
ira	nchembook.	ir/edu					
			یک -	باسمه تعالی رشته : ریاضی فیز	16 * 11 - T - (W		المُ
1	مدت امتحان: •ا		ساعت ش بی	علوم تجر	-	الات امتحان نهایی درس : شیمی (
				ی متوسطهٔ نظری			
ورش	نجش آموزش و پر http://aee.medu.i	مرکز س r	ور ماه سال ۳۹۵	سور در نوبت شهر د	لبان آزاد سراسرکن	ش آموزان روزانه، بزرگسال و داوطا ا	_
نمرہ				لات (پاسخ نامه دار			رديف
	دقت شود.	دو رقم اعشار	ىد) بلامانع است تا	اصلی ، جذر و درص	(دارای چهار عمل	 ه : استفاده از ماشین حساب ساده 	توجه
1/0			پاسخنامه بنویسید.	ا انتخاب کرده و در	ده ، واژ هٔ مناسب را	در هر مورد از بین دو واژهٔ داده ش	١
				0		الف) ترش شدن شیر از جم له تغ ی	
						ب) آنتالپی استاندارد تشکیل (I)	
		است				ج) زنگ زدن آهن، نوعی واکنش () از معادی مار مک	
						د) انرژی لازم برای شکستن همهٔ	
	ана (р. 1997) 1973 — Парала 1974 — Парала (р. 1974)					هـ) برای واکنشی که در تمام دما	
	ابیستر کمتر کمتر	ى آن	ش دما ا نحلال پذیر و	ماگیر است با افزاید	م نیترات در آب گر	و) با توجه به این که انحلال پتاسی	
١					سخنامه منتقل كنيد	واکنش زیر را موازنه کرده و به پا،	۲
	$Cl_{\gamma}(g) + B_{\gamma}O_{\gamma}$	r(s) + C(s) -	→ BCl _γ (g) + CC	D(g)			
1/10		دهيد.	ں مطرح شدہ پاسخ	ـن C) به پرسشهای	ربیک اسید(ویتامی	با توجه به فرمول ساختاری آسکو	٣
						الف)فرمول تجربی این ترکیب را	
	3. - 1. 				_	ب) کدام یک از بخشهای (۱) یا (-	
		• •	• •	-		ج) این ویتامین در آب بهتر حل ه	
	1	H					
	OC	0 _ <u>C</u>	C H	•			
			H_C-	H			
	н—о	r O	H				
·/¥۵	ی ⁺ Li ⁺ و F	ب پوشی یونها				اگر آنتالپی انحلال لیتیمفلوئورید	۴
)را حساب کنید.	بم فلوئوريد(LiF)	شى شبكة بلور ليت	برابر KJ ۱۰۰۵ باشد انرژی فروپا	
	· · · · · · · · · · · · · · · · · · ·		دوم»	سوالها در صفحهٔ ه	«ادامهٔ		
	L						

ranchembook.ir/edu باسمه تعالى رشته : ریاضی فیزیک --سؤالات امتحان نهایی درس : شیمی (۳) و آزمایشگاه ساعت شروع: ٨ صبح مدت امتحان: ١١٠ دقيقه علوم تجربي نام و نام خانوادگي : سال سوم آموزش متوسطة نظرى تاريخ امتحان : ٢/٩ /١٣٩٥ تعداد صفحه: ٢ مرکز سنجش آموز**ش و پرور**ٹی دانش آموزان روزانه، بزرگسال و داوطلبان آزاد سراسرکشور در**نوبت شهریور** ماه سال **۱۳۹۵** http://aee.medu.ir ديف سؤالات (ياسخ نامه دارد) نمرہ فرض کنید هریک از واکنش های زیر ،درون سیلندر با پیستون روان در دما وفشار ثابت انجام می شود. ۵ 1/4) $C_r H_{\lambda}(g) + \Delta O_r(g) \rightarrow r CO_r(g) + r H_r O(g) + گرما$ ۲) N_r (g) + O_r (g) + \mathcal{D}_{r} (g) + $\mathcal{T}NO$ (g) \mathfrak{V}) N_r (g) + \mathfrak{V} H_r (g) \rightarrow \mathfrak{V} NH_r (g) + $\mathfrak{V}_{\mathfrak{C}}$ (g) + $\mathfrak{V}_{\mathfrak{C}}$ الف)علامت تغییر انرژی درونی(ΔE) واکنش «۱» مثبت است یا منفی؟ چرا؟ ب) تغییر انرژی درونی (ΔE) کدام واکنش تنها ناشی از مبادلهٔ گرما میباشد؟ چرا؟ ۶ |در پاسخ نامه درستی یا نادرستی هریک از عبارتهای زیر را تعیین کرده و در صورت نادرست بودن شکل درست آن را 🖞 ۱/۷ بنویسید. الف) برای لخته شدن یک کلویید به آن می توان محلول شکر در آب اضافه کرد. ب) در شرایط یکسان، سرعت تبخیر سطحی در محلول ۰/۱ مولال آهن(III)نیترات«Fe(NO_r)»کمتر از محلول ۰/۱ مولال سديم نيترات «NaNO» است. ج) پراکنده شدن همگن مولکولهای حل شونده میان مولکولهای حلال فرایندی گرماگیر است. د)ظرفیت گرمایی مولی ماده، یک خاصیت مقداری است. ۷ 1/4 بادکنکهای زیر در فشار یک اتمسفر قرار دارند: شمارة ۳ شمارة ۲ شمارهٔ ۱ 86 0 ⁸⁹0 •/•9mol CH_F •/•9mol Or ۰/۰۶mol Ar الف)برابر بودن حجم گاز بادکنکهای«۱» و «۳» در دمای یکسان، بیانگر کدام قانون است؟ این قانون را در یک سطر بنویسید. ب) دمای گاز بادکنک «۲» نسبت به دمای گازهای دو بادکنک دیگر بیشتر است یا کمتر؟ چرا؟ با توجه به واکنش تجزیهٔ نیتروگلیسیرین و جدول داده شده آنتالپی استاندارد تشکیل نیتروگلیسیرین را حساب کنید. ${}^{\mathbf{F}}\mathbf{C}_{\mathbf{T}} \operatorname{H}_{\Delta} (\mathbf{NO}_{\mathbf{T}})_{\mathbf{T}} (\mathbf{I}) \rightarrow {}^{\mathbf{Y}} \operatorname{CO}_{\mathbf{T}} (\mathbf{g}) + {}^{\mathbf{V}} \operatorname{H}_{\mathbf{T}} \mathbf{O} (\mathbf{g}) + {}^{\mathbf{O}} \operatorname{N}_{\mathbf{T}} (\mathbf{g}) + {}^{\mathbf{F}} \operatorname{N}_{\mathbf{T}} (\mathbf{g}) \quad \Delta \mathbf{H}^{\circ} = - \Delta {}^{\mathbf{V}} \mathbf{T} \cdot \mathbf{kJ}$ ∆H° (kJ.mol⁻⁻¹)) کس ترکيب -141 $H_rO(g)$ -494 $CO_{\gamma}(g)$ «ادامهٔ سوالها در صفحهٔ سوم»

	ranc	hem	bool	k.ir/	'edu
--	------	-----	------	-------	------

								تعالى	باسمه								
دقيقه	نحان: ۱۱۰	ىدت امن	ببح ا	وع: ۸ م	عت شر			ِیاضی ف علوم تج	-	گاه ر	آزمايش	ل (۳) و	: شيمي	بی درس	عان نهای	ت امتح	سؤالا
	غحه:۴	نعداد ص	189	10/9/	Y• :,	ع امتحار	تاريخ	ة نظرى	متوسط	آموزش	ل سوم آ	ساز			ادگى :	نام خانو	نام و
ور ش	زش و پر http://a			مر	1390	ہ سال	يور ما	ېت شهر	ر در نوب	اسركشو	زاد سر	طلبان آ	ال و داو	، بزرگس	, روزانه	, آموزان	دانش
نمره							ارد)	خ نامه د	ت (پاس	سؤالا							رديف
1/10								2.					ميد.	بل بنويہ	بورد دل	در هر ه	١٣
					1		.د.	ایجاد ک	در آب	چرکھا	یدار از	سيون پا	ک امول	ر تواند ی	ابون مے	الف) ص	
	طور	نش به م	ين واک	، است، ا	ی همراه	ل آنتروپ	ا کاهش	۲H _۲ ،	(g) + (D ₇ (g) -	→ ۲H	O(g)»	يدروژن	وختن ه	بن که س	ب) با ا	
													ود.	ام میش	فود انج	خودبه	
									-		باز است	سامانهٔ ب	تن يک	ال سوخ	ع در حا	ج) شم	
1/4		شرايط	SO در	نر گاز ۳	۲۵/ لیت	زير ۲۰	واكنش	A» طبق	Al ₇ (SC	ات «۳(۴	م سولفا	آلومينير	111/-1	رمایی g	جزيۂ گ	اگر از ت	14
									به کنید	را محاس	واكنش	رصدی	بازده د	ه باشد،	وليد شد	STP	
	Al _r (SC) ₅) ₇ (s)	$\xrightarrow{\Delta} Al_r$	O _r (s)	+ %S C	۳(g)		Al _r (SO _F) _"	=***/•	Yg.mo	ol ⁻¹					
۲.		مع نمرہ	ج				« .	ق باشيد	« موف								
																	۲
₩ \/••∧		راهنمای جدول تناوبی عنصرها ۶ عدد اتمی							He ۴/۰۰۱								
Y	۴	-			-	, تىنى	С	,		н. 1.		۵	۶	۷	٨	٩	۱.
Li 8/441	Be 9/-11				ن	ئی میانگیر	جرم اته	11	r/•1			B	C	N 14/+1	0 18/••	F 19/	Ne
	1/•11			÷.,		ł				J		1.7/1	11/-1	10	18	14/00	14/17
Na 77/99	Mg 74/71								 			АІ 19/9л	Si 78/19	P 7•/9V	S 471.7	Cl	Ar
18	۲.	۲۱	۲۲	۲۳	74	۲۵	26	۲۷	۲۸	۲٩	۳۰	۳۱	۳۲	٣٣	٣۴	۳۵	۳۶
ĸ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr

00/10

44

Ru

1+1/1

٧۶

Os

19.17

51/98

۴۵

Rh

1.1/9

٧٧

Ir

197/7

51/89

49

Pd

1.8/4

۷۸

Pt

190/1

90/89

48

 $\mathbf{C}\mathbf{d}$

111/4

٨٠

Hg

8...18

89/17

49

In

114/1

۸١

ΤI

1.4/4

11/94

۵۰

Sn

118/7

۸۲

Pb

1.4/1

88/00

44

Ag

1.1/9

٧٩

Au

191/.

VF/91

۵١

Sb

111/1

۸٣

Bi

1.9/.

٧٨/٩۶

۵۲

Te

188/8

٨۴

Ро

(1.9)

14/1.

54

Xe

131/3

88

Rn

(111)

٧٩/٩٠

۵۳

1

18/9

۸۵

At

(11.)

89/1.

**

Rb

10/44

۵۵

Cs

184/9

4./.8

۳۸

Sr

11/95

58

Ba

187/8

44/98

۳٩

Y

٨٨/٩١

۵۷

La

181/9

FV/AV

۴.

Zr

91/11

۷۲

Ηf

144/0

5./98

41

Nb

97/91

۷٣

Ta

۱۸۰/۹

51/..

41

Mo

90/98

44

W

۱۸۳/۸

54/94

43

Tc

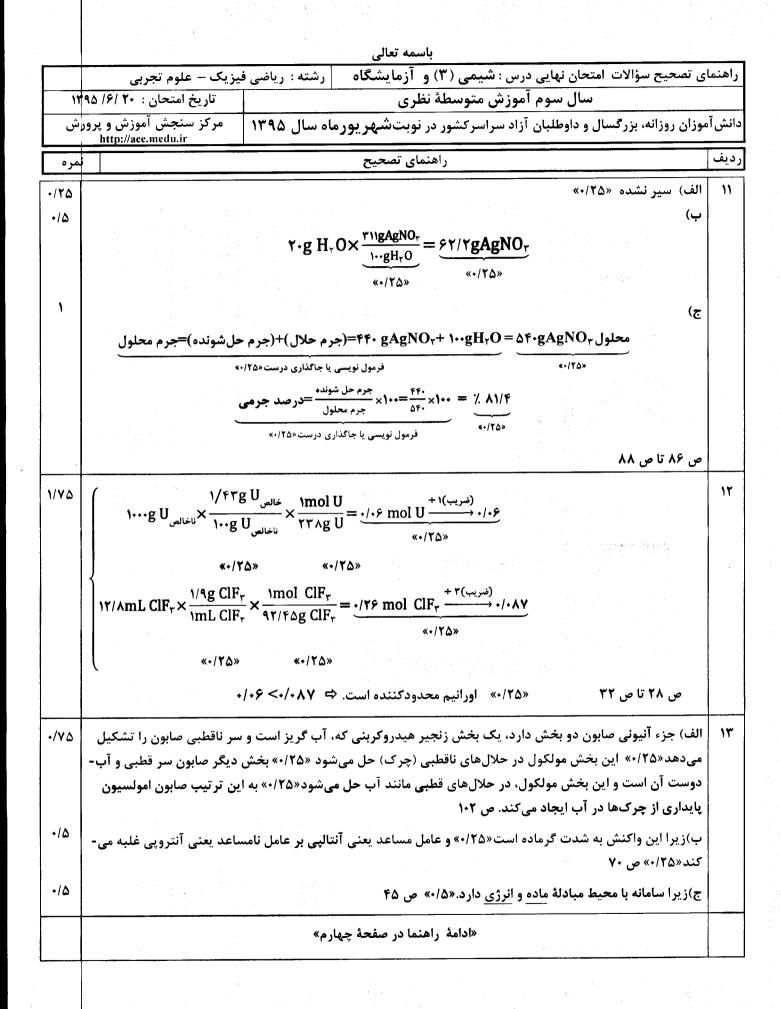
(٩٨)

۷۵

Re

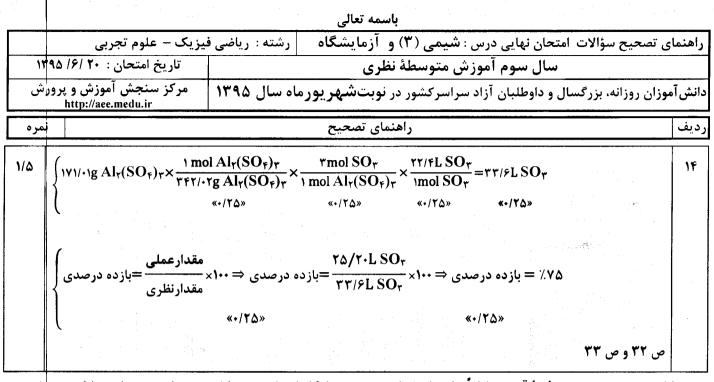
18918

iranchembook.ir/edu


	باسمه تعالى	
	ی تصحیح سؤالات امتحان نهایی درس : شیمی (۳) و آزمایشگاه مشته : ریاضی فیزیک – علوم تجربی	راهنما
١٢	سال سوم آموزش متوسطهٔ نظری تاریخ امتحان : ۲۰ /۶/ ۹۵	
ش	موزان روزانه، بزرگسال و داوطلبان آزاد سراسرکشور در نوبت شهر یور ماه سال ۱۳۹۵ مرکز سنجش آموزش و پرور http://aee.medu.ir	دانش آه
مرہ	راهنمای تصحیح	رديف
1/5	الف) شیمیایی «۲۵/۰۰» ص۲ ب) مثبت «۵۲/۰۰» ص۵۴ ج) اکسایش «۰/۲۵» ص۶	١
	د) نیست «۵۲/۰» ص۵۷ هـ) مثبت «۰/۲۵» ص۷۱ و)بیشتر «۸۵/۰» ص۸۵	
١	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	٢
•/۵	الف)	٣
•/80	ب) بخش <u>۲</u> «۰/۲۵» ص ۷۹	
•/۵	ج) در آب «۰/۲۵» – زیرا بخشهای قطبی مولکول ویتامین C بر بخشهای ناقطبی آن غلبه میکند و در مجموع مولکول قطبی است و در حلال دارای مولکولهای قطبی(آب)بهتر حل میشود«۸۲/۵» ص ۸۰	
•/٧۵	$\Delta H_{\rm equation} = \Delta H_{\rm equation} + \Delta H_{\rm equation} + \Delta H_{\rm equation}$ انحلال	۴
	$+ \mathfrak{rrkJ} = \Delta H_{\mathfrak{s},\mathfrak{s},\mathfrak{s},\mathfrak{s},\mathfrak{s},\mathfrak{s},\mathfrak{s},\mathfrak{s}$	
١	الف) منفی «۰/۲۵»- زیرا در این واکنش ۰ < ∆۷ است، پس ۰ > w است «۰/۲۵» و از طرفی گرماده است پس۰ > q میباشد «۰/۲۵» و در نتیجه: ۰ > <u>∆E =(q+w)</u> «۰/۲۵»	۵
۰/۵	ی. ب) واکنش ۲«۲۰/۲۵»- زیرا در این واکنش ۰ = ∆ در نتیجه ۰ = w است «۲۵/۰۰» ص۴۸ تا ص ۵۰	
•/۵	الف)نادرست«۰/۲۵»- برای لخته شدن یک کلویید به آن <u>نمی توان</u> محلول شکر در آب اضافه کرد. «۰/۲۵» ص ۱۰۱	۶
•/۲۵	ب)درست«۲۵/۰۰» ص ۹۴ تا ص ۹۶	
•/۵	ج) نادرست«۰/۲۵»- پراکنده شدن همگن مولکولهای حلشونده میان مولکولهای حلال <u>گر</u> ماده است. «۸۱/۰» ص ۸۱	
•/۵	د) نادرست«۲۵/۰۰»- ظرفیت گرمایی مولی ماده،یک خاصیت <u>شدتی</u> است. «۲۵/۰۰» ص ۴۶	
•/٧۵	الف)قانون آووگادرو«۲۵/۰۰» – در فشار و دمای یکسان، مولهای برابر از گازهای مختلف«۲۵/۰۰» حجم ثابت و برابری دارند. «۲۵/۰۵»	
•/٧۵	ب) بیشتر است «۰/۲۵» – زیرا تعداد ذرهها و فشار گازها یکسان است«۰/۲۵» ولی حجم گاز بادکنک«۲» بیشتر است بنابراین دمای گاز درون آن بالاتر است «۰/۲۵» ص ۲۵	
	«ادامهٔ راهنما در صفحهٔ دوم »	

iranchembook.ir/edu

	باسمه تعالى	`:						
	م تصحیح سؤالات امتحان نهایی درس : شیمی (۳) و آزمایشگاه رشته : ریاضی فیزیک – علوم تجربی	راهنماء						
	سال سوم اموزش متوسطهٔ نظری تاریخ امتحان : ۲۰ /۹/ ۹۵							
ڞ	یزان روزانه، بزرگسال و داوطلبان آزاد سراسرکشور در نوبت شهر یور ماه سال ۱۳۹۵ مرکز سنجش اموزش و پرور http://aee.medu.ir	انش آم						
مرہ	راهنمای تصحیح	ديف						
١	[مجموع آنتالپی های استاندارد تشکیل واکنش دهنده ها] – [مجموع آنتالپی های استاندارد تشکیل فراورده ها] = ΔH	•						
	$-\Delta \mathbf{V} \mathbf{T} \cdot \mathbf{k} \mathbf{J} = \left[1 \mathbf{T} \Delta \mathbf{H}^{\circ}_{\text{CO}_{7}} + 1 \cdot \Delta \mathbf{H}^{\circ}_{\text{CO}_{7}} + \Delta \mathbf{H}^{\circ}_{\text{CO}_{7}} + \Delta \mathbf{H}^{\circ}_{\text{CO}_{7}} + 2 \mathbf{H}^{\circ}_{\text{CO}_{7}} \right] - \left[\mathbf{F} \Delta \mathbf{H}^{\circ}_{\text{CO}_{7}} (\mathbf{C}_{7} \mathbf{H}_{\Delta} (\mathbf{N} \mathbf{O}_{7})_{7} \right]$							
	نوضیح:برای نوشتن یکی از رابطههای بالا بدون محاسبات زیر «۰/۲۵» در نظر گرفته شود.							
	$\left[\underbrace{\underbrace{IY\times\left(-YqFkJ\right)}_{$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$							
	$\Rightarrow \mathbf{x} = \Delta \mathbf{H}^{\circ}_{\text{max}}(\mathbf{C}_{r}\mathbf{H}_{\diamond} (\mathbf{NO}_{r})_{r}) = - T \Delta Y \mathbf{k} \mathbf{J} . \mathbf{mol}^{-1} \ll 1/T \Delta NO_{r}$							
•/٧۵	لف)زیرا ذرههای تشکیل دهندهٔ آنها به اندازهٔ کافی درشت است «۰/۲۵» که بتوانند نور مرئی را پخش کنند. «۰/۲۵» اثر نیندال -«۰/۲۵» ص۹۸							
•/۵	ب) بیشتر«۲۵/۰۰» – زیرا میزان تغییر آنتروپی برای فر آیند انجماد آب خالص نسبت به یخ زدن محلول نمک در آب کمتر ست. «۲۵/۰۰» ص۹۴ تا ص ۹۶							
1/70	وش اول: با توجه به واکنش داخل کادر:	۱۰						
	اکنش اول را عکس میکنیم «۰/۲۵» پس ΔH _r = +۱۹۳kJ «۰/۲۵» ، واکنش دوم را بدون تغییر مینویسیم پس	9						
	∆H _r = -۳۹۴kJ است«۲۵/۰۰» و واکنش سوم را عکس و نصف میکنیم «۲۲۵» پس ۲۸۳kJ+ =۵∆«۵/۰۰» و در							
	هایت:	;						
	$\Delta \mathbf{H}_{\epsilon} = \Delta \mathbf{H}_{\epsilon} + \Delta \mathbf{H}_{\epsilon} + \Delta \mathbf{H}_{\delta} = (+19\% kJ) + (-\%9\% kJ) + (+\%\% kJ) = + \%\% kJ^{*} + (-\%\% kJ) = + \%\% kJ^{*} + (-\%\% kJ) + (-\%\% kJ) + (-\%\% kJ) = + \%\% kJ^{*} + (-\%\% kJ) + (-\%\% kJ) + (-\%\% kJ) + (-\%\% kJ) = + \%\% kJ^{*} + (-\%\% kJ) + (-\%\% kJ) + (-\%\% kJ) + (-\%\% kJ) = + \%\% kJ^{*} + (-\%\% kJ) + (-\%\% kJ) + (-\%\% kJ) + (-\%\% kJ) = + \%\% kJ^{*} + (-\%\% kJ) + (-\%\% kJ) + (-\%\% kJ) + (-\%\% kJ) = + \%\% kJ^{*} + (-\%\% kJ) + (-\%\% kJ) + (-\%\% kJ) = + \%\% kJ^{*} + (-\%\% kJ) + (-\%\% kJ) + (-\%\% kJ) + (-\%\% kJ) = + \%\% kJ^{*} + (-\%\% kJ) = + \%\% kJ^{*} + (-\%\% kJ) + (-$							
	روش دوم: با توجه به واکنش داخل کادر:							
	۴) CO(g) + N _Y (g) \rightarrow C(s, گرافیت) + N _Y O(g) ; $\Delta H_{F}^{\circ} = +19 \text{ KJ } \text{ (*/}\Delta \text{)}$							
	۲) $C(s, \mathcal{C}(g) \to CO_{r}(g)$; $\Delta H_{r}^{\circ} = - \mathcal{C} \mathfrak{K} J^{\circ} / r \Delta $							
	$\Delta) \operatorname{CO}_{T}(g) \to \operatorname{CO}(g) + \frac{1}{T} \operatorname{O}_{T}(g) \qquad ; \ \Delta \mathrm{H}^{\circ}_{\Delta} = +T \wedge T \mathrm{kJ} \ll 1/T \Delta \mathbb{K}$							
	واکنش کلی) $N_{Y}(g) + rac{1}{Y} O_{Y}(g) \rightarrow N_{Y}O(g)$							
	$\Delta \mathbf{H}_{e_1 \times h_{F}} = \Delta \mathbf{H}_{F} + \Delta \mathbf{H}_{F} + \Delta \mathbf{H}_{A} = (+19\% kJ) + (-\%\% kJ) + (+\%\% kJ) = + \%\% kJ^{*}/10\%$							
	ی ۵۹ تا ص۶۲ «ادا به مادد این							
	«ادامهٔ راهنما در صفحهٔ سوم »							


 $\int_{-\infty}^{\infty} |g_{i}|_{q}^{2} \leq \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} |g_{i}|_{q}^{2} \leq \int_{-\infty}^{\infty} \int_{-$

ranchembook.ir/edu

المراجع المراجع

ranchembook.ir/edu

همکار محترم ضمن عرض خدا قوت ؛ لطفاً برای پاسخهای درست بر پایهٔ کتاب (به جز به کاربردن تناسب درحل مسایل عددی)

نمره منظور فرمایید.