iranchembook.ir/edu

Chemistry

JEE

Final Touch
Fast Track Revision
THERMODYNAMICS AND THERMOCHEMISTRY EQUILIBRIUM REDOX REACTIONS FROM CLASS 11 SYLLABUS

ELECTROCHEMISTRY CHEMICAL KINETICS METALLURGY FROM CLASS 12 SYLLABUS

TEST Tưner

Test Series for JEE Main \& Advanced JEE MAIN Scale Up JEE MAIN Scale Up JEE ADVANCED Scale Up

TEST Zorm

Test Series for Board Preparations

TARGET
 JEE 2016

getset go FOR EXAMS 2016

*arihant iSucceed

for CBSE Class XII

Only Sample Question Papers According to the Latest CBSE Pattern

CONTENTS

02FROM THE EDITOR'S DESK CONCEPTUALISE CHEMISTRY
04 JEE FINAL TOUCH
Fast Track Revision @ Class 11th Syllabus
TEST TUNER 1
JEE Main Scale Up
TEST TUNER 2
JEE Main Scale Up
TEST TUNER 3
JEE Advanced Scale Up
TEST TUNER 4
AIPMT Scale Up 46 48
PROBLEM SOLVING STRATEGY CONCEPT MAP
87805077789195

JEE FINAL TOUCH

Fast Track Revision @ Class 12th Syllabus

DO YOU KNOW

SPECTRUM FOR YOU
JEE ADVANCED PRACTICE
TEST ZOOM
Board Exam Scale Up
TEST ZOOM
Board Exam Scale Up

PARTICIPATE \& WIN

FROM THE EDITOR'S DESK

CONCEPTUALISE CHEMISTRY

Chemistry is the most dependable subject among all the three. It may be the most favourite for some and may be the scariest for others. Actually in my opinion some of the students have the aptitude of this subject while others do not. So those who have the aptitude of this subject like it most, while others develop a fear for this subject.

For me Chemistry is the mysterious subject. (Chemistry - che + mistry or mystry). Imagine nobody has seen electron till date but many of us has written books on it. Likewise nobody has seen interaction type between the particles during the reaction but the explanation or mechanisms of almost all reactions are there with us. Actually for that someone has to jump into the test tube while reaction is going on. So in a way it is a bit different and unique. Before discussing more about the nature of this subject it is better to understand its importance for JEE. As mentioned in the beginning it is the most dependable subject for JEE which simply indicates its importance. As far as my experience and analysis says Physics and Maths are the two subjects on the basis of which the selection of an aspirant in IIT is determined. Chemistry on the other hand is responsible for the merit position of an aspirant. This analysis is based on the fact that whenever a comparison is made between the marks of a high ranker and low ranker in IIT-JEE, the significant difference is visible only in the Chemistry marks, while the marks of Physics and Maths remain more or less same. Naturewise I consider this subject as exactly opposite to that of physics i.e. for me

$$
\longleftarrow \text { Physics } \quad \text { Chemistry } \longrightarrow
$$

Now you will say HOW? Or Why I consider so?
My answer for this How and Why is very clear and based upon following assumptions:
You can yourself observe the same i.e. in the case of physics theory is developed first followed by practicals or applications to verify it while in the case of chemistry practicals (reactions) occur first and later on the related theory is developed on the basis of its end results.

Thus, the placement of both theory and practicals is opposite which in turn, make them opposite naturewise. This is the only reason why some students have a good command over:

1. Physics and Maths with the fear of chemistry or
2. Chemistry and Maths with the fear of physics.
However, the students with equal or almost equal command over Physics and Chemistry are comparatively less. Naturewise one more interesting observation can be made about these subjects, i.e. as Physics involves verification of theory given through practicals or applications, hence the end results in the case of this subject are many and variable.
The more questions with marks like kyon or why, how etc., you apply, the more variability you can achieve. However, such a pattern is not applicable in chemistry. Here, the end result is one and that is certain, means it cannot be changed and we have to develop the theory in accordance with the end result.
That's why in this particular subject such type of questions are of lesser importance.

MANTRAS TO CAPTURE THE MYSTERIOUS CHEMISTRY

Now, here the compulsion is that the theory must be developed in accordance with the result we got, instead the generalised perception about acids written above. In more simple words, we can say that in chemistry, we have limitations i.e. the limitations of end results of the reactions and as these end results are certain (not changeable) hence, we have to think or develop our concept logically in accordance with the situation. That's why the theory in chemistry is not the 'certain theory' rather, it is the 'most probable theory'. Further as the end result may change with change in situations hence, one may found 'exceptions' to the theory developed more frequently as compared to any other subject. So while going for chemistry remember!

1. There will be certain end result of any chemical reaction which limits our working arena technically.
2. The end result may change in accordance with situations, thus in turn give birth to so called 'exceptions' in chemistry.
3. Most of the theories or rules covered in chemistry are results based and as nobody has seen interacting particles in a test tube hence, these theories or rules are considered under the 'most probable' category.
4. In the purview of first three statements, we can conclude that the aptitude of chemistry involves explorations into the subject with very limited 'kyon' or 'why' or 'how' like punctuations.
5. Beside the above written aspects, language plays a very important role in tackling chemistry. A small twist in language changes the entire meaning of the question. So, nature wise a substantial control over language is required along with the aptitude to grip this subject properly.
Keep only one thing in mind:

"It's the constant and determined effort that breaks down all resistance, sweeps away all obstacles"

Claude M. Bristol

@CLASS XISYLLABUS JEE Final Touch Fast Track Revision

Thermodynamics and Thermochemistry

It is a branch of physical chemistry in which we study about the energy change associated with chemical reaction.

Enthalpy of a Reaction ($\Delta \mathrm{H}$)

Mostly chemical reactions in the laboratory are carried out in open systems. The atmospheric pressure does not change during the reaction, so the reaction occurs at constant pressure. The heat released or absorbed during the reaction at constant pressure is known as enthalpy of reaction.
e.g. $\quad \mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HCl}(\mathrm{g}) ; \Delta H=-44 \mathrm{kcal}$

Enthalpy of a reaction $(\Delta H)=$ Sum of enthalpies of products $\left(\Sigma H_{P}\right)$ - sum of enthalpies of reactants $\left(\Sigma H_{R}\right)$.

Standard Enthalpy of a Reaction (ΔH°)

When enthalpy of a reaction is determined at $25^{\circ} \mathrm{C}$ temperature and 1 atm pressure, enthalpy of reaction is referred as standard enthalpy of reaction.

Exothermic and Endothermic Reactions

- The chemical reaction in which heat is evolved during the course of reaction, is known as exothermic reaction. e.g. $\quad \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta H=-393.0 \mathrm{~kJ}$
- The chemical reaction in which heat is absorbed during the course of reaction, is known as endothermic reaction.
e.g. $\quad 2 \mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) ; \Delta H=+92.3 \mathrm{~kJ}$

Flameless Heaters

These are used where cooking is difficult or impossible. Much of the development work in this area was done for military uses. In combat, lighting a fire is not advisable if you are trying to keep your location secret. These are also useful where electricity is not available.
Flameless heaters rely on an exothermic reaction to provide hot food. In a heatermeal products, the food is sealed inside a metal foil pouch and this is placed inside a plastic bag containing a heating pad made up of a mixture of magnesium and iron. To start the heating process, a little amount of water $(\sim 30 \mathrm{~mL})$ is poured into the plastic bag. An exothermic reaction starts and the foil pouch containing the food gets hot. The heaters will heat 300 g of food or water to $80^{\circ} \mathrm{C}$ from room temperature in about 10 min .

Factors Affecting Enthalpy of a Reaction

1. Physical state of reactants and products Reactants having different allotropic forms or physical states have different enthalpies during course of their reactions. It is due to different allotropic forms are held by forces of different attraction strengths.
2. Reaction conditions At constant pressure, heat change associated with chemical reaction is equal to enthalpy change (ΔH) while at constant volume it is equal to internal energy change (ΔU).
ΔH and ΔU are related as, $\Delta H=\Delta U+\Delta n_{g} R T$
where, $\Delta n_{g}=$ number of moles of gaseous products

- number of moles of gaseous reactants.

\{JEE FINAL TOUCH

3. Temperature Values of ΔH and ΔU vary with temperature according to following Kirchhoff's equations,

$$
\left.\begin{array}{rl}
\Delta H_{2}-\Delta H_{1} & =\Delta C_{p}\left(T_{2}-T_{1}\right) \text { or } \Delta H_{2}-\Delta H_{1}
\end{array}=\int_{T_{1}}^{T_{2}} C_{p} d T\right] \text {. } \quad \text { or } \Delta U_{2}-\Delta U_{1}=\int_{T_{1}}^{T_{2}} C_{V} d T
$$

4. Amount of reactant ΔH and ΔU depend upon amount of reactant, e.g. 20 g of carbon produces more heat than 2.0 g of carbon on combustion.

Calculation of ΔU and ΔH values by a Calorimeter

(a) For gaseous reactions Reactions involving gases are carried out in a bomb calorimeter, as the reaction needs to be carried out at constant volume.
ΔU value can be calculated as,
$\Delta U=-$ (Heat absorbed by bomb calorimeter)
(b) For reaction in solution Reaction involving solution are carried out at constant pressure inside a coffee-cup calorimeter.
$\Delta_{\mathrm{r}} H=$ Heat absorbed/released by calorimeter + heat absorbed/released by solution.
$=(m c \Delta T)$ calorimeter $+(m c \Delta T)$ solution
Here, $c=$ specific heat capacity.

Energetics of Food

- A calorimeter is a piece of equipment designed to measure the energy released or absorbed during a chemical reaction or phase change.
- With the help of food calorimetry, we can determine the number of calories per gram of food.
- People who check nutrition labels to make decisions about which foods to eat and which to avoid often base on the number of calories per serving.
- A calorie is a unit of energy as joule, however calorie is commonly used for a unit of food energy.

Best Practice ${ }^{\text {[SHOTS }}$ 〕

1. For an endothermic reaction, if ΔH is given in $\mathrm{kJ} / \mathrm{mol}$. The minimum value for energy of activation will be
(a) less than ΔH
(b) zero
(c) more than ΔH
(d) equal to ΔH

Hint For an endothermic reaction products are at higher energy level than reactants.
2. For the reaction,

$$
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The correct option is
(a) $\Delta H=\Delta U-R T$
(b) $\Delta H=\Delta U+R T$
(c) $\Delta H=\Delta U+2 R T$
(d) $\Delta H=\Delta U-2 R T$
3. ΔC_{p} for a reaction is given by $2.0+0.2 \mathrm{~T} \mathrm{cal} /{ }^{\circ} \mathrm{C}$, its enthalpy of reaction at 10 K is -14.2 kcal . Enthalpy of reaction at 100 K will be (in kcal)
(a) - 15.37
(b) -14.09
(c) -13.21
(d) 7.80

Hint $\Delta H_{2}-\Delta H_{1}=\int_{T_{1}}^{T_{2}} \Delta C_{p} d T$
4. Molar heat capacity of water in equilibrium with the ice at constant pressure is
(a) zero
(b) ∞
(c) $40.45 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d) $57.6 \mathrm{k} \mathrm{mol}^{-1}$
5. The reaction for which the difference $(\Delta H-\Delta U)$ would be minimum among the following reactions (at same temperature for all) is
(a) $2 \mathrm{KClO}_{3}(g) \longrightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(g)$
(b) $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \longrightarrow 2 \mathrm{NH}_{3}(g)$
(c) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HI}(\mathrm{g})$
(d) $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
6. Find the wrong statement among the following options, the heat of reaction depends on
(a) the temperature at which the reaction is carried out
(b) the manner by which the reaction is carried out
(c) physical state of reactants and products
(d) whether the reaction is carried out at constant pressure or at constant volume
7. For the reaction,

$$
\mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2} ; \Delta H=-393 \mathrm{~kJ}
$$

and $2 \mathrm{Zn}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{ZnO} ; \Delta H=-412 \mathrm{~kJ}$
Which one is the correct statement?
(a) Carbon can reduce ZnO to Zn
(b) Oxidation of carbon is not feasible
(c) Oxidation of carbon and zinc both takes place
(d) Oxidation of zinc is not feasible

Hint Since, ΔH for $\mathrm{Zn} \longrightarrow \mathrm{ZnO}$ is more negative, indicates that on coupling both the reactions, carbon can reduce ZnO to Zn . Because on reversing the equation for zinc, the value of ΔH becomes positive. This indicates, ZnO is less stable and can be reduced to Zn by carbon.
8. $(\Delta H-\Delta U)$ for the formation of CO from its elements at 298 K is (Given, $R=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
(a) $-1238.78 \mathrm{~J} \mathrm{~mol}^{-1}$
(b) $1238.78 \mathrm{~J} \mathrm{~mol}^{-1}$
(c) $-2477.57 \mathrm{~J} \mathrm{~mol}^{-1}$
(d) $2477.57 \mathrm{~J} \mathrm{~mol}^{-1}$

DIFFERENT STANDARD ENTHALPY CHANGE AND LAWS OF THERMOCHEMISTRY

Different Standard Enthalpy Change

The following table represents the name and definition of different types of standard enthalpy change.

Definition of different types of standard enthalpy change

Example

Enthalpy of formation $\left(\Delta_{f} H^{\circ}\right)$ The enthalpy change for the formation of one mole of a compound from its elements in their most stable state.
Enthalpy of combustion $\left(\Delta_{C} H^{\circ}\right)$ The amount of heat evolved or absorbed when one mole of the substance is completely burnt in oxygen or air.
$\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(I)$;
$\Delta_{f} H^{\circ}=-285.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\Delta_{f} H^{\circ}$ value of an element in its most stable state is taken as 0 .

$$
\begin{gathered}
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(g)+6 \mathrm{O}_{2}(g) \longrightarrow \\
6 \mathrm{CO}_{2}(g)+6 \mathrm{H}_{2} \mathrm{O}(I) ; \\
\Delta_{C} H^{\circ}=\left[\left(6 \times \Delta H_{f\left(\mathrm{CO}_{2}\right)}\right)+\left(6 \times \Delta H_{f\left(\mathrm{H}_{2} \mathrm{O}\right)}^{\circ}\right)\right] \\
-\left[\Delta H_{f\left(\mathrm{C}, \mathrm{H}_{12} \mathrm{O}_{6}\right)}^{\circ}+\left(6 \times \Delta H_{f\left(\mathrm{O}_{2}\right)}^{\circ}\right)\right] \\
\Delta_{C} H^{\circ}=-2802 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{gathered}
$$

The heat produced due to the combustion of 1 g of a fuel is called calorific value.
$\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(1) ; \Delta_{\text {fus }} H^{\circ}=6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ The temperature at which a solid is converted into liquid is called its melting point.
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$;
$\Delta_{\text {vap }} H^{\circ}=40.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$;

$$
\Delta_{\text {sub }} H^{\circ}=51.1 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

$\Delta_{\text {sub }} H^{\circ}=\Delta_{\text {fus }} H^{\circ}+\Delta_{\text {vap }} H^{\circ}$
$\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}(\mathrm{g})$;
$\Delta_{\text {atom }} H^{\circ}=43.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$
Enthalpy change when one mole of a substance is broken down into its constituent isolated atoms in
gaseous state.
Enthalpy of neutralisation $\left(\Delta_{n} H^{\circ}\right)$
Enthalpy change when 1 mole of

$$
\Delta_{n} H^{\circ}=-57.1 \mathrm{~kJ}
$$ water is formed by acid-base neutralisation.

Bond dissociation enthalpy
$\left(\Delta_{\text {bond }} H^{\circ}\right)$
Enthalpy change when all the bonds present in one mole of a compound are broken in gaseous state.

$$
\mathrm{H}^{+}(\mathrm{aq})+\overline{\mathrm{O}} \mathrm{H}(\mathrm{aq}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(1)
$$

$$
\begin{gathered}
\mathrm{CH}_{4}(g) \longrightarrow \mathrm{C}(g)+4 \mathrm{H}(g) ; \\
\Delta_{\text {atom }} H^{\circ}=1665 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\Delta_{r} H^{\circ}=\Sigma \Delta_{\text {bond }} H^{\circ} \text { (reactants) }
\end{gathered}
$$

$-\Sigma \Delta_{\text {bond }} H^{\circ}$ (products)
Enthalpy of solution $\left(\Delta_{\text {sol }} H^{\circ}\right)$
Enthalpy change when one mole of a solute is dissolved in excess of solvent.

$$
\begin{gathered}
\mathrm{NaCl}(g) \longrightarrow \mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}(\mathrm{aq}) ; \\
\Delta_{\text {sol }} H^{\circ}=4 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
\Delta_{\text {sol }} H^{\circ}=\Delta_{\text {lattice }} H^{\circ}+\Delta_{\text {hyd }} H^{\circ}
\end{gathered}
$$

Lattice enthalpy $\left(\Delta_{\text {lattice }} H^{\circ}\right)$
Enthalpy change when one mole of an ionic compound dissociates in gaseous state.

CHEMISTRY CONCENTRATE

PROBLEMS RELATED TO ENTHALPY

- First of all, write down all the balanced chemical reactions including their enthalpy change value.
- Mark these reactions in terms of equation number.
- Write down the chemical reaction for which we have to find out enthalpy change value.
- Arrange the given equation in such a manner that we could get the required equation.
- For this purpose, we can apply operation such as addition or subtraction of equations and multiplying or dividing by an integer to the equation.
- Same operations should be applied for given enthalpy change values as well.
- Finally, we get the required enthalpy change value.

REMEMBER

Except bond dissociation, enthalpy change for any other process is given as,
Enthalpy change
=Sum of enthalpies for all products - sum of enthalpies for all reactants.
But for bond dissociation,
Enthalpy change
= Sum of enthalpies of all reactants - sum of enthalpies of all products.

Laws of Thermochemistry

Lavoisier and Laplace's Law

The enthalpy of decomposition of a compound is numerically equal to the enthalpy of formation of that compound with opposite sign,
e.g.

$$
\begin{aligned}
A+B & \longrightarrow C ; \quad \Delta H
\end{aligned}=\mathrm{x}, ~=A+B ; \Delta H=-\mathrm{x}
$$

Hess's Law of Constant Heat Summation

Enthalpy change for a reaction is same whether the reaction is carried out in one step or in several steps.
e.g.

$$
\begin{array}{r}
\mathrm{C}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta_{\mathrm{r}} H \\
\mathrm{C}(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}(\mathrm{~g}) ; \Delta_{\mathrm{r}} H_{1} \\
\mathrm{CO}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta_{\mathrm{r}} H_{2}
\end{array}
$$

According the Hess's law,

$$
\Delta_{r} H=\Delta_{r} H_{1}+\Delta_{r} H_{2}
$$

Best Practice 「SHOTS

9. When 1 g of carbon-atom is converted to 1 g molecule of CO_{2}, the heat is same
(a) irrespective of whether the volume is kept constant or pressure is kept constant
(b) irrespective of the temperature at which the reaction is carried out
(c) where carbon is in the form of graphite or diamond
(d) None of the above
10. For the reactions, $\mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{HCl}(g)+\mathrm{x}_{1} \mathrm{~kJ}$ and $2 \mathrm{HCl}(g) \longrightarrow \mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g)-\mathrm{x}_{2} \mathrm{~kJ}$, the correct statement is
(a) x_{1} and x_{2} are numerically equal
(b) $x_{1}=4 x_{2}$
(c) $x_{1}-x_{2}>0$
(d) $x_{1}-x_{2}<0$
11. From the figure given below

The values of
heat of formation of CH_{4}, heat of sublimation of graphite and heat of dissociation of H_{2}, (in terms of $\Delta H_{1}, \Delta H_{2}, \Delta H_{3}$ and ΔH_{4}) respectively are (i.e. correct order is)
(a) $\frac{\Delta H_{2}}{4}, \frac{\Delta H_{1}}{2}, \frac{\Delta H_{1}+\Delta H_{2}+\Delta H_{4}}{2}$
(b) $\frac{\Delta H_{1}+\Delta H_{2}+\Delta H_{4}}{2}, \frac{\Delta H_{1}}{2}, \frac{\Delta H_{2}}{4}$
(c) $\frac{\Delta H_{3}}{4}, \frac{\Delta H_{2}+\Delta H_{1}}{2}, \frac{\Delta H_{4}}{2}$
(d) $\frac{\Delta H_{2}}{2}, \frac{\Delta H_{3}+\Delta H_{1}}{2}, \frac{\Delta H_{4}}{4}$
12. $\mathrm{NH}_{3}(g)+3 \mathrm{Cl}_{2}(g) \rightleftharpoons \mathrm{NCl}_{3}(g)+3 \mathrm{HCl}(g) ;-\Delta H_{1}$

$$
\begin{aligned}
& \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g) ;-\Delta H_{2} \\
& \mathrm{H}_{2}(g)+\mathrm{Cl}_{2}(g) \rightleftharpoons 2 \mathrm{HCl}(g) ;-\Delta H_{3}
\end{aligned}
$$

The heat of formation of $\mathrm{NCl}_{3}(\mathrm{~g})$ in terms of $\Delta H_{1}, \Delta H_{2}$, and ΔH_{3} will be
(a) $\Delta H_{f}=-\Delta H_{1}-\frac{\Delta H_{2}}{2}-\frac{3}{2} \cdot \Delta H_{3}$
(b) $\Delta H_{f}=\Delta H_{1}+\frac{\Delta H_{2}}{2}-\frac{3}{2} \cdot \Delta H_{3}$
(c) $\Delta H_{f}=\Delta H_{1}-\frac{\Delta H_{2}}{2}+\frac{3}{2} \cdot \Delta H_{3}$
(d) All of the above options give the same result
13. The standard enthalpy of formation $\left(\Delta H_{f}^{\circ}\right)$ at 298 K for methane $\left(\mathrm{CH}_{4}\right)$ is $-74.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$.

The additional information required to find the average bond energy of $\mathrm{C}-\mathrm{H}$ bond formation would be
(a) first four ionisation energies of carbon and electron gain enthalpy of hydrogen
(b) the dissociation energy of $\mathrm{H}_{2}(g)$
(c) latent heat of vaporisation of methane
(d) the dissociation energy of $\mathrm{H}_{2}(g)$ and enthalpy of sublimation of carbon
14. The latent heat of vaporisation of water is $10.5 \mathrm{kcal} \mathrm{mol}^{-1}$ at $25^{\circ} \mathrm{C}$ and standard heat of formation of liquid water is -68.3 kcal . The enthalpy change of the reaction,

$$
\mathrm{H}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{H}_{2} \mathrm{O}(g) \text { is, }
$$

(a) -57.8 kcal
(b) -78.8 kcal
(c) +57.8 kcal
(d) +78.8 kcal
15. A cylinder of gas supplied by a company is assumed to contain 14 kg of butane. If normal family requires $20,000 \mathrm{~kJ}$ of energy per day for cooking, how long will the cylinder last?
(Given, heat of combustion of butane $=2658 \mathrm{~kJ}$)
(a) 23 days
(b) 32 days
(c) 50 days
(d) 42 days

Hint Number of days cylinder works

$$
=\frac{\text { Energy provided by } 14 \times 10^{3} \mathrm{~g} \text { gas }}{\text { Energy required per day }}
$$

16. Bond dissociation energy of $X X, X Y$ and Y_{2} (all are diatomic) are in the ratio of $1: 1: 0.5$ respectively and ΔH_{f} of $X Y$ is $200 \mathrm{kJmol}^{-1}$, then bond dissociation energy for X_{2} is
(a) $880 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) $800 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d) $400 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Hint Required relation is $\frac{1}{2} X_{2}+\frac{1}{2} Y_{2} \longrightarrow X Y$

$$
\begin{aligned}
\Delta H_{r} & =\left[\mathrm{BE} \frac{1}{2}\left(X_{2}\right)+\mathrm{BE} \frac{1}{2}\left(Y_{2}\right)-\mathrm{BE}(X Y)\right] \\
\Delta H_{r} & =200 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

17. For enthalpy changes,

$\mathrm{Cl}_{2}(g) \longrightarrow 2 \mathrm{Cl}(\mathrm{g}) ;$	$242.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$	
$\mathrm{I}_{2}(g) \longrightarrow 2 \mathrm{I}(g) ;$	$151.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$	
$\mathrm{ICl}(g) \longrightarrow \mathrm{I}(g)+\mathrm{Cl}(g) ;$	$211.3 \mathrm{~kJ} \mathrm{~mol}^{-1}$	
$\mathrm{I}_{2}(\mathrm{~s})$	$\longrightarrow \mathrm{I}_{2}(g) ;$	$62.76 \mathrm{~kJ} \mathrm{~mol}^{-1}$

\{JEE FINAL TOUCH\}

If standard states for iodine and chlorine are
$\mathrm{I}_{2}(\mathrm{~s})$ and $\mathrm{Cl}_{2}(\mathrm{~g})$, the ΔH_{f}° for $\mathrm{ICl}(g)$ is
(a) $-14.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) $-16.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(c) $+16.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(d) $+14.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$
18. When 1.4 g of iron combines with sulphur, 1.9 kJ of heat comes out. Thus, standard enthalpy of formation of FeS is
(a) -19 kJ
(b) -76.0 kJ
(c) 3.8 kJ
(d) zero
19. The enthalpy of formation of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})$ is $-66 \mathrm{kcal} / \mathrm{mol}$. The enthalpy of combustion of $\mathrm{CH}_{3} \mathrm{OCH}_{3}(\mathrm{l})$ is $-348 \mathrm{kcal} / \mathrm{mol}$. Find, ΔH for isomerisation of ethanol to methoxymethane $\left(\mathrm{CH}_{3} \mathrm{OCH}_{3}\right)$.

Given, ΔH_{f}° for $\mathrm{CO}_{2}(\mathrm{~g})=-94 \mathrm{kcal} / \mathrm{mol}$
ΔH_{f}° for $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})=-68 \mathrm{kcal} / \mathrm{mol}$.
(The whole reaction occurs under standard conditions).
(a) $66 \mathrm{kcal} / \mathrm{mol}$
(b) $22 \mathrm{kcal} / \mathrm{mol}$
(c) $44 \mathrm{kcal} / \mathrm{mol}$
(d) $88 \mathrm{kcal} / \mathrm{mol}$
20. Sublimation energy for $I_{2}(s)$ is $57.3 \mathrm{~kJ} / \mathrm{mol}$ and enthalpy of fusion is $15.5 \mathrm{~kJ} / \mathrm{mol}$. The enthalpy of vaporisation for I_{2} is
(a) $41.8 \mathrm{~kJ} / \mathrm{mol}$
(b) $-41.8 \mathrm{~kJ} / \mathrm{mol}$
(c) $72.8 \mathrm{~kJ} / \mathrm{mol}$
(d) $-72.8 \mathrm{~kJ} / \mathrm{mol}$

Hint $\Delta H_{\text {sub }}=\Delta H_{\text {fus }}+\Delta H_{\text {vap }}$

ENTROPY (S) AND GIBBS FREE ENERGY (G)

Entropy (s)

- A thermodynamic quantity that provides a quantitative measure of how much energy is spread out when something happens during a chemical reaction.
or
- A thermodynamic property that measures the extent of molecular disorder or randomness.
It is a state function, used to define the second law of thermodynamics.

Gibbs Free Energy (G)

- It is a state function. It is defined as hypothetical infinitesimal energy which is used up during a spontaneous process. or
- It is defined as the maximum amount of energy available to a system during a process that can be converted into useful work.

Spontaneity of a Chemical Reaction

The spontaneity of a reaction depends on $\Delta H, \Delta S$ and T, is given by the following table:

ΔH	ΔS	$\Delta \boldsymbol{G}=\Delta \boldsymbol{H}-\boldsymbol{T} \Delta \boldsymbol{S}$	Reaction spontaneity
Exothermic (-)	+	-	Spontaneous at all temperatures.
Endothermic (+)	+	-	Spontaneous at low temperatures. Non-spontaneous at high temperatures. Non-spontaneous at low temperatures. Spontaneous at high temperatures. Non-spontaneous at all temperatures. Equilibrium
$T \Delta S=\Delta H$	+	-	+

Formulae Related to Entropy and Gibbs Free Energy

Entropy

- At constant pressure, when temperature changes,

$$
\Delta S=2.303 n C_{p} \log \frac{T_{2}}{T_{1}}
$$

- At constant volume, when temperature changes,

$$
\Delta S=2.303 n C_{V} \log \frac{T_{2}}{T_{1}}
$$

- At constant temperature, when volume changes,

$$
\Delta S=2.303 n R \log \frac{V_{2}}{T_{1}}
$$

- At constant volume, when both temperature and pressure change,

$$
\Delta S=2.303\left(n C_{V} \log \frac{T_{2}}{T_{1}}+n R \log \frac{p_{1}}{p_{2}}\right)
$$

- At constant pressure, when both temperature and volume change,

$$
\Delta S=2.303\left(n C_{p} \log \frac{T_{2}}{T_{1}}-n R \log \frac{V_{1}}{V_{2}}\right)
$$

- When phase transition occur during the process, $\Delta S=\frac{\Delta H}{T}$

For solid to liquid phase change, $\Delta H=\Delta H_{\text {fus }}$
For liquid to gas phase change, $\Delta H=\Delta H_{\text {vap }}$
For solid to gas phase change, $\Delta H=\Delta H_{\text {sub }}$
Gibbs Free Energy

$$
\begin{aligned}
\Delta G & =\Delta H-T \Delta S \\
\Delta G & =-W=2.303 R T \log \frac{V_{2}}{V_{1}} \\
\Delta G & =\Delta G^{\circ}+2.303 R T \log Q \\
\text { At equilibrium, } \Delta G^{\circ} & =-2.303 R T \log K
\end{aligned}
$$

Best Practice ${ }^{\text {LSHOTS }}$ 」

21. If, $\mathrm{PbO}_{2} \longrightarrow \mathrm{PbO} ; \Delta \mathrm{G}$ at $298 \mathrm{~K}<0$ and $\mathrm{SnO}_{2} \longrightarrow \mathrm{SnO} ; \Delta \mathrm{G}$ at $298 \mathrm{~K}>0$. Then, most probable oxidation states for Pb and Sn are
(a) $\mathrm{Pb}^{4+}, \mathrm{Sn}^{4+}$
(b) $\mathrm{Pb}^{2+}, \mathrm{Sn}^{4+}$
(c) $\mathrm{Pb}^{2+}, \mathrm{Sn}^{2+}$
(d) $\mathrm{Pb}^{4+}, \mathrm{Sn}^{2+}$

Hint Given,
(i) ΔG for the formation of Pb^{2+} is negative means Pb^{2+} is more stable than Pb^{4+}.
(ii) ΔG for the formation of Sn^{2+} is positive means it is less stable.
22. For a reaction, $\mathrm{H}_{2} \mathrm{O}(s) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(1)$ at $0^{\circ} \mathrm{C}$ temperature and normal pressure, the correct choice is
(a) $\Delta H<T \Delta S$
(b) $\Delta H=\Delta G$
(c) $\Delta H=T \Delta S$
(d) $\Delta S=0$

Hint At equilibrium,

$$
\begin{aligned}
& \Delta G=0 \text { means } \\
& \Delta H=T \Delta S ; \quad(\because \Delta G=\Delta H-T \Delta S)
\end{aligned}
$$

23. When an egg is boiled, its entropy
(a) increases
(b) decreases
(c) shows no change
(d) becomes zero
24. Silane $\left(\mathrm{SiH}_{4}\right)$ burns in air as,

$$
\mathrm{SiH}_{4}(\mathrm{~s})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{SiO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The standard Gibbs energies of formation of $\mathrm{SiH}_{4}(g), \mathrm{SiO}_{2}(s)$ and $\mathrm{H}_{2} \mathrm{O}(l)$ are $+52.3,-805.0$ and $-228.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. Calculate Gibbs free energy change in kJ for the reaction.
(a) -1314.5
(b) -1472.3
(c) -1582.3
(d) -1272.8
25. In a fuel cell, methanol is used as fuel and oxygen gas is used as an oxidiser, the reaction is,

$$
\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

At $298 \mathrm{~K}, \Delta \mathrm{G}^{\circ}$ of formation for $\mathrm{CH}_{3} \mathrm{OH}(1), \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ and $\mathrm{CO}_{2}(g)$ are $-166.2,-237.2$ and $-394.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively.
If standard enthalpy of combustion of methanol is $-726 \mathrm{~kJ} \mathrm{~mol}^{-1}$, efficiency of the fuel cell will be
(a) 70%
(b) 80%
(c) 90%
(d) 97%

Hint Efficiency (\%) $=\frac{\Delta G}{\Delta H} \times 100$
26. The direct conversion of a substance is difficult from A to B. Hence, the process is carried out as follows:

Given, $\Delta S(A \rightarrow C)=50$ units, $\Delta S(C \rightarrow D)=30$ units and $\Delta S(B \rightarrow D)=20$ units

Then, net entropy for the process from A to B is (in true of number of units)
(a) -60
(b) +60
(c) -100
(d) +100

Hint Net entropy change $(\Delta S)=\Delta S_{A \rightarrow C}+\Delta S_{C \rightarrow D}+\Delta S_{D \rightarrow B}$ $=\Delta S_{A \rightarrow C}+\Delta S_{C \rightarrow D}-\Delta S_{B \rightarrow D}$
27. For a cell reaction, (at $25^{\circ} \mathrm{C}$)
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(a q) \longrightarrow \mathrm{Zn}^{2+}(a q)+\mathrm{Cu}(s)$, the value of emf is 1 V .
If enthalpy of reaction is $-197.5 \mathrm{~kJ} / \mathrm{mol}$, the change in standard molar entropy will be (in $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
(a) -11.5
(b) -15.1
(c) 11.5
(d) 15.1

Hint $\Delta G^{\circ}=-n F E^{\circ}$ also $\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ}$
28. T_{1} and T_{2} are freezing and melting points of a substance, which of the following graphs represents correctly about the variation of ΔS with temperature?
(a) ΔS

(b)

(c) ΔS

(d)

Hint T_{1} and T_{2} will be same for freezing and melting point.

Answers

1. (c)
2. (a)
3. (c)
4. (b)
5. (b)
6. (b)
7. (a)
8. (b)
9. (a)
10. (a)
11. (b)
12. (a)
13. (d)
14. (a)
15. (b)
16. (b)
17. (c)
18. (b)
19. (b)
20. (a)
21. (b)
22. (c)
23. (a)
24. (a)
25. (d)
26. (b)
27. (b)
28. (b)

MASTER STRO゙KE

1. Heat of neutralisation for four acids A, B, C and D are $-13.7,-9.4,-11.2$ and -12.4 kcal respectively, when they are neutralised by a common base. The order of their acidic strength is
(a) $A>B>C>D$
(b) $D>C>B>A$
(c) $A>D>C>B$
(d) $B>C>D>A$

Hint Lower be the heat of neutralisation more be the dissociation energy. Thus, weaker be the acid.
2. A solution of 250 mL of 2 M KOH is added to 250 mL of 2 M HCl and shaken. The rise in temperature T_{1} is noted. The experiment again repeated, taking 500 mL of each solution, the rise in temperature T_{2} is noted. Assume all the heat is taken up by the solution in both the cases.
The relation between T_{1} and T_{2} is
(a) $T_{1}=T_{2}$
(b) $2 T_{1}=T_{2}$
(c) $T_{1}=2 T_{2}$
(d) $T_{1}=4 T_{2}$

Hint The heat evolved in first case is twice as compared with second case but since, volume also becomes double, the temperature in both the cases remain same.
3. The ionisation energy of solid NaCl is 180 kcal per mol. The dissolution of the solid in water in form of ions is endothermic to the extent of 1 kcal per mol. If the solvation energies of Na^{+}and Cl^{-}ions are in the ratio of $6: 5$. Then, enthalpy of hydration for sodium ions per mol is
(a) 82.6 kcal
(b) -85.6 kcal
(c) -97.6 kcal
(d) 100 kcal

Hint ΔH solution $=\Delta H_{i}+\Delta H_{h}$.
Given, ΔH solution $=1$ and $\Delta H_{i}=180$.

$$
\begin{aligned}
& 1=\Delta H_{i}+\Delta H_{h} \\
& 1=180+\Delta H_{h}
\end{aligned}
$$

$$
\Delta H_{h}=179=\Delta H_{h}\left(\mathrm{Na}^{+}\right)+\Delta H_{h}\left(\mathrm{Cl}^{-}\right)
$$

$\because \mathrm{Na}^{+}$and Cl^{-}has ratio of solvation energy $=5: 6$
$\therefore \quad \Delta \mathrm{H}_{h}=\frac{6}{11}\left(\mathrm{Na}^{+}\right)+\frac{5}{11}\left(\mathrm{Cl}^{-}\right)=179$
$\therefore \quad \Delta \mathrm{H}_{h}\left(\mathrm{Na}^{+}\right)=-\frac{6 \times 179}{11}=-97.6 \mathrm{kcal}$
4. The average molar heat capacities of ice and water are 37.6 and $75.2 \mathrm{~J} \mathrm{~mol}{ }^{-1} \mathrm{~K}^{-1}$ respectively. Its enthalpy of fusion is $6.02 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The amount of heat required to raise the temperature of 10 g of water from $-10^{\circ} \mathrm{C}$ to $10^{\circ} \mathrm{C}$ is equal to
(a) 2376 J
(b) 4572 J
(c) 1129 J
(d) 3971 J

Hint Required steps are:
(i) 10 g of ice at $-10^{\circ} \mathrm{C} \rightarrow 10 \mathrm{~g}$ of ice at $0^{\circ} \mathrm{C}$
(ii) 10 g of ice at $0^{\circ} \mathrm{C} \rightarrow 10 \mathrm{~g}$ of water at $0^{\circ} \mathrm{C}$ (Transformation state)
(iii) 10 g of water at $0^{\circ} \mathrm{C} \rightarrow 10 \mathrm{~g}$ of water at $10^{\circ} \mathrm{C}$.

Thus, heat required $-m c \Delta t+m L+m c \Delta t$
5. Which of the following reactions is said to be enthalpy driven?
(a) Endothermic reaction with positive entropy change and high temperature
(b) Endothermic reaction with negative entropy change and low temperature
(c) Exothermic reaction with the entropy change and high temperature
(d) Exothermic reaction with negative entropy change and low temperature
6. The standard heat of combustion of Al is -837.8 kJ mol^{-1} at $25^{\circ} \mathrm{C}$. If Al reacts with O_{2} at $25^{\circ} \mathrm{C}$, which of the following releases 250 kJ (approx.) of heat?
(a) The reaction of 0.625 mole of Al
(b) The reaction of 0.625 mole of $\mathrm{Al}_{2} \mathrm{O}_{3}$
(c) The reaction of 0.312 mole O of Al
(d) The reaction of 0.150 mole of $\mathrm{Al}_{2} \mathrm{O}_{3}$
7. Two moles of an ideal gas undergoes expansion under isothermal reversible condition from 5 to 50L at $27^{\circ} \mathrm{C}$. The entropy change associated with this process is [$R=8.3 \mathrm{~J}$]
(a) $10 \mathrm{JK}^{-1}$
(b) $16.0 \mathrm{JK}^{-1}$
(c) $38.2 \mathrm{JK}^{-1}$
(d) $19.1 \mathrm{JK}^{-1}$
8. Given, $\mathrm{S}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{SO}_{3}(g)+2 \mathrm{x}$ kcal and $\mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \longrightarrow \mathrm{SO}_{3}(g)+\mathrm{y} \mathrm{kcal}$
Find the value of ΔH_{f}° for SO_{2}
(a) $x-2 y$
(b) $y-2 x$
(c) $x+2 y$
(d) $\frac{2 x}{y}$
9. Determine the enthalpy of the reaction,

$$
\mathrm{C}_{3} \mathrm{H}_{8}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\mathrm{CH}_{4}(g)
$$

at $25^{\circ} \mathrm{C}$, using the given heat of combustion values under standard conditions.

Compound	$\mathrm{H}_{2}(\mathrm{~g})$	$\mathrm{CH}_{4}(\mathrm{~g})$	$\mathrm{C}_{2} \mathrm{H}_{6}(g)$	C (graphite)
$\Delta H^{\circ}(\mathrm{kJ} / \mathrm{mol})$	-285.0	-890.0	-1560.0	-393.0

The standard heat of formation of $\mathrm{C}_{3} \mathrm{H}_{8}(g)$ is $-103 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
(a) -49 kJ
(b) -60 kJ
(c) -50 kJ
(d) -55 kJ

\{JEE FINAL TOUCH

10. Compute the heat of formation of liquid methyl alcohol in kJmol^{-1}, using the following data. Heat of vaporisation of liquid methyl alcohol $=38 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Heat of formation of gaseous atoms from the elements in their standard states,

$$
\begin{aligned}
& \mathrm{H}=218 \mathrm{~kJ} \mathrm{~mol}^{-1}, \mathrm{C}=715 \mathrm{~kJ} \mathrm{~mol}^{-1} \\
& \mathrm{O}=249 \mathrm{~kJ} \mathrm{~mol}^{-1}
\end{aligned}
$$

Average bond energies,
$\mathrm{C}-\mathrm{H}=415 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{C}-\mathrm{O}=356 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\mathrm{O}-\mathrm{H}=463 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(a) 274
(b) -266
(c) -220
(d) -277
11. Silane $\left(\mathrm{SiH}_{4}\right)$ burns in the air as

$$
\mathrm{SiH}_{4}(g)+2 \mathrm{O}_{2}(g) \longrightarrow \mathrm{SiO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

The standard Gibbs energies of formation of $\mathrm{SiH}_{4}(\mathrm{~g})$, $\mathrm{SiO}_{2}(\mathrm{~s})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are $+52.3,-805.0$ and -228.6 kJ mol^{-1} respectively Calculate Gibbs energy change for the reaction.
(a) -1314.5 kJ
(b) 1314.5 kJ
(c) 895.07 kJ
(d) 905.4 kJ
12. Match the following columns.

| Column I | | Column II |
| :--- | :--- | :--- | :--- |
| A. Spontaneous process | p. | $\Delta H=-v e$ |
| B. Heat flow from high temperature of system | q. | $\Delta G=+v e$ |
| \quad to low temperature of surrounding | | |
| C. Exergonic process | r. | $\Delta_{\text {total }} S=+$ ve |
| D. Increase in randomness of system by | s. | $\Delta G=-\mathrm{ve}$ |
| \quadheating | | |

Codes

$\begin{array}{cccc} & A & B & C \\ \text { (a) } & \mathrm{p} & \mathrm{q}, \mathrm{r} & \mathrm{p}, \mathrm{q} \\ \mathrm{s}, \mathrm{p}\end{array}$
(b) $\begin{array}{cccc}A & B & C & D \\ p, r & q, s & p & r, q\end{array}$
(c) $r, s \quad p, r, s \quad q \quad q, r$

Answers

1. (c)
2. (a)
3. (c)
4. (d)
5. (d)
6. (d)
7. (c)
8. (b)
9. (d)
10. (b)
11. (a)
12. (c)

The Most Accepted Concept of Exam Preparation Now in ISC

Solved Papers 2015-2000

- Separate Books for each Subject
- Each Chapter Divided Topically with Quick Revision Notes \& Exam Questions
- Detailed Solution to each \& every questions

[^0]
Equilibrium

\square
 LAW OF CHEMICAL EQUILIBRIUM AND EQUILIBRIUM CONSTANT

Chemical equilibrium is a state of reversible reactions in which the concentrations of reactants and products do not change with time.

Law of Chemical Equilibrium (or Law of Mass Action)

According to this law, the rate at which a substance reacts is directly proportional to its active mass raised to the power of its stoichiometric coefficient. For a chemical reaction,

$$
\begin{aligned}
a A & +b B \rightleftharpoons c C+d D \\
R_{f} & =K_{f}[A]^{a}[B]^{b} \\
R_{b} & =K_{b}[C]^{c}[D]^{d}
\end{aligned}
$$

At equilibrium, $R_{f}=R_{b}$
Formulae for equilibrium Constant in Terms of Different Quantities and Different Conditions
General reaction, $a A+b B \rightleftharpoons c C+d D$

Quantity	Equilibrium constant
1. Concentration	$K_{C}=\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$
2. Partial pressure	$\begin{aligned} K_{p}=\frac{\left(p_{C}^{c}\right)\left(p_{D}^{d}\right)}{\left(p_{A}^{a}\right)\left(p_{B}^{b}\right)} & =\frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}(R T)^{\Delta n_{g}} \\ & =K_{C}(R T)^{\Delta n_{g}} \end{aligned}$
3. Active mass	$\begin{aligned} K_{a}=\frac{\left[a_{C}\right]^{c}\left[a_{D}\right]^{d}}{\left[a_{A}\right]^{a}\left[a_{B}\right]^{b}} & =\frac{\left(f_{C}\right)^{c}\left(f_{D}\right)^{d}}{\left(f_{A}\right)^{a}\left(f_{B}\right)^{b}} \times \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}} \\ & =K_{f} \times K_{C} \end{aligned}$
4. Mole fraction	$K_{x}=\frac{\left[\chi_{C}\right]^{c}\left[\chi_{D}\right]^{d}}{\left[\chi_{A}\right]^{a}\left[\chi_{B}\right]^{b}}$

General reaction, $A \rightleftharpoons B$ equilibrium constant

Condition		Equilibrium constant
1. $B \rightleftharpoons A$	$K^{-1}=\frac{1}{K}$	
2.	$m A \rightleftharpoons m B$	$K^{\prime}=(K)^{m}$
3.	$\frac{A}{m} \rightleftharpoons \frac{B}{m}$	$K^{\prime \prime}=(K)^{1 / m}$
4.	When temperature (T) is given	$\log K=-\frac{\Delta H^{\circ}}{2.303 R T}+\frac{\Delta S^{\circ}}{R}$
5.	When temperature changes from T_{1} to T_{2}	$\log \frac{K_{C_{1}}}{K_{C_{2}}}=\frac{\Delta H^{\circ}}{2.303 R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$
	$\log \frac{K_{p_{1}}}{K_{p_{2}}}=\frac{\Delta H^{\circ}}{2.303 R}\left[\frac{1}{T_{1}}-\frac{1}{T_{2}}\right]$	

Case I When $\Delta H^{\circ}=0, K_{1}=K_{2}$, equilibrium constant (K) is independent from temperature (T).
Case II When $\Delta H^{\circ}<0$, (endothermic),
$K_{2}>K_{1}, K$ increases with increase in temperature.
Case III When $\Delta H^{\circ}<0$, (exothermic),
$K_{2}<K_{1}, K$ decreases with increase in temperature.

- $\Delta n_{g}=$ Moles of gaseous products - moles of gaseous reactants.
- $f=$ activity coefficient, for dilute solutions, $f=1$
- For heterogeneous system, concentration of solid reactants or solid product is taken to be unity.
- If

$$
\begin{gathered}
\Delta n_{g}=0, K_{p}=K_{C} \\
\Delta n_{g}>0, K_{p}>K_{C} \\
\Delta n_{g}<0, K_{p}<K_{C}
\end{gathered}
$$

Units of Equilibrium Constant K

$$
\begin{aligned}
K_{p} & =(\mathrm{atm})^{\Delta n} ; K_{C}=(\mathrm{mol} / \mathrm{L})^{\Delta n} \\
K_{x} & =\text { unitless } ; K_{a}=(\mathrm{mol} / \mathrm{L})^{\Delta n}
\end{aligned}
$$

Characteristics of Equilibrium Constant (K_{p} and K_{C})

- K has a definite value for a given reaction at a particular temperature and it does not influence by any other factors except temperature.
- It is independent of initial concentration of reactants and products.
- The value of K remains same whether the equilibrium is achieved in forward or backward direction.

Based on the state of the reactants and products at equilibrium, chemical reactions are divided into two types:

Homogeneous Equilibria

All the reactants and products are in same phase (either gas or liquid).

Heterogeneous Equilibria

The reactants and products are in different phases at equilibrium.

\{JEE FINAL TOUCH\}

Procedure to find number of moles, mole fractions and K values at equilibrium

.	Homogeneous equilibria			Heterogeneous equilibria		
	$\mathrm{H}_{2}(\mathrm{~g})$	$\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons$	$2 \mathrm{HI}(\mathrm{g})$	$\mathrm{NH}_{4} \mathrm{CO}_{2} \mathrm{NH}_{2}(\mathrm{~s}$	$\rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$	$+\mathrm{CO}_{2}(g)$
Initial moles	a	b	0	1	0	0
Equilibrium moles	($a-x$)	$(b-x)$	$2 \times$		$2 x$	x
Total moles at equilibrium		$(a+b)$			$3 x$	
Active masses	$\frac{a}{V}$	$\frac{b}{V}$				
Mole fraction	$\left(\frac{a-x}{a+b}\right)$	$\left(\frac{b-x}{a+b}\right)$	$\left(\frac{2 x}{a+b}\right)$		$\frac{2}{3}$	$\frac{1}{3}$
Partial pressure	$p\left(\frac{a-x}{a+b}\right)$	$p\left(\frac{b-x}{a+b}\right)$	$p\left(\frac{2 x}{a+b}\right)$		$\frac{2 p}{3}$	$\frac{p}{3}$
K_{C}	$\frac{4 x^{2}}{(a-x)(b-x)}$				$K_{C}=4 x^{3}$	
K_{p}	$\frac{4 x^{2}}{(a-x)(b-x)}$				$K_{p}=\frac{4 p^{3}}{27}$	

Note The active mass or concentration or partial pressure of pure solid, pure liquid and solvents are taken as unity(1), hence, they do not appear in rate equation.

Best Practice ‘SHOTS」

1. The equilibrium constant K_{p}, for the reaction, $A \rightleftharpoons 2 B$, is related to degree of dissociation (α) of A and total pressure p as
(a) $\frac{4 \alpha^{2} p}{1-\alpha^{2}}$
(b) $\frac{4 \alpha^{2} p}{1-\alpha}$
(c) $\frac{4 \alpha^{2} p^{2}}{1-\alpha^{2}}$
(d) $\frac{4 \alpha^{2} p^{2}}{1-\alpha}$
2. Progress of the reaction, $A \rightleftharpoons n B$, with respect to time is shown below.
The stoichiometric coefficient of product B and value of equilibrium constant $\left(K_{C}\right)$ respectively.

(a) 2 and 1.2
(b) 2 and 2
(c) 4 and 1.2
(d) 2 and 4

Hint (i) Concentration of A changes during 1 h to 5 h

$$
=0.5 \text { to } 0.3=0.2 \mathrm{M}
$$

Concentration of B changes during 1 h to 5 h

$$
=0.2 \text { to } 0.6=0.4 \mathrm{M}
$$

Thus,

$$
\Delta[A]=0.2 \mathrm{M}, \Delta[B]=0.4 \mathrm{M}
$$

Hence, $n=2$
Means $A \rightarrow 2 B$
(ii) At equilibrium, $[A]=0.3 \mathrm{M}$
$[B]=0.6 \mathrm{M}$
$\therefore \quad K_{C}=\frac{[B]^{2}}{[A]}=\frac{(0.6)^{2}}{(0.3)}=1.2$
Note Parallel lines with respect to x-axis at points x and y, show the equilibrium position of A and B respectively.
3. For the reactions,

$$
\begin{aligned}
& A \rightleftharpoons B, K_{1}=2 \\
& B \rightleftharpoons C, K_{2}=4 \\
& C \rightleftharpoons D, K_{3}=3
\end{aligned}
$$

and
Then, for the reaction, $A \rightleftharpoons D$, under similar conditions, the value of equilibrium constant ($K_{\text {eq }}$) will be
(a) 6
(b) 12
(c) 24
(d) 48

Hint On adding all the given reactions (three reactions) the values of K will be multiplied.
4. For the reaction, $\mathrm{N}_{2}(g)+\mathrm{O}_{2}(g) \rightleftharpoons 2 \mathrm{NO}(g), K_{C}$ at $800^{\circ} \mathrm{C}$ is 0.1 , when equilibrium concentrations of both the reactants are $0.5 \mathrm{molL}^{-1}$, then value of K_{p} at above temperature is
(a) 0.5
(b) 0.1
(c) 0.01
(d) 0.05

Hint At equilibrium,
$\because \Delta n=0, \therefore \quad K_{C}=K_{p}=0.1$
5. $\mathrm{NO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \stackrel{K_{1}}{\stackrel{K_{2}}{\rightleftharpoons}} \mathrm{NO}_{2}(g)$
and $2 \mathrm{NO}_{2}(g) \stackrel{K_{2}}{\rightleftharpoons} 2 \mathrm{NO}(g)+\mathrm{O}_{2}(g)$
Then, K_{1} and K_{2} are related with each other, as
(a) $K_{2}=\frac{\uparrow}{K_{1}}$
(b) $K_{2}=\frac{K_{1}}{2}$
(c) $K_{2}=\frac{1}{K_{1}^{2}}$
(d) $K_{2}=\frac{K_{1}^{2}}{2}$

Hint Multiply Eq. (i) by 2 and reverse it, K_{1} becomes $\frac{1}{\left(K_{1}\right)^{2}}$
Thus, $\quad K_{2}=\frac{1}{K_{1}^{2}}$
6. Calculate the partial pressure of CO , if
$\mathrm{CaCO}_{3}(\mathrm{~s}) \xrightarrow{\Delta} \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) ; K_{p}=8 \times 10^{-2}$
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \longrightarrow 2 \mathrm{CO}(\mathrm{g}) ; K_{p}=2$
(a) 0.08
(b) 0.2
(c) 0.4
(d) 4

Hint $K_{p}\left(\mathrm{CO}_{2}\right)=p\left(\mathrm{CO}_{2}\right)=8 \times 10^{-2} \quad$ [From Eq. (i)]

$$
K_{p}=\frac{(p(\mathrm{CO}))^{2}}{p\left(\mathrm{CO}_{2}\right)} \quad[\text { From Eq. (ii) }]
$$

7. For the following reaction, $A \rightleftharpoons B$, variation of concentration with time is shown below.

The concentrations A and B are minimum and maximum respectively at points
(a) x and y
(b) x and z
(c) y and z
(d) any two points between y and z

Hint Reversible feature of the reaction starts from point x, thereafter concentration of A starts to decrease and concentration of B starts to increase. At point z concentration of A becomes lowest and constant. At point y-concentration of B becomes maximum and constant.
8. A reaction is carried out in a closed vessel as follows:

$$
2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

If the value of $K_{\text {eq }}$ for forward reaction is quite large; which of the following graph is the correct representation for the above reaction?
(a) Conc.

(b)

(c)

(d)

Hint Since, the value of $K_{\text {eq }}$ for forward reaction is high. The product SO_{3} will be formed to large extent at equilibrium.
9. Sulphide ions in alkaline solution react with solid sulphide to form polysulphide ions having S_{2}^{2-}, S_{3}^{2-} etc., ions. If for, $\mathrm{S}+\mathrm{S}^{2-} \rightleftharpoons \mathrm{S}_{2}^{2-} ; K_{1}=12$

$$
2 \mathrm{~S}+\mathrm{S}^{2-} \rightleftharpoons \mathrm{S}_{3}^{2-} ; K_{2}=132
$$

The value for K_{3}, for the following reaction

$$
\mathrm{S}+\mathrm{S}_{2}^{2-} \rightleftharpoons \mathrm{S}_{3}^{2-} \text {, will be }
$$

(a) 11
(b) 22
(c) 33
(d) 44
10. The rate of reaction for forward reaction is two times that of reverse reaction at given temperature and identical conditions, then $K_{\text {eq }}$ will be
(a) 0.5
(b) 1
(c) 1.5
(d) 2

Notice Board

JKCET will be on May 21 \& 22, 2016

The Jammu \& Kashmir Board of Professional Examination has announced the dates for Jammu \& Kashmir Common Entrance Test (JKCET) 2016, conducted for admissions to undergraduate engineering courses across engineering colleges in Jammu \& Kashmir. JKCET 2016 is scheduled to be conducted on May 21 and May 22, 2016. Apart from the exam dates, the notification released by the exam conducting authority also published the documents required to be kept ready by a student before filling the Application Form of JKCET 2016. Candidates aspiring for the exam have to be ready with the below mentioned documents for filling the application form:

- Permanent Resident Certificate (State Subject)
- Date of Birth Certificate
- Reserved Category Certificate (if applicable)
- Marks Certificate/Marks Card of qualifying Examination. (If qualifying exam is passed)
- Tuition Fee Waiver Certificates (where Annual income of the parents is less than Rs. 4.50/- Lacs)

LE-CHATELIER'S PRINCIPLE, IONIC EQUILIBRIUM AND OSTWALD'S DILUTION LAW

Le-Chatelier's Principle

When a change is brought about on a system in equilibrium, the system tends to adjust itself to reduce the effect of change.
The Effect of Varying Conditions on the Equilibrium

Changes imposed on the system in equilibrium	Equilibrium position moves	Equilibrium constant	Any other points
Concentration of A and/ or B increased	To right	No change	-
Concentration of C and/or D increased	To left	No change	-
Pressure increased	To right if $\begin{aligned} & (c+d)<(a+b), \text { i.e. } \\ & \Delta n_{g}=-\mathrm{ve} \end{aligned}$	No change	Very little effect, if any, on reactions in liquid solution.
	To left if $\begin{aligned} & (c+d)>(a+b), \text { i.e. } \\ & \Delta n_{g}=+\mathrm{ve} \end{aligned}$	No change	
	No change if $(c+d)=(a+b)$, i.e $\Delta n_{g}=0$	No change	
Temperature increased	To left if $\Delta H=-$ ve (exothermic)	Value decreased	Equilibrium achieved faster.
	To right if $\Delta H=+v e$ (endothermic)	Value increased	Equilibrium achieved faster.
Addition of a catalyst	No change	No change	Equilibrium achieved faster.

CHEMISTRY CONCENTRATE

TIPS TO SOLVE PROBLEMS
RELATED TO LE-CHATELIER'S PRINCIPLE
The following steps can be followed to solve problems related to Le-Chatelier's principle and to decide the favourable conditions for a chemical reaction.
Step 1 Write down the balanced thermochemical equation indicating the phase of each of the reactants and products and the K value for the reaction.

$$
\begin{aligned}
& \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightleftharpoons 2 \mathrm{NH}_{3}(g) ; \Delta H^{\circ}=-92 \mathrm{KJ} \\
& K_{p}=\frac{\left(p_{\mathrm{NH}_{3}}^{2}\right)}{\left(p_{\mathrm{N}_{2}}\right) \times\left(p_{\mathrm{H}_{2}}^{3}\right)}
\end{aligned}
$$

Step 2 To increase the concentration of product NH_{3}, more reactants need to be added or the product need to be removed as soon as it is formed.
Step 3 Predicting the effect of pressure Find out Δn_{g} for the reaction and then apply the fact that when pressure is increased, the reaction shifts in a direction where number of moles decreases.

Here,

$$
\Delta n_{g}=2-(3+1)=-2
$$

Hence, to get more NH_{3}, pressure needs to be increased.

Step 4 Predicting the effect of temperature

For exothermic reaction, decrease in temperature favours forward reaction and for endothermic reaction, increase in temperature favours forward reactions.
Since, the given reaction is exothermic, to get more NH_{3}, temperature needs to be decreased.
Conclusion Hence, the production of NH_{3} can be increased by increasing pressure, decreasing temperature and increasing the concentration of H_{2} and N_{2}.

Ionic Equilibrium

Equilibrium attained between undissociated electrolyte and ions furnished by it in solution is known as ionic equilibrium.

Degree of Dissociation (α)

For a dissociation reaction, degree of dissociation, $\alpha=\frac{\text { Total number of moles undergo dissociation }}{\text { Total number of moles taken initially }}$

$$
\begin{array}{cc}
\mathrm{HA} \rightleftharpoons & \mathrm{H}^{+}+A^{-} \\
\text {At } t=0, n & 0 \\
n & 0 \\
\Delta t+t
\end{array}
$$

\therefore Degree of dissociation $=\frac{n \alpha}{n}=\alpha$

$$
\text { (} 1-\alpha \approx 1 \text { as weak electrolyte) }
$$

REMEMBER

The value of α depends on
(i) nature of solute.
(ii) nature of solvent (higher the value of dielectric constant of solvent, higher is the value of α).
(iii) Dilution (the value of α of a weak electrolyte increases on dilution).
(iv) Temperature (α increases with increase in temperature).

Ostwald's Dilution Law

For dissociation of a weak electrolyte,

$$
A B \rightleftharpoons A^{+}+B^{-}
$$

At $\quad t=0, \quad C \quad 0 \quad 0$
At equilibrium, $C(1-\alpha) \quad C \alpha \quad C \alpha$
$\therefore K=C \alpha^{2}$ or $\alpha=\sqrt{\frac{K}{C}} \quad$ or $\alpha \propto \frac{1}{\sqrt{C}} \propto \sqrt{V} \quad[\because \alpha \ll 1 ; 1-\alpha \approx 1]$
According to this law, "degree of dissociation is proportional to the square root of dilution for weak electrolytes".

Best Practice 'SHOTS」

11. 56 g of N_{2} and 8 g of H_{2} are heated in a closed vessel. At equilibrium, 34 g of NH_{3} is present in the vessel. The number of moles of $\mathrm{N}_{2}, \mathrm{H}_{2}$ and NH_{3} at equilibrium are respectively.
(a) 1, 2, 2
(b) 1, 1, 2
(c) 2, 2, 2
(d) 2, 1, 2

Hint (i) Convert given masses into number of moles.
(ii) At equilibrium, equate number of moles of ammonia equal to 2 and find value of x (dissociated moles of N_{2} at equilibrium).
(iii) With the help of x, find the value of number of moles of $\mathrm{N}_{2}, \mathrm{H}_{2}$ and NH_{3} at equilibrium respectively.
12. When alcohol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)$ and acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ are mixed together in equimolar proportion, 66.5% of these are converted to ester.
How much ester (in moles) will be formed, if 1 mole of acetic acid and 0.5 mole of alcohol react under same conditions?
(a) 0.423
(b) 1.57
(c) 1.15
(d) 0.545

Hint (i) Calculate the value of K_{c} with the help of provided percentage of ester.
(ii) Now, calculate number of moles of ester formed from 1 mole of acetic acid.
13. If water and ice are in equilibrium, on applying pressure on the above system.
(a) More ice will form
(b) More ice will melt
(c) Has no effect
(d) Ice becomes gas at same temperature.

Hint Water (ice) \rightleftharpoons Water (liquid)
\because For gases, at equilibrium, value of $\frac{n}{V}$ remains constant, applying pressure, volume of gas decreases.
Since, volume of $W_{\text {(Liquid) }}<W_{\text {(cee) }}$
Thus, more ice will melt.
14. Ionisation constant of $\mathrm{CH}_{3} \mathrm{COOH}$ is 1.7×10^{-5} and H^{+} concentration is 3.4×10^{-4}. Then initial concentration of the acid is
(a) 3.4×10^{-4}
(b) 6.8×10^{-3}
(c) 1.7×10^{-3}
(d) 3.4×10^{-3}
15. Equilibrium constants $K_{p_{1}}$ and $K_{p_{2}}$ for the reactions $X \rightleftharpoons 2 Y$ and $Z \rightleftharpoons P+Q$, respectively are in the ratio of $1: 9$, if degree of dissociation of X and Z are equal, then the ratio of total pressure at these equilibria is
(a) 1:36
(b) $1: 9$
(c) $1: 1$
(d) $1: 3$
Hint For $\quad X \rightleftharpoons 2 Y$
Initial 10
At equilibrium $1-x \quad 2 x$

Total number of moles $=1-x+2 x=1+x$

Thus, $\quad K_{p_{1}}=\frac{\left[\frac{2 x}{1+x}\right]^{2}}{\left[\left(\frac{1-x}{1+x}\right) \cdot p\right]}=\frac{4 x^{2}}{(1-x)} \cdot \frac{p_{1}}{(1+x)}$
Similarly, $K_{p_{2}}=\frac{x^{2}}{(1-x)} \cdot \frac{p_{2}}{(1+x)}$
Therefore, $\frac{K_{p_{1}}}{K_{p_{2}}}=\frac{4 \times p_{1}}{p_{2}}$
16. Vapour density of equilibrium mixture of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ is found to be 40 for the equilibrium,

$$
\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons 2 \mathrm{NO}_{2}(g)
$$

The degree of dissociation and percentage of NO_{2} in the mixture is respectively.
(a) 0.15 and 26% (approx.)
(b) 0.15 and 74% (approx.)
(c) 0.85 and 26% (approx.)
(d) 0.85 and 74% (approx.)

Hint (i) To find molecular weights calculated and observed.
Let, vapour density (VD) (calculated) $=D$ and
VD (observed) $=d$
(a) Calculated molecular weight $=2 \times D$
(b) Observed (exp.) molecular weight $=2 \times d$
(ii) To find degree of dissociation

$$
\alpha=\frac{D-d}{d}
$$

(iii) To find \% of NO_{2}

$$
\begin{array}{lccc}
\text { Initially } & 1 & 0 & \\
\text { At equilibrium } & 1-\alpha & 2 \alpha & \because \alpha=0.15
\end{array}
$$

At equilibrium $\left[\mathrm{NO}_{2}\right]=2 \times 0.15=0.30$
Total number of moles $=1-\alpha+2 \alpha=1+\alpha=1.15$
$\therefore \%$ of $\mathrm{NO}_{2}=\frac{2 \alpha}{1+\alpha}=\frac{0.30}{1.15} \times 100=26.08 \%$
17. Consider the following reaction,

$$
\mathrm{I}_{2}+\mathrm{I}^{-} \rightleftharpoons \mathrm{I}_{3}^{-}
$$

This reaction is set up in aqueous medium. We start with 1 mole of I_{2} and 0.5 mol of I^{-}in 1 L flask. After equilibrium is reached, excess of AgNO_{3} gave 0.25 mole of yellow precipitate. Calculate the equilibrium constant.
(a) 1.33
(b) 2.66
(c) 2.00
(d) 3.00

Hint Excess AgNO_{3} gave 0.25 mol of yellow precipitate

$$
\left(\mathrm{AgNO}_{3}+\mathrm{I}^{-} \longrightarrow \mathrm{AgI}\right)
$$

Yellow ppt
\therefore Mole of I_{3}^{-}at equilibrium $=0.25$
At equilibrium $\underset{1-x}{\mathrm{I}_{2}}+\underset{0.5-\mathrm{x}}{1} \rightarrow \underset{x}{\mathrm{I}_{3}}$
Given, $0.5-x=0.25$

$$
x=0.25
$$

\{JEE FINAL TOUCH

18. The following reaction occurs in our body.
$\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-}$
If CO_{2} escapes from our body,
(a) hydrogen ions concentration will diminish
(b) pH will decreases
(c) $\mathrm{H}_{2} \mathrm{CO}_{3}$ concentration will be altered
(d) forward reaction will be accelerated

Hint When CO_{2} escapes, equilibrium shift to the backward direction, thus, H^{+}ions will diminish.
19. Plot of K_{eq} and inverse of temperature $\left(\frac{1}{T}\right)$ is given; this indicates that reaction must be

(a) exothermic
(b) endothermic
(c) has no effect of temperature (d) All (a), (b) and (c) are wrong Hint In the given plot,

$$
\frac{1}{T} \rightarrow \text { increasing }
$$

Means $T \rightarrow$ decreasing and $\quad T \rightarrow$ decreasing, value of $\ln K_{\text {eq }}$ increasing. Which shows that, the reaction is exothermic by nature. (\because In exothermic reactions, as T decreases value of K increases).
20. For the reaction,

$$
\mathrm{SO}_{2} \mathrm{Cl}_{2}(g) \rightleftharpoons \mathrm{SO}_{2}(g)+\mathrm{Cl}_{2}(g)
$$

The equilibrium is attained at $25^{\circ} \mathrm{C}$ in a closed vessel and an inert gas (He) is introduced.
Which of the following statement is correct?
(a) Concentration of $\mathrm{SO}_{2}, \mathrm{Cl}_{2}$ and $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ changes
(b) More Cl_{2} is formed
(c) Concentration of $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ increased
(d) All above statements are wrong

Hint At constant volume inert gas show no effect at equilibrium.
(\because Reactions occur in closed vessel).

pH SCALE, SALT HYDROLYSIS, BUFFER SOLUTIONS AND SOLUBILITY PRODUCT

Ionic Product of Water

Pure water acts as a very weak electrolyte with α equals to 1.8×10^{-9} at $25^{\circ} \mathrm{C}$.
For ionisation of water,

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}^{+}+\mathrm{OH}^{-} \\
& K_{i}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]} \text { or } K_{\mathrm{w}}=K_{i}\left[\mathrm{H}_{2} \mathrm{O}\right]=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]
\end{aligned}
$$

where, $K_{w}=$ ionic product of water depends only on temperature.
For pure water, $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]=10^{-7} \mathrm{M}$
$\therefore \quad K_{w}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$ at $25^{\circ} \mathrm{C}$

pH Scale

To express the concentration of H^{+}ions from 1 M to $10^{-14} \mathrm{M}$ in a simple way, pH scale was introduced in which pH is calculated as

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

The $\left[\mathrm{H}^{+}\right]$is always expressed in $\mathrm{mol} / \mathrm{L}$.

THE CONCEPT OF NEGATIVE pH

In case of highly concentrated solutions having $\left[\mathrm{H}^{+}\right]>1 \mathrm{M}$, the value of $\log \left[\mathrm{H}^{+}\right]$becomes greater than 0, making pH negative. e.g. for 3 M HCl solution, $\mathrm{pH}=-\log 3=-0.4771$ which is negative.
Hence, a negative pH simply means, the $\left[\mathrm{H}^{+}\right]$of the solution is greater than 1M.
A solution having negative pH also occurs naturally in some mine areas, where the minerals form highly concentrated acidic solution.

Similarly, $\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$

- pH and pOH are related as
$\mathrm{pH}+\mathrm{pOH}=14 \quad\left[\because\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}\right]$
- For neutral solution, $\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$or $\mathrm{pH}=\mathrm{pOH}=7$

For acidic solution, $\left[\mathrm{H}^{+}\right]>\left[\mathrm{OH}^{-}\right], \mathrm{pH}<7$
For basic solution, $\left[\mathrm{H}^{+}\right]<\left[\mathrm{OH}^{-}\right], \mathrm{pH}>7$

CHEMISTRY CONCENTRATE

CALCULATION OF pH IN CASE OF MIXTURE OF ACID AND BASE

The following steps can be followed to find the pH :
Step 1 Calculate the moles of the strong acid and strong base present in the solution, e.g. when 100 mL of 1 M HCl is mixed with 50 mL of 0.5 M NaOH , Moles of $\mathrm{HCl}=M \times V=100 \times 1=100 \mathrm{~m} \mathrm{~mol}$

Moles of $\mathrm{NaOH}=M \times V=50 \times 0.5=25 \mathrm{~m} \mathrm{~mol}$
Step 2 Write down the balanced neutralisation reaction occurring in the solution. $\quad \mathrm{HCl}+\mathrm{NaOH} \longrightarrow \mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$
Step 3 Find out the limiting reagent,

$$
\underset{\mathrm{m} \mathrm{~mol}}{\mathrm{HCl}}+\underset{25 \mathrm{~m} \mathrm{~mol}}{\mathrm{NaOH}} \longrightarrow \underset{0}{\mathrm{NaCl}}+\underset{0}{\mathrm{H}_{2} \mathrm{O}}
$$

$t=0, \quad 100 \mathrm{~m} \mathrm{~mol} 25 \mathrm{~m} \mathrm{~mol} \quad 25 \mathrm{~m} \mathrm{~mol} 25 \mathrm{~m} \mathrm{~mol}$ Here, NaOH is the limiting reagent.
Step 4 If acid is the limiting reagent, then it will used up completely and the solution will be basic. If base is the limiting reagent, then it will be used up completely and the solution will be acidic. Since, here NaOH is the limiting reagent, the solution will be acidic and pH can be calculated as
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right],\left[\mathrm{H}^{+}\right]=\frac{\text { Moles of } \mathrm{H}^{+}}{\text {Total volume }}=\frac{75 \mathrm{~m} \mathrm{~mol}}{150 \mathrm{~mL}}=0.5 \mathrm{M}$
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=-\log (0.5)=0.3$

Salt Hydrolysis

It is a reverse process of acid-base neutralisation reaction in which the salt reacts with water to form acid and base. Hence, the pH of the resulting solution can be acidic (acidic salt), basic (basic salt) or neutral.

Formulae for pH

Buffer Solution

A solution, which maintains its pH constant even upon addition of small amount of acid or base.

- Mixed buffers are the solutions of more than one compound. These are classified into following types:
(i) Acidic buffer
(ii) Basic buffer
(iii) A mixture of polyprotic acid and its acidic salt.
(iv) Buffer containing amphoteric electrolyte such as amino acids.

Acidic buffer	Basic buffer
1. It is a mixture of weak acid and itsIt is a mixture of weak base and its salt with strong base, e.g. $\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{CH}_{3} \mathrm{COONa}$	salt with a strong acid, e.g. $\mathrm{NH}_{4} \mathrm{OH}$ and $\mathrm{NH}_{4} \mathrm{Cl}$.
2. Its pH can be calculated as pH	Its pOH can be calculated as
$=\mathrm{pK} K_{a}+\log \frac{\text { [Salt] }}{[\text { Scid] }]}$	$\mathrm{pOH}=\mathrm{pK} K_{b}+\log \frac{\text { [Salt] }}{[\text { Base] }}$

Importance of $\mathbf{p H}$

For human	For animals	
- For good digestion pH in stomach and small intestine should be approximately 1.5 and 8.4 respectively. - The blood that goes to the heart and lungs, should have $\mathrm{pH} \sim 6.5$ means it should be slightly acidic. - Our mouth pH should not be lower than 5.5 otherwise tooth decay can start. - Bacteria present in our mouth produce acids by degradation of sugar and food particles. - The best way to prevent from this is to clean the mouth after eating.	- The aquatic animals (like fish) can survive in river water within a narrow pH range. - When the pH of rain water in about 5.6 , it is called acid rain. Too much acid rain can lower the pH of river water to such an extent that the survival of aquatic animals become difficult - The high acidity of river water even kill the aquatic animals.	- Most of the plants grow best when the pH of the soil is close to 7 . - If the soil is too acidic or too basic, the plants grow badly or do not grow at all. - The soil pH is also affected by the use of chemical fertilisers in the field. - If soil is too acidic, it is treated with materials like, quick lime or slaked lime or chalk. - If soil is alkaline, it is treated with organic matter which is acidic.

Solubility and Solubility Product

Salts can be either completely soluble ($\mathrm{NaCl}, \mathrm{Na}_{2} \mathrm{SO}_{4}$ etc), sparingly soluble $\left(\mathrm{Mg}(\mathrm{OH})_{2}, \mathrm{AgCl}\right.$ etc) or insoluble (LiF) in a given amount of solvent.

- In case of sparingly soluble salt, the salt dissolves till a saturated solution is obtained. After saturation, if we further add the salt, then precipitation occurs.
- For a sparingly soluble salt, if S is the molar solubility,

$$
\begin{gathered}
\qquad A_{x} B_{y}(s)+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{x} A^{y+}+\mathrm{y} B^{\mathrm{x}-}(a q) \\
\text { At saturation, } K\left[A_{\mathrm{x}} B_{\mathrm{y}}(s)\right]=\left[A^{\mathrm{y}}\right]^{\mathrm{x}} \times\left[B^{\mathrm{x}-}\right]^{\mathrm{y}}=[\mathrm{xS} S]^{\mathrm{x}}[\mathrm{y} S]^{\mathrm{y}}
\end{gathered}
$$

$$
\text { or } \quad K_{\mathrm{sp}}=x^{x} \cdot y^{y} S^{x+y} \quad \text { or } \quad S=\left(\frac{K_{\mathrm{sp}}}{x^{x} y^{y}}\right)^{1 / x+y}
$$

Conditions for Precipitation

(i) When ionic product, $\left[A^{y+}\right]^{x}\left[B^{x-}\right]^{y}<K_{\text {sp }}$, the solution is unsaturated and no precipitation occurs.
(ii) When ionic product $=K_{\text {sp }}$, the solution becomes just saturated.
(iii) When ionic product $>K_{\text {sp }}$, the solution becomes saturated enough and precipitation occurs to make ionisation product equals to $K_{\text {sp }}$.

Common Ion Effect

The phenomenon in which the degree of dissociation of a weak electrolyte is suppressed by adding a substance having an ion common to the weak electrolyte, e.g. the dissociation of $\mathrm{CH}_{3} \mathrm{COOH}$ can be suppressed by adding $\mathrm{CH}_{3} \mathrm{COONa}$.

Applications of Common Ion Effect and Solubility Product

- Pure NaCl is recovered from sea water by passing dry HCl gas over crude salt (contains impurities like $\mathrm{CaCl}_{2}, \mathrm{KBr}$ etc). The ionic product of NaCl exceeds its solubility product due to the addition of HCl and it is precipitated as pure NaCl . It is further purified by crystallisation.
- Precipitation of salts during qualitative inorganic analysis is also based on the principle of solubility product and common ion effect.

Best Practice 「SHOTS」

21. The pH of $0.1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ which is 2% ionised in aqueous solution is
(a) 2.0
(b) 1.0
(c) 2.7
(d) 11.3
22. For the reaction,

$$
\mathrm{NH}_{4} \mathrm{COONH}_{2}(\mathrm{~s}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{CO}_{2}(g)
$$

If equilibrium pressure is 3 atm , then value of $K_{\text {sp }}$ is
(a) 4
(b) 27
(c) $1 / 4$
(d) $1 / 27$
23. pH of a reaction between $0.1 \mathrm{~N} \mathrm{NH}_{4} \mathrm{OH}$ and 0.1 N HCl will be
(a) equal to 7
(b) more than 7
(c) less than 7
(d) equal to 14
24. Fear or excitement, causes one to breathe rapidly which results a decrease in CO_{2} concentration in blood. In what way will it change the pH of blood?
(a) pH will increase
(b) pH will decrease
(c) No effect on pH
(d) pH becomes zero

Hint Blood is buffer solution of $\mathrm{H}_{2} \mathrm{CO}_{3} / \mathrm{HCO}_{3}^{-}$thus, pH remains same.
25. Which of the following salts undergoes for anionic hydrolysis?
(a) $\mathrm{NH}_{4} \mathrm{Cl}$
(b) FeCl_{3}
(c) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(d) CuSO_{4}

Hint Anionic hydrolysis means anionic part of the salt will react with water, while cationic part comes from strong base remain as such in the solution.

$$
\mathrm{Na}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{Na}^{+}+2 \mathrm{OH}^{-}+\mathrm{H}_{2} \mathrm{CO}_{3}
$$

Note (i) lons of strong acid or base are weak ions, they do not react with water.
(ii) Ions of weak acid or base are strong ions and will react with water.
(i.e. combine with counter part, i.e. acidic radicals with H^{+}ions and basic radicals with OH^{-}ions).
The process is called hydrolysis.
26. What is the pH of $10^{-3} \mathrm{M}, \mathrm{OH}^{-}$ion solution at 333 K , if K_{w} at 333 K is $10^{-12.6}$?
(a) 4
(b) 9
(c) 9.02
(d) 9.6

Hint At $333 \mathrm{~K}, \mathrm{p} K_{w}=12.6$
27. Solubility products ($K_{\text {sp }}$) of salts of type $M X, M X_{2}$ and $M_{2} X_{3}$ at temperature T are $4.0 \times 10^{-8}, 3.2 \times 10^{-14}$ and 2.7×10^{-15} respectively.
Solubilities (in $\mathrm{mol} \mathrm{L}^{-1}$) of these salts at temperature (T) are in order.
(a) $M X>M_{2} X_{3}>M X_{3}$
(b) $M_{2} X_{3}>M X_{2}>M X$
(c) $M X>M_{2} X_{3}>M X_{2}$
(d) $M X_{2}>M_{2} X_{3}>M X$
28. On adding 0.1 M solution of each $\mathrm{Ag}^{+}, \mathrm{Ba}^{2+}$ and Ca^{2+} ions in $\mathrm{Na}_{2} \mathrm{SO}_{4}$ solution. Species first precipitate is (Given, $K_{\text {sp }}$ for $\mathrm{CaSO}_{4}=10^{-6}, \mathrm{BaSO}_{4}=10^{-11}$ and $\mathrm{Ag}_{2} \mathrm{SO}_{4}=10^{-5}$)
(a) $\mathrm{Ag}_{2} \mathrm{SO}_{4}$
(b) CaSO_{4}
(c) BaSO_{4}
(d) All precipitate at the same time

Hint

(i) For similar type (i.e. AB type e.g. CaSO_{4} and BaSO_{4}) of salts more be the value of $K_{\text {sp }}$, more be the solubility of that salt.
(ii) Between $A B$ and $A_{2} B$ type.
(e.g. CaSO_{4} and $\mathrm{Ag}_{2} \mathrm{SO}_{4}$)
S for $A B$ type $=\sqrt{K_{\text {sp }}} ;\left(\because K_{\text {sp }}=S^{2}\right)$
and S for $A_{2} B$ type $=\left(\frac{K_{\mathrm{sp}}}{4}\right)^{1 / 3} ;\left(\because K_{\mathrm{sp}}=4 S^{3}\right)$
Obviously, the value of ' S ' in case of $A B$ is larger as compared to $A_{2} B$ type, unless the value of K_{sp} for $A_{2} B$ type is very large, (e.g. as in case of BaSO_{4} and $\mathrm{Ag}_{2} \mathrm{SO}_{4}$)
29. A solution has $\mathrm{pH}=5$ is diluted to 100 times. The new solution becomes
(a) acidic
(b) basic
(c) no change
(d) neutral

Hint After dilution $\left[\mathrm{H}^{+}\right]=\frac{10^{-5}}{100}=10^{-7}$
30. Which has highest pH in solution?
(a) $\mathrm{CH}_{3} \mathrm{COOH}$
(b) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(c) $\mathrm{NH}_{4} \mathrm{Cl}$
(d) NaNO_{3}

Hint $\because \mathrm{Na}_{2} \mathrm{CO}_{3}$ solution is basic by nature, solution of $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{NH}_{4} \mathrm{Cl}$ is acidic by nature, while NaNO_{3} solution is neutral.
Thus, pH of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is highest.
31. $\mathrm{p} K_{a}$ of HCN is 9.30 , the pH of solution, prepared by mixing 2.5 mol of KCN and 2.5 mol of HCN in water, so that total volume becomes 500 mL is
(a) 9.3
(b) 0.93
(c) 3.9
(d) 0.39
32. pH of a weak acid (HA) is 3 if concentration of weak acid is 0.1 M , then its degree of dissociation is
(a) 1%
(b) 10%
(c) 50%
(d) 99%
33. A certain buffer solution contains equal concentration of X^{-}ions and HX . The K_{a} for HX is 10^{-8}, the pH of this buffer solution is
(a) 3
(b) 8
(c) 11
(d) 6
34. Precipitate of $\mathrm{CaF}_{2}\left(K_{\text {sp }}=1.7 \times 10^{-10}\right)$ will be obtained, when equal volume of the followings is mixed.
(a) $10^{-4} \mathrm{M}, \mathrm{Ca}^{2+}$ ions and $10^{-4} \mathrm{M}, F$ ions
(b) $10^{-2} \mathrm{M}, \mathrm{Ca}^{2+}$ ions and $10^{-8} \mathrm{M}, \mathrm{F}$ ions
(c) $10^{-2} \mathrm{M}, \mathrm{Ca}^{2+}$ ions and $10^{-3} \mathrm{M}, \mathrm{F}$ ions
(d) $10^{-3} \mathrm{M}, \mathrm{Ca}^{2+}$ ions and $10^{-5} \mathrm{M}, \mathrm{F}$ ions

Hint For precipitation, ionic product should be greater than solubility product.
35. The compound whose 0.1 M solution is basic is
(a) ammonium acetate
(b) ammonium chloride
(c) ammonium sulphate
(d) sodium acetate

Answers

1. (a)
2. (a)
3. (c)
4. (b)
5. (c)
6. (c)
7. (c)
8. (a)
9. (a)
10. (d)
11. (b)
12. (a)
13. (b)
14. (b)
15. (a)
16. (a)
17. (a)
18. (a)
19. (a)
20. (d)
21. (c)
22. (a)
23. (c)
24. (c)
25. (c)
26. (d)
27. (c)
28. (c)
29. (d)
30. (b)

MASTER STRO゙KE

1. Which causes largest change in pH on adding 20 mL , 0.1 M acetic acid solution to
(a) distilled water
(b) 20 mL of $0.01 \mathrm{MCH}_{3} \mathrm{COOH}$
(c) 20 mL of 0.01 M NaOH
(d) 20 mL of 0.01 M HCl

Hint pH changes when solution becomes neutral or basic from acidic.
2. At equilibrium, a 500 mL vessel contains 1.5 M of each $A+B \rightleftharpoons C+D$, if 0.5 M of C and D expelled out, at equilibrium, what would be the value of K_{C}.
(a) 1
(b) $\frac{1}{9}$
(c) $\frac{1}{4}$
(d) $\frac{4}{9}$

Hint $\quad A+B \rightleftharpoons C+D$
$\begin{array}{llll}\text { At equilibrium }=1.5 & 1.5 & 1.5 & 1.5\end{array}$
(Given)

$$
K_{C}=\frac{\text { Concentration of products }}{\text { Concentration of reactants }}
$$

Value of K_{C} does not depend on concentration.
Initial concentration at equilibrium is 1 , (\because all are at same concentration and have same number of moles at equilibrium). Thus, value of K_{C} remains as before the reaction after removal of 0.5 mole of C and D, reaction readjust itself to attain the same value of K_{C}.
3. When two reactants A and B are mixed to give products C and D, at equilibrium the value of reaction quotient (Q)
(a) decreases with time
(b) increases with time
(c) becomes zero at equilibrium
(d) is independent with time

Hint Q is zero at $t=0$ and increases with time.
At equilibrium $Q=K_{\text {eq }}$
4. The $\mathrm{p} K_{a}$ of HCN is 9.30 , the pH of a solution prepared by mixing 2.5 moles of KCN and 2.5 moles of HCN in water and making up the total volume to 500 mL is
(a) 7.30
(b) 8.30
(c) 9.30
(d) 10.30
5. 0.365 g of HCl gas was passed through $100 \mathrm{~cm}^{3}$ of 0.2 M NaOH solution. The pH of the resulting solution would be
(a) 1
(b) 5
(c) 9
(d) 13

Hint (i) Calculate the number of moles of HCl and NaOH .
(ii) At neutralisation point find out which species (acid or base) remains in the solution and calculate pH of the solution.
6. A solution which is $10^{-3} \mathrm{M}$ of each in $\mathrm{Mn}^{2+}, \mathrm{Fe}^{2+}, \mathrm{Zn}^{2+}$ and Hg^{2+} is treated with $10^{-16} \mathrm{M}$ sulphide ions. If $K_{\text {sp }}$ of $\mathrm{MnS}, \mathrm{FeS}, \mathrm{ZnS}$ and HgS are $10^{-15}, 10^{-23}, 10^{-20}$ and 10^{-54} respectively, Which one will precipitate first?
(a) FeS
(b) HgS
(c) ZnS
(d) MnS
7. What is the pH of $10^{-3} \mathrm{M}$ ammonium cyanide solution, if $K_{\mathrm{HCN}}=7.2 \times 10^{-11}$ and $K_{\mathrm{NH}_{3}}=1.8 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$?
(a) 7.5
(b) 9.7
(c) 12
(d) 14
8. For a given reaction,
$2 X(g)+Y(g) \rightleftharpoons Z(g)+75$ kcal; which combination of pressure and temperature give highest yield of Z at equilibrium?
(a) 1000 atm and $100^{\circ} \mathrm{C}$
(b) 1000 atm and $500^{\circ} \mathrm{C}$
(c) 100 atm and $500^{\circ} \mathrm{C}$
(d) 10 atm and $500^{\circ} \mathrm{C}$

Hint (i) For the given reaction $\Delta n_{g}=-$ ve.
Thus, high pressure favours formation of product.
(ii) For the given reaction, value of $\Delta H=-$ ve.

Thus, low temperature is favourable.
9. Which H^{+}is removed in step I?
(a)

(b)

(c)

(d) $50 \% \mathrm{H}^{+}$ions comes from (a) and $50 \% \mathrm{H}$ ions comes from (b)

Hint $\because K_{a}$ for -COOH group $>K_{a}$ for -OH group, also -COOH is more reactive and acidic as compared to - OH group.

\{JEE FINAL TOUCH

10. For a reaction at equilibrium,
$\mathrm{CaCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$, the value of ΔH_{R}° can be represented, by which of the following curve?
(a)

(b)

(c)

(d)

Hint $\because \log _{10} K_{p}=\log _{10} A-\frac{\Delta H_{R}^{\circ}}{2.303 R T}$ on comparing with equation of straight line equation.

$$
\begin{aligned}
& y=m x+c, y=\log K_{p}=\log _{10} p_{\left(\mathrm{CO}_{2)}\right)} \\
& x=\frac{1}{T}, \quad m=-\Delta H_{R}^{\circ} / 2.303 R
\end{aligned}
$$

Thus, slope as shown in curve (a) is the right choice.
11. For a reversible equilibrium reaction, $A+B \rightleftharpoons A B$, The true statement is
(a) Both reactions are endothermic
(b) Both reactions are exothermic
(c) Association reaction is endothermic and dissociation reaction is exothermic
(d) Association reaction is exothermic and dissociation reaction is endothermic
Hint In association, bond is formed between A and B , thus release energy, hence is an exothermic process while, during dissociation, energy is required to break the bonds $(A-B)$. Thus, is an endothermic process.
12. pH of $10^{-8} \mathrm{M}, \mathrm{NaOH}$ solution will be
(Given, $\log 11=1.04$)
(a) 6.96
(b) 7.04
(c) 8
(d) 12

Hint Total $\left[\mathrm{OH}^{-}\right]=10^{-8} \mathrm{M}$ from NaOH $+10^{-7} \mathrm{M}$ from $\mathrm{H}_{2} \mathrm{O}$

$$
=11 \times 10^{-8} \mathrm{M}
$$

13. In dissociation of $\mathrm{N}_{2} \mathrm{O}_{4}$ into NO_{2}, $(1+\mathrm{x})$ varies with the vapour densities ratio $\frac{D}{d}$ as
(a)

(b)

(c)

(d)

Hint $(1+x)$ is total number of moles which remains constant throughout the reaction.
14. For the reaction, passes through the following three stages I, II and III, $A \xrightarrow{\mathrm{I}} B \xrightarrow{\mathrm{II}} C \xrightarrow{\mathrm{II}} D$ quantity of product formed (x), varies with temperature (T) will be

(a) Stages I and III are exothermic and II is endothermic
(b) Stages I and III are endothermic and II is exothermic
(c) Stages II and III are exothermic and I is endothermic
(d) Stages I and II are endothermic and III is exothermic

Hint For Stage I-x increases as T increases.
Thus, is endothermic.
For Stage II-x decreases as T increases
Thus, is exothermic.
For Stage III-x increases as T increases.
Thus, is endothermic.
Hence, I and III are endothermic and II is exothermic.
15. For dissociation of PCl_{5} into PCl_{3} and Cl_{2} in gaseous phase reaction. If d is the observed vapour pressure (exp.) and D is the theoretical (calculated) vapour density with ' x ' as degree of dissociation, variation of $\frac{D}{d}$ with x is given by
(a)

(b)

(c)

(d)

Answers

1. (c)
2. (a)
3. (b)
4. (c)
5. (d)
6. (b)
7. (d)
8. (d)
9. (b)
10. (d)
11. (b)

Redox Reactions

INTRODUCTION, OXIDATION NUMBER, TYPES OF REDOX REACTIONS

In a redox reaction, both oxidation and reduction occur simultaneously.

Redox reaction

Oxidation	Reduction
Addition of oxygen/	Removal of oxygen/
electronegative element	electronegative element
(or) removal of	(or) addition of
hydrogen/electropositive element	hydrogen/electropositive
(or) loss of electron(s).	element (or) gain of electron(s).

An oxidising agent (oxidant) helps in oxidation of other species by accepting electrons lost during oxidation and itself gets reduced. A reducing agent (reductant) helps in reduction by donating electrons to the species undergoing reduction and itself gets oxidised.

REMEMBER

- Elements in their highest oxidation state in a compound always act as oxidising agent as they always get reduced. e.g. $\mathrm{KMnO}_{4}, \mathrm{~K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HClO}_{4}, \mathrm{HNO}_{3}, \mathrm{SO}_{3}, \mathrm{CrO}_{3}, \underline{\mathrm{CO}}_{2}$, etc.
- Elements in their lowest oxidation state in a compound always act as reducing agent as they always get oxidised. e.g. $\mathrm{H}_{2} \mathrm{~S}$, most of the metals, etc.
- Elements having intermediate oxidation state can act as oxidising as well as reducing agents, e.g. $\underline{S O}_{2}, \underline{\mathrm{Fe}}^{2+}, \underline{\mathrm{MnO}} 2_{2}, \mathrm{IO}^{-}$, etc.

Oxidation Number (ON)

- Oxidation number of an element in a particular compound is equal to the number of electrons lost, gained or shared by that compound. It is positive when electrons are lost and negative when electrons are gained.

Rules for Finding Oxidation Number

1. Oxidation number of an atom in free state is always 0 . e.g. oxidation number of H in $\mathrm{H}_{2}, \mathrm{O}$ in $\mathrm{O}_{2}, \mathrm{Cl}_{\text {in } \mathrm{Cl}_{2}}, \mathrm{Na}$, K, Fe etc., is zero.
2. Oxidation number of hydrogen in a compound is always +1 except in case of metal hydrides $\left(\mathrm{NaH}, \mathrm{CaH}_{2}\right.$, etc) where the oxidation number of H is -1 .
3. Oxidation number of oxygen in a compound is always -2 except in peroxides $\left(\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{Na}_{2} \mathrm{O}_{2}\right.$, etc) where it is- 1 , in superoxides $\left(\mathrm{KO}_{2}\right.$, etc) it is $-1 / 2$ and in OF_{2}, it is +2 .
4. Oxidation number of fluorine in a compound is always -1 .
5. Oxidation number of alkali metals and alkaline earth metals in a compound are always +1 and +2 respectively.
6. Oxidation number of metals are always positive, except in some metallic hydrides like $\mathrm{CuH}(-1)$ and metal carbonyls such as $\left[\mathrm{Rh}(\mathrm{CO})_{4}\right]^{-}$.
7. The algebraic sum of oxidation number of all atoms in a neutral compound is always zero and in an ion, it is equal to the total charge on the ion.

Types of redox reactions

Intermolecular redox reaction	Intramolecular redox reaction	Disproportiona- tion reaction
Two different	Different elements of	(Auto-redox) molecules/compounds same compound is are oxidised and reduced.
oxidised as well as atom in a reduced.	molecule compound is oxidised as well as	
e.g. $\mathrm{Fe}^{2+}+\mathrm{MnO}_{4}^{-} \rightarrow$	e.g. $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \rightarrow$	reduced.
$\mathrm{Fe}^{3+}+\mathrm{Mn}^{2+}$	$\mathrm{N}_{2}+\mathrm{Cr}_{2} \mathrm{O}_{3}+4 \mathrm{H}_{2} \mathrm{O}$	e.g. I I $\rightarrow \mathrm{I}^{-}+\mathrm{IO}_{3}^{-}$

Best Practice 「SHOTS」

1. Arrange the followings in the increasing oxidation number of Mn, N and X respectively.
(a) $\mathrm{MnCl}_{2}, \mathrm{MnO}_{2}, \mathrm{KMnO}_{4}$
(b) $\mathrm{N}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{~N}_{3} \mathrm{H}, \mathrm{NO}, \mathrm{N}_{2} \mathrm{O}_{5}$
(c) $\mathrm{HXO}, \mathrm{HXO}_{3}, \mathrm{HXO}_{2}, \mathrm{HXO}_{4}$

Hint (a) $\mathrm{MnCl}_{2}<\mathrm{MnO}_{2}<\mathrm{KMnO}_{4}$
(b) $\mathrm{NH}_{3}<\mathrm{N}_{3} \mathrm{H}<\mathrm{N}_{2} \mathrm{O}<\mathrm{NO}<\mathrm{N}_{2} \mathrm{O}_{5}$
(c) $\mathrm{HXO}<\mathrm{HXO}_{2}<\mathrm{HXO}_{3}<\mathrm{HXO}_{4}$
2. Find out the oxidation number of Cr in $\mathrm{CrO}_{2} \mathrm{Cl}_{2}$, $\mathrm{Na}_{2} \mathrm{Cr}_{3} \mathrm{O}_{10}$ and $\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ respectively.
Hint $+6,+6$ and +3
3. Find out the oxidation number of elements underlined in each case.
(a) $\mathrm{FeSO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.
(b) $\mathrm{Na}_{2} \underline{\mathrm{~S}}_{4} \mathrm{O}_{6}$
(c) $\mathrm{Na}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NO}\right]$

Hint (a) $x-2+0+0=0, x=2$
(b) $2 \times(1)+4 x+6 \times(-2)=0, x=5 / 2$
(c) $2+x+5(-1)+1=0, x=2$
4. Write down the name of the following redox reactions.
(a) $\mathrm{H}_{2} \mathrm{O}_{2}(a q) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$

\{JEE FINAL TOUCH \}

(b) $\mathrm{Fe}+\mathrm{N}_{2} \mathrm{H}_{4} \longrightarrow \mathrm{NH}_{3}+\mathrm{Fe}(\mathrm{OH})_{2}$
(c) $2 \mathrm{KClO}_{3} \longrightarrow 2 \mathrm{KCl}+3 \mathrm{O}_{2}$

Hint (a) Disproportionation reaction
(b) Intermolecular redox reaction
(c) Intramolecular redox reaction
5. Find out the oxidation number of sulphur in the following compounds: $\mathrm{HSO}_{3}^{-}, \mathrm{S}_{2} \mathrm{O}_{8}^{2-}, \mathrm{S}_{2} \mathrm{O}_{4}^{2-}, \mathrm{H}_{2} \mathrm{~S}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$.
Hint The oxidation number of sulphur in $\mathrm{HSO}_{3}^{-}, \mathrm{S}_{2} \mathrm{O}_{8}^{2-}, \mathrm{S}_{2} \mathrm{O}_{4}^{2-}$, and $\mathrm{H}_{2} \mathrm{SO}_{4}$ are $+4,+7,+3,-2$ and +6 respectively.
6. What is the highest oxidation number of P, S and I ? Hint Highest oxidation number of $\mathrm{P}=+5, \mathrm{~S}=+6, \mathrm{I}=+7$
7. Write the following equations in ionic form,
(a) $\mathrm{NaHCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
(b) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+14 \mathrm{HI} \longrightarrow 2 \mathrm{CrI}_{3}+2 \mathrm{KI}+3 \mathrm{I}_{2}+7 \mathrm{H}_{2} \mathrm{O}$ Hint (a) $\mathrm{Na}^{+}+\mathrm{HCO}_{3}^{-}+2 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-} \longrightarrow$

$$
2 \mathrm{Na}^{+}+\mathrm{SO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

or $\mathrm{Na}^{+}+\mathrm{HCO}_{3}^{-}+2 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
(b) $2 \mathrm{~K}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}+14 \mathrm{I}^{-} \longrightarrow$

$$
2 \mathrm{Cr}^{3+}+6 \mathrm{I}^{-}+2 \mathrm{~K}^{+}+2 \mathrm{I}^{-}+3 \mathrm{I}_{2}+7 \mathrm{H}_{2} \mathrm{O}
$$

or $\quad 14 \mathrm{H}^{+}+\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{l}^{-} \longrightarrow 2 \mathrm{Cr}^{3+}+3 \mathrm{I}_{2}+7 \mathrm{H}_{2} \mathrm{O}$
8. Which of the reactant act as oxidant and reductant in the following reaction?
(a) $\mathrm{KIO}_{3}+5 \mathrm{KI}+6 \mathrm{HCl} \longrightarrow 3 \mathrm{I}_{2}+6 \mathrm{KCl}+3 \mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{Br}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$

Hint (a) Oxidant $\Rightarrow \mathrm{KIO}_{3}$, Reductant $\Rightarrow \mathrm{KI}$
(b) Oxidant $\Rightarrow \mathrm{Br}_{2}$, Reductant $\Rightarrow \mathrm{C}_{2} \mathrm{H}_{4}$
9. Sulphur dioxide $\left(\mathrm{SO}_{2}\right)$ under atmospheric condition changes into $\mathrm{SO}_{\mathrm{x}}^{2-}$. If the oxidation number of S in $\mathrm{SO}_{\mathrm{x}}^{2-}$ is +6 . What is the value of x in SO_{x}^{2-} ?
Hint The value of $x=4$

$$
\Rightarrow \quad+6-2 x=-2 \Rightarrow+6+2=2 x ; \quad 8=2 x ; \quad x=4
$$

10. Name one compound each in which oxidation number of
(a) oxygen is +2
(b) nitrogen is +1
(c) chlorine is +4
Hint
(a) $\mathrm{F}_{2} \mathrm{O}$
(b) $\mathrm{N}_{2} \mathrm{O}$
(c) ClO_{2}
11. Why HgCl_{2} and SnCl_{2} cannot exist as such if present together in an aqueous solution?
Hint When both HgCl_{2} and SnCl_{2} present together, undergoes redox reaction (double displacement occur) and a white precipitate will formed.

$$
2 \mathrm{HgCl}_{2}+\mathrm{SnCl}_{2} \longrightarrow \mathrm{SnCl}_{4}+\mathrm{Hg}_{2} \mathrm{Cl}_{2} \downarrow
$$

(white ppt)

BALANCING OF REDOX REACTIONS

Balancing of Redox Reaction

While balancing a redox reaction, both mass and charge must be balanced on both sides of the chemical reaction. The following are different methods followed while balancing a redox reaction.

(a) Half-cell Reaction Method

This method is usually followed while balancing redox reaction occurs inside a cell.

Steps followed while balancing a redox reaction using half-cell reaction method

Step 1 Assign oxidation state to the elements undergoing oxidation and reduction,

$$
\begin{array}{ll}
\text { e.g. } & \mathrm{I}_{2}+\stackrel{+2}{\mathrm{~S}_{2} \mathrm{O}_{3}^{2-}} \longrightarrow \stackrel{-1}{-}^{2.5}+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}
\end{array}
$$

Here, I_{2} is reduced and $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$ is oxidised.
Step 2 Write down the oxidation half-cell and reduction half-cell separately.

$$
\begin{array}{cl}
\mathrm{I}_{2} \longrightarrow \mathrm{I}^{-} & \begin{array}{l}
\text { (Reduction half-cell) } \\
\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \longrightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-} \\
\text { (Oxidation half-cell) }
\end{array} \\
\text { (2) }
\end{array}
$$

Step 3 Balance charge and mass of each half-cell separately.

$$
\mathrm{I}_{2}+2 e^{-} \longrightarrow 2 \mathrm{I}^{-} ; \quad 2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \longrightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}+2 e^{-}
$$

Step 4 Equalise the number of electrons on opposite side of the oxidation and reduction half-cell by multiplying with suitable coefficients so that these would cancel out while adding.
Since, there are same number of electrons on both sides, hence there is no need to multiply by coefficients.
Step 5 Add both the oxidation and reduction half-cell equations to get the final balanced equation.

$$
\begin{aligned}
\mathrm{I}_{2}+2 e^{-} \longrightarrow 21^{-} \\
2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \longrightarrow \mathrm{S}_{4} \mathrm{O}_{6}^{2-}+2 e^{-} \\
+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-} \longrightarrow 2 \mathrm{I}^{-}+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}
\end{aligned}
$$

(Final balanced redox reaction)

(b) Oxidation Number Change Method

This method is also similar to half-cell reaction method but here the two half-cell reactions are not separated.

REMEMBER

We can balance redox reactions occurring in acidic and basic medium by following both of the above methods. Here, we follow one more step to balance H and O -atoms in both acidic and basic medium as discussed on the next page.

\{JEE FINAL TOUCH \}

Steps followed to balance redox reactions in acidic medium by oxidation number change method

Step 1 Assign oxidation number of elements undergoing oxidation and reduction.

$$
\stackrel{+}{\mathrm{I}_{2}}+\stackrel{+5}{\mathrm{NO}_{3}^{-}} \longrightarrow+{ }^{+5} \mathrm{O}_{3}^{-}+\stackrel{+4}{\mathrm{NO}_{2}}
$$

Step 2 Balance only those elements that undergo a change in oxidation state. Here, I and N -atom undergo a change in oxidation state.

$$
\mathrm{I}_{2}+\mathrm{NO}_{3}^{-} \longrightarrow 2 \mathrm{IO}_{3}^{-}+\mathrm{NO}_{2}
$$

Step 3 Connect the elements undergoing oxidation and reduction by a closed bracket. Here, I_{2} undergoes oxidation and N -atom of NO_{3}^{-}undergoes reduction.

Step 4 Indicate the increase in oxidation number for oxidation reaction and decrease in oxidation number for reduction reaction. Multiply them with suitable coefficients to make the increase in oxidation number in oxidation process equal to the decrease in oxidation number in reduction process. Here, we need to multiply the reduction reaction by 10.

Step 5 Write down the new equation after multiplying by coefficients and balance all elements except H and O .

$$
\mathrm{I}_{2}+10 \mathrm{NO}_{3}^{-} \longrightarrow 2 \mathrm{IO}_{3}^{-}+10 \mathrm{NO}_{2}
$$

Here, all elements except O -atom are balanced.
Step 6 In acidic medium, for each excess O -atom, add one $\mathrm{H}_{2} \mathrm{O}$ molecule on opposite side and $2 \mathrm{H}^{+}$on same side. There are 4 extra O -atom on reactants side. Hence,

$$
\mathrm{I}_{2}+10 \mathrm{NO}_{3}^{-}+8 \mathrm{H}^{+} \longrightarrow 2 \mathrm{IO}_{3}^{-}+10 \mathrm{NO}_{2}+4 \mathrm{H}_{2} \mathrm{O}
$$

Now, the reaction is balanced.

Steps followed to balance redox reaction in basic medium by oxidation number change method

The first five steps followed while balancing a redox reaction in acidic medium is also followed here. However, while balancing H and O , we follow a different method as described below
Step 6 In basic medium, for each excess O -atom, add one $\mathrm{H}_{2} \mathrm{O}$ on same side and $2 \mathrm{OH}^{-}$(basic) on opposite side.
If H -atoms are not yet balanced, for one excess H add one OH^{-}on same side and one $\mathrm{H}_{2} \mathrm{O}$ on the opposite side, e.g.

$6 \mathrm{Fe}_{3} \mathrm{O}_{4}+2 \mathrm{MnO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O} \longrightarrow 9 \mathrm{Fe}_{2} \mathrm{O}_{3}+2 \mathrm{MnO}_{2}+2 \mathrm{OH}^{-}$
(Final balanced equation)

Applications of Redox Reactions

- Redox reactions are used in a wide range of industrial applications, e.g. in metallurgical processes for extracting metals from their ores, combustion of fuels and energy generating using electrochemical cells.
- In photosynthesis process, green plants convert carbon dioxide and water into carbohydrates in presence of sunlight. During this reaction, CO_{2} is reduced to carbohydrates while water is oxidised to oxygen. The energy need for the reaction is provided by sunlight and sensitised by chlorophyll.
- Many chemicals of our daily needs such as chlorine, caustic soda, etc., are produced by electrolysis which is based on redox reactions.
- In quantitative analysis, redox titrations involve the reactions between oxidising and reducing agents and help in estimating the amount of unknown substances in solutions.

Best Practice 「SHOTS」

12. Balance the following equations,
(a) $\mathrm{BaCrO}_{4}+\mathrm{KI}+\mathrm{HCl} \longrightarrow$

$$
\mathrm{BaCl}_{2}+\mathrm{I}_{2}+\mathrm{KCl}+\mathrm{CrCl}_{3}+\mathrm{H}_{2} \mathrm{O}
$$

(b) $\mathrm{Mn}_{2} \mathrm{O}_{7} \longrightarrow \mathrm{MnO}_{2}+\mathrm{O}_{2}$
(c) $\mathrm{As}_{2} \mathrm{~S}_{3}+\mathrm{HNO}_{3} \longrightarrow \mathrm{H}_{3} \mathrm{AsO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{NO}$

Hint (a) $2 \mathrm{BaCrO}_{4}+6 \mathrm{KI}+16 \mathrm{HCl} \longrightarrow$

$$
2 \mathrm{CrCl}_{3}+3 \mathrm{I}_{2}+6 \mathrm{KCl}+2 \mathrm{BaCl}_{2}+8 \mathrm{H}_{2} \mathrm{O}
$$

(b) $2 \mathrm{Mn}_{2} \mathrm{O}_{7} \longrightarrow 4 \mathrm{MnO}_{2}+3 \mathrm{O}_{2}$
(c) $3 \mathrm{As}_{2} \mathrm{~S}_{3}+28 \mathrm{HNO}_{3}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow 6 \mathrm{H}_{3} \mathrm{As}_{3} \mathrm{O}_{4}$

$$
+9 \mathrm{H}_{2} \mathrm{SO}_{4}+28 \mathrm{NO}
$$

13. Balance the following equations in acidic medium.
(a) $\mathrm{HCl}+\mathrm{KMnO}_{4} \longrightarrow \mathrm{Cl}_{2}+\mathrm{KCl}+\mathrm{MnCl}_{2}$
(b) $\mathrm{HNO}_{3}+\mathrm{HBr} \longrightarrow \mathrm{NO}+\mathrm{Br}_{2}+\mathrm{H}_{2} \mathrm{O}$
(c) $\mathrm{Cu}^{2+}+\mathrm{SO}_{2} \longrightarrow \mathrm{Cu}^{+}+\mathrm{SO}_{4}^{2-}$

Hint (a) $16 \mathrm{HCl}+2 \mathrm{KMnO}_{4} \longrightarrow 5 \mathrm{Cl}_{2}+2 \mathrm{KCl}+2 \mathrm{MnCl}_{2}+8 \mathrm{H}_{2} \mathrm{O}$
(b) $2 \mathrm{HNO}_{3}+6 \mathrm{HBr} \longrightarrow 2 \mathrm{NO}+3 \mathrm{Br}_{2}+4 \mathrm{H}_{2} \mathrm{O}$
(c) $2 \mathrm{Cu}^{2+}+\mathrm{SO}_{2}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{Cu}^{+}+4 \mathrm{H}^{+}+\mathrm{SO}_{4}^{2-}$
14. Balance the following equations in basic medium.
(a) $\mathrm{MnO}_{4}^{-}+\mathrm{Fe}^{2+} \xrightarrow{-\bar{H}} \mathrm{Mn}^{2+}+\mathrm{Fe}^{3+}$
(b) $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}+\mathrm{Ag}_{2} \mathrm{O} \xrightarrow{\overline{\mathrm{O}} \mathrm{H}} \mathrm{Ag}+\mathrm{SO}_{3}^{2-}$
(c) $\mathrm{H}_{2}+\mathrm{ReO}_{4}^{-} \xrightarrow{\overline{\mathrm{O}} \mathrm{H}} \mathrm{ReO}_{2}+\mathrm{H}_{2} \mathrm{O}$
(d) $\mathrm{ClO}_{2}+\mathrm{SbO}_{2}^{-} \xrightarrow{\overline{\mathrm{O}} \mathrm{H}} \mathrm{ClO}_{2}^{-}+\mathrm{Sb}(\mathrm{OH})_{6}^{-}$

\{JEE FINAL TOUCH\}

Hint (a) $\mathrm{MnO}_{4}^{-}+5 \mathrm{Fe}^{2+}+4 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Mn}^{2+}+5 \mathrm{Fe}^{3+}+8 \overline{\mathrm{O}} \mathrm{H}$
(b) $\mathrm{S}_{2} \mathrm{O}_{4}^{2-}+\mathrm{Ag}_{2} \mathrm{O}+2 \overline{\mathrm{O}} \mathrm{H} \longrightarrow 2 \mathrm{Ag}+2 \mathrm{SO}_{3}^{2-}+\mathrm{H}_{2} \mathrm{O}$
(c) $3 \mathrm{H}_{2}+2 \mathrm{ReO}_{4}^{-} \longrightarrow 2 \mathrm{ReO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+2 \overline{\mathrm{O}} \mathrm{H}$
(d) $2 \mathrm{ClO}_{2}+\mathrm{SbO}_{2}^{-}+2 \mathrm{O}^{-} \mathrm{H}+2 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{ClO}_{2}^{-}+\mathrm{Sb}(\mathrm{OH})_{6}^{-}$
15. Balance the following equations by ion electron (half-reaction) method for each of the following equations.
(a) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{Fe}^{2+} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{Fe}^{3+}+\mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{I}^{-}+\mathrm{H}^{+} \longrightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$
(c) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}+\mathrm{H}^{+} \longrightarrow \mathrm{Cr}^{3+}+\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}$
(d) $\mathrm{Cu}_{2} \mathrm{O}+\mathrm{H}^{+}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{Cu}^{2+}+\mathrm{NO}+\mathrm{H}_{2} \mathrm{O}$

Hint (a) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+6 \mathrm{Fe}^{2+}+14 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Cr}^{3+}+6 \mathrm{Fe}^{3+}+7 \mathrm{H}_{2} \mathrm{O}$
(b) $\mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{H}^{+}+2 \mathrm{I}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{I}_{2}$
(c) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+8 \mathrm{H}^{+}+3 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O} \longrightarrow 2 \mathrm{Cr}^{3+}+4 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}_{2}$
(d) $3 \mathrm{Cu}_{2} \mathrm{O}+14 \mathrm{H}^{+}+2 \mathrm{NO}_{3}^{-} \longrightarrow 6 \mathrm{Cu}^{2+}+7 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}$
16. Balance the following equations by oxidation number method :
(a) $\mathrm{Cl}_{2}+\mathrm{IO}_{3}^{-} \longrightarrow \mathrm{Cl}^{-}+\mathrm{IO}_{4}^{-}$(in basic medium)
(b) $\mathrm{MnO}_{4}^{-}+\mathrm{SO}_{3}^{2-} \longrightarrow \mathrm{SO}_{4}^{2-}+\mathrm{MnO}_{2}$
(c) $\mathrm{Fe}^{3+}+\mathrm{Sn}^{2+} \longrightarrow \mathrm{Sn}^{4+}+\mathrm{Fe}^{2+}$
(d) $\mathrm{Zn}+\mathrm{NO}_{3}^{-} \longrightarrow \mathrm{Zn}^{2+}+\mathrm{NH}_{4}^{+}$

Hint (a) $\mathrm{Cl}_{2}+\mathrm{IO}_{3}^{-}+2 \overline{\mathrm{O}} \mathrm{H} \longrightarrow 2 \mathrm{Cl}^{-}+\mathrm{IO}_{4}^{-}+\mathrm{H}_{2} \mathrm{O}$
(b) $2 \mathrm{H}^{+}+2 \mathrm{MnO}_{4}+3 \mathrm{SO}_{3}^{2-} \longrightarrow 2 \mathrm{MnO}_{2}+3 \mathrm{SO}_{4}^{2-}+\mathrm{H}_{2} \mathrm{O}$
(c) $2 \mathrm{Fe}^{3+}+\mathrm{Sn}^{2+} \longrightarrow \mathrm{Sn}^{4+}+2 \mathrm{Fe}^{2+}$
(d) $4 \mathrm{Zn}+\mathrm{NO}_{3}^{-}+10 \mathrm{H}^{+} \longrightarrow 4 \mathrm{Zn}^{2+}+\mathrm{NH}_{4}^{+}+3 \mathrm{H}_{2} \mathrm{O}$
17. Use the arbitrary coefficient method to balance the following equations.
(a) $\mathrm{Pb}\left(\mathrm{N}_{3}\right)_{2}+\mathrm{Co}\left(\mathrm{MnO}_{4}\right)_{3} \longrightarrow \mathrm{CoO}$

$$
+\mathrm{MnO}_{2}+\mathrm{Pb}_{3} \mathrm{O}_{4}+\mathrm{NO}
$$

(b) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+\mathrm{KOH}+\mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{4}$
$\longrightarrow \mathrm{Fe}(\mathrm{OH})_{3}+\mathrm{Ce}(\mathrm{OH})_{3}+\mathrm{K}_{2} \mathrm{CO}_{3}+\mathrm{KNO}_{3}+\mathrm{H}_{2} \mathrm{O}$
Hint (a) $30 \mathrm{~Pb}\left(\mathrm{~N}_{3}\right)_{2}+44 \mathrm{Co}\left(\mathrm{MnO}_{4}\right)_{3} \longrightarrow$
$44 \mathrm{CoO}+132 \mathrm{MnO}_{2}+10 \mathrm{~Pb}_{3} \mathrm{O}_{4}+180 \mathrm{NO}$
(b) $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+258 \mathrm{KOH}+61 \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{4} \longrightarrow \mathrm{Fe}(\mathrm{OH})_{3}$
$+61 \mathrm{Ce}(\mathrm{OH})_{3}+250 \mathrm{KNO}_{3}+6 \mathrm{~K}_{2} \mathrm{CO}_{3}+36 \mathrm{H}_{2} \mathrm{O}$

isucceed

SAMPLE QUESTION PAPERS

 for ISC Class XII

For further information about the products from Arihant log on to www.arihantbooks.com or email to info@arihantbooks.com

MASTER STRƠKE

1. Why $\mathrm{H}_{2} \mathrm{O}_{2}$ acts as a reductant as well as an oxidant?

Hint Oxidation number of O in $\mathrm{H}_{2} \mathrm{O}_{2}$ is -1 . Maximum oxidation state of O is +2 and minimum is -2 .
Explanation Hydrogen peroxide has the ability to gain or lose electrons, as its oxygen atoms are in the +1 oxidation state. By gaining electrons they can go to - 2 oxidation state and by losing electrons they can go to the zero oxidation state.
2. Which of the followings is/are oxidant and which is/are reductant?

$$
\begin{aligned}
& \mathrm{Br}_{2}, \mathrm{Fe}^{3+}, \mathrm{I}^{-} ? \\
& \text { Hint } \\
& \mathrm{Fe}^{3+}+\mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+} \\
& \mathrm{Br}_{2}+2 \mathrm{e}^{-} \longrightarrow 2 \mathrm{Br}^{-} \\
& 2 \mathrm{I}^{-} \longrightarrow \mathrm{I}_{2}+2 \mathrm{e}^{-}
\end{aligned}
$$

[oxidant]
[oxidant] [reductant]
3. Find out the oxidation numbers of Cl in $\mathrm{Cl}_{2}, \mathrm{HOCl}$, $\mathrm{Cl}_{2} \mathrm{O}, \mathrm{ClO}_{2}, \mathrm{KClO}_{3}$ and $\mathrm{Cl}_{2} \mathrm{O}_{7}$.
Hint The oxidation number of Cl in $\mathrm{Cl}_{2}, \mathrm{HOCl}, \mathrm{Cl}_{2} \mathrm{O}, \mathrm{ClO}_{2}, \mathrm{KClO}_{3}$ and $\mathrm{Cl}_{2} \mathrm{O}_{7}$ are $0,+1,+1,+4,+5$ and +7 respectively.
4. Find out the oxidation number of underlined atom.
$\left[\underline{\mathrm{Co}}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}, \mathrm{KCrO}_{3} \mathrm{Cl}, \underline{\mathrm{P}}_{2} \mathrm{O}_{7}^{4-}, \underline{\mathrm{ClO}_{2}^{-}}$
Hint $\underline{\mathrm{Co}}\left(\mathrm{NH}_{3}\right)_{6}^{3+}=+3, \mathrm{KCrO}_{3} \mathrm{Cl}=+6 ; \underline{\mathrm{P}}_{2} \mathrm{O}_{7}^{4-}=+5 ; \underline{\mathrm{ClO}_{2}^{-}}=+3$
5. Identify the species undergoing oxidation and reduction.
(a) $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{HCl}(\mathrm{g})+\mathrm{S}(\mathrm{s})$
(b) $2 \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})+8 \mathrm{Al}(\mathrm{s}) \longrightarrow 9 \mathrm{Fe}(\mathrm{s})+4 \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$

Hint

(b)

$\ln \mathrm{Fe}_{3} \mathrm{O}_{4}$, Fe exists in both +2 and +3 oxidation states.
6. Write one equation each for decomposition reactions where energy is supplied in the form of heat, light or electricity.

$$
\begin{aligned}
& \text { Hint Heat } \quad \mathrm{CaCO}_{3}(s) \xrightarrow{\Delta} \mathrm{CaO}(s)+\mathrm{CO}_{2}(g) \\
& \text { Light } 2 \mathrm{AgCl}(s) \xrightarrow{h v} 2 \mathrm{Ag}(s)+\mathrm{Cl}_{2}(g) \\
& \text { Electricity } 2 \mathrm{H}_{2} \mathrm{O}(I) \xrightarrow{\text { Electric current }} 2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(g) \\
& \text { Acidulated }
\end{aligned}
$$

7. Consider the following redox reaction and identify which element is oxidised and reduced both?

$$
4 \mathrm{P}+3 \mathrm{KOH}+3 \mathrm{H}_{2} \mathrm{O} \longrightarrow 3 \mathrm{KH}_{2} \mathrm{PO}_{2}+\mathrm{PH}_{3}
$$ Hint P

8. For the redox reaction,

$$
\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Determine the correct stoichiometric coefficients of $\mathrm{MnO}_{4}^{-}, \mathrm{C}_{2} \mathrm{O}_{4}^{2-}$ and H^{+}
Hint 2,5 and 16 respectively.
9. Identify whether the following reaction is redox or not.

$$
2 \mathrm{~K}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]+\mathrm{Zn} \longrightarrow 2 \mathrm{Ag}+\mathrm{K}_{2}\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]
$$

Hint No
10. What products are expected from the disproportionation reaction of hypochlorous acid? Hint HClO_{3} and $\mathrm{Cl}_{2} \mathrm{O}$
11. What are the oxidation states of iodine in $\mathrm{HIO}_{4}, \mathrm{H}_{3} \mathrm{IO}_{5}$ and $\mathrm{H}_{5} \mathrm{IO}_{6}$ respectively?
Hint $+7,+7,+7$
12. Identify whether the following redox reaction is correctly balanced or not.

$$
\mathrm{Cu}+2 \mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+\mathrm{H}_{2} \mathrm{O}
$$

Hint No, correct balanced reaction is

$$
3 \mathrm{Cu}+8 \mathrm{HNO}_{3} \longrightarrow 3 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}+4 \mathrm{H}_{2} \mathrm{O}
$$

13. Balance the following redox reaction,
$\mathrm{MnCl}_{2}+\mathrm{PbO}_{2}+\mathrm{HNO}_{3} \longrightarrow \mathrm{HMnO}_{4}$

$$
+\mathrm{PbCl}_{2}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}
$$

Hint $2 \mathrm{MnCl}_{2}+5 \mathrm{PbO}_{2}+6 \mathrm{HNO}_{3} \longrightarrow$ $2 \mathrm{HMnO}_{4}+2 \mathrm{PbCl}_{2}+3 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{H}_{2} \mathrm{O}$

JEE MAIN Scale UP

Questions to Measure Your Problem Solving Skills

1. Match the Column I (Reaction) with Column II (Reaction type).

Column I	Column II
A.	p. Addition elimination (ArSN)
B.	q. Nucleophilic addition (NA)
C.	r. Pericyclic reaction
D.	s. Elimination addition (ArSN)
E. $\sim^{\text {a }}$	t. Rearrangement
	u. Electrophilic addition (EA)

Codes

	A	B	C	D	E	F
(a)	p	s	u	q	r	t
(b)	r	p	s	t	u	q
(c)	s	u	t	p	q	r
(d)	t	q	r	s	p	u

2. Which of the following pair(s) is/are correctly matched?
I. Coloured but does not have unpaired electrons $\rightarrow \mathrm{MnSO}_{4}$
II. Electronic configuration of actinoids is not certain \rightarrow energy difference is small in $5 f$ and $6 d$ energy levels.
III. d-block elements \rightarrow Interstitial hydride.
IV. Alloys of transition elements \rightarrow same atomic sizes.
(a) I and II
(b) Only I
(c) II, III and IV
(d) III and IV
3. Two moles of a perfect gas undergo the following process.
I. A reversible isobaric expansion from $(1 \mathrm{~atm} 20 \mathrm{~L})$ to $(1 \mathrm{~atm} 40 \mathrm{~L})$.
II. A reversible isochoric change of state from (1 atm 40 L) to $(0.5 \mathrm{~atm} 40 \mathrm{~L})$.
III. A reversible isothermal compression from (0.5 atm 40 L) to (1 atm 20 L).

Calculate the total heat change involved in the above process.
(a) - 622.06 J
(b) 121.8 J
(c) 249.8 J
(d) 368.4 J
4. Fill in the blanks, using the correct option.
I. Passing $\mathrm{H}_{2} \mathrm{~S}$ into the mixture of $\mathrm{Mn}^{2+}, \mathrm{Ni}^{2+}$, Cu^{2+} and Hg^{2+} ions in an acidified aqueous solution precipitates ...A... .
II. $\mathrm{NaX}+\mathrm{MgCl}_{2} \longrightarrow$ White ppt. X is $\ldots B \ldots$. (Boiling)
III. $X+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \underset{\begin{array}{c}\text { Colourless gas } \\ \text { irritating smell }\end{array}}{Y} \xrightarrow[\text { Green solution }]{\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} / \mathrm{H}^{+}}$ X and Y are ...C... .
IV. The reagents $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{3}(a q)$ will precipitate ...D... .

	A	B	C	D
(a)	CuS and HgS	HCO_{3}^{-}	SO_{3}^{2-} and SO_{2}	Al^{3+}
(b)	MnS and CuS	NO_{3}^{-}	Cl^{-}and HCl	Ca^{2+}
(c)	MnS and NiS	CO_{3}^{2-}	S^{2-} and $\mathrm{H}_{2} \mathrm{~S}$	Mg^{2+}
(d)	NiS and HgS	SO_{4}^{2-}	CO_{3}^{2-} and CO_{2}	Zn^{2+}

5. Fill in the blanks, using the correct option.
I. Coefficient of volume expansion of a gas is ...A... .
II. ...B... will have identical rate of effusion under similar conditions.
III. At the same temperature, the ratio of average velocity of SO_{2} to CH_{4} is ...C... .
IV. At high pressure, van der Waals' equation becomes ...D... .
$\begin{array}{cccc}\text { (a) } \frac{\mathrm{A}}{273} & \text { Bideuterium and helium } & 1: 2 & \mathrm{pV}=\mathrm{D} T+\mathrm{pb}\end{array}$
(b) $\frac{2}{273}$ Diprotium and dideuterium $2: 3 \quad p V=R T-\frac{a}{V}$
(c) $\frac{3}{273}$ Carbon dioxide and ethane $3: 4 \quad \mathrm{pV}=R T$
(d) $\frac{4}{273}$ Ethene and ethane $1: 6 \quad p V=R T+\frac{a}{V}$
6. Match the catalysts to the correct process.

Catalyst		Process	
A. TiCl_{3}	p. Wacker process		
B. PdCl_{3}	q. Ziegler-Natta polymerisation		
C. CuCl_{2}	r. Contact process		
D. $\mathrm{V}_{2} \mathrm{O}_{5}$	s. Deacon's process		

Codes

	A	B	C	D
(a)	r	q	s	p
(b)	q	p	s	r
(c)	q	r	s	p
(d)	r	p	q	s

7. Consider to following statements.
I. $\mathrm{Ni}(\mathrm{CN})_{4}$ is diamagnetic in nature.
II. $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is expected to absorb visible light and shown colour.
III. $\left[\mathrm{Co}(\mathrm{ox})_{2}(\mathrm{OH})_{2}\right]^{-}$is exhibits highest paramagnetic behaviour.
IV. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is an inner orbital complex and diamagnetic.
Choose the correct statements.
(a) I and II
(b) Only III
(c) II and IV
(d) All are correct
8. Calculate the percentage of HI dissociated when 0.96 g of it was heated to $450^{\circ} \mathrm{C}$ till equilibrium was reached. It was then quickly cooled and the amount of iodine liberated required $15.7 \mathrm{~cm}^{3}$ of $\frac{N}{10} \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$.
(a) 0.75
(b) 20.9
(c) 7.85
(d) 0.78
9. Fill in the blanks, using the correct option.
I. The IUPAC name of following spiro compound is ...A... .

II. The volume of ozone formed, when two litre of air, i.e. 1915 mL of ozonised air is passed through Brodio's apparatus is ...B... .
III. Tautomerism is not exhibited by ...C... .
IV. ...D... gives the most stable carbocation upon dehydration.

10. Which of the following statements are correct? Choose the correct option.
I. EAN of Fe in $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ is 36 .
II. Complex with bidentate ligands are called chelates.
III. IUPAC name of the following complex,

bis (dimethylglyoxime)dichlorocobalt (II).
IV. $M(A B C D)$ shows cis-trans isomerism.
V. The existence of two different coloured complexes with the composition of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$is due to coordination isomerism.
(a) II and IV
(b) I and III
(c) II, IV and V
(d) I, III and V
11. Fill in the blanks, using the correct option.
I. The isotopes of chlorine with mass number 35 and 37 exist in the ratio of ...A.... Its average atomic mass is 35.5 .
II. A compound of Na, C and O contain 0.0887 mole of $\mathrm{Na}, 0.132$ mole of O and 2.65×10^{22} atoms of carbon. The empirical formula of the compound is ...B... .
III. The vapour density of 5.6 L gas weighing 60 g at STP is ...C... .
IV. If repeated measurements give values close to one another, the number is ...D... .

	A	B	C	D
(a) $1: 1$	$\mathrm{Na}_{3} \mathrm{C}_{5} \mathrm{O}_{2}$	60	Surely accurate	
(b) $2: 1$	NaCO^{2}	30	Surely precise and accurate	
(c) $3: 2$	$\mathrm{Na}_{2} \mathrm{CO}_{2}$	240	May be precise or accurate	
(d) $3: 1$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	120	Surely precise	

12. Which of the following statements are correct? Choose the correct option.
I. The half-life period of 1 g sample with activity of 0.4 curie (atomic mass $=226$) is $1.2 \times 10^{10} \mathrm{~s}$. [Given, 1 curie $=3.7 \times 10^{10} \mathrm{dps}$]
II. Bleeding is stopped by application of ferric chloride because ferric chloride seals the blood vessel.
III. Gelatin is added in manufacture of ice-cream in order to stabilise the colloid and prevent crystallisation.
IV. In the Haber process for synthesis of NH_{3}, molybdenum acts as catalyst and Fe as a promoter.
(a) Only III
(b) II, III and IV
(c) I, III and V
(d) II and IV
13. Two aliphatic aldehydes, (P) and (Q) react in the presence of $a q \cdot \mathrm{~K}_{2} \mathrm{CO}_{3}$ to give compound (R), which upon treatment with HCN gives compound(S). On acidification and heating, (S) gives

Identify the compounds P, Q, R and S.
(a)

(b)

(c)

(d)

14. Fill in the blanks, using the correct option.
I. Atomic radius of lithium (bcc structure), if edge length is 351 pm , is ...A... .
II. The edge length of unit cell of NaCl crystal with density $2.165 \mathrm{~g} / \mathrm{cm}^{3}$ is ...B... .
III. The edge length of cube containing one mole of $\mathrm{NaCl}\left(d=2.165 \mathrm{~g} / \mathrm{cm}^{3}\right)$ is $\ldots C \ldots$.
IV. Packing fraction of the element that crystallises in simple cubic arrangement is ...D... .
V. Number of unit cells present in 39 g of potassium (bcc structure) is ...E... .

	A	B	C	D	E
(a)	409 pm	$6.02 \times 10^{-8} \mathrm{~cm}$	2.78 cm	$\pi / 4$	N_{A}
(b) 151.98 pm	$5.64 \times 10^{-8} \mathrm{~cm}$	3 cm	$\pi / 6$	$0.5 N_{A}$	
(c) 154.15 pm	$5.85 \times 10^{-8} \mathrm{~cm}$	2.89 cm	$\pi / 3$	$N_{A} / 4$	
(d) 182 pm	$5.98 \times 10^{-8} \mathrm{~cm}$	3.12 cm	$\pi / 2$	$0.75 N_{A}$	

15. Match the Column I (Reaction) with Column II (Stereochemistry involved).

Codes

	A	B	C	D
(a)	q, s	q, s	p, r, t	p, r, t
(b)	q, r	p, r, t	q, s	p, r, t
(c)	p, r, t	p, r, t	q, s	q, s
(d)	p, r	q	q,	r, t

16. The degree of dissociation of $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$ in a dilute solution containing 14 g of the salt per 200 g of water at $100^{\circ} \mathrm{C}$ is 70%. If the vapour pressure of water is 760 mm . The vapour pressure of solution is
(a) 785 mm
(b) 769 mm
(c) 746 mm
(d) 753 mm
17. Choose the correct option after reading following information given below.
I. $(A) \mathrm{C}_{8} \mathrm{H}_{14} \xrightarrow[\text { Alk. } \mathrm{KMnO}_{4}]{[\mathrm{O}]}(B)+(C)+(D)$, 2 moles of H_{2} is required for saturation of (A).
II. (B) reduces ammonical AgNO_{3} and gives yellow colour with $\mathrm{NaOH}+\mathrm{I}_{2}$.
III. (C) does not reduce Tollen's reagent but gives iodoform test.
IV. (D) on dehydration with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ gives mixture of colourless gases.

(b)

(d)

18. Two first order reactions proceed at $25^{\circ} \mathrm{C}$ at the same rate. Find the ratio of rates of these reactions at $75^{\circ} \mathrm{C}$, when temperature coefficient of the rate of the first reaction is 2 and that of second reaction is 3 .
(a) $1: 7.6$
(b) $7.6: 1$
(c) $2: 1$
(d) $1: 2$
19. Which of the following statements is/are correct? Choose from the option.
I. Ozone is an allotrope of oxygen.
II. Hydrolysis of one mole of peroxodisulphuric acid produces two moles of peroxomono sulphuric acid.
III. Bond dissociation energy increases in the order: $\mathrm{I}_{2}<\mathrm{F}_{2}<\mathrm{Br}_{2}<\mathrm{Cl}_{2}$.
IV. The ease of liquifaction of noble gases decrease in the order: $\mathrm{Xe}<\mathrm{Kr}<\mathrm{Ar}<\mathrm{Ne}<\mathrm{He}$.
(a) I and II
(b) III and IV
(c) I and III
(d) II and IV
20. Calculate the amount of current required to produce 85 g of $\mathrm{H}_{2} \mathrm{O}_{2}$ per hour during hydrolysis of ammonium persulphate. Which is produced during anodic oxidation of ammonium hydrogen sulphate, if the current efficiency is 60% and hydrolysis yield is 100% ?
(a) $446.8 \AA$
(b) $223.38 \AA$
(c) 379.6 A
(d) 146.2 A
21. Which of the following statements is/are incorrect? Choose the correct option.
I. Basic nature of oxides increases as $\mathrm{Al}_{2} \mathrm{O}_{3}<\mathrm{MgO}<\mathrm{Na}_{2} \mathrm{O}<\mathrm{K}_{2} \mathrm{O}$.
II. In silicon dioxide, each silicon and oxygen are bonded by double bonds and each silicon atom is surrounded by two oxygen atoms.
III. The number of $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bonds in cyclic metaphosphoric acid is four.
IV. Out of the reagents,
$\mathrm{NH}_{3}+\mathrm{CuO}$,
$\mathrm{NH}_{4} \mathrm{NO}_{3}$,
$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{3}$ and
$\mathrm{Ba}\left(\mathrm{N}_{3}\right)_{2}$ extra pure N_{2} can be obtained by $\mathrm{NH}_{4} \mathrm{NO}_{3}$.
(a) Only I
(b) II, III and IV
(c) I and II
(d) All of these
22. Which of the following statements are incorrect? Choose the correct option.
I. Solubility of AgCl is $1.31 \times 10^{-5} \mathrm{M}$, when specific conductance of saturated solution of AgCl is $1.86 \times 10^{-6} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$ and that of water is $6 \times 10^{-8} \mathrm{ohm}^{-1} \mathrm{~cm}^{-1},\left(\Lambda_{\mathrm{AgCl}}^{\circ}=137.2\right.$ $\mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{eq}^{-1}$).
II. Equivalent conductance will be $4.6 \mathrm{ohm}^{-1} \mathrm{~cm}^{-1}$ eq^{-1}, when resistance of 1 N solution of $\mathrm{CH}_{3} \mathrm{COOH}$ is 250 ohm.
(Cell constant $\left.=1.15 \mathrm{~cm}^{-1}\right)$.
III. $\mathrm{Ag}(\mathrm{s}) / \mathrm{AgNO}_{3}(0.01 \mathrm{M}) \| \mathrm{AgNO}_{3}(0.05 \mathrm{M}) / \mathrm{Ag}(\mathrm{s})$. The emf of cell is -0.0414 V .
IV. $2 \mathrm{Fe}^{3+}(a q)+2 \mathrm{I}^{-}(a q) \rightleftharpoons 2 \mathrm{Fe}^{2+}(a q)+\mathrm{I}_{2}(s)$. The value of $E^{\circ} \mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}$ is 0.77 V .
(Given, $E_{\mathrm{I}_{2} / \mathrm{I}^{-}}^{\circ}=+0.54 \mathrm{~V}, K_{\mathrm{eq}}=10^{8}$ at 298 K).
(a) I and II
(b) III and IV
(c) I and III
(d) II and IV
23. Complete the reaction. Choose the correct option.

A
(a) HBr
(b) $\mathrm{HBr}+\mathrm{ROOR}$ $+h v$
(c) HI
(d) $\mathrm{HCl}+\mathrm{ROOR}$
high temperature
$\mathrm{O}_{3} / \mathrm{H}_{2} \mathrm{O}_{2}$
$\mathrm{CH}_{3} \mathrm{O}^{-}+$high
temperature
$\mathrm{EtO}^{-}+$high temperature
$\mathrm{CsOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
$\mathrm{O}_{3} / \mathrm{NaBH}_{4}$
$\mathrm{KMnO}_{4} / \overline{\mathrm{O}} \mathrm{H}$
24. Which of the following statements are true? Choose the correct option.
I. Lattice energy decreases in the order as $\mathrm{LiF}>\mathrm{LiCl}>\mathrm{LiBr}>\mathrm{LiI}$.
II. Acidified solution of chromic acid on treatment with $\mathrm{H}_{2} \mathrm{O}_{2}$ yield blue solution of CrO_{3}.
III. Ionic radii increase in magnitude as atomic number of alkali metals increases.
IV. The activity of alkaline earth metals as reducing agents decreases from Be to Ca and increases from Ca to Ba.
(a) I and III
(b) II and IV
(c) I and IV
(d) II and III
25. Match the Column I (Reactants) with Column II (Products).

26. Fill in the blanks, using the correct option.
I. pH changes from ...A... to ...B... upon ten-fold dilution of $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$. $\left(K_{b}=1.8 \times 10^{-5}\right)$
II. pH of $0.02 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}(a q)$ equal to $\ldots C \ldots$ $\left(\mathrm{p} K_{b}=4.73\right)$
III. Degree of hydrolysis of ...D... (salt) is independent of concentration of salt solution.
IV. pH of $1 \mathrm{M} \mathrm{PO}_{4}^{3-}(a q)$ solution will be ...E... $\left(\mathrm{p} K_{b}\left[\mathrm{PO}_{4}^{3-}\right]=1.62\right)$.

	A	B	C	D
(a)	5.128	5.627	5.48	$\mathrm{CH}_{3} \mathrm{COONH}_{4}$
(b)	13.19			
(b) 2.87	3.37	3.78	$\mathrm{CH}_{3} \mathrm{COONa}$	12.38
(c)	1.00	2.00	4.73	$\mathrm{NH}_{4} \mathrm{Cl}$
(d)	5.48	6.48	7.00	NaCl

27. Fill in the blanks, using the correct option.
I. The disaccharide

is ...A... .
II. The weakest intermolecular forces of attraction are found in ...B... (polymer).
III.

IV. Smog is essentially caused by presence of ...D....

A	B	C

(a) Ring (i) is pyranose Natural Analgesic Oxides of with α-glycosidic link rubber $\quad \mathrm{N}$ and S
(b) Ring (i) is furanose Nylon Anti O_{3} and N_{2} with α-glycosidic link inflammetory
(c) Ring (ii) is furanose Cellulose Hypnotic O_{2} and N_{2} with α-glycosidic link
(d) Ring (ii) is pyranose PVC Antiseptic O_{2} and $_{3}$ with β-glycosidic link
28. At $700 \mathrm{~K}, 0.45$ mole of CO_{2} and 0.45 mole of H_{2} reacts to form CO and $\mathrm{H}_{2} \mathrm{O}$ at equilibrium ($K_{C}=0.11$). After equilibrium is reached, another 0.34 mole of CO_{2} and 0.34 mole of H_{2} are added to the reaction mixture. The composition of the mixture $\left(\mathrm{CO}_{2}, \mathrm{CO}\right)$ at the new equilibrium state is
(a) $0.594,0.196$
(b) $0.34,0.11$
(c) $0.196,0.594$
(d) $0.11,0.34$
29. In which of the following hybridisation of central atom(s) is not affected?
(a) PCl_{5} solid dissociates into PCl_{4}^{+}and PCl_{6}^{-}
(b) NH_{3} is protonated to give NH_{4}^{+}
(c) $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is heated to give $\mathrm{N}_{2} \mathrm{O}$
(d) LiH reacts with AlH_{3} and forms LiAlH_{4}
30. Which of the following statements is/are true? Choose the correct option.
I. Energy of radiation emitted for electronic transition from infinite to stationary state of H -atom is $2.17 \times 10^{-18} \mathrm{~J}$.
II. Velocity of an electron placed in the third orbit of H -atom is $0.729 \times 10^{8} \mathrm{~cm} / \mathrm{s}$.
III. The electron of the first Bohr's orbit of H -atom goes around 6.59×10^{15} times in one second.
(a) Only I
(b) II and III
(c) All of these
(d) None of these

Answers

1. (b)
2. (c)
3. (a)
4. (a)
5. (a)
6. (b)
7. (d)
8. (b)
9. (c)
10. (a)
11. (d)
12. (a)
13. (a)
14. (b)
15. (a)
16. (c)
17. (a)
18. (b)
19. (c)
20. (b)
21. (b)
22. (b)
23. (a)
24. (a)
25. (c)
26. (a)
27. (a)
28. (a)
29. (b)
30. (c)

JEE MAIN Scale UP

Questions to Measure Your Problem Solving Skills

1. Which of the following statements are correct? Choose the correct option.
I. Dissolution of a non-volatile solute into a liquid leads to a decrease in tendency of the liquid to freeze.
II. The vapour pressure of the solution remains constant, when increasing amounts of a solid HgI_{2} is added to aqueous solution of NaI .
III. A liquid possessing low freezing point and high enthalpy of freezing will be most suitable for determining the molecular mass of a compound by cryoscopic measurement.
IV. A mixture of two immiscible liquids at a constant pressure of 1 atm boils at temperature smaller than the normal boiling point of either liquids.
(a) I and IV
(b) II and III
(c) I and II
(d) III and IV
2. A mixture contains $\mathrm{CO}_{3}^{2-}, \mathrm{SO}_{3}^{2-}$ and SO_{4}^{2-}. Scheme is provided but in disordered form. Arrange the scheme and choose the correct option.
I. Add dil. HCl .
II. Pass the evolved gas into the lime water.
III. Add dil. HCl and BaCl_{2}.
IV. Add $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.
(a) I, IV, II then III
(b) I, II, III then IV
(c) II, I, III then IV
(d) IV, III, I then II
3. Which of the following statements are correct? Choose the correct option.
I. Nylon fibres have lower tensile strength than terylene fibres.
II. In terylene, there is weak dipole-dipole interaction while in nylon, there is strong intermolecular H -bonding.
III. Novolac is prepared when $\frac{P}{F}<1$ and bakelite is prepared when $\frac{P}{F}>1$.
IV. Novolac is used in manufacture of adhesives and bakelite is used for making switches and plugs.
(a) II and III
(b) I and III
(c) I and II
(d) III and I
4. Which of the following statements is/are incorrect? Choose the correct option.
I. t-butyl ethanoate can be prepared by the reaction of $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{Me}_{3} \mathrm{C}-\mathrm{Br}$ in basic medium.
II. HCl cannot be used for conversion of RCOOH to RCOCl .
III. Esters can be prepared more efficiently by the sequence,
$R — \mathrm{COOH} \longrightarrow R \mathrm{COCl} \longrightarrow R \mathrm{COOR}^{\prime}$ rather than $R \mathrm{COOH} \longrightarrow R \mathrm{COOR}^{\prime}$.
IV. Acyl azides are more reactive than $R C O C l$ but less reactive than anhydrides.
(a) II and III
(b) I and IV
(c) I, II and III
(d) Only IV
5. Match the Column I with Column II.

	Column I	Column II
A.	$\mathrm{Fe}^{3+}\left(\mathrm{Fe}^{2+} \mathrm{Fe}^{3+}\right) \mathrm{O}_{4}$	p. Rutile structure
B.	$\mathrm{Mg}^{2+} \mathrm{Al}_{2}^{3+} \mathrm{O}_{4}$	q. Inverse $2: 3$ spinel structure
	and CO $^{2+}\left(\mathrm{CO}^{3+}\right)_{2} \mathrm{O}_{4}$	
C.	MnO_{2} and SnO	
D.	BaTiO_{3}	r.
E.	CaF_{2} and SrCl_{2}	s.

Codes

| | A | B | C | D | E | A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| (a) | s | t | q | p | r | (b) q | r | p | s | t |
| (c) q | r | p | s | t | (d) r | q | s | p | t | |

6. Two second order reactions A and B have identical frequency factors. Activation energy of A exceeds that of B by $10.46 \mathrm{~kJ} / \mathrm{mol}$. At $100^{\circ} \mathrm{C}$, the reaction A is 30% completed after 60 min, when initial concentration is $0.1 \mathrm{~mol} / \mathrm{dm}^{3}$. How long will it take reaction B to reach 70%, completion at the same temperature of an initial concentration of $0.05 \mathrm{~mol} / \mathrm{dm}^{3}$?
(a) 13.4 min
(b) 22.4 min
(c) 16.7 min
(d) 28.2 min
7. Which of the following statements are correct? Choose the correct option.
I. Pb can be obtained by reduction of roasted ore with coke.
II. SnO_{2} can be used to concentrate tin stone.
III. Tin stone is amphoteric.
IV. Scrap tin plate can be recycled by dissolving tin in NaOH solution followed by electrolysis.
(a) I and II
(b) III and IV
(c) I and III
(d) All of these
8. $\mathrm{MeCH}_{2} \mathrm{COOH} \xrightarrow[\substack{\mathrm{CH}_{2} \mathrm{~N}_{2} \\ \mathrm{Ag}_{2} \mathrm{O} / \mathrm{Pt}}]{\mathrm{SOCl}_{2}} B \xrightarrow{\mathrm{H}_{2} \mathrm{O}} C$

Which of the following statements are incorrect about the given reaction? Choose the correct option.
I. The products B and C respectively are $\mathrm{MeCH}=\mathrm{C}=\mathrm{O}$ and $\mathrm{MeCH}_{2} \mathrm{COOMe}$.
II. The reaction proceeds via the formation of acyl carbene $\mathrm{MeCO} \stackrel{\bullet}{\mathrm{C}} \mathrm{H}$ as the intermediate species.
III. The compound B on reaction with MeNH_{2} forms the product $\mathrm{MeCH}_{2} \mathrm{CH}_{2} \mathrm{CONHMe}$.
IV. The compound B on reaction with MeOH forms the product $\mathrm{MeCH}_{2} \mathrm{CH}_{2} \mathrm{COOMe}$.
(a) I and II
(b) III and IV
(c) II and III
(d) I and IV
9. The standard reduction potential data at $25^{\circ} \mathrm{C}$ is given below.

$$
\begin{aligned}
& E_{\left(\mathrm{Fe}^{3+} / \mathrm{Fe}^{2+}\right)}^{\circ}=+0.77 \mathrm{~V} ; E^{\circ}{ }_{\left(\mathrm{Fe}^{2+} / \mathrm{Fe}\right)}=-0.44 \mathrm{~V} \\
& E_{\left(\mathrm{Cu}^{2+} / \mathrm{Cu}\right)}^{\circ}=+0.34 \mathrm{~V} ; E^{\circ}{ }_{\left(\mathrm{Cu}^{+} / \mathrm{Cu}\right)}=+0.52 \mathrm{~V} \\
& E^{\circ}, \mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}=+1.23 \mathrm{~V} \\
& E^{\circ}, \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \longrightarrow 4 \mathrm{OH}=+0.40 \mathrm{~V} \\
& E^{\circ}{ }_{\left(\mathrm{Cr}^{3+} / \mathrm{Cr}\right)}=-0.74 ; E_{\left(\mathrm{Cr}^{2+} / \mathrm{Cr}\right)}^{\circ}=+0.91 \mathrm{~V}
\end{aligned}
$$

Match the Column I (Redox pair) with Column II (E° values).

	Column I	Column II
A.	$E^{\circ}{ }_{\left(\mathrm{Fe}^{3+} / \mathrm{Fe}\right)}$	p. -0.18 V
B.	$E^{\circ}\left(4 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons 4 \mathrm{H}^{+}+4 \overline{\mathrm{O}} \mathrm{H}\right)$	q. -0.40 V
C.	$E^{\circ}\left(\mathrm{Cu}^{2+}+\mathrm{Cu} \longrightarrow 2 \mathrm{Cu}^{+}\right)$	r. -0.04 V
D.	$E_{\left(\mathrm{Cr}^{3+}, \mathrm{Cr}^{2+}\right)}^{\circ}$	s. -0.83 V

Codes

	A	B	C	D		A	B	C
(a)	s	p	q	r	(b) q	r	s	p
(c)	p	q	r	s	(d) r	s	p	q

10. Which of the following statements are correct? Choose the correct option.
I. On adding Cl_{2} water to solution of starch and KI, it turns blue.
II. Bleaching action of SO_{2} is unstable while that of Cl_{2} is stable.
III. Nitrous oxide is more helpful in combustion than air.
IV. Ge and Sn are reducing agents, while Pb is an oxidising agent.
(a) I and II
(b) III and IV
(c) All of the above
(d) None of the above
11. Identify B and E. Choose the correct option.

I. $\left(\mathrm{HOCH}_{2}\right)_{3} \mathrm{C}-\mathrm{CHO}$
II. $\mathrm{C}\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{4}$
III. $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CHO}$
IV. $\left.\right|_{\mathrm{OH}} ^{\mathrm{CH}_{2}}-\mathrm{CH}_{2}-\mathrm{CHO}$
(a) I and III
(b) II and IV
(c) I and IV
(d) II and III
12. A hydrogen electrode and a calomel half-cell are used to determine the pH of a solution on a mountain top where the pressure is 500 mm of Hg . The pressure was wrongly assumed to be 760 mm of Hg and pH was found to be 4 . What is the correct pH ?
Cell: $\mathrm{H}_{2}(\mathrm{~g})$ /solution || $\mathrm{KCl}, \mathrm{Hg}_{2} \mathrm{Cl}_{2} / \mathrm{Hg}$
(a) 4.09
(b) 3.92
(c) 3.75
(d) 4.25
13. Fill in the blanks with appropriate options. Choose the correct option.
I. The IUPAC name of the complex

II. ...B... cannot show linkage isomerism.
III. ...C... exhibits optical isomerism.
IV. ...D ... forms a π-complex.

	A	B	C	D
(a)	Dichlorodimethylglyoximatocobalt (II)	NH_{3}	cis- $\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]$	Ferrocene
(b)	Bis-(dimethylglyoxime) dichlorocobalt (II)	$\mathrm{NO}_{2}^{\ominus}$	trans- [Co(en) ${ }_{2} \mathrm{Cl}_{2}$]	Trimethyl aluminium
(c)	Dimethylglyoximecoba -It (II) chloride	SCN ${ }^{\ominus}$	trans- $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$	Diethyl zinc
(d)	Dichlorodimethylglyoxi me-N, N-cobalt (II)	CN^{\ominus}	cis- $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right]$	Nickel carbonyl

14. Match the Column I (Reaction) with Column II (Mechanism). Choose the correct option.
C.

Codes

	A	B	C
(a) p, r, s	r, s, t	q, r, s	D
(b) q, r, s	p, r, s	s	r, s, t
(c) r, s, t	q, r, s	p, r, s	p, s, t
(d) p, s, t	q, s, t	q, r, s	s

15. The following solutions are mixed, 500 mL of $0.01 \mathrm{M} \mathrm{AgNO}_{3}$ and 500 mL solution that was both 0.01 M in NaCl and 0.01 M in NaBr . Given, $K_{\mathrm{sp}}(\mathrm{AgCl})=10^{-10} ; \quad K_{\mathrm{sp}}(\mathrm{AgBr})=5 \times 10^{-13}$. Consider the following statements and mark them as True (T) or False (F). Choose the correct option.
I. AgCl does not precipitate.
II. $\left[\mathrm{Cl}^{-}\right]_{\text {equil. }}=5 \times 10^{-3} \mathrm{M}$
III. $\left[\mathrm{Ag}^{+}\right]_{\text {equil. }}=2.5 \times 10^{-8} \mathrm{M}$
IV. $\left[\mathrm{Br}^{-}\right]_{\text {equil. }}=2.0 \times 10^{-5} \mathrm{M}$
$\begin{array}{ccccc} & \text { I } & \text { II } & \text { III } & \text { IV } \\ \text { (a) } & \mathrm{T} & \mathrm{F} & \mathrm{T} & \mathrm{T} \\ \text { (c) } & \mathrm{T} & \mathrm{T} & \mathrm{F} & \mathrm{F}\end{array}$
$\begin{array}{llll}\text { I } & \text { II } & \text { III } & \text { IV } \\ \text { (b) } \mathrm{F} & \mathrm{T} & \mathrm{F} & \mathrm{F}\end{array}$
(d) T F T F
16. Which of the following statements are correct? Choose the correct option.
I. Magnetic moment of $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is 4.9 BM , while that of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ is zero.
II. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$ is an inner orbital complex, while $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$ is an outer orbital complex.
III. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ is weakly paramagnetic, while $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ is diamagnetic.
IV. $\mathrm{NH}_{2} \cdot \mathrm{NH}_{2}$ although possesses two electron pair for donation but does not act as chelating agent.
(a) I and II
(b) III and IV
(c) I, II and III
(d) All of these
17.

Which of the following statements are correct for the above reaction? Choose the correct option.
I. The product is a mixture of

and

II. The product B is a cine-substitution product.
III. The reaction proceeds via benzyne intermediate.
IV. The reaction is ArSN (addition-elimination).
(a) I, II and III
(b) II and III
(c) Only III
(d) Only IV
18. A 6.25 g sample of $\mathrm{NH}_{4} \mathrm{Cl}$ is placed in an evaluated 4.0 L container at $27^{\circ} \mathrm{C}$. After equilibrium the total pressure inside the container is 0.820 bar and some solid remain in the container.

$$
\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{~s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g})
$$

Which of the following statements are correct? Choose the correct option.
I. The value of K_{p} for the reaction is 0.168 .
II. The amount of solid $\mathrm{NH}_{4} \mathrm{Cl}$ left behind in the container at equilibrium is 2.856 g .
III. If the volume of container was doubled at constant temperature, amount of solid in the container decreases.
IV. The extent of decomposition can be increased by increasing the temperature.
(a) I and II
(b) III and IV
(c) I, II, III and IV
(d) None of these
19. Fill in the blanks. Choose the correct option. Uranium (${ }_{92}^{238} \mathrm{U}$) decayed to ${ }_{82}^{206} \mathrm{~Pb}$. The decay process is ${ }_{92} \mathrm{U}^{238} \xrightarrow{(\mathrm{x} \alpha, \mathrm{y} \beta)}{ }_{82} \mathrm{~Pb}^{206} ; t_{1 / 2}=4.5 \times 10^{9} \mathrm{yrs}$.
I. x and y in the above decay series are ... A... .
II. The age of the rock containing equal amounts of ${ }^{238} \mathrm{U}$ and ${ }^{206} \mathrm{~Pb}$ is ...B... .
III. Packing fraction of ${ }^{238} \mathrm{U}$ with atomic mass 238.125 amu is ...C...
IV. The analysis of rock shows the relative number of U^{238} and Pb^{206} atoms $(\mathrm{Pb} / \mathrm{U}=0.25)$. The age of rock will be ...D... .

A	B	C	
(a) 6 and 8	$9 \times 10^{9} \mathrm{yrs}$	6.25	$\frac{2.303}{0.693} \times 4.5 \times 10^{9} \log 0.25$
(b) 9 and 6	$13.5 \times 10^{9} \mathrm{yrs}$	0.125	$\frac{2.303}{0.693} \times 4.5 \times 10^{9} \log 4$
(c) 8 and 8	$2.25 \times 10^{9} \mathrm{yrs}$	12.5	$\frac{2.303}{4.5 \times 10^{9}} \times 0.693 \log 4$
(d) 8 and 6	$4.5 \times 10^{9} \mathrm{yrs}$	5.25	$\frac{2.303}{0.693} \times 4.5 \times 10^{9} \log 1.25$

20.

Products A, B, C, D, E and F repectively are

I

III

IV

Codes

	A	B	C	D	E	F
(a)	I	II	I	IV	III	IV
(b)	I	I	II	IV	IV	III
(c)	II	I	I	IV	III	III
(d)	II	I	I	III	IV	IV

21. Find out the correct value of x in the statements given below. Choose the correct option.
I. Bond dissociation energy of $X Y, X_{2}, Y_{2}$ (all diatomic molecules) are in the ratio 1:1:0.5 and ΔH_{f} of $X Y$ is $-100 \mathrm{~kJ} / \mathrm{mol}$. The bond dissociation energy of X_{2} is 100 x .
II. $\Delta_{f} H^{\circ}$ of hypothetical MgCl is $-125 \mathrm{~kJ} / \mathrm{mol}$ and for MgCl_{2} is $-642 \mathrm{~kJ} / \mathrm{mol}$. The enthalpy of disproportionation of MgCl is -49 x .
III. The lattice energy of solid KCl is $181 \mathrm{kcal} / \mathrm{mol}$ and enthalpy of solution of KCl in $\mathrm{H}_{2} \mathrm{O}$ is $1.0 \mathrm{kcal} / \mathrm{mol}$. If the hydration enthalpies of K^{+} and Cl^{-}ions are in ratio $2: 1$, then enthalpy of hydration of K^{+}is $-20 \mathrm{x} \mathrm{kcal} / \mathrm{mol}$.
IV. A heated iron block at $127^{\circ} \mathrm{C}$ loses 300 J of heat to the surroundings which are at a temperature of $27^{\circ} \mathrm{C}$. This process is $0.05 \mathrm{x} \mathrm{J} / \mathrm{K}$.

Codes

	I	II	III	IV
(a)	8	4	5	6
(b)	4	8	6	5
(c)	6	5	4	8
(d)	5	6	8	4

22. Match the Column I with Column II.
Column I

Codes

	A	B	C	D
(a)	p, q	r, s	t	u
(b)	p	q, r	s	t, u
(c)	r	p, s, t	q	u
(d)	s, t	q, u	p	r

23. Two flasks A and B have equal volumes. A is maintained at 300 K and B at 600 K , while A contains H_{2} gas, B has an equal mass of CH_{4} gas. Assuming ideal behaviour for both the gases, identify the correct statements.
I. Greater number of molecules are present in flask B.
II. High pressure is attained in flask A.
III. Compressibility factor of both the flasks is same.
IV. Total kinetic energy is same in both the flasks.
V. Molar kinetic energy is greater for flask B.
VI. Molecules are travelling with the same speed in both flasks.
Mark the statements as True (T) or False (F).

	I	II	III	IV	V	VI
(a)	F	F	F	F	F	F
(b)	T	T	T	T	T	T
(c)	T	F	F	T	F	T
(d)	F	T	T	F	T	F

24. Under ambient conditions, the total number of gases released as products in the final step of the reaction scheme shown below is
$\mathrm{XeF}_{6} \xrightarrow[\text { hydrolysis }]{\text { Complete }} P+$ Other products $\xrightarrow[\mathrm{H}_{2} \mathrm{O}]{\overline{\mathrm{O}} \mathrm{H}} Q$ $\xrightarrow{\text { Slow disproportionation in } \mathrm{HO}^{-} / \mathrm{H}_{2} \mathrm{O}}$ Products
(a) 0
(b) 1
(c) 2
(d) 3
25. Which of the following statements are incorrect? Choose the correct option.

II. Order of decreasing basic character is

III. Decreasing order of acidic character is $c<a<d<b$,

IV. Alkyl group acts as electron donor, when attached to a π-system.
(a) II and IV
(b) I and III
(c) I and II
(d) III and IV
26. 40 mL 0.05 M solution of sodium sesquicarbonate dehydrate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{NaHCO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}\right)$ is titrated against 0.05 M HCl solution, x mL of acid is required to reach the phenolphthalein end-point, while y mL of same acid was required when methyl orange indicator was used in a separate titration. Which of the following statements are correct? Choose correct option.
I. $y-x=80 m L \quad$ II. $y+x=160 m L$
III. If the titration is started with phenolphthalein indicator and methyl orange is added at the end-point, $2 x \mathrm{~mL}$ of HCl would be required further to reach end-point.
IV. If the same volume of same solution is titrated against $0.10 \mathrm{M} \mathrm{NaOH}, \mathrm{x} / 2 \mathrm{~mL}$ of base would be required.
(a) I and II
(b) III and IV
(c) I, II and III
(d) All of these
27. Which series of reactions correctly represents chemical relations related to iron and its compound?
(a) $\mathrm{Fe} \xrightarrow{\text { Dil. } \mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{FeSO}_{4} \xrightarrow{\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{O}_{2}} \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ $\xrightarrow{\Delta} \mathrm{Fe}$
(b) $\mathrm{Fe} \xrightarrow{\mathrm{O}_{2} \text {, Heat }} \mathrm{FeO} \xrightarrow{\text { Dil. } \mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{FeSO}_{4} \xrightarrow{\Delta} \mathrm{Fe}$
(c) $\mathrm{Fe} \xrightarrow{\mathrm{Cl}_{2} \text {, Heat }} \mathrm{FeCl}_{3} \xrightarrow{\text { Heat, air }} \mathrm{FeCl}_{2} \xrightarrow{\mathrm{Zn}} \mathrm{Fe}$
(d) $\mathrm{Fe} \xrightarrow{\mathrm{O}_{2} \text {, Heat }} \mathrm{Fe}_{3} \mathrm{O}_{4} \xrightarrow{\mathrm{CO}, 600^{\circ} \mathrm{C}} \mathrm{FeO} \xrightarrow{\mathrm{CO}, 700^{\circ} \mathrm{C}} \mathrm{Fe}$
28. Which of the following statements are correct about the given below compound? Choose the correct option.

I. The total number of stereoisomers possible for the compound is 6 .
II. The total number of diastereomers possible for the compound is 3 .
III. If the stereochemistry about the double bond in the compound is trans the number of enantiomers possible for the compound is 4 .
IV. If the stereochemistry about the double bond in the compound is cis, the number of enantiomers possible for the compound is 2 .
(a) I and IV
(b) II and III
(c) I and III
(d) II and IV
29. Which of the following statement is incorrect? Choose the correct option.
I. Presence of orbitals within a subshell is proved by Zeeman effect.
II. Bohr's atomic model is against Heisenberg's uncertainty principle.
III. Bond length decreases when N_{2}^{+}is formed from N_{2} but increases when O_{2}^{+}is formed from O_{2}.
IV. BF_{3} and graphite, both are $s p^{2}$ hybridised. BF_{3} is bad conductor and graphite is good conductor of electricity.
(a) Only IV
(b) Only III
(c) Only II
(d) Only I
30. Which of the following statements are correct? Choose the right option.
I. Acid rain water have a pH normally about 7.6.
II. The process of adsorption is always exothermic.
III. Mutarotation of β-D-glucopyranose faster in the presence of 2-pyridinol.
IV. 5 moles of SO_{3}^{2-} reacts with 2 moles of KMnO_{4} in acidic medium.
(a) I and II
(b) III and IV
(c) I, II and III
(d) I, III and IV

Answers

1. (a)
2. (a)
3. (a)
4. (b)
5. (c)
6. (b)
7. (d)
8. (a)
9. (d)
10. (c)
11. (b)
12. (a)
13. (a)
14. (b)
15. (b)
16. (d)
17. (a)
18. (c)
19. (d)
20. (d)
21. (b)
22. (c)
23. (d)
24. (c)
25. (b)
26. (d)
27. (d)
28. (a)
29. (b)
30. (d)

TEST Tưner 3
 Questions to Measure Your Problem Solving Skills

Paper 1

One or More than One Options Correct Type

1. Choose the correct options from the following.
(a) Cyclopentadiene is much more acidic than 1, 3-cyclohexadiene
(b) Cyclopropenyl cation is the smallest aromatic substance
(c) H of the CH_{2} group in cycloheptatriene is much more acidic than a typical allylic H
(d) Cyclopentadienyl cation is a diradical
2. Consider the geometrical isomer(s) of $\mathrm{PBr}_{2} \mathrm{Cl}_{3}$ molecule and choose the correct options from the following.
(a) There are three geometrical isomers and all have zero dipole moment
(b) There are three geometrical isomers and two of them have same dipole moment
(c) Bigger atoms are far apart in the structure so that dipole moment becomes zero
(d) There is involvement of bent rule
3. ΔG_{f}^{o} for the formation of $\mathrm{HI}(g)$ from its gaseous elements is $-10.10 \mathrm{~kJ} / \mathrm{mol}$ at 500 K . When the partial pressure of HI is 10.0 atm and that of I_{2} is 0.001 atm , the partial pressure of dihydrogen at this temperature would be to reduce the magnitude of ΔG for the reaction to zero
(a) 700 atm
(b) 70 atm
(c) 775 atm
(d) 77 atm
4. Which of the following reactions show(s)
$\mathrm{S}_{\mathrm{N}} 1$ mechanism?
(a)

(b)

(c)

(d)

5. Consider the following complex compounds $\left[\operatorname{Ir}(\mathrm{CO}) \mathrm{Cl}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ and $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4-}$ and choose the I II
correct option(s) from the following.
(a) CO and CN act as π-accepting ligands
(b) Magnetic moment of metal ion in II is 1.73 BM
(c) Both I and II follow 18 electron rule
(d) Both I and II show characteristic colour
6. At $50^{\circ} \mathrm{C}$ the vapour pressure of pure CS_{2} is 854 torr. A solution of 2.0 g of sulphur in 100 g of CS_{2} has a vapour pressure of 848.9 torr.
Choose the correct choices from the following.
(a) Formula of the sulphur molecule is S_{8}
(b) Formula of the molecule is $\mathrm{C}_{2} \mathrm{~S}_{2}$
(c) Molality of sulphur molecule is 0.079 m
(d) Mole fraction of CS_{2} is found out by Raoult's law
7.

(a) MgBr_{2} activates the epoxide
(b) P is an ester while Q is an acid
(c) P and Q are strained aldehyde and alcohol respectively
(d) P undergoes nucleophilic addition reaction readily, while Q readily undergoes dehydration upon heating
8. Choose the correct option from the following.
(a) The fluoro derivative of diazene are more stable than diazene
(b) Oxidation of hydrazine is an endothermic reaction
(c) Hydrazine is an oxidising agent in basic medium
(d) Phosphine has stronger intermolecular attraction than ammonia in solid state
9.

(a) P, Q and R are cyclic alcohols
(b) P and R are cyclic alcohols, while Q is unsubstituted alkene
(c) P and R are cyclic ester, while Q is open chain alkene
(d) Step A to P : Diazotisation
P to Q : Dehydration
Q to R : Hydroboration-oxidation
10. Select the correct reaction(s) from the following.
(a) $\left[\mathrm{CH}_{3} \mathrm{Hg}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}+\mathrm{BH}^{+} \rightleftharpoons\left[\mathrm{CH}_{3} \mathrm{HgB}\right]^{+}+\mathrm{H}_{3} \mathrm{O}^{+}$
(b) $\left[\mathrm{CH}_{3} \mathrm{Hg}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}+\mathrm{SH}^{-} \rightleftharpoons\left[\mathrm{CH}_{3} \mathrm{HgSH}\right]^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
(c) $\left[\mathrm{CH}_{3} \mathrm{Hg}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}+\mathrm{HSCN} \rightleftharpoons \mathrm{CH}_{3} \mathrm{HgSCN}+\mathrm{H}_{3} \mathrm{O}^{+}$
(d)

Single Integer Type

11. The same quantity of electricity that liberated 2.158 g silver was passed through a solution of a gold salt and 1.314 g gold was deposited. The equivalent weight of silver is 107.9. What is the oxidation state of gold in this gold salt?
12. How many $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bond(s) present in cyclotrimetaphosphoric acid?
13.

Calculate the number of conjugated double bonds in the product M.
14. An electron in a hydrogen atom in its ground state absorbs 1.50 times as much energy as the minimum required for it to escape from the atom. The value of the emitted electron can be calculated in the form of $\mathrm{x} \times 10^{-10} \mathrm{~m}$, where x is approximate value.
15. SeOCl_{2} has pyramidal structure with $\mathrm{Cl}-\mathrm{Se}-\mathrm{Cl}$ angle is 97°. How many double bonds causing the distortion in the structure?
16.

How many active hydrogens are present in the product P ?
17. Calculate the per cent error in the hydronium ion concentration made by neglecting the ionisation of water in a $1.0 \times 10^{-6} \mathrm{M} \mathrm{NaOH}$ solution.
18. $2 \mathrm{H}-\equiv-\mathrm{H} \xrightarrow[\mathrm{NH}_{4} \mathrm{Cl}]{\mathrm{CuCl}} A \xrightarrow{\mathrm{H}_{2}+\mathrm{Ni}_{2} \mathrm{~B}} B$

$$
B \xrightarrow{\mathrm{Br}_{2}} C \text { (major) }
$$

How many allylic hydrogen present in the major product of this reaction?
19. 20% surface sites have absorbed N_{2}. On heating N_{2} gas is evolved from sites and were collected at 0.001 atm and 298 K in a container of volume 2.46 cm^{3}. Density of surface sites is $6.023 \times 10^{14} / \mathrm{cm}^{3}$ and surface area is $1000 \mathrm{~cm}^{2}$. Find out the number of surface sites occupied per molecule of N_{2}.
20.

How many hydrogen atom(s) in product P can participate in tautomerism?

Paper 2

Single Option Correct Type

1. Bio-chemists often define Q_{10} for a reaction as the ratio of the rate constant at $37^{\circ} \mathrm{C}$ to the rate constant at $27^{\circ} \mathrm{C}$. The energy of activation for a reaction that has a Q_{10} of 2.5 must be
(a) $7.1 \mathrm{~kJ} / \mathrm{mol}$
(b) $71 \mathrm{~kJ} / \mathrm{mol}$
(c) $7100 \mathrm{~kJ} / \mathrm{mol}$
(d) $51.7 \mathrm{~kJ} / \mathrm{mol}$
2. Consider the following compounds and choose the correct option from the following.

(a) I is antiaromatic whereas II is aromatic
(b) I is less basic than II
(c) Both undergo electrophilic reaction at $\mathrm{C}-2$ position
(d) I is easily protonated than II
3. Sulphur reacts with chlorine in $1: 2$ ratio and forms X. Hydrolysis of X gives a sulphur compound Y. The hybridisation of S -atom in Y is
(a) $s p$
(b) $s p^{3} d$
(c) $s p^{3}$
(d) $s p^{2}$
4. A certain solution of benzoic acid in benzene has a freezing point of $3.1^{\circ} \mathrm{C}$ and a normal boiling point of $82.6^{\circ} \mathrm{C}$. The structure of solute particles at the two temperatures would be
(a)

(b)

(c) Both (a) and (b)
(d) None of the above
5.

> (i) MeMgBr
> (ii) $\mathrm{H}_{2} \mathrm{O}$
> Q

Choose the correct choice from the following.
(a) Q is formed through conjugate addition
(b) P is formed through conjugate addition
(c) Catalyst provide the path of direct addition
(d) None of the above
6. Hydrogen peroxide when reacts with KIO_{4} and $\mathrm{NH}_{2} \mathrm{OH}$ separately. What type of behaviour it shows with respect to these reagents?
(a) Reducing agent and oxidising agent
(b) Reducing agent and reducing agent
(c) Oxidising agent and oxidising agent
(d) Oxidising agent and reducing agent
7. 1, 3, 5-trihydroxy benzene reacts with $\mathrm{H}_{2} \mathrm{NOH}$ to give an oximino derivative, whereas phenol does not react because
(a) phenol does not give tautomer
(b) tautomer of 1, 3,5-trihydroxy benzene is stable
(c) tautomer of 1, 3, 5,-trihydroxy benzene has sufficient concentration in the phenol-keto equilibrium
(d) None of the above
8. The correct statement for orthoboric acid is
(a) it behaves as strong electrolyte in water
(b) acidity of its aqueous solution increases upon addition of ethylene glycol
(c) it has a 3-D structure due to H -bonding
(d) it behaves as a weak acid in water due to self ionisation
9. Which one of the following intermediate undergoes the fastest $\mathrm{S}_{\mathrm{N}} 1$ reaction?
(a)

(b)

(c)

(d)

10.

Which one of the above molecule is likely to form more stable H -bonds?
(a) Only I
(b) Both I and II
(c) Only II
(d) None of these

Paragraph-I (For Q.Nos. 11 and 12)

In the following reaction sequence, M to R are formed.
11. Product O is
(a)

(b)

(c) Me ————Me
(d)

12. How many halogen group(s) are present in the product R ?
(a) Zero
(b) One
(c) Two
(d) Three

Paragraph-II (For Q. Nos. 13 and14)

Pseudohalides are anions having resemblance with halide ions. Group I metals can form salts with pseudohalides. Pseudohalogens can act as ligands and form coordinate complexes. Their hydrides are weakly acidic and can be prepared in analogous way as halogen hydrides are prepared.
13. Sodium cyanide reacts with $\mathrm{H}_{2} \mathrm{SO}_{4}$, the product formed is
(a) HCN and NaHSO_{4}
(b) $(\mathrm{CN})_{2} \mathrm{Na}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{O}$
(c) HCN and $\mathrm{Na}_{2} \mathrm{SO}_{4}$
(d) $\mathrm{N}_{3} \mathrm{H}$ and $\mathrm{H}_{2} \mathrm{O}$
14. When sodium azide reacts with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, the product formed is
(a) ascorbic acid
(b) hydrazoic acid
(c) hydrochloric acid
(d) None of these

Paragraph-III (For Q. Nos. 15 and 16)

Fuel cells are galvanic cells in which chemical energy of fuel is directly converted into electrical energy. A type of fuel cell is a hydrogen-oxygen fuel cell. It consists of two electrodes made up of two porous graphite impregnated with a catalyst like Pt, Ag or metal oxide. The electrodes are placed in aqueous-solution of NaOH . Oxygen and hydrogen are continuously fed into the cell. Hydrogen gets oxidised to H^{+}which is neutralised by $\overline{\mathrm{O}} \mathrm{H}$.
At anode

$$
\mathrm{H}_{2} \rightleftharpoons 2 \mathrm{H}^{+}+2 \mathrm{e}^{-}
$$

$$
\begin{aligned}
2 \mathrm{H}^{+}+2 \overline{\mathrm{O}} \mathrm{H} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{H}_{2}+2 \overline{\mathrm{O}} \mathrm{H} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}
\end{aligned}
$$

At cathode O_{2} gets reduced to $\overline{\mathrm{O}} \mathrm{H}$

$$
\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \rightleftharpoons 4 \overline{\mathrm{O}} \mathrm{H}
$$

Overall reaction

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{H}_{2} \mathrm{O}
$$

The overall reaction has
$\Delta H=-285.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta \mathrm{G}=-237.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at $25^{\circ} \mathrm{C}$
15. What is the value of ΔS^{\ominus} for the fuel cell at $25^{\circ} \mathrm{C}$?
(a) $1600 \mathrm{JK}^{-1}$ (b) $-1600 \mathrm{JK}^{-1}$
(c) $160 \mathrm{JK}^{-1}$
(d) $-160 \mathrm{JK}^{-1}$
16. If the concentration of hydroxide ion in the cell is doubled, then the cell-voltage will be
(a) unchanged
(b) increased by a factor of 2
(c) increased by a factor of 4
(d) reduced by half

Matching Type

17. Match the following.

Column I		Column II	
A. $\left[\mathrm{CO}(\mathrm{en})_{3}\right]^{3+}$	p.	Hexadentate	
B.	EDTA	q.	Bidentate
C.	en	r.	Optically active
D. $\left[\mathrm{Ni}(\mathrm{DMG})_{2}\right]^{2+}$	s.	Insoluble complex	

Codes

$\begin{array}{llll}\text { A } & B & C & D \\ \text { (a) } r & p & s & q \\ \text { (c) } r & p & q & s\end{array}$

	A	B	C	D
(b)	p	r	q	s
(d)	s	p	r	q

18. Match the following.

	Column I (Metal)		
Column II (Extraction process)			
A.	Silver	p.	Fused salt electrolysis
B.	Calcium	q.	Carbon reduction
C.	Zinc	r.	Carbon monoxide reduction
D.	Iron	s.	Amalgamation
E.	Copper	t.	Self reduction

Codes

A	B	C	D	E		A	B	C	D	E
(a) p	q	r	t, s	s		(b)	s	p	q	q, r
t										
(c) s	p, q	q	r	t	(d)	s	t, s	r	q, r	p

19. Match the following.

Column I		Column II
A. \quad Diffusion of a gas	p. High when molecular mass is low	
B. \quad Compressibility of a gas, $Z<1$	q.. r.real$<V_{\text {ideal }}$ C. Increases with increase in temperature	
D. Liquification of a gas	s.Attractive force dominates	

Codes

$\left.\begin{array}{llllllll}\text { A } & \text { B } & \text { C } & \text { D } & & A & B & C \\ \text { D } \\ \text { (a) } p & r & q & s & \text { (b) } & r & p & q \\ \text { (c) } p & s & r & q & \text { (d) } & p & q & r\end{array}\right)$ s
20. Match the following.

	Column I	Column II	
A.	D-glucose	p.	$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}(\mathrm{OH})_{2}+$ Tartarate ion
B.	Sucrose	q.	Mutarotation
C.	Lactose	r.	$\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}(\mathrm{OH})_{2}+$ citrate ion
D.	Maltose	s.	Maltase

Codes

$\quad A$	B	C	D
(a) p	s	r	p, r, s
(b) q	s	p	p, r, s
(c) p, s	q, r	r	r, s
(d) q, r	r	q, s	q, s

Answers

Paper 1

1. (a, b, d)
2. (b, c, d)
3. (c)
4. (a, c)
5. (a,b,d)
6. (a, c, d)
7. (a, d)
8. (a)
9. (b, d)
10. (a, c, d)
11. (3)
12. (3)
13. (4)
14. (5)
15. (1)
16. (0)
17. (1)
18. (4)
19. (2)
20. (3)
Paper 2
21. (b)
22. (b)
23. (c)
24. (b)
25. (b)
26. (a)
27. (c)
28. (b)
29. (c)
30. (a)
31. (d)
32. (c)
33. (c)
34. (b)
35. (d)
36. (a)
37. (c)
38. (b)
39. (d)
40. (b)

ζ Questions to Measure Your Problem Solving Skills

- This test consists of 45 questions and each question is allotted 4 marks for correct response.
- Candidates will be awarded marks as stated above for correct response of each question. $1 / 4$ marks will be deducted for indicating incorrect response of each question. No deduction from the total score will be made if no response is indicated for an item in the answer sheet.
- There is only one correct response for each question. Filling up more than one response in any question will be treated as wrong response and marks for wrong response will be deducted according as per instructions.

1. Four successive members of the first row of transition elements are listed below with their atomic numbers:

$$
{ }_{23} \mathrm{~V},{ }_{24} \mathrm{Cr},{ }_{26} \mathrm{Fe} \text {, and }{ }_{25} \mathrm{Mn}
$$

Which one of them is expected to have the highest third ionisation enthalpy?
(a) Vanadium
(b) Chromium
(c) Iron
(d) Manganese
2. Number of isomeric forms for $\left[\mathrm{Rh}(\mathrm{en})_{2}\left(\mathrm{NO}_{2}\right)(\mathrm{SCN})\right]^{+}$are
(a) 3
(b) 6
(c) 9
(d) 12
3. Which one of the following is wrongly matched?
(a) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ - has square planar geometry
(b) $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ - contains neutral ligand
(c) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3+}-s p^{3} d^{2}$ hybridised
(d) $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$ - follows EAN rule
4. The increasing order of hydrolysis for the following compounds is

(a) I $<$ III $<$ II $<$ IV
(b) I $<$ II $<$ III $<$ II
(c) IV $<$ II $<$ III $<$ I
(d) I $<$ III $<$ IV $<$ II
5. What is the freezing point of a solution containing 8.1 g HBr in 100 g of water, assuming the acid to be 90% ionised? $\left(K_{f}\left(\mathrm{H}_{2} \mathrm{O}\right)=1.86 \mathrm{~K} \mathrm{~mol}^{-1} \mathrm{~kg}\right)$
(a) $0.85^{\circ} \mathrm{C}$
(b) $-3.53^{\circ} \mathrm{C}$
(c) $0^{\circ} \mathrm{C}$
(d) $-0.35^{\circ} \mathrm{C}$
6. $\mathrm{Cu}^{+}(a q)$ is unstable in solution and undergoes simultaneous oxidation and reduction according to the reaction,

$$
2 \mathrm{Cu}^{+}(a q) \rightleftharpoons \mathrm{Cu}^{2+}(a q)+\mathrm{Cu}(s)
$$

Choose the correct E° for above reaction, if

$$
E_{\mathrm{Cu}^{2+} / \mathrm{Cu}}^{\circ}=0.34 \mathrm{~V} ; E_{\mathrm{Cu}^{2+} / \mathrm{Cu}^{+}}^{\circ}=0.15 \mathrm{~V}
$$

(a) -0.38 V
(b) +0.49 V
(c) +0.38 V
(d) -0.19 V
7. For the second order reaction, concentration (x) of the product at time (t) starting with initial concentration $[A]_{0}$ is
(a) $\frac{k t+[A]_{0}^{2}}{1+k t[A]_{0}^{2}}$
(b) $\frac{k+[A]_{0}^{2}}{1+k t}$
(c) $\frac{1+k t[A]_{0}^{2}}{k+[A]_{0}^{2}}$
(d) None of these
8. Which of the following statements is wrong for physisorption?
(a) It is a reversible reaction
(b) Requires activation energy
(c) Adsorption enthalpy value is low
(d) Generally occurs at low temperature
9. The temperature of the slag zone in the metallurgy of the iron using blast furnace is
(a) $1500-1600^{\circ} \mathrm{C}$
(b) $400-700^{\circ} \mathrm{C}$
(c) $800-1000^{\circ} \mathrm{C}$
(d) $1200-1000^{\circ} \mathrm{C}$
10. Select correct statements regarding behavior of HF as non-aqueous solvent.
(a) HCl behaves as an acid and HF as a base
(b) HClO_{4} behaves as a base and HF as an acid
(c) HNO_{3} and $\mathrm{H}_{2} \mathrm{SO}_{4}$ behave as base and HF as an acid
(d) All of the above are correct statements
11. Among the following molecules,
I. XeO_{3}
II. XeOF_{4}
III. XeF_{6}
those having same number of lone pairs on Xe are
(a) I and III
(b) I and II
(c) II and III
(d) I, II and III
12. By the electrolysis of aqueous sodium succinate, ethene is formed at \qquad along with \qquad . .
(a) anode, H_{2}
(b) cathode, H_{2}
(c) anode, CO_{2}
(d) cathode, CO_{2}
13. Identify the alkyne in the following sequence of reaction.
Alkyne $\xrightarrow[\substack{\text { Lindlar's } \\ \text { catalyst }}]{\mathrm{H}_{2}} A \xrightarrow[\text { Ozonolysis }]{\text { only }} \underset{\text { process }}{\text { Wacker }} \mathrm{CH}_{2}=\mathrm{CH}_{2}$
(a) $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
(b) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$
(c) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$
(d) $\mathrm{HC} \equiv \mathrm{C}-\mathrm{CH}_{2}-\mathrm{C} \equiv \mathrm{CH}$
14.

A is
(a)

(b)

(c)

(d)

15. The number of β-particles emitted during the transformation of ${ }_{\mathrm{Y}}^{\mathrm{X}} A$ to ${ }_{n}^{m} B$ is
(a) $\frac{n-m}{4}$
(b) $n+\frac{x-m}{4}+y$
(c) $x+\frac{x-m}{4}+y$
(d) $2 y-n+x-m$
16. 50 mL solution of $\mathrm{BaCl}_{2}(20.8 \% \mathrm{w} / \mathrm{V})$ and 100 mL solution of $\mathrm{H}_{2} \mathrm{SO}_{4}(9.8 \% \mathrm{w} / \mathrm{V})$ are mixed, BaSO_{4} formed is

$$
\mathrm{BaCl}_{2}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{BaSO}_{4}(\downarrow)+2 \mathrm{HCl}
$$

(a) 23.30 g
(b) 46.60 g
(c) 29.80 g
(d) 11.65 g
17. Wave number of a spectral line for a given transition is $\mathrm{x} \mathrm{cm}^{-1}$ for He^{+}, then its value for Be^{3+} (isoelectronic of He^{+}) for same transition is
(a) $\times \mathrm{cm}^{-1}$
(b) $4 \times \mathrm{cm}^{-1}$
(c) $\frac{x}{4} \mathrm{~cm}^{-1}$
(d) $2 \times \mathrm{cm}^{-1}$
18. Match the Column I (Elements) with Column II (Unique properties).

Column I		Column II	
A.	F	p.	Maximum ionisation energy
B.	Cl	q.	Maximum electronegativity
C.	Fe	r.	Maximum electron affinity
D.	He	s.	Recently named by IUPAC
E.	Ds	t.	Variable valency

Codes

	A	B	C	D	E
(a)	t	q	r	s	p
(b)	p	s	t	r	q
(c)	q	r	t	p	s
(d)	s	p	r	q	t

19. Match the species in Column I with their structures in Column II.

	Column I		Column II	
A.	CIF_{3}	p.	Square planar	
B.	PCl_{5}	q.	Tetrahedral	
C.	IF_{5}	r.	Trigonal bipyramidal	
D.	CCl_{4}	s.	Square pyramidal	
E.	XeF_{4}	t.	T-shape	

Codes

$\begin{array}{llllll} & A & B & C & D & E \\ \text { (a) } & p & r & t & s & q \\ \text { (c) } & q & s & r & t & p\end{array}$
(b) $\begin{array}{lllll}A & B & C & D & E \\ \mathrm{t} & \mathrm{r} & \mathrm{s} & \mathrm{q} & \mathrm{p}\end{array}$
(d) r s $t \quad p \quad q$
20. Consider the following pairs of gases $(A$ and $B)$.
I. $\mathrm{CO}_{2}, \mathrm{~N}_{2} \mathrm{O}$
II. $\mathrm{CO}, \mathrm{N}_{2}$
III. $\mathrm{O}_{2}, \mathrm{O}_{3}$
IV. $\mathrm{H}_{2} \mathrm{O}, \mathrm{D}_{2} \mathrm{O}$

Relative rates of effusion of gases A and B is in the order:
(a) I $<$ II $<$ III $<$ IV
(b) I $=$ II $<$ III $<$ IV
(c) I $=$ II $<$ IV $<$ III
(d) I $=$ II $<$ IV $<$ III
21. Concentrations of benzoic acid, which is distributed in two layers of water and benzene are (in three different samples)

	Water $\left(\mathrm{C}_{1}\right)$	Benzene $\left(\mathrm{C}_{2}\right)$
Sample I	0.3	0.09
Sample II	0.4	0.16
Sample III	0.5	0.25

Hence, benzoic acid is
(a) monomer in both layers
(b) dimer in both layers
(c) monomer in water and dimer in benzene
(d) monomer in benzene and dimer in water
22. A monoatomic ideal gas undergoes a process in which ratio of p to V at any instant is constant and equals to 1 . What is the molar heat capacity of the gas?
(a) $\frac{4 R}{2}$
(b) $\frac{3 R}{2}$
(c) $\frac{5 R}{2}$
(d) 0
23. 44 g of $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ is formed at equilibrium, when 60 g of $\mathrm{CH}_{3} \mathrm{COOH}$ and 46 g of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ react in 5 L flask. Calculate amount of $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}$ formed, when 120 g of $\mathrm{CH}_{3} \mathrm{COOH}$ and 46 g of $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$ is taken.
(a) 58.66 g
(b) 20.33 g
(c) 22 g
(d) 44 g
24. There is maximum pH change in case,
(a) 1 mL of a solution, pH equals to 2 , is diluted to 100 mL
(b) 0.01 mole of NaOH , is added to 100 mL of 0.01 M NaOH solution
(c) 100 mL of $\mathrm{H}_{2} \mathrm{O}$ is added to 900 mL of $10^{-6} \mathrm{M} \mathrm{HCl}$
(d) 100 mL of a solution, pH equals to 2, is mixed with 100 mL of a solution of pH equals to 12
25. Sodium crystallises in bcc arrangement with the interfacial separation between the atoms at the edge of 53 pm . The density of the solid is
(a) $1.23 \mathrm{~g} / \mathrm{cc}$
(b) $485 \mathrm{~g} / \mathrm{cc}$
(c) $4.85 \mathrm{~g} / \mathrm{cc}$
(d) $123 \mathrm{~g} / \mathrm{cc}$
26. Which one of the following reactions involves oxidation and reduction both?
(a) $\mathrm{H}_{2}+\mathrm{Br}_{2} \longrightarrow 2 \mathrm{HBr}$
(b) $\mathrm{NaBr}+\mathrm{HCl} \longrightarrow \mathrm{NaCl}+\mathrm{HBr}$
(c) $\mathrm{HBr}+\mathrm{AgNO}_{3} \longrightarrow \mathrm{AgBr}+\mathrm{HNO}_{3}$
(d) $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
27. Electrolysis of aqueous solution of the compounds liberates H_{2} gas at both cathode and anode except in
(a) LiH
(b) NaH
(c) HCOONa
(d) NaCl
28. Which of the following is the incorrect statement?
(a) Alkali metals form two types of sulphides : $M_{2} S$ and $M_{2} S n$ ($n=2,3,4$)
(b) Alkali metals form covalent hydrides and are non-reactive with water
(c) Alkali carbides are decomposed by $\mathrm{H}_{2} \mathrm{O}$ forming acetylene
(d) Solubility of alkali carbonates in the order

$$
\mathrm{Li}_{2} \mathrm{CO}_{3}<\mathrm{Na}_{2} \mathrm{CO}_{3}<\mathrm{K}_{2} \mathrm{CO}_{3}<\mathrm{Rb}_{2} \mathrm{CO}_{3}
$$

29. Amphoteric nature is shown by
(a) Be, Mg and La
(b) Be, Ca and Al
(c) Be, Zn and Al
(d) Ca, Mg and Sr
30. Select the correct statement(s).
(a) Aluminium dissolves in dilute mineral acids but is made passive by concentrated nitric acid
(b) Aluminium vessel can be used as storage for NaOH
(c) Both of the above
(d) None of the above
31. The strongest Lewis acid among the boron halides is
(a) BF_{3}
(b) BCl_{3}
(c) BBr_{3}
(d) Bl_{3}
32. The correct IUPAC name of the compound,

(a) 3-(1- ethyl propyl) hex-1-ene
(b) 4-ethyl-3-propylhex-1-ene
(c) 3-ethyl-4-ethenylheptane
(d) 3-ethyl-4 - propylhex-5-ene
33. $\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2} \xrightarrow{\mathrm{Cl}_{2} / \mathrm{Cl}^{+}} \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Cl}_{3}$

Which of the following statement is/are correct?
(a) o-isomer of A will give two types of B
(b) m-isomer will give three types of B
(c) p-isomer will give one type of B
(d) All of the above are correct statements
34. Match the Column I (Reactions) with Column II (Types of reaction).

Codes

A B C D
(b) $\begin{array}{llll}A & B & C & D \\ q & s & p & q\end{array}$
(a) $q \quad r \quad s \quad p$
(d) $\mathrm{s} p \mathrm{p} \quad \mathrm{r}$
35. By which species in Wurtz reaction, only one type of hydrocarbon is obtained?
(a) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$
(b) $\mathrm{PhCH}_{2} \mathrm{Cl}$

(d) All of these
36. Consider the following reactions for the formation of picric acid.
I.

Which of the above paths is/are possible?
(a) Path I
(b) Path II
(c) Both I and II
(d) None of these
37. Indicate the reagent in the following conversion:

(a) $\mathrm{H}_{3} \mathrm{O}^{+} / \mathrm{CH}_{3} \mathrm{OH}$
(b) $\mathrm{B}_{2} \mathrm{H}_{6} / \mathrm{H}_{2} \mathrm{O}_{2}, \overline{\mathrm{O}} \mathrm{H} / \mathrm{CH}_{3} \mathrm{OH}$
(c) $\mathrm{Hg}(\mathrm{OAc})_{2}, \mathrm{CH}_{3} \mathrm{OH} / \mathrm{NaBH}_{4}, \overline{\mathrm{O}} \mathrm{H}$
(d) All of the above
38. Which of the two routes shown below, actually lead to the product?

(a) Route X
(b) Route Y
(c) Both (a) and (b)
(d) None of these
39. Which of the following statements is incorrect?
(a) CrO_{4}^{2-} solution turns yellow to orange upon addition of acid
(b) $\mathrm{Fe}^{3+}(\mathrm{aq})$ reacts with $\mathrm{KSCN}(\mathrm{aq})$ to give deep real solution
(c) Copper metal reacts with nitric acid to give NO gas and a blue solution
(d) A deep green solution of $\mathrm{Cr}(\mathrm{OH})_{3}$ in excess base turns orange on addition of hydrogen peroxide
40. Consider the following carboxylic acids.

III.

VI.

Indicate the compounds in which decarboxylation takes place on heating.
(a) III and IV
(b) I and III
(c) II and IV
(d) I and II
41. Which of the following statements is correct?
(a) Aniline is a stronger base than ethyl amine
(b) Aniline is a stronger base than p-methane aniline
(c) Aniline must be acetylated before nitration with an acid derivative
(d) Aniline is soluble in an ammonium hydroxide solution.
42. Commonly used catalyst in the preparation of a acrylonitrile from propylene, ammonia and order is
(a) silver
(b) bismuth molybdate
(c) cerium chloride
(d) nickel
43. The one which has least iodine value is
(a) ginger oil
(b) ghee
(c) groundnut oil
(d) sunflower oil
44. A polymer is made of 30% molecules of molar mass 20000; 40% molecules of molar mass 30000 and rest have 60000. Calculate the number average and weight average of molecular masses.
(a) $36000 ; 43333$
(b) 48000;5666
(c) $43333 ; 36000$
(d) $56666 ; 48000$
45. Parkinson's disease is linked to abnormalities in the levels of dopamine in the body. The structure of dopamine is
(a)

(b)

(c)

(d)

Answers

1. (d)
2. (d)
3. (c)
4. (d)
5. (b)
6. (c)
7. (a)
8. (b)
9. (c)
10. (c)
11. (d)
12. (c)
13. (a)
14. (a)
15. (c)
16. (d)
17. (b)
18. (c)
19. (b)
20. (c)
21. (c)
22. (a)
23. (a)
24. (d)
25. (a)
26. (a)
27. (d)
28. (b)
29. (c)
30. (a)
31. (d)
32. (b)
33. (d)
34. (a)
35. (b)
36. (a)
37. (c)
38. (b)
39. (d)
40. (d)
41. (c)
42. (b)
43. (b)
44. (a)
45. (c)

Master Resource

New Addition

Theory in Sync with NCERT

Coverage of NCERT \& NCERT Exemplar Question Coverage of Previous Years Questions of JEE Main

For further information about the products from Arihant \log on to www.arihantbooks.com or email to info@arihantbooks.com

SPECIAL PROBLEM SOLVING METHODS

SOLUTION

CHEMISTRY CONCENTRATE
 RAOULT'S LAW

The following types of problems are asked:
Type 1 If mole fraction of a volatile component (A) is given and asked to find out partial pressure of this component, use the following formula, $p_{A}=p_{A}^{\circ} \chi_{A}$ Here, p_{A}, p_{A}° and χ_{A} are the partial pressure, vapour pressure in pure state and mole fraction of A respectively.
Type 2 If vapour pressures and masses of all components are given and asked to find out total vapour pressure of solution, use the following steps:

- Find out mole fraction of each component

$$
\chi_{A}=\frac{n_{A}}{n_{A}+n_{B}+n_{C}+\ldots}
$$

$\left(\right.$ Number of moles $\left.(n)=\frac{\text { Mass (in gram) }}{\text { Molecular mass (g/mol) }}\right)$

- Find out partial pressure of each component by using formula mentioned in Type 1.
- Find out total vapour pressure as

$$
p_{T}=p_{A}+p_{B}+p_{C}+\ldots \ldots
$$

Type 3 If vapour pressure of solution is given at different conditions and asked to find out vapour pressure in pure state, form two different equations for two different cases with the help of Raoult's law, solve these equations and find out vapour pressure of solution in pure state.

Solve the Following Problems

1. The vapour pressures of ethanol and methanol are 44.5 mm and 88.7 mm respectively. An ideal solution is formed at the same temperature by mixing 60 g of ethanol with 40 g of methanol. Calculate the total vapour pressure of the solution and the mole fraction of methanol in the vapour.
2. Two liquids A and B form an ideal solution. At 300 K , the vapour pressure of a solution containing 1 mole of A and 3 moles of B is 550 mm of Hg . At the same temperature, if one more mole of B is added to this solution, the vapour pressure of the solution increases by 10 mm of Hg . Determine the vapour pressures of A and B in their pure states.

CHEMISTRY CONCENTRATE COLLIGATIVE PROPERTIES

The following types of problems are asked:
Type 1 When K_{b} and molality of solution (m) are given and asked to find out elevation in boiling point, $\left(\Delta T_{b}\right)$ apply the following formula, $\Delta T_{b}=K_{b} \times m$
Type 2 When T_{b}, enthalpy of vaporisation $\left(\Delta_{\text {vap }} H\right)$ and molecular mass of solvent are given and asked to find out K_{b}, apply the following formula,

$$
K_{b}=\frac{M_{\text {solvent }} \cdot R T_{b}^{2}}{1000 \times \Delta_{\mathrm{vap}} H}=\frac{R T_{b}{ }^{2}}{1000 I_{v}}
$$

$I_{v}=$ latent heat of vaporisation.
Type 3 When K_{b} and molality (m) are given and asked to find the temperature at which solution boils apply the following formula, $T=T_{b}+K_{b} m$
Type 4 When ΔT_{b} and K_{b} are given and asked to find out mole fraction, apply the following formula,

$$
\frac{\Delta T_{b}}{K_{b}}=\frac{\chi_{\text {solute }} \times 1000}{M_{\text {solvent }} \times \chi_{\text {solvent }}}
$$

Type 5 When weight of solute, volume of solution and temperature are given and asked to find out osmotic pressure, use the following formula,

$$
\pi=\frac{W_{\text {solute }} \times R T}{M_{\text {solute }} \times V_{\text {solution }}}=\frac{n_{\text {solute }} \times R T}{V_{\text {solution }}}
$$

If density of solution is asked, use the following formula, $d=\frac{\pi M_{\text {solute }}}{R T}$
Type 6 When osmotic pressures of different solutions are given and asked to find out osmotic pressure of their mixture, use the following formula,

$$
\begin{aligned}
\pi_{\text {(total) }}= & \pi_{1} \\
& +\pi_{2}+\pi_{3}+\ldots \\
& =\frac{n_{1} R T}{\left(V_{1}+V_{2}+\ldots .\right)}+\left(\frac{n_{2} R T}{V_{1}+V_{2}+\ldots .}\right)+\ldots
\end{aligned}
$$

Type 7 When weights of solute and solvent are given and asked to find out relative lowering in vapour pressure, use the following formula

$$
\frac{p^{\circ}-p^{s}}{p^{\circ}} \approx \frac{n}{N} \approx \frac{w_{\text {solute }} \times M_{\text {solvent }}}{w_{\text {solvent }} \times M_{\text {solute }}}
$$

Note For problems related to depression in freezing points consider first four types and use $\Delta T_{f}, K_{f}, \Delta H_{\text {fusion }}$ and $I_{\text {fusion }}$ in place of $\Delta T_{b}, K_{b}, \Delta H_{\text {vap }}$ and I_{v}.

Solve the Following Problems

3. Vapour pressure of an aqueous solution of glucose at 373 K is 750 mm of Hg . Calculate the molality of solution.
4. When 6 g of glucose was added in 50 g of water, $0.34^{\circ} \mathrm{C}$ elevation in boiling point was recorded. Calculate the molal elevation constant of water.
5. The boiling point of a solution containing 1 g of substance dissolved in 83.4 g of benzene is $80.175^{\circ} \mathrm{C}$. If latent heat of vaporisation and boiling point of benzene are $90 \mathrm{cal} / \mathrm{g}$ and $80^{\circ} \mathrm{C}$ respectively. Calculate the molar mass of solute.

CHEMISTRY CONCENTRATE

ABNORMAL COLLIGATIVE PROPERTIES

For solving problems related to abnormal colligative properties you may go through following steps:
Step 1 Calculate van't Hoff factor (i)

$$
(i)=\frac{\text { Calculated molar mass }\left(M_{c}\right)}{\text { Observed molar mass }\left(M_{0}\right)}
$$

Step 2 If one molecule dissociates into n ions, degree of dissociation is given as

$$
\alpha=\frac{i-1}{n-1}
$$

If n molecules associate to form a gaint molecule, degree of association is given as

$$
\alpha=\frac{i-1}{\frac{1}{n}-1}
$$

Step 3 For calculation of colligative properties, use following modefied expressions,
(i) Relative lowering in vapour pressure,

$$
\frac{p_{A}^{\circ}-p_{A}}{p_{A}^{\circ}}=i \chi_{B}
$$

(ii) $\Delta T_{f}=i K_{f} m$
(iii) $\Delta T_{b}=i K_{b} m$
(iv) $\pi=i \frac{n}{V} R T$

Solve the Following Problem

6. Predict the correct order of osmotic pressure of the following solutions.
(a) 0.1 N NaCl
(b) $0.1 \mathrm{~N} \mathrm{Na}_{2} \mathrm{SO}_{4}$
(c) $0.1 \mathrm{~N} \mathrm{Na}_{3} \mathrm{PO}_{4}$

handbook Key Notes Terms Definitions Flow Charts

Multipurpose Revision Books in

 CHEMISTRY BIOLOGY

For Class XI, XII, Medical \& Other Competitive Exam

arihant

For further information about the products from Arihant \log on to www.arihantbooks.com or email to info@arihantbooks.com

ALKYNES ($\mathrm{C}_{n} \mathrm{H}_{2 n-2}$)

These form the second series of unsaturated hydrocarbons with higher possible degree of unsaturation. These contain two π-bonds and one σ-bond between two carbon atoms. This group of three bonds is often called acetylenic bond.

Preparations of
ALKYNES

4. \uparrow Kolbe's electrolytic method	
5. - Sodium acety	
6.	- With Grignards reagent
	(i) Pyrolysis
	(ii) Partial oxidation
	Δ lodoform + silver powder
	- Dilute mineral acid+ silver or

Reaction 4 Electrolysis of potassium fumerate $\mathrm{CHCO}^{-} \mathrm{K}^{+}$produces acetylene with the liberation of CO_{2} $\|_{\mathrm{CHCO}} \mathrm{OK}^{+}$
and H_{2} at anode and cathode respectively.
Reaction 5 This reaction is used to prepare higher alkynes.
Reaction 6 Grignard reagent helps to prepare higher alkynes from lower alkynes.
Reaction 7 (i) Pyrolysis of methane takes place in a flow system with short contact time.

$$
2 \mathrm{CH}_{4} \xrightarrow[0.01-0.10 \mathrm{~s}]{1500^{\circ} \mathrm{C}} \mathrm{CH} \equiv \mathrm{CH}+3 \mathrm{H}_{2}
$$

(ii) Partial oxidation of methane in controlled high temperature gives ethyne.

$$
6 \mathrm{CH}_{4}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{CH} \equiv \mathrm{CH}+2 \mathrm{CO}+4 \mathrm{H}_{2}
$$

Reaction $9 \mathrm{M}-\mathrm{C} \equiv \mathrm{C}-M+2 \mathrm{HCl} \longrightarrow$
$2 \mathrm{MCl} \downarrow+\mathrm{CH} \equiv \mathrm{CH} ; M=\mathrm{Ag}, \mathrm{Cu}$

Physical Properties of Alkynes

- First three members are colourless gases, next eight are liquids and higher alkynes are solids.
- All alkynes are colourless and odourless except acetylene (garlic odour).
- Melting point, boiling point and densities of alkynes are higher than the corresponding alkenes and alkanes.
- Acetylene and terminal alkynes are acidic in nature.
- Order of acidity for different alkynes is, $\mathrm{HC} \equiv \mathrm{CH}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH} \gg \mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{CH}_{3}$
Reaction 2 Liquid bromine yields tetrabromo derivative while bromine water or $\mathrm{Br}_{2} / \mathrm{CCl}_{4}$ forms dibromo derivative.
Reaction $3-\mathrm{C} \equiv \mathrm{C}-+2 \mathrm{HX} \longrightarrow-\mathrm{CH}_{2}-\mathrm{CX}_{2}-$

Reaction 5 Hydration occurs in the presence of $1 \% \mathrm{HgSO}_{4}$ and $42 \% \mathrm{H}_{2} \mathrm{SO}_{4}$.
Reaction 6 Acetylene gives vinyl cyanide on the polymerisation by which synthetic fibre orlon (acrylonitrile) is obtained.
Reaction 7 The reaction with Na in liq. NH_{3} is considered as the test of acidity.
Reaction 8 With Tollen's reagent (ammonical AgNO_{3}), a white precipitate of silver salt is obtained. This reaction is used to differentiate between terminal (acidic) alkynes with rest of the alkynes i.e. helpful in detecting the position of triple bond (interstitial or terminal).
Reaction 9 Terminal alkynes work as nucleophile, thus add to $-\mathrm{C}=0$ group through nucleophilic addition in the presence of base.
Reaction 10 Fehling's solution is also used for the same purpose as that Tollen's reagent is used. Terminal alkynes with Tollen' reagent give red precipitate of their copper salt.
Reaction 14 When vapours of alkynes are passed through red hot Cu or Fe tube, aromatic compounds are produced.
Reaction 15 On heating with alc. KOH or NaNH_{2} in inert solvent, the triple bond of 1-alkyne is shifted towards the centre to form an isomeric 2 -alkyne. On heating with sodamine $\left(\mathrm{NaNH}_{2}\right.$ in liquid $\left.\mathrm{NH}_{3}\right)$, the triple bond shift towards the end.

- $\mathrm{R}-\mathrm{C} \equiv \mathrm{C}-\mathrm{R}$ with hot KMnO_{4} produces carboxylic acids (RCOOH)
- $\mathrm{CH} \equiv \mathrm{CH}$ with hot KMnO_{4} gives oxalic acid while rest of acidic alkynes ($R-\mathrm{C} \equiv \mathrm{CH}$) produces CO_{2} alongwith acid (RCOOH)

Ozonolysis of alkynes give different products in different media such as dicarbonyl in $\mathrm{Zn} / \mathrm{CH}_{3} \mathrm{COOH}$, acids or ketones in $\mathrm{H}_{2} \mathrm{O}_{2}$ and glycol in LiAlH_{4}.

Contrary to hydration, in case of hydroboration oxidation, alkynes give aldehydes.

ELECTROPHILIC SUBSTITUTION REACTION IN BENZENE

- Benzene undergoes electrophilic substitution reactions, e.g. halogenation, nitration, sulphonation, Friedel-Crafts reaction etc.
- This substitution proceeds through following three steps:
Step 1 Formation of electrophile $\left(E^{+}\right)$The electrophiles formed in different electrophilic substitution reactions are:

Electrophile	Reaction name
Cl^{+}	Halogenation
NO_{2}^{+}	Nitration
SO_{3}	Sulphonation
R^{+}	Friedel-Crafts alkylation
	Friedel-Crafts acylation
$\stackrel{\mathrm{O}}{\mathrm{H}-\oplus}$	Formylation
$\mathrm{H}-\stackrel{\oplus}{\mathrm{C}}=\mathrm{NH}$	Gattermann synthesis

AROMATIC HYDROCARBONS

- The main source of these is coal.

Reaction 4 Benzene diazonium chloride is reduced to benzene by SnCl_{2} and NaOH or absolute ethyl alcohol or hypophosphorous acid $\left(\mathrm{H}_{3} \mathrm{PO}_{2}\right)$.
Reaction 7 The distillation of coal-tar gives following fractions:
(i) Light oil Below $200^{\circ} \mathrm{C}$, contains BTX (Benzene, Toluene and Xylene) as its chief components.
(ii) Middle oil 200-240 ${ }^{\circ}$, contains phenols, cresols and naphthalene.
(iii) Heavy oil $245-280^{\circ} \mathrm{C}$ contains cresols and naphthalene.

iranchembook.ir/edu

Onthrough TT MAP ONS (PART II)

Step 2 Formation of carbocation intermediate

Step 3 Loss of a proton from the carbocation intermediate

In case of chlorination, Friedel-Crafts reaction Gattermann's reaction.

(In case of nitration and sulphonation)
Note Step 3 is fast step, hence, it does not affect the rate of reaction.

Sodium salts of carboxylic acids
on

Dehydroxylation
Zn dust/ Δ

$\mathrm{CH} \equiv \mathrm{CH}$
Acetylene
Polymerisation

(iv) Anthracene oil $280-405^{\circ} \mathrm{C}$ contains anthracene, phenanthrene and carbazole.
(v) Pitch The residue containing 5 and 6 membered fused rings and tar oils.

Physical properties of benzene

- Benzene is a colourless liquid.
- Melting point $-5.5^{\circ} \mathrm{C}$, boiling point $-80.1^{\circ} \mathrm{C}$ insoluble in water, miscible with alcohol, ether and chloroform.
- A good solvent, highly toxic vapours, burns with a luminous sooty flame.

Chemical Properties of BENZENE

Reaction 1 Benzene undergoes chlorination when it is treated with chlorine in presence of catalyst aluminium chloride or ferric chloride and in absence of light.
Reaction 10 In this reaction, first maleic acid $\|_{\mathrm{CHCOOH}}^{\mathrm{CHCOOH}}$ is produced which loses water at $450^{\circ} \mathrm{C}$ and converted into anhydride.
Reaction 11, 12 and 13 Reaction 11 and 12 operate through free radical mechanisms while in reaction 13 the metal used is of Ist group i.e., Li, Na (mostly Na) and alcohol normally $\mathrm{CH}_{3} \mathrm{OH}$ ((or $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$). Here, metal works for electron donation and alcohol for proton donation as : $\mathrm{Na} \longrightarrow \mathrm{Na}^{+}+\bar{e}$

- Here, proton is provided by alcohol.
- At high temperature, alcohol is not needed, H^{+}is provided by NH_{3} and product obtained is cyclohexene.
Note The uniqueness of pathway here is that the addition is throughout 1, 4-addition, i.e. initially cyclohexa-1,4-diene is formed which on further 1,4 -addition gave cyclohexene. The product of reaction 11 is $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cl}_{6}$. It is also called lindane or gammexane or 666 and is used as insecticide.

Reaction $14 \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{3}-\mathrm{CN} \xrightarrow[\mathrm{ZnCl}_{2}]{\mathrm{HCl}} \mathrm{C}_{6} \mathrm{H}_{5}$

Reaction $15 \mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{3} \mathrm{CONHOH} \xrightarrow[\text { acid, } \Delta]{\text { Polyphosphoric }}$

DIRECTIVE INFLUENCE OF FUNCTIONAL

GROUPS

- When a functional group is attached to benzene ring and subjected to electrophilic substitution reactions, electron releasing functional groups like - OH , $-\mathrm{NH}_{2},-\mathrm{OR}$ etc., direct the incoming electrophile, towards ortho and para-positions and itself acts as an activating group, while an electron withdrawing functional group like $-\mathrm{NO}_{2},-\mathrm{COOH},-\mathrm{CHO}$ etc., direct the incoming electrophile, towards meta-position.
- $-\mathrm{F},-\mathrm{Cl},-\mathrm{Br}$ and -I are weakly deactivating, these are o and p-directing.
Order of activating power for different groups are as follows:
ortho/para-directing
$\underbrace{-\mathrm{NH}_{2},-\mathrm{NHR},-\mathrm{N} R_{2},-\mathrm{OH},-\mathrm{OR},>}_{\text {Strongly a ativating }}$

$>\underbrace{-\mathrm{F},-\mathrm{Cl},-\mathrm{Br}}_{\text {Weakly Deactivating }}$

Meta-directing

$\underbrace{-\mathrm{I}>-\mathrm{CH}>-\mathrm{C} R>-\mathrm{COR}-\mathrm{COH}>-\mathrm{CCl}>}_{\text {Moderate deactivating }} \overbrace{\|}^{0}$

@CLASS XII SYLLABUS

JEE Final Touch
 Fast Track Revision

Electrochemistry

ELECTROLYSIS, CONDUCTANCE AND CONDUCTIVITY OF ELECTROLYTIC SOLUTION

Electrochemistry is the branch of science which deals with the interaction of electrical energy with chemical species.

Electrolysis

The process of decomposition of an electrolyte (conduct electricity through ions in solutions) on passing electric current through its aqueous solution or in the fused state is called electrolysis. In electrolysis, electric current is used to bring a non-spontaneous chemical reaction (the reaction for which $\Delta G=+$ ve and $\Delta E=-\mathrm{ve}$), e.g. electrolysis of molten NaCl .

	$\mathrm{NaCl}($ molten $)$
At anode	$\longrightarrow \mathrm{Na}^{+}+$
At cathode $\quad 2 \mathrm{Cl}^{-}-2 e^{-}$	$\longrightarrow \mathrm{Cl}_{2} \uparrow$
	$\mathrm{Na}^{+}+2 e^{-} \longrightarrow 2 \mathrm{Na}(1)$

Faraday's Laws of Electrolysis

The laws which are governed during the decomposition of substances at electrodes with passage of electric current are called Faraday's laws of electrolysis.

Faraday's first law	Faraday's second law
The weight (w) of an ion	When same quantity of electricity is passed
discharged during	through different solution of electrolytes, the
electrolysis is directly	masses of different ions (say w_{1} and w_{2})
proportional to the quantity of electricity (I) passed. liberated at electrodes are directly proportional to their equivalent masses $\left(E_{1}\right.$ and $\left.E_{2}\right)$.	

Preferential Discharge During Electrolysis

During electrolysis, if more than two electrolytes are present in the solution, only the ions requiring least energy are discharged in preference to other. The increasing power of deposition of some ions are given below:

For cations

$\mathrm{K}^{+}<\mathrm{Na}^{+}<\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}<\mathrm{Al}^{3+}<\mathrm{Zn}^{2+}<\mathrm{H}^{+}<\mathrm{Cu}^{2+}<\mathrm{Hg}^{2+}<\mathrm{Ag}^{+}$
For anions $\mathrm{SO}_{4}^{2-}<\mathrm{NO}_{3}^{-}<\mathrm{OH}<\mathrm{Cl}^{-}<\mathrm{Br}^{-}<\mathrm{I}^{-}$

CHEMISTRY CONCENTRATE

 FORMULAE FOR FARADAY'S LAW- $w=Z \mid t ; Z=$ Electrochemical equivalent (ECE) of the ion deposited at electrode.
- $\frac{w_{1}}{W_{2}}=\frac{E_{1}}{E_{2}}$
- $E=F Z ; F=$ Faraday constant, 96500 C ,

$$
w=\frac{E / t}{96500}
$$

- $w=V Q=V / t ; w=$ electrical energy, $V=$ voltage, $Q=$ charge .
- For gaseous products,

$$
V_{g}=\frac{V_{E} / t}{96500}
$$

where, $V_{g}=$ volume of gas evolved at electrode
$V_{E}=$ equivalent volume of gas
For $\mathrm{O}_{2}, V_{E}=5.6 \mathrm{~L}$ at STP
For $\mathrm{H}_{2}, V_{E}=11.2 \mathrm{~L}$ at STP
For $\mathrm{Cl}_{2}, V_{E}=11.2 \mathrm{~L}$ at STP

Applications of Electrolysis

- Non-metals like $\mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{Cl}_{2}$ etc., are obtained by electrolysis in pure form. Alkanes are obtained by Kolbe's electrolytic method.
- Metals like $\mathrm{Na}, \mathrm{Al}, \mathrm{Ca}, \mathrm{Mg}, \mathrm{K}$ are obtained by the electrolysis of fused electrolytes.
- Metals like Au, Ag, Al, Sn etc., are refined by electrolysis. Inferior metals are coated with a superior metal like Ag, Au, Pt by electrolysis.
- Thickness of the coated layer can be calculated as (length \times breadth \times height) $\times \rho=\frac{E I t}{96500}$

\{JEE FINAL TOUCH

Conductance and Conductivity of Electrolytic Solution

Conductance (C) is the power of an electrolytic solution to conduct electricity and is related to resistance (R) as $C=\frac{1}{R}=\frac{A}{\rho l}$
where, ρ is the specific resistance and is defined as the resistance of a conductor of 1 cm length and $1 \mathrm{~cm}^{2}$ area of cross-section.
$\frac{1}{A}$ is called cell constant and has unit cm^{-1}.
Units of conductance ohm ${ }^{-1}$ or mho (Ω^{-1}) or Siemen (in SI)

Types of Conductivity

There are three types of conductivity as shown in the table below:

Conductivity type	Definition	Formula	Units
Specific conductivity (κ)	It is the reciprocal of specific resistance $\left(\kappa=\frac{1}{\rho}\right)$	$\begin{aligned} & \kappa=\frac{1}{\rho}=\frac{1}{R} \times \frac{l}{A} \\ & =C \times\left(\frac{l}{A}\right) \end{aligned}$	$\begin{aligned} & \Omega^{-1} \mathrm{~cm}^{-1} \\ & \mathrm{~S} \mathrm{~cm}^{-1} \end{aligned}$
Molar conductivity (λ_{m} or μ)	It is the conducting power of a solution containing 1 g -mol of an electrolyte.	$\mu=\frac{\kappa \times 1000}{M}=\kappa \times V_{\mathrm{mL}}$ $\left(V_{\mathrm{mL}}=\right.$ volume of solution containing 1 g -mol of an electrolyte)	$\begin{aligned} & \Omega^{-1} \mathrm{~cm}^{2} \\ & \mathrm{~mol}^{-1} \\ & \mathrm{~S} \mathrm{~m}^{2} \mathrm{~mol}^{-1} \end{aligned}$
Equivalent conductivity ($\lambda_{\text {eq }}$ or Λ)	It is the conducting power of a solution containing 1 g-equivalent of an electrolyte	$\begin{aligned} & \Lambda=\frac{\kappa \times 1000}{N}=\kappa \times V_{\mathrm{mL}} \\ & \left(V_{\mathrm{mL}}=\right.\text { volume of solution } \\ & \text { containing } 1 \mathrm{~g}-\mathrm{eq} \text { of an } \\ & \text { electrolyte }) \end{aligned}$	$\begin{aligned} & \Omega^{-1} \mathrm{~cm}^{2} \mathrm{eq}^{-1} \\ & \mathrm{Sm}^{2} \mathrm{eq}^{-1} \end{aligned}$

Variation of Conductivity with Dilution

- At infinite dilution, the conductivity of both weak and strong electrolytes become almost same and a weak electrolyte behaves as a strong electrolyte.
- The equivalent and molar conductivity of a solution increases with dilution, whereas the specific conductivity decreases with dilution, as the number of ions per unit volume decreases.
- The equivalent and molar conductances increase with dilution, because these are the product of specific conductance and volume of solution containing 1 equivalent and 1 mole of electrolyte respectively.
The variation of molar conductance (μ) for strong electrolyte with concentration (C) is given by Debye-Huckel-Onsager equation which is, $\mu=\mu^{\infty}-b \sqrt{C}$
where, $b=$ constant, $\mu^{\infty}=$ molar conductance at infinite dilution
- The value of b for a given solvent and temperature depends upon the nature of electrolyte (charge on cation and anion produced after dissociation). All electrolytes of a particular type have same value of b.
- It is clear from the graph that for a strong electrolyte, extrapolation of curve at $C=0$ gives μ^{∞} for strong electrolytes. However, such an
 extrapolation cannot be made for weak electrolytes.
- The limiting value of molar conductivity for either strong or weak electrolytes can be obtained by extrapolating the respective curves to $C=0$. This limiting value of molar conductivity is known as molar conductivity at infinite dilution $\left(\mu^{\infty}\right)$.
\Rightarrow
$\mu^{\infty}=\mu$
(when, $C \rightarrow 0$)

Kohlrausch's Law of Independent Migration of Ions

According to this law, "the molar conductivity at infinite dilution $\Lambda_{\mathrm{m}}^{\infty}$ of the electrolyte must be equal to the sum of the molar conductivities of the ions produced by the electrolyte at infinite dilution."

$$
\Lambda_{\mathrm{m}(A B)}^{\infty}=\lambda_{A^{+}}^{\infty}+\lambda_{B^{-}}^{\infty}
$$

where, $\quad \lambda_{A^{+}}^{\infty}$ and $\lambda_{B^{-}}^{\infty}$ are the ionic /molar conductivities of cation, A^{+}and anion, B^{-}respectively.

Applications of Kohlrausch's Law

(i) With the help of this law, we can determine the molar conductivity of weak electrolytes at infinite dilution.
(ii) For calculating degree of dissociation (α) of weak electrolyte the formula used is $\alpha=\frac{\mu^{C}}{\mu^{\infty}}$
where, $\mu^{C}=$ molar conductance at any concentration $\mu^{\infty}=$ molar conductance at infinite dilution.
(iii) To determine the ionisation constant of a weak electrolyte.
(iv) For calculating the solubility of a sparingly soluble salt with the help of the following formula.

$$
\Lambda_{\mathrm{eq}}^{\circ}=\frac{\kappa \times 1000}{S}
$$

Transport Number

- It is defined as the fraction of the current carried by an ion.
- Transport number $=\frac{\text { Current carried by an ion }}{\text { Total current carried }}$
- Transport number of cation + transport number of anion $=1$.

Effect of Temperature on Conductivity

The conductance of an electrolytic solution increases with increase in temperature, because the kinetic energy of ions increases resulting to increase in the movement of ions.
For a small increase in temperature, the temperature dependence of molar conductivity is given by

$$
\mu_{t}=\mu_{25}[1+\beta(t-2 b)]
$$

where,

$$
\begin{aligned}
\beta & =\text { constant, } \\
\mu_{t} & =\text { molar conductivity at } t^{\circ} \mathrm{C} \\
\mu_{25} & =\text { molar conductivity at } 25^{\circ} \mathrm{C} .
\end{aligned}
$$

Molar conductivity of a dilute solution increases by around 2% per degree increase in temperature.

Best Practice ${ }^{\text {STHOTS }}$

1. Which of the following solutions has highest equivalent conductance?
(a) 0.01 M KCl
(b) 0.05 M KCl
(c) 0.02 M KCl
(d) 0.005 M KCl
2. If conductivity of 0.00241 M acetic acid solution is $7.896 \times 10^{-5} \mathrm{Scm}^{-1}$, calculate its molar conductivity in this solution. If $\Lambda_{\mathrm{m}}^{\infty}$ for acetic acid be $390.5 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$, then dissociation constant is
(a) $12.2 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}, 1.11 \times 10^{-4}$
(b) $10.7 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}, 2.85 \times 10^{-4}$
(c) $22.7 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}, 1.85 \times 10^{-5}$
(d) $32.76 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}, 1.85 \times 10^{-5}$

Hint $\Lambda_{\mathrm{m}}^{\complement}=\frac{\kappa \times 1000}{M}, \alpha=\frac{\Lambda_{\mathrm{m}}^{\complement}}{\Lambda_{\mathrm{m}}^{\infty}}, \kappa=\frac{C \alpha^{2}}{1-\alpha}$
3. A current of 2.0 A passed for 5 h through a molten metal salt deposits 22.2 g of metal (atomic weight = 177). The oxidation state of the metal in the metal salt is
(a) +1
(b) +2
(c) +3
(d) +4

Hint $Q=$ It, Oxidation state $=\frac{\text { Atomic weight }}{\text { Equivalent weight }}$
4. Ionic mobility of Ag^{+}is ($\left.\Lambda_{\mathrm{Ag}^{+}}=5 \times 10^{-4} \mathrm{ohm}^{-1} \mathrm{~cm}^{2} \mathrm{eq}^{-1}\right)$
(a) 5.2×10^{-9}
(b) 2.4×10^{-9}
(c) 1.52×10^{-9}
(d) 8.25×10^{-9}

Hint lonic mobility $=\frac{\text { lonic conductance }}{96500}$
5. What current is to be passed for 0.25 s for decomposition of a certain weight of metal which is equal to its electrochemical equivalent?
(a) 4 A
(b) 100 A
(c) 200 A
(d) 2 A

Hint Electrochemical equivalent is the weight deposited by 1C of charge.
6. Electrolytic conduction differs from metallic conduction. In the case of electrolyte conduction
(a) The resistance increases with increasing temperature
(b) The resistance decreases with increasing temperature
(c) The flow of current does not generate heat
(d) The resistance is independent of the length of the conductor
Hint On increasing temperature the ions in the solution move faster and hence, the resistance decreases.
7. How many molecules of chlorine should be deposited from molten sodium chloride in one minute by a current of 300 m A ?
(a) 2.616×10^{19} molecules
(b) 1.216×10^{12} molecules
(c) 5.616×10^{19} molecules
(d) 6.616×10^{12} molecules

Hint $2 \mathrm{Cl}^{-} \longrightarrow \mathrm{Cl}_{2}+2 \mathrm{e}^{-}$
2 F or $2 \times 96500 \mathrm{C}$ deposit $\mathrm{Cl}_{2}=1 \mathrm{~mol}$
8. Which of the following expressions correctly represents the equivalent conductance of $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ at infinite dilution. Given that $\lambda^{\circ}{ }_{\mathrm{Al}^{3+}}$ and $\lambda^{\circ}{ }_{\mathrm{SO}_{4}^{2-}}$ are the equivalent conductances at infinite dilution of respective ions?
(a) $2 \lambda_{\mathrm{Al}^{3+}}^{0}+3 \lambda_{\mathrm{SO}_{4}^{2-}}^{0}$
(b) $\lambda_{\mathrm{Al}^{3+}}^{0}+\lambda_{\mathrm{SO}_{4}^{2-}}^{0}$
(c) $\left(\lambda_{\mathrm{Al}^{3+}}^{0}+\lambda_{\mathrm{SO}_{4}^{2-}}^{0}\right) \times 6$
(d) $\frac{1}{3} \lambda_{\mathrm{Al}^{3+}}^{\circ}+\frac{1}{2} \lambda_{\mathrm{SO}_{4}^{2-}}^{\circ}$
9. The molar conductances of $\mathrm{NaOH}, \mathrm{NaCl}$ and BaCl_{2} at infinite dilution are $2.481 \times 10^{-2}, 1.265 \times 10^{-2}$ and $2.800 \times 10^{-2} \mathrm{Sm}^{2} \mathrm{~mol}^{-1}$ respectively. Calculate the $\Lambda_{\mathrm{m}}^{\circ}$ for $\mathrm{Ba}(\mathrm{OH})_{2}$.
(a) $4.232 \times 10^{-2} \mathrm{Sm}^{2} \mathrm{~mol}^{-1}$
(b) $1.121 \times 10^{-2} \mathrm{Sm}^{2} \mathrm{~mol}^{-1}$
(c) $5.232 \times 10^{-2} \mathrm{Sm}^{2} \mathrm{~mol}^{-1}$
(d) $4.132 \times 10^{-2} \mathrm{Sm}^{2} \mathrm{~mol}^{-1}$
10. The sequence of ionic mobility in the aqueous solution is
(a) $\mathrm{K}^{+}>\mathrm{Na}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$
(b) $\mathrm{Cs}^{+}>\mathrm{Rb}^{+}>\mathrm{K}^{+}>\mathrm{Na}^{+}$
(c) $\mathrm{Rb}^{+}>\mathrm{K}^{+}>\mathrm{Cs}^{+}>\mathrm{Na}^{+}$
(d) $\mathrm{Na}^{+}>\mathrm{K}^{+}>\mathrm{Rb}^{+}>\mathrm{Cs}^{+}$

Hint Smaller the size of cation, more strongly it is hydrated and less is the ionic mobility. The sizes of the unhydrated ions increase in the order: $\mathrm{Na}^{+}<\mathrm{K}^{+}<\mathrm{Rb}^{+}<\mathrm{Cs}^{+}$
So, ionic mobility is $\mathrm{Cs}^{+}>\mathrm{Rb}^{+}>\mathrm{K}^{+}>\mathrm{Na}^{+}$

Self Study Guide for Online BITSAT 2016

ELECTROCHEMICAL CELLS, ELECTRODE POTENTIAL AND EMF OF A GAL VANIC CELL

Electrochemical Cells

These are the devices in which interconversion of electrical energy and chemical energy takes place.

Types of electrochemical cells

Electrolytic cell	Galvanic cell (Voltaic cell)
Electrical energy is converted into chemical energy.	Chemical energy is converted into electrical energy.
Non-spontaneous redox reaction occurs.	Spontaneous redox reaction takes place.
Anode is positive electrode and cathode is negative electrode.	Anode is negative electrode and cathode is positive electrode.
Ions are discharged at both the electrodes.	Ions are discharged only on the cathode.
If the electrodes are inert, concentration of the electrolyte decreases when the electriic current is circulated.	Concentration of the anodic half-cell increases while that of cathodic half-cell decreases when the two electrodes are joined by a wire.
Both electrodes are dipped into same electrolytic solution.	Electrode reactions occur in separate half-cells.
No salt bridge needed.	Salt bridge is an essential requirement.
Working of an electrolytic cell can be shown as	Working of a galvanic cell can be shown as
Electrolysis of molten NaCl $\begin{aligned} \mathrm{Na}^{+}+\mathrm{Cl}^{-} & \longrightarrow \mathrm{Na}(s) \\ & +\frac{1}{2} \mathrm{Cl}_{2}(g) \end{aligned}$	$2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cu}(s) \longrightarrow \mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{Ag}(s)$

Representation of an Electrochemical Cell

Electrode Potential (E)

When a metal is placed in a solution of its ions, a definite potential difference is developed between the metal and the solution. This potential is called electrode potential.

Oxidation Potential

The tendency of an electrode to lose electrons or to get oxidised is called its oxidation potential.
e.g. $\quad M(s) \rightleftharpoons M^{n+}(a q)+n e^{-}$

Such an electrode is negatively charged with respect to its salt solution.

Reduction Potential

The tendency of an electrode to gain electrons, i.e. to get reduced is known as reduction potential.
e.g. $\quad M^{n+}(a q)+n e^{-} \rightleftharpoons M(s)$

Such an electrode is positively charged with respect to its salt solution.
Thus, $\quad E_{\text {oxidation }}=-E_{\text {reduction }}$
The electrode potential depends upon:
(i) nature of metal and its ions
(ii) concentration of ions in the solution
(iii) temperature

Standard Electrode Potential (E°)

The potential difference developed between metal electrodes and the solution of its ions of unit molarity at 1 atm pressure and $25^{\circ} \mathrm{C}$ temperature is called standard electrode potential.
If a reaction is reversed,then the magnitude of standard electrode potential remains same but the sign changes,
e.g.

$$
E_{\text {oxidation }}^{\circ}=-E_{\text {reduction }}^{\circ}
$$

Bipotential Electrode Sensors

- Electrocardiography (ECG), electromyography (EMG) and electroencephalography (EEG) systems measure heart, muscle and brain activity respectively over time by measuring electric potentials on the surface of living tissue.
- Nervous stimuli and muscle contractions can be detected by measuring the ionic current flow in the body. This is accomplished using a biopotential electrode.
- The current flow in the human body is due to ion flow, not electrons.
- A biopotential electrode is a transducer that senses ion distribution on the surface of tissue and converts the ion current to electron current.

Different Types of Reference Electrodes

Some important reference electrodes are as follows:

Normal Hydrogen Electrode (NHE)

Hydrogen electrode is the primary reference electrode and it is used normally to know the electrode potential of a half-cell of galvanic cell. The reason for such a usage is that it can act as a cathode as well as an anode with respect to other electrode, due to the following reactions.

$$
\begin{aligned}
\mathrm{H}_{2}(\mathrm{~g}) & \longrightarrow 2 \mathrm{H}^{+}+2 \mathrm{e}^{-} ; \\
2 \mathrm{H}^{+}+2 \mathrm{e}^{-} & \longrightarrow \mathrm{H}_{2}(\mathrm{~g})
\end{aligned}
$$

The electrode potential of NHE is taken as zero. It is represented as $\mathrm{Pt}\left|\mathrm{H}_{2}(\mathrm{~atm})\right| \mathrm{H}^{+}(1 \mathrm{M})$.

Standard Hydrogen Electrode (SHE)

A hydrogen electrode in which the pressure of H_{2} gas is maintained at 1 atm and concentration of H^{+}ions in the solution is 1 M , is called standard hydrogen electrode (SHE).

\{JEE FINAL TOUCH

The electrode potential for SHE is taken as 0.00 V at all temperatures.

Electrochemical Series

It is a series of chemical elements arranged in the order of their standard electrode potentials.
The standard reduction potentials of different ions with reference to SHE are given below:

Standard Electrode Potentials at $25^{\circ} \mathrm{C}$ "The Electrochemical Series"

Element	Electrode reaction (reduction)	Standard electrode red- uction potential E° (volt)	
Li		$\mathrm{Li}^{+}+\mathrm{e}^{-} \rightarrow \mathrm{Li}$	

Characteristics of Electrochemical Series

(i) Electrodes with negative standard reduction potential (SRP), when joined to SHE, behave as anode. Electrodes with positive SRP behave as cathode when joined to SHE.
(ii) Elements which are better reducing agents than hydrogen are placed above hydrogen (they have negative value of SRP). Elements which are better oxidising agents than hydrogen are placed below hydrogen (they have positive value of SRP) in electrochemical series.
(iii) Elements which get oxidised easily are good reducing agents and elements which get reduced easily are good oxidising agents.

Applications of Electrochemical Series

(i) Metal with lower SRP value displace metal with higher SRP from their solutions. Hence, reactivity of metals decreases from top to bottom in electrochemical series.
(ii) Elements above hydrogen displace hydrogen from any protic solution, whereas elements below hydrogen are unable to displace.
(iii) Thermal stability of metallic oxides decreases down the series due to decrease in electropositive character.
(iv) To prevent corrosion Less reactive metals are coated over more reactive metal to prevent corrosion.
(v) In the extracton of metal Less electropositive metals are displaced from their ores by adding salt of more electropositive metal.

EMF of a Galvanic Cell

The galvanic cell is made up of two half-cells (anode and cathode). The potential of these half-cells are always different. On account of this difference in electrode potentials, the electric current moves from the electrode at higher potential to the electrode at lower potential, i.e. from cathode to anode. The direction of the flow of electrons is from anode to cathode.

$$
\text { Anode } \underset{\substack{\text { Flow of } \\ \text { current }}}{\substack{\text { Flow of } \\ \text { electrons }}} \text { Cathode }
$$

The difference in electrode potentials of the two half-cells is known as the electromotive force (emf) of the cell or cell potential.

Measurement of EMF

The emf of the cell or cell potential can be measured from the values of electrode potentials of the two half-cells constituting the cell.
The following three methods are in use:
(i) $E_{\text {cell }}^{\bigcirc}=$ oxidation potential of anode

$$
+ \text { reduction potential of cathode }
$$

$$
=E^{\circ}{ }_{\text {oxi }}+E^{\circ}{ }_{\text {red }}
$$

(ii) $E^{\circ}{ }_{\text {cell }}=$ standard reduction potential of cathode - standard reduction potential of anode

$$
=E_{\text {cathode }}^{\circ}-E_{\text {anode }}^{\circ}=E_{\text {right }}^{\circ}-E_{\text {left }}^{\circ}
$$

(iii) $E^{\circ}{ }_{\text {cell }}=$ oxidation potential of anode - oxidation potential of cathode

$$
=E_{\text {oxi }}^{\circ}(\text { anode })-E_{\text {oxi }}^{\circ} \text { (cathode) }
$$

CHEMISTRY CONCENTRATE

TIPS TO CALCULATE CORRECT CELL POTENTIAL VALUE

In entrance exams, most of the students do common mistakes while solving problems related to calculation of cell potential value. These mistakes can be removed if you follow following conditions :

- You can cross check your final answer whether it is correct or not just by seeing the value of cell potential.
\rightarrow For a forward spontaneous reaction, cell potential value should be positive.
\rightarrow For a backward spontaneous reaction, cell potential value should be negative
- Mostly we use reduction potential value for both cells for calculating the cell potential value as follow :

$$
E_{\text {cell }}=E_{\text {cathode }}-E_{\text {anode }}=E_{R}-E_{L}
$$

\rightarrow But if oxidation potential of anodic half cell and reduction potential of cathodic half cell is given then $E_{\text {cell }}$ is calculated as,

$$
E_{\text {cell }}=E_{\text {cathode }}+E_{\text {anode }}^{\text {end }}=E_{R}+E_{L}
$$

- If simply potential value is provided along with cell or half cell reaction, this value is considered same as the corresponding phenomena

$$
\begin{aligned}
\text { e.g. } \mathrm{Zn}+\mathrm{Cu}^{2+} & \longrightarrow \mathrm{Zn}^{2+}+\mathrm{Cu} ; E^{\circ}=E^{\circ} \text { cell } \\
\mathrm{Zn} & \longrightarrow \mathrm{Zn}^{2+}+2 e^{-} ; E^{\circ}=E_{\text {oxidation }}^{\circ} \\
\mathrm{Zn}^{2+}+2 e^{-} & \longrightarrow \mathrm{Zn} ; E^{\circ}=E_{\text {reduction }}^{\circ}=E_{\mathrm{Zn}^{2+}}^{\circ} / \mathrm{Zn}
\end{aligned}
$$

Best Practice ${ }^{\text {SHOTS }}$ '

11. In the electrolytic cell, flow of electron is from
(a) cathode to anode in the solution
(b) cathode to anode through external supply
(c) cathode to anode through internal supply
(d) anode to cathode through internal supply
12. $E_{\text {cell }}$ is
(a) intensive
(b) extensive
(c) Both (a) and (b)
(d) None of these

Hint E is an intensive quantity because it depends on the nature of the cell reaction.
13. A gas X, at 1 atm is bubbled through a solution containing a mixture of $1 \mathrm{M} \mathrm{Y}^{-}$and $1 \mathrm{M} \mathrm{Z}^{-}$at $25^{\circ} \mathrm{C}$. If the reduction potential is in the order, $Z>Y>X$, then
(a) Y will oxidise X but not Z
(b) Y will oxidise Z but not X
(c) Y will oxidise both X and Z
(d) Y will reduce both X and Z

Hint Reduction potential of Y is greater than that of X but less than that of Z. Hence, Y will oxidise X but not Z.
14. Standard electrode potentials are:
$\mathrm{Fe}^{2+} / \mathrm{Fe} ; E^{\circ}=-0.44 \mathrm{~V}, \quad \mathrm{Fe}^{3+} / \mathrm{Fe}^{2+} ; E^{\circ}=+0.77 \mathrm{~V}$
$\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$ and Fe blocks are kept together, then
(a) Fe^{3+} increases
(b) Fe^{3+} decreases
(c) $\mathrm{Fe}^{2+} / \mathrm{Fe}^{3+}$ remains unchanged
(d) Fe^{2+} decreases
15. $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+\mathrm{I}^{-} \longrightarrow \mathrm{I}_{2}+\mathrm{Cr}^{3+}$
$E_{\text {cell }}^{\circ}=0.79 \mathrm{~V}, E_{\mathrm{Cr}_{2} \mathrm{O}_{5}^{-}}^{\circ}=1.33 \mathrm{~V}, E_{\mathrm{I}_{2}}^{\circ}=$?
(a) 0.54 V
(b) -0.054 V
(c) +0.18 V
(d) -0.18 V
16. The reaction taking place in the cell, $\mathrm{Pt}\left|\mathrm{H}_{2}(\mathrm{~g})\right| \mathrm{HCl}(1.0) \mathrm{M}|\mathrm{AgCl}| \mathrm{Ag} \mid$ is 1 atm
(a) $\mathrm{AgCl}+\frac{1}{2} \mathrm{H}_{2} \longrightarrow \mathrm{Ag}+\mathrm{H}^{+}+\mathrm{Cl}^{-}$
(b) $\mathrm{Ag}^{+}+\mathrm{H}^{+}+\mathrm{Cl}^{-} \longrightarrow \mathrm{AgCl}+\frac{1}{2} \mathrm{H}_{2}$
(c) $2 \mathrm{Ag}^{+}+\mathrm{H}_{2} \longrightarrow 2 \mathrm{Ag}+2 \mathrm{H}^{+}$
(d) $2 \mathrm{Ag}+2 \mathrm{H}^{+} \longrightarrow 2 \mathrm{Ag}^{+}+\mathrm{H}_{2}$
17. The standard reduction potentials at 298 K for the following half cells are given

$$
\begin{aligned}
& \mathrm{Zn}^{2+}(a q)+2 e^{-} \rightleftharpoons \mathrm{Zn}(s) ; E^{\circ}=-0.726 \mathrm{~V} \\
& \mathrm{Cr}^{3+}(a q)+3 \mathrm{e}^{-} \rightleftharpoons \mathrm{Cr}(\mathrm{~s}) ; E^{\circ}=-0.740 \mathrm{~V} \\
& 2 \mathrm{H}^{+}(a q)+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{H}_{2}(g) ; E^{\circ}=0.000 \mathrm{~V} \\
& \mathrm{Fe}^{3+}(a q)+\mathrm{e}^{-} \rightleftharpoons \mathrm{Fe}^{2+}(a q) ; E^{\circ}=0.770 \mathrm{~V}
\end{aligned}
$$

Which is the strongest reducing agent?
(a) $\mathrm{Cr}(\mathrm{s})$
(b) $\mathrm{Zn}(\mathrm{s})$
(c) $\mathrm{H}_{2}(g)$
(d) $\mathrm{Fe}^{2+}(\mathrm{aq})$
18. On the basis of the following E° values, the strongest oxidising agent is

$$
\begin{array}{rlrl}
{\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}} & \longrightarrow\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}+\mathrm{e}^{-} ; E^{\circ} & =-0.35 \mathrm{~V} \\
\mathrm{Fe}^{2+} & \longrightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-1} ; & E^{\circ} & =-0.77 \mathrm{~V}
\end{array}
$$

(a) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(b) Fe^{2+}
(c) Fe^{3+}
(d) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$
19. What change occurs when a zinc rod is dipped into a blue coloured copper sulphate solution?
(Given, $E^{\circ}{ }_{\mathrm{Cu}^{2+} / \mathrm{Cu}}=+0.34 \mathrm{~V}, E_{\mathrm{Zn} / \mathrm{Zn}^{2+}}^{\circ}=+0.76 \mathrm{~V}$)
Select the correct, option.
(a) Reaction takes place changing blue CuSO_{4} to colourless ZnSO_{4}
(b) Reaction takes places changing blue CuSO_{4} to red coloured ZnSO_{4}
(c) Both are correct
(d) None of the above
20. Which of the following reaction is possible at anode?
(a) $2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+14 \mathrm{H}^{+}$
(b) $\mathrm{F}_{2} \longrightarrow 2 \mathrm{~F}^{-}+2 \mathrm{e}^{-}$
(c) $\frac{1}{2} \mathrm{O}_{2}+2 \mathrm{H}^{+} \longrightarrow \mathrm{H}_{2} \mathrm{O}$
(d) None of the above

NERNST EQUATION, BATTERY AND CORROSION

Nernst Equation

It relates the cell potential of an electrochemical cell to the concentrations of the reactants and products of a chemical reaction at any point of time. For the following reaction at equilibrium,

$$
p A+q B+\ldots \rightleftharpoons r X+s Y+\ldots
$$

Nernst equation is

$$
E_{\text {cell }}=E^{\circ}{ }_{\text {cell }}-\frac{0.0591}{n} \log \frac{\text { [Products }]}{[\text { Reactants }]}
$$

Applications of the Nernst Equation

(i) To calculate the value of potential of a concentration cell A concentration cell is an electrochemical cell in which potential is generated due to difference in concentration of electrolyte in different half cells. As the cell operates, the concentration increases in the dilute half-cell and decreases in concentrated half-cell. We can calculate the generated potential with the help of Nernst equation. e.g. $\mathrm{Zn}\left|\mathrm{Zn}^{2+}\left(C_{1}\right)\right|\left|\mathrm{Zn}^{2+}\left(C_{2}\right)\right| \mathrm{Zn}$

$$
E_{\text {cell }}=\frac{0.0591}{2} \log \frac{C_{2}}{C_{1}},\left[C_{2}>C_{1} ; E_{\text {cell }}^{\circ}=0\right]
$$

\{JEE FINAL TOUCH\}

CHEMISTRY CONCENTRATE

TRICKS TO SOLVE PROBLEMS
RELATED TO CONCENTRATION CELL
Different kinds of problems have been asked in JEE Main and advanced. Generally, it is observed that students get very confuse while solving problems related to concentration cell. But these problems are very easy to solve if we approach the questions stepwise written as below:
Step 1 Write down the concentration cell, $M \mid M^{n+}$ (conc.) ||| M^{n+} (dil.) || M
Step 2 If half-reactions are mentioned at cathode and anode, then write the half-cell in which reaction occurs at cathode on RHS in the cell representation. $M \mid M^{n+}$ (anode) $\left|\mid M^{n+}\right.$ (cathode) | M
Step 3 Write down the Nernst equation, for concentration cell,

$$
\begin{gathered}
E_{\text {cell }}=E_{\text {cell }}^{\circ}-\frac{2.303 R T}{n F} \log \frac{\left[M^{n+}\right]_{\text {anode (LHS) }}}{\left[M^{n+}\right]_{\text {cathodel (RHS) }}} \\
E_{\text {cell }}=E_{\text {cell }}^{\circ}-\frac{2.303 R T}{n F} \log \frac{\left[M^{n+}\right]_{\text {conc. }}}{\left[M^{n+}\right]_{\text {dil. }}}
\end{gathered}
$$

Step 4 For concentration cell, $E_{\text {cell }}^{\circ}=0$, put this value in Nernst equation, $E_{\text {cell }}=-\frac{2.303 R T}{n F} \log \frac{\left[M^{n+}\right]_{\text {LHS }}}{\left[M^{n+}\right]_{\text {RHS }}}$
Step 5 Find out the required quantity with the help of Nernst equation.
Step 6 If solubility product $\left(K_{\text {sp }}\right)$ is asked to find out, then determine the concentrations of M^{n+} and X^{m-}.
Step 7 Determine solubility product as $K_{\mathrm{sp}}=(m S)^{m}(n S)^{n}$.
(ii) Determination of solubility products The concentrations of ions in equilibrium with a sparingly soluble salt are sufficiently low and the Nernst equation can be used to determine the value of $K_{\text {sp }}$.
(iii) Potentiometric titrations In many situations, accurate determination of an ion concentration by direct measurement of a cell potential is impossible due to the
presence of other ions and a lack of information about activity coefficients. In such cases, it is often possible to determine the ion indirectly by titration with some other ion by the help of Nernst equation.
(iv) Measurement of $\mathbf{p H} \mathrm{A}$ hydrogen electrode allows a direct measurement of $\left[\mathrm{H}^{+}\right]$and thus - pH is given as

$$
\mathrm{pH}=\frac{E_{\text {cell }}-E_{\text {reference }}^{\circ}}{0.0591}
$$

Relationship between Standard Potentials of Half-cells Containing a Metal in Different Oxidation State

- If two half-reactions having potentials E_{1}° and E_{2}° are combined to form a third half-reaction having a potential E_{3}°, then we can write

$$
\begin{aligned}
& \Delta G_{3}^{\circ}=\Delta G_{1}^{\circ}+\Delta G_{2}^{\circ} \text { or }-n_{3} F E_{3}^{\circ}=-n_{1} F E_{1}^{\circ}-n_{2} F E_{2}^{\circ} \\
& \text { or } n_{3} E_{3}^{\circ}=n_{1} E_{1}^{\circ}+n_{2} E_{2}^{\circ} \text { or } E_{3}^{\circ}=\frac{n_{1} E_{1}^{\circ}+n_{2} E_{2}^{\circ}}{n_{3}}
\end{aligned}
$$

Note A reaction will be feasible if, $\Delta G<0, E_{\text {cell }}>0$.

CHEMISTRYCONCENTRATE

FORMULAEOFTHERMOD YNAMICQUANTITIES

 INELECTROCHEMISTRY- Maximum work done by a cell, $W_{\max }=n F E_{\text {cell }}^{\circ}$
- Gibbs free energy change of a cell, $\Delta G=-n F E_{\text {cell }}$
- Temperature coefficient of emf of a cell reaction,

$$
\left(\frac{d E_{\text {cell }}}{d T}\right)_{P}=\frac{\Delta H}{n F T}+\frac{E_{\text {cell }}}{T}
$$

- Enthalpy change, $\Delta H=-n F\left[E_{\text {cell }}-T\left(\frac{d E_{\text {cell }}}{d T}\right)_{P}\right]$
- Entropy change, $\Delta S=n F\left(\frac{d E_{\text {cell }}}{d T}\right)_{P}$
- Relation between ΔG and $K_{c} \Delta G=\Delta G^{\circ}+2.303 R T \log Q$

At equilibrium, $\Delta G=0$ and $K_{C}=0 \quad \therefore \Delta G^{\circ}=-2.303 R T \log K_{c}$

Various reference half-cell reactions showing Nernst equation

Type	Example	Half-cell reaction	Q	Reversible to	Electrode potential (E) (oxidation),	
1. Gas-ion half-cell	$\mathrm{Pt}\left(\mathrm{H}_{2}\right) \mid \mathrm{H}^{+}(\mathrm{aq})$	$\frac{1}{2} \mathrm{H}_{2}(g) \longrightarrow \mathrm{H}^{+}(\mathrm{aq})+\mathrm{e}^{-}$	$\left[\mathrm{H}^{+}\right]$	H^{+}ion	$E^{\circ}-0.0591 \log \left[\mathrm{H}^{+}\right]$	
	$\mathrm{Pt}\left(\mathrm{Cl}_{2}\right) \mid \mathrm{Cl}^{-}(\mathrm{aq})$	$\mathrm{Cl}^{-}(\mathrm{aq}) \longrightarrow \frac{1}{2} \mathrm{Cl}_{2}(g)+\mathrm{e}^{-}$	$\frac{1}{\left[\mathrm{Cl}^{-}\right]}$	Cl^{-}ion	$E^{\circ}+0.0591 \mathrm{log}\left[\mathrm{Cl}^{-}\right]$	
2. Metal-metal ion half-cell	$\mathrm{Ag} \mid \mathrm{Ag}^{+}(\mathrm{aq})$	$\mathrm{Ag}(\mathrm{s}) \longrightarrow \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{e}^{-}$	$\left[\mathrm{Ag}^{+}\right]$	Ag^{+}ion	$E^{\circ}-0.0591 \log \left[\mathrm{Ag}^{+}\right]$	
3. Metal-insoluble salt anion half-cell	$\mathrm{Ag}, \mathrm{AgCl\mid}^{\text {Cl }}{ }^{-}(\mathrm{aq})$	$\mathrm{Ag}(\mathrm{s})+\mathrm{Cl}^{-}(\mathrm{aq}) \longrightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{e}^{-}$	$\frac{1}{\left[\mathrm{Cl}^{-}\right]}$	Cl^{-}ion	$E^{\circ}+0.0591 \log \left[\mathrm{Cl}^{-}\right]$	
4. Calomel electrode	$\mathrm{Hg}, \mathrm{Hg}_{2} \mathrm{Cl}_{2} \mid \mathrm{Cl}^{-}(\mathrm{aq})$	$2 \mathrm{Hg}(/)+2 \mathrm{Cl}^{-}(\mathrm{aq}) \underset{\mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})+2 \mathrm{e}^{-}}{ }$	$\frac{1}{\left[\mathrm{Cl}^{-}\right]^{2}}$	Cl^{-}ion	$E^{\circ}+0.0591 \mathrm{log}\left[\mathrm{Cl}^{-}\right]$	
5. Metal-metal oxide hydroxide half-cell	$\mathrm{Hg}, \mathrm{HgO} \mid \overline{\mathrm{O}} \mathrm{H}(\mathrm{aq})$	$\begin{aligned} & \mathrm{Hg}(I)+2 \mathrm{OH}^{-}(\mathrm{aq}) \longrightarrow \\ & \mathrm{HgO}(\mathrm{~s}) \end{aligned}+\mathrm{H}_{2} \mathrm{O}(I)+2 e^{-}$	$\frac{1}{\left[\mathrm{OH}^{-}\right]^{2}}$	OH^{-}ion	$E^{\circ}+0.0591 \log \left[\mathrm{OH}^{-}\right]$	
6. Oxidation-reduction half-cell	$\mathrm{Pt} \mid \mathrm{Fe}^{2+}(\mathrm{aq}), \mathrm{Fe}^{3+}(\mathrm{aq})$	$\mathrm{Fe}^{2+}(\mathrm{aq}) \longrightarrow \mathrm{Fe}^{3+}(\mathrm{aq})+\mathrm{e}^{-}$	$\frac{\left[\mathrm{Fe}^{3+}\right]}{\left[\mathrm{Fe}^{2+}\right]}$	$\mathrm{Fe}^{2+}, \mathrm{Fe}^{3+}$ ion	$E^{\circ}-0.0591 \log \frac{\left[\mathrm{Fe}^{3+}\right]}{\left[\mathrm{Fe}^{2+}\right]}$	
7. Mercury-mercury sulphate half-cell	$\mathrm{Hg}, \mathrm{HgSO}_{4} \mid \mathrm{SO}_{4}^{2-}(\mathrm{aq})$	$\mathrm{SO}_{4}^{2-}(\mathrm{aq})+\mathrm{Hg}(/) \underset{\mathrm{HgSO}_{4}(\mathrm{~s})+2 e-}{\longrightarrow}$	$\frac{1}{\left[\mathrm{SO}_{4}^{2-}\right]}$	SO_{4}^{2-}	$E^{\circ}+\frac{0.0591}{2} \log \left[\mathrm{SO}_{4}^{2-}\right]$	
8. Quinhydrone half-cell	Pt\|Quinhydrone	$\mathrm{H}^{+}(\mathrm{aq})$		$\left[\mathrm{H}^{+}\right]^{2}$	H^{+}	$E^{\circ}-0.0591 \log \left[\mathrm{H}^{+}\right]$

\{JEE FINAL TOUCH\}

Cell or Battery

A cell or a battery (arrangement of one or more cells connected in series) is basically a galvanic cell where the chemical energy of redox reaction is converted into electrical energy.
Following are the various voltaic cells:

Primary Voltaic Cell (The Dry Cell)

The primary voltaic cells are those in which the cell reaction occurs only once and the cell becomes dead after use over a period of time and cannot be reused again, e.g. dry cells like Leclanche cell, mercury cell etc.
(i) Leclanche cell The electrode reaction for Leclanche cell is

$$
\text { At anode } \quad \mathrm{Zn}(\mathrm{~s}) \longrightarrow \mathrm{Zn}^{2+}+2 e^{-}
$$

At cathode
$\mathrm{MnO}_{2}+\mathrm{NH}_{4}^{+}+\mathrm{e}^{-} \longrightarrow \mathrm{MnO}(\mathrm{OH})+\mathrm{NH}_{3}$
Ammonia $\left(\mathrm{NH}_{3}\right)$ formed in reaction at cathode combines with Zn^{2+} to form the complex like $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$. The cell has a potential of nearly 1.5 V .
(ii) Mercury cell It shows the following electrode reactions:

At anode $\mathrm{Zn}(\mathrm{Hg})+2 \overline{\mathrm{O}} \mathrm{H} \longrightarrow \mathrm{ZnO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}+2 e^{-}$
At cathode $\mathrm{HgO}(s)+\mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Hg}(\mathrm{l})+2 \mathrm{OH}^{-}$
The overall reaction is
$\mathrm{Zn}(\mathrm{Hg})+\mathrm{HgO}(\mathrm{s}) \longrightarrow \mathrm{ZnO}(\mathrm{s})+\mathrm{Hg}(\mathrm{l})$
The potential of this cell is approximately 1.35 V and it remains constant during its life because overall reaction does not involve any ion whose concentration can change during the process.

Secondary Voltaic Cell

The cell in which original reactants are regenerated by passing direct current from external source (recharged), is called secondary cell.
(i) Lead accumulator (lead storage battery) The most important secondary voltaic cell is lead storage battery, commonly used in automobiles and invertors. A 38% solution of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is used as electrolyte.
The reaction taking place during discharging [when cell is in use] is
$\mathrm{Pb}(\mathrm{s})+\mathrm{PbO}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{SO}_{4}(a q)$
$\longrightarrow 2 \mathrm{PbSO}_{4}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Reverse reaction occurs when cell is charged $E_{\text {cell }}$ is 2.041 V .
(ii) Nickel cadmium battery Another important secondary battery is $\mathrm{Ni}-\mathrm{Cd}$ battery with longer life but more expensive. The overall reaction during discharge is

$$
\begin{aligned}
\mathrm{Cd}(\mathrm{~s})+2 \mathrm{Ni}(\mathrm{OH})_{3}(\mathrm{~s}) \longrightarrow \mathrm{CdO}(\mathrm{~s}) & \\
& +2 \mathrm{Ni}(\mathrm{OH})_{2}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

The reverse reaction occurs when cell is charged.

Batteries Used in Digital Watches

- Several watch batteries (button cells) used mercury technology until a few years ago but mercury is highly toxic and there is no reasonable way to safely extract and recycle the mercury in watch batteries. Hence, this technology is not used now because of environmental reasons.
- Now a days, silver oxide technology is used for high quality batteries of watches because these are most efficient when squeezing the last bit of electricity into a confined space for storage.
- Over time, watch industry has added new features such as background lighting, audible alarms or even feature calculators. This has lead to the development of additional high drain versions of watch batteries to feed the extra requirement of power.
- A few brands are considered as the best by fine watchmakers and are popular choices as replacement batteries. They include Renata, Maxwell, Varta, Sony and Energizer batteries.

Fuel Cells

Galvanic cells which use energy of combustion of fuels like $\mathrm{H}_{2}, \mathrm{CH}_{4}, \mathrm{CH}_{3} \mathrm{OH}$ etc., as the source to produce electrical energy are called fuel cells. One of the most successful fuel cell uses the energy of reaction of H_{2} and O_{2} in gaseous state to form water. The electrode reactions for the cell are :
At anode

$$
2 \mathrm{H}_{2}(g)+4 \mathrm{OH}^{-}(a q) \longrightarrow 4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+4 \mathrm{e}^{-}
$$

At cathode

$$
\mathrm{O}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+4 \mathrm{e}^{-} \longrightarrow 4 \mathrm{OH}^{-}(a q)
$$

The overall reaction is

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

This type of cell runs continuously as long as the fuels are supplied and produce electricity up to 70% efficiency. The advantage of fuel cells over batteries is that these are pollution free and highly efficient.

Some Other Fuel Cells

1. Phosphoric acid fuel cell Liquid $\mathrm{H}_{3} \mathrm{PO}_{4}$ is used as an electrolyte. This is the first fuel cell to be commercialised.
Anode reaction $2 \mathrm{H}_{2} \longrightarrow 4 \mathrm{H}^{+}+4 e^{-}$
Cathode reaction $\mathrm{O}_{2}(\mathrm{~g})+4 \mathrm{H}^{+}+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}$
2. Alkaline fuel cell It is one of the most efficient fuel cell, used by NASA since mid 1960s to propagate launching verticles.
Anode reaction $2 \mathrm{H}_{2}+4 \mathrm{OH}^{-} \longrightarrow 4 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-}$
Cathode reaction $\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}+4 \mathrm{e}^{-} \longrightarrow 4 \mathrm{OH}^{-}$
3. Molten carbonate fuel cell This can operate at extreme high temperature of $600^{\circ} \mathrm{C}$ and above. It is generally used for industrial purpose.
Anode reaction $\mathrm{H}_{2}+\mathrm{CO}_{3}^{2-} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}+2 e^{-}$
Cathode reaction $\mathrm{CO}_{2}+\frac{1}{2} \mathrm{O}_{2}+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{CO}_{3}^{2-}$
4. Direct methanol fuel cell Methanol is used as fuel.

Anode reaction $\mathrm{CH}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons 6 \mathrm{H}^{+}+6 \mathrm{e}^{-}+\mathrm{CO}_{2}$
Cathode reaction $\frac{3}{2} \mathrm{O}_{2}+6 \mathrm{H}^{+}+6 \mathrm{e}^{-} \rightleftharpoons 3 \mathrm{H}_{2} \mathrm{O}$

Corrosion

It is the oxidative deterioration of metal surface with the action of its environment to form unwanted corrosion products like oxides, sulphides, carbonates, sulphates.
It usually affects metallic substances and typically produce oxide(s) or salt(s) of metal, e.g. conversion of iron to rust $\left[\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}\right.$] , the tarnishing of silver (due to the formation of $\mathrm{Ag}_{2} \mathrm{O}$), development of a green coating on copper and bronze. Corrosion of iron or rusting involves the following reactions:
Oxidation half-cell $2 \mathrm{Fe}(\mathrm{s}) \rightarrow 2 \mathrm{Fe}^{2+}+4 \mathrm{e}^{-} ; E_{\left(\mathrm{Fe}^{2+} / \mathrm{Fe}\right)}^{\circ}=-0.44 \mathrm{~V}$
Reduction half-cell $\mathrm{O}_{2}(g)+4 \mathrm{H}^{+}(a q)+4 \mathrm{e}^{-} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$;

Overall reaction

$$
\begin{array}{r}
2 \mathrm{Fe}(s)+\mathrm{O}_{2}(g)+4 \mathrm{H}^{+}(a q) \longrightarrow 2 \mathrm{Fe}^{2+}(a q)+2 \mathrm{H}_{2} \mathrm{O}(l) ; \\
E_{\text {cell }}^{\circ}=1.67 \mathrm{~V}
\end{array}
$$

Ferrous ions, Fe^{2+} undergo oxidation with O_{2} to form rust $\left[\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}\right.$].
$2 \mathrm{Fe}^{2+}+2 \mathrm{H}_{2} \mathrm{O}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}+4 \mathrm{H}^{+} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \underset{\substack{\text { Hydrated ferric oxide }}}{\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{Xen}_{2} \mathrm{H}_{2} \mathrm{O}}$

Prevention of Rusting

The followings are the most effective way of preventing rusting:
(a) Galvanisation In galvanisation, a thin film of Zn is coated over iron, where Zn forms a protective oxide layer. Even if the zinc coating breaks down and iron is exposed to air, Zn reduces Fe^{2+} back to $\mathrm{Fe}(s)$, as reduction potential of Fe is more than that of Zn .
(b) Cathodic protection Here, the equipment made of Fe is attached to a more easily oxidisable metal like Mg. Here, Mg acts as a sacrificial anode, as it reacts in preference to iron. The Mg rod should be replaced periodically.

$$
\begin{aligned}
\mathrm{Mg}(s) & \longrightarrow \mathrm{Mg}^{2+}(a q)+2 e^{-} \text {Oxidation } \\
\mathrm{O}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(I)+4 e^{-} \longrightarrow 4 \mathrm{OH}^{-}(a q) & \text { Reduction }
\end{aligned}
$$

Best Practice 'SHOTS’

21. The following cell is found to have emf equal to zero $\mathrm{Pt}, \mathrm{H}_{2}(\mathrm{xatm})\left|0.01 \mathrm{MH}^{+}\right|\left|0.1 \mathrm{MH}^{+}\right| \mathrm{H}_{2}(\mathrm{y} \mathrm{atm}), \mathrm{Pt}$ The ratio x / y is
(a) 0.01
(b) 0.1
(c) 10
(d) 100
22. If $\mathrm{Zn}^{2+} / \mathrm{Zn}$ electrode is diluted 100 times, then the change in emf is
(a) increase by 59 mV
(b) decrease by 59 mV
(c) increase by 29.5 mV
(d) decrease by 29.5 mV

$$
\begin{aligned}
\text { Hint } E_{\text {cell }}=E_{\text {cell }}^{\circ} & -\frac{0.0591}{2} \log \frac{1}{\left[\mathrm{Zn}^{2+}\right]} \\
& =E_{\text {cell }}^{\circ}+0.0295 \log \left[\mathrm{Zn}^{2+}\right] \\
\text { After dilution } E_{\text {cell }} & =E_{\text {cell }}^{\circ}+0.0295 \log \frac{\left[\mathrm{Zn}^{2+}\right]}{100}
\end{aligned}
$$

$\therefore E_{\text {cell }}$ will decrease by $0.02955 \times 2 \mathrm{~V}=0.059 \mathrm{~V}=59 \mathrm{mV}$
23. Which one of the following statement is always true about the spontaneous cell reaction in a galvanic cell?
(a) $E_{\text {cell }}^{\circ}>0, \Delta G^{\circ}>0, Q>K_{C}$
(b) $E_{\text {cell }}^{\circ}<0, \Delta G^{\circ}<0, Q<K_{C}$
(c) $E_{\text {cell }}^{\circ}>0, \Delta G^{\circ}<0, Q<K_{C}$
(d) $E_{\text {cell }}^{\circ}>0, \Delta G^{\circ}<0, Q>K_{C}$
24. When a lead storage battery is discharged
(a) SO_{2} is evolved
(b) lead is formed
(c) lead sulphate is consumed
(d) sulphuric acid is consumed
25. Zn gives H_{2} gas with $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HCl but not with HNO_{3} because
(a) Zn acts as oxidising agent when reacts with HNO_{3}
(b) HNO_{3} is weaker acid than $\mathrm{H}_{2} \mathrm{SO}_{4}$ and HCl
(c) In electrochemical series, Zn is above hydrogen
(d) NO_{3}^{-}is reduced in preference to hydronium ion
26. The emf (E) of a cell is related to its variation in temperature $\left(\frac{\partial E}{d T}\right)_{p}$ and ΔH as
(a) $E=\frac{\Delta H}{n F}+T\left(\frac{\partial E}{\partial T}\right)_{p}$
(b) $E=\frac{\Delta H}{n F}-T\left(\frac{\partial E}{\partial T}\right)_{p}$
(c) $E=-\frac{\Delta H}{n F}+T\left(\frac{\partial E}{\partial T}\right)_{D}$
(d) $E=-\frac{\Delta H}{n F}-T\left(\frac{\partial E}{\partial T}\right)_{p}$
27. For the cell reaction,
$\mathrm{Cu}^{2+}\left(C_{1}, a q\right)+\mathrm{Zn}(s) \longrightarrow \mathrm{Zn}^{2+}\left(C_{2}, a q\right)+\mathrm{Cu}(s)$
of an electrochemical cell, the change in free energy,
ΔG, at a given temperature is a function of
(a) $\ln C_{1}$
(b) $\ln C_{2} / C_{1}$
(c) $\ln C_{2}$
(d) $\ln \left(C_{1}+C_{2}\right)$
28. The temperature coefficient of a galvanic cell is $+5.0 \times 10^{-5} \mathrm{mV} / \mathrm{K}$. During the discharge of the cell, the cell temperature?
(a) increases
(b) decreases
(c) does not change
(d) first increases and then decreases
29. The potential of hydrogen electrode at $\mathrm{pH}=10$ is
(a) 0.59 V
(b) 0.00 V
(c) -0.59 V
(d) -0.059 V

Hint $E=-0.0591 \times \mathrm{pH}$

\{JEE FINAL TOUCH

30. At what pH of HCl solution will hydrogen gas electrode potential of -0.118 V ? H_{2} gas is bubbled at 298 K and 1 atm pressure
(a) 2
(b) 3
(c) 4
(d) 5
31. In an experiment 0.04 F was passed through 400 mL of 1 M solution of NaCl . What would be the pH of the solution after the electrolysis?
(a) 8
(b) 10
(c) 13
(d) 6

Hint Find molar concentration of NaOH
Find $[\overline{\mathrm{O}} \mathrm{H}]$ concentration $\mathrm{pH}=14-\mathrm{pOH}$
32. The potential of the cell for the reaction,

$$
M(\mathrm{~s})+2 \mathrm{H}^{+}(1 \mathrm{M}) \longrightarrow \underset{(1 \mathrm{~atm})}{\mathrm{H}_{2}(g)+\underset{(0.1 \mathrm{M})}{\mathrm{M}^{2+}}, ~}
$$

is 1.50 V . The standard reduction potential for $M^{2+} / M(s)$ couple is
(a) 0.147 V
(b) 1.47 V
(c) -1.47 V
(d) None of these
33. The half-cell reactions for rusting of iron are

$$
\begin{aligned}
& 2 \mathrm{H}^{+}+ \frac{1}{2} \mathrm{O}_{2}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{O} ; E^{\circ}=+1.23 \mathrm{~V} \\
& \mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}(\mathrm{~s}) ; E_{\text {cell }}^{\circ}=-0.44 \mathrm{~V}
\end{aligned}
$$

ΔG° (in kJ) for the reaction is
(a) -76
(b) -322
(c) -122
(d) -176
34. For the calomel electrode, $\mathrm{Hg}, \mathrm{Hg}_{2} \mathrm{Cl}_{2} \mid \mathrm{Cl}^{-}(a q)$, electrode potential measured at different Cl^{-}ion concentration are plotted against $\log \left[\mathrm{Cl}^{-}\right]$. The variation is correctly represented by plot.
(a)

(b)

(c)

(d)

Hint From equation,

$$
\begin{aligned}
& 2 \mathrm{Hg}(I)+2 \mathrm{Cl}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Hg}_{2} \mathrm{Cl}_{2}(\mathrm{~s})+2 e^{-} \\
& \qquad E=E^{\circ}-\frac{0.0591}{2} \log \frac{1}{\left[\mathrm{Cl}^{-}\right]^{2}} \\
& \text { or compare this equation with } y=m x+c \\
& E=E^{\circ}+0.0591 \log \left[\mathrm{Cl}^{-}\right] .
\end{aligned}
$$

35. Value of $E_{\mathrm{H}_{2} \mathrm{O} / \mathrm{H}_{2}(1 \mathrm{~atm}) \text { pt }}$ at 298 K would be
(a) -0.207 V
(b) +0.207 V
(c) -0.414 V
(d) +0.414 V
Hint $E=-\frac{R T}{F} \ln \frac{p_{H_{2}}^{1 / 2}}{\left[\mathrm{H}^{+}\right]}$

Answers

| 1. (d) | 2. (d) | 3. (c) | 4. (a) | 5. (a) | 6. (b) | 7. (c) | 8. (a) | 9. (c) |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | 10. (b)

MASTER STRO゙KE

1. The equivalent conductance at infinite dilution of HCl and NaCl are 426.15 and $126.15 \mathrm{mho} \mathrm{cm}^{2} \mathrm{~g}-\mathrm{eq}^{-1}$ respectively. It can be said that the mobility of
(a) H^{+}ions is much more than that of Cl^{-}ions
(b) Cl^{-}ions is much more than that of H^{+}ions
(c) H^{+}ions is much more than that of Na^{+}ions
(d) Na^{+}ions is much more than that of H^{+}ions

Hint $\Lambda_{\text {eq }}^{\circ}(\mathrm{HCl}) \gg \Lambda_{\mathrm{eq}}^{\circ}(\mathrm{NaCl})$.
As, Cl^{-}ions are common, this implies that ionic conductance of $\mathrm{H}^{+} \gg$ ionic conductance of Na^{+}ions.
As ionic conductance α ionic mobility. $\left(\lambda_{\text {cation }} \propto \mu_{\text {cation }}\right.$, ($\lambda_{\text {anion }} \propto \mu_{\text {anion }}$), therefore, H^{+}ions have much greater mobility than Na^{+}ions.
2. What is the potential of a zinc-zinc ion electrode in which the zinc ion activity is 0.001 M ?
$\left(E^{\circ}{ }_{\mathrm{Zn}^{2+} / \mathrm{Zn}}=-0.76 \mathrm{~V}, R=8.314 \mathrm{~J} / \mathrm{K} \mathrm{mol}, F=96500 \mathrm{C} \mathrm{mol}\right)$
(a) -0.648 V
(b) -0.849 V
(c) +0.648 V
(d) +0.849 V

Hint $E=E^{\circ}-\frac{2.303 R T}{n F} \log \frac{1}{a_{\mathrm{Zn}^{2+}}}$
3. Half-cell reaction, $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}+2 \overline{\mathrm{O}} \mathrm{H}$

$$
E^{\circ}=-0.8277 \mathrm{~V} \text { at } 298 \mathrm{~K}
$$

Auto-protolysis constant of water calculated from this value will be
(a) 1×10^{-10}
(b) 1×10^{-12}
(c) 1×10^{-13}
(d) 1×10^{-14}
4. What will be the emf of the given cell?
$\mathrm{Pt}\left|\mathrm{H}_{2}\left(p_{1}\right)\right| \mathrm{H}^{+}(\mathrm{aq})\left|\mathrm{H}_{2}\left(p_{2}\right)\right| \mathrm{Pt}$
(a) $\frac{R T}{F} \ln \frac{p_{1}}{p_{2}}$
(b) $\frac{R T}{2 F} \ln \frac{p_{1}}{p_{2}}$
(c) $\frac{R T}{F} \ln \frac{p_{2}}{p_{1}}$
(d) None of these
5. $\Lambda_{\text {eq }}^{\circ}$ for $\mathrm{BaCl}_{2}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and HCl are $\mathrm{x}_{1}, \mathrm{x}_{2}$ and $\mathrm{x}_{3} \mathrm{Scm}^{2}$ eq^{-1} respectively. If conductivity of saturated BaSO_{4} solution is $y \mathrm{Scm}^{-1}$, then $K_{\text {sp }}$ for BaSO_{4} is
(a) $\frac{10^{6} y^{2}}{2\left(x_{1}+x_{2}-2 x_{3}\right)}$
(b) $\frac{10^{9} y^{3}}{8\left(x_{1}+x_{3}-2 x_{3}\right)^{3}}$
(c) $\frac{10^{3} y}{2\left(x_{1}+x_{2}-2 x_{3}\right)}$
(d) $\frac{10^{6} y^{2}}{4\left(x_{1}+x_{2}-2 x_{3}\right)^{2}}$

Hint $\Lambda_{\text {eq }}^{\circ}\left(\mathrm{BaSO}_{4}\right)=\Lambda_{\text {eq }}^{\circ}\left(\mathrm{BaCl}_{2}\right)+\Lambda_{\text {eq }}^{\circ}\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)-2 \Lambda_{\text {eq }}^{\circ}(\mathrm{HCl})$
$=x_{1}+x_{2}-2 x_{3}$

$$
\begin{gathered}
\Lambda_{\mathrm{eq}}^{\circ}\left(\mathrm{BaSO}_{4}\right)=\frac{1000 \times \kappa}{\text { Normality }} \\
\therefore \text { Solubility }=\frac{1000 \times y}{x_{1}+x_{2}-2 x_{3}} ; K_{\mathrm{sp}}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]=\mathrm{S}^{2}
\end{gathered}
$$

6. Which has maximum potential for the half-cell reaction?

$$
2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{H}_{2}
$$

(a) 1.0 M HCl
(b) 1.0 M NaOH
(c) Pure water
(d) A solution with $\mathrm{pH}=4$
7. How many moles of Pt may be deposited on cathode when 0.80 F of electricity is passed through 1.0 M solution of Pt^{4+} ?
(a) 1 mol
(b) 0.20 mol
(c) 0.40 mol
(d) 0.80 mol
8. Given the standard reduction potential $\left(E^{\circ}\right)$ value of

$$
\begin{gathered}
\mathrm{Fe}^{3+}+\mathrm{e}^{-} \longrightarrow \mathrm{Fe}^{2+} ; E^{\circ}=0.77 \mathrm{~V} \\
\mathrm{Fe}^{3+}+3 \mathrm{e}^{-} \longrightarrow \mathrm{Fe} ; E^{\circ}=-0.04 \mathrm{~V}
\end{gathered}
$$

What is the value of E° for $\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \longrightarrow \mathrm{Fe}$?
(a) 0.730 V
(b) -0.195 V
(c) -0.445 V
(d) -0.89 V
9. Which of the following statement is correct?
(a) More reactive metals are readily corroded
(b) Corrosion takes place rapidly at bends, scratches, nicks and cuts in the metal
(c) Presence of impurities in metals enhances the chances of corrosion
(d) All of the above
10. Which of the following reaction takes place in fuel cell?
(a) $2 \mathrm{H}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(I)$
(b) $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
(c) $2 \mathrm{H}_{2} \mathrm{O}(I)+\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \overline{\mathrm{O}} \mathrm{H}(\mathrm{aq})$
(d) None of the above
11. The amount of an ion liberated on an electrode during electrolysis does not depend upon
(a) the conductance of the solution
(b) current strength
(c) time
(d) electrochemical equivalent of the element
12. E_{1}, E_{2} and E_{3} are the emf values of the three galvanic cells respectively are
(i) $\mathrm{Zn} \mid \mathrm{Zn}^{2+}$
(1 M) $\| \mathrm{Cu}^{2+}$
(0.1 M) $\mid \mathrm{Cu}$
(ii) $\mathrm{Zn}\left|\mathrm{Zn}^{2+}(1 \mathrm{M})\right|\left|\mathrm{Cu}^{2+}(1 \mathrm{M})\right| \mathrm{Cu}$
(iii) $\mathrm{Zn}\left|\mathrm{Zn}^{2+}(0.1 \mathrm{M}) \| \mathrm{Cu}^{2+}(0.1 \mathrm{M})\right| \mathrm{Cu}$

Which one of the following is true?
(a) $E_{2}>E_{3}>E_{1}$
(b) $E_{3}>E_{2}>E_{1}$
(c) $E_{1}>E_{2}>E_{3}$
(d) $E_{1}>E_{3}>E_{2}$

Hint Use Nernst equation.
13. The standard emf of a cell, involving one electron change is found to be 0.591 V at $25^{\circ} \mathrm{C}$.
The equilibrium constant of the reaction is
($F=96500 \mathrm{C} \mathrm{mol}^{-1} ; R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
(a) 1.0×10^{1}
(b) 1.0×10^{30}
(c) 1.0×10^{10}
(d) 1.0×10^{5}
14. A dilute aqueous solution of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is electrolysed using platinum electrodes. The products at the anode and cathode are
(a) $\mathrm{O}_{2}, \mathrm{H}_{2}$
(b) $\mathrm{SO}_{2}, \mathrm{Na}$
(c) $\mathrm{O}_{2}, \mathrm{Na}$
(d) $\mathrm{S}_{2} \mathrm{O}_{8}^{2-}, \mathrm{H}_{2}$

Hint $\mathrm{H}_{2} \mathrm{O}$ is more readily reduced than Na^{+}. It is also more readily oxidised than SO_{4}^{2-}.
15. Resistance of 0.2 M solution of an electrolyte is 50Ω. The specific conductance of the solution of 0.5 M solution of same electrolyte is $1.4 \mathrm{Sm}^{-1}$ and resistance of same solution of the same electrolyte is 280Ω. The molar conductivity of 0.5 M solution of the electrolyte in $\mathrm{Sm}^{2} \mathrm{~mol}^{-1}$ is
(a) 5×10^{-4}
(b) 5×10^{-3}
(c) 5×10^{3}
(d) 5×10^{2}

Hint Calculate the value of cell constant of the first solution.

- Use this value of cell constant to calculate κ of second solution.
- Finally calculate molar conductivity using value of κ and M.

Answers

1. (c)
2. (b)
3. (d)
4. (b)
5. (d)
6. (a)
7. (b)
8. (c)
9. (a)
10. (a)

Chemical Kinetics

RATE OF A CHEMICAL REACTION, DIFFERENTIAL RATE LAW AND FACTORS AFFECTING RATE OF A REACTION

Chemical kinetics is the branch of chemistry in which we study about the speeds of reactions or rearrangements by which atoms and molecules are transformed from reactants to products.

Rate of a Chemical Reaction

It is defined as the change in concentration of a reactant or product per unit time.

Types of Rates of a Reaction

(a) Average rate It is defined as change in molar concentration of either reactants or products in unit time.
(b) Instantaneous rate It is the slope of a line tangent drawn on the concentration-time curve at the point corresponding to the specific concentration and time.

Factors Affecting Rate of a Reaction

- Concentration of reactants it is directly proportional to the rate of reaction.
- Nature of the reactants

Physical state of reactants
$\underline{\text { Gaseous state }>\text { Liquid state }>\text { Solid state }}$

> Decreasing rate of reaction

Physical size of the reactants In solids, rate increases with decrease in particle size because in powdered state, particles possess larger surface area.

- Temperatures Generally for most of the reactions rate becomes double for every $10^{\circ} \mathrm{C}$ rise in temperature.
- Presence of catalyst Positive catalyst increases however negative catalyst decreases the rate of a reaction.

Rate Expression and Rate Constant (k)

An expression which relates the rate of a reaction to the concentrations of the reactants is called the rate expression. For a general reaction,

$$
\begin{gathered}
a A+b B \longrightarrow c C+d D \\
\text { Rate } \propto[A]^{a}[B]^{b} \text { or Rate }=k[A]^{a}[B]^{b}
\end{gathered}
$$

The constant of proportionality, k is known as the rate constant.

Note k depends on the temperature and is independent of the initial concentrations of the reactants.

Molecularity of a Reaction

It is defined as the numbers of particles (atoms, ions, groups or molecules) of reactants actually taking part in a single rate determining step of a chemical reaction. On the basis of molecularity reactions are of three types:
(i) Unimolecular involves participation of only one molecule.
e.g. $\quad \mathrm{O}_{2} \mathrm{~F}_{2} \rightleftharpoons \mathrm{O}_{2}+\mathrm{F}_{2}$
(ii) Bimolecular involves participation of two molecules.
e.g. $\quad 2 \mathrm{HI} \longrightarrow \mathrm{H}_{2}+\mathrm{I}_{2}$
(iii) Trimolecular involves participation of three molecules .
e.g. $\quad 2 \mathrm{NO}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{NOCl}$

REMEMBER

- Molecularity of a reaction is always a whole number (except zero) and never a fraction.
- The value of molecularity of a simple or one step reaction does not exceed more than three because probability of colloiding more than three molecules is almost negligible.

Order of a Reaction

It is defined as the sum of the exponents (powers) of the molar concentrations of the reactants in the experimentally determined rate equations.

- For a zero or
- der reaction, rate does not depend upon the concentration of reactant.
- For a nth order reaction, rate depends upon the nth power of concentration. e.g. $n A \longrightarrow$ Products
For $\quad n=0 ;$ rate $=k ; \quad$ Zero order reaction.
For $\quad n=1 ; \quad$ rate $=k[A] ; \quad$ First order reaction.
For $\quad n=2 ; \quad$ rate $=k[A]^{2}$; Second order reaction.
For $n=n ;$ rate $=k[A]^{n} ; n$th order reaction.

Relevance of Chemical Kinetics in Medicine

- Nitric oxide (NO), is central to many physiological processes including regulation of blood pressure and nerve signal transmission. Enzymes in endothelial cells and in the brain of mammals continuously synthesise it (generally in low and carefully regulated concentrations). NO reacts with oxygen and produce toxic nitrogen dioxide $\left(\mathrm{NO}_{2}\right)$.
- The order of this reaction is two with respect to NO. High concentrations of NO are found often in industrial plants and cigarettes. NO reacts rapidly with oxygen to produce toxic NO_{2}.
- The half-life of NO in blood vessels, brain and lungs is sufficiently long for biochemical process. Kinetics determines the harmful and helpful aspects of nitric oxide. At concentrations below 80 ppm . NO is used in hospitals for lung vasodilation of preterm new borns and patients with Acute Respiratory Distress Syndrome (ARDS).

\{JEE FINAL TOUCH\}

Methods for Determination of Order of Reaction

Initial rate method In this method, the order of a reaction is determined by varying the concentration of one of the reactants, while keeping others constant, e.g.

$$
\begin{aligned}
& a A+b B \longrightarrow \text { Product } \\
& r=k[A]^{a}[B]^{b}
\end{aligned}
$$

If $[B]$ remains constant, $r=k^{1}[A]^{a}$, where, $k^{1}=k[B]^{b}$
The value of a can be determined by inspecting the rate at different concentrations of A.
Integration method Also called hit and trial method. In this method, different values of $[A]_{0},[A]_{t}$ and t are determined experimentally and substituted in rate equation of various order.
Half-life method It is also called fractional change method. For a reaction of nth order, $t_{1 / 2} \propto\left(1 /[A]_{0}\right)^{n-1}$ or $\frac{\left(t_{1 / 2}\right)_{1}}{\left(t_{1 / 2}\right)_{2}}=\left(\frac{\left[A_{0}\right]_{2}}{\left[A_{0}\right]_{1}}\right)^{n-1}$
Taking logarithm on both sides, $n=1+\frac{\log \left[\left(t_{1 / 2}\right)_{1} /\left(t_{1 / 2}\right)_{2}\right]}{\log \left\{\left[A_{0}\right]_{2} /\left[A_{0}\right]_{1}\right\}}$

$t_{\mathrm{av}}=\frac{1}{k}$ and for first order reaction, $t_{\mathrm{av}}=1.44 t_{1 / 2}$

Graphical method In this method, the order of reaction can be obtained by plotting a graph between $\log \left(\frac{d x}{d t}\right)$ versus $\log [A]_{t}$ or $\log (a-\mathrm{x})$.
Note There are some reactions which show fractional and negative orders.

$$
\begin{aligned}
& \text { e.g. } \mathrm{CO}+\mathrm{Cl}_{2} \longrightarrow \mathrm{COCl}_{2} \text {; rate }=k[\mathrm{CO}]^{2}\left[\mathrm{Cl}_{2}\right]^{1 / 2} \\
& \text { order }=2.5
\end{aligned}
$$

$2 \mathrm{O}_{3} \longrightarrow 3 \mathrm{O}_{2}$; rate $=k\left[\mathrm{O}_{3}\right]^{2}\left[\mathrm{O}_{2}\right]^{-1}$; order with respect to O_{2} is -1 .

Formulae Related to the Rate and Order of a Reaction

- For a general reaction,
$\begin{aligned} & a A+b B \longrightarrow c C+d D \\ & \text { Rate }(r)=-\frac{1}{a} \frac{\Delta[A]}{\Delta t}=-\frac{1}{b} \frac{\Delta[B]}{\Delta t}=\frac{1}{c} \frac{\Delta[C]}{\Delta t}=\frac{1}{d} \frac{\Delta[D]}{d t}\end{aligned}$
- Average rate $r_{\mathrm{av}}=-\frac{\Delta[R]}{\Delta t}=\frac{\Delta[P]}{\Delta t}$
- Instantaneous rate $r_{\text {ins }}=\lim _{\Delta t \rightarrow 0}-\frac{\Delta[C]}{\Delta t}=-\frac{d[C]}{d t} ;[C]=$ conc. of reactant
$d[C]=$ Change in the concentration of reactant in infinitesimally small interval of time $d t$.
- Differential rate equation rate $=k[A]^{x}[B]^{y}$ where, x and y are calculated experimentally.
- Order of a chemical reaction $x+y$ (experimentally)
- Order of an elementary chemical reaction $a+b$

Best Practice 'SHOTS’

1. The correct relation in between $\frac{d C}{d t}, \frac{d n}{d t}$ and $\frac{d p}{d t}$ where, C, n and p represent concentration, number of moles and pressure of gaseous reactant, $A(g) \longrightarrow$ Product, is
(a) $-\frac{d C}{d t}=-\frac{1}{V} \frac{d n}{d t}=-\frac{1}{R T} \frac{d p}{d t}$
(b) $\frac{d C}{d t}=\frac{R T}{V} \cdot \frac{d n}{d t}=-\frac{d p}{d t}$
(c) $\frac{d C}{d t}=\frac{d n}{d t}=-\frac{d p}{d t}$
(d) All of these

Hint (i) Rate $=-\frac{d C}{d t}=-\frac{1}{V}\left(\frac{d n}{d t}\right)\left\{\because C=\frac{n}{V}\right\}$
(ii) Rate $=-\frac{d C}{d t}=-\frac{1}{R T} \cdot\left(\frac{d p}{d t}\right) ;\left\{\because C=\frac{p}{R T}\right\}$
2. For the sequence of reactions, $A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} C \xrightarrow{k_{3}} D$ If $k_{3}>k_{2}>k_{1}$, then rate determining step is
(a) $A \rightarrow B$
(b) $B \rightarrow C$
(c) $C \rightarrow D$
(d) $A \rightarrow D$
3. Temperature coefficient of a reaction is 2 . What will be the rate of reaction when temperature increases from $30^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$?
(a) 120 times
(b) 150 times
(c) 128 times
(d) 100 times

Hint Increase in rate $=2^{\left(T_{2}-T_{1}\right) / 100}$ times.
4. For the reaction, $\mathrm{O}_{3} \rightleftharpoons \mathrm{O}_{2}+\mathrm{O}$ (fast)

$$
\mathrm{O}+\mathrm{O}_{3} \longrightarrow 2 \mathrm{O}_{2} \text { (slow) }
$$

The rate law is
(a) $r=k^{\prime}\left[\mathrm{O}_{3}\right]^{2}\left[\mathrm{O}_{2}\right]^{-1}$
(b) $r=k^{\prime}\left[\mathrm{O}_{3}\right]$
(c) $r=k^{\prime}\left[\mathrm{O}_{3}\right][\mathrm{O}]^{2}$
(d) $r=\left[\mathrm{O}_{3}\right]^{2}[\mathrm{O}]$
5. For a gaseous reaction, the rate law is $r=k[A]^{2}[B]$. If volume of reaction decreases to $1 / 3$ rd of initial volume, the new concentration and order of reaction respectively becomes,
(a) rate will increase by 27 times and order remains same
(b) rate will decrease by 27 times and order remains same
(c) rate will increase by 27 times and order becomes $\frac{1}{3}$ rd of its initial order
(d) show no change in rate or order

Hint When volume decreases to $V / 3$ rate becomes

$$
r^{\prime}=k\left[\frac{A}{V / 3}\right]^{2}\left[\frac{B}{V / 3}\right]
$$

\{JEE FINAL TOUCH\}

6. Hydrogenation of vegetable ghee at $25^{\circ} \mathrm{C}$ reduces pressure of $\mathrm{H}_{2}(\mathrm{~g})$ from 2 atm to 1.2 atm in 50 min . The rate of reaction in terms of change in molarity per second is
(a) 1.19×10^{-6}
(b) 1.19×10^{-5}
(c) 1.19×10^{-7}
(d) 1.19×10^{-8}

Hint Change in molarity is, $\frac{\Delta n}{V}, \frac{\Delta n}{V}=\frac{\Delta p}{R T}$
7. Half-lives of two samples are 0.1 and 0.8 s . Their respective concentrations are 400 and $50 \mathrm{~mol} \mathrm{~L}^{-1}$. The order of reaction is
(a) 0
(b) 2
(c) 1
(d) 4
8. The rate of reaction is doubled when temperature increases by $10^{\circ} \mathrm{C}$, if temperature is increased by $100^{\circ} \mathrm{C}$ then rate of reaction will become
(a) 64 times
(b) 256 times
(c) 512 times
(d) 1024 times

Hint Rate becomes 2^{10} times
9. Which one of the following statements is not correct for order of reaction?
(a) Order is determined experimentally
(b) Order of reaction is equal to sum of the powers of concentration terms in experimentally determined differential rate law
(c) It is not affected with stoichiometric coefficient of the reactant
(d) Order cannot be fractional
10. In a reversible reaction, the rate of backward reaction is
(a) positive
(b) negative
(c) zero
(d) can not be predicted

Hint Rate of reaction can never be negative.

It is an approach to determine rate law and rate constant for a reaction by using calculus to derive what is called the integrated rate law.

Different integrated laws for different orders of reaction

Order of reaction	Graphs		Rate expression	Half-life ($t_{1 / 2}$)	Unit of rate constant	Examples
Zero order		$r \propto[A]_{t}^{0}$ $[A]_{t} \rightarrow$	$[A]_{t}=[A]_{0}-k t$	$\frac{[A]_{0}}{2 k}$	mol L- s^{-1}	Photochemical reaction, enzyme catalysed reactions etc.
First order reaction		$A]_{0}$	$\begin{aligned} & {[A]_{t}=[A]_{0} \mathrm{e}^{-k t}, k=\frac{2.303}{t} \log \frac{[A]_{0}}{[A]_{t}}} \\ & k=\frac{2.303}{t} \log \frac{p_{0}}{p_{0}-p_{x}} \text { (for gaseous } \end{aligned}$ reaction) time required to complete $1 / n$th of a reaction, $t=\frac{2.303}{k} \log \left(\frac{n}{n-1}\right)$	$\frac{0.693}{k}$	s^{-1}	Radioactive disintegration, regeneration of bacteria etc.

Second order reaction	(i) $k t=\left[\frac{1}{[A]_{t}}-\frac{1}{[A]_{0}}\right]$, when both reactants have same initial concentrations (ii) $k=\frac{2.303}{t(a-b)} \log \frac{b(a-x)}{a(b-x)},(a>b)$ when both reactants have different concentrations.	$\frac{1}{k[A]_{0}}$	$\mathrm{mol}^{-1} \mathrm{Ls}^{-1} \begin{aligned} & \text { Saponification } \\ & \text { reaction. } \end{aligned}$
nth order reaction	$k t=\frac{1}{n-1}\left[\frac{1}{[A]_{t}^{n-1}}-\frac{1}{[A]_{0}^{n-1}}\right]$ $n \neq 1$ (First order), where ' n ' is order of the reaction	$\frac{2^{n-1}-1}{k(n-1)[A]_{0}^{n-1}} \begin{gathered} n \neq 1 \end{gathered}$	ol L' $\left.{ }^{-1}\right)^{1-n} \mathrm{~S}^{-1}$

Note Here, $[A]_{0}$ and $[A]_{t}$ are the concentrations of reactant at initially and after time, t respectively.

Pseudo First Order Reaction

If the concentration of one of the reactant in a second order reaction remains constant because it was supplied in a large excess, its concentration can be neglected from the rate law equation. Hence, the obtaining reaction is known as pseudo first order reaction.
e.g. $\quad r=k[A][B]$

If $[B]$ in large excess, $r^{\prime}=k^{\prime}[A]$

Parallel First Order Reaction

Rate constant $(k)=k_{1}+k_{2}$

$$
A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} C
$$

Consecutive First Order Reaction

Reversible reactions (First order opposed by first order)

$$
A \underset{k_{b}}{\stackrel{k_{f}}{\rightleftharpoons}} B
$$

At $t=0$,
$[A]_{0} \quad 0$
At time t,

$$
[A]_{0}^{-x} \quad \mathrm{x}
$$

At equilibrium, $[A]_{0}-\mathrm{x}_{\mathrm{eq}} \mathrm{x}_{\text {eq }}$
Rate of reaction $=$ Rate of forward reaction - Rate of backward reaction

Formulae Related to Parallel, Consecutive and Reversible First Order Reactions

Parallel first order $\frac{d[B]}{d t}=k_{1}[A], \frac{d[C]}{d t}=k_{2}[A]$,

$$
\frac{d(A)}{d t}=k[A]
$$

At any instant: $\quad \frac{[B]}{[C]}=\frac{k_{1}}{k_{2}}$
Consecutive first order $\frac{d[B]}{d t}=k_{1}[A]-k_{2}[B]$

$$
\begin{aligned}
{[B] } & =\frac{k_{1}[A]_{0}}{k_{2}-k_{1}}\left[e^{-k_{1} t}-e^{-k_{2} t}\right] \\
t_{\max } & =\frac{2.303}{k_{2}-k_{1}} \log \frac{k_{2}}{k_{1}} \\
{[B]_{\max } } & =[A]_{0}\left(\frac{k_{2}}{k_{1}}\right)^{\frac{k_{2}}{k_{1}-k_{2}}}
\end{aligned}
$$

where, $[A]_{0}=$ Initial concentration of A
$[B]_{\text {max }}=$ Maximum concentration of B
$t_{\text {max }}=$ Time in which $[B]_{\text {max }}$ converts into C
Reversible reactions $\frac{d x}{d t}=k_{f}\left[[A]_{0}-x\right]-k_{b} x=\frac{k_{f}[A]_{0}}{x_{\text {eq }}}\left[x_{\text {eq }}-x\right]$

$$
\begin{aligned}
x_{\mathrm{eq}} & =\frac{k_{f}[A]_{0}}{\left[k_{f}+k_{b}\right]} \\
\left(k_{f}+k_{b}\right) t & =\ln \left[\frac{x_{\mathrm{eq}}}{x_{\mathrm{eq}}-x}\right]
\end{aligned}
$$

Equilibrium constant $K_{c}=\frac{\left[B_{\text {eq }}\right]}{\left[A_{\text {eq }}\right]}=\frac{K_{f}}{K_{b}}$

Best Practice ${ }^{\text {LSHOTS」 }}$

11. For a reaction, graph between logarithm of concentration of reactant versus time (t) is given below.

The order and slope for this reaction are respectively

(a) 1 st and $-\frac{k}{2.303}$
(b) 1st and $-\frac{2.303}{k}$
(c) 1 st and $+\frac{k}{2.303}$
(d) 1 st and $+\frac{2.303}{k}$
12. The rate constant for first order reaction is $5.78 \times 10^{-5} \mathrm{~s}^{-1}$. Percentage of initial concentration of reactant which reacts in 10 h is
[Given, antilog of $0.9031=8$]
(a) 75%
(b) 66.66%
(c) 87.5%
(d) 50%
13. Consider the following data for the decomposition of ammonium nitrite in aqueous solution.

Volume of $\mathbf{N}_{\mathbf{2}}$ in cc	Time $(\mathbf{m i n})$
6.25	10
9.00	15
11.40	20
13.65	25
35.05	infinity

The order of the reaction is
(a) zero
(b) one
(c) two
(d) three
14. Diazonium salt decomposes as

$$
\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2}^{+} \mathrm{Cl}^{-} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{N}_{2}
$$

At $0^{\circ} \mathrm{C}$, the evolution of N_{2} becomes two times faster when the initial concentration of the salt is doubled. Therefore, it is

\{JEE FINAL TOUCH \}

(a) a first order reaction
(b) a second order reaction
(c) independent of the initial concentration
(d) a zero order reaction
15. Which of the following reactions is a first order reaction?
(a) $\mathrm{NH}_{2} \mathrm{NO}_{2} \longrightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
(b) $2 \mathrm{HI} \longrightarrow \mathrm{H}_{2}+\mathrm{I}_{2}$
(c) $2 \mathrm{NO}_{2} \longrightarrow 2 \mathrm{NO}+\mathrm{O}_{2}$
(d) $2 \mathrm{NO}+\mathrm{O}_{2} \longrightarrow 2 \mathrm{NO}_{2}$
16. For a first order reaction, $A \rightarrow B, k=5 \mathrm{~min}^{-1}$. In another first order reaction, $C \rightarrow D$, only 10% of C decomposes in the time that is required for A to be 50% decomposed. The rate constant for second reaction is
(a) $16.61 \log _{10} 1.11$
(b) $1.6 \log _{10} 11.1$
(c) 10.076
(d) 10
17. 87.5% of a radioactive substance disintegrates in 40 min . What is the half-life of the substance?
(a) 11.21 min
(b) 13.21 min
(c) 13.32 min
(d) 14.21 min
18. What is the value of decay constant of a compound having half-life time as 2.95 days?
(a) $2.9 \times 10^{-5} \mathrm{~s}^{-1}$
(b) $2.9 \times 10^{6} \mathrm{~s}^{-1}$
(c) $2.7 \times 10^{-6} \mathrm{~s}^{-1}$
(d) $3 \times 10^{5} \mathrm{~s}^{-1}$

Hint Decay constant, $\lambda=\frac{0.693}{t_{1 / 2}}$
19. Hydrolysis of amyl acetate was carried out separately in the presence of 0.02 M HCl and $0.02 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$. The rate constant was found to be k_{1} and k_{2} respectively. Then,
(a) $k_{1}>k_{2}$
(b) $k_{2}>k_{1}$
(c) $k_{1}=k_{2}$
(d) $k_{1}=2 k_{2}$

Hint Acidic hydrolysis of an ester is a first order reaction, $r=k$ [ester].
Thus, rate constant does not depends on $\left[H^{+}\right]$. Hence, $k_{1}=k_{2}$.
20. The sidewise graph is shown for change in concentration of species X and Y for the reaction $X \rightarrow Y$, as function of time. The point of intersection of two curves represents
(a) $t_{1 / 2}$
(b) $t_{1 / 4}$
(c) $t_{3 / 4}$
(d) $t_{2 / 3}$

21. The rate law for the reaction $A+2 B \rightarrow \operatorname{Product}(P)$ is given by $\frac{d[P]}{d t}=K[A]^{2} .[B]$, if A is taken in large excess, the order of reaction will be
(a) zero
(b) 1
(c) 2
(d) 3

TEMPERATURE DEPENDENCE OF THE RATE OF A REACTION AND COLLISION THEORY OF CHEMICAL REACTIONS

Temperature Dependence of the Rate of a Reaction

The rates of most of the chemical reactions increase as the temperature is raised. The rate constant (k), changes with temperature (T) and it determines the way in which the rate of reaction varies with temperature. This behaviour is summarised by Arrhenius equation $k=A e^{-E_{a} / R T}$
where, $A=$ Pre-exponential factor or frequency factor
$E_{a}=$ Activation energy, $R=$ Gas constant

Activation Energy

It is defined as the minimum amount of energy required by the reactant molecules to take part in a chemical reaction.

- Lower the activation energy, faster is the reaction, and larger is the value of k.
- Activation energy is always positive, whether the reaction is exothermic or endothermic.
- A positive catalyst decreases E_{a} value and increases rate of a reaction, whereas a negative catalyst increases E_{a} value and decreases rate of a reaction.
Note Catalyst neither alter the Gibbs free energy change (ΔG) nor enthalpy change (ΔH) of the reaction. It provides an alternate pathway by altering the potential energy barrier.

Activated Complex Theory

According to Arrhenius, when a reaction takes place, reactant molecules first form an unstable intermediate (activated complex). This intermediate exist for a very short time and breaks up to form products.

Collision Theory of Chemical Reactions

(Temperature Dependence of Rate of Reaction)

Most Probable Kinetic Energy

Maxwell and Boltzmann used statistics for predicting behaviour of large number of molecules in a reaction. According to them most probable kinetic energy is the energy possessed by large fraction of molecules.

\{JEE FINAL TOUCH \}

Often rate of a reaction increases by a factor of two for a 10 K rise in temperature.

Collision Theory of Bimolecular Gaseous Reactions

This theory is based on kinetic theory of gases.
The main postulates of this theory as follows:

- The reaction between the molecules occurs only when they collide with each other in proper orientations.
- Only those collisions result into chemical reaction in which the molecules acquire energy greater than the activation energy.
- For an effective collision, the colliding molecules must possess threshold energy.
- An activation energy is supplied to the molecules for attaining the threshold energy. During collisions, this energy is acquired by the molecules as a result of interchanges of energies.

Formulae Related to Activation Energy and Collision Theory

- $E_{a}=$ Threshold energy - average energy of reactants.
- Effect of temperature on rate of reaction,

$$
\log \left(\frac{k_{2}}{k_{1}}\right)=\frac{E_{a}}{2.303 R T}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right),\left(T_{2}>T_{1}\right)
$$

where, k_{1} and k_{2} are rate constants at temperatures
T_{1} and T_{2} respectively.

- Rate of reaction in terms of collision frequency

$$
\text { Rate }=Z_{A B} e^{-E_{a} / R T}
$$

where, $Z_{A B}=$ collision frequency of reactants A and B

$$
\begin{aligned}
e^{-E_{a} / R T}= & \text { Fraction of molecules having energy either equal } \\
& \text { to or greater than } E_{a} .
\end{aligned}
$$

- For effective collisions,

$$
\text { Rate }=p Z_{A B} e^{-E_{a} / R T}
$$

where, $p=$ Steric factor

Best Practice 「SHOTS」

22. For an endothermic reaction, minimum value of activation energy $\left(E_{a}\right)$ will be
(a) less than ΔH
(b) more than ΔH
(c) $\Delta H=E_{a}$
(d) $E_{a}=0$
23. For a first order reaction, energy of activation at $25^{\circ} \mathrm{C}$ without using catalyst is $350 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and with the use of catalyst is $162 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The ratio of rate constants with the catalyst and to that of without catalyst is
(a) antilog of 23.59
(b) antilog of 23.95
(c) antilog of 32.95
(d) antilog of 32.59
24. Rate constant for the first order decomposition of $\mathrm{H}_{2} \mathrm{O}_{2}$ is given by the equation,
$\log k=14.34-1.25 \times 10^{4} / T$, value of activation energy $\left(E_{a}\right)$ for this equation is (in $\mathrm{kJ} / \mathrm{mol}$)
(a) 932.43
(b) 392.34
(c) 239.34
(d) 293.43

$$
\begin{align*}
& \text { Hint } \because \log k=\log A-\frac{E_{a}}{2.303 R T} \tag{i}\\
& \quad \log k=14.34-\frac{1.25 \times 10^{4}}{T} \tag{ii}
\end{align*}
$$

25. With respect to equation, $k=A e^{-E_{a} / R T}$ of chemical kinetics, which one of the following option is correct?
(a) K is equilibrium constant
(b) A is adsorption factor
(c) E_{a} is energy of activation
(d) R is Rydberg constant
26. Consider the following graph for the reaction $R \rightarrow P$.

ΔH° of the reaction corresponds to the energy
(a) B
(b) A
(c) $B-A$
(d) C
27. The formation of $\mathrm{H}_{2} \mathrm{O}_{2}$ in the upper atmosphere follow the mechanism:

$$
\mathrm{H}_{2} \mathrm{O}+[\mathrm{O}] \longrightarrow 2 \overline{\mathrm{O}} \mathrm{H} \longrightarrow \mathrm{H}_{2} \mathrm{O}_{2}
$$

Given, $\Delta H=72 \mathrm{~kJ} \mathrm{~mol}^{-1}, E_{a}=77 \mathrm{~kJ} \mathrm{~mol}^{-1}$
E_{a} for backward reaction is (in $\mathrm{kJ} \mathrm{mol}^{-1}$)
(a) 149
(b) -149
(c) -5
(d) 5
28. Collision theory is applicable to
(a) first order reaction
(b) zero order reaction
(c) bimolecular reaction
(d) intermolecular reaction

\{JEE FINAL TOUCH

29. If activation energy $\left(E_{a}\right)$ for the reaction,
$2 \mathrm{HI}(\mathrm{g}) \longrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$ is $209.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ at 581 K . The fraction of molecules of reactant having energy equal to or greater than activation energy is
(a) 4.471×10^{-29}
(b) 1.471×10^{-9}
(c) 1.21×10^{5}
(d) antilog of $\overline{19} .1676$

Hint $\log x=-\frac{E_{a}}{2.303 R T}$, where, $x=$ fraction of molecules
having energy equal to or more than activation energy.
30. Activation energy for the reaction,
$\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}$ is $E_{a_{1}}$, activation energy $E_{a_{2}}$ for the reaction, $2 \mathrm{~N}_{2} \mathrm{O}_{4} \rightleftharpoons 4 \mathrm{NO}_{2}$ is
(a) $E_{a_{1}}=2 E_{a_{2}}$
(b) $E_{a_{2}}=2 E_{a_{1}}$
(c) $E_{a_{1}}=E_{a_{2}}$
(d) $E_{a_{2}}=\left(E_{a_{1}}\right)^{2}$

Hint Activation energy does not depend on stoichiometry for a given reaction. Thus, remains same, it is a characteristic property (value) for a particular reaction.
31. A reaction of decomposition is carried out by first order reaction. At 300 K , the decomposition completes 50%, in 20 min . At 350 K , the same substance decomposes 50% in 5 min . The activation energy $\left(E_{a}\right)$ for the reaction is (in $\mathrm{kJ} \mathrm{mol}^{-1}$)
(a) 24.19
(b) 75.79
(c) 50.07
(c) 100.7

Answers

1. (a)
2. (a)
3. (c)
4. (a)
5. (a)
6. (b)
7. (b)
8. (d)
9. (d)
10. (a)
11. (a)
12. (c)
13. (b)
14. (a)
15. (a)
16. (a)
17. (c)
18. (c)
19. (c)
20. (a)
21. (b)
22. (b)
23. (c)
24. (c)
25. (c)
26. (d)
27. (d)
28. (c)
29. (d)
30. (c)

MASTER STRO゙KE

1. The activation energies of two reactions are E_{1} and E_{2}, $\left(E_{1}>E_{2}\right)$. If the temperature changes from T_{1} to T_{2}, the rate constant of the reactions changes from k_{1} to k_{1}^{\prime} in the first reaction and k_{2} to $k_{2}{ }^{\prime}$ in the second reaction. Predict which of the following expression is correct?
(a) $\frac{k_{1}{ }^{\prime}}{k_{1}}=\frac{k_{2}{ }^{\prime}}{k_{2}}$
(b) $\frac{k_{1}{ }^{\prime}}{k_{1}}>\frac{k_{2}{ }^{\prime}}{k_{2}}$
(c) $\frac{k_{1}{ }^{\prime}}{k_{1}}<\frac{k_{2}{ }^{\prime}}{k_{2}}$
(d) $\frac{k_{1}{ }^{\prime}}{k_{1}}=\frac{k_{2}{ }^{\prime}}{k_{2}}=1$
2. A gaseous reaction, $A \longrightarrow B+2 C$ has specific reaction rate 10^{-4}, when the reaction was complete, the pressure was 750 mm . Calculate the rate of reaction at the initial stage.
(a) $1.5 \mathrm{~mm} \mathrm{~s}^{-1}$ (b)
(b) $2.5 \mathrm{~mm} \mathrm{~s}^{-1}$
(c) $3.5 \mathrm{~mm} \mathrm{~s}^{-1}$
(d) $0.5 \mathrm{~mm} \mathrm{~s}^{-1}$

Hint Since, 1 mole of a reactant gives 3 moles of product having the pressure of 750 mm , the initial pressure was $750 / 3=250 \mathrm{~mm}$

$$
-\frac{d p_{A}}{d t}=K_{p}=10^{-2} \times 250=2.5 \mathrm{~mm} \mathrm{~s}^{-1}
$$

3. For a reaction $A_{2}+B_{2} \longrightarrow 2 A B$ the following mechanism is followed.

$$
\begin{gathered}
A_{2} \stackrel{k_{1}}{\rightleftharpoons} A+A \text { (fast), } \quad A+B_{2} \xrightarrow{k_{2}} A B+B \text { (slow) } \\
A+B \xrightarrow{k_{3}} A B \text { (fast) }
\end{gathered}
$$

The order of overall reaction is
(a) 0
(b) 1
(c) $1 \frac{1}{2}$
(d) 2

Hint From $A_{2} \rightleftharpoons A+A ; \quad k_{1}=\frac{[A] \cdot[A]}{\left[A_{2}\right]}$
\because In main reaction $[A]$ is not present in products thus to eleminate $[A]$,

$$
[A]^{2}=k_{1}\left[A_{2}\right] \text { and }[A]=k_{1}^{1 / 2} \cdot\left[A_{2}\right]^{1 / 2} \quad[\text { From eq. (i) }]
$$

From slow step, $r=k_{2}[A] \cdot\left[B_{2}\right]=k_{2} k_{1}^{1 / 2} \cdot\left[A_{2}\right]^{1 / 2} \cdot\left[B_{2}\right]$
Let $\quad k_{2} \cdot k_{1}=k, \quad r=k \cdot\left[A_{2}\right]^{1 / 2} \cdot\left[B_{2}\right]$

Hence, order $=1+\frac{1}{2}=1 \frac{1}{2}$
4. Correct order for first order reaction is
(a) $T_{50}<T_{\text {av }}<T_{75}$
(b) $T_{\text {av }}<T_{75}<T_{50}$
(c) $T_{75}<T_{\text {av }}<T_{50}$
(d) $T_{50}<T_{75}<T_{\text {av }}$

Hint $\because T_{\mathrm{av}}=1.44 \times T_{50}$, i.e. $T_{50}=0.693 \times T_{\mathrm{av}}$ and $T_{75}=1.5 \times T_{50}$ Thus, $T_{50}<T_{\mathrm{av}}<T_{75}$
5. If I is the intensity of absorbed light and C, is the concentration of $A B$ for a photochemical reaction, $A B+h \nu \longrightarrow(A B)^{*}$, the rate of formation of $A B^{*}$ is directly proportional to
(a) C
(b) Cl
(c) 1
(d) I^{2}

Hint Rate of reaction for a photochemical reaction depends on intensity of light (I) and concentration of reactant.
Thus, answer is $\Rightarrow \mathrm{Cl}$.
6. The decomposition of NH_{3} follows rate expression,

$$
\text { Rate }=\frac{k_{1}\left[\mathrm{NH}_{3}\right]}{1+k_{2}\left[\mathrm{NH}_{3}\right]^{\prime}}
$$

Above expression behaves as first order reaction, when concentration of NH_{3} is
(a) very high
(b) very low
(c) constant
(d) can not be predicted

Hint At very low concentration of $\left[\mathrm{NH}_{3}\right] 1+k_{2}\left[\mathrm{NH}_{3}\right] \approx 1$ Thus, rate $=k_{1}\left[\mathrm{NH}_{3}\right]$
7. A substance decomposes via two parallel first order reactions. The rate constants for these reactions are given as
$k_{1}=1.26 \times 10^{-4} \mathrm{~s}^{-1}, \quad k_{2}=3.8 \times 10^{-5} \mathrm{~s}^{-1}$

The percentage distribution of B and C are
(a) 75% of B and 25% of C
(b) 66.66% of B and $33.33 \% C$
(c) 76.83% of B and 23.17% of C
(d) 80% of B and 20% of C

\{JEE FINAL TOUCH \}

Hint For first order decomposition,

$$
\frac{\text { Rate of formation of } B}{\text { Rate of formation of } C}=\frac{1.26 \times 10^{-4}}{3.8 \times 10^{-5}}=\frac{12.6 \times 10^{-5}}{3.8 \times 10^{-5}}
$$

$\therefore \quad \frac{[B]}{[C]}=\frac{12.6}{3.8}=\frac{126}{38}$ and total concentration $=126+38=164$
Thus, (i) $\%$ of $B=\frac{126}{164} \times 100=76.83 \%$

$$
\text { (ii) } \% \text { of } C=100-76.83=23.17 \%
$$

8. The rate law for a reaction is $r=k[A]^{n}[B]^{m}$, on doubling the concentration of A and halving the concentration of B, the ratio of new rate to the earlier rate of reaction will be
(a) $(m+n)$
(b) $\frac{1}{2^{m+n}}$
(c) 2^{n-m}
(d) $(n-m)$
9. In the reaction, $x A+y B \longrightarrow$ Products, when concentrations of both the reactants A and B are doubled, the rate increased by eight times. But when concentration of A is doubled keeping concentration of B constant, the rate of reaction increased by two times. The order of reaction is
(a) 0
(b) 1
(c) 2
(d) 3
10. For the reaction, $A(g)+2 B(g) \longrightarrow 2 C(g)$ using the following results. The rate law will be

Exp. no.	Initial conc. of $[A] \mathrm{mol}^{-1}$	Initial conc. of $[B] \mathrm{mol}^{-1}$	nitial rate of formation of $[C]$, mol $^{-1}$
1.	0.30	0.30	0.10
2.	0.30	0.60	0.40
3.	0.60	0.30	0.20

(a) $r=k[A]^{2}[B]^{2}$
(b) $r=k[A][B]$
(c) $r=k[A]^{2}[B]$
(d) $r=k[A][B]^{2}$

Hint \because Rate $\propto[\text { conc. }]^{n}$, from exp. no.(1) and (2)
rate $\propto[B]^{n}$ (keeping A constant)
$4 \propto[B]^{n}$ ($n=$ order of reaction with respect to B)
$\therefore n=2$, i.e. order of of reaction with respect to $B=2$.
11. For the following reaction,
$\mathrm{Cl}_{2}(a q)+\mathrm{H}_{2} \mathrm{~S}(a q) \longrightarrow \mathrm{S}(s)+2 \mathrm{H}^{+}(a q)+2 \mathrm{Cl}^{-}(a q)$
the rate equation is $r=k\left[\mathrm{Cl}_{2}\right]\left[\mathrm{H}_{2} \mathrm{~S}\right]$
The two possible mechanisms of the above reaction are
I. (i) $\mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{~S} \xrightarrow{\text { Slow }} \mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{Cl}^{+}+\mathrm{HS}^{-}$
(ii) $\mathrm{Cl}_{2}+\mathrm{H}^{+}+\mathrm{HS}^{-} \xrightarrow{\text { Fast }} \mathrm{H}^{+}+\mathrm{Cl}^{-}+\mathrm{S}$
II. $\mathrm{H}_{2} \mathrm{~S} \stackrel{\text { Fast }}{\rightleftharpoons} \mathrm{H}^{+}+\mathrm{HS}^{-}$

$$
\mathrm{Cl}_{2}+\mathrm{HS}^{-} \xrightarrow{\text { Slow }} 2 \mathrm{Cl}^{-}+\mathrm{H}^{+}+\mathrm{S}
$$

Which of these mechanism is/are consistent with the given rate equation?
(a) Only I
(b) Only II
(c) I and II
(d) None of these

Hint Slowest step will be the rate determining step, thus in case I, rate $=r=k \cdot\left[\mathrm{Cl}_{2}\right]\left[\mathrm{H}_{2} \mathrm{~S}\right]$ and in case II, rate $=r=k \cdot\left[\mathrm{Cl}_{2}\right]\left[\mathrm{HS}^{-}\right]\left[\mathrm{H}^{+}\right]$ Hence, only mechanism I is consist for the given rate law.
12. For the reaction, $\frac{1}{2} A \longrightarrow 2 B$, rate of disappearance of A is related to rate of appearance of B by the expression.
(a) $-\frac{d}{d t}[A]=\frac{1}{2} \frac{d}{d t}[B]$
(b) $-\frac{d}{d t}[A]=4 \frac{d}{d t}[B]$
(c) $-\frac{d}{d t}[A]=\frac{1}{4} \frac{d}{d t}[B]$
(d) $-\frac{d}{d t}[A]=\frac{d}{d t}[B]$
13. A radioactive element fallen over the floor of a room. Its half-life period is 30 days. If the initial activity is ten times of the permissible value, after how many days will it be safe to enter the room?
(a) 1000 days
(b) 500 days
(c) 300 days
(d) 100 days

Hint \because Activity $\propto N$ (quantity)

$$
\frac{N}{N_{0}}=\left(\frac{1}{2}\right)^{n} \quad(\because n=\text { number of half-lifes })
$$

14. If n_{t} is the number of radioactive atoms present at time t, then for the first order reaction, which of the following will be constant?
(a) $\frac{n_{t}}{t}$
(b) $\log _{e} \frac{n_{t}}{t}$
(c) $\frac{d}{d t}\left[\log _{e} \cdot n_{t}\right]$
(d) n_{t}

Hint \because Rate $=-\frac{d n_{t}}{d t}=\lambda \cdot n_{t} \Rightarrow \frac{d n_{t}}{n_{t} \cdot d t}=-\lambda$
$\Rightarrow \frac{d}{d t}\left(\log _{e} n_{t}\right)=-\lambda$ (constant)
15. Variation of rate constant with the temperature is given by $\log _{10} k=-\frac{E_{a}}{2.303 R T}+$ constant
If for a certain reaction, $\log _{10} k=-\frac{3153}{T}+11.890$
The value of activation energy is (in $\mathrm{kJ} \mathrm{mol}^{-1}$)
(a) 20.48
(b) 40.48
(c) 50.37
(d) 60.37

Answers

1. (b)
2. (b)
3. (c)
4. (a)
5. (b)
6. (a)
7. (c)
8. (d)
9. (c)
10. (d)

Metallurgy EXTRACTION AND ISOLATION OF ELEMENTS

Metals occur in two forms in nature
(i) In native state
(ii) In combined state

Less reactive metals ($\mathrm{Ag}, \mathrm{Au}, \mathrm{Pt}$ etc.) are found in native state (free state) and are not attacked by $\mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}$ and CO_{2} while reactive metals ($\mathrm{Na}, \mathrm{Ca}, \mathrm{Mg}$ etc.) are found in combined state in nature and attacked by $\mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}$ and CO_{2}.
Ore An ore is a complex mixture of a metal-containing mineral and economically worth less material called gangue, consisting of sand, clay and other impurities.

Steps Involving Extraction of Metals

Step 1 Concentration of ore and, if necessary, chemical treatment prior to the reduction.
Step 2 Reduction of the mineral to the free metal.
Step 3 Refining or purification of metal.
Common ores of some important metals

Metals	Ore	Formula
Li	Spodumene Lepidolite	$\mathrm{LiAlSi}_{2} \mathrm{O}_{6}$ $\left(\mathrm{Li}, \mathrm{Na}, \mathrm{K}_{2} \mathrm{Al}_{2}\left(\mathrm{SiO}_{2}\right)_{3} \mathrm{~F}(\mathrm{OH})\right.$
Na	Common salt Chile salt petre Glauberite Borax Trona Soda ash Feldspar	```NaCl (rock salt) \(\mathrm{NaNO}_{3}\) \(\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}\) (Glauber's salt) \(\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}\) \(\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot \mathrm{NaHCO}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}\) \(\mathrm{Na}_{2} \mathrm{CO}_{3}\) \(\mathrm{NaAlSi}_{3} \mathrm{O}_{8}\)```
K	Sylvine Nitre Schonite	KCl KNO_{3} (saltpeter) $\mathrm{K}_{2} \mathrm{SO}_{4} \cdot \mathrm{MgSO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
Mg	Magnesite Dolomite Carnallite Epsom salt	$\begin{aligned} & \mathrm{MgCO}_{3} \\ & \mathrm{MgCO}_{3} \cdot \mathrm{CaCO}_{3} \\ & \mathrm{KCl}^{\mathrm{MgCl}} 2 \cdot 6 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O} \end{aligned}$
Ca	Gypsum Limestone Phosphorite Fluorspar	$\begin{aligned} & \mathrm{CaSO}_{4} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{CaCO}_{3} \\ & \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2} \\ & \mathrm{CaF}_{2} \end{aligned}$
AI	Bauxite Diaspore Corundum Cryolite	$\begin{aligned} & \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O} \\ & \mathrm{Al}_{2} \mathrm{O}_{3} \\ & \mathrm{Na}_{3} \mathrm{AlF}_{6} \end{aligned}$
Sn	Cassiterite	SnO_{2} (tin stone)
Pb	Galena Cerussite Anglesite	PbS PbCO_{3} PbSO_{4}

Metals	Ore	Formula
Cu	Chalcopyrite	CuFeS_{2} (copper pyrite)
	Chalcocite	$\mathrm{Cu}_{2} \mathrm{~S}$ (copper glance)
	Cuperite	$\mathrm{Cu}_{2} \mathrm{O}$
	Azurite	$2 \mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$
	Malachite	$\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$
Ag	Argentite	$\mathrm{Ag}_{2} \mathrm{~S}$ (silver glance)
	Cerargyrite	AgCl (horn silver)
	Pyrargyrite	$\mathrm{Ag}_{2} \mathrm{~S} \cdot \mathrm{Sb}_{2} \mathrm{~S}_{3}$ (Ruby silver)
Fe	Haematite	$\mathrm{Fe}_{2} \mathrm{O}_{3}$
	Limonite	$\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$
	Magnetite (lodestone)	$\mathrm{Fe}_{3} \mathrm{O}_{4}$ (magnetic oxide of iron)
	Siderite	FeCO_{3}
	Iron pyrite	FeS_{2}
Hg	Cinnabar	HgS
Zn	Zinc blende	ZnS (black zinc or sphalerite)
	Calamine	ZnCO_{3}
	Zincite	ZnO (red zinc)
Mn	Pyrolusite	MnO_{2}
	Manganite	$\mathrm{Mn}_{2} \mathrm{O}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
Cr	Chromite	$\mathrm{Cr}_{2} \mathrm{O}_{3} \cdot \mathrm{FeO}$

Crushing of Ore

Crushing and grinding of ores are done in order to ease the process of concentration of ores. They are crushed into small pieces in gyratory crushers followed by grinding.

Concentration of Ores

It involves the removal of unwanted materials like sand, clays, etc., from the ore. The procedure followed depends on physical properties of compounds of minerals and impurities present in it.
Some of the important methods involved are:

Gravity Separation or Levigation

It is based on difference in the density of the ores and the gangue particles. The powdered ore is washed in a running stream of water. The lighter gangue particles are washed away leaving the heavier ores. $\mathrm{Fe}_{2} \mathrm{O}_{3}, \mathrm{Fe}_{3} \mathrm{O}_{4}$, etc., are concentrated by this method.

Froth Floatation Method

Sulphide ores of $\mathrm{Cu}, \mathrm{Ag}, \mathrm{Zn}, \mathrm{Pb}$, etc., are concentrated by this process.

- A suspension of powdered ore in water is made followed by the addition of collectors (pine oil, fatty acids, xanthates, etc.) and froth stabilisers (cresol, aniline, etc.).
- Ore particles are made wet by oil and come to surface as froth, whereas gangue particles remain inside with water.

Magnetic Separation Method

It is based on difference in magnetic properties of gangue and ores．The ore is concentrated by a magnetic separator，that separates magnetic substances from non－magnetic substances． Magnetite $\left(\mathrm{Fe}_{3} \mathrm{O}_{4}\right)$ ，chromite（ $\mathrm{FeO} \cdot \mathrm{Cr}_{2} \mathrm{O}_{3}$ ），pyrolusite $\left(\mathrm{MnO}_{2}\right)$ ， tungsten ore，etc．，are separated by this method．

Leaching

In this process，the ore is made soluble in a suitable solvent leaving the insoluble gangue particles behind．The ore is then recovered from the solution by suitable chemical method．

Leaching of Bauxite

$$
\begin{gathered}
{\underset{\begin{array}{c}
\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right) \\
\text { Bauxite } \\
\text { Ore with impurity }
\end{array}}{ }} } \\
\mathrm{Na}\left[\mathrm{Al}(\mathrm{OH})_{4}\right](a q) \xrightarrow{\mathrm{CO}_{2}(\mathrm{~g})}
\end{gathered} \mathrm{Al}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O}(\mathrm{~s}) \xrightarrow{1470 \mathrm{~K}} \underset{\text { Pure form }}{\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})}
$$

Leaching of Ag and Au Ores

Ag and Au ores are concentrated as metal cyanide by treating them with dilute NaCN or KCN ，from which pure metal is obtained by replacement reaction．

EXTRACTION OF CRUDE METAL FROM CONCENTRATED ORE

Highly Active Metals（e．g．Na，K，Mg etc．）

Electrolytic Reduction The oxides of highly electropositive metals do not reduce easily with coke．Hence，they are extracted by electrolysis of their salts in fused sate．Pure metal is obtained at cathode．

Less Active Metals

Roasting Sulphide ores are converted to oxide ores by roasting．The ore is treated in a furnace in regular supply of air at a temperature below the melting point of the metal．The sulphide ores are converted to metal oxides and the impurities are removed as volatile oxides．

Calcination Hydroxide and carbonate ores do not undergo roasting，hence they are heated below melting point in absence of air forming metal oxides．

高
 Metal Oxide

Reduction of Oxide to Metal Metal oxides are reduced to the corresponding metals by various processes based on standard reduction potential called pyrometallurgical process and hydrometallurgical process．

Impure Metal

Refining of Impure Metal The impure metal obtained from the reduction of metal oxide contains impurities that are refined to get pure metal．

言
 Pure Metal

Various processes for reduction of metal oxides to metal are given below
Smelting The concentrated ore is treated with coke and flux and heated at high temperature and the process is called smelting．The coke reduces metal oxide to metal and flux removes acidic or basic impurities as slag ：
With Hydrogen $\mathrm{MO}_{3}+3 \mathrm{H}_{2} \longrightarrow \mathrm{M}+\mathrm{H}_{2} \mathrm{O} \quad(\mathrm{M}=\mathrm{Mo}$ or W）
Goldschmidt Aluminothermic Process Cr and Mn oxides are reduced by this process．

$$
\begin{gathered}
\mathrm{Cr}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Cr} \\
3 \mathrm{Mn}_{3} \mathrm{O}_{4}+8 \mathrm{Al} \longrightarrow 4 \mathrm{Al}_{2} \mathrm{O}_{3}+9 \mathrm{Mn}
\end{gathered}
$$

With Other Metals Highly active metals reduce less active metal oxides．

$$
\mathrm{TiO}_{2}+2 \mathrm{Mg} \longrightarrow \mathrm{Ti}+2 \mathrm{MgO}
$$

Self Reduction or Auto－reduction A part of sulphide ore of less electropositive metals like $\mathrm{Hg}, \mathrm{Pb}, \mathrm{Cu}$ ，etc．，are converted to oxide ore． The sulphide and oxide ores undergo self－reduction to form the metal．
e．g．$\quad 2 \mathrm{Cu}_{2} \mathrm{~S}+3 \mathrm{O}_{2} \longrightarrow 2 \mathrm{Cu}_{2} \mathrm{O}+2 \mathrm{SO}_{2}(\mathrm{~g})$

$$
\mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{Cu}_{2} \mathrm{O} \longrightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}(\mathrm{~g}) \uparrow
$$

Note Pyrometallurgy in this process metal is extracted by heating metal oxide with a suitable reducing agent．
Hydrometallurgy In this process metal is extracted by dissolving the ore in a suitable reagent followed by precipitation of metal by a more electropositive metal．

Rock Music and Metallurgy

－Metallurgy plays a big role in rock music，without it rock music as we know would not exist．
－The strings of the guitar being played are the product of complex technology．
－The core of the strings is made of mild steel，varying in hardness and ductility，depending on the type of guitar on which it will be used．
－The core string is wound with fine wrap wire，composed typically an alloy of copper and zinc for acoustic guitar use，or stainless steel for electric guitars．
－Artists can be very passionate about the particular makes and models of strings they use．

Best Practice＇SHOTS」

1．Which of the following metal has the largest abundance in the earth＇s crust？
（a）Aluminium
（b）Calcium
（c）Magnesium
（d）Sodium

2．Sulphides ores are common for the metals
（a） Ag, Cu and Pb
（b） Ag, Cu and Sn
（c） Ag, Mg and Pb
（d） Al, Cu and Pb

\{JEE FINAL TOUCH \}

3. Smelting involves reduction of metal oxide with
(a) carbon
(b) carbon monoxide
(c) magnesium
(d) aluminium
4. During smelting, an additional substance is added which combines with impurities to form a fusible mass. The additional substance is called
(a) flux
(b) slag
(c) gangue
(d) ore
5. Which of the following metals are found in native state?
(a) Ag, Pb and Fe
(b) Ag, Pt and Mg
(c) Au, Pt and Ag
(d) Cu, Al and Zn
6. The ore having two different metal atoms is
(a) haematite
(b) galena
(c) magnetite
(d) copper pyrites

Hint (d) CuFeS_{2} (Cu and Fe)
7. The salt which is least likely to be found in minerals is
(a) chloride
(b) sulphate
(c) sulphide
(d) nitrite

Hint (d) Nitrite salt which is least likely to be found in minerals because all nitrates are soluble in water.
8. Which of the following benefication process is used for the minerals, $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$?
(a) Froth floatation
(b) Leaching
(c) Liquation
(d) Magnetic separation

Hint (b) Leaching process is used for the minerals $\mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2 \mathrm{H}_{2} \mathrm{O}$.
9. Heating pyrite to remove sulphur is called
(a) smelting
(b) calcination
(c) liquation
(d) roasting

Hint (d) Heating pyrite to remove sulphur is called roasting.
10. In the extraction of metal M from its sulphide ore is formed by reduction with $\mathrm{Cu}_{2} \mathrm{O}$ is
(a) Fe
(b) Co
(c) Cu
(d) Zn

\square
 THERMODYNAMICS AND ELECTROCHEMICAL PRINCIPLES OF METALLURGY

Thermodynamics of Metallurgy

For a reaction to be spontaneous, $\Delta_{f} G^{\circ}$ value should be negative. Hence, during the reduction of metal oxides, a reducing agent with a negative value of $\Delta_{f} G^{\circ}$ that is sufficient to make the over all $\Delta_{i} G^{\circ}$ value negative.

Ellingham Diagram

It represents $\Delta_{i} G^{\circ}$ versus temperature for the formation of oxides of elements.

- Each plot is a straight line except when a phase change occurs.
- There is a point in the curve below which $\Delta_{f} G^{\circ}$ is negative (the oxide is stable) and above this point the metal oxide is decomposed to form metal.
- This diagram is useful in choosing a reducing agent for the reduction of metal oxides.

Combined Ellingham diagram for metal and carbon

Limitations of Ellingham Diagram

(i) These do not explain the kinetics of reduction processes.
(ii) It is assumed that system is always in the state of equilibrium, which is not true.

Steeling of Automobiles

- Steel (many iron alloys are collectively known as steels) is the most recycled consumer product, given that about 95% of steel from automobiles is recycled.
- The steel recycling institute estimates that 14 million tons of steel scrap from automobiles was recycled in the year 2000.
- Approximately 14×10^{6} tons of iron (steel) is recycled. Each 10^{3} tons iron ore contains 20 tons $\mathrm{Fe}_{3} \mathrm{O}_{4}$ is which there are 168 tons Fe per 232 tons $\mathrm{Fe}_{3} \mathrm{O}_{4}$.
- About 1×10^{9} tons of ore did not have to be mined because of using recycled steel, saving a substantial amount of material and the energy needed to process the ore.

Furnaces

It is a device in which high temperature is produced either by burning fuel or by using electricity. Several type of furnaces are used in the metallurgy. Some important ores among them are:

Reverberatory Furnace

This is made up of fire bricks containing fire place, hearth and chimney. The ore is not directly heated in this furnace.
The fuel gas doesn't come in direct contact with the material, hence can be used for both oxidation and reduction. If reduction is required, the ore is mixed with some reducing agent while oxidation is required, hot air blown in it. It is used for extraction of $\mathrm{Cu}, \mathrm{Pb}, \mathrm{Sn}$, etc.

Blast Furnace

This is a steel structure lined with fire bricks. It is narrow at both the top and bottom, but wider at middle.
There is a hopper at the top through which concentrated ore, coke and flux are inserted. There are different temperature zones in the furnace where different reactions take place. The molten metal is obtained at the bottom. $\mathrm{Fe}, \mathrm{Cu}, \mathrm{Pb}$, etc., are purified in the furnace.

Best Practice「SHOTS」

11. According to Ellingham diagram, the oxidation reaction of carbon to carbon monoxide may be used to reduce which one of the following oxides at the lowest temperature?
(a) $\mathrm{Al}_{2} \mathrm{O}_{3}$
(b) $\mathrm{Cu}_{2} \mathrm{O}$
(c) MgO
(d) ZnO

Hint (b) The graph of $\Delta_{f} G^{\circ} v s T$ in the Ellingham diagram shows that $\mathrm{Cu}-\mathrm{Cu}_{2} \mathrm{O}$ line is atmost at the top (i.e. much higher than those of $\mathrm{Al}^{-\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Mg}-\mathrm{MgO}, \mathrm{Zn}-\mathrm{ZnO} \text { and } \mathrm{Fe}-\mathrm{FeO} \text {) lines. }}$ Therefore, $\mathrm{Cu}_{2} \mathrm{O}$ can be reduced to Cu at the lowest temperature.
12. Identify the reaction that does not take place in a blast furnace
(a) $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C} \longrightarrow 2 \mathrm{Fe}+3 \mathrm{CO}$
(b) $\mathrm{CO}_{2}+\mathrm{C} \longrightarrow 2 \mathrm{CO}$
(c) $\mathrm{CaCO}_{3} \longrightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
(d) $\mathrm{FeO}+\mathrm{SiO}_{2} \longrightarrow \mathrm{FeSiO}_{3}$

Hint (d) CaSiO_{3} formation takes place in blast furnance (FeSiO_{3} is not formed).

$$
\mathrm{CaO}+\mathrm{SiO}_{2} \longrightarrow \underset{\text { (Slag) }}{\mathrm{CaSiO}_{3}}
$$

13. Among the metals $\mathrm{Cr}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Ti}, \mathrm{Ba}$ and Mg , the one that cannot be obtained by reduction of metal oxide by aluminium is
(a) Cr
(b) Fe
(c) Mg
(d) Ba

Hint (c) Mg metal cannot be obtained by reduction of MgO by aluminium because Mg is more reactive than Al .
14. Iron obtained from blast furnace is
(a) wrought iron (b) cast iron
(c) pig iron
(d) steel
15. On igniting $\mathrm{Fe}_{2} \mathrm{O}_{3}$ at $1400^{\circ} \mathrm{C}$, the product obtained is
(a) $\mathrm{Fe}_{2} \mathrm{O}_{3}$ melt (b) FeO
(c) $\mathrm{Fe}_{3} \mathrm{O}_{4}$
(d) metallic iron
16. Heating mixture of $\mathrm{Cu}_{2} \mathrm{O}$ and $\mathrm{Cu}_{2} \mathrm{~S}$ will gave
(a) $\mathrm{Cu}+\mathrm{SO}_{2}$
(b) $\mathrm{Cu}+\mathrm{SO}_{3}$
(c) $\mathrm{CuO}+\mathrm{CuS}$
(d) $\mathrm{Cu}_{2}+\mathrm{SO}_{3}$
Hint $2 \mathrm{Cu}_{2} \mathrm{O}+\mathrm{Cu}_{2} \mathrm{~S} \longrightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$
Auto reduction takes place
17. ΔG° vs T plot in the Ellingham's diagram slopes downwards for the reaction.
(a) $\mathrm{Mg}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{MgO}$
(b) $2 \mathrm{Ag}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{Ag}_{2} \mathrm{O}$
(c) $\mathrm{C}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{CO}$
(d) $\mathrm{CO}+\frac{1}{2} \mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}$
18. Which of the following reactions, taking place in the blast furnace during extraction of iron is endothermic?
(a) $\mathrm{CaCO}_{3} \longrightarrow \mathrm{CaO}+\mathrm{CO}_{2}$
(b) $2 \mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}$
(c) $\mathrm{C}+\mathrm{O}_{2} \longrightarrow \mathrm{CO}_{2}$
(d) $\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \longrightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$
19. Which out of the following reactions, does not indicate slag formation?
(a) $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{P}_{2} \mathrm{O}_{5} \longrightarrow 2 \mathrm{FePO}_{4}$
(b) $\mathrm{PbO}+\mathrm{SiO}_{2} \longrightarrow \mathrm{PbSiO}_{3}$
(c) $3 \mathrm{MgO}+\mathrm{P}_{2} \mathrm{O}_{5} \longrightarrow \mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
(d) None of the above

Hint $\mathrm{FeO}+\mathrm{SiO}_{2} \longrightarrow \underset{\text { (Slag) }}{ }{ }^{\mathrm{FeSiO}}$
20. Selection of temperature to carry out a reduction process depends so as to make
(a) ΔG negative
(b) ΔG positive
(c) ΔH negative
(d) ΔH positive

REFINING OF METALS AND EXTRACTION SCHEME OF SOME METALS

Metals extracted through any of the methods described in topic 1 and 2 are usually contain some impurities. Following methods are used to purify the metals.

1. Distillation Method Metals with low boiling point like $\mathrm{Zn}, \mathrm{Cd}, \mathrm{Hg}$, etc., are evaporated to collect the pure metal.
2. Liquation Method Metals with low melting point like, $\mathrm{Sn}, \mathrm{Pb}, \mathrm{Hg}, \mathrm{Bi}$, etc., are separated from high melting impurities by this method.
3. Electrolysis The impure metal act as anode and deposited at cathode as pure metal. The electrolysis is carried out in a cell containing aqueous solution of the salt of the metal. The more basic impurities remain in solution and less basic impurities are deposited as anode mud, e.g. $\mathrm{Cu}, \mathrm{Zn}, \mathrm{Ag}, \mathrm{Au}, \mathrm{Al}$, etc.
4. Zone-refining Method This is based on the principle that impurities are more soluble in molten state than in the solid state of metal. The metal obtained is highly pure. The impure metal on gradual cooling deposit as
pure crystal of metal leaving impurities in the remaining part of molten metal. $\mathrm{Ge}, \mathrm{Si}, \mathrm{B}, \mathrm{Ga}$, in are purified by this method.
5. Vapour Phase Refining Method The impure metal is converted into its volatile compound, which on heating is decomposed to pure metal.

Mond process

$$
\begin{gathered}
\mathrm{Ni}+\mathrm{CO} \xrightarrow{330-350 \mathrm{~K}} \underset{\text { Volatile compound }}{\mathrm{Ni}(\mathrm{CO})_{4}} \\
\mathrm{Ni}(\mathrm{CO})_{4} \xrightarrow{450-470 \mathrm{~K}} \mathrm{Ni}+4 \mathrm{CO}
\end{gathered}
$$

van-Arkel Method This method is used to remove oxygen and nitrogen impurities in metals like $\mathrm{Zr}, \mathrm{Ti}, \mathrm{V}$, Th, etc., e.g.

$$
\begin{gathered}
\mathrm{Ti}+2 \mathrm{I}_{2} \xrightarrow{150-250^{\circ} \mathrm{C}} \underset{\text { Volatile compoun }}{\mathrm{TiI}_{4}(g)} \\
\mathrm{TiI}_{4}(g) \xrightarrow[\text { Tungsten filament }]{1400^{\circ} \mathrm{C}} \underset{\text { (Pure) }}{\mathrm{Ti}(\mathrm{~S})+2 \mathrm{I}_{2}(g)}
\end{gathered}
$$

6. Hydrometallurgical Process The ore is treated with reagents like NaCN or Cl_{2} in presence of water. The metal forms salt solution that is recovered in pure form either by electrolysis or by replacement reaction in the solution.
7. Amalgamation Process Noble metals like Ag, Au when come in contact with Hg form amalgam, from which pure metal is obtained by distillation.
8. Chromatographic Method This is based on the principle that different compounds of a mixture are differently adsorbed on an adsorbent. This method is used when the impurities are very close in their chemical properties and the metal is present in very minute quantity.
9. Poling Method The impure metal containing oxides as impurity can be purified by this method. The molten impure metal is stirred with green poles of wood. This pole release hydrocarbon gases which reduce the oxide impurities. This method is used specially in case of copper.
10. Cupellation In this process ores or alloyed metals are treated under very high temperatures and have controlled operations to separate noble metals like Ag and Au , from base metals like Zn, Bi, As etc. This method is known as cupellation because impure metal is fused in small boat shaped dishes of bone ash or cement called carpels.
11. Bessemerisation In this process, the impure metal is heated in Bessemer converter and a blast of compressed air is blown through the molten mass. The impurities get removed in the form of volatile oxides. This process is used in making steel from cast iron, in purification of Ni etc.

Extraction Scheme of Some Important Metals

Aluminium

Copper

Zinc

Iron

Purest form of iron
Wrought or malleable iron

In rever- - beratory furnace	with 0.5% impurities lined with
haematite	Cast iron hith 3\% carbon

By any of the following processes

1. Bessemer's process through Bessemer's converter
2. Open hearth process

Steel- - Mild steel ($0.5-0.5 \% \mathrm{C})$
3. Oxygen-top blowing process
4. Electric arc process
5. High frequency induction process

Silver

Mercury

It is found as $1 \times 10^{-5} \%$ of earth crust and its most important ore is cinnabar (HgS).

Purification It can be purified by dropping slowly through dil. HNO_{3}. The metallic impurities displace Hg from nitrate and go into the solution. Further purification is carried out by distillation under reduced pressure.

21. Calcium is obtained by the
(a) roasting of lime stone
(b) electrolysis of solution of calcium chloride in $\mathrm{H}_{2} \mathrm{O}$
(c) electrolysis of molten anhydrous calcium chloride
(d) reduction of calcium chloride with carbon
22. Blister Cu is about
(a) $60 \% \mathrm{Cu}$
(b) $90 \% \mathrm{Cu}$
(c) $98 \% \mathrm{Cu}$
(d) $100 \% \mathrm{Cu}$

Hint (c) After bessemerisation of the concentrated ore, Cu obtained is 98% pure. It is called blister Cu.
23. During electrolytic refining of copper, some metals present as impurity settle as 'anode mud'. These are
(a) Sn and Ag
(b) Pb and Zn
(c) Ag and Au
(d) Fe and Ni
24. Which of the following refining method and crude metals are not correctly matched?
(a) Distillation-Zinc and mercury
(b) Liquation-Tin
(c) van-Arkel-Zirconium
(d) Mond process-Lead
25. The process of isolation of metals by dissolving the ore in a suitable chemical reagent followed by precipitation of the metal by a more electropositive metal is called
(a) electrometallurgy
(b) hydrometallurgy
(c) electro-refining
(d) zone-refining
26. Vapour phase refining of nickel is carried out using
(a) I_{2}
(b) Cl_{2}
(c) HCl
(d) CO
27. Which of the following refining method and crude metals are not correctly matched?
(a) Liquation-Tin
(b) Zone refining-Silicon
(c) Mond process-Aluminium
(d) Electrolytic refining-Blister copper
28. Which method of purification is represented by the equations?

(a) Cupellation
(b) Poling
(c) van-Arkel
(d) Zone refining
29. Which of the following method is used for obtaining aluminium metal?
(a) Electrolysing fused $\mathrm{Al}_{2} \mathrm{O}_{3}$ and cryolite
(b) By heating alumina with carbon
(c) By heating alumina in muffle furnace
(d) By a process called pyrometallurgy
30. Poling process
(a) reduced SnO_{2} to Sn
(b) oxidised impurities like iron and removes as scum
(c) uses green poles of wood
(d) involves all of the above.

Answers

1. (a)
2. (a)
3. (a)
4. (a)
5. (c)
6. (d)
7. (d)
8. (b)
9. (d)
10. (c)
11. (b)
12. (d)
13. (c)
14. (c)
15. (d)
16. (a)
17. (c)
18. (d)
19. (d)
20. (a)
21. (c)
22. (c)
23. (c)
24. (d)
25. (b)
26. (d)
27. (c)
28. (c)
29. (a)
30. (d)

MASTER STRO゙KE

1. Which one of the following elements constitutes a major impurity in pig iron?
(a) Silicon
(b) Oxygen
(c) Sulphur
(d) Carbon
2. Native silver metal forms a water soluble complex with a dilute aqueous solution of NaCN in the presence of
(a) nitrogen
(b) oxygen
(c) carbon dioxide
(d) argon

Hint (b) $4 \mathrm{Hg}+8 \mathrm{NaCN}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \longrightarrow$

$$
4 \mathrm{Na}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]+4 \mathrm{NaOH}
$$

3. Which step is not involved in hydrometallurgical process?
(a) $\mathrm{Cu}_{2} \mathrm{~S}+2 \mathrm{Cu}_{2} \mathrm{O} \longrightarrow 6 \mathrm{Cu}+\mathrm{SO}_{2}$
(b) $\mathrm{CuSO}_{4}+\mathrm{Fe} \longrightarrow \mathrm{Cu}+\mathrm{FeSO}_{4}$
(c) $\mathrm{CuFeS}_{2}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{CuSO}_{4}+\mathrm{FeSO}_{4}+2 \mathrm{H}_{2} \mathrm{~S}$
(d) $\mathrm{CuCO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \longrightarrow \mathrm{CuSO}_{4}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$
4. Extraction of zinc from zinc blende is achieved by
(a) electrolytic reduction
(b) roasting followed by reduction with carbon
(c) roasting followed by reduction with other metal
(d) roasting followed by self reduction

Hint (b) Roasting followed by reduction with carbon.
5. By annealing steel
(a) becomes soft
(b) becomes liquid
(c) becomes hard and brittle
(d) is covered with a thin film of $\mathrm{Fe}_{3} \mathrm{O}_{4}$
6. In alumino thermite process aluminium acts as
(a) an oxidising agent
(b) a flux
(c) a reducing agent
(d) a solder
7. The methods chiefly used for the extraction of lead and tin from their ores are respectively
(a) self reduction and carbon reduction
(b) self reduction and electrolytic reduction
(c) carbon reduction and self reduction
(d) cynide process and carbon reduction
8. When copper pyrite is roasted in excess of air, a mixture of $\mathrm{CuO}+\mathrm{FeO}$ is formed. FeO is present as impurity. This can be removed as slag during reduction of CuO . The flux added to form slag is
(a) SiO_{2}, which is an acidic flux
(b) lime stone, which is basic flux
(c) SiO_{2}, which is the basic flux
(d) CaO , which is a basic flux
9. Which is chloride ore of Mg ?
(a) Kiserite
(b) Carnallite
(c) Epsomite
(d) Dolomite
10. Corundum is \qquad mineral of Al.
(a) silicate
(b) oxide
(c) double salt
(d) sulphate
11. Purest form of iron is
(a) cast iron
(b) wrought iron
(c) pig iron
(d) None of these
12. Which of the following is not an ore of a metal?
(a) Malachite
(b) Calamine
(c) Stellite
(d) Cerussite
13. Black tin is
(a) an alloy of Sn
(b) an allotrope of Sn
(c) $60-70 \% \mathrm{SnO}_{2}$
(d) $100 \% \mathrm{SnO}_{2}$

Hint (c) $60-70 \% \mathrm{SnO}_{2}$ called black tin.

\{JEE FINAL TOUCH\}

14. Electrolytic reduction of alumina to aluminium by Hall-Heroult process is carried out
(a) in presence of NaCl
(b) in presence of fluorite
(c) in the presence of cryolite which forms a melt with lower melting temperature
(d) in the presence of cryolite which forms a melt with higher melting temperature
15. $\mathrm{Ag}+\mathrm{Na}_{2} \mathrm{CO}_{3} \longrightarrow \mathrm{Ag}_{2} \mathrm{CO}_{3} \xrightarrow{\Delta} X$
(a) $\mathrm{Ag}_{2} \mathrm{O}$ and CO_{2}
(b) $\mathrm{Ag}, \mathrm{O}_{2}$ and CO_{2}
(c) $\mathrm{Ag}_{2} \mathrm{O}_{2}$ and CO_{2}
(d) No effect

Hint (b) $X=\mathrm{Ag}, \mathrm{O}_{2}$ and CO_{2}
16. In the equation,
$4 \mathrm{M}+8 \mathrm{CN}^{-}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \longrightarrow 4\left[\mathrm{M}(\mathrm{CN})_{2}\right]+4 \mathrm{OH}^{-}$
The metal M is
(a) copper
(b) iron
(c) gold
(d) zinc

Hint (c)

$[M=\mathrm{Au}]-2 \mathrm{CN}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \longrightarrow 4 \mathrm{OH}+4\left[\mathrm{Au}(\mathrm{CN})_{2}\right]$ Gold
17. The auto-reduction process is not used in the metallurgy of
(a) Hg
(b) Cu
(c) Pb
(d) Fe
18. In the process of extraction of gold,

$$
\begin{gathered}
\text { Roastedgoldore }+\mathrm{CN}+\mathrm{H}^{-} \quad{ }_{2} \mathrm{O} \xrightarrow{\mathrm{O}_{2}} \overline{\mathrm{O}} \mathrm{H}+[\mathrm{X}] \\
{[\mathrm{X}]+\mathrm{Zn} \longrightarrow[\mathrm{Y}]+\mathrm{Au}}
\end{gathered}
$$

Identify the complexes $[\mathrm{X}]$ and $[Y]$
(a) $X=\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-} ; Y=\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}$
(b) $X=\left[\mathrm{Au}(\mathrm{CN})_{4}\right]^{2-} ; Y=\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}$
(c) $X=\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-} ; Y=\left[\mathrm{Zn}(\mathrm{CN})_{6}\right]^{4-}$
(d) $X=\left[\mathrm{Au}(\mathrm{CN})_{4}\right]^{-} ; Y=\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]^{2-}$
19. Which of the following is used in thermite welding?
(a) $\mathrm{TiO}_{2}+4 \mathrm{Na} \longrightarrow \mathrm{Ti}+2 \mathrm{Na}_{2} \mathrm{O}$
(b) $2 \mathrm{Al}+\mathrm{Fe}_{2} \mathrm{O}_{3} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Fe}$
(c) $\mathrm{SnO}_{2}+2 \mathrm{C} \longrightarrow \mathrm{Sn}+2 \mathrm{CO}$
(d) $\mathrm{Cr}_{2} \mathrm{O}_{3}+2 \mathrm{Al} \longrightarrow \mathrm{Al}_{2} \mathrm{O}_{3}+2 \mathrm{Cr}$

Answers

1. (d)
2. (b)
3. (a)
4. (b)
5. (a)
6. (c)
7. (a)
8. (a)
9. (b)
10. (b)
11. (b)
12. (c)
13. (c)
14. (c)
15. (b)
16. (c)
17. (d)
18. (a)
19. (b)

DO yOU KNOW

- Do you know, our clear visibility is due to rigidity of double bonds in retinal?
We see things around us, when light is focused by the lens of our eye onto the retina, the layer of cells lining the interior of the eyeball. The retina contains photoreceptor cells called rods and cones. The human retina contains about 3 million cones and 100 million rods. The rods are sensitive to dim light and cones to colours. The tops of the rods and cones contain a molecule called rhodopsin. Rhodopsin consists of a protein called opsin, bonded to a reddish-purple pigment called retinal. Our vision depends on the rigidity of double bonds in retinal.
In its normal form, retinal is held rigid by its double bonds. Light entering the eye is absorbed by rhodopsin and the energy is used to break the π-bond portion of the circled double bond. The molecule then rotates around this bond, changing its geometry. The retinal then separates from the opsin, triggering the reactions that produce a nerve impulse that the brain interprets as the sensation of vision. It takes as few as five closely spaced molecules reacting in this fashion to produce the sensation of vision. Thus, only five photons of light are necessary to stimulate the eye.

- Do you know, chemical bonds differ only in intensity of electrostatic force of attraction?
In chemical bonding, we study about different kinds of bonds like, ionic, covalent, coordinate, metallic, hydrogen and van der Waals' bonds. All of these bonds differ from each other only in intensity of electrostatic force of attraction. This attraction occurs between electrons and nucleus, either of same species or of two different species. The repulsion occurs among electrons, either of same species or of two different species. When attraction of force between electron of one species and nucleus of other species predominates, over repulsive force, a bond is formed between the two species. In ionic bond, intensity of force of attraction is found to be maximum. Hence, it is considered as the strong bond or you may say it requires more energy to be broken into its constituent ions. In case of van der Waals' bond intensity of electrostatic force of attraction is much less. Hence, it is a weak bond or you may say it requires less amount of energy to be broken into its constituent ions.
- Do you know, why do molecular orbitals of $\mathbf{B}_{2}, \mathbf{C}_{2}$ and N_{2} not follow, the same increasing energy order as O_{2} and F_{2} ?
In case of F_{2} and O_{2}, we assume that the interactions between the s-orbitals and interactions among the p-orbitals are completely independent because of large energy gap between s and p-orbitals. But in case of B_{2}, C_{2} and N_{2} energy gap between s and p-orbitals is not large. Hence, these orbitals interacts with each other and this interaction is known as $s-p$ mixing. Generally, orbitals of same symmetry interact together. This means that the $2 \sigma_{g}$-orbitals, derived from the $2 s$-orbitals, interact with the $3 \sigma_{g}$-orbitals derived from the $2 p_{z}$-orbitals. Similarly, the s and p-based σ_{u}-orbitals interact together, $s-p$ mixing leads to stabilisation of $2 \sigma_{g}$ and $2{\underset{\sigma}{u}}^{*}$-orbitals and destabilisation of $3 \sigma_{g}$ and $3 \sigma_{u}^{*}$-orbitals. The destabilisation of the $3 \sigma_{g}$-orbitals is particularly important as they pushes the $3 \sigma_{g}$-orbitals above the $1 \pi_{u}$-orbitals in energy level. The π-orbitals are not affected by s-p mixing as these are of wrong symmetry to interact with the s-based σ-orbitals.

- Do you know, what is the role of HOMOs and LUMOs in Diels Alder reaction?

In Diels Alder reaction conjugated diene and dienophile (alkyne or alkene) react and form cyclohexene and follow concentrated mechanism (bond breaking and bond formation take place simultaneously). In this reaction, HOMO of electron rich species (diene) interacts with LUMO of electron deficient species (alkyne or alkene). This reaction is thermally allowed, provided the
 orbitals of similar energy.

Note If we use a dienophile with electron releasing group and a diene with an electron withdrawing group then HOMO of dienophile interacts with LUMO of diene.

101Sir, recently I read in a book that lack of vitamin- B_{12} in our body can cause anemia and nervous system damage. I am vegetarian and main source of vitaminB_{12} is non-vegetarian diet. Is it possible to get essential amount of vitamin- B_{12} from vegetarian diet? Please explain.
[Rohit Sharma, Meerut]
\Leftrightarrow Dear Rohit, it is a misconception that we could get vitamin- B_{12} only from non-vegetarian diet. It is possible to get vitamin B_{12} from vegetarian diet also. Mostly vitamin B_{12} is available only is animal foods such as meat, fish, eggs and dairy products but you can also get this important nutrient in some nutritional yeasts, as well as from fortified cereals and soy milk.
Keep in mind that you have many choices, when you set a goal of eating fewer animal foods and more plant foods.
You can take various kind of milk fortified with essential amount of vitamin- B_{12} such as almond milk ($3 \mu \mathrm{~g}$), coconut milk ($3 \mu \mathrm{~g}$), soy milk ($1.2 \mu \mathrm{~g}$) and low fat milk ($1.15 \mu \mathrm{~g}$), also you can eat nutritional yeast $(2 \mu \mathrm{~g})$, cereal $(0.6 \mu \mathrm{~g})$, yogurt, (plain low fat, $1.378 \mu \mathrm{~g}$), cottage cheese ($1.07 \mu \mathrm{~g}$) egg $(0.34 \mu \mathrm{~g})$ and vanilla ice-cream ($0.26 \mu \mathrm{~g}$).

Sir, in case of strong acids or strong bases, I easily solve problems related to pH but for mixture of weak acids I get confused. Please suggest me how can I solve these problems?
[Manoj Jha, Patna]
\Rightarrow Dear Manoj, when mixture of weak acids is given, first you should determine which acid is weaker or act as a base. After this you may go through following steps for solving problems related to finding pH for mixture of weak acids.
Step 1 List the species present before dissociation and identify them as Bronsted-Lowry acids and base.
Step 2 Write balanced equations for all possible proton transfer reactions.

Step 3 Identify the principal reaction the reaction that has the largest equilibrium constant.
Step 4 Make a table that lists the following values for each of the species involved in the principal reaction.

- The initial concentrations
- The change in concentrations on proceeding to equilibrium.
- The equilibrium concentrations.
- During constructing this table define x as the concentration ($\mathrm{mol} / \mathrm{L}$) of the acid that dissociates.
Step 5 Substitute the equilibrium concentrations into the equation for the principal reaction and solve for x.
Step 6 Use the big concentration and equilibrium equations for the subsidiary reactions to calculate the small concentrations of the species involved in the subsidiary equilibrium.
Step 7 Calculate the $\mathrm{pH}=\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

Dear Sir, what is the action of ethyl chloride, which is often used as an anesthetic spray on minor injuries?
[Swati Khurana, New Delhi]
\Rightarrow You put a very good question Swati. Ethyl chloride is a skin refrigerant used in temporary relief of minor sport injuries.
The medium and fine streams are also intended for use as a counterirritant in the management of myofascial pain, restricted motion and muscle tension. The amount of cooling depends of the dosage. Dosage varies with duration of application, the smallest dose needed to produce the desired effect. The anesthetic effect of ethyl chloride rarely lasts more than a few seconds to a minute. This time interval is usually sufficient to help reduce or relieve initial trauma of injury.
Clinical conditions that may respond to Gebauer's ethyl chloride include low back pain, acute stiff neck, acute bursitis of the shoulder, tight hamstrings, sprained ankle, tight master muscles and referred pains due to irritated trigger points. Relief of pain facilitates early mobilisation and restoration of muscle function.

For determining the formula of a metal complex

Always remember that charge on the complex is the sum of the charges on metal ion and ligand ions attached to it.
For more clearity you may go through following problems:
Problem 1 A cobalt (III) ion forms a complex with four ammonia molecules and two chloride ions. What is the formula of the complex, including its charge?
Sol. The charge on the complex is the sum of the charges on the Co^{3+} ion, the four electrically neutral NH_{3} ligands and the two Cl^{-}ligands,

$$
\begin{aligned}
& \mathrm{Co}^{3+} 4 \mathrm{NH}_{3} \quad 2 \mathrm{Cl}^{-} \\
& +3+(4 \times 0)+[2 \times(-1)]=+1
\end{aligned}
$$

Hence, formula of the complex is $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{Cl}_{2}\right]^{+}$.
For determining the oxidation state of the metal in a coordination compound

Problem 2 What is the oxidation state of platinum in the coordination compound ?

Sol. As you can clearly see that compound is electrically neutral overall and contains one K^{+}cation per complex anion, the anion must have opposite sign, i.e. anion must be $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}_{5}\right]^{-}$. Since, ammonia is neutral and chloride has a charge -1 , the sum of the oxidation numbers is $1+n+0+5(-1)=0$
where, n is the oxidation number of it.

$$
\mathrm{K}^{+} \mathrm{Pt}^{n+} \mathrm{NH}_{3} 5 \mathrm{Cl}^{-}=1+n+0+5(-1)=0
$$

so, $\quad n=4$
Case I If complex is positively charged, put the sum of oxidation states of all species within coordination sphere equal to this positive charge.
Case II If complex is negatively charged, put the sum of oxidation states of all species within the coordination sphere equal to this negative charge.
\Leftrightarrow Dear Monika, these kinds of problems can be solved easily, if you keep some basic info about coordination compounds in your mind as I mention below:

\{JEE Advanced Practice\}
 One or More than One Options Correct Type Questions on

ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

A collection of chapterwise best questions of their types

1. The major product in the following reaction is [2014 Adv.]

(a)

(b)

(c)

(d)

Hint

2. Which of the following statements are correct about the reaction given below?

(a) The product D is cyclopentanone
(b) The product D is α, β-unsaturated cyclopentanone
(c) Ring expansion takes place in conversion of C to D
(d) Conversion of B to C can also be carried out by using LAH Hint

(Cyclopentanone)
3. The number of aldol reactions that occur in the given transformation is

(a) 1
(b) 2
(c) 3
(d) 4

Hint It is an example of repeated aldol condensation followed by Cannizzaro reaction

Step $1 \xrightarrow{C}$

Step 3

\{JEE Advanced Practice\}

ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

4. An organic compound $A\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}\right)$ on reaction with $\mathrm{CH}_{3} \mathrm{MgBr}$ followed by acid treatment gives compound B. The compound B on ozonolysis gives compound C, which in presence of a base gives 1-acetylcyclopentene D. The compound B on reaction with HBr gives compound E. Which of the following options are correct about the given information?
(a) The structure of compound B is

(b) The compound C is α, β-unsaturated ketone
(c) The compound A contains two double bonds
(d) The structure of compound E is
 Hint

5. A new carbon-carbon bond formation is possible in
(a) Cannizzaro reaction
(b) Friedel-Crafts reaction
(c) Clemmensen reduction
(d) Reimer-Tiemann reaction Hint

6. Which of the following reaction sequences are correct?
(a)

$\xrightarrow{\mathrm{NH}_{3}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONH}_{2}$ $\xrightarrow{\mathrm{P}_{2}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{2}$

(d)

Hint Correct reaction sequence for option (b) is
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH} \xrightarrow{\mathrm{SOCl}_{2}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCl} \xrightarrow{\mathrm{NH}_{3}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CONH}_{2}$ $\xrightarrow{\mathrm{P}_{2} \mathrm{O}_{5}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CN} \xrightarrow{\mathrm{H}_{2} / \mathrm{Ni}^{2}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{NH}_{2}$
And for option (d) is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COOH} \xrightarrow[\mathrm{Br}_{2}]{\text { Red } P}$

In above reaction step I is Hell-Volhard- Zelinsky reaction.
7. For the given reaction, which of the following statements is/are correct?

(a) Compound B is

(b) Compound D is

(c) Compound E is

(d) Compound B is

Hint

8. Which of the following reactants, on reaction with conc. NaOH followed by acidification gives following lactone as the main product?

Lactone

\{JEE Advanced Practice\}

(a)

(b)

(c)

(d)

Hint In option (c) compound undergoes intermolecular Cannizzaro reaction followed by acidification to give lactone.

9. Reaction of $R-\mathrm{C}-\mathrm{NH}_{2}$ with a mixture of Br_{2} and KOH gives $R-\mathrm{NH}_{2}$ as the main product. The intermediates involved in this reaction are
(a) $\mathrm{R}-\stackrel{\mathrm{O}}{\mathrm{C}}-\mathrm{NHBr}$
(b) $\mathrm{R}-\mathrm{NHBr}$
(c) $\mathrm{R}-\mathrm{N}=\mathrm{C}=\mathrm{O}$
(d)

Hint (a,c) This is an example of Hofmann-bromamide rearrangement.
Mechanism

> Rearrangement (Alkyl group migrate from C to N)

10. Tautomerism is exhibited by
(a)

(b)

(c)

(d)

Hint All those carbonyl compounds containing $\alpha-\mathrm{H}$ to sp^{2}-carbon show keto-enol tautomerism.
11. Which of the following statements are correct?
(a) $\begin{aligned} & R \\ & R\end{aligned}>\mathrm{C}=$ o reduced to $\begin{aligned} & R \\ & R\end{aligned}>\mathrm{CH}_{2}$ this equation represents Clemmensen reduction
(b) The Cannizzaro reaction of Ph transfer of hydride

(c) Acetaldehyde and benzophenone give silver mirror test
(d) $\mathrm{CH}_{3} \mathrm{CHCl}_{2}$ on heating with aq. KOH produces acetaldehyde

Hint Silver Mirror test or Tollen's test

12. Aldehydes and ketones can be reduced to alkanes by
(a) Clemmensen's method
(b) Wolff-Kishner reduction
(c) Meerwein-Ponndorf Verley reaction
(d) Bouveault-Blanc reaction
13. Which of the following reactions would give propanal?
(a) Propanoyl chloride + LBAH
(b) Ethyl cyanide + DBAH
(c) Propyl propanoate + DIBAL $-\mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O}$
(d) Ethyl propanoate + DBAH (diisobutyl aluminium hydride) $\left[\left(i-\mathrm{C}_{4} \mathrm{H}_{9}\right)_{2} \mathrm{AlH}\right]$ at $-70^{\circ} \mathrm{C}$, followed by hydrolysis Hint
(a)

(b)

(c)

$\xrightarrow{\text { DIBAL-H }}$ Propanal + PrOH
(d)

14. Which of the following are examples of aldol condensation?
(a) $2 \mathrm{CH}_{3} \mathrm{CHO} \xrightarrow{\text { Dil. } \mathrm{NaOH}} \mathrm{CH}_{3} \mathrm{CHOHCH}_{2} \mathrm{CHO}$
(b) $2 \mathrm{CH}_{3} \mathrm{COCH}_{3} \xrightarrow{\text { Dil. } \mathrm{NaOH}}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{COCH}_{3}$
(c) $2 \mathrm{HCHO} \xrightarrow{\text { Dil. } \mathrm{NaOH}} \mathrm{CH}_{3} \mathrm{OH}$
(d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{HCHO} \xrightarrow{\text { Dil. } \mathrm{NaOH}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}$

Hint For aldol condensation, reactant should have α-hydrogen atoms, so that they can undergo aldol condensation. Option (c) is an example of Cannizzaro reaction.
Option (d) is an example of Claisen-Schmidt reaction.

\{JEE Advanced Practice \}

ALDEHYDES, KETONES AND CARBOXYLIC ACIDS

15. Which of the following statements are correct for the given equation?

(a) It is an example of Lossen rearrangement reaction
(b) It is an example of Hofmann bromamide rearrangement reaction
(c) The product formed D is an ester
(d) The compound formed C is

Hint The given equation is an example of Hofmann bromamide rearrangement reaction.

16. Which of the following options are correctly matched?

Hint
(b) $\mathrm{RCOCl} \xrightarrow[\substack{\text { (ii) } \mathrm{Ag}_{2} \mathrm{O} / \mathrm{Pt} \\ \text { (ii) } \mathrm{H}_{2} \mathrm{O}}]{\text { (i) } \mathrm{CH}_{2} \mathrm{~N}_{2}} \rightarrow \mathrm{CH}_{2} \mathrm{COOH} \underset{\left.\begin{array}{c}\text { (Arndt-Eistert } \\ \text { rearangement) }\end{array}\right)}{\text { (}}$
 $\xrightarrow[\substack{\text { (ii) } \mathrm{H}_{3} \mathrm{O}^{+} \\ \text {(iii) } \mathrm{H}_{2} \mathrm{O}}]{\text { (i) } \mathrm{EtON} / \mathrm{EtOH}}$ Pentan-3-one
(It is an example of Claisen ester condensation).
17. Which of the following name reactions are correctly matched?
(a) $\mathrm{RCOCl} \xrightarrow[\text { Pd- } \mathrm{BaSO}_{4}]{\mathrm{H}_{2}} \mathrm{RCHO} \xrightarrow{\mathrm{H}_{2}} R \mathrm{CH}_{2} \mathrm{OH} \Rightarrow$ Rosenmund's reduction
(b)

(c) $\mathrm{RCONH}_{2}+\mathrm{Br}_{2}+4 \mathrm{KOH} \xrightarrow{\Delta} \mathrm{RNH}_{2}+$

$$
2 \mathrm{KBr}+\mathrm{K}_{2} \mathrm{CO}_{3}+2 \mathrm{H}_{2} \mathrm{O}
$$

\Rightarrow Hofmann-bromamide reaction.

Hint Option (d) is an example of Claisen condensation reaction.
18. Which of the following statements is/are incorrect?
(a) lodoform is obtained by the reaction of acetone with hypoiodite but not with iodide
(b) γ-keto pentanal forms a dioxime and gives negative iodoform test and Tollen's test
(c) 2-pentanone does not reduce Fehling's solution, forms a phenyl hydrazone and shows a haloform reaction.
(d) Acid chlorides easily give ketone with $R \mathrm{MgX}$ but fail with $R_{2} \mathrm{Cd}$
Hint γ-keto pentanal forms a dioxime and gives positive iodoform and Tollen's test.
Acid chlorides fail to give ketone with $R \mathrm{MgX}$, but with $R_{2} \mathrm{Cd}$ ketone is obtained easily. It is because $\stackrel{\delta-}{C}-\stackrel{\delta}{C} d$ bond is more covalent than $\stackrel{\delta-}{\mathrm{C}}-\stackrel{\delta+}{\mathrm{M}} \mathrm{g}$ bond. Since, Cd is less electropositive than Mg . Therefore, R of $R_{2} \mathrm{Cd}$ is not nucleophilic enough to add to $>\mathrm{C}=0$.
The Grignard reagent reacts faster with any ketone to produce a 3°-alcohol.
19. Which of the methods are better in the synthesis of the following compounds by wittig reagent?

(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{O}+$

(c) $\mathrm{CH}_{2}=\mathrm{O}+$

(d)

Hint The methods (a) and (d) are better in the sythesis of products by wittig reaction because it proceeds by $S_{N} 2$ mechanism. The reactivity of $R X$ in $\mathrm{S}_{\mathrm{N}} 2$ reaction is $1^{\circ}>2^{\circ}>3^{\circ} R X$ and in (a) and (d) $1^{\circ} R X$ is used.

\{JEE Advanced Practice\}

20. In the following sequence, products A, B and C are formed represents a reagent.
Hex-3-ynal $\xrightarrow[\text { (ii) } \mathrm{Pr}_{3}]{\text { (i) } \mathrm{NaBH}_{4}} A \xrightarrow[\substack{\text { (ii) } \mathrm{CO}_{2} \\ \text { (iii) } \mathrm{H}_{3} \mathrm{o}^{+}}]{\text {(i) } \mathrm{Mg} / \text { ther }} B \xrightarrow{C}$

The structure of compounds A, B and C, respectively are re A

A
B
c
(a)

 SOCl_{2}

(c)

 $\mathrm{S}_{2} \mathrm{OCl}_{2}$
21.

Which of the following are correct for the given reaction?
(a) The compound formed D is

(b) The compound formed D is

(d) The compound formed B is

Hint

22. Which of the following reactions are correct?
(a)

(b)

(c)

(d)

Hint
(a)

(b)

(c)

(d)

23. Which of the following reactions are correct?

(b)

(c)

(d)

Hint
(a)

24. The compound(s) soluble in $a q$. NaOH solution is/are
(a)

(b)

(c)

(d)

Hint

are acidic in nature and hence soluble in aq. NaOH .
25. Which of the following statements are correct about the given reaction?

(a) The formation of (C) proceeds through the formation of carbocation.
(b) The formation of (C) proceeds through the formation of acyllium ion.
(c) The product $(C$) is Me
(d) The product
(C) is Me

26. Which of the following statements are correct about the trans-esterification reaction, catalysed by $\mathrm{H}_{3} \mathrm{O}^{+}$ $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right.$ or dry HCl$)$ or $\mathrm{RO}^{-}(\mathrm{EtONa})$?

(a) Rate of trans-esterification is dependent on the concentration of ester
(b) Isotopic oxygen is present in the new alcohol (Et $\left.{ }^{*} \mathrm{H}\right)$ formed
(c) It involves tetrahedral intermediate in which the hybridisation of C of the $(\mathrm{C}=\mathrm{O})$ group changes $s p^{2}$ to $s p^{3}$
(d) Alcohol (PrOH) is taken in excess to shift the equilibrium to RHS Hint The rate of trans-esterification does not depend only on the concentration of ester.
27. Among the following compounds, which will react with acetone to give a product containing $>-\mathrm{C}=\mathrm{N} —$?
(a) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NH}_{2}$
(b) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$
(c) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHC}_{6} \mathrm{H}_{5}$
(d) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NHNH}_{2}$
Hint

28. The major product of the following reaction is

(a)

(b)

(c)

(d)

Hint

29. The major product of the reaction is
(2015 Adv.)

(a)

(b)

(c)

(d)

Hint

30. Different possible thermal decomposition pathways for peroxyesters are shown below.

Answers

1. (d)
2. (a, c, d)
3. (c)
4. (a, b, d)
5. (b,d)
6. (a, c)
7. (b, c)
8. (b,c)
9. (a, c)
10. (a, d)
11. $(\mathrm{a}, \mathrm{c}, \mathrm{d})$
12. (a, b)
13. (a, b, c, d)
14. (a, b)
15. (b,c,d)
16. (a, b)
17. (a, b, c)
18. (b,d)
19. (a,d)
20. (a)
21. (a, c)
22. (a,b,c,d)
23. (a, c)
24. (a, b, c)
25. (b, c)
26. (b, c, d)
27. (a, d)
28. (a)
29. (c)
30. (a,b,c,d)

TEST Zom

 Simulator Test Series to Zoom up Your Board Preparations

 Simulator Test Series to Zoom up Your Board Preparations
 Board Exam Scale UP

 Questions to Measure Your Problem Solving Skills

 Questions to Measure Your Problem Solving Skills}

General Instructions

1. All questions are compulsory.
2. Q. no. 1 to 5 are very short answer questions and carry 1 mark each.
3. Q. no. 6 to 10 are short answer questions and carry 2 marks each.
4. Q. no. 11 to 22 are also short answer questions and carry 3 marks each.
5. Q. no. 23 is a value based question and carry 4 marks.
6. Q. no 24 to 26 are long answer questions and carry 5 marks each.
(1) Very Short Answer Type Questions
7. Which one out of NH_{3} and CO_{2}, will be adsorbed more readily on the surface of charcoal? Give reason. Hint NH_{3}, as it has greater intermolecular forces of attraction.
8. Out of benzyl chloride and cyclohexyl chloride, which one would undergo $\mathrm{S}_{\mathrm{N}} 2$ reaction faster and why?
Hint Cyclohexyl chloride would react faster because benzyl chloride is more stable due to $+l$-effect and resonance.
9. Write the IUPAC name of the compound.

Hint 3-hydroxybutanoic acid
4. Complete the following chemical equation,

$$
\mathrm{P}_{4}+10 \mathrm{SO}_{2} \mathrm{Cl}_{2} \longrightarrow
$$

Hint $\mathrm{P}_{4}+10 \mathrm{SO}_{2} \mathrm{Cl}_{2} \longrightarrow 4 \mathrm{PCl}_{5}+10 \mathrm{SO}_{2} \uparrow$
5. Which point defect in crystals of a solid does not change the density of the solid?
Hint Frenkel defect

Short Answer Type Questions

6. Draw the structure of the following compounds:
(i) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$
(ii) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
7. The resistance of a conductivity cell containing 0.001 M KCl solution at 298 K is 1500Ω. What is the cell constant, if the conductivity of 0.001 M KCl solution at 298 K is $0.146 \times 10^{-3} \mathrm{Sm}^{-1}$?

Hint Cell constant $=$ Conductivity (κ) \times Resistance (R)
8. Write the IUPAC name of
(i) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{NOCl}_{2}\right] \mathrm{Br}_{2}$
(ii) $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{4}\right] \mathrm{Cl}$

Hint (i) Triamminedichloridonitrosylplatinum (IV) bromide.
(ii) Tetraamminedichloridochromium (III) chloride.
9. Describe the following giving the relevant chemical equation in each case:
(i) Carbylamine reaction
(ii) Hofmann's bromamide reaction
or
Draw the structures of major monohalo products in each of the following reactions:
(i)

(ii)

Hint
(i) $\square-\mathrm{CH}_{2} \mathrm{Cl}$
(ii)

BOARD EXAM SCALE UP\}

10. Compound A having molecular formula $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{Br}$ reacts with $a q . \mathrm{KOH}$ solution. The rate of reaction depends upon the concentration of the compound A only. When another optically active isomer B of this compound reacts with $a q$. KOH solution then rate of reaction is found to be dependent on concentrations of compound A and KOH both. Write down the structural formulae for both compounds A and B.

Hint

(3) Short Answer Type Questions

11. Give reasons for the following:
(i) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{P}=\mathrm{O}$ exists but $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}=$ Odoes not.
(ii) Oxygen has less electron gain enthalpy with negative sign than sulphur.
(iii) $\mathrm{H}_{3} \mathrm{PO}_{2}$ is a stronger reducing agent than $\mathrm{H}_{3} \mathrm{PO}_{3}$.

Hint (i) Nitrogen cannot form $d \pi-p \pi$ multiple bond, while phosphorus can form $d \pi-p \pi$ multiple bond.
(ii) Because size of oxygen is smaller than sulphur.
(iii) The acids which contain $\mathrm{P}-\mathrm{H}$ bonds, have strong reducing properties.
12. At $25^{\circ} \mathrm{C}$, the vapour pressures of benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)$ and toluene $\left(\mathrm{C}_{7} \mathrm{H}_{8}\right)$ are 93.4 torr and 26.9 torr, respectively. A solution is made by mixing 35.0 g of benzene and 65.0 g of toluene. At what applied pressure, in torr, will this solution boil at $25^{\circ} \mathrm{C}$?
Hint $p_{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}}=p_{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}}^{\circ} \cdot \chi_{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}}$

$$
p_{\text {total }}=p_{\mathrm{C}_{6} \mathrm{H}_{6}}+p_{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}}=52.7 \text { torr. }
$$

13. Find the stability constant of the complex $\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$ formed in the reaction,

$$
\mathrm{Zn}^{2+}+4 \mathrm{NH}_{3} \rightleftharpoons\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}
$$

Given that, $E_{\mathrm{Zn}^{2}+\mathrm{Zn}}^{\circ}=-0.76 \mathrm{~V}$
and $E_{\left[\mathrm{Zn}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+} / \mathrm{Zn}, 4 \mathrm{NH}_{3}}^{\circ}=1.03 \mathrm{~V}$
Hint $E_{\text {cell }}^{\circ}=\frac{0.0591}{n} \log k ; k=1.371 \times 10^{9}$
14. Explain, why
(i) Noble gases have very low melting and boiling points?
(ii) Neon is used in illuminating warning signal?
(iii) ICl is more reactive than I_{2} ?
15. (i) Write the electronic configuration of $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$ on the basis of crystal field splitting theory.
(ii) Why $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ has magnetic moment value of 5.92 BM , whereas $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ has a value of only 1.74 BM?
(iii) What type of isomerism is shown by $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{NO}_{2}\right]^{2+}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{ONO}\right]^{2+}$? Hint (i) $t_{{ }_{g}}^{6} e_{g}^{0}$
(ii) CN^{-}ligand produces strong field means splitting of d-orbitals will be large, whereas $\mathrm{H}_{2} \mathrm{O}$ ligand produce weak field means splitting of d-orbital will be small.
(iii) Linkage isomerism
16. (i) Describe Bredig's Arc method briefly.
(ii) Define collodion.
(iii) Some reactants give different products using different catalysts. Explain why?
17. Account for the following.
(i) Primary amines $\left(R-\mathrm{NH}_{2}\right)$ have higher boiling points than tertiary amines ($R_{3} \mathrm{~N}$).
(ii) Aniline does not undergo Friedel-Crafts reaction.
(iii) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}$ is more basic than $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{~N}$ in an aqueous solution.
Hint (i) Intermolecular hydrogen bonding is present in primary amines.
(ii) Aniline with AlCl_{3} (catalyst) forms salt.
(iii) Basic strength depends upon the stabilisation of the conjugate acids by H -bonding, steric hindrance and + l-effect.
18. Bring out the following conversions:
(i) 1-propanol to 4-hydroxyhexanal.
(ii) Bromobenzene to 1-phenylethanol.
(iii) Benzene to m-nitroacetophenone.

(ii)

(iii)

19. An aromatic compound X (molecular formula, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}$) gives positive 2, 4-DNP test. It gives a yellow precipitate of compound Y on treatment with iodine and sodium hydroxide solution. Compound X does not give Tollen's or Fehling's test. On drastic oxidation with potassium permanganate it forms a carboxylic acid Z (molecular formula, $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}$), which is also formed alongwith the yellow compound in the above reaction. Identify X, Y and Z and write all the reactions involved.

BOARD EXAM SCALE UP

Acetophenone-2, 4-dinitro
phenyl hydrazone

20. (i) Give two examples of macromolecules that are chosen as drug targets.
(ii) What are antiseptics? Give an example.
(iii) Why is use of aspartame limited to cold foods and soft drinks?

or

Write the name of atleast one polymer used for making of following materials, alongwith writing the monomer(s) of them.
(i) Synthetic fibres
(ii) Electrical switches
(iii) Paints and lacquers

Hint (i) Nucleic acids, proteins.
(ii) For example - $\mathrm{H}_{2} \mathrm{O}_{2}$
(iii) Aspartame decomposes at baking or cooking temperatures.
or
(i) Nylon-6,6 [Monomers: Adipic acid and hexamethylenediammine].
(ii) Bakelite [Monomers: Phenol and formaldehyde].
(iii) Glyptal [Monomers: Ethylene glycol and phthalic acid].
21. Write the chemical equations for the following reactions:
(i) Stephen reaction
(ii) Etard reaction
(iii) Hell-Volhard-Zelinsky (HVZ) reaction.
22. (i) Write the structural difference between a nucleoside and a nucleotide.
(ii) Justify that the two strands of DNA are complimentary and not the identical one.
Hint (i) When nucleoside is linked to phosphoric acid at 5'-position of sugar moiety, we get a nucleotide.
(ii) The two strands of DNA are complementary to each other because the hydrogen bonds are formed between specific pairs of bases.

Value Based Question

23. Mohan, a class 12th student fainted, while playing badminton in his school. Mr. Naveen, the sports teacher in his school immediately fetched him a glass of glucose water and took him to a nearby hospital, where he was diagnosed with 'acute anaemia.'The doctor prescribed him, iron and multivitamis supplements. Mr. Naveen paid the medical bills. After sometime Mohan was diagnosed to be normal.
Answer the following questions based on the given passage:
(i) Name the vitamin whose deficiency causes anaemia.
(ii) Name the protein which is composed of iron and is found in blood.
(iii) Why Mr. Naveen immediately fetched glucose water to Mohan?
(iv) What are the values associated with Mr. Naveen? Hint (i) Vitamin- B_{12}
(ii) Haemoglobin
(iii) Glucose provides instant energy, as it does not need to be digested.
(iv) Mr. Naveen is knowledgeable, caring and responsible.

5) Long Answer Type Questions

24. (i) How many alcohols with molecular formula, $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ are chiral in nature?
(ii) How are the following conversions carried out
(a) phenol to acetophenone
(b) ethanol to methanol?
(iii) Write the IUPAC name of the major product obtained in the following reaction.

or
(i) Write the mechanism of the reaction of acid $\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)$ with ethene.
(ii) Identify A and B in the following reactions:
(a)

(b)

(iii) Give the structure and the IUPAC name of the major product obtained in the following reaction:

BOARD EXAM SCALE UP\}

25. (i) Complete the following chemical equations.
(a) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(a q)+\mathrm{H}_{2} \mathrm{~S}(g)+\mathrm{H}^{+}(a q) \longrightarrow$
(b) $\mathrm{Cu}^{2+}(a q)+\mathrm{I}^{-}(a q) \longrightarrow$
(ii) How would you account for the following?
(a) The oxidising power of oxo anions are in the order: $\mathrm{VO}_{2}^{+}<\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}<\mathrm{MnO}_{4}^{-}$
(b) The third ionisation enthalpy of manganese ($Z=25$) is exceptionally high.
(c) Cr^{2+} is a stronger reducing agent than Fe^{2+}.
or
(i) Metallic radii of few transition elements are given below.

Elements	Fe	Co	Ni	Cu
Metalic radii \backslash pm	126	125	125	128

Arrange these elements in increasing order of their densities.
(ii) Write the reaction involve, when $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution is added to Sn^{2+} ion.
(iii) Colour of KMnO_{4} disappears, when oxalic acid is added to its solution in acidic mediun.
Hint
(i) (a) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}(\mathrm{aq})+3 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+8 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow$

$$
2 \mathrm{Cr}^{3+}(\mathrm{aq})+3 \mathrm{~S}(\mathrm{~s})+7 \mathrm{H}_{2} \mathrm{O}(l)
$$

(b) $2 \mathrm{Cu}^{2+}(\mathrm{aq})+4{I^{-}}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}(\mathrm{~s})+\mathrm{I}_{2}(\mathrm{~g})$
(ii) (a) It is because V in its lower oxidation state is less stable than Cr which in turn is less stable than Mn .
(b) Because the third electron has to be removed from stable half-filled $3 d$-orbitals.
(c) $d^{4} \rightarrow d^{3}$ transition occurs in Cr^{2+} to Cr^{3+}, while
$d^{6} \rightarrow d^{3}$ transition occurs in Fe^{2+} to Fe^{3+}.
or
(i) Increasing order of densities of the metals are:

(iii) Due to addition of oxalic acid, Mn^{7+} (coloured) reduce to Mn^{2+} (colourless).
26. (i) Plot the graph between concentration and time for a zero order reaction.
(ii) The following results have been obtained during the experiments based on kinetic studies of the reaction.

$$
2 A+B \longrightarrow C+D
$$

Exp.no	$[A] / \mathrm{mol} \mathrm{L}^{-1}$	$[B] / \mathrm{mol} \mathrm{L}^{-1}$	Initial rate of formation of $D / \mathrm{mol} \mathrm{L}^{-1} \mathrm{~min}^{-1}$
1.	0.1	0.1	6.0×10^{-3}
2.	0.2	0.2	7.2×10^{-2}
3.	0.3	0.4	2.88×10^{-1}
4.	0.4	0.1	2.40×10^{-2}

Calculate the rate law and the rate constant for the above reaction.
or
(i) For a first order reaction, show that time required for 99% completion is twice, the time required for the completion of 90% of reaction.
(ii) Consider the following first order gas phase decomposition reaction

$$
X(g) \longrightarrow Y(g)+Z(g)
$$

The initial pressure of the system was p. After lapse of time t total pressure of the system was increased by a units and became p_{x}. Find the rate constant (k) for the reaction.
Hints
(i)

(ii) Rate $=k[A][B]^{2}$

Rate constant $=6.0 \mathrm{~mol}^{-2} L^{2} \mathrm{~min}^{-1}$
or
(i) $t=\frac{2.303}{k} \log \frac{\text { Initial concentration }}{\text { Final concentration }}$
$t_{99 \%}=\frac{2.303}{k} \log \frac{100}{1}=\frac{4.606}{k}$
$t_{90 \%}=\frac{2.303}{k} \log \frac{100}{10}=\frac{2.303}{k}$
$\Rightarrow \quad t_{99 \%}: t_{90 \%}=2: 1$
(ii) Rate constant, $k=\frac{2.303}{t} \log \frac{p_{i}}{2 p_{i}-p_{t}}$

Notice Board

IPUCETwillbeonMay8,2 016

Indraprastha University Common Entrance Test (IPU CET) 2016 will be conducted on May 8 (Sunday), 2016 for admissions to various UG engineering programmes, says a notification by the conducting authority. According to the notification released by Guru Gobind Singh Indraprastha University, IPU CET 2016 will be held between 2 pm to 4.30 pm on May 8, 2016 for admissions to B. Tech programmes, while the result will be declared latest by May 24 , 2016. Candidates, who fulfill the eligibility criteria and wish to appear in IPU CET 2016, need to fill up the application form and submit it till March 29, 2016 (upto 4 pm).

SQuestions to Measure Your Problem Solving Skills

1. What is the covalency of nitrogen in $\mathrm{N}_{2} \mathrm{O}_{5}$?

Hint Covalency is the number of shared pair of electrons by an atom in a compound.
2. Write the IUPAC name of the given compound,

Hint Propanoyl propanoate
3. Out of BaCl_{2} and KCl , which one is more effective in causing coagulation of a negatively charged colloidal sol? Give reason.
Hint According to Hardy-Schulze rule, greater the valency of the flocculating ion added to the colloid, greater is its power to cause coagulation.
4. Which of the following is a natural polymer?

Buna-S, Proteins, PVC.
Hint Proteins.
5. A compound contains two types of atoms X and Y. It crystallises in a cubic lattice with atoms X at the corners of the unit cell and atom Y at the body-centred. What is the formula of the compound? Hint The formula of the compound is XY.
6. What is lanthanoid contraction? What is its effect on the chemistry of the elements, which follow the lanthanoids?
Hint The radii of the members of 3rd transition series is very similar to those of 2nd transition series and hence, have same physical and chemical properties.
7. State Kohlrausch's law of independent migration of ions. Why does the conductivity of a solution decrease with dilution?
Hint The conductivity of a solution is related with the number of ions present per unit volume of the solution.
8. Name the reagents used in the following reactions:

(ii)

Hint (i) $\mathrm{KMnO}_{4}-\mathrm{KOH}$
(ii) Rosenmund reduction
9. A solution prepared by dissolving 8.95 mg of a gene fragment in 35.0 mL of water, has an osmotic pressure of 0.335 torr at $25^{\circ} \mathrm{C}$. Assuming that the gene fragment is a non-electrolyte, calculate its molar mass.
or
How much urea (molar mass $=60 \mathrm{~g} \mathrm{~mol}^{-1}$) should be dissolved in 50 g of water, so that its vapour pressure at room temperature is reduced by 25%. Calculate the molality of the solution obtained.
Hint $M_{2}=\frac{w R T}{\pi V}=14193.3 \mathrm{~g} \mathrm{~mol}^{-1}$

$$
\frac{p^{\circ}-p_{s}}{p^{\circ}}=\frac{w_{2} / m_{2}}{w_{1} / m_{1}+w_{2} / m_{2}}=x_{2} \text { and Molality }=\frac{w_{2} \times 1000}{m_{2} \times w_{1}}
$$

10. (i) Write the Nernst equation and compute the emf of the following cell at 298 K .
$\operatorname{Sn}(s)\left|\mathrm{Sn}^{2+}(0.05 \mathrm{M})\right|\left|\mathrm{H}^{+}(0.02 \mathrm{M})\right| \mathrm{H}_{2}, 1 \mathrm{~atm} \mid \mathrm{Pt}$
Given that $E_{\mathrm{Sn}^{2}+/ \mathrm{Sn}}^{\circ}=-0.14 \mathrm{~V}$
(ii) Calculate the degree of dissociation of acetic acid at 298 K . Given that
$\Lambda_{\mathrm{m}\left(\mathrm{CH}_{3} \mathrm{COOH}\right)}=11.70 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
$\Lambda_{\mathrm{m}\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)}^{\circ}=40.90 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
$\Lambda_{\mathrm{m}\left(\mathrm{H}^{+}\right)}^{\mathrm{o}}=349.1 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
Hint (i) $E_{\text {cell }}=E_{\text {cell }}^{\circ}-\frac{0.059}{n} \log \frac{\left[\mathrm{Sn}^{2+}\right]}{\left[\mathrm{H}^{+}\right]^{2}} \simeq 0.08 \mathrm{~V} ; E_{\text {cell }}=0.14 \mathrm{~V}$
(ii) Degree of dissociation, $\alpha=\frac{\Lambda_{m}}{\Lambda_{m}^{\circ}}=3.0 \times 10^{-2}$

\{BOARD EXAM SCALE UP\}

11. (i) In reference to Freundlich adsorption isotherm write the expression for adsorption of gases on solids in the form of an equation.
(ii) Write an important characteristic of lyophilic sols.
(iii) Based on the type of particles of dispersed phase, give one example of each associated colloid and multimolecular colloid.
Hint (i) $\frac{x}{m}=K p^{1 / n}$
(ii) Lyophilic sols are reversible sols. These are quite stable and cannot be coagulated.
(iii) Associated colloid e.g. Soap Multimolecular colloid e.g. Gold sol.
12. (i) How do we separate two sulphide ores by froth floatation method? Explain with an example.
(ii) Give two requirements for vapour phase refining.
(iii) How is copper extracted from low grade copper ores?
Hint
(i) In this method, the surface of sulphide ores is preferentially wetted by oil, while that of gangue is preferentially wetted by water.
(ii) (a) The metal should form a volatile compound with a suitable reagent.
(b) The volatile compound should be easily decomposable so that we can get pure metal easily.
(iii) Leaching
13. Silver crystallises in fcc lattice, if the edge length of the unit cell is $4.07 \times 10^{-8} \mathrm{~cm}$ and the density of the crystal is $10.5 \mathrm{~g} \mathrm{~cm}^{-3}$, calculate the atomic mass of silver. $\left[N_{A}=6.02 \times 10^{23}\right.$ atoms mol^{-1}]

$$
\text { Hint Density, } d=\frac{Z \times M}{a^{3} \times N_{A}} \quad \therefore M=106.54 \mathrm{~g} \mathrm{~mol}^{-1}
$$

14. (i) How would you account for the followings?
(a) E° values for Mn, Ni and Zn are more negative than expected
(b) The halides of transition elements becomes more covalent with increasing oxidation state of the metal.
(ii) Complete the reaction, $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+8 \mathrm{H}^{+}+3 \mathrm{H}_{2} \mathrm{~S} \longrightarrow$

Hint (i) (a) Mn^{2+} and Zn^{2+} have half-filled and completely filled configurations respectively. For, $\mathrm{Ni}^{2+}, E^{\circ}$ value is related to the highest negative enthalpy of hydration.
(b) As per Fajan's rule, as the size of metal ion decreases, covalent character of the bond formed increases
(ii) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}+8 \mathrm{H}^{+}+3 \mathrm{H}_{2} \mathrm{~S} \longrightarrow 2 \mathrm{Cr}^{3+}+7 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{~S}$
15. (i) Write all the geometrical isomers of complex $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)(\mathrm{Cl})(\mathrm{Py})(\mathrm{Br})\right]$ and how many of these will exhibit optical isomerism?
(ii) What happens to the colour of coordination compound $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{Cl}_{3}$ when heated gradually?
(iii) Why coordination complexes are preferred in the electrolytic bath for electroplating?

Hint (i) Three geometrical isomers are possible and none will exhibit optical isomerism.
(ii) Its colour becomes lighter on heating.
(iii) Electroplating of metals involves the use of complex salts as electrolytes. $\mathrm{K}\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]$ is extensively used in silver plating.
16. The resistance of a conductivity cell when filled with 0.05 M solution of an electrolyte X is 100Ω at $40^{\circ} \mathrm{C}$. The same conductivity cell filled with 0.01 M solution of electrolyte Y, has a resistance of 50Ω. The conductivity of 0.05 M solution of electrolyte X is $1.0 \times 10^{-4} \mathrm{~S} \mathrm{~cm}^{-1}$. Calculate
(i) cell constant
(ii) conductivity of $0.01 \mathrm{M} Y$ solution
(iii) molar conductivity of $0.01 \mathrm{M} Y$ solution.

Hint (i) Cell constant, $G^{*}=$ Resistance $(R) \times$ Conductivity (κ)

$$
\begin{aligned}
& =10^{-2} \mathrm{~cm}^{-1} \\
& \text { (ii) Conductivity, } \kappa=\frac{\operatorname{Cell} \operatorname{constant}\left(G^{\star}\right)}{\operatorname{Resistance}(R)}=2 \times 10^{-4} \mathrm{~S} \mathrm{~cm}^{-1} \\
& \text { (iii) Molar conductivity, } \Lambda_{\mathrm{m}}=\frac{\kappa \times 1000}{\text { Molarity }}=20 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}
\end{aligned}
$$

17. Explain how the phenomenon of adsorption finds application in each of the following processes?
(i) Production of vacuum
(ii) Heterogeneous catalysis
(iii) Froth floatation process
18. Give reasons.
(i) n-butyl bromide has higher boiling point than t-butyl bromide.
(ii) Racemic mixture is optically inactive.
(iii) The presence of nitro group $\left(-\mathrm{NO}_{2}\right)$ at o / p positions increases the reactivity of haloarenes towards nucleophilic substitution reactions.
Hint (i) Higher the surface area, higher will be the boiling point of a compound.
(ii) In racemic mixture the two enantiomers rotate the plane-polarised light in opposite directions, the rotations cancel each other because these enantiomers are present in equal amounts.
(iii) The reactivity of haloarenes can be increased by the presence of an electron withdrawing group at o/p positions.
19. Predict the products of the following reactions:
(i)
 $\xrightarrow[\text { (ii) Anhyd. } \mathrm{AlCl}_{3} / \mathrm{CuCl}]{\text { (i) } \mathrm{CO}, \mathrm{HCl}}$
(ii)

(i) O_{3}

$\xrightarrow[\text { (ii) } \mathrm{HOO}^{+}]{\text {(i) } \mathrm{Me} \mathrm{MgBr}}$

BOARD EXAM SCALE UP\}

Hint (i) Gattermann-Koch reaction
(ii)

(iii)

20. How do you convert the followings?
(i) Benzene to phenol
(ii) Ethyl benzene to benzoic acid
(iii) Toluene to methyl benzoate

Hint (i) Benzene is sulphonated with oleum and then on acidification gives phenol.
(ii) Oxidation by KMnO_{4} and alkaline hydrolysis.
(iii) Oxidation followed by esterification.
or
(i) Write the mechanism of the following reaction:

3-methyl-2-butanol

2-methyl-2-butene

Hint (i) Step I Formation of protonated alcohol.
Step II Formation of carbocation.
Step III Formation of alkene by elimination of a proton.
(ii) Write the mechanism involved in the synthesis of salicylaldehyde from phenol.
Hint Reimer-Tiemann reaction.
21. (i) Draw the structure of amylopectin.
(ii) Differentiate between a globular protein and a fibrous protein.
(iii) Name the food sources and the deficiency diseases caused due to lack of vitamins A, C, E and K .
22. (i) Which of the carbon-atoms present in the molecule given below are asymmetric.

(ii) Discuss the role of Lewis acid in the preparation of aryl bromide and chlorides in the dark.
(iii) Why iodoform has appreciable antiseptic property?

Hint (i) If a carbon atom satisfies all of its four valencies with four different groups then it is termed as asymmetric/chiral carbon.
(ii) Lewis acids are electron deficient species. They are responsible for inducing heterolytic fission in halogen molecule.
(iii) Antiseptic properties of iodoform is due to the libration of I_{2} not because of iodoform itself.
23. Tranquilisers are the drugs which are used for the treatment of stress, mild or even severe mental diseases.

These drugs relieve stress, irritability and anxiety by inducing a sense of well being. There are also the essential component of sleeping pills. Now, give the answers of the following questions.
(i) Write the structure of chlorodiazepoxide.
(ii) Why would tranquilisers not been taken regularly for very long period?
(iii) Give an example of tranquilisers used to treat mood changes and depression.
(iv) What values are not possessed by Peoples who commit suicides via sleeping pills?
24. (i) Accounts for the following:
(a) $\mathrm{Bi}(\mathrm{V})$ is a stronger oxidising agent than $\mathrm{Sb}(\mathrm{V})$.
(b) Nitrogen exists as gas whereas phosphorus exists as a solid.
(c) The $\mathrm{N}-\mathrm{O}$ bond in NO_{2}^{-}is shorter than the $\mathrm{N}-\mathrm{O}$ bond in NO_{3}^{-}.
(ii) Draw the structures of the following compounds:.
(a) $\mathrm{N}_{2} \mathrm{O}_{5}$
(b) Rhombic sulphur.

Hint
(i) (a) Stability of +3 oxidation state increases down the group due to inert pair effect.
(c) Single $N-N$ bond is weaker than single $P-P$ bond due to high interelectronic repulsion of the non-bonding electrons, owing to small bond length.
or
(i) Which allotrope of phosphorus is more reactive and why?
(ii) How are the supersonic jet aeroplanes responsible for the depletion of ozone layers?
(iii) F_{2} has lower bond dissociation enthalpy than Cl_{2}. Why?
(iv) Which noble gas is used in filling balloons for meteorological observations?
(v) Complete the equation: $\mathrm{XeF}_{2}+\mathrm{PF}_{5} \longrightarrow$ Hint
(i) White phosphorus because it is highly unstable molecule.
(ii) $\mathrm{NO}(\mathrm{g})+\mathrm{O}_{3}(\mathrm{~g}) \longrightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
(iii) F -atoms has smaller size, while Cl -atoms has comparatively larger in size
(iv) Helium
(v) $\mathrm{XeF}_{2}+\mathrm{PF}_{5} \longrightarrow[\mathrm{XeF}]^{+}\left[\mathrm{PF}_{6}\right]^{-}$
25. Compound (X), containing chlorine, on treatment with strong ammonia gives a solid (Y), which is free from chlorine. Composition of (Y), upon analysis is found as : $\mathrm{C}=49.31 \%, \mathrm{H}=9.59 \%$ and $\mathrm{N}=19.18 \%$ and reacts with Br_{2} and caustic soda to give a basic compound (Z). (Z) reacts with HNO_{2} to given ethanol. Suggest structures for (X), (Y) and (Z).
Hint The molecular formula of ' Y ' is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}$ which undergoes Hofmann bromamide reaction to give $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}$ (Z).
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl}$ on reaction with ammonia give $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CONH}_{2}(Y)$.

BOARD EXAM SCALE UP\}

Or
(i) Give one chemical test to distinguish between the following pairs of compound.
(a) Ethylamine and aniline
(b) Aniline and N -methyl aniline
(ii) How will you convert aniline to o-bromoaniline?
(iii) Arrange the followings in increasing order of their basic strength.
(a)

(b) NH_{3}
(c)

(d)

Hint (i) (a) Aniline gives azo dye test while ethylamine does not give this test.
(b) Aniline gives carbylamine test but N -methyl aniline being 2° amine does not give this test.
(ii) Step I Sulphonation, acetylation.

Step II Bromination ($\mathrm{Br}_{2} / \mathrm{CH}_{3} \mathrm{COOH}$).
Step III Desulphonation.
Step IV Hydrolysis.
26. (i) Dinitrogen pentoxide decomposes according to the following equation,

$$
2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \longrightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(g)
$$

This first order reaction was allowed to proceed at $40^{\circ} \mathrm{C}$ and the data obtained as follows:

$\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]\left(\mathrm{mol} \mathrm{L}^{-1}\right)$	Time (min)
0.400	0.00
0.289	20.0
0.209	40.0
0.151	60.0
0.109	80.0

(a) Calculate the rate constant.
(b) What will be the concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ after 100 min ?
(c) Calculate the initial rate of reaction.
(ii) The decomposition of A into product (P) has a value of k as $4.5 \times 10^{3} \mathrm{~s}^{-1}$ at $10^{\circ} \mathrm{C}$ and energy of activation $60 \mathrm{~kJ} \mathrm{~mol}^{-1}$. At what temperature would k be $1.5 \times 10^{4} \mathrm{~s}^{-1}$?
Hint
(i) (a) First order reaction, $k=\frac{2.303}{t} \log \frac{[R]_{0}}{[R]}=0.016 \mathrm{~min}^{-1}$
(b) $\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=0.078 \mathrm{M}$
(c) Rate $=k\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]=6.49 \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~s}^{-1}$.
(ii) $\log \frac{k_{2}}{k_{1}}=\frac{E_{a}}{2.030 R}\left[\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right] ; T_{2}=297 \mathrm{~K}$
or
(i) The decomposition of phosphine, PH_{3} proceeds according to the following equation,

$$
4 \mathrm{PH}_{3}(g) \longrightarrow \mathrm{P}_{4}(g)+6 \mathrm{H}_{2}(g)
$$

It is found that the reaction follows the following rate equation, Rate $=k\left[\mathrm{PH}_{3}\right]$
The half-life of PH_{3} is 37.9 s at $120^{\circ} \mathrm{C}$.
(a) How much time is required for $3 / 4$ th of PH_{3} to decompose?
(b) What fraction of the original sample of PH_{3} remains behind after 1 min ?
(ii) The rate of a reaction becomes four times when the temperature changes from 293 K to 313 K . Calculate the energy of the activation $\left(E_{a}\right)$ of the reaction assuming that it does not change with temperature $\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \log 4=0.6021\right.$).
Hint
(i) (a) For first order reaction,

$$
k=\frac{0.693}{t_{1 / 2}}, t=\frac{2.303}{k} \log \frac{[R]_{0}}{[R]}=75.76 \mathrm{~s}
$$

(b) $k=\frac{2.303}{t} \log \frac{[R]_{0}}{[R]}, \frac{[R]}{[R]_{0}}=0.33$
(ii) $\log \frac{k_{2}}{k_{1}}=\frac{E_{a}}{2.303 R}\left(\frac{T_{2}-T_{1}}{T_{1} T_{2}}\right) ; \quad E_{a}=52.86 / \mathrm{kJmol}^{-1}$

CBSE CHAPTERWISE SOLVED PAPERS(2015-2008)

with Latest CBSE Sample Papers \& SOLVED PAPER 2015 (Delhi \& AII India)

Rarry! win ₹1000 in Cash

Just Solve \& Send

Knowledge Coefficient Quizzer (No.15)

1. If ionisation constant of benzoic acid is 6.46×10^{-5} and $K_{\text {sp }}$ for silver benzoate is 2.5×10^{-13}, how many times is silver benzoate more soluble in a buffer of pH 3.19 compared to its solubility in pure water?
(a) 3.00 times
(b) 3.32 times
(c) 2.50 times
(d) 2.90 times
2. Which of the following statements is/are correct?
I. In SiCl_{4}, the central Si -atom has four electrons but it can expand its covalence beyond four due to presence of vacant d-orbitals and accept two more Cl^{-}ions to form $\left[\mathrm{SiCl}_{6}\right]^{2-}$.
II. On heating, boric acid loses water in three different stages at different temperatures and ultimately give boron trioxide.
III. Duralumin is used to make aircraft body.

Choose the correct option.
(a) Only I
(b) II and III
(c) I and II
(d) I and III
3. Which of the following reactions is not correct?
(a)

(b)

(c)

(d)

4. Drugstores sell 3\% aqueous hydrogen peroxide that is used as an antiseptic. Hydrogen peroxide, $\mathrm{H}_{2} \mathrm{O}_{2}$ decomposes to water and oxygen. Calculate the volume of oxygen produced if 250 mL of 3% hydrogen peroxide decomposes fully at 750 mm Hg and $22^{\circ} \mathrm{C}$.
(a) 3.5 L
(b) 2.0 L
(c) 3.0 L
(d) 4.0 L
5. In muscle cells under the condition of vigorous exercise, glucose is converted to lactic acid, by the chemical reaction given below:

$$
\begin{gathered}
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \longrightarrow 2 \mathrm{CH}_{3} \mathrm{CHOHCOOH} ; \Delta \mathrm{G}^{\circ}=-197 \mathrm{~kJ} \\
\text { Glucose }
\end{gathered} \quad \text { Lactic acid }
$$

If all of the Gibbs free energy from this reaction was used to convert ADP to ATP, how many moles of ATP could be produced per mole of glucose?
(a) 6.46
(b) 4.66
(c) 4.30
(d) 6.04
6. Match the following Columns.

	Column I (Polymer)	Column II (Use)	
A.	Lucite	p.	Cooking pans coatings
B.	Teflon	q.	Building material insulation
C.	Styrofoam	r.	Indoor-outdoors carpets
D.	Herculon	s.	High quality transparent objects

Codes

	A	B	C	D
(a)	p	s	r	q
(b)	s	p	q	r
(c)	q	r	s	p
(d)	r	q	p	s

7. If enthalpy of vaporisation for chlorofluorocarbon $\left(\mathrm{CCl}_{2} \mathrm{~F}_{2}\right)$, enthalpy of fusion for solid ice and specific heat capacity for liquid water are $289 \mathrm{~J} / \mathrm{g}$, $6.02 \mathrm{~kJ} / \mathrm{mol}$ and $4.184 \mathrm{Jg}^{-1} \mathrm{C}^{-1}$ respectively, what mass of $\mathrm{CCl}_{2} \mathrm{~F}_{2}$ substance must evaporate to freeze 2 moles of water initially at $20^{\circ} \mathrm{C}$?
(a) 53.8 g
(b) 52.7 g
(c) 51.9 g
(d) 50.3 g
8. Sodium thiosulphate, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ is used as a fixer in black and white photography. Assume you have a bottle of sodium thiosulphate and want to determine its purity. The thiosulphate ion can be oxidised with I_{2} according to the following reaction,

$$
\mathrm{I}_{2}(a q)+2 \mathrm{~S}_{2} \mathrm{O}_{3}^{2-}(a q) \longrightarrow 2 \mathrm{I}^{-}(a q)+\mathrm{S}_{4} \mathrm{O}_{6}^{2-}(a q)
$$

If you use 40.21 mL of $0.246 \mathrm{M} \mathrm{I}_{2}$ to completely react, a 3.232 g sample of impure $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, what is the percentage purity of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$?
(a) 79.2%
(b) 70.3%
(c) 69.3%
(d) 96.8%
9. 27.8 g mixture of alkyne and alkane (both containing same number of carbon atoms) is dissolved in 1000 g of benzene. The solution freezes at $2.45^{\circ} \mathrm{C}$. Another 27.8 g mixture requires 0.6 mole of H_{2} for complete hydrogenation. Calculate the chemical formula of alkane (K_{f} for $\mathrm{C}_{6} \mathrm{H}_{6}=4.9$).
(a)

(b)

(c)
人
(d)

10. Consider the following reaction,

Find the structure of E.
(a)

(b)

(c)

(d)

KNOWLEDGE Coefficient Quizzer (No. 15)

\qquad
\qquad
\qquad
\qquad Hobbies

Revision Cum Crash Course for

JEE MAIN 2016

in Just

[^1]
The First Ever Complete Book for JEE Main Giving a Planned Study with Complete Assessment

A Complete Success Package for JEE Main 2015

PREPGUIDE

Complete Study Material for
Physics, Chemistry \& Mathematics
More than 10,000 Practice
Questions as a whole
Two Levels of Exercise in each chapter
24 Unit Tests \& 10 Full Length
Practice Papers
With CD Containing 5 Mock Tests in Online format of JEE Main

Zoarihant

[^0]: Available in :
 Physics, Chemistry, Maths, Biology etc.

[^1]: PHYSICS I CHEMISTRYIMATHEMATICS

