methanol and water, Cyclohexanol and cyclohexane. | Examples:Phenol and aniline, Chloroform and acetone, Chloroform and diethyl ether, Chloroform and benzene, Water and $\mathrm{H}_{2} \mathrm{SO}_{4}$ or $\mathrm{HNO}_{3}$ or HCl . |

## Colugative Properties

The properties which depend upon the number of the solute particles irrespective of their nature related to the total number of particles present in the solution are known as colligative properties.


## Reverse Osmosis

- Direction of osmosis can be reversed by applying higher pressure than the osmotic pressure to the solution side. Then solvent starts flowing in reverse direction.
- In reverse osmosis, solvent moves from solution to pure solvent.
- Used in water purification and desalination of sea water.


## Abnormal Molecular Mass

- When the molecular mass of a substance determined by any of the colligative properties comes out to be different than the expected value, the substance is said to show abnormal molecular mass.
- Abnormal molecular masses are observed when the solution is non-ideal (not dilute) or the solute undergoes association or dissociation in the solution.


## van't Hoff Factor

- It is defined as the ratio of the experimental value of the colligative property to the calculated value of the colligative property.
$i=\frac{\text { Observed value of the colligative property }}{\text { Calculated value of the colligative property }}$
$i=\frac{\text { Calculated molecular mass }}{\text { Observed molecular mass }}$
Total number of moles of particles
$i=\frac{\text { after association / dissociation }}{\text { Total number of moles of particles }}$ before association / dissociation
- If $i>1$, solute undergoes dissociation in the solution and if $i<1$, solute undergoes association in the solution.
$\alpha_{\text {dissociation }}=\frac{i-1}{n-1} ; \alpha_{\text {association }}=\frac{1-i}{1-\frac{1}{n}}$
$\alpha=$ Degree of association or dissociation.

1. Clausthalite is a mineral composed of lead selenide, PbSe , which adopts a NaCl-type structure. The density of PbSe at $25^{\circ} \mathrm{C}$ is $8.27 \mathrm{~g} / \mathrm{cm}^{3}$. Length of an edge of the PbSe unit cell (molecular weight $=286.2 \mathrm{~g}$ ) would be
(a) $6.44 \AA$
(b) $6.13 \AA$
(c) $7.11 \AA$
(d) $3.065 \AA$
2. Which one of the following statements is false?
(a) Two sucrose solutions of same molality prepared in different solvents will have the same freezing point depression.
(b) The osmotic pressure ( $\pi$ ) of a solution is given by the equation, $\pi=M R T$, where $M$ is the molarity of the solution.
(c) Raoult's law states that the vapour pressure of a component over a solution is proportional to its mole fraction.
(d) The correct order of osmotic pressure for 0.01 M aqueous solution of each compound is $\mathrm{BaCl}_{2}>\mathrm{KCl}>\mathrm{CH}_{3} \mathrm{COOH}>$ Sucrose
3. A compound made of particles $A, B$ and $C$ forms ccp lattice. In the lattice, ions $A$ occupy the lattice points and ions $B$ and $C$ occupy the alternate tetrahedral voids. If all the ions along one of the body diagonals are removed, then formula of the compound is
(a) $A_{3.75} B_{3} C_{3}$
(b) $A_{3.75} B_{3} C_{4}$
(c) $A_{3} B_{3.75} C_{3}$
(d) $A_{3} B_{3} C_{3.75}$
4. For a dilute solution containing 2.5 g of a non-volatile, non-electrolyte solute in 100 g of water, the elevation in boiling point at 1 atm pressure is $2^{\circ} \mathrm{C}$. Assuming concentration of solute is much lower than the concentration of solvent, the vapour pressure ( mm of Hg ) of the solution is $\left(K_{b}=0.76 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$
(a) 726
(b) 740
(c) 736
(d) 718
5. The site labelled as ' $a$ ' in $f c c$ arrangement is
(a) face with $1 / 4$ contribution
(b) edge with $1 / 4$ contribution
(c) corner with $1 / 4$ contribution

(d) tetrahedral void with $1 / 8$ contribution.
6. $\quad 1.00 \mathrm{~g}$ of a non-electrolyte solute (molar mass $250 \mathrm{~g} \mathrm{~mol}^{-1}$ ) was dissolved in 51.2 g of benzene. If the freezing point depression constant, $K_{f}$ of benzene is $5.12 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$, the freezing point of benzene will be lowered by
(a) 0.5 K
(b) 0.2 K
(c) 0.4 K
(d) 0.3 K
7. Which is the incorrect statement?
(a) Density decreases in case of crystals with Schottky defect.
(b) $\mathrm{NaCl}_{(s)}$ is insulator, silicon is semiconductor, silver is conductor, quartz is piezoelectric crystal.
(c) Frenkel defect is favoured in those ionic compounds in which sizes of cations and anions are almost equal.
(d) $\mathrm{FeO}_{0.98}$ has non-stoichiometric metal deficiency defect.
(NEET 2017)
8. $x \mathrm{~g}$ of non-electrolytic compound (molar mass $=200$ ) is dissolved in 1.0 L of 0.05 M NaCl solution. The osmotic pressure of this solution is found to be 4.92 atm at $27^{\circ} \mathrm{C}$. What will be the value of $x$ ? (Assume complete dissociation of NaCl and ideal behaviour of this solution.)
(a) 20 g
(b) 30 g
(c) 40 g
(d) 10 g
9. Consider the structure of $\mathrm{CsCl}(8: 8$ coordination). How many $\mathrm{Cs}^{+}$ions occupy the second nearest neighbour locations of a $\mathrm{Cs}^{+}$ion?
(a) 8
(b) 24
(c) 6
(d) 16
10. The use of common salts, e.g., NaCl or $\mathrm{CaCl}_{2}$ anhydrous, is made to clear snow on the roads. This causes
(a) a lowering in the freezing point of water
(b) a lowering in the melting point of ice
(c) ice melts at the temperature of atmosphere present at that time
(d) all of these.
11. Which of the following statements about the composition of the vapour over an ideal 1:1 molar mixture of benzene and toluene is correct? Assume that the temperature is constant at $25^{\circ} \mathrm{C}$. (Given, vapour pressure data at $25^{\circ} \mathrm{C}$, benzene $=12.8 \mathrm{kPa}$, toluene $=3.85 \mathrm{kPa}$ )
(a) The vapour will contain equal amounts of benzene and toluene.
(b) Not enough information is given to make a prediction.
(c) The vapour will contain a higher percentage of benzene.
(d) The vapour will contain a higher percentage of toluene.
(NEET 2016 Phase-I)
12. An element crystallises in a structure having a $f c c$ unit cell of an edge 100 pm . If 24 g of the element contains $24 \times 10^{23}$ atoms, the density is
(a) $2.40 \mathrm{~g} \mathrm{~cm}^{-3}$
(b) $40 \mathrm{~g} \mathrm{~cm}^{-3}$
(c) $4 \mathrm{~g} \mathrm{~cm}^{-3}$
(d) $24 \mathrm{~g} \mathrm{~cm}^{-3}$
13. What will be the osmotic pressure (atm) of $20 \%(w / V)$ anhydrous $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ solution at $0{ }^{\circ} \mathrm{C}$ ? (Assuming 100\% ionisation.)
(a) 27.33
(b) 82.0
(c) 52.13
(d) 67.51
14. In which of the following pair, both the solids belong to same type?
(a) Solid $\mathrm{CO}_{2}, \mathrm{ZnS}$
(b) $\mathrm{CaF}_{2}, \mathrm{Ca}$
(c) Graphite, ice
(d) $\mathrm{SiC}, \mathrm{AlN}$
15. Which one of the following is incorrect for ideal solution?
(a) $\Delta H_{\text {mix }}=0$
(b) $\Delta U_{\text {mix }}=0$
(c) $\Delta P=P_{\text {obs }}-P_{\text {calculated by Raoult's law }}=0$
(d) $\Delta G_{\text {mix }}=0$
(NEET 2016 Phase-II)
16. A metallic element has a cubic lattice. Each edge of the unit cell is $2.88 \AA$. The density of the metals is $7.20 \mathrm{~g} \mathrm{~cm}^{-3}$. How many unit cells will be there in 100 g of the metal?
(a) $5.82 \times 10^{23}$
(b) 5.82
(c) $1.89 \times 10^{23}$
(d) 1.89
17. In 100 g of naphthalene, 2.423 g of sulphur was dissolved. Freezing point of naphthalene $=80.26^{\circ} \mathrm{C}$, $\Delta T_{f}=0.661^{\circ} \mathrm{C}, L_{f}=35.7 \mathrm{cal} / \mathrm{g}$ of naphthalene. Molecular formula of sulphur added is
(a) $\mathrm{S}_{2}$
(b) $\mathrm{S}_{4}$
(c) $\mathrm{S}_{6}$
(d) $\mathrm{S}_{8}$
18. A metal crystallises in a face centred cubic structure. If the edge length of its unit cell is ' $a$ ', the closest approach between two atoms in metallic crystal will be
(JEE Main 2017)
(a) $\sqrt{2} a$
(b) $\frac{a}{\sqrt{2}}$
(c) $2 a$
(d) $2 \sqrt{2} a$
19. For $1 \%$ solutions of KCl (I), NaCl (II), $\mathrm{BaCl}_{2}$ (III) and urea (IV), osmotic pressures at the same temperature in the ascending order will be (Assume 100\% ionisation of the electrolytes at this temperature.)
(a) I $<$ III $<$ II $<$ IV
(b) III $<$ I $<$ II $<$ IV
(c) I $<$ II $<$ III $<$ IV
(d) III $<$ IV $<$ I $<$ II
20. The arrangement of $X^{-}$ions around $A^{+}$ion in solid $A X$ is given in the figure (not drawn to scale). If the radius of $X^{-}$is 250 pm , the radius of $A^{+}$is

(a) 104 pm
(b) 125 pm
(c) 183 pm
(d) 57 pm
21. The freezing point of benzene decreases by $0.45^{\circ} \mathrm{C}$ when 0.2 g of acetic acid is added to 20 g of benzene. If acetic acid associates to form a dimer in benzene, percentage association of acetic acid in benzene will be $\left(K_{f}\right.$ for benzene $\left.=5.12 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}\right)$
(JEE Main 2017)
(a) $74.6 \%$
(b) $94.6 \%$
(c) $64.6 \%$
(d) $80.4 \%$
22. Of the elements $\mathrm{Sr}, \mathrm{Zr}, \mathrm{Mo}, \mathrm{Cd}$ and Sb , all of these are in period 5, the paramagnetic elements are
(a) $\mathrm{Sr}, \mathrm{Cd}$ and Sb
(b) $\mathrm{Zr}, \mathrm{Mo}$ and Cd
(c) $\mathrm{Sr}, \mathrm{Zr}$ and Cd
(d) $\mathrm{Zr}, \mathrm{Mo}$ and Sb
23. The values of observed and calculated molecular mass of silver nitrate are 92.64 and 170 respectively. The degree of dissociation of silver nitrate is
(a) $60 \%$
(b) $83.5 \%$
(c) $46.7 \%$
(d) $60.23 \%$
24. Which of the following statements is not true about amorphous solids?
(a) On heating they may become crystalline at certain temperature.
(b) They may become crystalline on keeping for long time.
(c) They can be moulded by heating.
(d) They are anisotropic in nature.
25. A solution is prepared by mixing 8.5 g of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 11.95 g of $\mathrm{CHCl}_{3}$. If vapour pressure of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and $\mathrm{CHCl}_{3}$ at 298 K are 415 and 200 mm Hg respectively, the mole fraction of $\mathrm{CHCl}_{3}$ in vapour form is (Molar mass of $\mathrm{Cl}=35.5 \mathrm{~g} \mathrm{~mol}^{-1}$ )
(JEE Main Online 2017)
(a) 0.675
(b) 0.162
(c) 0.486
(d) 0.325
26. Marbles of diameter 2 cm are to be placed either inside or upon an equilateral triangle (edge length 4 cm ) drawn on a floor. The maximum number of marbles that can be accommodated is
(a) 1
(b) 2
(c) 3
(d) 6
27. The vapour pressure of benzene, toluene and xylene are 75 torr, 22 torr and 10 torr at $20^{\circ} \mathrm{C}$. Which of the following is not a possible value of
the vapour pressure of an equimolar binary/ternary solution of these at $20^{\circ} \mathrm{C}$ ?
(a) $48 \frac{1}{2}$
(b) 16
(c) $35 \frac{2}{3}$
(d) $53 \frac{1}{2}$
28. In the structure given below, the sites $S_{1}$ and $S_{2}$ represent
(a) both octahedral voids
(b) both tetrahedral voids
(c) $S_{1}$-octahedral void, $S_{2}$-tetrahedral void
(d) $S_{1}$-tetrahedral void, $S_{2}$-octahedral void.

29. Sodium metal crystallizes in a body centred cubic lattice with a unit cell edge of $4.29 \AA$. The radius of sodium atom is approximately
(a) $5.72 \AA$
(b) $0.93 \AA$
A (c) $1.86 \AA$
(d) $3.22 \AA$
(JEE Main 2015)
30. In octahedral holes (voids)
(a) a simple triangular void is surrounded by four spheres
(b) a bi-triangular void is surrounded by four spheres
(c) a bi-triangular void is surrounded by six spheres
(d) a bi-triangular void is surrounded by eight spheres.

## SOLUTIONS

1. (b): $d=\frac{Z \times M}{a^{3} \times N_{A}}$
$\left(Z=4 ; M=286.2 ; d=8.27 \mathrm{~g} / \mathrm{cm}^{3}\right)$
$a^{3}=\frac{Z \times M}{d \times N_{A}}=\frac{4 \times 286.2}{8.27 \times 6.02 \times 10^{23}}$
$a^{3}=229.9 \AA$
$a=(229.9)^{1 / 3} \AA=6.13 \AA$
2. (a)
3. (a): Since, the lattice is ccp $(Z=4)$.
Number of $A$ ions $=4$
Number of $B$ ions = Number of alternate tetrahedral voids $=4$ Number of $C$ ions $=$


Number of alternate tetrahedral voids $=4$
$A$ ions are at corner + face center
$B$ ions are at alternate tetrahedral voids at each of the four body diagonals
$C$ ions are also at alternate tetrahedral voids at each of the four body diagonals
If all the ions along one of the body diagonals are removed,

Number of $A$ ions removed $=2 \times \frac{1}{8}$ (corner share)

$$
=\frac{1}{4}
$$

Number of $B$ ion removed $=1$
Number of $C$ ion removed $=1$
(Since body diagonal ions are inside the cube so they do not share with other ions.)
Number of $A$ ions left $=4-\frac{1}{4}=3.75$
Number of $B$ ions left $=4-1=3$
Number of $C$ ions left $=4-1=3$
Thus, formula is: $A_{3.75} B_{3} C_{3}$
4. (a) : $\Delta T_{b}=2{ }^{\circ} \mathrm{C} ; w_{2}=2.5 \mathrm{~g}$
$w_{1}=100 \mathrm{~g}, K_{b}=0.76 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1} ; p_{\mathrm{s}}=$ ?
$\Delta T_{b}=K_{b} \times m$
$2=0.76 \times m \Rightarrow m=\frac{2}{0.76}$
We know;
$m=\frac{n_{2} \times 1000}{n_{1} \times M_{1}} \quad\left(\because M_{1}\left(\mathrm{H}_{2} \mathrm{O}\right)=18\right)$
$\frac{n_{2}}{n_{1}}=x_{2}=\frac{m \times M_{1}}{1000}=\frac{2 \times 18}{0.76 \times 1000}$
$\therefore \frac{p^{\circ}-p_{s}}{p_{s}}=x_{2}=\frac{2 \times 18}{0.76 \times 1000}=\frac{36}{760}$
$\left(p^{\circ}=1 \mathrm{~atm}=760 \mathrm{mmHg}\right)$
$760-p_{s}=\frac{36}{760} p_{s}$
$\left(\frac{36}{760} p_{s}+p_{s}\right)=760$
$p_{s}\left(\frac{36}{760}+1\right)=760$
$1.047 p_{\mathrm{s}}=760$
$p_{s}=\frac{760}{1.047}=725.9 \mathrm{mmHg} \approx 726 \mathrm{mmHg}$
5. (b)
6. (c) : $\Delta T_{f}=\frac{1000 \times K_{f} \times w}{W \times m}$

So, $\Delta T_{f}=\frac{1000 \times 5.12 \times 1}{250 \times 51.2}=0.4 \mathrm{~K}$
7. ( $\mathbf{c}, \mathbf{d}$ ) : Frenkel defect is favoured in those ionic compounds in which there is large difference in the size of cations and anions. Non-stoichiometric defects due to metal deficiency is shown by $\mathrm{Fe}_{x} \mathrm{O}$ where $x=0.93$ to 0.96 .
8. (a): For $\mathrm{NaCl}: \pi_{1}=i C R T=2 \times 0.05 \times 0.0821 \times 300$

$$
=2.463 \mathrm{~atm}
$$

For unknown compound :
$\pi_{2}=C R T=\frac{x}{200} \times 0.0821 \times 300=0.1231 x \mathrm{~atm}$
Total osmotic pressure, $\pi=\pi_{1}+\pi_{2}$
$4.92=2.463+0.1231 x$
$x=19.959 \mathrm{~g} \approx 20 \mathrm{~g}$
9. (c) : The next nearest neighbours to $\mathrm{Cs}^{+}$are $\mathrm{Cs}^{+}$of neighbour units which are 6 in number.
10. (a): Addition of salt lowers the freezing point of water and thus snow melts.
11. (c): $p=x \quad p^{\circ}$

$$
p \quad=x \quad p^{\circ}
$$

For an ideal 1: 1 molar mixture of benzene and toluene,

$$
\begin{aligned}
& x_{\text {Benzene }}=\frac{1}{2} \text { and } x_{\text {Toluene }}=\frac{1}{2} \\
& p_{\text {Benzene }}=\frac{1}{2} p_{\text {Benzene }}^{\circ}=\frac{1}{2} \times 12.8 \mathrm{kPa}=6.4 \mathrm{kPa} \\
& p_{\text {Toluene }}=\frac{1}{2} p_{\text {Toluene }}^{\circ}=\frac{1}{2} \times 3.85 \mathrm{kPa}=1.925 \mathrm{kPa}
\end{aligned}
$$

Thus, the vapour will contain a high percentage of benzene as the partial vapour pressure of benzene is higher as compared to that of toluene.
12. (b): Volume of unit cell $=\left(100 \times 10^{-10}\right)^{3}=1 \times 10^{-24} \mathrm{~cm}^{3}$

Mass of an atom $=\frac{24.0}{24 \times 10^{23}}=1 \times 10^{-23} \mathrm{~g}$
(No. of atoms in $f c c=4$ )
Mass of unit cell $=4 \times 1 \times 10^{-23}=4 \times 10^{-23} \mathrm{~g}$
Density $=\frac{4 \times 10^{-23}}{1 \times 10^{-24}}=4 \times 10=40 \mathrm{~g} \mathrm{~cm}^{-3}$
13. (b): $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ dissociates as follows :

$$
\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{NO}_{3}^{-}
$$

At $t=0 \quad 1 \quad 0 \quad 0$
After dissociation $\quad 1-\alpha \quad \alpha \quad 2 \alpha$
Given that, $w=20 \mathrm{~g}, V=100 \mathrm{~mL}, T=273 \mathrm{~K}$
$\pi_{\text {Cal }}=\frac{w}{m V(L)} \times R \times T(\because m=164)$
$=\frac{20 \times 1000 \times 0.0821 \times 273}{164 \times 100}=27.33 \mathrm{~atm}$
But, $\frac{\pi_{\text {exp. }}}{\pi_{\text {cal }}}=$ total number of moles in solution

$$
=1+2 \alpha=1+2=3 \quad(\because \alpha=1)
$$

$\pi_{\text {exp. }}=27.33 \times 3=82.0 \mathrm{~atm}$
14. (d)
15. (d): For an ideal solution, $\Delta H_{\text {mix }}=0, \Delta V_{\text {mix }}=0$,

Now, $\Delta U_{\text {mix }}=\Delta H_{\text {mix }}-P \Delta V_{\text {mix }}$
$\therefore \Delta U_{\text {mix }}=0$
Also, for an ideal solution,

$$
\begin{aligned}
& p_{A} & =x_{A} p_{A}^{\circ}, p_{B}=x_{B} p_{B}^{\circ} \\
\therefore \quad & \Delta P & =P_{\text {obs }}-P_{\text {calculated by }}=0
\end{aligned}
$$

Raoult's law
$\Delta G_{\text {mix }}=\Delta H_{\text {mix }}-T \Delta S_{\text {mix }}$
For an ideal solution, $\Delta S_{\text {mix }} \not{ }_{0}$
$\therefore \Delta G_{\text {mix }} \not{ }_{0}$
16. (a): Volume of unit cell $=(2.88 \AA)^{3}$

$$
\begin{aligned}
& =\left(2.88 \times 10^{-8} \mathrm{~cm}\right)^{3} \\
& =23.9 \times 10^{-24} \mathrm{~cm}^{3}
\end{aligned}
$$

Given that, mass $=100 \mathrm{~g}$ and density $=7.20 \mathrm{~g} / \mathrm{cm}^{3}$
$\therefore \quad$ Volume of 100 g of the metal

$$
=\frac{\text { Mass }}{\text { Density }}=\frac{100}{7.20}=13.9 \mathrm{~cm}^{3}
$$

or number of unit cells in this volume

$$
=\frac{13.9 \mathrm{~cm}^{3}}{23.9 \times 10^{-24} \mathrm{~cm}^{3}}=5.82 \times 10^{23}
$$

17. (d): $M_{2}=\frac{K_{f} \times 1000 \times w_{2}}{w_{1} \times \Delta T_{f}}$
$K_{f}=\frac{R T_{f}^{2}}{1000 \times L_{f}}=\frac{2 \times(353.26)^{2}}{1000 \times 35.7}=6.991$
$M_{2}=\frac{6.991 \times 1000 \times 2.423}{100 \times 0.661}=256 \mathrm{~g} \mathrm{~mol}^{-1}$
If $S_{x}$ is the formula, then

$$
x \times 32=256, \quad x=8
$$

$\therefore \quad$ Molecular formula $=\mathrm{S}_{8}$
18. (b): For $f c c$,
$b=4 r=\sqrt{2} a$
$a=\frac{4 r}{\sqrt{2}}=2 \sqrt{2} r \Rightarrow r=\frac{a}{2 \sqrt{2}}$
Therefore, distance of closest approach

$=2 r=2 \times \frac{a}{2 \sqrt{2}}=\frac{a}{\sqrt{2}}$
19. (d): $\pi=i C R T$

$$
=i \times \frac{w \times 1000 \times R \times T}{M \times V}
$$

For $1 \%$ solution, $\pi \propto \frac{i}{M}$
$\mathrm{I}: \pi(\mathrm{KCl}) \propto \frac{2}{74.5}=0.027 \quad(i=2, M=74.5)$
II : $\pi(\mathrm{NaCl}) \propto \frac{2}{58.5}=0.0342 \quad(i=2, M=58.5)$
III : $\pi\left(\mathrm{BaCl}_{2}\right) \propto \frac{3}{208}=0.0144 \quad(i=3, M=208)$
IV : $\pi($ Urea $) \propto \frac{1}{60}=0.0167 \quad(i=1, M=60)$
So, correct order is : III $<$ IV $<\mathrm{I}<$ II
20. (a): According to the given figure, $A^{+}$is present in the octahedral void of $X^{-}$. The limiting radius in octahedral void is related to the radius of sphere as $r_{\text {void }}=0.414 r_{\text {sphere }}$
$r_{A^{+}}=0.414 r_{X^{-}}=0.414 \times 250 \mathrm{pm}=103.5 \approx 104 \mathrm{pm}$
21. (b): $\Delta T_{f}=0.45^{\circ} \mathrm{C}$

$$
w_{2}(\text { acetic acid })=0.2 \mathrm{~g}
$$

$w_{1}($ benzene $)=20 \mathrm{~g}$
$K_{f}=5.12 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
$\Delta T_{f}=i \times K_{f} \times m$
$\therefore \quad i=\frac{\Delta T_{f}}{K_{f} \times m}=\frac{0.45 \times 20 \times 60}{5.12 \times 0.2 \times 1000}$

$$
i=0.527
$$

According to question,

## Initially :

After time $t$ :


$$
\begin{align*}
\Rightarrow \quad i & =1-\alpha+\frac{\alpha}{2} \\
i & =1-\frac{\alpha}{2} \tag{i}
\end{align*}
$$

On putting the value of $i$ in equation (i), we get

$$
0.527=1-\frac{\alpha}{2} \Rightarrow-0.946=-\alpha
$$

$$
\alpha=0.946
$$

$\therefore \quad$ Percentage association of acetic acid in benzene = 94.6\%
22. (d)
23. (b): $i=\frac{\text { Calculated Molar Mass }}{\text { Observed Molar Mass }}=\frac{170}{92.64}=1.835$

$$
\begin{aligned}
\alpha_{\text {dissociation }} & =\frac{i-1}{n-1} \quad\left(n=2 \text { for } \mathrm{AgNO}_{3}\right) \\
& =\frac{1.835-1}{2-1}=0.835 \text { or } 83.5 \%
\end{aligned}
$$

24. (d): Amorphous solids are isotropic in nature. These can be moulded by heating. Moreover, they become crystalline on standing for a long time or on heating.
25. (d): No. of moles of $\mathrm{CHCl}_{3}=\frac{11.95}{119.5}=0.1$ mole

No. of moles of $\mathrm{CH}_{2} \mathrm{Cl}_{2}=\frac{8.5}{85}=0.1$ mole
Mole fraction of $\mathrm{CHCl}_{3}, x_{A}=\frac{0.1}{0.1+0.1}=0.5$
Mole fraction of $\mathrm{CH}_{2} \mathrm{Cl}_{2}, x_{B}=1-0.5=0.5$
$P_{\text {total }}=p_{\mathrm{CHCl}_{3}}+p_{\mathrm{CH}_{2} \mathrm{Cl}_{2}}=x_{\mathrm{A}} \times p^{\circ} \mathrm{CHCl}_{3}+x_{\mathrm{B}} \times p_{\mathrm{CH}_{2} \mathrm{Cl}_{2}}$ $=0.5 \times 200+0.5 \times 415=307.5 \mathrm{~mm} \mathrm{Hg}$
As, $p_{\mathrm{CHCl}_{3}}=100 \mathrm{~mm}, P_{\text {total }}=307.5 \mathrm{~mm} \mathrm{Hg}$
$\therefore \quad$ Mole fraction of $\mathrm{CHCl}_{3}$ in vapour phase will be

$$
\frac{P_{\mathrm{CHCl}_{3}}}{P_{\text {total }}}=\frac{100}{307.5}=0.325
$$

26. (d):

27. (d) : Possible binary solutions are, benzene + toluene; benzene + xylene; toluene + xylene and ternary solution is benzene + toluene + xylene .
In equimolar solutions, mole fractions are $1 / 2$ in
binary solution and $1 / 3$ in ternary solution for each component.
$\therefore \quad$ For benzene + toluene,

$$
P=\frac{1}{2}(75)+\frac{1}{2}(22)=\frac{97}{2}=48.5 \text { or } 48 \frac{1}{2}
$$

For benzene + xylene,

$$
P=\frac{1}{2}(75)+\frac{1}{2}(10)=\frac{85}{2}=42.5
$$

For xylene + toluene

$$
P=\frac{1}{2}(22+10)=16
$$

For ternary solution

$$
P=\frac{1}{3}(75+22+10)=\frac{107}{3}=35 \frac{2}{3}
$$

Hence, option (d) is not possible.
28. (c) : In the $f c c$ arrangement, octahedral voids are present on the edge centres and tetrahedral voids are present on the body diagonals. Hence $S_{1}$ is the octahedral void and $S_{2}$ is the tetrahedral void.
29. (c) : For $b c c, r=\frac{\sqrt{3}}{4} a$

$$
r=\frac{\sqrt{3}}{4} \times 4.29=1.86 \AA
$$

30. (c)
$\diamond \diamond$

## ATTENTION COACHING INSTITUTES:

a great offer from MTG
MTGoffrs "CIassroom
JEE (Main \& Advanced), NEET for and
FOUNDATION MATERIAL for Class $6,7,8,9$,
10, $11 \& 12$ with YOUR BRAND NAME \&
COVER DESIGN.
This study material will save you lots of money spent on teachers, typing, proof-reading and printing. Also, you will save enormous time. Normally, a good study material takes 2 years to develop. But you can have the material printed with your logo delivered at your doorstep. Profit from associating with MTG Brand - the most popular name in educational publishing for JEE (Main \& Advanced)/NEET/PMT....
Order sample chapters on Phone/Fax/e-mail.
Phone: 0124-6601200 09312680856 e-mail: sales@mtg.in | www.mtg.in



Time Allowed : 3 hours
Maximum Marks : 70

## GENERAL INSTRUCTIONS

(i) All questions are compulsory.
(ii) Q. no. 1 to 5 are very short answer questions and carry 1 mark each.
(iii) Q. no. 6 to 10 are short answer questions and carry 2 marks each.
(iv) Q. no. 11 to 22 are also short answer questions and carry 3 marks each.
(v) Q. no. 23 is a value based question and carry 4 marks.
(vi) Q. no. 24 to 26 are long answer questions and carry 5 marks each.
(vii) Use log tables if necessary, use of calculators is not allowed.

1. State Kohlrausch law of independent migration of ions.
2. In some cases, it is found that a large number of colliding molecules have energy more than threshold energy, yet the reaction is slow. Why?
3. Out of $\mathrm{NH}_{3}$ and $\mathrm{N}_{2}$, which gas will be adsorbed more readily on the surface of charcoal and why?
4. What is the change in the activation energy if temperature is raised by $10^{\circ} \mathrm{C}$ ?
5. Write the Nernst equation to calculate the cell potential of

$$
\mathrm{Mg}_{(s)}\left|\mathrm{Mg}_{(a q)}^{2+} \| \mathrm{Ag}_{(a q)}^{+}\right| \mathrm{Ag}_{(s)}
$$

6. (i) Express the relationship between rate of appearance of iodine and the rate of disappearance of hydrogen iodide in the following reaction.

$$
2 \mathrm{HI}_{(g)} \longrightarrow \mathrm{H}_{2(g)}+\mathrm{I}_{2(g)}
$$

(ii) What is the unit of rate constant for a zero order reaction?
7. (i) Define standard electrode potential.
(ii) What is the use of platinum foil in SHE?
8. (i) Define coagulation of sol.
(ii) Give one example of each of positively and negatively charged sol.

OR
What do you understand by activity and selectivity of catalysts?
9. Write the chemistry of discharging the lead storage battery, highlighting all the materials that are involved during recharging.
10. How would you test whether the given electrolyte is strong electrolyte or weak electrolyte by the measurement of conductivity?
11. (i) A chemical reaction has zero activation energy. What is the effect of temperature on rate constant of the reaction?
(ii) The rate constant of a zero order reaction is $1 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$. Starting with 50 moles, calculate the time in minutes in which the concentration decreases to 10 moles.
12. Calculate the standard cell potential, $\Delta G^{\circ}$ and equilibrium constant of the following reaction of galvanic cell :
$2 \mathrm{Cr}_{(s)}+3 \mathrm{Cd}_{(a q)}^{2+} \rightarrow 2 \mathrm{Cr}_{(a q)}^{3+}+3 \mathrm{Cd}_{(s)}$
(Given : $E_{\mathrm{Cr}^{3+} / \mathrm{Cr}}^{\circ}=-0.74 \mathrm{~V}, E_{\mathrm{Cd}^{2+} / \mathrm{Cd}}^{\circ}=-0.40 \mathrm{~V}$ )
13. In an adsorption experiment, a graph between $\log \left(\frac{x}{m}\right)$ and $\log P$ was found to be linear with a slope of $45^{\circ}$. The intercept on the $\log \left(\frac{x}{m}\right)$ axis was found to be 0.3010 . Calculate the amount of the gas adsorbed per gram of the adsorbent under a pressure of 0.5 atm .
14. Four metals are labelled as $A, B, C$ and $D$. They react with each other and with acids in the following way:
(i) $B$ displaces only $C$ from solution
(ii) Only $A$ and $D$ displace hydrogen from 1 M HCl
(iii) None of the metals displace $D$ from its solution. Arrange the metals along with hydrogen in the decreasing order of their reduction potential values.
15. Write three differences between reaction rate and rate constant (specific reaction rate) of a reaction.
16. What is the difference between multimolecular and macromolecular colloids? Give one example of each type. How are associated colloids different from these two types of colloids?
17. How much charge is required for the following reductions:
(i) 1 mol of $\mathrm{Al}^{3+}$ to Al
(ii) 1 mol of $\mathrm{Cu}^{2+}$ to Cu
(iii) 1 mol of $\mathrm{MnO}_{4}^{-}$to $\mathrm{Mn}^{2+}$
18. (i) Plot a curve between $t_{1 / 2}$ and $[A]_{0}$ for the first order reaction.
(ii) With the help of an example explain what is meant by pseudo first order reaction.
19. What happens when
(i) a beam of light is passed through a colloidal sol?
(ii) an electrolyte, NaCl is added to hydrated ferric oxide sol?
(iii) electric current is passed through a colloidal sol?
20. A reaction is first order in $A$ and second order in $B$.
(i) Write the differential rate equation.
(ii) How is the rate affected on increasing the concentration of $B$ three times?
(iii) How is the rate affected when the concentrations of both $A$ and $B$ are doubled?

OR
(i) What are promotors and poisons?
(ii) What aspect of the reaction is influenced by the presence of catalyst which increases the rate or feasibility of the reaction?
21. A voltaic cell is set up at $25^{\circ} \mathrm{C}$ with the following half cells :
$\mathrm{Al} \mid \mathrm{Al}^{3+}(0.001 \mathrm{M})$ and $\mathrm{Ni} \mid \mathrm{Ni}^{2+}(0.50 \mathrm{M})$
Calculate the cell voltage.
(Given, $E_{\mathrm{Ni}^{2+} / \mathrm{Ni}}^{\circ}=-0.25 \mathrm{~V}, E_{\mathrm{Al}^{3+} \mid \mathrm{Al}}^{\circ}=-1.66 \mathrm{~V}$ )
22. Explain the terms with suitable examples :
(i) Alcosol
(ii) Aerosol
(iii) Hydrosol
23. Rohan's school has planned a visit to the thermal power station, where they observed how electricity is produced from coal. The smoke produced on burning of coal is passed through electrostatic precipitators and steam produced is used for electricity generation.
Answer the following questions on the basis of the above information.
(i) Why is the smoke passed through electrostatic precipitator?
(ii) Which colloidal property is used in electrostatic precipitators?
(iii) Write down the values which are promoted by the use of electrostatic precipitator.
(iv) Give all effects of coal on environment. Give a method to use coal ash.
24. Starting from 10 g of a radioactive element, 0.25 g was left after 5 years. Calculate
(i) rate constant for the decay of the radioactive element.
(ii) the amount left after one year.
(iii) the time required for half of the element to decay.

OR
The initial rate of reaction :
$A+5 B+6 C \longrightarrow 3 D+3 E$
has been determined by measuring the rate of disappearance of $A$ under the following conditions:

| Expt. <br> No. | $[A]_{\mathbf{0}}$ <br> $(\mathbf{M})$ | $[B]_{\mathbf{0}}$ <br> $(\mathbf{M})$ | $[\mathbf{C}]_{\mathbf{0}}$ <br> $(\mathbf{M})$ | lnitial rate <br> $\left(\mathbf{M ~ m i n}^{-\mathbf{1}}\right)$ |
| :---: | :---: | :---: | :---: | :---: |
| 1. | 0.02 | 0.02 | 0.02 | $2.08 \times 10^{-3}$ |
| 2. | 0.01 | 0.02 | 0.02 | $1.04 \times 10^{-3}$ |
| 3. | 0.02 | 0.04 | 0.02 | $4.16 \times 10^{-3}$ |
| 4. | 0.02 | 0.02 | 0.04 | $8.32 \times 10^{-3}$ |

(i) Determine the order of reaction with respect to each reactant.
(ii) What is the rate constant?
(iii) Calculate the initial rate of the reaction when the concentration of all the reactants is 0.01 M .
25. (a) Explain the term overvoltage.
(b) Predict the products of electrolysis in each of the following :
(i) An aqueous solution of $\mathrm{AgNO}_{3}$ with silver electrodes.
(ii) A dilute solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ with platinum electrodes.

## OR

(a) Write the Nernst equation.
(b) Calculate the emf of the following cells at 298 K :
(i) $\mathrm{Mg}_{(s)} \mid \mathrm{Mg}^{2+}(0.001 \mathrm{M}) \| \mathrm{Cu}^{2+}(0.0001 \mathrm{M})$
(ii) $\begin{array}{r}\mathrm{Fe}_{(s)}\left|\mathrm{Fe}^{2+}(0.001 \mathrm{M}) \| \mathrm{H}^{+}(1 \mathrm{M})\right| \mathrm{Cu}_{(s)} \\ \left|\mathrm{H}_{2(g)}(1 \mathrm{bar})\right| \mathrm{Pt}_{(s)}\end{array}$
[Given : $E_{\mathrm{Mg}^{2+} / \mathrm{Mg}}^{\circ}=-2.37 \mathrm{~V}, E_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\circ}=0.34 \mathrm{~V}$,
$\left.E_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{\circ}=-0.44 \mathrm{~V}\right]$
26. (i) What type of colloidal sols are formed in the following :
(a) Sulphur vapours are passed through cold water.
(b) White of an egg is mixed with water.
(c) Soap solution?
(ii) A colloidal solution of ferric oxide is prepared by two different methods as shown below :

(B)
(a) What is the charge on colloidal particles in the two test tubes $(A)$ and $(B)$ ?
(b) Give reasons for the origin of charge.

## OR

(i) Explain the following observations :
(a) Sun looks red at the time of sunset.
(b) Rate of physical adsorption decreases with rise in temperature.
(c) Physical adsorption is multilayered while chemical adsorption is monolayered.
(ii) 2.0 g of charcoal is placed in 100 mL of $0.5 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ to form an adsorbed monoacidic layer of acetic acid molecules and thereby the molarity of $\mathrm{CH}_{3} \mathrm{COOH}$ reduces to 0.49 M . The surface area of charcoal is $3 \times 10^{2} \mathrm{~m}^{2} \mathrm{~g}^{-1}$. Calculate the surface area of charcoal adsorbed by each molecule of acetic acid.

## SOLUTIONS

1. Kohlrausch law of independent migration of ions states that limiting molar conductivity of an electrolyte can be represented as the sum of the individual contributions of the anion and cation of the electrolyte.
2. The energy more than threshold energy and proper orientation of molecules are the two main factors which are responsible for a reaction to occur fast. Due to improper orientation of molecules, the reaction is slow.
3. $\mathrm{NH}_{3}$, because it is more easily liquefiable as compared to $\mathrm{N}_{2}$ and also has a greater molecular size.
4. There will be no change in the activation energy as temperature does not affect activation energy.
5. $E_{\text {cell }}=E_{\text {cell }}^{\circ}-\frac{0.059}{2} \log \frac{\left[\mathrm{Mg}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}}$
6. (i) $-\frac{1}{2} \frac{d[\mathrm{HI}]}{d t}=\frac{d\left[\mathrm{H}_{2}\right]}{d t}=\frac{d\left[\mathrm{I}_{2}\right]}{d t}$
$\frac{d\left[\mathrm{I}_{2}\right]}{d t}=-\frac{1}{2} \frac{d[\mathrm{HI}]}{d t}$
(ii) For a zero order reaction, Rate $=k$
Unit of $k=\frac{\mathrm{mol} \mathrm{L}^{-1}}{s}=\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}^{-1}$
7. (i) Electrode potential is the potential difference set up between metal and its ions in the solution or it is the tendency of an electrode to get oxidised or reduced. When the concentrations of all the species involved in a half-cell is unity then the electrode potential is known as standard electrode potential.
(ii) Platinum adsorbs $\mathrm{H}_{2}$ where it remains in contact with $\mathrm{H}^{+}$ions and thus, it provides surface at which exchange of electrons occurs.
8. (i) The process of settling of colloidal particles is called coagulation or precipitation of the sol.
(ii) Positively charged sol : $\mathrm{Fe}(\mathrm{OH})_{3}$ Negatively charged sol: $\mathrm{As}_{2} \mathrm{~S}_{3}$

OR
Activity of a catalyst refers to the ability of catalyst to increase the rate of chemical reaction.
Selectivity of a catalyst refers to its ability to direct the reaction to give a specific product.
9. The cell reactions when the battery is in use (during discharge) are given below :
At anode : $\mathrm{Pb}_{(s)}+\mathrm{SO}_{4}{ }^{2-}{ }_{(a q)} \rightarrow \mathrm{PbSO}_{4(s)}+2 e^{-}$
At cathode : $\mathrm{PbO}_{2(s)}+\mathrm{SO}_{4}{ }^{2-}{ }_{(a q)}+4 \mathrm{H}^{+}{ }_{(a q)}+2 e^{-} \rightarrow$ $\mathrm{PbSO}_{4(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}$
i.e., overall cell reaction :
$\mathrm{Pb}_{(s)}+\mathrm{PbO}_{2(s)}+2 \mathrm{H}_{2} \mathrm{SO}_{4(a q)} \rightarrow 2 \mathrm{PbSO}_{4(s)}+2 \mathrm{H}_{2} \mathrm{O}_{(l)}$ On charging the battery the reaction is reversed and $\mathrm{PbSO}_{4(s)}$ deposited on anode and cathode is converted into Pb and $\mathrm{PbO}_{2}$, respectively.
10. Strong electrolyte has high value of molar conductivity $\left(\Lambda_{m}\right)$. It increases slightly with dilution of its solution. The plot of $\Lambda_{m} v s \sqrt{C}$ on extrapolation to $C=0$, gives a definite value of $\Lambda_{m}^{\circ}$. Weak electrolyte has low value of molar conductivity $\left(\Lambda_{m}\right)$. It increases appreciably on dilution of its solution. The plot of $\Lambda_{m} v s \sqrt{C}$ on extrapolation to $C=0$, does not give a definite value of $\Lambda_{m}^{\circ}$ because the plot becomes almost parallel to $\Lambda_{m}$ axis.
11. (i) According to Arrhenius equation $k=A e^{-E_{a} / R T}$
Since, $E_{a}=$ zero $\quad \therefore k=A$
Hence, the rate constant of the reaction is independent of temperature.
(ii) For a zero order reaction, $x=k t$
[where $x=$ change in concentration in time $t$ ]
$\therefore t=\frac{x}{k}=\frac{(50-10) \mathrm{mol} \mathrm{L}^{-1}}{1 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}}=40 \times 10^{3} \mathrm{sec}$

$$
\therefore \quad t=\frac{40 \times 10^{3}}{60}=667 \mathrm{~min}
$$

12. $E_{\text {cell }}^{\circ}=E_{\text {cathode }}^{\circ}-E_{\text {anode }}^{\circ}$
$=-0.40 \mathrm{~V}-(-0.74 \mathrm{~V})=+0.34 \mathrm{~V}$
$\Delta G^{\circ}=-n F E_{\text {cell }}^{\circ}=-6 \times 96500 \times 0.34$
$=-196860 \mathrm{~J} \mathrm{~mol}^{-1}=-196.86 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$-\Delta G^{\circ}=2.303 R T \log K$
$196860=2.303 \times 8.314 \times 298 \times \log K$
or $\log K=34.5014$
$K=$ Antilog $34.5014=3.172 \times 10^{34}$
13. According to Freundlich adsorption isotherm,

$$
\begin{equation*}
\frac{x}{m}=k P^{1 / n} \tag{i}
\end{equation*}
$$

or $\log \frac{x}{m}=\log k+\frac{1}{n} \log P$
Plot of $\log \left(\frac{x}{m}\right)$ vs $\log P$ is linear with slope $=\frac{1}{n}$ and intercept $=\log k$.
Thus, slope $=\frac{1}{n}=\tan 45^{\circ}=1$
$\therefore n=1$
Intercept $\log k=0.3010$
or $k=2$

$$
\therefore \quad \frac{x}{m}=k P^{1 / n}=2 \times(0.5)^{1}=1.0
$$

14. (i) Since $B$ displaces $C$ from solution, therefore, $B$ is more reactive than $C$ i.e., $E_{C}^{\circ}>E_{B}^{\circ}$
(ii) $A$ and $D$ displace $\mathrm{H}_{2}$ from 1 M HCl , therefore $A, D>\mathrm{H}$ i.e., $E_{\mathrm{H}}^{\circ}>E_{A}^{\circ}$ and $E_{D}^{\circ}$
(iii) No metal is able to displace $D$ from its solution.

This means $D$ is most reactive i.e., $E_{A}^{\circ}, E_{B}^{\circ}, E_{C}^{\circ}>E_{D}^{\circ}$
Combining all the above observations,
the activity series of given metals is in the order :

$$
\begin{array}{ll} 
& D>A>\mathrm{H}>B>C \\
\therefore & E_{C}^{\circ}>E_{B}^{\circ}>E_{\mathrm{H}}^{\circ}>E_{A}^{\circ}>E_{D}^{\circ}
\end{array}
$$

15. 

|  | Reaction rate | Rate constant |
| :---: | :---: | :---: |
| (i) | The rate of reaction is the rate of disappearance of reactant or appearance of product per unit time. | The rate constant or specific reaction rate is equal to the rate of reaction when the molar concentration of each reactant is taken as unity. |
| (ii) | The rate of reaction can be calculated by the decrease in concentration of the reactant in unit time. For reaction, $A \rightarrow B$ rate of reaction $=\frac{-d[A]}{d t}=\frac{+d[B]}{d t}$ | Rate constant can be calculated with the help of rate law, rate $=k[A]$. where $k=$ rate constant. $[A]=$ concentration of reactant. |


| (iii) | Its unit is always <br> mol L $^{-1}$ time $^{-1}$. | Its unit depends <br> upon the order of <br> the reaction. |
| :--- | :--- | :--- |

16. 

| S.No. | Multimolecular <br> Colloids | Macromolecular <br> colloids |
| :--- | :--- | :--- |
| 1. | When a large <br> number of small <br> molecules or atoms <br> (diameter < 1 nm) <br> of a substance <br> combine together <br> in a dispersion <br> medium to form <br> aggregates, having <br> size in the colloidal <br> range, the colloidal <br> solutions thus, <br> formed are known <br> as multimolecular <br> colloids. | When substances <br> which possess very <br> high molecular <br> masses are dispersed <br> in suitable dispersion <br> medium, the <br> colloidal solutions <br> thus, formed are <br> called <br> macromolecular <br> colloids. |
| 2. | e.g., gold sol, <br> sulphur sol, etc. | e.g., cellulose, starch, <br> etc. |

Associated colloids : The substances which at low concentration, behave as normal strong electrolytes but at higher concentration exhibit colloidal behaviour due to the formation of aggregated particles, are known as associated colloids.
17. (i) The given reaction is

$$
\underset{1 \text { mole }}{\mathrm{Al}^{3+}}+\underset{3 \text { moles }}{3 e^{-}} \rightarrow \mathrm{Al}
$$

$\therefore 3$ moles of electrons are needed for reduction of 1 mole of $\mathrm{Al}^{3+}$ to Al.
3 moles of electrons $=3$ Faradays

$$
=3 \times 96500 \text { coulombs }=2.895 \times 10^{5} \text { coulombs }
$$

(ii) The given reaction is

$$
\underset{1 \text { mole }}{\mathrm{Cu}^{\mathrm{Z}}}+\underset{2 \text { moles }}{2 e^{-}} \rightarrow \mathrm{Cu}
$$

$\therefore 2$ moles of electrons are needed for reduction of 1 mole of $\mathrm{Cu}^{2+}$ to Cu .
2 moles of electrons $=2$ Faradays
$=2 \times 96500$ coulombs $=1.93 \times 10^{5}$ coulombs
(iii) The given reaction is

$$
\underset{1 \text { mole }}{\mathrm{MnO}_{4(a q)}^{-}}+8 \mathrm{H}^{+}+\underset{5 \text { moles }}{5 e^{-} \longrightarrow} \mathrm{Mn}_{(a q)}^{\nexists}+4 \mathrm{H}_{2} \mathrm{O}_{(l)}
$$

$\therefore 5$ moles of electrons are needed for reduction of 1 mole of $\mathrm{MnO}_{4}^{-}$to $\mathrm{Mn}^{2+}$.
5 moles of electrons $=5$ Faradays $=5 \times 96500$ coulombs $=4.825 \times 10^{5}$ coulombs
18. (i) For first order reaction, $t_{1 / 2}=\frac{0.693}{k}$

Curve between $t_{1 / 2}$ and $[A]_{0}$ for $1^{\text {st }}$ order reaction is drawn as

(ii) The reactions which are of second order but behave like first order reactions are called pseudo first order reactions e.g., during hydrolysis of ethyl acetate (ester) with water, the concentration of water does not alter much during the reaction. So, in the rate equation the concentration of water (the reactant which is in excess) can be taken as constant hence, the reaction behaves as first order reaction.


$$
+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
$$

Rate $=k^{\prime}\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$, the term $\left[\mathrm{H}_{2} \mathrm{O}\right]$ can be taken as constant. Hence, the rate equation becomes
Rate $=k\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]$ where $k=k^{\prime}\left[\mathrm{H}_{2} \mathrm{O}\right]$
19. (i) When a beam of light is passed through colloidal particles, its path becomes clearly visible due to scattering of light by colloidal particles.
(ii) When NaCl is added to hydrated ferric oxide, sol coagulation takes place. Since ferric oxide is a positively charged sol, it is coagulated by the negatively charged chloride ions.
(iii) When electric potential is applied across two platinum electrodes dipped in a colloidal solution, the colloidal particles move towards one or the other electrode.
Positively charged particles move towards the cathode while negatively charged particles move towards the anode. Since all the colloidal particles in a given colloidal solution carry the same charge, the particles move to one or the other electrode depending on the charge.
20. (i) Reaction is first order in $A$ and second order in $B$, hence differential rate equation is

$$
\frac{d x}{d t}=k[A][B]^{2}
$$

(ii) Rate $=k[A][B]^{2}$

If $[B]$ is tripled,
Rate $=k[A][3 B]^{2}=9[A][B]^{2}$
Thus, rate increases 9 times.
(iii) If both $[A]$ and $[B]$ are doubled,

Rate $=k[2 A][2 B]^{2}=8[A][B]^{2}$
Thus, rate of reaction increases 8 times.

## OR

(i) Promoter : The substance that enhances the activity of the catalyst.
Poison : The substance which decreases the activity of the catalyst are called catalytic poisons.
(ii) In the presence of catalyst, the rate of reaction increases because catalyst lowers down the activation energy and reaction becomes feasible at lower temperature.
The graph first shows higher activation energy of reactants. When the catalyst is added to reactants a new path of lower activation energy is adopted. So, the reaction becomes feasible at lower temperature.

21. $\mathrm{Al}\left|\mathrm{Al}^{3+}(0.001 \mathrm{M})\right|\left|\mathrm{Ni}^{2+}(0.50 \mathrm{M})\right| \mathrm{Ni}$
$2 \mathrm{Al}_{(s)}+3 \mathrm{Ni}_{(a q)}^{2+} \longrightarrow 2 \mathrm{Al}_{(a q)}^{3+}+3 \mathrm{Ni}_{(s)}$
$E_{\text {cell }}=E_{\text {cell }}^{\circ}-\frac{0.059}{6} \log \frac{\left[\mathrm{Al}^{3+}\right]^{2}}{\left[\mathrm{Ni}^{2+}\right]^{3}}$
$E_{\text {cell }}^{\circ}=E_{\left(\mathrm{Ni}^{2+} \mid \mathrm{Ni}\right)}^{\circ}-E_{\left(\mathrm{Al}^{3+} \mid \mathrm{Al}\right)}^{\circ}$
$=-0.25-(-1.66)=1.41 \mathrm{~V}$
$E_{\text {cell }}=1.41-\frac{0.059}{6} \log \frac{(0.001)^{2}}{(0.50)^{3}}$
$=1.41-\frac{0.059}{6} \log \left(8 \times 10^{-6}\right)$
$=1.41+0.05=1.46 \mathrm{~V}$
22. (i) Colloid having alcohol as the dispersion medium is called alcosol e.g., sol of cellulose nitrate in ethyl alcohol.
(ii) Colloid of a liquid in a gas is called aerosol e.g., fog, sprays, etc.
(iii) Hydrosol is colloid of solid in water as dispersion medium e.g., starch sol.
23. (i) To prevent the way of particulates in the atmosphere.
(ii) Electrophoresis
(iii) Reducing water, air pollution, environmental concern.
(iv) Coal contains $\mathrm{S}, \mathrm{As}, \mathrm{Pb}$ which contaminates the air and water. Coal ash is used to make bricks in building construction.
24. (i) $k=\frac{2.303}{t} \log \frac{[A]_{0}}{[A]}$

$$
\begin{aligned}
& {[A]_{0}=10 \mathrm{~g},[A]=0.25 \mathrm{~g}, t=5 \text { years }} \\
& k=\frac{2.303}{5} \log \frac{10}{0.25} \\
& =\frac{2.303}{5} \log 40=0.7379 \text { year }^{-1}
\end{aligned}
$$

(ii) $t=1$ year, $[A]_{0}=10 \mathrm{~g},[A]=$ ?
$k=\frac{2.303}{t} \log \frac{[A]_{0}}{[A]}$
$0.7379=\frac{2.303}{1} \log \frac{10}{[A]}$
$\log \frac{10}{[A]}=\frac{0.7379 \times 1}{2.303}=0.3204$
$\frac{10}{[A]}=$ Antilog $(0.3204)=2.09$
$\therefore \quad[A]=\frac{10}{2.09}=4.785 \mathrm{~g}$
(iii) Time for decay of half of the element,

$$
t_{1 / 2}=\frac{0.693}{k}=\frac{0.693}{0.7379}=0.9392 \text { year }
$$

OR
(i) Rate law may be written as:

Rate $=k[A]^{a}[B]^{b}[C]^{c}$
Comparing experiments 1 and 2,
$(\text { Rate })_{1}=k(0.02)^{a}(0.02)^{b}(0.02)^{c}=2.08 \times 10^{-3} \ldots($ (i)
$(\text { Rate })_{2}=k(0.01)^{a}(0.02)^{b}(0.02)^{c}=1.04 \times 10^{-3} \ldots$ (ii)
Dividing eq. (i) by eq. (ii) we get,

$$
\begin{aligned}
& \frac{(\text { Rate })_{1}}{(\text { Rate })_{2}}=\frac{(0.02)^{a}}{(0.01)^{a}}=\frac{2.08 \times 10^{-3}}{1.04 \times 10^{-3}}=2 \\
& \text { or } \quad 2^{a}=2 \quad \therefore \quad a=1
\end{aligned}
$$

Comparing experiments 1 and 3,
$(\text { Rate })_{1}=k(0.02)^{a}(0.02)^{b}(0.02)^{c}=2.08 \times 10^{-3} \ldots($ iii $)$
$(\text { Rate })_{3}=k(0.02)^{a}(0.04)^{b}(0.02)^{c}=4.16 \times 10^{-3} \ldots($ iv $)$
Dividing eq. (iv) by eq. (iii) we get,

$$
\begin{aligned}
& \frac{(\text { Rate })_{3}}{(\text { Rate })_{1}}=\frac{(0.04)^{b}}{(0.02)^{b}}=\frac{4.16 \times 10^{-3}}{2.08 \times 10^{-3}}=2 \\
& 2^{b}=2 \quad \therefore \quad b=1
\end{aligned}
$$

Comparing experiments 1 and 4 ,
$(\text { Rate })_{1}=k(0.02)^{a}(0.02)^{b}(0.02)^{c}=2.08 \times 10^{-3} \ldots(\mathrm{v})$
$(\text { Rate })_{4}=k(0.02)^{a}(0.02)^{b}(0.04)^{c}=8.32 \times 10^{-3} \ldots(\mathrm{vi})$
Dividing eq. (vi) by eq. (v), we get

$$
\frac{(\text { Rate })_{4}}{(\text { Rate })_{1}}=\frac{(0.04)^{c}}{(0.02)^{c}}=\frac{8.32 \times 10^{-3}}{2.08 \times 10^{-3}}=4
$$

or $\quad 2^{c}=2^{2} \quad \therefore \quad c=2$
Therefore, the order of the reaction with respect to
$A, B$ and $C$ are 1,1 and 2 respectively.

$$
\text { Rate }=k[A][B][C]^{2}
$$

(ii) Substituting the values from expt. 1, we get $2.08 \times 10^{-3}=k \times 0.02 \times 0.02 \times(0.02)^{2}$
$\therefore \quad k=\frac{2.08 \times 10^{-3}}{(0.02)^{4}}=\frac{2.08 \times 10^{-3}}{16 \times 10^{-8}}$

$$
=1.3 \times 10^{4} \mathrm{M}^{-3} \mathrm{~min}^{-1}
$$

(iii) Rate of reaction when concentration of all reactants $=0.01 \mathrm{M}$
Rate $=1.3 \times 10^{4} \times(0.01) \times(0.01) \times(0.01)^{2}$

$$
=1.3 \times 10^{-4} \mathrm{M} \mathrm{~min}^{-1}
$$

25. (a) For processes involving liberation of gases, some extra voltage is required than the theoretical value of the standard electrode potential. This extra voltage required is called overvoltage.
(b) (i) Electrolysis of aqueous solution of $\mathrm{AgNO}_{3}$ with silver electrodes.
$\mathrm{AgNO}_{3} \longrightarrow \mathrm{Ag}^{+}+\mathrm{NO}_{3}^{-}$
At cathode : Reduction of $\mathrm{Ag}^{+}$and $\mathrm{H}_{2} \mathrm{O}$ is possible. $\mathrm{Ag}^{+}+e^{-} \longrightarrow \mathrm{Ag} ; \quad E^{\circ}=+0.80 \mathrm{~V}$
$2 \mathrm{H}_{2} \mathrm{O}+2 e^{-} \longrightarrow \mathrm{H}_{2(g)}+2 \mathrm{OH}_{(a q)}^{-} ; \quad E^{\circ}=-0.83 \mathrm{~V}$ Since $E^{\circ}$ (reduction potential of $\mathrm{Ag}^{+}$) is greater than that of $\mathrm{H}_{2} \mathrm{O}, \mathrm{Ag}$ will be deposited at cathode. At anode : Silver anode is attacked by $\mathrm{NO}_{3}^{-}$ions, it would be oxidised as :
$\mathrm{Ag} \longrightarrow \mathrm{Ag}^{+}+e^{-}$
Thus, Ag dissolves from anode.
(ii) Electrolysis of dilute solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ with platinum electrodes.

At cathode : Both water and $\mathrm{H}_{2} \mathrm{SO}_{4}$ furnish $\mathrm{H}^{+}$ ions which are discharged at the cathode as

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow 2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-} \\
& \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}^{+}+\mathrm{OH}^{-} \\
& 2 \mathrm{H}_{(a q)}^{+}+2 e^{-} \longrightarrow \mathrm{H}_{2(g)}
\end{aligned}
$$

and $\mathrm{H}_{2(\mathrm{~g})}$ is liberated at cathode.
At anode : Water furnishes $\mathrm{OH}^{-}$and $\mathrm{H}_{2} \mathrm{SO}_{4}$ furnishes $\mathrm{SO}_{4}^{2-}$ ions. Out of these, the discharge potential of $\mathrm{OH}^{-}$is lower and these are discharged as

$$
4 \mathrm{OH}_{(a q)}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{O}_{2(g)}+4 e^{-}
$$

Thus, $\mathrm{O}_{2(\mathrm{~g})}$ is liberated at anode.
OR
(a) For the equation,
$M_{(a q)}^{n+}+n e^{-} \rightarrow M_{(s)}$
$E_{\text {cell }}=E_{\text {cell }}^{\circ}-\frac{2.303 R T}{n F} \log \frac{1}{\left[M_{(a q)}^{n+}\right]}$
$=E_{\text {cell }}^{\circ}-\frac{0.059}{n} \log \frac{1}{\left[M_{(a q)}^{n+}\right]}$
(b) (i) $\mathrm{Mg}_{(s)}\left|\mathrm{Mg}^{2+}(0.001 \mathrm{M})\right|\left|\mathrm{Cu}^{2+}(0.0001 \mathrm{M})\right| \mathrm{Cu}_{(s)}$

At anode $: \mathrm{Mg}_{(s)} \longrightarrow \mathrm{Mg}_{(a q)}^{2+}+2 e^{-}$
At cathode : $\mathrm{Cu}_{(a q)}^{2+}+2 e^{-} \longrightarrow \mathrm{Cu}_{(s)}$
Net cell reaction :
$\mathrm{Mg}_{(s)}+\mathrm{Cu}_{(a q)}^{2+} \longrightarrow \mathrm{Mg}_{(a q)}^{2+}+\mathrm{Cu}_{(s)}$
$\therefore \quad n=2$
Using Nernst equation,

$$
E_{\text {cell }}=E_{\text {cell }}^{\circ}-\frac{2.303 R T}{n F} \log \frac{\left[\mathrm{Mg}^{2+}\right]}{\left[\mathrm{Cu}^{2+}\right]}
$$

For the given cell,

$$
\begin{aligned}
E_{\text {cell }}^{\circ} & =E_{\text {cathode }}^{\circ}-E_{\text {anode }}^{\circ}=E_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\circ}-E_{\mathrm{Mg}^{2+} / \mathrm{Mg}}^{\circ} \\
& =0.34-(-2.37)=2.71 \mathrm{~V}
\end{aligned}
$$

Given : $\left[\mathrm{Mg}^{2+}\right]=0.001 \mathrm{M},\left[\mathrm{Cu}^{2+}\right]=0.0001 \mathrm{M}$ Putting values in Nernst equation at 298 K,
$E_{\text {cell }}=2.71-\frac{0.059}{2} \log \frac{0.001}{0.0001}$
$E_{\text {cell }}=2.71-0.0295 \log 10=2.71-0.03=2.68 \mathrm{~V}$
(ii) $\mathrm{Fe}_{(s)}\left|\mathrm{Fe}^{2+}(0.001 \mathrm{M})\right|\left|\mathrm{H}^{+}(1 \mathrm{M})\right| \mathrm{H}_{2(g)}(1 \mathrm{bar}) \mid \mathrm{Pt}_{(s)}$ At anode : $\mathrm{Fe}_{(s)} \longrightarrow \mathrm{Fe}_{(a q)}^{2+}+2 e^{-}$
At cathode : $2 \mathrm{H}_{(a q)}^{+}+2 e^{-} \longrightarrow \mathrm{H}_{2(g)}$
Cell reaction: $\mathrm{Fe}_{(s)}+2 \mathrm{H}_{(a q)}^{+} \longrightarrow \mathrm{Fe}_{(a q)}^{2+}+\mathrm{H}_{2(g)}$
$\therefore \quad n=2$
Using Nernst equation at 298 K ,
$E_{\text {cell }}=E_{\text {cell }}^{\circ}-\frac{0.0591}{2} \log \frac{\left[\mathrm{Fe}^{2+}\right] \times p_{\mathrm{H}_{2}}}{\left[\mathrm{H}^{+}\right]^{2}}$
For the given cell,
$E_{\text {cell }}^{\circ}=E_{\text {cathode }}^{\circ}-E_{\text {anode }}^{\circ}=E_{\mathrm{H}^{+} / \mathrm{H}_{2}}^{\circ}-E_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{\circ}$

$$
=0-(-0.44)=+0.44 \mathrm{~V}
$$

Given : $\left[\mathrm{Fe}^{2+}\right]=0.001 \mathrm{M} ;\left[\mathrm{H}^{+}\right]=1 \mathrm{M} ; p_{\mathrm{H}_{2}}=1 \mathrm{bar}$ Putting values in Nernst equation,

$$
\begin{aligned}
E_{\text {cell }} & =0.44-0.0295 \log \frac{0.001 \times 1}{1^{2}} \\
& =0.44-0.0295 \log 10^{-3} \\
& =0.44-[(0.0295) \times(-3)] \\
& =0.44+0.0885=0.53 \mathrm{~V}
\end{aligned}
$$

26. (i) (a) Multimolecular colloid, because sulphur molecules associate together to form colloidal sol.
(b) Macromolecular colloid, because protein molecules present in the white of an egg are macromolecules soluble in water.
(c) Associated colloid, because $\mathrm{RCOO}^{-}$ions associate together to form micelles.
(ii) (a) Colloidal particles of test tube (A) are positively charged whereas colloidal particles of test tube $(B)$ are negatively charged.
(b) In test tube $(A), \mathrm{Fe}^{3+}$ is adsorbed on the precipitate $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$ [or $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot x \mathrm{H}_{2} \mathrm{O} / \mathrm{Fe}^{3+}$ is formed].
In test tube $(B), \overline{\mathrm{O}} \mathrm{H}$ ion is adsorbed on the precipitate $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot x \mathrm{H}_{2} \mathrm{O}$ [or $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot x \mathrm{H}_{2} \mathrm{O} / \overline{\mathrm{OH}}$ is formed].

## OR

(i) (a) At the time of sunset, the sun is at horizon. The light emitted by the sun has to travel a relatively longer distance through the atmosphere. As a result, blue part of light is scattered away by the particulate in the atmosphere causing red part to be visible.
(b) Gas (adsorbate) + Solid (adsorbent)
$\underset{\text { Evaporation }}{\text { Condensation }}$ Gas adsorbed on solid + Heat
Physical adsorption is an exothermic process. According to Le-Chatelier's principle, at equilibrium as the temperature is increased, the equilibrium shifts in the backward direction, i.e., adsorption decreases.
(c) Physical adsorption involves van der Waals' forces, so any number of layers may be formed one over the other on the surface of the adsorbent. Chemical adsorption takes place as a result of the reaction between adsorbent and adsorbate. When the surface of adsorbent is covered with one layer, no further reaction can take place.
(ii) $\mathrm{CH}_{3} \mathrm{COOH}$ adsorbed $=0.5-0.49=0.01 \mathrm{M}$ Number of molecules adsorbed

$$
=0.01 \times \frac{100}{1000} \times 6 \times 10^{23}=6 \times 10^{20}
$$

Total area of charcoal $=2 \mathrm{~g} \times 3 \times 10^{2} \mathrm{~m}^{2} \mathrm{~g}^{-1}$

$$
=600 \mathrm{~m}^{2}
$$

$\therefore \quad$ Area per molecule

$$
=\frac{600}{6 \times 10^{20}}=1 \times 10^{-18} \mathrm{~m}^{2}
$$

Your favourite MTG Books/Magazines available in

## DELHI at

- Satija Book Depot - Kalu Sarai Ph: 27941152; Mob: 9868049598
- Lov Dev \& Sons - Kalu Sarai Ph: 43215656, 43215650; Mob: 9811182352
- Mittal Books - Darya Ganj Ph: 011-23288887; Mob: 9899037390
- Janta Book Depot Pvt Ltd. - Daryaganj Ph: 23362985, 23369685; Mob: 9350257596
- Mittal Book Distributors - Daryaganj Mob: 9811468898, 9810565956
- R D Chawla \& Sons - Daryaganj Ph: 23282360/61; Mob: 9810045752 / 50 / 56
- Ms Enterprises - Dwarka Mob: 9810257310
- Yours Books \& Stationers - Dwarka Mob: 9810676100
- Naval Book Depot - J asola Ph: 011-26175789, 26102425
- Raaj Book Point - Karkardooma Ph: 011-22371098, 22375017; Mob: 9811021981
- Budaniya Book Shop - Mayur Vihar Ph: 22759059; Mob: 9958129735
- Anand Book Corner - Mayur Vihar Ph: 22751946, 47; Mob: 9868102255, 9868082201
- New Arihant Book Depot - Patpar Ganj Ph; 26524221, 65726582; Mob: 9811522520
- Schoolkart Technologies Pvt. Ltd. - Patparganj Mob: 8800654410
- Budaniya Book Shop - Prashant Vihar Ph: 47631039; Mob: 9910749282, 9212519280
- Kashyap Brothers - Punjabi Bagh Ph: 65196167; Mob: 9811744071/9212144072
- Lamba Book Depot - Tilak Nagar Mob: 9810156674, 7503222162, 9210575859
- Raj Book Agency - Tilak Nagar Ph: 64534374; Mob: 9811234161
- Janta The Bookshop - Vikas Puri Ph: 24604413; Mob: 9311167890
- Mishra Book Depot - Wazir Nagar Ph: 26864637; Mob: 9313799595, 9818779375

Visit "MTG IN YOUR CITY" on www.mtg.in to locate nearest book seller OR write to info@mtg.in OR call 0124-6601200 for further assistance.

## EXAMiNER'S MiND $\operatorname{cosexil}$



The questions given in this column have been prepared strictly on the basis of NCERT Chemistry for Class XII. This year JEE (Main \& Advanced)/NEET/AIIMS have drawn their papers heavily from NCERT books.

| Section - I | Q. 1 to 10 Only One Option Correct Type MCQs. |
| :--- | :--- |
| Section - II | Q. 11 to 13 More than One Options Correct Type MCQs. |
| Section - III | Q. 14 to 17 Paragraph Type MCQs having Only One Option Correct. |
| Section - IV | Q. 18 \& 19 Matching List Type MCQs having Only One Option Correct. |
| Section - V | Q. 20 to 22 Assertion Reason Type MCQs having Only One Option Correct. Mark the correct choice as : <br> (a) If both assertion and reason are true and reason is the correct explanation of assertion. <br> (b) If both assertion and reason are true but reason is not the correct explanation of assertion. <br> (c) If assertion is true but reason is false. <br> (d) If both assertion and reason are false. |
| Section - VI | Q. 23 to 25 Integer Value Correct Type Questions having Single Digit Integer Answer, ranging from <br> 0 to 9 (both inclusive). |

## THE SOLID STATE

## SECTION - I <br> Only One Option Correct Type

1. Three elements $A, B$ and $C$ crystallise into a cubic solid lattice. Atoms $A$ occupy the corners, $B$ atoms the cube centres and $C$ atoms the edge. The formula of the compound is
(a) $A B C$
(b) $A B C_{2}$
(c) $A B C_{3}$
(d) $A B C_{4}$
2. Which of the following shaded plane in fcc lattice contains arrangement of atoms as shown below :

(b)

(c)

(d)

3. Volume occupied by single CsCl ion pair in a crystal is $7.014 \times 10^{-23} \mathrm{~cm}^{3}$. The smallest Cs - Cs internuclear distance is equal to length of the side of the cube corresponding to volume of one CsCl ion pair. The smallest Cs to Cs internuclear distance is nearly
(a) $4.4 \AA$
(b) $4.3 \AA$
(c) $4.0 \AA$
(d) $4.5 \AA$
4. In AgBr crystal, the ionic size lies in the order $\mathrm{Ag}^{+} \ll \mathrm{Br}^{-}$. The AgBr crystal should have which of the following characteristics?
(a) Defectless (perfect) crystal
(b) Schottky defect only
(c) Frenkel defect only
(d) Both Schottky and Frenkel defects
5. Conduction in a $p$-type semiconductor is increased by
(a) increasing the band gap
(b) decreasing the temperature
(c) adding appropriate electron deficient impurities
(d) adding appropriate electron rich impurities.
6. The density of an ionic compound (molar mass $=58.5$ ) is $2.165 \mathrm{~kg} \mathrm{~m}^{-3}$ and the edge length of unit cell is 562 pm , then the closest distance between $A^{+} B^{-}$ and number of atoms per unit cell is
(a) $397 \mathrm{pm}, 4$
(b) $562 \mathrm{pm}, 2$
(c) $562 \mathrm{pm}, 4$
(d) $281 \mathrm{pm}, 2$
7. $\quad b c c$
(a) 200 pm
(b) $\frac{\sqrt{3}}{\sqrt{2}} \mathrm{pm}$
(c) 142.2 pm
(d) $\sqrt{2} \mathrm{pm}$
8. 

(a) 2 in (i) and 4 in (ii)
(b) 3 in (i) and 2 in (ii)
(c) 4 in (i) and 2 in (ii)
(d) 2 in (i) and 3 in (ii).
9. The fraction of total volume occupied by the atoms present in a simple cube is
(a) $\frac{\pi}{3 \sqrt{2}}$
(b) $\frac{\pi}{4 \sqrt{2}}$
(c) $\frac{\pi}{4}$
(d) $\frac{\pi}{6}$
10. At ordinary pressure, NaCl crystal has coordination number 6:6. If high pressure is applied upon it, the coordination number changes to
(a) $4: 4$
(b) $8: 8$
(c) $6: 8$
(d) $8: 6$

## SECTION - II

## More than One Options Correct Type

11. Which of the following are not true about the voids formed in three dimensional hexagonal close packed structure?
(a) A tetrahedral void is formed when a sphere of the second layer is present above triangular void in the first layer.
(b) All the triangular voids are not covered by the spheres of the second layer.
(c) Tetrahedral voids are formed when the triangular voids in the second layer lie above the triangular voids in the first layer and the triangular shapes of these voids do not overlap.
(d) Octahedral voids are formed when the triangular voids in the second layer exactly overlap with similar voids in the first layer.
12. In which of the following structures, the coordination number of both the ions are same?
(a) Cesium chloride
(b) Sodium chloride
(c) Zinc sulphide
(d) Sodium oxide
13. The correct statements regarding defects in solids are
(a) Frenkel defect is usually favoured by a very small difference in the sizes of cation and anion
(b) Frenkel defect is a dislocation defect
(c) trapping of an electron in the lattice leads to the formation of $F$-center
(d) Schottky defects have no effect on the physical properties of solids.

## SECTION - III

Paragraph Type

## Paragraph for Questions 14 and 15

Doping a silicon crystal with a group-13 element (with three valence electrons) such as $\mathrm{B}, \mathrm{Al}, \mathrm{Ga}$ or $\ln$ produces a semiconductor with three electrons in dopant. The place where fourth electron is missing is called an electron vacancy or hole.
14. If NaCl is doped with $10^{-3} \mathrm{~mol} \% \mathrm{SrCl}_{2}$, then concentration of cation vacancies is
(a) $6.02 \times 10^{23}$
(b) $6.02 \times 10^{20}$
(c) $6.02 \times 10^{18}$
(d) $6.02 \times 10^{15}$
15. What are the types of the following semiconductors I and II?

(a) I- $p$-type, II- $n$-type
(b) I-n-type, II-p-type
(c) Both are $n$-type.
(d) Both are $p$-type.

## Paragraph for Questions 16 and 17

Look at the following structure :

16. If the cations form the cubic close packed arrangement, the anions will occupy
(a) all the octahedral voids
(b) all the tetrahedral voids
(c) half the tetrahedral voids and half the octahedral voids
(d) only half of the tetrahedral voids.
17. The coordination numbers of the cation and anion are
(a) $6: 4$
(b) $4: 6$
(c) $4: 8$
(d) $8: 4$

## SECTION - IV

Matching List Type
18. Match the distribution of particles $A$ and $B$ in List I with formula given in List II and select the correct answer using the codes given below the lists :

## List I

List II
(P) $A$ in $c c p$ and $B$ equally distributed in octahedral and tetrahedral
(Q) $B$ in $h c p$ and $A$ occupy $2 / 3^{\text {rd }}$ of octahedral voids
(R) $A$ at the corners and face centres and $B$ at edge centres and body centre
(S) $B$ in $c c p$ and $A$ occupy all the octahedral and tetrahedral sites

|  | $\mathbf{P}$ | $\mathbf{Q}$ | $\mathbf{R}$ | $\mathbf{S}$ |
| :--- | :--- | :--- | :--- | :--- |
| (a) 4 | 1 | 3 | 2 |  |
| (b) 4 | 1 | 2 | 3 |  |
| (c) 3 | 2 | 1 | 4 |  |
| (d) 4 | 2 | 3 | 1 |  |

19. Match axial parameters given in List I with crystal systems given in List II and select the correct answer using the codes given below the lists :

List I
(Axial parameters)

## List II

(Crystal system)
(P) $a=b=c, \alpha=\beta=\gamma \neq 90^{\circ}$ 1. Orthorhombic
(Q) $a \neq b \neq c, \alpha=\gamma=90^{\circ} \neq \beta$
2. Triclinic
3. Monoclinic
4. Rhombohedral
2. $A_{3} B$
3. $A B$
4. $A B_{2}$

|  | $\mathbf{P}$ | $\mathbf{Q}$ | $\mathbf{R}$ | $\mathbf{S}$ |
| :--- | :--- | :--- | :--- | :--- |
| (a) | 1 | 2 | 3 | 4 |
| (b) 4 | 3 | 2 | 1 |  |
| (c) | 3 | 4 | 2 | 1 |
| (d) 4 | 3 | 1 | 2 |  |

## SECTION - V

Assertion Reason Type
20. Assertion : Electrical conductivity of semiconductors increases with increasing temperature.
Reason : With increase in temperature, large number of electrons from the valence band can jump to the conduction band.
21. Assertion : Size of cation is larger in tetrahedral void than in octahedral void.
Reason : The cations occupy more space than anions in crystal close packing.
22. Assertion : $b c c$ and $h c p$ has same packing efficiency. Reason : Both have same number of atoms per unit cell and same arrangement.

## SECTION - VI

Integer Value Correct Type
23. Caesium atoms are the largest naturally occurring atoms. The radius of Cs atom is $2.6 \AA$. The number of moles of Cs atoms to be laid side by side to give a row of Cs atoms 2.50 cm long is $x \times 10^{-17}$. Find the value of $x$.
24. The radius of $\mathrm{Ag}^{+}$ion is 126 pm while that of $\mathrm{I}^{-}$ion is 216 pm . The coordination number of Ag in AgI is
25. Number of unit cells present in 78 g of potassium that crystallises in body-centred cubic structure is $x N_{A}$. Value of $x$ is

## GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS

## SECTION - I

Only One Option Correct Type
1.
(a) $3 \mathrm{Mn}_{3} \mathrm{O}_{4}+8 \mathrm{Al} \rightarrow 9 \mathrm{Mn}+4 \mathrm{Al}_{2} \mathrm{O}_{3}$
(b) $\mathrm{MgCO}_{3}+\mathrm{SiO}_{2} \rightarrow \mathrm{MgSiO}_{3}+\mathrm{CO}_{2}$
(c) $\mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{Cu}_{2} \mathrm{O} \rightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$
(d) $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
2. $\mathrm{Ag} \quad \mathrm{Pb} \xrightarrow[\text { Zinc is added }]{\text { Melt and }} \mathrm{Ag} \quad \mathrm{Pb} \quad \mathrm{Zn}$ $\xrightarrow{\text { Cool }} \xrightarrow[\text { Layer } Y]{\text { Layer } X}$

Select correct statement based on given scheme.
(a) Layer $X$ contains Zn and Ag.
(b) Layer $Y$ contains Pb and Ag.
(c) $X$ and $Y$ are immiscible layer.
(d) All are correct statements.
3. Bauxite ore is made up of $\mathrm{Al}_{2} \mathrm{O}_{3}+\mathrm{SiO}_{2}+\mathrm{TiO}_{2}+\mathrm{Fe}_{2} \mathrm{O}_{3}$. This ore is treated with conc. NaOH solution at 500 K and 35 bar pressure for few hours and filtered, the species present is
(a) $\mathrm{NaAl}(\mathrm{OH})_{4}$ only
(b) $\mathrm{Na}_{2} \mathrm{Ti}(\mathrm{OH})_{6}$ only
(c) both $\mathrm{NaAl}(\mathrm{OH})_{4}$ and $\mathrm{Na}_{2} \mathrm{SiO}_{3}$
(d) $\mathrm{Na}_{2} \mathrm{SiO}_{3}$ only.
4. Which one of the following statements is false?
(a) During roasting, moisture is removed from the ore.
(b) Cementite is the hardest variety of iron.
(c) Calcination of ore is carried out in the absence of blast of air.
(d) The concentrated zinc blende is subjected to calcination during its extraction by pyrometallurgy.
5. The underlining of blast furnace is made of
(a) graphite
(b) silica rocks
(c) fireclay bricks
(d) basic bricks.
6. Consider the following isolation/purification processes :
I. Heating impure metal with $\mathrm{I}_{2}$ at $150^{\circ} \mathrm{C}-200^{\circ} \mathrm{C}$ and passing the resulting volatile iodide on hot tungsten filament at $1400^{\circ} \mathrm{C}$ to get the pure metal.
II. Heating the sulphide ore in air until a part is converted to oxide and then further heating in the absence of air to let the oxide react with unchanged metal sulphide to get the metal.
III. Electrolysis of the molten electrolyte containing metal oxide and cryolite or fluorspar to obtain the metal.
The processes used for obtaining aluminium, titanium and lead are respectively
(a) (I), (II) and (III)
(b) (II), (III) and (I)
(c) (III), (I) and (II)
(d) (II), (I) and (III)
7. Aluminium is prepared in large quantities by
(a) heating cryolite in a limited quantity of air
(b) reducing aluminium oxide with coke
(c) reducing aluminium oxide with sodium
(d) electrolysing aluminium oxide dissolved in fused electrolyte.
8. If NaOH is added to an aqueous solution of zinc ions, a white precipitate appears and on adding excess of NaOH , the precipitate dissolves. In this solution zinc exists in the
(a) cationic part
(b) anionic part
(c) both in cationic and anionic parts
(d) there is no zinc in the solution.
9. In view of the sign of $\Delta_{r} G^{\circ}$ for the following reactions:
$\mathrm{PbO}_{2}+\mathrm{Pb} \longrightarrow 2 \mathrm{PbO} ; \Delta_{r} G^{\circ}<0$
$\mathrm{SnO}_{2}+\mathrm{Sn} \longrightarrow 2 \mathrm{SnO} ; \Delta_{r} G^{\circ}>0$

Which oxidation states are more stable for lead and tin?
(a) For lead +2 , for tin +2
(b) For lead +4 , for tin +4
(c) For lead +2 , for tin +4
(d) For lead +4 , for tin +2
10. Main source of lead is PbS . It is converted to Pb by


Self-reduction process is
(a) $X$
(b) $Y$
(c) $Z$
(d) none of these.

## SECTION - II

## More than One Options Correct Type

11. During the production of iron and steel
(a) the oxide ore is primarily reduced to iron by solid coke according to the reaction $2 \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \longrightarrow 4 \mathrm{Fe}+3 \mathrm{CO}_{2}$
(b) the oxide ore is reduced by the carbon monoxide according to the reaction
$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \longrightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
(c) major silica impurities are removed as calcium silicate slag by addition of a fluxing agent limestone
(d) the silicate slag is used in manufacturing cement.
12. Al metal is used to extract which of the following metals in large-scale?
(a) Fe
(b) Cr
(c) Ag
(d) Mn
13. Out of $\mathrm{Cu}_{2} \mathrm{~S}, \mathrm{HgS}, \mathrm{Ag}_{2} \mathrm{~S}, \mathrm{PbS}$ and ZnS , roasting will convert the minerals into metal in case of
(a) $\mathrm{Cu}_{2} \mathrm{~S}, \mathrm{PbS}$
(b) $\mathrm{HgS}, \mathrm{ZnS}$
(c) $\mathrm{Cu}_{2} \mathrm{~S}, \mathrm{Ag}_{2} \mathrm{~S}$
(d) $\mathrm{HgS}, \mathrm{Cu}_{2} \mathrm{~S}$

## SECTION - III

Paragraph Type

## Paragraph for Questions 14 and 15

Silver metal is extracted from silver glance $\left(\mathrm{Ag}_{2} \mathrm{~S}\right)$ by cyanide process. The ore is concentrated through froth floatation process. The concentrated ore is then leached
and solution is treated with reducing agent to get spongy silver which is then purified by fusion with an oxidising agent followed by electrolysis.
14. Silver is precipitated from an aqueous solution of sodium argentocyanide by adding
(a) zinc dust
(b) copper powder
(c) sodium amalgam
(d) sodium thiosulphate.
15. Which of the following statements about electrolytic refining of silver is not true?
(a) Anode consists of impure silver.
(b) Cathode consists of pure silver.
(c) Electrolytic solution consists of $\mathrm{AgNO}_{3}$ and nitric acid.
(d) Electrolytic solution consists of $\mathrm{AgNO}_{3}$ and hydrochloric acid.

## Paragraph for Questions 16 and 17

The heating process for the extraction of elements is quite old but highly acceptable method for the extraction of elements. Because in this process the elements produced are in the highly pure state. Mostly As, $\mathrm{Sb}, \mathrm{Ni}, \mathrm{Zr}, \mathrm{B}$ etc. are prepared by this principle. A number of metal sulphide uses which may be routed first in air to partially convert them to the oxide, and then further roasted in the absence of air, causing self-reduction.
16. How does very pure Sb is prepared from the impure Sb ?
(a) Sb (impure) $+\mathrm{O}_{2} \longrightarrow \mathrm{Sb}_{2} \mathrm{O}_{3} \xrightarrow{\text { Heat }} \mathrm{Sb}$ (pure)
(b) Sb (impure) $+\mathrm{Cl}_{2} \longrightarrow \mathrm{SbCl}_{3} \xrightarrow{\text { Heat }} \mathrm{Sb}$ (pure)
(c) $\mathrm{Sb}+\mathrm{Zn}+$ dil. $\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{SbH}_{3} \xrightarrow{\text { Heat }} \mathrm{Sb}$ (pure)
17. For which of the following sulphides autoreduction is not applicable?
(a) CuS
(b) PbS
(c) FeS
(d) $\mathrm{Sb}_{2} \mathrm{~S}_{3}$

## SECTION - IV

Matching List Type
18. Match the List I with List II and select the correct answer using the codes given below the lists :

List I
(P) Magnesite
(Q) Dolomite
(R) Corundum
(S) Bauxite

## List II

1. Ore of magnesium
2. Ore of aluminium
3. Oxide ore
4. Carbonate ore

|  | $\mathbf{P}$ | $\mathbf{Q}$ | $\mathbf{R}$ | $\mathbf{S}$ |
| :--- | :--- | :--- | :--- | :--- |
| (a) | 1,2 | 1 | 2,4 | 2 |
| (b) | 1,4 | 1,4 | 2,3 | 2,3 |
| (c) | 1,3 | 1,3 | 2,4 | 2,4 |
| (d) | 1 | 2 | 3 | 4 |

19. Match the List I with List II and select the correct answer using the codes gives below the lists :

## List I

(P) Self reduction
(Q) Carbon reduction
(R) Thermal decomposition (3) Copper of carbonyl
(S) Decomposition of iodide

|  | $\mathbf{P}$ | $\mathbf{Q}$ | $\mathbf{R}$ |
| :---: | :---: | :---: | :---: |
| (a) 1,2 | 1,4 | 2 | 3 |
| (b) 1,2 | 2,4 | 3 | 2 |
| (c) 1,3 | 1,3 | 2 | 4 |
| (d) 1,4 | $1,3,4$ | 2 | 3 |

## SECTION - V

## Assertion Reason Type

## 20. Assertion :

## Reason :

21. Assertion : In calcination, the ore is heated in absence of air.
Reason: Calcination is carried out in reverberatory furnace.
22. Assertion : Aluminothermy is used for the extraction of Cr from $\mathrm{Cr}_{2} \mathrm{O}_{3}$.
Reason : Aluminium has a high melting point.

## SECTION - VI

## Integer Value Correct Type

23. How many of the following are oxides ores? cuprite, zincite, chalcocite, haematite, bauxite, magnetite, cassiterite
24. $\mathrm{Au}+\mathrm{CN}^{-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \longrightarrow\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}+\mathrm{OH}^{-}$ How many $\mathrm{CN}^{-}$ions are involved in the above balanced equation?
25. Amongst the following, the total number of ores which are calcined to convert them into their corresponding metal oxides is
Bauxite, zinc blende, diaspore, limestone, magnesite, copper glance, calamine, siderite, cerussite, rock salt.
26. (c) : Number of atoms of $A$ per unit cell

$$
=8 \times \frac{1}{8}(\text { at the corners })=1
$$

Number of atoms of $B$ per unit cell

$$
=1(\text { at the centre })=1
$$

Number of atoms of $C$ per unit cell

$$
=12 \times \frac{1}{4}(\text { at the edge centre })=3
$$

So, formula of compound is $A B C_{3}$.
2. (c) : The plane is passing through 6 atoms present on two opposite face diagonals.
3. (c) : Volume of $\mathrm{CsCl}=a$
$7.014 \times 10 \quad \mathrm{~cm}=a \quad(a=$ edge length $)$
$a=\sqrt[3]{7.014 \times 10^{-23}}$
$a=4.12 \times 10^{8} \mathrm{~cm}=4.12 \AA \approx 4 \AA$
4. (d): In AgBr, both schottky and Frenkel defects occur simultaneously.
5. (c) : Adding electron deficient impurities creates an abundance of holes. These holes are majority carriers in $p$-type semiconductors and are responsible for conduction.
6. (a) : $d=\frac{Z \times \text { atomic mass }}{a^{3} \times N_{A}}$
$\Rightarrow \quad 2.165=\frac{Z \times 58.5}{\left(562 \times 10^{-10}\right)^{3} \times 6.023 \times 10^{23}}$
$\therefore \quad Z=4$
$\therefore \quad A B$ has $f c c$ structure.

$$
\therefore \quad d_{A^{+}-B^{-}}=\frac{a}{\sqrt{2}}=\frac{562}{\sqrt{2}}=397 \mathrm{pm}
$$

7. (a) : $d=\frac{\sqrt{3}}{2} a$

$$
\begin{aligned}
\therefore \quad & \frac{\sqrt{3}}{2} a=1.73 \AA \\
& \text { or } \quad a=\frac{1.73 \times 2}{\sqrt{3}}=2 \AA=200 \mathrm{pm}
\end{aligned}
$$

8. (a): The number of spheres in one body centred cubic and in one face centred cubic unit cell is 2 and 4 respectively.
9. (d): Packing fraction of a simple cube

$$
=\frac{\text { Volume of one sphere }}{\text { Volume of cubic unit cell }}
$$

Edge length, $a=2 r \quad$ or $\quad r=a / 2$
$\therefore \quad$ Packing fraction $=\frac{\frac{4}{3} \pi\left(\frac{a}{2}\right)^{3}}{a^{3}}=\frac{\pi}{6}$
10. (b): If pressure is applied on NaCl type structure, it changes to CsCl type structure. It means coordination number $6: 6$ changes to $8: 8$.
11. $(c, d):$ Tetrahedral voids are formed when the triangular voids in the second layer lie exactly above the triangular voids in the first layer and the triangular shape of these voids oppositely overlap.



Octahedral voids are formed when triangular void of second layer does not exactly overlap with similar void in first layer.



12. (a, b, c) : $\mathrm{Cs}^{+}(8), \mathrm{Cl}^{-}(8) ; \mathrm{Na}^{+}(6), \mathrm{Cl}^{-}(6) ; \mathrm{Zn}^{2+}(4)$, $\mathrm{S}^{2-}(4) ; \mathrm{Na}^{+}(4), \mathrm{O}^{2-}(8)$
13. $(b, c):$ When an ion is missing from its normal position and occupies an interstitial site between the lattice points, Frenkel defect arises, hence it is a dislocation defect.
The electrons trapped in anion vacancies are referred to as $F$-centers.
Schottky defects arise when some atoms or ions are missing from their normal lattice points. Due to the presence of large number of vacancies in crystals, its density (i.e., physical property) is lowered.
14. (c) : Doping of NaCl with $10^{-3} \mathrm{~mol} \% \mathrm{SrCl}_{2}$ means that 100 moles of NaCl are doped with $10^{-3} \mathrm{~mol}$ of $\mathrm{SrCl}_{2}$.
$\therefore \quad 1$ mole of NaCl is doped with $\mathrm{SrCl}_{2}$

$$
=\frac{10^{-3}}{100} \text { mole }=10^{-5} \mathrm{~mole}
$$

As each $\mathrm{Sr}^{2+}$ ion introduces one cation vacancy, therefore concentration of cation vacancies

$$
\begin{aligned}
& =10^{-5} \mathrm{~mol} / \mathrm{mol} \text { of } \mathrm{NaCl} \\
& =10^{-5} \times 6.02 \times 10^{23} \mathrm{~mol}^{-1}=6.02 \times 10^{18} \mathrm{~mol}^{-1}
\end{aligned}
$$

15. (b): Flow of $e^{-} s$ indicates that it is $n$-type semiconductor. Flow of +ve hole to the -ve end indicates that it is a $p$-type semiconductor.
16. (b): The given structure is that of $\mathrm{CaF}_{2}$. If $\mathrm{Ca}^{2+}$ ions (cations) form the cubic close arrangement $(c c p \equiv f c c), \mathrm{F}^{-}$ion (anions) will occupy all the tetrahedral voids (as number of $\mathrm{F}^{-}$ions is double the number of $\mathrm{Ca}^{2+}$ ions).
17. (d): Each $\mathrm{Ca}^{2+}$ ion is surrounded by $8 \mathrm{~F}^{-}$ions whereas each $\mathrm{F}^{-}$ion is surrounded tetrahedrally by $4 \mathrm{Ca}^{2+}$ ions. Hence, the coordination number is $8: 4$.
18. (a)
19. (b)
20. (a): In case of semiconductors, the gap between valance band and the conduction band is small and therefore some of the electrons may jump from valence band to conduction band and thus on increasing temperature, conductivity is also increased.
21. (d): Octahedral void is larger in size than tetrahedral void.
Cations are generally smaller than anions and therefore occupy lesser space.
22. (d): $b c c$ has $68 \%$ and $h c p$ has $74 \%$ packing efficiency. $b c c$ has 2 atoms per unit cell, $h c p$ has 4 atoms per unit cell. In $b c c$, eight particles are present at corners and one particle is present at the centre within the body of the unit cell. In $h c p$, the packing gives a hexagonal pattern.
23. (8) : Diameter of Cs $=2 \times 2.6=5.2 \AA=5.2 \times 10^{-8} \mathrm{~cm}$ Number of atoms in 2.50 cm row $=\frac{2.50}{5.2 \times 10^{-8}}$

$$
=0.48 \times 10^{8}=4.8 \times 10^{7} \mathrm{Cs} \text { atoms }
$$

$\therefore \quad$ Moles of Cs atoms $=\frac{4.8 \times 10^{7}}{6.023 \times 10^{23}}=0.8 \times 10^{-16}$ $=8 \times 10^{-17}$
$\therefore \quad x \times 10^{-17}=8 \times 10^{-17}$
$\Rightarrow \quad x=8$
24. (6) : $\frac{r^{+}}{r^{-}}=\frac{126}{216}=0.583$
which fall in the range of $0.414-0.732$, thus coordination number is 6 .
25. (1): Number of atoms $=\frac{\text { Mass }}{\text { Atomic mass }} \times N_{A}$

$$
=\frac{78}{39} \times N_{A}=2 N_{A}
$$

In $b c c$ unit cell, $Z=2$
Number of unit cells $=\frac{2 N_{A}}{2}=N_{A}$
$\therefore \quad x N_{A}=N_{A} \Rightarrow x=1$

GENERAL PRINCIPLES AND PROCESSES OF ISOLATION OF ELEMENTS

1. (a)
2. (d): Zn and Pb in molten state are immiscible and form separate layers, zinc being lighter forms upper layer. Ag is soluble in both. Hence, all statements are correct.
3. (c) : $\mathrm{Al}_{2} \mathrm{O}_{3(s)}+2 \mathrm{NaOH}_{(a q)}+3 \mathrm{H}_{2} \mathrm{O}_{(l)} \xrightarrow{500 \mathrm{~K}}$ Bauxite

$$
2 \mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right]_{(a q)}
$$

Sodium meta-aluminate
$\underset{\text { Silica }}{\mathrm{SiO}_{2(l)}}+2 \mathrm{NaOH}_{(a q)} \xrightarrow[\text { Sodium silicate }]{\text { Son }} \xrightarrow{500 \mathrm{~K}} \mathrm{Na}_{2} \mathrm{SiO}_{3(a q)}+\mathrm{H}_{2} \mathrm{O}_{(l)}$
4. (d): The concentrated zinc blende (sulphide ore) is subjected to roasting and not to calcination.
5. (c) : Underlining of blast furnace is made up of fireclay bricks.
6. (c) : $\mathrm{I.}_{\mathrm{Ti}}^{(s)}$ (impure) $+2 \mathrm{I}_{2(\mathrm{~g})} \xrightarrow{150-250^{\circ} \mathrm{C}}$
$\mathrm{TiI}_{4}$ (volatile) $\xrightarrow[\text { Tungsten filament }]{140{ }^{\circ} \mathrm{C}} \mathrm{Ti}_{(s)}$ (pure) $+2 \mathrm{I}_{2(\mathrm{~g})}$
II. $2 \mathrm{PbS}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{PbO}+2 \mathrm{SO}_{2}$ $\mathrm{PbS}+2 \mathrm{PbO} \xrightarrow[\text { temp. }]{\text { high }} 3 \mathrm{~Pb}+\mathrm{SO}_{2}$
III. Cathode : $\mathrm{Al}^{3+}$ (melt) $+3 e^{-} \longrightarrow \mathrm{Al}_{(l)}$

Anode : $\mathrm{C}_{(s)}+\mathrm{O}^{2-}($ melt $) \longrightarrow \mathrm{CO}_{(g)}+2 e^{-}$
$\mathrm{C}_{(\mathrm{s})}+2 \mathrm{O}^{2-}($ melt $) \longrightarrow \mathrm{CO}_{2(\mathrm{~g})}+4 e^{-}$
7. (d)
8. $\left(\right.$ b) $: \mathrm{Zn}^{2+}+2 \mathrm{NaOH} \longrightarrow \mathrm{Zn}(\mathrm{OH})_{2}+2 \mathrm{Na}^{+}$

White precipitate

$\mathrm{Na}_{2} \mathrm{ZnO}_{2} \rightleftharpoons 2 \mathrm{Na}^{+}+\mathrm{ZnO}_{2}^{2-}$
$\therefore \quad \mathrm{Zn}$ is present as $\mathrm{ZnO}_{2}^{2-}$ (anionic part)
9. (c) : $\Delta G^{\circ}<0$, i.e., spontaneous.

So that, $\mathrm{Pb}^{4+} \longrightarrow \mathrm{Pb}^{2+}$
or $\mathrm{Pb}^{2+}$ is more stable than $\mathrm{Pb}^{4+}$.
$\Delta G^{\circ}>0$ i.e., non-spontaneous.
or $\mathrm{Sn}^{4+} \longrightarrow \mathrm{Sn}^{2+}$
So that, $\mathrm{Sn}^{4+}$ is more stable than $\mathrm{Sn}^{2+}$.
10. (b)
11. (b, c, d) : The oxide ore $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$ is primarily reduced to iron by carbon monoxide.
12. (b, d) : Thermite reaction:
$\mathrm{Cr}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Cr}$
$3 \mathrm{Mn}_{3} \mathrm{O}_{4}+8 \mathrm{Al} \longrightarrow 9 \mathrm{Mn}+4 \mathrm{Al}_{2} \mathrm{O}_{3}$
Small-scale extraction of Fe is done by thermite process.
13. ( $\mathrm{a}, \mathrm{d}$ ) : The sulphide ores of some of the less electropositive metals like $\mathrm{Hg}, \mathrm{Cu}, \mathrm{Pb}$, etc. are heated in air as to convert a part of the ore into oxide or sulphate that reacts with the remaining part of the sulphide ore to give its metal and $\mathrm{SO}_{2}$.
$2 \mathrm{HgS}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{HgO}+2 \mathrm{SO}_{2}$;
$2 \mathrm{HgO}+\mathrm{HgS} \longrightarrow 3 \mathrm{Hg}+\mathrm{SO}_{2}$
$2 \mathrm{Cu}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{SO}_{2}$;
$2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \longrightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$
$2 \mathrm{PbS}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{PbO}+2 \mathrm{SO}_{2}$;
$2 \mathrm{PbO}+\mathrm{PbS} \longrightarrow 3 \mathrm{~Pb}+\mathrm{SO}_{2}$
14. (a): $2 \mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]+\mathrm{Zn} \underset{\text { Zinc dust }}{\longrightarrow} \mathrm{Na}_{2}\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]+2 \mathrm{Ag}$
15. (d): Electrolytic solution cannot consists of $\mathrm{AgNO}_{3}$ and HCl because Ag will get precipitated as AgCl in the solution.
16. (c)
17. (c)
18. (b)
19. (c)
20. (a)
21. (b) : In calcination, ore is heated in absence of air to decompose it to oxide and to remove water. Calcination is carried out in reverberatory furnace.
22. (b)
23. (6): Cuprite $\left(\mathrm{Cu}_{2} \mathrm{O}\right)$, Zincite ( ZnO ), Chalcocite $\left(\mathrm{Cu}_{2} \mathrm{~S}\right)$, Haematite $\left(\mathrm{Fe}_{2} \mathrm{O}_{3}\right)$, Bauxite $\left(\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$, Magnetite $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ and Cassiterite $\left(\mathrm{SnO}_{2}\right)$.
24. (8): $4 \mathrm{Au}+8 \mathrm{CN}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \longrightarrow$

$$
4\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}+4 \mathrm{OH}^{-}
$$

25. (7): Bauxite, diaspore, limestone, magnesite, calamine, siderite and cerussite are calcined to convert them into their corresponding metal oxides.


## Who can participate ?

If you have taken any of the exams given below and possess plenty of grey cells, photographic memory then you are the right candidate for this contest. All you have to do is write down as many questions (with all choices) you can remember, neatly on a paper with name of the exam, your name, address, age, your photograph and mail them to us.

## (2) The Exams

PMT: AIIMS, JIPMER, SRMJEEE .... etc.
Engineering: VITEEE, UPSEE, AMU, SRMJEEE, Odisha JEE, BIT SAT, COMED-K.... etc.

## 3 The Benefits

Plenty! Each complete question with answer will make you richer by Rs. 100*. More the questions, the merrier it will be. We will make you famous by publishing your name (photo if possible). Also you can derive psychological satisfaction from the fact that your questions will benefit thousands of readers.

## And Lastly The Pitfalls

Don't send incomplete question. Our panel of experts will cross-check your questions. You have to send it within a month of giving the particular exam.

## Mail to : The Editor,

## MTG Learning Media Pvt. Ltd.

Plot 99, Sector 44
Institutional Area, Gurgaon - 122003(HR)
Tel. :0124-6601200
or email at editor@mtg.in

## *Conditions apply

- Payment will be made after the MCOs are published.
- Kindly note that each question should be complete.
- Payment will be made only for complete questions.
- Preference will be given to the reader sending the maximum complete and correct questions. Other conditions apply. The decision of the Editor, MTG shall be final and binding.


Total Marks : 120
Time Taken : 60 Min.

## NEET / AIIMS

Only One Option Correct Type

1. An example of autocatalytic reaction is
(a) the decomposition of nitroglycerine
(b) thermal decomposition of $\mathrm{KClO}_{3}$ and $\mathrm{MnO}_{2}$ mixture
(c) breakdown of ${ }_{6} \mathrm{C}^{14}$
(d) hydrogenation of vegetable oil using nickel catalysts.
2. What is the purpose of addition of NaCN during the process of froth floatation?
(a) NaCN causes reduction by precipitation.
(b) A soluble complex is formed by reaction between NaCN and ZnS while PbS forms froth.
(c) A soluble complex is formed by reaction between NaCN and PbS while ZnS forms froth.
(d) A precipitate of $\mathrm{Pb}(\mathrm{CN})_{2}$ is produced while ZnS remains unaffected.
3. Which of the following molecules is most suitable to disperse benzene in water?
(a)

(b)

(c)

(d)

4. The given figure shows three velocity-substrate concentration curves for an enzyme reaction. What do the curves $a, b$ and $c$ depict
 respectively?
(a) $a$-normal enzyme reaction, $b$-competitive inhibition, $c$-non-competitive inhibition
(b) $a$-enzyme with an allosteric modulator added, $b$-normal enzyme activity, $c$-competitive inhibition
(c) $a$-enzyme with an allosteric stimulator, $b$-competitive inhibitor added, $c$-normal enzyme reaction
(d) $a$-normal enzyme reaction, $b$-non-competitive inhibitor added, $c$-allosteric inhibitor added.
5. When the sample of Cu with Zn impurity is to be purified by electrolysis, the appropriate electrodes are

## Cathode

(a) Pure Zn
(b) Impure sample
(c) Impure Zn
(d) Pure Cu

## Anode

Pure Cu
Pure Cu
Impure sample
Impure sample
6. Which is not true about the aqueous solution of soaps and detergents?
(a) Their molecules or ions have colloidal dimensions.
(b) Their molecules or ions aggregate spontaneously in solution to form particles of colloidal dimensions.
(c) In these aggregates of ions, the polar ends are directed towards water and hydrocarbon ends towards the centre.
(d) The detergent action is due to the adsorption of grease/oil stain into the interior of these aggregates.
7. In the commercial electrochemical process for aluminium extraction, the electrolyte used is
(a) $\mathrm{Al}(\mathrm{OH})_{3}$ in NaOH solution
(b) an aqueous solution of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(c) a molten mixture of $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Na}_{3} \mathrm{AlF}_{6}$
(d) a molten mixture of $\mathrm{Al}_{2} \mathrm{O}_{3}$ and $\mathrm{Al}(\mathrm{OH})_{3}$.
8. Which one of the following reactions is an example of calcination process?
(a) $2 \mathrm{Ag}+2 \mathrm{HCl}+[\mathrm{O}] \rightarrow 2 \mathrm{AgCl}+\mathrm{H}_{2} \mathrm{O}$
(b) $2 \mathrm{Zn}+\mathrm{O}_{2} \rightarrow 2 \mathrm{ZnO}$
(c) $2 \mathrm{ZnS}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{ZnO}+2 \mathrm{SO}_{2}$
(d) $\mathrm{MgCO}_{3} \rightarrow \mathrm{MgO}+\mathrm{CO}_{2}$
9. According to Hardy schulze law, the flocculating power of an ion increases with
(a) decreases in size
(b) increase in size
(c) decrease in charge
(d) increase in charge.
10. Which one of the following is true for electrolytic refining?
(a) Impure metal is made cathode.
(b) Impure metal is made anode.
(c) Impure metal is made cathode and pure metal as anode.
(d) Both electrodes must be of pure metal.
11. At isoelectric pH , the particles of a protein sol under the electric field migrate towards
(a) anode; acidic group gets ionised
(b) cathode; basic group gets ionised
(c) neither of the electrodes; neither basic nor acidic group gets ionised
(d) neither of the electrodes; both basic and acidic groups equally gets ionised.
12. Which of the following statements is correct regarding Cu extraction?
(a) In the smelting step, carbon reduction takes place.
(b) During roasting, $\mathrm{Cu}_{2} \mathrm{~S}$ remains almost unaffected.
(c) In Bessemer converter, only self-reduction occurs, not slag formation.
(d) Blister formed in the blister Cu is due to dissolved $\mathrm{CO}_{2}$.

## Assertion \& Reason Type

Directions : In the following questions, a statement of assertion is followed by a statement of reason. Mark the correct choice as :
(a) If both assertion and reason are true and reason is the correct explanation of assertion.
(b) If both assertion and reason are true but reason is not the correct explanation of assertion.
(c) If assertion is true but reason is false.
(d) If both assertion and reason are false.
13. Assertion : Levigation is used for the separation of oxide ores from impurities.
Reason : Ore particles are removed by washing in a current of water.
14. Assertion : Physical absorption of molecules takes place on surface only.
Reason : In this process, the bonds of the absorbed molecules are broken.
15. Assertion : Roasting is a process in which the ore is heated in presence of air.
Reason : Concentration of sulphide ore is done by roasting method.

## JEE MAIN / JEE ADVANCED

Only One Option Correct Type
16. Volume of $\mathrm{N}_{2}$ at NTP required to form a monolayer on the surface of iron catalyst is $8.15 \mathrm{~mL} / \mathrm{g}$ of the adsorbent. What will be the surface area of the adsorbent per gram if each nitrogen molecule occupies $16 \times 10^{-22} \mathrm{~m}^{2}$ ?
(a) $16 \times 10^{-16} \mathrm{~cm}^{2}$
(b) $0.35 \mathrm{~m}^{2} / \mathrm{g}$
(c) $39 \mathrm{~m}^{2} / \mathrm{g}$
(d) $22400 \mathrm{~cm}^{2}$
17. Which is not correctly matched for refining of crude metals?
(a) Distillation : Zinc and Mercury
(b) Liquation: Tin
(c) van Arkel: Zirconium
(d) Mond's process : Lead
18. Silver iodide is used in bringing about artificial rain because silver iodide
(a) is easily decomposed in presence of sunlight
(b) contains iodide ions which are large in size
(c) has crystal structure similar to ice and leads to coagulation
(d) being heavy, its spray brings the water droplets down.
19. When copper pyrites is roasted in excess of air, a mixture of CuO and FeO is formed. FeO is present as impurity. This can be removed as slag during reduction of CuO . The flux added to form slag is
(a) $\mathrm{SiO}_{2}$, which is an acidic flux
(b) limestone, which is a basic flux
(c) $\mathrm{SiO}_{2}$, which is a basic flux
(d) CaO , which is a basic flux.

## More than One Options Correct Type

20. Extraction of metal from the ore cassiterite involves
(a) carbon reduction of an oxide ore
(b) self-reduction of a sulphide ore
(c) removal of copper impurity
(d) removal of iron impurity.
21. Select correct statements about macromolecular colloids.
(a) Most lyophobic sols belong to this class.
(b) Molecules are held together by van der Waals forces.
(c) Most lyophilic sols belong to this class.
(d) Multimolecular or macromolecular colloids consist of aggregate of atoms or small molecules with diameter less than 1 nm .
22. Select the correct statements regarding Ellingham diagram.
(a) When temperature is raised, a point will be reached where the graph crosses the $\Delta_{f} G^{\circ}=0$ line. Below this temperature, the free energy of formation of the oxide is negative, so the oxide is stable.
(b) When the temperature is raised, a point will be reached where the graph crosses the $\Delta_{f} G^{\circ}=0$ line. Above this temperature, the free energy of formation of the oxide is positive, and the oxide becomes unstable, and should decompose into the metal and dioxygen.
(c) Theoretically, all oxides can be decomposed to give the metal and dioxygen if a sufficiently high temperature can be attained.
(d) Theoretically, all oxides cannot be decomposed to give the metal and dioxygen.
23. The correct characteristics of lyophilic and lyophobic colloids are
(a) lyophilic sols are highly hydrated while lyophobic sols are not
(b) lyophilic sols have lower surface tension and viscosity than that of the dispersion medium
(c) lyophobic sols can be easily coagulated but lyophilic sols are not
(d) gold sol is irreversible sol because gold cannot be obtained back.

## Integer Answer Type

24. In Goldschmidt's aluminothermic process, thermite mixture contains $\underline{x}$ parts of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ and one part of aluminium. Here, $x$ is
25. In the presence of $\mathrm{I}_{(a q)}^{-}$as catalyst, decomposition of $\mathrm{H}_{2} \mathrm{O}_{2(a q)}$ is shown as :
$2 \mathrm{H}_{2} \mathrm{O}_{2(a q)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(l)}+\mathrm{O}_{2(g)}$
Rate law $=k\left[\mathrm{H}_{2} \mathrm{O}_{2}\right]\left[\mathrm{I}^{-}\right]$
An intermediate is formed from $\mathrm{I}^{-}$and $\mathrm{H}_{2} \mathrm{O}_{2}$. What is the oxidation number of the intermediate formed?
26. How many different compounds are present in carnallite?

## Comprehension Type

An emulsion is a system in which the dispersion medium and the dispersed phase are liquids. The liquids of course must be immiscible.
Emulsions are classified into two types :
(i) Oil in water emulsion
(ii) Water in oil emulsion

A stable emulsion usually requires an emulsifying agent, which forms film in the oil-water interface and thus, prevents coalescence of the droplets.
27. The example of oil in water emulsion is
(a) milk
(b) opal
(c) cod-liver oil
(d) none of these.
28. The emulsifying agent generally used is
(a) soap
(b) gelatin
(c) both soap and gelatin
(d) soap, gelatin and other hydrophilic sols.


What can be better for us if it is a bag of sweet surprises! ! \& for each chemistry aspirant a sweet surprise cannot be better than shortcut techniques to learn \& remember inorganic chemistry. My coming articles are going to be on important topics of inorganic chemistry with possibly the best shortcut tricks from my side. Stay tuned and keep your eyes on my article to enjoy essence of CHEMISTRY... ALL THE BEST!
*Arunava Sarkar

## HEATING EFFECTS

Before we get into the detailed discussion, take a look into the following concepts :

1. Polarisation $(\phi) \propto$ covalent character

$$
\begin{aligned}
& \propto \frac{1}{\text { ionic character }} \\
& \propto \frac{1}{\text { thermal stability }}
\end{aligned}
$$

2. $\sqrt{\phi}=2.20$ to $3.21 \rightarrow$ oxide is amphoteric.
$\sqrt{\phi}<2.2 \rightarrow$ oxide is basic.
$\sqrt{\phi}>3.2 \rightarrow$ oxide is acidic.

## METAL CARBONATES AND BICARBONATES

Let us take the thermal stability of alkaline earth metal carbonates and alkali metal carbonates.

$$
\begin{gathered}
\mathrm{BeCO}_{3}<\mathrm{MgCO}_{3}<\mathrm{CaCO}_{3}<\mathrm{SrCO}_{3}<\mathrm{BaCO}_{3} \\
\mathrm{Li}_{2} \mathrm{CO}_{3}<\mathrm{Na}_{2} \mathrm{CO}_{3}<\mathrm{K}_{2} \mathrm{CO}_{3}<\mathrm{Rb}_{2} \mathrm{CO}_{3}<\mathrm{Cs}_{2} \mathrm{CO}_{3}
\end{gathered}
$$

They are thermally quite stable.
Therefore, they are not easily decomposed on heating. So, no question of getting $\mathrm{CO}_{2}$ on heating these alkali metal carbonates.
Only $\mathrm{Li}_{2} \mathrm{CO}_{3}$ decomposes on heating to give $\mathrm{CO}_{2}$.

$$
\mathrm{Li}_{2} \mathrm{CO}_{3(s)} \xrightarrow{\Delta} \mathrm{Li}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

However, an alkaline earth metal carbonate decomposes on heating to give $\mathrm{CO}_{2}$ where $\mathrm{BeCO}_{3}$ requires least heat (least stable) and $\mathrm{BaCO}_{3}$ requires high temperature or highest heat (most stable).

( $M=$ alkaline
earth metal)
Now, coming to an unconventional thing, what happens when $\mathrm{Ag}_{2} \mathrm{CO}_{3}$ or $\mathrm{MgCO}_{3}$ is heated?
Shortcut : Symbol of metals that ends with 'g' are Mg, $\mathrm{Hg}, \mathrm{Ag}$ (mostly used these g).
Mg doesn't come under this shortcut as it is under alkaline earth metal category.


So, when these metal carbonates will be heated, we'll get back metal. Therefore,

$$
\begin{aligned}
& \underset{\text { (yellow) }}{\mathrm{Ag}_{2} \mathrm{CO}_{3}} \xrightarrow{\Delta} \underset{\text { (black) }}{2 \mathrm{Ag}}+\mathrm{CO}_{2}+\frac{1}{2} \mathrm{O}_{2} \uparrow \\
& \mathrm{HgCO}_{3} \xrightarrow{\Delta} \mathrm{Hg}+\mathrm{CO}_{2}+\frac{1}{2} \mathrm{O}_{2} \uparrow \\
&\left(\mathrm{Not} \mathrm{HgO}+\mathrm{CO}_{2}\right)
\end{aligned}
$$

Carbonate part $\left(\mathrm{CO}_{3}{ }^{2-}\right)$ will always give $\mathrm{CO}_{2}$ and $\mathrm{O}_{2}$. Zn behaves as alkaline earth metal in this aspect. So,


[^0]Now comes, two important concepts :
 Malachite or
basic $\mathrm{Cu}(\mathrm{II})$ carbonate
Remember it as simple decomposition.


But this is a bit different for white lead i.e. $2 \mathrm{PbCO}_{3} . \mathrm{Pb}(\mathrm{OH})_{2}$.

Remember in this way: Due to higher stability of +4 state in comparison with +2 state, in case of Pb , where there is a scope, Pb will give +4 state along with +2 state. If not +4 , then at least something higher than +2 . So,

$$
3\left[\mathrm{PbCO}_{3} \cdot \mathrm{~Pb}(\mathrm{OH})_{2}\right]+\mathrm{O}_{2} \xrightarrow{350^{\circ} \mathrm{C}} 2 \mathrm{~Pb}_{3} \mathrm{O}_{4}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}
$$

In a combined form, the reaction can be shown as below :
$3 \mathrm{~Pb}_{2} \mathrm{CO}_{3}(\mathrm{OH})_{2}+\mathrm{O}_{2} \xrightarrow{350^{\circ} \mathrm{C}} 2 \mathrm{~Pb}_{3} \mathrm{O}_{4}+3 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ In this context, remember that when an oxide where Pb is at its higher oxidation state is heated, it gets down to its lower oxidation state.

$$
\begin{gathered}
2 \mathrm{~Pb}_{3} \mathrm{O}_{4} \xrightarrow{\Delta} 6 \mathrm{PbO}+\mathrm{O}_{2} \\
2 \mathrm{PbO}_{2} \xrightarrow{\Delta} 2 \mathrm{PbO}+\mathrm{O}_{2}
\end{gathered}
$$

Ammonium carbonate on heating as obvious will give $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CO}_{2}$

$$
\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3} \xrightarrow{\Delta} 2 \mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

Now, coming to bicarbonate salts. For bicarbonates, following general reaction is followed:

$$
2 \mathrm{HCO}_{3}^{-} \longrightarrow \mathrm{CO}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

So, all bicarbonates on heating decompose and give $\mathrm{CO}_{3}^{2-}$ and $\mathrm{CO}_{2}$.

$$
2 \mathrm{NaHCO}_{3} \xrightarrow{\Delta} \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

In this context, do remember that as per thermal stability,


All in liquid state due to higher degree of polarisation.

## METAL NITRATES

Some good tricks and twists are here. All bivalent metal nitrates decompose in the following manner :

$$
2 \mathrm{M}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow 2 \mathrm{MO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}
$$



This is an illustration of complete decomposition. But, as you know it is always very tough to decompose alkali metal products. So, for alkali metal nitrates, decomposition at first will be half way :

$$
\underset{\left(M^{\prime}=\text { alkali metal }\right)}{M^{\prime} \mathrm{NO}_{3}} \xrightarrow[(\text { nitrite })]{M^{\prime} \mathrm{NO}_{2}}+\frac{1}{2} \mathrm{O}_{2}
$$

On applying more heat, nitrites will further decompose as below :

$$
\begin{gathered}
2 \mathrm{M}^{\prime} \mathrm{NO}_{2} \xrightarrow{\Delta} M_{2}^{\prime} \mathrm{O}+\mathrm{N}_{2}+\frac{3}{2} \mathrm{O}_{2} \\
\text { e.g., } 2 \mathrm{NaNO}_{3} \xrightarrow{\Delta} 2 \mathrm{NaNO}_{2}+\mathrm{O}_{2} \\
2 \mathrm{NaNO}_{2} \xrightarrow{\Delta} \mathrm{Na}_{2} \mathrm{O}+\mathrm{N}_{2}+\frac{3}{2} \mathrm{O}_{2}
\end{gathered}
$$

[Shortcut: Why on heating alkali metal nitrites we do not get any oxide of nitrogen like $\mathrm{NO}, \mathrm{NO}_{2}, \mathrm{~N}_{2} \mathrm{O}$, etc ?
Ans.: Arunava Sarkar's Shortcut]


$$
[\mathrm{O}=\mathrm{N}=\cdots \mathrm{O}]^{-1}
$$

So for oxygen, change is from -2 to 0 . So for nitrogen, oxidation number can't increase. So, $\mathrm{NO}_{2}$ is ruled out. Now look at three oxygen atoms :


As per the structure of nitrite ion, oxygen atoms are equivalent. So, disparity is ruled out here. All oxygen atoms will be going together. [Moreover, NO was not possible. Because the minimum decrease should be 2 units for nitrogen and there is 2 units increase in oxygen $\rightarrow$ a shortcut]. So, only possibility was for $\mathrm{N}_{2} \mathrm{O}$ but that is too ruled out.

## Solution Senders of Chemistry Musing

Set - 47

- Rakesh Mohan, New Delhi
- Raj Ranjan, West Bengal
- Hemant Patnayak, Odisha


## Set - 46

- Ravinder Kashapogu, Telangana


# CHEMISTRY MUSING 

$\mathrm{C}^{\prime}$
hemistry Musing was started from August '13 issue of Chemistry Today. The aim of Chemistry Musing is to augment the chances of bright students preparing for JEE (Main and Advanced) / NEET / AIIMS / JIPMER with additional study material. In every issue of Chemistry Today, 10 challenging problems are proposed in various topics of JEE (Main and Advanced) / NEET. The detailed solutions of these problems will be published in next issue of Chemistry Today.
The readers who have solved five or more problems may send their solutions. The names of those who send atleast five correct solutions will be published in the next issue. We hope that our readers will enrich their problem solving skills through "Chemistry Musing" and stand in better stead while facing the competitive exams.

## JEE MAIN/NEET

1. In the following reaction,

the major product $(A)$ is
(a)

(b)

(c)

(d)

2. 1.6 g of pyrolusite ore was treated with $50 \mathrm{~cm}^{3}$ of 1.0 N oxalic acid and some sulphuric acid. The oxalic acid left undecomposed was raised to $250 \mathrm{~cm}^{3}$ in a flask. $25 \mathrm{~cm}^{3}$ of this solution when titrated with $0.1 \mathrm{~N} \mathrm{KMnO}_{4}$ required $32 \mathrm{~cm}^{3}$ of the solution. The percentage of pure $\mathrm{MnO}_{2}$ in the same will be
(a) $78.3 \%$
(b) $48.9 \%$
(c) $13.5 \%$
(d) $18.7 \%$
3. $K_{s p}$ of $\mathrm{SrF}_{2}$ is $2.8 \times 10^{-9}$ at $25^{\circ} \mathrm{C}$. How much NaF should be added to 100 mL of solution having $0.016 \mathrm{M} \mathrm{in}^{2+}$ ions to reduce its concentration to $2.5 \times 10^{-3} \mathrm{M}$ ?
(a) 1.178 g
(b) 0.1178 g
(c) 28.058 g
(d) 2.805 g
4. From the following sequence :


Which of the following statements is true for the above sequence of reactions?
(a) $Z$ is hydrogen.
(b) $X$ is $\mathrm{B}_{2} \mathrm{H}_{6}$.
(c) $Z$ and $Y$ are $\mathrm{F}_{2}$ and $\mathrm{B}_{2} \mathrm{H}_{6}$ respectively.
(d) $Z$ is potassium hydroxide.
5. In the cubic crystal of $\mathrm{CsCl}\left(d=3.94 \mathrm{~g} \mathrm{~cm}^{-3}\right)$, the eight corners are occupied by $\mathrm{Cl}^{-}$with a $\mathrm{Cs}^{+}$at the centre and vice-versa. What is the radius ratio of the two ions?
(At. wt. of $\mathrm{Cs}=132.92$ and $\mathrm{Cl}=35.45$ )
(a) 0.45
(b) 0.18
(c) 0.73
(d) 0.84

## - JEE ADVANCED

6. A terpene found in coriander oil, absorbs only two moles of hydrogen, forming $p$-menthane, having molecular formula, $\mathrm{C}_{10} \mathrm{H}_{20}$. Ozonolysis of the terpene yields $P$ and permanganate cleavage yields $Q$.



## MPP-3 CLASS XII

## ANSWER KEY

| 1. | (a) | 2. | (b) | 3. | (c) | 4. | (a) | 5. | (d) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 6. | (a) | 7. | (c) | 8. | (d) | 9. | (d) | 10. | (b) |
| 11. | (d) | 12. | (b) | 13. | (c) | 14. | (d) | 15. | (c) |
| 16. | (b) | 1. | (d) | 18. | (c) | 19. | (a) | 20. | (a, $(, d)$ |
| 21. | (b,, d) | 22. | (a,b,c) | 23. | (a, c) | 24. | (3) | 25. | (1) |
| 26. | (3) | 27. | (a) | 28. | (d) | 29. | (c) | 30. | (c) |

6. (a)
7. (c)
8. (d)
9. (d)
10. (b)
11. (d)
12. (b)
13. (c)
14. (a)
15. $(a, c, d)$
16. (b, c, d)
17. 
18. (d)
19. (c)
20. (c)

The most likely structure of terpene will be
(a)

(b)

(c)

(d)


COMPREHENSION
In an $S_{N} 2$ reaction, the configuration at the reaction centre is inverted as an umbrella turns inside out in a strong wind. An ideal $S_{N} 1$ reaction, on the other hand, yields racemised product as it proceeds through planar carbocation. $\mathrm{S}_{\mathrm{N}} 2$ reactions proceed smoothly on primary alkyl halides, whereas tertiary halides are fit for $\mathrm{S}_{\mathrm{N}} 1$ mechanism. However, evidences indicate that all the molecules of particular substrates do not necessarily react by a single mechanism. Molecules follow the low energy path. If both paths have nearly the same energy barrier, they follow a mixed mechanism. For example, secondary alkyl halides follow a mixed mechanism; say $60 \%$ molecules react by $S_{N} 2$ and rest $40 \%$ by $S_{N} 1$. Stereochemical features, as mentioned above, are noticeable only when the reaction is carried out on a particular enantiomer. Even the reaction centers, which
are parts of suitably substituted rings, also exemplify the said features.
7. For the given reaction,


What should be the percentage of backside attack assuming complete reaction?
(a) $65 \%$
(b) $30 \%$
(c) $35 \%$
(d) $85 \%$
8. There are two basic mechanisms $\mathrm{S}_{\mathrm{N}} 1$ and $\mathrm{S}_{\mathrm{N}} 2$. All except one of the following substrates give atleast one of these two reactions enthusiastically in the absence of catalyst. Identify the odd one that reacts sluggishly under both the mechanisms.
(a) $\mathrm{R}-\mathrm{CH}_{2}-\mathrm{X}$
(b) $R_{3} \mathrm{C}-X$
(c) $\mathrm{R}_{3} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{X}$
(d) $\mathrm{R}-\mathrm{CO}-\mathrm{CH}_{2}-\mathrm{X}$

## INTEGER VALUE

9. The radius of one molecule of water is approximately $x \times 10^{-8} \mathrm{~cm}$, assuming it to be spherical (density of $\mathrm{H}_{2} \mathrm{O}=1 \mathrm{~g} / \mathrm{cm}^{3}$ ). The value of $x$ is
10. Out of the following how many chlorides will give positive chromyl chloride test? $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{HgCl}_{2}, \mathrm{ZnCl}_{2}, \mathrm{NaCl}, \mathrm{K}_{2} \mathrm{PtCl}_{6}, \mathrm{C}_{6} \mathrm{H}_{5} \stackrel{+}{\mathrm{N}_{2}} \stackrel{-}{\mathrm{C}}$, $\mathrm{RbCl}_{2}, \mathrm{PbCl}_{2}$

## 

## Matrix Match Type

29. Match the Column I with Column II and mark the appropriate option.

## Column I

(A)

$$
\begin{gathered}
\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O} \xrightarrow[\text { dry } \mathrm{HCl}_{(g)}]{\text { heat }}(\mathrm{P}) \text { Calcination } \\
\mathrm{MgCl}_{2}+6 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

(B) $4 \mathrm{Au}+8 \mathrm{NaCN}+2 \mathrm{H}_{2} \mathrm{O}$ $+\mathrm{O}_{2}$ (air) $\rightarrow$ $4 \mathrm{Na}\left[\mathrm{Au}(\mathrm{CN})_{2}\right]+4 \mathrm{NaOH}$
(C) $\mathrm{CuFeS}_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$
$\mathrm{CuSO}_{4}+\mathrm{FeSO}_{4}+2 \mathrm{H}_{2} \mathrm{~S}$
(D) $\mathrm{Fe}_{3} \mathrm{O}_{4}+4 \mathrm{CO} \xrightarrow{\text { Heat }}$ $3 \mathrm{Fe}+4 \mathrm{CO}_{2}$

$$
\begin{array}{llll}
\text { A } & \text { B } & \text { C } & \text { D }
\end{array}
$$

(a) $\mathrm{P} \quad \mathrm{Q}, \mathrm{R} \quad \mathrm{R}, \mathrm{S} \quad \mathrm{Q}$
(b) $\mathrm{Q} \quad \mathrm{P}, \mathrm{R} \quad \mathrm{R}, \mathrm{S} \quad \mathrm{P}$
(Q) Smelting
(R) Leaching

## Column II

(S) Hydrometallurgy
$\begin{array}{llll}\text { (c) } P & R, S & R, S & Q \\ \text { (d) } P & R, S & \text { Q,S } & R\end{array}$
30. Match the Column I with Column II and mark the appropriate option.

## Column I <br> (Gas)

(A) CO
(B) $\mathrm{CO}_{2}$
(C) $\mathrm{SO}_{2}$
(D) $\mathrm{NH}_{3}$

## Column II

(Volume adsorbed per gram of charcoal at 288 K )
(P) 48 cc
(Q) 181 cc
(R) 9.3 cc
(S) 380 cc

|  | A | B | C | D |
| :--- | :--- | :--- | :--- | :--- |
| (a) | P | Q | R | S |
| (b) R | S | P | Q |  |
| (c) R | P | S | Q |  |
| (d) Q | P | S | R |  |

Keys are published in this issue. Search now! : For self check table refer page no. 40
$\diamond \diamond$


## PAPER-I

## Section 1 (Maximum Marks : 28)

- This section contains SEVEN questions.
- Each question has FOUR options (a), (b), (c) and (d). ONE OR MORE THAN ONE of these four options is (are) correct.
- For each question, darken the bubble(s) corresponding to all the correct option(s) in the ORS.
- For each question, marks will be awarded in one of the following categories:
Full Marks : +4 If only the bubble(s) corresponding to all the correct option(s) is(are) darkened.
Partial Marks : +1 For darkening a bubble corresponding to each correct option, provided NO incorrect option is darkened.
Zero Mark : O If none of the bubbles is darkened. Negative Marks : -2In all other cases.
- For example, if (a), (c), and (d) are all the correct options for a question, darkening all these three will get +4 marks; darkening only (a) and (d) will get +2 marks; and darkening (a) and (b) will get-2 marks, as a wrong option is also darkened.

1. The colour of the $X_{2}$ molecules of group 17 elements changes gradually from yellow to violet down the group. This is due to
(a) the physical state of $X_{2}$ at room temperature changes from gas to solid down the group
(b) decrease in HOMO-LUMO gap down the group
(c) decrease in $\pi^{*}-\sigma^{*}$ gap down the group
(d) decrease in ionization energy down the group.
2. Addition of excess aqueous ammonia to a pink coloured aqueous solution of $M C l_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(X)$ and $\mathrm{NH}_{4} \mathrm{Cl}$ gives an octahedral complex $Y$ in the presence of air. In aqueous solution, complex $Y$ behaves as 1:3 electrolyte. The reaction of $X$ with excess HCl at room temperature results in the formation of a blue coloured complex $Z$. The calculated spin only magnetic moment of $X$ and $Z$ is 3.87 B.M., whereas it is zero for complex $Y$. Among the following options, which statement(s) is(are) correct?
(a) The hybridization of the central metal ion in $Y$ is $d^{2} s p^{3}$.
(b) When $X$ and $Z$ are in equilibrium at $0^{\circ} \mathrm{C}$, the colour of the solution is pink.
(c) $Z$ is a tetrahedral complex.
(d) Addition of silver nitrate to $Y$ gives only two equivalents of silver chloride.
3. An ideal gas is expanded from $\left(p_{1}, V_{1}, T_{1}\right)$ to ( $p_{2}, V_{2}, T_{2}$ ) under different conditions. The correct statement(s) among the following is(are)
(a) if the expansion is carried out freely, it is simultaneously both isothermal as well as adiabatic.
(b) the work done by the gas is less when it is expanded reversibly from $V_{1}$ to $V_{2}$ under adiabatic conditions as compared to that when expanded reversibly from $V_{1}$ to $V_{2}$ under isothermal conditions
(c) the work done on the gas is maximum when it is compressed irreversibly from $\left(p_{2}, V_{2}\right)$ to ( $p_{1}, V_{1}$ ) against constant pressure $p_{1}$
(d) the change in internal energy of the gas is (i) zero, if it is expanded reversibly with $T_{1}=T_{2}$, and (ii) positive, if it is expanded reversibly under adiabatic conditions with $T_{1} \neq T_{2}$.
4. For a solution formed by mixing liquids $L$ and $M$, the vapour pressure of $L$ plotted against the mole fraction of $M$ in solution is shown in the following figure. Here $x_{L}$ and $x_{M}$ represent mole fractions of $L$ and $M$, respectively, in the solution. The correct statement(s) applicable to this system is(are)

(a) attractive intermolecular interactions between $L-L$ in pure liquid $L$ and $M-M$ in pure liquid $M$ are stronger than those between $L-M$ when mixed in solution
(b) the point $Z$ represents vapour pressure of pure liquid $M$ and Raoult's law is obeyed when $x_{L} \rightarrow 0$
(c) the point $Z$ represents vapour pressure of pure liquid $M$ and Raoult's law is obeyed from $x_{L}=0$ to $x_{L}=1$
(d) the point $Z$ represents vapour pressure of pure liquid $L$ and Raoult's law is obeyed when $x_{L} \rightarrow 1$
5. The IUPAC name(s) of the following compound is(are)
(a) 1-chloro-4-methylbenzene
(b) 4-chlorotoluene
(c) 1-methyl-4-chlorobenzene

(d) 4-methylchlorobenzene.
6. The correct statement(s) for the following addition reactions is(are)
(i)

(ii)

(a) $O$ and $P$ are identical molecules
(b) bromination proceeds through trans-addition in both the reactions
(c) ( $M$ and $O$ ) and ( $N$ and $P$ ) aretwo pairs ofenantiomers
(d) ( $M$ and $O$ ) and ( $N$ and $P$ ) aretwo pairs of diastereomers.
7. The correct statement(s) about the oxoacids, $\mathrm{HClO}_{4}$ and HClO , is(are)
(a) the conjugate base of $\mathrm{HClO}_{4}$ is weaker base than $\mathrm{H}_{2} \mathrm{O}$
(b) the central atom in both $\mathrm{HClO}_{4}$ and HClO is $s p^{3}$ hybridized
(c) $\mathrm{HClO}_{4}$ is formed in the reaction between $\mathrm{Cl}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$
(d) $\mathrm{HClO}_{4}$ is more acidic than HClO because of the resonance stabilization of its anion.

## Section 2 (Maximum Marks : 15)

- This section contains FIVE questions.
- The answer to each question is a SINGLE DIGIT INTEGER ranging from 0 to 9 , both inclusive.
- For each question, darken the bubble corresponding the correct integer in the ORS.
- For each question, marks will be awarded in one of the following categories:
Full Marks : +3 If only the bubble corresponding to the correct answer is darkened.
Zero Marks : 0 In all other cases.

8. The conductance of a 0.0015 M aqueous solution of a weak monobasic acid was determined by using a conductivity cell consisting of platinized Pt electrodes. The distance between the electrodes is 120 cm with an area of cross section of $1 \mathrm{~cm}^{2}$. The conductance of this solution was found to be $5 \times 10^{-7} \mathrm{~S}$. The pH of the solution is 4 . The value of limiting molar conductivity ( $\Lambda_{m}^{\mathrm{o}}$ ) of this weak monobasic acid in aqueous solution is $Z \times 10^{2} \mathrm{~S}$ $\mathrm{cm}^{2} \mathrm{~mol}^{-1}$. The value of $Z$ is
9. The sum of the number of lone pairs of electrons on each central atom in the following species is
$\left[\mathrm{TeBr}_{6}\right]^{2-},\left[\mathrm{BrF}_{2}\right]^{+}, \mathrm{SNF}_{3}$, and $\left[\mathrm{XeF}_{3}\right]^{-}$
(Atomic numbers: $\mathrm{N}=7, \mathrm{~F}=9, \mathrm{~S}=16, \mathrm{Br}=35, \mathrm{Te}=$ 52, $\mathrm{Xe}=54$ )
10. Among the following, the number of aromatic compound(s) is









11. A crystalline solid of a pure substance has a facecentred cubic structure with a cell edge of 400 pm . If the density of the substance in the crystal is $8 \mathrm{~g} \mathrm{~cm}^{-3}$, then the number of atoms present in 256 g of the crystal is $N \times 10^{24}$. The value of $N$ is
12. Among $\mathrm{H}_{2}, \mathrm{He}_{2}^{+}, \mathrm{Li}_{2}, \mathrm{Be}_{2}, \mathrm{~B}_{2}, \mathrm{C}_{2}, \mathrm{~N}_{2}, \mathrm{O}_{2}^{-}$, and $\mathrm{F}_{2}$ the number of diamagnetic species is (Atomic numbers: $\mathrm{H}=1, \mathrm{He}=2, \mathrm{Li}=3, \mathrm{Be}=4, \mathrm{~B}=5, \mathrm{C}=6$, $\mathrm{N}=7, \mathrm{O}=8, \mathrm{~F}=9$ )

## Section 3 (Maximum Marks : 18)

- This section contains SIX questions of matching type.
- This section contains TWO tables (each having 3 columns and 4 rows)
- Based on each table, there are THREE questions
- Each question has FOUR options (a), (b), (c) and (d). ONLY ONE of these four options is correct
- For each question, darken the bubble corresponding to the correct option in the ORS
- For each question, marks will be awarded in one of the following categories:
Full Marks : +3 If only the bubble corresponding to the correct option is darkened.
Zero Marks : 0 If none of the bubbles is darkened
Negative Marks : -1 In all other cases.

Answer Q. 13-15 by appropriately matching the information given in the three columns of the following table.
The wave function, $\psi_{n, l, m_{l}}$ is a mathematical function whose value depends upon spherical polar coordinates $(r, \theta, \phi)$ of the electron and characterized by the quantum numbers $n, l$ and $m_{l}$. Here $r$ is distance from nucleus, $\theta$ is colatitude and $\phi$ is azimuth. In the mathematical functions given in the table, $Z$ is atomic number and $a_{\mathrm{o}}$ is Bohr radius.

| Column 1 | Column 2 | Column 3 |
| :--- | :--- | :--- |
| (I) $1 s$ orbital | (i) $\Psi_{n, l, m_{l}} \propto\left(\frac{Z}{a_{\mathrm{o}}}\right)^{\frac{3}{2}} e^{-\left(Z r / a_{0}\right)}$ | (P) |
| (II) $2 s$ orbital | (ii) One radial node Probability density at nucleus $\propto \frac{1}{a_{0}^{3}}$ |  |

13. For $\mathrm{He}^{+}$ion, the only incorrect combination is
(a) (I) (i) (R)
(b) (II) (ii) (Q)
(c) (I) (i) (S)
(d) (I) (iii) (R)
14. For the given orbital in Column 1, the only correct combination for any hydrogen-like species is
(a) (I) (ii) (S)
(b) (IV) (iv) (R)
(c) (III) (iii) (P)
(d) (II) (ii) (P)
15. For hydrogen atom, the only correct combination is
(a) (II) (i) (Q)
(b) (I) (iv) (R)
(c) (I) (i) (P)
(d) (I) (i) (S)

Answer Q. 16-18 by appropriately matching the information given in the three columns of the following table.
Columns 1,2 , and 3 contain starting materials, reaction conditions, and type of reactions, respectively.

|  | Column 1 | Column 2 | Column 3 |
| :--- | :--- | ---: | :---: |
| (I) | Toluene | (i) $\mathrm{NaOH} / \mathrm{Br}_{2}$ | (P) Condensation |


| (II) Acetophenone | (ii) $\mathrm{Br}_{2} / h \nu$ | (Q) Carboxylation |
| :--- | :--- | :--- |
| (III) Benzaldehyde | (iii) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O} /$ <br> $\mathrm{CH}_{3} \mathrm{COOK}$ | (R) Substitution |
| (IV) Phenol | (iv) $\mathrm{NaOH} / \mathrm{CO}_{2}$ | (S) Haloform |

16. The only correct combination in which the reaction proceeds through radical mechanism is
(a) (II) (iii) (R)
(b) (III) (ii) (P)
(c) (IV) (i) (Q)
(d) (I) (ii) (R)
17. For the synthesis of benzoic acid, the only correct combination is
(a) (III) (iv) (R)
(b) (IV) (ii) (P)
(c) (II) (i) (S)
(d) (I) (iv) (Q)
18. The only correct combination that gives two different carboxylic acids is
(a) (IV) (iii) (Q)
(b) (I) (i) (S)
(c) (III) (iii) (P)
(d) (II) (iv) (R)

## SECTION 1 (Maximum Marks : 21)

- This section contains SEVEN questions.
- Each question has FOUR options (a), (b), (c) and (d). ONLY ONE of these four options is correct.
- For each question, darken the bubble corresponding to the correct option in the ORS.
- For each question, marks will be awarded in one of the following categories:
Full Marks : +3 If only the bubble corresponding to the correct option is darkened.
Zero Marks: 0 If none of the bubbles is darkened. Negative Marks : -1 In all other cases.

1. The standard state Gibbs free energies of formation of $\mathrm{C}_{\text {(graphite) }}$ and $\mathrm{C}_{\text {(diamond) }}$ at $T=298 \mathrm{~K}$ are
$\Delta_{f} G^{\circ}\left[\mathrm{C}_{(\text {graphite })}\right]=0 \mathrm{~kJ} \mathrm{~mol}^{-1}$;
$\Delta_{f} G^{\circ}\left[\mathrm{C}_{\text {(diamond) }}\right]=2.9 \mathrm{~kJ} \mathrm{~mol}^{-1}$
The standard state means that the pressure should be 1 bar, and substance should be pure at a given temperature. The conversion of graphite $\left[\mathrm{C}_{(\text {graphite })}\right]$ to diamond $\left[\mathrm{C}_{\text {(diamond) }}\right.$ ] reduces its volume by $2 \times 10^{-6} \mathrm{~m}^{3} \mathrm{~mol}^{-1}$. If $\mathrm{C}_{\text {(graphite) }}$ is converted to $\mathrm{C}_{\text {(diamond) }}$ isothermally at $T=298 \mathrm{~K}$, the pressure at which $\mathrm{C}_{\text {(graphite) }}$ is in equilibrium with $\mathrm{C}_{\text {(diamond) }}$, is [Useful information: $1 \mathrm{~J}=1 \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2} ; 1 \mathrm{~Pa}=1 \mathrm{~kg} \mathrm{~m}^{-1} \mathrm{~s}^{-2}$; $1 \mathrm{bar}=10^{5} \mathrm{~Pa}$ ]
(a) 29001 bar
(b) 58001 bar
(c) 14501 bar
(d) 1450 bar
2. Which of the following combination will produce $\mathrm{H}_{2}$ gas?
(a) Cu metal and conc. $\mathrm{HNO}_{3}$
(b) Zn metal and $\mathrm{NaOH}_{(a q)}$
(c) Au metal and $\mathrm{NaCN}_{(a q)}$ in the presence of air
(d) Fe metal and conc. $\mathrm{HNO}_{3}$
3. For the following cell,
$\mathrm{Zn}_{(s)}\left|\mathrm{ZnSO}_{4(a q)}\right|\left|\mathrm{CuSO}_{4(a q)}\right| \mathrm{Cu}_{(s)}$
when the concentration of $\mathrm{Zn}^{2+}$ is 10 times the concentration of $\mathrm{Cu}^{2+}$, the expression for $\Delta G$
(in $\mathrm{J} \mathrm{mol}^{-1}$ ) is
[ $F$ is Faraday constant; $R$ is gas constant; $T$ is temperature; $E^{\circ}{ }_{\text {cell }}=1.1 \mathrm{~V}$ ]
(a) $2.303 R T-2.2 F$
(b) $-2.2 F$
(c) $2.303 R T+1.1 F$
(d) 1.1 F
4. The order of basicity among the following compounds is

I

II

III

IV
(a) IV $>$ II $>$ III $>$ I
(b) II $>$ I $>$ IV $>$ III
(c) I $>$ IV $>$ III $>$ II
(d) IV $>$ I $>$ II $>$ III
5. Pure water freezes at 273 K and 1 bar. The addition of 34.5 g of ethanol to 500 g of water changes the freezing point of the solution. Use the freezing point depression constant of water as $2 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$. The figures shown below represent plots of vapour pressure (V.P.) versus temperature ( $T$ ).
[Molecular weight of ethanol is $46 \mathrm{~g} \mathrm{~mol}^{-1}$ ]
Among the following, the option representing change in the freezing point is
(a)

(b)

(c)

(d)

6. The order of the oxidation state of the phosphorus atom in $\mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{H}_{3} \mathrm{PO}_{4}, \mathrm{H}_{3} \mathrm{PO}_{3}$, and $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$ is
(a) $\mathrm{H}_{3} \mathrm{PO}_{4}>\mathrm{H}_{3} \mathrm{PO}_{2}>\mathrm{H}_{3} \mathrm{PO}_{3}>\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$
(b) $\mathrm{H}_{3} \mathrm{PO}_{2}>\mathrm{H}_{3} \mathrm{PO}_{3}>\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}>\mathrm{H}_{3} \mathrm{PO}_{4}$
(c) $\mathrm{H}_{3} \mathrm{PO}_{3}>\mathrm{H}_{3} \mathrm{PO}_{2}>\mathrm{H}_{3} \mathrm{PO}_{4}>\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$
(d) $\mathrm{H}_{3} \mathrm{PO}_{4}>\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}>\mathrm{H}_{3} \mathrm{PO}_{3}>\mathrm{H}_{3} \mathrm{PO}_{2}$
7. The major product of the following reaction is

(a)

(b)

(c)

(d)


## SECTION 2 (Maximum Marks : 28)

- This section contains SEVEN questions.
- Each question has FOUR options (a), (b), (c) and (d). ONE OR MORE THAN ONE of these four option(s) is(are) correct.
- For each question, darken the bubble(s) corresponding to all the correct option(s) in the ORS.
- For each question, marks will be awarded in one of the following categories:
Full Marks : + 4 If only the bubble(s) corresponding to all the correct option(s) is(are) darkened.
Partial Marks : +1 For darkening a bubble corresponding to each correct option, provided NO incorrect option is darkened.
Zero Marks: 0 If none of the bubbles is darkened.
Negative Marks : -2 In all other cases.
- For example, if (a), (c), and (d) are all the correct options for a question, darkening all these three will get +4 marks; darkening only (a) and (d) will get +2 marks; and darkening (a) and (b) will get -2 marks, as a wrong option is also darkened.

8. The correct statement(s) about surface properties is (are)
(a) cloud is an emulsion type of colloid in which liquid is dispersed phase and gas is dispersion medium
(b) the critical temperatures of ethane and nitrogen are 563 K and 126 K , respectively. The adsorption of ethane will be more than that of nitrogen on same amount of activated charcoal at a given temperature
(c) adsorption is accompanied by decrease in enthalpy and decrease in entropy of the system
(d) Brownian motion of colloidal particles does not depend on the size of the particles but depends on viscosity of the solution.
9. Compounds $P$ and $R$ upon ozonolysis produce $Q$ and $S$ respectively. The molecular formula of $Q$ and $S$ is $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}$. Q undergoes Cannizzaro reaction but not haloform reaction, whereas $S$ undergoes haloform reaction but not Cannizzaro reaction.
(i)

(ii)


The option(s) with suitable combination of $P$ and $R$, respectively, is (are)
(a)
 and

(b)
 and


(c)

and

(d)

and

10. For the following compounds, the correct statement(s) with respect to nucleophilic substitution reactions is (are)

(a) I and II follow $\mathrm{S}_{\mathrm{N}} 2$ mechanism
(b) compound IV undergoes inversion of configuration
(c) the order of reactivity for I, III, and IV is: IV $>$ I $>$ III
(d) I and III follow $\mathrm{S}_{\mathrm{N}} 1$ mechanism.
11. In a biomolecular reaction, the steric factor $P$ was experimentally determined to be 4.5 . The correct option(s) among the following is(are)
(a) experimentally determined value of frequency factor is higher than that predicted by Arrhenius equation
(b) the value of frequency factor predicted by Arrhenius equation is higher than that determined experimentally
(c) the activation energy of the reaction is unaffected by the value of the steric factor
(d) since $P=4.5$, the reaction will not proceed unless an effective catalyst is used.
12. The option(s) with only amphoteric oxides is(are)
(a) $\mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{BeO}, \mathrm{SnO}, \mathrm{SnO}_{2}$
(b) $\mathrm{ZnO}, \mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{PbO}, \mathrm{PbO}_{2}$
(c) $\mathrm{NO}, \mathrm{B}_{2} \mathrm{O}_{3}, \mathrm{PbO}, \mathrm{SnO}_{2}$
(d) $\mathrm{Cr}_{2} \mathrm{O}_{3}, \mathrm{CrO}, \mathrm{SnO}, \mathrm{PbO}$
13. Among the following, the correct statement(s) is(are)
(a) $\mathrm{Al}\left(\mathrm{CH}_{3}\right)_{3}$ has the three-centre two-electron bonds in its dimeric structure
(b) $\mathrm{BH}_{3}$ has the three-centre two-electron bonds in its dimeric structure
(c) the Lewis acidity of $\mathrm{BCl}_{3}$ is greater than that of $\mathrm{AlCl}_{3}$
(d) $\mathrm{AlCl}_{3}$ has the three-centre two-electron bonds in its dimeric structure.
14. For a reaction taking place in a container in equilibrium with its surroundings, the effect of temperature on its equilibrium constant $K$ in terms of change in entropy is described by
(a) with increase in temperature, the value of $K$ for endothermic reaction increases because unfavourable change in entropy of the surroundings decreases
(b) with increase in temperature, the value of $K$ for exothermic reaction decreases because favourable change in entropy of the surroundings decreases
(c) with increase in temperature, the value of $K$ for exothermic reaction decreases because the entropy change of the system is positive
(d) with increase in temperature, the value of $K$ for endothermic reaction increases because the entropy change of the system is negative.

## Section 3 (Maximum Marks : 12)

- This section contains TWO paragraphs.
- Based on each paragraph, there are TWO questions.
- Each question has Four options (a), (b), (c) and (d). ONLY ONE of these four options is correct.
- For each question, darken the bubble corresponding to the correct option in the ORS.
- For each question, marks will be awarded in one of the following categories:
Full Marks : +3 If only the bubble corresponding to the correct option is darkened.
Zero Marks : 0 In all other cases.


## PARAGRAPH 1

Upon heating $\mathrm{KClO}_{3}$ in the presence of catalytic amount of $\mathrm{MnO}_{2}$, a gas $W$ is formed. Excess amount of $W$ reacts with white phosphorus to give $X$. The reaction of $X$ with pure $\mathrm{HNO}_{3}$ gives $Y$ and $Z$.
15. $Y$ and $Z$ are, respectively
(a) $\mathrm{N}_{2} \mathrm{O}_{5}$ and $\mathrm{HPO}_{3}$
(b) $\mathrm{N}_{2} \mathrm{O}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$
(c) $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{H}_{3} \mathrm{PO}_{3}$
(d) $\mathrm{N}_{2} \mathrm{O}_{4}$ and $\mathrm{HPO}_{3}$
16. $W$ and $X$ are, respectively
(a) $\mathrm{O}_{2}$ and $\mathrm{P}_{4} \mathrm{O}_{6}$
(b) $\mathrm{O}_{2}$ and $\mathrm{P}_{4} \mathrm{O}_{10}$
(c) $\mathrm{O}_{3}$ and $\mathrm{P}_{4} \mathrm{O}_{6}$
(d) $\mathrm{O}_{3}$ and $\mathrm{P}_{4} \mathrm{O}_{10}$

## PARAGRAPH 2

The reaction of compound $P$ with $\mathrm{CH}_{3} \mathrm{MgBr}$ (excess) in $\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O}$ followed by addition of $\mathrm{H}_{2} \mathrm{O}$ gives $Q$. The compound $Q$ on treatment with $\mathrm{H}_{2} \mathrm{SO}_{4}$ at $0^{\circ} \mathrm{C}$ gives $R$. The reaction of $R$ with $\mathrm{CH}_{3} \mathrm{COCl}$ in the presence of anhydrous $\mathrm{AlCl}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ followed by treatment with $\mathrm{H}_{2} \mathrm{O}$ produces compound $S$. [Et in compound $P$ is ethyl group]

17. The reactions, $Q$ to $R$ and $R$ to $S$, are
(a) Friedel-Crafts alkylation and Friedel-Crafts acylation
(b) dehydration and Friedel-Crafts acylation
(c) Friedel-Crafts alkylation, dehydration and Friedel-Crafts acylation
(d) aromatic sulphonation and Friedel-Crafts acylation.
18. The products $S$ is
(a)

(b)

(c)

(d)


JEE ADVANCED
ANSWER KEY
Paper-I

1. $(b, c)$
2. $(b, d)$
3. $(a, b, c)$
4. $(a, b, c)$
5. $(a, d)$
6. $(a, b)$
7. (2)
8. (a)
9. (6)
10. (6)
11. (5)
12. (d)
13. (c)
14. (d)
15. (d)
16. (d)
(d)
17. (c)
18. (c)

Paper-II

1. (c)
2. (b)
3. (a)
4. (d)
5. (b)
6. (d)
7. (c)
8. $(b, c)$
9. $(b, c)$
10. $(a, b, d)$
11. $(a, c)$
12. $(a, b)$
13. $(a, b, c)$
14. $(a, b)$
15. (a)
16. (b)
17. (a)
18. (c)

For detail solutions refer to :
MTG JEE Advanced Explorer, 40 years JEE Advanced Chapterwise Solutions.
$\diamond \diamond$

## CHEMISTRY MUSING

## SOLUTION SET 47

1. (b) : $2 \mathrm{H}^{+}+\mathrm{NO}_{3}^{-}+e^{-} \longrightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O} ; E^{\circ}=0.790 \mathrm{~V}$
$7 \mathrm{H}^{+}+\mathrm{NO}_{3}^{-}+6 e^{-} \longrightarrow \mathrm{NH}_{2} \mathrm{OH}+2 \mathrm{H}_{2} \mathrm{O} ; \quad E^{\circ}=0.731 \mathrm{~V}$
Since $E$ values for both the reactions are same,

$$
E_{\mathrm{NO}_{3}^{-} / \mathrm{NO}_{2}}^{\circ}=E_{\mathrm{NO}_{3}^{-} / \mathrm{NH}_{2} \mathrm{OH}}
$$

or $\quad E_{\mathrm{NO}_{3}^{-} / \mathrm{NO}_{2}}^{\circ}+\frac{0.059}{1} \log \frac{\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{NO}_{3}^{-}\right]}{\left[\mathrm{NO}_{2}\right]}$

$$
E_{\mathrm{NO}_{3}^{-} / \mathrm{NH}_{2} \mathrm{OH}}^{\circ}+\frac{0.059}{1} \log \frac{\left[\mathrm{H}^{+}\right]^{7}\left[\mathrm{NO}_{3}^{-}\right]}{\left[\mathrm{NO}_{2} \mathrm{OH}\right]}
$$

or $0.790+\frac{0.059}{1} \log \left[\mathrm{H}^{+}\right]^{2}=0.731+\frac{0.059}{6} \log \left[\mathrm{H}^{+}\right]^{7}$
or $0.790+0.118 \log \left[\mathrm{H}^{+}\right]=0.731+0.0688 \log \left[\mathrm{H}^{+}\right]$
or $-\log \left[\mathrm{H}^{+}\right]=\frac{0.059}{0.0492}=1.1992$
$\mathrm{pH}=1.1992$
2. (c) :


> (Cine product)
3. (b)
4. (b) : Moles of C in $\mathrm{CO}_{2}=1 \times$ moles of $\mathrm{CO}_{2}$

$$
=1 \times \frac{0.44}{44}=0.01
$$

Weight of $\mathrm{C}=0.01 \times 12=0.12 \mathrm{~g}$
Moles of H in $\mathrm{H}_{2} \mathrm{O}=2 \times$ moles of $\mathrm{H}_{2} \mathrm{O}$

$$
=2 \times \frac{0.09}{18}=0.01
$$

Weight of $\mathrm{H}=0.01 \times 1=0.01 \mathrm{~g}$
Weight of $\mathrm{O}=\mathrm{Wt}$. of acid $-(\mathrm{Wt}$. of $\mathrm{C}+\mathrm{Wt}$. of H$)$

$$
=0.45-(0.12+0.01) \mathrm{g}=0.32 \mathrm{~g}
$$

Moles of $\mathrm{O}=\frac{0.32}{16}=0.02$
Moles of $\mathrm{C}: \mathrm{H}: \mathrm{O}=0.01: 0.01: 0.02=1: 1: 2$
Empirical formula is $\mathrm{CHO}_{2}$.
Now, 0.76 g of Ag salt of the dibasic acid gives 0.54 g of pure silver, i.e.,

$$
\text { dibasic acid } \rightarrow \underset{0.76 \mathrm{~g}}{\mathrm{Ag} \text { salt } \rightarrow \underset{0.54 \mathrm{~g}}{\mathrm{Ag}}}
$$

We know that the Ag salt of the dibasic acid is formed by the replacement of 2 H atoms of the acid by 2 Ag atoms. Applying POAC for the Ag atoms,
moles of Ag atom in Ag salt $=$ moles of Ag in the product $2 \times$ moles of Ag salt $=$ moles of Ag in the product

$$
2 \times \frac{0.76}{\mathrm{~mol} . \mathrm{wt.} \mathrm{of} \mathrm{Ag} \mathrm{salt}}=\frac{0.54}{108}
$$

Molecular weight of the salt $=304$
$\therefore$ Molecular weight of the acid
$=$ mol. wt. of salt $-2 \times$ at. wt. of $\mathrm{Ag}+2 \times$ at. wt. of H
$=304-216+2=90$
Hence, $\frac{\text { molecular formula weight }}{\text { empirical formula weight }}=\frac{90}{45}=2$
$\therefore$ Molecular formula is $\left(\mathrm{CHO}_{2}\right)_{2}$, i.e., $(\mathrm{COOH})_{2}$.
5. (d)
6. (a) : From Raoult's law,

$$
\begin{aligned}
& \frac{p^{\circ}-p_{s}}{p_{s}}=\frac{w \times M}{m \times W} \\
& \therefore \quad \frac{w}{m \times W}=\frac{17.540-17.536}{17.536 \times 18}=1.267 \times 10^{-5} \\
& \therefore \quad \text { Molality }=\frac{w}{m \times W} \times 1000=1.267 \times 10^{-5} \times 10^{3} \\
& =1.267 \times 10^{-2}=\text { Molarity }=\text { Conc. of } B \mathrm{OH} \\
& \text { For } \begin{array}{cc}
\mathrm{BOH} & \rightleftharpoons \\
1 & B^{+}+\mathrm{OH}^{-} \\
& 0 \\
(1-\alpha) & \alpha \\
0
\end{array}
\end{aligned}
$$

Molarity is also given as $1 \times 10^{-2} \mathrm{M}$
$\therefore \quad \frac{\text { Exp. value of molarity }}{\text { Normal value of molarity }}=1+\alpha$
$\therefore \frac{1.267 \times 10^{-2}}{1 \times 10^{-2}}=1+\alpha \quad \therefore \quad \alpha=0.267$
Now, $K_{b}=\frac{C \alpha^{2}}{(1-\alpha)}=\frac{0.01 \times 0.267 \times 0.267}{(1-0.267)}=9.74 \times 10^{-4}$
7. (b) $2 \mathrm{KO}_{2}+\mathrm{S} \xrightarrow{\Delta} \mathrm{K}_{2} \mathrm{SO}_{A} \xrightarrow{\mathrm{CaCl}_{2}} \underset{\substack{B \\ \text { (ppt.) }}}{\mathrm{CaSO}_{4} \downarrow} \downarrow+2 \mathrm{KCl}$

(turns lead acetate
paper black)
8. (d) :


9. (1) : Aromatic aldehyde gives benzoin condensation. Benzaldehyde derivatives with strong electron donating group at ortho- and para-positions do not give benzoin condensation.
10. (3)

Now, mtG
0886
.888
icarring Media


## Subscribe to MTG magazines today.



Our 2017 offers are here. Pick the combo best suited for your needs. Fill-in the

Subscription Form at the bottom and mail it to us today. If in a rush, log on to www.mtg.in now to subscribe online.
On cover price of ₹ 30 -each.


## About MTG's Magazines

Perfect for students who like to prepare at a steady pace, MTG's magazines-Physics For You, Chemistry Today, Mathematics Today \& Biology Today-ensure you practice bit by bit, month by month, to build all-round command over key subjects. Did you know these magazines are the only source for solved test papers of all national and state level engineering and medical college entrance exams?

Trust of over 1 Crore readers since 1982.

- Practice steadily, paced month by month, with very-similar \& model test papers
- Self-assessment tests for you to evaluate your readiness and confidence for the big exams
- Content put together by a team
comprising experts and members from MTG's well-experienced Editorial Board
Stay up-to-date with important information such as examination dates, trends \& changes in syllabi All-round skill enhancement -
confidence-building exercises, new studying techniques, time management, even advice from past JEE/NEET toppers Bonus: Exposure to competition at a global level, with questions from Intl. Olympiads \& Contests


[^1]
## $m t G$

## The only thing you NEED for excellence in Class -12 Boards



## CBSE CHAMPION Chapterwise-Topicwise Solved Papers Series

CBSE CHAMPION Chapterwise-Topicwise Solved Papers Series contains topicwise questions and solutions asked over last 11 years in CBSE-Board Class-12 examination. Questions are supported with topicwise graphical analysis of previous 11 years CBSE Board questions as well as comprehensive and lucid theory. The questions in each topic have been arranged in descending order (2017-2007) as per their marking scheme. Questions from Delhi, All India, Foreign and Compartment papers are included. This ensures that all types of questions that are necessary for Board exam preparation have been covered.
Important feature of these books is that the solutions to all the questions have been given according to CBSE marking scheme. CBSE sample paper and practice papers are also supplemented.
Examination papers for Class-12 Boards are based on a certain pattern. To excel, studying right is therefore more important than studying hard, which is why we created this series.


Available at all leading book shops throughout India. For more information or for help in placing your order: Call 0124-6601200 or email info@mtg.in


## $m \in G$

## The most comprehensive question bank books that you cannot afford to ignore



30 Years' Physics, Chemistry \& Biology contain not only chapterwise questions that have appeared over the last 30 years in NEET/AIPMT, but also full solutions, that too by experts. Needless to say, these question banks are essential for any student to compete successfully in NEET.

## HIGHLIGHTS:

- Chapterwise questions of last 30 years' (2017-1988) of NEET/AIPMT
- Chapterwise segregation of questions to help you assess the level of effort required to succeed
- An unmatched question bank series with close to 1,000 pages having detailed solutions by experts
- Fully solved questions of NEET 2017 included


Scan now with your smartphone or tablet*

Available at all leading book shops throughout India. For more information or for help in placing your order: Call 0124-6601200 or email info@mtg.in
*Application to read $Q R$ codes required

## $m \in G$

## How to choose the right answer, fast?



## The answer is practice...

Our team has seen that in NEET, AIIMS, JIPMER and JEE, Multiple Choice Questions (MCQs) are based on the NCERT syllabus. Largely !! With Objective NCERT at your FINGERTIPS, you can become a pro at handling MCQs. Practice to increase your accuracy and improve timing with a bank of over 15,000 questions, all framed from NCERT course books. Don't take our word, have a look what some of our readers have to say...

## Features:

- Chapterwise student-friendly synopses for quick-and-easy revision
- Topicwise MCQs to check your progress
- NCERT Exemplar MCQs
- Assertion \& Reason questions for an edge in your AllMS/JEE preparation
- HOTS MCQs to boost your concepts
- 6 Practice papers for self-assessment

Sanjay Shankar says, "Awesome book!! Everything is just perfect and the collaboration of the $11^{\text {th }}$ and $12^{\text {th }}$ std. just made it easier for us and with this less price. I will definitely recommend this book for every NEET preparing student."
Shweta says, "Must read for good score in NEET. Many questions in NEET are from this book in last 3 years. It also covers outside NCERT topics. Nice book.'

Vijay says, "This book is ideal for practising MCQs (chapterwise). It appreciably covers all the important as well as less important questions. HOTS and sample question papers are provided as well. No demerits of the book can be listed. Though, it is not light weighted and thus cannot be carried, you wouldn't get bored revising each chapter from the revision section and then answering the questions. The language is appropriate and lucid as well as easy to understand."

SJ.Uday says, "It is an awesome book. Firstly I was scared how it will be, but after having it, I was amazed. One must have this book who is interested in going for the NEET examination."
Sonal Singh says, "Book is very good. As it contains all the topicwise questions from every topic of NCERT, one can develop a question solving ability and also understand the basic concepts".

Sunehri says, "This book contains over 150 MCQs in each chapter, has categories like MCQs, NCERT, HOTS based questions, AIIMS assertion reasoning questions. Every chapter gives a short summary of chapter. Great book for entrance exams like NEET, AIIMS etc.

Prashant says,"The book is really awesome. It makes you cover up whole NCERT in a simple way. Solving the problems can increase your performance in exam. I would suggest each \& every NEET candidate to solve the book. The book is also error free; not like other publications books which are full of errors."
Arka says, "It is a nice question bank of NCERT. I think it is the best of its kind. The book is a must to prepare for NEET."


Scan now with your smartphone or tablet
Application to read QR codes required

## mt $G$

MTG Learning Media (P) Ltd.
Plot \#99, Sector 44, Gurgaon - 122003 (HR)

Available at all leading book shops throughout India.
For more information or for help in placing your order, Call 0124-6601200 or e-mail:info@mtg.in


# Inviting JEE and NEET aspirants 

to participate in the SOF National Science Olympiad to see where they stand vis-à-vis competition


> SOF NATIONAL SCIENCE OLYMPIAD

> NOV. 9 \& NOV. 23


Inspiring Young Minds
Through Knowledge Olympiads

With much in common with competitive exams held each year for admission into leading engineering \& medical colleges, the SOF National Science Olympiad is a great pre-testing platform for students to assess their chances of success in JEE or NEET etc. Millions of students compete in the SOF Olympiads. To participate, all you need to do is contact your School Principal or your schools SOF Olympiads Coordinator immediately. For more info, log on to www.sofworld.org. Or just scan the QR code with your smartphone or tablet.

Registrations closing soon. Hurry! Contact your Principal / School SOF Olympiads Coordinator today.

## Study right. Dig deep.

## Build a solid foundation for success

 in JEE Main

Are you a do-it-yourself type of a student? Then for success in JEE Main, choose MTG's JEE Main combo, comprising coursebooks for Physics, Chemistry \& Mathematics. This combo is all class 11 and 12 students need for a solid and deep understanding of concepts in these three key subjects.

## FEATURES:

- Based on latest pattern of JEE Main
- Full of graphic illustrations \& MCQs for deep understanding of concepts
- Covers the entire syllabus
- NCERT Drill MCQs framed from NCERT Books
- 11 Years (2017-2007) Previous Years MCQs of JEE Main / AIEEE
- 2017 JEE Main (Offline \& Online) Solved Paper included

Note: Coursebooks are also available separately.

Scan now with your smartphone or tablet Application to read QR codes required

Available at all leading book shops throughout India. To buy online visit www.mtg.in.
For more information or for help in placing your order, call 0124-6601200 or e-mail: info@mtg.in


Admission cum Scholarship Test (ACST) Dates: 9th, 16th \& 23rd July, 2017


Registered Office: Aakash Tower, 8, Pusa Road, New Delhi-110005. Ph.: (011) 47623456 I E-mail: iitjee@aesl.in / medical@aesl.in


[^0]:    ${ }^{*}$ Institute of Chemistry (IOC)- Asansol, Durgapur, Dhanbad, Burdwan, Kolkata, Jamshedpur, Bokaro, Patna

[^1]:    E-mail subscription@mtg.in. Visit www.mtg.in to subscribe online. Call (0)8800255334/5 for more info.

